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Abstract

This thesis describes the development of microfluidic platforms that enable cheap,
facile, rapid, and multi-parameter protein sensing. The first section of this work
describes two strategies for high density DNA microarray patterning: microcontact
printing and flow patterning. A protocol is provided for micron-scale alignment of
multiple PDMS stamps to a single substrate, and a simple strategy to allow very low

aspect-ratio stamping is enumerated.

The second section describes the formation of high density antibody microarrays using
flow patterned DNA microarrays in conjunction with DEAL chemistry, and applies these
microarrays to biological measurements. The platform’s performance is first
characterized using a human chorionic gonadotropin assay, and is subsequently used to
stratify 22 cancer patients from frozen serum samples by quantifying the levels of
twelve serum proteins. A microfluidic plasma separation device is then detailed to allow

for similar measurements from fresh finger pricks of blood.

The third section of this work outlines improvements to the flow patterning platform
through two alternate schemes: covalent attachment and DMSO patterning. Both
protocols are shown to dramatically increase the consistency of microarray elements
across a single chip when compared to the initial method. Theoretical simulations are

used to describe the mechanism by which DMSO enhances patterning consistency.



viii

The fourth section describes the design and fabrication of a robotics system that is
capable of autonomously interfacing and manipulating PDMS substrates, and its
application to producing barcode microarrays. The resulting substrates show
unprecedented consistency from chip to chip, and we demonstrate through massively
parallel single-cell measurements that data derived from different substrates is

statistically indistinguishable.

Finally, we introduce an integrated software and hardware package designed to
facilitate and automate microfluidic control at the laboratory level. We further provide
the technical details of a related system which optimizes and comprehensively
automates microfluidic blood assays such that even non-technical users who have never
worked with microfluidics can regularly obtain the same standard of data that is

produced in the lab.
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Chapter 1

1.1 Introduction

Throughout the 1990s, the ongoing Human Genome Project promised to provide a
guantum leap forward in our understanding of developmental and disease biology.
While the genome did provide indispensable insight, it became clear in the decade that
followed that the proteome was a far richer target in this regard. Although the genetic
code may initially define a biological system, its subsequent contributions can vary
wildly as a result of external factors that simply cannot be captured within the
nucleobase sequence. Conversely, the proteome explicitly represents the end product
of a system’s configuration, and its characterization can vyield a much greater

understanding of what that system is trying to accomplish and how.

As the importance of measuring proteins came into focus in the past decade, so too did
competing philosophies of how to study them. The previous half century was
dominated by so-called “reductionist” biology, wherein scientists tried to understand
the complexities of biological systems by breaking them down into their most basic
subunits (i.e. proteins) and then exhaustively characterizing those individually’. Thus,
pathway models described biological functions as discrete, autonomous collections of
proteins that adhere to a rigid script of interactions to produce a desired outcome.

However, these views are rapidly becoming outdated as it becomes increasingly clear



that proteins can have rich interaction profiles that entwine multiple, seemingly
unrelated pathways into overarching protein networks. The central tenet of the
systems biology philosophy, then, is that for any characterization of a protein to be
meaningful, it must be placed in the context of its surrounding network®. Just as a DNA
sequence alone cannot accurately predict the resulting system, nor can a single protein

in isolation accurately describe a biological system’s state.

This principle is readily illustrated in cancer systems. Broadly speaking, a cancerous
state results when regulatory mechanisms of a cell become damaged by deletion,
constitutive activation, etc. and the cell proliferates unchecked. However, the
malfunction may be ascribed to damage in any of several pathways that converge upon
that regulatory mechanism, and so a measurement of the latter alone will not
necessarily provide actionable treatment information unless further enumerated?’.
Reciprocally, the systems biology approach predicts that a disruption in one part of a
protein network will affect many other nodes at varying magnitudes. By simultaneously
monitoring multiple nodes within a network, it may be possible to recognize
“fingerprints” that are bespoke to a particular disease or variant thereof. ldeally, with
regular monitoring, these perturbations may be detected before they grow to
consequential levels. Indeed, positive treatment prognoses for many cancers are highly
dependant on how early they are detected. Thus, embracing a systems biology

approach to disease detection necessitates the development of cheap, multi-parameter



proteome diagnostics, and this is the driving principle for much of the work in this

thesis.

Accurately characterizing protein expression levels is particularly challenging because,
unlike DNA, proteins cannot be arbitrarily amplified. Among the known blood
proteome, proteins can range in concentration from up to 10° pg/mL to as low as 1
pg/mL and below?, and proteins found in the least abundance are suspected to be the
most useful indicators in many cases. Cytokines, responsible for cell-to-cell
communication, are almost exclusively in the 100 pg/mL and lower regime, as their local
effective concentrations are highly diluted upon introduction to the main bloodstream.
Detection of such rare proteins is further complicated by the overabundance of
albumin, which can contribute to nonspecific fouling and constitutes a significant noise

source for most types of measurements.

Today, the gold standard for quantitative protein measurements remains the ELISA.
This assay uses a sandwich of antibodies to specifically immobilize and identify a target
protein via a chromogenic readout. However, the technique scales very poorly and is ill-
suited to the requirements of a systems biology-derived diagnostic on account of cost,
sample consumption, and labor required. To fill this void, there have been concerted
and very promising strides towards harnessing electronic measurements to detect
proteins via chemically gated field effect transistors (FETs)®, impedance spectroscopys,

and giant magnetoresistance techniques’, among others. Indeed, much of my early



work was aimed at producing functionalized silicon nanowire sensors, although those
results are not included here. Instead, we focused on traditional optical detection and
developed an assay that leverages the ELISA concept, but adds small refinements that
allow the creation of high density antibody microarrays which spatially distinguish
individual protein assays. Specifically, the DNA Encoded Antibody Library (DEAL)
technique decorates capture antibodies with unique sequences of ssDNA; when
introduced to a standard DNA microarray, a mixture of such antibodies self-assemble via
complementary hybridization so that each DNA spot assays a unique proteing. Following
analyte capture, the assay is completed with biotinylated secondary antibodies, which
are then developed with fluorescently-tagged streptavidin. A standard microarray

scanner quantitates the fluorescent readout.

The development of DEAL provided an opportunity to simultaneously perform
multiplexed protein sandwich assays at drastically higher densities than the 96-well
plates utilized for traditional ELISAs. Using a standard DNA microarray as a substrate
meant that each protein assay was performed within a 150um spot, and was separated
by just 150um from the next assay. When coupled with microfluidic technology, this
newfound density enabled massively parallel protein measurements from rare samples.
Yet, on the scales of either microfluidics or biology, a 300um pitch can hardly be
considered “dense”; microchannels are readily fabricated in the low-micron range, while

cells typically range from one to five microns in size. Thus, we quickly initiated an effort



to generate DNA microarrays that matched these dimensions in the hopes of enabling

novel experiments at the single cell level.

1.2 DNA Patterning

In order to serve as a practical replacement for the larger, traditionally-spotted DNA
microarrays, our new substrates had to fulfill several requirements. Fundamentally, it
was critical to have arbitrary control over feature size and morphology in the low micron
range. ldeally, the new patterning method should also not be constrained by a rigid
array architecture, i.e. it should allow for irregular spacing among features, and it should
also have some provision for positional control of patterned elements. These latter
requirements are important if elements of the array need to interact with predefined
features on a substrate or within a microfluidic circuit. Among the practical constraints
was that the patterning procedure be relatively rapid, easy to execute, and ideally it

could be performed in our own lab. Finally, a low-cost solution was preferred.

Microcontact printing (LCP), one of a battery of soft lithography techniques developed
by the Whitesides group®°, emerged as an ideal candidate which fulfilled most of the
aforementioned requirements. The process is directly analogous to a macroscale
rubber stamp, wherein ink is applied to a featured surface which is then brought into

contact with a substrate; the ink is only transferred along the raised features of the



stamp (Figure 1.7.1a). By substituting a PDMS device for the rubber stamp, uCP inherits
all the dimensional and morphological flexibility of long-standing microfabrication
techniques. Moreover, because the technique is parallel in nature, patterning
thousands of feature instances for an array takes no more time than patterning a single

one. Finally, uCP fares well from a cost perspective.

The obvious potential of this technique in the DNA microarray arena led to a 2004
report of high quality, patterned DNA deposition with feature sizes as small as 1um via
HUCP. However, the technique involved a cumbersome, 45-minute inking process which
reduced its viability for high throughput production of multi-component microarrays.
This was closely followed by a report detailing a much faster and more convenient
procedure wherein DNA first adheres to the hydrophobic PDMS stamp via van der Waals
interactions with its bases, and is then efficiently transferred to a positively-charged
substrate via electrostatic interactions along the phosphate backbone'®. This latter
work inspired our efforts, and we quickly reproduced its results within the lab (Figure
1.7.1b). However, two unresolved technical issues prevented the platform’s immediate

adoption for DEAL experiments: stamp alighment and low aspect ratio feature printing.



1.3 Technical Issues

Creation of a multi-component DNA library via uCP is predicated upon the ability to
align multiple stamps precisely to their target substrate (Figure 1.7.2a); as the feature
density shrinks, so too does positioning tolerance. While solutions for this requirement

d®™, at the time it remained an open problem. We tackled

have recently been reporte
the issue by capitalizing on the fine alignment capabilities of a Karl Siiss MA-6
photolithography apparatus, which is designed to facilitate micron-scale alignment
between photomasks and substrates. Ideally, an inked PDMS stamp would simply
replace or be affixed to the photomask, while our microarray substrate would be placed
on the wafer chuck below. However, when initiating alignment, the MA-6 performs a
mandatory “wedge error correction” (WEC) routine wherein the substrate is briefly
brought into contact with the photomask to ensure that the two are parallel before it

drops down to the specified alignment gap. Thus, the substrate would be inked without

any opportunity for alignment.

To circumvent this problem, the photomask was replaced by a precisely machined 1/8”
thick plate bearing a central cutout. At the same time, the PDMS stamps were cast
using a special aluminum stencil which creates a two-tiered substrate: the bottom tier’s
dimensions correspond to the photomask plate’s cutout, but it is marginally (ca. 25um)
thicker and bears the desired microfeatures on its underside; the top tier simply

provides a broad lip that is used as a handle. Figure 1.7.2b depicts the molding process



and the resulting stamp structure. In practice, substrates are loaded into the MA-6 and
allowed to perform WEC against the bare photomask plate. Once the alignment gap is
established, an inked stamp is inserted into the plate’s cutout; the stamp’s lip precisely
positions the lower tier’s microfeatures slightly below the plate surface. At this stage,
fine alignment can be achieved by matching corresponding fiducials on the optically-
transparent stamp and the substrate underneath via the MA-6’s micromanipulators.
Printing is accomplished by slowly reducing the alignment gap until the substrate and
stamp make contact, as readily evidenced by a contrast change in the stamp features.
Finally, the alignment gap is re-introduced, the spent stamp is lifted out, and the system
is ready to load the next inked stamp. Once WEC is performed, the entire loading and
alignment procedure for subsequent stamps generally requires only a couple of

minutes.

The MA-6-based approach to multiple stamp alignment proved a satisfactory solution,
exhibiting low-micron alignment precision and a fast, cheap, and non-demanding
protocol. Figure 1.7.3 demonstrates the quality of alignment achieved across a variety
of UCP patterns. Indeed, the solution proved so robust that minor variations of it have
subsequently been employed to align densely-featured fluidic control and flow layers
during PDMS fabrication, to align completed microfluidic molds with finely-featured
Silicon substrates®, and even to position SNAP'” nanowire masters onto their target

wafers.



The second major technical challenge related to microcontact printing of DNA
microarrays derives from the deformable nature of PDMS. Specifically, feature height
becomes an important parameter that must be carefully tuned according to feature size
and feature density to prevent aberrant ink transfer’®*?. Excessively tall features (high
aspect ratio) are prone to tearing upon demolding, and can buckle or collapse laterally
during stamping. Conversely, shorter features (low aspect ratio) are resistant to those
failure modes but become prone to “roof collapse,” wherein recessed areas between
features sag or collapse onto the substrate (Figure 1.7.4). Most approaches to
mitigating these issues focus on low aspect ratio features and make additional
provisions to prevent roof collapse. The most basic such strategy is to simply add broad
support structures in close proximity to small features of interest'’. However, this still
results in extraneous, though controlled, ink transfer, and is clearly not an ideal solution
when creating large, high-density microarrays. An alternative solution is to utilize

2022 that are more resistant to deformation;

customized, harder formulations of PDMS
these result in significantly better feature fidelity which extends well into the sub-

micron range.

We developed a method for stamping low aspect ratio features that avoids specialty
materials and is trivial to integrate into the standard PDMS fabrication workflow. By
introducing a rigid material within the body of the stamp, the degree of deformation
allowed at the stamp surface is significantly reduced. We implemented this solution by

dicing a standard glass slide for use as the rigid support; after pouring PDMS prepolymer
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into our aluminum casting stencil (Figure 1.7.3a) and degassing, the glass support is
introduced parallel to the underlying wafer and pushed firmly to the bottom of the
stencil. The result is an exceedingly thin layer of PDMS along the bottom of the stamp
which is chemically adhered to the rigid glass slide during the curing process, leaving
little room for unwanted deformation or sagging. We found this to be an excellent
solution in the low micron regime relevant to our microarray fabrication, but did not
perform limit testing to determine if the benefits extend to sub-micron features. For
our purposes, the reinforced stamps were easily able to pattern 5um-tall features at
1mm intervals — a lateral aspect ratio of 200:1 — without any threat of roof collapse.
This represents a significant advance over unmodified stamping limits, and eliminates

the last technical hurdle for practical microarray production via microcontact printing.

1.4 Chemistry

With our mechanical limitations resolved, we began generating microarrays tailored to
investigate single-cell secretions. The goal was to create a large array of “bulls-eye”
structures wherein the central spot of each would, using DEAL reagents, immobilize a
single cell while the surrounding rings captured its secreted cytokines (Figure 1.7.4).
However, we quickly found that stamped microarrays behaved very differently than
spotted ones when used for DEAL assays. An investigation using fluorescent reagents

demonstrated that the capture antibodies were not assembling as intended; indeed
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they formed a completely inverted pattern wherein the complimentary DNA spot was
not populated at all while the surrounding background areas were intensely patterned

(Figure 1.7.5a).

After considerable study, we found the behavior was an indirect result of contaminants
that leach from our PDMS stamps and are co-deposited with DNA; during the initial
blocking step of the DEAL process, BSA is preferentially recruited to these contaminants
and very efficiently prevents subsequent assembly of the capture antibody. The finding
was not unprecedented23’24, particularly among polar inks?>, and we tried a slew of
methods to suppress it. A lengthy swelling procedure26 designed to remove un-
crosslinked monomers from bulk PDMS failed to alleviate the problem. Attempts to
mask the contaminants by adding a fluoropolymer coating (DuPont Teflon AF) or
patterned photoresists to the stamp surface yielded a sharp decrease in feature fidelity

and degraded many of the PDMS's physical characteristics required for uCP.

Rather than remove the PDMS contaminants, an alternative strategy lay in omitting BSA
from our DEAL protocol. While other biological blocking agents, such as casein, yielded
similarly inverted patterns, we found that PEGylating the substrate did not inhibit
capture antibodies from hybridizing with their target DNA spots. However, PEG also
proved insufficient for blocking non-patterned areas effectively, as electrostatic
interactions between the capture antibody’s DNA and the aminated surface yielded

significant non-specific binding. This was eliminated by back-filling the PEGylated
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substrate with acetic anhydride, yielding a negatively-charged carboxylate surface. The
combination of surface treatments finally provided a uCP-generated DNA microarray
that was usable for DEAL experiments (Figure 1.7.5c), but due to lingering unease about
PDMS contamination, concerns about DNA loading, and the concurrent development of

an alternative patterning technique, we did not push this technology forwards.

1.5 Flow Patterning

The strikingly inverted images that we first obtained when performing DEAL assays on
stamped microarrays inspired a new approach to DNA patterning. If regions of our
substrate which had come into contact with PDMS and BSA were particularly resistant
to further protein aggregation, while non-contacted areas readily adsorbed DNA-laden
antibodies despite BSA blocking, why not invert the paradigm? Here, a PDMS slab
would contact all the “background” areas of the substrate while maintaining recessed
regions that correspond to the desired microarray features. Put simply, a PDMS device
bearing channels would be bonded to a substrate and the channels filled with DNA
solutions, thereby depositing DNA according to the channel morphology. Thus, in a

somewhat convoluted way, the very simple idea of flow patterning was conceived.

Initial attempts at flow patterning relied on electrostatic interactions with a positively-

charged substrate to immobilize DNA; shortly after filling each channel, the DNA
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solutions were flushed away and rinsed with PBS buffer. While fluorescently-tagged
oligomers indicated that the technique produced the expected patterns, DEAL
experiments revealed that an insufficient amount of DNA was immobilized via this
procedure, as evidenced by poor assay sensitivities. Consequently, we allowed our
patterning solutions to evaporate and thereby deposit a significant fraction of their DNA
on the substrate surface. This was followed by thermal or uv?’ crosslinking and
produced densely-loaded patterns as desired. Moreover, the contamination principle
from our pCP experiments held, and the flow-patterned arrays exhibited extremely low

background during assays.

The flow patterning method is subject to a unique set of advantages and disadvantages
when compared with uCP. Chief among the former is certainly the useful contaminant
distribution, but there are additional benefits as well: because the procedure is an
evaporative one, the amount of DNA deposited can be directly tuned by altering the
patterning solution’s concentration — a relationship which was much more tenuous with
UCP. In addition, alignment issues amongst microarray elements become moot, as they
are all defined monolithically with photolithographic precision. However, flow
patterning is hamstrung by the fact that its reagent channels must be topologically
continuous; when implemented in traditional 2D microfluidics, this prohibits
discontinuous features such as traditional microarray spots and severely limits the scope

of potential microarray architectures.
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We sought to address this limitation by developing a 3D microchannel network, and
targeted production of the same bulls-eye structure patterned earlier via uCP. The key
component required for such a network is the crossover channel which transfers fluid
between the upper and lower layers of a 2-layer network. Although multiple methods

for accomplishing this have been reported 2830

, we developed a very simple protocol
which does not require any extra steps during PDMS fabrication. Specifically, we
generated a two-level lower flow layer from SU-8 wherein flow channels were patterned
at 25um height and crossover points were patterned as 50um-tall posts that overlapped
them. The upper flow layer was simply patterned at a uniform 25um height. During
device fabrication, the lower layer was spin-coated with PDMS at 5000 RPM for 60
seconds, yielding a very thin layer of PDMS. It is unclear if the tall posts protrude from
the thin layer at this stage, or if they are covered by a thin membrane which is ruptured
during curing (as the PDMS shrinks) or demolding. In any case, standard 2-layer
protocols applied to these photoresist masters yield functional interlayer vias in unit
yield. Figure 1.7.6 demonstrates successful implementation of a 3D flow patterning

network to create a microarray comprised of 49 discontinuous, 3-element bulls-eye

features.

The bulls-eye patterns, though a strong technical demonstration of our patterning
capabilities, were never utilized for single-cell secretion studies. Among its demerits, it
proved to be an inefficient architecture which would not scale well as more array

elements were added. Instead, a very simple 2D flow patterning design, known as the
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“barcode” microarray, gained traction as a high density, trivially fabricated alternative.
These barcode substrates have unlocked a unigue opportunity in our lab to measure
multiple intracellular and secreted proteins from single cells, and they have played a
fundamental role in several publications which are not detailed in this thesis. They
continue to constitute an instrumental component in the majority of our lab’s ongoing

biological projects.

1.6 Thesis Overview

This thesis discusses the development of the flow patterned DNA microarrays into a
robust platform that is capable of supporting accurate, consistent, and convenient
bioassays for clinical diagnostics. Chapter 2 introduces the aforementioned barcode
morphology and demonstrates its utility as a substrate for the DEAL platform. We
demonstrate that the sensitivity of DEAL assays is directly dependant on the substrate’s
DNA loading, and take advantage of this fact to measure proteins with a dynamic range
of over five orders of magnitude. The technology is validated by correctly determining
the levels of human chorionic gonadotropin (hCG), a common pregnancy marker, from
two serum samples in a blind test. We then apply this platform to the analysis of a
dozen proteins from frozen cancer-derived serum samples. Finally, we adopt a
microfluidic circuit for blood plasma separation and use it in conjunction with our

barcodes to measure multiple proteins from small volumes of fresh, finger prick-derived
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blood samples. My contributions to this work include the conception and development
of DNA patterning techniques, preparation and execution of the hCG experiments, and
assistance in the adoption of the plasma separation microfluidics. Chapter 2 is largely

derived from © Nature Biotech. 2008, 26(12), 1373-1378.

Chapter 3 describes significant improvements to the quality of barcode microarrays. We
found that our initial patterning protocols produced microarrays that yielded consistent
measurements over small areas, but varied widely across the substrate as a whole. In
order to make valid comparisons amongst single cell data or amongst multiple patient
samples analyzed on the same chip, the microarray must present consistent sensitivity
throughout. We describe two different strategies that help us to achieve this
consistency: one method utilizes covalent attachment of DNA to a modified substrate
surface, while a second method preserves the original scheme, but explores the
incorporation of DMSO (a common microarraying additive) with the patterning solution.
Both strategies yielded barcodes with far better consistency than our initial protocol. A
theoretical simulation was undertaken to explain the dramatic improvements achieved
by DMSO, and its mechanism was found to differ significantly in microfluidic systems
when compared to regular pin spotting. My contribution to this work was the
development and characterization of the covalent DNA patterning strategy. Chapter 3 is

largely derived from © ChemPhysChem. 2010, 11(14), 3063-3069.
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Whereas Chapter 3 focused on improving consistency across single chips, Chapter 4
describes efforts to improve chip-to-chip consistency by automating the flow patterning
process. We describe the design and fabrication of a robotics system that is capable of
autonomously interfacing with and manipulating microfluidics systems. A modular
design philosophy enables it to process almost any flow-through microfluidic substrate
with little modification, although we focus on barcode chips. The pattern fidelity of
machine-made substrates is confirmed, and both intra- and inter-chip consistency is
investigated. Finally, a pair of substrates is used to perform massively parallel single-cell
secretion studies of a macrophage cell line, and a statistical analysis of the results
demonstrates that data from the two chips are indistinguishable. This chapter is derived

from a manuscript that is currently under review.

Finally, Chapter 5 describes an additional set of technologies that were developed to
facilitate and automate microfluidics-based experiments in anticipation of clinical trials
based on our blood chip. We first develop an intuitive, GUl-based software package
that is aimed at laboratory-scale microfluidic control and automation. We also describe
the design and fabrication of a self-contained, portable, and modular solenoid array for
microfluidic control, and integrate its operation with the aforementioned program.
Finally, we discuss the development and basic characterization of a second portable
system that optimizes and comprehensively automates microfluidic blood assays such
that even non-technical users who have never worked with microfluidics can regularly

obtain the same standard of data that is produced in the lab. This latter system is
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anticipated to be the basis of upcoming clinical blood trials to characterize blood protein

signatures in various cancers.
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1.7 Figures
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Figure 1.7.1 (A) Schematic illustration of the microcontact printing process. (B) Sample
stamping results obtained using fluorescent DNA. The circles feature ~5um diameter
while the squares are ~50um wide.
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Figure 1.7.2 (A) Conceptual illustration of a microcontact printing scheme to create
multi-element DNA microarrays, presuming the stamps can be aligned precisely. (B) The
molding process by which two-tiered PDMS stamps are fabricated. (C) Mask plate with
central cutout to accommodate stamp.
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Figure 1.7.3 Typical results from MA-6 based stamp alignment.

The middle three

patterns correspond to the highlighted boxes in the schematic above, and demonstrate
the uniform alignment of two stamps (red & green) across long distances.
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Figure 1.7.4 Common failure modes for high aspect ratio stamp features (a & b) and
low aspect ratio stamps (c).
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A B C

Figure 1.7.5 (A) Fluorescent, DNA-tagged capture antibodies bind nonspecifically to the
background, but strongly avoid their complementary strands that are stamped in a ring
structure. (B) When the substrate is not blocked with BSA, the ring structure becomes
evenly populated upon exposure to fluorescent capture antibodies, implying that BSA is
preferentially recruited by contaminants that co-deposit with DNA. (C) Blocking with a
combination of PEG and acetic anhydride prevents non-specific binding to the
background, but permits capture antibodies to localize to their complementary
sequences.
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Figure 1.7.6 Counter-clockwise from top left: schematic showing 3D flow channels for
patterning discontinuous features; low depth-of-field images showing dye solutions in
both lower and upper portions of the flow channels, indicating operational vias; DEAL
assays performed with recombinant proteins on a bulls-eye substrate.
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Chapter 2

Integrated barcode chips for rapid, multiplexed analysis
of proteins in microliter quantities of blood

2.1 Introduction

As the tissue that contains the largest representation of the human proteome?, blood is
the most important fluid for clinical diagnostics®*. However, although changes of plasma
protein profiles reflect physiological or pathological conditions associated with many
human diseases, only a handful of plasma proteins are routinely used in clinical tests.
Reasons for this include the intrinsic complexity of the plasma proteome’, the
heterogeneity of human diseases and the rapid degradation of proteins in sampled
blood®. We report an integrated microfluidic system, the integrated blood barcode chip
that can sensitively sample a large panel of protein biomarkers over broad
concentration ranges and within 10 min of sample collection. It enables on-chip blood
separation and rapid measurement of a panel of plasma proteins from quantities of

whole blood as small as those obtained by a finger prick. Our device holds potential for
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inexpensive, noninvasive and informative clinical diagnoses, particularly in point-of-care

settings.

Microfluidics has permitted the miniaturization of conventional techniques to enable
high-throughput and low-cost measurements in basic research and clinical
applications®’. Systems for biomolecular assaysg’9 and bio—separationsm’ll, including the
separation of circulating tumor cells or plasma from whole blood**™*, have been
reported. We developed the integrated blood barcode chip (IBBC) to address the need
for microchips that integrate on-chip plasma separations from microliter quantities of
whole blood with rapid in situ measurements of multiple plasma proteins. The
immunoassay region of the chip is a microscopic barcode, integrated into a microfluidics
channel and customized for the detection of many proteins and/or for the quantification
of a single or few proteins over a broad concentration range. We demonstrate versatility
of this barcode immunoassay by detecting human chorionic gonadotropin (hCG) from
human serum over a 105 concentration range and by stratifying 22 cancer patients via
multiple measurements of a dozen blood protein biomarkers for each patient. We also
use the IBBC to assay a blood protein biomarker panel from whole human blood,
performing all key steps in the immunoassay within 10 min of blood collection by finger

prick.
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2.2 Results and Discussion

2.2.1 Device design

We first present an overview of the IBBC and then discuss control of assay sensitivity,
extension of a single protein assay to an assay for a large panel of biomarkers and,
finally, integration of plasma separation from whole blood, followed by the rapid
measurement of a panel of protein biomarkers. Figure 2.5.1 shows the design of an IBBC
for blood separation and in situ protein measurement. We designed a
polydimethylsiloxane (PDMS)-on-glass chip to perform 8-12 separate multiprotein

assays sequentially or in parallel, starting from whole blood.

The Zweifach-Fung effect describes highly polarized blood cell flow at branch points of

1416 'A component of the IBBC, redesigned from a previous report**,

small blood vessels
exploits this hydrodynamic effect by flowing blood through a low-flow-resistance
primary channel with high-resistance, centimeter-long channels that branch off it at
right angles (Figure 2.5.1a). As the resistance ratio is increased between the branches
and the primary channel, a critical streamline moves closer to the primary channel wall
adjoining the branch channels. Blood cells with a radius larger than the distance
between this critical streamline and the primary channel wall are directed away from
the high-resistance channels, and ~15% of the plasma is skimmed into the high-

resistance channels. The remaining whole blood is directed toward a waste outlet. The

glass base of the plasma-skimming channels is patterned with a dense barcode-like
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array of single-stranded DNA (ssDNA) oligomers before assembly of the microfluidics
chip. A full barcode is repeated multiple times within a single plasma-skimming channel,

and each barcode sequence constitutes a complete assay.

We used the DNA-encoded antibody library (DEAL) technique®” to detect proteins within
the plasma-skimming channels. DEAL technology involves using DNA-directed
immobilization of antibodies to convert a prepatterned ssDNA barcode microarray into
an antibody microarray, thereby providing a powerful means for spatial encodingl&lg.
The sequences of all ssDNA oligomer pairs used (labeled A/A’-M/M’), and their
corresponding antibodies, are listed in Tables 2.6.1 and 2.6.2. To minimize cross-
reactivity, these ssDNA molecules were designed in silico and then validated through a
full orthogonality test (Figure 2.5.2). In that experiment, each of the complementary
DNA molecules with Cy3 fluorescent label was added to a microwell containing a full
primary ssDNA barcode array. The results showed only negligible cross-hybridization
signals. In the DEAL assay, each capture antibody is tagged with approximately three
copies of an ssDNA oligomer that is complementary to ssDNA oligomers that have been
surface-patterned into a microscopic barcode within the immunoassay region of the
chip. Flow-through of the DNA-antibody conjugates transforms the DNA microarray into
an antibody microarray for the subsequent surface-bound immunoassay. Because DNA
patterns are robust to dehydration and can survive elevated temperatures (80—100 °C),

the DEAL approach circumvents the denaturation of antibodies often associated with

typical microfluidics fabrication.
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As only a few microliters of blood is normally sampled from a finger prick, on-chip
plasma separation yields only a few hundred nanoliters of plasma. The ssDNA barcodes
were patterned at a high density using microchannel-guided flow patterning (Figure
2.5.3) to measure a large panel of protein biomarkers from this small volume. We used a
PDMS mold that was thermally bonded onto a polyamine-coated glass slide to pattern
the entire ssDNA barcode. Polyaminated surfaces permit substantially higher DNA
loading than do more traditional aminated surfaces®® and provide for an accompanying
increase in assay sensitivity (Figures 2.5.4 and 2.5.5). Different solutions, each
containing a specific ssDNA oligomer, were flowed through different channels and
evaporated through the gas-permeable PDMS stamp, resulting in individual stripes of
DNA molecules. One complete set of stripes represents one barcode. All measurements
used 20-mm-wide bars spaced at a 40 mm pitch. This array density represents an
approximately tenfold increase over a standard spotted array (typical dimensions are
150 mm diameter spots at a 400 mm pitch), thus expanding the numbers of proteins
that can be measured within a small volume. No alighment between the barcode array
and the plasma channels was required. All protein assays used one color fluorophore
and were spatially identified using a reference marker that fluoresced at a different

color.
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2.2.2 Assay sensitivity as a function of DNA patterning concentration

We first illustrate aspects of the barcode assays via the measurement of a single
biomarker, human chorionic gonadotropin (hCG), in undiluted human serum over a
broad concentration range. hCG is widely used for pregnancy testing and is a biomarker
for gestational trophoblastic tumors and germ cell cancers of the ovaries and testes. For
this assay, the barcode was customized by varying the DNA loading during the flow
patterning step. The DNA barcode contained 13 regions (Figure 2.5.6a). There were two
bars of oligomer B (designed to detect the protein tumor necrosis factor (TNF)-a as a
negative control), one reference bar (oligomer M), one blank and nine bars of oligomer
A (designed for hCG detection and flow patterned at ssDNA concentrations that were
varied from 200 uM to 2 uM). To perform the assay, we flowed a mixture of A’-anti-hCG
and B’-TNF- a through assay channels. Next, a series of standard hCG serum samples
and two hCG samples of unknown concentration were flowed through separate assay
channels. Biotinylated detection antibodies for hCG and TNF-a were then applied,
followed by a final developing step using fluorescent Cy5-labeled streptavidin (red) for
all protein channels and Cy3-labeled M’ oligomers (green) for the reference channel
(Figure 2.5.6a). Quantifying the fluorescence intensity (Figure 2.5.6b,c) revealed a
sensitivity (1 mlU/ml) comparable to the enzyme-linked immunosorbent assays
(ELISAs) over a broad detected concentration range (~10°). Using the microfluidics-
entrained DEAL barcode in a blind test, we measured the hCG levels in the two unknown
serum samples. Our measured levels, estimated at 6 and 400 mIU/ml for unknowns 1

and 2, are in good agreement with the values of 12 and 357 mIU/ml, respectively,
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obtained from an independent lab test. Even without quantification, the analyte
concentrations can be estimated by eye through pattern recognition of the full barcode.
The bar with the highest DNA-loading rendered the highest sensitivity, whereas the bar
with lowest DNA-loading was used to discriminate samples with high analyte
concentrations. For example, the 25,000 mIU/ml and 250 mIU/ml hCG samples can be
visually distinguished using stripes patterned with lower DNA concentrations, whereas
the stripes loaded from 200 mm DNA solutions do not readily distinguish these samples.
For circumstances in which accurate photon counting is not available, visual barcode
inspection permits a rough estimation of the target quantity—a potential point-of-care
application. When levels of hCG are tracked during pregnancy, concentrations in the
blood increase from ~5 mIU/ml in the first week of pregnancy to ~2 x 10° mIU/ml 10
weeks after conception. The IBBC can cover such a broad physiological hCG range with

reasonable accuracy.

To evaluate multiplexed measurements of a panel of 12 protein markers using the
microfluidic DEAL barcode regions of the IBBCs, we quantified the cross-reactivity
between the stripes within the DNA-encoded immunoassays. This test involved twelve
human serum proteins, including ten cytokines (interferon (IFN)-y, TNF-qa, interleukin
(IL)-2, IL-1a, IL-1B, transforming growth factor (TGF)-B1, IL-6, IL-10, IL-12, granulocyte-
macrophage colony-stimulating factor (GM-CSF)), a chemokine macrophage
chemoattractant protein (MCP)-1 and the cancer biomarker prostate-specific antigen

(PSA). The results showed negligible cross-talk, with typical photon counts
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<2% compared to the correctly paired antigen-antibody complexes (Figure 2.5.7). We
also assayed serial dilutions (from 5 nM to 1 pM) for these proteins on the DEAL
barcode chip to establish a set of calibration curves for future estimates of protein
concentration in sera (Figure 2.5.8). We fixed all the parameters associated with laser
scanning and fluorescence quantification (e.g., power, gain, brightness and contrast)
and performed quantitative analysis. Depending on the antibodies used, the estimated
sensitivity varies from <1 pM for IL-1B and IL-12 to ~30 pM for TGF-B and is comparable
to the detection limits of ELISAs based on the same antibody pairs. For example,
according to the specifications of commercial kits (eBioscience), the detection limit for
cytokines like TNF-a and IL-1b is B8 pg/ml (~0.5 pM), which compares favorably with our
observations. However, the statistical variation of the measured signals is relatively
large compared to a commercial ELISA assay—a variation that likely arises from our

manual chip manufacturing.

2.2.3 Multi-parameter analysis of frozen serum samples

We assessed the utility of the DEAL barcodes for clinical blood samples by measuring
the same 12 proteins from small amounts of stored serum collected from 22 cancer
patients. These serum samples were thawed, and then assayed using two chips, each
containing 12 separate assay units operated in parallel. In every unit, 20 full DEAL
barcodes in each assay channel were used for statistical sampling. The proteins in this
panel (Fig. 2.5.9a), the prostate cancer marker PSA and eleven proteins secreted by

various white blood cells, have been associated with tumor microenvironment
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21-23

formation, tumor progression and tumor metastasis” “°. Thus, this panel provides

information relevant to multiple aspects of cancer.

Figure 2.5.9b shows fluorescence images, each depicting four sets of randomly picked
barcodes obtained from the 22 patient samples. The medical records for all patients are
summarized in Table 2.6.3. BO1-B11 denote 11 samples from breast cancer patients,
whereas P01-P11 are from prostate cancer patients. Many proteins were successfully
detected with high signal-to-noise ratios, and the barcode signatures are distinctive
from patient to patient, excepting the assays on P05, P04, P10 and B10. These assays
are from individuals who are heavy smokers (~11-20 cigarettes daily). Only one serum
sample (P06) from a heavy smoker did not exhibit a high background. This high
background may result from elevated blood content of the fluorescent protein
carboxyhemoglobin, which has been shown relevant to the pathogenesis of lung
diseases of smokers®*. Although we have also measured high background in a number of
stored serum samples, we have never measured a high background in assays from very
freshly collected blood, as described below. The results imply that, at least for stored
samples, some prepurification of the plasma or serum will be required to assay serum

protein levels.

Barcode intensities were then quantified and the statistic mean value for each protein
was computed. The cancer marker PSA clearly distinguished between the breast cancer

and the prostate cancer patients. The only exception was a false-positive result from
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B10 that had high nonspecific background. We independently validated our PSA
measurements using the standard ELISA for PSA in all patient sera. For eight of the
prostate cancer patients, we compared these results with clinical ELISA measurements
provided by the serum supplier. The results (Fig. 2.5.9c) validated the applicability of the
DEAL barcodes for assaying complex clinical samples. However, the statistical accuracy
of the PSA barcode assay was not high, revealing only a modest linear correlation
between the ELISA and DEAL. Again, this is likely due to our manual chip manufacturing
process. We are currently automating our barcode fabrication, assay execution and
image quantification in an effort to bring statistical uncertainties to within 10-20%,

which would be close to the state of the art.

The cancer patient barcode data could be analyzed for absolute protein levels by
comparing those data against the barcode quantification plots (Figure 2.5.8). Results for
PSA, TNF-a and IL-1b are shown in Figure 2.5.9d. PSA concentrations range from 22 pM
to 1 nM (or 0.7 to 33 ng/ml) with a log-scale mean of 117 pM (3.8 ng/ml) for prostate
cancer patients. The estimated PSA concentrations for breast cancer patient sera has a
mean of 9.1 pM. PSA readily differentiates between these two patient groups with good
statistical accuracy (P = 0.0007). Nevertheless, the absolute PSA levels measured by
either the standard ELISA or by the barcode assay are below those determined by the
clinical ELISA—a likely result of sample degradation during storage (Figure 2.5.9c). As
would be expected, neither TNF-a nor IL-1B allows prostate and breast cancer patients

to be distinguished (P = 0.4 and 0.5, respectively at significance level 0.2). Our estimates
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of absolute protein levels indicate that the protein concentration ranges assessed by the
DEAL barcode assay are clinically relevant for patient diagnostics. For example, the
serum level of cytokines such as interleukins and tumor necrosis factors can reach ~10—
100 pg/ml in cancer patients®®, ~500 pg/ml in rheumatoid arthritis patients and
41ng/ml* in septic shock?. These levels can all be captured using the barcode assay

format.

We performed a complete nonsupervised clustering (that is, using only the levels of
assayed proteins without assigning any weight factors) of patients and generated the
heat map (Fig. 2.5.9¢) to assess the potential of this technology for patient stratification.
This analysis is only presented as a proof of principle. Nevertheless, the results are
encouraging. For example, the measured profiles of breast cancer patients can be
classified into three subsets—noninflammatory, IL-1B positive and TNF-a/GMCSF
positive (Ptnre = 0.005, Pgmcse = 0.04 for the latter two subsets). The prostate cancer
patient data were classified into two major subsets based upon the inflammatory
protein levels (Pinrg = 0.016, Pgumess = 0.012). The multiplexed measurement of

2930 Our results

cytokines28 is relevant to cancer diagnostics and prognostics
demonstrate that IBBCs can be applied to the multiparameter analysis of human health-

relevant proteins in serum.
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2.2.4 Multi-parameter fresh blood analysis

The ultimate goal behind developing the IBBC was to measure the levels of a large
number of proteins in human blood within a few minutes of sampling that blood, to
avoid the protein degradation that can occur when plasma is stored. In a typical 96-well
plate immunoassay, the biological sample of interest is added, and the protein diffuses
to the surface-bound antibody. Under adequate flow conditions, diffusion is no longer
important, and the only parameter that limits the speed of the assay is the
protein/antibody binding kinetics (the Langmuir isotherm)®’, thus allowing the
immunoassay to be completed in just a few minutes®’. Flow through our plasma-
skimming channels proceeds at velocities >~0.1 mm sec™* and can operate continuously

and with near 100% efficiency unless the blood flow is clogged.

For whole blood analysis, the microfluidic channels of IBBCs were precoated with bovine
serum albumin blocking buffer. The DNA barcodes were transformed into antibody
barcodes as described above, and blood samples were flowed into the device within 1
min of fingerprick collection. The time from that fingerprick to completion of blood flow
through the device was ~9 min. We sampled both as collected whole blood and protein-
spiked blood from healthy volunteers. Figure 2.5.10a shows the effective separation of
plasma in an IBBC. The few red blood cells that did enter the plasma channels (Figure

2.5.104, right panel) did not affect the subsequent protein assay.
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The plasma proteins detected in this whole-blood analysis experiment included a cancer
marker (PSA), four cytokines and three other functional proteins (complement C3, C-
reactive protein (CRP) and plasminogen) involved in the complement system,
inflammatory response, fibrin degradation and liver toxicity (Tables 2.6.1 and 2.6.2).
After exposure of the barcode assay region to the separated, flowing plasma for 8 min,
the detection antibody solution and the fluorescence probes were added to complete
the assay. All proteins in the spiked blood were detected (Fig. 2.5.10b,c). Cytokines gave
the strongest fluorescence signals because of higher affinities of their cognate
antibodies. The measurement of the unspiked fresh blood established a baseline for a
healthy volunteer, in which IL-6, IL-10, C3 and plasminogen were detected. Using IBBCs
for the separation and analysis of very freshly collected blood consistently resulted in
very clean DEAL barcodes, with little or no evidence of biofouling. We are planning a
study to assess the importance of rapid measurements for obtaining accurate protein

levels.

2.3 Conclusions

Our IBBC enables the rapid measurement of a panel of plasma proteins from a finger
prick of whole blood. Integration of microfluidics and DNA-encoded antibody arrays
enables reliable processing of blood and in situ measurement of plasma proteins within

a time scale that is short enough to avoid most protein degradation processes that can
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occur in sampled blood. Use of the IBBC represents a minimally invasive, low-cost and

robust procedure, and potentially represents a realistic clinical diagnostic platform.

2.4 Experimental Methods

2.4.1 Micropatterning of barcode array.

A PDMS mold containing 13-20 parallel microfluidic channels, with each channel
conveying a different DNA oligomer as DEAL code, was fabricated by soft lithography.
The PDMS mold was bonded to a polylysine-coated glass slide via thermal treatment at
80 °C for 2 hours. The polyamine surfaces permit significantly higher DNA loading than
do more traditional aminated surfaces. DNA ‘bars’ of 2 um in width have been
successfully patterned using this technique. In the present study, a 20-um channel width
was chosen because the fluorescence microarray scanner we used has a resolution of 5
um. Nevertheless, the current design already resulted in a DNA barcode array an order
of magnitude denser than conventional microarrays fabricated by pin-spotting. The
coding DNA solutions (A-M for the cancer serum test and AA-HH for the finger-prick
blood test) prepared in 1x PBS were flowed into individual channels, and then allowed
to evaporate completely. Finally, the PDMS was peeled off and the substrate with DNA
barcode arrays was baked at 80 °C for 2—4 hours. The DNA solution concentration was
~100 uM in all experiments except in the hCG test, leading to a high loading of ~6 x 10"

molecules/cm? (assuming 50% was collected onto substrate).
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2.4.2 Fabrication of IBBCs.

The fabrication of PDMS devices for the IBBCs was accomplished through a two-layer
soft lithography approach. The control layer was molded from a SU8 2010 negative
photoresist (~20 mm in thickness) silicon master using a mixture of GE RTV 615 PDMS
prepolymer part A and part B (5:1). The flow layer was fabricated by spin-casting the
pre-polymer of GE RTV 615 PDMS part A and part B (20:1) onto a SPR 220 positive
photoresist master at 2,000 r.p.m. for 1 min. The SPR 220 mold was ~17 mm in height
after rounding by thermal treatment. The control layer PDMS chip was then carefully
aligned and placed onto the flow layer, which was still situated on its silicon master, and
an additional 60 min thermal treatment at 80 °C was performed to enable bonding.
Afterward, this two-layer PDMS chip was cut off the flow layer master and access holes
were punched. Finally, the two-layer PDMS chip was thermally bonded onto the
barcode-patterned glass slide, yielding a completed integrated blood barcode chip
(IBBC). In this chip, the DEAL barcode stripes are oriented perpendicular to the
microfluidic assay channels. Typically, 8-12 identical units were integrated in a single

chip with the dimensions of 2.5 cm x 7cm.

2.4.3 Clinical specimens of cancer patient sera.
The stored serum samples from 11 breast cancer patients (all female) and 11 prostate

cancer patients (all male) were acquired from Asterand. Nineteen out of 22 patients
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were European-American and the remaining three were Asian, Hispanic and African-

American. The medical history is summarized in Supplementary Table 3.

2.4.4 Collecting a finger prick of blood.

The human whole blood was collected according to the protocol approved by the
institutional review board of the California Institute of Technology. Finger pricks were
performed using BD microtainer contact-activated lancets. Blood was collected with
SAFE-T-FILL capillary blood collection tubes (RAM Scientific), which we prefilled with 80
pl of 25 mM EDTA solution. A 10 pl volume of fresh human blood from a healthy
volunteer was collected in an EDTA-coated capillary, dispensed into the tube, and
rapidly mixed by inverting a few times. The spiked blood sample was prepared in a
similar way except that 40 ul of 25mM EDTA solution and

40 ul of recombinant solution were mixed and pre-added in the collection tube. Then 2

ul of 0.5 M EDTA was added to bring the total EDTA concentration up to 25 mM.

Execution of blood separation and plasma protein measurement using IBBCs. The IBBCs
were first blocked with the buffer solution for 30—60 min. The buffer solution prepared
was 1% wt/vol bovine serum albumin fraction V (Sigma) in 150 mM 1x PBS without
calcium/magnesium salts (Irvine Scientific). The fluid loading was conducted using a
Tygon plastic tubing that is interfaced to the IBBC inlet with a 23 gauge metal pin. The
Fluidigm solenoid unit was exploited to control the pressure on/off for both control

valves and flow channels. A pressure of 8-10 p.s.i. was applied to actuate the valves,
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whereas the loading of fluid into assay channels was carried out with a lower pressure
(0.5-3 p.s.i.) depending on the channel flow resistance and the desired flow rate. Then
DNA-antibody conjugates (~50-100 nM) were flowed through the plasma assay
channels for ~30-45 min. This step transformed the DNA arrays into capture-antibody
arrays. Unbound conjugates were washed off by flowing buffer solution through the
channels. At this step, the IBBC was ready for the blood test. Two blood samples
prepared as mentioned above were flowed into the IBBCs within 1 min of collection. The
IBBC quickly separated plasma from whole blood, and the plasma proteins of interest
were captured in the assay zone where DEAL barcode arrays were placed. This whole
process from finger-prick to plasma protein capture took <10 min. In the cancer-patient
serum experiment, the as-received serum samples were flowed into IBBCs without any
pre-treatment (that is, no purification or dilution). Afterwards, a mixture of biotin-
labeled detection antibodies (~50-100 nM) for the entire protein panel and the
fluorescence Cy5-streptavidin conjugates (~100 nM) were flowed sequentially into IBBCs
to complete the DEAL immunoassay. The unbound fluorescence probes were rinsed off
by flowing the buffer solution for 10 min. At last, the PDMS chip was removed from the
glass slide. The slide was immediately rinsed in 1/2x PBS solution and deionized water
and then dried with a nitrogen gun. Finally, the DEAL barcode slide was scanned by a

microarray scanner.
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2.4.5 Quantification and statistics.

All the barcode array slides used in quantification were scanned using an Axon Genepix
4000B two-color laser microarray scanner at the same instrumental settings—100% and
33% for the laser power of 635 nm and 532 nm, respectively. Optical gains are 800 and
700 for 635 nm and 532 nm, respectively. The brightness and contrast were set at 87
and 88. The output JPEG images were carefully skewed and resized to fit the standard
mask design of barcode array. Then, an image processing software, NIH imagelJ, was
used to produce intensity line profiles of barcodes in all assay channels. Finally, all the
line profile data files were loaded into a home-developed program embedded as an
Excel macro to generate a spreadsheet that lists the average intensities of all 13 bars in
each of 20 barcodes. The means and standard divisions were computed using the
Microcal origin. Nonsupervised clustering of patients was performed using the literature
methods and algorithms®>. To assess the significance of two patient (sub)groups,
Student t analysis was performed on selected proteins and all P-values were calculated

at a significance level of 0.05, if not otherwise specified.
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2.5 Figures
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Figure 2.5.1 (a) Scheme depicting plasma separation from a finger prick of blood by
harnessing the Zweifach-Fung effect. Multiple DNA-encoded antibody barcode arrays
are patterned within the plasma-skimming channels for in situ protein measurements.
(b) DEAL barcode arrays patterned in plasma channels for in situ protein measurement.
A, B, C indicate different DNA codes. (1)—(5) denote DNA-antibody conjugate, plasma
protein, biotin-labeled detection antibody, streptavidin-Cy5 fluorescence probe and
complementary DNA-Cy3 reference probe, respectively. The inset represents a barcode
of protein biomarkers, which is read out using fluorescence detection. The green bar
represents an alignment marker.
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Figure 2.5.2 Cross-hybridization check for all 13 DNA oligomer pairs that were used
for encoding the registry of antibody barcode arrays.
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Figure 2.5.3 Microchannel-guided flow patterning of DEAL barcode arrays. (a)
Depiction of the procedure. Each DNA bar is 20 um wide and spans the dimensions of
the glass substrate. (b) Integration of a DEAL barcode-patterned glass slide with
microfluidics for multiplexed protein assays. (c) Mask design of a 13-channel barcode.
A-M denotes the flow channels for the different DNA molecules. (d) Validation of
successful patterning of DNA molecules by specific hybridization of oligomer A to its
fluorescent complementary strand A’. The primary strands B and C were pre-tagged
with red and green dyes as references.
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Figure 2.5.4 Effects of polylysine coating on DEAL assay. (a) Schematic illustration of
polylysine coating for increased loading of DNA oligomer codes. (b) Fluorescence images
showing a comparative study of the measurement of three human cytokines (IFN-y,
TNF-a and IL-2) using substrates coated with amino-silane and polylysine, respectively.
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Figure 2.5.5 Increased sensitivity observed in immunoassays run on DEAL barcode
arrays. (@) Concentration-dependent fluorescence signal for the detection of three
human cytokines (A: IFN-y, B: TNF-a, C: IL-2, O: negative control) using a DEAL barcode
array. The bar width is 20 um. (b) Quantitation of fluorescence intensity vs. TNF-a
concentration. (c) Measurements of individual proteins, IFN-y and IL-2, reveal no
distinguishable cross-reactivity. (d) Comparison of the microfluidics flow-patterned
DEAL microarrays with DEAL microarrays patterned using a conventional DNA pin-
spotting method. The spot size is ~150-200 um. (e) Fluorescence line profiles for the
DEAL barcode array in a and the pin-spotted array in d at different protein
concentrations. The curves were amplified in the y-coordinates for better visualization.
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Figure 2.5.6 (a) Fluorescence images of DEAL barcodes showing the measurement of a
series of standard serum samples spiked with hCG. The bars used to measure hCG were
patterned with DNA strand A at different concentrations. TNF-a encoded by strand B
was employed as a negative control. The green bars (strand M) serve as references. (b)
Quantification of the full barcodes for three selected samples. (c) Mean values of
fluorescence signals corresponding to three sets of bars with different DNA loadings.
Broken lines indicate the typical physiological levels of hCG in sera after 1 or 10 weeks of
pregnancy. Error bars, 1 s.d.
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Figure 2.5.7 Cross-reactivity check for all 12 proteins, for both barcode (left panel) and
pin-spotted (right panel) microarrays. The green bars represent the reference

stripe/spot — M. Each protein can be readily identified by its distance from the
reference.
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Figure 2.5.8 Dilution curves for 12 proteins measured using DEAL-based barcodes
entrained within microfluidics channels. (a) Barcode images from one device showing
minimal cross-talk, and a series of standard antigens ranging from 1nM to 1pM for all 12
proteins (* the concentrations of PSA and TGF-B are 5x higher). (b) Quantitation of
fluorescence intensity vs. concentration for all 12 proteins. Error bars: 1SD



d wo_ C i
i S cm%fg o ELISA (from sample supplier)
zharThge TR 2558 < E 101
CELAPRLLAESS e { H H
H" ‘1H H Betore 0’;‘?"."‘3".‘3".‘5’.‘2“.‘.[1[1[[:‘“‘?‘“
EREEN B 8553y = ELISA (our lab)
< g 104
@5
After &< 5
assay 04— .
= | DEAL barcode assay
z- Y i
b i3] L
£ 1 T
20 5
B05 P05 B01-B11 PO1—P11
P03 P04 d Ff:ODO?“ sl P=04 100y P=05
1,000 ° e
. 100 °
BO1 PO1 - =10 °
- - g0y T3 . 3
P Faol g3 1 = g
PO2 Pi1 o = T = .
10{ s = s 1 -
: yoe 8 g o
o o _5_ e
L] o
14 0.1 0.1
o Breast cancer o Prostate cancer
BO3
e Bog 30
4{{ BO6
BO7
P10 B09 B11
BO4
B10
P0G PO8 Bo3
BO9 4
BO5
BO1
P09
P09
Po8
P03
P0G
BO7 B11 P11
P10
P05
PO4
PO1

53

Figure 2.5.9 (a) Layout of the barcode array used in this study. Green denotes the
reference (strand M). (b) Representative fluorescence images of barcodes used to
measure the cancer marker PSA and 11 cytokines from 22 cancer patient serum
samples. B0O1-B11, samples from breast cancer patients; PO1-P11, samples from
prostate cancer patients. The left and right columns represent measurements on
different chips. (c) Validation of PSA DEAL barcode measurement using ELISA. x denotes
PSA measurements were not provided by the serum supplier. Error bars, 1 s.d. (d)
Distribution of estimated concentrations of PSA, TNF-a and IL-1B in all serum samples.
The horizontal bars mark the mean values. (e) Complete nonsupervised clustering of
breast and prostate cancer patients on the basis of protein patterns.
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Figure 2.5.10 (a) Optical micrographs showing the effective separation of plasma from
fresh whole blood. A few red blood cells occasionally seen downstream of the plasma
channels did not affect the protein assay. (b) Fluorescence image of blood barcodes in
two adjacent microchannels of an IBBC, on which both the unspiked and spiked fresh
whole blood collected from a healthy volunteer were separately assayed. Eight plasma
proteins are indicated. All bars, 20 um wide. (c) Fluorescence line profiles of the
barcodes for both unspiked and spiked whole blood samples. The distance corresponds
to the full length shown in b.
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2.6 Tables
DNA Code Human Plasma Protein Abbreviation
Panel 1
A/A Interferon-gamma IFN-y
B/B' Tumor necrosis factor-alpha TNF-a
c/c Interleukin-2 IL-2
D/D' Interleukin-1 alpha IL-1a
E/E' Interleukin-1 beta IL-1B
F/F' Transforming growth factor beta TGF-B
G/G' Prostate specific antigen (total) PSA
H/H' Interleukin-6 IL-6
/1 Interleukin-10 IL-10
J/ Interleukin-12 IL-12
K/K' Granulocyte-macrophage colony stimulating factor GMCSF
L/t Monocyte chemoattractant protein -1 MCP-1
M/M' Blank control/reference
Panel 2
AA/AA! Interleukin-1 beta IL-1B
BB/BB' Interleukin-6 IL-6
cc/cc Interleukin-10 IL-10
DD/DD' Tumor necrosis factor-alpha TNF-a
EE/EE' Complement Component 3 Cc3
FF/FF' C-reactive protein CRP
GG/GG' Plasminogen Plasminogen
HH/HH' Prostate specific antigen (total) PSA

Table 2.6.1 List of protein panels and corresponding DNA codes.
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Name Sequence Tm°C
(50mM Nacl)
A 5'- AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA-3' 57.9
A' 5' NH3- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3' 57.2
B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 57.4
B' 5' NH3AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 55.9
C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3 57.6
c 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 56.2
D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 56.5
D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 55.7
E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 55.7
E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 54.7
F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3 56.9
F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 56.1
G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 59.3
G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 58.6
H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 59.9
H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 60.8
| 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 60.1
I 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 60.1
J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 56.5
J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 57.5
K 5'-AAA AAA AAA ATA ATC TAATTC TGG TCG CGG-3' 55.4
K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 56.3
L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 57.2
M 5'-Cy3-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 57.6
m' 5' NH3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 56.9
AA' 5' NH3-AAAAAAAAAAGTCACAGACTAGCCACGAAG-3! 58
BB 5'-AAA AAA AAA AGC GTG TGT GGA CTC TCT CTA-3' 58.7
BB' 5' NH3-AAA AAA AAA ATA GAG AGA GTC CAC ACA CGC-3' 57.9
cc 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 56.5
cc' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 57.5
DD 5'-AAA AAA AAA AGA TCG TAT GGT CCG CTC TCA-3' 58.8
DD' 5' NH3-AAA AAA AAA ATG AGA GCG GAC CAT ACG ATC-3' 58

Table 2.6.2 List of DNA sequences used for spatial encoding of antibodies (continued on

next page).
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Name Sequence Tm°C
(50mM NacCl)
EE 5'-AAA AAA AAA AGC ACT AAC TGG TCT GGG TCA-3' 59.2
EE' 5' NH3-AAA AAA AAA ATG ACC CAG ACC AGT TAG TGC-3' 58.4
FF 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 60.1
FF' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 60.1
GG 5'-AAA AAA AAA ACT CTG TGA ACT GTC ATC GGT-3' 57.8
GG' 5' NH3-AAA AAA AAA AAC CGA TGA CAG TTC ACA GAG-3' 57
HH 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 59.3
HH' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 58.6

Table 2.6.2 List of DNA sequences used for spatial encoding of antibodies.
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FATIENT |CANCER GENDER/AGE | RACE L 8TAGE mﬂm OTHERS

BO1 Braast Famala'g2 Caucasian T2M0OMO wina 200mL'day

BO2 Braast Femala/Td Caucasian T4MN2MO

BO3 Braast Famala/T1 Caucasian T 1chXND 1-2 drinks'day

B4 Braast Famala/72 Caucasian T2M¥M0 hypartansion

BOS Braast Femala/B8 Caucasian TINOMX arthifis

BOE& Braast Femala/58 Asian T1NXMO

BoT Braast Famala'54 Caucasian TaM2M0 hypartansion, abasity

BO& Braast Femala/55 Caucasian T2MxhD 1-5 dgs/day, wina 200mLiday
BOg Braast Famala/B3 Caucasian T4NOMO Caronary ariary disassa, cerdbml alharosdamsis
B10 Braast Femala/G3 Hispanic TINZMX §-10dgsday, hypatiyrad, hypariansion, csiaoarhite
B11 Braast Famala/83 Caucasian T 1MXMO artarial hyparansion

P01 Prostata Mala/ 51 Caucasian T2chXND 4+3=T

PO2 Prostata Mala/ 84 Caucasian T 3bMNONX, IH=T

P03 Frostata Mala/ 47 Caucasian T2cHNOMD 3+3=8 hyparansian

P04 Frostata Mala/ 55 Caucasian T2bNOMD 3+3=8 11-20 cigsiday

POS Prostata Mala/ 73 Caucasian T 3aMXNX 4+4=H hyparansion,11-20 cigs/day
POE Prostata Malaf4 Caucasian TINOMO chranic branchitis, 11-20cigs/day
Po7 Prostata MalaB0 Caucasian T3aN0M0 I+4=T gastmasophagaal raflux

PO& Prostata MalaT2 African Am. T2aMXhX 3+3=8 1-Gdgs/day

PO8 Prostata MalaT8 Caucasian T3aM1MX 4+3=T hyparansion, atrial fibrillation
P10 Frostata Mala&8 Caucasian T2aMNOMX 3+3=8 hyparansion, 11-20 cigs/day
P11 Prostata Malal 47 Caucasian T2cNOMD 3+3=6 hypartansion

Table 2.6.3 Medical records of cancer patients.
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Chapter 3

Chemistries for Patterning Robust DNA MicroBarcodes
Enable Multiplex Assays of Cytoplasm Proteins from
Single Cancer Cells

3.1 Introduction

The demand for parallel, multiplex analysis of protein biomarkers from ever smaller
biospecimens is an increasing trend for both fundamental biology and clinical
diagnosticsl's. The most highly multiplex protein assays rely on spatially encoded
antibody microarrays*®, and small biospecimens samples are now routinely
manipulated using microfluidics approaches. The integration of antibody microarray
techniques with microfluidics chips has only been explored relatively recently. One
challenge arises from the relative instability of antibodies to microfluidics fabrication
conditions. In recent years, several groups have devised methods to transform standard
DNA microarrays in situ into protein microarrays and cell-capture platforms’™*?. These
approaches capitalize on the chemical robustness of DNA oligomers, and the reliable
assembly of DNA-labeled structures via complementary hybridization. Recently, Fan et

al. utilized a microfluidics-based flow patterning technique to generate DNA barcode-
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type arrays at 10x higher density than standard, spotted microarrays™. The DNA
barcodes were converted into antibody arrays using the DNA-encoded antibody library
(DEAL) technique, and then applied towards the measurement of a highly multiplex

panel of proteins from a pinprick of whole blood.

A second challenge involves scaling such miniaturized DNA microarrays so that a large
surface area can be encoded. This problem is non-trivial, as it involves identifying
chemistries for patterning 10° m wide, 1 m long strips of biomolecules with a
uniformity that permits those patterns to be utilized in hundreds to thousands of
guantitative protein assays per chip. Herein, we explore the surface chemistry
associated with microfluidics-based flow patterning of DNA barcodes, with an eye
towards producing highly reproducible and robust barcodes. We then apply the

optimized chemistry towards assaying a panel of cytoplasmic proteins from single cells.

We explore three different flow patterning surface chemistries: two rely upon the
electrostatic adsorption of DNA onto a poly-L-lysine (PLL) surface, and the third utilizes
flow patterning of dendrimers onto aminated glass substrates, followed by covalent
attachment of DNA oligomers onto the dendrimer scaffolds. For the electrostatic
adsorption cases, we investigate, using both theory and experiment, the role that
counterions play in flow patterning within the confined dimensions of a microfluidic
channel, and we find that solvent mixtures which associate counterions more strongly

to the negatively charged DNA oligomers yield more reproducible and robust barcodes.
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We then demonstrate the utility of the best flow patterning chemistry by combining it
with DEAL to construct antibody barcodes for quantitatively assaying a panel of
phosphorylated proteins, associated with oncogenic pathways, from single cells that are

representative of the brain cancer glioblastoma multiforme (GBM).

3.2 Results and Discussion

3.2.1 Device design and functionalization schemes

The microfluidics flow patterning chip is comprised of a patterned polydimethylsiloxane
(PDMS) layer adhered to an aminated or PLL-coated glass substrate that provides the
base surface for the microchannels. The microchannels are long (about 55 cm),
meandering channels that span ca. 0.85 cm?” of our substrate, and are used to pattern a
DNA barcode over most of the glass surface (Figure 3.5.1b). After the flow patterning is
completed, the PDMS layer is replaced with a second micropatterned PDMS layer that is
designed to support a biological assay, such as the previously reported blood
proteomics chip13, or the single-cell proteomics chips utilized herein. For the
microfluidic patterning method to be useful, it must generate a DNA barcode that
exhibits high and uniform DNA loading over the entire substrate. We evaluated the
patterning chemistries illustrated in Figure 3.5.1a, Schemes 1-3. Schemes 1 and 2 are
drawn from the conventional protocol for pin-spotted microarrays—a solution

containing the DNA is introduced, the solvent is evaporated, and subsequent thermal or
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UV treatment is employed to cross-link the deposited DNA to the substrate. In Scheme 1
ssDNA oligomers dissolved in phosphate-buffered saline (PBS) are utilized, whereas in
Scheme 2 ssDNAs in a 1:1 mixture of 1xPBS and dimethyl sulfoxide (DMSO) are
employed. DMSO is used in conventional microarray preparation to improve feature
consistency by reducing the rate of solvent evaporation and by denaturing the
DNA™M although, as described below, its role in this process is different. In Scheme 3 a
covalent immobilization method based wupon a dendrimer scaffold s
utilized™. Poly(amidoamine) (PAMAM) dendrimers (generation 4.5, carboxylate surface)
have previously shown promise as DNA and protein microarray substrates. Dendrimers
do not form entangled chains® and because harsh crosslinking procedures are avoided,
dendrimer-immobilized DNA retains high accessibility and activity in microarray
applications. Moreover, the highly branched structure of the dendrimers provides a high
density of reactive sites for surface attachment and for DNA coupling, thus leading to a
high overall binding capacity. For all cases, a high level of DNA loading has been shown

to decrease non-specific binding when compared to standard microarray substrates'®!”

19

Figure 3.5.1b (top) shows the PDMS chip design used for barcode patterning. Thirteen
discrete channels (for a thirteen-element barcode) allow for a multiplex microarray. We
loaded five adjacent channels according to Scheme 1, skipped three channels, and then
loaded the remaining five channels according to Scheme 2. The use of fluorescently-

tagged DNA permitted measurements of the DNA distribution within each individual
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channel immediately after introducing the solutions. Figure 3.5.1b demonstrates a clear
difference in aqueous DNA distribution across the chip: DNA loaded according to
Scheme 1 (outer five channels) is notably lower in concentration near the middle of the
chip (Figure 3.5.1b, Region 2) and is barely detectable near the channel exit
(Figure 3.5.1b, Region 1). Conversely, DNA loaded according to Scheme 2 (inner five
channels) presents an even, consistent distribution across the entire chip. Notably,
Scheme 1 yields a relatively higher fluorescence intensity at the input side of the chip.
These results clearly indicate that, for Scheme 1, the ssDNA oligomers are accumulating
upstream during the early stages of flow, and so are depleted from the advancing
solution by the time it reaches mid-chip. The actual patterning of the glass substrate
occurs when solvent is evaporated (Figure 3.5.2). Indeed, the final patterning results
after solvent evaporation and cross-linking (Figure 3.5.1c, top) reflect the trend
established by the aqueous fluorescence images; Scheme 2 produces uniform DNA

barcodes across the substrate, while Scheme 1 does not.

3.2.2 DMSO mechanism and simulations

In order to understand the difference in patterning uniformity between Schemes 1 and
2, we considered the electrostatic environment for each case. As depicted in
Figure 3.5.3a, the PDMS side walls carry a slightly negative zeta potential, whereas the
PLL surface has a strong positive zeta potentialzo. When the ssDNA solution in Scheme 1
is introduced to the channel, ssDNA near the PLL matrix is electrostatically immobilized,

thereby generating a concentration gradient21. As the solution flows towards the
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channel exit, the ssDNA oligomers are continually depleted via deposition onto the PLL
surface. Figure 3.5.3b shows the results from a rough simulation designed to capture
the mean concentration of aqueous ssDNA as the solution traverses a channel. The
simulation implies that the effect of electrostatic adsorption proves dominant even at
high DNA concentrations, a result that agrees well with the observed behavior for
Scheme 1 in Figure 3.5.1b. A detailed description of the model and assumptions
employed can be found in the Supporting Information. We tested this model via the
strong negative charging of all four channel surfaces via O, plasma treatment.
Consistent with the model, both Schemes 1 and 2 exhibited equivalently uniform
distribution of fluorescence intensity across the chip (Figure 3.5.4b). We note that lack
of the positive charges on the bottom surface failed to hold DNAs during the drying
procedure and that the plasma treatment induces the irreversible bonding of PDMS and

glass, which limits further use beyond this experimental test.

The results from Schemes 1 and 2 imply that DMSO alleviates the electrostatic
adsorption effect. In order to understand this more fully, we performed molecular
dynamics (MD) simulations of DNA in PBS and PBS/DMSO solutions; 3 ns of NPT [NPT is
a simulation in which number of moles (N), pressure (P) and temperature (T) are held
constant]. The MD simulations were performed with the last 1 ns trajectory used for
analysis. We examined the radial distribution function of phosphorous atoms in the DNA
backbone with respect to various elements of the surrounding solvent. For example, the

radial distribution function of P and the O atom of a water molecule is virtually
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unperturbed by the addition of DMSO (Figure 3.5.5). Consequently, it is unsurprising
that the radial distribution function of P and the S atom of DMSO (Figure 3.5.3c, black
solid line) reveals that DMSO is not forming a solvation structure with the DNA
backbone. However, Figure 3.5.2c demonstrates a clear interaction between P and
Na®ions, which delineates into two well-defined shell structures: the first is located
at r<4.3 A while the second is located at 4.3 A<r<6.6 A. These are similar to the locations
of the first and the second water solvation structures. By integrating the radial
distribution functions, we determined the number of molecules per phosphate in the
first and second shells for both PBS and PBS/DMSO solutions. Although the number H,0
molecules per shell is virtually independent of DMSO, DMSO does significantly increase
the number of Na* ions in the first shell (from 0.14 to 0.24), and it decreases the number
of Na®ions in the second shell (from 0.61 to 0.34). Conversely, the number of DMSO
molecules is almost zero in the first shell (0.01) but becomes significant in the second
shell (0.20). Thus, we conclude that DMSO, with a lower dielectric constant relative to
water (47.2 vs 80), destabilizes the solvation energy of Na*in the second shell. This
thermodynamic change prompts the sodium ions to move to the first shell where they
are stabilized by electrostatic interactions with the negatively charged phosphate
groups. The increased number of sodium ions near the DNA backbone screens the
negative charges of phosphate groups more efficiently, thereby reducing electrostatic
interactions of the DNA with the PLL surface, resulting in uniform DNA distribution
throughout the channels. Although the addition of DMSO to DNA patterning solutions

yields the same ultimate effect for both traditional spotted arrays and microfluidics-
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patterned barcodes, the underlying mechanisms are completely different. We conclude

that Scheme 2 is intrinsically superior relative to Scheme 1.

3.2.3 Covalent attachment mechanism and comparision

We now turn towards analyzing Scheme 3, and comparing it against Scheme 2. For this
scheme, the PAMAM dendrimers are first covalently attached to the aminated glass
surface, and then (aminated) ssDNA oligomers are covalently attached to the
dendrimers. The lack of a solvent evaporation step makes Scheme 3 significantly more
rapid than Scheme 2. We flowed activated PAMAM dendrimers, followed by aminated
ssDNA, through ten microfluidic channels (Figure 3.5.1b). Note that the aqueous DNA
distribution is expected to be uniform because the substrate surface is comprised of
charge-neutral N-hydroxysuccinimide (NHS)-modified carboxylates which minimize
electrostatic interactions. The resulting DNA microarray was assayed for uniformity with
complementary DNAs labeled with Cy3-fluorophores. Visual analysis indicates good
uniformity across the chip (Figure 3.5.1c, bottom). In order to quantify the patterning
quality for all three schemes, we obtained signal intensities for each channel at sixteen
locations within the patterning region and calculated the coefficient of variation (CV).
The CV is defined as the standard deviation divided by the mean and expressed as a
percentage. CVs for Schemes 1, 2, and 3 registered 69.8%, 10.5%, and 10.9%,
respectively. Thus, we conclude that Schemes 2 and 3 offer consistent DNA loading

across the entire substrate.
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Having established that Schemes 2 and 3 produce consistent, large-scale DNA barcodes,
we then extended our analysis of array consistency to protein measurements. We
previously demonstrated that, when using the DEAL platform for multiplex protein
sensing in microfluidics channels, the sensitivities of the assays directly correlate with
the amount of immobilized DNA®, up to the point where the DNA coverage is saturated.
We performed multiple protein assays along the length of our DNA stripes to ensure
that the results described above would translate into stable and sensitive barcodes for
protein sensing. All protein assays were performed in microfluidic channels which were
oriented perpendicular to the patterned barcodes (five channels for Scheme 2 and four
channels for Scheme 3). This allowed us to test distal microarray repeats with a single
small analyte volume. For barcodes prepared using Scheme 2, we utilized the DEAL
technique to convert them into antibody barcodes designed to assay the following
proteins: phosphorylated (phospho)-steroid receptor coactivator (Src), phospho-
mammalian target of rapamycin (mTOR), phospho-p70 S6 kinase (S6K), phospho-
glycogen synthase kinase (GSK)-3a/B, phospho-p38a, phospho-extracellular signal-
regulated kinase (ERK), and total epidermal growth factor receptor (EGFR) at 10
ng/mL and 1 ng/mL concentrations. This panel samples key nodes of the
phosphoinositide 3-kinase (PI3K) signaling pathway within GBM, and are used below for
single-cell assayszz. For barcodes prepared using Scheme 3, we similarly converted the
DNA barcodes into antibody barcodes designed to detect three proteins [interferon
(INF)-y, tumor necrosis factor (TNF)a, and interleukin (IL)-2] at 100 ng/mL*and 10

ng/mL™". All the DNAs used were pre-validated for the orthogonality in order to avoid
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cross-hybridization and the sequences can be found in Table 3.6.1. The detection
scheme is similar to a sandwich immunoassay. Captured proteins from primary
antibodies were fluorescently visualized by biotin-labeled secondary antibodies and
Cy5-labeled streptavidin. For both cases, data averaged from multiple DNA repeats
across the chip yielded CVs that were commensurate with those of the underlying DNA
barcodes (from 10 ng/mL_1 concentration, 7% for scheme 2 and 17% for Scheme 3,
respectively). Figure 3.5.6 shows line profiles of the signal intensities along with the raw
data, and demonstrate a better uniformity for barcodes prepared according to Scheme
2. While we found that Scheme 3 could produce barcodes that were close in quality to
those of Scheme 2, the absolute (chip-to-chip) consistency of Scheme 3 is hard to
guarantee due to its use of the unstable coupling reagents 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) and NHS*. Moreover, although Scheme 3 is
faster, the detailed procedure itself is more labor-intensive. Scheme 2 can potentially be
automated. Thus, we chose Scheme 2 as the preferred barcode patterning method.

With Scheme 2, over 90% of the patterned slides showed good quality for the test.

3.2.4 Single cell assays
We validated the use of the antibody barcodes by applying them towards the multiplex
assay of cytoplasmic proteins from single cells. There is a significant body of evidence

that demonstrates that genetically identical cells can exhibit significant functional
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heterogeneity—behavior that cannot be captured by proteomics techniques that
average data across a population®*. We therefore designed a highly parallel microfluidic
device capable of isolating single/few numbers of cells in chambers with a full
complement of antibody barcodes designed to detect intracellular proteins (Figure S5,
Supporting Information). Figure 3.5.7a shows a schematic of the device and the DEAL-
based protein detection scheme. The small chamber size keeps the finite number of
protein molecules concentrated, thereby enhancing sensitivity. Assaying such a panel of
proteins would not be possible without a high density antibody array, such as the
barcodes utilized herein, for the following reasons. First, all the barcodes should fit into
such a small chamber for multiplexing. Second, since data averaging in such a spatially-
constrained scheme is impractical, it is critical to have consistent DNA loading across the

microrarray if data comparisons are to be meaningful.

We chose the U87 GBM cell line as a model system for our platform. GBM is the most
common malignant brain tumor found in adults, and is the most lethal of all cancers. As
the name implies, GBM exhibits extensive biological variability and heterogeneous
clinical behavior®. EGFR is an important GBM oncogene and therapeutic target?. Thus,
we assayed for eleven intracellular proteins associated with the EGFR-activated PI3K
signaling pathway. We provide representative sets of data for protein detection from
the lysate of one to five cells (Figures 3.5.7b and c). Eight proteins were detected from
single-cell lysate and up to nine proteins were detected from five cells when using

barcodes patterned by Scheme 2 (Figures 3.5.7b,d), whereas only one protein could be
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detected from barcodes prepared by Scheme 1 (Figure 3.5.7c). All the separate protein
assays were screened for cross-reactivity (Figure 3.5.8), and, for the cases where
recombinant proteins were available, quantitation curves for each protein assay were
measured (Figure 3.5.9). More detailed statistical analysis of these cells, as well as

genetic variants thereof, is currently being investigated.

3.3 Conclusions

We identified a protocol for generating high-quality, high-density DNA barcode patterns
by comparing three microfluidics-based patterning schemes. We find, through both
experiment and theory, that the electrostatic attractions between positively-charged
PLL substrates and the negatively-charged DNA backbone induces significant non-
uniformity in the patterning process, but that those electrostatic interactions may be
mediated by adding DMSO to the solution, resulting in uniform and highly reproducible
barcodes patterned using ~55 cm long channels that template barcodes across an entire
2.5 cm wide glass slide. Dendrimer-based covalent immobilization also yields good
ultimate uniformity, but is hampered by a relatively unstable chemistry that limits run-
to-run reproducibility. DNA barcodes were coupled with the DEAL technique to generate
antibody barcodes, and then integrated into specifically designed microfluidic chips for

assaying cytoplasm proteins from single and few lysed U87 model cancer cells.
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Successful detection of a panel of such proteins represents the potential of our platform

to be applied to various biological and, perhaps, clinical applications.

3.4 Experimental Section

3.4.1 Microfluidic chip fabrication for DNA patterning.

Microfluidic-patterning PDMS chips were fabricated by soft lithography. The master
mold was prepared using either a negative photoresist, SU8 2010, with
photolithography or an etched silicon mold generated by a deep reactive ion etching
(DRIE) process. The mold has long meandering channels with a 20x20 um cross section.
The distance from channel to channel is also 20 um, which generates 10x higher density
than standard, spotted microarrays. Sylgard PDMS (Corning) prepolymer and curing
agent were mixed in a 10:1 ratio (w/w), poured onto the mold, and cured (80°, 1 hour).
The cured PDMS slab was released from the mold, inlet/outlet holes were punched, and
the device was bonded onto a PLL coated (C40-5257m20, Thermo scientific) or
aminated glass slide (48382-220, VWR) to form enclosed channels. The number of
microfluidic channels determines the size of the microarray; 13 parallel microchannels

were used in this study.
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3.4.2 Patterning of DNA barcode arrays.

For the DNA filling test, a 30-mer DNA oligomer labeled with Cy3 fluorescence tag on
the 5’ end (5’-/Cy3/-AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3’) in a 1:1 mixture
(v/v) of 1xPBS buffer and DMSO or a 1:1 mixture (v/v) of 1xPBS buffer and deionized
(DI) water was used. The final DNA concentration was 2.5 um. DNA solution was pushed
into the channel under a constant pressure (2.5 psi). Immediately after the channels

were fully filled, fluorescence images were obtained by confocal microscopy.

Dendrimer-based microarrays were prepared using aminated substrates. Generation 4.5
Poly(amidoamine) (PAMAM) dendrimers (470457-2.5G, Aldrich), 5% wt in MeOH, were
mixed 1:1 (v/v) with EDC/NHS (0.2m) in MES buffer (0.1m, pH 6.0). After 5 min of
incubation, the activated dendrimers were introduced to the microfluidic channels, and
allowed to flow (2 h). Following a brief MeOH rinse to remove unbound dendrimers, the
channels were filled with EDC/NHS (0.2m) in MES (0.1m, pH 5.3) with NaCl (0.5m). After
0.5 h, 5" aminated DNA sequences in 1xPBS (200 um) were introduced to the channels
and allowed to flow (2 h). Thereafter, the microfluidic device was removed from the
substrate, and the latter was rinsed copiously with DI water. Prepared substrates that

were not used immediately were stored in a desiccator.

To generate the DNA barcode array for multi-protein detection and single-cell lysis test,
13 orthogonal DNA oligomer solutions (sequences are provided in Table 3.6.1) in 1xPBS

buffer (400 um) were mixed with DMSO (in 1:2 ratio, v/v) and flowed into each of the
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microfluidic channels (Scheme 2 ). For Scheme 1, DNA solutions in 1xPBS buffer were
used. The DNA-filled chip was placed in a desiccator until the solvent evaporated
completely, leaving only DNA molecules behind. Finally, the PDMS elastomer was
removed from the glass substrate and the microarray-patterned DNAs were cross-linked
to the PLL by thermal treatment (80°C, 4 h). The slide was gently rinsed with DI water
prior to use in order to remove salt crystals remaining from the solution evaporation

step.

3.4.3 Microfluidic chip fabrication for multi-protein detection.

The PDMS microfluidic chip for the cell experiment was fabricated by two-layer soft
Iithography27. A push-down valve configuration was utilized with a thick control layer
bonded together with a thin flow layer. The molds for the control layer and the flow
layer were fabricated with SU8 2010 negative photoresist (~20 um thickness) and SPR
220 positive photoresist (~18 um), respectively. The photoresist patterns for the flow
layer were rounded via thermal treatment. The thick control layer was molded with a
5:1 mixture of GE RTV 615 PDMS prepolymer part A and part B (w/w) and the flow layer
was formed by spin-coating a 20:1 mixture of GE RTV 615 part A and part B (w/w) on the
flow layer mold (2000 rpm, 60 sec). Both layers were cured (80°C, 1 hour), whereupon
the control layer was cut from its mold and aligned to the flow layer. An additional
thermal treatment (80°C, 1 hour) ensured that the two layers bonded into a monolithic

device, which was then peeled from its mold and punched to create appropriate access
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holes. Finally, the PDMS chip was thermally bonded to the DNA microbarcodes-

patterned glass slide to form the working device.

3.4.4 Cell culture.

The human GBM cell line U87 was cultured in DMEM (American Type Culture Collection,
ATCC) supplemented with 10% fetal bovine serum (FBS, Sigma—Aldrich). U87 cells were
serum-starved for 1 day and then stimulated by EGF (50 ng/mL-1, 10 min) before they

were introduced into the device.

3.4.5 Multi-protein detection.

Protein detection assays were initiated by blocking the chip with 3% bovine serum
albumin (BSA) in PBS to prevent non-specific binding. This 3% BSA/PBS solution was
used as a working buffer for most subsequent steps. After blocking, a cocktail containing
all eleven (Scheme 2 ) or three (Scheme 3 ) DNA—-antibody conjugates (~0.5 ug/mL™", 100
uL) in working buffer was flowed through the micro channels for 1 h. The unbound
DNA-antibody conjugates were washed away with fresh buffer. Then, target proteins
were flowed through the microfluidic channels for 1 hour. These were followed by a 200
uL cocktail containing biotin-labeled detection antibodies (~0.5 pg/mL™) in working
buffer, and thereafter a 200 pL mixture of 1 pg/mL™* Cy5-labeled streptavidin and 25
nMCy3-labeled M’ ssDNA in working buffer to complete the immune sandwich assay.
DNA sequence M is used for a location reference. The microchannels were rinsed with

working buffer once more before the PDMS chip was removed; the bare microarray
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slide was rinsed sequentially with 1xPBS, 0.5xPBS, DI water, and was finally subjected to

spin-drying.

3.4.6 On-chip cell lysis and multiplexed intracellular protein profiling from single cells.
The multi-protein detection procedure described above was slightly modified for
intracellular protein profiling experiments. Again, the chip was initially blocked with a
3% BSA/PBS working buffer, followed by a 200 uL cocktail containing all eleven DNA-
antibody conjugates (~0.5 ug/mL™, Table 3.6.2) in working buffer (continuously flowed
for 1 h). Unbound DNA-antibody conjugates were washed off with fresh buffer. The lysis
buffer (Cell Signaling) was loaded into the lysis buffer channels while valve 1 (V1 in
Figure 3.5.7a) was kept closed by applying 15—20 psi constant pressure. Then, cells were
introduced to the cell loading channels and microfluidic valves (V2 in Figure 3.5.7a) were
closed by applying 15-20 psi constant pressure; this converts the eight channels into
120 isolated microchamber sets. After cell numbers were counted under microscope, V1
valves were released to allow diffusion of lysis buffer to the neighboring microchamber
containing different numbers of cells. The cell lysis was performed on ice for two hours.
After that, the V2 valves were released and the unbound cell lysate was quickly
removed by flowing the fresh buffer. Then, a cocktail containing biotin-labeled detection
antibodies (~0.5 pg/mL™, 200 uL) in working buffer was flowed into the chip for 1 h on
ice, followed by flowing a 200 pL mixture of Cy5-labeled straptavidin (1 ug/mL™) and
Cy3-labeled M’ ssDNA (25 nm) in working buffer to complete the sandwich

immunoassay. Finally, the microchannels were rinsed with working buffer, the PDMS
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chip was removed, and the bare microarray slide was rinsed sequentially with 1xPBS,
0.5xPBS, DI water, before spin-drying. The layout of the chip and used inlets for

different solutions were described in Figure S5.

3.4.7 Data analysis.

The microarray slide was scanned with the GenePix 200B (Axon Instruments) to obtain a
fluorescence image of both Cy3 and Cy5 channels. All scans were performed with the
same setting of 50% (635 nm) and 15% (532 nm) laser power, 500 (635 nm) and 450
(532 nm) optical gain. The averaged fluorescence intensities for all barcodes in each
chamber were obtained and matched to the cell number by custom-developed Excel or

MATLAB codes.

3.4.8 Molecular dynamic simulations.

The MD simulations were performed with the all-atom AMBER2003 force field*®* using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code®. As an
initial structure, a single strand of DNA (5’-ACCCATGGAGCATTCCGGG-3’) whose base
pairs were randomly chosen was built using Namot2 program>’. Near the DNA strand,
19 sodium counter ions were included to neutralize the negatively charged 19
phosphate groups on the DNA backbone. Then, this is immersed in a solvation box
composed of either 1) 5206 water molecules+106 DMSO molecules or 2) only 5206

water molecules. We used TIP4P model to describe the water interactions2. We
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performed 3 ns NPT MD simulations using Nosé—Hoover thermostat with a damping
relaxation time of 0.1 ps and Andersen—Hoover barostat with a dimensionless cell mass
factor of 1.0. The last 1 ns trajectory is employed for the analysis. To compute the
electrostatic interactions, the particle-particle particle-mesh method® was employed

using an accuracy criterion of 107,
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Figure 3.5.1 (a) Surface treatment schemes. (b) Design of the DNA patterning device
(top) and fluorescence image of DNAs filled into the channel (still in solution). Outer five
channels are filled with DNAs in 1:1 mixture of PBS and water (Scheme 1). Inner five
channels are filled with DNAs in 1:1 mixture of PBS and DMSO (Scheme 2). Three
channels in between are left empty for visualization. (c) Fluorescence images of
patterned DNAs by three Schemes.
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Figure 3.5.2 The microfluidic flow-patterning process to form the DNA barcodes. As
solvent evaporates through the PDMS elastomer, the concentration of the DNA
oligomer solution increases. The oligomers are eventually deposited on the
microchannel surfaces. (a) Fluorescence images of DNA solutions during the drying
process for Schemes 1 and 2, in the region of the receding meniscus, and near the outlet
(left) and inlet (right) sides of the microchannel. Note that, at the inlet side, the
fluorescence intensity near the receding meniscus is very high — evidence of the high
local concentration of DNA due to solvent evaporation. The channel filled according to
Scheme 1 exhibits no significant DNA near the channel outlet due to excessive
electrostatically-driven depletion near the inlet side. The red arrow indicates the
location of the meniscus. (b) Schematics for the drying process with different local
concentrations. A high local concentration is required to achieve suitable DNA loading
on the substrate.
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Figure 3.5.3 Electrostatic adsorption of DNAs on PLL surface and DMSO effect. (a)
Schematic figure of the filling step. (b) Simulation result of electrostatic adsorption of
DNAs to PLL surface. (c) Molecular simulation of DMSO effect: the radial distribution
function of P atom of the phosphate group and the sodium ions. The presence of DMSO
pumps sodium ions from the 2" shell to the 1% shell (arrow). (d) Schematics for DMSO

effect. Green circles represent sodium ions.
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Figure 3.5.4 Results from experiments designed to more fully understand the effect of
electrostatic adsorption of DNA within the microchannels during flow patterning. (a)
Measurements of the flow speed of PBS solution of DNA oligomers (Scheme 1) and
PBS/DMSO solution (Scheme 2) in the microfluidic channels. The filling process was
optically monitored and recorded as a movie. The speed was calculated when the flow
makes the fifth turn in the channel. The filling speed for Scheme 2 was less than that of

Scheme 1, an observation that is attributable to the differential channel wetting
between the two schemes (inset). The wetting of the PBS/DMSO Scheme 2 fluid was
significantly better, a factor that minimizes bubble formation in the channel during the
drying step. (b) Fluorescence images of DNA patterned within the microchannels of an
O, plasma treated bare glass/PDMS device. The highly negative surface induced by
plasma treatment minimizes electrostatic adsorption of DNA, resulting in uniform DNA
distribution for both Scheme 1 and Scheme 2. The PDMS was solvent extracted just
prior to bonding in order to prolong its hydrophilicity following plasma treatment.
Panels 1, 2, and 3 represent different locations in the flow patterning device.
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Figure 3.5.5 Molecular simulation result of the influence of DMSO in the Scheme 2
process. The radial distribution function of the P atom of the phosphate group of the

DNA backbone and O atom of the water molecule is not influenced by the presence of
DMSO.
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Figure 3.5.6 Raw data extracted from multi-protein calibration experiments performed
on a substrate prepared by Scheme 2 (a) and Scheme 3 (b). Signal intensity profiles
sampled from one analysis channel per concentration are quantified in white. Scale bar:
2 mm.



86

A Phospho-PDGF RB
B Phospho-Src

C Phospho-TOR

D Phospho-p70 S6

E Phospho-GSK-3a/B
F Negative control

G Phospho-p38a
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Figure 3.5.7 A schematic representation of the single-cell, intracellular protein analysis
device. Single or few cells are incubated in an isolated chamber under varying stimuli.
Intracellular proteins are assayed by introducing a pre-aliquoted lysis buffer, whereupon
the released proteins bind to the DEAL (DNA-labeled antibody) barcode within the
chamber. The benefits of utilizing a high-quality barcode are apparent when comparing
data between substrates patterned using Scheme 2 (b) and substrates patterned using
Scheme 1 (c). Protein names listed in red font correspond to those which were detected
using Scheme 2 barcodes.
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Figure 3.5.8 Antibody cross-reactivity tests. All antibodies were pre-selected based on
such cross-reactivity tests. A pin-spotted DNA microarray was used for a DEAL-based
protein detection approach - similar to the assays used within the SCBC microfluidic
devices for single cell proteomics. Each row shows the results from different conditions.
For all conditions, the same cocktail of DEAL conjugates was used, and included one
conjugate for each of the 11 proteins assayed. For each row, only one target
recombinant protein was tested. The target proteins were introduced at concentrations
between 5-50 ng/mL, depending on the sensitivity of each antibody pair. Red spots are
signals from the target proteins and the green spots are reference signals from Cy3-
labeled DNA sequence M’ Phospho-VEGFR2 was not validated because the
recombinant protein is not commercially available.
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Figure 3.5.9 Calibration data for proteins in the panel. (a) Representative scanned
images showing serial dilution measurements of selected proteins. Recombinant
proteins were serially diluted (50 ng/mL, 10 ng/mL, 1 ng/mL, 100 pg/mL, 10 pg/mL and O
pg/mL) in 1X PBS and flowed into the different microchannels of the microfluidic device
for cell lysis analysis. Valves were immediately closed to compartmentalize standard
proteins into microchambers followed by on-chip lysis buffer diffusion on ice for 2 hr. (b)
Calibration curves of EGFR, p-ERK, p-p38a, p-GSK3a/B, p-p70S6K, p-mTOR and p-Src are
plotted based on the results from a) to demonstrate the quantitative characteristics of
the analysis. The sensitivities identified from the calibration curves are similar to

standard ELISA sensitivities (e.g. EGFR: ~10 pg/mL, p-p70S6K: ~100 pg/mL, p-mTOR:
~200 pg/mL).
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3.6 Tables
Name Sequence Tm°C
(50mM NacCl)

A 5'- AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA-3' 57.9
A' 5' NH3- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3' 57.2
B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3 57.4
B' 5' NH3AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3 55.9
C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 57.6
c' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 56.2
D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 56.5
D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 55.7
E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 55.7
E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 54.7
F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 56.9
F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 56.1
G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 59.3
G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 58.6
H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 59.9
H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 60.8

| 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 60.1
I 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 60.1
J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 56.5
J! 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 57.5
K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 55.4
K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 56.3
L 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 57.2
M 5'-Cy3-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 57.6
M’ 5' NH3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 56.9

Table 3.6.1 Sequences and terminal functionalization of oligonucleotides: All
oligonucleotides were synthesized by Integrated DNA Technology (IDT) and purified via
high performance liquid chromatography (HPLC). The DNA coding oligomers were pre-
tested for orthogonality to ensure that cross-hybridization between non-
complementary oligomer strands was negligible (<1% in photon counts).
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DNA Code Antibody Source

A Human p-PDGFRB (Y751) kit R&D DYC3096
B' Human p-Src (Y419) kit R&D DYC2685
c' Human p-mTOR (52448) kit R&D DYC1665
D' Human p-p70S6K (T389) kit R&D DYC896
E' Human p-GSK3a/B (S21/59) kit R&D DYC2630
G' Human p-p38a (T180/Y182) kit R&D DYC869
H' Human p-ERK (T202/Y204) kit R&D DYC1825
I Human p-JNK2 (T183/Y185) kit R&D DYC2236
K' Human total EGFR kit R&D DYC1854
L' Human total P53 kit R&D DYC1043
J Capture: rabbit anti-human p-VEGFR2 (Y1214) Abcam ab31480

Detection: biotin-labeled mouse anti-human VEGFR2 Abcam ab10975

Table 3.6.2 Summary of antibodies used for cell lysis experiments: All antibody pairs
except p-VEGFR2 were purchased as ELISA kits of R&D systems (DuoSet® Elisa
Development Reagents) containing capture antibodies, biotinylated detection
antibodies and standard proteins. Capture antibodies bind both phosphoryalted and
unphosphorylated proteins. The biotinylated detection antibodies detect only the
phosphorylated variants of the proteins. VEGFR2 capture antibody, p-VEGFR2 (Y1214)
detection antibodies were purchased from Abcam.
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Chapter 4

A Robotics Platform for Automated Batch Fabrication of
High Density, Microfluidics-Based DNA Microarrays, with
applications to single cell, multiplex assays of secreted
proteins.

4.1 Introduction

Miniaturized DNA and antibody arrays, when incorporated into microfluidics
environments, provide an appealing technology for multiplexed detection of biological
molecules from small biospecimen samples, such as tissue extracted from skinny needle
biopsies, pinpricks of blood, or single cells. Traditional robotics spotted DNA arrays are
typically characterized by 150 um spot sizes, patterned at ~300 um pitch, which limits
their use in many microfluidics-based applications. However, those arrays can be
produced in both high throughput and high quality, with typical spot variation ranging
from 5-10% across individual substrates, and 10-30% between substratesl'a; this makes
spotted arrays widely available for a host of standard biological assays. Approaches
towards the production of miniaturized DNA arrays include photolithography®>, dip-pen
lithography® ’, microfluidics-based flow-patterning®*3, and, for relatively simple arrays,

14-16

microstamping We have utilized microfluidics-based flow patterning to prepare
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DNA barcodes over entire glass substrates, with stripes of 20 um width at a pitch of 40-
50 um. This represents an approximately 10-fold increase over what can be achieved
using spotted arrays. When these stripes are entrained in designed microfluidics chips,
they can be converted into high density antibody arrays'’?° for multiplexed assays from
few nanoliter volume biological sample521, or even single cells®’. However, miniaturized
DNA barcode preparation is done manually, and so are limited in their use. We report
here on a robotics platform which enables relatively high throughput production of
miniaturized DNA barcode arrays. The platform achieves high barcode uniformity across
the surface of a single chip, and high reproducibility from chip-to-chip. We
demonstrate the value of the technology by applying it towards a platform designed to
simultaneously assay a panel of eleven secreted proteins from single cells, with >1000

single and few-cell assays executed in parallel on a single microchip.

The challenges associated with automating the production of flow patterned
barcodes are two-fold. First, there is the problem of scale. The barcodes are initially
patterned as ~0.8m long, 20 um wide stripes of ssDNA that meander over the surface of
an aminated or poly-L-lysine-coated glass slide. Most applications yield improved
performance as the DNA loading within a given stripe is increased®, and so it is
important to maximize both high and uniform loading across the entire length of these
channels. The aspect ratio of each stripe (10>-10°), coupled with the loading
requirements, places severe demands on the flow patterning chemistry, which has been
recently optimizedzz. In addition, a full barcode pattern is comprised of between 10 and

50 stripes, each of which represents a distinct ssDNA sequence. Thus, a robotics system
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must self-align a large number of injectors with a given elastomeric mold at an
alignment precision of order 100 um, and it must do so multiple times across a ~900 cm?

area, in order to sequentially and automatically address many chips.

The second challenge relates to the mechanical characteristics of the elastomeric
flow patterning mold. This mold is only weakly bonded to the glass surface; it must be
removed once the barcoding process is complete. In addition, the individual stripes
within a barcode are separated from one another by as little as 20 um, which is the wall
thickness of microchannels in the flow patterning template. Thus, the machine’s
injector head must mate and then disengage each flow patterning elastomeric chip very
gently, and the intermediate DNA injection process must be executed at low pressures
to prevent both wholesale elastomer delamination and localized channel-to-channel

delamination, both of which lead to chip failure.

We first give a brief overview of the robotics-driven sequential production of up
to 18 barcoded glass slides, followed by a statistical evaluation of the quality of the
barcoded slides - both in terms of barcode variability on a given slide, and across
different slides produced in the same run. We then discuss the application of these

barcoded substrates towards multiplex assays of secreted proteins from single cells.
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4.2 Experimental Section

4.2.1 Robotics design.

The robotics-driven flow patterning apparatus is shown in Figure 4.1A. Major
components of the robotics are numerically labeled in the figure, including the chip
support tray (#1), the injector module (#2), the DNA solution reservoirs (#4), and the
translation motors (#5). A detailed scheme of the injector module is presented in
Figure 4.1B; the injector employs a standard microfluidics interfacing scheme wherein
stainless steel pins are inserted into punched access holes that bridge the top surface of
the PDMS flow patterning molds with the microchannel/glass surface interfaces below®*
2% The stainless steel pins are embedded within a laser-drilled acrylic “injector plate”,
and are arranged according to a pre-determined pattern that matches the substrate
access holes (Figure 4.1C). This scheme allows for a high density of fluidic inputs, and it
reduces substrate filling to a parallel process. However, the scheme also introduces a
challenge related to the alignment of the pins to the access holes: the pins are 650um in
diameter while the access holes are only 500um. The dimensional mismatch forces the
elastomer to expand upon interfacing and thereby form a leak-proof seal around the
pins. However, the soft nature of the elastomer also means that misalignment of the

two components can lead to unwanted deformation or unintended puncturing of the

PDMS instead of smooth mating of pin and hole. The problem is compounded by the
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fact that all the pins must be aligned across simultaneously, leaving very small

tolerances for angular misalignment.

As such, substrate-injector alignment is done in two phases. A pre-alignment is
achieved by virtue of the plastic cutouts on the substrate tray, which loosely define the
locations of the (up to) 18 PDMS flow patterning chips. Finer alighement is provided by
a Cognex 1S5400 camera system mounted to the side of the injector head. Prior to
engaging each substrate, the camera is positioned directly over the chip and images the
access hole pattern, comparing it to a pre-trained image using built-in pattern
recognition algorithms (Figure 4.1C); x, y, and 6 deviations are reported to the control
software which adjusts the appropriate translation stages and re-images the substrate
iteratively until a null deviation reading is achieved. The injector head is then shifted a
pre-calibrated distance to align with the substrate and is slowly lowered into place until

the pins sink 1 mm into their corresponding access holes.

Once engaged, DNA solutions are supplied to the injector head from a set of adjacent,
disposable microvials via short lengths of Tygon tubing. The delivery of precisely
metered, microliter scale aliquots, is typically accomplished by external syringe pumps,
but we offload metering responsibility to the PDMS chips themselves. Specifically, the
microfluidic channels were fabricated with a set of input access holes, but no output
holes, thereby creating a closed system upon substrate engagement. Because PDMS is
air permeable, a pressurized solution injected into the input ports can displace air within
the microchannel until it reaches the end ?>. In this way, a very precise volume, defined

by the input access hole and microchannel dimensions, is metered into each channel.
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The on-chip metering allows for a relatively simple implementation of the pressure
system used to drive solutions, as depicted in Scheme 1. Briefly, compressed air is first
regulated to the pressure required to drive solutions through their microfluidic
channels. Typical pressures range from 2-5psi, and are set with inverse proportion to
the pattern density of the chip in order to prevent cross-contamination of solutions
from adjacent channels. A proportional valve conveys the pressure via a gentle ramp to
avoid splashing the solutions in their microvials downstream, and a pair of three-way
solenoid valves integrates this pressure line to establish one of three pressure states in
the microvials: positive pressure, vented, and closed. After engaging a substrate, the
microvials are gently pressurized to drive their solutions into the microchannels. Once
filling is complete, the solenoids reconfigure to vent the microvials, and then
reconfigure again to create a closed system prior to disengaging. This final state helps
to balance hydrostatic pressures and prevent leaking from the injector pins in the

disengaged state.

Disengaging the injector head from a substrate requires additional engineered
components: because the injector pins form a tight seal with their corresponding
substrate access holes, care must be exercised to prevent the PDMS mold and glass
substrate from delaminating while extracting the pins. The injector plate is therefore
fitted with four pneumatic pistons whose rods secure a second “pressure plate” to its
underside. Matching through holes in the pressure plate enable the injector plate pins
to protrude beneath it during substrate engagement and manipulation. When

disengaging a substrate, this pressure plate is extended to brace the PDMS firmly
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against the slide tray while the pins are extracted. The entire injector/pressure plate
assembly slides into a slot on the machined injector carriage and is reproducibly located
via two shoulder screws. This modular implementation makes it easy to swap injector
heads with different pin configurations from run to run, thereby allowing significant

flexibility in substrate design.

4.2.2 Substrate fabrication.

We standardized virtually all aspects of the microfluidic flow channel chip dimensions,
and streamlined their productionzs. To generate PDMS substrates, a deep reactive ion
etched (DRIE) Si master is clamped between two machined aluminum plates; the upper
plate contains cutouts that will define the substrate dimensions, and the master is
positioned such that its features are aligned within these cutouts (Figure 4.2A/B). The
resulting dimensional uniformity, particularly in thickness, obviates the need for
sophisticated depth control when interfacing the injector head with substrates; a pre-
calibrated constant is sufficient. The most critical substrate features, however, are the
access holes which bridge the microfluidic channels with the top side of the substrate.
We developed a template to mold the access holes as the substrate cures. Specifically,
stainless steel wires are embedded into a laser-drilled acrylic plate in the required
pattern. After pouring PDMS into the aluminum/silicon mold assembly (Figure 4.2A),
this plate is secured to the top side such that the wires extend into the PDMS below.
Upon curing, the plate is removed, leaving behind the templated inlet and outlet ports.

The wires do not extend completely to the underlying Si mold, which prevents damage



101

to the Si mold. Thus, a very thin membrane of PDMS at the bottom of each access hole
is retained. For the inlet ports, these membranes are easily punctured in a single step
by pressing the substrate onto the top side of the same acrylic plate used to originally
mold the holes. The thin membranes are retained in the outlet ports. This means that
we are able to generate a dead-end fill substrate that yields extremely consistent
metering volumes and also fills relatively quickly due to the high air permeability of the

thin membranes at the output half.

4.2.3 Software and Operation.

The instrument’s mechanical components are all controlled by custom software written
in National Instruments Labwindows/CVI. Stage motion is powered by a standard 6K 4-
Axis Motion Controller, while a NI DAQ card (PCI-6052E) provides digital and analog
outputs to regulate an array of relays, solenoids, and proportional valves. The software
presents an interface that allows users to click which of the 18 microchip positions on
the substrate tray are to be processed. Once a run is initiated, the software assumes
active control of all components, and processes the marked substrates sequentially
without further intervention. Scheme 2 illustrates the instrument’s process flowchart
for a typical barcoding run; from the user perspective, it simply consists of laying out the
substrates in their tray, filling the microvials with DNA solutions, and loading the
appropriate configuration files before pressing a button to start the run. As such, the
user can pattern up to 18 barcode substrates with < 1 hr setup time, which is ~20-fold

faster than the manual process, and at least competitive with DNA spotter tools. When
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automated filling is complete, the barcode microarrays are finalized using the same
standard protocols employed for spotted slides: after a 24 hour incubation period, the
slides are given a short UV exposure of ~1800 mJ/cm? which crosslinks the DNA in place.
Following an additional 12 hour incubation, the PDMS is removed, the substrates are

rinsed, and are then ready for use®’.

4.3 Results and Discussion

4.3.1 Pattern fidelity and chip-to-chip consistency

We prepared a set of six 20-channel PDMS barcode substrates featuring 20um channels
at 120um pitch. For each chip, 4 adjacent microchannels were utilized to pattern 4
unique ssDNA strands, denoted A-D (SI, Table 1). To analyze the fidelity and amount of
channel-to-channel leakage that occurred during patterning, the barcoded chip was
effectively split in half, and 2 non-adjacent stripes were assayed on one half of the chip,
while the remaining two were assayed on the other half. In this way, if DNA from
channels A or C leaked into either or both of channels B or D, for example, such leakage
would be detected. The DNA stripes on the first five of the substrates were investigated
by first blocking with 1% BSA and then incubating with Cy3-conjugated complementary
DNA. Figure 4.3A depicts the raw signal from one of these substrates. Only the intended
four channels exhibit signal in a repeating fashion across the chip, and the automated

process did not lead to delamination of the PDMS from its glass substrate.
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We quantified the fluorescence signal from each of the five barcode-patterned
substrates to assay fore quality and consistency. Raw fluorescence intensities were
collected for each DNA sequence at eleven locations per chip, spanning a 28 cm length
of the flow channel. Figure 4.3b compares the averaged intensities for each stripe on
each chip. The error bars reveal high signal uniformity across the eleven imaged
regions, and the absolute signal intensities for each DNA strand are in good agreement
with one another across the five chips. DNA stripes on individual chips consistently
demonstrate <10% coefficient of variation (CV), while the averaged values for each DNA
across multiple chips exhibit < 12% CV (Figure 4.3C). These data confirm that the
automated instrument is capable of generating a high quality and consistent batch of
substrates, with a quality that is comparable to previously established standards for

hand-made substrates®.

4.3.2 Single cell secretion studies

We now turn towards demonstrating the applicability of our barcoded substrates to
miniaturized bioassays via the mutiplex detection of proteins secreted from single
macrophage cells. The barcoded glass slides are first incorporated into a microfluidics
chip, called a Single Cell Barcode Chip (SCBC) designed for the capture of single cells and
small cell colonies (Figure 4.4). Microfluidic chip designs for cell isolation and
interrogation have previously been reported albeit with different detection schemes®
30

. Here, the DNA barcodes are then converted into antibody barcodes using a cocktail

of DNA-labeled capture antibodies™. Cells are then introduced and isolated into any of
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approximately 1000 separate 3 nanoliter volume microchambers on the SCBC. The
numbers of cells in a given chamber are recorded; of the 1000 such experiments on a
single chip, typically 100-200 are single-cell experiments, while the remaining are 0-cell,
2-cell, 3-cell, etc., experiments (Figure 4.4B). The chip is then incubated for a period of
time during which the captured cells secrete proteins that are selectively captured by
the antibody barcodes. The cells are then washed from the chip and a cocktail of
detection antibodies and fluorescent dye labels are added to develop the protein assays
(Figure 4.4B,C). The measured fluorescence levels from the individual barcode stripes
are digitized and then compared against calibration curves (Figure S1) to provide an
estimate of the numbers of protein molecules detected, which, in turn, vyields
information on the sensitivity of the robotics-patterned antibody barcodes. By
comparing the statistics of protein secretion levels from single cells assayed on one chip
with identical assays from a second chip, the chip-to-chip variability can be assessed. A
related SCBC, but designed for assaying phosphorylated membrane and cytoplasm
proteins from single, lysed cancer cells, has been recently reported by us*2. That chip
utilized hand-made barcode patterns, and only permitted ~120 single- and few-cell

experiments per chip, but was otherwise similar in concept to the chip described here.

The DNA barcodes utilized for this demonstration were 20-element arrays.
Twelve of the elements were used for the bio-assay, and each contained one of 12
unique DNA sequences, A-M (SI, Table S1), flow-patterned with a stripe width of 20um
and at a 50um pitch. Two substrates from a batch of four were carried forward for the

cell assays; the barcoding PDMS was removed and the new microfluidic device (Figure
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4.4A) was bonded in its place. Eleven of the DNA stripes were converted to form an
antibody array, with antibodies chosen to correspond to secreted proteins. They
included: Monocyte Chemoattractant Protein (MCP)-1, Interleukin (IL)-6, Granulocyte
Macrophage Colony Stimulating Factor (GMCSF), Macrophage migration Inhibitory
Factor (MIF), Interferon (IFN)-y, Vascular Endothelial Growth Factor (VEGF), IL-10, IL-8,
Matrix MetalloPeptidase (MMP)-9, and Tumor Necrosis Factor (TNF)-a, and IL-2. [IL-2 is
not expected to be secreted from macrophage cells, and so serves as a negative control.
The remaining DNA stripe provides an alignment reference for the final read-out. Once
the antibody array is assembled, the cells were prepared for loading. We investigated
the human monocyte cell line, THP-1. These cells were first differentiated into the
macrophage lineage using phorbol 12-myristate 13-acetate (PMA) and stimulated with

lipopolysaccharide (LPS) 3!

and then loaded, as a dilute suspension, into the 80
microchannels that span the length of the barcoded glass slide. The PMA elicits a
morphological change in the THP-1 cells (Figure S2), and LPS activates the Toll-like

3233 amulating the response of macrophages to gram

Receptor-4 on the cell surface
negative bacteria. A set of 14 integrated valves®® are activated to divide the
microchannels into 1040 discrete microchambers, each containing single or small
numbers of cells (Figure 4.4A). Each chamber is examined to record the number of cells
it contains, and the entire platform is then placed in a CO, incubator at 37°C for 24
hours while secreted proteins are recorded onto the antibody microarray. Afterwards,

the cells are flushed from the microchannels, and the protein assays are developed with

a cocktail of biotinylated secondary antibodies followed by the addition of Streptavidin-
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Cy5 fluorophores. The fluorescence intensities are digitized through the use of an Axon
GenePix 4400A array scanner, coupled with custom written image processing routines.
The resulting data is a table that lists, for each microchamber, the numbers of cells in
that microchamber, and the digitized fluorescence for each of the assayed proteins and

the DNA alignment reference stripe.

We quantified our raw data by first establishing a signal baseline. For each protein
assayed, we averaged the raw signal values across all the individual chambers which
contained single cells. Using the averaged signal recorded from the IL-2 assay stripes as
the noise level, we calculated the signal-to-noise (S/N) for each protein, and set a
threshold of S/N > 4 to signify positive detection of a protein. By that standard, nine
proteins were identified (S/N levels are in parentheses after the protein names): IL-6 (4),
INF-y (14), GMCSF (27), VEGF (89), IL-10 (190), MMP9 (498), IL-8 (560), TNF-a (566), and
MIF (1504). Comparisons against separately generated calibration curves
(Supplementary Fig S1) revealed limits of detection that were similar to or slightly worse
than commercial ELISAs. For example, VEGF yielded 3 pg/mL vs 2.5 pg/ml and IL-8

yielded 75pg/mL versus 25 pg/mL.

Full analysis of the single cell secretome data is beyond the scope of this paper,
and so we simply provide some preliminary analysis of the data in order to validate the
barcode and chip technology. Figure 4.4B depicts a set of four adjacent chambers, two
of which contained single cells and two of which contained four cells each. We grouped
the (background-subtracted) data according to numbers of cells per microchamber. The

data within each group was then sorted according to the level of MIF secretion. Error
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bars are plotted for many of the data points; these are derived from chambers that
contained two copies of the 20-element barcode and thereby vyielded replicate
measurements from which measurement error could be estimated. The plot of Figure
4.5A clearly demonstrates a cumulative effect in the observed signal, as increasing
numbers of cells yields a greater proportion of chambers with high signal levels. The
maximum signal level for each of the shown set of experiments is near saturation and so
does not increase with increasing numbers of cells. Note that a percentage of the n=1,
2, and 3 cell chambers yield MIF signal levels that are similar to those observed for the
0-cell chambers: 52% (1 cell), 37% (2 cell), 22% (3 cell). These values consistently
indicate that between 50 and 60% of the individual macrophage cells secrete low levels
of MIF, but they also indicate that the 1, 2, and 3 cell data sets represent sets of
measurements that are distinct from each other, and distinct from the O-cell data.
There was no correlation between the level of secreted protein and the location of the
associated microchamber on the chip surface.

A heat map of protein secretion levels for the single cell experiments is provided

d*?") nature

in Figure 4.5B. This data demonstrates the stochastic (and not unexpecte
of protein expression at the single cell level. These single cell fluctuations, for a given
protein level, can be compared between two chips as a means of comparing the chip-to-
chip variability. While any given microchamber may vyield a very different result from
another microchamber, a statistically significant measurement of the single cell

fluctuations, as recorded on one chip, should be indistinguishable from those recorded

on a second chip. Such a comparison is provided in Figure 4.5C between data sets
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collected from two different chips, and both the average protein level and the detailed
distributions prove to be chip-independent. Similar analyses were also done for the
proteins MMP9 (p=0.640) and TNF- a (p= 0.435) (Figure S3); among the remaining
proteins, only IL-8 & IL-10 fail to yield p-values above 0.1. Of these two proteins, time-
studies (not presented here) indicate that the secretion of IL-10 is delayed relative to
the other proteins, and so longer time studies would likely increase the chip-to-chip p-
values for this protein. IL-8, while secreted early, is also characterized by ca. 10x higher
background signal, and so is intrinsically a less reliable measurement than the other
detected proteins. The results indicate a high level of consistency across both a single
microchip, and across multiple chips. This means that data taken from different chips

could be seamlessly integrated to increase sampling statistics.

4.4 Conclusions

Traditional DNA microarray technology has proved an exceedingly useful tool, thanks in
part to the development of significant infrastructure dedicated to microarray production
and processing. As the applications of microarrays continue to evolve, there is a strong
march towards further miniaturization. Alternative technologies such as dip-pen
Iithographys’ 7. electrohydrodynamic jet printing38, and spotting with custom-built,
nanostructured spotting pinsag, are pushing the low-micron to sub-micrometer
patterning regime. Although microfluidic flow patterning does not yet extend to sub 10-

micrometer features, it provides an attractive combination of multiplexing,
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miniaturization, and throughput. The approach also permits flexible spot morphology
and requires readily-accessible materials that allow cost-effective, in-house chip
fabrication. However, in order to match the convenience and availability of spotted
microarrays, an automated solution is needed to generate flow patterned substrates.
The approach described here implies that microfluidics-flow patterned substrates can
be reliably and reproducibly prepared using robotics-based automation, and that the
resultant antibody barcode arrays exhibit assay characteristics that are at least as good

as those prepared using standard, spotted arrays.
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4.5 Figures

locating
|, shoulder
screw

| Pressure Plate

Figure 4.5.1 (A) An overview of the instrument as implemented. Substrates are arrayed
on the slide stage (1) and thereafter are addressed sequentially by a mobile injector
head (2). A camera system (3) images the substrates’ access holes to guide alignment as
the injector interfaces each substrate, and reagents are supplied from a set of adjacent
microvials (4). Mechanical motion in the x, y, z, and 0 axes is effected by a combination
of linear stages and stepper drives (5). (B) Schematic detail of the injector assembly
illustrates the pin interface used to engage each substrate and the pneumatic pressure
plate which prevents delamination when disengaging. (C) Sample image from the
camera system during substrate alignment. The field of view encompasses just one
corner of the substrate; green circles (enhanced for clarity) indicate access holes in the
PDMS that have been recognized by the software’s pattern recognition algorithm and
are used to finely adjust the injector head prior to interfacing. Scale bar: 2mm
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Figure 4.5.2 The aluminum stencil used to fabricate each PDMS substrate standardizes
overall dimensions and access hole placement and size. A silicon wafer bearing barcode
microfeatures is first sandwiched between two aluminum plates; PDMS precursor is
poured into the cutouts and acrylic plates for molding access holes are affixed on top.
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Figure 4.5.3 (A) Fluorescence image of a barcode microarray that is validated with
alternating DNA sequences to check for unintended crosstalk or contamination. The
channel morphology is overlaid on the bottom repeat; each microchannel meanders
across the chip to create multiple repeats of the same pattern. (B) Average
fluorescence intensities for DNA sequences A-D are quantified for five separate barcode
substrates patterned by the instrument. Error bars represent the standard deviation
calculated from eleven measurements per sequence. (C) coefficients of variance for
each DNA sequence calculated from eleven regions of each chip. The averaged intensity
for each sequence is then compared amongst chips and a CV is calculated to quantify
chip-to-chip consistency.
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Figure 4.5.4 (A) Optical micrograph of the single cell secretion microfluidics, with
schematic inlay of two discrete chambers. Raw data cropped from four adjacent
chambers is depicted in (B); the green bar is used for registration while red bars
represent protein data. (C) Schematic representation of single cell secretion
experiments. Capture antibodies are arrayed onto a barcode microarray via DEAL
chemistry and sequester proteins secreted from an adjacent cell. The assay is
developed by flushing with detection antibodies and a fluorescent reporter that form an
ELISA-like sandwich.
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Figure 4.5.5 (A) The distribution of MIF secretion for chambers containing between zero
and three cells is plotted. Chambers with more cells exhibit a greater proportion of
elevated signals, implying a cumulative effect. Error bars represent standard deviations
that are calculated from barcode repeats within individual chambers. (B) Heat maps
depicting protein secretion for chambers with single cells on each of two chips. Proteins
labeled “*’ and “**’ were contrast enhanced at 10x & 100x original signal levels for
clarity. (C) Scatter plots of MIF secretion in single cell chambers illustrate the
distribution of secretion profiles; the horizontal line represents the average of all the
individual measurements.
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Scheme 4.5.1 Schematic representation of the instrument’s simplified pressure system
for driving reagents.
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Scheme 4.5.2 Flowchart comparing tasks required of the user and those required of the
instrument to prepare a batch of barcode microarray substrates.
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4.7 Appendix A: Source Code

The following pages contain Labwindows CVI source code used to control and
coordinate the robotics hardware. Small pieces of code may be commented out for
convenience during development, and as such this should not be considered

production-ready code.
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33

34

35
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38
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#include  "alignScore.h"
#finclude  <dataskt.h>
#finclude  <analysis.h>
#include  <dataacg.h>
#finclude  <easyio.h>
#include  <tcpsupp.h>
#include  <winerror.h>
#include <formatio.h>
#include <ansi c.h>
finclude  <cvirte.h>
#include  <utility.h>

#include  <userint.h>

#include "lowlvlio.h"
#include "mainPanel.h"
#include "calibration.h"

const int MAXSLIDES = 18;

const double MAXPROPV = 10.0;

static int Hn mainPanel;

static int Hn calibratePanel;

static int Hn ICDpanel;

static int Hn SLpanel;

static int Hn FLpanel;

static int Hn AlignPanel;

const char sixK IP[] = "192.168.10.30";

DSHandle DataSockets[7] = {0,0,0,0,0,0,0}; //
AngleSocket, ColumnSocket, RowSocket, OnlineSocket, JobReadSocket,
JobWriteSocket, PatternScoreSocket

int DIOports[8] = {0, 1, 2, 3, 4, 5, =1, =1}; // 0]
backlight [1] psi/vent for pistons [2] low psi/vac [3]
psi/vent [4] pressurePlate pistons [5] contact sensor 2 [6,7]
undefined

int slides[18]1[5]; // [0] Cntrl ID [1]
activated [2] process complete icon [3] examine icon [4]

error icon

int CslidePos[18]1[3]1; // [0] Cntrl ID [1] Xpos
label [2] Ypos label

int activeSlideColor, inactiveSlideColor, processColor;

int pauseFlag;

int sixK TCP 0;

int cutScore = 92;
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81

float imagingZ = 0;

float slidePos[18][2]; // [0] x

pos [1] vy pos //indexed to CntrlID of array
"slides[18] [5]" above
float CI_XShift, CI_yShift, CI_tShift;

char slidePosFile[80] = "slidePos.dat";
char jobsFileName[80] = "jobFiles.jbf";
Voo 6k Status bits *HKx

int activeMotion = 0;

float position = 0;

#define MOTIONCOMPLETE 1
#define POSITION 2

/**************************/

/***** 6k variables *****/

float encX, encY, encZ, encT; //encoder

positions (response to TPE);

/**************************/

void backlight (int status)

//turns the
backlight on or off
{

WriteToDigitallLine (1, "O", O, 8, 1, status);
return;
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void InitializeVars()

{

slides[0][0]
slides[1][0]
slides[2][0]
slides[3]1[0]
slides[4]1[0]
slides[5][0]
slides[6][0]
slides[7]1[0]
slides[8][0]
slides[9][0]
slides[10][0]
slides[11][0]
slides[12]1[0]
slides[13]1[0]
slides[14]1[0]
slides[15]1[0]
slides[16][0]
slides[17]1[0]

mainPanel slidel;
= mainPanel slide2;
= mainPanel slide3;
= mainPanel slide4;
= mainPanel slide5;
= mainPanel slide6;
= mainPanel slide7;
= mainPanel slide8;
= mainPanel slide9;

mainPanel slidelO;

= mainPanel slidell;

= mainPanel slidel2;

= mainPanel slidel3;

= mainPanel slidel4;

= mainPanel slidel5;

= mainPanel slidel6;

= mainPanel slidel7;

= mainPanel slidel8;

activeSlideColor = MakeColor (240,

inactiveSlideColor = MakeColor (212, 208, 200);
= MakeColor (240,

processColor

return;

void setStatus (char* message)

{

SetCtrlval (Hn mainPanel, mainPanel txtStatus, message);

return;

200,

240, 240);

200) ;

//update status message

void send6kCmd (char* cmd)

{

char sendCmd[80];
char errorMsg[120];

char ts[2] =

int err = 0;

{(char)13, '\0'"};
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sprintf (sendCmd, "%$s%s\0", cmd, ts);

err = ClientTCPWrite (sixK TCP, sendCmd, strlen(sendCmd), 0);
if(err < 0)

{ sprintf (errorMsg, "TCP error - command: %s was not sent" ,
sendCmd) ;
MessagePopup ("Comm error", errorMsg) ;
}
return;

void finishStageMotion ()

{

char sendString[80];

sprintf (sendString, "WAIT (MOV=b0000): WRITE\"#%i\""
MOTIONCOMPLETE) ; //wait while movement on axes; write
send6kCmd (sendString) ;

//"motion complete" code when stopped.

while (activeMotion)
{7/
Delay(0.5);
//causes multiple responses to pile up

ProcessSystemEvents () ;

return;

void HomeStages ()

{

//

setStatus ("Homing Stages...");

activeMotion = 1;

//anticipate upcoming motion

send6kCmd ("DRIVE1111");

//

//enable all stages
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send6kCmd ("HOM111x") ;
//intiate homing
sendokCmd ("4MALl: 4D0: 4GOM);
mode on axis 4 and go home
finishStageMotion() ;
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//set absolute

//wait
until stages finish moving
send6kCmd ("4MAO") ;
//return to incremental mode on axis 4
setStatus("");
return;
}
void setStageMovement (int setting) //SETTINGS: 1: all
stages fast 2: all stages slow, 3: z-stage intermediate
{
const double vFast = 10.0;
const double vMed = 2.0;
const double vSlow = 0.75;
const double aFast = 50.0;
const double aMed = 25.0;
char cmd[120] = "";
switch(setting)
{ case 1: sprintf(cmd, "V %$.1f, %.1f, $.1f, $.1f: A S.1f,
$.1f, $.1f, $.1f", vFast, vFast, vFast, vSlow, aFast, aFast,
aFast, aMed);
break;
case 2: sprintf(cmd, "V %.1f, %.1f, $.1f, %.1f: A %.1f,
$.1f, $.1£, %.1f", vSlow, vSlow, vSlow, vSlow, aMed, aMed,
aMed, aMed) ;
break;
case 3: sprintf(cmd, "V $.1f, $.1f, $.1f, $.1f: A $.1f,
$.1f, $.1€f, %.1f", vSlow, vSlow, vMed, vSlow, aMed, aMed,
aMed, aMed) ;

break;
}
sendokCmd (cmd) ;

return;
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int readSingleVal (double* xPos, double* yPos, double* tPos, float
readDelay)
{
const int maxReads = 30;
/ /maximum
number of reads before "timeout"
// const int cutScore =
92; //minimum

score to accept a pattern **Made Global to allow alteration**

HRESULT err;
int i =0, j = 0, totalCount = 0;

long gString = 0;

float pScore = 0;

float 1xPos = 0, lyPos = 0, ltPos = 0;
char instaStatus[50];

DS Update (DataSockets[0]);

//update
angle value
DS Update (DataSockets[1]);

// column
DS Update (DataSockets[Z?]);

// row
DS Update (DataSockets[6]);

//

pattern score

//first check if data is good
while (gString '= 192 && j++ < 5)
//192 = "Good"
err = DS GetAttrValue (DataSockets[6], "Quality", CAVT LONG
, &JString, sizeof(gString), NULL, NULL)
if(j > 5)

{ MessagePopup ("Comm Error", "Could not retrieve data from
OPC server!");
return 3;
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else

{ err = DS GetDataValue (DataSockets[6], CAVT FLOAT, &pScore,
sizeof (pScore), NULL, NULL); //read in pattern quality
if (err < 0) CA DisplayErrorInfo(DataSockets[6],
"DataSocket Error'", err, NULL);

}
sprintf (instaStatus, "Analyzing image... %1%% match" , (int)
pScore) ; //update quality on status bar

setStatus (instaStatus) ;

while ((pScore < cutScore) && (++totalCount < maxReads))
//while pattern quality is substandard
{ Delay(readDelay) ;

//
wait for new reading

DS Update (DataSockets[0]);

//update
angle value
DS Update (DataSockets[1]);

// column
DS Update (DataSockets[2]);

// row

DS Update (DataSockets[6]);
//

pattern score

err = DS GetDataValue (DataSockets[6], CAVT FLOAT, &pScore,
sizeof (pScore), NULL, NULL); // read new value
if (err < 0) CA DisplayErrorInfo(DataSockets[6],
"DataSocket Error", err, NULL);
sprintf (instaStatus, "Analyzing image... %1%% match" , (int
)pScore) ;
setStatus (instaStatus);
}
if (totalCount >= maxReads) return 2;
//on timeout, return

error

err = DS GetDataValue (DataSockets[l], CAVT FLOAT, &lyPos,
sizeof (pScore), NULL, NULL); // and write to
panel

if (err < 0) CA DisplayErrorInfo(DataSockets[1l], "DataSocket



251
252

253

254
255

256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
2775
276

2777

278

279

280
281
282
283
284

127

Error", err, NULL);

err = DS_GetDataValue (DataSockets[2], CAVT FLOAT, &lxPos,
sizeof (pScore), NULL, NULL);

if (err < 0) CA DisplayErrorInfo(DataSockets[2], "DataSocket
Error", err, NULL);

err = DS GetDataValue (DataSockets[0], CAVT FLOAT, &ltPos,
sizeof (pScore), NULL, NULL);

if (err < 0) CA DisplayErrorInfo(DataSockets[0], "DataSocket
Error", err, NULL);

*xPos = (double)lxPos;
*yPos = (double)lyPos;
*tPos = (double)ltPos;
return 0;

/******* RETURN VALS *****%kx

0
1
2
3

great success!
not used in this function
unable to match pattern

OPC server errors

*****************************/

}

int readCameraVal (double* xAvg, double* yAvg, double* tAvqg)

{

#define avgBlock
5
//number of reads to average per value
#define maxReads
5
//maximum number of reads before "timeout"
const float readDelay = 1.0;
//delay

between camera update requests
const float xyMaxStdDev = 0.030;

/ /maximum
allowable standard deviation
const float tMaxStdDev = 0.1;

int status, i, j, totalCount;
double xArr[avgBlock * maxReads],

yArr[avgBlock * maxReads],
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tArr[avgBlock * maxReads];
//arrays
for std deviation calc
int arrSize = avgBlock * maxReads;
//calculate for
convenience later

double xMean, yMean, tMean;

//calculated array mean values
double xSD = 100, ySD = 100, tSD = 100;

//calculated array
standard deviation

setStatus("Idle - allowing imaging system to settle" );
backlight (1) ;

//turn on backlight
Delay(3);

//allow settle/stabilize
setStatus("Analyzing image...");

totalCount = 0;
while (((xSD > xyMaxStdDev) || (ySD > xyMaxStdDev) || (tSD >
tMaxStdDev)) && (totalCount < maxReads))
{ j = totalCount * avgBlock;
for(i = j; i < j + avgBlock; i++)
//get values to
compute quality factor
{ status = readSingleVal (&xArr[i], &yArr[i], &tArr[i],
readDelay) ; // read values
if (status)

// 1if error thrown
{ backlight (0) ;

// turn off backlight

return status;
// exit function immediately
}

Delay (readDelay) ;

// wait for updated value
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Mean (xArr, i, &xMean)

//calculate mean values for x,y,t arrays

Mean (yArr, i, &yMean);

Mean (tArr, i, &tMean);

StdDev (xArr, i, &xMean, &xSD);
//calculate
standard deviations for arrays
StdDev (yArr, i, &yMean, &ySD); 315
StdDev (tArr, i, &tMean, &tSD);

totalCount++;

backlight (0) ;
if (totalCount >= maxReads) return 1;
//if std deviation

"timeout" return err

Mean (xArr, i, xAvg);

//take average of collected values and

Mean (yArr, i, yAvg);

//place in referenced values

Mean (tArr, i, tAvg);

return O;

/******* RETURN VALS *kkkhkkk kK
0 = great success!
1 = unstable pattern score
2 = unable to match pattern

3 = OPC server errors

*****************************/

}

int PopulateRings ()

{
int i =0, §=0;
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int fileSize = 0;

char entryName[80], opcEntry[80];
FILE* jobFiles;

long gString;

HRESULT err;

//read current Jjob file from OPC server
while (gString '= 192 && j++ < 5)
//192 = "Good"
err = DS GetAttrValue (DataSockets[4], "OQuality", CAVT LONG

, &yString, sizeof(gString), NULL, NULL); //check
connection
if(j > 5) MessagePopup("Comm Error", "Could not retrieve data

from OPC server!");

else

{ err = DS GetDataValue (DataSockets[4], CAVT CSTRING,
opcEntry, sizeof (opcEntry), NULL, NULL); //retrieve
value

if (err < 0) CA DisplayErrorInfo(DataSockets[4],
"DataSocket Error", err, NULL);

if (! (GetFileInfo (jobsFileName, &fileSize)))
//if file doesn't exist
{ sprintf (entryName, "There was a problem opening '$s'.
Please \nensure that it is in this program's root directory" ,
jobsFileName) ;
MessagePopup ("Error", entryName) ;
return 1;

jobFiles = fopen (jobsFileName, "r");
while (!feof (jobFiles))

//while end of file not reached
{ //ReadFile (JjobFiles, entryName,
sizeof (entryName) /sizeof (entryName[0])) ; // read
entry
fgets (entryName, sizeof (entryName), jobFiles);
if (entryName[strlen(entryName)-1] == '\n') entryName[strlen
(entryName)-1] = '\0'; // if CR present,strip it
if(strcmp (entryName, opcEntry) == 0) j = i;



375

376
377
378

379

380
382

384
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

401

402
403
404
405
406
407
408
409

381

385

// if entry
matches current OPC value, record position
InsertListItem (Hn mainPanel, mainPanel CognexRing, -1,
entryName, i++); // add it to main panel

Cognex ring

InsertListItem (Hn mainPanel, mainPanel CognexRing, -1, "new
Jjob file", -1); //add instruction entry for new Jjob
names
SetCtrlval (Hn mainPanel, mainPanel CognexRing, J);
//set value to match

current job on OPC server

fflush (jobFiles); 383
fclose (jobFiles);

//flush & close files

return 0O;

int loadSlidePos ()

{

int i;

char inString[100] = "";
float xVal, yVal;

FILE* SLfile;

long fileSize;

if (! (GetFileInfo (slidePosFile, &fileSize)))
//if file doesn't exist

1 Tyn

{ sprintf(inString, "There was a problem opening '%s
slidePosFile) ;
MessagePopup ("Error'", inString);

return 1;

i=0;
SLfile = fopen (slidePosFile, "r");
while((!'feof (SLfile)) && (i < MAXSLIDES))
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//while end of file not

// and

reached
{ fgets (inString, sizeof(inString), SLfile);
// get data
sscanf (inString, "%f, $f\n", &xVal, &yvVal);
// extract info
slidePos[i][0] = xVal;
update in master array
slidePos[i][1] = yVal;
i++;
}
fflush (SLfile); 418
fclose (SLfile);
//flush & close file
return 0;
}
424
int writeConfig()
{
char writeString[80];
int fileSize = 0;
char fileName[] = "last used.cfg";
FILE* configFile;
SetCtrlval (Hn mainPanel, mainPanel txtStatus, "Writing
configuration file..."); //update status
ProcessSystemEvents () ;
configFile = fopen (fileName, "w");
fprintf (configFile, "AAFILES**\n") ;
fprintf (configFile, "jobs file: %s\n", jobsFileName) ;
fprintf (configFile, "slides file: %s\n", slidePosFile);
fprintf (configFile, "\n");
fprintf (configFile, "**PROGRAM VARIABLES**\n") ;
fprintf (configFile, "ICD: %f $f %f\n", CI xShift, CI yShift,
CI tShift);
fprintf (configFile, "FL: %f\n", imagingZ);
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fflush(configFile);
fclose(configFile);

Delay(0.5);

SetCtrlval (Hn mainPanel, mainPanel txtStatus, "");

//update status

ProcessSystemEvents () ;

return 0;

int readConfig()

{

int fileSize = 0;

char fileName[] = "last used.cfg";
char readString[80];

char stringVar[80];

FILE* configFile;

SetCtrlval (Hn mainPanel, mainPanel txtStatus, "Reading

program options..."); //update status

ProcessSystemEvents () ;

if (! (GetFileInfo (fileName, &fileSize)))

//if file doesn't exist
{ sprintf (readString, "There was a problem opening

Please \nensure that it is in this program's root directory"

fileName) ;
MessagePopup ("Error", readString);
return 1;

configFile = fopen (fileName, "r");

fgets (readString, sizeof (readString), configFile);

//read **FILES** header

fgets (readString, sizeof (readString), configFile);
sscanf (readString, "jobs file: %s\n", stringVar);

//process jobs file

strcpy (jobsFileName, stringVar);

fgets (readString, sizeof (readString), configFile);
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sscanf (readString, "slides file: %s\n", stringVar);
//process slides file
strcpy(slidePosFile, stringVar);
fgets (readString, sizeof (readString), configFile);
//swallow space
fgets (readString, sizeof (readString), configFile);
//read **PROGRAM VARIABLES** header
fgets (readString, sizeof (readString), configFile);
sscanf (readString, "ICD: %f %f %f\n", &CI xShift, &
CI yshift, &CI tShift); //get camera-injector shifts
fgets (readString, sizeof (readString), configFile);
sscanf (readString, "FL: $f\n", &imagingZ);
//get focal length
494 495
if (PopulateRings()) return 1; 497
if(loadSlidePos()) return 1;

Delay(0.5);
SetCtrlval (Hn mainPanel, mainPanel txtStatus, "");
//update status

ProcessSystemEvents () ;

int read TCPdata()
{
char msg[200] = "";
int err = 0;
int errFlag = 0;
// char stdResponse[5] = {(char)13, (char)10, '>', ' ',
"\0'}; //standard response from 6k
char stdResponse[5] = {(char)13, (char)10, '>', '"\0'};
char* errResponse = "?";
//found in
error response from 6k
// char* errFound = NULL;
NULL;
NULL;

char* newString

char* subString

err = ClientTCPRead (sixK TCP, msg, sizeof(msg), 0);
//read TCP data
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if (err<0) MessagePopup ("Comm error", "Error reading response
from 6k controller"); // check for read errors

newString = strtok(msg, stdResponse) ;
//tokenize response
while (newString)

//while token found
{ if (strcmp (newString, " ") == 0)
// Dblank space?
// do nothing
else if(strpbrk(newString, errResponse))
// error response?
{ errFlag = 1; }

// flag query submission

else if (subString = strpbrk(newString, "#"))

// predefined response?

{ sscanf (subString, "#%i", &err);
// read code
switch (err)
// process accordingly

{ case MOTIONCOMPLETE:
activeMotion = 0;
break;

else if(strstr(newString, "*TPE"))
// position string?

{ sscanf (msg, "*TPESf,%f,%f,%f", &encX, &encY, &encZ, &

encT) ; // record values
setStatus (msqg) ; }
else
{ MessagePopup ("6k Response'", newString); }

// else show message

newString = strtok (NULL, stdResponse);
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// grab next token

if(errFlag) send6kCmd ("TCMDER") ;
//if error

generated, request offending command

return 0;

int TCP_callback(unsigned handle, int xType, int errCode, void ¥
callbackData)

{

char errorMsg[80] = "";

if (xType == TCP_DISCONNECT)
{ sprintf (errorMsg, "TCP connection to the 6k controller was
lost! Error code: %i", &errCode);
MessagePopup ("TCP/IP Error", errorMsg);
}
else
{ read TCPdata();

}

return 0;

int ConnectOPCserver ()

{

HRESULT err;
char url[6][80];
DSEnum Status status;

char error[80];

SetCtrlval (Hn mainPanel, mainPanel txtStatus, "Connecting to
OPC servers..."); //update status

ProcessSystemEvents () ;

//copy opc server addresses into array
sprintf (url[0], "opc://localhost/Cognex In-Sight OPC
Server/IS5400R.AngleShift") ;
sprintf(url[1], "opc://localhost/Cognex In-Sight OPC
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Server/IS5400R.ColumnShift") ;

sprintf (url[2], "opc://localhost/Cognex In-Sight OPC
Server/IS5400R.RowShift") ;

sprintf (url[3], "opc://localhost/Cognex In-Sight OPC
Server/IS5400R.0Online™) ;

sprintf(url[4], "opc://localhost/Cognex In-Sight OPC

Server/IS5400R.JobName") ;
sprintf (url[5], "opc://localhost/Cognex In-Sight OPC
Server/IS5400R.PatternScore™) ;

err = DS Open (url[0], DSConst Read, NULL, NULL, &DataSockets[O0
1) //open server address for read access
if(err < 0)

//1if error
{ MessagePopup ("Comm Error", "Error connecting to Angle
server!"); // indicate which address caused error
CA DisplayErrorInfo(DataSockets[0], "DataSocket Error", err
, NULL) ; // and show error
return 1;

err = DS Open (url[l], DSConst Read, NULL, NULL, &DataSockets[l
1
if(err < 0)
{ MessagePopup ("Comm Error", "Error connecting to Column
server!");
CA DisplayErrorInfo(DataSockets[1l], "DataSocket Error", err
, NULL) ;
return 1;

err = DS Open (url[2], DSConst Read, NULL, NULL, &DataSockets[2
1
if (err < 0)
{ MessagePopup ("Comm Error", "Error connecting to Row
server!");
CA DisplayErrorInfo(DataSockets[?], "DataSocket Error", err
, NULL) ;
return 1;

err = DS Open (url[3], DSConst Read, NULL, NULL, &DataSockets[3
1

if(err < 0)

{ MessagePopup ("Comm Error", "Error connecting to Online
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server!");
CA DisplayErrorInfo(DataSockets[3], "DataSocket Error", err
, NULL) ;
return 1;

err = DS Open (url[4], DSConst Read, NULL, NULL, &DataSockets[4
1
if(err < 0)
{ MessagePopup ("Comm Error", "Error connecting to JobRead
server!");
CA DisplayErrorInfo(DataSockets[4], "DataSocket Error", err
, NULL) ;
return 1;

err = DS Open (url[4], DSConst Write, NULL, NULL, &DataSockets]
51
if(err < 0)
{ MessagePopup ("Comm Error", "Error connecting to JobWrite
server!");
CA DisplayErrorInfo(DataSockets[5], "DataSocket Error", err
, NULL) ;
return 1;

err = DS Open (url[5], DSConst Read, NULL, NULL, &DataSockets[6
1
if(err < 0)
{ MessagePopup ("Comm Error", "Error connecting to
PatternScore server!");
CA DisplayErrorInfo(DataSockets[5], "DataSocket Error", err
, NULL) ;
return 1;

SetCtrlval (Hn mainPanel, mainPanel txtStatus, "Connecting to
OPC servers... Connected!");

Delay(0.2);

ProcessSystemEvents () ;

setStatus ("Connecting to 6k controller..." );

err = 1;

while (err)

{ err = ConnectToTCPServer (&sixK TCP, 5002, sixK IP,
TCP_callback, NULL, 0); //connect to 6k TCP server
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if (err)

//if error occurred

{ sprintf (error, "Error connecting to 6k controller:
%s\n\n Retry connection?\n", GetTCPErrorString (err));
// give msg, request response

err = ConfirmPopup ("Comm Error", error);

// 1 = retry, 0 =
fail
setStatus ("Error connecting to 6k controller!" );

if(err == 0) return 1;

// if fail, exit function

}

setStatus ("Connecting to 6k controller... Connected!" );
Delay(0.1);

ProcessSystemEvents () ;

return 0;

int main (int argc, char *argvl[])

{

if (InitCVIRTE (0, argv, 0) == 0)

return -1; /* out of memory */
if ((Hn _mainPanel = LoadPanel (0, "mainPanel.uir", mainPanel))
< 0)

return -1;

DisplayPanel (Hn mainPanel) ;

InitializeVars();
if (ConnectOPCserver())
{ SetCtrlAttribute (Hn mainPanel, mainPanel cmdStartRun,
ATTR DIMMED, 1);
SetCtrlval (Hn mainPanel, mainPanel txtStatus, "There were
errors connecting to the Cognex OPC server" );
}
if (readConfig())
{ SetCtrlAttribute (Hn mainPanel, mainPanel cmdStartRun,
ATTR DIMMED, 1);
SetCtrlval (Hn mainPanel, mainPanel txtStatus, "There were

errors initializing the program" );
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690
691
692
693
694 }
695
696 697
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RunUserInterface ();
DiscardPanel (Hn mainPanel);
return 0;

698 int CVICALLBACK click slide (int panel, int control, int event,

699
700 {
701
702
703
704
705
706
707
708

709

710

711

712
713
714

715

716

717

718

719

720 }
721

722 723 724

void *callbackData, int eventDatal, int eventData?2)

int i=0;

char message[80];

if (event !'= EVENT LEFT CLICK) return O;

while (control '= slides[i++][0]);

//find which slide was clicked
if(slides[--1]1[11)

//if slide is activated
{ slides[i][1] = O;

// deactivate slide
SetCtrlAttribute (Hn mainPanel, slides[i][0],
ATTR FRAME COLOR, inactiveSlideColor); // remove
indicator
}
else
{ slides[i][1] = 1;

// else activate slide
SetCtrlAttribute (Hn mainPanel, slides[i][0],
ATTR FRAME COLOR, activeSlideColor); // add indicator

return 0;
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725
726 int CVICALLBACK SelectAll (int panel, int control, int event,
727 void *callbackData, int eventDatal, int eventData?2)
728 {
729 int i;
730
731 if (event != EVENT COMMIT) return 0;
732
733 for(i = 0; i < MAXSLIDES; i++)
//go through each slide
734 { slides[i][1] = 1;
// select slide

735 SetCtrlAttribute (Hn mainPanel, slides[i][0],

ATTR FRAME COLOR, activeSlideColor) ; // color

appropriately
736 }
737
738 return 0;
739 }
740
741 742
743 int CVICALLBACK SelectNone (int panel, int control, int event,
744 void *callbackData, int eventDatal, int eventData?2)
745 {
746 int i;
747
748 if (event != EVENT COMMIT) return 0;
749
750 for(i = 0; i < MAXSLIDES; i++)

//go through each slide
751 { slides[i][1] = O;
// deselect slide

752 SetCtrlAttribute (Hn mainPanel, slides[i][0],

ATTR FRAME COLOR, inactiveSlideColor) ; // color

appropriately
753 }
754
755 return 0;
756 }
757

758
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769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

int updateStatus(int slideNo, int statusCode)

{

int slideX, slideY, slideWidth, slideHeight;
int iconX, iconY;
int PicID;

if (!'statusCode)
//if start processing
{ SetCtrlAttribute (Hn mainPanel, slides[slideNo][0],
ATTR _FRAME COLOR, processColor) ; // color appropriately

return 0O;

// exit function

SetCtrlAttribute (Hn mainPanel, slides[slideNo][0],
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ATTR FRAME COLOR, activeSlideColor); //return to normal color

GetCtrlAttribute (Hn mainPanel, slides[slideNo][0], ATTR LEFT,

&slideX) ; //get slide position attributes

GetCtrlAttribute (Hn mainPanel, slides[slideNo][0], ATTR TOP, &

slideY);

GetCtrlAttribute (Hn mainPanel, slides[slideNo][0], ATTR WIDTH,
&slideWidth) ;

GetCtrlAttribute (Hn mainPanel, slides[slideNo][0], ATTR HEIGHT
, &slideHeight) ;

iconX = slideX + (int) ((slideWidth - 45)/2);

//determine
icon placement
iconY = slideY + (int) ((slideHeight - 45)/2);
slides[slideNo] [statusCode] = NewCtrl (Hn mainPanel,
CTRL PICTURE, "", iconY, iconX); //create

picture control
SetCtrlAttribute (Hn mainPanel, slides[slideNo] [statusCode],

ATTR FRAME VISIBLE, 0); //turn off frame
SetCtrlAttribute (Hn mainPanel, slides[slideNo] [statusCode],
ATTR WIDTH, 40); //set width (thinner to

elim fringing bug)

SetCtrlAttribute (Hn mainPanel, slides[slideNo] [statusCode],
ATTR HEIGHT, 45); //set height
SetCtrlAttribute (Hn mainPanel, slides[slideNo] [statusCode],
ATTR FIT MODE, VAL PICT CENTER);
SetCtrlAttribute (Hn mainPanel, slides[slideNo] [statusCode],
ATTR PICT BGCOLOR, activeSlideColor); //set background color

//center image in box



786
787
788

789

790

791

792
793
794

795

796

797

798

799

800
801

802

803

805

806

143

switch(statusCode)

//switch case

case :

// case: finished

GetBitmapFromFile ("imgs/checkmark.pcx", &PicID);
// load

checkmark file
SetCtrlBitmap (Hn mainPanel, slides[slideNo] [statusCode
1, 0, PicID); // set in
picture frame
break;

// case: usr examine

GetBitmapFromFile ("imgs/mg.pcx", &PicID) ;

// load magnifying glass file
SetCtrlBitmap (Hn mainPanel, slides[slideNo][statusCode
1, 0, PicID); // set in

picture frame
iconY = slideY + (slideHeight - 50);

// shift to bottom of slide

SetCtrlAttribute (Hn mainPanel, slides[slideNo] [
statusCode] , ATTR TOP, iconY);

break;

// case: error

GetBitmapFromFile ("imgs/error.pcx", &PicID);
//

load error file
SetCtrlBitmap (Hn mainPanel, slides[slideNo][statusCode
1, 0, PicID); // set in
picture frame
iconY = slideY + (slideHeight - 50);

// shift to bottom of slide

SetCtrlAttribute (Hn mainPanel, slides[slideNo] [
statusCode], ATTR TOP, iconY);

break;
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return 0O;

int CVICALLBACK updateProgressBar (int panel, int control, int
event,

void *callbackData, int eventDatal, int eventData?2)

double currVal, tmrInterval, maxVal;

//for each time teh buzzer rings

GetCtrlval (Hn mainPanel, mainPanel progressSlide, &currvVal);
//get current state,

max value, and interval

GetCtrlAttribute (Hn mainPanel, mainPanel tmrProgressBar,

ATTR INTERVAL, &tmrInterval);

GetCtrlAttribute (Hn mainPanel, mainPanel progressSlide,

ATTR MAX VALUE, &maxVal);

if((currvVal + tmrInterval) >= maxvVal)

//1if we've reached the end
{ SetCtrlval (Hn mainPanel, mainPanel progressSlide, maxVal) ;
// set status bar to 100%
Delay (1) ;

// pause 1 second for effect

SetCtrlAttribute (Hn mainPanel, mainPanel tmrProgressBar,

ATTR ENABLED, 0); // turn off timer
SetCtrlAttribute (Hn mainPanel, mainPanel progressSlide,
ATTR VISIBLE, 0); // hide progress
slider
}
else
//otherwise

SetCtrlval (Hn mainPanel, mainPanel progressSlide, currVal
+ tmrInterval) ; // update with new

value

return 0O;
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int setProgressBar (double maxVal, double interval)

{

SetCtrlAttribute (Hn mainPanel, mainPanel tmrProgressBar,
ATTR INTERVAL, interval);

SetCtrlAttribute (Hn mainPanel, mainPanel progressSlide,
ATTR MAX VALUE, maxVal);

SetCtrlval (Hn mainPanel, mainPanel progressSlide, 0.0);
return 0;

void startProgressBar ()

{

SetCtrlAttribute (Hn mainPanel, mainPanel tmrProgressBar,
ATTR ENABLED, 1);

SetCtrlAttribute (Hn mainPanel, mainPanel progressSlide,
ATTR VISIBLE, 1);

return;

int rampVoltage(int channel, float newVoltage, float duration)

{

static double currVoltagel[2] = {0,0};

double waveForm[1000];

char txtChannel[10];

double updatePerSec;

double voltageIncrement;

int 1i;

char valveLabel[2][10] = {"solution", "piston"};

char statusMessage[100], priorMessage[100];

GetCtrlval (Hn mainPanel, mainPanel txtStatus, priorMessage);

o

sprintf (statusMessage, "Ramping %s pressure over %.1f seconds"
valvelLabel [channel], duration);
sprintf (txtChannel, "%i", channel);

//copy channel info
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into string
voltageIncrement = (newVoltage - currVoltage[channel])/1000;
//determine increment
if(voltageIncrement == 0) return 0;
//if no change, exit
waveForm[0] = currVoltage[channel];
for(i = 1; 1 < 1000; i++)
//fill
voltage array accordingly
waveForm[i] = waveForm[i-1] + voltagelIncrement;

waveForm[999] = newVoltage;

updatePerSec = 1000/duration;

setStatus (statusMessage) ;

AOGenerateWaveforms (1, txtChannel, updatePerSec, 1000, 1,
waveForm, &i);

setStatus (priorMessage) ;

currVoltage[channel] = newVoltage;

return 0O;

int CVICALLBACK expungeSolutions (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData?2)

char cmd[80];
double startTime;
double expungelength = 30.0;

if (event != EVENT COMMIT) return O;

setStatus ("Expunging left-over solutions" );

setStageMovement (1) ;

//enable fast motion
send6kCmd ("MA1111") ;

//set
absolute positioning mode on all axes

activeMotion = 1;

//anticipate upcoming motion
sprintf(cmd, "D 25.0, 190.0, 10.0, 0: @GO" );
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//construct positioning string
send6kCmd (cmd) ;

//and write to 6k
finishStageMotion() ;
//wait

until stages finish moving

activeMotion = 1;

//anticipate upcoming motion
sprintf(cmd, "D 25.0, 190.0, 60.0, 0: Q@GO" );

//construct positioning string
sendokCmd (cmd) ;

//and write to 6k
finishStageMotion() ;
//wait
until stages finish moving
send6kCmd ("@MAO") ;

//restore relative positioning

setProgressBar (expungelength, 5);
WriteToDigitalLine (1, "0", DIOports[2], 8, O, 1);
//toggle valve to pressurize DNA
solutions
WriteToDigitalLine (1, "O0", DIOports[3], 8, 0O, 1);
rampVoltage (0, MAXPROPV, 10);
//open prop
valve to 100%
startTime = Timer ();
//note
start time
startProgressBar() ;
//and

start progress bar timer

while ((Timer () - startTime) < expungelength)
//wait for user-specified
duration

ProcessSystemEvents () ;

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);
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//switch from pressure to vent
rampVoltage (0, 0.0, 10);

//then
close pressure valves
WriteToDigitalLine (1, "0", DIOports[2], 8, 0O, 0);
send6kCmd ("MA1111") ;
//set

absolute positioning mode on all axes

activeMotion = 1;

//anticipate upcoming motion
sprintf(cmd, "D 35.0, 0.0, -40.0, 0: @GO");

//construct positioning string
send6okCmd (cmd) ;

//and write to 6k
finishStageMotion() ;
//wait
until stages finish moving
send6kCmd ("EMAO") ;

setStatus("") ;

return 0;

int PositionInjector (int slideNo)

{

const double xyTolerance = 0.025;

char cmd[80] = "";
double xPos = .026, yPos = .026, tPos = 0;

int posStatus = 0, secondChance = 1;

setStageMovement (1) ;

/ /move
to slide imaging position
send6kCmd ("MAT111"™) ;

//set
absolute positioning mode on all axes

activeMotion = 1;
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//anticipate upcoming motion
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sprintf(cmd, "D %f, %f, %f, 0: @GO", slidePos[slideNo][0],
slidePos[slideNo] [1], imagingZ) ; //construct

positioning string
sendokCmd (cmd) ;

//and write to 6k
finishStageMotion() ;

until stages finish moving
send6kCmd ("@MAO") ;

//restore relative positioning

posStatus = readCameraVal (&xPos, &yPos, &tPos);
//get offset values

//wait

while ((fabs (xPos) > xyTolerance) || (fabs(yPos) > xyTolerance))

//while out of spec

if (posStatus)

//1f error generated, give message
{ if (secondChance)

check for "second chance" ***see below***

{ secondChance--;

reduce chance

//

//

setStatus ("Performing \"second chance\" adjustment"

)
Delay(?) ;
xPos = 0.075;

// set minor shift for x & y coordinates
yPos = 0.075;

}

else

{ if (posStatus == 1) setStatus("Unable to achieve
stable alignment reading"); / /MessagePopup

("Alignment Error", "Unable to achieve stable

alignment reading");

if (posStatus == 2) setStatus("Unable to match
pattern") ; / /MessagePopup
("Alignment Error", "Unable to match pattern");

if (posStatus == 3) setStatus("Error communicating
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with vision OPC server"); / /MessagePopup
("Alignment Error", "Error communicating with

vision OPC server");

updateStatus (slideNo, 4);
//add error
icon
updateStatus (slideNo,
//recover "active" color
return 1;

setStatus("Performing fine adjustments to injector

position");

setStageMovement (2) ;

//set
slow motion for better precision
activeMotion = 1;
//anticipate upcoming motion
sprintf(cmd, "D %f, %f, 0, 0: Q@QGO", xPos, (yPos * =1));
//construct positioning string
sendokCmd (cmd) ;
//and write to 6k
finishStageMotion() ;
//wait

until stages finish moving

posStatus = readCameraVal (&xPos, &yPos, &tPos);
//get new positioning values

tPos -= CI_tShift;
sprintf (cmd, "4D%f: 4GO", tPos);

//adjust injector

angle to most recent value
send6kCmd (cmd) ;

/***x*%* NOTE on "second chance" adjustments: sometimes the

pattern recognition software has trouble with a recognizable
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sample. I've found that a small positional

shift suddenly renders the sample viable - not sure what this is
but it's internal to the In-Sight PatMax algorithm. Therefore
I've implemented a "second chance"

in the event that a pattern is not recognized or stable, where the
software shifts the injector module a very small distance in the
x/y direction and then tries the

alignment again. The number of "second chances" can be set by

initializing variable secondChance to whatever value is desired.

******/

}

int FillSubstrate()
{
int injectLength, bfLength, TO length, valvePct;

double startTime, timeElapsed, valveVoltage;

GetCtrlval (Hn mainPanel, mainPanel injectDuration, &

injectLength) ;

GetCtrlval (Hn mainPanel, mainPanel backfillDuration, &bfLength

):

GetCtrlval (Hn mainPanel, mainPanel topOffDuration, &TO length);

GetCtrlval (Hn mainPanel, mainPanel numValvePct, &valvePct);
valveVoltage = (double)valvePct * MAXPROPV / 100;

setStatus ("Opening flow valves...");
setProgressBar (injectLength, 5);

//setup progress
bar; update every 5 sec

WriteToDigitalLine (1, "0", DIOports[2], 8, O, 1);
//pressurize DNA solutions

WriteToDigitalLine (1, "0", DIOports[3], 8, 0O, 1);

rampVoltage (0, wvalveVoltage, 20);

startTime = Timer ();

//note
start time
setStatus("Flowing solutions...");
startProgressBar() ;
//and

start progress bar timer
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while ((Timer () - startTime) < injectLength)

duration

ProcessSystemEvents () ;

//MessagePopup ("Done",

WriteToDigitalLine (1,

Delay(10) ;
//MessagePopup ("Done",
// insert plugs
/* send6kCmd ("3MAL") ;

setStageMovement (2)

//wait for user-specified

"Done with initial fill");

"0", DIOports[3],

8,

0,

0);

//open DNA solns to vent

"Done with initial £il1l");

’

//set slow movement;

send6kCmd ("3V0.1") ;
activeMotion =
1;

//anticipate upcoming motion

send6kCmd ("3D79.75:
360" ;

write to 6k
finishStageMotion ()
send6kCmd ("3MAL1") ;

setStatus ("Performing dead-end filling");

’

setProgressBar (bfLength, 5);

WriteToDigitalLine
1);
// WriteToDigitalLine
1);
startTime = Timer
0
//record start time

startProgressBar () ;

(1,

(1,

"O",

"O",

while ((Timer () - startTime)

bflength)

user-specified duration

ProcessSystemEvents () ;

"Done with initial fill");

//MessagePopup ("Done",

DIOports[3],

8,

0,

152

//and

//reapply pressure to DNA solns

DIOports|[1l],

8,

0,

//apply back-pressure

<

/*  setStatus ("Topping off chip"); 1073
setProgressBar (TO length, 5);

WriteToDigitalLine

(1,

IIO",

DIOports[1l],

8,

0,

//wait for
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0); //turn off back-pressure
startTime = Timer ();

startProgressBar () ;

while ((Timer () - startTime) < TO_length)

ProcessSystemEvents () ;

WriteToDigitalLine (1, "0", DIOports[3], 8, 0, 0);
//vent solutions again

Delay(10) ;

WriteToDigitalLine (1, "0", DIOports[2], 8, O, 0);

//switch low psi output to "vac"

ProcessSystemEvents () ;
rampVoltage (0, 0, 10);
WriteToDigitalLine (1, "0", DIOports[?2], 8, O, 0);
//turn off pressure from both sides
WriteToDigitalLine (1, "0", DIOports[3], 8, 0O, 0);

setStatus ("") ;

return 0;

int DisengageSubstrate ()

{

double startTime;
double VACTIME = 1;
double extendVoltage = MAXPROPV;

//STOP POINTS: ADD TO CONFIG FILE!!!
const double zStopl = 65.0;

//hovering
const double zStop2 = 76.1;

//start slow
movement
const double zStop25 = 78.8;

//injector
pins in place
const double zStop3 = 78.50; //79.5;
//79.25; //injector plugs in place
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char cmd[80] = "";

GetCtrlval (Hn mainPanel, mainPanel pullout Vac, &VACTIME) ;

WriteToDigitalLine (1, "0", DIOports[3], 8,

0) 7

//make sure pressure/vent line is

set to vent
// WriteToDigitalLine (1, "0", DIOports([3], 8,
1); //turn on vacuum
// startTime = Timer
0;
start time
// while ((Timer () - startTime) <
VACTIME)
user-specified duration
// ProcessSystemEvents () ;
// WriteToDigitalLine (1, "0", DIOports([3], 8,

0); //turn off vacuum

/*send6kCmd ("3MAL"™); 1125
setStageMovement (1) ;

//set fast movement for pull-away
activeMotion =
1;

//anticipate upcoming motion
sprintf(cmd, "D O, 0, %f: 3GO",
-95);

motion

send6kCmd (cmd) ;

//and write to 6k
finishStageMotion () ;
MessagePopup ("okay", "okay");
setStageMovement (1) ;

//set fast movement for pull-away
activeMotion =
1;

//anticipate upcoming motion
sprintf(cmd, "D O, 0, %f: 3GO",
zStop2) ;

motion

send6okCmd (cmd) ;

//and write to 6k
finishStageMotion () ;
setStageMovement (2) ;

activeMotion =

//note

//wait for

//zero out x/y

//zero out x/y
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1;
//anticipate upcoming motion
sprintf(cmd, "D O, 0, %f: 3GO",
zStop3) ; //zero out x/y
motion
send6kCmd (cmd) ;
//and write to 6k
finishStageMotion () ;
*/

setStatus ("Ramping piston pressure'");
WriteToDigitalLine (1, "0", DIOports[1], 8, 0O, 1);
//open to psi
WriteToDigitalLine (1, "0", DIOports[4], 8, O, 1);
//extend pistons
rampVoltage (1, extendVoltage, 10);

//ramp pressure

setStatus("Disengaging substrate...™);
//update front panel
WriteToDigitalLine (1, "0", DIOports[2], 8, O, 1);
//open solutions to vent during
pullout
send6kCmd ("3MAL") ;

//set absolute positioning on Z axis

setStageMovement (2) ;

//start with slow disengagement to clear PDMS
send6kCmd ("3V0.1") ;

activeMotion = 1;

//anticipate upcoming motion

sprintf(cmd, "D 0, 0, 76.8: 3GO");//%f: 3GO",
zStop25-0.75) ; //zero out x/y motion
sendokCmd (cmd) ;

//and write to 6k
finishStageMotion() ;

WriteToDigitalLine (1, "0", DIOports[2], 8, O, 0);
//switch solutions to vacuum during
final pull away
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setStageMovement (1) ;

//set
fast movement for pull-away
activeMotion = 1;
//anticipate upcoming motion
sprintf(cmd, "D O, 0, %f: 3GO", (zStopl-10));
//zero out x/y motion
sendokCmd (cmd) ;
//and write to 6k
finishStageMotion() ;
send6kCmd (" 3MAO0") ;
//return to relative pos on Z axis
setStatus ("Disengaging substrate... Done" );
WriteToDigitalLine (1, "0", DIOports[l], 8, 0O, 0);
//vent extension side
Delay(2) ;
WriteToDigitalLine (1, "0", DIOports[4], 8, 0O, 0);
//retract pistons
WriteToDigitalLine (1, "0", DIOports[1], 8, O, 1);
//pressurize again
Delay(3);
//allow pressure to build to full
setStatus ("Retracting pistons");
rampVoltage(l, 0, 10);
//remove

pressure
WriteToDigitalLine (1, "0", DIOports[l], 8, 0O, 0);

setStatus ("") ;

return 0;

int EngageSubstrate()

{

//STOP POINTS: ADD TO CONFIG FILE!!!
const double zStopl = 65.0;
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//hovering
const double zStop2 = 76.1;
//pressure
plate engaged
const double zStop25 = 78.8;
const double zStop3 = 78.50; //79.5;
//79.25; //PDMS engaged
char cmd[80] = "";
setStatus ("Engaging substrate...");

//update front panel

send6kCmd ("3MAL") ;

//set absolute positioning on Z axis
///send6kCnd ("TPE") ;

setStageMovement (1) ;

fast movement;

activeMotion = 1;

//anticipate upcoming motion

sprintf(cmd, "D %f, %f, %f, 0: GO111x", CI_xShift, CI_yShift,
zStopl) ; //construct positioning string

sendokCmd (cmd) ;

//and write to 6k
finishStageMotion() ;

until stages finish moving

setStageMovement (3) ;

medium movement;

activeMotion = 1;

//anticipate upcoming motion
sprintf(cmd, "D O, 0, %f: 3GO", zStop2);

//zero out x/y motion
sendokCmd (cmd) ;

//and write to 6k
finishStageMotion() ;

setStageMovement (2) ;

//set

//wait

//set
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//set
slow movement;
1217 activeMotion = 1;
//anticipate upcoming motion
1218 sprintf (cmd, "3D%f: 3GO", zStop25);
//construct
positioning string
1219 send6kCmd (cmd) ;
//and write to 6k
1220 finishStageMotion() ;
1221 /*MessagePopup ("okay", "okay");
1222
setStageMovement (2) ;
//set slow movement;
1223 activeMotion =
1;
//anticipate upcoming motion
1224 sprintf (cmd, "3D%f: 3GO",
zStop3) ; //construct
positioning string
1225
send6kCmd (cmd) ;
//and write to 6k
1226 finishStageMotion () ;
1227 */
1228
1229 send6kCmd ("3MAO0") ;
//return to relative pos on Z axis
1230 setStatus ("Engaging substrate... Done'");
1231
1232 Delay(1l);
1233
1234 return 0;
1235 }
1236
1237
1238 int processSlide(int slideNo)
1239 {
1240 const int CUTSCORE = 92;
1241
1242 int status = 2;
1243 int usrEvent, activePanel;
1244

1245 //status = 0;
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1;

159

updateStatus (slideNo, 0);
//indicate

active slide

ProcessSystemEvents () ;

//

update display

status = PositionInjector(slideNo) ;
//position injector

module
while (status)

//on error
{ Hn AlignPanel = LoadPanel (Hn mainPanel, "alignScore.uir",
scorePanel); // prompt for reduced alignment standards (cut
score)
activePanel = Hn AlignPanel;
// denote
active panel
InstallPopup (Hn AlignPanel);
// install as
popup
while (activePanel == Hn AlignPanel)
{ ProcessSystemEvents () ;
// wait
until it returns

activePanel = GetActivePanel ()

if (cutScore == CUTSCORE) return 1;
// 1f cut score has
not changed, stop processing slide
status = PositionInjector(slideNo) ;
// otherwise re-align

}
cutScore = CUTSCORE;

//return cutScore to default
if (status) return

//on error,

stop processing slide

//

EngageSubstrate() ;
FillSubstrate() ;
status = check substrate

DisengageSubstrate() ;
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Delay (1) ;
updateStatus (slideNo, 2);

return 0O;

int checkAlignment (int slideNo)

{
const int CUTSCORE = 92;

int status = 2;

int usrEvent, activePanel;

//status = 0;

updateStatus (slideNo, 0);
//indicate

active slide

ProcessSystemEvents () ;

//

update display

status = PositionInjector(slideNo) ;
//position injector

module
if (cutScore == CUTSCORE) {

setStatus ("Checks out");

return 1;

int processPrimer ()
{
int status = 2;
int usrEvent;
int injectlLength, valvePct, rampTime;

double startTime, timeElapsed, valveVoltage;

//status=0;
slides[O0][1] = 1;

//ensure slide is "selected" if processed

SetCtrlAttribute (Hn mainPanel, slides[0][0], ATTR FRAME COLOR,
activeSlideColor) ;

updateStatus (0, 0);
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//activate primer slide
ProcessSystemEvents () ;

//
update display
status = PositionInjector(0);
//position
injector module
if(status) return 1;

//on

error, stop processing slide
EngageSubstrate() ;

//BEGIN MODIFIED "FILLSUBSTRATE ()"

GetCtrlval (Hn mainPanel, mainPanel primerDuration, &

injectLength) ; // read in user parameters

GetCtrlval (Hn mainPanel, mainPanel primerValvePct, &valvePct);

GetCtrlval (Hn mainPanel, mainPanel primerRampTime, &rampTime) ;
valveVoltage = (double)valvePct * MAXPROPV / 100;

setStatus ("Priming solutions...");

setProgressBar (injectLength, 5);

WriteToDigitalLine (1, "O0", DIOports[2], 8, O, 1);
//open solenoid to pressurize vials
WriteToDigitalLine (1, "0", DIOports[3], 8, 0O, 1);
rampVoltage (0, valveVoltage, rampTime) ;
//slowly pressurize DNA
solns

startTime = Timer ();
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//note

start time

startProgressBar() ;

while((Timer () - startTime) < injectLength)
//wait for user-specified
duration

ProcessSystemEvents () ;

WriteToDigitalLine (1, "0", DIOports[3], 8, 0O, 0);

//open pressure system to vent
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1336 Delay(10) ;
1337 ampVoltage (O, 0, 10);
//close
proportional valve
1338 WriteToDigitalLine (1, "0", DIOports[2], 8, O, 0);
//turn off solenoids to vials
1339 1340
1341 setStatus("") ;
1342
//END MODIFIED "FILLSUBSTRATE ()"
1343 1344
1345 DisengageSubstrate() ;
1346
1347
1348 Delay (1) ;
1349 updateStatus (0, 2); 1350
return 0;
1351 }
1352
1353 1354
1355 int CVICALLBACK cmdStartRun (int panel, int control, int event,
1356 void *callbackData, int eventDatal, int eventData?2)
1357 {
1358 int i, primerStatus, BlowoutStatus;
1359
1360
1361 if (event != EVENT COMMIT) return 0;
1362
1363
1364 SetCtrlAttribute (Hn mainPanel, mainPanel cmdPauseRun,
ATTR DIMMED, 0); //enable Pause & Abort buttons
1365 SetCtrlAttribute (Hn mainPanel, mainPanel cmdAbortRun,
ATTR DIMMED, 0);
1366
1367 i=1;
//initialize to process second slide
1368 GetCtrlval (Hn mainPanel, mainPanel chkUsePrimer, &primerStatus
) //get primer status
1369 if (primerStatus) processPrimer();
// 1f active, start
priming

1370 else i-—-;
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// otherwise begin processing at first slide

//Blex

for(i = i; i < MAXSLIDES; i++)
if(slides[i][1]) checkAlignment (i) ;

//

for(i = i; i < MAXSLIDES; i++)
if(slides[i][1]) processSlide(i);

GetCtrlval (Hn mainPanel, mainPanel chkBlowout, &BlowoutStatus);
if (BlowoutStatus) expungeSolutions(0,0,EVENT COMMIT,NULL,0,0) ;

SetCtrlAttribute
ATTR DIMMED, 0);
SetCtrlAttribute
ATTR DIMMED, 1);
SetCtrlAttribute
ATTR DIMMED, 1);
SetCtrlAttribute
ATTR DIMMED, 1);

return 0O;

1394

(Hn mainPanel, mainPanel cmdNewRun,
//enable system reset button
(Hn_mainPanel, mainPanel cmdStartRun,
//disable "start run" until reset occurs
(Hn_mainPanel, mainPanel cmdPauseRun,
//disable Pause & Abort buttons

(Hn mainPanel, mainPanel cmdAbortRun,

int CVICALLBACK PauseRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

if (pauseFlag)

{ pauseFlag = 0;

//if run is already paused

// release pause flag

SetCtrlAttribute (Hn mainPanel, mainPanel cmdPauseRun,
ATTR LABEL TEXT, "Pause Run"); // return button label
to unpaused state

SetCtrlAttribute (Hn mainPanel, mainPanel txtStatus,

ATTR CTRL VAL, ""); // update run status
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else

//else
{ pauseflag = 1;

// set pause flag
SetCtrlAttribute (Hn mainPanel, mainPanel cmdPauseRun,
ATTR LABEL TEXT, "Resume Run"); // change button label
SetCtrlAttribute (Hn mainPanel, mainPanel txtStatus,

ATTR CTRL VAL, "Run paused"); // update run
status
}
return O;
}
1415

int CVICALLBACK AbortRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

{
if (event != EVENT COMMIT) return O;
if ('ConfirmPopup ("Abort Run", "Are you sure you want to abort
this run?")) return 0; //confirm cancel
SetCtrlAttribute (Hn_mainPanel, mainPanel cmdPauseRun,
ATTR DIMMED, 1); //disable Pause & Abort buttons
SetCtrlAttribute (Hn_mainPanel, mainPanel cmdAbortRun,
ATTR DIMMED, 1);
SetCtrlAttribute (Hn_mainPanel, mainPanel cmdNewRun,
ATTR DIMMED, 0); //enable system reset button
SetCtrlAttribute (Hn mainPanel, mainPanel cmdStartRun,
ATTR DIMMED, 1); //disable "start run" until reset occurs
return 0;

}

1433

int CVICALLBACK NewRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, j;
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if (event != EVENT COMMIT) return O;

for(i = 0; i < MAXSLIDES; i++)
//for each slide
{ if(slides[i][1]1)

//
that is present
{ for(j = 2; j < 5; j++)
// check
each status icon
if (slides[i]1[31)
// if present
{ DiscardCtrl (Hn _mainPanel, slides[i][]j]):
// delete icon ctrl
slides[i][]] = O;
// remove status flag
}
slides[i][1] = 0;
// deactivate slide
SetCtrlAttribute (Hn mainPanel, slides[i][0],
ATTR FRAME COLOR, inactiveSlideColor); // remove

indicator

SetCtrlAttribute (Hn mainPanel, mainPanel cmdNewRun,

ATTR DIMMED, 1); //disable system reset button
SetCtrlAttribute (Hn mainPanel, mainPanel cmdStartRun,
ATTR DIMMED, 0); //enable "start run"

return 0;

int CVICALLBACK UpdateNFO (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

HRESULT err;
float resultArr[3];
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1501

//theta, vy, x

char results[80];

char gString[80] = " ";
int 1 =0, j = 0;

long gString = 0;

if (event != EVENT COMMIT) return O;

DS Update (DataSockets[0]) ;
DS Update (DataSockets[1]);
DS Update (DataSockets[2]);
DS Update (DataSockets[3]);
DS Update (DataSockets[4]);

for(i = 0; i < 3; i++)
{ while (gString !'= 192 && Jj++ < 5)
//192 = "Good"
err = DS _GetAttrValue (DataSockets[i], "Quality",
CAVT LONG, &gString, sizeof(gString), NULL, NULL) ;
if(j > 5) MessagePopup("Comm Error", "Could not retrieve
data from OPC server!");
else
{ err = DS GetDataValue (DataSockets[i], CAVT FLOAT, &
resultArr[i], sizeof(resultArr[0]), NULL, NULL) ;
if (err < 0) CA DisplayErrorInfo(DataSockets[i],
"DataSocket Error", err, NULL);
}
j = 0; gString = 0O;

sprintf (results, "x shift: $f\n y shift: $f\n t shift: $f\n"
resultArr[2], resultArr[l], resultArr[0]);

MessagePopup ("Results", results);

return 0O;

int CVICALLBACK chooseJobFile (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

HRESULT err;

int ringVal;

// char fileNames[5][50] = {"", "40-pin.Jjob", "100-pin.job"};
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char fileName[50];
int i;
if (event != EVENT COMMIT) return O;

GetCtrlval (panel, control, &ringval);
//generalized for use on

other panels
if(ringval == -1)
{ MessagePopup ("Using new job files", "Please consult the
user's guide for instructions on how to add new job files" );

return 0;
}

GetLabelFromIndex (panel, control, ringVal, fileName);

err = DS SetDataValue (DataSockets[5], CAVT CSTRING, fileName,
strlen(fileName), 0); //set user-selected filename
if(err < 0)

//1if error
{ CA DisplayErrorInfo(DataSockets[5], "DataSocket Error", err
, NULL) ; // display
SetCtrlval (Hn mainPanel, mainPanel CognexRing, 0);
// reset ring
return 0;

SetCtrlval (Hn mainPanel, mainPanel txtStatus, "Loading new
job file..."); //update status
ProcessSystemEvents () ;

i= DS Update(DataSockets[5]);
//else send
update to Cognex server
SetCtrlval (Hn mainPanel, mainPanel txtStatus, "");

ProcessSystemEvents () ;

return O;

int CVICALLBACK send6kCommand (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

char cmd[80];
char errorMsg[120];
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char ts[?2] = {(char)13, '"\0'};

int err = 0;

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, mainPanel txtCmd, cmd);

sendokCmd (cmd) ;

return 0O;

int CVICALLBACK EnableStage (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int LEDval = 1;
char sendString[20] = "DRIVExxx";
//default string to
enable/disable drives
char bitvals[2] = {'0','1'};

if (event != EVENT COMMIT) return O;

switch(control)

//determine which control called function
{ case mainPanel xEnable:

//  for x stage

GetCtrlval (Hn mainPanel, mainPanel xEnable, &LEDval);
// get status
sendString[5] = bitVals[LEDvall;
//

set status
SetCtrlAttribute (Hn mainPanel, mainPanel xIncrement,
ATTR DIMMED, !'LEDval); // set status on movement
icons
SetCtrlAttribute (Hn mainPanel, mainPanel xDecrement,
ATTR DIMMED, 'LEDval); // set status on movement
icons
break;

case mainPanel yEnable:

// for y stage
GetCtrlval (Hn mainPanel, mainPanel yEnable, &LEDval);
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// get status

sendString[6] = bitVals[LEDvall;

//
set status
SetCtrlAttribute (Hn mainPanel, mainPanel yIncrement,
ATTR DIMMED, !'LEDval); // set status on movement
icons
SetCtrlAttribute (Hn mainPanel, mainPanel yDecrement,
ATTR DIMMED, !'LEDval); // set status on movement
icons
break;

case mainPanel zEnable:

// for z stage
GetCtrlval (Hn mainPanel, mainPanel zEnable, &LEDval);
// get status

sendString[7/] = bitVals[LEDvall;

//
set status
SetCtrlAttribute (Hn mainPanel, mainPanel zIncrement,
ATTR DIMMED, !'LEDval); // set status on movement
icons
SetCtrlAttribute (Hn mainPanel, mainPanel zDecrement,
ATTR DIMMED, !'LEDval); // set status on movement
icons
break;

send6kCmd (sendString) ;

return 0;

int CVICALLBACK manualMotion (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

float xyDistance = 0, zDistance = 0;

char sendString[80];

if (event '= EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, mainPanel xyDistance, &xyDistance);

//get distance values

GetCtrlval (Hn mainPanel, mainPanel zDistance, &zDistance);
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switch (control)
{

//determine which control called function
case mainPanel xIncrement:
// for positive
x motion
sprintf (sendString, "1D-%3f: 1lgo", xyDistance);
// record distance & instigate
motion
break;
case mainPanel xDecrement:
// for negative
x motion
sprintf (sendString, "1D%3f: lgo", xyDistance);
// record distance, but add "-" sign
break;
case mainPanel yIncrement:

sprintf (sendString, "2D%3f: 2go", xyDistance);

break;

case mainPanel yDecrement:
sprintf (sendString, "2D-%3f: 2go", xyDistance);
break;

case mainPanel zIncrement:
sprintf (sendString, "3D-%3f: 3go'", zDistance);
break;

case mainPanel zDecrement:
sprintf (sendString, "3D%3f: 3go", zDistance);
break;

case mainPanel tIncrement:
sprintf (sendString, "4D-%3f: 4go", zDistance);
break;

case mainPanel tDecrement:
sprintf (sendString, "4D%3f: 4go'", zDistance) ;
break;

send6kCmd (sendString) ;
//send
string to 6k

return 0O;

int CVICALLBACK callHomeStages (int panel, int control, int event,
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void *callbackData,

int eventDatal,

if (event != EVENT COMMIT) return O;

int CVICALLBACK setDIO (int panel,

void *callbackData,

int control, int event,

//FIX THESE LABELS ON THE FRONT PANEL!!!

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, control, &switchStatus);

int eventData?2)

int eventDatal, int eventData?2)

//get new value of calling control

//determine which control called function

{ case mainPanel bswBacklight:

WriteToDigitallLine (1,
switchStatus) ;
break;

"0", DIOports[0O],

case mainPanel bswLowpsi vac:

WriteToDigitalLine (1,
switchStatus) ;
break;

case mainPanel bswLowpsi:

WriteToDigitallLine (1,
switchStatus) ;
break;

case mainPanel bswVacOn:

WriteToDigitalLine (1,
switchStatus) ;
break;

{
HomeStages () ;
return 0;

}

1647

{
int switchStatus;
switch (control)
}
return O;

"0", DIOports[l],

"0", DIOports[2],

"0", DIOports[3],

8, 0,

8, 0,

8, 0,
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int CVICALLBACK togglePropValve (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int valvePct = 0;
double valveVoltage = 0;

int status;

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, control, &status);

if (status)

{ GetCtrlval (Hn mainPanel, mainPanel numValvePct, &valvePct);
valveVoltage = (double)valvePct * MAXPROPV / 100;
rampVoltage (0, valveVoltage, 20);

//ramp voltage up over 20 sec
else
{ rampVoltage (0, 0, 10);
}

//ramp voltage down over 10 sec

1703
int CVICALLBACK quitProgram (int panel, int control, int event,
void *callbackData, int eventDatal, int eventDataZ2)
{ int 1i;
if (event '= EVENT COMMIT) return 0;

writeConfig() ;

HomeStages () ;

DS _DiscardObjHandle (DataSockets[0]) ;
DS _DiscardObjHandle (DataSockets[1]) ;
DS _DiscardObjHandle (DataSockets[2]) ;
DS _DiscardObjHandle (DataSockets[3]);
DS _DiscardObjHandle (DataSockets[4]) ;
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1717 DS DiscardObjHandle (DataSockets[5]);
1718

1719 DisconnectFromTCPServer (sixK TCP) ;
1720

1721 for(i = 0; 1 < 8; i++)

1722 WriteToDigitalLine (1, "O", i, 8, 1, 0);
1723 rampVoltage (0, 0.0, 5);

1724 rampVoltage(l, 0.0, 5);

1725

1726 QuitUserInterface (0) ;

1727

1728 return 0;

1729 }

1730

1731 1732

1733 1734

1735 1736

1737 1738

1739 1740

1741

1742 /***************************************************************** 1743

hhk kA hkhhkkhkhkhhhhkhkhkhkhhkhk kA rhhhkhkrdhhhkhkdhhhhk kA hhhkhkhkrhhhkhkhArhhhkkhkrkrhhhhkrhkhkhk*k

1744
1745 CALIBRATION FUNCTIONS
1746
1747 Ahhkhkhkhkkh A hhhdhhhhkhhkhkhhrhdkhkhhkhhhdhhhhhhkhkhrhhhhhkhkhhdhhhkhhhdhkkhkhkhrhkd ok hkkdxhdxx
1748 **********‘k‘k‘k‘k‘k‘k**************‘k*‘k‘k*******************************/
1749
1750
1751
1752 int CVICALLBACK LaunchCalibration (int panel, int control, int
event,
1753 void *callbackData, int eventDatal, int eventData?2)
1754 {
1755 if (event != EVENT COMMIT) return O;
1756
1757 send6kCmd ("DRIVELI111") ;
//activate all drives
1758 Hn calibratePanel = LoadPanel (Hn mainPanel,

"calibration.uir", pnlCalib); //load panel
1759
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DisplayPanel (Hn calibratePanel);
//open panel

return 0O;

int CVICALLBACK CmanualMotion (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

float xyDistance = 0, zDistance = 0;

char sendString[80];

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn calibratePanel, pnlCalib xyDistance, &xyDistance
) //get distance values

GetCtrlval (Hn calibratePanel, pnlCalib zDistance, &zDistance);

switch (control)
{

//determine which control called function
case pnlCalib xIncrement:
// for
positive x motion
sprintf (sendString, "1D-%3f: lgo", xyDistance);
// record distance & instigate
motion
break;
case pnlCalib xDecrement:
// for
negative x motion
sprintf (sendString, "1D%3f: lgo", xyDistance);
// record distance, but add "-" sign
break;
case pnlCalib yIncrement:
sprintf (sendString, "2D%3f: 2go", xyDistance);

break;
case pnlCalib yDecrement:
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sprintf (sendString, "2D-%3f: 2go", xyDistance);
break;

case pnlCalib zIncrement:
sprintf (sendString, "3D-%3f: 3go'", zDistance);
break;

case pnlCalib zDecrement:
sprintf (sendString, "3D%3f: 3go", zDistance);
break;

case pnlCalib tIncrement:
sprintf (sendString, "4D-%3f: 4go'", zDistance) ;
break;

case pnlCalib tDecrement:
sprintf (sendString, "4D%3f: 4go'", zDistance) ;
break;

send6kCmd (sendString) ;
//send
string to 6k

return 0O;

int CVICALLBACK CreturnToMain (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

DiscardPanel (Hn calibratePanel);

return 0;

/************ ICD FUNCTIONS *************/

int CVICALLBACK CstartICD (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1 = 0;
int fileSize = 0;

char entryName[80];
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FILE* jobFiles;

if (event != EVENT COMMIT) return O;

Hn ICDpanel = LoadPanel (Hn calibratePanel, "calibration.uir",
pnlICD) ;

SetCtrlAttribute (Hn ICDpanel, pnlICD cmdGetCameraPos,

ATTR VISIBLE, 1); //enable alignment start button
SetCtrlAttribute (Hn ICDpanel, pnlICD cmdGetCameraPos 2,

ATTR VISIBLE, 0); //and disable record-&-continue button

//zero out stage rotation
activeMotion =
1;
//anticipate upcoming motion
send6kCmd ("4MAl: 4DO:
46G0") ; //set

absolute mode on axis 4 and go home

finishStageMotion () ;

//wait until stages finish moving

sendokCmd ("4MAO") ;

//return to incremental mode on axis 4

send6kCmd ("@DRIVEL") ;

//enable all stages
backlight (1) ;

//and backlight
sprintf (entryName, "3MAl: 3d%f: 3go", imagingZ);

//set absolute mode on axis 3 and

go to imaging loc.

send6okCmd (entryName) ;
/ /move
to imaging position
finishStageMotion() ;
//wait

until stage finishes moving
send6kCmd ("3MAO0") ;

//return to incremental mode on axis 3
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//populate jobfile list
if (! (GetFileInfo (jobsFileName, &fileSize)))
//if file doesn't exist
{ sprintf (entryName, "There was a problem opening '$s'.
Please \nensure that it is in this program's root directory"
jobsFileName) ;
MessagePopup ("Error'", entryName);

return 1;

jobFiles = fopen (jobsFileName, "r");
while (! feof (jobFiles))
//while end
of file not reached
{ fgets (entryName, sizeof (entryName), jobFiles);
if (entryName[strlen(entryName)-1] == '\n') entryName[strlen
(entryName)-1] = "\0'; // if CR present,strip it
InsertListItem (Hn ICDpanel, pnlICD CognexRing, -1,
entryName, i++); // add it to calibration

panel Cognex ring

GetCtrlval (Hn mainPanel, mainPanel CognexRing, &i);
//get value from main panel
SetCtrlval (Hn_ICDpanel, pnlICD CognexRing, 1i);
//and set it on ICD panel

DisplayPanel (Hn ICDpanel) ;

int CVICALLBACK CgetCameraPos (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

const double xyTolerance = 0.025;
char cmd[80] = "";

double xPos = .026, yPos = .026, tPos = 0;
int posStatus = 0;

if (event != EVENT COMMIT) return O;
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posStatus = readCameraVal (&xPos, &yPos, &tPos);

//get offset values

while ((fabs (xPos) > xyTolerance) || (fabs(yPos) > xyTolerance))

//while out of spec

ProcessSystemEvents () ;

if (posStatus)

//1if error generated, give
message
{ if (posStatus == 1) MessagePopup ("Alignment Error",

"Unable to achieve stable alignment reading" );
if (posStatus == 2) MessagePopup ("Alignment Error",
"Unable to match pattern");
if (posStatus == 3) MessagePopup ("Alignment Error",

"Error communicating with vision OPC server" );

MessagePopup ("Action Required", "Unable to
automatically align pattern - please zero the
reference index values manually" );

goto CONTINUE;

}
setStatus("Performing fine adjustments to injector

position™);

setStageMovement (2) ;
//set slow
motion for better precision

activeMotion = 1;

//anticipate upcoming motion
sprintf(cmd, "D %f, %f, 0, 0: @GO", xPos, (yPos * =1));
//construct positioning string
sendokCmd (cmd) ;
//and
write to 6k
finishStageMotion() ;
//wait
until stages finish moving

ProcessSystemEvents () ;

posStatus = readCameraVal (&xPos, &yPos, &tPos);

//get new positioning values
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MessagePopup ("Alignment finalized", "Please press the button

again to confirm that the alignment is correct" );

CONTINUE:

SetCtrlAttribute (Hn ICDpanel, pnlICD cmdGetCameraPos,

ATTR VISIBLE, 0); //disable alignment start button
SetCtrlAttribute (Hn ICDpanel, pnlICD cmdGetCameraPos 2,

ATTR VISIBLE, 1); //and enable record-&-continue button
return 0;

int CVICALLBACK CgetCameraPos2 (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

//STOP POINTS: ADD TO CONFIG FILE!!!
const double zStopl = 65.0;

//hovering
const double zStop2 = 76.1;

//pressure plate
engaged
const double zStop3 = 79.90;

//PDMS engaged

char cmd[80] = ""; double tShift = 0;
double xPos = 0.26, yPos = 0.26;

if (event != EVENT COMMIT) return O;
while((xPos > 0.25) || (yPos > 0.25))

//if detected pattern is
shifting

{ GetCtrlval (Hn_ICDpanel, pnlICD currXpos, &xPos);
// only grab theta value from properly
GetCtrlval (Hn ICDpanel, pnlICD currYpos, &yPos);
// detected pattern
GetCtrlval (Hn ICDpanel, pnlICD currTpos, &tShift);
Delay(0.5);

ProcessSystemEvents () ;
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send6kCmd ("TPE") ;

//request encoder position; values read into globals
Delay(1.0);

//wait for response

ProcessSystemEvents () ;

SetCtrlval (Hn ICDpanel, pnlICD cameraX, encX);

//copy values out of globals
SetCtrlval (Hn ICDpanel, pnlICD cameraY, encY);
SetCtrlval (Hn ICDpanel, pnlICD cameraT, tShift);

SetCtrlAttribute (Hn_ICDpanel, pnlICD cmdGetCameraPos,

ATTR DIMMED, 1);

SetCtrlAttribute (Hn_ICDpanel, pnlICD cmdGetCameraPos 2,

ATTR DIMMED, 1),

SetCtrlAttribute (Hn_ICDpanel, pnlICD cmdGetInjectorPos,

ATTR DIMMED, 0);

SetCtrlAttribute (Hn_ICDpanel, pnlICD txtStep2, ATTR DIMMED, O0);
SetCtrlAttribute (Hn_ICDpanel, pnlICD txtStepl, ATTR DIMMED, 1);

SetCtrlAttribute (Hn ICDpanel, pnlICD tmrPosUpdate,
ATTR ENABLED, 0); //disable timer - no more updates needed

send6kCmd ("3MAL") ;

//set

absolute positioning on Z axis
setStageMovement (1) ;

//set fast
movement;
activeMotion = 1;
//anticipate upcoming motion
sprintf(cmd, "D %f, %£, %f: GOl1ll", CI xShift, CI yShift,
zStopl) ; //construct positioning string
sendokCmd (cmd) ;

//and

write to 6k
finishStageMotion() ;
//wait
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until stages finish moving

setStageMovement (3) ;
//set
medium movement;

activeMotion = 1;

//anticipate upcoming motion
sprintf(cmd, "D O, 0, %f: 3GO", zStop2);
//zero out x/y motion
sendokCmd (cmd) ;
//and
write to 6k
finishStageMotion() ;

setStageMovement (2) ;
//set slow

movement ;

send6kCmd (" 3MAO0") ;
//return

to relative pos on Z axis

return 0O;

int CVICALLBACK CgetInjectorPos (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

float injectorX = 0,
injectorY =

I

0
injectorT = 0,

cameraX = 0, 2007
cameraY = (0, 2008
cameraT =0;
if (event != EVENT COMMIT) return O;

GetCtrlval (Hn_ ICDpanel, pnlICD cameraX, &cameraX);
//retrieve previously recorded values

GetCtrlval (Hn ICDpanel, pnlICD cameraY, &cameraY);

GetCtrlval (Hn ICDpanel, pnlICD cameraT, &cameraT);

send6kCmd ("TPE") ;

//request new encoder positions
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Delay(1.0);

//wait for response

ProcessSystemEvents () ;

injectorX = encX;

//and
copy into locals
injectorY = encY;

injectorT = encT;

CI_xShift = injectorX - cameraX;

//set global shift
values

CI yShift = injectorY - cameraY;

CI tShift = cameraT - injectorT;

backlight (0) ;

//turn off light

MessagePopup ("Calibration complete", "The camera-injector

distance has been calibrated" );

DiscardPanel (Hn ICDpanel);

return 0O;

int CVICALLBACK CupdatePos (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

HRESULT err;

float score, xPos, yPos, tPos;

int i=0, J=0;
0;

long gString

if (event '= EVENT TIMER TICK) return 0;

DS Update (DataSockets[0]);
DS Update (DataSockets[1]):
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DS Update (DataSockets[2]);
DS Update (DataSockets[6]);

//first check if data is good
while(gString !'= 192 && j++ < 5)
//192 = "Good"
err = DS GetAttrValue (DataSockets[6], "Quality", CAVT LONG
, &yString, sizeof(gString), NULL, NULL);
if(j > 5) MessagePopup ("Comm Error'™, "Could not retrieve data
from OPC server!");
else
{ err = DS GetDataValue (DataSockets[6¢], CAVT FLOAT, &score,
sizeof (score), NULL, NULL);
if (exrr < 0) CA DisplayErrorInfo(DataSockets[6],
"DataSocket Error'", err, NULL);

if (score)

//1if ptn found, read in x/y/theta shifts
{ err = DS GetDataValue (DataSockets[1l], CAVT FLOAT, &yPos,
sizeof (score), NULL, NULL); // and write to panel
if (exrr < 0) CA DisplayErrorInfo(DataSockets[1],
"DataSocket Error'", err, NULL);

err = DS _GetDataValue (DataSockets[2], CAVT FLOAT, &xPos,
sizeof (score), NULL, NULL);

if (err < 0) CA DisplayErrorInfo(DataSockets[2],
"DataSocket Error", err, NULL);

err = DS GetDataValue (DataSockets[0], CAVT FLOAT, &tPos,
sizeof (score), NULL, NULL);

if (exrr < 0) CA DisplayErrorInfo(DataSockets[0],
"DataSocket Error", err, NULL);

SetCtrlAttribute (Hn_ ICDpanel, pnlICD currXpos, ATTR DIMMED
r 0);
SetCtrlAttribute (Hn ICDpanel, pnlICD currYpos, ATTR DIMMED
» 0);
SetCtrlAttribute (Hn ICDpanel, pnlICD currTpos, ATTR DIMMED
» 0);

if (fabs(xPos) <= 0.025) SetCtrlAttribute (Hn ICDpanel,
pnlICD currXpos, ATTR TEXT COLOR, VAL GREEN) ;
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2083 if ((fabs(xPos) > 0.025) && (fabs(xPos) < 0.1))
SetCtrlAttribute (Hn_ICDpanel, pnlICD currXpos,
ATTR TEXT COLOR, 0x00C6C600);

2084 if (fabs(xPos) > 0.1) SetCtrlAttribute (Hn_ ICDpanel,
pnlICD currXpos, ATTR TEXT COLOR, VAL RED) ;

2085

2086 if (fabs (yPos) <= 0.025) SetCtrlAttribute (Hn ICDpanel,
pnlICD currYpos, ATTR TEXT COLOR, VAL GREEN) ;

2087 if((fabs(yPos) > 0.025) && (fabs(yPos) < 0.1))
SetCtrlAttribute (Hn_ICDpanel, pnlICD curr¥Ypos,
ATTR TEXT COLOR, 0x00C6C600);

2088 if (fabs(yPos) > 0.1) SetCtrlAttribute (Hn_ICDpanel,
pnlICD currYpos, ATTR TEXT COLOR, VAL RED) ;

2089

2090 if (fabs(tPos) <= 0.1) SetCtrlAttribute (Hn ICDpanel,
pnlICD currTpos, ATTR TEXT COLOR, VAL GREEN) ;

2091 if((fabs(tPos) > 0.1) && (fabs(tPos) < 1)) SetCtrlAttribute

(Hn_ICDpanel, pnlICD currTpos, ATTR TEXT COLOR, 0x00C6C600

)7

2092 if (fabs(tPos) > 1) SetCtrlAttribute (Hn ICDpanel,
pnlICD currTpos, ATTR TEXT COLOR, VAL RED) ;

2093

2094 SetCtrlval (Hn_ICDpanel, pnlICD currXpos, XPos);

2095 SetCtrlval (Hn_ICDpanel, pnlICD currYpos, yPos);

2096 SetCtrlval (Hn_ICDpanel, pnlICD currTpos, tPos);

2097 SetCtrlval (Hn_ICDpanel, pnlICD ledPtnFound, 1);

2098 }

2099 else
//else dim out everything.

2100 { SetCtrlAttribute (Hn ICDpanel, pnlICD currXpos, ATTR DIMMED

r 1)

2101 SetCtrlAttribute (Hn ICDpanel, pnlICD currYpos, ATTR DIMMED
r 1)

2102 SetCtrlAttribute (Hn ICDpanel, pnlICD currTpos, ATTR DIMMED
, 1)

2103 SetCtrlval (Hn ICDpanel, pnlICD ledPtnFound, 0);

2104 }

2105

2106 2107

2108 return 0;

2109 }

2110

2111 int CVICALLBACK Ccancel ICD (int panel, int control, int event,

2112 void *callbackData, int eventDatal, int eventData?2)

2113 {
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if (event != EVENT COMMIT) return O;
backlight (0) ;
//turn off light
MessagePopup ("Calibration cancelled", "The camera-injector
distance was not calibrated");
DiscardPanel (Hn ICDpanel);
return 0;

}

2124
2126

[FRFFF Ak Ak SLIDE LOCATION FUNCTIONS Fkkkkkkkxk /

void initPosArray ()

{
int i=0, J=0;
int slideX, slideY, slideWidth, slideHeight;
int labelX, labelYl, labelY2;
char test[20];
void* clickFunction = CslideClick;
CslidePos[0] [0] = pnlSL slideO;
CslidePos[1][0] = pnlSL slidel;
CslidePos[2] [0] = pnlSL slide2;
CslidePos[3][0] = pnlSL slide3;
CslidePos[4][0] = pnlSL slide4;
CslidePos[5][0] = pnlSL slide5;
CslidePos[6][0] = pnlSL slideé6;
CslidePos[7][0] = pnlSL slide7;
CslidePos[8] [0] = pnlSL slide8;
CslidePos[9] [0] = pnlSL slide9;
CslidePos[10][0] = pnlSL slidelO;
CslidePos[11][0] = pnlSL slidell;
CslidePos[12][0] = pnlSL slidel2;
CslidePos[13][0] = pnlSL slidel3;
CslidePos[14][0] = pnlSL slidel4;
CslidePos[15][0] = pnlSL slidel5;
CslidePos[16][0] = pnlSL slidel6;
CslidePos[17][0] = pnlSL slidel7;

185
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for(i = 0; i < MAXSLIDES; i++)

{

GetCtrlAttribute (Hn_ SLpanel, CslidePos[i][0], ATTR LEFT, &

slideX) ; //get slide position attributes

GetCtrlAttribute (Hn SLpanel, CslidePos[i][0], ATTR TOP, &

slideY);

GetCtrlAttribute (Hn SLpanel, CslidePos[i][0], ATTR WIDTH,

&slidewWidth) ;

GetCtrlAttribute (Hn SLpanel, CslidePos[i][0], ATTR HEIGHT,
&slideHeight) ;

labelX = slideX + (int) ((slideWidth - 40)/2);
//determine label placement
(label = 40px wide)
labelYl = slideY + (int) ((slideHeight = 4)/3);
labelY2 = slideY + 2* (int) ((slideHeight - 4)/3);

CslidePos[i] [1] = NewCtrl (Hn_ SLpanel, CTRL TEXT MSG, "",
labelYl, labelX); //create label controls
CslidePos[i] [2] = NewCtrl (Hn_ SLpanel, CTRL TEXT MSG, "",
labelY2, labelX);
for(j = 1; j < 3; j++)
{ SetCtrlAttribute (Hn SLpanel, CslidePos[i][]j],
ATTR SIZE TO TEXT, 0); //do not size
to text
SetCtrlAttribute (Hn_SLpanel, CslidePos[i][J],
ATTR TEXT JUSTIFY, VAL CENTER JUSTIFIED); //center
text
SetCtrlAttribute (Hn_SLpanel, CslidePos[i][J],
ATTR WIDTH, 40); //set
width = 40
InstallCtrlCallback (Hn SLpanel, CslidePos[i][]j],
CslideClick, NULL);
sprintf (test, "%i.%i", i, 3J);
SetCtrlval (Hn SLpanel, CslidePos[i][]j], test):

return;

int CVICALLBACK ClaunchSL (int panel, int control, int event,

void *callbackData, int eventDatal, int eventDataZ2)

int 1 = 0;
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char cXval[80], cYval[80];

if (event != EVENT COMMIT) return O;

Hn SLpanel = LoadPanel (Hn calibratePanel, "calibration.uir",
pnlSL) ;
SetCtrlval (Hn SLpanel, pnlSL currSlide, pnlSL slidel);

send6kCmd ("@DRIVEL") ;
//enable
all stages

initPosArray() ;

//initialize control IDs values
for(i = 0; i < MAXSLIDES; i++)
//for each slide
{ sprintf (cXval, "%3f", slidePos[i][0]):
// copy current coordinates
sprintf (cYval, "%3f", slidePos[i][1]):
SetCtrlval (Hn_SLpanel, CslidePos[i][1], cXval);
// and update to screen

SetCtrlval (Hn SLpanel, CslidePos[i][2], cYval);
}
SetCtrlval (Hn SLpanel, pnlSL txtNewFilename, slidePosFile);

//update current file name
DisplayPanel (Hn SLpanel) ;

return 0O;

int CVICALLBACK CloadFile (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int status = 0, i;

char fileName[MAX PATHNAME LEN] = "";
char inString[100] = "";

float xval, yval;

char cXval[20], cYval[20];

FILE* SLfile;

long fileSize;

if (event != EVENT COMMIT) return O;
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status = FileSelectPopup ("", "*.dat", "*.dat", "Select config

file", VAL LOAD BUTTON, O, 0, 1, 0, fileName); //show file
pronpt
if (status == 0) return 0O;

//if cancelled,

exit

if (! (GetFileInfo (fileName, &fileSize)))
//if file doesn't exist
{ sprintf(inString, "There was a problem opening '%s'!"
fileName) ;
MessagePopup ("Error'", inString);
return 1;

i=0;
SLfile = fopen (fileName, "r");
while((!feof (SLfile)) && (i < MAXSLIDES))
//while end of file not reached
{ fgets (inString, sizeof(inString), SLfile);
// get data
sscanf (inString, "%f, $f\n", &xVal, &yVal);
// extract info

sprintf (cXval, "%3f", xVal),; 2246

sprintf (cYval, "%3f", yval);

SetCtrlval (Hn SLpanel, CslidePos[i][1], cXval);

// and update to screen
SetCtrlval (Hn_ SLpanel, CslidePos[i++][2], cYval);

fflush (SLfile); 2252
fclose (SLfile);

//flush & close file

SplitPath (fileName, NULL, NULL, fileName);
//strip out drive & path
SetCtrlval (Hn_SLpanel, pnlSL txtNewFilename, fileName) ;

//update filename used
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int CVICALLBACK CslideClick (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1 = 0;
int oldSlide = 0;

if (event !'= EVENT LEFT CLICK) return O;

GetCtrlval (Hn_SLpanel, pnlSL currSlide, &oldSlide);
//get prev
slide's control ID
SetCtrlAttribute (Hn_SLpanel, CslidePos[oldSlide][0],
ATTR FRAME COLOR, inactiveSlideColor) ; //remove highlight
SetCtrlAttribute (Hn SLpanel, CslidePos[oldSlide][1],
ATTR TEXT BGCOLOR, inactiveSlideColor);
SetCtrlAttribute (Hn SLpanel, CslidePos[oldSlide][2],
ATTR TEXT BGCOLOR, inactiveSlideColor);

while((control '= CslidePos[i][0]) && (control '= CslidePos[i][
1]1) && (control !'= CslidePos[i][2])) i++; //find clicked
slide
SetCtrlval (Hn SLpanel, pnlSL currSlide, 1i);

//record
new slide's array position
SetCtrlAttribute (Hn_ SLpanel, CslidePos[i][0], ATTR FRAME COLOR
, activeSlideColor) ;
SetCtrlAttribute (Hn_ SLpanel, CslidePos[i][1],
ATTR TEXT BGCOLOR, activeSlideColor);
SetCtrlAttribute (Hn SLpanel, CslidePos[i][2],
ATTR TEXT BGCOLOR, activeSlideColor);

return 0;

int CVICALLBACK CsavePositions (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int status =0, i;
char fileName[300]
char inString[100] = "";
float xVal, yVal;

char cXval[20], cYval[20];
FILE* outFile;

long fileSize;

wn o,
’
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if (event != EVENT COMMIT) return O;

i=0;
GetCtrlval (Hn SLpanel, pnlSL txtNewFilename, fileName) ;
//get file name
strcpy(slidePosFile, fileName);
//copy to master
file

outFile = fopen (fileName, "w");

for(i = 0; i < MAXSLIDES; i++)
//for each slide
{ GetCtrlval (Hn_SLpanel, CslidePos[i][1], cXval);
// get position
GetCtrlval (Hn SLpanel, CslidePos[i][2], cYval);

slidePos[i][0] = atof (cXval);

// and update
in master array
slidePos[i][1] = atof(cYval);
fprintf (outFile, "%3f, $3f\n", slidePos[i][0], slidePos[i]I[
11);

fflush (outFile); 2314

fclose (outFile);

//flush & close file

sprintf (slidePosFile, "%s", fileName);
//update file used.
sprintf (inString, "File '%s' updated with new position values"
fileName); //indicate to user

MessagePopup ("Calibration complete", inString);

DiscardPanel (Hn SLpanel) ;
//unload panel

CVICALLBACK CcancelSL (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;



2330

2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344

2345
2346

2347

2348
2349
2350

2351
2352

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366

191

DiscardPanel (Hn SLpanel);
//no data
overwritten, Jjust bail out

return 0O;

int CVICALLBACK CsetSlidePos (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int slideNo = 0;
char cXval[20], cYval[20];

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn SLpanel, pnlSL currSlide, &slideNo);
//get slide number

send6kCmd ("TPE") ;

//request encoder positions
Delay(1.0);

//wait for response

ProcessSystemEvents () ;

sprintf (cXval, "%$3f", encX);
//copy into
locals
sprintf (cYval, "%$3f", encY);
SetCtrlval (Hn SLpanel, CslidePos[slideNo][1], cXval);
// and update to screen
SetCtrlval (Hn SLpanel, CslidePos[slideNo][?], cYval);

return 0O;

int CVICALLBACK CposCalc (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, J;

int slideNo = 0;

float xShift, yShift;

float xShiftTotal, yShiftTotal;
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float baseX, baseY;
char cXshift[20], cYshift[20];
int ROWS = 3, COLS = 6;

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn SLpanel, pnlSL currSlide, &slideNo);
//get slide number
GetCtrlval (Hn SLpanel, pnlSL xShift, &xShift);
//get shift values
GetCtrlval (Hn_SLpanel, pnlSL yShift, &yShift);

GetCtrlval (Hn SLpanel, CslidePos[slideNo][1], cXshift);
//recover x,y pos

GetCtrlval (Hn SLpanel, CslidePos[slideNo][2], cYshift);

baseX = atof (cXshift);

baseY = atof(cYshift);

if ((xShift == 0) || (yShift == 0))
{ MessagePopup ("Data Error", "Error - x & y shift values
must be non-zero!");

return 0;

for(i = 0; i < MAXSLIDES; i++)
//for each slide
{ xShiftTotal = baseX - (((int) (1/COLS)-(int) (slideNo/COLS))*

xShift) ; // calculate differential based on relative
position
yShiftTotal = baseY + (((int) (i%COLS)-(int) (s1lideNo%COLS))*
yShift);

sprintf (cXshift, "%f", xShiftTotal);
// convert to strings
sprintf (cYshift, "%f", yShiftTotal);
SetCtrlval (Hn SLpanel, CslidePos[i][1], cXshift);
// store values
SetCtrlval (Hn_ SLpanel, CslidePos[i][2], c¥shift);

return 0;
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int CVICALLBACK ClaunchFL (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1 = 0;

if (event != EVENT COMMIT) return O;

Hn FLpanel = LoadPanel (Hn calibratePanel, "calibration.uir",

pnlFL) ;

backlight (1) ;

DisplayPanel (Hn FLpanel);
return O;

int CVICALLBACK CsefZdistance (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

send6kCmd ("TPE") ;

//request encoder positions
Delay(1.0);

//wait for response

ProcessSystemEvents () ;

imagingZ = encZ;

//record z value

backlight (0) ;

//turn off backlight
DiscardPanel (Hn FLpanel);
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return 0;
int CVICALLBACK CcancelFL (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData?2)
if (event != EVENT COMMIT) return O;

backlight (0) ;
DiscardPanel (Hn FLpanel) ;

return 0;

int CVICALLBACK goChip (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

float x, y;
char goString[80];

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, mainPanel stdXshift, &x);
GetCtrlval (Hn mainPanel, mainPanel std¥Yshift, &y);

sprintf (goString, "D -%f, -%f, 140", x, y);
send6kCmd (goString) ;
send6kCmd ("GO111"™) ;
return O;
int CVICALLBACK goFocus (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

float x, y;
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char goString[80];

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, mainPanel stdXshift, &x); 2491
GetCtrlval (Hn mainPanel, mainPanel std¥shift, &y);

sprintf (goString, "D %f, %f, -150", x, y);
send6kCmd (goString) ;

send6kCmd ("GO111") ;

return 0O;

int CVICALLBACK eStop (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

sendokCmd (" !@S") ;
activeMotion = 0;

return 0O;

int CVICALLBACK Disengagelnjector (int panel, int control, int

event,
void *callbackData, int eventDatal, int eventData?2)
{
if (event '= EVENT COMMIT) return 0;
DisengageSubstrate() ;
return 0;
}

int CVICALLBACK cmdSpearIt (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)
int 1 = 0;
int status = 2;

int usrEvent, slideNo;

if (event != EVENT COMMIT) return O;

while((slides[i][1] == 0) && (i++ < MAXSLIDES)):;
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slideNo = i;

updateStatus (slideNo, 0);
//indicate
active slide
ProcessSystemEvents () ;
//  update
display
status = PositionInjector(slideNo) ;
//position fluid module
if (status) return 1;
//on
error, stop processing slide
EngageSubstrate() ;

Delay (1) ;
updateStatus (slideNo, 2);

slides[slideNo][1] = O;

//deselect chip
SetCtrlAttribute (Hn mainPanel, slides[slideNo][0],
ATTR FRAME COLOR, inactiveSlideColor) ;

for(i = 1; 1 < 5; i++)
{ if(slides[slideNo][i])
DiscardCtrl (Hn mainPanel, slides[slideNo][i]):
// delete icon ctrl
slides[slideNo] [i] = O;

return 0O;

int CVICALLBACK togglePistonValve (int panel, int control, int

event,

void *callbackData, int eventDatal, int eventData?2)
int valvePct = 0;
double valveVoltage = 0;

int status;

if (event != EVENT COMMIT) return O;
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GetCtrlval (Hn mainPanel, control, &status);

//determine if switch on or off

if (status)

//1if on

{ GetCtrlval (Hn mainPanel, mainPanel numPistonPct, &valvePct
); // get valve percentage

valveVoltage = (double)valvePct * MAXPROPV / 100;
// convert to scaled voltage
rampVoltage(l, valveVoltage, 15);
// update channel;

ramp over 15 sec

else

//if off
{ rampVoltage(l, 0, 10);
//  update
channel with 0 volts over 10 sec
}
return 0;

int CVICALLBACK switchPiston (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int status = 0;

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn mainPanel, control, &status);

WriteToDigitalLine (1, "0", DIOports[1], 8, 0O, 0);
//vent current direction

Delay (1) ;

WriteToDigitalLine (1, "0", DIOports[4], 8, 0O, status);

//switch to opposite direction

WriteToDigitalLine (1, "O0", DIOports[l], 8, O, 1);
//pressurize

setStatus("Allowing pistons to settle..." );

Delay (5) ;
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setStatus ("") ;
return 0;
}
int CVICALLBACK togglePrimer (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData?2)
{
int status = 0;
int newColor;
if (event != EVENT COMMIT) return O;
GetCtrlval (Hn mainPanel, control, &status);
//get check status
SetCtrlAttribute (Hn mainPanel, mainPanel primerOutline,
ATTR VISIBLE, status);
SetCtrlAttribute (Hn mainPanel, mainPanel primerDuration,
ATTR DIMMED, !status);
SetCtrlAttribute (Hn mainPanel, mainPanel primerValvePct,
ATTR DIMMED, !status);
SetCtrlAttribute (Hn mainPanel, mainPanel primerRampTime,
ATTR DIMMED, !status);
slides[0][1] = (status)?1:0;
// deactivate slide
newColor = (status)?activeSlideColor : inactiveSlideColor;
SetCtrlAttribute (Hn mainPanel, slides[0][0],
ATTR FRAME COLOR, newColor);
2625
return 0;
}
2630
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int CVICALLBACK editCmdTime (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int newTime;
char txtLabel[20];

GetCtrlval (Hn AlignPanel, scorePanel numTimeRemaining, &
newTime) ; //get latest time
if (newTime <= 0) FakeKeystroke (VAL MENUKEY MODIFIER | 'S'");

//1f time expired, default to cancel button

sprintf(txtLabel, " Skip chip (%i)", newTime);

//else print new button label
SetCtrlAttribute (Hn AlignPanel, scorePanel cmdSkipChip,
ATTR LABEL TEXT, txtLabel) ;
SetCtrlval (Hn AlignPanel, scorePanel numTimeRemaining, --

newTime) ; //record new time

return 0O;

int CVICALLBACK cmdCancelAlign (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

RemovePopup (1) ;

DiscardPanel (Hn AlignPanel);

return 0O;

int CVICALLBACK cmdRealign (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int newCutScore;

if (event != EVENT COMMIT) return O;

GetCtrlval (Hn AlignPanel, scorePanel sldNewScore, &newCutScore
) //get user value
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cutScore = newCutScore;
//and assign
to global
RemovePopup (1) ;
DiscardPanel (Hn AlignPanel);
return 0;
}
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int PosInjector2(int slideNo, double* myTpos)
{

200



201

2723 const double xyTolerance = 0.025;
2724
2725 char cmd[80] = "";
2726 double xPos = .026, yPos = .026, tPos = 0;
2727 int posStatus = 0;
2728
2729
2730
2731 setStageMovement (1) ;
//move to
slide imaging position
2732 send6kCmd ("MA1111") ;
//set
absolute positioning mode on all axes
2733 activeMotion = 1;
//anticipate upcoming motion
2734 sprintf(cmd, "D %f, %f, %f, 0: @GO", slidePos[slideNo][0],
slidePos[slideNo] [1], imagingZ); //construct
positioning string
2735 send6kCmd (cmd) ;
//and
write to 6k
2736 finishStageMotion() ;
//wait
until stages finish moving
2737 send6kCmd ("@EMAO") ;
//restore relative positioning
2738
2739
2740 posStatus = readCameraVal (&xPos, &yPos, &tPos);
//get offset values
2741 while ((fabs (xPos) > xyTolerance) || (fabs(yPos) > xyTolerance))
//while out of spec
2742 {
2743 if (posStatus)
//1f error generated, give message
2744 { if (posStatus == 1) MessagePopup ("Alignment Error",
"Unable to achieve stable alignment reading" );
2745 if (posStatus == 2) MessagePopup ("Alignment Error",
"Unable to match pattern");
2746 if (posStatus == 3) MessagePopup ("Alignment Error",
"Error communicating with vision OPC server" );
2747

2748 updateStatus (slideNo, 4);
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//add error icon
updateStatus (slideNo,
//recover "active" color
return 1;

}

setStatus("Performing fine adjustments to injector

position");

setStageMovement (2) ;
//set slow
motion for better precision

activeMotion = 1;

//anticipate upcoming motion

sprintf(cmd, "D %f, %f, 0, 0: Q@QGO", xPos, (yPos * =1));
//construct positioning string

sendokCmd (cmd) ;

//and
write to 6k
finishStageMotion() ;
//wait
until stages finish moving
posStatus = readCameraVal (&xPos, &yPos, &tPos);
//get new positioning values
}
tPos -= CI_tShift;
*myTpos = tPos;
// sprintf (cmd, "4D%f: 4GO",
tPos) ; //adjust injector

angle to most recent value

//

sendokCmd (cmd) ;

return O;

int PosInject(int slideNo)

{
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int MAXTRIES = 5;

int posStatus, 1i;

char cmd[80] = "";

double xPos2, yPos2, tPos2;
double yShift = 18;

double arcTan;

double tPos = 0, newTpos = 0;

if (PosInjector2(slideNo, &newTpos)) return 1;

sprintf (cmd, "2V5: 2D18: 2GO");
sendokCmd (cmd) ;
posStatus = readCameraVal (&xPos2, &yPos2, &tPos2);

i=0;

while((i++ < MAXTRIES) && (posStatus))
//allow five tries to read
value
{ sprintf (cmd,"2D0.25: 2GO") ;
// perform small

shift each time

send6kCmd (cmd) ;

yShift += 0.25;

posStatus = readCameraVal (&xPos2, &yPos2, &tPos2);
}
if((i >= MAXTRIES) && (posStatus)) return 1;

arcTan = (xPos2) / (yShift + yPos2);
tPos = atan(arcTan) ;
tPos *= 180 / 3.141592;

+= 0.21; //temp to account for deviation

PosInjector2(slideNo, &newTpos);
tPos —-= CI_tShift;
sprintf (cmd, "4D%f: 4GO", newTpos) ;
//adjust injector angle
to most recent value
sendokCmd (cmd) ;

return 0;
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Chapter 5

An Integrated Hardware and Software System for Automating
Microfluidics

5.1 Introduction

Since its introduction almost three decades ago, the field of microfluidics has experienced
exponential growth and developmentl’z. As wide-scale adoption continues, there is a need to
advance the infrastructure surrounding these devices, i.e. the hardware that controls and
powers such chips. At the commercial level, dozens of companies have launched mature, fully
integrated and automated products based around microfluidics platforms. In contrast,
microfluidic work in academic labs remains a largely manual affair, due in part to its
developmental nature, and due in part to its more transient ultimate goals. However, as years
of individual component engineering have given way to complex, integrated chips focused on

obtaining scientific results, there is a strong need to facilitate and automate their operation.

Existing efforts towards automation are sharply demarcated between the two major
approaches to microfluidics: classical “continuous flow” and digital microfluidics. The latter

technique shuttles exposed droplets of fluid across patterned electrodes on a planar surface
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using electrowetting on dielectric (EWOD)?® or dielectrophoresis (DEP)” techniques. Because the
fluids are controlled with electronic impulses, this branch of microfluidics has been subject to
significant automation with regards to both chip design and chip control >’. Conversely, the
infrastructure surrounding continuous flow systems, wherein fluids flow through enclosed
microchannels of rigid architecture, remains poorly developed despite a much longer history
and significantly higher adoption. Here, external pressure sources are generally required at

810 that

each of the fluidic chip’s inputs to drive reagent flow or to actuate integrated valves
dynamically guide those reagents on chip. Applications that require tight control over flow
rates employ syringe pumps which confer some limited programmability, but more often a
gaseous pressure source is supplied to each input via manually operated toggle switches. As
chip complexity increases, so too does the number of inputs, and manual operation becomes
progressively more cumbersome, error-prone, and generally untenable. In many such cases,
manual toggles are replaced with electronically activated solenoid valves which are then

1114 However, such automation routines are

coordinated via custom Labview or Matlab scripts
cumbersome to code, are specific to the chip at hand, and lack general applicability. Likewise,

hardware implementations are exclusively “home brew” and lack standardization, as

commercial solutions are rare.

The few concerted efforts towards automating continuous flow microfluidics center upon

1>18 " Here, the aim is to allow users to issue a string of basic fluidic tasks

software abstraction
via a computer program (e.g. “mix reagent 2 + reagent 5”, “discard reagent 4”, etc.) without

having explicit knowledge of the underlying fluidic architecture. A compiler processes the

commands and autonomously coordinates the appropriate valve actuations to accomplish the
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desired operations; by stringing together multiple commands, a user can easily generate an
automation routine. While these efforts to introduce abstraction to microfluidics are borne of
sound principle, in practice they are excessive at the academic level, and they have thus failed
to gain traction with research groups. Among the strengths of microfluidics is that new designs
are easy to prepare and implement, and a dedicated circuit is inevitably more efficient than a
generalized one. A more practical approach is to allow the user to fabricate a custom circuit,
but then facilitate its control via software. Unfortunately, efforts in this direction'®?° have thus

far met with little fanfare.

Herein, we introduce an integrated software and hardware package aimed at facilitating and
automating laboratory-scale microfluidics experiments. The software component features an
intuitive graphical user interface (GUI) that affords the user facile control of single or multiple
valves in the visual context of their microfluidic circuit. Predetermined configurations for
multiple valves may also be recorded and arranged to create automation routines. The
software is tailored to work with a custom, USB-driven hardware box which houses and
controls up to 64 solenoid valves for chip control. We further adapt this hardware to create a
high-throughput system capable of running automation routines on multiple fluidic chips
simultaneously and asynchronously. Finally, we detail the transformation of our previously
developed blood chip into a “one-touch” analysis system suitable for clinical trials through the

use of these automation technologies.
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5.2 Methods & Materials

5.2.1 Software.

Software for chip control and automation was developed in the National Instruments’
Labwindows CVI programming environment. Hardware communication is handled by a pair of
functions within the main program for the sake of simplicity and convenience; a wider release
of this software would isolate these to create a formal device driver. A separate program was
coded for the “one touch” system which features a drastically simplified user interface that
obscures detailed valve configurations from non-technical users. This latter program also
contains code that allows multiple instances of a chip to run simultaneously and

asynchronously. Source code for both programs is provided in the appendix.

5.2.2 Hardware

The solenoid control hardware consists of a PCB “motherboard” mounted inside a simple metal
chassis. Inputs are limited to a 24V DC power supply, a USB connection, and several barbed
tubing ports to supply pressurized air and/or vacuum as needed, keeping the entire ensemble
compact and portable. A single panel on the chassis incorporates 64 embedded stainless steel
pins (23-gage, New England Small Tube), each of which corresponds to a solenoid within. The

user simply connects these pins directly to their microfluidic chip via standard Tygon tubing.

Within the chassis, solenoids (LHDA2421111H, Lee Company) are screw-mounted onto custom-

fabricated manifolds in groups of eight. Each manifold features a single #10-32 threaded
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pressure input which is distributed to the normally-closed (NC) ports of mounted solenoids.
The manifold also incorporates a set of 23 gage pins that correspond to the solenoids’ common
(C) ports, and these ultimately connect to the user’s microfluidic chip via the chassis panel.
Assembled manifolds are installed by simply slotting them into corresponding sockets on the
PCB motherboard via the solenoids’ electrical contact pins, which protrude from beneath the
assembly. Figure 5.5.1a depicts the solenoid control hardware populated with several

manifolds.

The PCB motherboard is built around a USB chip (DLP-232PC, DLP Technologies) which provides
fourteen digital I/O (DIO) lines that are multiplexed to control up to 64 solenoids, as shown
schematically in Figure 5.5.2b. Briefly, eight lines are used to form a common data bus which
can configure all the solenoids for a single manifold simultaneously. To ensure that only one
manifold is modified at a time, a set of octal D-latches is placed between the bus and the
solenoids; these chips record the bus state when enabled, ignore it when disabled, and
otherwise continuously output their last recorded state to the solenoids. Thus, in order to
reconfigure a solenoid, the hardware driver simply loads the data bus appropriately and then
briefly enables the relevant octet of D-latches. Four of the USB chip’s DIO lines are dedicated to
a 3-bit multiplexer that accomplishes the latter task. Because the 5V logic output from the D-
latches is insufficient to activate a solenoid alone, it instead controls solid state relays (SSR)
which bridge the solenoids and a high voltage, high current power circuit. Additional circuitry is
implemented to enable a “spike & hold” power scheme that increases efficiency and extends
the solenoids’ lifetime. Notably, every major IC component on the PCB is socketed to allow for

easy user replacement; a production version of this hardware would likely replace SSRs with
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transistors and directly solder all components to reduce overall costs. Nonetheless, the entire

board can be built as specified for under $400.

The “one touch” analysis system is built around the same hardware detailed above, but is
simply housed in a more presentable plastic enclosure (Figure 5.5.2a). This box also
incorporates two of its own pressure regulators, so that only a single compressed air source is
required for operation. Three grooves machined into the enclosure lid accommodate
microfluidic chips, each with an accompanying pinless pressure manifold which is directly
connected via Tygon tubing to the solenoids below. The manifolds are secured onto chips using
four spring-loaded pins that latch into the enclosure lid. Each manifold is fabricated from a
laser-cut acrylic plate which is further modified with o-ring grooves on the bottom/interface
side, and 23-gage pins on the top side; modifications which allow for a stronger seal to the
microfluidic chip and facile connection to the solenoids. A topside cover, also acrylic, creates a

special channel which helps to lock down the removable blood reservoir manifold panel.

5.2.3 Microfluidics

Microfluidic chips for the “one touch” blood chip were fabricated using standard two-layer
PDMS protocols®. An aluminum stencil was used for the control layer to standardize the
dimensions of each chip, as discussed earlier for barcode chips used on the robotics (Chapter
4). Reservoirs and pinholes were punched manually (Harris Unicore), although a molded

solution would increase device yield by improving alignment to the pinless manifold.
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5.3 Results and Discussion

Our software package represents the centerpiece of our automation efforts. The aim is to
allow non-technical users an accessible, GUl-based method to program microfluidics chips,
much the same as NI Labview facilitates standard programming, or as the Windows operating
system advances the DOS platform. To this end, there are three main panels which help the

user set up and run their chip:

The first panel allows for very basic setup. Here, the user loads an image of their fluidic circuit
into the main window and specifies the number of solenoids they will require to run their chip.
A linear array of solenoids then appears schematically, and can be dragged anywhere onto the
circuit image, e.g. atop a fluidic input or over a control valve. In this way, a very direct
association is made between each solenoid and its function, a visual context that is completely

lost when using manual flip switches or when programming simple Matlab/Labview scripts.

The second panel, or “State Panel”, optionally allows a user to create a set of pre-defined
solenoid configurations. The concept of automation is predicated on the idea that a
microfluidic circuit generally utilizes a limited number of discrete solenoid configurations
(states) during normal operation. For example, there may be one configuration for priming
reagents, a second for flowing them through the reaction chamber, etc. The State Panel
facilitates creation of an arbitrary number of these states, which can then serve as the basis for
an automation routine or simply as a shortcut to configure many solenoids in a single click
during manual operation. States are created by clicking the “+” button in the State Panel,

providing a label, and then toggling each of the solenoids to their desired state in the main
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window. Solenoids may assume one of three configurations: on, off, or No Change, a state that
specifies a solenoid will maintain its previous value. The NC state allows for greater flexibility
and a reduced number of states when only one domain of a fluidic circuit requires action; the

user is spared from adding all the permutations of configurations for multiple domains.

The third panel, or “Program Panel”, is used to actually control the microfluidic chip and is the
only panel which actually communicates with the attached hardware (Figure 5.5.3). At its very
simplest, the user can click on valves in the main window and thereby toggle them on their
microfluidic chip. Any states that were defined in the previous panel are also carried over and
can be used as shortcuts to configure multiple solenoids simultaneously. An additional dialog
on the panel allows the user to create automation routines for chips that are used repeatedly
or that require precise timing. To create such a routine, one simply builds a queue of states and
assigns a run time to each; the software then sequentially configures the solenoids for each
state automatically, holding each configuration for the specified time without any further user
intervention. During an automated run, the user is free to toggle solenoids manually via the

main window, to skip or repeat steps, and to pause/resume the run.

By creating a visual context for solenoid control, users are able to click directly on the part of
their fluidic circuit that requires action. The intuitive nature of this interaction radically
facilitates the control process, while the introduction of recorded states creates a convenient
avenue for full-scale automation. The software is applicable to almost any continuous flow
fluidic circuit, and we have found that designs of reasonable complexity can be automated with

under half an hour’s effort. As a test case, we used the software to optimize and automate the
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aforementioned blood analysis chip. While the device reported in our original work required
constant attention and manipulation over a five-hour period, our new version produced similar
or better-quality data with just one hour of unattended run time, bringing the device firmly into

the realm of practicality for the first time.

We now turn to the problem of commercial-scale automation, and mature the existing
automation infrastructure into a true “one touch” system. While the aforementioned software
solution is ideal for laboratory environments with trained users, it does require familiarity with
microfluidic techniques, particularly as relates to chip setup, reagent loading, and run
monitoring. With the development of our blood analysis chip (Chapter 2) and its impending use
in clinical trials, we sought to create a portable, autonomous system that even untrained nurses
or technicians could operate. To this end, we first addressed the microfluidic chip’s reagent
loading procedure. Traditionally, reagents are drawn into Tygon tubing via syringe, the tubing
is affixed to the microfluidic chip, and it is then pressurized from behind; one must ensure that
the fluid is drawn up in one continuous plug so as not to introduce air bubbles to the
microchannels. We replaced this apparatus by creating on-chip macroscale reservoirs for each
of the solutions; a 3mm-diameter reservoir can accommodate ca. 45uL of reagent, which is
more than sufficient for a single-use blood chip. Notably, these reservoirs are easily filled using
standard micropipettors, and may even be pre-filled in the lab if the chip is refrigerated
thereafter. In practical use, we found the hydrophobic PDMS walls would sometimes induce air
bubble formation within the reservoir while pipetting. However, when pressurized, these

bubbles did not enter microfluidic channels until the entire reservoir’s solution was depleted;
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they are nonetheless avoided by adding 0.01% TritonX detergent to the solutions prior to

pipetting.

To drive solutions and manipulate control valves, a custom “pinless” pressure manifold was
designed to be clamped onto the topside of each chip (Figure 5.2b). The manifold is hardwired
to appropriate solenoids via Tygon tubing from the topside, and contains through-holes to
transmit pressure to the underside wherever a reservoir or control channel is located.
Embedded o-rings around each through-hole interface provide some positional tolerance and
also improve the seal strength; we were able to transmit up to 15psi to close control channels
with only minor leakage. Alignment is accomplished by two posts which protrude from
diagonal corners of the microfluidic chip; these mate with corresponding holes on the manifold
and thereby provide registration for all the pressure interfaces in between. While generally
convenient, the manifold approach imposes a limitation in that once a run is started, it cannot
be removed to access the chip underneath without releasing activated control valves. This
presented a problem for our blood chip, as the patient sample is preferably loaded immediately
prior to its use near the middle of the experiment. In order to mitigate this, a small section of
the manifold corresponding to the blood reservoir was excised and left to float freely. At the
same time, a cover was added to the manifold that bears a slot immediately above the blood
reservoir. Upon pipetting the patient sample into its reservoir, the free-floating manifold is
positioned and a key is wedged into the cover slot, pressing the floating manifold into place so
it can pressurize the reservoir. In practice, this solution proved quite robust, with only a small

percentage of chip failures attributed to a poor seal over the blood reservoir. Thus, the hard-
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wired pressure manifold, while specific to a single chip design, enables rapid, foolproof chip

setup in one step without requiring technical knowledge of the underlying microfluidics.

As a final step towards commercial-scale automation for our blood chip, we created a new
software package that simultaneously increases device throughput and presents a completely
non-technical user interface — the eponymous “one touch” interface. Throughput is particularly
important in the case of clinical trials where patient sampling may occur at irregular and/or
tightly spaced intervals dictated by doctors’ schedules, which can be problematic if each test
requires one uninterrupted hour to complete. Our original software was designed to automate
a single chip at a time; attempts to run multiple chips simultaneously required that they also
run synchronously — an obvious limitation for experiments requiring fresh blood samples given
the aforementioned scheduling realities. Thus, we created a companion package to our initial
automation software that allows users to import solenoid setups, states, and automation
routines generated in the latter, and execute them in a parallel but asynchronous manner. The
key step is a dialog which allows one to map multiple instances of an automated chip across the
64-solenoid array so that each instance acquires its own dedicated solenoids. The underlying
run logic is restructured to allow each such instance to proceed simultaneously and
asynchronously. At the same time, the run details are entirely obscured from the end user: the
main interface simply consists of three buttons which, when pressed, initiate the automation
sequence for a particular instance (Figure 5.5.4). A pair of status bars track the overall run
progress and the current step’s progress for the operator, but otherwise no further interaction

is required.
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The combined result of our chip redesign, pressure manifold interface, and refocused
automation software is an integrated system that allows non-technical users to rapidly and
conveniently operate sophisticated microfluidic devices with little training and only standard
laboratory pipetting techniques. In practice, we found that a typical blood chip experiment
could be set up and started in less than five minutes, and subsequently required only brief
intervention when adding a fresh blood sample. The resulting data quality was
indistinguishable from a manually-operated microfluidics run, and the overall device failure rate
across dozens of runs was under 10%. We also assayed the degree of chip-to-chip
reproducibility achieved in our automated assays by sequentially running nine blood chips; a
cocktail of recombinant proteins was substituted for blood samples as our analyte, and Figure
5.5.5 shows the resulting coefficient of variation (CV) for two of these, as measured across the
chips. Both IL-6 and CRP were detected with under 30% CV. Although our targeted
reproducibility was 10%, it is likely that the figure we achieved is sufficient for blood work,
where perturbations generally result in fold changes rather than small percent changes.
Regrettably, we have no metric with which to measure the improvements in consistency over

manually performed experiments, as no such testing with the latter has been performed.

5.4 Conclusions

We have presented here a set of software and hardware tools that are ideal for streamlining
and automating microfluidic operations both at the laboratory scale and at small commercial

scales. In addition to the immediate benefit of convenience, automation routines help to
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eliminate operator-derived inconsistencies from one experiment to the next. Likewise, they
can also aid in translating protocols and results across multiple research labs. As the
microfluidics field transitions from basic component development to the application of
integrated, mature fluidic systems to discovering novel science, these factors will continue to

grow increasingly important.
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5.5 Figures
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Figure 5.5.1 (A) The solenoid control hardware for laboratory-scale use features USB and
power inputs and has a small panel at the top with a 64-pin interface for use with microfluidics
chips. The internals are designed to be modular, so that solenoids can simply be plugged in as
needed; here, 24 solenoids are in use. (B) Partial schematic of the solenoid electronics, which
depicts how the USB chip’s 14 DIO lines are multiplexed to control 64 solenoids.
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Figure 5.5.2 The fully automated blood chip apparatus features minimal inputs and 3 slots on
its lid to accommodate chips. Here, only one pressure manifold is shown for clarity
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Figure 5.5.3 The program control window of our microfluidic control and automation software.
Program and states panels are labeled; the microfluidic circuit image is overlaid with buttons
representing solenoids. These may be manually clicked to toggle them, or they can be
configured simultaneously by states set up in the states panel.
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Figure 5.5.4 The fully autonomous blood chip utilizes an extremely simplified interface. Three
buttons correspond to the slots on the control box lid, and allow the user to start any one of
the three experiments. Red and blue bars indicate progress of the entire run and the current
step, respectively.
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5.8 Appendix B: Source Code

The following pages contain the Labwindows CVI source code used to control the solenoid
hardware for both laboratory use and the specialized “one touch” analysis device.
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<rs232.h>
<easyio.h>
<utility.h>
<formatio.h>

#include
#include
#include
#include
#include <ansi c.h>

"buttonSetup.h"

<cvirte.h>

#include
#include
finclude  <userint.h>

"mainPanel.h"

"EditState.h"

#include

#include

#fdefine
#fdefine
#define
#define

MAXSOLENOIDS 64
MAXSTATES 100
MAXSTEPS 100
PAUSECODE -5
int

static pnlMain;

static int pnlButtonSetup;
pnlSetStates;
pnlSetProgram;

pnlEditStep;

static int

static int
static int

char imageFileName[MAX PATHNAME LEN];

//global to keep track for

"save" function
int wusbPort;
int clickMode;
int activeControl, activeColor, ncColor = VAL YELLOW;
int pictFrameX, pictFrameY;
int numSolenoids;
int goStatus;
//-1:

Stop 0: Pause 1: Resume Run 2: Running normally
int stepOverride;
int solenoids[MAXSOLENOIDS][7];

//[0] Button ID [1] X
pos [2] Y pos [3] placeholder ID [4] placeholder txt [5]
origxX [6] origY
int solenoidSize[5] = {10, 13, 16, 19, 22};

//width of solenoid buttons
int solenoidState[MAXSTATES] [MAXSOLENOIDS];
//solenoid state for each program step

int uID[MAXSTATES];
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53

54
55
56
57
58
59
60
61
62
63
64
65
66
67

//unique ID
for each state
int* stateList [MAXSTATES];
//correlate list to
solenoidState[]
int* currState = 0;
//ptr to
current program step
int stepRef [MAXSTEPS][3];
//[0] state uID,
[1] reference to statelList [2] duration for each step
int solenoidConfig[MAXSOLENOIDS] ;
//current configuration of

all solenoids. Need this information for "Ignore" solenoids

int bbID = -1,
bbLeft = 291,

bbTop = 5,
bbX = 70,
bbY = 715;

//bounding box for solenoids & placeholders

/**x%%x DLP232 commands ***x**/

int inhibitOn = 112, inhibitOff = 113, pulseVon = 116, pulseVoff =
38;

int busLines[8][2] = {81, 49, 87, 50, 69, 51, 82, 52, 84, 53, 89,
54, 85, 55, 73, 56}; //array[bus line] [off/on]

int ctrllines[3][2] = {105, 104, 101, 100, 97, 47};

int chipID[®8]([3] = {0,0,0, 0,0,1, O,1,0, O,1,1, 1,0,0, 1,0,1, 1,1,0
 1,1,1Y;

/*******************************/

"imgs/PauseActive.pcx";

char pauseActive[100]

char pauseNormal[100] "imgs/Pause.pcx";

void setStatus (char* msg)

{
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SetCtrlval (mainPanel, mainPanel txtStatus, msg);
return;

int setSolenoid(int solenoidNum, int state)

{

int bank = 0;

int i, offset;

bank = (int) (solenoidNum/8) ;
//work out port &
solenoid values
solenoidNum = solenoidNum % 8;
offset = bank*g;

for(i = 0; 1 < 3; i++) ComWrtByte (usbPort, ctrllLines[i][chipID

[bank] [11]1); //select chip

for(i = 0; 1 < 8; i++) ComWrtByte (usbPort, busLines[i][
solenoidConfig[offset+il]); //restore prior configuration
to bus

ComWrtByte (usbPort, busLines[solenoidNum] [state]) ;
//write new value to bus
solenoidConfig[offset + solenoidNum] = state;

//and record to memory

ComWrtByte (usbPort, inhibitOff);

//latch values
Delay(0.05) ;
//Delay (0.005) ;

ComWrtByte (usbPort, inhibitOn);
ComWrtByte (usbPort, pulseVon) ;
//switch values
Delay(0.05); //Delay (0.001) ;
ComWrtByte (usbPort, pulseVoff);

int setState(int indexNo)

{
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int i, j, numBanks, offset;

numBanks = (int) (numSolenoids/8) ;
//determine how many banks
are in use
if (numSolenoids == MAXSOLENOIDS) numBanks--;
// maximum solenoids gives faulty
value for numBanks
for(i = 0; i <= numBanks; i++)
//for each bank

{ offset = 8%1;

for(j = 0; 7 < 3; j++) ComWrtByte (usbPort, ctrllLines[]j]I[

chipID[i] [311) // select chip

for(j = 0; j < 8; j++)

// setup bus
{ if (solenoidState[indexNo] [offset+j] == 2) ComWrtByte (
usbPort, busLines[j][solenoidConfig[offset+j]]); //if

ignore, retrieve previous value

else
{ ComWrtByte (usbPort, busLines[j][solenoidState]
indexNo] [offset+3]]) ; // else write new value

solenoidConfig[offset+j] = solenoidState[indexNo] [

offset+j]; // and record to memory

ComWrtByte (usbPort, inhibitOff);

//  latch values
Delay(0.05) ;
//Delay (0.005) ;

ComWrtByte (usbPort, inhibitOn);
ComWrtByte (usbPort, pulseVon) ;
//switch values

Delay(0.05); //Delay (0.001) ;
ComWrtByte (usbPort, pulseVoff);

return 0O;

void initSolenoids()

{
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int 1i;

for(i = 0; i < 64; i++)

setSolenoid (i, 0);

return;

int activeSolenoid()

{
int 1 = 0;
while((activeControl '= solenoids[i][0]) && (++i < numSolenoids
-1));
return i;
}

int openUSB()

{
int i, success, response;
int comPort = -1;

int ping = 39;

//ascii
code for apostrophe (')
for(i = 3; 1 < 4; i++)
// for(i = 0; i < 10;
i++) //open com ports

sequentially
{ success = OpenComConfig (i, "", 460800, 0, 8, 1, 512, 512);
// open port

if (success == 0)
// if
successfull
{ while (ComWrtByte (i, ping) !'= 1);
// issue ping
response = ComRdByte (i) ;
// read response
if (response == 'Q'")
// if ping

response from DLP232
{ comPort = i;

//
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195
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200
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205

void
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record port number
i=10;

// exit loop
}
CloseCom (i) ;
//

else close com port

return comPort;

setup ()

int 1, 3

GetCtrlAttribute (mainPanel, mainPanel pictScheme, ATTR LEFT, &
pictFrameX) ;
GetCtrlAttribute (mainPanel, mainPanel pictScheme, ATTR TOP, &

pictFrameY) ;

for(i = 0; i < MAXSOLENOIDS; i++)
for (j = 0; 7 < 5; j++) solenoids[i]l[j] = -1;

bbID = NewCtrl (mainPanel, CTRL FLAT BOX, "", bbTop, bbLeft);
SetCtrlAttribute (mainPanel, bbID, ATTR HEIGHT, bbY);
SetCtrlAttribute (mainPanel, bbID, ATTR WIDTH, bbX) ;
SetCtrlAttribute (mainPanel, bbID, ATTR FRAME COLOR,

VAL OFFWHITE) ;

SetCtrlAttribute (mainPanel, bbID, ATTR ZPLANE POSITION, 100);

activeColor = VAL RED;
SetCtrlAttribute (pnlSetStates, pnlStates numStates,
ATTR MAX VALUE, MAXSTATES) ;

for(i = 0; i < MAXSTATES; i++)
{ solenoidState[i] [0] = -1;
//-1 indicates open slot
statelList[i] = NULL;
ulD[i] = -1;

clickMode = 0;
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setStatus ("Finding USB device");
ProcessDrawEvents () ;
usbPort = openUSB() ;
//find DLP232PC
if (usbPort == -1)
{ MessagePopup ("Error"™, "The solenoid device could not be
located; run functions will be disabled." ); //1if not found,
give msg
return;
}
else
//otherwise
{ SetCtrlAttribute (pnlSetProgram, pnlProgram cmdPlay,
ATTR DIMMED, 0); // enable run controls
SetCtrlAttribute (pnlSetProgram,
pnlProgram chkEnableManualCtrl , ATTR DIMMED, 0);
ComWrtByte (usbPort, 117);
//'u' = no analog channels
ComWrtByte (usbPort, inhibitOn);
}
initSolenoids() ;
setStatus ("");
return;
}
230
int main (int argc, char *argvl[])
{
if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */
if ((pnlMain = LoadPanel (0, "mainPanel.uir", mainPanel)) < 0)
return -1;
if ((pnlButtonSetup = LoadPanel (0, "buttonSetup.uir", btnPanel
)) <0)
return -1;
if ((pnlSetStates = LoadPanel (pnlMain, "mainPanel.uir",

pnlStates)) < 0)
return -1;
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if ((pnlSetProgram = LoadPanel (pnlMain, "mainPanel.uir",
pnlProgram)) < 0)

return -1;
if ((pnlEditStep = LoadPanel (pnlMain, "EditState.uir",
pnlEdtStep)) < 0)

return -1;

setup () ;

DisplayPanel (pnlMain) ;
setup() ;
RunUserInterface ();
DiscardPanel (pnlMain) ;
return 0;

CVICALLBACK buttonPress (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int xDim, yDim, active, index, mode, 1i;

if(clickMode == 0)
//1f setup

mode
{

switch (event)

{

case EVENT GOT FOCUS:
activeControl = control;

index = activeSolenoid() ;

SetCtrlval (panel, control, 1);

SetCtrlAttribute (mainPanel, solenoids[index][3],
ATTR FRAME COLOR, activeColor);

SetCtrlAttribute (mainPanel, solenoids[index][4],
ATTR TEXT BGCOLOR, activeColor);

break;

case EVENT LOST FOCUS:
SetCtrlval (panel, control, 0);

index = activeSolenoid() ;
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SetCtrlAttribute (mainPanel, solenoids[index][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[index][4],
ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;

break;

EVENT COMMIT:

GetCtrlval (panel, control, &active);
if(lactive) SetCtrlval (panel, control, 1);
break;

EVENT LEFT CLICK:

break;

EVENT RIGHT CLICK:
GetCtrlval (panel, control, &active);
if('active) break;
//only
rotate active button

GetCtrlAttribute (panel, control, ATTR HEIGHT, &
yDim) ;

GetCtrlAttribute (panel, control, ATTR WIDTH, &xDim
);

SetCtrlAttribute (panel, control, ATTR HEIGHT, xDim
)

SetCtrlAttribute (panel, control, ATTR WIDTH, yDim);
SetCtrlAttribute (mainPanel, control,

ATTR LABEL WIDTH, yDim);

break;

case EVENT RIGHT DOUBLE CLICK:

GetCtrlval (panel, control, &active);

if('active) break;

index = activeSolenoid() ;

SetCtrlAttribute (mainPanel, control, ATTR LEFT,
solenoids[index] [5]) ;
SetCtrlAttribute (mainPanel, control, ATTR TOP,

solenoids[index][6]) ;

GetCtrlAttribute (panel, control, ATTR HEIGHT, &
yDim) ;
GetCtrlAttribute (panel, control, ATTR WIDTH, &xDim
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)7
if (yDim > xDim)
//1if

rotated, return to upright
{ SetCtrlAttribute (panel, control, ATTR HEIGHT,
xDim) ;

SetCtrlAttribute (panel, control, ATTR WIDTH,

yDim) ;

SetCtrlAttribute (mainPanel, control,

ATTR LABEL WIDTH, yDim);

}

solenoids[index] [1] = -1; 324
solenoids[index] [2] = -1;
break;

=l)

//if state

{ switch (event)

{

case EVENT COMMIT:

activeControl = control;

index = activeSolenoid() ;

GetCtrlval (panel, control, &active);
// get value

if('active && (currState[index] == 1))

{ SetCtrlAttribute (mainPanel, solenoids[index][3
1, ATTR FRAME COLOR, ncColor);
SetCtrlAttribute (mainPanel, solenoids[index][4
1, ATTR TEXT BGCOLOR, ncColor);
SetCtrlAttribute (mainPanel, solenoids[index] [0
1, ATTR ON _COLOR, ncColor) ;
SetCtrlVal (mainPanel, solenoids[index][0]1, 2);
currState[index] = 2;
break;
}
if (active)
//
& toggle
{ SetCtrlAttribute (mainPanel, solenoids[index][3
1, ATTR FRAME COLOR, activeColor);
SetCtrlAttribute (mainPanel, solenoids[index][4
1, ATTR TEXT BGCOLOR, activeColor);
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SetCtrlAttribute (mainPanel, solenoids[index] [0
1, ATTR ON COLOR, activeColor);

currState[index] = 1;

else

{ SetCtrlAttribute (mainPanel, solenoids[index][3

1, ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[index][4
1, ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;

currState[index] = 0;

}
break;

if(clickMode == 2)

mode
{ switch (event)
{ case EVENT COMMIT:

//1f program

GetCtrlval (panel, control, &active);

// get value

SetCtrlval (panel, control,

lactive) ;

// undo click

break;

if (clickMode == 3)

mode w/solenoid toggle
{ switch (event)
{ case EVENT COMMIT:
activeControl = control;

index = activeSolenoid() ;

//if program

GetCtrlval (panel, control, &active);

// get value

if (active)

& toggle

//

{ SetCtrlAttribute (mainPanel, solenoids[index][3
1, ATTR FRAME COLOR, activeColor);
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SetCtrlAttribute (mainPanel, solenoids[index][4
1, ATTR TEXT BGCOLOR, activeColor);

setSolenoid(index, 1);

else

{ SetCtrlAttribute (mainPanel, solenoids[index][3

1, ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[index][4
1, ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;
setSolenoid(index, 0);

}

break;

int CVICALLBACK quitProgram (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

QuitUserInterface(0) ;

return O;

int CVICALLBACK setButtons (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int ctrlWidth, ctrlHeight, xPos, yPos, index;

if(clickMode '= 0) return O;
//no repositioning

allowed outside setup mode

switch (event)
{
case EVENT LEFT DOUBLE CLICK:
GetCtrlAttribute (mainPanel, activeControl, ATTR HEIGHT,
&ctrlHeight) ;
GetCtrlAttribute (mainPanel, activeControl, ATTR WIDTH,
&ctrlWidth) ;
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yPos = eventDatal - (int) (0.5 * ctrlHeight);
xPos = eventData2 - (int) (0.5 * ctrlWidth);

SetCtrlAttribute (mainPanel, activeControl, ATTR LEFT,
xPos) ;
SetCtrlAttribute (mainPanel, activeControl, ATTR TOP,
yPos) ;

index = activeSolenoid() ;
solenoids[index][1] = xPos ;//- pictFrameX;
solenoids[index] [2] = yPos ;//- pictFrameY;

break;

return 0;

int CVICALLBACK launchButtonSetup (int panel, int control, int

event,
void *callbackData, int eventDatal, int eventData?2)
{
if (event != EVENT COMMIT) return O;
InstallPopup (pnlButtonSetup) ;
return 0;
}

int CVICALLBACK cancelNewButtons (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData?2)

{
if (event '= EVENT COMMIT) return O;
RemovePopup (pnlButtonSetup)
return 0O;
}

void DestroyArray(int mode)

//mode: 1 = full
wipe, 0 = keep pos
{

int i=0, J=0;
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455
456 while ((i < MAXSOLENOIDS) && (solenoids[i][0] !'= -1))
457 { DiscardCtrl (mainPanel, solenoids[i][0]);
//discard button
458 DiscardCtrl (mainPanel, solenoids[i][3]):;
//and placeholder
459 DiscardCtrl (mainPanel, solenoids[i][4]):;
460
461 solenoids[i1][0] = =-1; 462
solenoids[i][3] = -1, 463
solenoids[i][4] = -1;
464
465 if (mode)
466 { solenoids[i][1] = -1; 467
solenoids[i][2] = -1;
468 }
469 it+;
470 }
471
472 return;
473 }
474
475
476 int CreateButtonArray(int arrSize, int bSize)
477 {
478 int i, 3;
479 int modifier = 0;//bSize, arrSize;
480 char 1b1[10];
481 int 1blX, 1bly;
482
483
484 bSize = solenoidSize[bSize-1];
485
486 if(arrSize < 33) modifier = 0;
487 else modifier = - (bSize+4);
488
489 for(i = 0; 1 < arrSize; i++)
//for buttons needed
490 { if(i == 32) modifier = -modifier;
// switch column for after 32
491 if (solenoids[i][0] == -1)
// if no button
exists
492 { sprintf (1bl, "%i", i+1);
// record solenoid
num

493 solenoids[i] [3] = NewCtrl (mainPanel, CTRL FLAT BOX,
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1bl, (bbTop + 5 + ((1%32)*(bSize + 9))), //
create container
modifier + (bbLeft + (int) (
0.5% (bbX-(2* (bSize + 2
NN

SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR HEIGHT, bSize + 4);

SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR WIDTH, (2*bSize + 4));

SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR ZPLANE POSITION, O0);

solenoids[i] [4] = NewCtrl (mainPanel, CTRL TEXT MSG,
1bl, 0,0); // create label
GetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR WIDTH, &1blX);

GetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR HEIGHT, &lblY);

SetCtrlval (mainPanel, solenoids[i][4], 1lbl);

SetCtrlAttribute (mainPanel, solenoids[i][4], ATTR LEFT

, modifier + (bbLeft + (int) (0.5*(bbX - 1blX)))):;

SetCtrlAttribute (mainPanel, solenoids[i][4], ATTR TOP,
(bbTop + 6 + ((i%32)*(bSize + 9)) + (int) (0.5* (bSize

+ 4 - 1blY)))):

SetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR SIZE TO TEXT, 1);

SetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;

SetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR ZPLANE POSITION, O0);

solenoids[1] [0] = NewCtrl (mainPanel, "", CTRL SQUARE LED,
(bbTop + 5 + ((i%32)* (bSize+9)) + o),
modifier + (bbLeft + (int) (
0.5%(bbX - 2%pSize)))) ;
// create solenoid

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR HEIGHT, bSize);

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR WIDTH, (2*bSize));
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SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR ZPLANE POSITION, O0);

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR CTRL_MODE, VAL HOT) ;

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL HEIGHT, 3);

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL WIDTH, 2*bSize);

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL LEFT, VAL RIGHT ANCHOR) ;
SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL TOP, (bbTop + 6 + (i*(bSize + 9)) + (int) (
0.5%(bSize + 4 - 1blY))));

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL TEXT, " ");

SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL BGCOLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL VISIBLE, 0);

InstallCtrlCallback (mainPanel, solenoids[i][0],
buttonPress, NULL) ;

GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR LEFT
, &solenoids[i][5]);

GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR TOP,
&solenoids[i] [6]) ;

if (solenoids[i][1] '= -1)

// 1if prev. positioned

SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR LEFT

, solenoids[i][1]); // recover position

SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR TOP,
solenoids[i]1[2])

arrSize; i1 < MAXSOLENOIDS; i++)
//for remaining slots

if (solenoids[i][0] '= -1)

// if button exists
DiscardCtrl (mainPanel, solenoids[i][0])
// discard all associated

DiscardCtrl (mainPanel, solenoids[i][3]):
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DiscardCtrl (mainPanel, solenoids[i][4]1);

for(j = 0; j < 5; j++) solenoids[i][]j] = -1;

void buildStatesRing()

{

char itemLabel[50];

int numStates, i;

ClearListCtrl(pnlEditStep, pnlEdtStep rngStates);

//remove prior list
ClearListCtrl(pnlSetProgram, pnlProgram lstLoadState);
GetNumListItems (pnlSetStates, pnlStates lstStates, &numStates);

//get total num states

InsertListItem (pnlEditStep, pnlEdtStep rngStates, 0, "Pause
for user input", -1);
for(i = 0; i < numStates; i++)

//for each
state
{ GetLabelFromIndex (pnlSetStates, pnlStates lstStates, 1,
itemLabel) ; // get label

InsertlListItem (pnlEditStep, pnlEdtStep rngStates, -1,
itemLabel, 1i);
InsertListItem (pnlSetProgram, pnlProgram lstLoadState, -1,

itemLabel, 1i);

return;

int refreshStepLinks ()

{

int i, j, k, numSteps, numStates, status;

int errFlag = 0;
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char itemLabel[50], newLabel[80];

GetNumListItems (pnlSetProgram, pnlProgram lstProgSteps, &
numSteps) ;
GetNumListItems (pnlSetStates, pnlStates lstStates, &numStates);

for(i = 0; i < numSteps; i++)

stepRef[i]1[111))

{

{ if((stepRef[i][1] !'= PAUSECODE) && (stepRef[i][0] !'= uID[
//if state uIDs don't match
j=0;
while ((stepRef[i][0] !'= uID[]j]) && (j++ < numStates));

// go through

states & match ulID
if(j >= numStates) status = errFlag = PAUSECODE;

// 1f not

found, set flag to -1

else status = j;

// else set to correct index

for(j = i; j < numSteps; J++)

//

// proceed through remaining array
if(stepRef[j]1[0] == stepRef[i][0])

if state is repeated
{ if (status == PAUSECODE)

// for status = not found
{ CheckListItem (pnlSetProgram,
pnlProgram lstProgSteps, j, 0);
// uncheck list item
GetLabelFromIndex (pnlSetProgram,
pnlProgram lstProgSteps, j, itemLabel);
// get & modify label

sprintf (newLabel, "!!!-> %s", itemLabel);
ReplacelistItem (pnlSetProgram,

pnlProgram lstProgSteps, j, newLabel,
stepRef[j][0]);

stepRef[j][1] = status;
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if (errFlag) MessagePopup ("State Missing", "A state that was
used by this program has been deleted!\n Please select a

new state for the affected step" );

return 0;

int CVICALLBACK SetupNewButtons (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)
int numButtons, bSize;
if (event '= EVENT COMMIT) return O;
GetCtrlval (pnlButtonSetup, btnPanel numSolenoids, &numSolenoids
);
GetCtrlval (pnlButtonSetup, btnPanel numButtonSize, &bSize);
DestroyArray (0) ;
CreateButtonArray(numSolenoids, bSize);
activeControl = 0;

RemovePopup (pnlButtonSetup) ;

return 0O;

int CVICALLBACK changeButtonSize (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int scaleFactor = 2;
int newScale, left, top, dX, dY;

if (event '= EVENT COMMIT) return 0;

GetCtrlval (pnlButtonSetup, btnPanel numButtonSize, &newScale);
GetCtrlAttribute (pnlButtonSetup, btnPanel DECORATION, ATTR TOP
, &top) ;

GetCtrlAttribute (pnlButtonSetup, btnPanel DECORATION,

ATTR LEFT, &left);
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GetCtrlAttribute (pnlButtonSetup, btnPanel DECORATION,
ATTR HEIGHT, &dY);

GetCtrlAttribute (pnlButtonSetup, btnPanel DECORATION,
ATTR WIDTH, &dX);

SetCtrlAttribute (pnlButtonSetup, btnPanel samplelED,
ATTR HEIGHT, (scaleFactor*solenoidSize[--newScale])):;
SetCtrlAttribute (pnlButtonSetup, btnPanel samplelED,
ATTR WIDTH, solenoidSize[newScale]);

SetCtrlAttribute (pnlButtonSetup, btnPanel sampleLED, ATTR LEFT

, (left + (int) (0.5*dX) - (int) (0.5*solenoidSize[newScalel])));
SetCtrlAttribute (pnlButtonSetup, btnPanel sampleLED, ATTR TOP,
(top + (int) (0.5*dY) - (int) (2*0.5*solenoidSize[newScalel])));

return 0;

int CVICALLBACK loadImage (int panel, int control, int event,

void *callbackData, int eventDatal, int eventDataZ2)
int status = -1;
if (event '= EVENT COMMIT) return 0;
status = FileSelectPopup ("", "*.bmp", "*.bmp", "Select Image",
VAL LOAD BUTTON, O, 1, 1, 0, imageFileName) ;

if(status == 0) return 0O;

DisplayImageFile (mainPanel, mainPanel pictScheme,

imageFileName) ;

return O;

int findDuplicateState (char* usrName)

{

int i, numStates;
char lstStateName[100];

GetNumListItems (pnlSetStates, pnlStates lstStates, &numStates
) //get total number of states
for(i = 0; i < numStates; i++)

//for each
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{ GetLabelFromIndex (pnlSetStates, pnlStates lstStates, 1,

lstStateName) ; // get name
if(strcmp(lstStateName, usrName) == 0) return 1;

// compare to usrName

// return 1 if duplicate

return 0O;

//else return 0

void getNewStateName (char* newName)

{

int i = 2;

sprintf (newName, "new state");
while (findDuplicateState (newName) )
sprintf (newName, "new state%i", i++);

return;

int getUniquelID()

{

int CVICALLBACK changeNumStates (int panel, int control, int event,

int i, numStates, flag, newlD;
srand (time (NULL)) ;

GetCtrlval (pnlSetStates, pnlStates numStates, &numStates);
flag = 1;
while(flag)
{ flag = 0;
newID = rand() % 1000;
for(i = 0; i < numStates; i++)
if (newID == ulID[i]) flag = 1;

return newlID;

void *callbackData, int eventDatal, int eventData?2)

245



730
731
732
733
734
735
736
737
738
739

740

741

742

743

744

745

746

7477

748

749

750

751
752
753

754

755

756

757

246

int numStates, existingStates;
int 1, j, k, m;

char newStateName[100];

if (event '= EVENT COMMIT) return 0;

GetCtrlval (pnlSetStates, pnlStates numStates, &numStates);
GetNumListItems (pnlSetStates, pnlStates lstStates, &

existingStates) ;

J=0; m=0;
for(i = 0; 1 < (numStates - existingStates); i++)
//when states need to be added
{ while (solenoidState[j][0] '= -1) j++;
// find open space in
solenoid state array
statelist[existingStates+i] = solenoidState[]j]:;
// and assign to statelist
solenoidState[j]1[0] = O;
//
indicate occupied
getNewStateName (newStateName) ;
// get new
name
ulD[existingStates+i] = getUniquelD() ;
// and unique ID
InsertlListItem (pnlSetStates, pnlStates lstStates, (
existingStates + i), newStateName, (existingStates + 1i));
if (existingStates > 0)
for(k = 0; k < numSolenoids; k++) solenoidState[j][k] =
statelList[existingStates+i-1][k]; // initialize to

previous step's configuration

for(i = 0; 1 < (existingStates - numStates); i++)
//when states need to be

removed
{ statelList[existingStates - i - 1][0] = -1;

//open up space in
solenoidState[][]

statelist[existingStates - i - 1] = NULL;
//remove reference
ulD[existingStates - 1 - 1] = -1;
//remove ulD
DeletelListItem (pnlSetStates, pnlStates lstStates, (
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existingStates - 1), 1); //remove from list

return 0O;

int CVICALLBACK ChooseState (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, index, oldvValue;
int color[3];

char stepName[20];

if (event == EVENT LEFT DOUBLE CLICK)
{ GetCtrlIndex(pnlSetStates, pnlStates lstStates, &index);
//get active index
GetValueFromIndex (pnlSetStates, pnlStates lstStates, index
, &oldvalue);
PromptPopup ("Step Name", "Enter a new label for this step"
, stepName, sizeof(stepName) - 1);
while (findDuplicateState (stepName))
PromptPopup ("Step Name", "Enter a unique label for

this step", stepName, sizeof (stepName) - 1);
ReplacelistItem (pnlSetStates, pnlStates lstStates, index,
stepName, oldvalue) ; //rename
return 0;

}
if (event != EVENT VAL CHANGED) return O;

color[0] = VAL TRANSPARENT;

color[l] = activeColor;

//initialize color array

color[2] = ncColor;

GetCtrlIndex(pnlSetStates, pnlStates lstStates, &index);
//get active index
currState = statelist[index];
//set

"current state" pointer to new index

for(i = 0; i < numSolenoids; i++)
{ SetCtrlVal (mainPanel, solenoids[i][0], currStatel[il]):
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SetCtrlAttribute (mainPanel, solenoids[i][3],

ATTR FRAME COLOR, color[currState[i]l]):

SetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR TEXT BGCOLOR, color[currState[ill);

SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR ON COLOR

, color[currState[i]]);

int CVICALLBACK removeState (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, index, numSteps;

if (event '= EVENT COMMIT) return O;

GetNumListItems (pnlSetStates, pnlStates lstStates, &numSteps):;
//get total steps
GetCtrlIndex(pnlSetStates, pnlStates lstStates, &index);
//get active index
currState = stateList[index];
//set "current

state" pointer to new index

currState[0] = -1;
//open
up space in solenoidState[][]
currState = NULL;
//and

remove ptr

SetCtrlval (pnlSetStates, pnlStates numStates, --numSteps);

//update front panel
DeletelListItem (pnlSetStates, pnlStates lstStates, index, 1);

//erase from list
for(i = index; i1 < numSteps; i++)
{ statelList[i] = statelList[i+1];
//reassign pointers
uID[i] = uID[i+1];
//& uIDs
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int CVICALLBACK insertState (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, j, k, index, numSteps;
char stateName[100];

if (event '= EVENT COMMIT) return O;

GetNumListItems (pnlSetStates, pnlStates lstStates, &numSteps);
//get total steps
GetCtrlIndex(pnlSetStates, pnlStates lstStates, &index);
//get active index
SetCtrlval (pnlSetStates, pnlStates numStates, ++numSteps):;
//update front panel
getNewStateName (stateName) ;
//get unique
state name
index++;

//insert item after current index instead of before
InsertListItem(pnlSetStates, pnlStates lstStates, index,
stateName, index) ;

SetCtrlIndex (pnlSetStates, pnlStates lstStates, index);

for (i = numSteps-1; i > index; i--)
{ stateList[i] = statelList[i-1];
// reassign pointers for
rest of array
uID[i] = uID[i-1];

}
3=0;
while (solenoidState[3][0] '= =1) j++;

// find open space in
solenoid state array
statelList[index] = solenoidStatel[]j];
// and assign to statelist

uID[index] = getUniquelD() ;
if(index > 0)

for(k = 0; k < numSolenoids; k++) solenoidState[]j][k] =

stateList[index-1][k]; // initialize to previous

step's configuration
else solenoidState[j][0] = O;
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return 0O;

int CVICALLBACK moveStateUp (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, index, swapID;
int* swapPtr;
char label[100], prevLabel[l100];

if (event != EVENT COMMIT) return O;

GetCtrlIndex(pnlSetStates, pnlStates lstStates, &index);
//get active index
if (index == 0) return 0;
//if already
at top, exit

GetLabelFromIndex (pnlSetStates, pnlStates lstStates, index,
label) ; //record old values

GetLabelFromIndex (pnlSetStates, pnlStates lstStates, index-1,
prevlabel) ;

swapPtr = stateList[index];

swapID = ulD[index];

ReplacelistItem (pnlSetStates, pnlStates lstStates, index,
prevlabel, index) ;

statelList[index] = statelist[index-1];

uID[index] = uID[index-1];

ReplacelListItem (pnlSetStates, pnlStates lstStates, index-1,
label, index-1);
statelist[index-1] = swapPtr;

ulD[index-1] = swapID;

SetCtrlIndex (pnlSetStates, pnlStates lstStates, index-1);

//simulate click on swapped val
ChooseState(pnlSetStates, pnlStates lstStates,
EVENT VAL CHANGED, NULL, 0, 0);

return 0O;

int CVICALLBACK moveStateDown (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)
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int i, index, numSteps, swaplD;
int* swapPtr;
char label[100], nextLabel[100];

if (event '= EVENT COMMIT) return 0;

GetNumListItems (pnlSetStates, pnlStates lstStates, &numSteps);
//get total steps
GetCtrlIndex(pnlSetStates, pnlStates lstStates, &index);
//get active index

if(index == numSteps-1) return 0;
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//if already at top, exit

GetLabelFromIndex (pnlSetStates, pnlStates lstStates, index,
label) ; //record old values

GetLabelFromIndex (pnlSetStates, pnlStates lstStates, index+l,
nextLabel) ;

swapPtr = statelList[index];

swapID = uID[index];

ReplacelistItem (pnlSetStates, pnlStates lstStates, index,
nextLabel, index);

stateList[index] = statelList[index+1];

uID[index] = uID[index+1];

ReplacelListItem (pnlSetStates, pnlStates lstStates, index+l,
label, index+1);

statelist[index+1] = swapPtr;

uID[index+1] = swapID;

SetCtrlIndex (pnlSetStates, pnlStates lstStates, index+l);

//simulate click on swapped val
ChooseState(pnlSetStates, pnlStates lstStates,
EVENT VAL CHANGED, NULL, 0, 0);

return 0O;

int CVICALLBACK loadSetup (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1i;

if (event != EVENT COMMIT) return O;
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933
934
935 SetCtrlAttribute (mainPanel, mainPanel cmdSetup, ATTR DIMMED, 1
)7
936 SetCtrlAttribute (mainPanel, mainPanel cmdDefineStates,
ATTR DIMMED, 0);
937 SetCtrlAttribute (mainPanel, mainPanel cmdDefineProgram,
ATTR DIMMED, 0);
938
939
940 HidePanel (pnlSetStates);
941 HidePanel (pnlSetProgram) ;
942 activeColor = VAL RED;
943 clickMode = 0;
944
945 for(i = 0; i < numSolenoids; i++)
// turn off "activated"
solenoids
946 { SetCtrlval (mainPanel, solenoids[i][0], 0);
947 SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
948 SetCtrlAttribute (mainPanel, solenoids[i][41,
ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;
949 }
950
951 i=0;
952 while ((i < numSolenoids) && (solenoids[i][0] !'= =1))
953 { SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL VISIBLE, 0);
954 SetCtrlAttribute (mainPanel, solenoids[i++][0],
ATTR ON_COLOR, activeColor);
955 }
956
957 return 0O;
958 }
959
960 int CVICALLBACK loadStates (int panel, int control, int event,
961 void *callbackData, int eventDatal, int eventData?2)
962 {
963 int i, index;
964
965 if (event != EVENT COMMIT) return 0;
966
967

968 SetCtrlAttribute (mainPanel, mainPanel cmdSetup, ATTR DIMMED, 0
);
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SetCtrlAttribute (mainPanel, mainPanel cmdDefineStates,
ATTR DIMMED, 1);

SetCtrlAttribute (mainPanel, mainPanel cmdDefineProgram,
ATTR DIMMED, 0);

DisplayPanel (pnlSetStates);
HidePanel (pnlSetProgram) ;
activeColor = VAL GREEN;
clickMode = 1;

if (activeControl)
{ SetCtrlVal (mainPanel, activeControl, 0);
// turn off "active" button

index = activeSolenoid() ;
SetCtrlAttribute (mainPanel, solenoids[index][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[index][4],
ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;

changeNumStates (pnlSetStates, pnlStates numStates, EVENT COMMIT
, NULL, 0, 0); // generate first state if not present
SetCtrlIndex(pnlSetStates, pnlStates lstStates, 0);

// auto-select first state
ChooseState(pnlSetStates, pnlStates lstStates,
EVENT VAL CHANGED, NULL, 0, 0); // simulate click

i=0;
while((i < numSolenoids) && (solenoids[i][0] '= -1))
{ SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL BGCOLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL VISIBLE, 0);
SetCtrlAttribute (mainPanel, solenoids[i++][0],
ATTR ON COLOR, activeColor);

return 0O;

int CVICALLBACK loadProgram (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, index;
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if (event '= EVENT COMMIT) return O;

SetCtrlAttribute (mainPanel, mainPanel cmdSetup, ATTR DIMMED, 0

)7

SetCtrlAttribute (mainPanel, mainPanel cmdDefineStates,
ATTR DIMMED, 0);

SetCtrlAttribute (mainPanel, mainPanel cmdDefineProgram,
ATTR DIMMED, 1);

if (activeControl)
{ SetCtrlval (mainPanel, activeControl, 0);
// turn off "active" button

index = activeSolenoid() ;
SetCtrlAttribute (mainPanel, solenoids[index][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[index][4],
ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;

buildStatesRing() ;
refreshStepLinks() ;

DisplayPanel (pnlSetProgram) ;
HidePanel (pnlSetStates);

activeColor = MakeColor (255, 128, 0);
clickMode = 2;

goStatus = -1;
i=0;
while((i < numSolenoids) && (solenoids[i][0] '= -1))

//go through solenoids
{ SetCtrlval (mainPanel, solenoids[i][0], 0);
//turn each one "off"

SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][4],
ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][0],

ATTR LABEL VISIBLE, 1); //enable lighted border
SetCtrlAttribute (mainPanel, solenoids[i++][0],
ATTR ON COLOR, activeColor); //and set new active color
}
return 0;
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int saveStateFile(char* filePath)

int i1, j, status, bSize;

int varX, varY, flag;

char tmpString[50], picName[MAX FILENAME LEN];
FILE* saveFile;

saveFile = fopen (filePath, "w");

//open file for write
SplitPath (imageFileName, NULL, NULL, picName) ;
fprintf (saveFile, "imgFile: %$s\n", picName) ;
GetCtrlval (pnlButtonSetup, btnPanel numButtonSize, &bSize);
//get button size
fprintf (saveFile, "solenoids: %i %i\n", numSolenoids, bSize);

//write number & size to file

for(i = 0; i < numSolenoids; i++)
//write button locations

{ GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR HEIGHT,
&varX) ;

GetCtrlAttribute (mainPanel, solenoids[i][0], ATTR WIDTH, &

varY) ;

flag = (varX < varY ? 0 : 1);

// note 1if button

is rotated

fprintf (saveFile, "%i %i %$i\n", solenoids[i][1], solenoids[

i1[21, flag);

GetNumListItems (pnlSetStates, pnlStates lstStates, &bSize);
fprintf (saveFile, "numStates: %i\n", bSize);
for(i = 0; i < bSize; i++)
//write states
{ GetLabelFromIndex (pnlSetStates, pnlStates lstStates, i,
tmpString) ;
fprintf (saveFile, "%s: (%031i); ", tmpString, uID[i]);

for(j = 0; j < numSolenoids; j++)
fprintf (saveFile, "%i ", statelList[i][]j]):
fprintf (saveFile, "\n");

fflush(saveFile) ;

fclose(saveFile) ;



1075
1076
1077
1078
1079
1081
1082
1083
1084
1085
1086
1087

1088
1089
1090
1091
1092
1093
1094
1095
1096

1097

1098
1099

1100
1101

1102

1103
1104
1105
1106

1107
1108
1109
1110

256

return 0O;

int loadStateFile(char* filePath)

int 1, j, k, status, bSize;

int varX, varY, flag;

char readString[500];

char stateName[30], junk[500];

char volume[MAX DRIVENAME LEN], fileDir[MAX DIRNAME LEN],
picName [MAX FILENAME LEN];

char* token;

FILE* dataFile;

dataFile = fopen (filePath, "r");

fgets (readString, sizeof (readString), dataFile);
SplitPath (filePath, volume, fileDir, NULL);
//get current directory
for(i = 9; 1 < strlen(readString); i++)
//get
filename

picName[i-9] = readString[i];

picName[i-10] = "\0';
if (strlen(picName) !'= 0)
{ sprintf (imageFileName, "%s%s%s'", volume, fileDir,
picName) ; //construct picture path

DisplayImageFile (mainPanel, mainPanel pictScheme,

imageFileName) ;

fgets (readString, sizeof (readString), dataFile);
sscanf (readString, "solenoids: %i %i\n'", &numSolenoids, &
bSize) ;
DestroyArray(l) ;
CreateButtonArray(numSolenoids, bSize);
SetCtrlval (pnlButtonSetup, btnPanel numButtonSize, bSize);
for(i = 0; i < numSolenoids; i++)

//
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right click)

{

1127

fgets (readString, sizeof (readString), dataFile);
sscanf (readString, "%i %i %i", &solenoids[i][1], &solenoids
[i1[2]1, &flag);
if(solenoids[i][1] '= -1) SetCtrlAttribute(mainPanel,
solenoids[i1] [0], ATTR TOP, solenoids[i][2]);
if (solenoids[i][2] '= -1) SetCtrlAttribute(mainPanel,
solenoids[i1] [0], ATTR LEFT, solenoids[i]1[1]):
if (flag)
{ GetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR HEIGHT, &varY);
GetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR WIDTH, &varX);

SetCtrlAttribute (mainPanel, solenoids[i][0],

ATTR HEIGHT, varX);

SetCtrlAttribute (mainPanel, solenoids[i][0],

ATTR WIDTH, varY);

SetCtrlAttribute (mainPanel, solenoids[i][0],

ATTR LABEL WIDTH, varY);
}
SetCtrlAttribute (mainPanel, solenoids[i][0], ATTR ON COLOR
, VAL GREEN) ;

fgets (readString, sizeof (readString), dataFile);

sscanf (readString, "numStates: %i\n", &bSize);
ClearListCtrl(pnlSetStates, pnlStates lstStates);

for(i = 0; i < bSize; i++)

{

fgets (readString,sizeof (readString), dataFile);

j=20;
while(readString[j] !'= ':') stateName[]j] = readString[j++];
stateName[j] = '"\0';

InsertListItem (pnlSetStates, pnlStates lstStates, i,
stateName, 1i);

statelList[i] = solenoidState[i];

k=3 =73+3;

while(readString[k] != '")'") junk[k-j] = readString[k++];
junk[k] = "\O';

uID[i] = atoi(junk);

token

strtok (readString, ";");
strtok (NULL, " ");

token
//first token is
state name & ID

j=0
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while (token '= NULL)
{ sscanf (token, "%i", &stateList[i][j++]);
token = strtok (NULL, " u);

}
SetCtrlval (pnlSetStates, pnlStates numStates, bSize);

fclose (dataFile);

return 0O;

int CVICALLBACK saveStates (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)
int status;
char filePath[MAXiPATHNAMEiLEN];
if (event != EVENT COMMIT) return O;
status = FileSelectPopup ("", "*.sta", "*.sta", "Save states
file", VAL SAVE BUTTON, O, 1, 1, 1, filePath);
if (status < 1) return 0;

saveStateFile (filePath) ;

return 0O;

int CVICALLBACK loadStatesfromFile (int panel, int control, int

event,

void *callbackData, int eventDatal, int eventData?2)

int status;
long fileSize;
char filePath[MAX PATHNAME LEN];

if (event '= EVENT COMMIT) return O;

status = FileSelectPopup ("", "*.sta", "*.sta", "Load states
file", VAL LOAD BUTTON, O, 1, 1, 0, filePath);

if(status < 1) return 0O;

if (! (GetFileInfo (filePath, &fileSize)))
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//if file doesn't exist
{ MessagePopup ("Error", "There was a problem opening the
file!");
return 0;

loadStateFile (filePath) ;

return 0;

int CVICALLBACK addNewStep (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int newIndex;

if (event '= EVENT COMMIT) return O;

GetNumListItems (pnlSetProgram, pnlProgram lstProgSteps, &
newlIndex) ;

SetCtrlval (pnlEditStep, pnlEdtStep numEditIndex, newIndex);
SetCtrlval (pnlEditStep, pnlEdtStep chkMode, 0);
SetCtrlAttribute (pnlEditStep, pnlEdtStep cmdEditStep,

ATTR LABEL TEXT, "Add Step");

InstallPopup (pnlEditStep)

return 0O;

int CVICALLBACK cancelStepEdit (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

RemovePopup (pnlEditStep);

return 0O;

int CVICALLBACK editStep (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

char stepLabel[100], stepName[30], durString[10];

int statelIndex, duration, usrIndex, editMode;
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int i, temp;

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlEditStep, pnlEdtStep chkMode, &editMode) ;
GetCtrlval (pnlEditStep, pnlEdtStep numEditIndex, &usrIndex);
GetCtrlval (pnlEditStep, pnlEdtStep numStateDuration, &duration
)

GetCtrlval (pnlEditStep, pnlEdtStep rngStates, &statelndex);

if (stateIndex == -1)
{
if (editMode) ReplacelistItem (pnlSetProgram,
pnlProgram lstProgSteps, usrIndex, "Programmed pause",
PAUSECODE) ;
else
{ InsertListItem (pnlSetProgram, pnlProgram lstProgSteps,
usrIndex, "Programmed pause", PAUSECODE) ;
CheckListItem (pnlSetProgram, pnlProgram lstProgSteps,
usrIndex, 1);
}
stepRef[usrIndex] [0] = stepRef[usrIndex][1] = stepRef][
usrIndex] [2] = PAUSECODE;
}
else
{ GetLabelFromIndex (pnlSetStates, pnlStates lstStates,
stateIndex, stepName) ;
strcpy (stepLabel, stepName) ;
temp = strlen(stepName) ;
for(i = temp; i < 22; i++)
stepLabel[i] = " ';
stepLabel[i] = '\0';
sprintf (durString, "%i", duration);

strcat (stepLabel, durString);

if (editMode) ReplacelistItem (pnlSetProgram,
pnlProgram lstProgSteps, usrIndex, steplLabel, ulD[
stateIndex]) ;
else
{ InsertListItem (pnlSetProgram, pnlProgram lstProgSteps,
usrIndex, steplabel, uID[stateIndex])
CheckListItem (pnlSetProgram, pnlProgram lstProgSteps,

usrlndex, 1);
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}

stepRef [usrIndex] [0]
stepRef [usrIndex] [1]
stepRef [usrIndex] [2]

RemovePopup (0) ;

return 0O;

ulD[stateIndex];
statelndex;

duration;

int CVICALLBACK dimDuration (int panel, int control, int event,

void *callbackData,

int statelIndex;

int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlEditStep, pnlEdtStep rngStates, &statelndex);

if (statelIndex == -1)

{ SetCtrlAttribute (pnlEditStep, pnlEdtStep numStateDuration,

ATTR DIMMED, 1);

SetCtrlAttribute (pnlEditStep, pnlEdtStep txtDuration,

ATTR DIMMED, 1);
}

else

{ SetCtrlAttribute (pnlEditStep, pnlEdtStep numStateDuration,

ATTR DIMMED, 0);

SetCtrlAttribute (pnlEditStep, pnlEdtStep txtDuration,

ATTR DIMMED, 0);

return 0O;

int CVICALLBACK ChooseStep (int panel, int control, int event,

void *callbackData,

int i, index, statelIndex;

int color[3];

char stepName[20];

int eventDatal, int eventData?2)
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if (event == EVENT_LEFT_DOUBLE_CLICK)
{ if (goStatus == 2) return 0;
//if run

active, return

GetCtrlIndex(pnlSetProgram, pnlProgram lstProgSteps, &index

) //get active index
SetCtrlIndex(pnlEditStep, pnlEdtStep rngStates, (stepRefl[
index][1] + 1)); //initialize values

SetCtrlval (pnlEditStep, pnlEdtStep numStateDuration,
stepRef[index] [2]) ;

SetCtrlval (pnlEditStep, pnlEdtStep numEditIndex, index);
SetCtrlval (pnlEditStep, pnlEdtStep chkMode, 1);
SetCtrlAttribute (pnlEditStep, pnlEdtStep cmdEditStep,
ATTR LABEL TEXT, "Edit Step");

InstallPopup (pnlEditStep):;

return O;
}
if (event != EVENT7VAL7CHANGED) return 0O;
color[0] = VAL TRANSPARENT ;
color[l] = activeColor;

//initialize
color array

color[2] = ncColor;

GetCtrlIndex(pnlSetProgram, pnlProgram lstProgSteps, &index);
//get active index

if(index == -1) return 0;
if (stepRef[index] [1] == PAUSECODE)
{ SetCtrlAttribute (mainPanel, mainPanel txtUserIntervention ,
ATTR VISIBLE, 1);
return 0;
}

else SetCtrlAttribute (mainPanel, mainPanel txtUserIntervention
, ATTR VISIBLE, 0);
currState = statelist[stepRef[index][1]1];

//set "current state" pointer

to new index

for(i = 0; i < numSolenoids; i++)
{ if (eventDatal == 1)
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//if run executed

{ if (currState[i] !'= 2) SetCtrlVal (mainPanel, solenoids[i
1[0], currState[i]): // 1if state is not "maintain
prior", update screen

}

else SetCtrlAttribute (mainPanel, solenoids[i][O0],

ATTR LABEL BGCOLOR, color[currState[i]]);
SetCtrlAttribute (mainPanel, solenoids[i][3],

ATTR FRAME COLOR, color[currState[ill]);

SetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR TEXT BGCOLOR, color[currState[ill]);

int CVICALLBACK removeStep (int panel, int control, int event,

void *callbackData, int eventDatal, int eventDataZ2)

char stepLabel[100], stepName[30], durString[10];
int currIndex, numSteps;

int i, temp;

if (event '= EVENT COMMIT) return 0;

GetCtrliIndex (pnlSetProgram, pnlProgram lstProgSteps, &
currIndex) ;

GetNumListItems (pnlSetProgram, pnlProgram lstProgSteps, &
numSteps) ;

for (i = currIndex; i < (numSteps-1); i++)
//shift references to swallow
deleted
{ stepRef[i][0] = stepRef[i+1][0]; 1370
stepRef[i][1] stepRef[i+1][1]; 1371
stepRef[i] [2] stepRef [i+1][2];
}
stepRef[1] [0]

stepRef[i][1] = stepRef[i][2] = -1;

//and remove last reference
DeletelListItem (pnlSetProgram, pnlProgram lstProgSteps,
currIndex, 1); //remove list item

ChooseStep (panel, control, EVENT VAL CHANGED, NULL, 0, 0);

return 0O;
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int CVICALLBACK moveStepUp (int panel, int control, int event,

1407

void *callbackData, int eventDatal, int eventData?2)

int i, index;
int swapStorel[3];
char label[100], prevLabel[l100];

if (event '= EVENT COMMIT) return 0;

GetCtrliIndex (pnlSetProgram, pnlProgram lstProgSteps, &index);
//get active index
if(index == 0) return 0;
//if already
at top, exit

GetLabelFromIndex (pnlSetProgram, pnlProgram lstProgSteps,
index, label); //record old values
GetLabelFromIndex (pnlSetProgram, pnlProgram lstProgSteps,
index-1, prevLabel) ;

for(i = 0; 1 < 3; i++) swapStore[i] = stepRef[index][i]:

ReplacelListItem (pnlSetProgram, pnlProgram lstProgSteps, index,
prevlabel, index) ;
for(i = 0; 1 < 3; i++) stepRef[index][i] = stepRef[index-1]1[i];

ReplacelListItem (pnlSetProgram, pnlProgram lstProgSteps, index-
1, label, index-1);
for(i = 0; 1 < 3; i++) stepRef[index-1][1i] = swapStore[i];

SetCtrlIndex (pnlSetProgram, pnlProgram lstProgSteps, index-1);
//simulate click on swapped val

ChooseStep (pnlSetProgram, pnlProgram lstProgSteps,

EVENT VAL CHANGED, NULL, 0, 0);

return 0O;

int CVICALLBACK moveStepDown (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, index, numItems;
int swapStorel[3];
char label[100], nextLabel[100];
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if (event '= EVENT COMMIT) return O;

GetCtrllIndex (pnlSetProgram, pnlProgram lstProgSteps, &index);
//get active index
GetNumListItems (pnlSetProgram, pnlProgram lstProgSteps, &
numItems) ;
if(index == (numItems-1)) return O;
//1f already at bottom,

exit

GetLabelFromIndex (pnlSetProgram, pnlProgram lstProgSteps,
index, label); //record old values
GetLabelFromIndex (pnlSetProgram, pnlProgram lstProgSteps,
index+1, nextLabel) ;

for(i = 0; 1 < 3; i++) swapStore[i] = stepRef[index][i];

ReplacelListItem (pnlSetProgram, pnlProgram lstProgSteps, index,
nextLabel, index);
for(i = 0; 1 < 3; i++) stepRef[index][i] = stepRef[index+1][i];

ReplacelListItem (pnlSetProgram, pnlProgram lstProgSteps, index+
1, label, index+1);
for(i = 0; 1 < 3; i++) stepRef[index+1][i] = swapStore[i];

SetCtrlIndex (pnlSetProgram, pnlProgram lstProgSteps, index+l);
//simulate click on swapped val

ChooseStep (pnlSetProgram, pnlProgram lstProgSteps,

EVENT VAL CHANGED, NULL, 0, 0);

return 0;

int CVICALLBACK startRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)
int i;
int currStep, totalSteps, checked;

double startTime, currTime, stepTime;

if (event '= EVENT COMMIT) return O;
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SetCtrlAttribute (pnlSetProgram, pnlProgram cmdPlay,

ATTR DIMMED, 1); //prevent second run start
SetCtrlAttribute (pnlSetProgram, pnlProgram cmdPause,
ATTR DIMMED, 0); //enable run-control buttons

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdStop,

ATTR DIMMED, 0);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdForceNext,
ATTR DIMMED, 0);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdForcePrev,
ATTR DIMMED, 0);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdRemoveStep,
ATTR DIMMED, 1);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdAddStep,

ATTR DIMMED, 1);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdMoveStepUp,
ATTR DIMMED, 1);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdMoveStepDown,
ATTR DIMMED, 1);

SetCtrlAttribute (mainPanel, mainPanel cmdDefineStates,

ATTR DIMMED, 1);

SetCtrlAttribute (mainPanel, mainPanel cmdSetup, ATTR DIMMED, 1
)

SetCtrlAttribute (pnlSetProgram, pnlProgram lstProgSteps,
ATTR CTRL MODE, VAL INDICATOR) ; //no changes allowed during
run

SetCtrlAttribute (mainPanel, mainPanel progressBar,

ATTR VISIBLE, 1);

GetNumListItems (pnlSetProgram, pnlProgram lstProgSteps, &
totalSteps) ;

currStep = 0;

stepOverride = 0;

goStatus = 2;

while (currStep < totalSteps)
{ IsListItemChecked (pnlSetProgram, pnlProgram lstProgSteps,
currStep, &checked) ; //only process checked steps
if (checked)
{ SetCtrlIndex (pnlSetProgram, pnlProgram lstProgSteps,
currStep) ; // select state
ChooseStep (pnlSetProgram, pnlProgram lstProgSteps,
EVENT VAL CHANGED, NULL, 1, 0); // & update on
screen
ProcessDrawEvents ()
if (stepRef[currStep] [1] == PAUSECODE)
//
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if pause
{ pauseRun (0, 0, EVENT COMMIT, NULL, 0, 0);
//

"click" button

stepRef [currStep] [2] = 1;
}
else
{ setState (stepRef [currStep] [1]) }

// set solenoids' config

stepTime = stepRef[currStep] [2];
startTime = currTime = Timer ()
while((currTime - startTime) < stepTime)
// while waiting for step delay
{ ProcessSystemEvents () ;
// get user
events
switch (goStatus)
//
check status
{ case 2:

// if normal
currTime = Timer() ;
//
record newest time
SetCtrlvVal (mainPanel,

mainPanel progressBar, 100* (currTime-

startTime) /stepTime) ;
break;
case 0:
// if pause
stepTime -= (currTime - startTime);
// record time

already taken

currTime = startTime;

//
kill clock (time taken = 0)
break;
case 1:
// if resume
startTime = currTime = Timer() ;
// resync

clock to curr time
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goStatus = 2;

// resume normal state
break;

case -1:

// if stop

MessagePopup ("Run Complete'™, "Your run
has been aborted!"); //
stepOverride = totalSteps;

give msg

//

overload steps to quit loop
break;

if (stepOverride) stepTime = 0;

// if FF/RW end

curr step
}
}
if (stepOverride)
//  if
FF/RW ended step
{ currStep += stepOverride;
// make adjustment
stepOverride = 0;
//
clear flag
}
else currStep++;
//

else move to next step

SetCtrlAttribute
ATTR DIMMED, 0);
SetCtrlAttribute
ATTR DIMMED, 1);
SetCtrlAttribute
ATTR DIMMED, 1);
SetCtrlAttribute
ATTR DIMMED, 1);
SetCtrlAttribute
ATTR DIMMED, 1);
SetCtrlAttribute

(pnlSetProgram, pnlProgram cmdPlay,
//re-enable start run

(pnlSetProgram, pnlProgram cmdPause,

//disable run-control buttons

(pnlSetProgram, pnlProgram cmdStop,

(pnlSetProgram, pnlProgram cmdForceNext,

(pnlsetProgram, pnlProgram cmdForcePrev,

(pnlsetProgram, pnlProgram cmdRemoveStep,
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ATTR DIMMED, 0);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdAddStep,
ATTR DIMMED, 0);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdMoveStepUp,
ATTR DIMMED, 0);

SetCtrlAttribute (pnlSetProgram, pnlProgram cmdMoveStepDown,

ATTR DIMMED, 0);
SetCtrlAttribute (mainPanel, mainPanel cmdDefineStates,
ATTR DIMMED, 0);

SetCtrlAttribute (mainPanel, mainPanel cmdSetup, ATTR DIMMED, 0

)7

SetCtrlAttribute (pnlSetProgram, pnlProgram lstProgSteps,
ATTR CTRL MODE, VAL HOT) ;

SetCtrlAttribute (mainPanel, mainPanel progressBar,

ATTR VISIBLE, 0);

if (goStatus !'= =-1) MessagePopup ("Run Complete", "Your run has

completed successfully!");

goStatus = -1;

return 0O;

int CVICALLBACK pauseRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event '= EVENT COMMIT) return 0;

if (goStatus = 2)

//if normal run in progress

{ goStatus = 0;

// set pause flag
SetCtrlAttribute (pnlSetProgram, pnlProgram cmdPause,
ATTR IMAGE FILE, pauseActive);

SetCtrlAttribute (pnlSetProgram, pnlProgram lstProgSteps,
// allow check/uncheck

ATTR CTRL MODE, VAL HOT) ;

action

else

//else run resume

{ goStatus = 1;

// set resume flag

// swap button pic
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SetCtrlAttribute (pnlSetProgram, pnlProgram cmdPause,

ATTR IMAGE FILE, pauseNormal) ; // swap button pic
SetCtrlAttribute (pnlSetProgram, pnlProgram lstProgSteps,
ATTR CTRL MODE, VAL INDICATOR) ; // no changes
allowed!

}

return 0O;

int CVICALLBACK stopRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event != EVENT COMMIT) return O;
goStatus = -1;
return 0;

int CVICALLBACK setManualCtrl (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int state;

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlSetProgram, pnlProgram chkEnableManualCtrl , &
state) ;

SetCtrlAttribute (pnlSetProgram, pnlProgram chkModifySolenoids ,
ATTR DIMMED, !state);

SetCtrlAttribute(pnlSetProgram, pnlProgram lstLoadState,

ATTR DIMMED, !state);

clickMode = 2;

return O;

int CVICALLBACK setSolenoidPolicy (int panel, int control, int

event,

void *callbackData, int eventDatal, int eventData?2)

int value;

if (event != EVENT COMMIT) return O;
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GetCtrlval (pnlSetProgram, pnlProgram chkModifySolenoids , &value
)7
clickMode = (value > 0)?3:2;

return 0O;

int CVICALLBACK loadState (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int state, index, 1i;
int color[3]; //color([2]

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlSetProgram, pnlProgram lstLoadState, &state);
setState (state) ;

color[0]
color[1]

VAL TRANSPARENT;

activeColor;

//initialize
color array

color[2] = ncColor;

if(state == -1) return 0;
currState = statelList[state];
//set "current state"

pointer to new index

for(i = 0; i < numSolenoids; i++)
{ if (currState[i] '= 2) SetCtrlVal (mainPanel, solenoids[i][0
], currState[i]):

SetCtrlAttribute (mainPanel, solenoids[i][3],

ATTR FRAME COLOR, color[currState[i]l]):

SetCtrlAttribute (mainPanel, solenoids[i][4],

ATTR TEXT BGCOLOR, color[currState[ill]);

return 0;

int CVICALLBACK JumpStep (int panel, int control, int event,

void *callbackData, int eventDatal, int eventDataZ2)

if (event != EVENT COMMIT) return O;

stepOverride = 1;

//indicate
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fwd to next step

return 0O;

CVICALLBACK repeatStep (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)
if (event != EVENT COMMIT) return O;
stepOverride = -1;
//indicate

return to prev step

return O;

CVICALLBACK saveProgram (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, status, bSize;

char filePath[MAX_PATHNAME_LEN], StateFilePath[MAX_PATHNAME_LEN
], tmpString[50];

FILE* saveFile, stateFile;

if (event != EVENT COMMIT) return O;
status = FileSelectPopup ("", "*.prg", "*.prg", "Save program
file"™, VAL SAVE BUTTON, O, 1, 1, 1, filePath);

if (status < 1) return 0;

strcpy(stateFilePath, filePath);

stateFilePath[strlen(stateFilePath) - 4] = "\0';
//remove extension
strcat (stateFilePath, ".sta");

//add state file extension
saveStateFile(stateFilePath);
//and save state file

parameters

saveFile = fopen (filePath, "w");

//open file for write

fprintf (saveFile, "State File: %s\n", stateFilePath);
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GetNumListItems (pnlSetProgram, pnlProgram lstProgSteps, &bSize);
fprintf (saveFile, "numSteps: %i\n", bSize);
for(i = 0; i < bSize; i++)
//write states

{ GetLabelFromIndex (pnlSetProgram, pnlProgram lstProgSteps, i
, tmpString) ;

IsListItemChecked(pnlSetProgram, pnlProgram lstProgSteps, i

, &status);

fprintf (saveFile, "%s: %i $i %i $i\n", tmpString, status,
stepRef[1] [0], stepRef[i][1l], stepRef[i][2]):

fflush(saveFile); 1681

fclose (saveFile) ;

return 0O;

int CVICALLBACK loadProgramfromFile (int panel, int control, int

event,

void *callbackData, int eventDatal, int eventData?2)

int 1, j, k, status, bSize;

long fileSize;

char filePath[MAX PATHNAME LEN], stateFilePath[MAX PATHNAME LEN
], readString[300], labelStr[50];

char driveName [MAX DRIVENAME LEN], dirName[MAX DIRNAME LEN],
fileName [MAX FILENAME LEN];

FILE* dataFile;

if (event '= EVENT COMMIT) return 0;

status = FileSelectPopup ("", "*.prg", "*.prg", "Load program
file", VAL LOAD BUTTON, O, 1, 1, 0, filePath);
if(status < 1) return 0O;
if (! (GetFileInfo (filePath, &fileSize)))
//if file doesn't exist

{ MessagePopup ("Error", "There was a problem opening the
program file!");

return 0O;

dataFile = fopen (filePath, "r");
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strncpy(stateFilePath, filePath, (strlen(filePath) - 3));

//copy into state file name, truncate extension

stateFilePath[strlen(filePath)-3] = '"\0';
strcat (stateFilePath, '"sta");

//add ".sta"

extension
loadStateFile(stateFilePath);

buildStatesRing() ;
refreshStepLinks() ;

ClearListCtrl (pnlSetProgram, pnlProgram lstProgSteps);

fgets (readString, sizeof (readString), dataFile);

//read in first line

sscanf (readString, "numSteps: %i", &bSize);

//extract number of steps

for(i = 0; 1 < bSize; i++)

{

//for each step
fgets (readString, sizeof (readString), dataFile);
// grab line
j=20;
while (readString[j] !'= ':'") labelStr[j] = readString[j++];
// find colon
labelstr[j] = '"\0';

k=73;

// record position

while (readString[j] '= '\0') readString[j-k] = readStringl[]
++]; // cut out all text prior

readString[j-k] = "\0';

sscanf (readString, ": %i %i %i %i'", &status, &stepRef[i][0

], &stepRef[i][1], &stepRef[i][2]):

InsertListItem (pnlSetProgram, pnlProgram lstProgSteps, i,
labelStr, stepRef[i][0]):;
CheckListItem (pnlSetProgram, pnlProgram lstProgSteps, i,

status) ;

i=0;
activeColor = MakeColor (255, 128, 0);
while ((i < numSolenoids) && (solenoids[i][0] !'= =1))
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//go through solenoids
{ SetCtrlVal (mainPanel, solenoids[i][0], O);
//turn each one "off"
SetCtrlAttribute (mainPanel, solenoids[i][3],
ATTR FRAME COLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][4],
ATTR TEXT BGCOLOR, VAL TRANSPARENT) ;
SetCtrlAttribute (mainPanel, solenoids[i][0],
ATTR LABEL VISIBLE, 1);
SetCtrlAttribute (mainPanel, solenoids[i++][0],
ATTR ON COLOR, activeColor); //and set new active color

int CVICALLBACK chkSize (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int newVal;

if (event != EVENT COMMIT) return O;

GetCtrlval (panel, control, &newVal) ;

if (newvVal < 24) SetCtrlAttribute (panel, btnPanel numButtonSize
, ATTR MAX VALUE, 5);

else if(newvVal < 26) SetCtrlAttribute (panel,

btnPanel numButtonSize, ATTR MAX VALUE, 4);

else if(newvVal < 29) SetCtrlAttribute (panel,

btnPanel numButtonSize, ATTR MAX VALUE, 3);

else SetCtrlAttribute (panel, btnPanel numButtonSize,
ATTR MAX VALUE, 2); //if (newval < 33) SetCtrlAttribute
(panel, btnPanel numButtonSize, ATTR MAX VALUE, 2);

return 0O;
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#include  <rs232.h>
#include  <formatio.h>
#include <ansi c.h>
finclude  <utility.h>
#include  <cvirte.h>
#include  <userint.h>
#include  "mainPanel.h"

#include  "mapSolenoids.h"

#fdefine  MAXCHIPS 3
#define MAXSOLENOIDS 64
#define MAXSTATES 100
#fdefine  MAXSTEPS 100
#define  PAUSECODE -5

static int pnlMain;

static int pnlMapping;

int loadStateFile (char¥);
void setupMapping(void) ;
int setup(void);

int usbPort;

int solenoids[MAXSOLENOIDS] ;
int SCsolenoidConfig[MAXSOLENOIDS] [4];
//ctrl ID, Top, Left,
orientation
int solenoidLUT[MAXCHIPS] [MAXSOLENOIDS] ;

int solenoidState[MAXSTATES] [MAXSOLENOIDS] ;

//solenoid state for each program step
int uID[MAXSTATES] ;

//unique ID
for each state
int* stateList [MAXSTATES];
//correlate list to
solenoidState[]
int stepRef [MAXSTEPS][3];
//[0] state ulID,
[1] reference to statelList [2] duration for each step
char stepNames[MAXSTEPS] [50];
//name associated with

each step
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int solenoidConfig[MAXSOLENOIDS] ;
//current configuration of
all solenoids. Need this information for "Ignore" solenoids
int instanceIndex[MAXCHIPS] = {0, 1, 2};
//instance of chip, used as
callback data for timers, buttons
int ctrlArrays[MAXCHIPS][7];
//10] border, [1] step
bar, [2] overall bar, [3] start button, [4] timer, [5] status, [6]
steps list
int currStep[MAXCHIPS];
//keep track of
current step for each instance
int runActive[MAXCHIPS];
//should mainTimer

a chip's update progress bars?

int activeSCsolenoid = -1;
//active single-chip
solenoid
int activeABSsolenoid = -1;
//active absolute
solenoid

/***k*xxkx DLP232 commands *xx*okk/

int inhibitOn = 112, inhibitOff = 113, pulseVon = 116, pulseVoff =
38;

int busLines[8][2] = {81, 49, 87, 50, €9, 51, 82, 52, 84, 53, 89,
54, 85, 55, 73, 56}; //array[bus line] [off/on]

int ctrllLines[3][2] = {105, 104, 101, 100, 97, 47};

int chipID[8]([3] = {0,0,0, ©0,0,1, O,1,0, O,1,1, 1,0,0, 1,0,1, 1,1,0
, 1,1,1};

/*~k~k~k~k~k~k~k~k**********************/

int main (int argc, char *argvl[])
{
if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */

if ((pnlMain = LoadPanel (0, "mainPanel.uir", mainPanel)) < 0)
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return -1;
if ((pnlMapping = LoadPanel (0, "mapSolenoids.uir'", mapPanel))
< 0)

return -1;

setup() ;

DisplayPanel (pnlMain) ;
RunUserInterface (); 75
DiscardPanel (pnlMain);
return 0;

int loadState(int stateNum, int chipNum)

{

int i, j, numBanks, offset;

for(i = 0; i < 8; i++)

//for each bank
{ offset = 8%i;
for(j = 0; 7 < 3; j++) ComWrtByte (usbPort, ctrllLines[]j]I[
chipID[i][311) 7 // select chip
for(j = 0; 7 < 8; j++) ComWrtByte (usbPort, busLines[j][
solenoidConfig[offset+j]1); // load all current values to
bus
for(j = 0; j < MAXSOLENOIDS; j++)
{ if((solenoidLUT [chipNum] [j] > offset-1) && (solenoidLUT
[chipNum] [j] < offset + 8) && (solenoidState[stateNum][]]
'= 2)) //if solenoid falls into currently-selected chip
range
{ ComWrtByte (usbPort, busLines[solenoidLUT [chipNum] [
j1 % 8][solenoidState[stateNum][j]1]);
// else write new value
solenoidConfig[solenoidLUT [chipNum] [j]] =
solenoidState[stateNum] [§]; //

and record to memory

ComWrtByte (usbPort, inhibitOff);
//
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latch values
Delay(0.05);
//Delay (0.005) ;

ComWrtByte (usbPort, inhibitOn) ;

ComWrtByte (usbPort, pulseVon);

//switch values
Delay (0.05) ; //Delay (0.001) ;
ComWrtByte (usbPort, pulseVoff);

int allSolenoidsOff (int chipNum)

{

int i, j, numBanks, offset;

for(i = 0; 1 < 8; i++)

//for each bank
{ offset = 8%i;
for(j = 0; 7 < 3; j++) ComWrtByte (usbPort, ctrllLines[j]l[
chipID[i]1[]1]1): // select chip
for(j = 0; 7 < 8; Jj++) ComWrtByte (usbPort, busLines[j]I[
solenoidConfig[offset+j]1); // load all current values to
bus
for(j = 0; j < MAXSOLENOIDS; j++)
{ if((solenoidLUT[chipNum] [j] > offset-1) && (solenoidLUT
[chipNum] [j] < offset + 8)) //if solenoid falls into
currently-selected chip range
{ ComWrtByte (usbPort, busLines[solenoidLUT [chipNum] [
j1 % 81[01); // else write new value
solenoidConfig[solenoidLUT [chipNum] [j]] = O;

// and record to memory

ComWrtByte (usbPort, inhibitOff);
//

latch values

279



130

131
132
133
134

135
136
137
138
139
140
141
144
145
146
147
148

149
150

151

152
153
154

155

156
157
158
159

160
161
162

280

Delay(0.05) ;
//Delay (0.005) ;

ComWrtByte (usbPort, inhibitOn) ;

ComWrtByte (usbPort, pulseVon) ;

//switch values
Delay (0.05) ; //Delay (0.001) ;
ComWrtByte (usbPort, pulseVoff);

return 0;

142 143
void initSolenoids()

{

int i1, j, numBanks, offset;

for(i = 0; 1 < 8; i++)

//for each bank

{ offset = 8%i;
for(j = 0; j < 3; j++) ComWrtByte (usbPort, ctrllines[j]I[
chipID[i][J11); // select chip
for(j = 0; 7 < 8; j++) ComWrtByte (usbPort, busLines[j][0
1) // set all solenoids low

ComWrtByte (usbPort, inhibitOff);
//
latch values
Delay(0.05) ;
//Delay (0.005) ;

ComWrtByte (usbPort, inhibitOn) ;

ComWrtByte (usbPort, pulseVon) ;

//switch values
Delay (0.05) ; //Delay (0.001) ;
ComWrtByte (usbPort, pulseVoff);
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return;

int openUSB()

{

int i, success, response;
int comPort = -1;

int ping = 39;

//ascii code for apostrophe (')

for(i = 3; 1 < 4; i++)

// for(i = 0; 1 < 10;

i+4)

//open com ports sequentially
{ success = OpenComConfig (i, "", 460800, 0, 8, 1, 512,
// open port
if (success == 0)

// if successfull
{ while (ComWrtByte (i, ping) '= 1);
//
ping
response = ComRdByte (i);

// read response
if (response == 'Q'")

// if ping response from DLP232
{ comPort = 1i;

// record port number

i=10;
// exit loop
}
CloseCom (i) ;
// else close com port

return comPort;
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int setup()

{

int i,3;

SetCtrlAttribute (pnlMain, mainPanel cmdStartChipl,

ATTR CALLBACK DATA, &instanceIndex[0]);

controls for each chip

SetCtrlAttribute (pnlMain, mainPanel cmdStartChip2,

ATTR CALLBACK DATA, &instancelIndex[1]);
shared callback can differentiate

SetCtrlAttribute (pnlMain, mainPanel cmdStartChip3,

ATTR CALLBACK DATA, &instanceIndex[2]);

//register

//so that

SetCtrlAttribute (pnlMain, mainPanel Timerl, ATTR CALLBACK DATA

, &linstanceIndex[0]);

SetCtrlAttribute (pnlMain, mainPanel Timer2, ATTR CALLBACK DATA

, &instanceIndex[1]);

SetCtrlAttribute (pnlMain, mainPanel Timer3, ATTR CALLBACK DATA

, &lnstancelIndex[2]);

ctrlArrays[0][0] =

control arrays

ctrlArrays[1][0]
ctrlArrays[2][0]
ctrlArrays[0][1]
ctrlArrays[1][1]
ctrlArrays[2][1]
ctrlArrays[0] [2]
ctrlArrays[1][2]
ctrlArrays[2][2]
ctrlArrays[0][3]
ctrlArrays[1][3]
ctrlArrays[2][3]
ctrlArrays[0] [4]
ctrlArrays[1][4]
ctrlArrays[2] [4]
ctrlArrays[0] [5]

mainPanel borderl;

= mainPanel border2; 214

= mainPanel border3;

= mainPanel progressBarll;
= mainPanel progressBar2l;
= mainPanel progressBar3l;
= mainPanel progressBarl2;
= mainPanel progressBar22;
= mainPanel progressBar32;
= mainPanel cmdStartChipl;
= mainPanel cmdStartChip2;
= mainPanel cmdStartChip3;
= mainPanel Timerl;

= mainPanel Timer2;

= mainPanel Timer3;

= mainPanel chipStatusl;

//set up
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255

//
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ctrlArrays[1][5] = mainPanel chipStatus2;
ctrlArrays[2][5] = mainPanel chipStatus3;
ctrlArrays[0][6] = mainPanel rngStepsl;
ctrlArrays[1][6] = mainPanel rngSteps2;
ctrlArrays[2][6] = mainPanel rngSteps3;

for(i = 0; i < MAXCHIPS; i++)
{ SetCtrlAttribute (pnlMain, ctrlArrays[i][0],
ATTR FRAME COLOR, VAL TRANSPARENT) ;

runActivel[i] = 0;

currStep[i] = 0;

//initialize data arrays

for(i = 0; i < MAXSTATES; i++)
{ stepRef[1][0] = -1,
solenoidState[i] [0] = -1;

//-1 indicates open slot
for (=0, Jj<MAXSOLENOIDS; j++)

//unnecessary, but Jjust initialize everything here
solenoidState[i] [J] = O;

stateList[i] = NULL;

ulD[i] = -1;

setStatus ("Finding USB device");
ProcessDrawEvents () ;
usbPort = openUSB() ;

//find DLP232PC

if (usbPort == -1)
{ MessagePopup ("Error", "The hardware device could not be
located!") ; //1if not found, give msg
return 1;
}
else

//otherwise
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{ SetCtrlAttribute (pnlMain, mainPanel cmdLoadRunFile,
ATTR DIMMED, 0); // enable run controls

ComWrtByte (usbPort, 117);

//'u' = no analog channels
ComWrtByte (usbPort, inhibitOn);

initSolenoids() ;
//  setStatus("");

return 0;

int CVICALLBACK quitProgram (int panel, int control, int event,

void *callbackData, int eventDatal,

if (event != EVENT COMMIT) return O;

QuitUserInterface (0) ;

return 0;

int eventData?2)

int CVICALLBACK MapButtons (int panel, int control, int event,

void *callbackData, int eventDatal,
if (event '= EVENT COMMIT) return O;
InstallPopup (pnlMapping) ;

setupMapping() ;
//  loadStateFile () ;

int loadStatesFromFile (char* filePath)
{

int eventData?2)
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int 1, j, k, status, bSize;

int varX, varY, flag;

int numSolenoids;

char readString[500];

char stateName[30], junk[500];

char volume[MAX DRIVENAME LEN], fileDir[MAX DIRNAME LEN],
picName [MAX FILENAME LEN];

char* token;

FILE* dataFile;

dataFile = fopen (filePath, "r");

fgets (readString, sizeof (readString), dataFile);
//read in picture name
fgets (readString, sizeof (readString), dataFile);
//read in number of solenoids
sscanf (readString, "solenoids: %i %i\n", &numSolenoids, &
bSize) ;

for(i = 0; i < numSolenoids; i++)

fgets (readString, sizeof (readString), dataFile);
//read in solenoid positioning
data

fgets (readString, sizeof (readString), dataFile);
//here's where the relevant
data starts
sscanf (readString, "numStates: %i\n", &bSize);
//number of states
for(i = 0; 1 < bSize; i++)
{ fgets (readString,sizeof (readString), dataFile);

j=0;
while(readString[j] !'= ':') stateName[]j] = readString[j++];
stateName[j] = '"\0';

statelList[i] = solenoidState[i];
k=3=3+ 3;
while (readString[k] '= ")'") Jjunk[k-j] = readString[k++];
junk[k] = "\0';
uID[i] = atoi(junk);
token = strtok (readString, ";");
token = strtok (NULL, " ");
//first

token is state name & ID
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=0
while (token '= NULL)
{ sscanf (token, "%i", &stateList[i][j++]1):

token = strtok (NULL, " n);

fclose (dataFile);

return 0;

int loadMappingFromFile (char* filePath)

{

int 1, j, k, status, bSize;
char readString[500];

char stateName[30], junk[500];
char* token;

FILE* dataFile;

dataFile = fopen (filePath, "r");

//I will assume no. chips/solenoids do not

// change, so I read in but don't record

// values.
fgets (readString, sizeof (readString), dataFile);
//read in MAXCHIPS
fgets (readString, sizeof (readString), dataFile);
//read in MAXSOLENOIDS

for(i = 0; i < MAXCHIPS; i++)

{ fgets (readString, sizeof (readString), dataFile);
//read in solenoid positioning data
token = strtok (readString, " ");
j=0;
while (token '= NULL)
{ sscanf (token, "%i", &solenoidLUT[i][j++])
token = strtok (NULL, " ");
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fclose (dataFile);

return 0;

int CVICALLBACK Load Runfile (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int i, j, k, status, bSize;

long fileSize;

char filePath[MAX PATHNAME LEN], stateFilePath[MAX PATHNAME LEN ],
mappingFilePath[MAX PATHNAME LEN], readString[300], labelStr

[50];

char driveName [MAX DRIVENAME LEN], dirName[MAX DIRNAME LEN],
fileName [MAX FILENAME LEN];

FILE* dataFile;

if (event '= EVENT COMMIT) return O;

status = FileSelectPopup ("", "*.prg", "*.prg", "Load program
file", VAL LOAD BUTTON, O, 1, 1, 0, filePath);
if (status < 1) return 0;
if (! (GetFileInfo (filePath, &fileSize)))
//if file doesn't exist

{ MessagePopup ("Error", "There was a problem opening the
program file!");

return 0;

dataFile = fopen (filePath, "r");

strncpy (stateFilePath, filePath, (strlen(filePath) - 3));

//copy into state file name, truncate
extension
stateFilePath[strlen(filePath)-3] = "\0';
strcat (stateFilePath, "sta");

//add

".sta" extension
loadStatesFromFile (stateFilePath) ;
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strncpy(stateFilePath, filePath, (strlen(filePath) - 3));
//copy into mapping file name, truncate
extension
stateFilePath[strlen(filePath)-3] = "\0';
strcat (stateFilePath, "smf");
//add
".solenoid mapping file" extension

loadMappingFromFile (stateFilePath) ;

fgets (readString, sizeof (readString), dataFile);
//read in first line
sscanf (readString, "numSteps: %i", &bSize);

//extract number of steps

for(i = 0; 1 < bSize; i++)
//for
each step
{ fgets (readString, sizeof (readString), dataFile);
// grab line
j=0;
while (readString[j] !'= ':'") labelStr[j] = readString[j++];
// find colon

labelstr[j] = '"\0';

strcpy (stepNames[i], labelStr);

k=73j;

// record position
while (readString[j] !'= '\0') readString[j-k] = readStringl[]
++]; // cut out all text prior
readString[j-k] = '\0"';
sscanf (readString, ": %i %i %$i %i", &status, &stepRef[i][0
], &stepRef[i][1], &stepRef[i]l[2]):

for(i = 0; i < bSize; i++)
//ensure
that runfile links to state list are accurate
if((stepRef[i]1[0] > -1) && (stepRef[i][0] !'= ulD[stepRef[i
1[111)) 1 = bSize + 5; // if error, quit loop
if(i == bSize + 5)
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int CVICALLBACK releaseChip (int panelHandle,
event, void *callbackData,

{

{ MessagePopup

("Error!",

regenerate your source files!" );

return 1;

for(i =0; 1 <

//enable start

SetCtrlAttribute (mainPanel, ctrlArrays[i][3], ATTR DIMMED,

0);

return 0O;

int* chipNo;
int chip;

3; i++)

buttons

int eventDatal,

if (event '= EVENT COMMIT) return O;

chipNo = callbackData;

chip = *chipNo;

SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR LABEL TEXT, "Start Run") ;

InstallCtrlCallback

&instanceIndex[chip]);
SetCtrlAttribute (mainPanel, ctrlArrays[chip][3], ATTR DIMMED,

0);

(mainPanel, ctrlArrays[chip]l[3],

SetCtrlAttribute (mainPanel, ctrlArrays[chip][0],
ATTR FRAME COLCR, VALATRANSPARENT);
SetCtrlAttribute (mainPanel, ctrlArrays[chip][1], ATTR DIMMED,

1)

"Error building runfile - please

int controlID, int

int eventData?2)

startRun,

SetCtrlAttribute (mainPanel, ctrlArrays[chip][2], ATTR DIMMED,

1)

SetCtrlAttribute (mainPanel, ctrlArrays[chip][6], ATTR DIMMED,

1)

SetCtrlval (mainPanel, ctrlArrays[chip]l[1], 0);
SetCtrlval (mainPanel, ctrlArrays[chip]l[2], 0);

ClearListCtrl

(mainPanel,

ctrlArrays[chip]l [6]);
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runActive[chip] = 0;
allSolenoidsOff (chip) ;

ProcessSystemEvents () ;

return 0;

int CVICALLBACK startRun (int panel, int control, int event,

void *callbackData, int eventDatal, int eventDataZ2)

int* chipNo;

int chip;

int numSteps = -1,
totalTime = 0;

if (event '= EVENT COMMIT) return O;

chipNo = callbackData;

//can't
dereference void* directly, so copy to int*
chip = *chipNo;

while (stepRef [++numSteps] [0] !'= -1)
//get number of steps
& total run time
if (stepRef[numSteps] [2] > 0) totalTime += stepRef[numSteps
1021

SetCtrlAttribute (mainPanel, ctrlArrays[chip][2],
ATTR MAX VALUE, totalTime); //set up progress bars
SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[l],
ATTR MAX VALUE, stepRef[0]1[2]);

SetCtrlval (mainPanel, ctrlArrays[chip][2], 0);

SetCtrlvVal (mainPanel, ctrlArrays[chip][1l], 0);
SetCtrlAttribute (mainPanel, ctrlArrays[chip][4], ATTR INTERVAL
, (double)stepRef[0][2]): //set up timer

SetCtrlAttribute (mainPanel, ctrlArrays[chip][3], ATTR DIMMED,
1); //disable button

SetCtrlAttribute (mainPanel, ctrlArrays[chip][1], ATTR DIMMED,
0);

SetCtrlAttribute (mainPanel, ctrlArrays[chip][2], ATTR DIMMED,
0);
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SetCtrlAttribute (mainPanel, ctrlArrays[chip][6], ATTR DIMMED,

0);

SetCtrlAttribute (mainPanel, ctrlArrays[chip][0],
ATTR FRAME COLOR, VAL DK GREEN) ;

SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR LABEL TEXT, "Release Chip");
InstallCtrlCallback (mainPanel, ctrlArrays[chip][3],
releaseChip, &instancelIndex[chip]);

ClearListCtrl (mainPanel, ctrlArrays[chip][6]);

currStep[chip] = 0;

//reset step number

InsertlListItem (mainPanel, ctrlArrays[chip][6], -1, stepNames[0

1, 0); //add to indicator list
loadState (stepRef[0][1], chip);

//load up first

state

runActive[chip] = 1;

SetCtrlAttribute (mainPanel, ctrlArrays[chip][4], ATTR ENABLED,

1) //start timer
ProcessSystemEvents () ;
return 0;

int CVICALLBACK resumeRun (int panelHandle, int controlID,

event, void *callbackData, int eventDatal, int eventDataZ2)

{

int* chipNo;

int chip;

if (event '= EVENT COMMIT) return O;

chipNo = callbackData;
chip = *chipNo;

SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR LABEL TEXT, "Release Chip");
InstallCtrlCallback (mainPanel, ctrlArrays[chip][3],

releaseChip, &instancelIndex[chip]);

int
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SetCtrlAttribute (mainPanel, ctrlArrays[chip][3], ATTR DIMMED,
1)

SetCtrlAttribute (mainPanel, ctrlArrays[chip][5], ATTR VISIBLE,
0); // remove indication to add blood

SetCtrlAttribute (mainPanel, ctrlArrays[chip][0],

ATTR FRAME COLOR, VAL DK GREEN) ;

runActive[chip] = 1;

currStep[chip]++;
//load

next state
InsertListItem (mainPanel, ctrlArrays[chip][6], -1, stepNames][
currStep[chip]], currStep[chip]):; //add to indicator list
SetCtrlIndex (mainPanel, ctrlArrays[chip][6], currStep[chip]):
loadState (stepRef [currStep[chip]][1], chip);
SetCtrlAttribute (mainPanel, ctrlArrays[chip][4], ATTR INTERVAL
, (double)stepRef[currStep[chipl]l[2])
SetCtrlAttribute (mainPanel, ctrlArrays[chip][l],
ATTR MAX VALUE, stepRef[currStep[chipl][2]):
SetCtrlvVal (mainPanel, ctrlArrays[chip][1l], 0);
SetCtrlAttribute (mainPanel, ctrlArrays[chip][4], ATTR ENABLED,

1)

ProcessSystemEvents () ;
return 0;

int CVICALLBACK nextStep (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int* chipNo;

int chip;

if (event '= EVENT TIMER TICK) return 0;

chipNo = callbackData;
chip = *chipNo;

if (runActive[chip] == 0) return 0O;
currStep[chip]++;
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//increment current step

if (stepRef[currStep[chip]][0] == PAUSECODE)
//pause should only occur when
waiting for blood
{ SetCtrlAttribute (mainPanel, ctrlArrays[chip][5],
ATTR VISIBLE, 1); // give indication to add blood
SetCtrlAttribute (mainPanel, ctrlArrays[chip][0],
ATTR FRAME COLOR, VAL RED) ;
SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR DIMMED, 0);
SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR LABEL TEXT, "Continue");
InstallCtrlCallback (mainPanel, ctrlArrays[chip][3],
resumeRun, &instancelIndex[chip]);
SetCtrlAttribute (mainPanel, ctrlArrays[chip][4],
ATTR ENABLED, 0);
InsertlListItem (mainPanel, ctrlArrays[chip]l[6], -1,
stepNames[currStep[chip]], currStep[chipl) //add to
indicator list
SetCtrlIndex (mainPanel, ctrlArrays[chip][6], currStep[chip
1

runActive[chip] = 0;
return 0;
}
if (stepRef[currStep[chip]][0] == -1)

//if run is over
{ SetCtrlAttribute (mainPanel, ctrlArrays[chip][0],
ATTR FRAME COLOR, VAL WHITE) ;
SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR DIMMED, 0);
SetCtrlAttribute (mainPanel, ctrlArrays[chip]l[3],
ATTR LABEL TEXT, "Release Chip");
InstallCtrlCallback (mainPanel, ctrlArrays[chip]l[3],
releaseChip, &instanceIndex[chip]):

runActive[chip] = 0;

return O;

InsertListItem (mainPanel, ctrlArrays[chip][6], -1, stepNames][
currStep[chip]], currStep[chip]); //add to indicator list
SetCtrlIndex (mainPanel, ctrlArrays[chip][6], currStep[chip]):
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loadState (stepRef [currStep[chip]][1], chip);

SetCtrlAttribute (mainPanel, ctrlArrays[chip][4], ATTR INTERVAL
, (double)stepRef[currStep[chip]l][2]):

SetCtrlAttribute (mainPanel, ctrlArrays[chip][l],
ATTR MAX VALUE, stepRef[currStep[chip]l][2]):

SetCtrlval (mainPanel, ctrlArrays[chip]l[1], 0);

ProcessSystemEvents () ;

return 0O;

628 629

int CVICALLBACK updatePBars (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1 = 0;

int value;

if (event '= EVENT TIMER TICK) return 0;

for(i = 0; i < MAXCHIPS; i++)
{ if (runActivel[i])

{ GetCtrlval (mainPanel, ctrlArrays[i] [1], &value) ;
SetCtrlVval (mainPanel, ctrlArrays[i] [1], ++value) ;
GetCtrlVal (mainPanel, ctrlArrays[i] [2], &value) ;
SetCtrlval (mainPanel, ctrlArrays[i] [2], ++value) ;

ProcessDrawEvents ();
return 0;

653 654
656 657
659 660

/*************************************
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*kkkkkkkk MAPPING FUNCTIONS *****xkkkkxk

*************************************/

int CVICALLBACK loadMapping (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

char filePath[MAX PATHNAME LEN], stateFilePath[MAX PATHNAME LEN
1;

char driveName [MAX DRIVENAME LEN], dirName[MAX DIRNAME LEN],
fileName [MAX FILENAME LEN];

FILE* dataFile;

int status, i, j;

int currval = 1;

if (event != EVENT COMMIT) return O;

status = FileSelectPopup ("", "*.smf", "*.smf", "Load mapping
file", VAL LOAD BUTTON, 0o, 1, 1, 1, filePath);
if (status < 1) return 0;

strncpy (stateFilePath, filePath, (strlen(filePath) - 3));

//copy into state file name, truncate
extension
stateFilePath[strlen(filePath)-3] = "\0';
strcat (stateFilePath, "sta");

//add ".sta"

extension
loadStateFile(stateFilePath);

loadMappingFromFile (filePath) ;

for(i = 0; i < MAXSOLENOIDS; i++)
//turn on all
solenoids used for current device
{ if (solenoidLUT[currVal-1][1i] '= -1)
{ SetCtrlAttribute (pnlMapping, solenoids[solenoidLUT [
currVal-1]1[1]1], ATTR ON COLOR, VAL DK GREEN) ;
SetCtrlval (pnlMapping, solenoids[solenoidLUT [currVal-1
10111, 1);
SetCtrlval (pnlMapping, SCsolenoidConfig[i][0], 1),
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699
700
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704

705
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707
708
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715
716
717
719
720
721
722
723
724
725
726
727
728
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731
732

733

734

718
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for(j = currval; j <= MAXCHIPS; Jj++)
{ for(i = 0; i < MAXSOLENOIDS; i++)
//turn on all solenoids
used for current device
{ if(solenoidLUT[j-1]1[1] '= -1)
{ SetCtrlAttribute (pnlMapping, solenoids[solenoidLUT [
j-11[i]11, ATTR ON COLOR, VAL DK GRAY) ;
SetCtrlval (pnlMapping, solenoids[solenoidLUT[j-1][1
11, 1)
SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i] [0
1, ATTR ON COLOR, VAL DK RED);
SetCtrlval (pnlMapping, SCsolenoidConfig[i][0], 1),

activeSCsolenoid = -1;

activeABSsolenoid = -1;

return 0;

int CVICALLBACK saveMapping (int panel, int control, int event,

void *callbackData, int eventDatal, int eventDataZ2)

int 1, j, k, totalSCsolenoids;

int status;

int currval;

char tmpString[50], filePath[MAX PATHNAME LEN];
FILE* saveFile;

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlMapping, mapPanel chipNumber, &currvVal);

if (activeABSsolenoid !'= =1)
//make final

assignment
{ solenoidLUT [currVal-1] [activeSCsolenoid] =
activeABSsolenoid; // store in look up table

SetCtrlAttribute (pnlMapping, SCsolenoidConfigl[
activeSCsolenoid] [0], ATTR ON COLOR, VAL DK RED); //

darken to indicate
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SetCtrlAttribute (pnlMapping, solenoids[activeABSsolenoid],
ATTR ON COLOR, VAL DK GREEN) ; //indicate
assignment made

activeABSsolenoid = -1;

//ADD ERROR CHECK TO ENSURE ALL SOLENOIDS ARE ASSIGNED!

status = FileSelectPopup ("", "*.smf", "*.smf", "Save mapping
file"™, VAL SAVE BUTTON, O, 1, 1, 1, filePath);
if (status < 1) return 0;

saveFile = fopen (filePath, "w");
//open file for write
fprintf (saveFile, "MAXSOLENOIDS: %i\n'", MAXSOLENOIDS) ;

//write array dimensions
fprintf (saveFile, "MAXCHPS: %i\n", MAXCHIPS);

for(i = 0; i < MAXCHIPS; i++)
{ for(j = 0; j < MAXSOLENOIDS; 7j++)

fprintf (saveFile, "%i ", solenoidLUT[i][j]):

fprintf (saveFile, "\n");

fflush(saveFile); 759

fclose (saveFile) ;

RemovePopup (pnlMapping) ;

return 0;

int CVICALLBACK cancelMapping (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

if (event '= EVENT COMMIT) return O;
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RemovePopup (pnlMapping) ;

return 0O;

int CVICALLBACK DecrementDevice (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1i;

int currVal;

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlMapping, mapPanel chipNumber, &currvVal);

if (currval == 1) return 0;
if (activeABSsolenoid !'= -1)

//make final
assignment
{ solenoidLUT [currVal-1] [activeSCsolenoid] =
activeABSsolenoid; // store in look up table

SetCtrlAttribute (pnlMapping, SCsolenoidConfigl[
activeSCsolenoid] [0], ATTR ON COLOR, VAL DK RED); //
darken to indicate

SetCtrlAttribute (pnlMapping, solenoids[activeABSsolenoid],
ATTR ON COLOR, VAL DK GREEN) ; //indicate
assignment made

activeABSsolenoid = -1;

for(i = 0; i < MAXSOLENOIDS; i++)
//turn off all
solenoids used for current device
{ if (solenoidLUT[currVal-1][1i] '= -1)
{ SetCtrlAttribute (pnlMapping, solenoids[solenoidLUT[
currval-1]1[i]], ATTR ON COLOR, VAL DK GRAY) ;
SetCtrlval (pnlMapping, SCsolenoidConfig[i][0], 0);

SetCtrlval (pnlMapping, mapPanel chipNumber, (--currVal));

for(i = 0; i < MAXSOLENOIDS; i++)
//turn on all
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solenoids used for current device
{ if (solenoidLUT [currVal-1][1i] !'= -1)
{ SetCtrlAttribute (pnlMapping, solenoids[solenoidLUT[
currval-1]1[i]], ATTR ON COLOR, VAL DK GREEN) ;
SetCtrlval (pnlMapping, SCsolenoidConfig[i][0], 1),

activeSCsolenoid = -1;

activeABSsolenoid = -1;

return 0O;

int CVICALLBACK IncrementDevice (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData?2)

int 1i;

int currval;

if (event != EVENT COMMIT) return O;

GetCtrlval (pnlMapping, mapPanel chipNumber, &currval);

if (currval == MAXCHIPS) return 0;
if (activeABSsolenoid !'= -1)

//make final
assignment
{ solenoidLUT [currVal-1] [activeSCsolenoid] =
activeABSsolenoid; // store in look up table

SetCtrlAttribute (pnlMapping, SCsolenoidConfigl[
activeSCsolenoid] [0], ATTR ON COLOR, VAL DK RED); //
darken to indicate

SetCtrlAttribute (pnlMapping, solenoids[activeABSsolenoid],
ATTR ON COLOR, VAL DK GREEN) ; //indicate
assignment made

activeABSsolenoid = -1;

for(i = 0; i < MAXSOLENOIDS; i++)
//turn off all
solenoids used for current device
{ if (solenoidLUT [currVal-1][1i] '= -1)
{ SetCtrlAttribute (pnlMapping, solenoids[solenoidLUT[
currval-1]1[i]], ATTR ON COLOR, VAL DK GRAY) ;
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SetCtrlval (pnlMapping, SCsolenoidConfig[i][0], 0);

SetCtrlval (pnlMapping, mapPanel chipNumber, (++currVal));

for(i = 0; i < MAXSOLENOIDS; i++)
//turn on all
solenoids used for current device
{ if (solenoidLUT [currVal-1][1i] '= -1)
{ SetCtrlAttribute (pnlMapping, solenoids[solenoidLUT[
currVal-1]1[1]1], ATTR ON COLOR, VAL DK GREEN) ;
SetCtrlval (pnlMapping, SCsolenoidConfig[i][0]1, 1);

}
activeSCsolenoid = -1;

activeABSsolenoid = -1;

return 0;

//SCsolenoid is the control IDs, x, y, theta pos for single-chip

solenoid button, as defined in the user's state file
int CVICALLBACK toggleSCsolenoid (int panelHandle, int controlID,

int event, void *callbackData, int eventDatal, int eventDataZ2)

{

int currChip = -1;
int i;
if (event !'= EVENTiLEFTiC‘,LICK) return 0;

GetCtrlval (pnlMapping, mapPanel chipNumber, &currChip);
currChip--;

if (activeSCsolenoid '= -1)
//if
selecting a new SC solenoid
{ if (activeABSsolenoid '= -1)
// if an

assignment was made
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{ solenoidLUT [currChip] [activeSCsolenoid] =
activeABSsolenoid; // store in look up table
SetCtrlAttribute (pnlMapping, SCsolenoidConfigl[
activeSCsolenoid] [0], ATTR ON_COLOR, VAL DK RED); //
darken to indicate
SetCtrlAttribute (pnlMapping, solenoids]|[
activeABSsolenoid], ATTR ON COLOR, VAL DK GREEN) ;

//indicate assignment made

activeABSsolenoid = -1;
}
else
{ if (solenoidLUT[currChip] [activeSCsolenoid] == -1)
SetCtrlvVal (pnlMapping, SCsolenoidConfigl[
activeSCsolenoid] [0], 0); //turn off
previous solenoid
else
SetCtrlAttribute (pnlMapping, SCsolenoidConfigl[
activeSCsolenoid] [0], ATTR ON COLOR, VAL DK RED);
}
}
i=-1;

//locate & assign newly-active solenoid
while (controlID != SCsolenoidConfig[++i][0])
activeSCsolenoid = i;

SetCtrlval (pnlMapping, controlID, 1);

SetCtrlAttribute (pnlMapping, controlID, ATTR ON COLOR, VAL RED

);

activeABSsolenoid = solenoidLUT[currChip] [activeSCsolenoid];
if (activeABSsolenoid '= -1) SetCtrlAttribute (pnlMapping,
solenoids[activeABSsolenoid], ATTR ON COLOR, VAL GREEN) ;

return 0;

//solenoid[] is the control IDs for the absolutely-assigned 64

solenoids that the single-chip versions will be mapped to
int CVICALLBACK toggleSolenoid (int panelHandle, int controlID, int

{

event, void *callbackData, int eventDatal, int eventDataZ2)

int currChip = -1;

int currColor;

//use to determine assigned state

int i, j;
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if (event '= EVENT COMMIT) return 0;

GetCtrlval (pnlMapping, mapPanel chipNumber, &currChip);

currChip--;

if (activeSCsolenoid == -1)
{ GetCtrlval (pnlMapping, controlID, &i);
SetCtrlval (pnlMapping, controlID, 1-i);
return 0;
//no selecting if single-chip solenoid not selected
}
GetCtrlAttribute (pnlMapping, controlID, ATTR ON COLOR, &
currColor) ;
if (currColor == VAL DK GRAY)
{ GetCtrlval (pnlMapping, controlID, &i);
SetCtrlval (pnlMapping, controlID, 1-i);
return 0;
//no selecting i1f solenoid is grayed out (used by another

chip)

if (currColor == VAL DK GREEN)
//1f selected

solenoid already associated in this chip
{ i=3=-1;

while (controlID '= solenoids[++]]);

while (solenoidLUT [currChip] [++i] '= j);

// find associated
SCsolenoid in LUT
solenoidLUT [curxChip] [1] = -1;
// disassociate
SetCtrlval (pnlMapping, SCsolenoidConfig[i][0]1, 0);
// turn off SC solenoid
SetCtrlval (pnlMapping, controlID, 0);

// and abs solenoid

if (activeABSsolenoid '= -1)
{ SetCtrlval (pnlMapping, solenoids[activeABSsolenoid], 0);
//turn off previous selection
SetCtrlAttribute (pnlMapping, solenoids[activeABSsolenoid],
ATTR ON _COLOR, VAL GREEN) ;
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}
i=-1;
while (controlID '= solenoids[++i]);

//determine new
active solenoid;
activeABSsolenoid = i;
SetCtrlAttribute (pnlMapping, solenoids[activeABSsolenoid],
ATTR ON COLOR, VAL GREEN) ;
SetCtrlval (pnlMapping, controlID, 1);
//ensure new selection

stays selected

return 0;

void setupMapping ()

{

int i, j, row, col;

char 1bl[5];

char fp[MAX PATHNAME LEN];

long fileSize;

int containerTop, containerLeft;
int ctrlTop, ctrllLeft;

int BTN HEIGHT = 35,
BTN WIDTH = 17,
rowSpacing = 12,
colSpacing = 25;
char callBack[20] = "toggleSolenoid";

for(i = 0; i < MAXCHIPS; i++)
{ for(j = 0; j < MAXSOLENOIDS; 7j++)

{ solenoidLUT[i] [j] = -1;
}
}
activeSCsolenoid = -1;
activeABSsolenoid = -1;
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GetCtrlAttribute (pnlMapping, mapPanel dec SolenoidContainer ,
ATTR TOP, &containerTop);

GetCtrlAttribute (pnlMapping, mapPanel dec SolenoidContainer ,
ATTR LEFT, &containerLeft);

for(i = 0; i < MAXSOLENOIDS; i++)
{ ctrlleft = containerLeft + 10 + (colSpacing * (int) ((i%32)/
8)) + ((i%32) * (BTN WIDTH + 5));
ctrlTop = (containerTop + 10 + ((int) (i/32) * (BTN HEIGHT +
rowSpacing))) ;
sprintf (1bl, "%i", i+1);
solenoids[i] = NewCtrl (pnlMapping, CTRL SQUARE FLAT BUTTON
, 1bl, 500, 500);

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR ON COLCR,

VAL GREEN) ;

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR WIDTH,

BTN WIDTH) ;

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR HEIGHT,

BTN HEIGHT) ;

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR TOP,

ctrlTop) ;

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR LEFT,

ctrlleft);

SetCtrlAttribute (pnlMapping, solenoids[i],

ATTR LABEL POINT SIZE, 8);

SetCtrlAttribute (pnlMapping, solenoids[i],

ATTR LABEL JUSTIFY, VAL CENTER JUSTIFIED) ;

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR LABEL LEFT
, ctrlLeft + (BTN WIDTH/2) - 4);

SetCtrlAttribute (pnlMapping, solenoids[i], ATTR LABEL TOP,
ctrlTop + (BTN HEIGHT/2) - 5);

SetCtrlAttribute (pnlMapping, solenoids[i],

ATTR LABEL BGCOLOR, VAL TRANSPARENT) ;

InstallCtrlCallback (pnlMapping, solenoids[i],

toggleSolenoid, NULL) ;

i = FileSelectPopup ("", "*.sta", "*.sta", "Load states file",
VAL LOAD BUTTON, 0, 1, 1, 0, fp);

if(i < 1) return;

if (! (GetFileInfo (fp, &fileSize)))
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//1if file doesn't

exist
{ MessagePopup ("Error", "There was a problem opening the
file!");

return;

loadStateFile (fp) ;

return;

int loadStateFile (char* filePath)

{

int i, j, k, status, bSize, numSolenoids;
int varX, varY, flag;
char readString[500];
char stateName[30], junk[5001;
char volume[MAX DRIVENAME LEN], fileDir[MAX DIRNAME LEN],
picName [MAX FILENAME LEN];
char imageFileName[MAX PATHNAME LEN];
char* token;
FILE* dataFile;
int BTN HEIGHT = 30,
BTN WIDTH = 15;
int xCorrect = 350,
yCorrect -25;
float scaler = 0.78125;

dataFile = fopen (filePath, "r");

//load image file
fgets (readString, sizeof (readString), dataFile);
SplitPath (filePath, volume, fileDir, NULL);
//get current directory
for(i = 9; 1 < strlen(readString); i++)
//get
filename

picName[i-9] = readString[i];

picName[i-10] = '\0';
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if(strlen(picName) !'= 0)
{ sprintf (imageFileName, "%$s%s%s'", volume, fileDir,
picName) ; //construct picture path

DisplayImageFile (pnlMapping, mapPanel pctUserImg,

imageFileName) ;

//create user-placed solenoid buttons

fgets (readString, sizeof (readString), dataFile);

sscanf (readString, "solenoids: %i %i\n", &numSolenoids, &
bSize) ;

for(i = 0; i < numSolenoids; i++)

{ SCsolenoidConfig[i] [0] = NewCtrl (pnlMapping,

CTRL SQUARE LED, "", 100, 100); //create in a pile
for now
SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i][0],
ATTR ZPLANE POSITION, 100); //hide behind picture

SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i][0],
ATTR HEIGHT, BTN HEIGHT) ;

SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i][0],
ATTR WIDTH, BTN WIDTH) ;

InstallCtrlCallback (pnlMapping, SCsolenoidConfig[i] [0
], toggleSCsolenoid, NULL) ;

//scale & place buttons on image

for(i = 0; i < numSolenoids; i++)

//
{

right click)
fgets (readString, sizeof (readString), dataFile);
sscanf (readString, "%i %i %$i", &SCsolenoidConfig[i][1], &
SCsolenoidConfig[i][2], &flag);
SCsolenoidConfig[i] [1] -= xCorrect; SCsolenoidConfig[i] [1
] *= scaler;
SCsolenoidConfig[i] [2] -= yCorrect; SCsolenoidConfig[i] [2
] *= scaler;
if (SCsolenoidConfig[i][1] '= -1) SetCtrlAttribute(
pnlMapping, SCsolenoidConfig[i][0], ATTR TOP,
SCsolenoidConfig[i] [2]) ;
if (SCsolenoidConfig[i][2] '= -1) SetCtrlAttribute(
pnlMapping, SCsolenoidConfig[i][0], ATTR LEFT,
SCsolenoidConfig[i] [1]);
if (SCsolenoidConfig[i][2] '= -1) SetCtrlAttribute (
pnlMapping, SCsolenoidConfig[i][0], ATTR ZPLANE POSITION, O
)
if('flaqg)
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1081 { SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i][0],
ATTR HEIGHT, BTN WIDTH);

1082 SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i][0],

ATTR WIDTH, BTN HEIGHT);

1083 }

1084 SetCtrlAttribute (pnlMapping, SCsolenoidConfig[i][0],
ATTR ON COLOR, VAL GREEN) ;

1085 }

1086

1087

1088 return 0;

1089 }

1090

1091 1092

1093 1094
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