
MICROFLUIDICS PLATFORMS FOR QUANTITATIVE, 
MULTIPLEXED PROTEIN DETECTION 

 
 
 
 
 

Thesis by 
 

Habibullah Ahmad 
 
 
 
 
 

In Partial Fulfillment of the Requirements 

for the degree of 

Doctor of Philosophy 

 
 
 

 
 
 

 
 

 
CALIFORNIA INST ITUTE  OF TECHNOLOGY 

Pasadena, California 

2011 

(Defended February 23, 2011) 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 

Habibullah Ahmad 

All Rights Reserved 



iii 

 

 

 

 

 

 

 

 

 

 

This work is dedicated to my mother, 

Amina Ahmad 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

Acknowledgements 

 

The pursuit of a PhD is one of the most ambitious goals I have ever undertaken.  The 

past several years have been a period of intense scientific, intellectual, and personal 

growth for me; I have learned in equal measures new technical skillsets, how to conduct 

scientific research, and much about who I am as a person and who I want to be.  The 

wonderful environment of Caltech has played a huge role in my growth, and I am deeply 

indebted to many people for this. 

 

I would like to thank my advisor, Dr. Jim Heath, for the opportunity to work in his lab, 

and for working harder than any of his students to keep it well-funded.  His focus on 

meaningful, immediate science afforded me great motivation throughout my studies, 

and his scientific vision is truly exceptional and inspirational.  I would also like to thank 

Dr. Michael Ogawa, my undergraduate research advisor at Bowling Green State 

University.  Dr. Ogawa was instrumental in kindling my interest in chemistry, and he 

provided me amazing opportunities while I worked in his lab.  The impact of his 

nurturing and encouragement cannot be understated, and without him, I simply would 

not have pursued my studies at Caltech.  I’m also indebted to Dr. Peter Willis and Dr. 

Kristen Beverly, who have remained the best of my mentors in the lab; they patiently 

guided me and helped me to get on my feet when I started here. 

 



v 

I’ve had the privilege of working with truly excellent colleagues throughout my studies.  

I’m particularly appreciative of Dr. Michael McAlpine, with whom I had a very 

productive working relationship that yielded several papers related to nanowire-based 

electronics on flexible substrates.  Likewise, Dr. Rong Fan was also an immense credit to 

my scientific development and he worked with me extensively on DNA patterning 

projects.  Together, Mike and Rong created an incredibly productive, synergistic, 

collaborative atmosphere which I hope to find or establish wherever I go.  I would also 

like to thank Dr. Jun Wang, with whom I worked on a variation of the blood chip, Young 

Shik Shin, who worked with me on improving DNA flow patterning, and Alex Sutherland, 

who made concrete contributions to my microfluidic robotics project. 

 

Scientific work aside, I would like to acknowledge all of my colleagues in the Heath lab 

over the years.  With rare exception, they have made working here a genuine pleasure, 

and I count many of them among my personal friends.  My office mates, Johnny Green, 

Akram Boukai, Rob Beckman, Yuri Bunimovich, John Nagarah, Ke Xu, Alex Sutherland, 

Himanshu Mishra, and Joey Varghese, deserve special mention.  I’d like to thank Kevin 

Kan and Diane Robinson for all their cheerful help and friendship over the years; in 

addition, Dian Buchness, Agnes Tong, Steve Gould, and Joe Drew have all patiently 

attended to so many of my needs during my time here.  I would like to specially thank 

Mike Roy, who was extremely helpful and meticulous with my machining needs at work, 

and was a personal friend outside the office. 

 



vi 

I would also like to thank Mike Krout, who has been a close personal friend and (perhaps 

unknowingly) a continuous source of inspiration for me to persevere throughout my 

years here. 

 

I must briefly make mention of some of the personal friends who have added color to 

my life during my time here.  Rafed Al-Huq, Yusef Attia, Ali Gurel, Yernur Burketbeyevich 

Rysmagambetov, Saken Sherkhanov, Mansur Wadalawala, Mehmet Yenmez, and 

Bahattin Yildiz are among the best friends I have had, and they each supported me 

through the lows and helped me celebrate the highs.   

 

Finally, and most importantly, I would like to thank Amina Ahmad and Amin Ahmad, my 

mother and my brother.  They have both been unyielding sources of support and 

encouragement throughout my life, they have pushed me personally to achieve my full 

potential, and they have always looked out for my best interests.  Both have made 

immense sacrifices in their own lives to give me the opportunity to pursue my PhD, and I 

am forever indebted and grateful to them. 

 



vii 

Abstract 

 

This thesis describes the development of microfluidic platforms that enable cheap, 

facile, rapid, and multi-parameter protein sensing.  The first section of this work 

describes two strategies for high density DNA microarray patterning: microcontact 

printing and flow patterning.  A protocol is provided for micron-scale alignment of 

multiple PDMS stamps to a single substrate, and a simple strategy to allow very low 

aspect-ratio stamping is enumerated.   

 

The second section describes the formation of high density antibody microarrays using 

flow patterned DNA microarrays in conjunction with DEAL chemistry, and applies these 

microarrays to biological measurements.  The platform’s performance is first 

characterized using a human chorionic gonadotropin assay, and is subsequently used to 

stratify 22 cancer patients from frozen serum samples by quantifying the levels of 

twelve serum proteins.  A microfluidic plasma separation device is then detailed to allow 

for similar measurements from fresh finger pricks of blood. 

 

The third section of this work outlines improvements to the flow patterning platform 

through two alternate schemes: covalent attachment and DMSO patterning.  Both 

protocols are shown to dramatically increase the consistency of microarray elements 

across a single chip when compared to the initial method.  Theoretical simulations are 

used to describe the mechanism by which DMSO enhances patterning consistency. 



viii 

 

The fourth section describes the design and fabrication of a robotics system that is 

capable of autonomously interfacing and manipulating PDMS substrates, and its 

application to producing barcode microarrays.  The resulting substrates show 

unprecedented consistency from chip to chip, and we demonstrate through massively 

parallel single-cell measurements that data derived from different substrates is 

statistically indistinguishable. 

 

Finally, we introduce an integrated software and hardware package designed to 

facilitate and automate microfluidic control at the laboratory level.  We further provide 

the technical details of a related system which optimizes and comprehensively 

automates microfluidic blood assays such that even non-technical users who have never 

worked with microfluidics can regularly obtain the same standard of data that is 

produced in the lab. 



ix 

Table of Contents 
________________________________________________________________________ 

 

Acknowledgements  ………………………………………………………………………………..     iv 

Abstract   …………………………………………………………………………………………………    vii 

Table of Contents   ………………………………………………………………………………….     ix 

List of Figures  …………………………………………………………………………………………   xiii 

 

Chapter 1:  Introduction  ………………………………………………………………………      1 

1.1  Introduction  …………………………………………………………………………      1 

1.2  DNA Patterning   ……………………………………………………………………      5 

1.3  Technical Issues   …………………………………………………………………..      7 

1.4  Chemistry   …………………………………………………………………………….    10 

1.5  Flow Patterning   ……………………………………………………………………    12 

1.6  Thesis Overview   …………………………………………………………………..    15 

1.7  Figures   …………………………………………………………………………………    19 

1.8  References   …………………………………………………………………………..    25 

 

Chapter 2:  Integrated barcode chips for rapid, multiplexed analysis 

                     of proteins in microliter quantities of blood  ……………………..    27 

 2.1  Introduction  ………………………………………………………………………..    27 

 2.2  Results and Discussion  …………………………………………………………    29 

  2.2.1  Device Design   ………………………………………………………    29 



x 

  2.2.2  Assay Sensitivity as a Function of DNA Patterning 

             Concentration  ……………………………………………………….    32 

  2.2.3  Multi-parameter Analysis of Frozen Serum Samples    34 

  2.2.4  Multi-parameter Fresh Blood Analysis   …………………    38 

 2.3  Conclusions   ………………………………………………………………………..    39 

 2.4  Experimental Methods   ……………………………………………………….    40 

  2.4.1  Micropatterning of Barcode Arrays  ………………………    40 

  2.4.2  Fabrication of IBBCs   …………………………………………….    41 

  2.4.3  Clinical Specimens of Cancer Patient Sera   …………..    41 

  2.4.4  Collecting a Finger Prick of Blood   ………………………..    42 

  2.4.5  Quantification and Statistics   ……………………………….    44 

 2.5  Figures   ………………………………………………………………………………    45 

 2.6  Tables   ……………………………………………………………………………….    55 

 2.6  References   ………………………………………………………………………..    59 

 

Chapter 3:  Chemistries for Patterning Robust DNA MicroBarcodes 

                      Enable Multiplex Assays of Cytoplasm Proteins from  

                      Single Cancer Cells   ………………………………………………………….    61 

 3.1  Introduction   ……………………………………………………………………….    61 

 3.2  Results and Discussion   ……………………………………………………….    63 

  3.2.1  Device Design and Functionalization Schemes   …...    63 

  3.2.2  DMSO Mechansim and Simulations  …………………….    65 

  3.2.3  Covalent Attachment Mechanism and Comparison    68 

  3.2.4  Single Cell Assays   ……………………………………………….    70 



xi 

 3.3  Conclusions   ………………………………………………………………………    72 

 3.4  Experimental Section   ……………………………………………………….    73 

  3.4.1  Microfluidic Chip Fabrication for DNA Patterning     73 

  3.4.2  Patterning of DNA Barcode Arrays  …………………….    74 

  3.4.3  Microfluidic Chip Fabrication for Multi-protein 

   Detection  …………………………………………………………    75 

  3.4.4  Cell Culture  ………………………………………………………..    76 

  3.4.5  Multi-protein Detection   ……………………………………    76 

  3.4.6  On-chip Cell Lysis and Multiplexed Intracellular 

   Protein Profiling from Single Cells   …………………..    77 

  3.4.7  Data Analysis   …………………………………………………….    78 

  3.4.8  Molecular Dynamic Simulations   ……………………….    78 

 3.5  Figures   …………………………………………………………………………….    80 

 3.6  Tables   ……………………………………………………………………………..    89 

 3.7  References  ……………………………………………………………………….    91 

 

Chapter 4: A Robotics Platform for Automated Batch Fabrication of 

                     High Density, Microfluidics-Based DNA Microarrays, with 

                     Applications to Single Cell, Multiplex Assays of Secreted 

                     Proteins   ……………………………………………………………………….    94 

 4.1  Introduction   ……………………………………………………………………    94 

 4.2  Experimental Section   ……………………………………………………..    97 

  4.2.1  Robtics Design   …………………………………………………    97 

  4.2.2  Substrate Fabrication   ………………………………………  100 

  4.2.3  Software and Operation   ………………………………….  101 



xii 

 4.3  Results and Discussion  …………………………………………………….  102 

  4.3.1  Pattern Fidelity and Chip-to-Chip Consistency   …  102 

  4.3.2  Single Cell Studies   …………………………………………….  103 

 4.4  Conclusions   ……………………………………………………………………..  108 

 4.5  Figures   …………………………………………………………………………….  110 

 4.6  References   ………………………………………………………………………  117 

 4.7  Appendix A:  Source Code   ……………………………………………….  119 

 

Chapter 5:   An Integrated Hardware and Software System for  

                       Automating Microfluidics   ……………………………………………  204 

 5.1  Introduction   ……………………………………………………………………  204 

 5.2  Methods and Materials  ……………………………………………………  207 

  5.2.1  Software   …………………………………………………………..  207 

  5.2.2  Hardware   ………………………………………………………….  207 

  5.2.3  Microfluidics   …………………………………………………….  209 

 5.3  Results and Discussion   …………………………………………………….  210 

 5.4  Conclusions   ……………………………………………………………………..  215 

 5.5  Figures   …………………………………………………………………………….  217 

 5.6  References   ………………………………………………………………………  222 

 5.7  Appendix A: PCB Design   ………………………………………………….  223 

 5.8  Appendix B: Automation Software Source Code    …………….  224 

 



xiii 

 

List of Tables and Figures 
________________________________________________________________________ 

 

Chapter 1 

 Figure 1.7.1  Microcontact printing schematic and results ….   19 

 Figure 1.7.2  Stamp fabrication and alignment   ………………….   20 

 Figure 1.7.3  MA-6 derived alignment quality  …………………….   21 

 Figure 1.7.4  Common stamp failure modes  ……………………….   22 

 Figure 1.7.5  Surface contamination from PDMS stamps   …..   23 

 Figure 1.7.6  Discontinuous array features via flow patterning   24 

 

Chapter 2 

 Figure 2.5.1  Blood Separation and DEAL barcode scheme ..    45 

 Figure 2.5.2  DNA oligomer orthogonality   ………………………..   46 

 Figure 2.5.3  Flow patterning technique overview   …………..    47 

 Figure 2.5.4  Surface coating effect on DNA barcode loading   48 

 Figure 2.5.5  DNA Barcode sensitivity   ………………………………    49 

 Figure 2.5.6  hCG calibration curves   …………………………………   50 

 Figure 2.5.7  Blood assay protein cross reactivity   …………….    51 

 Figure 2.5.8  Blood assay protein calibration curves   ………..     52 

 Figure 2.5.9  Frozen patient sera data and analysis   ………….    53 

 Figure 2.5.10  IBBC device layout and fresh patient blood data   54 



xiv 

 Table 2.6.1  Protein panel and corresponding DNAs   ……….    55 

 Table 2.6.2  DNA oligomer sequences   …………………………….    56 

 Table 2.6.3  Patient medical records   ………………………………    57 

 

Chapter 3 

 Figure 3.5.1  Covalent and DMSO patterning schemes  ……    80 

 Figure 3.5.2  DNA deposition mechanism   ………………………    81 

 Figure 3.5.3  Theoretical models explain DMSO patterning    82 

 Figure 3.5.4  PDMS patterning characterization  ………………    83 

 Figure 3.5.5  DMSO effects on water-DNA interactions   ….    84 

 Figure 3.5.6  Raw data comparing patterning schemes  …..    85 

 Figure 3.5.7  Single cell experiment scheme and data ……..    86 

 Figure 3.5.8  Antibody cross-reactivity   …………………………..    87 

 Figure 3.5.9  Protein calibration curves   ………………………….    88 

 Table 3.6.1  DNA oligomer sequences   ……………………………    89 

 Table 3.6.2  Antibody panel and corresponding DNA   …….    90 

Chapter 4 

 Figure 4.5.1  Robotics component overview  ……………………   110 

 Figure 4.5.2  Barcode substrate preparation   ………………….   111 

 Figure 4.5.3  Machine-made barcode fidelity and repeatability  112 

 Figure 4.5.4  Single cell secretion experiment overview   …   113 

 Figure 4.5.5  Single cell secretion data   ……………………………   114 



xv 

 Scheme 4.5.1  Robotics simplified pressure system   ………..   115 

 Scheme 4.5.2 Robotics process flowchart  ……………………….   116 

 

Chapter 5 

 Figure 5.5.1  Portable, USB solenoid control hardware  …….   217 

 Figure 5.5.2  Fully automated blood chip hardware   …………   218 

 Figure 5.5.3  Laboratory microfluidic control software   …….   219 

 Figure 5.5.4  Fully automated blood chip software   ………….   220 

 Figure 5.5.5  Data consistency derived from automation  ….   221 

 

 

 



1 

Chapter 1 

 

1.1  Introduction 

Throughout the 1990s, the ongoing Human Genome Project promised to provide a 

quantum leap forward in our understanding of developmental and disease biology.  

While the genome did provide indispensable insight, it became clear in the decade that 

followed that the proteome was a far richer target in this regard.  Although the genetic 

code may initially define a biological system, its subsequent contributions can vary 

wildly as a result of external factors that simply cannot be captured within the 

nucleobase sequence.  Conversely, the proteome explicitly represents the end product 

of a system’s configuration, and its characterization can yield a much greater 

understanding of what that system is trying to accomplish and how. 

 

As the importance of measuring proteins came into focus in the past decade, so too did 

competing philosophies of how to study them.  The previous half century was 

dominated by so-called “reductionist” biology, wherein scientists tried to understand 

the complexities of biological systems by breaking them down into their most basic 

subunits (i.e. proteins) and then exhaustively characterizing those individually
1
.  Thus, 

pathway models described biological functions as discrete, autonomous collections of 

proteins that adhere to a rigid script of interactions to produce a desired outcome.  

However, these views are rapidly becoming outdated as it becomes increasingly clear 



2 

that proteins can have rich interaction profiles that entwine multiple, seemingly 

unrelated pathways into overarching protein networks.  The central tenet of the 

systems biology philosophy, then, is that for any characterization of a protein to be 

meaningful, it must be placed in the context of its surrounding network
2
.  Just as a DNA 

sequence alone cannot accurately predict the resulting system, nor can a single protein 

in isolation accurately describe a biological system’s state. 

 

This principle is readily illustrated in cancer systems.  Broadly speaking, a cancerous 

state results when regulatory mechanisms of a cell become damaged by deletion, 

constitutive activation, etc. and the cell proliferates unchecked.  However, the 

malfunction may be ascribed to damage in any of several pathways that converge upon 

that regulatory mechanism, and so a measurement of the latter alone will not 

necessarily provide actionable treatment information unless further enumerated
3
.   

Reciprocally, the systems biology approach predicts that a disruption in one part of a 

protein network will affect many other nodes at varying magnitudes.  By simultaneously 

monitoring multiple nodes within a network, it may be possible to recognize 

“fingerprints” that are bespoke to a particular disease or variant thereof.  Ideally, with 

regular monitoring, these perturbations may be detected before they grow to 

consequential levels.  Indeed, positive treatment prognoses for many cancers are highly 

dependant on how early they are detected.  Thus, embracing a systems biology 

approach to disease detection necessitates the development of cheap, multi-parameter 



3 

proteome diagnostics, and this is the driving principle for much of the work in this 

thesis. 

 

Accurately characterizing protein expression levels is particularly challenging because, 

unlike DNA, proteins cannot be arbitrarily amplified.  Among the known blood 

proteome, proteins can range in concentration from up to 10
9
 pg/mL to as low as 1 

pg/mL and below
4
, and proteins found in the least abundance are suspected to be the 

most useful indicators in many cases.  Cytokines, responsible for cell-to-cell 

communication, are almost exclusively in the 100 pg/mL and lower regime, as their local 

effective concentrations are highly diluted upon introduction to the main bloodstream.  

Detection of such rare proteins is further complicated by the overabundance of 

albumin, which can contribute to nonspecific fouling and constitutes a significant noise 

source for most types of measurements. 

 

Today, the gold standard for quantitative protein measurements remains the ELISA.  

This assay uses a sandwich of antibodies to specifically immobilize and identify a target 

protein via a chromogenic readout.  However, the technique scales very poorly and is ill-

suited to the requirements of a systems biology-derived diagnostic on account of cost, 

sample consumption, and labor required.  To fill this void, there have been concerted 

and very promising strides towards harnessing electronic measurements to detect 

proteins via chemically gated field effect transistors (FETs)
5
, impedance spectroscopy

6
, 

and giant magnetoresistance techniques
7
, among others.  Indeed, much of my early 



4 

work was aimed at producing functionalized silicon nanowire sensors, although those 

results are not included here.  Instead, we focused on traditional optical detection and 

developed an assay that leverages the ELISA concept, but adds small refinements that 

allow the creation of high density antibody microarrays which spatially distinguish 

individual protein assays.  Specifically, the DNA Encoded Antibody Library (DEAL) 

technique decorates capture antibodies with unique sequences of ssDNA; when 

introduced to a standard DNA microarray, a mixture of such antibodies self-assemble via 

complementary hybridization so that each DNA spot assays a unique protein
8
.  Following 

analyte capture, the assay is completed with biotinylated secondary antibodies, which 

are then developed with fluorescently-tagged streptavidin.  A standard microarray 

scanner quantitates the fluorescent readout.   

 

The development of DEAL provided an opportunity to simultaneously perform 

multiplexed protein sandwich assays at drastically higher densities than the 96-well 

plates utilized for traditional ELISAs.  Using a standard DNA microarray as a substrate 

meant that each protein assay was performed within a 150µm spot, and was separated 

by just 150µm from the next assay.  When coupled with microfluidic technology, this 

newfound density enabled massively parallel protein measurements from rare samples.  

Yet, on the scales of either microfluidics or biology, a 300µm pitch can hardly be 

considered “dense”; microchannels are readily fabricated in the low-micron range, while 

cells typically range from one to five microns in size.  Thus, we quickly initiated an effort 



5 

to generate DNA microarrays that matched these dimensions in the hopes of enabling 

novel experiments at the single cell level. 

 

 

1.2  DNA Patterning 

 

In order to serve as a practical replacement for the larger, traditionally-spotted DNA 

microarrays, our new substrates had to fulfill several requirements.  Fundamentally, it 

was critical to have arbitrary control over feature size and morphology in the low micron 

range.  Ideally, the new patterning method should also not be constrained by a rigid 

array architecture, i.e. it should allow for irregular spacing among features, and it should 

also have some provision for positional control of patterned elements.  These latter 

requirements are important if elements of the array need to interact with predefined 

features on a substrate or within a microfluidic circuit.  Among the practical constraints 

was that the patterning procedure be relatively rapid, easy to execute, and ideally it 

could be performed in our own lab.  Finally, a low-cost solution was preferred. 

 

Microcontact printing (µCP), one of a battery of soft lithography techniques developed 

by the Whitesides group
9,10

, emerged as an ideal candidate which fulfilled most of the 

aforementioned requirements.  The process is directly analogous to a macroscale 

rubber stamp, wherein ink is applied to a featured surface which is then brought into 

contact with a substrate; the ink is only transferred along the raised features of the 



6 

stamp (Figure 1.7.1a).  By substituting a PDMS device for the rubber stamp, µCP inherits 

all the dimensional and morphological flexibility of long-standing microfabrication 

techniques.  Moreover, because the technique is parallel in nature, patterning 

thousands of feature instances for an array takes no more time than patterning a single 

one.  Finally, µCP fares well from a cost perspective.   

 

The obvious potential of this technique in the DNA microarray arena led to a 2004 

report of high quality, patterned DNA deposition with feature sizes as small as 1µm via 

µCP.  However, the technique involved a cumbersome, 45-minute inking process which 

reduced its viability for high throughput production of multi-component microarrays
11

.  

This was closely followed by a report detailing a much faster and more convenient 

procedure wherein DNA first adheres to the hydrophobic PDMS stamp via van der Waals 

interactions with its bases, and is then efficiently transferred to a positively-charged 

substrate via electrostatic interactions along the phosphate backbone
12

.  This latter 

work inspired our efforts, and we quickly reproduced its results within the lab (Figure 

1.7.1b).  However, two unresolved technical issues prevented the platform’s immediate 

adoption for DEAL experiments: stamp alignment and low aspect ratio feature printing. 

 

 

 

 

 



7 

1.3  Technical Issues 

 

Creation of a multi-component DNA library via µCP is predicated upon the ability to 

align multiple stamps precisely to their target substrate (Figure 1.7.2a); as the feature 

density shrinks, so too does positioning tolerance.  While solutions for this requirement 

have recently been reported
13-15

, at the time it remained an open problem.  We tackled 

the issue by capitalizing on the fine alignment capabilities of a Karl Süss MA-6 

photolithography apparatus, which is designed to facilitate micron-scale alignment 

between photomasks and substrates.  Ideally, an inked PDMS stamp would simply 

replace or be affixed to the photomask, while our microarray substrate would be placed 

on the wafer chuck below.  However, when initiating alignment, the MA-6 performs a 

mandatory “wedge error correction” (WEC) routine wherein the substrate is briefly 

brought into contact with the photomask to ensure that the two are parallel before it 

drops down to the specified alignment gap.  Thus, the substrate would be inked without 

any opportunity for alignment. 

 

To circumvent this problem, the photomask was replaced by a precisely machined 1/8” 

thick plate bearing a central cutout.  At the same time, the PDMS stamps were cast 

using a special aluminum stencil which creates a two-tiered substrate: the bottom tier’s 

dimensions correspond to the photomask plate’s cutout, but it is marginally (ca. 25µm) 

thicker and bears the desired microfeatures on its underside; the top tier simply 

provides a broad lip that is used as a handle.  Figure 1.7.2b depicts the molding process 



8 

and the resulting stamp structure.  In practice, substrates are loaded into the MA-6 and 

allowed to perform WEC against the bare photomask plate.  Once the alignment gap is 

established, an inked stamp is inserted into the plate’s cutout; the stamp’s lip precisely 

positions the lower tier’s microfeatures slightly below the plate surface.  At this stage, 

fine alignment can be achieved by matching corresponding fiducials on the optically-

transparent stamp and the substrate underneath via the MA-6’s micromanipulators.  

Printing is accomplished by slowly reducing the alignment gap until the substrate and 

stamp make contact, as readily evidenced by a contrast change in the stamp features.  

Finally, the alignment gap is re-introduced, the spent stamp is lifted out, and the system 

is ready to load the next inked stamp.  Once WEC is performed, the entire loading and 

alignment procedure for subsequent stamps generally requires only a couple of 

minutes. 

 

The MA-6-based approach to multiple stamp alignment proved a satisfactory solution, 

exhibiting low-micron alignment precision and a fast, cheap, and non-demanding 

protocol.  Figure 1.7.3 demonstrates the quality of alignment achieved across a variety 

of µCP patterns.  Indeed, the solution proved so robust that minor variations of it have 

subsequently been employed to align densely-featured fluidic control and flow layers 

during PDMS fabrication, to align completed microfluidic molds with finely-featured 

Silicon substrates
16

, and even to position SNAP
17

 nanowire masters onto their target 

wafers. 

 



9 

The second major technical challenge related to microcontact printing of DNA 

microarrays derives from the deformable nature of PDMS.  Specifically, feature height 

becomes an important parameter that must be carefully tuned according to feature size 

and feature density to prevent aberrant ink transfer
18,19

.  Excessively tall features (high 

aspect ratio) are prone to tearing upon demolding, and can buckle or collapse laterally 

during stamping.  Conversely, shorter features (low aspect ratio) are resistant to those 

failure modes but become prone to “roof collapse,” wherein recessed areas between 

features sag or collapse onto the substrate (Figure 1.7.4).  Most approaches to 

mitigating these issues focus on low aspect ratio features and make additional 

provisions to prevent roof collapse.  The most basic such strategy is to simply add broad 

support structures in close proximity to small features of interest
11

.  However, this still 

results in extraneous, though controlled, ink transfer, and is clearly not an ideal solution 

when creating large, high-density microarrays.  An alternative solution is to utilize 

customized, harder formulations of PDMS
20-22

 that are more resistant to deformation; 

these result in significantly better feature fidelity which extends well into the sub-

micron range.   

 

We developed a method for stamping low aspect ratio features that avoids specialty 

materials and is trivial to integrate into the standard PDMS fabrication workflow.  By 

introducing a rigid material within the body of the stamp, the degree of deformation 

allowed at the stamp surface is significantly reduced.  We implemented this solution by 

dicing a standard glass slide for use as the rigid support; after pouring PDMS prepolymer 



10 

into our aluminum casting stencil (Figure 1.7.3a) and degassing, the glass support is 

introduced parallel to the underlying wafer and pushed firmly to the bottom of the 

stencil.  The result is an exceedingly thin layer of PDMS along the bottom of the stamp 

which is chemically adhered to the rigid glass slide during the curing process, leaving 

little room for unwanted deformation or sagging.  We found this to be an excellent 

solution in the low micron regime relevant to our microarray fabrication, but did not 

perform limit testing to determine if the benefits extend to sub-micron features.  For 

our purposes, the reinforced stamps were easily able to pattern 5µm-tall features at 

1mm intervals – a lateral aspect ratio of 200:1 – without any threat of roof collapse.  

This represents a significant advance over unmodified stamping limits, and eliminates 

the last technical hurdle for practical microarray production via microcontact printing. 

 

 

1.4  Chemistry 

 

With our mechanical limitations resolved, we began generating microarrays tailored to 

investigate single-cell secretions.  The goal was to create a large array of “bulls-eye” 

structures wherein the central spot of each would, using DEAL reagents, immobilize a 

single cell while the surrounding rings captured its secreted cytokines (Figure 1.7.4).  

However, we quickly found that stamped microarrays behaved very differently than 

spotted ones when used for DEAL assays.  An investigation using fluorescent reagents 

demonstrated that the capture antibodies were not assembling as intended; indeed 



11 

they formed a completely inverted pattern wherein the complimentary DNA spot was 

not populated at all while the surrounding background areas were intensely patterned 

(Figure 1.7.5a).   

 

After considerable study, we found the behavior was an indirect result of contaminants 

that leach from our PDMS stamps and are co-deposited with DNA; during the initial 

blocking step of the DEAL process, BSA is preferentially recruited to these contaminants 

and very efficiently prevents subsequent assembly of the capture antibody.  The finding 

was not unprecedented
23,24

, particularly among polar inks
25

, and we tried a slew of 

methods to suppress it.  A lengthy swelling procedure
26

 designed to remove un-

crosslinked monomers from bulk PDMS failed to alleviate the problem.  Attempts to 

mask the contaminants by adding a fluoropolymer coating (DuPont Teflon AF) or 

patterned photoresists to the stamp surface yielded a sharp decrease in feature fidelity 

and degraded many of the PDMS’s physical characteristics required for µCP. 

 

Rather than remove the PDMS contaminants, an alternative strategy lay in omitting BSA 

from our DEAL protocol.  While other biological blocking agents, such as casein, yielded 

similarly inverted patterns, we found that PEGylating the substrate did not inhibit 

capture antibodies from hybridizing with their target DNA spots.   However, PEG also 

proved insufficient for blocking non-patterned areas effectively, as electrostatic 

interactions between the capture antibody’s DNA and the aminated surface yielded 

significant non-specific binding.  This was eliminated by back-filling the PEGylated 



12 

substrate with acetic anhydride, yielding a negatively-charged carboxylate surface.  The 

combination of surface treatments finally provided a µCP-generated DNA microarray 

that was usable for DEAL experiments (Figure 1.7.5c), but due to lingering unease about 

PDMS contamination, concerns about DNA loading, and the concurrent development of 

an alternative patterning technique, we did not push this technology forwards. 

 

 

1.5  Flow Patterning 

 

The strikingly inverted images that we first obtained when performing DEAL assays on 

stamped microarrays inspired a new approach to DNA patterning.  If regions of our 

substrate which had come into contact with PDMS and BSA were particularly resistant 

to further protein aggregation, while non-contacted areas readily adsorbed DNA-laden 

antibodies despite BSA blocking, why not invert the paradigm?  Here, a PDMS slab 

would contact all the “background” areas of the substrate while maintaining recessed 

regions that correspond to the desired microarray features.  Put simply, a PDMS device 

bearing channels would be bonded to a substrate and the channels filled with DNA 

solutions, thereby depositing DNA according to the channel morphology.  Thus, in a 

somewhat convoluted way, the very simple idea of flow patterning was conceived. 

 

Initial attempts at flow patterning relied on electrostatic interactions with a positively-

charged substrate to immobilize DNA; shortly after filling each channel, the DNA 



13 

solutions were flushed away and rinsed with PBS buffer.  While fluorescently-tagged 

oligomers indicated that the technique produced the expected patterns, DEAL 

experiments revealed that an insufficient amount of DNA was immobilized via this 

procedure, as evidenced by poor assay sensitivities.  Consequently, we allowed our 

patterning solutions to evaporate and thereby deposit a significant fraction of their DNA 

on the substrate surface.  This was followed by thermal or UV
27

 crosslinking and 

produced densely-loaded patterns as desired.  Moreover, the contamination principle 

from our µCP experiments held, and the flow-patterned arrays exhibited extremely low 

background during assays. 

 

The flow patterning method is subject to a unique set of advantages and disadvantages 

when compared with µCP.  Chief among the former is certainly the useful contaminant 

distribution, but there are additional benefits as well: because the procedure is an 

evaporative one, the amount of DNA deposited can be directly tuned by altering the 

patterning solution’s concentration – a relationship which was much more tenuous with 

µCP.  In addition, alignment issues amongst microarray elements become moot, as they 

are all defined monolithically with photolithographic precision.  However, flow 

patterning is hamstrung by the fact that its reagent channels must be topologically 

continuous; when implemented in traditional 2D microfluidics, this prohibits 

discontinuous features such as traditional microarray spots and severely limits the scope 

of potential microarray architectures.   



14 

We sought to address this limitation by developing a 3D microchannel network, and 

targeted production of the same bulls-eye structure patterned earlier via µCP.  The key 

component required for such a network is the crossover channel which transfers fluid 

between the upper and lower layers of a 2-layer network.  Although multiple methods 

for accomplishing this have been reported 
28-30

, we developed a very simple protocol 

which does not require any extra steps during PDMS fabrication.  Specifically, we 

generated a two-level lower flow layer from SU-8 wherein flow channels were patterned 

at 25µm height and crossover points were patterned as 50µm-tall posts that overlapped 

them.  The upper flow layer was simply patterned at a uniform 25µm height.  During 

device fabrication, the lower layer was spin-coated with PDMS at 5000 RPM for 60 

seconds, yielding a very thin layer of PDMS.  It is unclear if the tall posts protrude from 

the thin layer at this stage, or if they are covered by a thin membrane which is ruptured 

during curing (as the PDMS shrinks) or demolding.  In any case, standard 2-layer 

protocols applied to these photoresist masters yield functional interlayer vias in unit 

yield.  Figure 1.7.6 demonstrates successful implementation of a 3D flow patterning 

network to create a microarray comprised of 49 discontinuous, 3-element bulls-eye 

features. 

 

The bulls-eye patterns, though a strong technical demonstration of our patterning 

capabilities, were never utilized for single-cell secretion studies.  Among its demerits, it 

proved to be an inefficient architecture which would not scale well as more array 

elements were added.  Instead, a very simple 2D flow patterning design, known as the 



15 

“barcode” microarray, gained traction as a high density, trivially fabricated alternative.  

These barcode substrates have unlocked a unique opportunity in our lab to measure 

multiple intracellular and secreted proteins from single cells, and they have played a 

fundamental role in several publications which are not detailed in this thesis.  They 

continue to constitute an instrumental component in the majority of our lab’s ongoing 

biological projects. 

 

 

1.6  Thesis Overview 

 

This thesis discusses the development of the flow patterned DNA microarrays into a 

robust platform that is capable of supporting accurate, consistent, and convenient 

bioassays for clinical diagnostics.  Chapter 2 introduces the aforementioned barcode 

morphology and demonstrates its utility as a substrate for the DEAL platform.  We 

demonstrate that the sensitivity of DEAL assays is directly dependant on the substrate’s 

DNA loading, and take advantage of this fact to measure proteins with a dynamic range 

of over five orders of magnitude.  The technology is validated by correctly determining 

the levels of human chorionic gonadotropin (hCG), a common pregnancy marker, from 

two serum samples in a blind test.  We then apply this platform to the analysis of a 

dozen proteins from frozen cancer-derived serum samples.  Finally, we adopt a 

microfluidic circuit for blood plasma separation and use it in conjunction with our 

barcodes to measure multiple proteins from small volumes of fresh, finger prick-derived 



16 

blood samples.  My contributions to this work include the conception and development 

of DNA patterning techniques, preparation and execution of the hCG experiments, and 

assistance in the adoption of the plasma separation microfluidics.  Chapter 2 is largely 

derived from © Nature Biotech. 2008, 26(12), 1373-1378. 

 

Chapter 3 describes significant improvements to the quality of barcode microarrays.  We 

found that our initial patterning protocols produced microarrays that yielded consistent 

measurements over small areas, but varied widely across the substrate as a whole.  In 

order to make valid comparisons amongst single cell data or amongst multiple patient 

samples analyzed on the same chip, the microarray must present consistent sensitivity 

throughout.  We describe two different strategies that help us to achieve this 

consistency:  one method utilizes covalent attachment of DNA to a modified substrate 

surface, while a second method preserves the original scheme, but explores the 

incorporation of DMSO (a common microarraying additive) with the patterning solution.  

Both strategies yielded barcodes with far better consistency than our initial protocol.  A 

theoretical simulation was undertaken to explain the dramatic improvements achieved 

by DMSO, and its mechanism was found to differ significantly in microfluidic systems 

when compared to regular pin spotting.  My contribution to this work was the 

development and characterization of the covalent DNA patterning strategy.  Chapter 3 is 

largely derived from © ChemPhysChem. 2010, 11(14), 3063-3069. 

 



17 

Whereas Chapter 3 focused on improving consistency across single chips, Chapter 4 

describes efforts to improve chip-to-chip consistency by automating the flow patterning 

process.  We describe the design and fabrication of a robotics system that is capable of 

autonomously interfacing with and manipulating microfluidics systems.  A modular 

design philosophy enables it to process almost any flow-through microfluidic substrate 

with little modification, although we focus on barcode chips.  The pattern fidelity of 

machine-made substrates is confirmed, and both intra- and inter-chip consistency is 

investigated.  Finally, a pair of substrates is used to perform massively parallel single-cell 

secretion studies of a macrophage cell line, and a statistical analysis of the results 

demonstrates that data from the two chips are indistinguishable.  This chapter is derived 

from a manuscript that is currently under review. 

 

Finally, Chapter 5 describes an additional set of technologies that were developed to 

facilitate and automate microfluidics-based experiments in anticipation of clinical trials 

based on our blood chip.  We first develop an intuitive, GUI-based software package 

that is aimed at laboratory-scale microfluidic control and automation.  We also describe 

the design and fabrication of a self-contained, portable, and modular solenoid array for 

microfluidic control, and integrate its operation with the aforementioned program.  

Finally, we discuss the development and basic characterization of a second portable 

system that optimizes and comprehensively automates microfluidic blood assays such 

that even non-technical users who have never worked with microfluidics can regularly 

obtain the same standard of data that is produced in the lab.  This latter system is 



18 

anticipated to be the basis of upcoming clinical blood trials to characterize blood protein 

signatures in various cancers. 



19 

1.7  Figures 

 

 

 

 

 

 

 
 

Figure 1.7.1  (A) Schematic illustration of the microcontact printing process.  (B) Sample 

stamping results obtained using fluorescent DNA.  The circles feature ~5µm diameter 

while the squares are ~50µm wide. 

 



20 

 

 

 

 

 
 

Figure 1.7.2 (A) Conceptual illustration of a microcontact printing scheme to create 

multi-element DNA microarrays, presuming the stamps can be aligned precisely. (B)  The 

molding process by which two-tiered PDMS stamps are fabricated.  (C) Mask plate with 

central cutout to accommodate stamp. 



21 

 
Figure 1.7.3  Typical results from MA-6 based stamp alignment.  The middle three 

patterns correspond to the highlighted boxes in the schematic above, and demonstrate 

the uniform alignment of two stamps (red & green) across long distances. 

 



22 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.7.4  Common failure modes for high aspect ratio stamp features (a & b) and 

low aspect ratio stamps (c). 

 

 



23 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.7.5  (A)  Fluorescent, DNA-tagged capture antibodies bind nonspecifically to the 

background, but strongly avoid their complementary strands that are stamped in a ring 

structure.  (B) When the substrate is not blocked with BSA, the ring structure becomes 

evenly populated upon exposure to fluorescent capture antibodies, implying that BSA is 

preferentially recruited by contaminants that co-deposit with DNA.  (C) Blocking with a 

combination of PEG and acetic anhydride prevents non-specific binding to the 

background, but permits capture antibodies to localize to their complementary 

sequences. 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

 

 

 

 
 

 

Figure 1.7.6  Counter-clockwise from top left: schematic showing 3D flow channels for 

patterning discontinuous features; low depth-of-field images showing dye solutions in 

both lower and upper portions of the flow channels, indicating operational vias; DEAL 

assays performed with recombinant proteins on a bulls-eye substrate. 

 



25 

1.8  References 
 

 

1 Strange, K. The end of "naïve reductionism": rise of systems biology or 

renaissance of physiology? American Journal of Physiology - Cell Physiology 

288, C968-C974, (2005). 

2 Hood, L., Heath, J. R., Phelps, M. E. & Lin, B. Systems Biology and New 

Technologies Enable Predictive and Preventative Medicine. Science 306, 640-

643, (2004). 

3 Weinberg, R. The Biology of Cancer.  (Garland Sci., 2006). 

4 Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, 

character, and diagnostic prospects. Molecular and Cellular Proteomics 1, 845-

867, (2002). 

5 Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed 

electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 

23, 1294-1301, (2005). 

6 Kharitonov, A. B., Wasserman, J., Katz, E. & Willner, I. The Use of Impedance 

Spectroscopy for the Characterization of Protein-Modified ISFET Devices:D 

Application of the Method for the Analysis of Biorecognition Processes. The 

Journal of Physical Chemistry B 105, 4205-4213, (2001). 

7 Osterfeld, S. J. et al. Multiplex protein assays based on real-time magnetic 

nanotag sensing. Proceedings of the National Academy of Sciences 105, 20637-

20640, (2008). 

8 Bailey, R. C., Kwong, G. A., Radu, C. G., Witte, O. N. & Heath, J. R. DNA-

Encoded Antibody Libraries:D A Unified Platform for Multiplexed Cell Sorting 

and Detection of Genes and Proteins. Journal of the American Chemical Society 

129, 1959-1967, (2007). 

9 Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter 

dimensions can be formed through a combination of stamping with an elastomeric 

stamp and an alkanethiol ``ink'' followed by chemical etching. Applied Physics 

Letters 63, 2002-2004, (1993). 

10 Xia, Y. & Whitesides, G. M. SOFT LITHOGRAPHY. Annual Review of 

Materials Science 28, 153-184, (1998). 

11 Lange, S. A., Benes, V., Kern, D. P., Hörber, J. K. H. & Bernard, A. Microcontact 

Printing of DNA Molecules. Analytical Chemistry 76, 1641-1647, (2004). 

12 Thibault, C. et al. Direct microcontact printing of oligonucleotides for biochip 

applications. Journal of Nanobiotechnology 3, 7, (2005). 

13 Chakra, E. B., Hannes, B., Dilosquer, G., Mansfield, C. D. & Cabrera, M. A new 

instrument for automated microcontact printing with stamp load adjustment. 

Review of Scientific Instruments 79, 064102-064109, (2008). 

14 Trinkle, C. A. & Lee, L. P. High-precision microcontact printing of 

interchangeable stamps using an integrated kinematic coupling. Lab on a Chip 11, 

455-459, (2011). 

15 Choonee, K. & Syms, R. R. A. Multilevel Self-Aligned Microcontact Printing 

System. Langmuir 26, 16163-16170, (2010). 



26 

16 Nagarah, J. M. et al. Batch Fabrication of High-Performance Planar Patch-Clamp 

Devices in Quartz. Advanced Materials 22, 4622-4627, (2010). 

17 Melosh, N. A. et al. Ultrahigh-Density Nanowire Lattices and Circuits. Science 

300, 112-115, (2003). 

18 Sharp, K. G., Blackman, G. S., Glassmaker, N. J., Jagota, A. & Hui, C.-Y. Effect 

of Stamp Deformation on the Quality of Microcontact Printing:D Theory and 

Experiment. Langmuir 20, 6430-6438, (2004). 

19 Hui, C. Y., Jagota, A., Lin, Y. Y. & Kramer, E. J. Constraints on Microcontact 

Printing Imposed by Stamp Deformation. Langmuir 18, 1394-1407, (2002). 

20 Schmid, H. & Michel, B. Siloxane Polymers for High-Resolution, High-Accuracy 

Soft Lithography. Macromolecules 33, 3042-3049, (2000). 

21 Choi, K. M. & Rogers, J. A. A Photocurable Poly(dimethylsiloxane) Chemistry 

Designed for Soft Lithographic Molding and Printing in the Nanometer Regime. 

Journal of the American Chemical Society 125, 4060-4061, (2003). 

22 Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. 

Improved Pattern Transfer in Soft Lithography Using Composite Stamps. 

Langmuir 18, 5314-5320, (2002). 

23 Böhm, I., Lampert, A., Buck, M., Eisert, F. & Grunze, M. A spectroscopic study 

of thiol layers prepared by contact printing. Applied Surface Science 141, 237-

243, (1999). 

24 Glasmästar, K., Gold, J., Andersson, A.-S., Sutherland, D. S. & Kasemo, B. 

Silicone Transfer during Microcontact Printing. Langmuir 19, 5475-5483, (2003). 

25 Sharpe, R. B. A. et al. Ink Dependence of Poly(dimethylsiloxane) Contamination 

in Microcontact Printing. Langmuir 22, 5945-5951, (2006). 

26 Lee, J. N., Park, C. & Whitesides, G. M. Solvent Compatibility of 

Poly(dimethylsiloxane)-Based Microfluidic Devices. Analytical Chemistry 75, 

6544-6554, (2003). 

27 Cheung, V. G. et al. Making and reading microarrays. Nat Genet. 

28 Anderson, J. R. et al. Fabrication of Topologically Complex Three-Dimensional 

Microfluidic Systems in PDMS by Rapid Prototyping. Analytical Chemistry 72, 

3158-3164, (2000). 

29 David, J. & et al. Soft and rigid two-level microfluidic networks for patterning 

surfaces. Journal of Micromechanics and Microengineering 11, 532, (2001). 

30 Luo, Y. & Zare, R. N. Perforated membrane method for fabricating three-

dimensional polydimethylsiloxane microfluidic devices. Lab on a Chip 8, 1688-

1694, (2008). 

 

 



27 

 

Chapter 2 

Integrated barcode chips for rapid, multiplexed analysis 

of proteins in microliter quantities of blood   

 

 

2.1  Introduction 

 

As the tissue that contains the largest representation of the human proteome
1
, blood is 

the most important fluid for clinical diagnostics
2-4

. However, although changes of plasma 

protein profiles reflect physiological or pathological conditions associated with many 

human diseases, only a handful of plasma proteins are routinely used in clinical tests. 

Reasons for this include the intrinsic complexity of the plasma proteome
1
, the 

heterogeneity of human diseases and the rapid degradation of proteins in sampled 

blood
5
. We report an integrated microfluidic system, the integrated blood barcode chip 

that can sensitively sample a large panel of protein biomarkers over broad 

concentration ranges and within 10 min of sample collection. It enables on-chip blood 

separation and rapid measurement of a panel of plasma proteins from quantities of 

whole blood as small as those obtained by a finger prick. Our device holds potential for 



28 

inexpensive, noninvasive and informative clinical diagnoses, particularly in point-of-care 

settings.  

 

Microfluidics has permitted the miniaturization of conventional techniques to enable 

high-throughput and low-cost measurements in basic research and clinical 

applications
6,7

. Systems for biomolecular assays
8,9

 and bio-separations
10,11

, including the 

separation of circulating tumor cells or plasma from whole blood
12-14

, have been 

reported. We developed the integrated blood barcode chip (IBBC) to address the need 

for microchips that integrate on-chip plasma separations from microliter quantities of 

whole blood with rapid in situ measurements of multiple plasma proteins. The 

immunoassay region of the chip is a microscopic barcode, integrated into a microfluidics 

channel and customized for the detection of many proteins and/or for the quantification 

of a single or few proteins over a broad concentration range. We demonstrate versatility 

of this barcode immunoassay by detecting human chorionic gonadotropin (hCG) from 

human serum over a 105 concentration range and by stratifying 22 cancer patients via 

multiple measurements of a dozen blood protein biomarkers for each patient. We also 

use the IBBC to assay a blood protein biomarker panel from whole human blood, 

performing all key steps in the immunoassay within 10 min of blood collection by finger 

prick. 

 

 

 



29 

2.2  Results and Discussion 

 

2.2.1  Device design 

We first present an overview of the IBBC and then discuss control of assay sensitivity, 

extension of a single protein assay to an assay for a large panel of biomarkers and, 

finally, integration of plasma separation from whole blood, followed by the rapid 

measurement of a panel of protein biomarkers. Figure 2.5.1 shows the design of an IBBC 

for blood separation and in situ protein measurement. We designed a 

polydimethylsiloxane (PDMS)-on-glass chip to perform 8–12 separate multiprotein 

assays sequentially or in parallel, starting from whole blood. 

 

The Zweifach-Fung effect describes highly polarized blood cell flow at branch points of 

small blood vessels
14-16

. A component of the IBBC, redesigned from a previous report
14

, 

exploits this hydrodynamic effect by flowing blood through a low-flow-resistance 

primary channel with high-resistance, centimeter-long channels that branch off it at 

right angles (Figure 2.5.1a). As the resistance ratio is increased between the branches 

and the primary channel, a critical streamline moves closer to the primary channel wall 

adjoining the branch channels. Blood cells with a radius larger than the distance 

between this critical streamline and the primary channel wall are directed away from 

the high-resistance channels, and ~15% of the plasma is skimmed into the high-

resistance channels. The remaining whole blood is directed toward a waste outlet. The 

glass base of the plasma-skimming channels is patterned with a dense barcode-like 



30 

array of single-stranded DNA (ssDNA) oligomers before assembly of the microfluidics 

chip. A full barcode is repeated multiple times within a single plasma-skimming channel, 

and each barcode sequence constitutes a complete assay. 

 

We used the DNA-encoded antibody library (DEAL) technique
17

 to detect proteins within 

the plasma-skimming channels. DEAL technology involves using DNA-directed 

immobilization of antibodies to convert a prepatterned ssDNA barcode microarray into 

an antibody microarray, thereby providing a powerful means for spatial encoding
18,19

. 

The sequences of all ssDNA oligomer pairs used (labeled A/A’-M/M’), and their 

corresponding antibodies, are listed in Tables 2.6.1 and 2.6.2. To minimize cross-

reactivity, these ssDNA molecules were designed in silico and then validated through a 

full orthogonality test (Figure 2.5.2). In that experiment, each of the complementary 

DNA molecules with Cy3 fluorescent label was added to a microwell containing a full 

primary ssDNA barcode array. The results showed only negligible cross-hybridization 

signals. In the DEAL assay, each capture antibody is tagged with approximately three 

copies of an ssDNA oligomer that is complementary to ssDNA oligomers that have been 

surface-patterned into a microscopic barcode within the immunoassay region of the 

chip. Flow-through of the DNA-antibody conjugates transforms the DNA microarray into 

an antibody microarray for the subsequent surface-bound immunoassay. Because DNA 

patterns are robust to dehydration and can survive elevated temperatures (80–100 °C), 

the DEAL approach circumvents the denaturation of antibodies often associated with 

typical microfluidics fabrication.  



31 

 

As only a few microliters of blood is normally sampled from a finger prick, on-chip 

plasma separation yields only a few hundred nanoliters of plasma. The ssDNA barcodes 

were patterned at a high density using microchannel-guided flow patterning (Figure 

2.5.3) to measure a large panel of protein biomarkers from this small volume. We used a 

PDMS mold that was thermally bonded onto a polyamine-coated glass slide to pattern 

the entire ssDNA barcode. Polyaminated surfaces permit substantially higher DNA 

loading than do more traditional aminated surfaces
20

 and provide for an accompanying 

increase in assay sensitivity (Figures 2.5.4 and 2.5.5). Different solutions, each 

containing a specific ssDNA oligomer, were flowed through different channels and 

evaporated through the gas-permeable PDMS stamp, resulting in individual stripes of 

DNA molecules. One complete set of stripes represents one barcode. All measurements 

used 20-mm-wide bars spaced at a 40 mm pitch. This array density represents an 

approximately tenfold increase over a standard spotted array (typical dimensions are 

150 mm diameter spots at a 400 mm pitch), thus expanding the numbers of proteins 

that can be measured within a small volume. No alignment between the barcode array 

and the plasma channels was required. All protein assays used one color fluorophore 

and were spatially identified using a reference marker that fluoresced at a different 

color. 

 

 

 



32 

2.2.2 Assay sensitivity as a function of DNA patterning concentration 

We first illustrate aspects of the barcode assays via the measurement of a single 

biomarker, human chorionic gonadotropin (hCG), in undiluted human serum over a 

broad concentration range. hCG is widely used for pregnancy testing and is a biomarker 

for gestational trophoblastic tumors and germ cell cancers of the ovaries and testes. For 

this assay, the barcode was customized by varying the DNA loading during the flow 

patterning step. The DNA barcode contained 13 regions (Figure 2.5.6a). There were two 

bars of oligomer B (designed to detect the protein tumor necrosis factor (TNF)-α as a 

negative control), one reference bar (oligomer M), one blank and nine bars of oligomer 

A (designed for hCG detection and flow patterned at ssDNA concentrations that were 

varied from 200 µM to 2 µM). To perform the assay, we flowed a mixture of A’-anti-hCG 

and B’-TNF- α through assay channels. Next, a series of standard hCG serum samples 

and two hCG samples of unknown concentration were flowed through separate assay 

channels. Biotinylated detection antibodies for hCG and TNF-a were then applied, 

followed by a final developing step using fluorescent Cy5-labeled streptavidin (red) for 

all protein channels and Cy3-labeled M’ oligomers (green) for the reference channel 

(Figure 2.5.6a). Quantifying the fluorescence intensity (Figure 2.5.6b,c) revealed a 

sensitivity (~1 mIU/ml) comparable to the enzyme-linked immunosorbent assays 

(ELISAs) over a broad detected concentration range (~10
5
). Using the microfluidics-

entrained DEAL barcode in a blind test, we measured the hCG levels in the two unknown 

serum samples. Our measured levels, estimated at 6 and 400 mIU/ml for unknowns 1 

and 2, are in good agreement with the values of 12 and 357 mIU/ml, respectively, 



33 

obtained from an independent lab test. Even without quantification, the analyte 

concentrations can be estimated by eye through pattern recognition of the full barcode. 

The bar with the highest DNA-loading rendered the highest sensitivity, whereas the bar 

with lowest DNA-loading was used to discriminate samples with high analyte 

concentrations. For example, the 25,000 mIU/ml and 250 mIU/ml hCG samples can be 

visually distinguished using stripes patterned with lower DNA concentrations, whereas 

the stripes loaded from 200 mm DNA solutions do not readily distinguish these samples. 

For circumstances in which accurate photon counting is not available, visual barcode 

inspection permits a rough estimation of the target quantity—a potential point-of-care 

application. When levels of hCG are tracked during pregnancy, concentrations in the 

blood increase from ~5 mIU/ml in the first week of pregnancy to ~2 x 10
5
 mIU/ml 10 

weeks after conception. The IBBC can cover such a broad physiological hCG range with 

reasonable accuracy. 

 

To evaluate multiplexed measurements of a panel of 12 protein markers using the 

microfluidic DEAL barcode regions of the IBBCs, we quantified the cross-reactivity 

between the stripes within the DNA-encoded immunoassays. This test involved twelve 

human serum proteins, including ten cytokines (interferon (IFN)-γ, TNF-α, interleukin 

(IL)-2, IL-1α, IL-1β, transforming growth factor (TGF)-β1, IL-6, IL-10, IL-12, granulocyte-

macrophage colony-stimulating factor (GM-CSF)), a chemokine macrophage 

chemoattractant protein (MCP)-1 and the cancer biomarker prostate-specific antigen 

(PSA). The results showed negligible cross-talk, with typical photon counts 



34 

<2% compared to the correctly paired antigen-antibody complexes (Figure 2.5.7). We 

also assayed serial dilutions (from 5 nM to 1 pM) for these proteins on the DEAL 

barcode chip to establish a set of calibration curves for future estimates of protein 

concentration in sera (Figure 2.5.8). We fixed all the parameters associated with laser 

scanning and fluorescence quantification (e.g., power, gain, brightness and contrast) 

and performed quantitative analysis. Depending on the antibodies used, the estimated 

sensitivity varies from <1 pM for IL-1β and IL-12 to ~30 pM for TGF-β and is comparable 

to the detection limits of ELISAs based on the same antibody pairs. For example, 

according to the specifications of commercial kits (eBioscience), the detection limit for 

cytokines like TNF-a and IL-1b is B8 pg/ml (~0.5 pM), which compares favorably with our 

observations. However, the statistical variation of the measured signals is relatively 

large compared to a commercial ELISA assay—a variation that likely arises from our 

manual chip manufacturing. 

 

2.2.3 Multi-parameter analysis of frozen serum samples 

We assessed the utility of the DEAL barcodes for clinical blood samples by measuring 

the same 12 proteins from small amounts of stored serum collected from 22 cancer 

patients. These serum samples were thawed, and then assayed using two chips, each 

containing 12 separate assay units operated in parallel. In every unit, 20 full DEAL 

barcodes in each assay channel were used for statistical sampling. The proteins in this 

panel (Fig. 2.5.9a), the prostate cancer marker PSA and eleven proteins secreted by 

various white blood cells, have been associated with tumor microenvironment 



35 

formation, tumor progression and tumor metastasis
21-23

. Thus, this panel provides 

information relevant to multiple aspects of cancer. 

 

Figure 2.5.9b shows fluorescence images, each depicting four sets of randomly picked 

barcodes obtained from the 22 patient samples. The medical records for all patients are 

summarized in Table 2.6.3. B01–B11 denote 11 samples from breast cancer patients, 

whereas P01–P11 are from prostate cancer patients. Many proteins were successfully 

detected with high signal-to-noise ratios, and the barcode signatures are distinctive 

from patient to patient, excepting the assays on P05, P04, P10 and B10. These assays 

are from individuals who are heavy smokers (~11–20 cigarettes daily). Only one serum 

sample (P06) from a heavy smoker did not exhibit a high background. This high 

background may result from elevated blood content of the fluorescent protein 

carboxyhemoglobin, which has been shown relevant to the pathogenesis of lung 

diseases of smokers
24

. Although we have also measured high background in a number of 

stored serum samples, we have never measured a high background in assays from very 

freshly collected blood, as described below. The results imply that, at least for stored 

samples, some prepurification of the plasma or serum will be required to assay serum 

protein levels. 

 

Barcode intensities were then quantified and the statistic mean value for each protein 

was computed. The cancer marker PSA clearly distinguished between the breast cancer 

and the prostate cancer patients. The only exception was a false-positive result from 



36 

B10 that had high nonspecific background. We independently validated our PSA 

measurements using the standard ELISA for PSA in all patient sera. For eight of the 

prostate cancer patients, we compared these results with clinical ELISA measurements 

provided by the serum supplier. The results (Fig. 2.5.9c) validated the applicability of the 

DEAL barcodes for assaying complex clinical samples. However, the statistical accuracy 

of the PSA barcode assay was not high, revealing only a modest linear correlation 

between the ELISA and DEAL. Again, this is likely due to our manual chip manufacturing 

process. We are currently automating our barcode fabrication, assay execution and 

image quantification in an effort to bring statistical uncertainties to within 10–20%, 

which would be close to the state of the art. 

 

The cancer patient barcode data could be analyzed for absolute protein levels by 

comparing those data against the barcode quantification plots (Figure 2.5.8). Results for 

PSA, TNF-a and IL-1b are shown in Figure 2.5.9d. PSA concentrations range from 22 pM 

to 1 nM (or 0.7 to 33 ng/ml) with a log-scale mean of 117 pM (3.8 ng/ml) for prostate 

cancer patients. The estimated PSA concentrations for breast cancer patient sera has a 

mean of 9.1 pM. PSA readily differentiates between these two patient groups with good 

statistical accuracy (P = 0.0007). Nevertheless, the absolute PSA levels measured by 

either the standard ELISA or by the barcode assay are below those determined by the 

clinical ELISA—a likely result of sample degradation during storage (Figure 2.5.9c). As 

would be expected, neither TNF-α nor IL-1β allows prostate and breast cancer patients 

to be distinguished (P = 0.4 and 0.5, respectively at significance level 0.2). Our estimates 



37 

of absolute protein levels indicate that the protein concentration ranges assessed by the 

DEAL barcode assay are clinically relevant for patient diagnostics. For example, the 

serum level of cytokines such as interleukins and tumor necrosis factors can reach ~10–

100 pg/ml in cancer patients
25

, ~500 pg/ml in rheumatoid arthritis patients and 

41ng/ml
26

 in septic shock
27

. These levels can all be captured using the barcode assay 

format. 

 

We performed a complete nonsupervised clustering (that is, using only the levels of 

assayed proteins without assigning any weight factors) of patients and generated the 

heat map (Fig. 2.5.9e) to assess the potential of this technology for patient stratification. 

This analysis is only presented as a proof of principle. Nevertheless, the results are 

encouraging. For example, the measured profiles of breast cancer patients can be 

classified into three subsets—noninflammatory, IL-1β positive and TNF-α/GMCSF 

positive (PTNFα = 0.005, PGMCSF = 0.04 for the latter two subsets). The prostate cancer 

patient data were classified into two major subsets based upon the inflammatory 

protein levels (PTNFα = 0.016, PGMCSF = 0.012). The multiplexed measurement of 

cytokines
28

 is relevant to cancer diagnostics and prognostics
29,30

. Our results 

demonstrate that IBBCs can be applied to the multiparameter analysis of human health-

relevant proteins in serum. 

 

 

 



38 

2.2.4  Multi-parameter fresh blood analysis 

The ultimate goal behind developing the IBBC was to measure the levels of a large 

number of proteins in human blood within a few minutes of sampling that blood, to 

avoid the protein degradation that can occur when plasma is stored. In a typical 96-well 

plate immunoassay, the biological sample of interest is added, and the protein diffuses 

to the surface-bound antibody. Under adequate flow conditions, diffusion is no longer 

important, and the only parameter that limits the speed of the assay is the 

protein/antibody binding kinetics (the Langmuir isotherm)
31

, thus allowing the 

immunoassay to be completed in just a few minutes
32

. Flow through our plasma-

skimming channels proceeds at velocities >~0.1 mm sec
–1

 and can operate continuously 

and with near 100% efficiency unless the blood flow is clogged. 

 

For whole blood analysis, the microfluidic channels of IBBCs were precoated with bovine 

serum albumin blocking buffer. The DNA barcodes were transformed into antibody 

barcodes as described above, and blood samples were flowed into the device within 1 

min of fingerprick collection. The time from that fingerprick to completion of blood flow 

through the device was ~9 min. We sampled both as collected whole blood and protein-

spiked blood from healthy volunteers. Figure 2.5.10a shows the effective separation of 

plasma in an IBBC. The few red blood cells that did enter the plasma channels (Figure 

2.5.10a, right panel) did not affect the subsequent protein assay. 

 



39 

The plasma proteins detected in this whole-blood analysis experiment included a cancer 

marker (PSA), four cytokines and three other functional proteins (complement C3, C-

reactive protein (CRP) and plasminogen) involved in the complement system, 

inflammatory response, fibrin degradation and liver toxicity (Tables 2.6.1 and 2.6.2). 

After exposure of the barcode assay region to the separated, flowing plasma for 8 min, 

the detection antibody solution and the fluorescence probes were added to complete 

the assay. All proteins in the spiked blood were detected (Fig. 2.5.10b,c). Cytokines gave 

the strongest fluorescence signals because of higher affinities of their cognate 

antibodies. The measurement of the unspiked fresh blood established a baseline for a 

healthy volunteer, in which IL-6, IL-10, C3 and plasminogen were detected. Using IBBCs 

for the separation and analysis of very freshly collected blood consistently resulted in 

very clean DEAL barcodes, with little or no evidence of biofouling. We are planning a 

study to assess the importance of rapid measurements for obtaining accurate protein 

levels. 

 

 

2.3  Conclusions 

 

Our IBBC enables the rapid measurement of a panel of plasma proteins from a finger 

prick of whole blood. Integration of microfluidics and DNA-encoded antibody arrays 

enables reliable processing of blood and in situ measurement of plasma proteins within 

a time scale that is short enough to avoid most protein degradation processes that can 



40 

occur in sampled blood. Use of the IBBC represents a minimally invasive, low-cost and 

robust procedure, and potentially represents a realistic clinical diagnostic platform. 

 

 

2.4  Experimental Methods 

 

2.4.1 Micropatterning of barcode array.  

A PDMS mold containing 13–20 parallel microfluidic channels, with each channel 

conveying a different DNA oligomer as DEAL code, was fabricated by soft lithography. 

The PDMS mold was bonded to a polylysine-coated glass slide via thermal treatment at 

80 °C for 2 hours. The polyamine surfaces permit significantly higher DNA loading than 

do more traditional aminated surfaces. DNA ‘bars’ of 2 µm in width have been 

successfully patterned using this technique. In the present study, a 20-µm channel width 

was chosen because the fluorescence microarray scanner we used has a resolution of 5 

µm. Nevertheless, the current design already resulted in a DNA barcode array an order 

of magnitude denser than conventional microarrays fabricated by pin-spotting. The 

coding DNA solutions (A-M for the cancer serum test and AA-HH for the finger-prick 

blood test) prepared in 1x PBS were flowed into individual channels, and then allowed 

to evaporate completely. Finally, the PDMS was peeled off and the substrate with DNA 

barcode arrays was baked at 80 °C for 2–4 hours. The DNA solution concentration was 

~100 µM in all experiments except in the hCG test, leading to a high loading of ~6 x 10
13

 

molecules/cm
2
 (assuming 50% was collected onto substrate). 



41 

 

2.4.2 Fabrication of IBBCs.  

The fabrication of PDMS devices for the IBBCs was accomplished through a two-layer 

soft lithography approach. The control layer was molded from a SU8 2010 negative 

photoresist (~20 mm in thickness) silicon master using a mixture of GE RTV 615 PDMS 

prepolymer part A and part B (5:1). The flow layer was fabricated by spin-casting the 

pre-polymer of GE RTV 615 PDMS part A and part B (20:1) onto a SPR 220 positive 

photoresist master at 2,000 r.p.m. for 1 min. The SPR 220 mold was ~17 mm in height 

after rounding by thermal treatment. The control layer PDMS chip was then carefully 

aligned and placed onto the flow layer, which was still situated on its silicon master, and 

an additional 60 min thermal treatment at 80 °C was performed to enable bonding. 

Afterward, this two-layer PDMS chip was cut off the flow layer master and access holes 

were punched. Finally, the two-layer PDMS chip was thermally bonded onto the 

barcode-patterned glass slide, yielding a completed integrated blood barcode chip 

(IBBC). In this chip, the DEAL barcode stripes are oriented perpendicular to the 

microfluidic assay channels. Typically, 8–12 identical units were integrated in a single 

chip with the dimensions of 2.5 cm x 7cm. 

 

2.4.3 Clinical specimens of cancer patient sera.  

The stored serum samples from 11 breast cancer patients (all female) and 11 prostate 

cancer patients (all male) were acquired from Asterand. Nineteen out of 22 patients 



42 

were European-American and the remaining three were Asian, Hispanic and African-

American. The medical history is summarized in Supplementary Table 3. 

 

2.4.4 Collecting a finger prick of blood.  

The human whole blood was collected according to the protocol approved by the 

institutional review board of the California Institute of Technology. Finger pricks were 

performed using BD microtainer contact-activated lancets. Blood was collected with 

SAFE-T-FILL capillary blood collection tubes (RAM Scientific), which we prefilled with 80 

µl of 25 mM EDTA solution. A 10 µl volume of fresh human blood from a healthy 

volunteer was collected in an EDTA-coated capillary, dispensed into the tube, and 

rapidly mixed by inverting a few times. The spiked blood sample was prepared in a 

similar way except that 40 µl of 25mM EDTA solution and 

40 µl of recombinant solution were mixed and pre-added in the collection tube. Then 2 

µl of 0.5 M EDTA was added to bring the total EDTA concentration up to 25 mM. 

 

Execution of blood separation and plasma protein measurement using IBBCs. The IBBCs 

were first blocked with the buffer solution for 30–60 min. The buffer solution prepared 

was 1% wt/vol bovine serum albumin fraction V (Sigma) in 150 mM 1x PBS without 

calcium/magnesium salts (Irvine Scientific). The fluid loading was conducted using a 

Tygon plastic tubing that is interfaced to the IBBC inlet with a 23 gauge metal pin. The 

Fluidigm solenoid unit was exploited to control the pressure on/off for both control 

valves and flow channels. A pressure of 8–10 p.s.i. was applied to actuate the valves, 



43 

whereas the loading of fluid into assay channels was carried out with a lower pressure 

(0.5–3 p.s.i.) depending on the channel flow resistance and the desired flow rate. Then 

DNA-antibody conjugates (~50–100 nM) were flowed through the plasma assay 

channels for ~30–45 min. This step transformed the DNA arrays into capture-antibody 

arrays. Unbound conjugates were washed off by flowing buffer solution through the 

channels. At this step, the IBBC was ready for the blood test. Two blood samples 

prepared as mentioned above were flowed into the IBBCs within 1 min of collection. The 

IBBC quickly separated plasma from whole blood, and the plasma proteins of interest 

were captured in the assay zone where DEAL barcode arrays were placed. This whole 

process from finger-prick to plasma protein capture took <10 min. In the cancer-patient 

serum experiment, the as-received serum samples were flowed into IBBCs without any 

pre-treatment (that is, no purification or dilution). Afterwards, a mixture of biotin-

labeled detection antibodies (~50–100 nM) for the entire protein panel and the 

fluorescence Cy5-streptavidin conjugates (~100 nM) were flowed sequentially into IBBCs 

to complete the DEAL immunoassay. The unbound fluorescence probes were rinsed off 

by flowing the buffer solution for 10 min. At last, the PDMS chip was removed from the 

glass slide. The slide was immediately rinsed in 1/2x PBS solution and deionized water 

and then dried with a nitrogen gun. Finally, the DEAL barcode slide was scanned by a 

microarray scanner. 

 

 

 



44 

2.4.5 Quantification and statistics.  

All the barcode array slides used in quantification were scanned using an Axon Genepix 

4000B two-color laser microarray scanner at the same instrumental settings—100% and 

33% for the laser power of 635 nm and 532 nm, respectively. Optical gains are 800 and 

700 for 635 nm and 532 nm, respectively. The brightness and contrast were set at 87 

and 88. The output JPEG images were carefully skewed and resized to fit the standard 

mask design of barcode array. Then, an image processing software, NIH imageJ, was 

used to produce intensity line profiles of barcodes in all assay channels. Finally, all the 

line profile data files were loaded into a home-developed program embedded as an 

Excel macro to generate a spreadsheet that lists the average intensities of all 13 bars in 

each of 20 barcodes. The means and standard divisions were computed using the 

Microcal origin. Nonsupervised clustering of patients was performed using the literature 

methods and algorithms
33

. To assess the significance of two patient (sub)groups, 

Student t analysis was performed on selected proteins and all P-values were calculated 

at a significance level of 0.05, if not otherwise specified. 

 



45 

2.5  Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.1 (a) Scheme depicting plasma separation from a finger prick of blood by 

harnessing the Zweifach-Fung effect. Multiple DNA-encoded antibody barcode arrays 

are patterned within the plasma-skimming channels for in situ protein measurements. 

(b) DEAL barcode arrays patterned in plasma channels for in situ protein measurement. 

A, B, C indicate different DNA codes. (1)–(5) denote DNA-antibody conjugate, plasma 

protein, biotin-labeled detection antibody, streptavidin-Cy5 fluorescence probe and 

complementary DNA-Cy3 reference probe, respectively. The inset represents a barcode 

of protein biomarkers, which is read out using fluorescence detection. The green bar 

represents an alignment marker. 

 

 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.2 Cross-hybridization check for all 13 DNA oligomer pairs that were used  

for encoding the registry of antibody barcode arrays.  

 

 



47 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.3  Microchannel-guided  flow  patterning  of  DEAL  barcode  arrays.  (a) 

Depiction of the procedure.  Each DNA bar is 20 µm wide and spans the dimensions of 

the glass substrate. (b) Integration of a DEAL barcode-patterned glass slide with 

microfluidics for multiplexed protein assays.  (c) Mask design of a 13-channel barcode. 

A-M denotes the flow channels for the different DNA molecules.  (d) Validation of 

successful patterning of DNA molecules by specific hybridization of oligomer A  to  its  

fluorescent complementary strand A’. The primary strands B and C were pre-tagged 

with red and green dyes as references.   

 

 



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.4  Effects of polylysine coating on DEAL assay. (a) Schematic illustration of 

polylysine coating for increased loading of DNA oligomer codes. (b) Fluorescence images 

showing a comparative study of the measurement of three human cytokines (IFN-γ, 

TNF-α and IL-2) using substrates coated with amino-silane and polylysine, respectively.  

 

 

 

 



49 

 

 

 

Figure 2.5.5  Increased sensitivity observed in immunoassays run on DEAL barcode 

arrays. (a) Concentration-dependent fluorescence signal for the detection of three 

human cytokines (A: IFN-γ, B: TNF-α, C: IL-2, O: negative control) using a DEAL barcode 

array. The bar width is 20 µm.  (b)  Quantitation of fluorescence intensity vs. TNF-α 

concentration.  (c) Measurements of individual proteins, IFN-γ and IL-2, reveal no 

distinguishable cross-reactivity.  (d) Comparison of the microfluidics flow-patterned 

DEAL microarrays with DEAL microarrays patterned using a conventional DNA pin-

spotting method.  The spot size is ~150-200 µm.  (e) Fluorescence line profiles for the 

DEAL barcode array in a and the pin-spotted array in d at different protein 

concentrations.   The curves were amplified in the y-coordinates for better visualization.   



50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.6 (a) Fluorescence images of DEAL barcodes showing the measurement of a 

series of standard serum samples spiked with hCG. The bars used to measure hCG were 

patterned with DNA strand A at different concentrations. TNF-α encoded by strand B 

was employed as a negative control. The green bars (strand M) serve as references. (b) 

Quantification of the full barcodes for three selected samples. (c) Mean values of 

fluorescence signals corresponding to three sets of bars with different DNA loadings. 

Broken lines indicate the typical physiological levels of hCG in sera after 1 or 10 weeks of 

pregnancy. Error bars, 1 s.d. 

 

 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.7  Cross-reactivity check for all 12 proteins, for both barcode (left panel) and 

pin-spotted (right panel) microarrays. The green bars represent the reference 

stripe/spot – M. Each protein can be readily identified by its distance from the 

reference.  

 



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.8  Dilution curves for 12 proteins measured using DEAL-based barcodes 

entrained within microfluidics channels.  (a) Barcode images from one device showing 

minimal cross-talk, and a series of standard antigens ranging from 1nM to 1pM for all 12 

proteins (* the concentrations of PSA and TGF-β are 5x higher).  (b) Quantitation of 

fluorescence intensity vs. concentration for all 12 proteins.  Error bars: 1SD 



53 

 

 

 

Figure 2.5.9 (a) Layout of the barcode array used in this study. Green denotes the 

reference (strand M). (b) Representative fluorescence images of barcodes used to 

measure the cancer marker PSA and 11 cytokines from 22 cancer patient serum 

samples. B01–B11, samples from breast cancer patients; P01–P11, samples from 

prostate cancer patients. The left and right columns represent measurements on 

different chips. (c) Validation of PSA DEAL barcode measurement using ELISA. x denotes 

PSA measurements were not provided by the serum supplier. Error bars, 1 s.d. (d) 

Distribution of estimated concentrations of PSA, TNF-α and IL-1β in all serum samples. 

The horizontal bars mark the mean values. (e) Complete nonsupervised clustering of 

breast and prostate cancer patients on the basis of protein patterns. 



54 

 

 

 

 

 

 

 

 

 

Figure 2.5.10 (a) Optical micrographs showing the effective separation of plasma from 

fresh whole blood. A few red blood cells occasionally seen downstream of the plasma 

channels did not affect the protein assay. (b) Fluorescence image of blood barcodes in 

two adjacent microchannels of an IBBC, on which both the unspiked and spiked fresh 

whole blood collected from a healthy volunteer were separately assayed. Eight plasma 

proteins are indicated. All bars, 20 µm wide. (c) Fluorescence line profiles of the 

barcodes for both unspiked and spiked whole blood samples. The distance corresponds 

to the full length shown in b.      

              



55 

2.6  Tables 
 

 

 

 

 

  DNA Code   Human Plasma Protein       Abbreviation   

          

 Panel 1         

          

 A/A'  Interferon-gamma    IFN-γ   

 B/B'  Tumor necrosis factor-alpha   TNF-α   

 C/C'  Interleukin-2    IL-2  

 D/D'  Interleukin-1 alpha    IL-1α  

 E/E'  Interleukin-1 beta    IL-1β  

 F/F'  Transforming growth factor beta   TGF-β   

 G/G'  Prostate specific antigen (total)   PSA  

 H/H'  Interleukin-6    IL-6  

 I/I'  Interleukin-10     IL-10  

 J/J'  Interleukin-12    IL-12  

 K/K'  Granulocyte-macrophage colony stimulating factor GMCSF  

 L/L'  Monocyte chemoattractant  protein -1  MCP-1  

 M/M'  Blank control/reference      

                    

          

 Panel 2         

          

 AA/AA'  Interleukin-1 beta    IL-1β  

 BB/BB'  Interleukin-6    IL-6  

 CC/CC'  Interleukin-10     IL-10  

 DD/DD'  Tumor necrosis factor-alpha   TNF-α   

 EE/EE'  Complement Component 3   C3  

 FF/FF'  C-reactive protein    CRP  

 GG/GG'  Plasminogen    Plasminogen  

 HH/HH'  Prostate specific antigen (total)   PSA  

                    

  

 

Table 2.6.1  List of protein panels and corresponding DNA codes.  



56 

 

  Name   Sequence       Tm °C     

                 (50mM NaCl)    

          

 A   5'- AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA-3'   57.9  

 A'  5' NH3- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3'  57.2  

 B   5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3'   57.4  

 B'  5' NH3AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3'   55.9  

 C   5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3'  57.6  

 C'  5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 56.2  

 D   5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3'  56.5  

 D'  5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 55.7  

 E   5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3'  55.7  

 E'  5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 54.7  

 F   5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3'  56.9  

 F'  5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 56.1  

 G   5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3'   59.3  

 G'  5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3'  58.6  

 H   5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3'   59.9  

 H'    5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3'   60.8  

 I    5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3'   60.1  

 I'    5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3'   60.1  

 J    5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3'   56.5  

 J'    5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3'   57.5  

 K    5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3'   55.4  

 K'    5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3'   56.3  

 L'    5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3'   57.2  

 M    5'-Cy3-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3'   57.6  

 M'    5' NH3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3'   56.9  

 AA'    5' NH3-AAAAAAAAAAGTCACAGACTAGCCACGAAG-3'   58  

 BB    5'-AAA AAA AAA AGC GTG TGT GGA CTC TCT CTA-3'   58.7  

 BB'    5' NH3-AAA AAA AAA ATA GAG AGA GTC CAC ACA CGC-3'   57.9  

 CC    5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3'   56.5  

 CC'    5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3'   57.5  

 DD    5'-AAA AAA AAA AGA TCG TAT GGT CCG CTC TCA-3'   58.8  

 DD'    5' NH3-AAA AAA AAA ATG AGA GCG GAC CAT ACG ATC-3'   58  

      

 

 

 

Table 2.6.2  List of DNA sequences used for spatial encoding of antibodies (continued on 

next page). 



57 

 

  Name   Sequence       Tm °C     

                 (50mM NaCl)    

          

 EE    5'-AAA AAA AAA AGC ACT AAC TGG TCT GGG TCA-3'   59.2  

 EE'    5' NH3-AAA AAA AAA ATG ACC CAG ACC AGT TAG TGC-3'   58.4  

 FF    5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3'   60.1  

 FF'    5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3'   60.1  

 GG    5'-AAA AAA AAA ACT CTG TGA ACT GTC ATC GGT-3'   57.8  

 GG'    5' NH3-AAA AAA AAA AAC CGA TGA CAG TTC ACA GAG-3'   57  

 HH    5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3'   59.3  

 HH'    5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3'   58.6  

      

 

 

Table 2.6.2  List of DNA sequences used for spatial encoding of antibodies. 

 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6.3  Medical records of cancer patients. 



59 

2.7  References 

 

 

1 Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, 

character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845-867, (2002). 

2 Fujii, K. Clinical-scale high-throughput human plasma proteome clinical analysis: 

Lung adenocarcinoma. Proteomics 5, 1150-1159, (2005). 

3 Lathrop, J. T., Anderson, N. L., Anderson, N. G. & Hammond, D. J. Therapeutic 

potential of the plasma proteome. Curr. Opin. Mol. Ther. 5, 250-257, (2003). 

4 Chen, J. H. Plasma proteome of severe acute respiratory syndrome analyzed by 

two-dimensional gel electrophoresis and mass spectrometry. Proc. Natl. Acad. 

Sci. USA 101, 17039-17044, (2004). 

5 Hsieh, S. Y., Chen, R. K., Pan, Y. H. & Lee, H. L. Systematical evaluation of the 

effects of sample collection procedures on low-molecular-weight serum/plasma 

proteome profiling. Proteomics 6, 3189-3198, (2006). 

6 Sia, S. K. & Whitesides, G. M. Microfluidic devices fabricated in 

poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563-3576, 

(2003). 

7 Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. 

Science 290, 1536-1540, (2000). 

8 Huang, B. Counting low-copy number proteins in a single cell. Science 315, 81-84, 

(2007). 

9 Ottesen, E. A., Hong, J. W., Quake, S. R. & Leadbetter, J. R. Microfluidic digital 

PCR enables multigene analysis of individual environmental bacteria. Science 

314, 1464-1467, (2006). 

10 Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. Continuous particle separation 

through deterministic lateral displacement. Science 304, 987-990, (2004). 

11 Chou, C. F. Sorting biomolecules with microdevices. Electrophoresis 21, 81-90, 

(2000). 

12 Toner, M. & Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7, 77-103, 

(2005). 

13 Nagrath, S. Isolation of rare circulating tumour cells in cancer patients by 

microchip technology. Nature 450, 1235-1239, (2007). 

14 Yang, S., Undar, A. & Zahn, J. D. A microfluidic device for continuous, real time 

blood plasma separation. Lab Chip 6, 871-880, (2006). 

15 Svanes, K. & Zweifach, B. W. Variations in small blood vessel hematocrits 

produced in hypothermic rates by micro-occlusion. Microvasc. Res. 1, 210-220, 

(1968). 

16 Fung, Y. C. Stochastic flow in capilary blood vessels. Microvasc. Res. 5, 34-38, 

(1973). 

17 Bailey, R. C., Kwong, G. A., Radu, C. G., Witte, O. N. & Heath, J. R. DNA-encoded 

antibody libraries: a unified platform for multiplexed cell sorting and detection of 

genes and proteins. J. Am. Chem. Soc. 129, 1959-1967, (2007). 



60 

18 Boozer, C., Ladd, J., Chen, S. F. & Jiang, S. T. DNA-directed protein immobilization 

for simultaneous detection of multiple analytes by surface plasmon resonance 

biosensor. Anal. Chem. 78, 1515-1519, (2006). 

19 Niemeyer, C. M. Functional devices from DNA and proteins. Nano Today 2, 42-

52, (2007). 

20 Pirrung, M. C. How to make a DNA chip. Angewandte Chemie-International 

Edition 41, 1276-1289, (2002). 

21 Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860-867, 

(2002). 

22 Lin, W. W. & Karin, M. A cytokine-mediated link between innate immunity, 

inflammation, and cancer. J. Clin. Invest. 117, 1175-1183, (2007). 

23 De Marzo, A. M. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 

256-269, (2007). 

24 Ashton, H. & Telford, R. Smoking and carboxhemoglobin. Lancet 2, 857-858, 

(1973). 

25 Chopra, V., Dinh, T. V. & Hannigan, E. V. Serum levels of interleukins, growth 

factors and angiogenin in patients with endometrial cancer. J. Cancer Res. Clin. 

Oncol. 123, 167-172, (1997). 

26 Oncul, O., Top, C. & Cavuplu, P. Correlation of serum leptin levels with insulin 

sensitivity in patients with chronic hepatitis-C infection. Diabetes Care 25, 937, 

(2002). 

27 Pinsky, M. R. Serum cytokine levels in human septic shock: relation to multiple-

system organ failure and mortality. Chest 103, 565-575, (1993). 

28 Schweitzer, B. Multiplexed protein profiling on microarrays by rolling-circle 

amplification. Nat. Biotechnol. 20, 359-365, (2002). 

29 Lambeck, A. J. A. Serum cytokine profiling as a diagnostic and prognostic tool in 

ovarian cancer: A potential role for interleukin 7. Clin. Cancer Res. 13, 2385-2391, 

(2007). 

30 Gorelik, E. Multiplexed immunobead-based cytokine profiling for early detection 

of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 14, 981-987, (2005). 

31 Heath, J. R. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251-

265, (2008). 

32 Zimmermann, M., Delamarche, E., Wolf, M. & Hunziker, P. Modeling and 

optimization of high-sensitivity, low-volume microfluidic-based surface 

immunoassays. Biomed. Microdevices 7, 99-110, (2005). 

33 Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and 

display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA 95, 14863-

14868, (1998). 

 

 



61 

 

Chapter 3 

Chemistries for Patterning Robust DNA MicroBarcodes 

Enable Multiplex Assays of Cytoplasm Proteins from 

Single Cancer Cells 

 

 

3.1  Introduction 

 

The demand for parallel, multiplex analysis of protein biomarkers from ever smaller 

biospecimens is an increasing trend for both fundamental biology and clinical 

diagnostics1-3. The most highly multiplex protein assays rely on spatially encoded 

antibody microarrays4-6, and small biospecimens samples are now routinely 

manipulated using microfluidics approaches. The integration of antibody microarray 

techniques with microfluidics chips has only been explored relatively recently. One 

challenge arises from the relative instability of antibodies to microfluidics fabrication 

conditions. In recent years, several groups have devised methods to transform standard 

DNA microarrays in situ into protein microarrays and cell-capture platforms7-12. These 

approaches capitalize on the chemical robustness of DNA oligomers, and the reliable 

assembly of DNA-labeled structures via complementary hybridization. Recently, Fan et 

al. utilized a microfluidics-based flow patterning technique to generate DNA barcode-



62 

type arrays at 10× higher density than standard, spotted microarrays13. The DNA 

barcodes were converted into antibody arrays using the DNA-encoded antibody library 

(DEAL) technique, and then applied towards the measurement of a highly multiplex 

panel of proteins from a pinprick of whole blood. 

 

A second challenge involves scaling such miniaturized DNA microarrays so that a large 

surface area can be encoded. This problem is non-trivial, as it involves identifying 

chemistries for patterning 10−5 m wide, 1 m long strips of biomolecules with a 

uniformity that permits those patterns to be utilized in hundreds to thousands of 

quantitative protein assays per chip. Herein, we explore the surface chemistry 

associated with microfluidics-based flow patterning of DNA barcodes, with an eye 

towards producing highly reproducible and robust barcodes. We then apply the 

optimized chemistry towards assaying a panel of cytoplasmic proteins from single cells. 

 

We explore three different flow patterning surface chemistries: two rely upon the 

electrostatic adsorption of DNA onto a poly-L-lysine (PLL) surface, and the third utilizes 

flow patterning of dendrimers onto aminated glass substrates, followed by covalent 

attachment of DNA oligomers onto the dendrimer scaffolds. For the electrostatic 

adsorption cases, we investigate, using both theory and experiment, the role that 

counterions play in flow patterning within the confined dimensions of a microfluidic 

channel, and we find that solvent mixtures which associate counterions more strongly 

to the negatively charged DNA oligomers yield more reproducible and robust barcodes. 



63 

We then demonstrate the utility of the best flow patterning chemistry by combining it 

with DEAL to construct antibody barcodes for quantitatively assaying a panel of 

phosphorylated proteins, associated with oncogenic pathways, from single cells that are 

representative of the brain cancer glioblastoma multiforme (GBM). 

 

 

3.2  Results and Discussion 

 

3.2.1  Device design and functionalization schemes 

The microfluidics flow patterning chip is comprised of a patterned polydimethylsiloxane 

(PDMS) layer adhered to an aminated or PLL-coated glass substrate that provides the 

base surface for the microchannels. The microchannels are long (about 55 cm), 

meandering channels that span ca. 0.85 cm2 of our substrate, and are used to pattern a 

DNA barcode over most of the glass surface (Figure 3.5.1b). After the flow patterning is 

completed, the PDMS layer is replaced with a second micropatterned PDMS layer that is 

designed to support a biological assay, such as the previously reported blood 

proteomics chip13, or the single-cell proteomics chips utilized herein. For the 

microfluidic patterning method to be useful, it must generate a DNA barcode that 

exhibits high and uniform DNA loading over the entire substrate. We evaluated the 

patterning chemistries illustrated in Figure 3.5.1a, Schemes 1–3. Schemes 1 and 2 are 

drawn from the conventional protocol for pin-spotted microarrays—a solution 

containing the DNA is introduced, the solvent is evaporated, and subsequent thermal or 



64 

UV treatment is employed to cross-link the deposited DNA to the substrate. In Scheme 1 

ssDNA oligomers dissolved in phosphate-buffered saline (PBS) are utilized, whereas in 

Scheme 2 ssDNAs in a 1:1 mixture of 1×PBS and dimethyl sulfoxide (DMSO) are 

employed. DMSO is used in conventional microarray preparation to improve feature 

consistency by reducing the rate of solvent evaporation and by denaturing the 

DNA14 although, as described below, its role in this process is different. In Scheme 3 a 

covalent immobilization method based upon a dendrimer scaffold is 

utilized15. Poly(amidoamine) (PAMAM) dendrimers (generation 4.5, carboxylate surface) 

have previously shown promise as DNA and protein microarray substrates. Dendrimers 

do not form entangled chains16 and because harsh crosslinking procedures are avoided, 

dendrimer-immobilized DNA retains high accessibility and activity in microarray 

applications. Moreover, the highly branched structure of the dendrimers provides a high 

density of reactive sites for surface attachment and for DNA coupling, thus leading to a 

high overall binding capacity. For all cases, a high level of DNA loading has been shown 

to decrease non-specific binding when compared to standard microarray substrates10,17-

19.  

 

Figure 3.5.1b (top) shows the PDMS chip design used for barcode patterning. Thirteen 

discrete channels (for a thirteen-element barcode) allow for a multiplex microarray. We 

loaded five adjacent channels according to Scheme 1, skipped three channels, and then 

loaded the remaining five channels according to Scheme 2. The use of fluorescently-

tagged DNA permitted measurements of the DNA distribution within each individual 



65 

channel immediately after introducing the solutions. Figure 3.5.1b demonstrates a clear 

difference in aqueous DNA distribution across the chip: DNA loaded according to 

Scheme 1 (outer five channels) is notably lower in concentration near the middle of the 

chip (Figure 3.5.1b, Region 2) and is barely detectable near the channel exit 

(Figure 3.5.1b, Region 1). Conversely, DNA loaded according to Scheme 2 (inner five 

channels) presents an even, consistent distribution across the entire chip. Notably, 

Scheme 1 yields a relatively higher fluorescence intensity at the input side of the chip. 

These results clearly indicate that, for Scheme 1, the ssDNA oligomers are accumulating 

upstream during the early stages of flow, and so are depleted from the advancing 

solution by the time it reaches mid-chip. The actual patterning of the glass substrate 

occurs when solvent is evaporated (Figure 3.5.2). Indeed, the final patterning results 

after solvent evaporation and cross-linking (Figure 3.5.1c, top) reflect the trend 

established by the aqueous fluorescence images; Scheme 2 produces uniform DNA 

barcodes across the substrate, while Scheme 1 does not. 

 

3.2.2 DMSO mechanism and simulations 

In order to understand the difference in patterning uniformity between Schemes 1 and 

2, we considered the electrostatic environment for each case. As depicted in 

Figure 3.5.3a, the PDMS side walls carry a slightly negative zeta potential, whereas the 

PLL surface has a strong positive zeta potential20. When the ssDNA solution in Scheme 1 

is introduced to the channel, ssDNA near the PLL matrix is electrostatically immobilized, 

thereby generating a concentration gradient21. As the solution flows towards the 



66 

channel exit, the ssDNA oligomers are continually depleted via deposition onto the PLL 

surface. Figure 3.5.3b shows the results from a rough simulation designed to capture 

the mean concentration of aqueous ssDNA as the solution traverses a channel. The 

simulation implies that the effect of electrostatic adsorption proves dominant even at 

high DNA concentrations, a result that agrees well with the observed behavior for 

Scheme 1 in Figure 3.5.1b. A detailed description of the model and assumptions 

employed can be found in the Supporting Information. We tested this model via the 

strong negative charging of all four channel surfaces via O2 plasma treatment. 

Consistent with the model, both Schemes 1 and 2 exhibited equivalently uniform 

distribution of fluorescence intensity across the chip (Figure 3.5.4b). We note that lack 

of the positive charges on the bottom surface failed to hold DNAs during the drying 

procedure and that the plasma treatment induces the irreversible bonding of PDMS and 

glass, which limits further use beyond this experimental test. 

 

The results from Schemes 1 and 2 imply that DMSO alleviates the electrostatic 

adsorption effect. In order to understand this more fully, we performed molecular 

dynamics (MD) simulations of DNA in PBS and PBS/DMSO solutions; 3 ns of NPT [NPT is 

a simulation in which number of moles (N), pressure (P) and temperature (T) are held 

constant]. The MD simulations were performed with the last 1 ns trajectory used for 

analysis. We examined the radial distribution function of phosphorous atoms in the DNA 

backbone with respect to various elements of the surrounding solvent. For example, the 

radial distribution function of P and the O atom of a water molecule is virtually 



67 

unperturbed by the addition of DMSO (Figure 3.5.5). Consequently, it is unsurprising 

that the radial distribution function of P and the S atom of DMSO (Figure 3.5.3c, black 

solid line) reveals that DMSO is not forming a solvation structure with the DNA 

backbone. However, Figure 3.5.2c demonstrates a clear interaction between P and 

Na+ ions, which delineates into two well-defined shell structures: the first is located 

at r<4.3 Å while the second is located at 4.3 Å<r<6.6 Å. These are similar to the locations 

of the first and the second water solvation structures. By integrating the radial 

distribution functions, we determined the number of molecules per phosphate in the 

first and second shells for both PBS and PBS/DMSO solutions. Although the number H2O 

molecules per shell is virtually independent of DMSO, DMSO does significantly increase 

the number of Na+ ions in the first shell (from 0.14 to 0.24), and it decreases the number 

of Na+ ions in the second shell (from 0.61 to 0.34). Conversely, the number of DMSO 

molecules is almost zero in the first shell (0.01) but becomes significant in the second 

shell (0.20). Thus, we conclude that DMSO, with a lower dielectric constant relative to 

water (47.2 vs 80), destabilizes the solvation energy of Na+ in the second shell. This 

thermodynamic change prompts the sodium ions to move to the first shell where they 

are stabilized by electrostatic interactions with the negatively charged phosphate 

groups. The increased number of sodium ions near the DNA backbone screens the 

negative charges of phosphate groups more efficiently, thereby reducing electrostatic 

interactions of the DNA with the PLL surface, resulting in uniform DNA distribution 

throughout the channels. Although the addition of DMSO to DNA patterning solutions 

yields the same ultimate effect for both traditional spotted arrays and microfluidics-



68 

patterned barcodes, the underlying mechanisms are completely different. We conclude 

that Scheme 2 is intrinsically superior relative to Scheme 1. 

 

3.2.3  Covalent attachment mechanism and comparision 

We now turn towards analyzing Scheme 3, and comparing it against Scheme 2. For this 

scheme, the PAMAM dendrimers are first covalently attached to the aminated glass 

surface, and then (aminated) ssDNA oligomers are covalently attached to the 

dendrimers. The lack of a solvent evaporation step makes Scheme 3 significantly more 

rapid than Scheme 2. We flowed activated PAMAM dendrimers, followed by aminated 

ssDNA, through ten microfluidic channels (Figure 3.5.1b). Note that the aqueous DNA 

distribution is expected to be uniform because the substrate surface is comprised of 

charge-neutral N-hydroxysuccinimide (NHS)-modified carboxylates which minimize 

electrostatic interactions. The resulting DNA microarray was assayed for uniformity with 

complementary DNAs labeled with Cy3-fluorophores. Visual analysis indicates good 

uniformity across the chip (Figure 3.5.1c, bottom). In order to quantify the patterning 

quality for all three schemes, we obtained signal intensities for each channel at sixteen 

locations within the patterning region and calculated the coefficient of variation (CV). 

The CV is defined as the standard deviation divided by the mean and expressed as a 

percentage. CVs for Schemes 1, 2, and 3 registered 69.8%, 10.5%, and 10.9%, 

respectively. Thus, we conclude that Schemes 2 and 3 offer consistent DNA loading 

across the entire substrate. 

 



69 

Having established that Schemes 2 and 3 produce consistent, large-scale DNA barcodes, 

we then extended our analysis of array consistency to protein measurements. We 

previously demonstrated that, when using the DEAL platform for multiplex protein 

sensing in microfluidics channels, the sensitivities of the assays directly correlate with 

the amount of immobilized DNA13, up to the point where the DNA coverage is saturated. 

We performed multiple protein assays along the length of our DNA stripes to ensure 

that the results described above would translate into stable and sensitive barcodes for 

protein sensing. All protein assays were performed in microfluidic channels which were 

oriented perpendicular to the patterned barcodes (five channels for Scheme 2 and four 

channels for Scheme 3). This allowed us to test distal microarray repeats with a single 

small analyte volume. For barcodes prepared using Scheme 2, we utilized the DEAL 

technique to convert them into antibody barcodes designed to assay the following 

proteins: phosphorylated (phospho)-steroid receptor coactivator (Src), phospho-

mammalian target of rapamycin (mTOR), phospho-p70 S6 kinase (S6K), phospho-

glycogen synthase kinase (GSK)-3α/β, phospho-p38α, phospho-extracellular signal-

regulated kinase (ERK), and total epidermal growth factor receptor (EGFR) at 10 

ng/mL−1 and 1 ng/mL−1 concentrations. This panel samples key nodes of the 

phosphoinositide 3-kinase (PI3K) signaling pathway within GBM, and are used below for 

single-cell assays22. For barcodes prepared using Scheme 3, we similarly converted the 

DNA barcodes into antibody barcodes designed to detect three proteins [interferon 

(INF)-γ, tumor necrosis factor (TNF)α, and interleukin (IL)-2] at 100 ng/mL−1 and 10 

ng/mL−1. All the DNAs used were pre-validated for the orthogonality in order to avoid 



70 

cross-hybridization and the sequences can be found in Table 3.6.1. The detection 

scheme is similar to a sandwich immunoassay. Captured proteins from primary 

antibodies were fluorescently visualized by biotin-labeled secondary antibodies and 

Cy5-labeled streptavidin. For both cases, data averaged from multiple DNA repeats 

across the chip yielded CVs that were commensurate with those of the underlying DNA 

barcodes (from 10 ng/mL−1 concentration, 7% for scheme 2 and 17% for Scheme 3, 

respectively). Figure 3.5.6 shows line profiles of the signal intensities along with the raw 

data, and demonstrate a better uniformity for barcodes prepared according to Scheme 

2. While we found that Scheme 3 could produce barcodes that were close in quality to 

those of Scheme 2, the absolute (chip-to-chip) consistency of Scheme 3 is hard to 

guarantee due to its use of the unstable coupling reagents 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and NHS23. Moreover, although Scheme 3 is 

faster, the detailed procedure itself is more labor-intensive. Scheme 2 can potentially be 

automated. Thus, we chose Scheme 2 as the preferred barcode patterning method. 

With Scheme 2 , over 90% of the patterned slides showed good quality for the test. 

 

 

 

3.2.4  Single cell assays 

We validated the use of the antibody barcodes by applying them towards the multiplex 

assay of cytoplasmic proteins from single cells. There is a significant body of evidence 

that demonstrates that genetically identical cells can exhibit significant functional 



71 

heterogeneity—behavior that cannot be captured by proteomics techniques that 

average data across a population24. We therefore designed a highly parallel microfluidic 

device capable of isolating single/few numbers of cells in chambers with a full 

complement of antibody barcodes designed to detect intracellular proteins (Figure S5, 

Supporting Information). Figure 3.5.7a shows a schematic of the device and the DEAL-

based protein detection scheme. The small chamber size keeps the finite number of 

protein molecules concentrated, thereby enhancing sensitivity. Assaying such a panel of 

proteins would not be possible without a high density antibody array, such as the 

barcodes utilized herein, for the following reasons. First, all the barcodes should fit into 

such a small chamber for multiplexing. Second, since data averaging in such a spatially-

constrained scheme is impractical, it is critical to have consistent DNA loading across the 

microrarray if data comparisons are to be meaningful. 

 

We chose the U87 GBM cell line as a model system for our platform. GBM is the most 

common malignant brain tumor found in adults, and is the most lethal of all cancers. As 

the name implies, GBM exhibits extensive biological variability and heterogeneous 

clinical behavior25. EGFR is an important GBM oncogene and therapeutic target26. Thus, 

we assayed for eleven intracellular proteins associated with the EGFR-activated PI3K 

signaling pathway. We provide representative sets of data for protein detection from 

the lysate of one to five cells (Figures 3.5.7b and c). Eight proteins were detected from 

single-cell lysate and up to nine proteins were detected from five cells when using 

barcodes patterned by Scheme 2 (Figures 3.5.7b,d), whereas only one protein could be 



72 

detected from barcodes prepared by Scheme 1 (Figure 3.5.7c). All the separate protein 

assays were screened for cross-reactivity (Figure 3.5.8), and, for the cases where 

recombinant proteins were available, quantitation curves for each protein assay were 

measured (Figure 3.5.9). More detailed statistical analysis of these cells, as well as 

genetic variants thereof, is currently being investigated. 

 

 

3.3  Conclusions 

 

We identified a protocol for generating high-quality, high-density DNA barcode patterns 

by comparing three microfluidics-based patterning schemes. We find, through both 

experiment and theory, that the electrostatic attractions between positively-charged 

PLL substrates and the negatively-charged DNA backbone induces significant non-

uniformity in the patterning process, but that those electrostatic interactions may be 

mediated by adding DMSO to the solution, resulting in uniform and highly reproducible 

barcodes patterned using ~55 cm long channels that template barcodes across an entire 

2.5 cm wide glass slide. Dendrimer-based covalent immobilization also yields good 

ultimate uniformity, but is hampered by a relatively unstable chemistry that limits run-

to-run reproducibility. DNA barcodes were coupled with the DEAL technique to generate 

antibody barcodes, and then integrated into specifically designed microfluidic chips for 

assaying cytoplasm proteins from single and few lysed U87 model cancer cells. 



73 

Successful detection of a panel of such proteins represents the potential of our platform 

to be applied to various biological and, perhaps, clinical applications. 

 

3.4  Experimental Section 

 

3.4.1 Microfluidic chip fabrication for DNA patterning. 

Microfluidic-patterning PDMS chips were fabricated by soft lithography. The master 

mold was prepared using either a negative photoresist, SU8 2010, with 

photolithography or an etched silicon mold generated by a deep reactive ion etching 

(DRIE) process. The mold has long meandering channels with a 20×20 μm cross section. 

The distance from channel to channel is also 20 μm, which generates 10× higher density 

than standard, spotted microarrays. Sylgard PDMS (Corning) prepolymer and curing 

agent were mixed in a 10:1 ratio (w/w), poured onto the mold, and cured (80°, 1 hour). 

The cured PDMS slab was released from the mold, inlet/outlet holes were punched, and 

the device was bonded onto a PLL coated (C40–5257M20, Thermo scientific) or 

aminated glass slide (48382–220, VWR) to form enclosed channels. The number of 

microfluidic channels determines the size of the microarray; 13 parallel microchannels 

were used in this study. 

 

 

 



74 

3.4.2  Patterning of DNA barcode arrays. 

For the DNA filling test, a 30-mer DNA oligomer labeled with Cy3 fluorescence tag on 

the 5’ end (5’-/Cy3/-AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3’) in a 1:1 mixture 

(v/v) of 1×PBS buffer and DMSO or a 1:1 mixture (v/v) of 1×PBS buffer and deionized 

(DI) water was used. The final DNA concentration was 2.5 μM. DNA solution was pushed 

into the channel under a constant pressure (2.5 psi). Immediately after the channels 

were fully filled, fluorescence images were obtained by confocal microscopy. 

 

Dendrimer-based microarrays were prepared using aminated substrates. Generation 4.5 

Poly(amidoamine) (PAMAM) dendrimers (470457–2.5G, Aldrich), 5% wt in MeOH, were 

mixed 1:1 (v/v) with EDC/NHS (0.2M) in MES buffer (0.1M, pH 6.0). After 5 min of 

incubation, the activated dendrimers were introduced to the microfluidic channels, and 

allowed to flow (2 h). Following a brief MeOH rinse to remove unbound dendrimers, the 

channels were filled with EDC/NHS (0.2M) in MES (0.1M, pH 5.3) with NaCl (0.5M). After 

0.5 h, 5’ aminated DNA sequences in 1×PBS (200 μM) were introduced to the channels 

and allowed to flow (2 h). Thereafter, the microfluidic device was removed from the 

substrate, and the latter was rinsed copiously with DI water. Prepared substrates that 

were not used immediately were stored in a desiccator. 

 

To generate the DNA barcode array for multi-protein detection and single-cell lysis test, 

13 orthogonal DNA oligomer solutions (sequences are provided in Table 3.6.1) in 1×PBS 

buffer (400 μM) were mixed with DMSO (in 1:2 ratio, v/v) and flowed into each of the 



75 

microfluidic channels (Scheme 2 ). For Scheme 1 , DNA solutions in 1×PBS buffer were 

used. The DNA-filled chip was placed in a desiccator until the solvent evaporated 

completely, leaving only DNA molecules behind. Finally, the PDMS elastomer was 

removed from the glass substrate and the microarray-patterned DNAs were cross-linked 

to the PLL by thermal treatment (80°C, 4 h). The slide was gently rinsed with DI water 

prior to use in order to remove salt crystals remaining from the solution evaporation 

step. 

 

3.4.3 Microfluidic chip fabrication for multi-protein detection.  

The PDMS microfluidic chip for the cell experiment was fabricated by two-layer soft 

lithography27. A push-down valve configuration was utilized with a thick control layer 

bonded together with a thin flow layer. The molds for the control layer and the flow 

layer were fabricated with SU8 2010 negative photoresist (~20 μm thickness) and SPR 

220 positive photoresist (~18 μm), respectively. The photoresist patterns for the flow 

layer were rounded via thermal treatment. The thick control layer was molded with a 

5:1 mixture of GE RTV 615 PDMS prepolymer part A and part B (w/w) and the flow layer 

was formed by spin-coating a 20:1 mixture of GE RTV 615 part A and part B (w/w) on the 

flow layer mold (2000 rpm, 60 sec). Both layers were cured (80°C, 1 hour), whereupon 

the control layer was cut from its mold and aligned to the flow layer. An additional 

thermal treatment (80°C, 1 hour) ensured that the two layers bonded into a monolithic 

device, which was then peeled from its mold and punched to create appropriate access 



76 

holes. Finally, the PDMS chip was thermally bonded to the DNA microbarcodes-

patterned glass slide to form the working device. 

 

3.4.4 Cell culture. 

The human GBM cell line U87 was cultured in DMEM (American Type Culture Collection, 

ATCC) supplemented with 10% fetal bovine serum (FBS, Sigma–Aldrich). U87 cells were 

serum-starved for 1 day and then stimulated by EGF (50 ng/mL−1, 10 min) before they 

were introduced into the device. 

 

3.4.5 Multi-protein detection.  

Protein detection assays were initiated by blocking the chip with 3% bovine serum 

albumin (BSA) in PBS to prevent non-specific binding. This 3% BSA/PBS solution was 

used as a working buffer for most subsequent steps. After blocking, a cocktail containing 

all eleven (Scheme 2 ) or three (Scheme 3 ) DNA–antibody conjugates (~0.5 μg/mL−1, 100 

μL) in working buffer was flowed through the micro channels for 1 h. The unbound 

DNA–antibody conjugates were washed away with fresh buffer. Then, target proteins 

were flowed through the microfluidic channels for 1 hour. These were followed by a 200 

μL cocktail containing biotin-labeled detection antibodies (~0.5 μg/mL−1) in working 

buffer, and thereafter a 200 μL mixture of 1 μg/mL−1 Cy5-labeled streptavidin and 25 

nMCy3-labeled M’ ssDNA in working buffer to complete the immune sandwich assay. 

DNA sequence M is used for a location reference. The microchannels were rinsed with 

working buffer once more before the PDMS chip was removed; the bare microarray 



77 

slide was rinsed sequentially with 1×PBS, 0.5×PBS, DI water, and was finally subjected to 

spin-drying. 

 

3.4.6  On-chip cell lysis and multiplexed intracellular protein profiling from single cells. 

The multi-protein detection procedure described above was slightly modified for 

intracellular protein profiling experiments. Again, the chip was initially blocked with a 

3% BSA/PBS working buffer, followed by a 200 μL cocktail containing all eleven DNA–

antibody conjugates (~0.5 μg/mL−1, Table 3.6.2) in working buffer (continuously flowed 

for 1 h). Unbound DNA-antibody conjugates were washed off with fresh buffer. The lysis 

buffer (Cell Signaling) was loaded into the lysis buffer channels while valve 1 (V1 in 

Figure 3.5.7a) was kept closed by applying 15–20 psi constant pressure. Then, cells were 

introduced to the cell loading channels and microfluidic valves (V2 in Figure 3.5.7a) were 

closed by applying 15–20 psi constant pressure; this converts the eight channels into 

120 isolated microchamber sets. After cell numbers were counted under microscope, V1 

valves were released to allow diffusion of lysis buffer to the neighboring microchamber 

containing different numbers of cells. The cell lysis was performed on ice for two hours. 

After that, the V2 valves were released and the unbound cell lysate was quickly 

removed by flowing the fresh buffer. Then, a cocktail containing biotin-labeled detection 

antibodies (~0.5 μg/mL−1, 200 μL) in working buffer was flowed into the chip for 1 h on 

ice, followed by flowing a 200 μL mixture of Cy5-labeled straptavidin (1 μg/mL−1) and 

Cy3-labeled M’ ssDNA (25 nM) in working buffer to complete the sandwich 

immunoassay. Finally, the microchannels were rinsed with working buffer, the PDMS 



78 

chip was removed, and the bare microarray slide was rinsed sequentially with 1×PBS, 

0.5×PBS, DI water, before spin-drying. The layout of the chip and used inlets for 

different solutions were described in Figure S5. 

 

 

 

3.4.7  Data analysis.  

The microarray slide was scanned with the GenePix 200B (Axon Instruments) to obtain a 

fluorescence image of both Cy3 and Cy5 channels. All scans were performed with the 

same setting of 50% (635 nm) and 15% (532 nm) laser power, 500 (635 nm) and 450 

(532 nm) optical gain. The averaged fluorescence intensities for all barcodes in each 

chamber were obtained and matched to the cell number by custom-developed Excel or 

MATLAB codes. 

3.4.8  Molecular dynamic simulations. 

The MD simulations were performed with the all-atom AMBER2003 force field28,29 using 

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code30. As an 

initial structure, a single strand of DNA (5’-ACCCATGGAGCATTCCGGG-3’) whose base 

pairs were randomly chosen was built using Namot2 program31. Near the DNA strand, 

19 sodium counter ions were included to neutralize the negatively charged 19 

phosphate groups on the DNA backbone. Then, this is immersed in a solvation box 

composed of either 1) 5206 water molecules+106 DMSO molecules or 2) only 5206 

water molecules. We used TIP4P model to describe the water interactions32. We 



79 

performed 3 ns NPT MD simulations using Nosé–Hoover thermostat with a damping 

relaxation time of 0.1 ps and Andersen–Hoover barostat with a dimensionless cell mass 

factor of 1.0. The last 1 ns trajectory is employed for the analysis. To compute the 

electrostatic interactions, the particle-particle particle-mesh method33 was employed 

using an accuracy criterion of 10−4. 

 



80 

 

3.5 Figures 
 

 

 

 

 
  
 
Figure 3.5.1 (a) Surface treatment schemes. (b) Design of the DNA patterning device 
(top) and fluorescence image of DNAs filled into the channel (still in solution). Outer five 
channels are filled with DNAs in 1:1 mixture of PBS and water (Scheme 1). Inner five 
channels are filled with DNAs in 1:1 mixture of PBS and DMSO (Scheme 2). Three 
channels in between are left empty for visualization. (c) Fluorescence images of 
patterned DNAs by three Schemes.  



81 

 
 
 
 
 
 
 

 
 

 

Figure 3.5.2 The microfluidic flow-patterning process to form the DNA barcodes.  As 
solvent evaporates through the PDMS elastomer, the concentration of the DNA 
oligomer solution increases. The oligomers are eventually deposited on the 
microchannel surfaces.  (a)  Fluorescence images of DNA solutions during the drying 
process for Schemes 1 and 2, in the region of the receding meniscus, and near the outlet 
(left) and inlet (right) sides of the microchannel. Note that, at the inlet side,  the 
fluorescence intensity near the receding meniscus is very high – evidence of the high 
local concentration of DNA due to solvent evaporation. The channel filled according to 
Scheme 1 exhibits no significant DNA near the channel outlet due to excessive 
electrostatically-driven depletion near the inlet side.  The red arrow indicates the 
location of the meniscus.  (b) Schematics for the drying process with different local 
concentrations. A high local concentration is required to achieve suitable DNA loading 
on the substrate.  



82 

 
 
 
 
 
 
 

 
 
 
Figure 3.5.3 Electrostatic adsorption of DNAs on PLL surface and DMSO effect. (a) 
Schematic figure of the filling step. (b) Simulation result of electrostatic adsorption of 
DNAs to PLL surface. (c) Molecular simulation of DMSO effect: the radial distribution 
function of P atom of the phosphate group and the sodium ions. The presence of DMSO 
pumps sodium ions from the 2nd shell to the 1st shell (arrow). (d) Schematics for DMSO 
effect. Green circles represent sodium ions. 



83 

 
 
 
 
 
 
 

 
 

 

 

Figure 3.5.4  Results from experiments designed to more fully understand the effect of 
electrostatic adsorption of DNA within the microchannels during flow patterning. (a) 
Measurements of the flow speed of PBS solution of DNA oligomers  (Scheme 1) and 
PBS/DMSO solution  (Scheme 2) in the microfluidic channels. The filling process was 
optically monitored and recorded as a movie. The speed was calculated when the flow 
makes the fifth turn in the channel. The filling speed for Scheme 2 was less than that of  
Scheme 1, an observation that is attributable to the differential channel wetting 
between the two schemes (inset). The wetting of the PBS/DMSO Scheme 2 fluid was  
significantly better, a factor that minimizes bubble formation in the channel during the 
drying step. (b) Fluorescence images of DNA patterned within the microchannels of an 
O2 plasma treated bare glass/PDMS device. The highly negative surface induced by 
plasma treatment minimizes electrostatic adsorption of DNA, resulting in uniform DNA 
distribution for both Scheme 1 and Scheme 2. The PDMS was solvent extracted just 
prior to bonding in order to prolong its hydrophilicity following plasma treatment.  
Panels 1, 2, and 3 represent different locations in the flow patterning device.  



84 

 
 
 
 
 
 
 

 
 
Figure 3.5.5  Molecular simulation result of the influence of DMSO in the Scheme 2 
process. The radial distribution function of the P atom of the phosphate group of the 
DNA backbone and O atom of the water molecule is not influenced by the presence of 
DMSO. 



85 

 
 
 
 
 
 
 
 

 
  
 
Figure 3.5.6 Raw data extracted from multi-protein calibration experiments performed 
on a substrate prepared by Scheme 2 (a) and Scheme 3 (b). Signal intensity profiles 
sampled from one analysis channel per concentration are quantified in white. Scale bar: 
2 mm. 



86 

 
 
 
 
 
 
 

 

 

 
 
  
Figure 3.5.7 A schematic representation of the single-cell, intracellular protein analysis 
device. Single or few cells are incubated in an isolated chamber under varying stimuli. 
Intracellular proteins are assayed by introducing a pre-aliquoted lysis buffer, whereupon 
the released proteins bind to the DEAL (DNA-labeled antibody) barcode within the 
chamber. The benefits of utilizing a high-quality barcode are apparent when comparing 
data between substrates patterned using Scheme 2 (b) and substrates patterned using 
Scheme 1 (c). Protein names listed in red font correspond to those which were detected 
using Scheme 2 barcodes.  
 



87 

 
 
 
 
 
 
 

 
 
 
Figure 3.5.8 Antibody cross-reactivity tests. All antibodies were pre-selected based on 
such cross-reactivity tests. A pin-spotted DNA microarray was used for a DEAL-based 
protein detection approach - similar to the assays used within the SCBC microfluidic 
devices for single cell proteomics. Each row shows the results from different conditions. 
For all conditions, the same cocktail of DEAL conjugates was used, and included one 
conjugate for each of the 11 proteins assayed. For each row, only one target 
recombinant protein was tested.  The target proteins were introduced at concentrations 
between 5-50 ng/mL, depending on the sensitivity of each antibody pair.  Red spots are 
signals from the target proteins and the green spots are reference signals from Cy3-
labeled DNA sequence M‘. Phospho-VEGFR2 was not validated because the 
recombinant protein is not commercially available.   
 



88 

 

 
 
 

Figure 3.5.9 Calibration data for proteins in the panel.  (a) Representative scanned 
images showing serial dilution measurements of selected proteins. Recombinant  
proteins were serially diluted (50 ng/mL, 10 ng/mL, 1 ng/mL, 100 pg/mL, 10 pg/mL and 0 
pg/mL) in 1X PBS and flowed into  the different microchannels of the microfluidic device 
for cell lysis analysis. Valves were immediately closed to compartmentalize standard 
proteins into microchambers followed by on-chip lysis buffer diffusion on ice for 2 hr. (b) 
Calibration curves of EGFR, p-ERK, p-p38α, p-GSK3α/β, p-p70S6K, p-mTOR and p-Src are 
plotted based on the results from a) to demonstrate the quantitative characteristics of 
the analysis. The sensitivities identified from the calibration curves are similar to 
standard ELISA sensitivities (e.g. EGFR: ~10 pg/mL, p-p70S6K: ~100 pg/mL, p-mTOR: 
~200 pg/mL). 
  



89 

3.6 Tables 
 
 
 
 

  Name   Sequence       Tm °C     

                 (50mM NaCl)    

          

 A   5'- AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA-3'   57.9  

 A'  5' NH3- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3'  57.2  

 B   5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3'   57.4  

 B'  5' NH3AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3'   55.9  

 C   5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3'  57.6  

 C'  5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 56.2  

 D   5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3'  56.5  

 D'  5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 55.7  

 E   5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3'  55.7  

 E'  5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 54.7  

 F   5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3'  56.9  

 F'  5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 56.1  

 G   5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3'   59.3  

 G'  5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3'  58.6  

 H   5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3'   59.9  

 H'    5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3'   60.8  

 I    5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3'   60.1  

 I'    5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3'   60.1  

 J    5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3'   56.5  

 J'    5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3'   57.5  

 K    5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3'   55.4  

 K'    5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3'   56.3  

 L'    5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3'   57.2  

 M    5'-Cy3-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3'   57.6  

 M'    5' NH3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3'   56.9  

                    

 
 
Table 3.6.1 Sequences and terminal functionalization of oligonucleotides: All 
oligonucleotides were synthesized by Integrated DNA Technology (IDT) and purified via 
high performance liquid chromatography (HPLC). The DNA coding oligomers were pre-
tested for orthogonality to ensure that cross-hybridization between non-
complementary oligomer strands was negligible (<1% in photon counts). 
  



90 

 
 
 
 
 
 
 
 
 

  DNA Code   Antibody       Source   

          

 A'  Human p-PDGFRβ (Y751) kit     R&D DYC3096  
 B'  Human p-Src (Y419) kit     R&D DYC2685  

 C'  Human p-mTOR (S2448) kit     R&D DYC1665  
 D'  Human p-p70S6K (T389) kit     R&D DYC896  
 E'  Human p-GSK3α/β (S21/S9) kit     R&D DYC2630  
 G'  Human p-p38α (T180/Y182) kit     R&D DYC869  

 H'  Human p-ERK (T202/Y204) kit     R&D DYC1825  
 I'  Human p-JNK2 (T183/Y185) kit     R&D DYC2236  
 K'  Human total EGFR kit      R&D DYC1854  
 L'  Human total P53 kit      R&D DYC1043  

 J'  Capture: rabbit anti-human p-VEGFR2 (Y1214)  Abcam ab31480 
   Detection: biotin-labeled mouse anti-human VEGFR2 Abcam ab10975 
                    

 
 
 
Table 3.6.2 Summary of antibodies used for cell lysis experiments: All antibody pairs 
except p-VEGFR2  were  purchased as  ELISA kits of  R&D systems  (DuoSet® Elisa 
Development  Reagents) containing capture antibodies, biotinylated detection 
antibodies and standard proteins. Capture antibodies bind both phosphoryalted and 
unphosphorylated proteins. The biotinylated detection antibodies detect only the 
phosphorylated variants of the proteins.  VEGFR2 capture antibody, p-VEGFR2 (Y1214) 
detection antibodies were purchased from Abcam.  



91 

3.7  References 
 
 
1 Heath, J. R. & Davis, M. E. Nanotechnology and cancer. Annu Rev Med 59, 251-

265, (2008). 

2 Heath, J. R., Phelps, M. E. & Hood, L. NanoSystems biology. Mol Imaging Biol 

5, 312-325, (2003). 

3 Khalil, I. G. & Hill, C. Systems biology for cancer. Curr Opin Oncol 17, 44-48, 

(2005). 

4 Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed 

electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 

23, 1294-1301, (2005). 

5 Niemeyer, C. M. Functional devices from DNA and proteins. Nano Today 2, 42-

52, (2007). 

6 Boozer, C., Ladd, J., Chen, S. & Jiang, S. DNA-Directed Protein Immobilization 

for Simultaneous Detection of Multiple Analytes by Surface Plasmon Resonance 

Biosensor. Analytical Chemistry 78, 1515-1519, (2006). 

7 Wacker, R., Schröder, H. & Niemeyer, C. M. Performance of antibody 

microarrays fabricated by either DNA-directed immobilization, direct spotting, or 

streptavidin-biotin attachment: a comparative study. Analytical Biochemistry 330, 

281-287, (2004). 

8 Schroeder, H. et al. User Configurable Microfluidic Device for Multiplexed 

Immunoassays Based on DNA-Directed Assembly. Analytical Chemistry 81, 

1275-1279, (2009). 

9 Douglas, E. S., Chandra, R. A., Bertozzi, C. R., Mathies, R. A. & Francis, M. B. 

Self-assembled cellular microarrays patterned using DNA barcodes. Lab Chip 7, 

1442-1448, (2007). 

10 Bailey, R. C., Kwong, G. A., Radu, C. G., Witte, O. N. & Heath, J. R. DNA-

encoded antibody libraries: a unified platform for multiplexed cell sorting and 

detection of genes and proteins. J Am Chem Soc 129, 1959-1967, (2007). 

11 Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Oligonucleotide-directed 

self-assembly of proteins: semisynthetic DNA—streptavidin hybrid molecules as 

connectors for the generation of macroscopic arrays and the construction of 

supramolecular bioconjugates. Nucleic Acids Research 22, 5530-5539, (1994). 

12 Sano, T., Smith, C. L. & Cantor, C. R. Immuno-PCR: very sensitive antigen 

detection by means of specific antibody-DNA conjugates. Science 258, 120-122, 

(1992). 

13 Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins 

in microliter quantities of blood. Nat Biotechnol 26, 1373-1378, (2008). 

14 Dufva, M. Fabrication of high quality microarrays. Biomolecular Engineering 22, 

173-184, (2005). 

15 Le Berre, V. et al. Dendrimeric coating of glass slides for sensitive DNA 

microarrays analysis. Nucleic Acids Res 31, e88, (2003). 

16 Bosman, A. W., Janssen, H. M. & Meijer, E. W. About Dendrimers: Structure, 

Physical Properties, and Applications. Chemical Reviews 99, 1665-1688, (1999). 



92 

17 Benters, R., Niemeyer, C. M., Drutschmann, D., Blohm, D. & Wöhrle, D. DNA 

microarrays with PAMAM dendritic linker systems. Nucleic Acids Research 30, 

e10-e10, (2002). 

18 Angenendt, P., Glökler, J., Sobek, J., Lehrach, H. & Cahill, D. J. Next generation 

of protein microarray support materials:: Evaluation for protein and antibody 

microarray applications. Journal of Chromatography A 1009, 97-104, (2003). 

19 Ajikumar, P. K. et al. Carboxyl-Terminated Dendrimer-Coated Bioactive 

Interface for Protein Microarray:G High-Sensitivity Detection of Antigen in 

Complex Biological Samples. Langmuir 23, 5670-5677, (2007). 

20 Kuo, A.-T., Chang, C.-H. & Wei, H.-H. Transient currents in electrolyte 

displacement by asymmetric electro-osmosis and determination of surface zeta 

potentials of composite microchannels. Applied Physics Letters 92, 244102-

244103, (2008). 

21 Benn, J. A. et al. Comparative modeling and analysis of microfluidic and 

conventional DNA microarrays. Anal Biochem 348, 284-293, (2006). 

22 Comprehensive genomic characterization defines human glioblastoma genes and 

core pathways. Nature 455, 1061-1068, (2008). 

23 Kausaite, A. et al. Surface plasmon resonance label-free monitoring of antibody 

antigen interactions in real time. Biochemistry and Molecular Biology Education 

35, 57-63, (2007). 

24 Krutzik, P. O., Irish, J. M., Nolan, G. P. & Perez, O. D. Analysis of protein 

phosphorylation and cellular signaling events by flow cytometry: techniques and 

clinical applications. Clinical Immunology 110, 206-221, (2004). 

25 Liang, Y. et al. Gene expression profiling reveals molecularly and clinically 

distinct subtypes of glioblastoma multiforme. Proceedings of the National 

Academy of Sciences of the United States of America 102, 5814-5819, (2005). 

26 Lee, J. C. et al. Epidermal Growth Factor Receptor Activation in Glioblastoma 

through Novel Missense Mutations in the Extracellular Domain. PLoS Med 3, 

e485, (2006). 

27 Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. 

Science 298, 580-584, (2002). 

28 Duan, Y. et al. A point-charge force field for molecular mechanics simulations of 

proteins based on condensed-phase quantum mechanical calculations. Journal of 

Computational Chemistry 24, 1999-2012, (2003). 

29 Cornell, W. D. et al. A Second Generation Force Field for the Simulation of 

Proteins, Nucleic Acids, and Organic Molecules. Journal of the American 

Chemical Society 117, 5179-5197, (1995). 

30 Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. 

Journal of Computational Physics 117, 1-19, (1995). 

31 Tung, C. S. & Carter, E. S. Nucleic-Acid Modeling Tool (NAMOT) - An 

interactive graphic tool for modeling nucleic-acid structures. Comput. Appl. 

Biosci. 10, 427-433, (1994). 

32 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. 

Comparison of simple potential functions for simulating liquid water. The Journal 

of Chemical Physics 79, 926-935, (1983). 



93 

33 Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles.  

(McGraw-Hill, 1981). 

 

 



94 

 

Chapter 4 

A Robotics Platform for Automated Batch Fabrication of 

High Density, Microfluidics-Based DNA Microarrays, with 

applications to single cell, multiplex assays of secreted 

proteins.  
 

 

4.1  Introduction 

 

Miniaturized DNA and antibody arrays, when incorporated into microfluidics 

environments, provide an appealing technology for multiplexed detection of biological 

molecules from small biospecimen samples, such as tissue extracted from skinny needle 

biopsies, pinpricks of blood, or single cells.  Traditional robotics spotted DNA arrays are 

typically characterized by 150 µm spot sizes, patterned at ~300 µm pitch, which limits 

their use in many microfluidics-based applications.  However, those arrays can be 

produced in both high throughput and high quality, with typical spot variation ranging 

from 5-10% across individual substrates, and 10-30% between substrates
1-3

; this makes 

spotted arrays widely available for a host of standard biological assays.  Approaches 

towards the production of miniaturized DNA arrays include photolithography
4, 5

, dip-pen 

lithography
6, 7

, microfluidics-based flow-patterning
8-13

, and, for relatively simple arrays, 

microstamping
14-16

.  We have utilized microfluidics-based flow patterning to prepare 



95 

DNA barcodes over entire glass substrates, with stripes of 20 µm width at a pitch of 40-

50 µm.  This represents an approximately 10-fold increase over what can be achieved 

using spotted arrays.  When these stripes are entrained in designed microfluidics chips, 

they can be converted into high density antibody arrays
17-20

 for multiplexed assays from 

few nanoliter volume biological samples
21

, or even single cells
22

.   However, miniaturized 

DNA barcode preparation is done manually, and so are limited in their use. We report 

here on a robotics platform which enables relatively high throughput production of 

miniaturized DNA barcode arrays.  The platform achieves high barcode uniformity across 

the surface of a single chip, and high reproducibility from chip-to-chip.   We 

demonstrate the value of the technology by applying it towards a platform designed to 

simultaneously assay a panel of eleven secreted proteins from single cells, with >1000 

single and few-cell assays executed in parallel on a single microchip.    

The challenges associated with automating the production of flow patterned 

barcodes are two-fold.  First, there is the problem of scale.  The barcodes are initially 

patterned as ~0.8m long, 20 µm wide stripes of ssDNA that meander over the surface of 

an aminated or poly-L-lysine-coated glass slide.  Most applications yield improved 

performance as the DNA loading within a given stripe is increased
19

, and so it is 

important to maximize both high and uniform loading across the entire length of these 

channels. The aspect ratio of each stripe (10
5
-10

6
), coupled with the loading 

requirements, places severe demands on the flow patterning chemistry, which has been 

recently optimized
22

.  In addition, a full barcode pattern is comprised of between 10 and 

50 stripes, each of which represents a distinct ssDNA sequence.  Thus, a robotics system 



96 

must self-align a large number of injectors with a given elastomeric mold at an 

alignment precision of order 100 µm, and it must do so multiple times across a ~900 cm
2
 

area, in order to sequentially and automatically address many chips.   

The second challenge relates to the mechanical characteristics of the elastomeric 

flow patterning mold.  This mold is only weakly bonded to the glass surface; it must be 

removed once the barcoding process is complete.  In addition, the individual stripes 

within a barcode are separated from one another by as little as 20 µm, which is the wall 

thickness of microchannels in the flow patterning template.  Thus, the machine’s 

injector head must mate and then disengage each flow patterning elastomeric chip very 

gently, and the intermediate DNA injection process must be executed at low pressures 

to prevent both wholesale elastomer delamination and localized channel-to-channel 

delamination, both of which lead to chip failure.   

 We first give a brief overview of the robotics-driven sequential production of up 

to 18 barcoded glass slides, followed by a statistical evaluation of the quality of the 

barcoded slides - both in terms of barcode variability on a given slide, and across 

different slides produced in the same run.  We then discuss the application of these 

barcoded substrates towards multiplex assays of secreted proteins from single cells.   

 

 

 

 



97 

4.2  Experimental Section 

 

4.2.1 Robotics design.  

The robotics-driven flow patterning apparatus is shown in Figure 4.1A. Major 

components of the robotics are numerically labeled in the figure, including the chip 

support tray (#1), the injector module (#2), the DNA solution reservoirs (#4), and the 

translation motors (#5).   A detailed scheme of the injector module is presented in 

Figure 4.1B; the injector employs a standard microfluidics interfacing scheme wherein 

stainless steel pins are inserted into punched access holes that bridge the top surface of 

the PDMS flow patterning molds with the microchannel/glass surface interfaces below
23, 

24
.  The stainless steel pins are embedded within a laser-drilled acrylic “injector plate”, 

and are arranged according to a pre-determined pattern that matches the substrate 

access holes (Figure 4.1C).  This scheme allows for a high density of fluidic inputs, and it 

reduces substrate filling to a parallel process.  However, the scheme also introduces a 

challenge related to the alignment of the pins to the access holes: the pins are 650µm in 

diameter while the access holes are only 500µm.  The dimensional mismatch forces the 

elastomer to expand upon interfacing and thereby form a leak-proof seal around the 

pins.  However, the soft nature of the elastomer also means that misalignment of the 

two components can lead to unwanted deformation or unintended puncturing of the 

PDMS instead of smooth mating of pin and hole.  The problem is compounded by the 



98 

fact that all the pins must be aligned across simultaneously, leaving very small 

tolerances for angular misalignment. 

As such, substrate-injector alignment is done in two phases.  A pre-alignment is 

achieved by virtue of the plastic cutouts on the substrate tray, which loosely define the 

locations of the (up to) 18 PDMS flow patterning chips.  Finer alignement is provided by 

a Cognex IS5400 camera system mounted to the side of the injector head.  Prior to 

engaging each substrate, the camera is positioned directly over the chip and images the 

access hole pattern, comparing it to a pre-trained image using built-in pattern 

recognition algorithms (Figure 4.1C); x, y, and θ deviations are reported to the control 

software which adjusts the appropriate translation stages and re-images the substrate 

iteratively until a null deviation reading is achieved.    The injector head is then shifted a 

pre-calibrated distance to align with the substrate and is slowly lowered into place until 

the pins sink 1 mm into their corresponding access holes.   

Once engaged, DNA solutions are supplied to the injector head from a set of adjacent, 

disposable microvials via short lengths of Tygon tubing.  The delivery of precisely 

metered, microliter scale aliquots, is typically accomplished by external syringe pumps, 

but we offload metering responsibility to the PDMS chips themselves.  Specifically, the 

microfluidic channels were fabricated with a set of input access holes, but no output 

holes, thereby creating a closed system upon substrate engagement.  Because PDMS is 

air permeable, a pressurized solution injected into the input ports can displace air within 

the microchannel until it reaches the end 
25

.  In this way, a very precise volume, defined 

by the input access hole and microchannel dimensions, is metered into each channel.   



99 

The on-chip metering allows for a relatively simple implementation of the pressure 

system used to drive solutions, as depicted in Scheme 1.  Briefly, compressed air is first 

regulated to the pressure required to drive solutions through their microfluidic 

channels.  Typical pressures range from 2-5psi, and are set with inverse proportion to 

the pattern density of the chip in order to prevent cross-contamination of solutions 

from adjacent channels.  A proportional valve conveys the pressure via a gentle ramp to 

avoid splashing the solutions in their microvials downstream, and a pair of three-way 

solenoid valves integrates this pressure line to establish one of three pressure states in 

the microvials: positive pressure, vented, and closed.  After engaging a substrate, the 

microvials are gently pressurized to drive their solutions into the microchannels.  Once 

filling is complete, the solenoids reconfigure to vent the microvials, and then 

reconfigure again to create a closed system prior to disengaging.  This final state helps 

to balance hydrostatic pressures and prevent leaking from the injector pins in the 

disengaged state. 

Disengaging the injector head from a substrate requires additional engineered 

components:  because the injector pins form a tight seal with their corresponding 

substrate access holes, care must be exercised to prevent the PDMS mold and glass 

substrate from delaminating while extracting the pins.  The injector plate is therefore 

fitted with four pneumatic pistons whose rods secure a second “pressure plate” to its 

underside.  Matching through holes in the pressure plate enable the injector plate pins 

to protrude beneath it during substrate engagement and manipulation.   When 

disengaging a substrate, this pressure plate is extended to brace the PDMS firmly 



100 

against the slide tray while the pins are extracted. The entire injector/pressure plate 

assembly slides into a slot on the machined injector carriage and is reproducibly located 

via two shoulder screws.  This modular implementation makes it easy to swap injector 

heads with different pin configurations from run to run, thereby allowing significant 

flexibility in substrate design.   

 

4.2.2 Substrate fabrication. 

We standardized virtually all aspects of the microfluidic flow channel chip dimensions, 

and streamlined their production
26

.  To generate PDMS substrates, a deep reactive ion 

etched (DRIE) Si master is clamped between two machined aluminum plates; the upper 

plate contains cutouts that will define the substrate dimensions, and the master is 

positioned such that its features are aligned within these cutouts (Figure 4.2A/B).  The 

resulting dimensional uniformity, particularly in thickness, obviates the need for 

sophisticated depth control when interfacing the injector head with substrates; a pre-

calibrated constant is sufficient.  The most critical substrate features, however, are the 

access holes which bridge the microfluidic channels with the top side of the substrate.  

We developed a template to mold the access holes as the substrate cures.  Specifically, 

stainless steel wires are embedded into a laser-drilled acrylic plate in the required 

pattern.  After pouring PDMS into the aluminum/silicon mold assembly (Figure 4.2A), 

this plate is secured to the top side such that the wires extend into the PDMS below.  

Upon curing, the plate is removed, leaving behind the templated inlet and outlet ports.  

The wires do not extend completely to the underlying Si mold, which prevents damage 



101 

to the Si mold.  Thus, a very thin membrane of PDMS at the bottom of each access hole 

is retained.  For the inlet ports, these membranes are easily punctured in a single step 

by pressing the substrate onto the top side of the same acrylic plate used to originally 

mold the holes.  The thin membranes are retained in the outlet ports.  This means that 

we are able to generate a dead-end fill substrate that yields extremely consistent 

metering volumes and also fills relatively quickly due to the high air permeability of the 

thin membranes at the output half. 

 

4.2.3  Software and Operation. 

The instrument’s mechanical components are all controlled by custom software written 

in National Instruments Labwindows/CVI.  Stage motion is powered by a standard 6K 4-

Axis Motion Controller, while a NI DAQ card (PCI-6052E) provides digital and analog 

outputs to regulate an array of relays, solenoids, and proportional valves.  The software 

presents an interface that allows users to click which of the 18 microchip positions on 

the substrate tray are to be processed.  Once a run is initiated, the software assumes 

active control of all components, and processes the marked substrates sequentially 

without further intervention.  Scheme 2 illustrates the instrument’s process flowchart 

for a typical barcoding run; from the user perspective, it simply consists of laying out the 

substrates in their tray, filling the microvials with DNA solutions, and loading the 

appropriate configuration files before pressing a button to start the run.  As such, the 

user can pattern up to 18 barcode substrates with < 1 hr setup time, which is ~20-fold 

faster than the manual process, and at least competitive with DNA spotter tools.  When 



102 

automated filling is complete, the barcode microarrays are finalized using the same 

standard protocols employed for spotted slides: after a 24 hour incubation period, the 

slides are given a short UV exposure of ~1800 mJ/cm
2
 which crosslinks the DNA in place.  

Following an additional 12 hour incubation, the PDMS is removed, the substrates are 

rinsed, and are then ready for use
27

.   

 

4.3  Results and Discussion 

 

4.3.1  Pattern fidelity and chip-to-chip consistency 

We prepared a set of six 20-channel PDMS barcode substrates featuring 20µm channels 

at 120µm pitch. For each chip, 4 adjacent microchannels were utilized to pattern 4 

unique ssDNA strands, denoted A-D (SI, Table 1).  To analyze the fidelity and amount of 

channel-to-channel leakage that occurred during patterning, the barcoded chip was 

effectively split in half, and 2 non-adjacent stripes were assayed on one half of the chip, 

while the remaining two were assayed on the other half.  In this way, if DNA from 

channels A or C leaked into either or both of channels B or D, for example, such leakage 

would be detected.  The DNA stripes on the first five of the substrates were investigated 

by first blocking with 1% BSA and then incubating with Cy3-conjugated complementary 

DNA.  Figure 4.3A depicts the raw signal from one of these substrates. Only the intended 

four channels exhibit signal in a repeating fashion across the chip, and the automated 

process did not lead to delamination of the PDMS from its glass substrate.   



103 

We quantified the fluorescence signal from each of the five barcode-patterned 

substrates to assay fore quality and consistency.  Raw fluorescence intensities were 

collected for each DNA sequence at eleven locations per chip, spanning a 28 cm length 

of the flow channel.   Figure 4.3b compares the averaged intensities for each stripe on 

each chip.  The error bars reveal high signal uniformity across the eleven imaged 

regions, and the absolute signal intensities for each DNA strand are in good agreement 

with one another across the five chips.  DNA stripes on individual chips consistently 

demonstrate <10% coefficient of variation (CV), while the averaged values for each DNA 

across multiple chips exhibit < 12% CV (Figure 4.3C).  These data confirm that the 

automated instrument is capable of generating a high quality and consistent batch of 

substrates,  with a quality that is comparable to previously established standards for 

hand-made substrates
22

.   

 

4.3.2 Single cell secretion studies 

We now turn towards demonstrating the applicability of our barcoded substrates to 

miniaturized bioassays via the mutiplex detection of proteins secreted from single 

macrophage cells.  The barcoded glass slides are first incorporated into a microfluidics 

chip, called a Single Cell Barcode Chip (SCBC) designed for the capture of single cells and 

small cell colonies (Figure 4.4).  Microfluidic chip designs for cell isolation and 

interrogation have previously been reported albeit with different detection schemes
28-

30
.  Here, the DNA barcodes are then converted into antibody barcodes using a cocktail 

of DNA-labeled capture antibodies
19

.  Cells are then introduced and isolated into any of 



104 

approximately 1000 separate 3 nanoliter volume microchambers on the SCBC.  The 

numbers of cells in a given chamber are recorded; of the 1000 such experiments on a 

single chip, typically 100-200 are single-cell experiments, while the remaining are 0-cell, 

2-cell, 3-cell, etc., experiments (Figure 4.4B).  The chip is then incubated for a period of 

time during which the captured cells secrete proteins that are selectively captured by 

the antibody barcodes.  The cells are then washed from the chip and a cocktail of 

detection antibodies and fluorescent dye labels are added to develop the protein assays 

(Figure 4.4B,C).    The measured fluorescence levels from the individual barcode stripes 

are digitized and then compared against calibration curves (Figure S1) to provide an 

estimate of the numbers of protein molecules detected, which, in turn, yields 

information on the sensitivity of the robotics-patterned antibody barcodes.  By 

comparing the statistics of protein secretion levels from single cells assayed on one chip 

with identical assays from a second chip, the chip-to-chip variability can be assessed.  A 

related SCBC, but designed for assaying phosphorylated membrane and cytoplasm 

proteins from single, lysed cancer cells, has been recently reported by us
22

.  That chip 

utilized hand-made barcode patterns, and only permitted ~120 single- and few-cell 

experiments per chip, but was otherwise similar in concept to the chip described here.  

The DNA barcodes utilized for this demonstration were 20-element arrays.  

Twelve of the elements were used for the bio-assay, and each contained one of 12 

unique DNA sequences, A-M (SI, Table S1), flow-patterned with a stripe width of 20µm 

and at a 50µm pitch.  Two substrates from a batch of four were carried forward for the 

cell assays; the barcoding PDMS was removed and the new microfluidic device (Figure 



105 

4.4A) was bonded in its place.  Eleven of the DNA stripes were converted to form an 

antibody array, with antibodies chosen to correspond to secreted proteins.  They 

included: Monocyte Chemoattractant Protein (MCP)-1, Interleukin (IL)-6, Granulocyte 

Macrophage Colony Stimulating Factor (GMCSF), Macrophage migration Inhibitory 

Factor (MIF), Interferon (IFN)-γ, Vascular Endothelial Growth Factor (VEGF), IL-10, IL-8, 

Matrix MetalloPeptidase (MMP)-9, and Tumor Necrosis Factor (TNF)-α, and IL-2.  IL-2 is 

not expected to be secreted from macrophage cells, and so serves as a negative control.  

The remaining DNA stripe provides an alignment reference for the final read-out.  Once 

the antibody array is assembled, the cells were prepared for loading.  We investigated 

the human monocyte cell line, THP-1. These cells were first differentiated into the 

macrophage lineage using phorbol 12-myristate 13-acetate (PMA) and stimulated with 

lipopolysaccharide (LPS) 
31

 and then loaded, as a dilute suspension, into the 80 

microchannels that span the length of the barcoded glass slide.  The PMA elicits a 

morphological change in the THP-1 cells (Figure S2), and LPS activates the Toll-like 

Receptor-4 on the cell surface 
32, 33

, emulating the response of macrophages to gram 

negative bacteria.   A set of 14 integrated valves
34

 are activated to divide the 

microchannels into 1040 discrete microchambers, each containing single or small 

numbers of cells  (Figure 4.4A).  Each chamber is examined to record the number of cells 

it contains, and the entire platform is then placed in a CO2 incubator at 37°C for 24 

hours while secreted proteins are recorded onto the antibody microarray.  Afterwards, 

the cells are flushed from the microchannels, and the protein assays are developed with 

a cocktail of biotinylated secondary antibodies followed by the addition of Streptavidin-



106 

Cy5 fluorophores.  The fluorescence intensities are digitized through the use of an Axon 

GenePix 4400A array scanner, coupled with custom written image processing routines. 

The resulting data is a table that lists, for each microchamber, the numbers of cells in 

that microchamber, and the digitized fluorescence for each of the assayed proteins and 

the DNA alignment reference stripe.  

We quantified our raw data by first establishing a signal baseline.  For each protein 

assayed, we averaged the raw signal values across all the individual chambers which 

contained single cells.  Using the averaged signal recorded from the IL-2 assay stripes as 

the noise level, we calculated the signal-to-noise (S/N) for each protein, and set a 

threshold of S/N ≥ 4 to signify positive detection of a protein.  By that standard, nine 

proteins were identified (S/N levels are in parentheses after the protein names): IL-6 (4), 

INF-γ (14), GMCSF (27), VEGF (89), IL-10 (190), MMP9 (498), IL-8 (560), TNF-α (566), and 

MIF (1504).  Comparisons against separately generated calibration curves 

(Supplementary Fig S1) revealed limits of detection that were similar to or slightly worse 

than commercial ELISAs.  For example, VEGF yielded 3 pg/mL vs 2.5 pg/ml and IL-8 

yielded 75pg/mL versus 25 pg/mL.  

Full analysis of the single cell secretome data is beyond the scope of this paper, 

and so we simply provide some preliminary analysis of the data in order to validate the 

barcode and chip technology.  Figure 4.4B depicts a set of four adjacent chambers, two 

of which contained single cells and two of which contained four cells each.  We grouped 

the (background-subtracted) data according to numbers of cells per microchamber.  The 

data within each group was then sorted according to the level of MIF secretion.  Error 



107 

bars are plotted for many of the data points; these are derived from chambers that 

contained two copies of the 20-element barcode and thereby yielded replicate 

measurements from which measurement error could be estimated.  The plot of Figure 

4.5A clearly demonstrates a cumulative effect in the observed signal, as increasing 

numbers of cells yields a greater proportion of chambers with high signal levels.  The 

maximum signal level for each of the shown set of experiments is near saturation and so 

does not increase with increasing numbers of cells.  Note that a percentage of the n=1, 

2, and 3 cell chambers yield MIF signal levels that are similar to those observed for the 

0-cell chambers:  52% (1 cell), 37% (2 cell), 22% (3 cell).  These values consistently 

indicate that between 50 and 60% of the individual macrophage cells secrete low levels 

of MIF, but they also indicate that the 1, 2, and 3 cell data sets represent sets of 

measurements that are distinct from each other, and distinct from the 0-cell data.  

There was no correlation between the level of secreted protein and the location of the 

associated microchamber on the chip surface.   

A heat map of protein secretion levels for the single cell experiments is provided 

in Figure 4.5B.  This data demonstrates the stochastic (and not unexpected
35-37

) nature 

of protein expression at the single cell level.  These single cell fluctuations, for a given 

protein level, can be compared between two chips as a means of comparing the chip-to-

chip variability.  While any given microchamber may yield a very different result from 

another microchamber, a statistically significant measurement of the single cell 

fluctuations, as recorded on one chip, should be indistinguishable from those recorded 

on a second chip.  Such a comparison is provided in Figure 4.5C between data sets 



108 

collected from two different chips, and both the average protein level and the detailed 

distributions prove to be chip-independent.  Similar analyses were also done for the 

proteins MMP9 (p=0.640) and TNF- α (p= 0.435) (Figure S3); among the remaining 

proteins, only IL-8 & IL-10 fail to yield p-values above 0.1.  Of these two proteins, time-

studies (not presented here) indicate that the secretion of IL-10 is delayed relative to 

the other proteins, and so longer time studies would likely increase the chip-to-chip p-

values for this protein.  IL-8, while secreted early, is also characterized by ca. 10x higher 

background signal, and so is intrinsically a less reliable measurement than the other 

detected proteins.  The results indicate a high level of consistency across both a single 

microchip, and across multiple chips.  This means that data taken from different chips 

could be seamlessly integrated to increase sampling statistics.  

 

4.4  Conclusions 

Traditional DNA microarray technology has proved an exceedingly useful tool, thanks in 

part to the development of significant infrastructure dedicated to microarray production 

and processing.  As the applications of microarrays continue to evolve, there is a strong 

march towards further miniaturization.  Alternative technologies such as dip-pen 

lithography
6, 7

, electrohydrodynamic jet printing
38

, and spotting with custom-built, 

nanostructured spotting pins
39

,  are pushing the low-micron to sub-micrometer 

patterning regime.  Although microfluidic flow patterning does not yet extend to sub 10-

micrometer features, it provides an attractive combination of multiplexing, 



109 

miniaturization, and throughput.  The approach also permits flexible spot morphology 

and requires readily-accessible materials that allow cost-effective, in-house chip 

fabrication.  However, in order to match the convenience and availability of spotted 

microarrays, an automated solution is needed to generate flow patterned substrates.  

The approach described here implies that microfluidics-flow patterned substrates can 

be reliably and reproducibly prepared using robotics-based automation, and that the 

resultant antibody barcode arrays exhibit assay characteristics that are at least as good 

as those prepared using standard, spotted arrays.   

 



110 

4.5  Figures 
 

 
 

Figure 4.5.1 (A) An overview of the instrument as implemented.  Substrates are arrayed 

on the slide stage (1) and thereafter are addressed sequentially by a mobile injector 

head (2).  A camera system (3) images the substrates’ access holes to guide alignment as 

the injector interfaces each substrate, and reagents are supplied from a set of adjacent 

microvials (4).  Mechanical motion in the x, y, z, and θ axes is effected by a combination 

of linear stages and stepper drives (5).  (B) Schematic detail of the injector assembly 

illustrates the pin interface used to engage each substrate and the pneumatic pressure 

plate which prevents delamination when disengaging.  (C) Sample image from the 

camera system during substrate alignment.  The field of view encompasses just one 

corner of the substrate; green circles (enhanced for clarity) indicate access holes in the 

PDMS that have been recognized by the software’s pattern recognition algorithm and 

are used to finely adjust the injector head prior to interfacing.  Scale bar: 2mm



111 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.5.2 The aluminum stencil used to fabricate each PDMS substrate standardizes 

overall dimensions and access hole placement and size.  A silicon wafer bearing barcode 

microfeatures is first sandwiched between two aluminum plates; PDMS precursor is 

poured into the cutouts and acrylic plates for molding access holes are affixed on top.  



112 

 

 

 

 

 

 

 
 

Figure 4.5.3 (A) Fluorescence image of a barcode microarray that is validated with 

alternating DNA sequences to check for unintended crosstalk or contamination.  The 

channel morphology is overlaid on the bottom repeat; each microchannel meanders 

across the chip to create multiple repeats of the same pattern.  (B) Average 

fluorescence intensities for DNA sequences A-D are quantified for five separate barcode 

substrates patterned by the instrument.  Error bars represent the standard deviation 

calculated from eleven measurements per sequence.  (C) coefficients of variance for 

each DNA sequence calculated from eleven regions of each chip.  The averaged intensity 

for each sequence is then compared amongst chips and a CV is calculated to quantify 

chip-to-chip consistency. 

 



113 

 
  

Figure 4.5.4 (A) Optical micrograph of the single cell secretion microfluidics, with 

schematic inlay of two discrete chambers.  Raw data cropped from four adjacent 

chambers is depicted in (B); the green bar is used for registration while red bars 

represent protein data.  (C) Schematic representation of single cell secretion 

experiments.  Capture antibodies are arrayed onto a barcode microarray via DEAL 

chemistry and sequester proteins secreted from an adjacent cell.  The assay is 

developed by flushing with detection antibodies and a fluorescent reporter that form an 

ELISA-like sandwich. 



114 

 

 

 

 

 

 

 

 

  

Figure 4.5.5 (A) The distribution of MIF secretion for chambers containing between zero 

and three cells is plotted.  Chambers with more cells exhibit a greater proportion of 

elevated signals, implying a cumulative effect.  Error bars represent standard deviations 

that are calculated from barcode repeats within individual chambers.  (B) Heat maps 

depicting protein secretion for chambers with single cells on each of two chips.  Proteins 

labeled ‘*’ and ‘**’ were contrast enhanced at 10x & 100x original signal levels for 

clarity.  (C) Scatter plots of MIF secretion in single cell chambers illustrate the 

distribution of secretion profiles; the horizontal line represents the average of all the 

individual measurements. 

 



115 

 

 

 

 

 

 

 

 

 

 

Scheme 4.5.1 Schematic representation of the instrument’s simplified pressure system 

for driving reagents.  

 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 

 

 

 

 

  

Scheme 4.5.2 Flowchart comparing tasks required of the user and those required of the 

instrument to prepare a batch of barcode microarray substrates. 

 



117 

4.6  References 

 

 

1. R. L. Stears, T. Martinsky and M. Schena, Nature Medicine, 2003, 9, 140-145. 

2. H. Yue, P. S. Eastman, B. B. Wang, J. Minor, M. H. Doctolero, R. L. Nuttall, R. 

Stack, J. W. Becker, J. R. Montgomery, M. Vainer and R. Johnston, Nucleic Acids 

Research, 2001, 29, e41. 

3. G. C. Tseng, M.-K. Oh, L. Rohlin, J. C. Liao and W. H. Wong, Nucleic Acids 

Research, 2001, 29, 2549-2557. 

4. D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. 

Mittmann, C. Wang, M. Kobayashi, H. Norton and E. L. Brown, Nature 

Biotechnology, 1996, 14, 1675 - 1680. 

5. S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman and F. 

Cerrina, Nature Biotechnology, 1999, 17, 974-978. 

6. L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung and C. A. Mirkin, Science, 

2002, 296, 1836 - 1838. 

7. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang and C. A. Mirkin, Science, 2008, 

321, 1658 - 1660. 

8. D. Rose, Microfluidic technologies and instrumentation for printing DNA 

microarrays, Eaton Publishing Co., Natick, MA, 2000. 

9. R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber and G. M. Whitesides, 

Biomaterials, 1999, 20, 2363-2376. 

10. E. Delamarche, A. Bernard, H. Schmid, B. Michel and H. Biebuyck, Science, 1997, 

276, 779-781. 

11. D. Juncker, H. Schmid, A. Bernard, I. Caelen, B. Michel, N. de Rooij and E. 

Delamarche, Journal of Micromechanics and Microengineering, 2001, 11, 532-

541. 

12. C.-E. Ho, C.-C. Chieng, M.-H. Chen and F.-G. Tseng, Journal of Micromechanics 

and Microengineering, 2008, 17, 309-317. 

13. D. A. Chang-Yen, D. G. Myszka and B. K. Gale, Journal of Microelectromechanical 

Systems, 2006, 15, 1145-1151. 

14. C. Thibault, V. Le Berre, S. Casimirius, E. Trévisiol, J. François and C. Vieu, Journal 

of Nanobiotechnology, 2005, 3. 

15. S. A. Lange, V. Benes, D. P. Kern, J. K. H. Hörber and A. Bernard, Analytical 

Chemistry, 2004, 76, 1641–1647. 

16. M. Geissler, E. Roy, J.-S. Deneault, M. Arbour, G. A. Diaz-Quijada, A. Nantel and T. 

Veres, Small, 2009, 5, 2514–2518. 

17. C. M. Niemeyer, T. Sano, C. L. Smith and C. R. Cantor, Nucleic Acids Research, 

1994, 22, 5530-5539. 

18. R. Wacker, H. Schröder and C. M. Niemeyer, Analytical Biochemistry, 2004, 330, 

281-287. 

19. R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte and J. R. Heath, J Am Chem Soc, 

2007, 129, 1959-1967. 



118 

20. E. S. Douglas, R. A. Chandra, C. R. Bertozzi, R. A. Mathies and M. B. Francis, Lab 

Chip, 2007, 7, 1442-1448. 

21. R. Fan, O. Vermesh, A. Srivastava, B. K. Yen, L. Qin, H. Ahmad, G. A. Kwong, C. C. 

Liu, J. Gould, L. Hood and J. R. Heath, Nat Biotechnol, 2008, 26, 1373-1378. 

22. Y. S. Shin, H. Ahmad, Q. Shi, H. Kim, T. A. Pascal, R. Fan, W. A. Goddard III and J. 

R. Heath, ChemPhysChem, 2010, 11, 3063-3069. 

23. J. Liu, C. Hansen and S. R. Quake, Analytical Chemistry, 2003, 75, 4718-4723. 

24. A. M. Christensen, D. A. Chang-Yen and B. K. Gale, Journal of Microelectronics 

and Microengineering, 2005, 15, 928-934. 

25. C. L. Hansen, E. Skordalakes, J. M. Berger and S. R. Quake, PNAS, 2002, 99, 

16531-16536. 

26. C. M. Klapperich, Expert Rev. Med. Devices, 2009, 6, 211-213. 

27. H.-Y. Wang, R. L. Malek, A. E. Kwitek, A. S. Greene, T. V. Luu, B. Behbahani, B. 

Frank, J. Quackenbush and N. H. Lee, Genome Biology, 2003, 4. 

28. J. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. van der Veen and H. L. Ploegh, Nat 

Biotech, 2006, 24, 703-707. 

29. E. M. Bradshaw, S. C. Kent, V. Tripuraneni, T. Orban, H. L. Ploegh, D. A. Hafler and 

J. C. Love, Clinical Immunology, 2008, 129, 10-18. 

30. H. Zhu, G. Stybayeva, J. Silangcruz, J. Yan, E. Ramanculov, S. Dandekar, M. D. 

George and A. Revzin, Analytical Chemistry, 2009, 81, 8150-8156. 

31. C. D. Dumitru, J. D. Ceci, C. Tsatsanis, D. Kontoyiannis, K. Stamatakis, J. H. Lin, C. 

Patriotis, N. A. Jenkins, N. G. Copeland, G. Kollias and P. N. Tsichlis, Cell, 2000, 

103, 1071-1083. 

32. A. Aderem and R. J. Ulevitch, Nature, 2000, 406, 782-787. 

33. J. Fan and A. B. Malik, Nature Medicine, 2003, 9, 315-321. 

34. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Science, 2000, 

288, 113 - 116. 

35. M. Kærn, T. C. Elston, W. J. Blake and J. J. Collins, Nature Reviews Genetics, 2005, 

6, 451-464. 

36. N. Rosenfeld, J. W. Young, U. Alon, P. S. Swain and M. B. Elowitz, Science, 2005, 

307, 1962 - 1965. 

37. P. Openshaw, E. E. Murphy, N. A. Hosken, V. Maino, K. Davis, K. Murphy and A. 

O'Garra, Journal of Experimental Medicine, 1995, 182, 1357–1367. 

38. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. k. Mukhopadhyay, C. Y. 

Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira and J. A. Rogers, 

Nature Materials, 2007, 6, 782 - 789. 

39. I. Barbulovic-Nad, M. Lucente, Y. Sun, M. Zhang, A. R. Wheeler and M. 

Bussmann, Critical Reviews in Biotechnology, 2006, 26, 237-259. 

 

 

 



119 

4.7 Appendix A:  Source Code 

 

The following pages contain Labwindows CVI source code used to control and 

coordinate the robotics hardware.  Small pieces of code may be commented out for 

convenience during development, and as such this should not be considered 

production-ready code. 

 



  120 

1 

2

3

4

5

6

7

8

9 

10 

11 

12 

13 

14 

15 

16 

17  

#include  

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include  

"alignScore.h"  

<dataskt.h>  

<analysis.h>  

<dataacq.h>  

<easyio.h>  

<tcpsupp.h>  

<winerror.h> 

<formatio.h>  

<ansi_c.h> 

<cvirte.h>  

<utility.h> 

<userint.h>  

"lowlvlio.h"  

"mainPanel.h"  

"calibration.h"  

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30  

const int MAXSLIDES = 18;  

const double MAXPROPV = 10.0;  

static int Hn_mainPanel;  

static int Hn_calibratePanel;  

static int Hn_ICDpanel;  

static int Hn_SLpanel; 

static int Hn_FLpanel;  

static int Hn_AlignPanel;  

const char sixK_IP[] = "192.168.10.30";  
 

 

 

 

DSHandle DataSockets[7] = {0,0,0,0,0,0,0};  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
//  

AngleSocket, ColumnSocket, RowSocket, OnlineSocket, JobReadSocket,  

JobWriteSocket, PatternScoreSocket  

31  

32  int DIOports[8] = {0, 1, 2, 3, 4, 5, -1, -1};  // [0]  

backlight  [1] psi/vent for pistons [2] low psi/vac  [3]  

psi/vent [4] pressurePlate pistons  [5] contact sensor 2  [6,7]  

undefined  

33  int slides[18][5];  // [0] Cntrl ID  [1]  

activated [2] process complete icon  [3] examine icon [4]  

error icon  

34  int CslidePos[18][3];  // [0] Cntrl ID  [1] Xpos  

label [2] Ypos label  

35 

36 

37 

38 

39  

int activeSlideColor, inactiveSlideColor, processColor;  

int pauseFlag;  

int sixK_TCP = 0;  

int cutScore = 92;  



  121 

40  float imagingZ = 0;  

41  float slidePos[18][2];  // [0] x  

pos  [1] y pos  //indexed to CntrlID of array  

 

42 

43 

44 

45 

46 

47 

48  

"slides[18][5]" above  

float CI_xShift, CI_yShift, CI_tShift;  

 
 

char slidePosFile[80] = "slidePos.dat"; 

char jobsFileName[80] = "jobFiles.jbf";  

49  /****  6k Status bits  ****/  

50  

51 

52 

53 

54 

55 

56 

57 

58  

int activeMotion = 0;  

float position = 0;  

 

#define MOTIONCOMPLETE 1  

#define POSITION 2  
 

 

/**************************/  

59  /*****  6k Variables  *****/  

60  

61  

 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77  

 
 

78 

79  

float encX, encY, encZ, encT;  

positions (response to TPE);  
 

 
/**************************/  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void backlight(int status)  

 

backlight on or off  

{ 

//encoder  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
//turns the  

80  WriteToDigitalLine (1, "0", 0, 8, 1, status);  

81  return;  



  122 

82  

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99  

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117  

 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127  

} 
 

 

 

 

void InitializeVars()  

{ 

slides[0][0] = mainPanel_slide1;  

slides[1][0] = mainPanel_slide2; 

slides[2][0] = mainPanel_slide3; 

slides[3][0] = mainPanel_slide4; 

slides[4][0] = mainPanel_slide5; 

slides[5][0] = mainPanel_slide6; 

slides[6][0] = mainPanel_slide7; 

slides[7][0] = mainPanel_slide8; 

slides[8][0] = mainPanel_slide9;  

slides[9][0] = mainPanel_slide10;  

slides[10][0] = mainPanel_slide11; 

slides[11][0] = mainPanel_slide12; 

slides[12][0] = mainPanel_slide13; 

slides[13][0] = mainPanel_slide14; 

slides[14][0] = mainPanel_slide15; 

slides[15][0] = mainPanel_slide16; 

slides[16][0] = mainPanel_slide17; 

slides[17][0] = mainPanel_slide18;  

 

activeSlideColor = MakeColor (240, 240, 240);  

inactiveSlideColor = MakeColor (212, 208, 200);  

processColor = MakeColor (240, 200, 200);  

 

return;  

} 
 

 

 

void setStatus(char* message)  

{ 

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, message);  

//update status message  

return;  

} 
 

 

 

void send6kCmd (char* cmd)  

{ 

char sendCmd[80];  

char errorMsg[120];  

char ts[2] = {(char)13, '\0'};  

int err = 0;  



  123 

128  

129 

130 

131 

132 

133  

 

 

 

sprintf(sendCmd, "%s%s\0", cmd, ts);  

 

err = ClientTCPWrite (sixK_TCP, sendCmd, strlen(sendCmd), 0);  

if(err < 0)  

134  { sprintf(errorMsg, "TCP error - command: %s was not sent" ,  

sendCmd);  

135  MessagePopup("Comm error", errorMsg);  

136  } 

137  

138  return;  

139  } 

140  

141  

142 

143 

144 

145 

146 

147  

void finishStageMotion()  

{ 

char sendString[80];  
 

 

 
sprintf(sendString, "WAIT(MOV=b0000): WRITE\"#%i\"" ,  

MOTIONCOMPLETE);  //wait while movement on axes; write  

148  send6kCmd(sendString);  

 

//"motion complete" code when stopped.  

149  

150  while(activeMotion)  

151  { //  

Delay(0.5);  

//causes multiple responses to pile up  

152  ProcessSystemEvents();  

153  } 

154  

155  return;  

156  } 

157  

158 

159 

160 

161 

162  
 

 

 
163  
 

 

 

164  

void HomeStages()  

{ 

setStatus("Homing Stages...");  
 

 

activeMotion = 1;  

 

//anticipate upcoming motion  

//  

send6kCmd("DRIVE1111");  

//enable all stages  

//  



  124 

send6kCmd("HOM111x");  

//intiate homing  

165  send6kCmd("4MA1: 4D0: 4GO");  

//set absolute  

mode on axis 4 and go home  

166  finishStageMotion();  

//wait  

until stages finish moving  

167  send6kCmd("4MA0");  

 

//return to incremental mode on axis 4  

168  

169  setStatus("");  

170  

171  return;  

172  } 

173  

174  

175  void setStageMovement(int setting)  //SETTINGS: 1: all  

 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186  

stages fast 2: all stages slow, 3: z-stage intermediate  

{ 

const double vFast = 10.0;  

const double vMed = 2.0;  

const double vSlow = 0.75; 

const double aFast = 50.0;  

const double aMed = 25.0;  
 

 

char cmd[120] = "";  
 

 

 

switch(setting)  

187  { case 1: sprintf(cmd, "V %.1f, %.1f, %.1f, %.1f: A %.1f,  

 
 

188 

189  

 
 

190 

191  

 
 

192 

193 

194 

195 

196  

%.1f, %.1f, %.1f", vFast, vFast, vFast, vSlow, aFast, aFast,  

aFast, aMed);  

break;  

case 2: sprintf(cmd, "V %.1f, %.1f, %.1f, %.1f: A %.1f,  

%.1f, %.1f, %.1f", vSlow, vSlow, vSlow, vSlow, aMed, aMed,  

aMed, aMed);  

break;  

case 3: sprintf(cmd, "V %.1f, %.1f, %.1f, %.1f: A %.1f,  

%.1f, %.1f, %.1f", vSlow, vSlow, vMed, vSlow, aMed, aMed,  

aMed, aMed);  

break;  

} 

send6kCmd(cmd);  
 

 

return;  



  125 

197  

198 

199 

200 

201  

 

202 

203  
 

 

 

204  

} 
 

 

 

 

int readSingleVal(double* xPos, double* yPos, double* tPos, float  

readDelay)  

{ 

const int maxReads = 30;  

//maximum  

number of reads before "timeout"  

// const int cutScore =  

92;  //minimum  

 

205 

206 

207  

 
 

208 

209 

210 

211 

212 

213 

214  
 

 

 

215  
 

 

216  
 

 

217  

 
 

218 

219  
 

 
220  

score to accept a pattern **Made Global to allow alteration**  

 

HRESULT err;  

int i = 0, j = 0, totalCount = 0;  

 
 

long qString = 0; 

float pScore = 0;  

float lxPos = 0, lyPos = 0, ltPos = 0;  

char instaStatus[50];  

 
 

DS_Update (DataSockets[0]);  

//update  

angle value  

DS_Update (DataSockets[1]);  

//  

DS_Update (DataSockets[2]);  

//  

DS_Update (DataSockets[6]);  

//  

pattern score  

 
 

//first check if data is good  

while(qString != 192 && j++ < 5)  

//192 = "Good"  

column  
 

 

row  

221  err = DS_GetAttrValue (DataSockets[6], "Quality", CAVT_LONG  

, &qString, sizeof(qString), NULL, NULL);  

222  if(j > 5)  
 

 

 
223  { MessagePopup("Comm Error", "Could not retrieve data from  

OPC server!");  

224  return 3;  



  126 

225  } 

226  else  
 

 

 
227  { err = DS_GetDataValue (DataSockets[6], CAVT_FLOAT, &pScore,  

sizeof(pScore), NULL, NULL);  //read in pattern quality  

228  if(err < 0) CA_DisplayErrorInfo(DataSockets[6],  

"DataSocket Error", err, NULL);  

229  } 

230  sprintf(instaStatus, "Analyzing image... %i%% match" , (int)  

pScore);  //update quality on status bar  

231  setStatus(instaStatus);  

232  

233  

234  while((pScore < cutScore) && (++totalCount < maxReads))  

//while pattern quality is substandard  

235  { Delay(readDelay);  

//  
 

 

236  
 

 

 

237  
 

 

238  
 

 

239  
 

 

 

240  

wait for new reading  

DS_Update (DataSockets[0]);  

 

angle value  

DS_Update (DataSockets[1]);  
 

 

DS_Update (DataSockets[2]);  
 

 
DS_Update (DataSockets[6]);  
 

 
pattern score  

 

 

 
//update  
 

 

 
//  
 

 
//  
 

 

//  

 

 

 

 

 

 
column  
 

 

row  

241  err = DS_GetDataValue (DataSockets[6], CAVT_FLOAT, &pScore,  

sizeof(pScore), NULL, NULL);  // read new value  

242  if(err < 0) CA_DisplayErrorInfo(DataSockets[6],  

"DataSocket Error", err, NULL);  

243  sprintf(instaStatus, "Analyzing image... %i%% match" , (int  

)pScore);  

244  setStatus(instaStatus);  

245  } 

246  if(totalCount >= maxReads) return 2;  

//on timeout, return  

error  

247 248  

249  err = DS_GetDataValue (DataSockets[1], CAVT_FLOAT, &lyPos,  

sizeof(pScore), NULL, NULL);  // and write to  

panel  

250  if(err < 0) CA_DisplayErrorInfo(DataSockets[1], "DataSocket  



  127 

 

251 

252  
 

 
253  

 

254 

255  
 

 

256  

 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276  
 

 

 
277  
 

 

 

278  
 

 

 
279  

 
 

280 

281 

282 

283 

284  

Error", err, NULL);  

 

err = DS_GetDataValue (DataSockets[2], CAVT_FLOAT, &lxPos,  

sizeof(pScore), NULL, NULL);  

if(err < 0) CA_DisplayErrorInfo(DataSockets[2], "DataSocket  

Error", err, NULL);  

 

err = DS_GetDataValue (DataSockets[0], CAVT_FLOAT, &ltPos,  

sizeof(pScore), NULL, NULL);  

if(err < 0) CA_DisplayErrorInfo(DataSockets[0], "DataSocket  

Error", err, NULL);  

 
 

*xPos = (double)lxPos; 

*yPos = (double)lyPos; 

*tPos = (double)ltPos;  
 

 

return 0;  

 

/******* RETURN VALS ********  

0 = great success!  

1 = not used in this function  

2 = unable to match pattern  

3 = OPC server errors  

*****************************/  

} 
 

 

 

int readCameraVal(double* xAvg, double* yAvg, double* tAvg)  

{ 

#define avgBlock  

5 

//number of reads to average per value  

#define maxReads  

5 

//maximum number of reads before "timeout"  

const float readDelay = 1.0;  

//delay  

between camera update requests  

const float xyMaxStdDev = 0.030;  

//maximum  

allowable standard deviation  

const float tMaxStdDev = 0.1;  

 

int status, i, j, totalCount;  

double xArr[avgBlock * maxReads],  

yArr[avgBlock * maxReads],  



  128 

285  
 

 

 
286  
 

 

 

287  
 

 

 

288  

 
 

289 

290  

tArr[avgBlock * maxReads];  

 

for std deviation calc  

int arrSize = avgBlock * maxReads;  

 

convenience later  

double xMean, yMean, tMean;  

 

//calculated array mean values  

double xSD = 100, ySD = 100, tSD = 100;  
 

 

standard deviation  

 
//arrays  
 

 

 
//calculate for  

 

 

 

 

 

 
//calculated array  

291 

292  
 

 

 

293  

 
 

294 

295 

296 

297 

298  

setStatus("Idle - allowing imaging system to settle" );  

backlight(1);  

 

//turn on backlight  

Delay(3);  

 

//allow settle/stabilize  

setStatus("Analyzing image...");  

 
 

totalCount = 0;  

while(((xSD > xyMaxStdDev) || (ySD > xyMaxStdDev) || (tSD >  

tMaxStdDev)) && (totalCount < maxReads))  

299  { j = totalCount * avgBlock;  

300  for(i = j; i < j + avgBlock; i++)  

//get values to  

compute quality factor  

301  { status = readSingleVal(&xArr[i], &yArr[i], &tArr[i],  

readDelay);  // read values  

302  if(status)  

 

// if error thrown  

303  { backlight(0);  

 

//  turn off backlight  

304  return status;  

 

//  exit function immediately  

305  } 

306  Delay(readDelay);  

 

//  wait for updated value  

307  } 



  129 

308  

309  
 

 

 
310  

 

311 

312 

313  

 
Mean (xArr, i, &xMean);  

 

//calculate mean values for x,y,t arrays  

Mean (yArr, i, &yMean);  
 

 

Mean (tArr, i, &tMean);  
 

 

StdDev (xArr, i, &xMean, &xSD);  

//calculate  

standard deviations for arrays  

314  StdDev (yArr, i, &yMean, &ySD); 315 

 StdDev (tArr, i, &tMean, &tSD);  

316  

317  totalCount++;  

318  } 

319  

320 

321  

 
 

322 

323 

324  
 

 

 

325  

 
 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343  

backlight(0);  

if(totalCount >= maxReads) return 1;  
 

 
"timeout" return err  
 

 

 
Mean (xArr, i, xAvg);  

 

//take average of collected values and  

Mean (yArr, i, yAvg);  

 

//place in referenced values  

Mean (tArr, i, tAvg);  
 

 
return 0;  

 

/******* RETURN VALS ********  

0 = great success!  

1 = unstable pattern score  

2 = unable to match pattern  

3 = OPC server errors  

*****************************/  

} 
 

 

 

 

 

int PopulateRings()  

{ 

int i = 0, j = 0;  

 

 

 

//if std deviation  



  130 

344  

345 

346 

347 

348 

349 

350 

351 

352  
 

 

353  

int fileSize = 0;  

char entryName[80], opcEntry[80];  

FILE* jobFiles;  

long qString;  

HRESULT err;  
 

 

 

 

 

//read current job file from OPC server  

while(qString != 192 && j++ < 5)  

//192 = "Good"  

354  err = DS_GetAttrValue (DataSockets[4], "Quality", CAVT_LONG  

, &qString, sizeof(qString), NULL, NULL);  //check  

connection  

355  if(j > 5) MessagePopup("Comm Error", "Could not retrieve data  

from OPC server!");  

356  else  

357  { err = DS_GetDataValue (DataSockets[4], CAVT_CSTRING,  
 

 

 

358  

 

359 

360 

361 

362 

363  

opcEntry, sizeof(opcEntry), NULL, NULL);  

value  

if(err < 0) CA_DisplayErrorInfo(DataSockets[4],  

"DataSocket Error", err, NULL);  

} 
 

 

 

 

if(!(GetFileInfo (jobsFileName, &fileSize)))  

//retrieve  

//if file doesn't exist  

364  { sprintf(entryName, "There was a problem opening '%s'.  

 
 

365 

366 

367 

368 

369 

370  

Please \nensure that it is in this program's root directory" ,  

jobsFileName);  

MessagePopup ("Error", entryName);  

return 1;  

} 

 

jobFiles = fopen (jobsFileName, "r");  

while(!feof (jobFiles))  
 

 
//while end of file not reached  

371  { //ReadFile (jobFiles, entryName,  

sizeof(entryName)/sizeof(entryName[0]));  // read  

entry  

372  fgets (entryName, sizeof(entryName), jobFiles);  

373  if(entryName[strlen(entryName)-1] == '\n') entryName[strlen  

(entryName)-1] = '\0';  // if CR present,strip it  

374  if(strcmp(entryName, opcEntry) == 0) j = i;  



  131 

// if entry  

matches current OPC value, record position  

375  InsertListItem (Hn_mainPanel, mainPanel_CognexRing, -1,  

entryName, i++);  // add it to main panel  

Cognex ring  

376  } 

377  

378  InsertListItem (Hn_mainPanel, mainPanel_CognexRing, -1, "new  

job file", -1);  //add instruction entry for new job  

names  

379  SetCtrlVal (Hn_mainPanel, mainPanel_CognexRing, j);  

//set value to match  

current job on OPC server  

380 381  

382  fflush (jobFiles); 383 

 fclose (jobFiles);  

 

//flush & close files  

384 385  

386  return 0;  

387  } 

388  

389  

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400  
 

 
401  

 

402 

403 

404 

405 

406 

407 

408 

409  

int loadSlidePos()  

{ 

int i;  

char inString[100] = "";  

float xVal, yVal;  

FILE* SLfile;  

long fileSize;  
 

 

 

 

if(!(GetFileInfo (slidePosFile, &fileSize)))  

//if file doesn't exist  

{ sprintf(inString, "There was a problem opening '%s'!" ,  

slidePosFile);  

MessagePopup ("Error", inString);  

return 1;  

} 
 

 

 

i = 0;  

SLfile = fopen (slidePosFile, "r");  

while((!feof (SLfile)) && (i < MAXSLIDES))  



  132 

//while end of file not  

reached  

410  { fgets (inString, sizeof(inString), SLfile);  

// get data  

411  sscanf (inString, "%f, %f\n", &xVal, &yVal);  

// extract info  

412  slidePos[i][0] = xVal;  

// and  

update in master array  

413  slidePos[i][1] = yVal;  

414  i++;  

415  } 

416  

417  fflush (SLfile); 418 

 fclose (SLfile);  

 

//flush & close file  

419  

420  return 0;  

421  } 

422  

423 424  

425 

426 

427 

428 

429 

430 

431 

432 

433  

int writeConfig()  

{ 

char writeString[80];  

int fileSize = 0;  

char fileName[] = "last_used.cfg";  

FILE* configFile;  
 

 

 

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "Writing  

configuration file...");  //update status  

434  ProcessSystemEvents();  

435  

436  configFile = fopen (fileName, "w");  

437  

438 

439 

440 

441 

442 

443  

 

444 

445 

446  

fprintf(configFile, 

fprintf(configFile, 

fprintf(configFile, 

fprintf(configFile, 

fprintf(configFile, 

fprintf(configFile,  

CI_tShift);  

fprintf(configFile,  

"**FILES**\n");  

"jobs file: %s\n", jobsFileName);  

"slides file: %s\n", slidePosFile);  

"\n");  

"**PROGRAM VARIABLES**\n");  

"ICD: %f %f %f\n", CI_xShift, CI_yShift,  
 

 
"FL: %f\n", imagingZ);  



  133 

447  fflush(configFile);  

448  fclose(configFile);  

449  

450  Delay(0.5);  

451  SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "");  

//update status  

452  ProcessSystemEvents();  

453  

454  return 0;  

455  } 

456  

457 458  

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469  

int readConfig()  

{ 

int fileSize = 0;  

char fileName[] = "last_used.cfg";  

char readString[80];  

char stringVar[80];  

FILE* configFile;  
 

 

 

 

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "Reading  

program options...");  //update status  

470  ProcessSystemEvents();  

471  

472  if(!(GetFileInfo (fileName, &fileSize)))  

//if file doesn't exist  

473  { sprintf(readString, "There was a problem opening '%s'.  

 
 

474 

475 

476 

477 

478 

479 

480  

 

481 

482  
 

 

483  
 

 

 
484  

Please \nensure that it is in this program's root directory" ,  

fileName);  

MessagePopup ("Error", readString);  

return 1;  

} 
 

 
configFile = fopen (fileName, "r");  

 

fgets (readString, sizeof(readString), configFile);  

//read **FILES** header  

fgets (readString, sizeof(readString), configFile);  

sscanf(readString, "jobs file: %s\n", stringVar);  

//process jobs file  

strcpy(jobsFileName, stringVar);  
 

 

 
fgets (readString, sizeof(readString), configFile);  



  134 

485  

 

486 

487  
 

 

488  

 

489 

490  

sscanf(readString, "slides file: %s\n", stringVar);  

//process slides file  

strcpy(slidePosFile, stringVar);  

fgets (readString, sizeof(readString), configFile);  

//swallow space  

fgets (readString, sizeof(readString), configFile);  

//read **PROGRAM VARIABLES** header  

fgets (readString, sizeof(readString), configFile);  

sscanf(readString, "ICD: %f %f %f\n", &CI_xShift, &  

CI_yShift, &CI_tShift);  //get camera-injector shifts  

491  fgets (readString, sizeof(readString), configFile);  

492  sscanf(readString, "FL: %f\n", &imagingZ);  

//get focal length  

493 494 495  

496  if(PopulateRings()) return 1; 497 

 if(loadSlidePos()) return 1;  

498  

499  

500  Delay(0.5);  

501  SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "");  

//update status  

502  ProcessSystemEvents();  

503  

504  

505  return 0;  

506  } 

507  

508 

509 

510 

511 

512 

513  

int read_TCPdata()  

{ 

char msg[200] = "";  

int err = 0;  

int errFlag = 0;  

// char stdResponse[5] = {(char)13, (char)10, '>', ' ',  

'\0'};  //standard response from 6k  

514  char stdResponse[5] = {(char)13, (char)10, '>', '\0'};  

515  char* errResponse = "?";  

 
 

516 

517 

518 

519 

520 

521  

 

error response from 6k  

// char* errFound = NULL;  

char* newString = NULL; 

char* subString = NULL;  

 
 

err = ClientTCPRead (sixK_TCP, msg, sizeof(msg), 0);  

//read TCP data  

//found in  



  135 

522  if(err<0) MessagePopup ("Comm error", "Error reading response  

from 6k controller");  // check for read errors  

523  

524 525  

526  newString = strtok(msg, stdResponse);  

//tokenize response  

527  while(newString)  
 

 

//while token found  

528  { if(strcmp(newString, " ") == 0)  

//  blank space?  

529  { } 

 

//  do nothing  

530  

531  else if(strpbrk(newString, errResponse))  

// error response?  

532  { errFlag = 1; }  

 

//  flag query submission  

533  

534  else if(subString = strpbrk(newString, "#"))  

// predefined response?  

535  { sscanf(subString, "#%i", &err);  

//  read code  

536  switch(err)  
 

 

//  process accordingly  

537  { case MOTIONCOMPLETE:  

538  activeMotion = 0;  

539  break;  

540  } 

541  } 

542  

543  else if(strstr(newString, "*TPE"))  

// position string?  

544  { sscanf(msg, "*TPE%f,%f,%f,%f", &encX, &encY, &encZ, &  

encT);  //  record values  

545  setStatus(msg);  } 

546  

547  else  

548  { MessagePopup ("6k Response", newString);  } 

// else show message  

549 550  

551  newString = strtok(NULL, stdResponse);  



  136 

//  grab next token  

552  } 

553  

554  if(errFlag) send6kCmd("TCMDER");  

//if error  

generated, request offending command  

555 556  

557  return 0;  

558  } 

559  

560 561  

562  

 

563 

564 

565 

566 

567  

int TCP_callback(unsigned handle, int xType, int errCode, void *  

callbackData)  

{ 

char errorMsg[80] = "";  
 

 

 

if(xType == TCP_DISCONNECT)  

568  { sprintf(errorMsg, "TCP connection to the 6k controller was  

lost! Error code: %i", &errCode);  

569  MessagePopup ("TCP/IP Error", errorMsg);  

570  } 

571  else  

572  { read_TCPdata();  

573  } 

574  

575  return 0;  

576  } 

577  

578  

579 

580 

581 

582 

583 

584 

585 

586  

int ConnectOPCserver()  

{ 

HRESULT err;  

char url[6][80];  

DSEnum_Status status;  

char error[80];  
 

 
SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "Connecting to  

OPC servers...");  //update status  

587  ProcessSystemEvents();  

588  

//copy opc server addresses into array  

589  sprintf(url[0], "opc://localhost/Cognex In-Sight OPC  

Server/IS5400R.AngleShift");  

590  sprintf(url[1], "opc://localhost/Cognex In-Sight OPC  



  137 

 
591  
 

 
592  
 

 

593  
 

 

594  

 

595 

596  

Server/IS5400R.ColumnShift");  

sprintf(url[2], "opc://localhost/Cognex  

Server/IS5400R.RowShift");  

sprintf(url[3], "opc://localhost/Cognex  

Server/IS5400R.Online");  

sprintf(url[4], "opc://localhost/Cognex  

Server/IS5400R.JobName");  

sprintf(url[5], "opc://localhost/Cognex  

Server/IS5400R.PatternScore");  

 
In-Sight OPC  
 

 
In-Sight OPC  
 

 

In-Sight OPC  
 

 

In-Sight OPC  

597  err = DS_Open (url[0], DSConst_Read, NULL, NULL, &DataSockets[0  

]);  //open server address for read access  

598  if(err < 0)  

 

//if error  

599  { MessagePopup ("Comm Error", "Error connecting to Angle  

server!");  // indicate which address caused error  

600  CA_DisplayErrorInfo(DataSockets[0], "DataSocket Error", err  

, NULL);  // and show error  

601  return 1;  

602  } 

603  

604  err = DS_Open (url[1], DSConst_Read, NULL, NULL, &DataSockets[1  

]);  

605  if(err < 0)  

606  { MessagePopup ("Comm Error", "Error connecting to Column  
 

 
607  

 

608 

609 

610 

611  
 

 
612  

server!");  

CA_DisplayErrorInfo(DataSockets[1], "DataSocket Error", err  

, NULL);  

return 1;  

} 

 

err = DS_Open (url[2], DSConst_Read, NULL, NULL, &DataSockets[2  

]);  

if(err < 0)  

613  { MessagePopup ("Comm Error", "Error connecting to Row  
 

 

614  

 

615 

616 

617 

618  
 

 
619  

server!");  

CA_DisplayErrorInfo(DataSockets[2], "DataSocket Error", err  

, NULL);  

return 1;  

} 

 

err = DS_Open (url[3], DSConst_Read, NULL, NULL, &DataSockets[3  

]);  

if(err < 0)  

620  { MessagePopup ("Comm Error", "Error connecting to Online  



  138 

 
621  

 

622 

623 

624 

625  
 

 

626  

server!");  

CA_DisplayErrorInfo(DataSockets[3], "DataSocket Error", err  

, NULL);  

return 1;  

} 

 

err = DS_Open (url[4], DSConst_Read, NULL, NULL, &DataSockets[4  

]);  

if(err < 0)  

627  { MessagePopup ("Comm Error", "Error connecting to JobRead  
 

 

628  

 

629 

630 

631 

632  
 

 
633  

server!");  

CA_DisplayErrorInfo(DataSockets[4], "DataSocket Error", err  

, NULL);  

return 1;  

} 

 

err = DS_Open (url[4], DSConst_Write, NULL, NULL, &DataSockets[  

5]);  

if(err < 0)  

634  { MessagePopup ("Comm Error", "Error connecting to JobWrite  
 

 

635  

 

636 

637 

638 

639  
 

 
640  

server!");  

CA_DisplayErrorInfo(DataSockets[5], "DataSocket Error", err  

, NULL);  

return 1;  

} 

 

err = DS_Open (url[5], DSConst_Read, NULL, NULL, &DataSockets[6  

]);  

if(err < 0)  

641  { MessagePopup ("Comm Error", "Error connecting to  
 

 
642  

 

643 

644 

645 

646 

647  

 

648 

649 

650 

651 

652 

653  

PatternScore server!");  

CA_DisplayErrorInfo(DataSockets[5], "DataSocket Error", err  

, NULL);  

return 1;  

} 
 

 

 

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "Connecting to  

OPC servers... Connected!");  

Delay(0.2);  

ProcessSystemEvents();  

 

setStatus("Connecting to 6k controller..." );  

err = 1;  

while(err)  

654  { err = ConnectToTCPServer (&sixK_TCP, 5002, sixK_IP,  

TCP_callback, NULL, 0);  //connect to 6k TCP server  



  139 

655  if(err)  
 

 

//if error occurred  

656  { sprintf(error, "Error connecting to 6k controller:  
 

 

 

657  

 
 

658 

659  

%s\n\n Retry connection?\n", GetTCPErrorString (err));  

// give msg, request response  

err = ConfirmPopup ("Comm Error", error);  

// 1 = retry, 0 =  

fail  

setStatus("Error connecting to 6k controller!" );  

if(err == 0) return 1;  

 

//  if fail, exit function  

660  } 

661  } 

662  setStatus("Connecting to 6k controller... Connected!" );  

663  Delay(0.1);  

664  ProcessSystemEvents();  

665  

666  return 0;  

667  } 

668  

669  

670 

671 

672 

673 

674  

 

675 

676 

677 

678 

679 

680 

681 

682  

int main (int argc, char *argv[])  

{ 

if (InitCVIRTE (0, argv, 0) == 0)  

return -1; /* out of memory */  

if ((Hn_mainPanel = LoadPanel (0, "mainPanel.uir", mainPanel))  

< 0)  

return -1;  
 

 

 

 
DisplayPanel (Hn_mainPanel);  

 

InitializeVars();  

if(ConnectOPCserver())  

683  { SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdStartRun,  
 

 
684  

 

685 

686  

ATTR_DIMMED, 1);  

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "There were  

errors connecting to the Cognex OPC server" );  

} 

if(readConfig())  

687  { SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdStartRun,  

ATTR_DIMMED, 1);  

688  SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "There were  

errors initializing the program" );  



  140 

689  } 

690  

691  RunUserInterface ();  

692  DiscardPanel (Hn_mainPanel);  

693  return 0;  

694  } 

695  

696 697  

698 

699 

700 

701 

702 

703 

704 

705 

706 

707 

708  
 

 

 

709  

int CVICALLBACK click_slide (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i=0;  

char message[80];  
 

 

 
if(event != EVENT_LEFT_CLICK) return 0;  
 

 

 

while(control != slides[i++][0]);  

 

//find which slide was clicked  

if(slides[--i][1])  
 

 
//if slide is activated  

710  { slides[i][1] = 0;  

 

// deactivate slide  

711  SetCtrlAttribute (Hn_mainPanel, slides[i][0],  

ATTR_FRAME_COLOR, inactiveSlideColor);  // remove  

indicator  

712  } 

713  else  

714  { slides[i][1] = 1;  
 

 

// else activate slide  

715  SetCtrlAttribute (Hn_mainPanel, slides[i][0],  

ATTR_FRAME_COLOR, activeSlideColor);  // add indicator  

716  } 

717  

718  

719  return 0;  

720  } 

721  

722 723 724  



  141 

725  

726 

727 

728 

729 

730 

731 

732  
 

 

733  

 

int CVICALLBACK SelectAll (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i;  
 

 

if(event != EVENT_COMMIT) return 0;  
 

 

 

for(i = 0; i < MAXSLIDES; i++)  
 

 

//go through each slide  

734  { slides[i][1] = 1;  

 

// select slide  

735  SetCtrlAttribute (Hn_mainPanel, slides[i][0],  

ATTR_FRAME_COLOR, activeSlideColor);  // color  

appropriately  

736  } 

737  

738  return 0;  

739  } 

740  

741 742  

743 

744 

745 

746 

747 

748 

749 

750  

int CVICALLBACK SelectNone (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i;  
 

 

if(event != EVENT_COMMIT) return 0;  
 

 
for(i = 0; i < MAXSLIDES; i++)  
 

 
//go through each slide  

751  { slides[i][1] = 0;  

 

// deselect slide  

752  SetCtrlAttribute (Hn_mainPanel, slides[i][0],  

ATTR_FRAME_COLOR, inactiveSlideColor);  // color  

appropriately  

753  } 

754  

755  return 0;  

756  } 

757  

758  



  142 

759  

760 

761 

762 

763 

764 

765 

766 

767  

 

int updateStatus(int slideNo, int statusCode)  

{ 

int slideX, slideY, slideWidth, slideHeight;  

int iconX, iconY;  

int PicID;  
 

 

 

if(!statusCode)  
 

 

//if start processing  

768  { SetCtrlAttribute (Hn_mainPanel, slides[slideNo][0],  

ATTR_FRAME_COLOR, processColor);  // color appropriately  

769  return 0;  

 

//  exit function  

770  } 

771  

772  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][0],  

ATTR_FRAME_COLOR, activeSlideColor);  //return to normal color  

773  GetCtrlAttribute (Hn_mainPanel, slides[slideNo][0], ATTR_LEFT,  

&slideX);  //get slide position attributes  

774  
 

 

775  
 

 
776  

 

777 

778  

 
 

779 

780  

GetCtrlAttribute (Hn_mainPanel, slides[slideNo][0], ATTR_TOP, &  

slideY);  

GetCtrlAttribute (Hn_mainPanel, slides[slideNo][0], ATTR_WIDTH,  

&slideWidth);  

GetCtrlAttribute (Hn_mainPanel, slides[slideNo][0], ATTR_HEIGHT  

, &slideHeight);  

 

iconX = slideX + (int)((slideWidth - 45)/2);  

//determine  

icon placement  

iconY = slideY + (int)((slideHeight - 45)/2);  

slides[slideNo][statusCode] = NewCtrl (Hn_mainPanel,  

CTRL_PICTURE, "", iconY, iconX);  //create  

picture control  

781  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][statusCode],  

ATTR_FRAME_VISIBLE, 0);  //turn off frame  

782  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][statusCode],  

ATTR_WIDTH, 40);  //set width (thinner to  

elim fringing bug)  

783  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][statusCode],  

ATTR_HEIGHT, 45);  //set height  

784  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][statusCode],  

ATTR_FIT_MODE, VAL_PICT_CENTER);  //center image in box  

785  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][statusCode],  

ATTR_PICT_BGCOLOR, activeSlideColor); //set background color  



  143 

786  

787  

788  switch(statusCode)  

 

//switch case  

789  { case 2:  

 

// case: finished  

790  GetBitmapFromFile ("imgs/checkmark.pcx", &PicID);  

//  load  

checkmark file  

791  SetCtrlBitmap (Hn_mainPanel, slides[slideNo][statusCode  

], 0, PicID);  //  set in  

picture frame  

792  break;  

793  

794  case 3:  

 

// case: usr examine  

795  GetBitmapFromFile ("imgs/mg.pcx", &PicID);  
 

 
//  load magnifying glass file  

796  SetCtrlBitmap (Hn_mainPanel, slides[slideNo][statusCode  

], 0, PicID);  //  set in  

picture frame  

797  iconY = slideY + (slideHeight - 50);  
 

 

//  shift to bottom of slide  

798  

 

799 

800 

801  
 

 

 
802  
 

 

 

803  

SetCtrlAttribute (Hn_mainPanel, slides[slideNo][  

statusCode], ATTR_TOP, iconY);  

break;  
 

 

case 4:  

 

// case: error  

GetBitmapFromFile ("imgs/error.pcx", &PicID);  

//  

load error file  

SetCtrlBitmap (Hn_mainPanel, slides[slideNo][statusCode  

], 0, PicID);  //  set in  

picture frame  

804  iconY = slideY + (slideHeight - 50);  
 

 
//  shift to bottom of slide  

805  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][  

statusCode], ATTR_TOP, iconY);  

806  break;  



  144 

807  } 

808  

809  return 0;  

810  } 

811  

812 813  

814  

 

815 

816 

817  

 
 

818 

819  
 

 

 

820  
 

 

821  

 

822 

823  

int CVICALLBACK updateProgressBar (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

double currVal, tmrInterval, maxVal;  
 

 

//for each time teh buzzer rings  

 

GetCtrlVal (Hn_mainPanel, mainPanel_progressSlide, &currVal);  

//get current state,  

max value, and interval  

GetCtrlAttribute (Hn_mainPanel, mainPanel_tmrProgressBar,  

ATTR_INTERVAL, &tmrInterval);  

GetCtrlAttribute (Hn_mainPanel, mainPanel_progressSlide,  

ATTR_MAX_VALUE, &maxVal);  

824  if((currVal + tmrInterval) >=  maxVal)  
 

 
//if we've reached the end  

825  { SetCtrlVal (Hn_mainPanel, mainPanel_progressSlide, maxVal);  

// set status bar to 100%  

826  Delay(1);  

 

// pause 1 second for effect  

827  SetCtrlAttribute (Hn_mainPanel, mainPanel_tmrProgressBar,  

ATTR_ENABLED, 0);  // turn off timer  

828  SetCtrlAttribute (Hn_mainPanel, mainPanel_progressSlide,  

ATTR_VISIBLE, 0);  // hide progress  

slider  

829  } 

830  else  
 

 
//otherwise  

831  SetCtrlVal (Hn_mainPanel, mainPanel_progressSlide, currVal  

+ tmrInterval);  // update with new  

value  

832 833  

834  return 0;  



  145 

835  

836 

837 

838 

839 

840  
 

 

841  

 

842 

843 

844 

845 

846 

847 

848  
 

 

849  

 

850 

851 

852 

853 

854 

855 

856 

857 

858 

859 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

870 

871 

872 

873 

874  
 

 
875  

} 
 

 

 

int setProgressBar (double maxVal, double interval)  

{ 

SetCtrlAttribute (Hn_mainPanel, mainPanel_tmrProgressBar,  

ATTR_INTERVAL, interval);  

SetCtrlAttribute (Hn_mainPanel, mainPanel_progressSlide,  

ATTR_MAX_VALUE, maxVal);  

SetCtrlVal (Hn_mainPanel, mainPanel_progressSlide, 0.0);  

return 0;  

} 

 

void startProgressBar()  

{ 

SetCtrlAttribute (Hn_mainPanel, mainPanel_tmrProgressBar,  

ATTR_ENABLED, 1);  

SetCtrlAttribute (Hn_mainPanel, mainPanel_progressSlide,  

ATTR_VISIBLE, 1);  

 

return;  

} 
 

 

 

 

int rampVoltage(int channel, float newVoltage, float duration)  

{ 

static double currVoltage[2] = {0,0};  

 

double waveForm[1000];  

char txtChannel[10]; 

double updatePerSec;  

double voltageIncrement;  

int i;  

char valveLabel[2][10] = {"solution", "piston"};  

char statusMessage[100], priorMessage[100];  
 

 

 

 

 

GetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, priorMessage);  

 
 

sprintf(statusMessage, "Ramping %s pressure over %.1f seconds" ,  

valveLabel[channel], duration);  

sprintf(txtChannel, "%i", channel);  

//copy channel info  



  146 

into string  

876  voltageIncrement = (newVoltage - currVoltage[channel])/1000;  

//determine increment  

877  if(voltageIncrement == 0) return 0;  

//if no change, exit  

878  waveForm[0] = currVoltage[channel];  

879  for(i = 1; i < 1000; i++)  

//fill  

voltage array accordingly  

880  waveForm[i] = waveForm[i-1] + voltageIncrement;  

881  waveForm[999] = newVoltage;  

882  

883  updatePerSec = 1000/duration;  

884  setStatus(statusMessage);  

885  AOGenerateWaveforms (1, txtChannel, updatePerSec, 1000, 1,  

waveForm, &i);  

886  setStatus(priorMessage);  

887  

888  currVoltage[channel] = newVoltage;  

889  

890  return 0;  

891  } 

892  

893 894  

895 

896 

897 

898 

899 

900 

901 

902 

903 

904 

905 

906 

907  
 

 

 
908  
 

 

 

909  
 

 

 
910  

int CVICALLBACK expungeSolutions (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

char cmd[80];  

double startTime;  

double expungeLength = 30.0;  
 

 
if(event != EVENT_COMMIT) return 0;  
 

 

 

setStatus("Expunging left-over solutions" );  
 

 

setStageMovement(1);  

 

//enable fast motion 

send6kCmd("MA1111");  

//set  

absolute positioning mode on all axes  

activeMotion = 1;  

 

//anticipate upcoming motion  

sprintf(cmd, "D 25.0, 190.0, 10.0, 0: @GO" );  



  147 

 
911  
 

 

 
912  

 
 

913 

914  

 
send6kCmd(cmd);  

 

//and write to 6k  

finishStageMotion();  
 

 

until stages finish moving  
 

 

activeMotion = 1;  
 

 

//anticipate upcoming motion  

//construct positioning string  
 

 

 

 

 

//wait  

915  
 

 
916  
 

 

 

917  
 

 

 

918  

 
 

919 

920 

921 

922  

 
 

923 

924  
 

 

 

925  
 

 

 
926  

 
 

927 

928 

929  

 
 

930 

931 

932 

933  

sprintf(cmd, "D 25.0, 190.0, 60.0, 0: @GO" );  

//construct positioning string  

send6kCmd(cmd);  

 

//and write to 6k  

finishStageMotion();  

//wait  

until stages finish moving  

send6kCmd("@MA0");  
 

 

//restore relative positioning  

 
 

setProgressBar (expungeLength, 5);  

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 1);  

//toggle valve to pressurize DNA  

solutions  

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 1);  

rampVoltage(0, MAXPROPV, 10);  

//open prop  

valve to 100%  

startTime = Timer ();  

//note  

start time  

startProgressBar();  

//and  

start progress bar timer  

 
 

while((Timer() - startTime) < expungeLength)  

//wait for user-specified  

duration  

ProcessSystemEvents();  
 

 

 

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);  



  148 

//switch from pressure to vent  

934  rampVoltage(0, 0.0, 10);  

//then  

close pressure valves  

935 

936 

937 

938 

939  

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 0);  
 

 

 

 

send6kCmd("MA1111");  

//set  

absolute positioning mode on all axes  

940  activeMotion = 1;  

 

//anticipate upcoming motion  

941  sprintf(cmd, "D 35.0, 0.0, -40.0, 0: @GO");  

//construct positioning string  

942  send6kCmd(cmd);  

 

//and write to 6k  

943  finishStageMotion();  

//wait  

until stages finish moving  

944  send6kCmd("@MA0");  

945  

946  setStatus("");  

947  

948  return 0;  

949  } 

950  

951  

952 

953 

954 

955 

956 

957 

958 

959 

960 

961 

962  

int PositionInjector(int slideNo)  

{ 

const double xyTolerance = 0.025;  

 

char cmd[80] = "";  

double xPos = .026, yPos = .026, tPos = 0;  

int posStatus = 0, secondChance = 1;  
 

 

 

 

setStageMovement(1);  

//move  

to slide imaging position  

963  send6kCmd("MA1111");  

//set  

absolute positioning mode on all axes  

964  activeMotion = 1;  



  149 

//anticipate upcoming motion  

965  sprintf(cmd, "D %f, %f, %f, 0: @GO", slidePos[slideNo][0],  
 

 

 

966  
 

 

 

967  

slidePos[slideNo][1], imagingZ);  

positioning string  

send6kCmd(cmd);  

 

//and write to 6k  

finishStageMotion();  

//construct  

 

 

 

968  

 
 

969 

970 

971  

 

until stages finish moving  

send6kCmd("@MA0");  
 

 
//restore relative positioning  

 
 

posStatus = readCameraVal(&xPos, &yPos, &tPos);  

//get offset values  

//wait  

972  

 

973 

974  

while((fabs(xPos) > xyTolerance) || (fabs(yPos) > xyTolerance))  

//while out of spec  

{ 

if(posStatus)  
 

 
//if error generated, give message  

975  { if(secondChance)  

//  

check for "second chance" ***see below***  

976  { secondChance--;  

//  
 

 

977  

 

978 

979  

 
 

980 

981 

982  

reduce chance  

setStatus("Performing \"second chance\" adjustment"  

);  

Delay(2);  

xPos = 0.075;  

 

// set minor shift for x & y coordinates  

yPos = 0.075;  

} 

else  

983  { if(posStatus == 1) setStatus("Unable to achieve  

stable alignment reading");  //MessagePopup  

("Alignment Error", "Unable to achieve stable  

alignment reading");  

984  if(posStatus == 2) setStatus("Unable to match  

pattern");  //MessagePopup  

("Alignment Error", "Unable to match pattern");  

985  if(posStatus == 3) setStatus("Error communicating  



  150 

with vision OPC server");  //MessagePopup  

("Alignment Error", "Error communicating with  

vision OPC server");  

986  

987  updateStatus(slideNo, 4);  

//add error  

icon  

988  //  updateStatus(slideNo,  

0);  //recover "active" color  

989  return 1;  

990  } 

991  } 

992  setStatus("Performing fine adjustments to injector  

position");  

993  

994  setStageMovement(2);  

//set  

slow motion for better precision  

995  activeMotion = 1;  
 

 

//anticipate upcoming motion  

996  sprintf(cmd, "D %f, %f, 0, 0: @GO", xPos, (yPos * -1));  

//construct positioning string  

997  send6kCmd(cmd);  

 

//and write to 6k  

998  finishStageMotion();  

//wait  

until stages finish moving  

999  

1000  posStatus = readCameraVal(&xPos, &yPos, &tPos);  

//get new positioning values  

1001  } 

1002  

1003 

1004  
 

 

 

1005  

 
 

1006 

1007 

1008 

1009  

tPos -= CI_tShift;  

sprintf(cmd, "4D%f: 4GO", tPos);  

 

angle to most recent value  

send6kCmd(cmd);  
 

 

 

 

return 0;  

 

 

 

//adjust injector  

1010  /****** NOTE on "second chance" adjustments: sometimes the  

pattern recognition software has trouble with a recognizable  



  151 

 
1011  
 

 

 
1012  
 

 

 

1013  

 

1014 

1015 

1016 

1017 

1018 

1019 

1020 

1021 

1022 

1023 

1024 

1025 

1026  
 

 
1027  

 

1028 

1029 

1030 

1031 

1032 

1033 

1034  

 
 

1035 

1036 

1037  

 

1038 

1039 

1040  

 
 

1041 

1042  

sample. I've found that a small positional  

shift suddenly renders the sample viable - not sure what this is  

but it's internal to the In-Sight PatMax algorithm. Therefore  

I've implemented a "second chance"  

in the event that a pattern is not recognized or stable, where the  

software shifts the injector module a very small distance in the  

x/y direction and then tries the  

alignment again. The number of "second chances" can be set by  

initializing variable secondChance to whatever value is desired.  

******/  

} 
 

 

 

 

int FillSubstrate()  

{ 

int injectLength, bfLength, TO_length, valvePct;  

double startTime, timeElapsed, valveVoltage;  
 

 

 

 

GetCtrlVal (Hn_mainPanel, mainPanel_injectDuration, &  

injectLength);  

GetCtrlVal (Hn_mainPanel, mainPanel_backfillDuration, &bfLength  

);  

GetCtrlVal (Hn_mainPanel, mainPanel_topOffDuration, &TO_length);  

GetCtrlVal (Hn_mainPanel, mainPanel_numValvePct, &valvePct);  

valveVoltage = (double)valvePct * MAXPROPV / 100;  

 
 

setStatus("Opening flow valves...");  

setProgressBar (injectLength, 5);  

//setup progress  

bar; update every 5 sec  

 
 

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 1);  

//pressurize DNA solutions  

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 1);  

rampVoltage(0, valveVoltage, 20);  

startTime = Timer ();  

//note  

start time  

setStatus("Flowing solutions...");  

startProgressBar();  

//and  

start progress bar timer  



  152 

1043  

1044  

1045  while((Timer() - startTime) < injectLength)  

//wait for user-specified  

duration  

1046  ProcessSystemEvents();  

1047  

1048 

1049  

 

1050 

1051 

1052 

1053 

1054  

 
 

1055 

1056  
 

 

 

1057  

 
 

1058 

1059 

1060 

1061 

1062 

1063  

//MessagePopup("Done", "Done with initial fill");  

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);  

//open DNA solns to vent  

Delay(10);  

//MessagePopup("Done", "Done with initial fill");  

// insert plugs  

/* send6kCmd("3MA1");  

 

setStageMovement(2);  

//set slow movement;  

send6kCmd("3V0.1");  

activeMotion =  

1;  

//anticipate upcoming motion  

send6kCmd("3D79.75:  

3GO");  

write to 6k  

finishStageMotion();  

send6kCmd("3MA1");  

 

setStatus("Performing dead-end filling");  

setProgressBar (bfLength, 5);  

WriteToDigitalLine (1, "0", DIOports[3], 8, 0,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
//and  

1);  //reapply pressure to DNA solns  

1064  // WriteToDigitalLine (1, "0", DIOports[1], 8, 0,  

1);  //apply back-pressure  

1065  startTime = Timer  

();  

//record start time  

1066  startProgressBar();  

1067  

1068  

 
 

1069 

1070 

1071  

while((Timer() - startTime) <  

bfLength)  

user-specified duration  

ProcessSystemEvents();  

//MessagePopup("Done", "Done with initial fill");  

 

 
//wait for  

1072  /*  setStatus("Topping off chip"); 1073 

 setProgressBar (TO_length, 5);  

1074  WriteToDigitalLine (1, "0", DIOports[1], 8, 0,  



  153 

0);  //turn off back-pressure  

1075  startTime = Timer ();  

1076  startProgressBar();  

1077  

1078 

1079 

1080 

1081 

1082  

 

1083 

1084  

 

1085 

1086 

1087 

1088  
 

 
1089  

 

1090 

1091 

1092 

1093 

1094 

1095 

1096 

1097 

1098  

 

 

 

*/  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
} 

while((Timer() - startTime) < TO_length)  

ProcessSystemEvents();  

 
 

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);  

//vent solutions again  

Delay(10);  

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 0);  

//switch low psi output to "vac"  

 

ProcessSystemEvents(); 

rampVoltage(0, 0, 10);  

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 0);  

//turn off pressure from both sides  

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);  
 

 

 

 

setStatus("");  
 

 

 

return 0;  

1099 

1100 

1101 

1102 

1103 

1104 

1105 

1106  

int DisengageSubstrate()  

{ 

double startTime;  

double VACTIME = 1;  

double extendVoltage = MAXPROPV;  

 

//STOP POINTS: ADD TO CONFIG FILE!!!  

const double zStop1 = 65.0;  
 

 

1107  
 

 

 
1108  
 

 

 
1109  
 

 

1110  

 

 

const double zStop2 = 76.1;  

 

movement  

const double zStop25 = 78.8;  

 

pins in place  

const double zStop3 = 78.50; //79.5;  

//79.25;  

//hovering  
 

 
//start slow  
 

 

 

//injector  
 

 

 
//injector plugs in place  



  154 

1111  

1112 

1113 

1114 

1115 

1116 

1117  
 

 

 

1118  

char cmd[80] = "";  
 

 

 
GetCtrlVal (Hn_mainPanel, mainPanel_pullout_Vac, &VACTIME);  

 
 

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);  

//make sure pressure/vent line is  

set to vent  

// WriteToDigitalLine (1, "0", DIOports[3], 8, 0,  

1);  //turn on vacuum  

1119  // startTime = Timer  

();  //note  

start time  

1120  // while((Timer() - startTime) <  

VACTIME)  //wait for  

user-specified duration  

1121  //  ProcessSystemEvents();  

1122  // WriteToDigitalLine (1, "0", DIOports[3], 8, 0,  

0);  //turn off vacuum  

1123  

1124  /*send6kCmd("3MA1"); 1125 

 setStageMovement(1);  
 

 

1126  
 

 

 

1127  
 

 

 

1128  

 

1129 

1130 

1131  
 

 

1132  
 

 

 
1133  
 

 

 

1134  

 

1135 

1136 

1137  

//set fast movement for pull-away  

activeMotion =  

1;  

//anticipate upcoming motion  

sprintf(cmd, "D 0, 0, %f: 3GO",  

-95);  

motion  

send6kCmd(cmd);  

//and write to 6k  

finishStageMotion();  

MessagePopup("okay", "okay");  

setStageMovement(1);  

//set fast movement for pull-away  

activeMotion =  

1;  

//anticipate upcoming motion  

sprintf(cmd, "D 0, 0, %f: 3GO",  

zStop2);  

motion  

send6kCmd(cmd);  

//and write to 6k  

finishStageMotion(); 

setStageMovement(2);  

activeMotion =  

 

 

 

 

 

 
//zero out x/y  
 

 

 

 

 

 

 

 

 

 

 

 

 

//zero out x/y  



  155 

 

 

 

1138  
 

 

 

1139  

 

1140 

1141 

1142 

1143  

1;  

//anticipate upcoming motion  

sprintf(cmd, "D 0, 0, %f: 3GO",  

zStop3);  

motion  

send6kCmd(cmd);  

//and write to 6k  

finishStageMotion();  

*/  
 

 

setStatus("Ramping piston pressure");  

 

 

 

 

//zero out x/y  

1144  
 

 
1145  
 

 
1146  
 

 

1147  

 

1148 

1149 

1150  
 

 
1151  
 

 

 

1152  
 

 

 
1153  

 
 

1154 

1155  
 

 

 

1156  

WriteToDigitalLine (1, "0", DIOports[1], 8, 0, 1);  

//open to psi  

WriteToDigitalLine (1, "0", DIOports[4], 8, 0, 1);  

//extend pistons  

rampVoltage(1, extendVoltage, 10);  

//ramp pressure  
 

 

 

 

 

setStatus("Disengaging substrate...");  

//update front panel  

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 1);  

//open solutions to vent during  

pullout  

send6kCmd("3MA1");  

 

//set absolute positioning on Z axis  

setStageMovement(2);  

 

//start with slow disengagement to clear PDMS  

send6kCmd("3V0.1");  

activeMotion = 1;  

 

//anticipate upcoming motion  

sprintf(cmd, "D 0, 0, 76.8: 3GO");//%f: 3GO",  

zStop25-0.75);  //zero out x/y motion  

1157  send6kCmd(cmd);  

 

//and write to 6k  

1158  finishStageMotion();  

1159  

1160  

1161  WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 0);  

//switch solutions to vacuum during  

final pull away  



  156 

1162  setStageMovement(1);  

//set  

fast movement for pull-away  

1163  activeMotion = 1;  

 

//anticipate upcoming motion  

1164  sprintf(cmd, "D 0, 0, %f: 3GO", (zStop1-10));  

//zero out x/y motion  

1165  send6kCmd(cmd);  

 

//and write to 6k  

1166  finishStageMotion();  

1167  

1168 1169  

1170  send6kCmd("3MA0");  

 

//return to relative pos on Z axis  

1171  setStatus("Disengaging substrate... Done" );  

1172  

1173  WriteToDigitalLine (1, "0", DIOports[1], 8, 0, 0);  

//vent extension side  

1174  Delay(2);  

1175  WriteToDigitalLine (1, "0", DIOports[4], 8, 0, 0);  

//retract pistons  

1176  WriteToDigitalLine (1, "0", DIOports[1], 8, 0, 1);  

//pressurize again  

1177  Delay(3);  

 

//allow pressure to build to full  

1178  setStatus("Retracting pistons");  

1179  rampVoltage(1, 0, 10);  

//remove  

pressure  

1180  WriteToDigitalLine (1, "0", DIOports[1], 8, 0, 0);  

1181  

1182  

1183  setStatus("");  

1184  

1185  return 0;  

1186  } 

1187  

1188  

1189  int EngageSubstrate()  

1190  { 

1191  //STOP POINTS: ADD TO CONFIG FILE!!!  

1192  const double zStop1 = 65.0;  



  157 

 
1193  

 
 

1194 

1195  

 

1196 

1197 

1198 

1199 

1200  
 

 
1201  

 
 

1202 

1203 

1204  
 

 

 

1205  

 
const double zStop2 = 76.1;  

 

plate engaged  

const double zStop25 = 78.8;  

const double zStop3 = 78.50; //79.5;  

//79.25;  
 

 

char cmd[80] = "";  
 

 

 

setStatus("Engaging substrate...");  
 

 
send6kCmd("3MA1");  

 

//set absolute positioning on Z axis  

///send6kCmd("TPE");  
 

 

setStageMovement(1);  

 

fast movement;  

activeMotion = 1;  
 

 
//anticipate upcoming motion  

//hovering  
 

 

//pressure  
 

 

 

 

//PDMS engaged  

 

 

 

 

 

 

//update front panel  

 

 

 

 

 

 

 

//set  

1206  sprintf(cmd, "D %f, %f, %f, 0: GO111x", CI_xShift, CI_yShift,  

zStop1);  //construct positioning string  

1207  send6kCmd(cmd);  

 

//and write to 6k  

1208  finishStageMotion();  

 
 

1209 

1210  
 

 

 

1211  
 

 

 
1212  

 

 
until stages finish moving  
 

 
setStageMovement(3);  

 

medium movement;  

activeMotion = 1;  

 

//anticipate upcoming motion  

sprintf(cmd, "D 0, 0, %f: 3GO", zStop2);  

//wait  
 

 

 

 

//set  

//zero out x/y motion  

1213  send6kCmd(cmd);  

 

//and write to 6k  

1214  finishStageMotion();  

1215  

1216  setStageMovement(2);  



  158 

 

 

 

1217  
 

 

 

1218  
 

 

 

1219  

 
 

1220 

1221 

1222  
 

 

 

1223  
 

 

 
1224  

 

slow movement;  

activeMotion = 1;  

 

//anticipate upcoming motion  

sprintf(cmd, "3D%f: 3GO", zStop25);  

 

positioning string  

send6kCmd(cmd);  

 

//and write to 6k  

finishStageMotion();  

/*MessagePopup("okay", "okay");  

 

setStageMovement(2);  

//set slow movement;  

activeMotion =  

1;  

//anticipate upcoming motion  

sprintf(cmd, "3D%f: 3GO",  

 

 

 

 

 

 

 

//construct  

//set  

zStop3);  //construct  

positioning string  

1225  

send6kCmd(cmd);  

 

1226 

1227 

1228 

1229  

 
 

1230 

1231 

1232 

1233 

1234 

1235 

1236 

1237  

 

 

 

*/  
 

 

 

 

 

 

 

 

 

 

 

} 

//and write to 6k  

finishStageMotion();  
 

 

 
send6kCmd("3MA0");  

 

//return to relative pos on Z axis  

setStatus("Engaging substrate... Done");  
 

 
Delay(1);  
 

 
return 0;  

1238 

1239 

1240 

1241 

1242 

1243 

1244 

1245  

int processSlide(int slideNo)  

{ 

const int CUTSCORE = 92;  

 

int status = 2;  

int usrEvent, activePanel;  
 

 

//status = 0;  



  159 

1246  

1247  
 

 

 
1248  
 

 

 

1249  
 

 

 

1250  

 
updateStatus(slideNo, 0);  

 

active slide  

ProcessSystemEvents ();  

 

update display  

status = PositionInjector(slideNo);  

 

module  

while(status)  
 

 

//on error  

 

 

 

//indicate  
 

 

 

//  
 

 

 

//position injector  

1251  { Hn_AlignPanel = LoadPanel (Hn_mainPanel, "alignScore.uir",  
 

 

 

1252  
 

 

 

1253  
 

 

 

1254  

scorePanel); // prompt for reduced alignment standards (cut  

score)  

activePanel = Hn_AlignPanel;  

// denote  

active panel  

InstallPopup (Hn_AlignPanel);  

// install as  

popup  

while(activePanel == Hn_AlignPanel)  

1255  { ProcessSystemEvents ();  

// wait  

until it returns  

1256  activePanel = GetActivePanel ();  

1257  } 

1258  

1259  if(cutScore == CUTSCORE) return 1;  

//  if cut score has  

not changed, stop processing slide  

1260  status = PositionInjector(slideNo);  

//  otherwise re-align  

1261  } 

1262  cutScore = CUTSCORE;  

 

//return cutScore to default  

1263  //  if(status) return  

1;  //on error,  

stop processing slide  

1264  EngageSubstrate();  

1265  FillSubstrate();  

1266  //  status = check substrate  

1267  DisengageSubstrate();  

1268  

1269  



  160 

1270  Delay(1);  

1271  updateStatus(slideNo, 2);  

1272  

1273  return 0;  

1274  } 

1275  

1276 

1277 

1278 

1279 

1280 

1281 

1282 

1283 

1284 

1285  

int checkAlignment(int slideNo)  

{ 

const int CUTSCORE = 92;  

 

int status = 2;  

int usrEvent, activePanel;  
 

 
//status = 0;  
 

 
updateStatus(slideNo, 0);  

//indicate  

active slide  

1286  ProcessSystemEvents ();  

//  

update display  

1287  status = PositionInjector(slideNo);  

//position injector  

module  

1288  if(cutScore == CUTSCORE){  

1289  setStatus("Checks out");  

1290  return 1;  

1291  } 

1292  

1293  return 0;  

1294  } 

1295  

1296  

1297 

1298 

1299 

1300 

1301 

1302 

1303 

1304 

1305  
 

 

 
1306  
 

 

1307  

int processPrimer()  

{ 

int status = 2;  

int usrEvent;  

int injectLength, valvePct, rampTime;  

double startTime, timeElapsed, valveVoltage;  

 

//status=0;  

slides[0][1] = 1;  

 

//ensure slide is "selected" if processed  

SetCtrlAttribute (Hn_mainPanel, slides[0][0], ATTR_FRAME_COLOR,  

activeSlideColor);  

updateStatus(0, 0);  



  161 

 

 

1308  
 

 

 

1309  
 

 

 

1310  

//activate primer slide  

ProcessSystemEvents ();  

 

update display  

status = PositionInjector(0);  

 

injector module  

if(status) return 1;  

 

 

 

//  
 

 

 

//position  

 
 

1311 

1312 

1313 

1314  

 

1315 

1316  

 

error, stop processing slide  

EngageSubstrate();  
 

 

 

 
//BEGIN MODIFIED "FILLSUBSTRATE()"  
 

 

GetCtrlVal (Hn_mainPanel, mainPanel_primerDuration, &  

//on  

injectLength);  // read in user parameters  

1317 

1318 

1319 

1320 

1321 

1322 

1323 

1324 

1325  

 

1326 

1327  
 

 

 
1328  

 
 

1329 

1330  
 

 
1331  

 
 

1332 

1333 

1334 

1335  

GetCtrlVal (Hn_mainPanel, mainPanel_primerValvePct, &valvePct); 

GetCtrlVal (Hn_mainPanel, mainPanel_primerRampTime, &rampTime);  

valveVoltage = (double)valvePct * MAXPROPV / 100;  

 
 

setStatus("Priming solutions...");  

setProgressBar (injectLength, 5);  

 

WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 1);  

//open solenoid to pressurize vials  

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 1);  

rampVoltage(0, valveVoltage, rampTime);  

//slowly pressurize DNA  

solns  

startTime = Timer ();  

//note  

start time  

startProgressBar();  

 
 

while((Timer() - startTime) < injectLength)  

//wait for user-specified  

duration  

ProcessSystemEvents();  

 
 

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);  

//open pressure system to vent  



  162 

1336  Delay(10);  

1337  ampVoltage(0, 0, 10);  

//close  

proportional valve  

1338  WriteToDigitalLine (1, "0", DIOports[2], 8, 0, 0);  

//turn off solenoids to vials  

1339 1340  

1341  setStatus("");  

1342  

//END MODIFIED "FILLSUBSTRATE()"  

1343 1344  

1345  DisengageSubstrate();  

1346  

1347  

1348  Delay(1);  

1349  updateStatus(0, 2); 1350 

 return 0;  

1351  } 

1352  

1353 1354  

1355 

1356 

1357 

1358 

1359 

1360 

1361 

1362 

1363 

1364  

int CVICALLBACK cmdStartRun (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, primerStatus, BlowoutStatus;  
 

 

 
if(event != EVENT_COMMIT) return 0;  
 

 

 

SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdPauseRun,  

ATTR_DIMMED, 0);  //enable Pause & Abort buttons  

1365  

 

1366 

1367  
 

 

 
1368  

SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdAbortRun,  

ATTR_DIMMED, 0);  
 

 

i = 1;  

 

//initialize to process second slide  

GetCtrlVal(Hn_mainPanel, mainPanel_chkUsePrimer, &primerStatus  

);  //get primer status  

1369  if(primerStatus) processPrimer();  

// if active, start  

priming  

1370  else i--;  



  163 

//  otherwise begin processing at first slide  

1371  

1372  //Alex  

1373 

1374 

1375 

1376 

1377 

1378 

1379 

1380 

1381 

1382 

1383 

1384  

for(i = i; i < MAXSLIDES; i++)  

if(slides[i][1]) checkAlignment(i);  

//  

for(i = i; i < MAXSLIDES; i++)  

if(slides[i][1]) processSlide(i);  

 
 

GetCtrlVal(Hn_mainPanel, mainPanel_chkBlowout, &BlowoutStatus);  

if(BlowoutStatus) expungeSolutions(0,0,EVENT_COMMIT,NULL,0,0);  

1385  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdNewRun,  

ATTR_DIMMED, 0);  //enable system reset button  

1386  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdStartRun,  

ATTR_DIMMED, 1);  //disable "start run" until reset occurs  

1387  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdPauseRun,  

ATTR_DIMMED, 1);  //disable Pause & Abort buttons  

1388  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdAbortRun,  

ATTR_DIMMED, 1);  

 

1389  

1390  return 0;  

1391  } 

1392  

1393 1394  

1395 

1396 

1397 

1398 

1399 

1400  

int CVICALLBACK PauseRun (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

if(pauseFlag)  
 

 

//if run is already paused  

1401  { pauseFlag = 0;  

 

// release pause flag  

1402  SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdPauseRun,  

ATTR_LABEL_TEXT, "Pause Run");  // return button label  

to unpaused state  

1403  SetCtrlAttribute (Hn_mainPanel, mainPanel_txtStatus,  

ATTR_CTRL_VAL, "");  // update run status  

1404  } 



  164 

1405  else  

 

//else  

1406  { pauseFlag = 1;  

 

// set pause flag  

1407  SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdPauseRun,  

ATTR_LABEL_TEXT, "Resume Run"); // change button label  

1408  SetCtrlAttribute (Hn_mainPanel, mainPanel_txtStatus,  

ATTR_CTRL_VAL, "Run paused");  // update run  

status  

1409  } 

1410  

1411  return 0;  

1412  } 

1413  

1414 1415  

1416 

1417 

1418 

1419  

 
 

1420 

1421  

int CVICALLBACK AbortRun (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

 

 

if(!ConfirmPopup ("Abort Run", "Are you sure you want to abort  

this run?")) return 0;  //confirm cancel  

1422  

1423  

1424  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdPauseRun,  

ATTR_DIMMED, 1);  //disable Pause & Abort buttons  

1425  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdAbortRun,  

ATTR_DIMMED, 1);  

1426  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdNewRun,  

ATTR_DIMMED, 0);  //enable system reset button  

1427  SetCtrlAttribute  (Hn_mainPanel, mainPanel_cmdStartRun,  

ATTR_DIMMED, 1);  //disable "start run" until reset occurs  

1428  

1429  return 0;  

1430  } 

1431  

1432 1433  

1434  int CVICALLBACK NewRun (int panel, int control, int event,  

1435  void *callbackData, int eventData1, int eventData2)  

1436  { 

1437  int i, j;  



  165 

1438  

1439 

1440 

1441 

1442 

1443  

 
if(event != EVENT_COMMIT) return 0;  
 

 

 

 

for(i = 0; i < MAXSLIDES; i++)  

//for each slide  

1444  { if(slides[i][1])  

//  

that is present  

1445  { for(j = 2; j < 5; j++)  

//  check  

each status icon  

1446  if(slides[i][j])  

 

//  if present  

1447  { DiscardCtrl (Hn_mainPanel, slides[i][j]);  

//  delete icon ctrl  

1448  slides[i][j] = 0;  

 

//  remove status flag  

1449  } 

1450  slides[i][1] = 0;  
 

 
//  deactivate slide  

1451  SetCtrlAttribute (Hn_mainPanel, slides[i][0],  

ATTR_FRAME_COLOR, inactiveSlideColor);  //  remove  

indicator  

1452  } 

1453  } 

1454  

1455 1456  

1457  SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdNewRun,  

ATTR_DIMMED, 1);  //disable system reset button  

1458  SetCtrlAttribute (Hn_mainPanel, mainPanel_cmdStartRun,  

ATTR_DIMMED, 0);  //enable "start run"  

1459  

1460  return 0;  

1461  } 

1462  

1463 

1464 

1465 

1466 

1467  

int CVICALLBACK UpdateNFO (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

HRESULT err;  

float resultArr[3];  



  166 

 

1468 

1469 

1470 

1471 

1472 

1473 

1474  

 

 

 

//  

//theta, y, x  

char results[80];  

char qString[80] = " ";  

int i = 0, j = 0; 

long qString = 0;  
 

 

if(event != EVENT_COMMIT) return 0;  

1475 

1476 

1477 

1478 

1479 

1480 

1481  

DS_Update 

DS_Update 

DS_Update 

DS_Update 

DS_Update  

(DataSockets[0]); 

(DataSockets[1]); 

(DataSockets[2]); 

(DataSockets[3]); 

(DataSockets[4]);  

1482  for(i = 0; i < 3; i++)  

1483  { while(qString != 192 && j++ < 5)  

//192 = "Good"  

1484  
 

 

1485  
 

 

1486  

err = DS_GetAttrValue (DataSockets[i], "Quality",  

CAVT_LONG, &qString, sizeof(qString), NULL, NULL);  

if(j > 5) MessagePopup("Comm Error", "Could not retrieve  

data from OPC server!");  

else  

1487  { err = DS_GetDataValue (DataSockets[i], CAVT_FLOAT, &  

resultArr[i], sizeof(resultArr[0]), NULL, NULL);  

1488  if(err < 0) CA_DisplayErrorInfo(DataSockets[i],  

"DataSocket Error", err, NULL);  

1489  } 

1490  j = 0; qString = 0;  

1491  } 

1492  

1493  

1494  sprintf(results, "x shift: %f\n y shift: %f\n t shift: %f\n" ,  

resultArr[2], resultArr[1], resultArr[0]);  

1495  MessagePopup("Results", results);  

1496  

1497  return 0;  

1498  } 

1499  

1500 1501  

1502 

1503 

1504 

1505 

1506 

1507  

int CVICALLBACK chooseJobFile (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

HRESULT err;  

int ringVal;  

// char fileNames[5][50] = {"", "40-pin.job", "100-pin.job"};  



  167 

1508  

1509 

1510 

1511 

1512  

char fileName[50];  

int i;  

if(event != EVENT_COMMIT) return 0;  
 

 
GetCtrlVal (panel, control, &ringVal);  

//generalized for use on  

other panels  

1513  if(ringVal == -1)  

1514  { MessagePopup ("Using new job files", "Please consult the  

 

1515 

1516 

1517 

1518 

1519 

1520  

user's guide for instructions on how to add new job files" );  

return 0;  

} 

GetLabelFromIndex (panel, control, ringVal, fileName);  
 

 

 
err = DS_SetDataValue (DataSockets[5], CAVT_CSTRING, fileName,  

strlen(fileName), 0);  //set user-selected filename  

1521  if(err < 0)  
 

 

//if error  

1522  { CA_DisplayErrorInfo(DataSockets[5], "DataSocket Error", err  

, NULL);  // display  

1523  SetCtrlVal (Hn_mainPanel, mainPanel_CognexRing, 0);  

// reset ring  

1524  return 0;  

1525  } 

1526  

1527  

 

1528 

1529 

1530  

 

 

 

 

 

i=  

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "Loading new  

job file..."); //update status  

ProcessSystemEvents();  

 

DS_Update(DataSockets[5]);  

//else send  
 

 

1531  

 
 

1532 

1533 

1534 

1535 

1536 

1537 

1538 

1539 

1540 

1541  

update to Cognex server  

SetCtrlVal (Hn_mainPanel, mainPanel_txtStatus, "");  
 

 

 
ProcessSystemEvents();  

 

return 0;  

} 

 

int CVICALLBACK send6kCommand (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

char cmd[80];  

char errorMsg[120];  



  168 

1542  char ts[2] = {(char)13, '\0'};  

1543  int err = 0;  

1544  

1545 1546  

1547  if(event != EVENT_COMMIT) return 0;  

1548  

1549  

1550  GetCtrlVal (Hn_mainPanel, mainPanel_txtCmd, cmd);  

1551  send6kCmd(cmd);  

1552  

1553  return 0;  

1554  } 

1555  

1556 

1557 

1558 

1559 

1560  

 
 

1561 

1562 

1563 

1564 

1565  

int CVICALLBACK EnableStage (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int LEDval = 1;  

char sendString[20] = "DRIVExxx";  

//default string to  

enable/disable drives  

char bitVals[2] = {'0','1'};  
 

 

if(event != EVENT_COMMIT) return 0;  
 

 

switch(control)  
 

 
//determine which control called function  

1566  { case mainPanel_xEnable:  

 

//  for x stage  

1567  GetCtrlVal (Hn_mainPanel, mainPanel_xEnable, &LEDval);  

//  get status  

1568  sendString[5] = bitVals[LEDval];  

//  

set status  

1569  SetCtrlAttribute (Hn_mainPanel, mainPanel_xIncrement,  

ATTR_DIMMED, !LEDval);  //  set status on movement  

icons  

1570  SetCtrlAttribute (Hn_mainPanel, mainPanel_xDecrement,  

 
 

1571 

1572  

ATTR_DIMMED, !LEDval);  

icons  

break;  

case mainPanel_yEnable:  
 

 

// for y stage  

//  set status on movement  

1573  GetCtrlVal (Hn_mainPanel, mainPanel_yEnable, &LEDval);  



  169 

//  get status  

1574  sendString[6] = bitVals[LEDval];  

//  

set status  

1575  SetCtrlAttribute (Hn_mainPanel,  mainPanel_yIncrement,  

ATTR_DIMMED, !LEDval);  //  set status on movement  

icons  

1576  SetCtrlAttribute (Hn_mainPanel,  mainPanel_yDecrement,  
 

 

 

1577  
 

 

 
1578  

ATTR_DIMMED, !LEDval);  

icons  

break;  
 

 

 
case mainPanel_zEnable:  
 

 
// for z stage  

//  set status on movement  

1579  GetCtrlVal (Hn_mainPanel, mainPanel_zEnable, &LEDval);  

//  get status  

1580  sendString[7] = bitVals[LEDval];  

//  

set status  

1581  SetCtrlAttribute (Hn_mainPanel, mainPanel_zIncrement,  

ATTR_DIMMED, !LEDval);  //  set status on movement  

icons  

1582  SetCtrlAttribute (Hn_mainPanel, mainPanel_zDecrement,  

ATTR_DIMMED, !LEDval);  //  set status on movement  

icons  

1583  break;  

1584  } 

1585  

1586  send6kCmd(sendString);  

1587  

1588  return 0;  

1589  } 

1590  

1591 

1592 

1593 

1594 

1595 

1596 

1597 

1598 

1599 

1600  
 

 

1601  

int CVICALLBACK manualMotion (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

float xyDistance = 0, zDistance = 0;  

char sendString[80];  
 

 
if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal (Hn_mainPanel, mainPanel_xyDistance, &xyDistance);  

//get distance values  

GetCtrlVal (Hn_mainPanel, mainPanel_zDistance, &zDistance);  



  170 

1602  

1603  switch(control)  

1604  { 

 

//determine which control called function  

1605  case mainPanel_xIncrement:  

// for positive  

x motion  

1606  sprintf(sendString, "1D-%3f: 1go", xyDistance);  

//  record distance & instigate  

motion  

1607  break;  

1608  case mainPanel_xDecrement:  

// for negative  

x motion  

1609  sprintf(sendString, "1D%3f: 1go", xyDistance);  

//  record distance, but add "-" sign  

1610  break;  

1611  case mainPanel_yIncrement:  

1612  sprintf(sendString, "2D%3f: 2go", xyDistance);  

 

1613  break;  

1614  case mainPanel_yDecrement:  

1615  sprintf(sendString, "2D-%3f:  2go", xyDistance);  

1616  break;  

1617  case mainPanel_zIncrement:  

1618  sprintf(sendString, "3D-%3f:  3go", zDistance);  

1619  break;  

1620  case mainPanel_zDecrement:  

1621  sprintf(sendString, "3D%3f:  3go", zDistance);  

1622  break;  

1623  case mainPanel_tIncrement:  

1624  sprintf(sendString, "4D-%3f:  4go", zDistance);  

1625  break;  

1626  case mainPanel_tDecrement:  

1627  sprintf(sendString, "4D%3f:  4go", zDistance);  

1628  break;  

1629  } 

1630  

1631  send6kCmd(sendString);  

//send  

string to 6k  

1632  

1633  return 0;  

1634  } 

1635  

1636  int CVICALLBACK callHomeStages (int panel, int control, int event,  



  171 

1637  void *callbackData, int eventData1, int eventData2)  

1638  { 

1639  if(event != EVENT_COMMIT) return 0;  

1640  

1641  HomeStages();  

1642  

1643  return 0;  

1644  } 

1645  

1646 1647 

1648  

1649  

 

1650 

1651  

 
 

1652 

1653 

1654 

1655 

1656 

1657  
 

 

1658  

int CVICALLBACK setDIO (int panel, int control, int event,  

 

void *callbackData, int eventData1, int eventData2)  

{ 

 

//FIX THESE LABELS ON THE FRONT PANEL!!!  

int switchStatus;  
 

 

if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal (Hn_mainPanel, control, &switchStatus);  

//get new value of calling control  

switch(control)  
 

 
//determine which control called function  

1659  { case mainPanel_bswBacklight:  

1660  WriteToDigitalLine (1, "0", DIOports[0],  8, 0,  

switchStatus);  

1661  break;  

1662  case mainPanel_bswLowpsi_vac:  

1663  WriteToDigitalLine (1, "0", DIOports[1],  8, 0,  

switchStatus);  

1664  break;  

1665  case mainPanel_bswLowpsi:  

1666  WriteToDigitalLine (1, "0", DIOports[2],  8, 0,  

switchStatus);  

1667  break;  

1668  case mainPanel_bswVacOn:  

1669  WriteToDigitalLine (1, "0", DIOports[3],  8, 0,  

switchStatus);  

1670  break;  

1671  } 

1672  

1673  return 0;  



  172 

1674  

1675 

1676 

1677 

1678 

1679 

1680 

1681 

1682 

1683 

1684 

1685 

1686 

1687 

1688 

1689  

} 
 

 

 

 

int CVICALLBACK togglePropValve (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int valvePct = 0;  

double valveVoltage = 0;  

int status;  
 

 

if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal (Hn_mainPanel, control, &status);  

if(status)  

1690 

1691 

1692 

1693  

 
 

1694 

1695 

1696  

 
 

1697 

1698  

{ 
 

 

 
} 

 
 

else  

{

} 

GetCtrlVal (Hn_mainPanel, mainPanel_numValvePct, &valvePct);  

valveVoltage = (double)valvePct * MAXPROPV / 100;  

rampVoltage(0, valveVoltage, 20);  
 

 

 

//ramp voltage up over 20 sec  
 

 
rampVoltage(0, 0, 10);  
 

 

 

//ramp voltage down over 10 sec  

1699  return 0;  

1700  } 

1701  

1702 1703  

1704  int CVICALLBACK quitProgram (int panel, int control, int event,  

1705  void *callbackData, int eventData1, int eventData2)  

1706  { int i;  

1707  if(event != EVENT_COMMIT) return 0;  

1708  

1709  writeConfig();  

1710  HomeStages();  

1711  

1712 

1713 

1714 

1715 

1716  

DS_DiscardObjHandle 

DS_DiscardObjHandle 

DS_DiscardObjHandle 

DS_DiscardObjHandle 

DS_DiscardObjHandle  

(DataSockets[0]); 

(DataSockets[1]); 

(DataSockets[2]); 

(DataSockets[3]); 

(DataSockets[4]);  



  173 

1717  DS_DiscardObjHandle (DataSockets[5]);  

1718  

1719  DisconnectFromTCPServer (sixK_TCP);  

1720  

1721  for(i = 0; i < 8; i++)  

1722  WriteToDigitalLine (1, "0", i, 8, 1, 0);  

1723  rampVoltage(0, 0.0, 5);  

1724  rampVoltage(1, 0.0, 5);  

1725  

1726  QuitUserInterface(0);  

1727  

1728  return 0;  

1729  } 

1730  

1731 1732 

1733 1734 

1735 1736 

1737 1738 

1739 1740 

1741  

1742  /***************************************************************** 1743 

 ******************************************************************  

1744  

1745  CALIBRATION  FUNCTIONS  

1746  

1747 

1748 

1749 

1750 

1751 

1752  

 

1753 

1754 

1755 

1756 

1757  
 

 

 
1758  
 

 
1759  

****************************************************************** 

*****************************************************************/  
 

 

 

 

int CVICALLBACK LaunchCalibration (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

send6kCmd("DRIVE1111");  

 

//activate all drives  

Hn_calibratePanel = LoadPanel (Hn_mainPanel,  

"calibration.uir", pnlCalib); //load panel  



  174 

1760  DisplayPanel (Hn_calibratePanel);  

//open panel  

1761 1762  

1763  return 0;  

1764  } 

1765  

1766 1767  

1768 

1769 

1770 

1771 

1772 

1773 

1774 

1775 

1776 

1777  

int CVICALLBACK CmanualMotion (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

float xyDistance = 0, zDistance = 0;  

char sendString[80];  
 

 
if(event != EVENT_COMMIT) return 0;  
 

 

 

GetCtrlVal (Hn_calibratePanel, pnlCalib_xyDistance, &xyDistance  

);  //get distance values  

1778 

1779  

 
 

1780 

1781 

1782  
 

 

 

1783  
 

 

 

1784  

GetCtrlVal (Hn_calibratePanel, pnlCalib_zDistance, &zDistance);  
 

 

 

 

 

switch(control)  

{ 

 

//determine which control called function  

case pnlCalib_xIncrement:  

// for  

positive x motion  

sprintf(sendString, "1D-%3f: 1go", xyDistance);  

//  record distance & instigate  

motion  

1785  break;  

1786  case pnlCalib_xDecrement:  

// for  

negative x motion  

1787  sprintf(sendString, "1D%3f: 1go", xyDistance);  

//  record distance, but add "-" sign  

1788  break;  

1789  case pnlCalib_yIncrement:  

1790  sprintf(sendString, "2D%3f: 2go", xyDistance);  

 

1791  break;  

1792  case pnlCalib_yDecrement:  



  175 

1793  sprintf(sendString, "2D-%3f:  2go", xyDistance);  

1794  break;  

1795  case pnlCalib_zIncrement:  

1796  sprintf(sendString, "3D-%3f:  3go", zDistance);  

1797  break;  

1798  case pnlCalib_zDecrement:  

1799  sprintf(sendString, "3D%3f:  3go", zDistance);  

1800  break;  

1801  case pnlCalib_tIncrement:  

1802  sprintf(sendString, "4D-%3f:  4go", zDistance);  

1803  break;  

1804  case pnlCalib_tDecrement:  

1805  sprintf(sendString, "4D%3f:  4go", zDistance);  

1806  break;  

1807  } 

1808  

1809  send6kCmd(sendString);  

//send  

string to 6k  

1810  

1811  return 0;  

1812  } 

1813  

1814  

1815 

1816 

1817 

1818 

1819 

1820 

1821 

1822 

1823 

1824 

1825 

1826 

1827 

1828  

int CVICALLBACK CreturnToMain (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

DiscardPanel (Hn_calibratePanel);  

 

return 0;  

} 

1829  /************  ICD FUNCTIONS  *************/  

1830  

1831  

1832 

1833 

1834 

1835 

1836 

1837  

int CVICALLBACK CstartICD (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i = 0;  

int fileSize = 0;  

char entryName[80];  



  176 

1838  

1839 

1840 

1841 

1842 

1843  
 

 

1844  

FILE* jobFiles;  
 

 

 
if(event != EVENT_COMMIT) return 0;  

 

Hn_ICDpanel = LoadPanel (Hn_calibratePanel, "calibration.uir",  

pnlICD);  

SetCtrlAttribute (Hn_ICDpanel, pnlICD_cmdGetCameraPos,  

ATTR_VISIBLE, 1);  //enable alignment start button  

1845  

 

1846 

1847  
 

 

1848  
 

 

 

1849  

 

 

 

 
/*  

SetCtrlAttribute (Hn_ICDpanel, pnlICD_cmdGetCameraPos_2, 

ATTR_VISIBLE, 0); //and disable record-&-continue button  

 
 

//zero out stage rotation  

activeMotion =  

1;  

//anticipate upcoming motion  

send6kCmd("4MA1: 4D0:  
 

 

 
1850  
 

 

 
1851  

 
 

1852 

1853  
 

 

 

1854  

 
 

1855 

1856  

 

 

 

 

 

 

 

 

 

 

*/  

4GO");  

absolute mode on axis 4 and go home  

 

finishStageMotion();  

//wait until stages finish moving  

 

send6kCmd("4MA0");  

//return to incremental mode on axis 4  
 

 

send6kCmd("@DRIVE1");  

 

//enable all stages  

backlight(1);  
 

 

//and backlight  
 

 

sprintf(entryName, "3MA1: 3d%f: 3go", imagingZ);  

//set  

 

 

 
1857  
 

 

 

1858  
 

 

 

1859  

 

go to imaging loc.  

send6kCmd(entryName);  

 

to imaging position  

finishStageMotion();  

 

until stage finishes moving  

send6kCmd("3MA0");  

//set absolute mode on axis 3 and  
 

 

 

//move  
 

 

 
//wait  

 

//return to incremental mode on axis 3  

1860  



  177 

1861  

//populate jobfile list  

1862  if(!(GetFileInfo (jobsFileName, &fileSize)))  

//if file doesn't exist  

1863  { sprintf(entryName, "There was a problem opening '%s'.  

 
 

1864 

1865 

1866 

1867 

1868 

1869  

Please \nensure that it is in this program's root directory" ,  

jobsFileName);  

MessagePopup ("Error", entryName);  

return 1;  

} 

 

jobFiles = fopen (jobsFileName, "r");  

while(!feof (jobFiles))  

//while end  

of file not reached  

1870  { fgets (entryName, sizeof(entryName), jobFiles);  

1871  if(entryName[strlen(entryName)-1] == '\n') entryName[strlen  

(entryName)-1] = '\0';  // if CR present,strip it  

1872  InsertListItem (Hn_ICDpanel, pnlICD_CognexRing, -1,  

entryName, i++);  // add it to calibration  

panel Cognex ring  

1873  } 

1874  

1875  GetCtrlVal (Hn_mainPanel, mainPanel_CognexRing, &i);  

//get value from main panel  

1876  SetCtrlVal (Hn_ICDpanel, pnlICD_CognexRing, i);  

//and set it on ICD panel  

1877 1878  

1879  DisplayPanel (Hn_ICDpanel);  

1880  

1881  

1882  return 0;  

1883  } 

1884  

1885 

1886 

1887 

1888 

1889 

1890 

1891 

1892 

1893 

1894 

1895 

1896  

int CVICALLBACK CgetCameraPos (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 
 

 

const double xyTolerance = 0.025;  

 

char cmd[80] = "";  

double xPos = .026, yPos = .026, tPos = 0;  

int posStatus = 0;  
 

 

 
if(event != EVENT_COMMIT) return 0;  



  178 

1897  

1898 

1899  
 

 
1900  

 

1901 

1902 

1903  

 

 

posStatus = readCameraVal(&xPos, &yPos, &tPos);  

//get offset values  

while((fabs(xPos) > xyTolerance) || (fabs(yPos) > xyTolerance))  

//while out of spec  

{ 

ProcessSystemEvents();  

if(posStatus)  

 

//if error generated, give  

message  

1904  { if(posStatus == 1) MessagePopup ("Alignment Error",  
 

 

1905  
 

 

1906  

 

1907 

1908  
 

 

 

1909  

 
 

1910 

1911  

 

1912 

1913  
 

 

 

1914  
 

 

 
1915  
 

 
1916  
 

 

 
1917  

 
 

1918 

1919 

1920  

"Unable to achieve stable alignment reading" );  

if(posStatus == 2) MessagePopup ("Alignment Error",  

"Unable to match pattern");  

if(posStatus == 3) MessagePopup ("Alignment Error",  

"Error communicating with vision OPC server" );  

 

MessagePopup("Action Required", "Unable to  

automatically align pattern - please zero the  

reference index values manually" );  

goto CONTINUE;  

 

 

} 

setStatus("Performing fine adjustments to injector  

position");  

 

setStageMovement(2);  

//set slow  

motion for better precision  

activeMotion = 1;  

 

//anticipate upcoming motion  

sprintf(cmd, "D %f, %f, 0, 0: @GO", xPos, (yPos * -1));  

//construct positioning string  

send6kCmd(cmd);  

//and  

write to 6k  

finishStageMotion();  

//wait  

until stages finish moving  

ProcessSystemEvents();  

 

posStatus = readCameraVal(&xPos, &yPos, &tPos);  

//get new positioning values  



  179 

1921  

1922 

1923  

 

1924 

1925 

1926 

1927  

} 

 

MessagePopup("Alignment finalized", "Please press the button  

again to confirm that the alignment is correct" );  
 

 

CONTINUE:  
 

 

SetCtrlAttribute (Hn_ICDpanel, pnlICD_cmdGetCameraPos,  

ATTR_VISIBLE, 0);  //disable alignment start button  

1928  SetCtrlAttribute (Hn_ICDpanel, pnlICD_cmdGetCameraPos_2,  

ATTR_VISIBLE, 1);  //and enable record-&-continue button  

1929  

1930  

1931  return 0;  

1932  } 

1933  

1934  

1935 

1936 

1937 

1938 

1939  
 

 
1940  
 

 

 
1941  

 

1942 

1943 

1944 

1945 

1946 

1947 

1948 

1949 

1950  

int CVICALLBACK CgetCameraPos2 (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

//STOP POINTS: ADD TO CONFIG FILE!!!  

const double zStop1 = 65.0;  

//hovering  

const double zStop2 = 76.1;  

//pressure plate  

engaged  

const double zStop3 = 79.90;  

//PDMS engaged  

 
 

char cmd[80] = ""; double tShift = 0;  

double xPos = 0.26, yPos = 0.26;  
 

 
if(event != EVENT_COMMIT) return 0;  

 
 

while((xPos > 0.25) || (yPos > 0.25))  

//if detected pattern is  

shifting  

1951  { GetCtrlVal(Hn_ICDpanel, pnlICD_currXpos, &xPos);  

// only grab theta value from properly  

1952  GetCtrlVal(Hn_ICDpanel, pnlICD_currYpos, &yPos);  

// detected pattern  

1953  GetCtrlVal(Hn_ICDpanel, pnlICD_currTpos, &tShift);  

1954  Delay(0.5);  

1955  ProcessSystemEvents();  

1956  } 



  180 

1957  

1958  
 

 

 
1959  

 
 

1960 

1961 

1962  

 

1963 

1964 

1965 

1966 

1967  

 
send6kCmd("TPE");  

 

//request encoder position; values read into globals  

Delay(1.0);  

 

//wait for response  

ProcessSystemEvents();  

 

SetCtrlVal (Hn_ICDpanel, pnlICD_cameraX, encX);  

//copy values out of globals  

SetCtrlVal (Hn_ICDpanel, pnlICD_cameraY, encY);  

SetCtrlVal (Hn_ICDpanel, pnlICD_cameraT, tShift);  

1968  
 

 

1969  
 

 
1970  

 

1971 

1972 

1973  

SetCtrlAttribute 

ATTR_DIMMED, 1); 

SetCtrlAttribute 

ATTR_DIMMED, 1); 

SetCtrlAttribute 

ATTR_DIMMED, 0); 

SetCtrlAttribute 

SetCtrlAttribute  

(Hn_ICDpanel, pnlICD_cmdGetCameraPos,  
 

 

(Hn_ICDpanel, pnlICD_cmdGetCameraPos_2,  
 

 
(Hn_ICDpanel, pnlICD_cmdGetInjectorPos,  

 

(Hn_ICDpanel, pnlICD_txtStep2, ATTR_DIMMED, 0); 

(Hn_ICDpanel, pnlICD_txtStep1, ATTR_DIMMED, 1);  

1974  SetCtrlAttribute (Hn_ICDpanel, pnlICD_tmrPosUpdate,  

ATTR_ENABLED, 0);  //disable timer - no more updates needed  

1975  

1976 1977  

1978  send6kCmd("3MA1");  

//set  

 

1979 

1980  
 

 

 

1981  

absolute positioning on Z axis  
 

 
setStageMovement(1);  

 

movement;  

activeMotion = 1;  
 

 

//anticipate upcoming motion  

 

 

 

 

//set fast  

1982  sprintf(cmd, "D %f, %f, %f: GO111", CI_xShift, CI_yShift,  

zStop1);  //construct positioning string  

1983  send6kCmd(cmd);  

//and  

write to 6k  

1984  finishStageMotion();  

//wait  



  181 

 

1985 

1986  
 

 

 

1987  
 

 

 

1988  

until stages finish moving  
 

 

setStageMovement(3);  

 

medium movement;  

activeMotion = 1;  

 

//anticipate upcoming motion  

sprintf(cmd, "D 0, 0, %f: 3GO", zStop2);  

 

 

 

 

//set  

//zero out x/y motion  

1989  send6kCmd(cmd);  

//and  

write to 6k  

1990  finishStageMotion();  

1991  

1992  setStageMovement(2);  

//set slow  

movement;  

1993  

1994  send6kCmd("3MA0");  

//return  

to relative pos on Z axis  

1995  

1996  return 0;  

1997  } 

1998  

1999  

2000 

2001 

2002 

2003 

2004 

2005  

int CVICALLBACK CgetInjectorPos (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

float injectorX = 0,  

injectorY = 0, 

injectorT = 0,  

2006  cameraX  = 0, 2007 

 cameraY  = 0, 2008 

 cameraT  = 0;  

2009  

2010 

2011 

2012  

 

2013 

2014 

2015 

2016  

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal (Hn_ICDpanel, pnlICD_cameraX, &cameraX);  

//retrieve previously recorded values  

GetCtrlVal (Hn_ICDpanel, pnlICD_cameraY, &cameraY); 

GetCtrlVal (Hn_ICDpanel, pnlICD_cameraT, &cameraT);  
 

 

send6kCmd("TPE");  
 

 

//request new encoder positions  



  182 

2017  Delay(1.0);  

 

//wait for response  

2018  ProcessSystemEvents();  

2019  

2020  injectorX = encX;  

 
 

2021 

2022 

2023 

2024  

 
 

2025 

2026 

2027 

2028  

 

copy into locals  

injectorY = encY; 

injectorT = encT;  
 

 

CI_xShift = injectorX - cameraX;  

 

values  

CI_yShift = injectorY - cameraY; 

CI_tShift = cameraT - injectorT;  
 

 

backlight(0);  
 

 

//turn off light  

//and  

 

 

 

 

 

 

//set global shift  

2029  MessagePopup("Calibration complete", "The camera-injector  

distance has been calibrated" );  

2030  

2031  DiscardPanel (Hn_ICDpanel);  

2032  

2033  

2034  return 0;  

2035  } 

2036  

2037 2038 

2039 2040  

2041 

2042 

2043 

2044 

2045  

 

2046 

2047 

2048 

2049 

2050 

2051 

2052 

2053  

int CVICALLBACK CupdatePos (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

HRESULT err;  

float score, xPos, yPos, tPos;  

 

int i = 0, j = 0; 

long qString = 0;  
 

 

if(event != EVENT_TIMER_TICK) return 0;  

 
 

DS_Update (DataSockets[0]); 

DS_Update (DataSockets[1]);  



  183 

2054  

2055 

2056 

2057 

2058 

2059  
 

 

2060  

DS_Update (DataSockets[2]);  

DS_Update (DataSockets[6]);  
 

 

 

 

 

//first check if data is good  

while(qString != 192 && j++ < 5)  
 

 

2061  
 

 

2062  
 

 
2063  

//192 = "Good"  

err = DS_GetAttrValue (DataSockets[6], "Quality", CAVT_LONG  

, &qString, sizeof(qString), NULL, NULL);  

if(j > 5) MessagePopup("Comm Error", "Could not retrieve data  

from OPC server!");  

else  

2064  { err = DS_GetDataValue (DataSockets[6], CAVT_FLOAT, &score,  
 

 

2065  

 

2066 

2067 

2068  

sizeof(score), NULL, NULL);  

if(err < 0) CA_DisplayErrorInfo(DataSockets[6],  

"DataSocket Error", err, NULL);  

} 
 

 
if(score)  
 

 

//if ptn found, read in x/y/theta shifts  

2069  { err = DS_GetDataValue (DataSockets[1], CAVT_FLOAT, &yPos,  

sizeof(score), NULL, NULL);  // and write to panel  

2070  

 

2071 

2072  
 

 
2073  

 

2074 

2075  
 

 
2076  

 

2077 

2078  
 

 

2079  
 

 

2080  

 

2081 

2082  

if(err < 0) CA_DisplayErrorInfo(DataSockets[1],  

"DataSocket Error", err, NULL);  

 

err = DS_GetDataValue (DataSockets[2], CAVT_FLOAT, &xPos,  

sizeof(score), NULL, NULL);  

if(err < 0) CA_DisplayErrorInfo(DataSockets[2],  

"DataSocket Error", err, NULL);  

 

err = DS_GetDataValue (DataSockets[0], CAVT_FLOAT, &tPos,  

sizeof(score), NULL, NULL);  

if(err < 0) CA_DisplayErrorInfo(DataSockets[0],  

"DataSocket Error", err, NULL);  

 

SetCtrlAttribute (Hn_ICDpanel, pnlICD_currXpos, ATTR_DIMMED  

, 0);  

SetCtrlAttribute (Hn_ICDpanel, pnlICD_currYpos, ATTR_DIMMED  

, 0);  

SetCtrlAttribute (Hn_ICDpanel, pnlICD_currTpos, ATTR_DIMMED  

, 0);  

 

if(fabs(xPos) <= 0.025) SetCtrlAttribute (Hn_ICDpanel,  

pnlICD_currXpos, ATTR_TEXT_COLOR, VAL_GREEN);  



  184 

2083  
 

 

 
2084  

 

2085 

2086  
 

 

2087  
 

 

 

2088  

 

2089 

2090  
 

 

2091  
 

 

 

2092  
 

 

2093  

if((fabs(xPos) > 0.025) && (fabs(xPos) < 0.1))  

SetCtrlAttribute (Hn_ICDpanel, pnlICD_currXpos,  

ATTR_TEXT_COLOR, 0x00C6C600);  

if(fabs(xPos) > 0.1) SetCtrlAttribute (Hn_ICDpanel,  

pnlICD_currXpos, ATTR_TEXT_COLOR, VAL_RED);  

 

if(fabs(yPos) <= 0.025) SetCtrlAttribute (Hn_ICDpanel,  

pnlICD_currYpos, ATTR_TEXT_COLOR, VAL_GREEN);  

if((fabs(yPos) > 0.025) && (fabs(yPos) < 0.1))  

SetCtrlAttribute (Hn_ICDpanel, pnlICD_currYpos,  

ATTR_TEXT_COLOR, 0x00C6C600);  

if(fabs(yPos) > 0.1) SetCtrlAttribute (Hn_ICDpanel,  

pnlICD_currYpos, ATTR_TEXT_COLOR, VAL_RED);  

 

if(fabs(tPos) <= 0.1) SetCtrlAttribute (Hn_ICDpanel,  

pnlICD_currTpos, ATTR_TEXT_COLOR, VAL_GREEN);  

if((fabs(tPos) > 0.1) && (fabs(tPos) < 1)) SetCtrlAttribute  

(Hn_ICDpanel, pnlICD_currTpos, ATTR_TEXT_COLOR, 0x00C6C600  

);  

if(fabs(tPos) > 1) SetCtrlAttribute (Hn_ICDpanel,  

pnlICD_currTpos, ATTR_TEXT_COLOR, VAL_RED);  

2094 

2095 

2096 

2097 

2098 

2099  

 

 

 

 

 

} 

else  

SetCtrlVal(Hn_ICDpanel, 

SetCtrlVal(Hn_ICDpanel, 

SetCtrlVal(Hn_ICDpanel, 

SetCtrlVal(Hn_ICDpanel,  

pnlICD_currXpos, xPos); 

pnlICD_currYpos, yPos); 

pnlICD_currTpos, tPos); 

pnlICD_ledPtnFound, 1);  

 

//else dim out everything.  

2100  { SetCtrlAttribute (Hn_ICDpanel, pnlICD_currXpos, ATTR_DIMMED  

, 1);  

2101  SetCtrlAttribute (Hn_ICDpanel, pnlICD_currYpos, ATTR_DIMMED  

, 1);  

2102  SetCtrlAttribute (Hn_ICDpanel, pnlICD_currTpos, ATTR_DIMMED  

, 1);  

2103  SetCtrlVal(Hn_ICDpanel, pnlICD_ledPtnFound, 0);  

2104  } 

2105  

2106 2107  

2108  return 0;  

2109  } 

2110  

2111  int CVICALLBACK Ccancel_ICD (int panel, int control, int event,  

2112  void *callbackData, int eventData1, int eventData2)  

2113  { 



  185 

2114  if(event != EVENT_COMMIT) return 0;  

2115  

2116  backlight(0);  

 

//turn off light  

2117  MessagePopup("Calibration cancelled", "The camera-injector  

distance was not calibrated");  

2118  

2119  DiscardPanel (Hn_ICDpanel);  

2120  return 0;  

2121  } 

2122  

2123 2124 

2125 2126  

2127  /*********  SLIDE LOCATION FUNCTIONS  **********/  

2128  

2129  

2130 

2131 

2132 

2133 

2134 

2135 

2136 

2137 

2138 

2139 

2140 

2141 

2142 

2143 

2144 

2145 

2146 

2147 

2148 

2149 

2150 

2151 

2152 

2153 

2154 

2155 

2156 

2157  

void initPosArray()  

{ 

int i = 0, j = 0;  

int slideX, slideY, slideWidth, slideHeight;  

int labelX, labelY1, labelY2;  

char test[20];  

void* clickFunction = CslideClick;  

 
 

CslidePos[0][0] = pnlSL_slide0; 

CslidePos[1][0] = pnlSL_slide1; 

CslidePos[2][0] = pnlSL_slide2; 

CslidePos[3][0] = pnlSL_slide3; 

CslidePos[4][0] = pnlSL_slide4; 

CslidePos[5][0] = pnlSL_slide5; 

CslidePos[6][0] = pnlSL_slide6; 

CslidePos[7][0] = pnlSL_slide7; 

CslidePos[8][0] = pnlSL_slide8; 

CslidePos[9][0] = pnlSL_slide9;  

CslidePos[10][0] = pnlSL_slide10; 

CslidePos[11][0] = pnlSL_slide11; 

CslidePos[12][0] = pnlSL_slide12; 

CslidePos[13][0] = pnlSL_slide13; 

CslidePos[14][0] = pnlSL_slide14; 

CslidePos[15][0] = pnlSL_slide15; 

CslidePos[16][0] = pnlSL_slide16; 

CslidePos[17][0] = pnlSL_slide17;  



  186 

2158  

2159  for(i = 0; i < MAXSLIDES; i++)  

2160  { GetCtrlAttribute (Hn_SLpanel, CslidePos[i][0],  ATTR_LEFT, &  

slideX);  //get slide position attributes  

2161  
 

 

2162  
 

 

2163  

 

2164 

2165  

GetCtrlAttribute (Hn_SLpanel, CslidePos[i][0],  

slideY);  

GetCtrlAttribute (Hn_SLpanel, CslidePos[i][0],  

&slideWidth);  

GetCtrlAttribute (Hn_SLpanel, CslidePos[i][0],  

&slideHeight);  
 

 

labelX = slideX + (int)((slideWidth - 40)/2);  

ATTR_TOP, &  
 

 

ATTR_WIDTH,  
 

 

ATTR_HEIGHT,  

//determine label placement  

(label = 40px wide)  

2166  labelY1 = slideY + (int)((slideHeight - 4)/3);  

2167  labelY2 = slideY + 2* (int)((slideHeight - 4)/3);  

2168  

2169  CslidePos[i][1] = NewCtrl (Hn_SLpanel, CTRL_TEXT_MSG, "",  

labelY1, labelX);  //create label controls  

2170  CslidePos[i][2] = NewCtrl (Hn_SLpanel, CTRL_TEXT_MSG, "",  

labelY2, labelX);  

2171  for(j = 1; j < 3; j++)  

2172  { SetCtrlAttribute (Hn_SLpanel, CslidePos[i][j],  

ATTR_SIZE_TO_TEXT, 0);  //do not size  

to text  

2173  SetCtrlAttribute (Hn_SLpanel, CslidePos[i][j],  

ATTR_TEXT_JUSTIFY, VAL_CENTER_JUSTIFIED);  //center  

text  

2174  SetCtrlAttribute (Hn_SLpanel, CslidePos[i][j],  

ATTR_WIDTH, 40);  //set  

width = 40  

2175  InstallCtrlCallback (Hn_SLpanel, CslidePos[i][j],  

CslideClick, NULL);  

2176  sprintf(test, "%i.%i", i, j);  

2177  SetCtrlVal (Hn_SLpanel, CslidePos[i][j], test);  

2178  } 

2179  } 

2180  

2181  return;  

2182  } 

2183  

2184 2185  

2186  int CVICALLBACK ClaunchSL (int panel, int control, int event,  

2187  void *callbackData, int eventData1, int eventData2)  

2188  { 

2189  int i = 0;  



  187 

2190  

2191 

2192 

2193 

2194 

2195 

2196  

 

2197 

2198 

2199  

 
 

2200 

2201  
 

 

 

2202  

char cXval[80], cYval[80];  
 

 

 
if(event != EVENT_COMMIT) return 0;  

 
 

Hn_SLpanel = LoadPanel (Hn_calibratePanel, "calibration.uir",  

pnlSL);  

SetCtrlVal (Hn_SLpanel, pnlSL_currSlide, pnlSL_slide1);  

 

send6kCmd("@DRIVE1");  

//enable  

all stages  
 

 

initPosArray();  

 

//initialize control IDs values  

for(i = 0; i < MAXSLIDES; i++)  

//for each slide  

2203  { sprintf(cXval, "%3f", slidePos[i][0]);  

// copy current coordinates  

2204  sprintf(cYval, "%3f", slidePos[i][1]);  

2205  SetCtrlVal (Hn_SLpanel, CslidePos[i][1], cXval);  

// and update to screen  

2206  SetCtrlVal (Hn_SLpanel, CslidePos[i][2], cYval);  

2207  } 

2208  SetCtrlVal(Hn_SLpanel, pnlSL_txtNewFilename, slidePosFile);  

//update current file name  

2209  

2210  DisplayPanel (Hn_SLpanel);  

2211  

2212  return 0;  

2213  } 

2214  

2215  

2216 

2217 

2218 

2219 

2220 

2221 

2222 

2223 

2224 

2225 

2226 

2227  

int CVICALLBACK CloadFile (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status = 0, i;  

char fileName[MAX_PATHNAME_LEN] = "";  

char inString[100] = "";  

float xVal, yVal;  

char cXval[20], cYval[20];  

FILE* SLfile;  

long fileSize;  
 

 

if(event != EVENT_COMMIT) return 0;  



  188 

2228  

2229  

2230  status = FileSelectPopup ("", "*.dat", "*.dat", "Select config  
 

 

 

2231  

 
 

2232 

2233  

file", VAL_LOAD_BUTTON, 0, 0, 1, 0, fileName);  

prompt  

if(status == 0) return 0;  
 

 

exit  
 

 

if(!(GetFileInfo (fileName, &fileSize)))  

//show file  
 

 

 

//if cancelled,  

 

 

2234  

 

2235 

2236 

2237 

2238 

2239 

2240 

2241 

2242  

//if file doesn't exist  

{ sprintf(inString, "There was a problem opening '%s'!" ,  

fileName);  

MessagePopup ("Error", inString);  

return 1;  

} 
 

 

 

i = 0;  

SLfile = fopen (fileName, "r");  

while((!feof (SLfile)) && (i < MAXSLIDES))  

//while end of file not reached  

2243  { fgets (inString, sizeof(inString), SLfile);  

// get data  

2244  sscanf (inString, "%f, %f\n", &xVal, &yVal);  

// extract info  

2245  sprintf(cXval, "%3f", xVal); 2246 

 sprintf(cYval, "%3f", yVal);  

2247  SetCtrlVal (Hn_SLpanel, CslidePos[i][1], cXval);  

// and update to screen  

2248  SetCtrlVal (Hn_SLpanel, CslidePos[i++][2], cYval);  

2249  } 

2250  

2251  fflush (SLfile); 2252 

 fclose (SLfile);  

 

//flush & close file  

2253  

2254  SplitPath (fileName, NULL, NULL, fileName);  

//strip out drive & path  

2255  SetCtrlVal (Hn_SLpanel, pnlSL_txtNewFilename, fileName);  

//update filename used  

2256  

2257  return 0;  

2258  } 

2259  

2260  



  189 

2261  

2262 

2263 

2264 

2265 

2266 

2267 

2268 

2269 

2270 

2271  
 

 

 
2272  

 

int CVICALLBACK CslideClick (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i = 0;  

int oldSlide = 0;  
 

 

if(event != EVENT_LEFT_CLICK) return 0;  

 
 

GetCtrlVal (Hn_SLpanel, pnlSL_currSlide, &oldSlide);  

//get prev  

slide's control ID  

SetCtrlAttribute (Hn_SLpanel, CslidePos[oldSlide][0],  

ATTR_FRAME_COLOR, inactiveSlideColor);  //remove highlight  

2273  
 

 

2274  

 

2275 

2276  

SetCtrlAttribute (Hn_SLpanel, CslidePos[oldSlide][1],  

ATTR_TEXT_BGCOLOR, inactiveSlideColor);  

SetCtrlAttribute (Hn_SLpanel, CslidePos[oldSlide][2],  

ATTR_TEXT_BGCOLOR, inactiveSlideColor);  
 

 
while((control != CslidePos[i][0]) && (control != CslidePos[i][  

1]) && (control != CslidePos[i][2])) i++;  //find clicked  

slide  

2277  SetCtrlVal (Hn_SLpanel, pnlSL_currSlide, i);  

//record  

new slide's array position  

2278  SetCtrlAttribute (Hn_SLpanel, CslidePos[i][0], ATTR_FRAME_COLOR  

, activeSlideColor);  

2279  SetCtrlAttribute (Hn_SLpanel, CslidePos[i][1],  

ATTR_TEXT_BGCOLOR, activeSlideColor);  

2280  SetCtrlAttribute (Hn_SLpanel, CslidePos[i][2],  

ATTR_TEXT_BGCOLOR, activeSlideColor);  

2281  

2282  return 0;  

2283  } 

2284  

2285  

2286 

2287 

2288 

2289 

2290 

2291 

2292 

2293 

2294 

2295  

int CVICALLBACK CsavePositions (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status = 0, i;  

char fileName[300] = ""; 

char inString[100] = "";  

float xVal, yVal;  

char cXval[20], cYval[20];  

FILE* outFile; 

long fileSize;  



  190 

2296  

2297 

2298 

2299 

2300  
 

 

2301  

 
 

2302 

2303 

2304  

 
if(event != EVENT_COMMIT) return 0;  

 

i = 0;  

GetCtrlVal (Hn_SLpanel, pnlSL_txtNewFilename, fileName);  

//get file name  

strcpy(slidePosFile, fileName);  

//copy to master  

file  

outFile = fopen (fileName, "w");  

 

for(i = 0; i < MAXSLIDES; i++)  

//for each slide  

2305  { GetCtrlVal (Hn_SLpanel, CslidePos[i][1], cXval);  

// get position  

2306  GetCtrlVal (Hn_SLpanel, CslidePos[i][2], cYval);  

2307  

2308  slidePos[i][0] = atof(cXval);  

//  and update  

in master array  

2309  slidePos[i][1] = atof(cYval);  

2310  fprintf(outFile, "%3f, %3f\n", slidePos[i][0], slidePos[i][  

1]);  

2311  } 

2312  

2313  fflush (outFile); 2314 

 fclose (outFile);  

 

//flush & close file  

2315  

2316  sprintf(slidePosFile, "%s", fileName);  

//update file used.  

2317  sprintf(inString, "File '%s' updated with new position values" ,  

fileName); //indicate to user  

2318  MessagePopup("Calibration complete", inString);  

2319  

2320  DiscardPanel (Hn_SLpanel);  

//unload panel  

2321  

2322  return 0;  

2323  } 

2324  

2325 

2326 

2327 

2328 

2329  

int CVICALLBACK CcancelSL (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  



  191 

2330  DiscardPanel (Hn_SLpanel);  

//no data  

overwritten, just bail out  

2331  

2332  return 0;  

2333  } 

2334  

2335 

2336 

2337 

2338 

2339 

2340 

2341 

2342 

2343 

2344  

 

2345 

2346  
 

 

 

2347  

 
 

2348 

2349 

2350  

 
 

2351 

2352  

 

2353 

2354 

2355 

2356 

2357 

2358 

2359 

2360 

2361 

2362 

2363 

2364 

2365 

2366  

int CVICALLBACK CsetSlidePos (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int slideNo = 0;  

char cXval[20], cYval[20];  
 

 
if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal (Hn_SLpanel, pnlSL_currSlide, &slideNo);  

//get slide number  
 

 

send6kCmd("TPE");  

 

//request encoder positions  

Delay(1.0);  

 

//wait for response  

ProcessSystemEvents();  

 

sprintf(cXval, "%3f", encX);  

//copy into  

locals  

sprintf(cYval, "%3f", encY);  

SetCtrlVal (Hn_SLpanel, CslidePos[slideNo][1], cXval);  

// and update to screen  

SetCtrlVal (Hn_SLpanel, CslidePos[slideNo][2], cYval);  
 

 

 

return 0;  

} 
 

 

 

int CVICALLBACK CposCalc (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, j;  

int slideNo = 0;  

float xShift, yShift;  

float xShiftTotal, yShiftTotal;  



  192 

2367  

2368 

2369 

2370 

2371 

2372 

2373 

2374 

2375  
 

 

2376  
 

 

2377  
 

 

2378  

 

2379 

2380 

2381 

2382 

2383 

2384  

float baseX, baseY;  

char cXshift[20], cYshift[20];  

int ROWS = 3, COLS = 6;  
 

 

 

if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal (Hn_SLpanel, pnlSL_currSlide, &slideNo);  

//get slide number  

GetCtrlVal (Hn_SLpanel, pnlSL_xShift, &xShift);  

//get shift values  

GetCtrlVal (Hn_SLpanel, pnlSL_yShift, &yShift);  

 

GetCtrlVal (Hn_SLpanel, CslidePos[slideNo][1], cXshift);  

//recover x,y pos  

GetCtrlVal (Hn_SLpanel, CslidePos[slideNo][2], cYshift);  

baseX = atof(cXshift); 

baseY = atof(cYshift);  
 

 

 

if((xShift == 0) || (yShift == 0))  

2385  { MessagePopup("Data Error", "Error - x & y shift values  

must be non-zero!");  

2386  return 0;  

2387  } 

2388  

2389  for(i = 0; i < MAXSLIDES; i++)  

//for each slide  

2390  { xShiftTotal = baseX - (((int)(i/COLS)-(int)(slideNo/COLS))*  

xShift);  // calculate differential based on relative  

position  

2391  yShiftTotal = baseY + (((int)(i%COLS)-(int)(slideNo%COLS))*  

yShift);  

2392  sprintf(cXshift, "%f", xShiftTotal);  

// convert to strings  

2393  sprintf(cYshift, "%f", yShiftTotal);  

2394  SetCtrlVal (Hn_SLpanel, CslidePos[i][1], cXshift);  

// store values  

2395  SetCtrlVal (Hn_SLpanel, CslidePos[i][2], cYshift);  

2396  } 

2397  

2398  

2399  return 0;  

2400  } 

2401  

2402  



  193 

2403  

2404 

2405 

2406 

2407 

2408 

2409 

2410  

 

 

 

 

/*********  

 

 

 

 

FOCAL LENGTH FUNCTIONS  

 

 

 

 

**********/  

2411 

2412 

2413 

2414 

2415 

2416 

2417 

2418 

2419  

 

2420 

2421 

2422 

2423 

2424 

2425 

2426 

2427 

2428 

2429 

2430 

2431 

2432 

2433  
 

 

 

2434  

 
 

2435 

2436 

2437  

 
 

2438 

2439  
 

 

 

2440  

int CVICALLBACK ClaunchFL (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i = 0;  
 

 
if(event != EVENT_COMMIT) return 0;  

 
 

Hn_FLpanel = LoadPanel (Hn_calibratePanel, "calibration.uir",  

pnlFL);  
 

 

backlight(1);  

 

DisplayPanel (Hn_FLpanel);  

return 0;  

} 
 

 

 

int CVICALLBACK CsefZdistance (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 
send6kCmd("TPE");  

 

//request encoder positions  

Delay(1.0);  

 

//wait for response  

ProcessSystemEvents();  
 

 
imagingZ = encZ;  
 

 
//record z value  
 

 
backlight(0);  

 

//turn off backlight  

DiscardPanel (Hn_FLpanel);  



  194 

//and unload  

module  

2441  

2442  return 0;  

2443  } 

2444  

2445 

2446 

2447 

2448 

2449 

2450 

2451 

2452 

2453 

2454 

2455 

2456 

2457 

2458 

2459 

2460 

2461 

2462 

2463 

2464 

2465 

2466 

2467 

2468 

2469 

2470 

2471 

2472 

2473 

2474 

2475 

2476 

2477 

2478 

2479 

2480 

2481 

2482 

2483 

2484 

2485  

int CVICALLBACK CcancelFL (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  

 

backlight(0);  

DiscardPanel (Hn_FLpanel);  

 

return 0;  

} 

 
 

 

 

 

 

 

 

 

 

int CVICALLBACK goChip (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

float x, y;  

char goString[80];  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal (Hn_mainPanel, mainPanel_stdXshift, &x); 

GetCtrlVal (Hn_mainPanel, mainPanel_stdYshift, &y);  

 

sprintf(goString, "D -%f, -%f, 140", x, y);  

send6kCmd(goString);  

send6kCmd("GO111");  

 

return 0;  

} 

 

int CVICALLBACK goFocus (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

float x, y;  



  195 

2486  char goString[80];  

2487  

2488  if(event != EVENT_COMMIT) return 0;  

2489  

2490  GetCtrlVal (Hn_mainPanel, mainPanel_stdXshift, &x); 2491 

 GetCtrlVal (Hn_mainPanel, mainPanel_stdYshift, &y);  

2492  

2493  sprintf(goString, "D %f, %f, -150", x, y);  

2494  send6kCmd(goString);  

2495  send6kCmd("GO111");  

2496  

2497  return 0;  

2498  } 

2499  

2500  

2501 

2502 

2503 

2504 

2505 

2506 

2507 

2508 

2509 

2510 

2511 

2512 

2513  

 

2514 

2515 

2516 

2517 

2518 

2519 

2520 

2521 

2522 

2523 

2524 

2525 

2526 

2527 

2528 

2529 

2530 

2531  

int CVICALLBACK eStop (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  

 

send6kCmd("!@S"); 

activeMotion = 0;  

 

return 0;  

} 
 

 

 

int CVICALLBACK DisengageInjector (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  

DisengageSubstrate();  

return 0;  

} 

 

int CVICALLBACK cmdSpearIt (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i = 0;  

int status = 2;  

int usrEvent, slideNo;  
 

 
if(event != EVENT_COMMIT) return 0;  
 

 

 

while((slides[i][1] == 0) && (i++ < MAXSLIDES));  



  196 

2532  slideNo = i;  

2533  

2534  updateStatus(slideNo, 0);  

//indicate  

active slide  

2535  ProcessSystemEvents ();  

//  update  

display  

2536  status = PositionInjector(slideNo);  
 

 

2537  

 
 

2538 

2539 

2540 

2541 

2542 

2543 

2544 

2545  
 

 

2546  

 

 

if(status) return 1;  

 

error, stop processing slide  

EngageSubstrate();  
 

 

 

 

Delay(1);  

updateStatus(slideNo, 2);  
 

 

 

 

slides[slideNo][1] = 0;  

//position fluid module  
 

 

//on  
 

 

 

 

 

 

 

 

 

 

 

 

 
//deselect chip  

2547  SetCtrlAttribute (Hn_mainPanel, slides[slideNo][0],  

ATTR_FRAME_COLOR, inactiveSlideColor);  
 

 

2548  for(i = 1; i < 5; i++)  

2549  { if(slides[slideNo][i])  

2550  DiscardCtrl (Hn_mainPanel, slides[slideNo][i]);  

//  delete icon ctrl  

2551  slides[slideNo][i] = 0;  

2552  } 

2553  

2554  

2555  return 0;  

2556  } 

2557  

2558  

 

2559 

2560 

2561 

2562 

2563 

2564 

2565  

int CVICALLBACK togglePistonValve (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int valvePct = 0;  

double valveVoltage = 0;  

int status;  
 

 

if(event != EVENT_COMMIT) return 0;  



  197 

2566  

2567  GetCtrlVal (Hn_mainPanel, control, &status);  

//determine if switch on or off  

2568  if(status)  
 

 

//if on  

2569  
 

 

2570  
 

 

2571  

 
 

2572 

2573  
 

 

 

2574  

{ 

);  
 

 

 

 

 

 

} 

else  
 

 

 
{ 

GetCtrlVal (Hn_mainPanel, mainPanel_numPistonPct, &valvePct  

// get valve percentage  

valveVoltage = (double)valvePct * MAXPROPV / 100;  

// convert to scaled voltage  

rampVoltage(1, valveVoltage, 15);  

// update channel;  

ramp over 15 sec  
 

 

 

 

//if off  

rampVoltage(1, 0, 10);  

//  update  

channel with 0 volts over 10 sec  

2575  } 

2576  

2577  

2578  return 0;  

2579  } 

2580  

2581 

2582 

2583 

2584 

2585 

2586 

2587 

2588 

2589 

2590 

2591  

 

2592 

2593  
 

 
2594  

 

2595 

2596  

int CVICALLBACK switchPiston (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status = 0;  
 

 

 

if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal(Hn_mainPanel, control, &status);  

WriteToDigitalLine (1, "0", DIOports[1], 8, 0, 0);  

//vent current direction  

Delay(1);  

WriteToDigitalLine (1, "0", DIOports[4], 8, 0, status);  

//switch to opposite direction  

WriteToDigitalLine (1, "0", DIOports[1], 8, 0, 1);  

//pressurize  

setStatus("Allowing pistons to settle..." );  

Delay(5);  



  198 

2597  setStatus("");  

2598  

2599  

2600  return 0;  

2601  } 

2602  

2603 

2604 

2605 

2606 

2607 

2608 

2609 

2610 

2611 

2612 

2613  
 

 
2614  

int CVICALLBACK togglePrimer (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status = 0;  

int newColor;  
 

 

 
if(event != EVENT_COMMIT) return 0;  

 
 

GetCtrlVal(Hn_mainPanel, control, &status);  

//get check status  

2615  
 

 
2616  
 

 
2617  
 

 

2618  

 

2619 

2620 

2621  

SetCtrlAttribute(Hn_mainPanel,  

ATTR_VISIBLE, status);  

SetCtrlAttribute(Hn_mainPanel,  

ATTR_DIMMED, !status);  

SetCtrlAttribute(Hn_mainPanel,  

ATTR_DIMMED, !status);  

SetCtrlAttribute(Hn_mainPanel,  

ATTR_DIMMED, !status);  
 

 

 

slides[0][1] = (status)?1:0;  

mainPanel_primerOutline,  
 

 
mainPanel_primerDuration,  
 

 
mainPanel_primerValvePct,  
 

 

mainPanel_primerRampTime,  
 

 

 

 

 
// deactivate slide  

2622  newColor = (status)?activeSlideColor : inactiveSlideColor;  

2623  SetCtrlAttribute (Hn_mainPanel, slides[0][0],  

ATTR_FRAME_COLOR, newColor);  

2624 2625  

2626  return 0;  

2627  } 

2628  

2629 2630 

2631 2632 

2633 2634  

2635  /*********  ALIGNMENT OVERRIDE FUNCTIONS  **********/  

2636  



  199 

2637  

2638 

2639 

2640 

2641 

2642 

2643 

2644 

2645 

2646 

2647  

 
 

 

int CVICALLBACK editCmdTime (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int newTime;  

char txtLabel[20];  
 

 

 

GetCtrlVal (Hn_AlignPanel, scorePanel_numTimeRemaining, &  

newTime);  //get latest time  

2648  

 

2649 

2650  
 

 

2651  
 

 

2652  

if(newTime <= 0) FakeKeystroke (VAL_MENUKEY_MODIFIER | 'S');  

//if time expired, default to cancel button  

 

sprintf(txtLabel, "__Skip chip (%i)", newTime);  

//else print new button label  

SetCtrlAttribute (Hn_AlignPanel, scorePanel_cmdSkipChip,  

ATTR_LABEL_TEXT, txtLabel);  

SetCtrlVal (Hn_AlignPanel, scorePanel_numTimeRemaining, --  

newTime);  //record new time  

2653  

2654  

2655  return 0;  

2656  } 

2657  

2658 

2659 

2660 

2661 

2662 

2663 

2664 

2665 

2666 

2667 

2668 

2669 

2670 

2671 

2672 

2673 

2674 

2675 

2676 

2677  

int CVICALLBACK cmdCancelAlign (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  

 
 

RemovePopup (1);  

DiscardPanel (Hn_AlignPanel);  

 

return 0;  

} 

 

int CVICALLBACK cmdRealign (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int newCutScore;  
 

 
if(event != EVENT_COMMIT) return 0;  
 

 
GetCtrlVal (Hn_AlignPanel, scorePanel_sldNewScore, &newCutScore  

);  //get user value  



  200 

2678  cutScore = newCutScore;  

//and assign  

to global  

2679  

2680  RemovePopup (1);  

2681  DiscardPanel (Hn_AlignPanel);  

2682  return 0;  

2683  } 

2684  

2685 2686 

2687 2688 

2689 2690 

2691 2692 

2693 2694 

2695 2696 

2697 2698 

2699 2700 

2701 2702 

2703 2704 

2705 2706 

2707 2708 

2709 2710 

2711 2712 

2713  

2714 

2715 

2716 

2717 

2718 

2719 

2720 

2721 

2722  

//////////////////////////////////////////////////////////////// 

////////////////////// LEGACY CODE //////////////////////////// 

////////////////////////////////////////////////////////////////  
 

 

 

 

 

int PosInjector2(int slideNo, double* myTpos)  

{ 



  201 

2723  

2724 

2725 

2726 

2727 

2728 

2729 

2730 

2731  

const double xyTolerance = 0.025;  

 

char cmd[80] = "";  

double xPos = .026, yPos = .026, tPos = 0;  

int posStatus = 0;  
 

 

 

 

setStageMovement(1);  
 

 

 

2732  
 

 

 

2733  

 

slide imaging position  

send6kCmd("MA1111");  

 

absolute positioning mode on all axes  

activeMotion = 1;  
 

 

//anticipate upcoming motion  

//move to  
 

 

 
//set  

2734  sprintf(cmd, "D %f, %f, %f, 0: @GO", slidePos[slideNo][0],  

slidePos[slideNo][1], imagingZ);  //construct  

positioning string  

2735  send6kCmd(cmd);  

//and  

write to 6k  

2736  finishStageMotion();  
 

 

 

2737  

 
 

2738 

2739 

2740  

 

until stages finish moving  

send6kCmd("@MA0");  
 

 
//restore relative positioning  

 
 

posStatus = readCameraVal(&xPos, &yPos, &tPos);  

//get offset values  

//wait  

2741  

 

2742 

2743  

while((fabs(xPos) > xyTolerance) || (fabs(yPos) > xyTolerance))  

//while out of spec  

{ 

if(posStatus)  
 

 

//if error generated, give message  

2744  { if(posStatus == 1) MessagePopup ("Alignment Error",  
 

 
2745  
 

 
2746  

 

2747 

2748  

"Unable to achieve stable alignment reading" );  

if(posStatus == 2) MessagePopup ("Alignment Error",  

"Unable to match pattern");  

if(posStatus == 3) MessagePopup ("Alignment Error",  

"Error communicating with vision OPC server" );  
 

 

updateStatus(slideNo, 4);  



  202 

//add error icon  

2749  //  updateStatus(slideNo,  

0);  //recover "active" color  

2750  return 1;  
 

 

 

2751  } 

2752  setStatus("Performing fine adjustments to injector  

position");  

2753  

2754  setStageMovement(2);  

//set slow  

motion for better precision  

2755  activeMotion = 1;  
 

 
//anticipate upcoming motion  

2756  sprintf(cmd, "D %f, %f, 0, 0: @GO", xPos, (yPos * -1));  

//construct positioning string  

2757  send6kCmd(cmd);  

//and  

write to 6k  

2758  finishStageMotion();  

//wait  

until stages finish moving  

2759  

2760  posStatus = readCameraVal(&xPos, &yPos, &tPos);  

 

2761 

2762 

2763 

2764 

2765 

2766 

2767 

2768  
 

 

 
2769  

 
 

2770 

2771 

2772 

2773 

2774 

2775 

2776  

 

 

} 
 

 

 

 

 

tPos -= CI_tShift;  

*myTpos = tPos;  

// sprintf(cmd, "4D%f: 4GO",  

tPos);  

angle to most recent value  

//  

send6kCmd(cmd);  
 

 

 

return 0;  

} 
 

 

 

int PosInject(int slideNo)  

{ 

//get new positioning values  
 

 

 

 

 

 

 

 

 

 
//adjust injector  



  203 

2777  

2778 

2779 

2780 

2781 

2782 

2783 

2784 

2785 

2786 

2787 

2788 

2789 

2790 

2791 

2792 

2793  

int MAXTRIES = 5;  

int posStatus, i;  

char cmd[80] = "";  

double xPos2, yPos2, tPos2;  

double yShift = 18;  

double arcTan;  

double tPos = 0, newTpos = 0;  
 

 

 

if(PosInjector2(slideNo, &newTpos)) return 1;  

 

sprintf(cmd, "2V5: 2D18: 2GO");  

send6kCmd(cmd);  

posStatus = readCameraVal(&xPos2, &yPos2, &tPos2);  

i = 0;  

 

while((i++ < MAXTRIES) && (posStatus))  

//allow five tries to read  

value  

2794  { sprintf(cmd,"2D0.25: 2GO");  

// perform small  

 

2795 

2796 

2797 

2798 

2799 

2800 

2801 

2802 

2803 

2804 

2805 

2806  

shift each time  

send6kCmd(cmd); 

yShift += 0.25;  

posStatus = readCameraVal(&xPos2, &yPos2, &tPos2);  

} 

if((i >= MAXTRIES) && (posStatus)) return 1;  

 

arcTan = (xPos2) / (yShift + yPos2);  

tPos = atan(arcTan);  

tPos *= 180 / 3.141592;  

tPos += 0.21; //temp to account for deviation  
 

 
PosInjector2(slideNo, &newTpos);  

2807 

2808  

 
 

2809 

2810 

2811 

2812 

2813 

2814 

2815 

2816  

//  

 

 

 

 

 

 

 

} 

tPos -= CI_tShift;  

sprintf(cmd, "4D%f: 4GO", newTpos);  

 

to most recent value  

send6kCmd(cmd);  
 

 

return 0;  

 

 

 

//adjust injector angle  
 



204 

 

Chapter 5 

An Integrated Hardware and Software System for Automating 

Microfluidics 

 

 

5.1  Introduction 

 

Since its introduction almost three decades ago, the field of microfluidics has experienced 

exponential growth and development1,2.  As wide-scale adoption continues, there is a need to 

advance the infrastructure surrounding these devices, i.e. the hardware that controls and 

powers such chips.  At the commercial level, dozens of companies have launched mature, fully 

integrated and automated products based around microfluidics platforms.  In contrast, 

microfluidic work in academic labs remains a largely manual affair, due in part to its 

developmental nature, and due in part to its more transient ultimate goals.  However, as years 

of individual component engineering have given way to complex, integrated chips focused on 

obtaining scientific results, there is a strong need to facilitate and automate their operation. 

Existing efforts towards automation are sharply demarcated between the two major 

approaches to microfluidics: classical “continuous flow” and digital microfluidics.  The latter 

technique shuttles exposed droplets of fluid across patterned electrodes on a planar surface 



205 

using electrowetting on dielectric (EWOD)3 or dielectrophoresis (DEP)4 techniques.  Because the 

fluids are controlled with electronic impulses, this branch of microfluidics has been subject to 

significant automation with regards to both chip design and chip control 5-7.  Conversely, the 

infrastructure surrounding continuous flow systems, wherein fluids flow through enclosed 

microchannels of rigid architecture, remains poorly developed despite a much longer history 

and significantly higher adoption.  Here, external pressure sources are generally required at 

each of the fluidic chip’s inputs to drive reagent flow or to actuate integrated valves8-10 that 

dynamically guide those reagents on chip.  Applications that require tight control over flow 

rates employ syringe pumps which confer some limited programmability, but more often a 

gaseous pressure source is supplied to each input via manually operated toggle switches.  As 

chip complexity increases, so too does the number of inputs, and manual operation becomes 

progressively more cumbersome, error-prone, and generally untenable.  In many such cases, 

manual toggles are replaced with electronically activated solenoid valves which are then 

coordinated via custom Labview or Matlab scripts11-14.  However, such automation routines are 

cumbersome to code, are specific to the chip at hand, and lack general applicability.  Likewise, 

hardware implementations are exclusively “home brew” and lack standardization, as 

commercial solutions are rare. 

The few concerted efforts towards automating continuous flow microfluidics center upon 

software abstraction15-18.  Here, the aim is to allow users to issue a string of basic fluidic tasks 

via a computer program (e.g. “mix reagent 2 + reagent 5”, “discard reagent 4”, etc.) without 

having explicit knowledge of the underlying fluidic architecture.  A compiler processes the 

commands and autonomously coordinates the appropriate valve actuations to accomplish the 



206 

desired operations; by stringing together multiple commands, a user can easily generate an 

automation routine.  While these efforts to introduce abstraction to microfluidics are borne of 

sound principle, in practice they are excessive at the academic level, and they have thus failed 

to gain traction with research groups.  Among the strengths of microfluidics is that new designs 

are easy to prepare and implement, and a dedicated circuit is inevitably more efficient than a 

generalized one.  A more practical approach is to allow the user to fabricate a custom circuit, 

but then facilitate its control via software.  Unfortunately, efforts in this direction19,20 have thus 

far met with little fanfare.   

Herein, we introduce an integrated software and hardware package aimed at facilitating and 

automating laboratory-scale microfluidics experiments.  The software component features an 

intuitive graphical user interface (GUI) that affords the user facile control of single or multiple 

valves in the visual context of their microfluidic circuit.  Predetermined configurations for 

multiple valves may also be recorded and arranged to create automation routines.  The 

software is tailored to work with a custom, USB-driven hardware box which houses and 

controls up to 64 solenoid valves for chip control.  We further adapt this hardware to create a 

high-throughput system capable of running automation routines on multiple fluidic chips 

simultaneously and asynchronously.  Finally, we detail the transformation of our previously 

developed blood chip into a “one-touch” analysis system suitable for clinical trials through the 

use of these automation technologies.   

 

 



207 

5.2  Methods & Materials 

 

5.2.1 Software. 

Software for chip control and automation was developed in the National Instruments’ 

Labwindows CVI programming environment.  Hardware communication is handled by a pair of 

functions within the main program for the sake of simplicity and convenience; a wider release 

of this software would isolate these to create a formal device driver.  A separate program was 

coded for the “one touch” system which features a drastically simplified user interface that 

obscures detailed valve configurations from non-technical users.  This latter program also 

contains code that allows multiple instances of a chip to run simultaneously and 

asynchronously.  Source code for both programs is provided in the appendix. 

 

5.2.2 Hardware 

The solenoid control hardware consists of a PCB “motherboard” mounted inside a simple metal 

chassis.  Inputs are limited to a 24V DC power supply, a USB connection, and several barbed 

tubing ports to supply pressurized air and/or vacuum as needed, keeping the entire ensemble 

compact and portable.  A single panel on the chassis incorporates 64 embedded stainless steel 

pins (23-gage, New England Small Tube), each of which corresponds to a solenoid within.  The 

user simply connects these pins directly to their microfluidic chip via standard Tygon tubing. 

Within the chassis, solenoids (LHDA2421111H, Lee Company) are screw-mounted onto custom-

fabricated manifolds in groups of eight.  Each manifold features a single #10-32 threaded 



208 

pressure input which is distributed to the normally-closed (NC) ports of mounted solenoids.  

The manifold also incorporates a set of 23 gage pins that correspond to the solenoids’ common 

(C) ports, and these ultimately connect to the user’s microfluidic chip via the chassis panel.  

Assembled manifolds are installed by simply slotting them into corresponding sockets on the 

PCB motherboard via the solenoids’ electrical contact pins, which protrude from beneath the 

assembly.  Figure 5.5.1a depicts the solenoid control hardware populated with several 

manifolds. 

The PCB motherboard is built around a USB chip (DLP-232PC, DLP Technologies) which provides 

fourteen digital I/O (DIO) lines that are multiplexed to control up to 64 solenoids, as shown 

schematically in Figure 5.5.2b.  Briefly, eight lines are used to form a common data bus which 

can configure all the solenoids for a single manifold simultaneously.  To ensure that only one 

manifold is modified at a time, a set of octal D-latches is placed between the bus and the 

solenoids; these chips record the bus state when enabled, ignore it when disabled, and 

otherwise continuously output their last recorded state to the solenoids.  Thus, in order to 

reconfigure a solenoid, the hardware driver simply loads the data bus appropriately and then 

briefly enables the relevant octet of D-latches.  Four of the USB chip’s DIO lines are dedicated to 

a 3-bit multiplexer that accomplishes the latter task.  Because the 5V logic output from the D-

latches is insufficient to activate a solenoid alone, it instead controls solid state relays (SSR) 

which bridge the solenoids and a high voltage, high current power circuit.  Additional circuitry is 

implemented to enable a “spike & hold” power scheme that increases efficiency and extends 

the solenoids’ lifetime.  Notably, every major IC component on the PCB is socketed to allow for 

easy user replacement; a production version of this hardware would likely replace SSRs with 



209 

transistors and directly solder all components to reduce overall costs.  Nonetheless, the entire 

board can be built as specified for under $400. 

The “one touch” analysis system is built around the same hardware detailed above, but is 

simply housed in a more presentable plastic enclosure (Figure 5.5.2a).  This box also 

incorporates two of its own pressure regulators, so that only a single compressed air source is 

required for operation.  Three grooves machined into the enclosure lid accommodate 

microfluidic chips, each with an accompanying pinless pressure manifold which is directly 

connected via Tygon tubing to the solenoids below.  The manifolds are secured onto chips using 

four spring-loaded pins that latch into the enclosure lid.  Each manifold is fabricated from a 

laser-cut acrylic plate which is further modified with o-ring grooves on the bottom/interface 

side, and 23-gage pins on the top side; modifications which allow for a stronger seal to the 

microfluidic chip and facile connection to the solenoids.  A topside cover, also acrylic, creates a 

special channel which helps to lock down the removable blood reservoir manifold panel. 

 

5.2.3  Microfluidics 

Microfluidic chips for the “one touch” blood chip were fabricated using standard two-layer 

PDMS protocols8.  An aluminum stencil was used for the control layer to standardize the 

dimensions of each chip, as discussed earlier for barcode chips used on the robotics (Chapter 

4).  Reservoirs and pinholes were punched manually (Harris Unicore), although a molded 

solution would increase device yield by improving alignment to the pinless manifold. 

 



210 

5.3  Results and Discussion 

Our software package represents the centerpiece of our automation efforts.  The aim is to 

allow non-technical users an accessible, GUI-based method to program microfluidics chips, 

much the same as NI Labview facilitates standard programming, or as the Windows operating 

system advances the DOS platform.  To this end, there are three main panels which help the 

user set up and run their chip: 

The first panel allows for very basic setup.  Here, the user loads an image of their fluidic circuit 

into the main window and specifies the number of solenoids they will require to run their chip.  

A linear array of solenoids then appears schematically, and can be dragged anywhere onto the 

circuit image, e.g. atop a fluidic input or over a control valve.  In this way, a very direct 

association is made between each solenoid and its function, a visual context that is completely 

lost when using manual flip switches or when programming simple Matlab/Labview scripts. 

The second panel, or “State Panel”, optionally allows a user to create a set of pre-defined 

solenoid configurations.  The concept of automation is predicated on the idea that a 

microfluidic circuit generally utilizes a limited number of discrete solenoid configurations 

(states) during normal operation.  For example, there may be one configuration for priming 

reagents, a second for flowing them through the reaction chamber, etc.  The State Panel 

facilitates creation of an arbitrary number of these states, which can then serve as the basis for 

an automation routine or simply as a shortcut to configure many solenoids in a single click 

during manual operation.  States are created by clicking the “+” button in the State Panel, 

providing a label, and then toggling each of the solenoids to their desired state in the main 



211 

window.  Solenoids may assume one of three configurations: on, off, or No Change, a state that 

specifies a solenoid will maintain its previous value.  The NC state allows for greater flexibility 

and a reduced number of states when only one domain of a fluidic circuit requires action; the 

user is spared from adding all the permutations of configurations for multiple domains. 

The third panel, or “Program Panel”, is used to actually control the microfluidic chip and is the 

only panel which actually communicates with the attached hardware (Figure 5.5.3).  At its very 

simplest, the user can click on valves in the main window and thereby toggle them on their 

microfluidic chip.  Any states that were defined in the previous panel are also carried over and 

can be used as shortcuts to configure multiple solenoids simultaneously.  An additional dialog 

on the panel allows the user to create automation routines for chips that are used repeatedly 

or that require precise timing.  To create such a routine, one simply builds a queue of states and 

assigns a run time to each; the software then sequentially configures the solenoids for each 

state automatically, holding each configuration for the specified time without any further user 

intervention.  During an automated run, the user is free to toggle solenoids manually via the 

main window, to skip or repeat steps, and to pause/resume the run.   

By creating a visual context for solenoid control, users are able to click directly on the part of 

their fluidic circuit that requires action.  The intuitive nature of this interaction radically 

facilitates the control process, while the introduction of recorded states creates a convenient 

avenue for full-scale automation.  The software is applicable to almost any continuous flow 

fluidic circuit, and we have found that designs of reasonable complexity can be automated with 

under half an hour’s effort.  As a test case, we used the software to optimize and automate the 



212 

aforementioned blood analysis chip.  While the device reported in our original work required 

constant attention and manipulation over a five-hour period, our new version produced similar 

or better-quality data with just one hour of unattended run time, bringing the device firmly into 

the realm of practicality for the first time.   

We now turn to the problem of commercial-scale automation, and mature the existing 

automation infrastructure into a true “one touch” system.  While the aforementioned software 

solution is ideal for laboratory environments with trained users, it does require familiarity with 

microfluidic techniques, particularly as relates to chip setup, reagent loading, and run 

monitoring.  With the development of our blood analysis chip (Chapter 2) and its impending use 

in clinical trials, we sought to create a portable, autonomous system that even untrained nurses 

or technicians could operate.  To this end, we first addressed the microfluidic chip’s reagent 

loading procedure.  Traditionally, reagents are drawn into Tygon tubing via syringe, the tubing 

is affixed to the microfluidic chip, and it is then pressurized from behind; one must ensure that 

the fluid is drawn up in one continuous plug so as not to introduce air bubbles to the 

microchannels.  We replaced this apparatus by creating on-chip macroscale reservoirs for each 

of the solutions; a 3mm-diameter reservoir can accommodate ca. 45µL of reagent, which is 

more than sufficient for a single-use blood chip.  Notably, these reservoirs are easily filled using 

standard micropipettors, and may even be pre-filled in the lab if the chip is refrigerated 

thereafter.  In practical use, we found the hydrophobic PDMS walls would sometimes induce air 

bubble formation within the reservoir while pipetting.  However, when pressurized, these 

bubbles did not enter microfluidic channels until the entire reservoir’s solution was depleted; 



213 

they are nonetheless avoided by adding 0.01% TritonX detergent to the solutions prior to 

pipetting. 

To drive solutions and manipulate control valves, a custom “pinless” pressure manifold was 

designed to be clamped onto the topside of each chip (Figure 5.2b).  The manifold is hardwired 

to appropriate solenoids via Tygon tubing from the topside, and contains through-holes to 

transmit pressure to the underside wherever a reservoir or control channel is located.  

Embedded o-rings around each through-hole interface provide some positional tolerance and 

also improve the seal strength; we were able to transmit up to 15psi to close control channels 

with only minor leakage.  Alignment is accomplished by two posts which protrude from 

diagonal corners of the microfluidic chip; these mate with corresponding holes on the manifold 

and thereby provide registration for all the pressure interfaces in between.  While generally 

convenient, the manifold approach imposes a limitation in that once a run is started, it cannot 

be removed to access the chip underneath without releasing activated control valves.  This 

presented a problem for our blood chip, as the patient sample is preferably loaded immediately 

prior to its use near the middle of the experiment.  In order to mitigate this, a small section of 

the manifold corresponding to the blood reservoir was excised and left to float freely.  At the 

same time, a cover was added to the manifold that bears a slot immediately above the blood 

reservoir.  Upon pipetting the patient sample into its reservoir, the free-floating manifold is 

positioned and a key is wedged into the cover slot, pressing the floating manifold into place so 

it can pressurize the reservoir.  In practice, this solution proved quite robust, with only a small 

percentage of chip failures attributed to a poor seal over the blood reservoir.  Thus, the hard-



214 

wired pressure manifold, while specific to a single chip design, enables rapid, foolproof chip 

setup in one step without requiring technical knowledge of the underlying microfluidics.  

As a final step towards commercial-scale automation for our blood chip, we created a new 

software package that simultaneously increases device throughput and presents a completely 

non-technical user interface – the eponymous “one touch” interface.  Throughput is particularly 

important in the case of clinical trials where patient sampling may occur at irregular and/or 

tightly spaced intervals dictated by doctors’ schedules, which can be problematic if each test 

requires one uninterrupted hour to complete.  Our original software was designed to automate 

a single chip at a time; attempts to run multiple chips simultaneously required that they also 

run synchronously – an obvious limitation for experiments requiring fresh blood samples given 

the aforementioned scheduling realities.  Thus, we created a companion package to our initial 

automation software that allows users to import solenoid setups, states, and automation 

routines generated in the latter, and execute them in a parallel but asynchronous manner.  The 

key step is a dialog which allows one to map multiple instances of an automated chip across the 

64-solenoid array so that each instance acquires its own dedicated solenoids.  The underlying 

run logic is restructured to allow each such instance to proceed simultaneously and 

asynchronously.  At the same time, the run details are entirely obscured from the end user: the 

main interface simply consists of three buttons which, when pressed, initiate the automation 

sequence for a particular instance (Figure 5.5.4).  A pair of status bars track the overall run 

progress and the current step’s progress for the operator, but otherwise no further interaction 

is required.  



215 

The combined result of our chip redesign, pressure manifold interface, and refocused 

automation software is an integrated system that allows non-technical users to rapidly and 

conveniently operate sophisticated microfluidic devices with little training and only standard 

laboratory pipetting techniques.  In practice, we found that a typical blood chip experiment 

could be set up and started in less than five minutes, and subsequently required only brief 

intervention when adding a fresh blood sample.  The resulting data quality was 

indistinguishable from a manually-operated microfluidics run, and the overall device failure rate 

across dozens of runs was under 10%.  We also assayed the degree of chip-to-chip 

reproducibility achieved in our automated assays by sequentially running nine blood chips; a 

cocktail of recombinant proteins was substituted for blood samples as our analyte, and Figure 

5.5.5 shows the resulting coefficient of variation (CV) for two of these, as measured across the 

chips.  Both IL-6 and CRP were detected with under 30% CV.  Although our targeted 

reproducibility was 10%, it is likely that the figure we achieved is sufficient for blood work, 

where perturbations generally result in fold changes rather than small percent changes.  

Regrettably, we have no metric with which to measure the improvements in consistency over 

manually performed experiments, as no such testing with the latter has been performed. 

 

5.4  Conclusions 

We have presented here a set of software and hardware tools that are ideal for streamlining 

and automating microfluidic operations both at the laboratory scale and at small commercial 

scales.  In addition to the immediate benefit of convenience, automation routines help to 



216 

eliminate operator-derived inconsistencies from one experiment to the next.  Likewise, they 

can also aid in translating protocols and results across multiple research labs.  As the 

microfluidics field transitions from basic component development to the application of 

integrated, mature fluidic systems to discovering novel science, these factors will continue to 

grow increasingly important. 

 



217 

5.5  Figures 
 

 

 

 

 
 

Figure 5.5.1  (A)  The solenoid control hardware for laboratory-scale use features USB and 

power inputs and has a small panel at the top with a 64-pin interface for use with microfluidics 

chips.  The internals are designed to be modular, so that solenoids can simply be plugged in as 

needed; here, 24 solenoids are in use.  (B)  Partial schematic of the solenoid electronics, which 

depicts how the USB chip’s 14 DIO lines are multiplexed to control 64 solenoids. 



218 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.5.2  The fully automated blood chip apparatus features minimal inputs and 3 slots on 

its lid to accommodate chips.  Here, only one pressure manifold is shown for clarity 

 



219 

 

 

 

 

 

 

 

 
 

 

Figure 5.5.3  The program control window of our microfluidic control and automation software. 

Program and states panels are labeled; the microfluidic circuit image is overlaid with buttons 

representing solenoids.  These may be manually clicked to toggle them, or they can be 

configured simultaneously by states set up in the states panel. 

 



220 

 

 

 

 

 

 

 

 
 

 

Figure 5.5.4  The fully autonomous blood chip utilizes an extremely simplified interface.  Three 

buttons correspond to the slots on the control box lid, and allow the user to start any one of 

the three experiments.  Red and blue bars indicate progress of the entire run and the current 

step, respectively. 

 



221 

 

 

 

 

 

 

 

 
 

Figure 5.5.5.  Coefficient of variation of CRP and IL-6 signals across 9 blood chips.  



222 

5.6  References 
 

 
1 Becker, H. & Gärtner, C. Polymer microfabrication technologies for microfluidic systems. 

Analytical and Bioanalytical Chemistry 390, 89-111-111, (2008). 

2 Haber, C. Microfluidics in commercial applications; an industry perspective. Lab on a Chip 6, 

1118-1121, (2006). 

3 Pollack, M. G., Fair, R. B. & Shenderov, A. D. Electrowetting-based actuation of liquid droplets 

for microfluidic applications. Applied Physics Letters 77, 1725-1726, (2000). 

4 Schwartz, J. A., Vykoukal, J. V. & Gascoyne, P. R. C. Droplet-based chemistry on a programmable 

micro-chip. Lab on a Chip 4, 11-17, (2004). 

5 Chakrabarty, K. Design Automation and Test Solutions for Digital Microfluidic Biochips. Circuits 

and Systems I: Regular Papers, IEEE Transactions on 57, 4-17, (2010). 

6 Gascoyne, P. R. C. et al. Dielectrophoresis-based programmable fluidic processors. Lab on a Chip 

4, 299-309, (2004). 

7 Shih, S. C. C., Fobel, R., Kumar, P. & Wheeler, A. R. A feedback control system for high-fidelity 

digital microfluidics. Lab on a Chip 11, 535-540, (2011). 

8 Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic Microfabricated 

Valves and Pumps by Multilayer Soft Lithography. Science 288, 113-116, (2000). 

9 Leslie, D. C. et al. Frequency-specific flow control in microfluidic circuits with passive elastomeric 

features. Nat Phys 5, 231-235, (2009). 

10 Mosadegh, B. et al. Integrated elastomeric components for autonomous regulation of 

sequential and oscillatory flow switching in microfluidic devices. Nat Phys 6, 433-437, (2010). 

11 Grover, W. H., Ivester, R. H. C., Jensen, E. C. & Mathies, R. A. Development and multiplexed 

control of latching pneumatic valves using microfluidic logical structures. Lab on a Chip 6, 623-

631, (2006). 

12 Fordyce, P. M. et al. De novo identification and biophysical characterization of transcription-

factor binding sites with microfluidic affinity analysis. Nat Biotech 28, 970-975, (2010). 

13 Fan, H. C., Wang, J., Potanina, A. & Quake, S. R. Whole-genome molecular haplotyping of single 

cells. Nat Biotech 29, 51-57, (2011). 

14 Gu, W., Zhu, X., Futai, N., Cho, B. S. & Takayama, S. Computerized microfluidic cell culture using 

elastomeric channels and Braille displays. Proceedings of the National Academy of Sciences of 

the United States of America 101, 15861-15866, (2004). 

15 Thies, W., Urbanski, J., Thorsen, T. & Amarasinghe, S. Abstraction layers for scalable microfluidic 

biocomputing. Natural Computing 7, 255-275-275, (2008). 

16 Amin, A. M., Thottethodi, M., Vijaykumar, T. N., Wereley, S. & Jacobson, S. C. Aquacore: a 

programmable architecture for microfluidics. SIGARCH Comput. Archit. News 35, 254-265, 

(2007). 

17 Urbanski, J. P., Thies, W., Rhodes, C., Amarasinghe, S. & Thorsen, T. Digital microfluidics using 

soft lithography. Lab on a Chip 6, 96-104, (2006). 

18 Harris, G., Montgomery, J., Lee, M. & Worthington, G. Object oriented microfluidic design 

method and system. USA patent US 2005/0149304 A1 (2005). 

19 Hong-Dun, L. et al. in Nuclear Science Symposium Conference Record, 2006. IEEE.  2095-2098. 

20 Kunin, W., Keshavarzian, N. & Wang, B. AutoCAD Add-on for Simplified Design of Microfluidic 

Devices. Journal of Computer Chemistry, Japan 9, 183-196, (2010). 

 



223 

5.7 Appendix A:  PCB Design 

 

 



224 

5.8 Appendix B: Source Code 

 

The following pages contain the Labwindows CVI source code used to control the solenoid 

hardware for both laboratory use and the specialized “one touch” analysis device. 



 225 

1 

2

3

4

5

6

7

8

9 

10 

11 

12 

13 

14 

15 

16  

#include  

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include  

 

#define 

#define 

#define 

#define  

<rs232.h>  

<easyio.h>  

<utility.h>  

<formatio.h>  

<ansi_c.h>  

"buttonSetup.h"  

<cvirte.h>  

<userint.h>  

"mainPanel.h" 

"EditState.h"  

 

MAXSOLENOIDS 64  

MAXSTATES 100  

MAXSTEPS 100 

PAUSECODE -5  

17 

18 

19 

20 

21 

22  

static 

static 

static 

static 

static  

int 

int 

int 

int 

int  

pnlMain;  

pnlButtonSetup;  

pnlSetStates;  

pnlSetProgram;  

pnlEditStep;  

23  char imageFileName[MAX_PATHNAME_LEN];  

//global to keep track for  

"save" function  

24  

25 

26 

27 

28 

29  

int 

int 

int 

int 

int  

usbPort;  

clickMode;  

activeControl, activeColor, ncColor = VAL_YELLOW;  

pictFrameX, pictFrameY;  

numSolenoids;  

 

30  int goStatus;  

//-1:  

Stop  0: Pause  1: Resume Run  2: Running normally  

31  int stepOverride;  

 

32  

33  int solenoids[MAXSOLENOIDS][7];  

//[0] Button ID  [1] X  

pos  [2] Y pos  [3] placeholder ID  [4] placeholder txt [5]  

origX  [6] origY  

34  
 

 
35  
 

 
36  

int solenoidSize[5] = {10, 13, 16, 19, 22};  

//width of solenoid buttons  

int solenoidState[MAXSTATES][MAXSOLENOIDS];  

//solenoid state for each program step  

int uID[MAXSTATES];  



 226 

 

 

 

37  
 

 

 

38  
 

 

 

39  

 

for each state  

int* stateList[MAXSTATES];  

 

solenoidState[]  

int* currState = 0;  

 

current program step  

int stepRef[MAXSTEPS][3];  

//unique ID  
 

 

 
//correlate list to  
 

 

 

//ptr to  
 

 

 

//[0] state uID,  
 

 

40  

 
 

41 

42 

43 

44  

 

45 

46  

 
 

47 

48 

49 

50  
 

 

51  

[1] reference to stateList [2] duration for each step  

int solenoidConfig[MAXSOLENOIDS];  

//current configuration of  

all solenoids. Need this information for "Ignore" solenoids  

 

int bbID = -1,  

bbLeft = 291,  

bbTop = 5,  

 

bbX = 70,  

bbY = 715;  
 

 

//bounding box for solenoids & placeholders  

 
 

/****** DLP232 commands ******/  

int inhibitOn = 112, inhibitOff = 113, pulseVon = 116, pulseVoff =  

38;  

int busLines[8][2] = {81, 49, 87, 50, 69, 51, 82, 52, 84, 53, 89,  

54, 85, 55, 73, 56};  //array[bus line][off/on]  

52 

53  

 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67  

int ctrlLines[3][2] = {105, 104, 101, 100, 97, 47};  

int chipID[8][3] = {0,0,0, 0,0,1, 0,1,0, 0,1,1, 1,0,0, 1,0,1, 1,1,0  

, 1,1,1};  

/*******************************/  

 
 

char pauseActive[100] = "imgs/PauseActive.pcx";  

char pauseNormal[100] = "imgs/Pause.pcx";  

 

 

 

 

 

 

 

 

void setStatus(char* msg)  

{ 



 227 

68  SetCtrlVal(mainPanel, mainPanel_txtStatus, msg);  

69  return;  

70  } 

71  

72  

73 

74 

75 

76 

77 

78 

79  

int setSolenoid(int solenoidNum, int state)  

{ 

int bank = 0;  

int i, offset;  
 

 

 

bank = (int)(solenoidNum/8);  

//work out port &  

solenoid values  

80  solenoidNum = solenoidNum % 8;  

81  offset = bank*8;  

82  

83  for(i = 0; i < 3; i++) ComWrtByte (usbPort, ctrlLines[i][chipID  

[bank][i]]);  //select chip  

84  for(i = 0; i < 8; i++) ComWrtByte (usbPort, busLines[i][  

solenoidConfig[offset+i]]);  //restore prior configuration  

to bus  

85  

86  
 

 
87  

 

88 

89  
 

 
90  

 
 

91 

92  

ComWrtByte (usbPort, busLines[solenoidNum][state]);  

//write new value to bus  

solenoidConfig[offset + solenoidNum] = state;  

//and record to memory  

 

ComWrtByte (usbPort, inhibitOff);  

//latch values  

Delay(0.05);  

//Delay(0.005);  

 

ComWrtByte (usbPort, inhibitOn);  

ComWrtByte (usbPort, pulseVon);  

//switch values  

93  Delay(0.05);  //Delay(0.001);  

94  ComWrtByte (usbPort, pulseVoff);  

95  

96  

97  return 0;  

98  } 

99  

100 101  

102  int setState(int indexNo)  

103  { 



 228 

104  int i, j, numBanks, offset;  

105  

106  numBanks = (int)(numSolenoids/8);  

//determine how many banks  

are in use  

107  if(numSolenoids == MAXSOLENOIDS) numBanks--;  

//  maximum solenoids gives faulty  

value for numBanks  

108  for(i = 0; i <= numBanks; i++)  

//for each bank  

109  { offset = 8*i;  

110  for(j = 0; j < 3; j++) ComWrtByte (usbPort, ctrlLines[j][  

chipID[i][j]]);  // select chip  

111  for(j = 0; j < 8; j++)  
 

 
// setup bus  

112  { if(solenoidState[indexNo][offset+j] == 2) ComWrtByte (  

usbPort, busLines[j][solenoidConfig[offset+j]]); //if  

ignore, retrieve previous value  

113  else  

114  { ComWrtByte (usbPort, busLines[j][solenoidState[  

indexNo][offset+j]]);  //  else write new value  

115  solenoidConfig[offset+j] = solenoidState[indexNo][  

offset+j];  //  and record to memory  

116  } 

117  } 

118  

119  ComWrtByte (usbPort, inhibitOff);  

//  latch values  

120  Delay(0.05);  

//Delay(0.005);  

 

121  ComWrtByte (usbPort, inhibitOn);  

122  } 

123  

124  ComWrtByte (usbPort, pulseVon);  

//switch values  

125  Delay(0.05);  //Delay(0.001);  

126  ComWrtByte (usbPort, pulseVoff);  

127  

128  

129  return 0;  

130  } 

131  

132  

133  void initSolenoids()  

134  { 



 229 

135  int i;  

136  

137  for(i = 0; i < 64; i++)  

138  setSolenoid(i, 0);  

139  

140  return;  

141  } 

142  

143  

144 

145 

146 

147 

148  

 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158  

 
 

159 

160 

161 

162  

int activeSolenoid()  

{ 

int i = 0;  

 

while((activeControl != solenoids[i][0]) && (++i < numSolenoids  

-1));  

 

return i;  

} 
 

 

 

int openUSB()  

{ 

int i, success, response;  

int comPort = -1;  

int ping = 39;  

//ascii  

code for apostrophe (')  

 
 

for(i = 3; i < 4; i++)  

// for(i = 0; i < 10;  

i++)  //open com ports  

sequentially  

163  { success = OpenComConfig (i, "", 460800, 0, 8, 1, 512, 512);  

// open port  

164  if(success == 0)  

// if  

successfull  

165  { while(ComWrtByte (i, ping) != 1);  

//  issue ping  

166  response = ComRdByte (i);  

//  read response  

167  if(response == 'Q')  

//  if ping  

response from DLP232  

168  { comPort = i;  

//  



 230 

record port number  

169  i = 10;  

 

//  exit loop  

170  } 

171  CloseCom (i);  

//  

else close com port  

172  } 

173  } 

174  

175  return comPort;  

176  } 

177  

178  

179 

180 

181 

182 

183  
 

 
184  

 

185 

186 

187 

188 

189 

190 

191 

192  

 

193 

194 

195 

196  

 

197 

198  

void setup()  

{ 

int i, j;  

 

GetCtrlAttribute (mainPanel, mainPanel_pictScheme, ATTR_LEFT, &  

pictFrameX);  

GetCtrlAttribute (mainPanel, mainPanel_pictScheme, ATTR_TOP, &  

pictFrameY);  

 

for(i = 0; i < MAXSOLENOIDS; i++)  

for (j = 0; j < 5; j++) solenoids[i][j] = -1;  

 

bbID = NewCtrl (mainPanel, CTRL_FLAT_BOX, "", bbTop, bbLeft);  

SetCtrlAttribute (mainPanel, bbID, ATTR_HEIGHT, bbY);  

SetCtrlAttribute (mainPanel, bbID, ATTR_WIDTH, bbX); 

SetCtrlAttribute (mainPanel, bbID, ATTR_FRAME_COLOR,  

VAL_OFFWHITE);  

SetCtrlAttribute (mainPanel, bbID, ATTR_ZPLANE_POSITION, 100);  

 

activeColor = VAL_RED;  

SetCtrlAttribute (pnlSetStates, pnlStates_numStates,  

ATTR_MAX_VALUE, MAXSTATES);  
 

 

for(i = 0; i < MAXSTATES; i++)  

199  { solenoidState[i][0] = -1;  

//-1 indicates open slot  

200  stateList[i] = NULL;  

201  uID[i] = -1;  

202  } 

203  

204  clickMode = 0;  

205  



 231 

206  

207  setStatus("Finding USB device");  

208  ProcessDrawEvents();  

209  usbPort = openUSB();  

//find DLP232PC  

210  if(usbPort == -1)  

211  { MessagePopup("Error", "The solenoid device could not be  

 
 

212 

213 

214  

located; run functions will be disabled." );  

give msg  

return;  

} 

else  
 

 
//otherwise  

//if not found,  

215  { SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdPlay,  

ATTR_DIMMED, 0);  // enable run controls  

216  SetCtrlAttribute (pnlSetProgram,  

pnlProgram_chkEnableManualCtrl , ATTR_DIMMED, 0);  

217  ComWrtByte (usbPort, 117);  

 

//'u' = no analog channels  

218  ComWrtByte (usbPort, inhibitOn);  

 

219  } 

220  

221  

222  initSolenoids();  

223  setStatus("");  

224  

225  

226  return;  

227  } 

228  

229 230  

231 

232 

233 

234 

235 

236 

237  

 

238 

239  
 

 
240  

int main (int argc, char *argv[])  

{ 

if (InitCVIRTE (0, argv, 0) == 0)  

return -1; /* out of memory */  

if ((pnlMain = LoadPanel (0, "mainPanel.uir", mainPanel)) < 0)  

return -1;  

if ((pnlButtonSetup = LoadPanel (0, "buttonSetup.uir", btnPanel  

)) < 0)  

return -1;  

if ((pnlSetStates = LoadPanel (pnlMain, "mainPanel.uir",  

pnlStates)) < 0)  

return -1;  



 232 

241  

 

242 

243  

 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257  

 

 

 

 

 

 

 

 

 

 

 

 

//  

 

 

 

 

 

 

 
} 

if ((pnlSetProgram = LoadPanel (pnlMain, "mainPanel.uir",  

pnlProgram)) < 0)  

return -1;  

if ((pnlEditStep = LoadPanel (pnlMain, "EditState.uir",  

pnlEdtStep)) < 0)  

return -1;  
 

 

 

 

 

setup();  

 

DisplayPanel (pnlMain);  

setup();  

RunUserInterface ();  

DiscardPanel (pnlMain);  

return 0;  

258 

259 

260 

261 

262 

263 

264 

265  

 
 

266 

267 

268 

269 

270 

271 

272 

273 

274  
 

 

275  

 

276 

277 

278 

279 

280 

281  

int CVICALLBACK buttonPress (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int xDim, yDim, active, index, mode, i;  
 

 

 

 

if(clickMode == 0)  

//if setup  

mode  

{ 

switch (event)  

{ 

case EVENT_GOT_FOCUS:  

activeControl = control;  

index = activeSolenoid();  

 

SetCtrlVal (panel, control, 1);  

SetCtrlAttribute (mainPanel, solenoids[index][3],  

ATTR_FRAME_COLOR, activeColor);  

SetCtrlAttribute (mainPanel, solenoids[index][4],  

ATTR_TEXT_BGCOLOR, activeColor);  

break;  

 

case EVENT_LOST_FOCUS:  

SetCtrlVal (panel, control, 0);  

index = activeSolenoid();  



 233 

282  
 

 

283  

 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297  

 
 

298 

299  
 

 

300  

 

301 

302  

 

303 

304  

 

305 

306 

307 

308  

 

309 

310 

311 

312  
 

 

313  

 

314 

315  
 

 
316  

SetCtrlAttribute (mainPanel, solenoids[index][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

SetCtrlAttribute (mainPanel, solenoids[index][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

break;  

 

case EVENT_COMMIT:  

GetCtrlVal(panel, control, &active);  

if(!active) SetCtrlVal(panel, control, 1);  

break;  
 

 

case EVENT_LEFT_CLICK:  
 

 

break;  

 

case EVENT_RIGHT_CLICK:  

GetCtrlVal(panel, control, &active);  

if(!active) break;  

//only  

rotate active button  

 

GetCtrlAttribute (panel, control, ATTR_HEIGHT, &  

yDim);  

GetCtrlAttribute (panel, control, ATTR_WIDTH, &xDim  

);  

 
SetCtrlAttribute (panel, control, ATTR_HEIGHT, xDim  

);  

SetCtrlAttribute (panel, control, ATTR_WIDTH, yDim);  

SetCtrlAttribute (mainPanel, control,  

ATTR_LABEL_WIDTH, yDim);  

break;  

 

case EVENT_RIGHT_DOUBLE_CLICK:  

GetCtrlVal(panel, control, &active);  

 

if(!active) break;  

index = activeSolenoid();  

 

SetCtrlAttribute (mainPanel, control, ATTR_LEFT,  

solenoids[index][5]);  

SetCtrlAttribute (mainPanel, control, ATTR_TOP,  

solenoids[index][6]);  

 

GetCtrlAttribute (panel, control, ATTR_HEIGHT, &  

yDim);  

GetCtrlAttribute (panel, control, ATTR_WIDTH, &xDim  



 234 

);  

317  if(yDim > xDim)  

//if  

rotated, return to upright  

318  { SetCtrlAttribute (panel, control, ATTR_HEIGHT,  

xDim);  

319  SetCtrlAttribute (panel, control, ATTR_WIDTH,  

yDim);  

320  SetCtrlAttribute (mainPanel, control,  

ATTR_LABEL_WIDTH, yDim);  

321  } 

322  

323  solenoids[index][1] = -1; 324 

 solenoids[index][2] = -1;  

325  break;  

326  

327  } 

328  } 

329  

330  if(clickMode == 1)  

//if state  

mode  

331  { switch (event)  

332  { case EVENT_COMMIT:  

333  activeControl = control;  

334  index = activeSolenoid();  

335  GetCtrlVal(panel, control, &active);  

// get value  

336  if(!active && (currState[index] == 1))  
 

 

337  { SetCtrlAttribute (mainPanel, solenoids[index][3  
 

 

338  
 

 

339  

 

340 

341 

342 

343 

344  

], ATTR_FRAME_COLOR, ncColor);  

SetCtrlAttribute (mainPanel, solenoids[index][4  

], ATTR_TEXT_BGCOLOR, ncColor);  

SetCtrlAttribute (mainPanel, solenoids[index][0  

], ATTR_ON_COLOR, ncColor);  

SetCtrlVal(mainPanel, solenoids[index][0], 2);  

currState[index] = 2;  

break;  

} 

if(active)  

//  

& toggle  

345  { SetCtrlAttribute (mainPanel, solenoids[index][3  

], ATTR_FRAME_COLOR, activeColor);  

346  SetCtrlAttribute (mainPanel, solenoids[index][4  

], ATTR_TEXT_BGCOLOR, activeColor);  



 235 

347  

 

348 

349  

 
 

350 

351  

 

 

 

 

} 

 
 

else  

{ 

SetCtrlAttribute (mainPanel, solenoids[index][0  

], ATTR_ON_COLOR, activeColor);  

currState[index] = 1;  
 

 

 

 

 

SetCtrlAttribute (mainPanel, solenoids[index][3  

], ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

352  SetCtrlAttribute (mainPanel, solenoids[index][4  

], ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

353  currState[index] = 0;  

354  } 

355  break;  

356  } 

357  } 

358  

359  

360  if(clickMode == 2)  

//if program  

mode  

361  { switch (event)  

362  { case EVENT_COMMIT:  

363  GetCtrlVal(panel, control, &active);  

// get value  

364  SetCtrlVal(panel, control, !active);  

// undo click  

365  break;  

366  } 

 
 

367  } 

368  

369  if(clickMode == 3)  

//if program  

mode w/solenoid toggle  

370  { switch (event)  

371  { case EVENT_COMMIT:  

372  activeControl = control;  

373  index = activeSolenoid();  

374  GetCtrlVal(panel, control, &active);  

// get value  

375  if(active)  

//  

& toggle  

376  { SetCtrlAttribute (mainPanel, solenoids[index][3  

], ATTR_FRAME_COLOR, activeColor);  



 236 

377  

 

378 

379  

 
 

380 

381  

 

 

 

 

} 

 
 

else  

{ 

SetCtrlAttribute (mainPanel, solenoids[index][4  

], ATTR_TEXT_BGCOLOR, activeColor);  

setSolenoid(index, 1);  
 

 

 

 

 

SetCtrlAttribute (mainPanel, solenoids[index][3  

], ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

382  SetCtrlAttribute (mainPanel, solenoids[index][4  

], ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

383  setSolenoid(index, 0);  

384  } 

385  break;  

386  } 

387  } 

388  

389  return 0;  

390  } 

391  

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407  

 
 

408 

409 

410 

411 

412 

413  
 

 
414  

int CVICALLBACK quitProgram (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 
QuitUserInterface(0);  

 

return 0;  

} 

 

int CVICALLBACK setButtons (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int ctrlWidth, ctrlHeight, xPos, yPos, index;  

 

if(clickMode != 0) return 0;  

//no repositioning  

allowed outside setup mode  
 

 

 

switch (event)  

{ 

case EVENT_LEFT_DOUBLE_CLICK:  

GetCtrlAttribute(mainPanel, activeControl, ATTR_HEIGHT,  

&ctrlHeight);  

GetCtrlAttribute(mainPanel, activeControl, ATTR_WIDTH,  

&ctrlWidth);  



 237 

415  

416  yPos = eventData1 - (int)(0.5 * ctrlHeight);  

417  xPos = eventData2 - (int)(0.5 * ctrlWidth);  

418  

419  SetCtrlAttribute (mainPanel, activeControl, ATTR_LEFT,  

xPos);  

420  SetCtrlAttribute (mainPanel, activeControl, ATTR_TOP,  

yPos);  

421  

422  index = activeSolenoid();  

423  solenoids[index][1] = xPos ;//- pictFrameX;  

424  solenoids[index][2] = yPos ;//- pictFrameY;  

425  break;  

426  } 

427  return 0;  

428  } 

429  

430  
 

 

431  

 
 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452  

 
 

453 

454  

int CVICALLBACK launchButtonSetup (int panel, int control, int  

event,  
 

 

 

 

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

InstallPopup (pnlButtonSetup);  
 

 

 

return 0;  

} 

 

int CVICALLBACK cancelNewButtons (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

RemovePopup (pnlButtonSetup);  

 
return 0;  

} 

 

void DestroyArray(int mode)  

//mode: 1 = full  

wipe, 0 = keep pos  

{ 

int i = 0, j = 0;  



 238 

455  

456  while((i < MAXSOLENOIDS) && (solenoids[i][0] != -1))  

457  { DiscardCtrl(mainPanel, solenoids[i][0]);  

//discard button  

458  DiscardCtrl(mainPanel, solenoids[i][3]);  

//and placeholder  

459  DiscardCtrl(mainPanel, solenoids[i][4]);  

460  

461  solenoids[i][0] = -1; 462 

 solenoids[i][3] = -1; 463 

 solenoids[i][4] = -1;  

464  

465  if(mode)  

466  { solenoids[i][1] = -1; 467 

 solenoids[i][2] = -1;  

468  } 

469  i++;  

470  } 

471  

472  return;  

473  } 

474  

475  

476 

477 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489  

int CreateButtonArray(int arrSize, int bSize)  

{ 

int i, j;  

int modifier = 0;//bSize, arrSize;  

char lbl[10];  

int lblX, lblY;  
 

 

 
bSize = solenoidSize[bSize-1];  

 

if(arrSize < 33) modifier = 0;  

else modifier = -(bSize+4);  
 

 

for(i = 0; i < arrSize; i++)  

//for buttons needed  

490  { if(i == 32) modifier = -modifier;  

// switch column for after 32  

491  if(solenoids[i][0] == -1)  

// if no button  

exists  

492  { sprintf(lbl, "%i", i+1);  

//  record solenoid  

num  

493  solenoids[i][3] = NewCtrl (mainPanel, CTRL_FLAT_BOX,  



 239 

lbl, (bbTop + 5 + ((i%32)*(bSize + 9))),  //  

create container  

494  

 
 

495 

496 

497  
 

 

498  
 

 

499  
 

 
500  

 

501 

502  

modifier + (bbLeft + (int)(  

0.5*(bbX-(2*(bSize + 2  

))))));  
 

 

 

SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_HEIGHT, bSize + 4);  

SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_WIDTH, (2*bSize + 4));  

SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_ZPLANE_POSITION, 0);  
 

 

solenoids[i][4] = NewCtrl (mainPanel, CTRL_TEXT_MSG,  

lbl, 0,0);  //  create label  

503  
 

 
504  

 

505 

506 

507  
 

 
508  
 

 

 

509  
 

 
510  
 

 
511  

 

512 

513  

GetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_WIDTH, &lblX);  

GetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_HEIGHT, &lblY);  

 

SetCtrlVal (mainPanel, solenoids[i][4], lbl);  

SetCtrlAttribute (mainPanel, solenoids[i][4], ATTR_LEFT  

, modifier + (bbLeft + (int)(0.5*(bbX - lblX))));  

SetCtrlAttribute (mainPanel, solenoids[i][4], ATTR_TOP,  

(bbTop + 6 + ((i%32)*(bSize + 9)) + (int)(0.5*(bSize  

+ 4 - lblY))));  

SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_SIZE_TO_TEXT, 1);  

SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_ZPLANE_POSITION, 0);  

514  
 

 

515  
 

 

 
516  

solenoids[i][0] = NewCtrl (mainPanel, "", 

(bbTop + 5 + ((i%32)*(bSize+9)) +  

modifier + 

0.5*(bbX -  

//  

CTRL_SQUARE_LED,  

2),  

(bbLeft + (int)(  

2*bSize))));  

create solenoid  

517  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_HEIGHT, bSize);  

518  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_WIDTH, (2*bSize));  



 240 

519  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_ZPLANE_POSITION, 0);  

520  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_CTRL_MODE, VAL_HOT);  

521  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_HEIGHT, 3);  

522  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_WIDTH, 2*bSize);  

523  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_LEFT, VAL_RIGHT_ANCHOR);  

524  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_TOP, (bbTop + 6 + (i*(bSize + 9)) + (int)(  

0.5*(bSize + 4 - lblY))));  

525  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_TEXT, " ");  

526  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_BGCOLOR, VAL_TRANSPARENT);  

527  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_VISIBLE, 0);  

528  InstallCtrlCallback (mainPanel, solenoids[i][0],  

buttonPress, NULL);  

529  

530  GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_LEFT  

, &solenoids[i][5]);  

531  GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_TOP,  

&solenoids[i][6]);  

532  } 

533  

534  if(solenoids[i][1] != -1)  
 

 

// if prev. positioned  

535  { SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_LEFT  

, solenoids[i][1]);  //  recover position  

536  SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_TOP,  

solenoids[i][2]);  

537  } 

538  

539  

540  } 

541  

542  for(i = arrSize; i < MAXSOLENOIDS; i++)  

//for remaining slots  

543  { if(solenoids[i][0] != -1)  

// if button exists  

544  { DiscardCtrl(mainPanel, solenoids[i][0]);  

//  discard all associated  

545  DiscardCtrl(mainPanel, solenoids[i][3]);  



 241 

546  DiscardCtrl(mainPanel, solenoids[i][4]);  

547  

548  for(j = 0; j < 5; j++) solenoids[i][j] = -1;  

549  } 

550  } 

551  

552  return 0;  

553  

554  } 

555  

556 557  

558 

559 

560 

561 

562 

563 

564  

 

565 

566  

 

567 

568  
 

 

569  

void buildStatesRing()  

{ 

char itemLabel[50];  

int numStates, i;  

 
 

ClearListCtrl(pnlEditStep, pnlEdtStep_rngStates);  

//remove prior list  

ClearListCtrl(pnlSetProgram, pnlProgram_lstLoadState);  

GetNumListItems(pnlSetStates, pnlStates_lstStates, &numStates);  

//get total num states  

 

InsertListItem (pnlEditStep, pnlEdtStep_rngStates, 0, "Pause  

for user input", -1);  

for(i = 0; i < numStates; i++)  

//for each  

state  

570  { GetLabelFromIndex (pnlSetStates, pnlStates_lstStates, i,  

itemLabel);  // get label  

571  InsertListItem (pnlEditStep, pnlEdtStep_rngStates, -1,  

itemLabel, i);  

572  InsertListItem (pnlSetProgram, pnlProgram_lstLoadState, -1,  

itemLabel, i);  

573  } 

574  

575  

576  return;  

577  } 

578  

579 580  

581  int refreshStepLinks()  

582  { 

583  int i, j, k, numSteps, numStates, status;  

584  int errFlag = 0;  



 242 

585  

586 

587 

588  

 

589 

590 

591  

char itemLabel[50], newLabel[80];  

 
 

GetNumListItems (pnlSetProgram, pnlProgram_lstProgSteps, &  

numSteps);  

GetNumListItems (pnlSetStates, pnlStates_lstStates, &numStates);  
 

 

for(i = 0; i < numSteps; i++)  

592  { if((stepRef[i][1] != PAUSECODE) && (stepRef[i][0] != uID[  

stepRef[i][1]]))  //if state uIDs don't match  

593  { j = 0;  

594  while((stepRef[i][0] != uID[j]) && (j++ < numStates));  

// go through  

states & match uID  

595  if(j >= numStates) status = errFlag = PAUSECODE;  

// if not  

found, set flag to -1  

596  else status = j;  

 

//  else set to correct index  

597  

598  

599  for(j = i; j < numSteps; j++)  
 

 

// proceed through remaining array  

600  { if(stepRef[j][0] == stepRef[i][0])  
 

 

//  if state is repeated  

601  { if(status == PAUSECODE)  
 

 

//  for status = not found  

602  { CheckListItem (pnlSetProgram,  

pnlProgram_lstProgSteps, j, 0);  

//  uncheck list item  

603  GetLabelFromIndex (pnlSetProgram,  

pnlProgram_lstProgSteps, j, itemLabel);  

//  get & modify label  

604  sprintf(newLabel, "!!!-> %s", itemLabel);  

 

605  ReplaceListItem (pnlSetProgram,  

pnlProgram_lstProgSteps, j, newLabel,  

stepRef[j][0]);  

606  } 

607  

608  stepRef[j][1] = status;  

609  } 

610  } 



 243 

611  } 

612  } 

613  

614  

615  if(errFlag) MessagePopup ("State Missing", "A state that was  

used by this program has been deleted!\n  Please select a  

new state for the affected step" );  

616  

617  return 0;  

618  } 

619  

620  

621 

622 

623 

624 

625 

626 

627 

628 

629  

 

630 

631 

632 

633 

634 

635 

636 

637 

638 

639 

640 

641 

642 

643 

644 

645 

646 

647 

648 

649 

650 

651  
 

 

652  

int CVICALLBACK SetupNewButtons (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int numButtons, bSize;  
 

 

if(event != EVENT_COMMIT) return 0;  
 

 

 

GetCtrlVal(pnlButtonSetup, btnPanel_numSolenoids, &numSolenoids  

);  

GetCtrlVal (pnlButtonSetup, btnPanel_numButtonSize, &bSize);  

 

DestroyArray(0);  

CreateButtonArray(numSolenoids, bSize);  

activeControl = 0;  
 

 

 
RemovePopup (pnlButtonSetup);  

 
return 0;  

} 

 

int CVICALLBACK changeButtonSize (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int scaleFactor = 2;  

int newScale, left, top, dX, dY;  
 

 
if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal (pnlButtonSetup, btnPanel_numButtonSize, &newScale); 

GetCtrlAttribute (pnlButtonSetup, btnPanel_DECORATION, ATTR_TOP  

, &top);  

GetCtrlAttribute (pnlButtonSetup, btnPanel_DECORATION,  

ATTR_LEFT, &left);  



 244 

653  GetCtrlAttribute (pnlButtonSetup, btnPanel_DECORATION,  

ATTR_HEIGHT, &dY);  

654  GetCtrlAttribute (pnlButtonSetup, btnPanel_DECORATION,  

ATTR_WIDTH, &dX);  

655  

656  SetCtrlAttribute (pnlButtonSetup, btnPanel_sampleLED,  

ATTR_HEIGHT, (scaleFactor*solenoidSize[--newScale]));  

657  SetCtrlAttribute (pnlButtonSetup, btnPanel_sampleLED,  

ATTR_WIDTH, solenoidSize[newScale]);  

658 659  

660  SetCtrlAttribute (pnlButtonSetup, btnPanel_sampleLED, ATTR_LEFT  

, (left + (int)(0.5*dX) - (int)(0.5*solenoidSize[newScale])));  

661  SetCtrlAttribute (pnlButtonSetup, btnPanel_sampleLED, ATTR_TOP,  

(top + (int)(0.5*dY) - (int)(2*0.5*solenoidSize[newScale])));  

662  

663  return 0;  

664  } 

665  

666 

667 

668 

669 

670 

671 

672 

673 

674  

 

675 

676 

677  

 

678 

679 

680 

681 

682 

683 

684 

685 

686 

687 

688  

int CVICALLBACK loadImage (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status = -1;  
 

 

if(event != EVENT_COMMIT) return 0;  

 
 

status = FileSelectPopup ("", "*.bmp", "*.bmp", "Select Image",  

VAL_LOAD_BUTTON, 0, 1, 1, 0, imageFileName);  

if(status == 0) return 0;  

 

DisplayImageFile (mainPanel, mainPanel_pictScheme,  

imageFileName);  

 

return 0;  

} 
 

 

 

int findDuplicateState(char* usrName)  

{ 

int i, numStates;  

char lstStateName[100];  
 

 
GetNumListItems (pnlSetStates, pnlStates_lstStates, &numStates  

);  //get total number of states  

689  for(i = 0; i < numStates; i++)  

//for each  



 245 

entry  

690  { GetLabelFromIndex (pnlSetStates, pnlStates_lstStates, i,  

lstStateName);  // get name  

691  if(strcmp(lstStateName, usrName) == 0) return 1;  

// compare to usrName  

692  } 

 

//  return 1 if duplicate  

693  

694  return 0;  

695  } 

 
 

696 

697 

698 

699 

700 

701 

702 

703 

704 

705 

706 

707 

708 

709 

710 

711 

712 

713 

714 

715 

716 

717  

 

 

//else return 0  
 

 

 

void getNewStateName(char* newName)  

{ 

int i = 2;  

 
 

sprintf(newName, "new state");  

while(findDuplicateState(newName))  

sprintf(newName, "new state%i", i++);  

 

return;  

} 

 
int getUniqueID()  

{ 

int i, numStates, flag, newID;  

srand(time(NULL));  

 

GetCtrlVal(pnlSetStates, pnlStates_numStates, &numStates);  

flag = 1;  

while(flag)  

718  { flag = 0;  

719  newID = rand() % 1000;  

720  for(i = 0; i < numStates; i++)  

721  if(newID == uID[i]) flag = 1;  

722  } 

723  

724  return newID;  

725  } 

726  

727  

728  int CVICALLBACK changeNumStates (int panel, int control, int event,  

729  void *callbackData, int eventData1, int eventData2)  



 246 

730  { 

731  int numStates, existingStates;  

732  int i, j, k, m;  

733  char newStateName[100];  

734  

735  if(event != EVENT_COMMIT) return 0;  

736  

737  

738  GetCtrlVal(pnlSetStates, pnlStates_numStates, &numStates);  

739  GetNumListItems(pnlSetStates, pnlStates_lstStates, &  

existingStates);  

740  

741  j = 0; m = 0;  

742  for(i = 0; i < (numStates - existingStates); i++)  

//when states need to be added  

743  { while(solenoidState[j][0] != -1) j++;  

// find open space in  

solenoid state array  

744  
 

 

745  
 

 

 

746  
 

 

 

747  
 

 

748  

 

749 

750  

stateList[existingStates+i] = solenoidState[j];  

// and assign to stateList  

solenoidState[j][0] = 0;  

//  

indicate occupied  

getNewStateName(newStateName);  

// get new  

name  

uID[existingStates+i] = getUniqueID();  

// and unique ID  

InsertListItem (pnlSetStates, pnlStates_lstStates, (  

existingStates + i), newStateName, (existingStates + i));  

if(existingStates > 0)  

for(k = 0; k < numSolenoids; k++) solenoidState[j][k] =  

stateList[existingStates+i-1][k];  // initialize to  

previous step's configuration  

751  } 

752  

753  for(i = 0; i < (existingStates - numStates); i++)  

//when states need to be  

removed  

754  { stateList[existingStates - i - 1][0] = -1;  

//open up space in  

solenoidState[][]  

755  stateList[existingStates - i - 1] = NULL;  

//remove reference  

756  uID[existingStates - i - 1] = -1;  

//remove uID  

757  DeleteListItem (pnlSetStates, pnlStates_lstStates, (  



 247 

existingStates - 1), 1);  //remove from list  

758  } 

759  

760  return 0;  

761  } 

762  

763 

764 

765 

766 

767 

768 

769 

770 

771 

772  

int CVICALLBACK ChooseState (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index, oldValue;  

int color[3];  

char stepName[20];  
 

 

 

 
if(event == EVENT_LEFT_DOUBLE_CLICK)  

773  { GetCtrlIndex(pnlSetStates, pnlStates_lstStates, &index);  

//get active index  

774  GetValueFromIndex (pnlSetStates, pnlStates_lstStates, index  

, &oldValue);  

775  PromptPopup ("Step Name", "Enter a new label for this step"  

, stepName, sizeof(stepName) - 1);  

776  while(findDuplicateState(stepName))  

777  PromptPopup ("Step Name", "Enter a unique label for  

this step", stepName, sizeof(stepName) - 1);  

778  ReplaceListItem (pnlSetStates, pnlStates_lstStates, index,  

stepName, oldValue);  //rename  

779  return 0;  

780  } 

781  

782  

783 

784 

785 

786  

 
 

787 

788 

789  
 

 

790  

 
 

791 

792  

if(event != EVENT_VAL_CHANGED) return 0;  

 

color[0] = VAL_TRANSPARENT;  

color[1] = activeColor;  

 

//initialize color array  

color[2] = ncColor;  

 

GetCtrlIndex(pnlSetStates, pnlStates_lstStates, &index);  

//get active index  

currState = stateList[index];  

//set  

"current state" pointer to new index  
 

 
for(i = 0; i < numSolenoids; i++)  

793  { SetCtrlVal(mainPanel, solenoids[i][0], currState[i]);  



 248 

794  SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, color[currState[i]]);  

795  SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, color[currState[i]]);  

796  SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_ON_COLOR  

, color[currState[i]]);  

797  } 

798  

799  return 0;  

800  } 

801  

802 

803 

804 

805 

806 

807 

808 

809  
 

 

810  
 

 

811  

 
 

812 

813  
 

 

 

814  

 
 

815 

816  
 

 

817  
 

 

818  

int CVICALLBACK removeState (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index, numSteps;  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetNumListItems(pnlSetStates, pnlStates_lstStates, &numSteps);  

//get total steps  

GetCtrlIndex(pnlSetStates, pnlStates_lstStates, &index);  

//get active index  

currState = stateList[index];  

//set "current  

state" pointer to new index  

 

currState[0] = -1;  

//open  

up space in solenoidState[][]  

currState = NULL;  

//and  

remove ptr  

 

SetCtrlVal(pnlSetStates, pnlStates_numStates, --numSteps);  

//update front panel  

DeleteListItem (pnlSetStates, pnlStates_lstStates, index, 1);  

//erase from list  

for(i = index; i < numSteps; i++)  

819  { stateList[i] = stateList[i+1];  

//reassign pointers  

820  uID[i] = uID[i+1];  

//& uIDs  

821  } 

822  

823  

824  return 0;  

825  } 



 249 

826  

827 

828 

829 

830 

831 

832 

833 

834 

835 

836  
 

 

837  
 

 

838  
 

 
839  
 

 

 

840  
 

 

 

841  

 

842 

843 

844  

 

int CVICALLBACK insertState (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, j, k, index, numSteps;  

char stateName[100];  
 

 

if(event != EVENT_COMMIT) return 0;  

 
 

GetNumListItems(pnlSetStates, pnlStates_lstStates, &numSteps);  

//get total steps  

GetCtrlIndex(pnlSetStates, pnlStates_lstStates, &index);  

//get active index  

SetCtrlVal(pnlSetStates, pnlStates_numStates, ++numSteps);  

//update front panel  

getNewStateName(stateName);  

//get unique  

state name  

index++;  

 

//insert item after current index instead of before  

InsertListItem(pnlSetStates, pnlStates_lstStates, index,  

stateName, index);  

SetCtrlIndex(pnlSetStates, pnlStates_lstStates, index);  
 

 

for(i = numSteps-1; i > index; i--)  

845  { stateList[i] = stateList[i-1];  

// reassign pointers for  

 

846 

847 

848 

849 

850  

rest of array  

uID[i] = uID[i-1];  

} 

 

j = 0;  

while(solenoidState[j][0] != -1) j++;  

// find open space in  

solenoid state array  

851  stateList[index] = solenoidState[j];  

// and assign to stateList  

852  uID[index] = getUniqueID();  

853  if(index > 0)  

854  for(k = 0; k < numSolenoids; k++) solenoidState[j][k] =  

stateList[index-1][k];  // initialize to previous  

step's configuration  

855  else solenoidState[j][0] = 0;  
 

 
856  



 250 

857  

858  

859  return 0;  

860  } 

861  

862 

863 

864 

865 

866 

867 

868 

869 

870 

871  
 

 
872  

 
 

873 

874  

int CVICALLBACK moveStateUp (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index, swapID;  

int* swapPtr;  

char label[100], prevLabel[100];  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlIndex(pnlSetStates, pnlStates_lstStates, &index);  

//get active index  

if(index == 0) return 0;  

//if already  

at top, exit  
 

 
GetLabelFromIndex (pnlSetStates, pnlStates_lstStates, index,  

label);  //record old values  

875  GetLabelFromIndex (pnlSetStates, pnlStates_lstStates, index-1,  

prevLabel);  

876  swapPtr = stateList[index];  

877  swapID = uID[index];  

878  

879  ReplaceListItem (pnlSetStates, pnlStates_lstStates, index,  

prevLabel, index);  

880  stateList[index] = stateList[index-1];  

881  uID[index] = uID[index-1];  

882  

883  ReplaceListItem (pnlSetStates, pnlStates_lstStates, index-1,  

label, index-1);  

884  stateList[index-1] = swapPtr;  

885  uID[index-1] = swapID;  

886  

887  SetCtrlIndex (pnlSetStates, pnlStates_lstStates, index-1);  

//simulate click on swapped val  

888  ChooseState(pnlSetStates, pnlStates_lstStates,  

EVENT_VAL_CHANGED, NULL, 0, 0);  

889  

890  return 0;  

891  } 

892  

893  int CVICALLBACK moveStateDown (int panel, int control, int event,  

894  void *callbackData, int eventData1, int eventData2)  



 251 

895  { 

896  int i, index, numSteps, swapID;  

897  int* swapPtr;  

898  char label[100], nextLabel[100];  

899  

900  if(event != EVENT_COMMIT) return 0;  

901  

902  GetNumListItems(pnlSetStates, pnlStates_lstStates, &numSteps);  

//get total steps  

903  GetCtrlIndex(pnlSetStates, pnlStates_lstStates, &index);  

//get active index  

904  if(index == numSteps-1) return 0;  

//if already at top, exit  

905  

906  GetLabelFromIndex (pnlSetStates, pnlStates_lstStates, index,  

label);  //record old values  

907  GetLabelFromIndex (pnlSetStates, pnlStates_lstStates, index+1,  

nextLabel);  

908  swapPtr = stateList[index];  

909  swapID = uID[index];  

910  

911  ReplaceListItem (pnlSetStates, pnlStates_lstStates, index,  

nextLabel, index);  

912  stateList[index] = stateList[index+1];  

913  uID[index] = uID[index+1];  

914  

915  ReplaceListItem (pnlSetStates, pnlStates_lstStates, index+1,  

label, index+1);  

916  stateList[index+1] = swapPtr;  

917  uID[index+1] = swapID;  

918  

919  SetCtrlIndex (pnlSetStates, pnlStates_lstStates, index+1);  

//simulate click on swapped val  

920  ChooseState(pnlSetStates, pnlStates_lstStates,  

EVENT_VAL_CHANGED, NULL, 0, 0);  

921  

922  return 0;  

923  } 

924  

925  

926 

927 

928 

929 

930 

931 

932  

int CVICALLBACK loadSetup (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i;  
 

 
if(event != EVENT_COMMIT) return 0;  



 252 

933  

934 

935  
 

 
936  
 

 

937  

 

938 

939 

940 

941 

942 

943 

944 

945  

 
 

SetCtrlAttribute (mainPanel, mainPanel_cmdSetup, ATTR_DIMMED, 1  

);  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineStates,  

ATTR_DIMMED, 0);  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineProgram,  

ATTR_DIMMED, 0);  

 
 

HidePanel (pnlSetStates);  

HidePanel (pnlSetProgram);  

activeColor = VAL_RED;  

clickMode = 0;  

 

for(i = 0; i < numSolenoids; i++)  

// turn off "activated"  

solenoids  

946  { SetCtrlVal (mainPanel, solenoids[i][0], 0);  

 

947  SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

948  SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

949  } 

950  

951  i = 0;  

952  while((i < numSolenoids) && (solenoids[i][0] != -1))  

953  { SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_VISIBLE, 0);  

954  SetCtrlAttribute (mainPanel, solenoids[i++][0],  

ATTR_ON_COLOR, activeColor);  

955  } 

956  

957  return 0;  

958  } 

959  

960 

961 

962 

963 

964 

965 

966 

967 

968  

int CVICALLBACK loadStates (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index;  
 

 
if(event != EVENT_COMMIT) return 0;  
 

 

 

SetCtrlAttribute (mainPanel, mainPanel_cmdSetup, ATTR_DIMMED, 0  

);  



 253 

969  
 

 

970  

 

971 

972 

973 

974 

975 

976 

977 

978  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineStates,  

ATTR_DIMMED, 1);  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineProgram,  

ATTR_DIMMED, 0);  

 
 

DisplayPanel (pnlSetStates);  

HidePanel (pnlSetProgram);  

activeColor = VAL_GREEN;  

clickMode = 1;  
 

 

if(activeControl)  

979  { SetCtrlVal (mainPanel, activeControl, 0);  

// turn off "active" button  

980  index = activeSolenoid();  

981  SetCtrlAttribute (mainPanel, solenoids[index][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

982  SetCtrlAttribute (mainPanel, solenoids[index][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

983  } 

984  

985  changeNumStates(pnlSetStates, pnlStates_numStates, EVENT_COMMIT  

, NULL, 0, 0);  // generate first state if not present  

986  
 

 
987  

 

988 

989 

990 

991  

SetCtrlIndex(pnlSetStates, pnlStates_lstStates, 0);  

// auto-select first state  

ChooseState(pnlSetStates, pnlStates_lstStates,  

EVENT_VAL_CHANGED, NULL, 0, 0); // simulate click  

 
 

i = 0;  

while((i < numSolenoids) && (solenoids[i][0] != -1))  

992  { SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_BGCOLOR, VAL_TRANSPARENT);  

993  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_VISIBLE, 0);  

994  SetCtrlAttribute (mainPanel, solenoids[i++][0],  

ATTR_ON_COLOR, activeColor);  

995  } 

996  

997  return 0;  

998  } 

999  

1000 

1001 

1002 

1003 

1004  

int CVICALLBACK loadProgram (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index;  



 254 

1005  

1006 

1007 

1008  
 

 

1009  
 

 

1010  

 

1011 

1012  

if(event != EVENT_COMMIT) return 0;  
 

 

 

SetCtrlAttribute (mainPanel, mainPanel_cmdSetup, ATTR_DIMMED, 0  

);  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineStates,  

ATTR_DIMMED, 0);  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineProgram,  

ATTR_DIMMED, 1);  
 

 

if(activeControl)  

1013  { SetCtrlVal (mainPanel, activeControl, 0);  

// turn off "active" button  

1014  index = activeSolenoid();  

1015  SetCtrlAttribute (mainPanel, solenoids[index][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

1016  SetCtrlAttribute (mainPanel, solenoids[index][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

1017  } 

1018  

1019 

1020 

1021 

1022 

1023 

1024 

1025 

1026 

1027 

1028 

1029  

buildStatesRing();  

refreshStepLinks();  

 

DisplayPanel (pnlSetProgram);  

HidePanel (pnlSetStates);  

activeColor = MakeColor (255, 128, 0);  

clickMode = 2; 

goStatus = -1;  

 

i = 0;  

while((i < numSolenoids) && (solenoids[i][0] != -1))  

//go through solenoids  

1030  { SetCtrlVal (mainPanel, solenoids[i][0], 0);  

//turn each one "off"  

1031  SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

1032  SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

1033  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_VISIBLE, 1);  //enable lighted border  

1034  SetCtrlAttribute (mainPanel, solenoids[i++][0],  

ATTR_ON_COLOR, activeColor);  //and set new active color  

1035  } 

1036  

1037  return 0;  

1038  } 

1039  



 255 

1040  

1041 

1042 

1043 

1044 

1045 

1046 

1047 

1048 

1049  

 

1050 

1051 

1052  
 

 
1053  

 

1054 

1055  

int saveStateFile(char* filePath)  

{ 

int i, j, status, bSize;  

int varX, varY, flag;  

char tmpString[50], picName[MAX_FILENAME_LEN];  

FILE* saveFile;  
 

 

 

saveFile = fopen (filePath, "w");  

 

//open file for write  

SplitPath (imageFileName, NULL, NULL, picName);  

fprintf(saveFile, "imgFile: %s\n", picName);  

GetCtrlVal (pnlButtonSetup, btnPanel_numButtonSize, &bSize);  

//get button size  

fprintf(saveFile, "solenoids: %i %i\n", numSolenoids, bSize);  

//write number & size to file  

 

for(i = 0; i < numSolenoids; i++)  

//write button locations  

1056  { GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_HEIGHT,  
 

 

1057  
 

 

1058  
 

 

 

1059  

 

1060 

1061 

1062 

1063 

1064 

1065  

&varX);  

GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_WIDTH, &  

varY);  

flag = (varX < varY ? 0 : 1);  

// note if button  

is rotated  

fprintf(saveFile, "%i %i %i\n", solenoids[i][1], solenoids[  

i][2], flag);  

} 
 

 

 

GetNumListItems(pnlSetStates, pnlStates_lstStates, &bSize);  

fprintf(saveFile, "numStates: %i\n", bSize);  

for(i = 0; i < bSize; i++)  

//write states  

1066  { GetLabelFromIndex(pnlSetStates, pnlStates_lstStates, i,  
 

 

1067  

 

1068 

1069 

1070 

1071 

1072 

1073 

1074  

tmpString);  

fprintf(saveFile, "%s: (%03i); ", tmpString, uID[i]);  

 

for(j = 0; j < numSolenoids; j++)  

fprintf(saveFile, "%i ", stateList[i][j]);  

fprintf(saveFile, "\n");  

} 

 

fflush(saveFile); 

fclose(saveFile);  



 256 

1075  

1076  return 0;  

1077  } 

1078  

1079 1080  

1081 

1082 

1083 

1084 

1085 

1086 

1087  

 

1088 

1089 

1090 

1091 

1092 

1093 

1094 

1095 

1096  
 

 

1097  
 

 

 

 

1098 

1099  
 

 

 
1100  

int loadStateFile(char* filePath)  

{ 

int i, j, k, status, bSize;  

int varX, varY, flag; 

char readString[500];  

char stateName[30], junk[500];  

char volume[MAX_DRIVENAME_LEN], fileDir[MAX_DIRNAME_LEN],  

picName[MAX_FILENAME_LEN];  

char* token;  

FILE* dataFile;  
 

 

 

 

dataFile = fopen (filePath, "r");  

 

fgets (readString, sizeof(readString), dataFile);  

SplitPath (filePath, volume, fileDir, NULL);  

//get current directory  

for(i = 9; i < strlen(readString); i++)  

//get  

filename  

 

picName[i-9] = readString[i];  

picName[i-10] = '\0';  
 

 

 

if(strlen(picName) != 0)  

1101  { sprintf(imageFileName, "%s%s%s", volume, fileDir,  

picName);  //construct picture path  

1102  DisplayImageFile (mainPanel, mainPanel_pictScheme,  

imageFileName);  

1103  } 

1104  

1105 

1106  

 

1107 

1108 

1109 

1110  

fgets (readString, sizeof(readString), dataFile);  

sscanf(readString, "solenoids: %i %i\n", &numSolenoids, &  

bSize);  

DestroyArray(1);  

CreateButtonArray(numSolenoids, bSize);  

SetCtrlVal (pnlButtonSetup, btnPanel_numButtonSize, bSize);  

for(i = 0; i < numSolenoids; i++)  

//  



 257 

right click)  

1111  { fgets (readString, sizeof(readString), dataFile);  

1112  sscanf(readString, "%i %i %i", &solenoids[i][1], &solenoids  

[i][2], &flag);  

1113  if(solenoids[i][1] != -1) SetCtrlAttribute(mainPanel,  

solenoids[i][0], ATTR_TOP, solenoids[i][2]);  

1114  if(solenoids[i][2] != -1) SetCtrlAttribute(mainPanel,  

solenoids[i][0], ATTR_LEFT, solenoids[i][1]);  

1115  if(flag)  

1116  { GetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_HEIGHT, &varY);  

1117  GetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_WIDTH, &varX);  

1118  

1119  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_HEIGHT, varX);  

1120  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_WIDTH, varY);  

1121  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_WIDTH, varY);  

1122  } 

1123  SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR_ON_COLOR  

, VAL_GREEN);  

1124  } 

1125  

1126 1127  

1128  fgets (readString, sizeof(readString), dataFile);  

1129  sscanf(readString, "numStates: %i\n", &bSize);  

1130  ClearListCtrl(pnlSetStates, pnlStates_lstStates);  

1131  for(i = 0; i < bSize; i++)  

1132  { fgets (readString,sizeof(readString), dataFile);  

1133  j = 0;  

1134  while(readString[j] != ':') stateName[j] = readString[j++];  

1135  stateName[j] = '\0';  

1136  InsertListItem (pnlSetStates, pnlStates_lstStates, i,  

stateName, i);  

1137  stateList[i] = solenoidState[i];  

1138  k = j = j + 3;  

1139  while(readString[k] != ')') junk[k-j] = readString[k++];  

1140  junk[k] = '\0';  

1141  uID[i] = atoi(junk);  

1142  token = strtok (readString, ";");  

1143  token = strtok (NULL, " ");  

//first token is  

state name & ID  

1144  j = 0;  



 258 

1145  while(token != NULL)  

1146  { sscanf(token, "%i", &stateList[i][j++]);  

1147  token = strtok (NULL, " ");  

1148  } 

1149  } 

1150  SetCtrlVal (pnlSetStates, pnlStates_numStates, bSize);  

1151  

1152  fclose (dataFile);  

1153  

1154  return 0;  

1155  } 

1156  

1157  

1158 

1159 

1160 

1161 

1162 

1163 

1164 

1165 

1166 

1167  

 

1168 

1169 

1170 

1171 

1172 

1173 

1174 

1175  

 

1176 

1177 

1178 

1179 

1180 

1181 

1182 

1183 

1184 

1185 

1186  

 

1187 

1188  

int CVICALLBACK saveStates (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status;  

char filePath[MAX_PATHNAME_LEN];  
 

 

 
if(event != EVENT_COMMIT) return 0;  

 

status = FileSelectPopup ("", "*.sta", "*.sta", "Save states  

file", VAL_SAVE_BUTTON, 0, 1, 1, 1, filePath);  

if(status < 1) return 0;  
 

 

saveStateFile(filePath);  

 
return 0;  

} 

 

int CVICALLBACK loadStatesfromFile (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int status;  

long fileSize;  

char filePath[MAX_PATHNAME_LEN];  
 

 

if(event != EVENT_COMMIT) return 0;  
 

 

 

 

status = FileSelectPopup ("", "*.sta", "*.sta", "Load states  

file", VAL_LOAD_BUTTON, 0, 1, 1, 0, filePath);  

if(status < 1) return 0;  

if(!(GetFileInfo (filePath, &fileSize)))  



 259 

//if file doesn't exist  

1189  { MessagePopup ("Error", "There was a problem opening the  

file!");  

1190  return 0;  

1191  } 

1192  

1193  loadStateFile(filePath);  

1194  

1195  return 0;  

1196  } 

1197  

1198 

1199 

1200 

1201 

1202 

1203 

1204 

1205 

1206 

1207  

 

1208 

1209 

1210  

 

1211 

1212 

1213 

1214 

1215 

1216 

1217 

1218 

1219 

1220 

1221 

1222 

1223 

1224 

1225 

1226 

1227 

1228 

1229 

1230 

1231  

int CVICALLBACK addNewStep (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int newIndex;  
 

 

if(event != EVENT_COMMIT) return 0;  
 

 

 

 

GetNumListItems (pnlSetProgram, pnlProgram_lstProgSteps, &  

newIndex);  

SetCtrlVal (pnlEditStep, pnlEdtStep_numEditIndex, newIndex);  

SetCtrlVal (pnlEditStep, pnlEdtStep_chkMode, 0);  

SetCtrlAttribute (pnlEditStep, pnlEdtStep_cmdEditStep,  

ATTR_LABEL_TEXT, "Add Step");  
 

 

InstallPopup (pnlEditStep);  

 

return 0;  

} 

 

int CVICALLBACK cancelStepEdit (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

RemovePopup (pnlEditStep);  

 
return 0;  

} 

 

int CVICALLBACK editStep (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

char stepLabel[100], stepName[30], durString[10];  

int stateIndex, duration, usrIndex, editMode;  



 260 

1232  

1233 

1234 

1235 

1236  

int i, temp;  
 

 

 
if(event != EVENT_COMMIT) return 0;  

1237 

1238 

1239  

 

1240 

1241 

1242 

1243 

1244  

GetCtrlVal 

GetCtrlVal 

GetCtrlVal  

);  

GetCtrlVal  

(pnlEditStep, pnlEdtStep_chkMode, &editMode);  

(pnlEditStep, pnlEdtStep_numEditIndex, &usrIndex);  

(pnlEditStep, pnlEdtStep_numStateDuration, &duration  
 

 

(pnlEditStep, pnlEdtStep_rngStates, &stateIndex);  

1245 

1246 

1247  
 

 

 

1248  

if(stateIndex == -1)  

{ 

if(editMode) ReplaceListItem (pnlSetProgram,  

pnlProgram_lstProgSteps, usrIndex, "Programmed pause",  

PAUSECODE);  

else  

1249  { InsertListItem (pnlSetProgram, pnlProgram_lstProgSteps,  

usrIndex, "Programmed pause", PAUSECODE);  

1250  CheckListItem (pnlSetProgram, pnlProgram_lstProgSteps,  

usrIndex, 1);  

1251  } 

1252  stepRef[usrIndex][0] = stepRef[usrIndex][1] = stepRef[  

usrIndex][2] = PAUSECODE;  

1253  } 

1254  else  

1255  { GetLabelFromIndex (pnlSetStates, pnlStates_lstStates,  

 

1256 

1257 

1258 

1259 

1260 

1261 

1262 

1263 

1264  
 

 

 
1265  

stateIndex, stepName);  

strcpy(stepLabel, stepName);  

temp = strlen(stepName);  

for(i = temp; i < 22; i++)  

stepLabel[i] = ' ';  

stepLabel[i] = '\0';  

sprintf(durString, "%i", duration);  

strcat(stepLabel, durString);  

 

if(editMode) ReplaceListItem (pnlSetProgram,  

pnlProgram_lstProgSteps, usrIndex, stepLabel, uID[  

stateIndex]);  

else  

1266  { InsertListItem (pnlSetProgram, pnlProgram_lstProgSteps,  

usrIndex, stepLabel, uID[stateIndex]);  

1267  CheckListItem (pnlSetProgram, pnlProgram_lstProgSteps,  

usrIndex, 1);  



 261 

1268  } 

1269  stepRef[usrIndex][0] = uID[stateIndex];  

1270  stepRef[usrIndex][1] = stateIndex;  

1271  stepRef[usrIndex][2] = duration;  

1272  } 

1273  

1274  

1275  RemovePopup (0);  

1276  

1277  return 0;  

1278  } 

1279  

1280 1281  

1282 

1283 

1284 

1285 

1286 

1287 

1288 

1289 

1290  

int CVICALLBACK dimDuration (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int stateIndex;  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal (pnlEditStep, pnlEdtStep_rngStates, &stateIndex);  

if(stateIndex == -1)  

1291  { SetCtrlAttribute (pnlEditStep, pnlEdtStep_numStateDuration,  

ATTR_DIMMED, 1);  

1292  SetCtrlAttribute (pnlEditStep, pnlEdtStep_txtDuration,  

ATTR_DIMMED, 1);  

1293  } 

1294  else  

1295  { SetCtrlAttribute (pnlEditStep, pnlEdtStep_numStateDuration,  

ATTR_DIMMED, 0);  

1296  SetCtrlAttribute (pnlEditStep, pnlEdtStep_txtDuration,  

ATTR_DIMMED, 0);  

1297  } 

1298  

1299  return 0;  

1300  } 

1301  

1302  

1303 

1304 

1305 

1306 

1307 

1308 

1309 

1310  

int CVICALLBACK ChooseStep (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index, stateIndex;  

int color[3];  

char stepName[20];  



 262 

1311  

1312  

1313  if(event == EVENT_LEFT_DOUBLE_CLICK)  

1314  { if(goStatus == 2) return 0;  

//if run  

active, return  

1315  

1316  GetCtrlIndex(pnlSetProgram, pnlProgram_lstProgSteps, &index  

);  //get active index  

1317  SetCtrlIndex(pnlEditStep, pnlEdtStep_rngStates, (stepRef[  

index][1] + 1));  //initialize values  

1318  SetCtrlVal (pnlEditStep, pnlEdtStep_numStateDuration,  

stepRef[index][2]);  

1319  SetCtrlVal (pnlEditStep, pnlEdtStep_numEditIndex, index);  

1320  SetCtrlVal (pnlEditStep, pnlEdtStep_chkMode, 1);  

1321  SetCtrlAttribute (pnlEditStep, pnlEdtStep_cmdEditStep,  

ATTR_LABEL_TEXT, "Edit Step");  

1322  

1323  InstallPopup (pnlEditStep);  

1324  return 0;  

1325  } 

1326  

1327  

1328  if(event != EVENT_VAL_CHANGED) return 0;  

1329  

1330  color[0] = VAL_TRANSPARENT;  

1331  color[1] = activeColor;  

//initialize  

color array  

1332  color[2] = ncColor;  

1333  

1334  GetCtrlIndex(pnlSetProgram, pnlProgram_lstProgSteps, &index);  

//get active index  

1335  if(index == -1) return 0;  

1336  if(stepRef[index][1] == PAUSECODE)  

1337  { SetCtrlAttribute (mainPanel, mainPanel_txtUserIntervention ,  

ATTR_VISIBLE, 1);  

1338  return 0;  

1339  } 

1340  
 

 

1341  

 
 

1342 

1343  

else SetCtrlAttribute (mainPanel, mainPanel_txtUserIntervention  

, ATTR_VISIBLE, 0);  

currState = stateList[stepRef[index][1]];  

//set "current state" pointer  

to new index  
 

 

for(i = 0; i < numSolenoids; i++)  

1344  { if(eventData1 == 1)  



 263 

//if run executed  

1345  { if(currState[i] != 2) SetCtrlVal(mainPanel, solenoids[i  

][0], currState[i]);  // if state is not "maintain  

prior", update screen  

1346  } 

1347  else SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_BGCOLOR, color[currState[i]]);  

1348  SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, color[currState[i]]);  

1349  SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, color[currState[i]]);  

1350  } 

1351  

1352  return 0;  

1353  } 

1354  

1355 

1356 

1357 

1358 

1359 

1360 

1361 

1362 

1363 

1364 

1365  
 

 

1366  

 

1367 

1368  

int CVICALLBACK removeStep (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

char stepLabel[100], stepName[30], durString[10];  

int currIndex, numSteps;  

int i, temp;  
 

 

 
if(event != EVENT_COMMIT) return 0;  

 

GetCtrlIndex (pnlSetProgram, pnlProgram_lstProgSteps, &  

currIndex);  

GetNumListItems (pnlSetProgram, pnlProgram_lstProgSteps, &  

numSteps);  

 

for(i = currIndex; i < (numSteps-1); i++)  

//shift references to swallow  

deleted  

1369  { stepRef[i][0] = stepRef[i+1][0]; 1370 

 stepRef[i][1] = stepRef[i+1][1]; 1371 

 stepRef[i][2] = stepRef[i+1][2];  

1372  } 

1373  

 

1374 

1375  

 

1376 

1377 

1378  

stepRef[i][0] = stepRef[i][1] = stepRef[i][2] = -1;  

//and remove last reference  

 

DeleteListItem (pnlSetProgram, pnlProgram_lstProgSteps,  

currIndex, 1); //remove list item  

ChooseStep (panel, control, EVENT_VAL_CHANGED, NULL, 0, 0);  
 

 
return 0;  



 264 

1379  

1380 

1381 

1382 

1383 

1384 

1385 

1386 

1387 

1388 

1389 

1390  
 

 
1391  

 
 

1392 

1393  

} 

 

int CVICALLBACK moveStepUp (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index;  

int swapStore[3];  

char label[100], prevLabel[100];  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlIndex(pnlSetProgram, pnlProgram_lstProgSteps, &index);  

//get active index  

if(index == 0) return 0;  

//if already  

at top, exit  
 

 

GetLabelFromIndex (pnlSetProgram, pnlProgram_lstProgSteps,  

index, label);  //record old values  

1394  GetLabelFromIndex (pnlSetProgram, pnlProgram_lstProgSteps,  

index-1, prevLabel);  

1395  for(i = 0; i < 3; i++) swapStore[i] = stepRef[index][i];  

1396  

1397  

1398  ReplaceListItem (pnlSetProgram, pnlProgram_lstProgSteps, index,  

prevLabel, index);  

1399  for(i = 0; i < 3; i++) stepRef[index][i] = stepRef[index-1][i];  

1400  

1401  ReplaceListItem (pnlSetProgram, pnlProgram_lstProgSteps, index-  

1, label, index-1);  

1402  for(i = 0; i < 3; i++) stepRef[index-1][i] = swapStore[i];  

1403  

1404  SetCtrlIndex (pnlSetProgram, pnlProgram_lstProgSteps, index-1);  

//simulate click on swapped val  

1405  ChooseStep(pnlSetProgram, pnlProgram_lstProgSteps,  

EVENT_VAL_CHANGED, NULL, 0, 0);  

1406 1407  

1408  return 0;  

1409  } 

1410  

1411 

1412 

1413 

1414 

1415 

1416  

int CVICALLBACK moveStepDown (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, index, numItems;  

int swapStore[3];  

char label[100], nextLabel[100];  



 265 

1417  

1418 

1419 

1420  
 

 

1421  
 

 

1422  

 
 

1423 

1424  

 
if(event != EVENT_COMMIT) return 0;  

 

GetCtrlIndex(pnlSetProgram, pnlProgram_lstProgSteps, &index);  

//get active index  

GetNumListItems(pnlSetProgram, pnlProgram_lstProgSteps, &  

numItems);  

if(index == (numItems-1)) return 0;  

//if already at bottom,  

exit  
 

 

GetLabelFromIndex (pnlSetProgram, pnlProgram_lstProgSteps,  

index, label);  //record old values  

1425  GetLabelFromIndex (pnlSetProgram, pnlProgram_lstProgSteps,  

index+1, nextLabel);  

1426  for(i = 0; i < 3; i++) swapStore[i] = stepRef[index][i];  

1427  

1428  

1429  ReplaceListItem (pnlSetProgram, pnlProgram_lstProgSteps, index,  

nextLabel, index);  

1430  for(i = 0; i < 3; i++) stepRef[index][i] = stepRef[index+1][i];  

1431  

1432  ReplaceListItem (pnlSetProgram, pnlProgram_lstProgSteps, index+  

1, label, index+1);  

1433  for(i = 0; i < 3; i++) stepRef[index+1][i] = swapStore[i];  

1434  

1435  SetCtrlIndex (pnlSetProgram, pnlProgram_lstProgSteps, index+1);  

//simulate click on swapped val  

1436  ChooseStep(pnlSetProgram, pnlProgram_lstProgSteps,  

EVENT_VAL_CHANGED, NULL, 0, 0);  

1437 1438  

1439  return 0;  

1440  } 

1441  

1442 1443  

1444 

1445 

1446 

1447 

1448 

1449 

1450 

1451 

1452 

1453  

int CVICALLBACK startRun (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i;  

int currStep, totalSteps, checked;  

double startTime, currTime, stepTime;  
 

 
if(event != EVENT_COMMIT) return 0;  



 266 

1454  

1455  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdPlay,  

ATTR_DIMMED, 1);  //prevent second run start  

1456  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdPause,  

ATTR_DIMMED, 0);  //enable run-control buttons  

1457  
 

 

1458  
 

 

1459  
 

 

1460  
 

 
1461  
 

 
1462  
 

 

1463  
 

 

1464  
 

 
1465  
 

 

1466  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdStop,  

ATTR_DIMMED, 0);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdForceNext,  

ATTR_DIMMED, 0);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdForcePrev,  

ATTR_DIMMED, 0);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdRemoveStep,  

ATTR_DIMMED, 1);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdAddStep,  

ATTR_DIMMED, 1);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdMoveStepUp,  

ATTR_DIMMED, 1);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdMoveStepDown,  

ATTR_DIMMED, 1);  

SetCtrlAttribute (mainPanel, mainPanel_cmdDefineStates,  

ATTR_DIMMED, 1);  

SetCtrlAttribute (mainPanel, mainPanel_cmdSetup, ATTR_DIMMED, 1  

);  

SetCtrlAttribute (pnlSetProgram, pnlProgram_lstProgSteps,  

ATTR_CTRL_MODE, VAL_INDICATOR);  //no changes allowed during  

run  

1467  

 

1468 

1469  

 

1470 

1471 

1472 

1473 

1474  

SetCtrlAttribute (mainPanel, mainPanel_progressBar,  

ATTR_VISIBLE, 1);  

 

GetNumListItems (pnlSetProgram, pnlProgram_lstProgSteps, &  

totalSteps);  

currStep = 0;  

stepOverride = 0;  

goStatus = 2;  
 

 

while(currStep < totalSteps)  

1475  { IsListItemChecked (pnlSetProgram, pnlProgram_lstProgSteps,  

currStep, &checked);  //only process checked steps  

1476  if(checked)  

1477  { SetCtrlIndex (pnlSetProgram, pnlProgram_lstProgSteps,  

currStep);  // select state  

1478  ChooseStep (pnlSetProgram, pnlProgram_lstProgSteps,  

EVENT_VAL_CHANGED, NULL, 1, 0);  // & update on  

screen  

1479  ProcessDrawEvents ();  

1480  if(stepRef[currStep][1] == PAUSECODE)  

//  



 267 

if pause  

1481  { pauseRun(0, 0, EVENT_COMMIT, NULL, 0, 0);  

//  

"click" button  

1482  stepRef[currStep][2] = 1;  

1483  } 

1484  else  

1485  { setState(stepRef[currStep][1]);  } 

 

1486 

1487 

1488 

1489 

1490  

// set solenoids' config  

 
 

stepTime = stepRef[currStep][2]; 

startTime = currTime = Timer ();  

while((currTime - startTime) < stepTime)  

// while waiting for step delay  

1491  { ProcessSystemEvents();  

//  get user  

events  

1492  switch(goStatus)  

//  

check status  

1493  { case 2:  

 

//  if normal  

1494  currTime = Timer();  

//  

record newest time  

1495  SetCtrlVal (mainPanel,  

mainPanel_progressBar, 100*(currTime-  

startTime)/stepTime);  

1496  break;  

1497  case 0:  
 

 
//  if pause  

1498  stepTime -= (currTime - startTime);  

//  record time  

already taken  

1499  currTime = startTime;  

//  

kill clock (time taken = 0)  

1500  break;  

1501  case 1:  
 

 

//  if resume  

1502  startTime = currTime = Timer();  

//  resync  

clock to curr time  



 268 

1503  goStatus = 2;  

 

//  resume normal state  

1504  break;  

1505  case -1:  

 

//  if stop  

1506  MessagePopup ("Run Complete", "Your run  

has been aborted!");  //  give msg  

1507  stepOverride = totalSteps;  

//  

overload steps to quit loop  

1508  break;  

1509  } 

1510  

1511  if(stepOverride) stepTime = 0;  

//  if FF/RW end  

curr step  

1512  } 

1513  } 

1514  

1515  if(stepOverride)  

//  if  

FF/RW ended step  

1516  { currStep += stepOverride;  

//  make adjustment  

1517  stepOverride = 0;  

//  

clear flag  

1518  } 

1519  else currStep++;  

//  

else move to next step  

1520  } 

1521  

1522  

1523  
 

 

1524  
 

 

1525  
 

 
1526  
 

 
1527  
 

 
1528  

SetCtrlAttribute 

ATTR_DIMMED, 0); 

SetCtrlAttribute 

ATTR_DIMMED, 1); 

SetCtrlAttribute 

ATTR_DIMMED, 1); 

SetCtrlAttribute 

ATTR_DIMMED, 1); 

SetCtrlAttribute 

ATTR_DIMMED, 1); 

SetCtrlAttribute  

(pnlSetProgram, pnlProgram_cmdPlay,  

//re-enable start run  

(pnlSetProgram, pnlProgram_cmdPause,  

//disable run-control buttons  

(pnlSetProgram, pnlProgram_cmdStop,  
 

 
(pnlSetProgram, pnlProgram_cmdForceNext,  
 

 
(pnlSetProgram, pnlProgram_cmdForcePrev,  
 

 
(pnlSetProgram, pnlProgram_cmdRemoveStep,  



 269 

ATTR_DIMMED, 0);  

1529  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdAddStep,  

ATTR_DIMMED, 0);  

1530  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdMoveStepUp,  

ATTR_DIMMED, 0);  

1531  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdMoveStepDown,  

ATTR_DIMMED, 0);  

1532  SetCtrlAttribute (mainPanel, mainPanel_cmdDefineStates,  

ATTR_DIMMED, 0);  

1533  SetCtrlAttribute (mainPanel, mainPanel_cmdSetup, ATTR_DIMMED, 0  

);  

1534  SetCtrlAttribute (pnlSetProgram, pnlProgram_lstProgSteps,  

ATTR_CTRL_MODE, VAL_HOT);  

1535  SetCtrlAttribute (mainPanel, mainPanel_progressBar,  

ATTR_VISIBLE, 0);  

1536 1537  

1538  if(goStatus != -1) MessagePopup ("Run Complete", "Your run has  

completed successfully!");  

1539  goStatus = -1;  

1540  

1541  return 0;  

1542  } 

1543  

1544 

1545 

1546 

1547 

1548 

1549  

int CVICALLBACK pauseRun (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 

if(goStatus == 2)  
 

 
//if normal run in progress  

1550  { goStatus = 0;  

 

// set pause flag  

1551  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdPause,  

ATTR_IMAGE_FILE, pauseActive);  // swap button pic  

1552  SetCtrlAttribute (pnlSetProgram, pnlProgram_lstProgSteps,  

ATTR_CTRL_MODE, VAL_HOT);  // allow check/uncheck  

action  

1553  } 

1554  else  

 

//else run resume  

1555  { goStatus = 1;  
 

 
//  set resume flag  



 270 

1556  SetCtrlAttribute (pnlSetProgram, pnlProgram_cmdPause,  

ATTR_IMAGE_FILE, pauseNormal);  // swap button pic  

1557  SetCtrlAttribute (pnlSetProgram, pnlProgram_lstProgSteps,  

ATTR_CTRL_MODE, VAL_INDICATOR);  // no changes  

allowed!  

1558  } 

1559  

1560  return 0;  

1561  } 

1562  

1563 

1564 

1565 

1566 

1567 

1568 

1569 

1570 

1571 

1572 

1573 

1574 

1575 

1576 

1577 

1578 

1579 

1580  
 

 

1581  
 

 
1582  

 

1583 

1584 

1585 

1586 

1587 

1588  

 

1589 

1590 

1591 

1592 

1593 

1594 

1595  

int CVICALLBACK stopRun (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  
 

 
goStatus = -1;  

 
return 0;  

} 

 

int CVICALLBACK setManualCtrl (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int state;  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal(pnlSetProgram, pnlProgram_chkEnableManualCtrl , &  

state);  

SetCtrlAttribute(pnlSetProgram, pnlProgram_chkModifySolenoids ,  

ATTR_DIMMED, !state);  

SetCtrlAttribute(pnlSetProgram, pnlProgram_lstLoadState,  

ATTR_DIMMED, !state);  

clickMode = 2;  

 
return 0;  

} 

 

int CVICALLBACK setSolenoidPolicy (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int value;  
 

 

if(event != EVENT_COMMIT) return 0;  



 271 

1596  GetCtrlVal(pnlSetProgram, pnlProgram_chkModifySolenoids , &value  

);  

1597  clickMode = (value > 0)?3:2;  

1598  

1599  return 0;  

1600  } 

1601  

1602  int CVICALLBACK loadState (int panel, int control, int event,  

1603  void *callbackData, int eventData1, int eventData2)  

1604  { 

1605  int state, index, i;  

1606  int color[3];  //color[2]  

1607  

1608 

1609 

1610 

1611 

1612 

1613 

1614  

 
 

1615 

1616 

1617 

1618  

 
 

1619 

1620  

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal(pnlSetProgram, pnlProgram_lstLoadState, &state);  

setState(state);  

 

color[0] = VAL_TRANSPARENT;  

color[1] = activeColor;  

//initialize  

color array  

color[2] = ncColor;  

 

if(state == -1) return 0;  

currState = stateList[state];  

//set "current state"  

pointer to new index  
 

 

for(i = 0; i < numSolenoids; i++)  

1621  { if(currState[i] != 2) SetCtrlVal(mainPanel, solenoids[i][0  

], currState[i]);  

1622  SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, color[currState[i]]);  

1623  SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, color[currState[i]]);  

1624  } 

1625  return 0;  

1626  } 

1627  

1628 

1629 

1630 

1631 

1632 

1633  

int CVICALLBACK JumpStep (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  

 

stepOverride = 1;  

//indicate  



 272 

fwd to next step  

1634  

1635  return 0;  

1636  } 

1637  

1638 

1639 

1640 

1641 

1642 

1643  

 
 

1644 

1645 

1646 

1647 

1648 

1649 

1650 

1651 

1652  

 

1653 

1654 

1655 

1656 

1657  

 

1658 

1659 

1660 

1661  
 

 

1662  
 

 

1663  

 
 

1664 

1665 

1666 

1667  
 

 
1668  

int CVICALLBACK repeatStep (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

if(event != EVENT_COMMIT) return 0;  

 

stepOverride = -1;  

//indicate  

return to prev step  

 
return 0;  

} 

 

int CVICALLBACK saveProgram (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, status, bSize;  

char filePath[MAX_PATHNAME_LEN], stateFilePath[MAX_PATHNAME_LEN  

], tmpString[50];  

FILE* saveFile, stateFile;  
 

 

if(event != EVENT_COMMIT) return 0;  

 

status = FileSelectPopup ("", "*.prg", "*.prg", "Save program  

file", VAL_SAVE_BUTTON, 0, 1, 1, 1, filePath);  

if(status < 1) return 0;  

 

strcpy(stateFilePath, filePath);  

stateFilePath[strlen(stateFilePath) - 4] = '\0';  

//remove extension  

strcat(stateFilePath, ".sta");  

//add state file extension  

saveStateFile(stateFilePath);  

//and save state file  

parameters  
 

 

 

saveFile = fopen (filePath, "w");  
 

 

//open file for write  

1669  //  fprintf(saveFile, "State File: %s\n", stateFilePath);  

1670  



 273 

1671  GetNumListItems(pnlSetProgram, pnlProgram_lstProgSteps, &bSize);  

1672  fprintf(saveFile, "numSteps: %i\n", bSize);  

1673  for(i = 0; i < bSize; i++)  

//write states  

1674  { GetLabelFromIndex(pnlSetProgram, pnlProgram_lstProgSteps, i  

, tmpString);  

1675  IsListItemChecked(pnlSetProgram, pnlProgram_lstProgSteps, i  

, &status);  

1676  

1677  fprintf(saveFile, "%s: %i %i %i %i\n", tmpString, status,  

stepRef[i][0], stepRef[i][1], stepRef[i][2]);  

1678  } 

1679  

1680  fflush(saveFile); 1681 

 fclose(saveFile);  

1682  

1683  

1684  return 0;  

1685  } 

1686  

1687  

 

1688 

1689 

1690 

1691 

1692  
 

 

1693  

 

1694 

1695 

1696 

1697 

1698 

1699  

 

1700 

1701  
 

 

1702  

 

1703 

1704 

1705 

1706 

1707  

int CVICALLBACK loadProgramfromFile (int panel, int control, int  

event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int i, j, k, status, bSize;  

long fileSize;  

char filePath[MAX_PATHNAME_LEN], stateFilePath[MAX_PATHNAME_LEN  

], readString[300], labelStr[50];  

char driveName[MAX_DRIVENAME_LEN], dirName[MAX_DIRNAME_LEN],  

fileName[MAX_FILENAME_LEN];  

FILE* dataFile;  
 

 

if(event != EVENT_COMMIT) return 0;  

 
 

status = FileSelectPopup ("", "*.prg", "*.prg", "Load program  

file", VAL_LOAD_BUTTON, 0, 1, 1, 0, filePath);  

if(status < 1) return 0;  

if(!(GetFileInfo (filePath, &fileSize)))  

//if file doesn't exist  

{ MessagePopup ("Error", "There was a problem opening the  

program file!");  

return 0;  

} 
 

 
dataFile = fopen (filePath, "r");  



 274 

1708  

1709  

 

1710 

1711  

 
 

1712 

1713 

1714 

1715 

1716 

1717 

1718 

1719  
 

 

1720  

 

1721 

1722  

 

strncpy(stateFilePath, filePath, (strlen(filePath) - 3));  

//copy into state file name, truncate extension  

stateFilePath[strlen(filePath)-3] = '\0';  

strcat(stateFilePath, "sta");  

//add ".sta"  

extension  

loadStateFile(stateFilePath);  

 

buildStatesRing();  

refreshStepLinks();  
 

 

ClearListCtrl (pnlSetProgram, pnlProgram_lstProgSteps);  

 

fgets (readString, sizeof(readString), dataFile);  

//read in first line  

sscanf (readString, "numSteps: %i", &bSize);  

//extract number of steps  

 

for(i = 0; i < bSize; i++)  

//for each step  

1723  { fgets (readString, sizeof(readString), dataFile);  

// grab line  

1724  j = 0;  

1725  while(readString[j] != ':') labelStr[j] = readString[j++];  

// find colon  

1726  labelStr[j] = '\0';  
 

 

1727  k = j;  

 

// record position  

1728  while(readString[j] != '\0') readString[j-k] = readString[j  

++]; // cut out all text prior  

1729  readString[j-k] = '\0';  

1730  

1731  sscanf(readString, ": %i %i %i %i", &status, &stepRef[i][0  

], &stepRef[i][1], &stepRef[i][2]);  

1732  

1733  InsertListItem (pnlSetProgram, pnlProgram_lstProgSteps, i,  

labelStr, stepRef[i][0]);  

1734  CheckListItem (pnlSetProgram, pnlProgram_lstProgSteps, i,  

status);  

1735  } 

1736  

1737  i = 0;  

1738  activeColor = MakeColor (255, 128, 0);  

1739  while((i < numSolenoids) && (solenoids[i][0] != -1))  



 275 

//go through solenoids  

1740  { SetCtrlVal (mainPanel, solenoids[i][0], 0);  

//turn each one "off"  

1741  SetCtrlAttribute (mainPanel, solenoids[i][3],  

ATTR_FRAME_COLOR, VAL_TRANSPARENT);  

1742  SetCtrlAttribute (mainPanel, solenoids[i][4],  

ATTR_TEXT_BGCOLOR, VAL_TRANSPARENT);  

1743  SetCtrlAttribute (mainPanel, solenoids[i][0],  

ATTR_LABEL_VISIBLE, 1);  

1744  SetCtrlAttribute (mainPanel, solenoids[i++][0],  

ATTR_ON_COLOR, activeColor);  //and set new active color  

1745  } 

1746  

1747  return 0;  

1748  } 

1749  

1750 

1751 

1752 

1753 

1754 

1755 

1756 

1757 

1758  
 

 
1759  
 

 

1760  
 

 

1761  

int CVICALLBACK chkSize (int panel, int control, int event,  

void *callbackData, int eventData1, int eventData2)  

{ 

int newVal;  
 

 

if(event != EVENT_COMMIT) return 0;  

 

GetCtrlVal(panel, control, &newVal);  

if(newVal < 24) SetCtrlAttribute (panel, btnPanel_numButtonSize  

, ATTR_MAX_VALUE, 5);  

else if(newVal < 26) SetCtrlAttribute (panel,  

btnPanel_numButtonSize, ATTR_MAX_VALUE, 4);  

else if(newVal < 29) SetCtrlAttribute (panel,  

btnPanel_numButtonSize, ATTR_MAX_VALUE, 3);  

else SetCtrlAttribute (panel, btnPanel_numButtonSize,  

ATTR_MAX_VALUE, 2);  //if(newVal < 33) SetCtrlAttribute  

(panel, btnPanel_numButtonSize, ATTR_MAX_VALUE, 2);  

1762  

1763  return 0;  

1764  } 

1765  



� ����������	
����
�����������������	�� �������������������������������������������������������������������������������������������������������������������� ���������������� !�������� ���"��������!���!#�������$��!�������������!�����%� ��& �����%��%� '(����������%���)*+,-.&(����)*+(/012/.3(�	���)*+(4*41(��

��)*+(41&(��

�&*5(1,/31�6����
��������
�����������������	��
�������� �! !�����!�'��) ��78��! !�����!�'��) ''��978�����!��� �(! !�:���8;�� �<=78�$������!�') ''��9;$���=78���!���!�';$���=78������!���>&��!78����!����������?)*+(/012/.3(@78���!�(,��������,����9?)*+(/012/.3(@?�@788 AA�!���.3B�4�'B�0��!B�������! !������
����!���������054?)*+,-.&(@?)*+(/012/.3(@78�����������!���������(! !�?)*+(4*41(@?)*+(/012/.3(@788�������������������� ����!��.3?)*+(4*41(@78������� ����! !�����!<��! !�0��!?)*+(4*41(@78����������(! !�CD����!��!�'E��?)*+(41&(@?�@788 AA����������! !������� ���'��9� ���!�'���� AA���F���.3�����AA������ !�����!�!������AAC
D��! !���.3B��C�D�����������!���! !�0��!�C�D���� !��������� ����!�'���	���� ���!�'2 ���?)*+(41&(@?�
@788 AA� ��� ����� !���G�!���� ����!�'��



� ������������	
���
�
�
��������������������� �� !""���� 
����!"#��
��
������$������%������&'�����&(����&)�&������&&����&*�&+�&��&$�&%����*'�� #���	
���
�
	,����
��-�	����
".#��
���
"�/���
"�/�	
���
�
	��������	�#� ���
�0�����1�2���3�4'5�(5�)6�������	�#� ��
�� -�78�!	�
�#	�� #��9# :�
#�#��
"���.�"	8�9!��
�	������ �"��""#;	�����1�2�������� ��<'=�9
"
�"8�<(=�	��7��9#"8�<)=�
>�"#���9#"8�<�=�	�#"��9!��
�8�<&=���.�"8�<*=�	�#�!	8�<+=��	��7	���	������� !""���7�����1�2����� ��:��7��"# :�
��� !""����	��7��
"��# -���	�#� �������"!�� ��>������1�2����� ��	-
!�
�.#��?�.�"��#� -�7@	�!7
#���7"
�"�		�9#"	A�������# ��>���	
���
�
�3�B(��� ��# ��>��	�����C -�7��	
���
�
������# ��>��D�	
���
�
�3�B(��� ��# ��>��#9	
�!����	
���
�
�������EEEEEE���2)�)� 
..#�
	�EEEEEE���������-�9�����3�(()5���-�9������3�((�5�7!�	�F
��3�((+5�7!�	�F
���3���$�������9!	����	�$��)��3�4$(5�&%5�$�5�*'5�+%5�*(5�$)5�*)5�$&5�*�5�$%5��*&5�$*5�**5���5�*+6��� ��#""#;<9!	�����=<
���
�=��*(�*)���*��*&�**�*+�*��*$�*%�+'�+(�+)�+��+&�+*�� ���� �"�����	����)��3�4('*5�('&5�('(5�(''5�%�5�&�6������� -�7���$�����3�4'5'5'5�'5'5(5�'5(5'5�'5(5(5�(5'5'5�(5'5(5�(5(5'��5�(5(5(6����EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE���������������.#���G����#"� 5� -#"�H#"�>��I��4� JK�G�����F�L?��G'5�#"�>5�'I�33�'I��MNOPMQ�B(���E�
!��
��.�.
";�E���JK�GG7���#���3��
#
2#����G'5�/.#��2#���,!�"/5�.#��2#���II�R�'I��



� �������� ���	�
��
������� ����������������������������� !�"#��$�������%&'�("!�#�������))��*� )���+�� ���	�
��
����,��� ���
�� %�-'��)����.���/�� 0�%���1��������������)����2�� 3'�4%�(5�-�(6�7���)���8�� 0�%7�(���������������)������� ���	�
� �������9��+���,�+ �+
��+.�+/�+2�+8�+��� ��-�����$-�-����-�%-�-�:'#!���-�7;��:'#)��<� ��-��!�=!��'#>��?%!��66%�-������@������ ����*�+���AA)���� BB6�(���7;�C��?��+��� <� �66%�-���+D����++�� �@��=��� ��=�*�/��=AA)�E�#F(->1-���'%C��(-!�7-(�����%G=HG��7;��50G�HG=HH)��� BB�%���7-�7;����+,�� �@��=��� ��=�*�+��=AA)�E�#F(->1-���'%C��(-!�C'%����%G=HG��%�������E��6��G�66%�-A=HH)��BB����������7'((��-�I��'�%�-���C'%��, �� �@��=��� ��=�*��JK$L�M:L50$��=AA)��,
�� <� ����%��������4NG7;��:'#HG=H�O��66%�-�
)�PP��%��������4N��G7;��:'#HG=H�*��66%�-�A�+)�PP��%�������$-�-�G%-�-�:'#HG=H��Q��.))�BB�6�%��������6���%���-��7'((��-�1R%���7-���7;����(������,.�� <� E�#F(->1-���'%C��(-!�C'%����%G%��������4NG7;��:'#HG��=H�S�+HG%�������$-�-�G%-�-�:'#HG=HH)���BB�� ��%��T(�-����T�I��'���,/�� %�������E��6��G%��������4NG7;��:'#HG=HH����%�������$-�-�G%-�-�:'#HG=H��� BB������(�7�(��-��#�#�(1��,2�� 9�,8�� 9�,���,���,+�� E�#F(->1-���'%C��(-!���;�C�-L66)��� BB��



� ���������	
����
	���	� �����������������������������	�����	� ��� !�"������
#$�!�%	&'�&#&�('�������	� )���*		��+	� ��� !�"������
#$�!�%	,��
�-�'������ ��
.&���	
����
		��/	� �������������� ���������������		���	� ��� !�"������
#$�!�%	,��
�-�00������1	���2	���3	� 456748	�������	� )����	����	��*		��+	��/	���	��1	��2		 &'�	���9���'�&:
(00�&'�	��&,;�����<� &'�	&%	=%	'��"�'>
%	�00
�������?@4�&�A	��	&�B	3�	&CC����� ��0�!	����	#�'>		��3	� <� �00
���A	3D&������	� ?@4�=�A	��	=�B	+�	=CC�	��� !�"������
#$�!�%	��!�E&'�
F=GF����&,H�F&GF=GG���� ��	
�����	��&,		�*�	� ?@4�=�A	��	=�B	3�	=CC�	��� !�"������
#$�!�%	#�
E&'�
F=GF��
���'�&:��'0&IF�00
��C=GG��	��	���:	���	��!!�'�	
����
	��	�#�
	��*�	� ?@4�=�A	��	=�B	JKL9(EM;(H�9�	=CC����**	� <� N?��
���'�&:EOPF��&,;��GF=G�Q	�00
��R���SS��
���'�&:EOP		F��&,;��GF=G�B	�00
���C	3��	��&0	
���'�&:	0���
	&'��	���!!�'���T
������:	��&,	!�'I�		�*+	� <� ��� !�"������
#$�!�%	#�
E&'�
F
���'�&:EOPF��&,;��GF��=G�U	3GF�G���� ��	� ��
�	.!&��	'�.	
����		�*/	� 
���'�&:��'0&IF
���'�&:EOPF��&,;��GF=GG�A	������	� �':	!���!:	��	����!�	��*�	� )��*1	� )��*2	��*3		�*�	� ��� !�"������
#$�!�%	&'�&#&�(00���� ��	������	
����
		



� ��������� �	
��
�����������	
������������������ ���������	�
�� !���"�#$%# #�&$������'�� (��������)�� ���������	�
�� !���"�*�
�	+�$������ ���,#�-%�.�
�	�������� �	
��
�������� ���	
��������������/�� ���������	�
�� !���"�*�
�	+�00������1����2�� 345637�������8�� (��)����)���)'��)����))��)���)/��)1��)2�� .�#9�#$#�:�
	$�#9�
���;� #$��#"�<"�$����$=�"��00�	������>?3
#�@����#�A�2��#BB����� ��0���	�-%� �$=���)8�� ;� �00�	��@�2C#�������� >?3
<�@����<�A����<BB�����������	�
�� !���"�-��
D#$	�E<FE��-%#*G�E#FE<FF���� ����	
	-��-%#*������� >?3
<�@����<�A�2��<BB�����������	�
�� !���"� ��D#$	�E<FE���F���� ����	���

���
	$�#9��
�,����'���������)�� ���������	�
�� !���"�#$%# #�&00���� ����
��-%�.�
�	�������� �	
��
�����������	
���������������/�� ���������	�
�� !���"�#$%# #�&$������1�� (���2����8�� ���������	�
�� !���"�*�
�	+�$������ ���,#�-%�.�
�	����/��� �	
��
�������� ���	
�������������/��� ���������	�
�� !���"�*�
�	+�00�����/'��



� ��������� �	
���
������� ����������������������������������������� ����������� !��"� �����#�$%&&�$$#�'�$���$�
������&�()�'��*�+�
���������,�*���
��������������������� �� --.$&���&�/��0�'�.��$�'��1��234����56� ��*��
���7��
��88!��--�0�'2��9��:���;���:���<<4��--�����&�(���'�$�$�=%����.>>?������� "� $%&&�$$�*�@���A�(A��0�,� �#�BB#�������#��#��#��#����#����!
��--��������'�������� C5 $%&&�$$�**��!���� --��0�$%&&�$$0%>>������� "� DECF	 A�(G'��?��� �#����,!�H*��!
�� --�� �$$%������,������� '�$���$��*�A�(I/�?��� �!
���� --�� '�./�'�$���$�������� C5 '�$���$��**�3J3!���� --�� �0����,�'�$���$��0'�(�KL)���������� "� &�()�'��*��
��� --�� '�&�'/���'���%(M�'������� ��*���
��� --�� �N���>���������� ������� A>�$�A�(� �!
��� --�� �>$��&>�$��&�(���'�������� ������� ������������ �	
����&�()�'�
��



� �����������������������	���
��������������

��
�������
�������
������
��� ���������������������� ������������������ !����"������� #$����%$��&$�� '(%)��$���*������!++,'�!--.!�/'0!+!��1����$�(�2�)�34
5����(6���6 ��76���$(*�(*���������� !����"������� #$����%$��&$�� '(%)��$���*������!++,'�!--.!�/'0!+!��1����$�(�2�)�34�5�����*$��)�($  "$(8�($��)�77������$���������� !����"������� #$����%$��&$�� '(%)��$���*������!++,'�!--.!�/'0!+!��1����$�(�2�)�34�5���� �������������99��:����������99�6��*$����
	�����

�����
�����
���
����
���������� ������ !����"������� #$����%$��&$�� '+�%�����!++,'�!--.!�/'0!+!����1����$�(�2�)�34
5���������� !����"������� #$����%$��&$�� '+�%�����!++,'�!--.!�/'0!+!����1����$�(�2�)�34�5���������� !����"������� #$����%$��&$�� '+�%�����!++,'�!--.!�/'0!+!����1����$�(�2�)�34�5���������(�� !��$;�4
54
5�<�%$��&$�� '"6�)������ 99��������(6���6 �$��$;�������� (�� !��$;�4�54
5��<�%$��&$�� '"6�)���������� (�� !��$;�4�54
5��<�%$��&$�� '"6�)��������	�� (�� !��$;�4
54�5��<�%$��&$�� '��6:����.$��������
�� (�� !��$;�4�54�5��<�%$��&$�� '��6:����.$����������� (�� !��$;�4�54�5��<�%$��&$�� '��6:����.$����������� (�� !��$;�4
54�5��<�%$��&$�� '��6:����.$����������� (�� !��$;�4�54�5��<�%$��&$�� '��6:����.$��������
�� (�� !��$;�4�54�5��<�%$��&$�� '��6:����.$����������� (�� !��$;�4
54�5��<�%$��&$�� '(%)��$���*����������� (�� !��$;�4�54�5��<�%$��&$�� '(%)��$���*����������� (�� !��$;�4�54�5��<�%$��&$�� '(%)��$���*����������� (�� !��$;�4
54�5��<�%$��&$�� '+�%��������	�� (�� !��$;�4�54�5��<�%$��&$�� '+�%��������
�� (�� !��$;�4�54�5��<�%$��&$�� '+�%����������� (�� !��$;�4
54	5��<�%$��&$�� '(*����$�������



� ��������� ��	
�		�
�������������������
����������������� �� ��	
�		�
�������������������
�����������!����!"�� ��	
�		�
��"��#�������������
�	�$����������!��� ��	
�		�
�����#�������������
�	�$����������!��� ��	
�		�
�����#�������������
�	�$�����!����!!���!%���!��� &'()����"����*�+�,-./�����001���!#�� 2� ���-�	
���	�3����)��
+���4���	
�		�
�����"�4����!5��!���! ��%"��%���%���%!����%%��%��� �667�87�+9�-:;:74�<�;�67�=���79=61���	������>�������"�����		����������"���?������ @@������
�A��B�����		�
�����&'()����"����*�+�,�6�69����001���%#�� 2� ����7�C����"����D�����%5�� �E
��E�B���������"����D����� @@F����B�������E�����
E����%��� &'()G�"�G*+�,�:;9=:/H��G001��� @@���������	
I�3���G����������
�A���>�	
����$���	����% �� �E
��E�B���������G����"�����"�� �����;���������JKLL�������� �/H������D��������� ?���!����%��������#���5����������� �� @@�����������MN8��B��$�O�P�B�>���NQR���	E����H	�S9>����)1����3�E	����E���O�P)1����@@C��B�H;��!��-��T&)��3�E	�����D�1���#"�� 2� +����$��E���)N9		E	N4�N6�����	BS�	��B�>�����E�
B��E��3���
E����BUN1��� @@�C��E��CE��BI�$�>����$���#��� (VWX(Y������#��� ?��#!�� VZ[V���� @@E���	S�����



� ��������� �� 	
���
����
����
������������������
������ ��!��"��
����##!�$%��&$��'()�� **�
����
�
���� ��
 �+����,�� � �-
�./�
���+�� 
���001()��� **2�2�3�� ����� 4��5���
�+������� � �-
�./�
���+�� 
�����5����6�()�����1�� 7���8����9��1'��10��1���1:��1���1,��1���11��18�� ��**������7� ����	 �
� ��+�()��+
�	����+;<<=>�����?@AB?C�')���19��8'��80��8���8:��8���8,��8���81��88��89��9'��90��9���9:��9���9,�� �����D%����.��E�F����
 4
�����������
�������� ��
 �������
G
�����G ���H�������I$���������
G
��$���0������
G
��$����(���� JK�
G
���LM�&D&N#��6��%#(�?@AB?C�')����O���P+

%��

Q��
�'()���?@AB?C�')��7�������D%����.��E����.��� �+���������
�������� ��
 �������
G
�����G ���H�������I$���������
G
��$���0������
G
��$����(���� JK�
G
���LM�&D&N#��6��%#(�?@AB?C�')���%�+����� ��������������4()��+
���������4�()���9���91��98��99�:''�:'0�:'��:':�� **������7� � ��	���
"��
;=>�����?@AB?C�')��:'��� ����� ��	���
+"
 �"��
��5�
H�Q��
���5(��:',�� ��:'���



� ���������������	��
���

��
�����
���
���

��
���
���
���
	�������
���������������������������
����������������������	��������� ������������������������������������ �����!��"#�$���������%�&#��&�'����()������'�����$*
��+���()��������,�%�*��+������*
��+���()����&#�%�*-. /01234,.-4/54,+��"�#�0��*-. /021,.-4/54,+���6�(,�%�*-. /7254,.-4/54,+���()��8��&������72548�'���7�#���������'���7�#��9�"&6���:"�#�;��)��<�<=����"$����:���'�����$��>?@ABC:���'�����$=��'���7�#�=���DD���'����6�(�������%���"$����:���'�����$��>?@ABC:���'�����$=��'���7�#�=���DD���'������%����&"��&#��&�'�����(��":���'�����$��<�&#��&�'�E�F��F�G�<��H��%�&#��&�'���H�������=���CBI:��9������J���%�&#��&�'����KK=��� "$����:���'�����$��>?@ABC:���'�����$=��'���7�#�=���DD���'�����&#��&�'�6&����&���$��'�������"$����:���'�����$��>?@ABC:���'�����$=��'���7�#�=���DD)���L��M)�����)����#�������'��������������(��":���'�����$��<��%������E�F�G�<��H�����=���DD��%����&"���������CBI:��9������J���������KK=����
�� N� "$����:���'�����$�>?@ABC:���'�����$=��'���7�#�=�������� ��9���������� OP?QA:���'�����$*�+�R9�LEL=������,�%�*�+�9����'�����$*�KK+�������� �����,�%�*�+�9�LG�L�����
�� �����5���*�+�9��&#��&�'�����*�+�������� ��9���9���K���������� OP?QA:���'�����$*�+�R9�LSL=�����*�T�+�9����'�����$*�KK+�������� ����*�+�9�LG�L�����	�� �20*�+�9���&�:����=�������� �&����9�����&��:���'�����$��<U<=�����
�� �&����9�����&��:VWXX��<�<=��� DD"�������&���������������%��Y�20��



� ��������� �	
���	������ 
����������	�
	�����		����� �� ��� �!������"�#$%#"	&�� ��'%��(%)(�**)��	����+�� �����	
���,���	�����"�#�#��	���-�� .���/�� .���0����1�� !�2���	�3 � 4%2���	��+����+5�� 6�7869���	��+��� .��+����+����++��+-��+/��+0��+1��-���-5��-���-���-���-+��--��-/�� %���2� 3: ;;%�<4,�=4%2���> ,?�!%2�@ �>�	���� %���%"��"��"��� �A�"�BC%D��	��> ,�,� 3C�,%�<(+��)�	��> ,��� ��E =�(��)"��A��(+��)�	��> ,?�������	�4F'G?�3 � 4%2��	�����3 � 4%2�	
�!�;��	�!%2�@ �>"�#,#��		HHF�I%22� ��A=��� ��J��>%;�H��2���%3��3��������-0�����-1�����/������/5�����/������/��� HH��> �<�K����F�,� 3�%��BA��3��L��,���,3���HH�M 2A��J��!<���	�,� 3C�,%�<"	N�O�PQ�,� 3C�,%�<�"�3 � 4%2���	�HH,� 3�%��:RSTUF@C��!<���	�,� 3C�,%�<"	N�O�PQ�,� 3C�,%�<�"�3 � 4%2���	�HH,� 3�%��:RSCV'GEVFWC�����QP6�%	
����%	X�:RSTUF@C��%**�		��/��� �� !<���	�,� 3C�,%�<"	N�O�PQ�,� 3C�,%�<�"�3 � 4%2���	�HH,� 3�%����2���%3�;��%�%��%�<�3 � ���/+�� �����	
���,���	�,� 3C�,%�<"�#�#��	��/-�� �	
���	��//�� 
����������	�
	�����		�/0�� �� ��� �!������"�#$%#"	&��2���%3'YZ(%)(�**)��	��/1�� �����	
���,���	�����"�#�#��		



� ��������� ����	�� ����
������������ �
���������������������������� ��� �!�������"�� ���������#��#����#	��#
��#���#���#���#�������#"����#���##�������	���
��������������������������"�������#��	���		��	
��	������	���	�������	��� �$��%&'%())*(%+�)���,-.$�������$��/�$��0��$��
�$�1��0��$���2�$�0��2����3
���4�
56���0��$���2�$�6���	0��$���2�$�6���
���7� �$���0�80�50�����.�0�49�:������$;�����9�:����
<�1�����=��<>?(@,=(ABC(?D,)DCE0����������=��<>?(@,=(ABC(?D,)DC�E0�F�//�$;����=��<>?(@,=(ABC(?D,)DCE0�1���9�1�$;>���E0���4��9�1��>��E���
<�1��1�2�C�F�>?(@,6-'&DC(?D,)DCE0���1C�F�>?(@,6'-C(?D,)DCE0������C�F�>?(@,�')DC(?D,)DCE����')D3��������������GH��2�$��IJ�D&DCA,%K??'A����� �!�����������.��J�����9���
�=�/./��LL0�LMN/1;L0�LMN/1;L0�L)����/1�;1�F������L0�&(),)K(6,*OAAKC0��0�	0�	0��0�����=��<����GH�����.��P�	����� �!�����GH�I�Q������'$��������=��<0�R����9�:������ SS������������$T���U�����7�?����;�=�/./��LD11�1L0�LA<�1��V�����/1�4��F��/�$�$;��<���/1�;1�F�����WL������� �!������������������J���/�$������=��<0�L1L��������1$
/X����������=��<0�����=��<0����1��$�����=��<��Y�������SS
�/X��$��������������$�F�Z��1.$
������U��$���$�����������=��<>��1��$�����=��<�Y�E�J�T[�T�����1
������������=��<0�L���L���� SS�����LN���L��U��$���$������9������1�F��������������=��<����



� ���������������������	
�����	���		��	���	���	������	
����	���	��� �������������������������������������������������� �!��  "��##�$������$�%�����&��������%�'���(��������)�����$����������������*��������������� !�+�,�-.
-"������������������������/�%�/ "�� ##�00��/1�$���$�0�%�����&�����/��)�����$����$�02�����&��$%������������������ "�������&��������03����&��456789����03����& ��0������� "��##���0���������������������������03����&��/�(%3����:�;�/��<=3�>� "��##�)�������(%=���$����������98?���,�
"���@�=3�>�"��AA �� ##�$���������������	��� B� �&��������03����&��456789����03����& ��0������� "��##�&��=���������
�� C�,�
"������� DE5F7����03����&*C+�G,�-:- ���=��3��*C+�,����03����&*CAA+"��##����0��$�$�����	�� ��=��3��*C+�,�-.
-"������� �����������H�%��*�+����=��3�� "������� I�,�C"��� ##����$�0��$����$�������� DE5F7����03����&*C+�G,�-.
- ����03����&*C!I+�,����03����&*C��AA+"�� ##��(��$(��������)�����$�����
�� ���03����&*C!I+�,�-.
-"������������ ����������03����&��/:�;��;��;��;�/��<����(���<����J��*�+*
��+��<����J��*�+*�+��<����J��*�+*	+ "���������
�� K��������	����������� 98?���,�
"���@�=3�>�"��AA �� ##���(����������(���������I���$�������������������(����������� 59������J��*�+*
+�L�!� �<<������J��*�+*
+�G,�(MN*����J��*���+*�++  ���,�=3�>��A��"�� ##�������$�'�O(����$$�����
�� 59���,,�=3�>��A�� ��



� ��������� �� �	

��	
��������������������������������������	�����	�
	���	�	�	���	� ����
���!	����	
���"#����$�� %&'(%)�*#����+�� ,��-.���-*���-/�� 01%���2�.#���3�4#��55"��� 66	����	�
�����������
���-4�� 7	�8���9�������	�:���
��	���!���9��� 
;�<;4<��9==>?@A���@���."#���-����--�� %&'(%)�.#���-B�� ,��-����-$��-+��B.���B*����B/��B4��B���B-��BB��B���B$��B+���.���*���/������4�������������-������B�������������$�����+��$.��$*�� ����8CA89DDE98F��	�	�
	8G�����������	�H����	������!������A@�������	I	����I����J!�����!K@���������	I	��@���*������	I	��@���/"���� ���J�!G��L�#������!G��#����M0�	I	���N2��C�L=?8O��A="�%&'(%)�.#���!G��L��2�!�����!K@���#��!G���2�J!G��L�#����7	�8���9�������	��:���
��	���!���9��� 
;!G��<;4<���9==>?D9E�D?=�P=���7�����>���"#��A�
����8���8�����!K��:���
��	���!���9��� 
;!G��<;4<��
����>�����Q��
���!	A��	R;!G��<"#��7	�8���9�������	��:���
��	���!���9��� 
;!G��<;4<��9==>?@A���@���."#��7	�8���9�������	��:���
��	���!���9��� 
;!G��<;.<���9==>?S>9��?8ODO>��C9D?=>9L7
9>�L="#��7	�8���9�������	��:���
��	���!���9��� 
;!G��<;*<��9==>?@A���@���*"#��7	�8���9�������	��:���
��	���!���9��� 
;!G��<;/<��9==>?@A���@���*"#��7	�8���9�������	��:���
��	���!���9��� 
;!G��<;B<��9==>?@A���@���*"#��7	�8���C����:���
��	���!���9��� 
;!G��<;*<��."#�7	�8���C����:���
��	���!���9��� 
;!G��<;/<��."#�8�	��D�
�8�����:���
��	���!���9��� 
;!G��<;B<"#��



� ��������� �	
��
��������������������� �������
���� !!"����#����������$�� %�������&�
�'(��

��"#�����)����*�� +,-.+/���������� 0���1���1����12��1���1���1���1$��1)��1*��1���11�$���$�2�� �

�3453�667�38��
��
9	
�"�

���
��:��

���

���:��

����

:�������;����<��=>�
�:��

����

>�
�2:��

����

>�
��#��?� �

;�����@�����

���������

�
	'�
������A2:��
�
��B�'����������CD"���

�E��(4(@BF3 GG5B#�+,-.+/�����������@��������<��=>�
������$���$���$���$�$�$�)�$�*�� �����!���
�������H������
�&I�������&�
���

H���������;����@���������JKCL,"�
��9�!�MM
	'�
��������E��A2#�� NN��
O
��NNP�
�
	'<����!��
�����Q�
�
����	
�
�'���$���� CD"�
��9�!�
	'�
��������R��#�
�
��B�'��M���
��9�!�
	'�
������������$�1��$2��� ��
3
���

��<	
��"'��
%�
��:��
������&����������:���BB9FG�SF4�6T(:�
�
��B�'�#��� NN��
�	�����P�����<�����$22���$2��$2��$2��� ��
3
���

��<	
��"'��
%�
��:��
������&��������2�:���BB9FG�SF4�6T(:��
��9�!������#�����
3
��4��"'��
%�
��:��
������&����������:��#����
3
��4��"'��
%�
��:��
������&��������2�:��#�����
3
���

��<	
��"'��
%�
��:��
������&����������:��BB9F5@B(94�6��:�"��	<��#�
��9�!������#��� NN��
�	��
�'����$2$�� ��
3
���

��<	
��"'��
%�
��:��
������&����������:��BB9F>5GG(>:��2#��� NN����<���<	

�
��$2)�� ��
3
���

��<	
��"'��
%�
��:��
������&��������2�:��BB9F>5GG(>:���#���$2*�� ��
3
���

��<	
��"'��
%�
��:��
������&����������:��BB9F>5GG(>:���#���



� �������������������	
�����	������		����	���	���	�������	
�� ������������������������������������� !"�#�$%"
%���&&'()*++,)���
-.��������������������������������������� !"�#�$%"
%����&&'(/'�+,(�010'��2�1()3(4',,5-.��������������������������������������� !"�#�$%"�%����&&'(1�6,1(&,7&��8'����!���#�$8-.��*�!���������������9��������������������� !"�#�$%"�%��������!��#�$��:��!�����*�;�<"�#�$%-.�������1�!�������������������������� !"�#�$%"
%-.�������������$"�#�$%�=�
.���>>��!���!��$���������*�!���1�!�*������������������������ !"�#�$%"
%��?���!��$5���!"
��%��
-.�� >>�;;��@���;����@����!����	A�� �@�;������!��$'�B"
%"�%���#�$-.�� >>�@�;��$�B��!���!�������	��� �������C�"�#�$%�=��.���	�����
�� ������������������������������������� !"�#�$%"�%���&&'(,5�61,)����-.�� >>!����������������� ��@��!!� !���,C���!�-.����	�� DEFGDH�
.������� I������������
���A��������������
�������	���������������
���A��������������
�� �����2*��116��3���!���'��������$����J��;���������@���@�*)��������C�����C@�;�K�������9)����������C���)�����������C���)���	-��L� ���K��#�$5@.�������#�$.����MN��C����O=�,2,5&(�0++*&-�DEFGDH�
.����#�$5@�=��������9)���.���#�$�=�K�#�$5@.����������������������������������������� !"�#�$%"�%����&&'(1�6,1(&,7&��8'����!���#�$8-.��*�!���������������9��������������������� !"�#�$%"�%��������!��#�$��:��!�����*�;�<"�#�$%-.��



� ��������� ���	�
����

��������
����������
��

������
���������� !"#$$%"����&'����(������� ���	�
����

��������
����������
��

������
���������� !)#�#*+%���,&'�� --�
��./��
�0
���
.���.��00���..0����1���������2���3���4�� ���	�
����

��������
����������
��

������
���,������� !5 �$%!	6+6 ��)�+!"7!8 %%9&'��
�����
/����
���:��'�������

�������
��;;'�� --�.�0����<�����������=�� #���
�+
��#�������
����������
��

������
���2���>�������9���������

�������
�������

�������
��&'�� --�00��.�
�0
���.
��
�����2,�� ���	�
�#�0�<����
����������
��

������
���2�����

�������
��&'���2��� �.�0���������� �?���

�������
����������
�&'���2(�� ���	�
����

��������
����������
��

������
���1������ !#9�% )�+�����0.����&���� �?���

�������
����(�&'���2��� ���	�
����

��������
����������
��

������
����������� !$�@!)�+A%������ �?���

�������
����(�&'���21�� ���	�
�)�����
����������
��

������
�������,&'���2��� ���	�
����

��������
����������
��

������
���1������ !%9�*+%"����&'���22���23�� �
.����������%/�����&'���24�� BCDEBF�,'���2=�� G��3,���3���3(��3����31��3���32��33��34��3=��4,��4���4(��4���41��4���42��43�� 
���	)#	�++*�	7���<�������
����������
����.��
.���
����/������/.
0�H�������I"�����
����/���"������
����/���"���(&��J� 
��H���
�9.'��
�����
�'�����KL��/����M:�%)%9�!�#$% !�#	7&�BCDEBF�,'�����
�9.�:��������I"���'����
��:�H��
�9.'���KL�
�����
/����
���::�,&�BCDEBF�,'����

�������
��;;'��



� ����������	
	����
��	�����	����������������� �����	��	���
����	���������������� !�"#$%"&�����'
�	���(
)*�(�)+�(��
��,�	���,'����-��(��.)((*����/�� 0� �	�#��) ����.
�	��
'���'�	)1����) ��'+����������1�� 22�345�567"1�/&8�� ���-�9	���*��'��(���(�'**�.)((*����:������;������<�������������=������>�� �	�#��) ����.
�	��
'���'�	)1����) ��'+����������1�� 22�3?� @"3#$7$�1�4 73�"%&8���	�#��) ����.
�	��
'���'�	)1����) ��'+��������;�1�� 22�3%5@@"%1��&8���	�#��) ����.
�	��
'���'�	)1����) ��'+��������;�1�� 22�37 6"732"A21�B#(����
	B&8��5���'))#��)#')).'�C��
'���'�	)1����) ��'+��������;�1���	�

	�
�1�D����'��	5�*	E������&8���	�#��) ����.
�	��
'���'�	)1����) ��'+��������<�1�� 22�3"F 67"%1��&8��5��	��7���5�	
��
'���'�	)1����) ��'+��������=�1�G/1����	�F'
	���
����	��������1��
����	�������&8�� ��'**��(����*��'�(��)���������� �	�#��)5�*	E��
'���'�	)1����) ��'+��������=�1��
����	���������&8������� �
� ���9	����������8��=����=�/�� HIJKHL��8��=�:�� M�=�;��=�<�� �����	��	���
����	���������������G/&�� ������
�����(9	���=���� 0� �	�#��) ����.
�	��
'���'�	)1����) ��'+����������1����=�=����=�>����=�����=���=/��=//�=/:�=/;�=/<�=/���  22�3?� @"3#$7$�1�4 73NO52"&8���	�#��) ����.
�	��
'���'�	)1����) ��'+��������;�1�� 22�3%5@@"%1��&8���	�#��) ����.
�	��
'���'�	)1����) ��'+��������;�1�� 22�37 6"732"A21�B�	)	'�	�#���B&8��5���'))#��)#')).'�C��
'���'�	)1����) ��'+��������;�1���	)	'�	#���1�D����'��	5�*	E������&8���
� ���9	����������8���HIJKHL��8��M����5��	��7���5�	
��
'���'�	)1����) ��'+��������=�1�G/1���	�F'
	�����
����	��������1��
����	�������&8�� ��'**��(���*��'�(��)�����=/=�� �	�#��)5�*	E��
'���'�	)1����) ��'+��������=�1��
����	�������&8��



� ��������� �	
��


���
�����������
��������������������������� ��
 
��!

��"�
���#
�$%
$�����
��!��
&��������'���!((�)*+(,�-!.������	�"����
�����������
����������/�������0�� ��
 
��!

��"�
���#
�$%
$�����
��!��
&�������������!((�)1!2)-!.3,���
�����������
����������/������/4�� ��
 
��-
��#
�$%
$�����
��!��
&������������4�����/����//�� %�	�����&�
�#,5�$
�������/6���/'�� 789:7;�4����/<�� =��/����/���/���/0��64���6���6/��66��6'��6<��6���6���6���60�� �$
� -* !..>! ?����

�%>
�����$
��
$�����$
��	$
�	����$
��5�$
���5	���@�
��"
�AB


���$
��5�$
B


����$
��5�$
B


/���C� �$
���D�4����$
�5
��������EF��5�$
�GD�,-,+()(*1,�)(* ?��789:7;�4�����FH7���D�4����I�1!2 J*%����KK����'4�� C� EF���$!�
�5��������'��� C� L�
 
��-
��#
�$%
$����� �
��!��
&����������M5
��������'/�� ��
 
��-
��#
�$%
$����� �
��!��
&����������KK5
�������'6�� L�
 
��-
��#
�$%
$����� �
��!��
&�����/����M5
��������''�� ��
 
��-
��#
�$%
$����� �
��!��
&�����/����KK5
��������'<�� =��'��� =��'����'��� %�	����B�
N,5�$
��������'0�� 789:7;�4����<4�� =��<����</��<6��<'��<<��<���<���<���<0���4������� OPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP��



� �������������������	�������
�������������

����
���
���
���
���
	��
���

��
���
����
������������������������	����������
�����������
������ ��������������������������������������������������������������������������������������� ���!!"��#�$%&'�&((��)*+����(&�,$-�����.%��/%$-�����,0,��-*�0%�'*1.&$$2&.34&�&-�����,0,��4&�&�-�����,0,��4&�&�5*�6� .7&/�8�$,�&�79��:;���<���=;!=�>-�?�&�,��$,�&�79��:;���<���=;!=���>@*�.7&/�'/�0,�&A,9��:;4B� =���=;!=�>-�'�/�&A,9��:;4�B���=;!=�>-*�8�$,�&A,9��:;��!=���=;!=�>@*���!=1�'&�&��$,@*�����?�&�C?-��-�D@*�����.C// &$*E��@*����FG+,0,��*HE�= =��;������5*IJKLIM�
@*������?�&�C?*E���$,�,$,.��%(C(*+NN-�N�O?A8N-�N�O?A8N-�N!%&'�A&((��)��8�$,N-� �!;!��4;"�����-�
-��-��-��-�8�$,�&�75@*�FG+?�&�C?*P��5*IJKLIM�
@*��?�/�.(Q+?�&�,��$,�&�7-�8�$,�&�7-*+?�/$,�+8�$,�&�75*R��55@*���.%(Q����%�?�&�,�8�$,��&A,S��/C�.&�,��,T�,�?�%���?�&�,��$,�&�79?�/$,�+8�$,�&�75R�>*E�UV
U@*�?�/.&�+?�&�,��$,�&�7-�N?�&N5@*� ��&''�NO?�&N��,T�,�?�%���$%&'��&�,��$,+?�&�,��$,�&�75@*���$%&'�&((��)�/%A��$,+8�$,�&�75@*��GWI+�*E�
@��*P���:��!=���4�@��XX5*� ���C/��%��&$$��?%$,�%�'?�C?,'�8%/�.C//,���',0�.,������� 6� FG+?%$,�%�'!��9.C// &$R�>9�>*HE*R�5**����� 6� �,���/$���/�2C�,+(�$�&((��)-�?%$,�%�'?9?%$,�%�'!��9**.C// &$R�>9�>>-����B;��;��!�B-� �!;4#;�B==�5@*������ �,���/$ &$+(�$�&((��)-�?%$,�%�'?9?%$,�%�'!��9.C// &$R���>9�>>-��5@*���	�� �,���/$ &$+(�$�&((��)-���?%$,�%�'�%�8�)9�>9
>-��5@*������ Y���
�� Y*



� �������������� �	
��
������������
���������������� 

!""�� #� �	
�$
��"��$
������%&'(%�)���$�� 

**+��,�-,�����.-�/,-$0.���./0�1-������/,+�0/2$�/��!"3�� #� 4��.-�/,-$0&567�8397$9
:�
83 

!";�� #� �/+�+���++�$<�+/�=,���==$,>?�.-�/,-$0.7.-�/,-$0&567

�8397$99?��66@A%(A�%&%@?���&A)BAC@�D �
�!"E�� �/+�+������=,���==$,>?�.-�/,-$0.7.-�/,-$0&567�8397$��99?�3 �
�!"F�� �/+�+���++�$<�+/
�=,���==$,>?���.-�/,-$0�-,1$>7$97"��9?��66@A%(A�%&%@?���&A)BA@') �
�!"G�� �/+�+������=,���==$,>?���.-�/,-$0�-,1$>7$97"9?�3 �
�!"��� H�!"!�� H�!"��� H�!"���!3"��!33�� ��+$2/��.-�/,-$0
�
83�
�!3;�� ��+$2/�I�.-�/,-$0
�
83�
�!3E��!3F�� 
JKL
M�"�
�!3G�� H�!3���!3!�!3���!3��!;"�!;3�!;;�!;E�!;F�!;G�!;��!;!�!;��!;��!E"�!E3�!E;�� $,+������&&I��B�.�2/��==$,>
�$,+�=�,/�?�$,+��-,+�-�?�$,+�/2/,+?
�2-$0
N����<��O)�+�?�$,+�/2/,+)�+�3?�$,+�/2/,+)�+�; 
�#� $,+�$?��?�O?�+-+����.-�/,-$0.�
�$,+�.+�+�.�
�$,+���������
��P���+Q=�+�$,>7G"9?�1$�/��+P7���A��6�(��'A&'(9�
�R�&'N�.�2/R$�/�
����4��/2/,+
:��'�'(6A�%���6 

JKL
M�"�
��C/+�+������=,���==$,>?�Q�=��,/�A�P$=(�Q</�?
S������� �
�4����+$2/�I�.-�/,-$0
:�
83 
� **Q�O/�1$,�����..$>,Q/,+��!EE�� #� .-�/,-$0&567�������8397��+$2/��.-�/,-$09
� �
��+$2/�I�.-�/,-$0�
� **�� .+-�/�$,��--O��=�+�<�/��!EF�� �/+�+���++�$<�+/
�=,���==$,>?���.-�/,-$0�-,1$>7
���+$2/��.-�/,-$097"9?��66@A%(A�%&%@?���&A)BA@') ��**��0��O/,�+-�$,0$��+/��



� ��������� �	
�
�
�

����
	����
�����������
	��������
��	� ���
	����!����""#$%&$�%'%#��(�'$)*$+#,,&-.�� //������
	��������0	�
�0��	����1�� ��
��	� ���
	�����2�34.�������� 5���6����7���89��84��8:��8���88����8���81��8������86�����87�����9���4�� //�))�,##%#��;,�*�"%�,&�<#,��''��%',&%=)���#,����=+&,)>�������
�
���2�?�
	�	
	�
@������AA��ABC�0DA��ABC�0DA��A���	�0��������D�
	A��(�'$��(,$ <""%&��9��4��4��4��D�
	@�
E-.��FG��
�
���H�4-�IJKLIM�9.�����	?�
	�2�D��	���D�
	@�
E��ANA-.��� //��	��D�
	�D���N��
	��D����
D����	?�
	��A��O�%',&%=)�P�Q�R�A����O�%',&%=)�-.��//N��
	�����S���0	��������D����
D����	?�
	��A��O�;@�P�Q�R�A����O�;=@�-.�����GTI���2�9.���H���O�;=@�.��UU-�����:�� V� GTI�W�2�9.�W�H���O�%',&%=)�.�WUU-������� D����
D����	?�
	��AQ��A����
	����'<"��!�W!-.����8�� D����
D����	?�
	��AR�A-.������� 5���1���������6�� DD
��E����	?�
	-.���7�� D�
��	����	?�
	-.���19���14���1:�� #	0��	@��������
�������-.���1����18�� IJKLIM�9.���1��� 5��11���1���16���17���9���4���:������ ��
��(=��'' ��*�����	
�����������
����	
����
����
��
����
�	�	�
��������X��

���Y)�
�����
�	�	�
)�
�4����
�	�	�
)�
�:-��V� FG�	�	�
�Z2�,(,&"$�%��="-�IJKLIM�9.��



� ��������� ��	
���

�
��
����

����������������� ������� �������� !���"����#��" ��"$��"%��"&��"���"���"���"���""��"#��# ��#$�� ��'�()*(+,,-+(.�/�01�	��'/���0�����'�
����2���'�0
�'1
�2���'�����'2���
�3�40���5�06/�'�2���'�����'/�'�$2���'�����'/�'�%���7� ��'�������'�0�11)�������89�����'�:;�<)<=>?(@��*>��������� ����A�'('1�)���
����

���2�	�
�����?0B�
=�	5�12�C0�11)������89�0�11)���;;�$��������� �����89��0'���+-DE
���
�3�:;�F$��� GG	�6��H�������EE���	��'���#%�� 7� E
���
�3,I>J0�11)��F$KJ�0'���D(E
���
�3K�� ;��0'���+-DE
���
�3��� GG�� E'
1������

6��
�'�5�����#&�� D�'('1�+''1�5�'���
����

���2�D(E
���
�3(
�H��J���0'���D(E
���
�3KJ K2�+>>�?@=?(@,@�2�)+,?/.?�</���GG��3�16���'
���3�0�'����#��� D�'('1�+''1�5�'���
����

���2�E
���
�3EJ�0'���+-DE
���
�3K2��+>>�?@=?(@,@�2�)+,?/.?A�<<=���� GG��3�0�'����EE���	��'�	�3����#��� �0'���+-DE
���
�3�;�F$�����#��� !��#����#"�� 9L����;� ����M��+ND@,<=@*/D���OO��� GG'�1��
HH������E
���
�3E��E�3�H
1�0�11��'�3���0����##�� 7� 89�E
���
�3,I>J0�11)��F$KJ�K�:;�F$���"  �� 7� D�'('1�+''1�5�'��
����

���2�E
���
�3EJE
���
�3,I>J��0�11)��F$KJ�KK2�+>>�?@=?(@,@�2�)+,?/.?A�+P����" $�� D�'('1�)���
����

���2�D(E
���
�3(
�H��J�KJ K2� ����" %�� !�" &�� !�" ���" ���" ��� D�'('1�)���
����

���2�	�
�����?0B�
=�	5�12��FF0�11)�������" ���" "�� 9L����;� ����M��+ND@,<=@*/D���OO��� GG'�1��
�������



� �����������	�
���	
��

��

���
	�����

���
� �� ����������	������

����� �� !"#!��$!!���
� �� %��&�
�'��
�(����)��*�))��+,
�������	���������	����!!��

����� ��  ,
'��-./0.&/�/-,
�'�.12.3-440$5!����
� %��&�
�����)��*�))��+,
%&�������	&����+�� �� ,
�$5!���6
� 7���8
� 7���9

��:
� ������%&�������	!#!��5!���;
� ������'<%�������	!#!��5!���=
����
� >?@A>B
�5!����
� 7��6�

�6�
�66
�68
�69
�6:
�6;
�6=
�6�
�6�
�8�
�8�
�86
�88

 ���
&�C&'��<'&2
C��
�D���1�����!����
)����,
���
����
��,
���
�����,!����	!E����(��F1���,
���
�����1����,
���
�����1���6$!��� ���
�5!����
��

���5!�����������!"#
4�40�.&/**C�$!>?@A>B
�5!��3��&�
�����)��*�))��+,
D�)G����.�H�)0�D(�
,!I��

���$5!������

���!##
*'J&KCG%$!>?@A>B
�5!������������'<%�������	!"#!��$!� LLD�F�
�����
�����+�D���

�89
� �� �������	������

����� �������%&�������	 !� #!������'<%�������	5!� LL
� ���
�
��
���F
�)
��(��

�8:
� %��&�
�'��
�(���!�)��*�))��+,
%&�������	&����+�!�������%&�������	 �� ,
'��-./0.&/�/-,
�'�.12.-41$5
LL
�	�
F��
��
��	�����
��8;
� %��&�
�'��
�(���!�)��*�))��+,
�������	��������'<%�������	 ,!!'��-./0.&/�/-,
�'�.12.3-440$5!� LL��	�����
�����+�D���
D�	�
��8=
� ������'<%�������	!#!��5!���8�
� 7��8�

�9�
� �M>��!#
�5
�!N
*'J%/�40/C1%5
�OO$!� LL��
�
���
���
��������	�
���	
��

��

���
	�����

�9�
� �� ����������	������

����� �� !"#!��$!!�96
� �� %��&�
�'��
�(����)��*�))��+,
�������	���������	����!!��

����� ��  ,
'��-./0.&/�/-,
�'�.12.3-'P$5!!



� ��������� ��	
	��
����������������
��������
�����������������������  ���!��  ���"����#��������$�� ��	
	��
���������������%��&����'()��*+%,�����--(+��
��������!����!.���!/�� 012���3������4��56�789*7:;����--��� <<	+���������������������+��������(+����	���=�(����!��� >� ?0���������8@A�(+��
��B.�����C3�B.����!��� >� ��	
	��5		��,+	��������������������������������8@A���(+��
��B.�������5AAD'7*'
787D��
58';E'FD99*�����!!�� ��	
	��
����������������
��������
�������������.�����!"��  ��!#��  ��!��� �(	�=��
���������3�B.����!$�� �(	�=�5G����������3�B.����"����".�� 2HIJ2K������"/��  ��"����"���"!���""�����"#����"���"$��#���#.��#/��#���#���#!��#"��##��#���#$�� <<�
������������	)��(��	����:;�L�ML�NL�	)�	����������������O()�������������,+		��L���������������	)��+���P���	�	����������	�

:
588G5
E�	������
������������	������Q���������	�(��	���:;�����	��=��	��=����R(���,�(S;�	�����	��=��	;�	�.����	��=��	;�	�/���>� ��	�(+��
)���3�B.�����	�������?0��=��	�C3�9
9*A'89TA'
8:
E��2HIJ2K���������F�	
	��
���������������%��&����'()��*+%,����U(+��
)������(+��
)��BB����?0��(	�=��
���������C3�B.��� <<��������(	��������V��
���������������� >� ?0��(	�=�5G����������C3�B.��� <<���������������%��	�V���%�����



� ��������� �� �	
��	
�����������
������
�����	
��	
���������
�� !��	
��	
�"�� ##�� ��	���
��
		$������%
�����&�������'�������(�����)���*���+������ ���������,�-./-���� ������
 ���
%����0��
1���
�23����	
��	
��	�4
2������
�����	
��	
���5�3� ��67897�8�863�: �7;<76=;>"�##�����$����	�
��
������������
 ���
%����0��
1���
�23��	
��	
��������
�� !��	
��	
��3� ��67897�8�863�: �7;<7?6==9>"��##
��
��������
2�@����@��������
�� !��	
��	
����A�"������BC0�	
��	
�����������
������
�����	
��	
������A�>��������
:�
�0��
1���
�23����	
��	
��	�4
2������
�����	
��	
���5�3�5>"�� ##�����	44������
	����	
��	
�����D�� -./-���D5�� ������
 ���
%����0��
1���
�23����	
��	
��	�4
2������
�����	
��	
���5�3� ��67897�8�863�: �7;<76=;>"���D��� ,��D&�� ,��D'���D(�� 
�A�"���� ##
	�����E����
2����F
GH���
����	
��	
����D)�� IJB.-0�	���	
K;�L�����	
��	
��	�4
2�MM
��5�>"���D*�� ���
�����	
��	
����
"���D+�� ������
:�
�0��
1���
�23��	���	
K;3��>"���D��� ������
 ���
%����0��
1���
�23��	���	
K;3� ��67897�8�863�: �76=;��>"���DD�� ���
�� !��	
��	
�����	
��	
�����������
������
�����	
��	
��"��D55�� BC0���
�� !��	
��	
��L��A�>�������
 ���
%����0��
1���
�23���	
��	
������
�� !��	
��	
��3� ��67897�8�863�: �7?6==9>"��D5���D5&�� N-OPNQ�5"��D5'�� ,�D5(��D5)����D5*���D5+�D5��D5D�����D�5�� ##�	
��	
�RS�
�������	���	
�K;��4	�������%�	
���
GH���
2����*(���	
��	
�������������
�2
�H��
������
	���F


�%��@�������	��
����:K� ��! �<��	22
��	
��	
��0
�������
T���
�3�
����	���	
K;3�
���������3��	
��U��

%��$;���3�
��������;����3�
��������;���&>���� 
���������
����A�"��
��������	
	�"���##�����	������@
������
2�����������
���
3�V"��



� �������������������	���
�����������
�� ����������������������� �!�"#$%"&�'(����)����*+�,+�-�+�,--.�/0�1,-2,��+�34.-�516�*0�735**�4.-!(��35**�4.-88(�������,3�.��9�:;+��;.<����8�!������� =� )����*+�,+�-�+�,--.�/0�3;��*;+ >0�7.!(����'�� 9����*+�,+�-�+�,--.�/0�3;��*;+ >0��8.!(������� "#$%"&�'(��??�;�:�+�3�.�/�.@�:.�/+�A34.-�:;+��;.<��;��:�+�3��<������� B������ )����*+C��*.65����-�+�,--.�/0�3;��*;+ >0�C��D������E�D0�7��35**�;+;*!(����	�� ���35**�;+;*�����CE�>F�)DCG!����
�� =� )����*+�,+�-�+�,--.�/0�3;��*;+ >0�7.!(������� 9����*+�,+�-�+�,--.�/0�3;��*;+ >0��8.!(������� "#$%"&�'(��??�;�:�+�3�.�/�.@�:;+��;.<�.:�/*,H�<�;5��I5:�<�6H�,�;�4�*��34.-J����
�� B��������'����������� ���35**�;+;*�����CE�>F�)D���!�� ??.@�:�+�3��<��:;+��;.<�,+*�,<H�,::;3.,��<�.���4.:�34.-������� =� .���K���8�(����	�� LM�N#�3;��*;+ >����:;+��;.<:OPPKQ!(����
�� LM�N#�:;+��;.<ER�O35**�4.-QOPP.Q����K!(��??�@.�<�,::;3.,��<��9�:;+��;.<�.��ER�������� :;+��;.<ER�O35**�4.-QO.Q���8�(�� ??�<.:,::;3.,��������� 9����*+�,+�-�+�,--.�/0�9�:;+��;.<�;�@./O.QO'Q0�'!(��??��5*��;@@�9��:;+��;.<����
�� 9����*+�,+�-�+�,--.�/0�3;��*;+ >0�'!(��??�,�<�,6:�:;+��;.<������� B��	'���	����	��� ���,3�.��CS9:;+��;.<����8�!���	��� =� 9����*+�,+��-�+�,--.�/0�:;+��;.<:O,3�.��CS9:;+��;.<Q0�'!(��??�5*��;@@�-*��.;5:�:�+�3�.;����		�� 9����*+C��*.65����-�+�,--.�/0�:;+��;.<:O,3�.��CS9:;+��;.<Q0��C��D������E�D0��CE�)D���!(��



� ��������� ���������	�� 
���
��������� ������������������� ��!��
" #$$
%&��� ''"!�!�(
�!��!)��*��
+!� ��!��
",������� *��
+!-./ ��!��
"���
�����0�� /!�1���-���
23�!��4��5*44
�67� ��!��
" #*��
+!-./ ��!��
"%7��-889:;<:1;=;97�>-=:?9@@<&�������� /!�1���>*���4��5*44
�67����������7��&��� ''!� 3�!��!)� !�!��
���� �*A � !�!��!"����B���C����������� D�EFDG�0�������� ����	�������������0�������B���C���������������	����������	0��	���	B��	C��	���	���	���		��	��� +�
"� !�345*44
�6�&��H� 
���
7�I7���)7��������J*���2�#�%����J*��K4#5-L:M-8N<-5@:=@<%������6�K
�!/
O!���
�������*
�!�8�47�����*
�!�=!K����
�������8�47�����=!K������
���.8<:N@�?N8���C�7��.8<:P��8N����	7���)/4*�
�6����B7����/4*�
�6���B�����J*���*��.*�Q#B0%���R��66�!/��!��
"R��������STD�
���0��
�U�5-L1N�M/��
$$&���	��� H� STD�I���0��I�U�5-L/;=@<;��/��I$$&����0�� H�  ��!��
"=V8#
%#I%���
��������� ����B�� ����C�� *��
+!/1 ��!��
"���
��������� *��
+!-./ ��!��
"���
��������������



� ���������������������������	���
�� ��
�
���

����
������������������������ �!�"#���#� �#�
����������$$%�$&���'!#�
�����$#�()����
�
���

����
������������������������ �!�"#���#� �#�
����������$$%�*+,$��'!#�
�����*�-
()������./0���1��)���2���3"&*+4&56")��77(����8�� 9� !
��*�-
�1�!#�
�����*�-
�7�	��7��!#�"��!����:����
(���;8
(<������=�����>���?���������������������	�������	��	����	��
����	��8����	��=����	��>����	��?����	�������	������	����	�	��	�		�	�	
�	�	8�	�	=���	�	>�	�	?�� �((�7����;8
(�:��@$4�A56$B�7�>(()��!
��$#��1��!#�
�����$#��7�	��7�����
(��<8
(�:��@$4�B+5�B$�7���#C"��!���((()��D����
-������EF�E���7	()��D#���#� DG�H�1�4�C�
�����������������$%*�"IJ�%+�,*�$�@J$$&4���������>����>��()���"�
�
���

����
���������������D#���#� DG�H���$$%�&4��&*&%���K�*��%++4()��"�
�
���

����
���������������D#���#� DG�H���$$%�A56$B���@$4�A56$B()��"�
�
���

����
���������������D#���#� DG�H���$$%�B+5�B$���@$4�B+5�B$()��"�
�
���

����
���������������D#���#� DG�H���$$%�$&����!
��$#�()��"�
�
���

����
���������������D#���#� DG�H���$$%�*+,$���!
��*�-
()��"�
�
���

����
���������������D#���#� DG�H����$$%�*�@+*��&54$�"5L+���()��"�
�
���

����
���������������D#���#� DG�H����$$%�*�@+*�MJ"$5,N��K�*��+4$+%�MJ"$5,5+6()��"�
�
���

����
���������������D#���#� DG�H���$$%�*�@+*�*+,$����!
��*�-
�7��@$4�A56$B<
(�O�=()��"�
�
���

����
���������������D#���#� DG�H���$$%�*�@+*�$&����!
��$#��7��@$4�B+5�B$<
(�O�>()��"�
�
���

����
���������������D#���#� DG�H����$$%�*�@+*�@��&*&%��K�*�$%�4"��%+4$()��5�D
����
��������!P��������������D#���#� DG�H���
#����"#���#� ��QRSS()��T��������1�,���"���!
�#�����EE��EUVD
�E��EUVD
�E��E*#� �D
�
�D�-���E���K�*�*&�6�@J$$&4�����	��	�����-�()��W.���2�	(�0XYZ0[)��W.�\���
,���5�-#��-���'-���"�]�(((��



� ������������	�
�	�
����	������������ ���	����	�������������� ��!"	�	�#��������$�	%���	
�
���"	�����	&�'(�����)�� *+,-*.(�����/�� 0���1�����1��� ���
2���	3��	���'(����11����14�� *+,-*.(����15�� 0���16����17���1�����1)���1/���4����4����41���44���45�����46���47���4����4)���4/���5����5����51���54���55���56���57���5����5)���5/���6�������6���������61���64�� �
�����
2���	3��	��8"��9����	���"'���� �
��� �: �; ������� �$2�<	 �
�%2��	
��
�(���
��=��> �=��? �����(�8"����	�
2���
�@6��A(��8"�������	B�%	@4�A �:�
;@6��A(��8"���=���%	@�C>DEFGH�BC��DI�BA ����	E��@�C>DEGFBC��DI�BA ����8B�%	@�C>D3GI�BC��DI�BA(��8"����%��	3��	B�%	@�C>D�C!JBC��DI�BA(��8"��9���;	
(��3GI�9�
���3��	(���
��K!BDJ�GLJ!�M�4� ��K!BDNGE!J�M��6(���
���O���	8��M�46� ��PO���	8��M�Q16(���������8��	��M��R�)�16(������
���3��	�M����	
�����	���" ����'(��������
��%��	����	����	�����	�
2���
� �STU+VW��	�
2���
�' �
���3��	'(��2�������"�����	���" �=���%	 ����	E�� �XYZZ'(�����	��8���	
��
��	8���P��WV*���M�/(���[�����	
��	�
2���
�'(��\\'�����	������	
�%	��� ��8B�%	@�Q/A�M��	�
2���
�@�A(����8B�%	@�Q��A�M��]��(��



� ���������� 	
��
��������������������������� �� �����
��������������� �!"�"�"�! �#$�%�� �����&�� ����������'�� ((�$��
�%�
����
%�����
)�����*�� &�����+,�������������-������ ����.����/��
0���,�� ����������������'�����1�� 2����3�����4����*����*����*5������*6�� ((����
��%���7�����8��$���$�8�9%

$�������
������8:
���� �;	<=>
����8:
����� �8�
������'������������8:
���� �!�$���$�8�?�"��"�@�! �A�%�:$���$�8� �A��9:�B��'��
>C������'���D��%�:$���$�8�'��EE�����*��� �� :F�$���$�8F$����G�HG�H�����IF
�������-������ ��FJKL/:M0NKO/LO& �!! ���� �����'�� ((����
��������������$���$I����*��� :�
F
��N

��9%
������-������ �:F�$���$�8F$����G�HG�H ��NJJK/P.LN�O/.Q:,J,Q� �����'�� (()�8��9�)��8����
%������**�� :�
F
��N

��9%
������-������ �:F�$���$�8F$����G�HG�H ��NJJK/RO,SRJ �TJ�/RO,SRJ�'����*1�� :�
F
��N

��9%
������-������ �:F�$���$�8F$����G�HG�H ��NJJK/U,&JR �TJ�/U,&JR�'����*3�� ,��
���F
��F���9��V�����-������ �:F�$���$�8F$����G�HG���H �
$����:F�$���$�8 �WXYY�'����*4�� 2���1�����1��� ((������Z�������9%

$���$�����������15�� 
>C������'���D��%�:$���$�8�'��EE���� ((�� ���)
�����V[����16�� �� ���
������8:
���� �;	<=>
����8:
����� �8�
������'����1��� ����������8:
���� �!"��"��"�! �A:F�$���$�8F$����G�HG�H �A��:F�$���$�8F$����G�HG5H �A�����'����1��� :F�$���$�8F$����G�HG�H�\��]F$����
'�� :F�$���$�8F$����G�HG���H�̂��������'����1*�� :F�$���$�8F$����G�HG5H�\��+F$����
'�� :F�$���$�8F$����G�HG5��H�̂��������'����11�������13�������14�������3��� 	
�:F�$���$�8F$����G�HG�H����\���:�
F
��N

��9%
�������-������ �:F�$���$�8F$����G�HG�H �NJJK/JQ. ��:F�$���$�8F$����G�HG5H�'��	
�:F�$���$�8F$����G�HG5H����\���:�
F
��N

��9%
�������-������ �:F�$���$�8F$����G�HG�H �NJJK/LO�J ��:F�$���$�8F$����G�HG�H�'��	
�:F�$���$�8F$����G�HG5H����\���:�
F
��N

��9%
��������-������ �:F�$���$�8F$����G�HG�H �NJJK/P.LN�O/.Q:,J,Q� �����'��	
���������



� ���������� �� 	
���
����
����
��������������	����
������������ �� ����!!"#$%&'$!��(!)#*&+!$,-�����.�� 	
���
����
����
��������������	����
������������ �� ����!!"#*&+!$��(!)#$%&'$!,-�����/�� 0����1�� 	
���
����
����
��������������	����
������������ �� ����!!"#2)#�232"��4�3#'"%%),-�����5�� 0����6�����7�������� 89:;8<��-�����=�� 0���=�����=����=.���=/���=1��


	01_Cover Page
	02_TOC
	03_Chapter1
	04_Chapter2
	05_Chapter3
	06_Chapter4
	07_Chapter4a
	08_Chapter5
	09_Chapter5a

