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ABSTRACT

The chemistry of the Earth's atmosphere consists of complex networks of
reactions. Photooxidation of volatile organic compounds (VOCs) in the
atmosphere initiates free radical formation. These radicals attack other
VOCs to form pollutants and secondary organic aerosols. Quantitative
understanding of the radicals and reactions is needed for accurate
modeling of the atmosphere. Many species are difficult to study due to
low concentrations and short lifetimes. Spectroscopic methods in the
ultraviolet and visible regions either do not have the sensitivity or the
specificity to characterize these reactions. The work here examines the
chemistry and physics of atmospheric radicals by using the sensitive and
fast spectroscopic technique cavity ringdown spectroscopy (CRDS), to

detect transient species in the near-infrared (NIR) region.

The nitrate radical NO3z is a major nighttime oxidant in the troposphere. It
is also a classic example of the breakdown of the Born-Oppenheimer
approximation. = The radical was first observed a century ago in
atmospheric measurements. The structures of the three lowest electronic
state however are still not well understood. Difficulties arise from the
non-adiabatic Jahn Teller and Pseudo-Jahn-Teller effects. In Chapter 3,
we examine the electronic-dipole forbidden A « X transition of NO3 in
the NIR to elucidate the A state of NO3. In Chapter 4, we examine the role
of NOsz in atmospheric reactions by detecting the peroxy radical

intermediate of the oxidation of 2-butene by NOs.

The chlorine atom Cl is highly reactive and has been historically
considered a coastal or marine layer oxidant. Studies now indicate that CI
atoms can play significant roles in urban mainland chemistry. Isoprene

and 2-methyl-3-buten-2-ol (MBO232) are two important biogenic VOC



emissions. Isoprene alone is responsible for emissions of 500 Tg C y-l.Vll
The peroxy radical intermediates of the oxidation of isoprene and MBO232
by Cl have never been detected using absorption spectroscopy. Chapter 5
includes the first preliminary CRD spectra of the A « X transition of Cl-
isoprenyl and Cl-MBO232 peroxy radials in the NIR. We also outline
kinetic experiments to measure the rates of reaction between the CI-
substituted peroxy radicals and nitric oxide (NO) and hydroperoxy radical
(HO2) under high and low NO. conditions in the troposphere.
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