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ABSTRACT

A study of the spin absorption lines of all orders was made.
Rules for obtaining the absorption operator of any line were found,
and a generalization of the method of moments was obtained. With
magnetic dipole-dipole and exchange interactions taken into account,
and with the assumption that the Zeeman energy is dominant, the
zeroth and the second moments of the following four lines were evalu-
ated without approximations for powders: (1) first Larmor line,
parallel field, (2) second Larmor line, parallel field, {3) second
Larmor line, perpendicular field, (4) low frequency line, perpendicular
field. The contribution of exchange to the second moment was found
to be the same for the four cases treated, while the total intensity
has the ratio 1:1:1:3/2. Agreement with existing experimental data

is good.
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1. INTRODUCTION

The method of moments was developed by Waller (1), Broer (2),
Van Vleck (3), and Wright (4). They investigated in particular the energy
absorption of 2 paramagnetic salt in a strong, constant magnetic field,
when a weak oscillating field either perpendicular or parallel to the
constant field is applied. The atoms in the salt are agsumed to interact
with the external mvagnetic field through their spins, and the interaction

of the constant magnetic field with the salt can be written as

-

7 ,{7 2= e v H«::,“' S : 1

where P is the Bohr magneton, g the gyromagnetic ratio, H the constant
magnetic field, Szi the z component of the spin of the ith atorn, and the 2 4’
:& .nthe direction of H.

7o the absence of other interactions, the z component of the
total spin, i.e., Zszi' would be a constant of the motion, and would
be specified by thelusual total magnetic gquantum number M. The energy
eigenvalues of the spin system would then be given by -gPHM. If an
oscillating field in the x direction is applied, the perturbation

-giH S8 ., with Ho c the magnitude of the oscillating field, gives

osC 4—;—* xi 8

rise to the selection rule AM = 11, as the matrix elements of this
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perturbation between two eigenstates of the system would vanish anless
the initial and the final states have magnetic quantum numbers differing
by one unit. As the energy difference between two such states is + ggH,
the salt would make transitions and absorb energy {rom the oscillating
field only when the frequency of the field equals the Larmor {requency
SgH/h. If an oscillating field in the =z direction is applied, the per-
turbation -gg’}Hosc;Z S,; 8ives no transitions, since 2il of its non-
diagonal matrix elements vanish., No absorption would then cccur,

Now the spins in the salt couple with one another through dipole-

dipole and exchange interactions (5), and the complete Hamiltonian of

the salt should be written ag

L/z’ Ziy == \/lef: o * /LL ! (2)
where
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0 2.2 S| .3 S -Swll
SU = B F {;J‘ L‘llj (‘)1 ‘)J) -3 "ij ( ij 1)( i J)J
PO I
1>y

with ;;13 the exchange constant. The z component of the total spin is
now no longer a constant of the motion, With the assumption that
.;Zf‘}«'(«(‘/'.?:{o , which is always true for strong enough magnetic fields, the
energy eigenvalues would be slightly modified from the values -MgoH.
If a perpendicular oscillating field (in the x direction, say) is

applied, absorptions would now occur in a small range of frequencies



near g;:‘z}Ih-l, owing to the modification of the energy eigenvalues. We
would therefore observe an absorption line around the Larmeor frequency
giPH h'l. The word "around'is used since, as we shall see later, there
is a slight shift of the mean frequency of absorption of this line from

the Larmor frequency. Furthermore, since the matrix elements of the
perturbation between two states with energy differences of approximately
o, 23@}1. 3gPH, o+ ngfH*** " no longer vanish, as they must in the limit
of vanishing dipolar and exchange interactions, there will appear absorp-
tion lines around frequencies 0, Zg;:’sHh-l. BgiﬁHhﬁl. seee ngg&Hh-l' vt

of weaker intensities. Since all eigenstates of the salt have energies dil-
fering from one another by amounts of approximately ngsH, with o any
integer (would be exactly ngiH in the limit of vanishing dipolar and ex-
change interactions }, the lines listed above are all the absorption lines
that will be present.

Similarly, if we apply a parallel oscillating field (in the z direc-
tion), we would- observe absorption lines centering around 0, ggi&"lh-l,
ngﬁ}{h-l. Tl ng;ﬁ!—lh-l, of weak intensities, From now on we shall call
theselires the low frequency, first Larmor, eecond Larmor, **** nth
Li..arr'nor lines, respectively.

Let us study these lines in more detail.

Assume that the spin system is in thermal equilibrium 2t tem-

perature T. The density matrix is given by



Tr(e -K’i‘ )

The number of atorns in state 'k> of energy EI” is given by

Ek
. Ne RI
pl{ » .(L: v r
Telegr )

where N is the total number of atoms present,

For high temperatures we may approximate Pl by

E E
k¢ k.
Bl = = o m——
. (- 77/ . N - =
r - 1]
. Tr(1) (25 + 1)N

where 5 is the magnitude of an atomic spin in the salt. The trace of

unity is equal to the total number of states of the system, which is
(23 + 1)”.

H
Under the excitation of the oscillating field Ho cos wt =
(eiwt

osC
SC
=it
+ &

» the energy absorption by the sall per unit tine is
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where 5 is the total spin of the system.

Broer (2) then defined the shape function

LV
h(l' *I'-—é-)

((v)av = ij |5, k>] 2 ; (8)

ik, "
o L = .,..'.“E'_.
ErE =hlv-=2)

where SH is the component of the total spin in the direction of Hosc'
: : 2 \ s : :
It is obvious that v f(v) is proportional to the energy absorption by the.
salt from an oscillating field of frequency v.
Now it is extremely difficult to obtain f{v) 28 a function of v,
: ' . for H ; . :
tor we don't know the elgensiates of JL , and even if we knew them, it
would still be formidably difficolt to surn the absolute value square of the
matrix elements within a small energy range,asis required by equation 8,

since there is an incalculable number of states in a salt. However, the

moments of £(v) of a certain line, defined by
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where ¥ is the mean frequency of a line, can be evaluated with much
less effort. Usually the moments about the mean frequency, rather than
the moments about the origin, are of physical interests.

Let us demonstrate this by investigating the first Larmor line
for a perpendicular oscillating field.

First we rewrite expression 2 in the form

ey — 3 ‘ T [}L___ Ly ] ~ ;l ry ¢ g U A 1 ‘\?,k{;‘l
A= H AT AH e H 24 Lt v (10)
where
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ij
zh_z 3, 2.2
Dij = 3g rij (aij - - 2ia, 3)/8
3 2, L2 -
Eij 2 g ij(u‘- - II‘I‘j )
and 5.5 +i18 _,

wherea,,, P,., y,, are the direction cosines of r, .. MNotice that
LS N S IR B ij
Ser L Fl ! rr .?' ~r ! T ! e 4
applying ;—’{o(.%f 5t /L 5t ed 1 ..’/“;f’l ) on eigeastates of /z”o changes
this state into a state with magnetic quantum number (42, -2, +1, -1)
higher than that of the original state, and hence wilh energy
0(-2gpH, +2gpH, -gfH, +ghiH) higher than that of the original state.

From this we also conclude that the expectation values of

ST JLL f{ » with respect tc eigenstates of Vs » vanish,
2 1 ol P g 7
N .n,-ﬁl o ¥ ;V-,'p' .,,.,|
Notice also that the Hermitian adjoint of /7 1’ ../”fr , are J7 1 vf"z{_a .
7
while /7 o is Hermitian.

Since f}fp"; commutes with _:;g:fo. we can take the eigenstates
of ( ‘;:‘-:{’04- ff:) as the unperturbed states ¢j'¢.!:' and call the sigen=-
states of the complete Hamiltonian which go over to ¢j.¢k in the ilimit
of vanishing dipolar and exchange interactions as [j>, JK> .

The traunsitions which contribute to the first Larmor line occur

between states with energy difference approximately equal to gii.

Therefore we have, for the first Larmor line
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j £ v)dv ~Z ,S [1<>, (13a)

uI—”
] J gg

j(v-gp}{h )f(v)dv Z(v --ngh ) <_yl‘3 Ik>] (13b)

v engh

where hy jk is the energy difference between states | i» and | k> and
Sx is the x component of the total spin of the system. The criterion
for v g;i‘sHh-i is that (vjk-g;mh"l)/gpnh“l <<1,

As the firet approximation we can substitute [ j>, |k> by
¢j’ q:k in expression 13 thus 13a becomes

ff(v)dw Z (o, s, k)lz : (14)

1

Mow

A8 Mj-Mk = -1 for all of the matrix elements included in the

sum of equation 14, we have
(¢;+¢,) 20

Expression . 4 then becomes

p 00

— .. 2
i f(v)dv = Z j(¢j g ¢k)i o , (14a)
Jo v, «;;-g;L‘BHh'l
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MNow —’?_- is = rather selective operator; its matrix element
between ¢j and $ vanishes unless Mj -Mk = -1, and this condition is
satisfied if and only if the corresponding states |j> |k> have an
energy difference hv jkﬁ' ghH . We have now the interesting result that
(¢j %: ¢k) is a good approximation to <3§Sx} k> when |j>, |k> are
two states the transition between which contributes to the first Larmor
line, and is zero otherwise. Therefore using %—: in place of Sx anto.-
matically selects out the unwanted matrix elements, and we can, in

expression 14 , formally sum over all states j} and k, since 21l

of the extra terms vanish., Thus erpression l4a becomes

- . " 2 e 2

{ = Jra 8= . N jys, Se )

jj f(V)dV "":{m_d !:‘?i _E- ¢1{';} - 1{f £(¢j -—E‘ ¢k"§

o v :ﬂ&gﬁHh-l Jk

k
N s §- . % N, Se S+ . . S~ 54 '
2T e e T e = S e T e e S b)) B T S5) L (09)
j'k 31k

correct to the first approximation.

We see that 2 series difficult to evaluate 18 now reduced to the

- ; 5 1 el S+
trace of the product of the operator %— with its Hermitian adjeint R

o perator -5-3:— will be called the absorption operator for the first Larmor

line in a perpendicular field,

s igensiat + ', ile.,
Now ¢j $, are eigeasiaies of HO Ho i.e

1T
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But Ej » Ek equal to Ej' Ek. to the approximation of first
order perturbation, since from the perturbation theory, the first order

corrections to !:‘,j and Ek equal to the matrix elements ij and ka. where

L] 1 ] , i
V is the perturbing potential, which is the sum (?’fl + H 1t Hz"i- H Z)
in our case, and since all of these matrix elements vanish in our probe-

lem.

Hence we have

L& S e e+ T )5 &)

( E‘;- ( '};} + :.Jj'
-5 (U, Wil g %)
! 17 4ap | B=
" 'i; (¢j vai G+"f“{' c.” 2 ]¢k) . (16)

i

As [W;g'gos ‘S:E-’ ] = gﬁﬂ% . we have

-1 Se 1 - S .
gl by s — ff{’ i . 5
correct to the first order.
In general, we have
i ! el 1l ¥ g ¥ ! S -
Jk (4’ z’ ¢3. (q' {(/ +/Lf 0) {(J'?_D-PJM-’_ O) [(f °+.,"Z 0)’_2-]. st } }4‘1()3
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and
s -1 Dy S - 1 [ ? ' “7:_.“""' e v e x’.’:” i 3 * e o 8 o 1
(vjk'ngHh ) (‘PJ 2 @k) hn (¢j L D’ [U} { 0' {J { O."'é"} ] J*k) »

(18a)
P:\z‘" ‘...m‘“ v; P ."'v & . ‘ )
where we commute Y with (Jr;,_ot,f'gf() or /7 o for n times. Expression

13b for n = nl + n, can be writien as

Qo

e n,+n e e | 2
R B (3 F O et B S PN =
Jfo A _JI_Ih"l % i
vjk:.i" gh
5 n.+n 2
A 1,712 S- ‘
ik
1 SIS 7t 8- ; g4 ! 8 L
i) 7 7 "... : :m"'! * e e - eeoo 4 oy ]
2 = Ii‘(i.dfg_oﬁ{{_;gﬂo Vig 2} 1 [ Z’G-Lo} "‘“o} 90]”

where there are 2, ‘}3;?1")8 in the first commutator bracket, and n,

d,g ;3 in the second commutaior bracket. In the above process of cal-
culation beoth f(v) and (v —gﬁthl) are replaced by quantities which are
equal to them in the first approximation, hence the expression is correct
to the first approximation.

A simnilar expression, with /& replaced by /7 + /7 , gives
¥ VAP P ¥ ¢ s &

nl-}n th
v f(v)dv, the (n1+n2) moment about the origin.

In practice the multiple commuiator becomes more and more
difficult to evaluate as the length increases, and we usually split n as

evenly as possible. For instance, if n is an even integer, we take
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ny @ a, t% » end if n is an odd integer, we take n, = (n4l)/2,

!
n, ® (n-1)/2.

Let us now summarize the foregoing as follows: the calculation

of the moments of the first Larmor line is facilitated by obtaining the

Sm S
absorption operator —3 .+ taking the trace of the product of ~5 with its

S+ ; ;
Hermitian adjoint =5 gives the zeroth moment of the line, and taking

—
the trace of the product of suitable multiple commutator between _ ;| oand

S '

=y with suitable multiple commutator between jzn and -S-ét gives higher

moments of the line about its mean frequency. Similar expressions for

—_ .
moments about the origin can be obtained if J’ 5 above is replaced by

/ “ + ‘_-" L]
v L O « LD
Van Vleck (3) used the above method to obtain, after some cale

culations, the second moment of the first Larmor line in a perpendicular

field for a powder as:

(ee]

2
f (v-gﬁth) f(v)av
B
2
<AV > v:;“_';' \(V -gﬁH/h) i & )
i f(v)dv
“o
(Lo
Ty L W T
o’ z vl 3 4.4 -2 b
- — (s- §..t « 3 g PRISsA), s, T (18)
- 2 k“?j

the summation is over all other atoms except j, which can be chosen
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arbitrarily as long as i1 is not near the surface of the salt. Expression
18 agrees with the experiments within experimental uncertainiies, which
are smaller than ten percent.

The absorption line was then assumed to have a Gaussian distrie

bution

=
2 2

f{v) = « vo>av [ 272y >av] exp| -(v -gﬁHh“l)z/‘ 2(av 2

>, 09)

It was concluded that expression 19 is a close description of the
absorption line in case of negligible exchange forces, and is thus useful
for nuclear resonance, where exchange does not enter.

Van Vleck also calculated the fourth moment of the first Larmor
line in 2 perpendicular field, and the interested reader can find the rather
lengthy expression in his paper (3).

Some low frequency lines were studied by Wright (4). We shall
demonstrate her method by reproducing her‘arguments in obtaining the
moments of the low frequency line in a perpendicular field as follows*:

It is necessary to limit the states j,k, appearing in expression 8
in some way to states with energy differences much smaller than gpH.,
The problem is to construct, by means of perturbation formulas, an
operator {rom Sx which gives, at least to the first order, the correct

matrix element <jj S, | k> between levels with small energy difference

#*For an alternative method, see Reference 8,



(small compared to gfH} and zere matrix elements for other pairs of
states. In other words, if ¢j.¢rk are the states corresponding to | j>

and | k>, respectively, and if Mj, M, are their guantum magnetic

k

numbers, respectively, then we ant to find an operator O such that
(¢j 0 ¢'k) approximately equals <j.} i k> for Mj = b, and vanishes
atherwise.

To the first order perturbation the state > is given by

(¢, 77 | ¢, )
8 b
G, - o ¢ - (20)

j> = 4;} +»‘7_—:
Y S

,::‘ *n'l, “1, 3. ‘“2 8

For states j,k, such that Mj =M, , (éaj S ¢-k) = 0, therefore,

k x
the first order non-vanishing term in <j) S}J k> for Mj =M, are
, S+ . Seg. .
<jfs_jl> =i + =[ k>
o 74" : - 7/ \
(ep) 7 (———TM“M o StLS2 . o Mvintd ¢4
. “ B ’ i A 2 ;
g 1M, MJgFH 4] 2 2| kg gy (M, =M JgPH 1)
pS 2,2 22
S P S > t vy
g ) : (4 /39

3t ./ §:_ 1
Fper 0 7 0t T 0 G e

R S+ ' — ¥ *

? i [ Y Z ,") ' :._):_
-‘m' (4}" )1 ¢1§) I\'{!'Mk gfj‘H + -«1“ (¢£ 2 ¢1() (M‘ 'Mjljg!“-;:}.‘ H"'



o ] §i S- !

4= TgH M goH
"5k e, 8) T (b, ww > $)
+ j 2 ‘ !' L"l k + j -1 ‘ 2 k
- I ~gBH i -ngH

' S+, i,V B
ghH gbH (20)

= (¢,0¢,) ‘

S+

' 1
where (J-= Liip=sd-Li ? ] / gBH. (20a)

Now it is easily seen that the matrix elements of Oare zero for
}fﬁij X Mk. A physical way to see this is by noticing that applying 5+ to
¢zk increases the magnetic quanturn number by one, and applying Hl'
£t *k decreanses the magnetic gquantum number by one, so that the suce

3 ! )

cessive application of fz_'l and 5+ leaves the magnetic quantaum number
unchanged; the same is true ior:/z'[_}: and 5-. The orthogonality condition
for eigenstates of ‘;Lfo tH2n ansures the vanishing of the afora-mentiocned
metrizr elemnents. . QOperator Oin expression 20a is therefore the ab-
sorption operator for the line.

Hence we have for the moments of this line
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il il 2 2
j fvyde =L TS ol 7L [k
- N~ > 2ui =
o Ej Lk § Mk
,::::‘} 7 i 2 +
=, . |(¢.0%, ) = Tx(0O) . (21)
all i,k 4
L0
’ n1+n2 1 ,w[l w2t ! P Ty
4 R O R ad ’ b ' '..! ‘t-' 3 } '( i * & B a'i 'i‘ 1 1
| v fv)dv = n T=( /T, L;Z{o» LJZ-O'O}]JL[J{O S JLQ]um‘.,O‘jj"'i)
rg ‘h

where there are , :7{; in the first commutator and nzjf{; in the second
commutator andrwhere O+ is the Hermitian adjoint of O. Notice here

the mean frequency v is zero so that it does not appear in expression
21.

Again we see thi;,t calculating the moments of this line is facilitated
by obtaining the operator Owhich will be called the absorption operator
of this line. |

The above is a fairly laborious process and is only applicable
for lines where first order perturbation suffices. For lines that re-
guire higher order perturbation the derivation would be still more dif-
ficult. As the result comes out to be suspiciously simple it is natural
to ask whether there is an easier way to handle this problem.

The next section will be devoted to an investigation of this ques-
tion. It will be shown there that a rule can indeed be found which would

enable one to obtain the absorption operator of all lines without much
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labor. Furtherrmore, this rule is not only true for a system with the
particular Hamiltonian discussed previously, but is also true for
Hamiltonians of all kinds, provided the perturbing part of the complete

Hamiltonian is small enough for the perturbation method to be valid.
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II. THE ABSORPTION OPERATOR

Let us assume that the Hamiltonian of a2 system ie described

T .‘-V‘:f A sy
ST =M +s7 . (22)

TF
L

where /|  is the perturbing Hamiltonian small compared to ;!4{;_‘_’0.
vyt

Let us decompose 7 into its spectrum

;o0
! S

“’:5— e ; Ji ()b (23)

s’
-0
where

LA ER T AT =4

Lt L
The physical meaning of // (w) is that it is the partof /7

which, when operating on an eigenstate of "'::’i‘o’ will raise the state

into a state of eigenvalue Hw higher than that of the original state.

Under an extremely small perturbing potential /’?{(t),.,»,é’sj(t)<<ﬁ__fji

the probability of transition at time T from one state to another, both
eigenstates of :;’"o when t 2 0, is proportional to the absolute value

square of the matrix element
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; 23 F{ ] 4 . ] T i -*. .. Y ,"‘E’f - - 23 Ag,',.”"‘ "

] <exp(-i/7T/ ) ng expl -if (1 -v Bl (Yexpl -1/ ¢/ h) ¢k> gt
Zeo

rT
= <¢] ;o exp(if] v/ B) A(exp(-LA g/n)ds | ¢, > . (23)
J :
e

Physically, expression 25 says that the wave function, in state
¢k att = 0, propagates to time ¢ with the propagation factor
exp{~-i/{t/ H); there it is scattered by the potential L (t), and then
propagates to time T with propagation factor exp| -ij{{T-t)/]- The
matrin element is then taken between the resultiogwave function and the
wave function which is f@:j att e 0, and is therefore exp(«i AT/ n)«p}. at
time T. As the systemn rmay .be gcattered at any time t in the time
interval [-o0,T], & time integral from - to T is taken.

Now, we know that

. ) . Lt .

expli flt/ B) = exp[i(/t St Y/ R]

_ t ¢ t
? i | 1 i,2] | iy 7L

J = j1 =Yy ds, /7 7 (e )de,

v
O o 8]

o t. t
J i o K
i ;:’ dt 2 i JL (tn)./ L. (tl'

o o o

1) g i (tl.) dat

.l
3 -

."........'.(iﬁ)f:;’;E dt

PR EEER exp(i_j';i t/ ﬁ) y (26)
_j o
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where /) (1) = exp(i, fot/ 1) exnp(-i/ i{)i;f n) , (27)
and

. . -
exp{-i it/ B) = exp|-i{ /7 SHi yt/ EH]

i :'t * -1 z-'t ftl~~" <!
z exp(-iv,'-éotf’ "h) ] 1eg [ (tl)dtl + ( --,!-i--)le d@;lj; Ji (tl)d-j{_ (tz)dtz
i 4
8]

C o o

i llit tl !,?111“1" o ot
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J 4 % J
o G . Q

+-o-.o- :. (23)
4
We have, from expressions 26 and 28
i 1“
i expli/7t/ B) W(t) exp(~i /[ t/ &) &t
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where

A1) = expli /7 _t/ B) A1) exp(~1/7 _t/ B) . (30)
Without loss of generality, we may assume

i 1f =it

M = e, - (31)

il . ; . i,
where 7 is an operator independent of t. Let us decompose i inio

its spectrum

. W0
e Mendet (32)
J
where  [/{ s ()] 2 Bw () - (33)

Then exp(ik;"i:ot/ B) 4 (w")exp(-i ,f,;"otl ) = e 1 (0" .

We therefore have

(s o

ECR AT

-0

Hol-w)t g, (34)

Similarly, from expressions &3, 2¢ and 27, we get

[ %
't

u\ (¢) = ’ 4 ‘( whe de' . (35)

-0

The nth term of the right hand side of expression 29 is therefore

equal to
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As T =, the dominant term of expression 36 is equal to

@ -G <0 :.’ "" o-nr-»“" ' 4 e 6o {1
( :L)ﬂ ;: o Vot (mn)' L" L (ui,l-l)’ ‘.:," £. (wl)’ v(Uo)] }1
n’ ; AT
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cly o0 o .
o n
(37)

The neglected terms in expression 36, as will be discussed in
the next section, give higher ovder corrections to the absorption lines.
ey
The physical meaning of expression 37 is clear: (mj) changes

1
the system to 2 state with an energy increase of E‘mj , and the successiva
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1 ] $ [
applications of /; (mn), A (wn-l) g EBEES G (wl), ‘ (wo) change the

system to a state with an energy higher by arn amount of

’ﬁ(wni-wn G +ml+w°) than that of the original state, and the law of

-1

the conservation of energy demands that this should be equal to the

energy absorbed from .\ (t), whichies Hw. There are many zlternative
I o

ways to apply a given group of (wj)'s and /| (wo), and expression 37

indicates that all of them should be taken into account, with the weighting

3 : -1,
factor {(‘an)(‘ﬁwn+ﬁmn_l)‘ R (hmn-i-' ceean +le)] for each.

If the spectrum of , and L are discrete, i.e.,
} e 3,000
i | '7 —’_-‘ - ¥ . ; ey []
JL = /00 (wa) » /.7 S (wq)& (u-ma)dm ; (38)
a a ./
-0
and
o oo
“iwt . 4 ~twt i p
I‘;‘fi. (t) e ":&(mi:"') ® e e I .9 (‘Qx)ﬁ(w "‘w,;,)d@ ? (39)
ey ¢ 5 P &
' T -0

then with the omission of the factor 27 , gxpression 37 is reduced to

the form
! ! M .
il 415 O Y2 CH Bl (e (P PO Ry D LY R e
i n =1 Ql : I g |
_fw—'_, aa..:‘.'--—"’ ;{M .
A o B (Bey e e o )t (Beg MR 40ccs i)

o) o) n-l 1 n=1

(40)

Let us single out one term of expression 40 and study it more
closely, We see that its mairix elements between ¢’j and ¢k will
sosen + ey
o wy ¥ | Wy %.5)
27T

. Hence the absorption

vanish unless l)f/\’ s



nperator of a line centering around Wis. in the first approximation,
the sum of the lowest order terms in expression 40, with the delta

funciion omitted, which satisfy the condition

w + " 4w +w1‘=—t3,
a [+ B d
n 1

since tre matrix element of this operator, taken between two
siates ¢j'¢k' with @i * w, closely approximates <j| M |k>, and is
equal to zero otherwise.

The right hand side of expression 29 ie now reduced to, aside

from a factor of 27

- R 3
Loy 7 Vde), Aoy
L MUw)slog-a)+ L, L == 5w, tu, -w)

1=

t a B @

1
=y \:,“’ ‘R’; Lf—: (wﬂ.
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f s 7 2 i
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az o a, -1 2

! ' % ¥
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» P e/ n ne-l 1 o i
o)

+ / ,f;,,,._q_ -..—\ p -

B ]

G a u_ £3 * & ® 8 & FIRY
1 2 n (Hwa )(!iwa +ﬁwu ) (huﬂn + + Ba )

1 n n~1 n 1

(81)



Let us summarize the foregoing by formulating ithe rule for
obtaining the absorption operator as follows:
P |

(1) Choose the fewesi number possible of /1 (wa)‘ﬁp the suc-
cessive application of which, together with a chosen '/ (mgb)’ will give
an energy change egual to the mean energy of absorption of the line of
intereat . (If there are several ways of achieving this that are of the
sarme srder, all of them have to be tzken into account. )

(2) The sbsorpiion cperator is the sum of all the multiple com=
, mutators of the j{ }(ma)'ea with i (m?')’ each divided by the weighting

- factor (hua )('ﬁw& +ﬁwq Je '(‘ﬁwu L AR +ﬁwn } . L.,
0 n n-l n 1

4 R 3 ¥ s 3 ¥ L

wop @ e b L e Wi i 3 W LY Wi R [
e I A (O PEA AN PR O B PR Rl
I Ay et S ! (42
: el - S B T A £ ) ’

a  a, n a a_ . a a

n n n nel n
1 1

w Fecrr dw tw, S @
o Q 1
n 1

where T is the mean absorption frequency of the line of interest.

i

1
The moments of a line about the mean freguency can be obtained
JOS |
from appropriate commutators between . L & and the absorption operator,

as was indicated in the previous section. Similar expressions can be

5 o ¥
obhtained for the moments about the origin, if J—",;'_'O is replaced by
¥

H gt H
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an illuetration of the employment oi this ru

iie, lei us proceed
to obtain the absorption operators of the absorption

lines of a spin

systemn with the Hamiltonian of expressione 2 and 3,

Firet, we find from expression 1l and expression 24 that

e gk @ - 3'
./i (ng,GHn 1) g_f‘!’n, n=*0,1, -1, 2, =2 .

(43)

For perpendicular oscillating {ields

P4 iwt .
A seTTH L eBS,

it S Sw
G —— =) .
= Hosc g3 2 2 )

(44)

We shall omit the factor I—iogrgﬁ in consistency with the notations

in the preceding section, and identify %S+ and 3 S~ as ﬂ;"?{(-g’,‘ﬁ}iﬁ'l)
and ,,;'i%"i:_(gﬁl-lﬁ'l). respectively.

For the first Larmor line in a perpendicular field, w = g;ﬁHI’i'I

'y
and the lowest order nonevanishing term in expression 41 is

o = M (gorthk 5—21 . (45)

This is the absorpiion eperator for this iine, in agreement with
the previcus section.

For the low frequency line in a perpendicular field, these are

two lowest order non-vanishing terrns in expression 41 which give

w tw Frcrrtcd iy tw Tws0, t.e,,nel, o =-u._,tgg;’5Hh'1. therefore,
o a, a_ e a i

1

-
=
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U, = 54] U e =5-1
O s "1 2 Z ’1 Z (46)
gPH gPH '

again in agreement with the previous section.

For the second Larmor line in a perpendicular field, we obtain

the absorption operator as

|
U'il * E S"]
O or . (47)

For the third Larmor line in a perpendicular field, the absorption

operator is obtained as

s*{,{" f;-' 1 o s ;' .A:.;-' 1 g
&1 L‘(,lthtla "'2"—-"]] " L’!,ZJ[ J?_Oo "Z" ‘]]
(giH)(2gBH) (2gpH)(2g2H)

g3 ¥ sag? A}
LA Z.E.r‘i 23 S+11]

(ZgbE)(4grH) . (48)

+

) U
The term with the commutator [/7 o [_;'1'3. -lzs-]] is not included,
g
as f{ 2 commutes with S-, so this comrmutator equals zero.

Next, let us consider the parallel field case; i.e.,

M = o T s_ - (49)

Itis easy to see that M has only one component in its spectrum,

i. 8.,

s, ® A (o) . (50)

since .‘3z commutes with o ey,
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For the first Larmor line in a parallel field, the absorption
operator isg

L7y 8,1 Fl1

goH T

O o=

For the second Larmor line in a parallel field

¥ ¥

{.};’ﬁ)’gzj j’f" >
O B s T eeeare—— . (52,)
2gpPH gpe

For the third Larmor line in a parallel field

-‘-::" . 1 r‘;";r
5 L’li’[ﬂ-z"”z]f . L’Lz’L"“l'sz]}
{goH)(3gPH) (2g0H)(3gPR)

f‘f: l'J\,’L
: E . {(53)

2
2(giH)

This covers all of the cases up to the third harmonic lines ex-
cept the low frequency line in a parallel field,which will be discussed
in the next section.

The only zreroth order iina ig the firat Larmor line in a perpen~
dicular field. This has the strongest intensity and is most readily
6§qervcd iexrperirmmta.lly. There are four firet order lines: (1) low
frequency line, perpendicular field, (2) second Larmor line, perpen-
dicular field, (3) first Larmor line, parallel field, (4) secolnd Larmor

line, parallel field. Recently it has been possible to measure these



lines with fair precision (6). No experiments have covered higher order
lines except the low frequency line in a parallel field, which was studied
by Wright {(4).

The first Larmor line in a perpendicular field was investigated
by Van Vleck {3), who calculated its zeroth, second, and the fourth
moments and obtained good agreements with experiment. As the com~
plexity of evaluation increases rapidly with the order of the moments, it
has not been feasible to calculate the sixth or even higher moments of
this line.

The low frequency line in a perpendicular field was investigated
by Wright (4), who calculaied its geroth and second moments, The
fourth moment of thia line is of the same complexity as the sixth moment
of the first Larmor line in a perpendicular fleld, since this line is of one
order higher,

In sections IV, V, VI, VII, all of the four first order lines will
be evaluated up to their second moments. Despite Wright's work, the
low frequency line in a perpendicular field‘ is also included, since in the
past some approximations in evaluation had to be made, owing to the
complexity of thé problem, but this is no hﬁger necessary if the averég-
ing method 'intred_u'cad by the author is use&.

| As it turned out, the sé_cond mement for the low fregquesd iine .
in a ip;rpendicular’ fi=ld ﬁbtéizad hy Vtha autner gre§$ly ,@i:f%?&

! 3 * z o 3 = T T LI,
frpim thaet optuined by Wrigat, well over the arrors possioly



introduced by the approximations used. It is the author's opinion that
algebraic errors were committed by Wright in her work.

Before we turn to detailed investigations of the absorption lines,
let us first study the higher order corrections to the absorption in the

next section.



1. HIGHER OBRDER CORRECTIONS*

We have mentioned that the terms neglected in expression 36
constituie the higher order corrections to the absorption. To be more
specific, we shall show that these terms give rise to higher order terms
of the absorption operator, shifts of the mean ireguencies of the absorp-
tion lines, and broadenings, or the higher moments, of the absorption
lines. In partcular, we shall show that the method of moments dernon-
strated in the previous sections gives moments correct in the first
approximation of perturbation. With the present experimental techaiques
a second approximation is probably not needed in practice. Yet experi-
mental technigues can improve, and also a clarificaton of those terms

leads to better understanding of the problem.

Let us formally expand A in a spectrum of v 7 0-!;_!{, rather
than that of "’E{o' ioe.,
Jl /‘; ® ,{/‘y_m,\ el L ST j 7
T W (54)
|
) TE i st S B O
where [/ +/0, Uwl) 1= Bl (o),
then we have
exp(i. (1) exp(-iit) 3 - o "(w;) exp(iw&t) . (55)
a

#The study made in this section was initiated by the reading oi
a paper written by Kubo and Tomita (7), after the rest of this work had
been completed.



Expression 25 then becoraes

0
<. explisit/n) e exp( -1 t/B) dt| ¢, >
-0
- .
i S Yot 41 ﬂmat
) <¢j§ / S.oe A} e dti¢k>
.f’.m W-'u
 2e) <oy el ). 50
a

that is, the absorption would occur only when the frequency of the ocscile
lating field is equal to one of the w s of the spectrum of L . Physic-
ally we expect that there is a group of m; s around the mean absorption
frequency of each absorption line and that is why we obgerve an absorpe
Hon curve around each mean absorption frequency in our experiment.
From expression 56 we have the conclusion that, for an absorp=

tion line of mean frequency v, we have

e
o > . e oy it
v > a,fl'_._.-:- _r!rr /{(‘vd} Vil (U&‘ )
W W
G
and
n j‘ o, i + ’ ’;5 . .
<y > 2 A V' r? l(w’) s (“l ;\\, '(__ i Ve s for n>u. (5?)
t . @ Qa o«
F7S
a

Expression 57 is exact and no approximation hag been made, in

contrast with the method given in the preceding section, which gives



answers correct only ito the first order.
. M s id §
Now if we expand /i in a specirum of /7 o° A8 We did in the
preceding section, we obtain

expli{ t)f expl~iJ{t)

o X7 :
;} ;’ i n T p Y“‘-' i 'lf,-" £,
e fo L0 VP U e 0 U ey o Ul e 1 Mt 11T
N oW W n nel 1 i
a B
5 n
: .:5 I ¥ { ‘n-l ‘!-3‘
ex 1m;.':.xt)tz / dL1 oy at, exp(iwa toHe ot bt ﬂwct, tl) j -
tJg “ n 1=l

(58)

It was pointed out by Kubo and Tomita (7) that the time integral
in expression 58 can be writien as

~t i 4 t

; 1 S
f | | )
LAt ] odt_c e dfexpl (-t Jw it -t doeeeen
| xith t, | dipexp| (1 Lz)wq l(fz is)(wa +wa.)
‘o0 o Yo 4 1 -

n-l n

+ift ~t) /e it e (59)
S 1 e B = S

which is ezsily seen to be the convolution of the functions 1, expf{iw t),
a

n 1
exp iw, tu Jt,*** """ andexpi 7, w t. Therefore, itis equal to
1 2 £=1 2
€t oo
1 { ept

2xi , : : - dp (40}

- Ap-iw Wp-iw -iw_ ) " (p-i = «) ’

et oo al P, M, e

with € >0
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With a change of variable E =-ihp in expression 60, we can

rewrite expression 58 in the following form:

exp (15 9 i{ exp( -7 1)

- :. : . i
b 4 / Lf’ (w )lf{ (m ),"l;-,‘-l' ( (m )'---
- w w, %n-1 ~ 1
! I~
=i

expliw 1) exp(iEt B)dE
i :
e , E(E-E E-E .E y*(E- _ E_)
Tormie % q % £z1 %
(61)

where the path of integration is taken infinitesimally below the real
axis.

It is obvious that if there is a pole of order 2 in the line
integral of expression 61, we will obiain a term ﬁteiE f‘tlﬁ in expression
61, where A is an operator independent of time and Eg ie the location of
the pole. In the same manner, if there is a pole of order (n+l) in the
line integral of expression 61, there will be a term At'e iEﬁtlh
expression 61, where A is a time-independent operator and Ef is the
location of thei pole, Now the transition probability from one state to
another under the excitation of M is proportional to the absolute value
square of the matrix element of the time integrai from -oo to +o of

expression 6l taken between these two states, yet the matrix elements

- n
arising from the operators At exp iwt, withn > 0, do not even converge.
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A comparison of expressions 6l and 55 will show where the
trouble lies, They are two different expressions of the same guantity
and thus should be equal, yet the exponential functions in expression 58
have argument iw;t with w; approximately equal to one of the mean
absérption frequencies of the absorption lines, while the exponential
functions in expression ¢l have argument iEo’nt. with Gﬂ the mean absorpe-
tion frequency of some absorption line.

If we choose a certain Gn and take all the terms in expression 55
which have m; approximately equal to ?Jn, and make the following

expansion:

C ol

_4 {(u )exp(iw t) = exp(xw t) (m Yexp 1(u - )t

ey

= exp(iw i) < a(tﬁ )+1 t. ,‘ vi (w' )(w -t )+—Lt)-—- U ’)(m -w )

w's @ W = w! 'ﬁk
a 131 a D. a
k 57, {
1‘:) ‘ qj k] ! oW k e s a5 ‘»‘
+ + % : ;__L ;Hmﬂ)(mﬁ—wn) + ; ) (&3)
W o W ot .
Q 5

and then coliect all of the terms in expression 6l which have the factor

exp(iiii t}, and expresé their sum in tbhe follewing form.
n

| 2 k
exp(ia g (& )+itg, (@ )+L1L gyle 4ot (;;L g (o s 1, (63)

we arrive at the conclusion that
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gl(mn) " I Y (wﬂ)(u}a b)n) »

W o ®
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":,1 i _ 2
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ga(wn) T a0 "'(wu)(“’a wn) ;
W
a n
ST 4 e 30
= - it ¥ [ .
g, “’n) =l \(mu)(«u:‘nL wn) . (64)
wew
a n

Now we have

' A e
Te( el ) 1! ) 2 0 0! 2 o)

- -, + b .
since if | i> is any eigenstate of H, ,'-‘J'L(w; ) L (m:l )i i> is an eigene
: 2 - 1 2
state of /[ with energy E(w; -w"l ) higher, and as two eigenstates of
e 1 2
H with different energy eigenvalues are orthogonal to each other,

<il Ml WM Y i>z0forall i if o = .
s %2

We have the conclusion that

i k, +k

e = + - e - 1 2 o J 1 i+ ]
e, (@)e @D r o epm) e e
™ “n
Kl'ﬁt kl +ikc 2 }L.‘.+k >

H o)

el Ay O> = {(27) <AV >°<av0> ° (65)
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Hence if we take the sum of the terms i expression 61 which
e 4
k = % fad . it - .
have the factor ¢ exp iw ¢ and put it in the form ‘—;) exp({ic’ g (&) ,
| Ke n Tk
. e e x4 ; Y
then the irace of the product g (& )g, (& ) is proportional to the (k +k )
] Pk, " n 12
1 2
moment of the absorption line centering around @ . This conclusion is
somewhat more general than that given by Kube and Tormita {7), who
arrived at their conclusion from examining the correlation function of
the spin system, since we can choose any kl and k_, provided that
&t
; s ; th . " :
kl + k,a 3 K, to obtain the ¥~ moment of 2 line, In praciice, we split
¥ as evenly as possible, for the convenience of calculation,
It is easy to see that the sum of the lowest order terms in go(:.";;l)
is the absorption operator in the preceding section, sinceaccording

to the previous section, the absorption operator of a line centering

around 'Jn is

- Uk‘i'(mn ).,{r.g"“;'(w S BN ) ).(wp)j"j]
n

% Q [ a

s V4 : ‘ n-1 1 ’ (66)

fees s (y Mbhe  he Yoo (B  1he +ooe $Hia )

a a (o3 a a a

n 11 n n~l 2 nel 1
w‘t‘-*.,a,'.‘;,. w“!- U;;

2wl

n,
where n is the smallest integer for the condition w.,+ ~ w T w to
PgE %

holde The coefficient of the operator

' - e ,
(A (mﬂ Y.[H (mm Yeool A (wa ),[f’f(um)]' *-+] ] from expression 6l is
n 1 4

nel
- co-ig
PN, {
.XP(L‘Q F exp(iEt/n) dE
% { 5.5
5{};}‘," ,’{ E ",-. " - - ¢ 2 e 0 P X :
L) oie EE-E NE-E -E_)ee-(E- . E_)

" wiile 1 1 %2 £s1 g
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and the last pole in the line integral above, i.e., ,t’;,ﬁi?? gives a term

f=l
'ﬂ
exp i("’++-—-‘ w )t
£=1 % = exp i w
A
(fuE ""'(*“a tE,. XE_ ) (B, XE_ +E_ )ee-(E_+"-+E_)
) n=l n n 3 el ) n

which belongs to ga(&'n) and is in agreement with expression 66, This

is one of the lowest order terms of go(an) since n i{s the smaliest
n
number for ws + Z w, = w to hold,
1=l #

It is alao easy to see that the sum of the lowest order terms in

gl(an) is

o U: U7 (w ) L,f(m IR .[}f(% ),,;},u%),} el ]

f’:‘ ’le 1-1
»
r,gi W fw, s@ f (ﬁmﬂ )(‘ﬁmﬂ +'ﬁma )""( ‘ﬁm )
T B T e e | 1Yy

for the terms of g, always arise from poles of srder 2 or higher,
‘ 1 P g

hence the lowest order terms in gl(ﬁn) arise from poles of order 2 at
23
L Bw .
i=1 %4
In general, the sum of the lowest order terms in gk(&'n) is

S oot Lot .
{H ),L;‘{o, ceve 0,0]‘ «+1 ], where there are k /¢ o® in the commutator
bracket, and where O is the absorption operator for the line centering
around «_.

n

This, together with expression 65, establishes the legitimacy of

the prescriptions given in the preceding section.
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W e shall in the following indicate some practical way of obtaining
the g functions.
Ag an illustration, we shall first give the g functions for the

first Larmor line in a perpendicular field as follows:

i {,—', ' §.:- 0 b g, 0 B LI~
- o - :,’ o L ? ¥ i i f M 7 i = 2217
g lesmm™) = S . e Viglg=s 11 4 7 Uigh o7l
X @30 a agixo( -hua-ﬁu.?j)( -‘hcfo;,j) WEO (1, )
u&-l'wf}# o
x* 0 s Be
+ ,; L‘*‘_\,'{fﬁ’__y' 2 }] + . s s ¢ 8
W R0 A
Ve - ﬁw ) ¢
' ( y
. n-", S4 e R -;) ,‘l" S ] ;‘.;1 't 24
R AR A S K U LI
n——— ; 4
& £ <h S ‘
2gpH e o (-8 2giH) (2grH)° y
‘ ¢ 5+ ‘: I R
L .1![-;1"‘"2"}} P ma’{‘f{o’?” s &
+ - x R + +--ooco)¢ ) ';4‘
(gaH)(2gPH) . (zepH)(2gPH) J Vel

correct to the second order.

The first term of each parenthesis is an energy conserving term
which gives one spin flip, and its weighting factor obeys the prescription
in the previous section. Some of the other terms do not give the correct
spin flip. This is because the magnetic quantum namber is actually not
a good guantum number in the presence of the dipolar and exchange
interactions. These other terms can be obtained from the energy con=-

' gt

! 1} 7 4 :
gserving terms by taking commutators of /1 o /] e il with
n "7 Tpel 1

the energy conserving terms, with the weighting factor
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n - -1
[~ 7. fiw M- . Ba ) -'(-BHw -he N-Ees }] for each. If some
TERAY B R %z ™M

of the factors are equal to zero, it does not actually give an infinite
weighting factor. An examination of expression 61 gives us the con-

clusion that a term with such weighting factor arises from a pole in the

line integral with order higher than the first. Since the residue of 2

1 & K+l
function #{E) at a pole E_ of order (K +1) is == = (E-E ) {(E),
o L. dEK O ; .
FE=E,
and since
(uv)(K) z u(K)v +( 1:-) u{h""l) v(l) R | 1;) Q(K"Y) V(Y)i' cee
+( Kl) u(l) V‘K -1 +u V(K) .
, K Kl (v)  a'h .
with -z—-—-)-v—- and h 8 = _ by puttin
iEt (VT ¥ T
R n -1
umwe s, v8 E(E<E )e-*+(E« / E )] in expressiocn 61, we
“1 g1 %

see that this pole has as its residue a polynomial of order K in t. The

constant term in the'polynamial, which is equal to

1 dk 2 .;_«;;]-1

L8 rp(RE_)-e+(E-.. E_ NE-E)
ke gk “ 1 " °

true weighting factor for the commutator,

evaluated at Eo’ ig the

In practice, we simply write down the weightirg factor of 2 come
rnutator bracket according to the prescriptions given, and if a zero
factor is encountered, we put it aside; after the complete expression
has been written down, we add an E to each factor, differentiate the

expression thus obtained K times, where K is the number of wero factors



e
e

put aside, divide itby I ¥3 and then set E = 0,
For example, the fourth term in expression 67, i.e., the term
“O

] t -
of U’{a § [Ho. -S-i-}] , has the coefficient »‘ﬁl , according to the
a

previous prescription, therefore, the weighting factor of this term is

1 4 1 i L -l
37T 4 (E-m F
o ( @&) E“O (Ewa)"

) ]
and the eighth term in expression &7, ioe., the term U‘{o- [HZ’ "%‘" 1.

- 1 _ L
has the coefficient (-0 (zarF) by the previous prescription, so the

weighting factor of this term should be

1 d . -1
o (B 2gem) ™ 2 .

£20 (Zg:;jH)Z
We also easily obtain the 8y function for the first Larmor line

in a perpendicular field as

s(gprn™) = £ (A,

v/ 'S+ 3 vl ' ' B \
(Ho Pz V) (g HH =
y 1 RN {(+hew )
W 20 ¥
Y

correct to the second order.
The first term of each parenthesis is an energy conserving terme
1f we write its coefficient according to the prescription for obtaining the

coefficient of an absorption operator, exactly one zero factor will



'

appear. Throwing away this zero {actor gives us the weighting factor

for this term in g The energy non-conserving terms are obtained by

Ul'
. t —_— i}
the same prescription as before, i.e., commute Hu ,j’]_' . M 0
ne-l 1
with the energy conserving terms. with the weighting factor
n -} -1
[(-> E H-2ZE }+-(-E-E_N-E_)}] for each, and with dif-
o a o a o
£zl 4 £=1 1 1 2 1

ferentiation as described above, if necessary.

We obtain, for instance, the line shift of the first Larmor line

as
-4 (g,(zptm g (grnm ™))
<v-gpHh > _ Tr °L7 o
o T 2T . ey Ay wl
<y %> Tr(g (gFHE )g_(gsHE™))
1 &voa
which can be easily evaluated to the first order as O where
gPfHh

zlv,z is the second moment of the first Larmor line in a perpendicular
field to the first order. The detail is omitted.

The absorption operator for the low frequency line in a parallel
field will now be given. The lowest order, energy conserving term is
Sz, yet this term gives diagonal elements only; since in f{v) we include
only non-diagonal matrix elements which give transitions that can be
experimentally detected, this term should not be included. The next
order, energy conserving term is

S [#,%10

L
O e -
{.‘;I:Jpo ~(Bw )2
Y ¥
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(H, 1 2l A
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- Y.
(gtH) {giH)

where the differentiation method has been applied.
In general, nkgl{@cazz be obtained by the following prescriptiomn:
(1} Find all of the energy conserving terins which give exactly
% mero factors in the denominators for the coefficients if the prescrip-
tion for the absorption operaior is used. Throwing awdy the zeyoes Gv<*
the weighting factor for thif energy-conserving commutator bracket of
'hkgk-

(2) All of the other terms are obtained by forming multiple
12"t £ -
commutator brackeis of ;7 & with the energy conserving terms f(_?ﬂgl,

1 o . | ) . . . ;
i.€., L/L{a ] {ji a " L;"'lf ;{)E] LA g j] with the coefficient
n N

o

N S8 4
{{~ 2. %R w - . ‘huﬂ Yo '('T“"g, )] for each. If here are K zerc
2=l 1 £=1 4

taciors in this coefficient. throw thern away and obtain the value of

K
.5._‘ .‘.j‘_.._. £{)

evaluated at E 30 where the function {(E) is the coefficient of the whole
commutation bracket, with the zero factors thrown out and with an E
inserted in all of the factors. This value is the weighting factor for thes

. k
commutation bracket of 1t g



These prescriptions can be easily proved. Dutas the proof
involves only simple algebra and is rather lengthy. it probably is
easier for the reader to work it out himself, if interested, rather than

to read a proof of it.



IV, MOMENTS OF THE SECOND LARMOR LINE

IN A PERPENDICULAR FIELD

The absorption operator for this line is given as

1 /\» *
"T,“:J —— Pl 3 E-. S". S-.
[/, .2 S~} ; ij miv
1 i, j*
O = ‘ = - 5| L (69)
BﬁH Zng

The Mermitian conjugate of © is readily found from expression

69 as e
P E, i S+J ‘5+1

+ . i, JﬂF Tf"

© P £28)

Making use of Appendix A, we obtain

T -/
. 2 S5{5+1 F ol @ .
<v°> = Tx(00") = £} TLZ"';."L*' ij ' (1)
g & H i.]

L
The commutator {/L , O/ is found to be

b *
' o v::? - i—‘j#E i j S i S i
e %25 i’jTJ i’ gp)
=2/, (C E_"-A E 1S S S_/ghH + /_~ c;1 E S _S_S_/ghH
i), m% i J ? i, 3 j

L *
S & /g;*sH -2/ A E S 8 5 /gPH. (72)
=i Py W oHTEC-T

> »
+..CE,S
i, jv
+ 5 1
The commutaicr [0 ,/( 0] is the Hermitian adjoint of expression

72. As A ., C.. are real, we have
1] 1]
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o} 1§, m* ij Jm iy im" 2l +j +m 4 ‘Hu if +i ozl g
+ WC E, f H-2 AE, ‘S 74 |
1§+ ij 13 zi + & i, % ij ij =i +J /gp (73)
Making use of Appendix A, we obtain
7/ + 16 3g5+1!3 | <
Tl g 010 s ]) Tz . (CuE. -ALE NG E A
g f:\* "H i;j.m-"é JJ J Jrm
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g“g°H®  ijms VY J
4.‘:: S+1) 7 | 45(5+1)-3 & 2 ' 2
el ,( =3) (24,7 +c ), By o (74)
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The triple sums of expression 74 are added together to give

D ¥ -
168 !SH! : [ (a 2

276%% % 1jms U
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im jm)+

-Z.Re(A C E T PR
ij ij im' “Tmj

We are going to evaluate the momente for

2
+ ! B
S5 Bim * A imFim

- 2Re (\’;1 A,

*

E:E
im jm

. powder.

B
1]

For powder, we average the 1 erms of expression 74 over the

E]e (75)

direction of the constant magnetic field.* The first term of expression

75 ie averaged to be

*See Appendix B,
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3 3 232 i L . - A ;2;:)2 . = d
Eicain: ] -1 1 w.‘.,-l.
B ' i, j,mx Jou iy Jue Bou
2 4.4 .
vtz 8 F . - _3 (1+3cos 8»3609 8) . (76)
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The second term of expression 75 is averaged to be

3aiiy3 1
H L l,j’;‘ 3 J b, d d
4.4
5] 2 wfy =6, & 4.\ sy
+ 30 - 1..15 T (i =12 cos 8i+15 cos 61)- .. (i)
1.5; mey .J’
where we have made use of the fact that
1 mg ¥ *3 (3 cos’ 1) = Kxjgm r{@m (3 cos 2p. -1)
i J i u:j i)
o]
.3 K K .r.'s (3 cos 9 -1) A A .r:',sr = {3° L. 1)
i) mi il mj iéc-j ij mj i my 3
i mej

oz - 5 mp b
e LA r. (3-1)3 -2 . Af Y for lattices with cubic symmetry.

%y 4O i¥j

The sum of the third and the fifth terms of expression 75 gives

an average value of

322 2.2

(sz | "fg A’le :i m(s cos®o oD 31; o
H k i, G 0 0 ) i, m*

& r B ‘ C0h2@ "1)
ij mj im



oy 4 4 -
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45 £ AiJAerlm j , (3cos 8m'1)+ 315 4- (i) im’jm
1, JI mag 1, } for

5 2 | )
(9 coszﬁ?m‘& 3 cosaﬂi cos 9j—4) i (78)

The fourth term of expression 75 is averaged to be

3 3 2.2 < st
s(s+) g B 2 - -6 4 2.2 > 5y -3
2 L35 4o i;Aim mj " 35 8 F L i_; im m(“‘”‘ “o e
H i, J.mx i,j,m=
8 4.4 / 6.3 2
+ e g B /o i,} Ty Jm( «24+3 cos O +3cos 6 -3cc>s Qi cos 9]
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(79)

The double sums in expression 74 are 2lso averaged over the

direction of the constant magnetic field and give

- 3 " » _ o
gziﬁz}i of -(s+1)2{0. 08 5(8+1)-0.06] | K% 2 ."
Rl % I 5
i, ¥
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From expressgions 76-80, we obtain the second moment of the

second Larmor line in a perpendicular field as

g IR S
Tr({ L0 © 1 17
(L, O o

<Ay > 8
n% Tr(00™)
2 by A2 N7 o2 6 x2-6 > x2 -3_-3
= (h", S(S+1)L z_ A”rlm " Al} §j " e Aurlm im
ith i, jv i m, i, §%
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(3 cos @mol)
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+ (h . ) S(‘SH)[ rij rim(-é-+-,;—c09 Gi- T2 co8 Qi)
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o 6 w2
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. ij im jm m 7 j 7% i
"J'm i
4 4, 12 g, .12

tg B (53s(s+)- (81)

-z ) S
35 . 1]
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The second bracket of the right side of expression 81 is the
dipolar contribution and the first bracket of the right side of expression
8l is the exchange contribution. Notice that no approximations have
been made vet,

With the usual assumption that the exchange constant Pzij is
zero unless i and j are nearest neighbors, and is equal to A in that

case, we obtain, for a simple cubic lattice,

<av®s = [1.08-0.04 5" (.>+1) +(1 07-0.133" (S+i) )* 24° ‘%‘ﬁmf,

(e2)

and for a body centered cubic lattice,

6

- . .
<av?> = [1.13-0.045 (s41) e [1.1¢-0. 085 ~H(s41) )4 %0 }mj.

(83)



where d is the distance beiween two nearest lattice pointa in a lattice

2, :
and av - is the second moment of the first Larmor line for a per-

pendicular field, i.a.,

4 2] i
,i\wz =3¢ ;34h ZS}(SQ'}.)Z‘r.,ﬁ/S
o . -{t}iJ
4

=z 5,04 S(S+1)g4;‘54}:'zd'6. for simple cubic lattices

= 7,37 S(S-i-l)géﬁ‘ih-zd-(), for body ceniered cubic laitices

(84)
The zmeroth moment of this line for a powder is obtained by

averaging expression 71 with respect to the orientation with the magnetic

field,

e

B -., ‘~l_. -
<y = i 52(54-1)25‘3532}5 “L.r ,6
15 el
i%j
- - R I "
= 0,56 SZ(SH)‘"Ng“;}}&H ad % R (85)
for a simple cubic lattice

z 0.82 S?'(S-t»l)zg;ﬁ‘gﬁ-zd'b , (86)

for a body centered cubic lattice, where a factor
N, ‘ . .
(2s+41)  is omitted in compliance with the conventions in the literature.
This factor actually cancels a similar facior in expression 7.

It is interesting to note that the cross terms between dipolar and

exchange energies, or the terms linear in A, drop out after the averag-

ing process.



V. MOMENTS OF THE FIRST LARMOR LINE IN

A PARALLEL FIELD

The absorption operator for this line is given as

O = L_____l‘f?fl" - « L% ’ i . (87)
gipH gEH

]
The commutator | /7 ,C] is calculated to be
L o i

= L i J—
DT T TP e ., " .
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+2/ A E. 8 8 85 z +/ A E ) (88)
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From expression 87, we readily obtain the zeroth moment of

this line as

SR 2

) Z 2\
<v> = =, ..____.LS (s+1 j HE ,:32 % (37)
9 2. 2.2 4—i171))
g b H i, )%

This is exactly equal to expression 71. We thus see that the
zeroth moment of this line is the same as that of the second Larmor

line in & perpendicular field, whether we have a powder or not.
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From expression 88, we get
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ot 8s (S+1)” .| . ,
jLO}) ™ ........._é......é_—z ,wﬂ,:; 51 (C”E, -A_ E, );
27g £ H  i,i,m¥

i 7 (i +
Tl‘({_,‘";o: Q}! ,‘ O,

* #* «
#C,E, -A E _NC_E -A E WA |E -E {+C. C E E .
ij jm iy tm” mj i) mj im ij' Tmj im i} mj ij mj

t

%
+A, A (E )(E. F )+A A, EE -2A, C E _E
ij rnj ij im ij im Je i) ime i)

N Hs41)” | 45(541) - 31, 52 g 2,8 (sn)ﬁl 45(541)-3] | TR 2
R 4 . i ,?M?" . v -y
15 gz ZHZ i.jﬁ;'} b TS 1,3¥ o

The triple sums of expression 90 total to
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3
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PR

% ‘
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We shall evaluate expression 90 for a powder.

The first term of expression 91, after averaging over the

orientations, gives
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O
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The second term of expression 91, after averaging over the

orientations, gives
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The third terms of expression 91 is averaged to be
( 23 e PR :
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The fourth term of expression 91 is averaged to give
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The fifth term of expression 91 is averaged to give
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The double sums of expression 90, after averaging over the

orientation of the magnetic field, give
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= i
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From expressions 30-97, we obizin the second moment of this
line as

2 mriat M
Tr(l/1 p0dle TN}
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Ty r-é -6 ( L -CO8 9 # & vos o ) + (0. 6S(S+1)- ) £ ,'12'
S mi i 2 A
:j: i, J:!“.

2
t<av, >, - (98)

The term <z.‘:e,vi"> denctes the exchange contribution to the
gecond moment of this line, and is found to be exactly equal to the
exchange contribution to the second moment of the second Larmor line
in 2 perpendicular field. As is iound in the next two sections, the
exchange contribution to the second moment for all of the four lines
investigated here is the same.

For a simple cubic lattice

<av?> = [0.89-0.02 8”5+ 41, 07-0.13 s7Hs+y ) aZab 4% .{.‘;vz ,

(29)

and for a body-centered cubic lattice
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}\1.

2

(100)

g o :
where ./_‘s.vo is given by expression 84. Notice that i¢ depends on the
kind of lattice the powder has, and has different numesrical values in

expressions 99 and 100,



Vi. MOMENTS OF THE “ECCND LAR MOR LINE

IN A PARALLEL FIELD

The absorption operator for this line is

}'* S Loy Ein}g iS’j

f S Y Y & 3 - d

5w L 13 z]  Lix . . (101)
: 2g oK gitH

The zeroth moment of this line is given by

<p% = Tr(0oT) = ; (102)

For powder, we average expression 102 with respect to the

orientation and obtain

1 2 2.2 -2 ) -k
<v > F ""'é,;" S ( +1) g ;..J G l'i F‘-) . (103)
i, j* ?

We observe that this is exactly equal to expression 85, i.e.,
the zeroth moments for the three lines calculated are equal for powder.
As expression 101 will be equal to expression 69 if we substitute

E*

& i . . o 3"
Dij for - —-z’i in expression 69, we can obtain Tr({[/ O,O}p*',.m;o 1))

for this line by substitating -2}} £or +E in expression 74. Thus

we have
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The triple sums of expression 104 are added together to give
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(105)

For powder, we again average expression 104 with respect to

the orientation. The first ferm of expredsion 105 ithen gives
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648 (s+1) ;| 3 4.4 : x2,.-6, 3 gPp =6 -6
2 2.2 } g0 & u "im® 128 7 S Tij Vim
27g g H i,j,m i,j, mag!

(7 —6cosz£}i+3 cos46i)

3 6,65 & -3 2 \
tgis & B :{::"Aij.ié (3 cos“6, <) | . (106)
< 7 #

The second term of expression 105 is averaged over to give
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The third term of expression 105 is averaged out to give
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The fourth term of expression 105 is averaged out to give
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The fifth term of expression 105 is averaged out to give
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The double sums of expression 104, after averaging over the

orientation, give
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The second moment of this line is given by
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It is again found that the exchange contribution to the second
moment s equal to that in the two previous cases.

For a simple cubic lattice, it is evaluated that

<Av2> 2[{1.38-0.04 S = {s+1) - +(1.07-0.138 '1(S+1) '5(;: Zdég“'*p'é] & vi .

(113)

and for a body-centered cubic lattice

‘?-* - - . - - n:: 4 - -
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(114)



ViI. MOMENTS OF THE LOW FREQUENCY LINE

IN A PERPENDICULAR FIELD

The absorption operator for this line is

N 1 1 Y
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-gPH gbH
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+
Now, Tr{OO') includes absorption as well as emission in this case,

and the zeroth moment is only a half of it; therefore,
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2 6 . ij
i1,)j>
where F, :—.E +E .
ij ij
1
The commutator [ﬁo O] is evaluated to be
M’ 0] LS (7€ C o A, A, F_ .24
j . R (’,,_,,_: ..._ ‘ . - ’m-
gﬁHli B i im j im im mj ij
‘ij . mi)SHS -jE;'zr.'xri
MJ(C REVNLACEENS -/ (c F28,)S S - (117)
s 13 i s = Pl Lt T +i
WP AT . P i3} §

and



:«:’j' w + rp 1
Te(lA{ 4010 W =

.2
— (‘54*1)3 u! (Cim- m3)+ A'm'Fim-ﬁim?m'*zﬁi'(ij'Fmi)i
Tralett ) b
2 =
+ 2 (SH) f48(5+41) - 3] \ (&X +C ) F 2 ] (118)
25 gz 2gp2 4}* ij ijl
The triple sums in expression 118 add up to
3 3 J‘\
v ] -
;‘*E._.gii’l).. /1 (2, " mﬁjﬁ‘;)&‘f-(&a 2+4A LT L
z}l [lojum# ) ? J
w - '1 2 B
+ (BAimAJx -2€,_C m) Ly (BA c z:ijf»im)s‘impij
- (8 A, jAmj+ Sﬁijcmj.écijﬁ‘mjﬁ‘ij?im ‘ (119)

We shall calculate the moments for & powder.

The firstterm in expression 119 is averaged to be

3! 13 N 6,6 <
2 21 ~ 10 gb / 1 Kﬂ im 140 P AiJ ij im(3°°’ 91 1)
ZTg ﬂzl"l .I;T: mx i j. -
8.8 <7 \
* 27 14; ‘/‘:f""" r‘-"g (1+3 Cobzé‘ «3 o8 5;3 : (120)

.3, ma iJ

The second term in expression 119 is averaged to give
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(b-ﬂ) 9 34_4 L. (3 cos? 6 _1,

S T AT L T IR e 5‘:‘; /:_‘___ﬂ & A r
Z?gZQ‘ZHZj © 20 i.j.m:t” im Jm

*— 2 2 2
27 6.6 ‘,1‘“ 5 wy &3 =3 1 COSs Gm‘ﬂ.‘-ca 91+cos f}‘:

m 155 m” jn (- P 35 ).

(x21)

The third term in expression 119 is averaged to give

3rcand | S
s (534'1! J ‘_2. g‘lp‘i- [ ) X K -G

278253‘21'13[ 20 .3, 2 iJ mj “im

f

9 6.6 -3 2. 4
te=g B Aijnm,)n‘xm (3 cos™ 8 '1)} . (122)

19}0 m¥F &

The fourth term in expression 119 is averaged to give

354 5" j 6,6 57
;ﬂ 30" “j 16 ?1'%6? s A ol ié m(ac"“z‘} <1}
27g ﬁZH l iy jomae . i,jom= 4 ™

(-—E--- 4 c0826j+-f-cos4@j ) . (123)
[

.-j—é-g Pl rii rmj 105 35

The fifth term in expression 119 is averaged to be

TR
—-—-‘-S-—tu—-'i 0/_’1_ g4;’;’34f.§: T (Scas 8_ 1)

1j mj im jm

2782522 i, me
6.6 ) 6
9 . «b =3 2
-%sﬁL Aijm;i (3 cos®0_-1)
i‘lj'

~ 2 2 2 [

- . B : cos O,+cos & 4cos @ !
e B L e e 2). (29

i,},m mj 1,] m Im j



The double sums in expression 118 are averaged to give .

¥

—-(-’?3-1)-— [0. 245(5+1)-0.18] j_{_.A E (125)
H i, 3'-\= I8

From expressions 118-124, we obtain the second moment for

this line as

1 P i

2 4 > 3 -6
<AV > 8 (h é_ﬂ' ) S(.:s+1)g 8 1T Tij "im (1+8ccs 8.«9cos 9)
rJ#J Lijims j
+ <Av§> . (126)

Again, the exchange contribution to the second moment is equal
to that of the previous three cases,

For a simple cubic lattice, the second moment is evaluated as ~

i
H

) wd wd )
<av® 2 10,47 + [1.07-0.135 " (s41)Ja a8 "% 4j Avi ; (127)

{

and for a body-centered cubic lattice, the second moment is evaluated
a8

l‘_,

<av > 2 Lc: 64+[1.14-0. 0357 (541)) Ja%alg =% av . (128)

The zeroth moment of this line for powder is evaluated to be

1.5 times that of the previous three cases.



VIII. COMPARISON WITH EXPERIMENT

»

Experiments (6) were performed on nuclear spin systems of
lithiom, sodium and aluminum. Since the exchange constant for a
nuclear spin system is negligible, these experiments provide a2 check
for the dipole-dipole contribution to the moments only,
The experimental method is briefly described as follows:
The nuclear spin system is put under a strong magnetic field for
a period of time long compared to the nuclear spinelatiice relaxation
time. For metals which were used in the past experiments it was
‘necessary to work in the temperature range of 1° Kelvin, in order to
obtain a spin-lattice relaxation time of the order of seconds. After

the spin system has reached equilibrium the spin temperature is mea-
sured and the magnetic field is adiabatically turned down to a small
vplue in about 10 milliseconds. An oscillating field is then applied

to the system for a time period Tu’ and at the end of the period the

field is adiabatically raised fo its original value and the spin temperature
is again measured. The increase of spin temperature after this procese
is due to the absorpton of energy from the oscillating magnetic field.

By varying TO. a relaxation time at field Ho may be obtained. By
comparing this relaxation time with the spin latiice relaxation time
obtained when the oscillating field is absent, the energy absorbed by the

spin system from the oscillating magnetic field may be determined.



#rom this we can obtain the shape function £f{v).

The experiments were performed on epin systems with body -
centered cubic lattices, and the results are summarized in Table 1,

No experimental verification of the exchange coniribution to
the second morments has been obtained.

The agreement with experiments seems to be reasonably good
except for the second momenti of the low frequency line in a perpendicular
field, where, owing to the difficulties in resolving this line from the

first Larmor line, the uncertainty is too large for predictions.
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APPENDIX A

Traces of various products of spin components are listed in
this appendix. For the convenience of computation in this paper, the
components 5+,5-,52 of an atomic spin are used instead of Sx,8y,Sz,
where 3+= Sx + 18y is an operator which raises the z component of
the atomic spin by one unit, and S-= Sx - iSy is an operator which
lowers it by one unit. The trace of a product of spin components would
therefore vanish unieas there are equal numbers of S+ and S« in the

product. For instance,

Tr{S+5+) 2 Tr(5-5-) = Tx(S28-5-) @ Tr(S525+45+) = 0, (1)

The non-vanishing traces that are relevant to our previous

¢alculations are

Tr(545-) « -;-s(s+1)(zs+1)N . (2)
- TP N

Tr(S4S-32) = «Tr(S-S5+S2) = 35(&;+1)(ZS+1) , (3)

Tr(s+2's-2) = E%(g—ﬂ 14$(s+1)-3](2s+1)N ] (4)

Tr(S+5-548.) = -i"‘-s-l-(g’—*-ll {25(s+1)+1'](zs+1)N~, (5)

Tr(Szas+s-) = g%s_;gl {23($+1)+13(25+1)N i (6)

Te(S25 -S25+) = -zf’%i-ll [s(s+1)-21(2s+)" (7)

where £ is the magnitude of an atomic spin, and (ZS+1)N. which is



U

equal to the trace of unity, is the total number of states in 2 spin
system, with N the number of spins in the system.

The Eacﬁor (25-!-1)Nr in the above expressions is always omitted
in the literature, since the same factor was omitied in expression 3.
Including both would make them cancel each other, with no change in

result,
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APPENDIX B

For a powder, the orientation of the crystal axes with respect
to the constant magnetic field is random. Therefore, in expressions
such as 75 , which involve products of %5 ﬁij’ iy we have to average
over the orientation of the crystal axis with respect to the constant
magnetic field.

We take these lattice points i, m, j with fixed distance between

them (see Fig. [ ). The three angles

6., 6., 6 are hence fixed, yet the gt
i J m Pl
rd 8* 3
orientation of the triangle with the magnetic A8
s | 2
field is arbitrary. We take a coordinate
i ‘ i a‘,": 9~ -'_ .ii.
gystem and obtain the following average ok L . h
values: Fig. | 7
Yiijm av 3 °°% Yy
< >
YimYij¥jm oay - 0 (2)
Z
> g
7N WY e (cos Qj + 2 cos 6, cos Gm)/15 ‘ (3)
2 2 2
Yim Yjm Jav {1+ 2cos 0.)/15, (4)
‘fimz‘is‘jz\{jmz>av s (2 coszei + 2 coszej + 2 coszem-l),/ss " {(5)
3 = =4
“Ym Yim av ° <% /5 (6)



<y, 3\1.;\'“, > =(2cos O ecosfl +cosl +2cosB.cozf)/35, (7)
11 13 Jm oav 3 Xia m H 3

3 3 3, -
‘ > 2c ¢ 8 @ 5 &
“Yim Yim “av * (2cos L;m e wm)’fzh ’ (8)
Y 4\" Yo 2 (1+ 4 cos 3 )/35: (9)
im “jm a-
< 4.‘, Y. > s (cos 6.+ 4 cos (. cos 8 )/ 35 (10)
Yim YijVim  av i i m ?
<y, 4 % . (lzcos 6,+12cos 9 tio coazﬁ 748 cos” 9,coe s )/315
imYij ij i rﬁ‘ ?
(11)
<y, iy, %> 2(8 cos®® 4+ 24 coe®o  + 3)/315
Yim ij av CO8 T et cos U 3)/315 , (12)
2 1 2,
<{a, 3, - > - sin”f
(lij";jm 5':.’ijm_inn) P 3 =i Jj d (13)
2 . Z 2 o
o i -3 > v
Yim (aijpjm iijmjm) av * min {}j/ib ’ (14)
2 . _ 2 , 2 : "
<Y im (aimﬁjm-ﬁimqjm) >av * i ‘gm”S : (13)
4 ’ P4 2
£ -l >
<Yy, (aij‘ajm ‘}ijujm) s B sin 9J./35 ) (16)
22, . 2 2 2 o
<Y{m\"ij(aijpjm""i-'ajm) ® e (1+2cos Bi) sin Gj/105 , (17)
2 2
T :
<Yimyij“aijﬁim ;GU x’n) L (14 2cos Qi)sin GiIIDS . (18)

The following identity is sometimes needed

u‘.»sﬂcost? cosﬂjl-— é—i- l—gcma B+cos & + cos 6]for

0j =6, +0_ . (12}



APPENDIX C

Four series over a simple cubic lattice were

within one percent of accuracy,

e

\ = -6- -6
Lty ®8.40Nd T,
{,§%
S -2 _ -12
{/ 3 rij - 6. 20 Nd »
i,j=
L
::/ . T 61‘. cosé'@, =12.16 Nd o .
T iJ 1 i
i,jom=¢
T o
> -6 2 s -6
A T cos 8, ¢ S r.. T,
Limsd ™ famy )
ey j-j?m
b b ——
éi-nu. ri A : g 'zn .,
g i2j,j%em J J - é/__ r1

= 17.3247% ,

where N is the total number of lattice points
lattice constant.

The following fo{ir series for a simple

compuied to

(4)

in the lattice and 4 the

cubic lattice were obtained

by surmining all the terms from the lattice points within distance 2d

from the origin., The error is admittedly large, and is estimated to be

avound 25%,., However, in the calculation of this paper, the contribution



from terms involving these sums tends to cancel, and as a result, the

over-all accuracy is about two or three percent.

> 6 2 12
£ B F 3. eos®s  z14.74 N4 ¥ (5)
Sl | im jm m
i,Jym=g

N7 -6 -3 -3 2 -12

A Wl % cos @, 210,37 Nd x (&)
h j im jm i

e by F

* ,-6r_ ‘31'. -3cosz€-,cosze. : 3,17 Nd-lz . ()

iy ij im i i

»Ja 3R

N N R N (8)
i mald 5

‘The following four sums involving the exchaage constant for a
simple cubic lattice were evaluated, With the usual assumption that

‘~ is zero unless i and j are nearest neighbors, all the four sums

dde

ij

were obtained exactly.

u\_\:Mw o .,,,fv) 2 ‘6

L B ALY £ 97 A°Na /32, (9
ij im mj

i, §, m

ST w73 2, -3 |

oy AimAUrmj 9,23 A°Nd 7, (10)

Z:... Fiim’ﬁi.rm.-gcosza_ s 4,99 AZNd'3 " (11)

igj.tx‘# J J J

~ 2. -6 2,-6

< Aij By U4 NA d . (12)



The following sum was also computed. Owing to the slowness
of convergence the accuracy is not good, but again its contribution to

the total sum i3 small and the over-all accuracy is not greatly affected,

b

4 2 -3 -3 2. 1 a 2. =6 ;
i K,} “im  Tjm (3 cos 6 1) = 22.8 NATd . (13)
i,yimx~

With the same accuracies discussed previously, the following

series for a body-centered-cubic lattic were also computed.
2 rij"é = 12,29 Nd"’, (14)

A" ri' ¥ (i5)

r.,, T 6::0539, = 41,2 Nd’ia. (16)
m i

- - 4 ; . a=12
r Yig €08 8 =22.3Nd 7, (17)

S b =3 .3 2 -12
2_1 %4 "tmn "jm °°F Gm-36.57Nd ; (18)

Ly Ty Tim Ty costo = 27.46 N, (19)

3coez f’:)icoszﬁj = 9,78 Nd“l‘2 ; (20)

r,.-6r ‘3r.m-3 = 79,27 Nd-lz. (21)
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> o b 2. =6

/. A A ¢ = 11,52 N A", (22)
£, ma 1w |
2 E_K r "3222.08na%3 : (23)
- im ij mj
i-;hmﬂc
X A r "doe’s, =9.865 N A%a™3, (24)
i im ij mj h]
:j:m*
>
~2 - -
r "®.90.32n4%"0, (25)
- " i{j im
Ljim=
o B «% &8 2. a1 y o
Z_; Aij *im Tjm (3cos Bm ) =35.8NA"d . (26)
iL,jomx«
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