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Abstract

This dissertation is devoted to the study of estimation and control over systems which
can be described by linear time-varying state-space models. Examples of such sys-
tems are encountered frequently in systems theory, e.g., wireless sensor networks,
adaptive filtering, distributed control, etc. While linear time-invariant systems are
well-understood, there is no general theory that captures various aspects of time-
varying systems, ranging from the optimum design of the system to the performance
analysis. With little exception, tackling these problems normally boils down to study-
ing time-varying linear or non-linear recursive matrix equations, known as Lyapunov
and Riccati recursions. Unlike the time-invariant counterparts, these are notoriously
hard to analyze. Here, we employ the theory of random matrices to elucidate dif-
ferent facets of these recursions and henceforth, answer several important questions
about the performance, stability, and convergence of estimation and control over such
systems.

The importance of such analysis cannot be overemphasized. In the light of recent
advances in micro-sensor technologies, numerous new applications for wireless sensor
networks have been made possible, including, but not limited to, distributed catas-
trophe surveillance, smart transportation, and power grid control systems. A vast
amount of research has been dedicated to the study of wireless sensor networks in
the past few years that has only revealed the insufficiency of our knowledge and the
inefficiency of the existing tools in analyzing them. There are overwhelmingly new

research opportunities in this field which are yet to be examined. In wireless sensor
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networks the communications limitations, such as data loss and delay, become tightly
connected to the control and estimation process. Classical estimation and control al-
gorithms are immediately disqualified since the observation and/or control data may
be lost in the system. Moreover, stingy power constraints imposed by the sensors call
for a distributed rather than centralized approach to the problem. Handling sensor
failures and security issues are other examples of obstacles which are yet to be over-
come. A steady-state analysis of random matrix recursions that arise in this field not
only determines the system performance, but can also guarantee the stability.

Another important example is adaptive filtering, which is a universal tool in many
areas such as communications and control. Rigorous analysis of the steady-state and
transient behavior of adaptive filters remains a formidable task in most of the cases.
The so-called excess mean-square error (EMSE) in many classes of adaptive filters is
not known except for approximations based on several unrealistic assumptions. Once
again, the transient and steady-state behaviors are governed by random Lyapunov or
Riccati recursions that bring about a great deal of technical difficulties.

We make two general assumptions throughout our approach. First, we assume
that the coefficient matrices are drawn from jointly stationary matrix-valued random
processes. The stationarity assumption hardly restricts the analysis since almost all
cases of practical interest fall into this category. We further assume that the state
vector size, n, is relatively large. This assumption will enable us to take advantage of
many compelling results available in the theory of large random matrices. Although
the derivations are carried out for n > 1, the law of large numbers guarantees fast
convergence to the asymptotic results for n being as small as 10-20. Therefore the
assumption is justifiable since in the majority of practical scenarios the state vector
size satisfies this condition. Under these assumptions, we develop a framework which

is capable of characterizing steady-state as well as transient behavior of adaptive
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filters and control and estimation over communication networks. This framework has
proven promising by successfully predicting universal laws for the first time in several
problems.

In the following, we first look at random Lyapunov recursions and characterize
their transient and steady-state behavior. This is motivated by several classes of adap-
tive filters, and through Lyapunov recursions appearing as lower bounds of random
Riccati recursions in distributed Kalman filtering. Next we look at random Riccati
recursions which manifest the system’s performance in numerous important scenarios
and therefore their analysis is of greater significance compared to the Lyapunov ones.
At the same time, their nonlinearity makes them much more complicated to study.
We begin with studying simple recursive-least-squares (RLS) filtering and extend our
analysis beyond the standard case to filtering with multiple measurements, as well
as the case of intermittent measurements. This is is motivated by the problem of a
sensor sending its measurements through a lossy network. Finally, we study Kalman
filtering with intermittent observations which is frequently used to model wireless sen-
sor networks. In all of these cases we obtain interesting universal laws which depend
on the structure of the problem, rather than specific model parameters. We verify
the accuracy of our results through various simulations for systems with as few as 10

states.
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Chapter 1

Introduction

The general purpose of this thesis is to study the performance of various algorithms
used in estimation, control, and adaptive signal processing to estimate an unknown,
not directly observable variable, through another dependent but observable variable.
This broad definition encompasses a significant number of problems in engineering
and science. Examples include signal detection in communications, locating an object
using radar signals, orbit determination in astronomy, and estimating the response
of a population through opinion polls. Although the first appearances of estimation
problems in engineering, statistics, and science date back to hundreds of years ago,
due to their ubiquitous applications they have continued to be a notorious subject of
research in several fields.

The models and algorithms, and even the languages used in the analysis of these
problems are as diverse as the problems themselves. Naturally the first step of every
analysis in the estimation theory is to develop a model for the underlying real-world
problem. The next step is to adopt an estimation algorithm, which should be fol-
lowed by the performance study. If proved to be promising, the developed algorithm
evolves into practical solutions. This thesis focuses on the third stage, which is the
performance analysis of different estimation algorithms, in particular those related to
estimation and control over lossy networks and adaptive filtering. The problems we

consider are common in being modeled through a linear state-space model, and as a
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result, in having their performance governed by the celebrated Lyapunov and Riccati
matrix recursions.

The linear time-invariant state-space models have been studied extensively in the
past decades. A huge host of algorithms have been developed for estimation in this
framework. Kalman filtering is a famous example. At the same time, the time-varying
counterpart has also been subject of a large body of research. As an example, time-
varying linear state-space models have been the bread and butter of adaptive filtering.
However there is a significant shortcoming when it comes to the analysis of time-
varying state-space models: While the performance of estimation over LTI systems
has been known for a long time and there exist powerful tools which can be employed
successfully to this end, the performance analysis of time-varying counterparts has
never been rigorous in most cases. For example in the adaptive filtering theory, as
will be discussed later in the thesis, the performance of recursive-least-squares (RLS)
filters is not known unless under often unrealistic assumptions. Another instance is
the problem of estimation and control over lossy networks about which there has been
a growing interest in recent years. A survey of the literature shows the impotency of
the existing tools in the study of this important problem. As we already hinted, the
underlying difficulty in both cases is dealing with time-varying (and often random)
Lyapunov and Riccati recursions (especially the Riccati since it is nonlinear). This
thesis is an attempt to establish a framework through which such random matrix-
valued recursions can be analyzed. The approach that we take here is completely novel
in the literature and as will be seen, proves to be successful in almost all scenarios of
practical importance.

In this introductory chapter we will try to highlight the importance of studying
random Lyapunov and Riccati recursions by giving an overview of some problems

and applications both in recent areas of research such as wireless sensor/actuator
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networks and in well-developed fields such as adaptive filtering. The motivation for
taking the route of large random matrix theory and a high-level description of the
proposed framework will also be presented. The chapter concludes with an account

of the contributions of this thesis.

1.1 Linear State-Space Model

The standard state-space model is a very common model in systems theory for many

reasons which are beyond this introduction [HSK99]. Consider

riy1 = Furp+ G, 1> 0, )

yi = Hizi+ v,
where z; € R" is the state vector which is not observable and y; € R™ denotes the
measurement vector at time . The state and process noises (sometimes called driving
sequences), {u; } and {v;}, are assumed to be zero-mean white processes. Furthermore
F, e R™" G; € R™P, H; € R™™ are system matrices and known to the observer.

The initial state of the system, denoted by xzq, is also considered to be a random

variable. The statistics of all the processes in the system can be summarized as

o 0 0 HO 0

which insists that all the random variables are zero mean!. We will also assume that

{u;} and {v;} are independent (in other words S; = 0).

IThis does not affect the generality since it is straightforward to incorporate nonzero mean.



In the time-invariant case, i.e., when
F,2F, G;2G, I,2H Q2Q, R 2R, (1.3)

the problem is very well studied. It is known that the state covariance matrix satisfies

a Lyapunov recursion

I, = FILFT + GQGT,  Il,. (1.4)

If F is stable (all eigenvalues strictly inside unit circle) and {F, GQ%} is controllable?

then II; converges as i — oo to the unique solution of the Lyapunov equation
I1 = FIIFT + GQGT. (1.5)

The minimum mean square error (MMSE) recursive estimator of {z;} based on the
{y;} is the very well-known Kalman filter. If the observer employs a Kalman filter, the
estimation error covariance matrix, P; = E(z; — ;) (z; — 2;)7, will satisfy a Riccati

TECUTSION
P,y = FP,FT + GQGT — FP,HY (R + HP;H")"'HP,F*, P, (1.6)

which is a nonlinear matrix-valued recursion. It is known that when {F, G} is stabiliz-
able® and {F, H} is detectable! then P; converges to the unique positive semidefinite

solution of the discrete algebraic Riccati equation (DARE)

P = FPF” + GQG” — FPHT (R + HPH”)'HPF. (1.7)

2There are several equivalent definitions of controllability. For example {F, G} are controllable if
and only if the controllability matrix [G FG F2G ... F" 'G] has rank n.

3The pair {F,G} is called stabilizable if there is no left eigenvector of F, corresponding to an
unstable eigenvalue of F, that is orthogonal to G. In other words if all unstable modes of F are
controllable. There are several equivalent conditions in the literature [KSH00].

“The pair {F,H} is called detectable if and only if {F7,H”'} is stabilizable.



Figure 1.1. A sensor network is a collection of distributed sensors that make noisy
observations of some dynamical system and forward these measurements either to
another sensor or to a central location.

For an excellent discussion of the solutions of the DARE one can consult [KSHO00].

However, things are not always as simple as the time-invariant case. As we will
see, there are many important scenarios for which the time invariance assumption is
no longer valid.

It is worth mentioning that there are other variants of this standard state-space
model which arise in different contexts. For example z;;; may be considered to
have both u; and u;,, dependency; or the observation noise, v;, can represent a
nonwhite process which follows an update equation just like that of the state vector x;.
Although the analysis of these alternative models is possible through our framework,
we will stay in the boundaries of the standard model because it is the most commonly
used model in the literature, and furthermore the problems that have motivated the

thesis are best modeled this way.
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1.2 Estimation and Control over Lossy Networks

Recent advances in the microsensor technologies have facilitated numerous new ap-
plications of wireless sensor and/or actuator networks including but not limited to
distributed catastrophe surveillance, smart transportation and power grid control sys-
tems. It is now widely recognized that many of the future applications of systems
and control theory will pertain to problems of distributed estimation and control of
multiple agents (both sensors and actuators) over networks.

A sensor network is a collection of distributed sensors that make noisy observations
of some dynamical system (for example the environment temperature) and forward
these measurements either to another sensor or to a central location in order to
obtain an estimate of the state of the system. In some other systems the goal is to
coordinate among several agents to perform a prespecified task collectively in which
case the agents communicate through a network (usually wireless) to exchange various
estimation and control data. What is common among all these scenarios is that the
communication, or exchange of measurements, must be done in real time across a
wireless network which is inherently unreliable.

A vast amount of research has been dedicated to the study of wireless sen-
sor/actuator networks in the past few years that has only revealed the insufficiency
of our knowledge and the inefficiency of the existing tools in analyzing them. There
are many new research opportunities in this field which are yet to be examined. In
such networks the communications limitations, such as data loss and delay, become
tightly connected to the control and estimation process. Classical estimation and
control algorithms are immediately disqualified since the observation and/or control
data may be lost in the system. Moreover, stingy power constraints imposed by the
sensors call for a distributed rather than centralized approach to the problem. Han-

dling sensor failures and security issues are other examples of obstacles which are yet



to be overcome.

Several important questions may be asked about how best to operate across such
unreliable networks. For example, what information should the agents transmit?
What is the best coding scheme for measurements or control data to overcome the
uncertainties in the network? How do we achieve all of this in a distributed fashion?
And many more. The researchers in this field have taken many different directions,
a complete account of which is well beyond the scope of this chapter. The interested
reader may consult [Gup06] and the references therein for a literature review.

While complicated encoding schemes can be envisioned for these systems, they
usually add too much overhead to the system which conflicts with the power con-
straints. The work along this direction is continuing to grow and may eventually lead
to a breakthrough. From a practical point of view, however, most systems will not
implement fancy encoding and decoding techniques, rather they will employ simple
Kalman filtering and LQG control at least in the short to medium term. In other
words, in the aforementioned sensory network problem, the central location in charge
of constructing state estimates will simply implement a Kalman filter with both mea-
surement and time updates every time it receives a measurement and only a time
update when it does not receive a measurement. Similarly, in control problems, the
agents will implement certainty equivalence control laws, i.e., they will use state feed-
back applied to their current estimate of the state (in fact, in many cases it can be
shown that certainty equivalence or separation holds: the optimal control signal is
optimal state feedback using the optimal state estimate).

Thus the main issue in such networks is to determine the actual performance
of the system and its dependence on the network uncertainties. For example for a
wireless sensor network we are interested in the estimation error of the state. In

multi agent control problems we are interested in things such as stability, success
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of the task and/or the optimal control cost. What makes the problem challenging,
and different from the traditional theories, is that the underlying lossy (or unreliable)
network introduces randomness into the system performance.

A very well-received model for the effect of unreliable links in these systems (see,
e.g., Sinopoli et al. [SSFT07, MS08], Epstein et al. [ESTMO0S]|, Imer et al. [ITYBO6]
and the references therein) assumes that control and estimation data are in the form
of intermittent packets. The packets (independently) may be received or not accord-
ing to some probability of successful transmission. Adopting this model has made
many problems mathematically tractable and infused great insights about the system
behavior and performance. However this model brings up random Riccati recursions
about which except for bounds on the stability conditions, very little is investigated. A
steady-state analysis of such recursions not only determines the system performance,
but can also guarantee the stability [KSMO09].

More explicitly, assume that a wireless sensor is sending its measurements {y;} to
the estimator as packets through a lossy network. Each packet, independently of other
packets may be lost with probability 1 — 4. Depending on whether a measurement
is received or not, the Riccati recursion update is different (a time update when no
observation is at hand and both time and measurement updates otherwise). Thus
the lossy network makes the underlying Riccati recursion (which propagates the error

covariance matrix of the state) random

P,y = FP,F! + GQGT — v, FP,H (R + HP,HT)"'HP,F, P, (1.8)

where {~;} is a Bernoulli process such that Pr(y; =1) = 4.
Thus, unlike the standard LTI Kalman filter where the convergence properties of
the Riccati recursion are well known, here we have to study the asymptotic behav-

ior of a random Riccati recursion. We therefore envisage that, just as the study of
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conventional Riccati recursions played a central role in conventional estimation and
control, the study of random Riccati recursions will play a central role in the systems
that arise from estimation and control over lossy networks. Since Riccati recursions
are highly nonlinear, explicitly determining the distribution or mean value of the ma-
trix being propagated seems hopelessly intractable. Therefore what we propose here
is to leverage results from the theory of large random matrices (and, in particular,
transform methods) to determine the asymptotic eigendistribution of the matrix be-
ing propagated.” As we will show in this thesis, under some fair assumptions our
framework can successfully predict the steady-state eigendistribution of the error co-
variance matrix for estimation problems with intermittent observations. This is the
first result of its kind in the field and at the same time can be shown to be very

accurate for most cases of practical interest.

1.3 Adaptive Filtering

Adaptive filtering is a universal tool in many areas such as communications, control,
and statistical signal processing. Basically adaptive algorithms appear whenever we
encounter time-variant systems with little a priori information about the underlying
signals. This is a topic with much practical applicability and interesting theoretical
challenges. Although the ideas of adaptive signal reconstruction root back to Gauss
and it can be considered a classical field with numerous textbooks and established
practice, rigorous analysis of the steady-state and transient behavior of adaptive filters
remains a formidable task in most of the cases. The reason is that adaptive filters
are time-varying, often nonlinear and at the same time stochastic objects. When

the regressors are random, as is the case in almost all applications, many classes

5As we shall see further below, the eigendistribution often contains all the useful information
about the random matrix that we desire.
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Figure 1.2. Schematic diagram of an adaptive filter used for estimating an unknown
FIR channel.

of adaptive filters (e.g., recursive-least-squares [Hay01] or H>° [HSK99] filters) have
turned out to be extremely difficult to analyze. In fact, the so-called excess mean-
square error (EMSE) of these filters is not known except for approximations based
on several unrealistic assumptions.

The adaptive filtering problem can be best represented as a special case of the
state-space model we introduced earlier in (1.1)

Tipr = x; + Giug, 12> 0,
i (1.9)

yi = hizi + vy,
in which y; € R and the h; are called regressor vectors. Two common adaptive
algorithms for estimating z; based on {y;<;} will be introduced and analyzed later
in the thesis. Here we will just mention an example to show the ultimate connection

with random Lyapunov and Riccati recursions. The RLS filter estimates x; recursively
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through an estimate update of the form

~

. P:h!
Tip1 = T; +

m(yz — hii;), (1.10)

and the estimation error covariance, P; = E(x; — 2;)(x; — ;)7 satisfies a random
Riccati recursion of the form

P;hT h;P;

P =P — —— L
i 4 hiP;hT

+4ql, P, (1.11)
where QQ, = ¢l is assumed.

Once again, the transient and steady-state behaviors are governed by random
Riccati (or Lyapunov as we will see) recursions that bring about a great deal of
technical difficulties. A large part of the results in this field are based on an ergodicity
assumption®, which is known to be loose for non-Gaussian regressor vectors [Say03].

In this thesis we will show that any adaptive filtering problem (as far as we have
studied) can be tackled successfully through our method. Even though adaptive
filtering is a classical area, the viewpoint taken here is entirely novel and almost
all the results are new. Moreover, unlike the traditional approaches where usually
different analytical techniques are used for different classes of filters, our analysis
provides one method applicable to all adaptive filters.

The above examples well emphasize the importance of characterizing the transient
behavior and the steady-state statistics of these random matrix-valued recursions in
analyzing and synthesizing the systems both currently in use and those rapidly emerg-
ing as future technologies. A global framework for studying these types of problems
is developed in our work. This framework has proven promising by successfully pre-

dicting universal laws in several long-standing open problems.

6The ergodicity assumption requires the estimation error covariance matrix, P;, to satisfy E[P;] =
(E[P;]) .

3
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1.4 Random Lyapunov and Riccati Recursions

As mentioned earlier, the above problems are deeply connected in the sense that they
can be represented by a linear time-varying state-space model which ultimately brings

up either a random Lyapunov recursion,
Iy = KILFT + G,Q,GT, (1.12)
or Riccati recursion
P, = F,P,FI + G,Q,GI — F,P;H] (R; + H;P;H] ) 'H;P;F;, Py, (1.13)

where all the coefficient matrices, F;, G;, H;, R;, and Q,, can potentially be random.

There are several important questions that may be asked about these recursions:
Does the process {P;} (or {II;}) converge? And if it does, what are the statistics of
the process at the steady state and the convergence rate? These questions directly
relate to the questions about the stability and performance of the system.

Clearly, in contrast to the nonrandom case, {P;} (or {II;}) do not converge to any
specific matrix. However by assuming that the coefficient matrices are drawn from
jointly stationary matrix-valued random processes, one might suspect that P; may
also converge to a stationary process.

In this thesis our goal is to investigate the possibility of existence of such a station-
ary process and to determine whether the system exhibits universal laws, i.e., whether
the overall behavior of the system is independent of the microscopic details of the sys-
tem and network (such as where measurements or packets are being dropped), but
rather dependent only on macroscopic properties, such as the probability of packet
drops. We believe such a theory can have a great impact on the analysis and design

of estimation and control systems over lossy networks. As we shall see it also leads
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to many new results in the theory of random matrices.

1.5 Ouwur Approach

The stationarity assumption that we imposed on the problem hardly restricts the
analysis since almost all cases of practical interest fall into this category. It is also
reasonable to assume that the state vector size, n, is relatively large. This assumption
will enable us to take advantage of many compelling results available in the theory of
large random matrices. Although the derivations are carried out for n > 1, the law
of large numbers guarantees fast convergence to the asymptotic results for n being as
small as 10. Therefore the assumption is justifiable since in the majority of practical
scenarios the state vector size satisfies this condition.

A natural way to study a random matrix is to look at its eigendistribution. The
eigendistribution is defined as the marginal distribution of one randomly selected
cigenvalue of the matrix, i.e., fp(A) = £ 3"  Pr{\; = A}. For a random Lyapunov
or Riccati recursion, studying the eigendistribution is important in several aspects.
First, E[\] = 1E[trP;] is nothing but the mean square error performance when P;
represents the error covariance matrix. Moreover, determining the support of the
eigendistribution is crucial for finding various performance bounds and studying the
system stability. On the other hand, the convergence properties of the eigendistri-
bution in the transient phase directly establish the convergence properties of the
recursion itself. Thus in our analysis we mainly focus on characterizing the eigendis-
tributions.

In order to study the eigendistribution, we follow a common practice in the ran-

dom matrix theory and look at certain transforms of the distribution. A celebrated

transform used in the literature, the Stieltjes transform, is defined on the complex
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plane as [TV04],

Sp(z) =E {AL} _ [ (1.14)

—z A—z
The eigendistribution can be uniquely recovered from its Stieltjes transform through
a well-known inversion formula [SC95],

Fo(0) = Tim ~Im [Sp(A + jw)] (1.15)

w—0t T

Therefore by determining the Stieltjes transform of a distribution, we have in fact
determined the distribution itself. Moreover, using the Stieltjes transform allows one
to directly find the moments of the distribution, my, = E[\*], as the coefficients of
the Laurent series expansion of S(z). Therefore in our approach we try to compute
the Stieltjes transforms of both sides of a random matrix-valued recursion using tech-
niques from linear algebra and stochastic analysis. This way we find a recursion for
the Stieltjes transform of the eigendistribution of P; through which we can find the
steady-state distribution and the transient-phase behavior.

In the remainder, we will present a brief overview of several problems related to
the control and estimation over wireless sensor networks and adaptive filtering to

which we have successfully applied our method.

1.6 Scope and Contributions of the Thesis

Random Lyapunov Recursions

Random Lyapunov recursions describe the state covariance matrix in a linear state-
space model. They also appear in other cases, such as the error covariance matrix
propagation in the least-mean-squares (LMS) adaptive filters. Random Lyapunov re-

cursions also appear as lower bounds of random Riccati recursions in Kalman filtering
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with intermittent observations [MS08, SSF+04].

Although due to the linearity of the Lyapunov recursion it is, in principle, pos-
sible to find all the moments of the eigendistribution by averaging both sides of the
recursion after some algebraic manipulations, this is an inefficient method and fails
to work for the nonlinear Riccati recursions. Our approach, on the other hand, yields
an efficient and systematic way of expressing the eigendistribution and the moments
and establishes a framework through which the nonlinear Riccati counterparts can
also be analyzed.

Two general forms of random Lyapunov recursions are studied in Chapter 3. For
each case the Stieltjes transform at the steady state as well as its time recursion is
determined. The moments of the eigendistribution are characterized and the conver-
gence properties are derived from the convergence of the moments. We will also use
an alternative R-transform approach to the problem. The simulation results suggest
a very close match between the analytical results and the empirical data for n as
small as 10 [VHO8a].

It can be shown that the error covariance matrix in the least-mean-squares (LMS)
filtering satisfies a special random Lyapunov recursion [Say03]. Several variants of
LMS filters are studied in chapter 4 under different assumptions on the regressor
vectors. While the LMS filter has been studied extensively in the literature, through
our approach the stability and performance analysis of all LMS-like algorithms become

straightforward [VHOSD].

Random Riccati Recursions

Random Riccati recursions manifest the system’s performance in numerous impor-
tant scenarios, and therefore their analysis is of greater significance compared to the

Lyapunov ones. At the same time, their nonlinearity makes them much more com-
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plicated to study. In fact it is clear that averaging does not deliver the moments
anymore. Our results on the eigendistributions of random Riccati recursions appear
for the first time in the literature and predict the steady-state statistics accurately.
Essentially we have been able to tackle several problems in systems theory which have
been unsolved for many years.

Recursive-least-squares (RLS) algorithm is considered in chapter 5. We find the
steady-state eigendistribution of the error covariance matrix for an RLS filter (and
hence the mean-squared error performance) when the number of measurements is
small compared to the state vector size, and with temporally white or shift-structured
regressor vectors. Various assumptions on the state update will be considered. We
also study the RLS filter with intermittent observations [VHO8b] which is motivated
by the problem of a sensor sending its measurements through a lossy network. The
measurements of a bursty channel in communications can also be captured in this
model.

In chapter 6 we extend our analysis to the more complicated case of an RLS filter
with multiple measurements where the number of measurements, m, is comparable
to the state size. We show that the Stieltjes transform of the eigendistribution at the
steady-state satisfies a pair of implicit equations which can be numerically solved to
find the distribution [VH09].

Generalized Kalman filtering with intermittent observations is frequently used to
model wireless sensor networks. In chapter 7 we investigate this problem. We find the
Stieltjes transform of the steady-state eigendistribution as the solution of a system of
implicit equations. It is worth mentioning that recently the researchers in the field
[KSMO09] have realized that through steady-state analysis of these types of problems,
one can also establish the stability conditions using random dynamical systems theory

[Chu02].
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Finally in chapter 8 we discuss a few interesting open problems that can potentially
be handled in our framework. We also explain how the current analysis can be further
extended to achieve a better understanding of the current systems and to design more

robust networked control schemes for the emerging applications of such systems.

1.7 Conclusions

In the following chapters, we are going to propose a framework based on the large
random matrix theory which is capable of characterizing the steady-state as well as
transient behavior of adaptive filters and control and estimation over communication
networks. The eigendistributions will be determined in several cases, and by com-
parison with the Monte Carlo simulation results, this approach can be verified to be
accurate. The developed machinery is a considerable progress in the well-established
theory of adaptive filters. In fact almost every adaptive filter can be analyzed through
our method without any unrealistic assumptions. An important aspect of the results
is the universality of them; they depend on the large-scale system parameters and
structure rather than the modeling details (such as the distribution of the entries
of system matrices). On the other hand, this work is a contribution to the random
matrix theory since, to the best of our knowledge, the likes of the eigendistributions
we find have never appeared in the literature before. As we will see, this method is
successful in the analysis and synthesis of control and estimation over communication

networks which has been an active area in recent years.



18

Chapter 2

An Overview of Large Random
Matrix Theory

2.1 Introduction

In the past century, random matrix theory has been used in various fields, such as
physics, statistics, engineering, and finance. A complete list of all the problems which
have successfully been tackled using these tools is well beyond this introduction.
However, it suffices to say that it includes problems in information theory, neural
networks, and condensed matter physics.

In this section we give an overview of pertinent definitions and results from random
matrix theory. A much more comprehensive review of the subject toward applications
in wireless communications theory can be found in [TV04]. Those interested in a more
detailed and coherent analytical account of the theory should consult [Meh91].

This chapter is organized as follows. In section 2.2 we start by giving the basic
definitions and notational conventions used throughout this and later chapters. Sec-
tion 2.3 introduces several transforms of the eigenvalue distribution function which
are used extensively in the literature, particularly the so-called Stieltjes transform.
A very important property of large random matrices, the self-averaging property, is

introduced in section 2.4, along with an example of its application. Finally in sec-
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tion 2.5 we present the notion of freeness which replaces the independence notion for

random variables which are noncommutative, such as random matrices.

2.2 Preliminaries

Just as a matrix is a collection of objects in a rectangular array, a random matrix is

nothing other than the joint distribution of its elements,

ail A1p

A = , (2.1)
am1 - Amn

fA - fall,alz,m ,Amn (alh a12,- - 7amn>- (22)

Often, the most important questions to be answered about a random matrix en-
semble concern the distribution of the eigenvalues. For a realization of an n x n
random matrix, A, the empirical cumulative distribution function of the eigenvalues

is defined as,

Fa() = S T(n(A) < ), (23)

where \;(M) denotes the [-th eigenvalue of M and 1(-) is the indicator function. If we
replace 1(-) with Pr(-), the probability measure over the random matrix ensemble,
we will have the expected CDF. A density function, fa()\), can be associated with
this latter cumulative distribution. It would then represent the expected marginal
distribution of one (randomly selected) eigenvalue of one sample of the random matrix

ensemble,

fA) = = S Pr{N(A) = A}, 2.4)

This density function is frequently referred to as the eigendistribution of A.
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When considering a random matrix family, (A(”)), where A™ € A™ are nxn ma-
trices, one can ask whether the empirical eigendistributions converge to a nonrandom

distribution as n grows. In other words,

fam — fa. (2.5)

In that case, we call fy the asymptotic eigendistribution of (A(”)).

Starting with the work of Wishart [Wis28] in the 1920s, random matrices were
used in multivariate statistical analysis. For decades, the analysis was concentrated
on fixed-dimensional matrices. The majority of results on the eigendistribution of
fixed-dimensional random matrices are complicated and offer little insight, and are
mainly limited to Gaussian random matrices or matrices derived from them [Meh91].
Starting with the work of Wigner in physics in the 1950s [Wigh5, Wigh8|, it was
realized that as soon as the matrix dimensions are allowed to grow, one usually finds
simple, closed-form expressions for the eigendistribution that behave like universal
laws, i.e., they depend on the matrix structure and statistics rather than the exact
distribution of the entries. For example, the semicircle law of section (2.4) only
requires the entries to be i.i.d. with zero mean and bounded second and fourth
moments; the actual distribution of the elements does not matter.

Moreover, although the derivations are carried out for n > 1, the law of large
numbers guarantees fast convergence of the expected eigendistribution to the asymp-
totic results for n being as small as 10 — 20. The convergence rate can be found to
be of order O (n™/") for some v > 1 (see, e.g., [Bai93a, Bai93b]). As a matter of
fact, random matrices also show an ergodic behavior as n — oo in the sense that
the distribution of the eigenvalues of a single realization of the ensemble (empirical

distribution) looks like the expected and consequently asymptotic eigendistribution.
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Figure 2.1. Comparison of the asymptotic eigendistribution with the empirical and
expected distributions when 8 = 0.3 and n = 100, 1000.

In order to show this, let us consider a Wishart matrix,

W=H"H, (2.6)

1

where H is an m x n matrix with independent N (0, =) entries. It can be shown that

[TV04],

1)+ 5(N) + VA = o)t (b - N (2.7)

) = (1- oA

where 3 = 2 a = (1 —+/B)? and b = (1 4+ +/F)*>. In figure 2.1 this asymptotic
eigendistribution is plotted along with the distributions of the eigenvalues for only
one matrix selected from the ensemble for n = 100 and n = 1000. We have also
plotted the expected eigendistribution (approximately) by taking into account the
eigenvalues of 100 samples. As can be seen, the expected eigendistribution converges
quickly to the asymptotic one, as does the empirical one, although slower.

In the sequel, we denote both the asymptotic and empirical eigendistributions by

simply eigendistribution for the sake of brevity whenever there is no ambiguity.
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2.3 Transforms

It turns out that in the random matrix arena, results on the eigendistribution of
random matrices can usually be expressed much more efficiently in terms of certain
transforms of fo(\). There are several transforms used in the literature: the Shannon
transform, Stieltjes transform, n-transform, etc. The choice of transform depends on
the structure of the problem and the underlying matrices. For example in the multi
input multi output communications, it is natural to use either the n-transform or
the Shannon transform. In the problems that we are going to consider, the Stieltjes
transform, R-transform, and S-transform turn out to be handy. We introduce these
three transforms briefly in this section. A complete list of transforms and their

relations with each other can be found in [TV04].

2.3.1 Stieltjes Transform

The most ubiquitous transform used in the random matrix literature is the so-called
Stieltjes transform which was first used in the seminal work of Marcenko and Pastur
[IMP67]. The Stieltjes transform of the eigendistribution of a random matrix A-
interchangeably referred to as the Stieltjes transform of the matrix itself-is defined

on the complex plane as!,

SA(Z):E[ ! }: ‘f\AE/\id)\. (2.8)

for all z in the complex plane, except for the support of fa(.). Having the Stieltjes
transform, the eigendistribution can be uniquely retrieved through its inverse formula
[SC95],

FAQN) = lim 2Tm [Sa (A + jw)] (2.9)

w—0t T

LClearly this definition is not limited to the eigendistribution of random matrices and one can
consider the Stieltjes transform of any real random variable.
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In other words, one should look at the imaginary part of the Stieltjes transform very
close to the real line. In fact (2.9) is valid whenever the cumulative distribution
function is differentiable. Otherwise a more general inverse can be used [Bai93al,

Falho) — Fa(\) = lim — / " m [Sa (A + jw)] d (2.10)

w—0t T A

The main reason for the Stieltjes transform to be a handy tool in random matrix
theory is that it can often be directly computed from the random matrix itself, rather

than determining the eigenvalues first and then finding their distribution.

Lemma 2.3.1 The Stieltjes transform of the expected eigendistribution of a Hermi-

tian random matriz A can be written as,
1 1
Sa(z) =E—tr(A—zI)"". (2.11)
n

Proof: Since A is Hermitian, we can diagonalize it as A = UAU*. Then,

n

1 . 1 1 1
E—tr (UAU™ — 21 = E-tr(A—zI) =E- :
nr( D nr( & né A -z

On the other hand,

S = [0,

which completes the proof. 0

1 — 1 e 1
E—) T()\ <\ =E= ,
nZ (\i < )])\—z n;)\i—z

i=1

Equation (2.11) can equivalently be written in another useful form,

Sa(2) = —LEL 108 det(A — 21). (2.12)

dz n

An example of how these expressions can be used to determine the eigendistribu-
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tion can be found in subsection 2.4.

Another important property of the Stieltjes transform is how we can obtain the
moments of the eigendistribution from the power series expansion of Sy(z). The
Stieltjes transform of an eigendistribution with bounded support can be expanded as

a Laurent series? in terms of 27!,

1 1 1 I =\ = m,
S = F S ) =—"E) Z=-) L 2.13
A& =B || = L_J EY T--Y i el

1=

where m; = E [\]] is the " moment of the distribution and mg = 1. Similarly, when
the eigendistribution is bounded away from zero, a Taylor series expansion yields the
moments m_; = E [A\7],

Sa(z) = Z m_iz L. (2.14)

Throughout the thesis, we commonly refer to the Stieltjes transform of the asymp-

totic eigendistribution of a matrix as the Stieltjes transform of the matrix itself.

2.3.2 R-Transform

The R-transform is defined on the complex plane through the functional inverse of
the Stieltjes transform,

Ra(z) = S5 (—2) — % (2.15)

where < —1 > denotes the functional inverse. This equivalently can be written as,

B 1
N RA (—SA(Z>) — Z'

Sa(z) (2.16)

The R-transform is an important object when considering the notion of free probability

(section 2.5). It can be shown that it replaces the cumulant generating function

2The series converges outside a circle which includes the support of fa ().
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(logarithm of the characteristic function) for free random variables.

Example 2.3.2 The Stieltjes transform of the eigendistribution of the Wishart ma-

triz in (2.7) (also known as the Marcenko-Pastur law) can be found as,

:1—6—24—\/22—2(54—1)2—1-(6—1)2

Sw(z) 28z ’

(2.17)

with the R-transform being,
1

:1—ﬁz‘

For an eigendistribution with bounded support on the real line, the R-transform will

Rw(2) (2.18)

have a Taylor series representation,

Ra(z) =) kiz"", (2.19)
=1

where the k; are referred to as the free cumulants®. The moments and free cumulants

are related to each other as described in the following lemma.

Lemma 2.3.3 (Free Cumulants and the Moments) The moments of the distri-
bution can be recursively obtained through its free cumulants via the so-called free

cumulants formula,
n

m, = krmy, - - my

r=1 i1, ,ir>0
i1+ tip=n—r

(2.20)

e

Proof: A combinatorial proof which offers several insights can be found in [Spe97].

The lemma can be also proved by power series expansion of (2.16). 0

2.3.3 S-Transform

Another important transform especially in the free probability domain is the S-

transform. The S-transform can also be defined through the functional inverse of

3Counterpart of the cumulants for commutative random variables.
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the Stieltjes transform as [Voi87],

+1 (¢ RS A S <t

z . z

S () — S e _ te () 21 2.91
A(2) . (iZI m;z ) . ( zSA (z) ) , ( )

where the m; are the moments of the eigendistribution and < —1 > denotes the

functional inverse. It can be directly shown that the Stieltjes transform and the

S-transform satisfy

Sa(z) = —%SA (le%é)) . (2.22)

The S-transform is handy when looking at the eigendistribution of the multiplication
of two random matrices. It does not have a counterpart in the realm of commutative
random variables since for those variables one can simply translate the problem of
multiplication of two random variables to an addition problem by using exponentiat-

ing.

Example 2.3.4 The S-transform of the eigendistribution of the Wishart matriz in
(2.7) can be found as

Swlz) = . (2.23)

2.4 Self-Averaging Property

A wuseful property of the Stieltjes transform in the asymptotic regime is the self-

averaging property which is stated in the follwing Lemma [TV04]:

Lemma 2.4.1 (Self-Averaging) Let A be an n x n positive semidefinite random
matriz. If the empirical eigendistribution of A almost surely converges to its mean
value as n — 00, i.e.,

lim 1zfr(A — 2P =54(2) a.s. (2.24)

n—oo M,
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(Note the absence of the expectation) then for any n-dimensional vector x independent

of A with i.i.d. zero-mean, unit-variance elements with bounded higher moments, we

have,

lim le(A —zD)7'e = Su(2) as. (2.25)

n—oo M

Sketch of proof: The proof relies on lemma 2.7 of [BS98|, which states that for z as
described above and for a Hemitian positive semidefinite matrix C, we have for any
p=>2

E|2”Ca — trC]P < K, ((1E|g;1|4trccT)g + E|x1|2ptr<ccT)%> , (2.26)

where k, is a constant, z; represents one element of x and expectation is over x. Since
all the higher moments of z are assumed to be bounded and tr(CCT)> < (trCCT)3,

we can rewrite (2.26) as

Elz"Cx — trCP < K, (trCCT) % | (2.27)
Dividing both sides by n,
1 1 1 1 5
E|-2"Cx — —trC|P < — k! <—trCCT) : (2.28)
n n np/2" P\ n

In our case, C = (A — 2I)~! for which one can show that,

di(A —z2D) = (A -z <d£(A - zl)) (A—z2D)t=(A—2D)"% (2.29)

z z

Therefore,

1 d 1 d
—tr(A —2D) 2= ——tr(A —2I) L= — 2.
Str(A = 217 = = tr(A = 2) 7 = 8, (2), (2:30)
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which together with (2.28) results in,

l/

L 7 —1 1 1jp
E|ﬁx (A—2zI)""z — ﬁtr(A 2D < W. (2.31)
The first moment of £z7(A — 2I)~'z can be easily determined as,
ElIT(A—ZI) r=Etr— (A 207t E Z — 27wy = ltr(A—zI)_1
n N ] i T T
"=
(2.32)

This shows the convergence in moments for any p > 1. See [BS98] and the references
therein for the details of the proof of almost sure convergence. 0

As we will see throughout this manuscript, the self-averaging lemma proves to be
a very strong tool in analyzing the asymptotic eigendistribution of random matrices.
In the following subsection we show how one can find the celebrated semicircle law

for the Wigner matrices using this lemma and some standard matrix algebra.

An Example: The Semicircle Law

The first successful result on the asymptotic eigendistribution of large random ma-
trices goes back to the work of Wigner in the 1950s [Wigh5, Wigh8, Wigh9] when he
studied self-adjoint Hamiltonian operators. In his initial work he looked at symmet-
ric matrices with zero diagonal entries and independent—save for the symmetry—off-
diagonal entries which can be {—1,1} with equal probability. He later extended his
results for entries having a Gaussian distribution and further to matrices which are
now called Wigner matrices. A Wigner matrix is a Hermitian matrix whose upper-
triangular entries are independent with zero-mean and equal variance. If the variance
of the entries is % then the matrix is called a standard Wigner matrix.

Consider a standard n x n Wigner matrix, W. The Stieltjes transform of W can
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be found using (2.11),

1
Swi(z) = lim —Etr (W — 207 (2.33)
We break W as,
T
w w
w=| " (2.34)
war Wa

where wy; is an (n — 1)-dimensional column vector. Now,

-1

T

1
Sw(z) = lim —Etr . (2.35)
e Wa1 Wyy — 21
Since the distribution of W is isotropic, without loss of generality we can look at only

one diagonal entry of the above inverse, say the (1, 1) entry. It can be easily found in

terms of the Schur complement of (Way — 2I), i.e.,

Sw(z) = lim E ! (2.36)

n—oo Wi — 2 — wgl (WQQ — 21)71U)21 ’

Using the self-averaging lemma, the third term in the denominator can be simplified
to

lim wa, (Wag — 21) twyy = Sw(z). (2.37)

n—oo

(Note that Was is an (n — 1) x (n — 1) standard Wigner matrix and the entries of
wsq have variance of %) Moreover, since wq; is a zero-mean random variable with a

vanishing variance in the limit, (2.36) can be written as,

1

Swlz) = =5

(2.38)
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Figure 2.2. Semicircle law compared with the empirical expected eigendistribution

for n = 10, 20, 30.

Thus,
—z V224

Sw(Z) = 9

(2.39)

In order to find the asymptotic eigendistribution through the inversion formula (2.9),
we should look at the imaginary part of the Stieltjes transform very close to the
real line. Clearly the imaginary part of Sw(z — A + j0T) is nonzero only for —2 <
A < 2, which immediately determines the support. The sign of the square root
should be selected such that the distribution takes positive values. The resulting

eigendistribution is the celebrated semicircle law,

%\/4 — A2 when —2 <\ <2,
Jw(A) = (2.40)

0 otherwise.

In figure 2.2 we have plotted fw(\) along with the expected eigendistribution for

different values of n. The empirical curves are obtained by looking at the eigenvalues
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of 1000 realizations of the Wigner matrix. As can be seen, even for n = 10 the

asymptotic result is quite accurate in predicting the distribution.

2.5 Free Probability

Freeness replaces the notion of independence for noncommutative random variables,
such as random matrices. Although defined in a more involved fashion compared to
independence, once the freeness of two random variables is established, there exist
systematic methods to compute the distribution of their summation and product.
Free probability was developed by D. Voiculescu in the 1980s [Voi83] in his work on
the operator theory. Later on it was realized that the notion could be extended to
random matrices 4 [Voi87]. In order to define freeness, let us first define an asymptotic
expectation functional for Hermitian matrices,

#(A) = lim lIEtrA. (2.41)

n—oo M

Now the asymptotic freeness of two random matrices is defined as follows [TV04].

Definition 2.5.1 (Asymptotic Freeness) Two Hermitian random matrices A and
B are asymptotically free if for any r and all polynomials p;(-) and ¢;(-) (1 <1 <r)
such that,

¢ (pi(A)) = ¢(¢:(B)) = 0, (2.42)

the expected trace of the ordered multiplication of these matrixz polynomials also van-
1shes, i.e.,

d(p1(A)q1(B) - - - pr(A)g.(B)) = 0. (2.43)

4Technically we consider asymptotic freeness for random matrices.
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This definition can be generalized to several random matrices by putting a condition
on the multiplication of the polynomials of alternating matrices [TV04]. There exist
numerous results in the literature which state the freeness of certain classes of ma-
trices. For example all random matrices and the identity matrix are asymptotically
free. However it is not usually easy to prove the freeness of two random matrices.

It is worth mentioning that independent random variables are not necessarily free
and vice versa. For example xI,, and yl,, where x and y are independent zero-mean
random variables are not asymptotically free.

As mentioned earlier, the notion of freeness facilitates computing of the asymptotic
eigendistribution of the summation and product of two random matrices. In fact one
can find these asymptotic eigendistributions directly from the eigendistributions of

the original matrices without getting involved in the eigenvector structure.

Theorem 2.5.2 (Sum of Free Random Matrices) Let X and Y be two asymp-
totically free random matrices and Z = X+ Y. The R-transform of the eigendistribu-
tion of Z satisfies

Rz<Z> = Rx<2) + Ry(Z) (244)

Proof: See [Voi86] or [Spe97] for a detailed proof of the theorem. O
Recalling (2.19), the free cumulants of fz(\) can be written as the sum of the
corresponding free cumulants of fx(A) and fy(\). This in fact is the reason behind
the naming since the coefficients in the power series expansion of the logarithm of
the moment-generating function (cumulants) have the same property for independent
commuting random variables.
Similarly the following theorem regarding the eigendistribution of multiplication

of free random matrices is well known in the literature.

Theorem 2.5.3 (Multiplication of Free Random Matrices) Let X and Y be two

nonnegative asymptotically free random matrices and Z = XY. The S-transform of
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the eigendistribution of Z satisfies

Zz(Z> = Ex<2)2y(2) (245)

Proof: See [Voi87] or [Spe97] for a detailed proof of the theorem. O

For a detailed list of free random matrices and simple examples of how the above
theorems can be employed to derive interesting results look at [TV04]. Free prob-
ability has been an active area of research in the past decade. It has proven to be
not only a powerful tool, but also a great source of intuition whenever we are dealing
with large random matrices. The next chapter shows how the theory of large random
matrices can be used to analyze the steady-state and transient behavior of random

Lyapunov recursions.
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Chapter 3

Random Lyapunov Recursions

3.1 Introduction

Lyapunov matrix recursions are named after the Russian mathematician Alexander
Mikhailovitch Lyapunov who introduced the stability theory of linear and nonlinear
systems in his doctoral dissertation (see [Lya92] for English translation). Although
Lyapunov’s work was published in 1892, his theory did not receive much attention
until the 1960s. In the past 40 years, Lyapunov recursions have appeared frequently
in many fields such as control theory, system theory, signal processing, and boundary
value problems. Due to their numerous applications, time-invariant and time-varying
Lyapunov recursions are very well studied [GQ95]. Their stability and explicit steady-
state solutions are known in the literature. Moreover, a great body of research was
devoted to studying efficient numerical methods for solving Lyapunov and Lyapunov-
like equations.

One of the most well-known appearances of Lyapunov recursions is in describing

the state covariance matrix in linear state-space models. Consider,
Tiy1 = Firi+ Gy u; 0
i+1 g i Wy E [ |:uT T :| . QZ 5ij7 (31)
Uj

yi = Hizi+wv 0 R



35

in which z; € R" is the unknown state vector to be estimated through the measure-
ments y; € R™. Here u; and v; denote zero-mean input process and measurement
noises respectively. Then it is straightforward to show that the state covariance ma-

trix, I1; = Ez;z! satisfies

;1 = FiILF! + G;Q,GT. (3.2)

For a complete analysis of the above recursion for time-invariant systems, see [LR95].
In this chapter we will study such recursions when the coefficient matrices are not
only time varying, but indeed random. We will assume that those random coeffi-
cients represent jointly stationary matrix-valued random processes. There are several
motivations to study such recursions. In estimation and control over communica-
tion networks, we frequently use linear random state-space models of the form (3.1).
Clearly in this case the state covariance matrix undergoes a random Lyapunov recur-
sion. On the other hand, random Lyapunov recursions also appear as lower bounds of
random Riccati recursions in distributed Kalman filtering [MS08], which is a problem
of great importance. Random Lyapunov-like recursions also arise in other applica-
tions such as least-mean-squares (LMS) adaptive filtering. The latter case is studied
in the next chapter.

In this chapter we analyze the general form of random Lyapunov recursions under
various assumptions on the model parameters, such as F; being a diagonal or a multi-
ple of identity. By computing the Stieltjes transform of the eigendistribution we find
the eigendistribution and its moments at the steady state, as well as the convergence
properties of the distribution of eigenvalues.

It is worth mentioning that due to the linearity of the Lyapunov recursion, it is
in principle possible to find all the moments of the eigendistribution by averaging

both sides of (3.2) after some algebraic manipulations. However this is an inefficient
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method with little insight and fails to work for the nonlinear Riccati recursions. Our
approach, on the other hand, yields an efficient and systematic way of expressing the
eigendistribution and the moments and establishes a framework through which the
nonlinear Riccati counterparts can also be analyzed.

This chapter is organized as follows. In section 3.2 we will look at the steady-state
as well as the transient behavior of a Lyapunov recursion with F = \/al. We will
derive the moments of the eigendistribution as well. The transient behavior of the
recursion is studied in section 3.3. In section 3.4 we will analyze the general case with
F; being an arbitrary matrix. Simulation results are provided which show the close
prediction of both the moments and the eigendistribution even for relatively small

values of n. Finally section 3.5 concludes the chapter.

3.2 Random Lyapunov Recursions with F = /al

In this section we will assume that F; is simply a scaled version of identity, i.e.,

F;, = /al and Q, = 1. Therefore the random Lyapunov recursion will be
HZ'+]_ = OéHZ' + GZG;F, (33)

where a € (0,1) and the G; are independently drawn n x m matrices with i.i.d.
entries having zero mean, \/Lm variance and bounded higher moments. We can find a

recursion for the Stieltjes transform of II; as n — oc.

Theorem 3.2.1 The Stieltjes transform of I1; in (3.3) satisfies

1 z g
Si_:,_l(Z) = ESI a — ﬁ—I—S—H_l(Z) s (34)

where 3 = .
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Proof: We first apply the definition of the Stieltjes transform as in (2.11) to both
sides of (3.3),

-1

Since G; has an isotropic distribution, we can safely diagonalize II;. Thus II; = A;.

Now break II; and G; as follows,

where g; is an m-dimensional row vector and A, is the first eigenvalue. We have also

dropped the index i for simplicity. Now we can rewrite (3.5) as,

-1

1 a +gigf — 2 901Gy
Si—i-l(z) = EE tr ' e s . (37)

Ggg{ OéAQ + GQGg —zI

We will not index the identity matrix with its size as long as it is clear from the
context. Since we are looking for the diagonal entries of the above inverse matrix
and they are all statistically the same, without loss of generality we consider the
first entry. The first entry of the inverse can be easily written through the Schur

complement of the aAy + GoG2 — 21 as follows,

1

+1(2) ar + gigl — 2 — 1GT (ahy + GoGT — 21)~1GygF (3:8)
Using matrix inversion lemma, we can rewrite the denominator as,
1

ai — 2+ gi(Ly + G5 (ahs — 21n71)71G2)719{'

-~

24(2)
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Now let us focus on computing ¢(z). First of all, g; is independent of the inverse
matrix in the middle and it has zero mean and \/Lﬁ variance. Therefore using the

self-averaging lemma,
1
t(z) = —E tr (I, + G3 (ahgy — 2L, 1) ' Gy) ™. (3.10)
m
Following the technique used in (3.6), we break G, as,

Gy = { g1 Gao } ’ (3.11)

where go; € R™ ! is a column vector and Ggy € R"1*™m~1 Then,

-1

1 14 gt (ahy — 21)71g gb (ahy — 271G
t(z) = —E tr 21 (s )" 921 o1(as ) 22  (3.12)

m ng(OdAQ — ZI)_lggl Im,1 —+ Gglz(OéAg — ZI)_1G22

Once again, we look at the first diagonal entry of the above inverse matrix,

t(z)=E (3.13)

ti(2)

where,

ti(z) = 1+ g3 [(@hy —2D)7" (3.14)

1

—(OéAQ — 21)71G22 (I + G%;(O[AQ - ZI)ingg)_ Gg;(OéAQ - 21)71] g1,

which can be easily simplified through the matrix inversion lemma to,

1
t(z)=E ETS I (3.15)
1+ gng [Oz/\z —zI, + GQQGQQ] g21
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Since go1 is independent of the inverse matrix in the middle and it hasi.i.d. zero-mean,

\/Lﬁ entries, we have,

1
1+ %E tr (OZAQ — ZIn + GQQGgQ)il '

t(z) =E (3.16)

Note that Ay is an (n—1) x (n—1) version of II;. Since n is assumed to be large, in the
limit the eigendistribution and henceforth the Stieltjes transform of (aAy + GopGi,)

converges to that of the right-hand side of (3.3), i.e., II;;1. Thus

1 1

t =E = . 3.17
B = s T T 15m0) (347

Due to the fact that no randomness is left, the notion of expectation is dropped in
the RHS. By replacing ¢(z) in (3.9), and using the definition of Stieltjes transform
(2.8), (3.4) will be obtained. O

As we will see in subsection 3.2.1, one can find a recursion for the moments of
the eigendistribution from (3.4). Those recursions show the convergence (at least
convergence in moments of any order) to a steady-state S(z) as i — oco. The steady-

state Stieltjes transform clearly satisfies

(ks

1 z o
S(z) = aS (a - 5‘*‘—5(?«')> . (3.18)

It is not possible to analytically find S(z) from (3.18). However, (3.18) can be solved
numerically to find the Stieltjes transform and hence the eigendistribution at the
steady state. Figure 3.1 compares the theoretical prediction with the empirically
found eigendistribution for n = 10. The empirical curve is found by running the
iteration 500 times (hence 5000 eigenvalues). The theoretical curve is found by start-

ing with a uniform distribution and iteratively running (3.18). It can be seen that
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- = =Theory

f(A)

0.2}

0.1y1 J

Figure 3.1. Steady-state eigendistribution of recursion (3.3) for n = 10, m = 5,
a=0.5..

for n being as small as 10 the asymptotic result is pretty accurate in predicting the

eigendistribution.

3.2.1 Finding the Moments

As mentioned earlier, the moments of the eigendistribution are the coefficients of the
power series expansion of the Stieltjes transform. We can use this fact to obtain a

recursion for the moments of the eigendistribution from (3.4). Consider
Si(z) =———— ——=——F —--- . (3.19)

Replacing the above expression in (3.4) we obtain,
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(3.20)
T omit o mitt mitt 1 am?
— = - — = —
z z z z z [E= ) .o
1+§Si+l(z)
The RHS can be rewritten as,
1 1 _amj 1 2_a2m§ 1 321)
#1- ﬁz(z) 2 1 1/z 2 1 1/z
o T 1H5Sin(2) T 1+5Sin(2)
1/z . .
We can expand ——r¢—— TSm0 in turn as a power series,
/2 1(1 LG () + =52, (2) ) (3.22)
—————=—(1—-=541()+ =5 (2) — - |. .
1+ %Sz‘-l—l(Z) z gt [t

Therefore the RHS of (3.20) can be expanded as,

Rus— - L(igtpilomt 1y, L2l ]
N z z (22 16} 6% ) 23 22 Gz z3
amy (102,20 L3
22 z (22 22
a’m! 3
_ 32(14__4_.‘.)
z z
a’m
Z43(1+---)—---. (3.23)

where we have kept the terms up to z%l Equating the coefficients of different powers
of z on both sides, we will obtain the recursions of the moments as time increases.

The coefficients of % on both sides are trivially —1. Looking at Zig,

1 1 1 ~ ;
_m12 === amﬁ; = mzﬁ_l =1+ am]. (3.24)
z
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This immediately tells us that a necessary condition for the convergence of the first

moment is o < 1, since
i+l il i _ i i—1y _ i
Ami™ =mi —m] =a(m] —m] ) = alAm]. (3.25)

Looking at the recursion for other moments tells us that this is also a sufficient
condition for the convergence of all moments. In fact in a similar fashion as we

derived (3.24), we proceed to obtain,

mst = <1 + B) + 2am’ + a*mb, (3.26)

Z. 2 1Y\ 1, 2 Z. ; ;
m3+1 — <1 + E 4 @> + Bmfrl + « <B + 3) mt + 3a’mb + a3m3. (3.27)

To see the convergence rate of the second moment, consider the following similar
to (3.25)

Amitt = 2aAm} + o*Amb,. (3.28)

Since o < 1, the slowest converging term will be Am!. A similar result can be
obtained for all the higher order moments and therefore & < 1 is the necessary
and sufficient condition for convergence to the steady-state eigendistribution. It is

straightforward to compute the steady-state moments from the recursions above,

1
m; = 1_@, (329)
5 1
_ B
m = ot g (3.30)
1 3 )
B 8
= . 3.31
M T IS T I—a(i—a)  (I=a)p (3:31)

Later when we talk about the R-transform approach to the problem, it will become

clear why the moments have this structure. Figure 3.2 shows the first three moments
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Figure 3.2. Moments of the steady-state eigendistribution of recursion (3.3) for n = 20
and m = (n. .

at the steady state for different values of a and (3, as obtained from the simulations
and the theory for n = 10. Finally it is worth mentioning that although the mo-
ment expressions were linear so far, m4 and higher-order moments have nonlinear

dependencies on lower-order moments.

3.3 Transient Behavior

The approach that was taken in subsection 3.2.1 to study the transient behavior
of the moments and hence the eigendistribution is not applicable to the transient
behavior for nonlinear Riccati recursion. Therefore in an attempt to develop more
effective frameworks for transient analysis, we consider other methods for handling
the Lyapunov recursion. With this goal in mind, we find two other methods specially
useful. One is presented below and the other one is studied in the next subsection.

According to the moment analysis for the simple Lyapunov recursion, the &
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moment at time 7 4+ 1 can be regarded as,
mitt = fu(mi, - mi ) 4+ oFmi. (3.32)

Now define m’ as the vector of all moments,
m'= | m} |- (3.33)

Therefore there is a function ®(-) such that,

m'tt = &(m'). (3.34)
If we assume that a steady state, m*, exists,

m" = ¢( m"), (3.35)

then we can look at a time 4 that the moment vector m’ is close enough to m*, such

that a linear approximation would be possible, i.e.,

Am™ = m™ - m"=®(m')-d(m*) =V - (m'— m*) =VP| .- A m’.
(3.36)
According to (3.32), the operator V®| ,« is lower triangular and its diagonal entries

are powers of «,

VO| e = I (3.37)
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Therefore, (V®| )’ remains lower triangular with diagonal entries as,

[(vq>| m*)l} =at (3.38)

This shows that the spectrum of the operator consists of powers of a with the smallest
power being the dominant one. Therefore o < 1 is a necessary condition for the

convergence, and moreover, « is the convergence rate itself.

3.3.1 R-transform Approach

Alternatively, one can do all the analysis we have done so far using the R-transform.

Theorem 3.3.1 The steady-state R-transform of Il; which satisfies (3.3) can be

found as,

R(z) =) _1aj ;Jj_l. (3.39)

7j=1
Proof: As mentioned in Section 2.5, the R-transform of the sum of two asymptotically
free random variables is simply the sum of their R-transforms. Given the indepen-
dence of the G;’s for different ¢’s, all; and GiGzT are independent unitarily invariant

matrices, and hence free [Voi00]. The R-transform of G;G! can be found as [TV04],

g

o (3.40)

RGiGiT =

Moreover according to the definition of the Stieltjes transform,

Son(z) =E {Aa;— J _E {ﬁ} - éE [AAl_ i] - éSA (2) . (341
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Therefore,

S ) = 55 (25 () asi (1)

= S5 (2) = aSy P (az). (3.42)

The R-transform of awA can also be written in terms of the R-transform of A as,

Roa(z) = S50 (=) — % —a <s;1>(—az) - i) —aRa(az).  (343)

az

Thus the recursion on the R-transofrm of II; is readily obtained

g
B—z

Rii1(2) = aRi(az) + (3.44)

The steady-state R-transform, R(z), can be found by noting that,

R(z) = aR(az)+ 3 ? .
aR(az) = o’R(a*2)+ 3 iﬁaz
’R(a’z) = o*R(a’z) + 3 i2§2z

We can find R(z) by adding up all the terms. Note that since o« < 1, this is a

converging series,

s of o?f
_ﬁ—z+ﬁ—a2+ﬁ—a22
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52 2
= <1+ﬁ+52 ->+a(1+aﬁ+a@+~~>

22
s+a2(1+a—+a )+
B 7
= (1+a+a2+---)+%(1+a +at 4
2
s+@( +al+al )+ (3.45)
simplifying this expression yields (3.39). O

As mentioned earlier, the coefficients of the power series expansion of R-transform
are the free cumulants of the eigendistribution from which the moments can be found.

In this case the cumulants are

1 1
1— i i1

Using the relation between the moments and the free cumulants in (2.20), we obtain

the moments,

Not surprisingly these are the same expressions as found in subsection 3.2.1. This
approach however, justifies the special structure of the moments that we observed
earlier and provides a systematic method for computing the moments.

More important however, is the convergence rate that can be deduced from the

recursion of the R-transform. Going back to (3.44), and expanding both sides as a
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power series in terms of z,

e ijl

Z kLT = Z Kai 1z 4 Z G (3.47)
j=1 J=1

J=1

where k; is the j* free cumulant at time i. By equating the coefficients of each power
of z on both sides we find,

i+l gy
kj —a]kj—l—

1
G (3.48)

which once again verifies that the convergence rate is «.
In this section we established two alternative methods for investigating the con-
vergence properties of the recursion. In the next section we will look at a more general

random Lyapunov recursion.

3.4 A More General Random Lyapunov Recursion

Our analysis for F = /al can be extended to the recursions with more general F’s.
In particular, here we will assume that F is drawn from an n x n random matrix
distribution with i.i.d. entries having zero mean, \/iﬁ variance, and bounded higher
moments. Consider,

., = oFILF? 4 G,GT, (3.49)

where « is selected such that \/aF is stable. The G;’s are assumed to be the same as
before. Once again we are interested in finding the eigendistribution of II;, specially
as © — 00. Note that we could as well assume that F' = F,, i.e., changing at each time
step, and the analysis would have been the same. However a fixed F is a more realistic
assumption. We only assume that at the beginning F is selected from a random
matrix ensemble. According to the ergodicity of random matrices for sufficiently

large n the steady-state eigendistribution of every single recursion will look like the
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asymptotic one. For moderate values of n however the asymptotic result will have
closer resemblance to the expected eigendistribution (over F) rather than individual
realizations.

The eigendistribution of II; can be found as the solution of a pair of implicit

equations.

Theorem 3.4.1 The Stieltjes transform of 11; which undergoes the Lyapunov recur-

sion of (3.49) satisfies,

S O - 3.50
ir1(z) = P a—m ) (3.50)
1

Q(2) = _%&(_Qxd>’ (3.51)

where 3 = 7.

Proof: The first part of the proof exactly follows that of theorem 3.2.1. Define
A; = FILFT. Now since G; is unitarily invariant, as in the proof of theorem 3.2.1, we
can assume that A; is diagonal, say A; = A. Taking the Stieltjes transform of both
sides of (3.49) gives,

-1

Siin(z) = %]E tr (oA + G,GT — 21) (3.52)

By breaking A and G; as in (3.6), and following the consecutive step therein, we

obtain
1

al —z+ g1 (L, + GQT(CV/_\Q — 21n71)71G2)7191T;

-~

2¢(2)

Sipi(z) =E (3.53)

where )\; are the eigenvalues of A;. In order to compute #(z), once again we note that
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it can be written as the Stieltjes transform of the inverted matrix in the denominator,
1 _
t(z) = —E tr (I, + G5 (@l — 21,1) 7' Gy) (3.54)
m

We break G, as in (3.11) and repeat the calculations which follow (3.11) to obtain

1

t(z) = N = T\l
1+ 1E tr (ozA2 —zI, + G22G22)

(3.55)

Since Ay is an (n — 1) x (n — 1) version of A; and n is large, the Stieltjes transform

of (ahy + GyG2,) converges to Siy1(z), and we have

1

t(2) = —————. 3.56
=) 14 5Si(2) (356)
By replacing (3.56) in (3.53) we have,
1 z 8
S; =9 -——F7—"7"75F—F—|. 3.57
+(2) o (04 5+Si+1(2>> (3:57)

Therefore it remains to compute Sy, in terms of S;(z) (the Stieltjes transform of II;).
We first note that the eigenvalues of FILFT are the same as those of FTFII;. The
Wishart matrix FTF is unitarily invariant. The same is true for II;. Therefore the two
are asymptotically free [Voi00] and we can use theorem 2.5.3 which states that the
S-transform of the product of two asymptotically free random matrices is the product

of the individual S-transforms. Thus,

Sa,(2) = Zpre(2) - S (2). (3.58)
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The implicit equation between the Stieltjes transform and the S-transform states that,

Sa(z) = —%SA (le%é)) . (3.59)

Replacing in (3.58),

S, (;( )) — Sprp(2)Sh, (;I‘f( )) — Sprp(=)Sh, (%() ~ EFTF@) .

(3.60)
Let
1+ 2
T = SN (3.61)
Then
1 1 1
2, (2) = i © = o (—0)Sale) = i © o =1 aSa(2).  (3.62)
Replacing in (3.60), we obtain
Sai(#) = Yprp (=1 = 25a,(2)) - S, (28prp (=1 = 254,(2))) - (3.63)

The above implicit equation will prove to be very useful and we will recurrently use
it throughout this manuscript. According to example 2.3.4, the S-transform of FZF

can be written as,

1
dipT = . .64
rre(2) 112 (3.64)
Now we can simplify (3.63) to
S (2) L s < ! ) (3.65)
(r)=——51. | ——— |, .
A .%SAZ(Z') . SAZ('%)

which completes the proof of the theorem by considering ;(-) = Sa, (). O
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Clearly the steady-state eigendistribution satisfies

(ks

1 z o
S(z) = EQ (a — m) , (3.66)

Qz) = —291(2)5(— Q(lz>> (3.67)

It is not feasible to find an analytical solution to the above pair of equations. However
they can be numerically solved in an efficient fashion. In fact since Q(z) is a Stieltjes
transform itself, we can start with two uniform eigendistributions and iteratively find
a numerical solution. At each step we use the current value of the eigendistributions
to compute the right-hand sides of the implicit equation system and update the left-
hand side. In most cases that we have studied less than 20 steps of iteration has been
enough to reach a sufficiently exact solution. Figure 3.3 shows the eigendistribution
which is found in this manner. The Simulation results are generated from 1000
samples for n = 10. As can be seen, the asymptotic result is very accurate for n as

small as 10.

3.4.1 Finding the Moments

As we did in subsection 3.2.1 for the simple Lyapunov recursion, we can use the
recursion on the Stieltjes transform to obtain a recursion for each moment of the
eigendistribution. It is straightforward to show that €2;(z) is a Stieltjes transform
whose eigendistribution has bounded support!. Therefore we can expand it as a

Laurent series in terms of z, i.e.,

Qi(z):—————;—---. (3.68)

! This is true when the eigendistribution of II; has bounded support.



93

0.9

0.8

T

0.7

T

0.6

0.5

f(A)

0.4

0.3

0.2

_— == = == = ="

- -

0.1

—— Simulation
- = =Theory

Figure 3.3. Steady-state eigendistribution of recursion (3.49) for

a=0.3.

The power series expansion of (3.50) will be exactly the same as that of the simple

Lyapunov recursion. Thus we do not repeat the details here,

1 mitt mitt B 1 1+1+11_+
z 22 z3 n z z (22
abt 2
_ 21 (1_|___|_...>
z z
a?b
— Z32(1_|_...)_

(3.69)

For the sake of brevity, we have kept fewer terms than before to restrict the derivations

to the first two moments. The power series expansion of (3.51) yields,

1 v b
CE_?_Q_
a1
- K_;_

1
z
by

25+

ook 1.
22

== [(2) = M (2) + My (2) — -]

.)_

mﬁ...]
z

(3.70)
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Now looking at the coefficients of % in (3.69) and % in (3.70),

i+l _ i
miT = 14 abi,

i i
b = mji.

Therefore,

mi =14+ am).

And by looking at the coefficients of % in (3.69) and 2 in (3.70),

) 1 . )
mit = (1 + B) + 2ab! + ob},

by = 2Wimi — (b)) +m,

which simplify to,

mst = <1 + B) + 2am} + o? (mzl)2 + a®mb,

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

which unlike the first moment is different from that of the simple Lyapunov recursion.

Once again, we can reason that the convergence rate is @ and o < 1 is a necessary

condition for the convergence. The steady-state moments can be readily derived,

1
m =
1 ]_—Oé’
1+ a2 - a)

I—a? (1-a®)(1—-a)*

(3.77)

(3.78)
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Figure 3.4. Moments of the steady-state eigendistribution of recursion (3.49) for
n =20 and m = fn. .

Although more involved than the simple Lyapunov case, the third moment can also

be found with some further calculations.

1 2—|—m1 1
ms = (1—a3>{< 3 +@“>

+ am <% + 3) + o® (3m] +ma) + &® (m} + 3myms) } (3.79)

Figure 3.4 shows the simulation results for n = 20 compared with the theoretical

predictions of the first three moments for different values of o and .

3.5 Conclusions

In this chapter we studied random Lyapunov recursions using tools from the theory
of large random matrices. Random Lyapunov recursions describe the covariance of

the state vector in a linear state-space model. Moreover they provide bounds on
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the Riccati recursions which appear in the area of control and estimation over lossy
networks. We analyzed a simple Lyapunov recursion where F = /al and found that
its Stieltjes transform satisfies a recursion that can be numerically solved in the steady
state, from which the steady-state eigendistribution can be readily found. Using the
recursion for the Stieltjes transform and power-series expansion we found recursions
on the moments and deduced the convergence condition and the rate of convergence
from them. We further employed two other methods to study the convergence. One
method is based on the spectrum of the linear operator which describes the moment
update close to the steady state. The other method uses the recursion of the R-
transform and consequently free cumulants. The R-transform analysis also provides
a systematic way of finding any moment of the eigendistribution.

We then extended our analysis to a more general case where F is a full matrix
with i.i.d. entries. We obtained a pair of implicit equations which describe the
Stieltjes transform both in transient and steady state and found the moments of the
eigendistribution. Although the analysis is done for n — oo, the asymptotic results
are shown to be quite accurate for n as small as 10 (due to the law of large numbers).

It is worth mentioning that one can think of more general forms of F and even G;,
provided that the freeness can be established. In those cases the system of implicit
equations which describe the Stieltjes transform will be more involved. In some cases
one may even need more than two equations. The only trick is that we should find
the R-transform of G;G. and the S-transform of F. Under our assumptions they had
simple expressions which in turn simplified the derivations. The framework developed
proves to be very promising and motivates the study of other Lyapunov-like (e.g., LMS

filters) recursions or nonlinear Riccati recursion as we will do in the next chapters.
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Chapter 4

The Least-Mean-Squares Filters

4.1 Introduction

The least-mean-squares adaptive filtering is the simplest, yet the most frequently used
algorithm in adaptive signal processing due to its robustness and low computational
cost [Say03, Hay01l, HM84]. Introduced by Bernard Widrow and Ted Hoff in 1960
[WH60], LMS filtering is not the optimum algorithm for minimizing the mean-square
error in estimating a parameter, but rather gives an approximation to the exact
solution. However its simplicity and not asking for a stationary input or the statistics
of the model, have made it very popular and kind of a standard to which other
algorithms are normally compared.

Consider a special case linear state-space model introduced in the previous chapter

[KSHO0],

Tig1 = Tp+ U

yi = hlx;+v;

in which z; € R" is an unknown vector to be estimated through the measurements
yi € R. wu; and v; denote zero-mean process and measurement noises respectively.

The h; are referred to as the regressor vectors. In some cases u; = 0, but there are
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other cases which we will talk about later in this chapter. For examples of state-space
approach to adaptive filtering look at [SK94] and [HSK96] and the references therein.

The LMS approximates the optimal z that minimizes Ely — h”z|? iteratively as,

Tiy1 = & + phi(y; — hiTi’i), (4.2)

where p is called step size. It is straightforward to show that the error covariance
matrix, i.e.,

P = E[(z; — &) (z; — )"], (4.3)

satisfies a Lyapunov-type recursion. Note that,

Tt — B = T4 u — & — phily; — b &) = x4 w — & — phi(h] z + v — b 2;)

Since v; and u; are independent of the the past and are zero mean,

which is clearly a Lyapunov-type random recursion.

While the LMS filter has been studied extensively in the literature in the past 40
years, through our approach the stability and performance analysis of all LMS-like
algorithms becomes straightforward. Moreover, the universality of the random matrix
methods provides a unifying framework which does not depend at all on the details
of the underlying model.

We will consider both temporally random regressor vectors (h; being independent
of hj.;) and shift-structured regressor vectors (which is an important practical case,

e.g., FIR channel estimation). Different assumptions on @, will also be studied.
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This chapter is organized as follows. In section 4.2 we will study the very simple
LMS estimation of a constant state vector. The analysis will be extended to the case
of time-varying state in section 4.3. The moments will be found and the numerical
method employed to find the eigendistribution will be explained. In section 4.4 we
will generalize the results to the shift-structured regressor vectors. There are other
variants of the LMS filtering problem for different applications which will be briefly

considered in section 4.5, and finally section 4.6 will conclude the chapter.

4.2 A Simple Case: Constant Channel Estimator

When estimating a constant state vector, then x;,y = x; = --- = x¢p = ¢. This is the

case for example in estimating an FIR channel [Say03]. This clearly means that the

state-space model of (4.1) is simplified to,
Tit1 = T,

. E{UZ’UJT] = 7’5ij, (46)
yi = hjzi+ v,

and the estimation error covariance matrix satisfies,
P = (I— phih]) Py (I — phihl) + pPrhh! . (4.7)

The h; (the regressors) are independently drawn n x 1 vectors, with i.i.d. entries
having zero mean, \/Lﬁ variance, and bounded higher moments. The independence
of the entries can be relaxed as we will see later in this section by assuming a shift
structure on the regressor vector; a standard model used in the literature.

Once again we are interested in finding the empirical eigenvalue distribution of P;,

as i — 0o. At its very least, the steady-state eigendistribution’s first moment is the

mean-square-error performance of our LMS filter. In this simple case we can actually
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determine the eigendistribution through the Stieltjes transform method.

Theorem 4.2.1 (LMS Estimation of a Constant Vector) When p < 2 the ei-
gendistribution of the P; in (4.7) converges to a steady-state distribution whose Stielt-

jes transform is

S(z) = : (4.8)

where,
p— (4.9)

3 .
n 1

This implies that as n — oo P; converges to y1.

Proof: We first apply the definition of the Stieltjes transform as in (2.12) to both

sides of the recursion (4.7),

Sit1(2) = —ldiElog det ((I— phihi) P (I — phih]) + pPrhyhl — 21),  (4.10)

naz

which can be rewritten in the form,

1d
Si+1 (Z) = _EEE lOg det
2 T T
p(r+ hi Pihi)  —p hi
(Ps — 2I) { h; Pihi }

1d

= —EE]Elog det(P; — 21)
1d . hl
———RElogdet | I+ (P; — 2I) h; P;h; | Ai
ndz LIP,

(2

(4.11)

The first term in the right hand side is just the Stieltjes transform at time instance
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i. Moreover, since det(I + AB) = det(I + BA), we have

hT

7

1d
Siv1(2) = Si(2) — EEEIOg det | I+ .
h; P;

)

(4.12)

Since A; does not depend on z, the derivative of its determinant with respect to z

vanishes. Thus,

1d hi
Siv1(z) = Si(2) — E@Ebg det | A;t + TZ (P; — 2I)* { h; P;h; }
HTP,

(4.13)

Therefore,

1d

A7l + . (4.14)
We can now invoke the self-averaging lemma. The h; are assumed to be independent
of each other, and P; on all the previous hj.; and hence independent of h;. The
upper-left term of the second matrix on the right-hand side can be written as,

hI'(P; — 2I)7'hy —— Si(2). (4.15)

n—oo
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Similarly the other terms can be simplified,

= hhl + 2hy(P; — 2)7'AT

— 1+ 25;(2), (4.16)

n—oo

and,

hiP;i(P; — 21)"'P;h] = hPy(P; — 21) " (P; — 21 + 21)h]
= hP;h] + zhy(P; — 21+ 21)(P; — 2I) " 'h]

n—oo

On the other hand, the inverse of A; as a 2 X 2 matrix can be readily found as,
A7l = : (4.18)

Replacing (4.15)—(4.18) in (4.14) yields

1 S;(z 14+ S;(z) — -1
Siu1(2) = Si(2) ——diﬂ-zlogdet =) E=u )

maz 1+ Si(z) — ™t —r+ 2+ 225(2)
Note that in the above expression all the randomness has disappeared after using the
self-averaging lemma and there is no need for E anymore. The determinant of the

2 x 2 matrix in the above expression can be easily computed, and we will have

(e () (o 3y om

1d
Siv1(2) = Si(z) = _ﬁalog
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Figure 4.1. Steady-state eigendistribution of recursion (4.7) for n = 10, r = 0.5, and
w=0.5..

At the steady-state, this expression reduces to

(—7“ + (% _ 1) z) S(z) - (1 - %)2 — = §(x) = i (4.21)

where ¢ is some constant. Since S(z) is a Stieltjes transform, the coefficient of i

in its power series expansion should be —1. In fact this condition says that the
eigendistribution should integrate to 1. Clearly ¢ = —1 here and the proof is complete.
OJ

Theorem 4.2.1 correctly predicts the accumulation of all the eigenvalues of P; at
a single point v. In figure 4.1 the empirical eigendistribution is plotted for n = 10
which shows how the eigenvalues are concentrated around ~.

We can also use the power expansion of the Stieltjes transform to obtain recursions
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on the moments of the distribution from recursion (4.20)

(4.22)

Recall that

1 mi my mi
z oz 2 z
Replacing in (4.22) we have
mit g —mh i —
22 23 24

S|

1 Z ; : .« .. '
(4.23)

We will not go into details of computing the moments in this case. It suffices to say

that after equating the coefficients of different power of z on both sides, we obtain,

, 2 /2 .
mitt = <1 - % (; — 1)> mi + ,u2£, (4.24)

with the steady-state solution of

=7, (4.25)

as expected. One can observe from the recursion of m} that a necessary convergence

condition requires

2
(;—1)>0:>u<2. (4.26)

Moreover, as n grows, the convergence becomes slower. A similar expression can
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be found for all the other moment of the distribution. For example for the second

moment,

mit! = (1 - (; _ 1)) mi + - <2M2Tm1 T (r — (; - 1)m1> ) . (4.27)

Other moments’ recursions show that the convergence rate of m! is the dominant rate
of convergence. One can also easily check that my = m? = 42 as one expects from a
mass probability at ~.

The temporally whiteness condition on the regressor vectors can be relaxed and
one can extend the results of this section to include the shift-structured regressors as

is assumed in most applications,
hi == uz- ui—l oo ui—n+1 . (428)

We will leave the technical details of the argument for the subsequent section. In
figure 4.1 we have also plotted the empirical eigendistribution for the shift-structured

h; which follows closely that of temporally white regressors.

4.3 LMS Estimation of a Time-Varying State

Variable

In the previous section, we looked at the LMS estimation of a constant state vector.
In other words the process noise was assumed to be zero. In this section we look at
other applications of LMS filtering for which the state vector gets updated according

to the linear state-space model (4.1) with the variance of the process noise being
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, E

Tip1r = Tty Uj [
u
_ 3T
yi = hjx;+v; v;

where x; € R" is an unknown vector to be estimated through the measurements
y; € R. Here u; and v; denote zero-mean process and measurement noises respec-
tively. The state vector essentially undergoes a random walk through u;. We will
first assume that the regressor vectors are temporally and spatially white. In other
words, they are independent of each other and have independent entries. The entries
are assumed to have identical distributions with zero mean and \/Lﬁ variance, and all
the higher moments are sought to be bounded. According to (4.5), the estimation

error covariance undergoes a random Lyapunov-like recursion
P = (I— phih]) Py (I — phihl ) + pPrhh] + gl (4.29)

As a linear recursion, it is possible to directly compute the moments of the eigendis-
tribution of P; by averaging different powers of both sides of the recursion. Here
we will apply our method to find a recursion for the Stieltjes transform of P; which
provides a much simpler and more systematic approach to analyzing the steady-state

and transient behavior of the LMS estimation process.

Theorem 4.3.1 When p < %, as n — 00, the eigendistribution of the Stieltjes
transform of P; in (4.29) satisfies
1d

Siv1(z+q) = Si(z) — s log

<—7‘ n (% - 1) Z) Si(z) (1 - %)2] - (430)
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When q = %, where k = O(1), the steady-state Stieltjes transform is the solution of

(-4 (3-1)2) st (- %)] BNE

where ¢ = log(—p?) is a constant.

kS(z) +c= —log

Proof: Most of the proof follows that of theorem 4.2.1. We start with the recursion
(4.29) and apply the definition of the Stieltjes transform, (2.12), to both sides of the

recursion,

1d
—EaElog det(Pip 1 — gl —2I) =

_%di,le logdet ((I— phih;') Pi (1= phihi) + p*rhshi — 21) . (4.32)

The left hand side is just S;11(z + ¢). Now we simply repeat the steps in the proof
of theorem 4.2.1 for the right hand side to obtain (4.30). When ¢ = %, at the steady

state,

S(z+q) — 8(z) = SS'(Z). (4.33)
Therefore

K 1d
—S(z)=—-———1
n (2) ndz o8

<—r + (% - 1) z) Si(2) — (1 - %)2] , (4.34)

which directly leads to (4.31) and c is the integration constant. In order to determine

¢, we look at the expression as R(z) — oo. The Stieltjes transform belongs to an
eigendistribution with bounded support and therefore its real part is zero at infinity,

while 25(z) — —1 (see the power series expansion of S(z)). From the other terms,

o[ G () ()w
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which completes the proof. 0

It is not hard to see that if ¢ does not scale like %, the eigendistribution does
not have bounded support. Because of the dependence of S(z + ¢) on S(z) and the
difference term being of order %, the support will be of order ng. Thus for assuring the
convergence, we should assume ¢ = #. This can also be verified intuitively through
the recursion itself. We have one single measurement of x; at each time step. If the
changes in x; have more energy than trql = ng = k, then the estimator will not be
able to follow these changes. Therefore throughout the rest of this chapter we will

hold to this assumption.

4.3.1 Finding the Eigendistribution

Clearly (4.31) cannot be solved analytically for S(z), and we have to find the eigendis-
tribution numerically (of course an approximation of it). Here we will use Newton

step method to find the eigendistribution. Let us write

S(z) = u(z)+ ju(z), (4.36)

z = A+j0". (4.37)
We define a function f(u,v;z) based on (4.31),

Flu,v;2) = Ku+ jro+ e+ jei +
(—r—i— (%—1) /\)u— (1—%)2#7' (—r+ (2—1) A) v] ,(4.38)

where ¢, and ¢; are the real and imaginary parts of c respectively. Clearly our objective

log

is finding the zeros of f(u,v;z). If we separate the real and imaginary parts of
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f(u,v;z),
fr(u,v52) = Ku+ec,
2\ 2 9
+110g (<—T+<z—1>x\)u—(1—l)) +<—r+<z_1>/\) o2
2 i . .
(4.39)
—r+(2-1)A
fi(uvv;z) = /ﬁv—i—ci—i—tan_l ( § <M ) >U

(‘7" + (,% - 1) )\) u— (1 _ i)?' (4.40)

It is worth noting that the tan~! inherently has a 2k7j.

In order to numerically find the eigendistribution, we should start at some initial

point, S° = u® + ju°. At each step, [ + 1, we update the value of S as

Uu u —1 1
_ — (DUl (usir)) Fl0152), (4.41)
vl-i—l Ul
where
af.  Ofr
D(fy=| ™ ™ (4.42)
of,  of:
ou ov

In order to simplify the expressions, let us define A and B as

A=-rt (2-1)a B:(l—%)Q. (1.43)
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Figure 4.2. Steady-state eigendistribution of recursion (4.29) for n = 10, 30, r = 0.5,
and p = 0.5..

The entries of D(f) can be readily computed as

a@{; = K+ (AUA_(ABu)z__i_Bf)l%Q’ (4.44)
2

%]Z - (Au — 2);)+ A202° (4.45)
. A2

%Z B (Au — 3?22_ A22° (4.46)

% = At (AuffuB); Ij_BA2U2 : (4.47)

Now we have all the necessary expressions to run the Newton method and numerically
find u and v which satisfy f(u,v; A+ j0T) = 0. The eigendistribution at A will be Zv
according to the definition. We have plotted the theoretical curve which is obtained
as explained versus the empirical eigendistribution for n = 10 and n = 30. We have
used 500 samples of the steady-state error covariance to produce the empirical curves.

The tightness of the asymptotic results for n even being 10 can be verified.
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4.3.2 Finding the Moments

As we saw in this manuscript so far, the Stieltjes transform’s recursion can be used
to find recursions of the moments of the eigendistribution. Apart from determining
the steady-state moments which is an important issue itself —e.g., the first moment
is the mean-squares error performance—, this will help in characterizing the transient

behavior of the filtering process. Recall that

In the regime of small ¢ which as we discussed is the only scenario of interest, (4.30)

can be written as,

K 1d 1\’

Sit1(2z) — Si(z) + ES;H(Z) = —Ealog (—r + (— - 1) z) Si(z) — <1 - ;) ]

(4248)
Replacing in (4.22) we have
i+1 i i+1 i i+1 i i+1 i+1
— — — 1 2 3
22 23 24 n \ 22 23 z4

(—r+<§—1)z)(212+2§’§1+3:1’5+ )+(§—1><—§—%—%—T—§— )
e S D I G ’
(4.49)

where the right-hand side is directly written from (4.23). The terms in the denomi-

nator can be rearranged as,

) TN I R
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The terms in the numerator of the right hand side can be easily found accordingly

(since the numerator is the negative of the derivative of the denominator)

S ) (e G

Replacing in (4.49) and noting that (1 +x)™' =1 —x +2? —---, we can find the

recursion of the moments. The first two moment follow

) ) 2 /9 2
A (1_“—(—_1))+“r+“, (4.52)

n

) ) N 2
I (1 o (2 1)) N (5 + 20%r)me + k™ 4 (r - (% . 1) mg)
2 - 2 n .

(4.53)

Clearly the convergence rate and conditions follow those of the simple case analyzed

in the previous section. The steady-state moments will be

r+ %

m o= “12, (4.54)
2 -
rm; + 2ﬁm1+n2

my = 1 2 2 : (4'55>

4.4 Generalization to Shift-Structured Regressors

So far we have considered regressor vectors which are spatially and temporally white.
In this section we will generalize the results to include a more realistic model. We
relax this assumption by showing that the results obtained earlier directly extend
to the case where we have regressors with shift structure—a model that frequently

arises in the literature when we have finite-impulse-response (FIR) adaptive filters
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(see, e.g., [Hay01]). Thus, consider

hz‘ - U; Uj—1 - Uj—pa1 ’ (456)

where the u; are drawn from a zero mean, unit variance white process. The following

lemma is the key in analyzing this case.

Lemma 4.4.1 For a given vector h; and a randomly chosen orthogonal matriz ©,

there exists a matriz A\ such that
2. (®@+A)O+A)T =1

3. Etr(AAT) = O(1)

Proof: We omit the full proof of this lemma and refer the readers to the discussions in
[IMHHO02, HMHO1]. Here we offer some intuition as to why one may expect the result
to hold. Note that any orthogonal matrix © is determined by @ parameters,
whereas a vector h; is determined by only n parameters. Then it is plausible to think
that the matrix © can be perturbed a small perturbation A so that ©® + A remains
orthogonal, yet it “rotates” h; to lie along the first unit axis. The statement of the
lemma gives a precise value on the “size” of A when O is generated randomly. U

Going back to the proof of theorem 4.3.1, we can see that all the steps were just
algebraic manipulations except when we used the self-averaging property. This crucial

step should be reexamined in the current scenario. In fact we can no longer assume

that h; and P; are independent. However, using the aforementioned lemma, we can
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show that (4.15) still holds.

hi(P; — 2 'hl = h,0(0P,07 — 1) 'e’h!
= ([hller = ) (Ps — 2D) 7 ([[ller — hsA)T
= [|hillPer(Pi — 2D)"'ef —2[|hiller (Pi — 1) T ATR]
FhA(P; — 1) T ATHT

— 5 S(2)+0+0 (4.57)

n—oo

Similar arguments can be used for h;P;(P; — 2I)7'hl and h;P;(P; — 21)"*P;hl
which show that the results so far will remain valid for the case of shift-structured
regressor vectors.

We have to mention that the second term in the right-hand side of (4.57) behaves
like \/iﬁ Therefore the convergence to the asymptotic result will be much slower
in terms of n compared to the case of uncorrelated regressors. Figure 4.3 shows
the simulation results for n = 30 and k = 0.5. We have also plotted the empirical
distribution for the cases where the successive regressors differ by two and three shifts,
respectively (in which case more randomness is brought to the regressor vectors at
each time step). As expected, with larger shifts the empirical results converge much

faster to the theoretical one due to more freedom in choosing A.

4.5 Other Examples of LMS Filters

There are several variations of the LMS adaptive filtering which can be similarly
considered in our framework. For example the leaky-LMS algorithm updates the
estimates as,
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Figure 4.3. Steady-state eigendistribution of recursion (4.29) with shift-structured
regressors for n = 30, r = 0.5, and g = 0.5, and x = 0.5..

for some positive constant . The leaky-LMS minimizes Ely — hTz| + «af|z|[*. In
other words it penalizes the energy of x and is useful to avoid solutions with a large
norm. It is not hard to show that the error covariance matrix satisfies a random

Lyapunov-like recursion very much like the one we already considered
Pivi = ((1 = pa)l = phihf ) Py (1 = pa)l — phshi ) + prhibi +Q;. (4.59)

The normalized versions of the LMS filtering, e.g., e-NLMS, will effectively change

the step size definition in our analysis,

A

0
—
€+ [[h[?

Also different assumptions may be made on the state update depending on the

application. For example in some applications it is assumed that the direction of



76

the state updates is known, while its magnitude is unknown. In this case, the error

covariance matrix satisfies,
Pip1 = (I— phihl) Py (1= phihl) + p’rhihi + qg:97 (4.61)

where ¢g; € R" is a column vector independent of h; with i.i.d. entries having zero
mean and \/Lﬁ variance. We will analyze this case since it has some technical differences

with the previous cases.

Theorem 4.5.1 The eigendistribution of the P; in (4.61) converges to a steady-state

distribution whose Stieltjes transform is the solution of the quadratic equation,

(e (2=1) ) stere (22 (2-0) o= (1-2) Vs 2 (2-1),

(4.62)

Proof: Applying the definition of the Stieltjes transform (2.12) to both sides of the
recursion (4.61),

1d T T 2 7 3T T

ndz

(4.63)

The right hand side expression can be written as,

q 0 0 9
(P; —2I) + { gihi Pih } 0 p?(r+hiPihi) —p hi
0 —p 0 hi P;
d ~

From here on, the proof will be very much like the proof of theorem 4.2.1. The inverse
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of A; can found as

Moreover,
9
pf | (P —2D)7! [ gihi Pih; 1 =
hIP;
Si(2) +¢7! 0 0
0 Si(2) —pu V4 1+ 28(2) | - (4.65)
0 14+ 28(2)  —r + 2+ 22Si(2)

Most of the terms in obtaining (4.65) are the same ones we had already calculated in
the proof of theorem 4.2.1. The only difference is in terms of the form g/ (P; — 21)~!h;
which converge to zero since h; and g; are assumed independent and zero mean.

Replacing (4.65) and (4.64) in (4.63) yields

Siv1(z) = Si(2)

Si(z) +q7! 0 0
1d »
_EEEIOg det 0 Si(2) —p 14 285(2) |
0 —p 7 14 28(2)  —r+ 2+ 228i(2)

(4.66)

where once again the expectation can be dropped since all the randomness has been

used through the self-averaging lemma. The determinant of the 3 x 3 matrix in the
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Figure 4.4. Steady-state eigendistribution of recursion (4.61) with shift-structured
regressors for n = 20, r = 0.5, and g = 0.5, and k = 0.4..

above expression is easy to compute, and we will have

Siv1(z) — Si(z) =

_1 dl
ndz 8

2 1\?
—r+ ——1)2)51-2—(1——) Si(z)+q71) ¢
( (M (2) ) [+
At the steady state, this expression reduces to

(e (2-1)e) s (o (2o1) = (1-2) ) storee=0 o

where ¢ is a constant. We can find ¢ = % (% — 1) by looking at the expression for z

such that (z) — oo. O
In figure (4.4) we have plotted the empirical eigendistribution along with the one

found by solving (4.62) for S(z).
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4.6 Conclusions

The least-mean-squares algorithm is the simplest, yet the most frequently used algo-
rithm in adaptive filtering. In this chapter we showed how our developed framework
can be applied to the analysis of such filters. The performance of LMS algorithm
and its variations is mainly governed by random Lyapunov-like recursions. Since a
linear recursion, different aspects of these filters are well studied and can be found in
the literature. Our approach however introduces a systematic way of analyzing both
the transient and the steady-state behavior of LMS filter. More importantly for us
is that the framework developed can also be applied to the Riccati recursions about
which very little is known unless with somewhat unrealistic assumptions.

Several variations of the LMS filters were considered, both in terms of the estima-
tion update algorithm and the state’s time behavior. The eigendistribution and the
transient behavior of the moments were analyzed. Our results and method can help
with finding many different performance metrics which are used in the field of adap-
tive filtering. Moreover, we have shown that the actual distribution of the underlying
model is not important. For example we one only needs the conditions on the first
and second moments of the entries of the regressor vectors in order for the analysis
to hold.

We derived the results for temporally white regressors, i.e., when the regressors
at different time instances are independent. We later proved that the results can be
extended to the shift-structured regressors with a lower convergence to the asymptotic
results for moderate values of n.

Throughout this chapter we have only considered single measurements. The re-
sults can be extended to the case of multiple measurements as long as the number
of measurements, m, is much less than the state vector size, n (m < n.) When m

is comparable to n, the results are not valid anymore. A more complicated analysis
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can deal with that case. Since Recursive Least-Squares (RLS) filters are of more
importance, we will leave such an analysis for the next chapter, with just remarking

that the same extension can be done for LMS filters.
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Chapter 5

The Recursive Least-Squares
Filters

5.1 Introduction

One of the most important families of adaptive filters is the so-called recursive least
squares (RLS) filter [Say03, Hay0l, HM84]. As its name suggests, the RLS filter
is an optimal filter that finds an estimate of a weight vector that recursively solves
a least-square-error minimization problem. Moreover, it often demonstrates much
faster convergence in its learning curve compared to other classes of adaptive filters
such as LMS filter. There are also several variants of the RLS filter which are math-
ematically equivalent but differ considerably in terms of computational expense and
ease of implementation. Due to these reasons, the RLS filter has received much at-
tention in the literature and in practice. Although the idea of the RLS algorithm
has its roots going back to Gauss, when the regressors are random, as is the case in
many applications, the RLS filter has proven to be one of the most difficult adaptive
algorithms to analyze. In fact, the so-called excess mean-square error (EMSE) of
an RLS filter is not known except for approximations based on several unrealistic
assumptions. The ubiquitous approximation in the literature is the ergodic assump-

tion [Say03]. This assumption asks for the estimation error covariance matrix, P;, to
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satisfy
EP, = (EP; 1) . (5.1)

This is clearly not a valid assumption. It can be shown (numerically) that for Gaussian
regressor vectors it is a reasonable assumption (less than 10% error). The distortion
becomes more and more severe for smaller forgetting factors.

The mean-square performance, as well as the tracking performance, of the RLS
filter under the ergodic approximation and for temporally white regressors can be
found in the literature [EF86, MIK00, Ewe94]. Our methodology on the other hand
does not require such an assumption. Although our approach asks for the number
of taps to be relatively large, as we will see, n = 10 is large enough to guarantee
convergence to the asymptotic results.

We start by giving a brief overview of the recursive least-squares algorithm. We
will stay in the framework of the generalized RLS filter [Say03, p. 772]. Recall the

state-space model we considered in the previous chapters,

Tig1 = T+ U Uj {
) u

yi = hizi +u U

in which z; € R", the state vector we want to estimate, undergoes a random walk
and u; and v; denote the zero-mean process and measurement noises, respectively.
Here y; is the measured signal and h; is the so-called regressor vector. The regressor
vectors are time-variant and often random.

The RLS recursively minimizes,
min [27115% + |ly(n) — H(w)"o]?], (53)

where x(n) = [rg 71 -+ x,|T, H(n) = [ AT -+ Al and y(n) = [yo y1 - wnl’,
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and Il is some positive definite matrix. It can be shown that [KSH00, SK94] the

optimal estimate of z; is

p.T

A

Tip1 = T; +

(yi — hii), (5.4)

T

and the estimation error covariance, P; = E(x; — #;)(z; — 2;)", satisfies a random

Riccati recursion of the form

~ et T4 Fo (5:5)

Pisi=P;

The above Riccati recursion is nonlinear and time variant and, in general, does
not converge. Furthermore, when the h; are random, it is a random matrix recursion.
As we explained earlier, when the h; are stationary it may be expected that P; will
converge to a matrix-valued stationary random process. In this case, the stationary
distribution of P;, and its statistics, such as EP; or EtrP;, will be of interest. This is
what we intend to analyze in this chapter for RLS adaptive filters.

We should also mention that the filter described by (5.2 - 5.5) is one of many
variants of the RLS algorithm (such as those with a forgetting factor—see, e.g., [Say03,
Hay01]). As we will show, our analysis easily extends to those variants, and in this
chapter we mainly focus on the generalized filter (5.2 - 5.5). Finally it is also worth
mentioning that the basic recursion (5.5) is closely related to that of the H> adaptive
filter [HSK99], [KSHO00]. Therefore our approach can readily be extended to analyze
the H* filter. We will talk further about this connection in chapter 8.

This chapter is organized as follows. In section 5.2 we will analyze the basic RLS
filter with temporally uncorrelated regressors and find the steady-state eigenvalue
distribution of the error covariance matrix. Moreover, simulation results will be pro-

vided which demonstrate a very close match between the theoretical and empirical
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curves. The analysis can be extended to include a more realistic structure for the
regressor vectors, namely shift structure, in the same way we did for the LMS filters.
In section 5.4 we further generalize the results to include the case of intermittent
measurements where the measurements {y;} are transmitted through a network and
may be dropped with some probability. This problem is motivated by the recently
growing interest in estimation and control over lossy networks and creates the foun-
dation for later chapters. We show how this scenario can be handled easily through
our method and how closely we can predict the empirical curve. Finally section 5.5

concludes the chapter.

5.2 RLS Filter with Temporally Uncorrelated Re-
gressor Vectors

First let us consider the RLS adaptive filter assuming that the regressor vectors are
spatially and temporally uncorrelated. Although this assumption is widely used in the
literature for analysis purposes, it is often not too reasonable. However it is not hard
to generalize the results to more realistic cases such as shift-structured regressors.
For the time being, any h; is assumed to be comprised of zero-mean i.i.d. entries that
are further independent of all other h;.;’s. We will also assume a pure random walk
for state updates. This model results in the following Riccati recursion for the error

covariance,
P;hlh;P;

Py, =P, — L
i r+ hiP;hT

+ an P07 (56)

where h; are independently drawn n X 1 vectors having iid zero mean entries with
variance \/Lﬁ and finite higher order moments, while ¢ is a constant representing the
process noise variance. Clearly P; will not converge to any steady-state P since the

h; are changing through time. However, its probability distribution does converge
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to a steady state. The stability of the filter has been extensively analyzed in the
literature [Say03, Hay01]. The convergence of P; to a steady-state distribution can
also be directly deduced from the work of Sinopoli and co-workers [KSMO09).

One also should note that due to the highly nonlinear nature of this recursion,
all the moments of the eigendistribution are coupled and therefore one cannot find
the moments of the distribution by averaging both sides of (5.6) as was possible for
Lyapunov-like recursions. However, using the theory of large random matrices, we
can find the asymptotic behavior of the eigendistribution.

The following Theorem presents the main result.

Theorem 5.2.1 (RLS with temporally independent regressors) Consider the
random Riccati recursion in (5.6) where n — oo. The Stieltjes transform of the

eigendistribution of P;, S;(z), satisfies

Sur(24+q) = Si(z) + - x LE28i) +2°5i(2) (5.7)

n r—z—225(z)

When q = £ where k = O(1) (with respect to n), the steady-state Stieltjes transform

S(z) is the solution of
kS(z) +c=—log (r—z—2°S(2)), (5.8)

where ¢ is a constant to be determined.

Proof: We will use the definition of Stieltjes transform as in (2.12) to the recursion

(5.6). The left hand side becomes

1d
_HEEIOg det (Pip1 — gl — 2I) = Sipa(2 + q). (5.9)
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Thus
1d P;hl'hP;
Sivi(z+q) = — 7 Elogdet Pi_m_d
1 d P;hTh;P;
= ———FI P, — 21 [— (P, —2]) 't
ndz og{det( A det( ( ) r+hiPihzT)}
1

d
- —%m P, — -1
e ogdet (P; — 2I)

1d P;hTh;P;
———-Elog det (1— (P; — 2I)F —— )

ndz r+ h;P;hT
(5.10)
The first term in the right hand side is just the Stieltjes transform at time ¢
1d 1 P,hThP;
S; = Si(z) — ——Elogdet | I — (P; — 2I) ———= | . 5.11
e 0) = Si(2) = 2 Blogder (1= (Pr— o) PR

Now since det(I — AB) = det(I — BA), we can rewrite (5.11) as,

1d . Pt

Since does not depend on z,

1
7‘+hipih;-r

Siti(z+q) = Si(2)

naz
1d _
= Si(z)— —d—Elog’l det (r + hiP;hl — hiP; (P; — 21) "' P;nl) .
naz

(5.13)
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The self-averaging lemma for the Stieltjes transform can be invoked now.

hiPi(P; — 2I)"'P;hl = hPy(P; — 21) 1 (P; — 21 4 2I)h)
= hiP;hl + 2hi(P; — 21+ 21)(P; — 21) Al

= hP;hl + zhih] + 22hi(P; — 1) 'h]

Replacing (5.14) in (5.13),
1d -1 2
Siv1(z+q) = Si(z) — ﬁ@ElOg det (r — z — 2°5,(2)) . (5.15)

Noting that no randomness is left in the right hand side, we can drop the E notion

and (5.7) is obtained. When ¢ = %,

K K,
Sit1(z + =) = Sin(2) + —5ia(2). (5.16)
n n
And in the steady-state
S(z) + ES’(z) = S(z) — 1d log(r — z — 225(2)) (5.17)
n B ndz ® ’ '

which yields (5.8) after integrating both sides. The constant ¢ is the integration
constant. U

We are assuming that the state vector’s dimension is large. Since there is only
one measurement at each time step, one can verify through (5.6) that the state vector
update should have a variance which behaves like ¢ %, otherwise the RLS algorithm
will have too much error to be said to be working. As a matter of fact, it is clear from

(5.8) that the support of the eigendistribution will be O(n) which is not desirable.
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Therefore we should consider (5.6) for ¢ = & where « is some finite constant. This is
why we have singled out this case in the above theorem.
There is an important difference between this case and the LMS recursions we

studied in the previous chapter. We address this difference in the following corollary.

Corollary 5.2.2 The constant ¢ in (5.8) depends on the first moment of the eigendis-
tribution as

c = —log(r +my). (5.18)

Proof: We can use the power series expansion of the Stieltjes transform to find an

expression for c¢. In fact (5.8) can be rewritten as

—E—mr;l --—|—c:—log(r—z+z+m1+@+-~->. (5.19)
z z z
By letting z to assume a real part going to infinity, (5.18) will be immediate. O

Thus ¢ depends on the first moment of the eigendistribution and cannot be de-
termined explicitly as we did for the Lyapunov-like recursions. This was expected
due to the moments being all coupled in a nonlinear recursion such random Riccati
recursion; otherwise we could find all the moments readily through Laurent series
expansion of S(z). However, ¢ can be numerically determined (with little effort) by
insisting that the eigendistribution, which is directly related to the imaginary part of

the Stieltjes transform, integrates to one.

5.2.1 Finding the Eigendistribution

Here we will develop a numerical method of finding the eigendistribution from the

expression satisfied by the Stieltjes transform at the steady state. It will be similar
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to the one we used in section 4.3.1 for the LMS algorithm. Denote

S(z) = u(z)+ ju(z), (5.20)

= A+j0T. (5.21)
We define a function f(u,v;z) based on (5.8),
flu,v;2) = ku+ jro + ¢, + jo; +log [(r — X = N2u) + j (=M\v)], (5.22)

where ¢, and ¢; are the real and imaginary parts of ¢ respectively. We need to find the
zeros of f(u,v;z) for z very close to the real Ine. Separating the real and imaginary

parts of f(u,v;z) yields the following two expressions

fr(u,v;2) = Ku+c + %log [(r - A= )\Zu)z + )\41)2} ,

pR

i\u, vy 2) = i+ tan T —————.
fi(u,v; 2) KV + ¢; + tan SNy Chy

(5.23)

In order to numerically find the eigendistribution, we should start at some initial

point, S° = u® + jv°. At each step, [ + 1, we update the value of S as

ul+1 ul 1
— | = (PO aey) 052, (5:24)
Ul+1 ’Ul
where,
Ofr  Ofr
D(fy=1{ ™ *|. (5.25)
9fi  Ofi

ou ov
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The entries of D(f) can be found by direct derivation as

N(r— A — A2
Ofr _ Xz A-M) (5.26)
ou (r— X — M2u)? + \o?
4
O _ A . : (5.27)
ov (r — X\ — A2u)” + \o?2
, 4
o _ A . , (5.28)
du (r— X —X\u)” + M2
, 200 ) _ )2
ofi _ A (r— A 2)\ u) . (5.29)
ov (r— X — 22u)? + \o?

We can now run the Newton method and numerically find u and v which satisfy
f(u,v; A+ j0T) = 0. We start with some value of ¢ and obtain an inverse Stieltjes
transform (in fact, %v) This inverse should integrate to 1. Therefore we numerically
solve for a ¢ which satisfies this condition (another Newton method). In figure 5.1
this theoretically found curve is compared with the simulation results. We have used
500 samples of the steady-state error covariance to produce the empirical curves. The

tightness of the asymptotic results for n even being 10 can be verified.

5.2.2 Moments of the Eigendistribution

As we have already remarked, unlike the Lyapunov-like cases the moments are all
coupled for Riccati recursions. Therefore we cannot find the moments at time ¢+ 1 in
terms of moments of the same or lower order at time 7. To see this, recall the power

series expansion of the Stieltjes transform.
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Figure 5.1. Steady-state eigendistribution of recursion (5.6) for n = 10,30, r = 1,
and kK = 1..

Replacing in (5.7) while ¢ = %,

m{T—mi mbtt —ms +/§<1+2m§+1 >_1 TZ—2§+2$§”+~-
22 23 n \ 22 23 n'r’—l-mzi—i—n?—i—%l—l—
(5.30)
Therefore,

1 ) , K 1 - 4 K
¢ i+1 i i+1 i+1
;(ml—ml —i—E)—i—;(mQ—mZ +2Hm1 >—|—

1 . 2m), mh
I . . 1——"2 . )¢5.31
2+ ) (m” : )( )z )< )

mitt =mi + - — = . (5.32)
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Figure 5.2. Relative error in prediction of the m; = EX = EtrP in recursion (5.6)
for different values of n, the vector size, r = 1, and k = 1..

Thus m ™ is a function of m} and analyzing the moments separately and sequentially
will not be possible. To find the moments we should follow the recipe of the last
subsection and find the eigendistribution first and obtain the moments through that
quantity. In figure 5.2 we have plotted the error in predicting m; = EX = %EtrP for
different values of n. We find m; through simulation and then compare it to the m;
found by insisting that the eigendistribution should integrate to one. As can be seen
in the plot, the relative error is less than 3% for n > 20 and less than 10% for n as

small as 5.

5.2.3 Generalization to the Shift-Structured Regressors

A similar argument as what we presented in section 4.3.2 can be done for the RLS
filter we have considered here. In our analysis so far we have only focused on regressor
vectors which are spatially and temporally white. In other words when not only the

entries of h; are independent, but so are h; and any h;»;. However the results are still
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Figure 5.3. Steady-state eigendistribution of recursion (5.6) with shift-structured
regressors for n =10, r =1 and k = 1..

valid when looking at regressor vectors with a shift structure, i.e.,

hi = w; wisy -+ Ui | (5.33)

where the u; are drawn from a zero mean, unit variance white process. As we men-
tioned earlier, this model is very common in the literature, particularly when consid-
ering finite-impulse-response (FIR) adaptive filters [Hay01].

One can use lemma 4.4.1 to show that while h; and P; are no longer indepen-
dent, the crucial step at which the proof invokes the self-averaging lemma still holds.
Therefore the Stieltjes transform’s recursion and the steady-state expression behavior
will remain the same.

The only difference is that the second-order term in the asymptotic analysis will
be \/iﬁ instead of %, and consequently we have a slower convergence to the asymptotic

results. Adding more randomness in the form of more than one shift at each time
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step makes the actual eigendistribution for moderate n be closer to the theoretical
prediction. Figure 5.3 shows the asymptotic eigendistribution along with the empiri-
cally found curves for n = 10, with different number of shifts at each time step. The

empirical curves are found by looking at 1000 realizations of the recursion.

5.2.4 Incorporating the Forgetting Factor

Recursive Least-Squares filtering in its nature performs a least-squares minimization
based on all the available data, from ¢ = 0 to the current time. In order for the filter
to be more dynamic and capture the changes in the statistics of the incoming data, it
is common to assume some kind of forgetting procedure. In other words, giving less
weight to the old measurements compared to the recent ones. The forgetting factor
is the most common way of implementing this idea.

The RLS filter with a forgetting factor of 0 < o < 1 minimizes,

min |27 (oz_(iﬂ)Ho)_l x + Z o y; — hjx|? (5.34)

T =
It can be shown that [KSHO0],

! Pl
r -+ Oé_lhiPith

ii-‘rl = fi'l + o (yz — hlil%), (535)

and
r—+ O{_lhiPih?

Pi+1 = Oéilpi - + QI, PO (536)

In order to take into account the effect of the forgetting factor, we note that in the

right hand side of (5.36) we can absorb all a~! into P;. Now since

Sa-1p, = aSp,(z), (5.37)
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we can replace S;(z) in (5.7) accordingly, i.e.,

11+ 2za8;(az) + 22a%Si(az)

Sii(z +q) = aSi(az) + n r—z— 22a8;(az)

: (5.38)

which can be numerically solved for S(z) to find the eigendistribution.

5.3 RLS Estimation of a State Vector with Known
Update Direction

In some applications of adaptive algorithms it is assumed that the direction of state
updates is known. In other words, Q, = qg;g! , where the g; € R"™ are independent of
the h;, and they are temporally and spatially white, which means that entries of g; are
i.i.d. and every g; and g;; are independent. The error covariance matrix undergoes

a Riccati recursion of the form

P;hThiP;

Pig=P— —t
i r+ hP;hT

+4qg9i9;,  Po (5.39)

The entries of g; have a zero-mean, \/iﬁ—variance distribution with bounded higher
moments. The Stieltjes transform of P; satisfies the recursion presented in the next

theorem.

Theorem 5.3.1 Consider the random Riccati recursion in (5.39) where n — oc.

The Stieltjes transform of the eigendistribution of P;, S;(z), satisfies

Si1(z +q) = Si(2) — s log [(Sz(z) + é) (=r+ 24 2°9i(2)) | - (5.40)
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The steady-state eigendistribution is equal to

e A a0

fp()\) = — Im

- % , (5.41)

where ¢ is a constant to be determined and Im denotes the imaginary part. The

ergendistribution is zero whenever the imaginary part is zero.

Proof: Using the definition of Stieltjes transform as in (2.12) in both sides of the
recursion (5.39) we have

P.hTh;P;

1d

+q9i9] — ZI) :

which can be written as,

1d

P.hTh;P;
S—— det (P; — zI det [T+ (P, —2I)7' [ ———2 1 gl

and further,

1d 1d [ P;hThP; ’
———FElogdet (P; — 2I) — ——Elogdet | I 4+ (P; — 21 - 93 :

The first term is just the Stieltjes transform at time .

1d _ P;hIh;P;
Siv1(z+q) = Si(z) — ﬁ%ElOg det (I + (P — 1) (_r+h—PhT + qgiQ?))
(5.42)

The second term can be rearranged as

1
——d—E log det | T+ (Pz — 21)71 |: PZhT i :| r+h; PRl
naz %

0 q 9
(5.43)
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Now since det(I — AB) = det(I — BA), we can rewrite (5.43) as

1d P. 1 T r+h;PiRT
—E%Elogdet I+ (P; — 21 [ P:hi gi } Z

(5.44)
The 2 x 2 matrix in the above expression does not have z dependency. Therefore we

can readily bring it out of the %Elog det, which leaves us with,

———[Elogdet + (P; = 21) [ Phl g; }
ndz 0 1 T i
q 9i

Therefore,
S’L+1 Z+ q = S
—r — hiPhT + WPy (P — 2D PAT Py (P — 2D) g
——d—Elog det
ndz (P, — 1) PihY g gl (Pi—2D) g

(5.46)

Now we can use the self averaging lemma in the same way we did in proofs of theorem
4.5.1 and theorem 4.2.1, which yields
—r+ 2z + 225;(2) 0

1d
Sit1(z+q) = Si(z) — HEElog det " s (5.47)
0 Sl Z)+q

Noting the absence of randomness in the right hand side, we can omit the E notion
and (5.40) is obtained.

At the steady state, (5.40) simplifies to

dilz log Ks( )+ é) (=r+2+225(z))| =0, (5.48)
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which means

<S(z) + 3) (=r+2+42°3(2)) =, (5.49)

where ¢ is some constant. We can solve the above quadratic equation for S(z) with

z being the parameter

~1,2 ~1,2 2 2 (q—1
' z—rEn (¢ 2z —1r) =422 (¢ 2+ o)
S(z) = \/ 52 : (5.50)

where ¢ = —¢ — ¢~ 'r. It is straightforward to check that in the limit the imaginary
part of z does not contribute to the imaginary part of S(z), and (5.41) will be imme-
diate recalling that the eigendistribution is % times the imaginary part of the Stieltjes
transform very close to the real line. O

Once again, with no surprise, it is not possible to separately determine c. As a
matter of fact one can show that

c=—, 5.01
. (5.51)

using the same argument that we have used so far for Re(z) — oo. However one can
numerically find fp(\) and find ¢ by insisting that the distribution should integrate
to 1. In figure 5.4 the numerical solution for fp()) is plotted versus the eigendistri-
bution empirically found by running the recursion and looking at the steady-state
eigenvalues. The simulation results are generated for 1000 samples of the recursion
with n = 10 and n = 30. Once again it can be observed that although the analysis
is done for n > 1, for state sizes as low as n = 10 we can predict the the irregularly

shaped eigendistribution very closely.
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5 ‘ :
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Figure 5.4. Steady-state eigendistribution of recursion (5.39) for n = 10,30, r = 0.5
and g = 0.1..

5.4 RLS Filter with Intermittent Observations

As mentioned earlier, a great deal of research has been devoted recently to the study
of estimation and control over lossy networks [SSFT04]. In this section we show how
the problem of RLS filtering with intermittent observations can be handled in our
framework.

Consider the state-space model of (5.2). Now assume that the measurements y;
are lost before reaching the estimator with some known probability €. In other words
with probability € no y; is available and with probability 1 — ¢ a noisy measurement
is received. It can be shown that (see, e.g., [SSFT04, SETMO05, GDHMO6]) the error
covariance will have both time and measurement updates whenever a measurement
is received, in which case the update equation will be the same as the one introduced

earlier,

LS I
r+ P

Pi+1 = i 5 (552)
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(we assume ¢ = £ following the discussions in section 5.2). Otherwise, i.e., when no

measurement at hand, the error covariance only undergoes a time update of the form,
K
Pii1 =P, + -~ (5.53)

Assuming that the data loss process is a Bernoulli process independent through time,
one can combine the two recursions above to get a single Riccati recursion. In other
words, at each time step, with probability €, equation (5.53) holds, and with probabil-
ity 1 —¢, the equation (5.52) applies. Therefore a, combined random Riccati recursion

can be found for the RLS filtering with intermittent observations as

P;h}h;P;
- + él, (5.54)

Pi =5 05
1 r; + hlplh: n

where the {r;} are a collection of independent random variables such that,

r with probability 1 — €,
;= (5.55)

00 with probability e.

Indeed whenever r; = oo recursion (5.58) simplifies to (5.53). The following theorem

presents the main result for this case.

Theorem 5.4.1 (RLS Filter with Intermittent Observations)  Consider an
RLS adaptive algorithm that uses intermittent noisy observations of a state vector
which undergoes a pure random walk. Assume that the measurements are lost inde-
pendently of each other with probability ¢ < 1. The error covariance matriz, P;, of

this RLS filter undergoes the recursion (5.58) and as n — oo while k is kept constant,
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the Stieltjes transform of P; satisfies

Ky 1—e 1+4225(2)+ 2%25(2)
SH_l(Z + ﬁ) = SZ(Z> + o X . ZZSZ(Z) (556)
The steady-state Stieltjes transform satisfies
kS(z) +c=—(1—¢€)log (r — z+ 2°S(2)), (5.57)

where ¢ is a constant which is determined by insisting that the inverse Stieltjes trans-

form should integrate to one.

Proof: Rewrite (5.58) as

P.hih;P;

Pii—qgdd=P;— ——W——- 5.58
i q ;i + hlpzh: ( )
Calculating the Stieltjes transform of both sides of recursion (5.58) yields
Siv1(z +q) Le L togdet [Py — o1 — Lifti IiP: (5.59)
i+1(2 = ——E—logde i— - ——. :
i a nods 8 ri + h,P;hl

Since r; is independent of all other random variables in the right-hand side, we can

separate the expectation on r;. Since it represents a Bernoulli process,

Pr(r; = 00),

1_d P;h] hP;
Sivi(z+q) = _HEE log det (Pi — 2l — L >

;=00

1 P.hTh.P;
——Ei log det (Pi — 2zl — ihi hiPs >
n dz
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Figure 5.5. Steady-state eigendistribution of recursion (5.58) for n = 10, 30, r = 0.5,
e=0.5and k =0.1..

Replacing (5.55) we have

Siv1(z +q)

d
= —EEd— log det (P,- —zl—

P:hTh;P;
n z

oo + h;P;hT
1—c¢
n
1—c¢
n

d
E logdet (P — 21 — — i tti
dz ® e( T A hPAT

P,hTh;P;

= €5(2) ]Ediz log det (Pi — 21 (5.61)

The second term in the right-hand side is the same as what we calculated in the proof

of theorem 5.2.1 and we directly use it here,

Sz +0) = eSi() — (1= o) (sxz) o1, 1 2ESia) & zzS“Z)) C (562)

n r—z—225(2)

which results in (5.56). Finally by replacing Si;1(z) = Si(z) = S(2) and ¢ = £ in
(5.56), one obtains (5.57). O
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Figure 5.6. Relative error in prediction of the m; = EX = %]EtrP in recursion (5.58)
for different values of €, n = 20, r = 3.0, and k = 3.0..

As in the previous cases of Riccati recursions, the distribution as well as the
constant ¢ should be determined numerically. Figure 5.5 shows the theoretically
predicted eigendistribution along with the empirical ones. The empirical curves are
based on 1000 samples of the steady-state error covariance matrix for n = 10 and
n = 30. In order to show how closely our method predicts m; = EXA = %EtrP which
is the mean-squares error performance, we have plotted the relative error between
the theoretically found m; and the one obtained from Monte Carlo simulation for
different values of packet drop probability. The state size is set at n = 20. A relative

error of less than 4% is observed in the simulations.

5.5 Conclusions

The recursive-least-squares algorithm is one of the most important adaptive algo-

rithms in use. While computationally more costly than LMS counterparts, RLS fil-
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ters have several improved performance metrics in comparison which motivate their
use. On the other hand, various implementation options provide liberty in selecting
the appropriate model for specific applications. While the idea of RLS filters can
rooted back to the early 1800s, an accurate performance analysis has been lacking in
the literature. The fact that the performance of RLS filters is governed by a random
Riccati recursion (a nonlinear recursion in its essence) plays the major role in making
them hard to analyze. Most of the results on the RLS filters in the literature are
based on loose approximations such as assuming EP; = (EPZ-_ 1)71, where P; is the
error covariance matrix at time <.

In this chapter we analyzed RLS filters through our framework under two main as-
sumptions: (a) The random regressors (and the packet drop process when applicable)
are representing jointly stationary random processes, and (b) the state vector size, n,
is large. Although the results are asymptotic for n — oo, as the simulations clearly
show, even n = 10 is enough in order for the derivations to be accurate. Our results
appear for the first time in the literature. We find explicit recursions satisfied by
the eigendistribution of the error covariance matrix and characterize the steady-state
distribution in the form of an implicit expression.

We studied several variations of the RLS filter. We started with RLS filtering of
a state vector which undergoes a pure random walk with spatially and temporally
white regressors. We developed the necessary tools for finding the eigendistribution
numerically from the implicit expression that characterizes it. The results were shown
to be extendable to shift-structured regressor vectors. Forgetting factor, an important
concept in the adaptive filtering which essentially weighs out the older observations,
was shown to be integrable into our analysis.

We then looked at two other variations of RLS. First we studied the RLS esti-

mation of a process whose updates occur in known directions. We then studied the
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case of RLS filtering with intermittent observations, i.e., when measurements may
be lost according to some probability. For each case the Stieltjes transform’s (hence
eigendistribution’s) time recursion was found and the steady-state eigendistribution
was found as the solution of an implicit equation.

Apart from the novelty of the results, the universality that comes with the theory
of large random matrices makes them powerful ones which do not depend on the
details of the model.

Throughout the chapter we only considered single measurements. The results can
be readily extended to multiple measurements as long as the number of measurements,
m, is much less than the state vector size, n (m < n.) However this extension fails
when m is comparable to n. A more involved analysis is required in this case. Due
to the importance of RLS filters and their connection to Kalman filtering, we have
devoted the next chapter to the so-called extended RLS filters for which ”* does not

tend to zero as n grows.
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Chapter 6
The Extended RLS Algorithm

6.1 Introduction

In the previous chapter we studied variants of the recursive-least-squares (RLS) fil-
tering under different assumptions on the regressor vectors and the state variable’s
updates. As a matter of fact, the RLS algorithm and Kalman filtering are deeply con-
nected, and any problem solved in one framework can be translated into a solution
in the other one. This relation was naturally noticed early in the literature [God74].
A detailed account of this equivalency can be found in [SK94]. The importance of
this relation is that several ideas and implementation algorithms can be transfered
between the two contexts. Moreover, since Kalman filtering is a more general concept,
one may elaborate on this relation to find variations of the RLS filter with specialized
properties and abilities. This chapter is dealing with the extended RLS algorithm
which we will describe in the following, and this extended version, just like the simple
case, is a special case of Kalman filtering, and in fact almost equal to it. Therefore
the analysis in this chapter can be well considered as that of Kalman filtering under

some specific assumptions!.

'For a comprehensive account of how deterministic least-squares estimation can be interpreted
as a stochastic estimation problem see [Say03, chapter 12]
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We consider a special case of the standard state-space model,

Z; = I ~|—u¢,
o (6.1)

yi = Huz+ v,
in which x; € R", the state vector we want to estimate, undergoes a pure random
walk, and u; and v; denote the zero-mean process and measurement noises, respec-
tively. Here y; € R™ is the measured signal and H; is the m X n regressor matrix
which is indeed time-variant and often random. Therefore the measurements are no
longer scalar variables, rather they are vectors. An immediate application for the
extended RLS algorithm is the block RLS filtering [Say03, p. 752]. We will assume

that all the processes are stationary and their statistics follow,

U;

F,=1, Gi=1 R,=rI, Q =dL (6.3)

It is well known that the RLS (equivalently, Kalman) recursive estimate of z; can be

expressed as [Say03, KSH00],
i1 = & + PHT (rT+ HPHT) 7 (g — Hidy), (6.4)

A

and the estimation error covariance, P; = E(x; — 2;)(x; — 2;)7, satisfies a random

Riccati recursion,
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Therefore the randomness of H; makes the error covariance propagation a random
matrix-valued recursion. While the Kalman filter with time-invariant coefficient ma-
trices is well studied in the literature, not much is known about its steady-state and
transient behavior in the time-varying case. Even for a simple RLS filter with one
measurement per time instance, the mean square error performance is not known as
we discussed in the previous chapter [Say03, HayO01].

Our approach which leverages ideas from large random matrix theory to establish a
method for analyzing random Lyapunov and Riccati recursions proved to be successful
for the single-measurement RLS and LMS filters?. This encourages further scrutiny
about the extended RLS algorithm, when the number of measurements is allowed to
grow with n. As we will see in this chapter, with some further technical complexities
such an analysis can be carried out.

As we discussed in chapter 1, P; clearly does not converge to any specific matrix
as i — oo. However we may conjecture that if {H;} is a stationary process (as is
the case here), {P;} may also converge to a stationary random process. Here we will
investigate the existence and the statistics of such a stationary limit.

The main results will be presented in section 6.2 and the eigendistribution will
be found as the solution of a pair of implicit equations. In section 6.3 we will ex-
plain the method of finding the steady-state eigendistribution from this implicit equa-
tion system. Simulation results presented demonstrate a very close prediction of the

eigendistribution through our method. Finally, section 6.4 concludes the chapter.

2As a matter of fact, while the number of measurements is very small compared to the state
vector size (m < n), the analysis in chapters 4 and 5 will remain valid.
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6.2 Characterizing the Stieltjes Transform of the

Error Covariance

Let us go back to the propagation of the error covariance matrix for an extended RLS
algorithm with multiple measurements. The number of measurements, m, is assumed
to be growing with n, i.e., we will assume that n — oo and 2 — (. As mentioned

earlier, the error covariance matrix satisfies
Piyy = Py — PHT (/1 + H,P,HT) T HP; +¢l, Py, (6.6)

where H; is an m x n random matrix that has i.i.d. entries having zero mean and \/Lﬁ
variance. Moreover, {H;} is assumed to be temporally white. In other words every H;
and Hj,; are independent. We will follow our routine practice of first characterizing
the Stieltjes transform and finding a time recursion for it. The following theorem

encompasses the main results.

Theorem 6.2.1 (Extended RLS Adaptive Filtering) Consider the random Ric-
cati recursion in (6.6) where m,n — oo while > — (3. As i — oo, the Stieltjes

transform of the eigendistribution of P;, Si(z), satisfies a pair of implicit equations,

B ti(z) 1 z
Sl 44) = T T A e (1 - zti(z)> : (6.7)

Hz) = g ~ (6.8)

z 22 z
[l v 7o B (1—zti(z))zsi (1—Zti(z)>

The eigendistribution of P; converges to a steady-state distribution whose Stieltjes
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transform, S(z), satisfies the pair of implicit equations,

t(2) 1 z
S+a) = 1—2t(z) (1— zt(z))zs <1 — zt(z)) ’ (6.9)

t(z) = - . — (6.10)
[l vy B (kzt(z))'zs (1fzt(z)>

The above equations can be solved numerically to obtain S(z) and eventually fy(\).

Proof: Rewrite recursion (6.6) as,
Piyy — gl = P, — PHT (71 + H;P,;HT) T H,P;- (6.11)

We now apply the definition of the Stieltjes transform as in (2.12) to both sides of

the above recursion. At the LHS,

1 .d
——E—logdet (P;r1 — ¢l — 2I) = Siy1(2 + q). (6.12)
n dz
Therefore,
1 .d
Si1(z4q) = ——E—log det (P, — P;H] (rI + HP,H) 'H;P; — 21) - (6.13)
n z

Bringing (P; — zI) out of the expression at the RHS,

1
——]Edi logdet [(P; — 2I) x (I — (P; — 21)"' P,H] (/1 + H,P;H] ) 'H,;P;)]
n z

or equivalently,

1_d 1_d
——E——logdet (P; — 2I) — ~E—_-log det (I— (P; — 20)~' P;HI (71 + H,P,H) 'H,P;) -
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The first term in the RHS is S;(2). In order to simplify the second term, we note that
det(I — AB) = det(I — BA). Thus,

1
Sivi(z4q) — Si(z) = —EE% log det (I—H;P; (P; — 21)~' P;HY (71 + H,P,H]) ™) -

(6.14)

Multiplying by (rI + H;P;HI) we arrive at

1 _.d
Siv1(z+q) — Si(z) = _EEE log det(rI 4+ HI-PZ-HZ-T)_1

1_.d _
——E—log det ((r1+H;P;H!) — H;P; (P, — 1) P;HT) -
n z

The first term in the right-hand side is equal to zero since it has no z dependency.

Therefore we are left with,

1 _.d _
Siq(z+q) — Si(z) = — B~ logdet ((rT+H,P;H]) — H;P; (P, — 21)"' P;HT) -
n dz
(6.15)
In order to transform the above expression to a form which helps us take the calcu-

lations further, we note that

H,P; (P; — 2I) ' P;HY = H;(P; — 21+ 2I) (P; — 2I) "' P;HY
= H,P;H! + zH; (P; — 2I) ' P,HT
— HPHT + 2H; (P; — 21) " (P; — 21+ 2)HY

= HPHT + :H;HT + 22H,; (P, — zI)"H.  (6.16)
Replacing (6.16) in (6.15) yields

1_d
Sit1(z+q) — Si(2) = _EEE logdet (rI — Hy(2I+ 2*(P; — 2I)")H]) .  (6.17)
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Since H; has an isotropic distribution, we can assume without loss of generality that

P, is diagonal. Therefore if we define the auxiliary matrix D;(z) as
Di(2) = 21 + 22(P; — 21) 7, (6.18)
it can be assumed diagonal. Computing the derivative in (6.17) we obtain
Sivi(z+q) — Si(z) = %Etr [HiD;(z)HiT (r1— H,-Di(z)HiT)_l] , (6.19)

since [Rog80]
diz log det A(z) = tr [A'(2) A" (2)] . (6.20)

Let us rewrite (6.19) as

Sii1(z +q) — Si(z) = %Etr {HiD;(z)Di_l(z) D;(2)H] (11 - H,;Di(z)H;fp)_j . (6.21)

The underbraced part on RHS can be rearranged as,
r 7

D;(2)HT (rl — H;D;(2)HT) " = ! (D.-l(z) - %HTH) B HT. (6.22)

By replacing (6.22) in (6.22) we obtain

-1
H
.

Siti(z+q) — Si(z) = %Etr H;Di(2)D; ' (2) (Dil(z) — %H;‘FHz) (6.23)

Now by noting that trAB = trBA, we can move the leftmost H; inside the trace to the

right side of the expression. Therefore after adding and subtracting a D;'(z) term
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we arrive at

Siv1(z +q) = Si(z) =

{207 () (D7) - i1, ) (% =i + D;1<z>>] ,

1
—Etr
n

which can be readily simplified to

1 1 !
Serlz+0) - S(2) = LB |Di(=)D7 () <_1 + (') - J1r, ) D;1<Z>>]
(6.25)
We now deal with the two terms on the RHS separately. Let us define
1 ! -1
pi(z) = —ﬁEtr [Di(z)D; '(2)] (6.26)
and
1 / -1 -1 Lo.r - —1
qi(z) = EEH D;(z)D; (2) | D; " (2) — —H, H; D; " (2) (6.27)
r

In order to calculate p;(z), note that according to (6.18) the entries of the diagonal

matrix D;(z) can be written as,

2 )\Z
. z -Z
dl.:Z—|— - — 4]
J Ay — 2 )\;—z’

(6.28)

where the superscript ¢ denotes the time and )\j» denotes the j** eigenvalue of P;. The
entries of D}(z) can now be found as
i ()i i i)2

el = , = — .
J (N —2)? (N —2)?

(6.29)
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Therefore we can find p;(2) as

pi(z) = —%Etr [D;(Z)Dfl(z)} =—E (/\E/\_Z)Z)Q//\Z)\Z_ZZ]

So it remains to calculate (6.27) which is more challenging. Since trAB = trBA,
and considering the fact that D;(z) and hence D(z) are diagonal and therefore they

commute, we can write ¢;(z) as,

1 1 -
¢i(z) = —Etr |D(2)D;2(2) (Di_l(z) — —H?Hl) (6.31)
n r
Let us break D;(z) and H; in the form,
di 0

where hy is an m x 1 vector. We have dropped the index ¢ for simplicity. Replacing

in (6.31) we obtain

-1

d 1 hfm riH
4i(2) = ~Etx a0 W T . (6.33)
n 0 D’2D2_2 _HIm D;l _ HIH

Since everything is isotropic, without loss of generality we can look at the expected
value of the first diagonal entry in the above matrix (instead of Etr). The first entry

can be readily found through the Schur complement as

d 1

S—— — ,
d? gt M h{Hy (o HEH, HIhy
1 r r 2 r r

i(2) (6.34)
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or equivalently

d} 1
Gi(z) = 2 — . (6.35)
Yyt —hf {%I - (Dal - —HH) H—] h
We can now invoke the matrix inversion lemma to rewrite (6.35) as
d} 1
gi(z) =E— —, (6.36)
d d7' — BT (r1— HyDoHE) ™ g
2ti(z)

where the subscript 7 in ¢;(z) insists its dependency on H; and P;. Moreover, since

D, is in fact a function of z, so it #;(z). Assuming that ¢;(z) is known, we have

()=ga__1 (6.37)
qi(2) = B— ————7—- :
d% dl - tl(Z)
Replacing (6.28) and (6.29) in (6.37) we arrive at
b — ¢ 1 1 1
g(z) = B2 () _lp 1 (6.38)

(AN (N — 2)222d7 " —ti(z) 22 dit —ti(z)

which can be further simplified to

2(1— zt;(2)) N — No— 2

1—z§i(z) Z(l o Ztl(z)) 1—2zti(2)

1 1 1 \i
() = —B—— - "F :
%(2) 22 —’\j\jzz —ti(z) 2z (1—=zti(2))\ —2
1 b 1 T
_ E — E|1+ .1#](6.39)

noting that A’ is one randomly selected eigenvalue of P;, the above expression can be

written in terms of S;(z),

1 1 z
() = Ay T A e (1 = zti(z)) | (6.40)
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Therefore, combining (6.40), (6.30), and (6.25) yields

1 1 1 z
Sl ==+ Ay Y A <1 - zti(z)> ! (6.-41)

which simplifies to (6.7).
It remains to calculate t;(z). We first note that using the self-averaging lemma,

lemma 2.4.1, ¢;(#) can be written as

1 _
t;(z) = E—tr (r1 — HyD,HZ) . (6.42)
n
We break H, as
h
Hy=| |, (6.43)
H22

where hg; is an (n — 1)-dimensional row vector. Replacing it in (6.42),

-1

1 r— hngghT —hngQHT
ti(z) = E—tr 2 . : (6.44)
n —Hy,Dohl,  r1 — HyDoHY,
Once again, as all the matrices are isotropically distributed, we can as well look at

one diagonal entry instead of tr(-). The (1,1) entry of the inverse matrix in (6.44)

can be found through the Schur complement,

1

ti(z) = “E - — , (6.45)
nor— hngthl — h21D2H22 (T’I — H22D2H22) H22D2h:2111
through matrix inversion lemma we can simplify the denominator to
m 1
ti(z) = —E (6.46)

_ —1 .
n T — hgl (D2 L %H%;HQQ) hgl
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Applying the self-averaging lemma one more time to hg; (D; - %H;FQHQQ)_I hi,, and
noting that the entries of ho; have variance \/Lﬁ, we obtain

m 1
tl(Z):gE 1 1 iyqT _
T ntr (D2 rH22H22)

- (6.47)

One can immediately notice the similarity between the trace expression in (6.48)
and the second term in (6.31). The only difference is in the size of Do, which is a
(n— 1) x (n — 1) matrix now. However we are considering the regime of large n and

the difference between the two is at most O (%) Therefore

m 1
ti(z) = —E , (6.48)
nor—Eo 1ti(z)
which can be simplified further by noting that
1 1 z A
E =F = 6.49
TT—1) A2 —as) 1- A (049
Therefore,
1 z 2? z
E = S; . 6.50
T —t(z) 1=z (I==1) (1—zt> (6.50)

Substituting in (6.48), and noting that ™ = 3, we arrive at (6.8).

Whether or not a steady-state solution exists, is a different question. Showing
the existence of the steady-state is another involved proof in itself. As a matter of
fact, the authors in [KSMO09] have recently used arguments from random dynamical
systems [AC98, Chu02]. They show that a random recursion like the Riccati recursion
we are considering will either diverge or will converge to a steady-state distribution.
As they study the Kalman filtering with intermittent observations, they also show
that there exists a threshold for packet drop probability above which the convergence

is guaranteed. Here we have no missing measurements, therefore the convergence
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can be deduced from their derivations. The only difference is that we are looking at
random H;, which can be integrated in their analysis in a straightforward manner.
Therefore a steady-state eigendistribution do exists and its Stieltjes transform should
(obviously) satisfy (6.9) and (6.10). O

We have to numerically solve the equations (6.9) and (6.10) in order to find the
steady-state eigendistribution. In the next section we will explain how this numerical

solution can be carried out efficiently.

6.3 Finding the Eigendistribution

Let us recall the implicit equation system satisfied by the Stieltjes transform at the

steady state,

S+ = e T Tt (1 —zt(z))’ (6:51)

t(z) = - . — (6.52)
T iam t (1_zt(z))25 (1—zt(z)>

(Clearly it is unfeasible to find an analytical expression for the eigendistribution. How-
ever, we can find this distribution numerically, in an efficient way. The most coarse
method would be iterating on the Stieltjes transform. One may start with an initial
value for S(z) and ¢(z), namely Sp(z) and ¢y(z), and at each iteration, k = 1,2,-- -,

calculate

S(z44) = : _tkztlk(zl)(z) - = Ztil(Z))ZSk_l ( ) . (6.53)
b(z) = b - (6.54)

z 22 z
LA Y ) - (1—ztx_1(2))? Sk-1 (1_Ztk—1(z)>

z
1 — zty_1(2)
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Please note the difference between the iteration on k in (6.53) and (6.54) and the
time recursion of (6.7) and (6.8). Here k refers to the iteration step for solving the
steady-state equations. Particularly, whi?e in (6.8) ¢;(z) depends on S;(z), here, t;(z)
is calculated based on Sg_1(z).

As mentioned above, it would be very inefficient to carry out this numerical so-
lution because at each time step, one needs to find the values of Si(z) and tx(z) on
a very large grid in the complex plane, and at the next time step, needs to employ
some interpolation method to determine values of the two functions.

There exists a roundabout for this problem. The key is that we are looking for
the eigendistribution which depends on S(z = A 4 j07). Thus the only important
points of S(z) for us are those very close to the real line. Let us fix the imaginary
part of z’s that we consider. We will have a line very close to the real line. We denote
this line by ¢. Looking at the equation system, we note that one only needs to have
the values of t;(z) on ¢. The S(z + ¢) will also take arguments on ¢ since ¢ is real.

The only term that needs to be calculated away from £ is Sj_; < ) However,

=z
1—ztg_1(2)

recall the definition of the Stieltjes transform,

S(z):E{AiJ.

If at each time step k—1 we calculate fr_1()), the distribution related to the Si_1(z),
at the next time step, k, any value of S;_1(z) can be found from f;_1(A). Thus there
is no need to propagate Si_1(2) on a grid on the whole complex plane.

More precisely, this is the method. Fix a small imaginary part, say ¢;. Assume

to(/\ + ]EZ) =C, (655)

Jo(A) =U(0, M), (6.56)
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Figure 6.1. Steady-state eigendistribution of the extended RLS algorithm, recursion
(6.6) for n =30, m =15, r = 0.5, and ¢ = 0.5..

where U(0, M) denotes a uniform distribution on (0, M) for some M which can be a
program parameter and c is a constant. Now, at each time step, carry out (6.53) and

(6.54) along with

S (#m) - /OOO — f"ﬂ> ) (6.57)

1—zt—1(2)

At the end of the iteration step, fx(\) can found as

(6.58)
z=A+j€;

We have employed this method to find the eigendistribution at the steady-state
for r = 0.5 and ¢ = 0.5. The resulting eigendistribution is plotted in figure 6.1. The
figure also shows the eigendistribution obtained empirically for m = 15 and n = 30

(for 500 samples). It can be seen that our framework closely captures the behavior
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of the eigendistribution. The numerical iteration was run for K = 20 times.

6.4 Conclusions

This chapter was a complement of chapter 5 in which we had studied the error covari-
ance propagation for RLS adaptive algorithms. The results in chapter 5 are valid for
the regime of large n while the number of measurements, m, does not grow with n.
Here we considered the case of n — oo while 2 — 3 > 0. This scenario fall into the
category of extended RLS algorithm which is closely related to the Kalman filtering.

We assumed the the measurement matrix H; has i.i.d. entries and every H; and
H,. are independent. Under this assumption we found the steady-state eigendis-
tribution as the solution of a system of implicit equations. We also found the time
recursion of the Stieltjes transform. This latter result can be used to further expand
the analysis to the convergence properties of the filter. The proof is much more
cumbersome in this case compared to the single measurement RLS.

A numerical method for efficiently solving the aforementioned system of implicit
equation was explained too. We showed that only values of the Stieltjes transform on
a single line need to be propagated, rather than on the whole complex plain, in or-
der to iteratively solve for the steady-state distribution. Simulation results provided
demonstrate the accuracy of our method in predicting the steady-state eigendistribu-
tion. Therefore our approach can be readily used to find various performance metrics
of the extended RLS filters. The close relation between the current case and the
Kalman filter motives us to apply this method to the problem of Kalman filtering
with intermittent observations. A very popular framework in studying estimation

and control over lossy networks. The next chapter is devoted to this analysis.
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Chapter 7

Kalman Filtering with
Intermittent Observations

7.1 Introduction

The development of LQG control and Kalman filtering in the framework of linear
dynamical systems has played a crucial role in systems and control theory. Not only
they have resulted in numerous practical schemes in areas ranging from aerospace
to chemical industry, but they were also the foundation of subsequent advances in
the field. The study of matrix-valued Riccati equations has been at the very heart
of this development. The literature on Riccati equations is vast enough to show its
importance.

The Riccati equation emerges as a result of a wide range of viewpoints, spanning
dynamic programming to canonical spectral factorization. Furthermore, conditions
such as stabilizability and detectability (or controllability and observability), now
ubiquitously used in systems and control, were first introduced as conditions to guar-
antee the convergence of Riccati equations and recursions [KSH00].

In the past decade, groundbreaking advances in microsensor technology have made
several previously out of reach applications feasible. The proposed and/or already

deployed applications include but are not limited to distributed catastrophe surveil-
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lance, smart transportation systems, and more efficient electric power grids. All these
applications essentially rely on large-scale networks that incorporate communication,
estimation, and control. Therefore a significant body of research in recent years has
been devoted to the study of distributed estimation and control over networks of
many sensors and actuators. An important aspect of these systems which has prohib-
ited direct extension of the classical theories of control and estimation is the natural
unreliability of the underlying communication links. The stingy power constraints of
microsensors only worsens the situation by making reliable communication further
unrealistic.

A very well-received model for studying the effect of unreliable links in distributed
sensing and control problems ([SSFT04, SSFT07, ESTMO08, IYB06, GDH"09]) as-
sumes that the estimation and control data are in the form of packets which travel
through an erasure network and each packet may be independently lost according to
some probability. This model makes many problems mathematically tractable and at
the same time has great resemblance with practice. In the very heart of this approach
lies Kalman filtering with intermittent observations.

To be more explicit, the model (that probably appeared for the first time in
[SSFT04]) considers the Kalman filtering with intermittent observations such that
the measurements of the system are sent across a simple erasure channel and are
dropped with a certain probability p;. The main result is that, for unstable systems,
there is a critical value of the drop probability, say pj, such that for p; > pj the ex-
pected estimation error covariance diverges to infinity, whereas for p; < pj it remains
bounded. For quite some time the value of pj; was unknwown in general. Recently the
authors in [MS08] have found tight bounds on p}, for quite general settings. However,
in the bounded case, the asymptotic expected error covariance matrix is not known,

and what is known are certain (often loose) upper and lower bounds.
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Recall the state-space model used throughout this thesis. Consider

Tiy1 = Fai+u,
o (7.1)
yi = Hui+w,
V; 0 Rz

where x; is the n-dimensional state vector, y; is the m-dimensional measurement
vector, and u; and v; are zero-mean process and measurement noises. All the mea-
surements are assumed to have the same noise variance and to be independent of
each other. Each component of the measurement vector may also be lost indepen-
dently (over both measurements and time) with some fixed packet drop probability,
pq. Therefore the measurement noise covariance matrix should be represented by
a matrix-valued i.i.d. random matrix process. In fact, the only thing time-varying
about (7.1) and (7.2) is the noise covariance, R;.

The estimation error covariance of the Kalman filter for the above system can be

shown to satisfy a random Riccati recursion,

P,y = FP,FT + Q — FP,H" (R, + HP,H")'HP,FT. (7.3)

Clearly, in contrast to the classic case of time-invariant Kalman filtering, the above
Riccati recursion does not converge to any specific value. The reason being that the
covariance matrix R; is indeed random and time varying. However, there are several
important questions that may be asked about such a recursion, especially about the
distribution of the eigenvalues of P;.

Since R; is a matrix-valued stationary random process, it may be expected that

P; also converges to a stationary process. Furthermore, one can argue that the state
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vector size is usually large due to the fact that the dynamical systems under consid-
eration are often complex. This justifies the use of the framework we have developed
so far. In this chapter, we will try to find the eigenvalue distribution of the prediction
error covariance under these two assumptions.

In the previous chapters, these were more or less all the assumptions we were im-
posing on the problem. However, for Kalman filtering with intermittent observations,
due to some technicalities we will make two further assumptions. The first is that
the measurement matrix H is also time varying and random. In this sense, we will
be forced to depart from the model (7.1) and (7.2). The main reason is that we do
not quite yet know how to extend our techniques to deal with a fixed H. Nonethe-
less, as will be explained later in the paper, this assumption, and the relation to the
constant H case, can be justified through the ergodicity of random matrix ensembles.
The second extra assumption is that the matrix F is stable. This implies that the
matrix-valued process P; is bounded and thus we do not need to worry about stability
in our analysis.

In the literature, as mentioned earlier, the problem of Kalman filtering with in-
termittent observations was first considered in [SSFT04]. The tightness of the lower
bound is further investigated in [PB09]. In [MS08] the authors characterize the crit-
ical packet drop probability for boundedness of the error covariance for a wide range
of systems. Other authors have considered various sensor data transmission scenarios
[XHO05, RK07, HDO7] for this problem.

The rest of the chapter is organized as follows. In section 7.2 we study the problem
of Kalman filtering with intermittent observations while the process noise covariance
matrix has a specific form, namely Q = ¢qI. We find the steady-state eigendistribution
of P; as the solution of a pair of implicit equations. Section 7.3 deals with the problem

when Q has the form of a Wishart matrix. Simulation results and methodology will
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be provided in section 7.4 which show the accuracy of our method in predicting the

eigendistribution. Finally, section 7.5 concludes the chapter.

7.2 The case of Q =ql

In this section we consider Kalman filtering with intermittent measurements under
the assumption of a stable system matrix and a time-varying observation matrix.
Although this is not the convention in the literature, there are several reasons for
doing so. The first is that we do not yet know how to deal with the time-invariant case
in our method. The second reason is that in many recent applications of distributed
estimation, the sensors’ environment and/or their position is time-varying. Finally,
as mentioned earlier, in the theory of large random matrices every single realization of
an ensemble has an eigendistribution that converges almost surely to the asymptotic
eigendistribution. Therefore one may expect that if the matrix H is large enough, then
the eigendistribution of P; may be the same irrespective of H and whether it is time
varying. The second assumption is that the matrix F is stable. As mentioned in the
introduction, this guarantees the boundedness of P; and will absolve us of having to
consider stability issues. Of course, relaxing these two assumptions is critical and can
be considered as the future development of our framework. In this sense, the results
of this chapter represent significant progress toward analyzing these more general and
realistic cases.

In this section, we will consider the case of the state process noise covariance
matrix being a multiple of identity. For the resulting random Riccati recursion, we
will find the steady-state eigendistribution of P;. The transient behavior is well worth
future scrutiny and will not be considered here.

When Q = ¢l in the linear time-varying state-space model under study, the error
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covariance matrix undergoes a random Riccati recursion of the form,
Piyy = aF (P + HIR;'H,) T FT +4¢1, Py, (7.4)

in which « is a scalar between 0 and 1, and F' is assumed to be an n x n matrix with

i.i.d. entries having zero mean and variance \/iﬁ The observation matrix, H;, is an

m X n matrix with i.i.d. zero-mean \/Lm—variance entries and ¢ is a constant denoting
the variance of the state process noise. As mentioned earlier, we will assume that the

observations may independently be missing with some probability ps'. Thus R; can

be modeled as a diagonal matrix with independent entries such that,

)

with probability py,
(R )i = '

with probability 1 — pg.

We are interested in finding the steady-state, i.e., when ¢ — oo, eigendistribu-
tion of the error covariance matrix P;, or equivalently its Stieltjes transform. It can
be shown that the Stieltjes transform at the steady-state satisfies a set of implicit

equation on the complex plane:

Theorem 7.2.1 Let F be an n X n matriz with i.1.d. entries having zero mean and

variance \/Lﬁ and « to be such that \/aF is stable. As i — oo and n — oo, the

eigendistribution of P; in (7.4) converges to a stationary distribution whose Stieltjes

transform, Sp(z), satisfies,

Sp(z) = — i —+ O‘ZS_P;Z)Q(—M'SP(Z)), (7.5)
Q) = —— = sp(ugz)

ru(z)  r'u?(z)
Note that we are considering a more general setup than the work of Sinopoli et al. [SSFT04]
where either all or none of the measurements are received.

), (7.6)
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in which u(z) is an expression in terms of z and Q(z),

z g/
== =" 7.7
u(z) B+ Qz) (7.7)
which is used here for the sake of brevity in the expressions, (' = (17z‘i)m, and r’ =

-
1-pg~

Proof: First of all, note that with high probability the term H! R;*H; can be written
as (lj,—pd)I:I;TFI:IZ-, where H; is an m(1 — pg) x n with i.i.d. entries having zero mean and

— variance. Now we can rewrite (7.4) as,
m(1-pg

o —1
PleaWF(ﬂP;P+HfHQ BT 4 g, (7.8)

where,
, r

= (7.9)

r

Using the definition of the Stieltjes transform as in (2.8),

1 zZ—q

Sp; = —05g; , 7.10
st () = —Sp () (7.10)
in which we have used B, to denote,
-1, mala \ T
&:FQPi+mHO 7. (7.11)

Recall the implicit relation between the Stieltjes transform and the S-transform,

S(y) = —= S, (7.12)
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And the fact that for two free random variables X and Y,

Yas(y) = Xa(v)ZB (7). (7.13)

If one can establish the freeness of two noncommutative random variables, the
Stieltjes transform of their product can be expressed in terms of the individual
Stieltjes transforms in an implicit form. Now going back to (7.11), according to
the definition (2.11), it makes no difference to look at the Stieltjes transform of
FTF (r’ P+ I:IiTIjI,) 71. Moreover, we can diagonalize P; without loss of generality
since the distributions of H; and F are isotropic. Now the results of [Rya98] can be
used to establish the freeness of FTF and (r’ P!+ HleL) - in the steady-state. To
do so it is necessary to use random dynamical systems theory [Chu02] to establish
the existence of a unique steady-state eigendistribution for P; [KSM09]. Then it is

straightforward to show that for this choice of F,

1
Yprp(y) = Tr (7.14)

Therefore, using (7.13), (7.14), and the definition of the S-transform, we can show

that,

Sp(2) = —% - SBZ(Z)Q(—SB(z)), (7.15)

(please note the absence of the index i due to the steady-state analysis from now on,)

where €2;(z) is just the Stieltjes transform of

It only remains to find the relation between 2;(z) and the Stieltjes transform of P;

from the above equation. For simplicity, let us drop all the indexes and focus on
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A =¢'P~'+H" H. By applying the definition of the Stieltjes transform (2.11) to both

sides we obtain,

1 o —1
0(z) = Etr (r’lf1 +HTH- zI> . (7.17)

1

Since H has an isotropic distribution, without loss of generality, P~* can be assumed

to be a diagonal matrix, A. Now we break A and H in the form,

A0 _
A= H:{h1 H2], (7.18)
0 A

and rewrite the RHS of (7.17) as,

-1

1 7”/)\1 + hThl —Z hTH2
—E tr ' ' : (7.19)
" HIh, Ay 4+ HIH, — 21

Clearly, since we are interested in the marginal eigendistributions, it does not matter

which diagonal entry of the above inverse we look at. Thus, without loss of generality,

we can focus on the first diagonal entry which can be written as,

1
E ) 7.20
r"A — 2 4+ hT (1 — Hy(r'Ay — 21 4+ HE Hy)~tHI )by (7.20)
Using the matrix inversion lemma, we can rewrite the above expression as,
1
(7.21)

E —
7"/)\1 —Z+ h{(I + HQ(T/AQ — ZI)leQ )71}11

Now one can invoke the self-averaging Lemma -using the independence of h; and the
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inversed matrix in the denominator- to find that,

1
Q(z)=E : : (7.22)
r'A\ — 2z + —E tr(I + Ha(r'Ay — 2I)'H )™
m
éw(z)

where m’ = m(1 — py). In order to find w(z), we employ the same technique used to

obtain (7.22) by breaking Hy in the form,
H, = , (7.23)

which eventually yields,

1

, 7.24
1 + lel (TAQ + H§2H22 —_ ZI)ilhglj ( )

w(z)=E

Suw/(2)
where, by invoking the self-averaging lemma, w’(z) in turn can be rewritten as,

|
w'(z) = % x —tr(ry + HjHop — 21) 7. (7.25)

The second part of the expression above is nothing but an (n —1) x (n — 1) version of

(7.17). Since we are considering the large n regime, w’(z) can be simplified as 75(2).

Therefore,
1

-~ = (7.26)

w(z)

We can now replace (7.26) in (7.22). Since A; is a randomly selected eigenvalue of

P~!, (7.26) can be written in terms of the Stieltjes transform of P!,

Ll (2 (-pap
) = 5 (5 - T ppea) 720
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which together with the relation between the Stieltjes transforms of a matrix and its

inverse,

Spr(s) = —+— Lg, (1) , (7.28)

z 22 z
result in (7.6). Substituting (7.15) in (7.10) yields (7.5) and completes the proof. [J

The eigendistribution at the steady state can be found numerically from the im-
plicit system of equations in theorem 7.2.1. We will present the simulation results in
section 7.4.

It is also worth mentioning that the assumptions on the problem can be further
relaxed by assuming that different measurements may have different packet drop
probabilities, the average of which equals py. This is often a more realistic model since
in practice different sensors may be deployed at different locations and consequently

have different channel strengths when they communicate through a wireless network.

7.3 The case of Q = GG?'

In order to extend the results to the case of state noise process covariance being a

full matrix, here we consider Q being a Wishart matrix, which means that,

Q = GGT, (7.29)

where G is an n x m¢ matrix with i.i.d. zero-mean, —2=-variance entries. The random

Ve

Riccati recursion of the state estimation error covariance will be
Pijy = aF (P, + HIR;'H,) ™ FT + GGT, Py, (7.30)

where all the other parameters are as defined in the previous section. All the coeffi-

cients are time invariant except for the observation matrix H; and observation noise
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covariance R; - of course, due to the intermittent observations,- and once again, we
are interested in finding the steady-state eigendistribution of the error covariance ma-
trix. The following theorem describes its Stieltjes transform as the solution of a pair

of implicit equations.

Theorem 7.3.1 Let F and G be nxn and n X mg matrices with i.i.d. entries having

zero mean and variances \/Lﬁ and respectively, and a to be such that \/aF is

1
VG
stable. As i — oo, the eigendistribution of P; in (7.30) converges to a stationary

distribution whose Stieltjes transform, Sp(z), satisfies

! Se(2) —ar'Sp(z
Sp(z) = o T o) Q( Sp(2)), (7.31)
S — —Sp(—), (7.32)

Cru(z) ru?(z)

in which v(z) and u(z) are expressions in terms of z, Sp(z), and Q(z),

z Ba/ar!
= — - —— 7.33
v(2) ar’  Bg+ Sp(2) (7.33)
z g /r
=7 .34
which are used in order to simplify the equations, ' = %, r = ﬁm,and Oa =

mg
n

Sketch of proof: The proof essentially follows the proof of theorem 7.2.1. The only

difference is that instead of having

P; = ar'B; + ¢I, (7.35)

in this case we have

P; = ar'B; + GG, (7.36)
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where B; is as defined in (7.11). This is similar to the expression (7.16) that we dealt
with in the proof of theorem 7.2.1. Once again, although G is not time-varying, it is
selected from an isotropic random matrix ensemble and therefore we can diagonalize

P; and follow the same techniques that where used to obtain (7.27) to show that,

1 (= Ba/ar’
Spit1(z) = - SB,1<CW, e+ Sp,i+1(z)>' (7.37)

Using (7.37) instead of (7.10), the rest of the proof will be similar to that of theorem
7.2.1.

As in theorem 7.2.1, this implicit pair of equations for Sp(z) can be rewritten as an
expression for the steady-state eigendistribution involving an auxiliary distribution,
which can be efficiently solved through numerical methods in order to determine the

eigendistribution.

7.4 Finding the Eigendistribution

In order to find the steady-state eigendistribution, we have to numerically solve sys-
tems of implicit equations. This is reminiscent of the extended RLS filters. Here we
will discuss a quite similar numerical method of calculating the distribution for the
Kalman filtering with intermittent observations. Recalling the implicit equations of
theorem 7.2.1,

S5e) =~ g asiy), (7.38)

z—q z—q
1 1 1

Cru(z) re?(z)

), (7.39)

we note that here, the auxiliary function Q(z) is a Stieltjes transform itself. Therefore

an eigendistribution can be uniquely assigned to it. Let us denote this distribution by
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g(\) and the steady-state eigendistribution of P by f(\). Once again, calculating and
propagating S(z) and €2(z) on a grid on the complex plain will be a very inefficient way
of numerically solving these equations. Instead, we will propagate the distributions
as they uniquely determine the Stieltjes functions.

We start with uniform distribution for both f(X) and g(\),

fo(A\) =U(0, M), (7.40)

go(A) =U(0, M), (7.41)

for some constant M. Now we will iteratively solve the system of equations. At each

iteration step, k =1,2,---, we have

Si(z) = _z—q+ — Q1 (—ar' Sy (2)), (7.42)
1 1 1

lz) = rug(2) _r’ui_l(z)skfl(u(z))’ (7.43)

wea(z) = 2o B (7.44)

r B+ Q1(2)

where all the derivations are carried out using the distributions. For example, to

compute ug_1(z),
z g/
uk_l(z) = F — ; = gn 1V . (745)
B Jo H5d

z

As a matter of fact, the only z’s considered in the recursion will be those necessary for
finding fi(\) and gx()). In other words, for any A, we find S(\ + je;) and Q(\ + je;)

as explained, for some small ¢;. Then according to the inverse Stieltjes transform,

fulN) = S+ e, (7.46)

0(0) = Z0(A + i), (7.47)
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Figure 7.1. The empirical steady-state eigendistribution of the recursion (7.4) for
n = 10,20, m = 30, r = 0.5, ¢ = 2.5, and pg; = 0.2 compared to the theoretically
found eigendistribution..

we will run the iteration until the difference between fi_1(-) and fi(-) becomes neg-
ligible. A similar discussion can be made about the results of theorem 7.3.1.

Figure 7.1 shows the simulation results for n = 10,20 and m = 30, for the case
of Q@ = ¢gl. The empirical curve is generated through Monte Carlo simulation of
the recursion. It can be observed that the asymptotic theoretical prediction closely
matches with the empirical curve for state vector size being as low as n = 10.

In figure 7.2, we have plotted the theoretical curve obtained by numerically solving
the implicit equations for the case of Q = GGT versus the empirical eigendistributions
which are found through Monte Carlo simulation of the recursion (7.30) for various
values of n. It can be seen that the theoretical curve captures the behavior of the
empirical one very closely.

As mentioned in the previous subsection, our proof remains valid when assuming

that the observations are dropped independently with different probabilities, while the
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Figure 7.2. The empirical steady-state eigendistribution of the recursion (7.30) for
n = 10,20, m = 30, r = 0.5, ¢ = 2.5, mg = n, and p; = 0.2 compared to the
theoretically found eigendistribution.

average of these packet drop probabilities equals py. In figure 7.3, we have compared
the theoretical curve with the Monte Carlo simulation results for this scenario. Each

observation may be dropped with probability p;, where p;’s are selected uniformly

between zero and 2p,.

7.5 Conclusions

The problem of control and estimation over networks has received a lot of attention in
recent years. The communications limitations and uncertainties make these networks
of sensors and actuators very hard to analyze. A ubiquitous model for these networks
assumes that the control and estimation data are in the form of packets which are
passing through an erasure network. This model brings up Kalman filtering with

intermittent observations whose error covariance matrix propagates through a random
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Figure 7.3. The empirical steady-state eigendistribution of the recursion (7.30) for
n = 10,20, m = 30, r = 1.5, ¢ = 2.5, mg = n, and pg uniformly distributed on
[0,0.4], compared to the theoretically found eigendistribution.

Riccati recursion.

Just as Riccati recursions have been in the core of the development of classical
control and estimation theory, random Riccati recursions will play a central role in
these problems. In this chapter we applied our framework to two examples of random
Riccati recursions which arise in these networks. Due to technicalities, we made two
assumptions. The first one was that the system matrix, F, is stable. The second
assumption which is not quite the tradition in the literature was that the observation
matrix H is time varying. This assumption can be justified in many applications,
however it should definitely be relaxed in order to extend the generality of the results.

Through our framework, we showed how the steady-state eigendistribution of the
error covariance matrix can be characterized. We carried out the analysis under two
different structures for the process noise covariance. Namely, when it is a multiple

of identity and when it is represented by a full-rank Wishart matrix. We obtained



139

implicit equation systems that allow one to compute the asymptotic eigendistribution
when the state dimension is large. However, as the simulation results suggest, even
n = 10 is large enough for the results to hold.

Our assumption on the packet drop probabilities are much less restrictive than
what appears in the literature. While in the previous works the authors assume that
either all or none of the measurements are received at each time step, in our work
we allow the measurements to be intermittent independently. As we have mentioned
in several occasions throughout the thesis, our framework delivers universal laws
which are not tied to the details of the model. In this case we showed that different
measurements do not even need to have the same packet drop probability and only
the average of these probabilities is important.

Overall, the results of this chapter are novel. Although relaxing some assumptions
is necessary, the results are of much significance as they are the first of their kind to

appear in the literature.
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Chapter 8

Future Work

The framework developed in this thesis proved to be successful in obtaining non-
trivial results in numerous examples of random Lyapunov and Riccati recursions in
the literature. The scope of the problems solved spans the steady-state analysis of
all adaptive filters and many random Riccati recursions which are encountered in
networked control and estimation, along with the transient behavior of random Lya-
punov and Lyapunov-like recursions. The framework is well worth further scrutiny in
order to be applied to other problems. As a matter of fact, several interesting open
problems and future research opportunities are brought up by the current work which

we will briefly address in what follows.

8.1 Transient Analysis

Despite being well developed for steady-state analysis, when it comes to the transient
behavior this machinery is still in a primitive stage. We presented different methods
for analyzing the transient behavior of random Lyapunov and Lyapunov-like recur-
sions in chapter 3 and 4. However, those methods are not yet proven to be capable of
handling nonlinear random Riccati counterparts. While we do obtain time recursions
for the Stieltjes transform of P; for random Riccati recursions, finding the convergence

properties is not immediate from those recursions.
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The moments’ approach specifically fails for the Riccati recursions since as we
showed, the moments are highly coupled together. A first step can be studying local
convergence behavior near enough to the steady state.

It would be very interesting to be able to deduce the transient behavior directly
from the Stieltjes transform’s time updates. Having developed such a methodology,
one can revisit other problems in the field which are unsolved or partially solved under
unrealistic assumptions, ranging from the learning curves of different adaptive filters

to the tracking performance analysis.

8.2 Relaxing the Assumptions

In some cases, a few restrictive assumptions were necessary to carry on with the
proofs. One significant example was when we looked at random Riccati recursions
which arise in networked estimation. There we had to impose the assumption of H
being time variant. This is not a common assumption in the literature. However
justifiable (as we discussed it in chapter 7), we still need to overcome technicalities
and expand the results to fixed observation matrices. This was not an issue in the
analysis of adaptive filtering since in that domain the regressor vectors (or matrices)
are time varying and often random.

There are also other assumptions in the existing model that need to be relaxed
in order to better match reality. For example, the intermittent observations are
modeled by a binary process to make it mathematically tractable. The random
matrix approach, on the other hand, normally delivers universal laws, independent of
the model specifications such as the probability distribution of the elements and this

gives hope about the possibility of relaxing such assumptions.
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8.3 Characterizing the Support of the Eigendistri-

bution

Another interesting direction which we did not investigate in this thesis is to di-
rectly determine the support of the eigendistribution from the Stieltjes transform’s
expression without finding the eigendistribution itself. As a matter of fact, usually
the shape of the eigendistribution is not as important as its support since it bounds
the maximum and the minimum of the eigenvalues. There might be fundamental
bounds on the performance of networked estimation that can be exploited by the

characterization of the support.

8.4 Other Applications

A better understanding of how complex networks that unify communications, control
and estimation work will help us analyze the existing examples of them, such as
the gene regulatory network in biological sciences, and also design novel systems for
future applications such as power grid control. We believe that by creating a firm
theoretical foundation such an understanding will not be out of reach.

On the other hand, there exist connections between random Riccati recursions
and particle filtering. Particle filtering is a powerful practical tool that through a
sequential Monte Carlo method finds the optimal estimate of an unknown state.
However, it is formidable to analyze. Recently it has been conjectured that the
performance of particle filtering is fundamentally bounded by a modified Riccati
recursion [SHO09]. If this conjecture proves to be true, our developed machinery can
be used to determine the performance of particle filtering which is used in many fields

such as petroleum engineering [COO08].
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