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ABSTRACT 

A study of various electronic processes in a class of solid­

state diodes which function analogously to thermionic-emission 

vacuum tube rectifiers is made. For experimental work, such diodes 

were fabricated from an insulating crystal (cadmium sulfide) to 

which an ohmic contact (indium) and a blocking contact (gold) were 

affixed. The properties of the diodes that are most rigorously 

investigated are the equilibrium space-charge-limited current­

voltage characteristic, the behavior of the blocking contact 

under high reverse fields, and the capacitance dependence upon 

, crystal trapping-state kinetics. Electron trapping is demonstrated 

to have a marked influence on most of the electronic properties 

of analogue diodes. Mathematical analysis based upon the premise 

that these traps are volume-distributed in the crystals of CdS 

is corroborated by the experimental results. 

An analytical method, which treats various trapping 

configurations with energy in a unified fashion, is employed to 

calculate the expected influence of traps on the space-charge­

limited current characteristic. Correspondence of this analysis 

with experimental observations permits the deduction, in some 

cases, of trap densities and trap depths. The theoretical treat­

ment of the influence of volume-distributed trapping states on 

terminal capacitance is also shown to be consistent with measure­

ments designed to test the physical model. Use of this theory 

to interpret measured capacitance variation allowed the 

'determination of some of the kinetic properties of trapping 



states, thus demonstrating a new technique ~or obtaining this 

information. Correspondence with the results from other methods 

is good. Trapping-state concentrations in actual crystals are 

shown to constrain practical solid-state analogue devices to 

very small dimensions. 
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IN1'RODUCTION 

The noteworthy practical success that has attended a deeper 

understanding of the electronic properties of semiconductors has 

made the value of research on other solid materials keenly apparent. 

Temperature problems in the semiconductors have led naturally to 

the consideration of larger band-gap materials to see whether 

these, too, can be used in practical electron devices. Of course, 

some large band-gap materials have both been studied and used for 

many years because of their photosensitive properties. Although 

the photosensitivity of these materials was first noted as long 

ago as 1873 [1], very little in the way of a fundamental under­

standing of the responsible physical processes preceded the era 

of the transistor. There are good reasons for this time lag of 

seventy-five years between experimental observation and the 

beginnings of a good theoretical explanation. It has been said 

that the variety of electronic behavior shown by a solid increases 

roughly by an order of magnitude for each electron volt of its 

band gap. If this is a good estimate, it is evident that the 

insulators and most of the practical photoconductors, which have 

band gaps of two or more electron volts, will indeed be very 

complex physical systems. Complex or not, -technology and the 

entire solid state art have advanced to such a point that large 

band-gap materials 1nll be exploited in electronic devices. It is 

therefore a necessity to develop a physical understanding of the 

underlying processes which can dominate their behavior. 
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The increasing complexity of the large band-gap materials 

makes it all the more desirable that one's method of appraisal be 

simple. Because a complete solution of even a simple approximate 

model is apt to be very complex and difficult to assimilate, one 

is forced to look at approximations and trends. To quote Rose 

on this topic [2]: "Rigorous mathematical solutions can be made, 

if simple models are assumed. If one has confidence that materials 

can be fabricated with the purity demanded by these models, com-

plete solutions are, of course, justified even if they are complex. 

If the materials one actually deals with are more complex than 

these simple models, however, then complete solutions are practically 

ruled out and one seeks a simple point of view from which to 
/ 

interpret the varied behavior of the materials. Most photo-

conductors appear to fall within the second 'if'." 

A general characteristic of large band-gap materials is, 

of course, a low intrinsic free-carrier concentration. Therefore, 

if one seeks to make use of such a material for a practical 

electron device, some way must be found to increase the interior 

electron concentration so that appreciable currents may be drawn 

through it. This may be done by illumination or, as in semiconductors, 

by crystal doping with donor or acceptor atoms. There is, however, 

a third technique for increasing the free-charge population which 

becomes feasible only as intrinsic resistivities become very large. 

Under suitable conditions, there can be direct contact injection 

of electrons into the crystal conduction band. As discussed by 

Parmenter and Ruppel [3], appreciable excess charge injection into 
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a solid becomes possible when the carrier transit time through a 

region i s smaller than the no-injection dielectric relaxation time 

in tha t region. This time constant for relaxation of an initial 

charge excess by drift processes alone is defined as the product 

of crystal perrilittivity and resistivity, T = KEOPO• For semicon­

ductors, the dielectric relaxation time is usually in the nanosecond 

range or less , while for the photoconductors it can easily be ' in 

the order of .milliseconds. Charge injection into photoconductors 

is, therefore, a very practical possibility, provided a suitable 

injecting contact can b e found to the crystal. This mode of 

increasing conductivity in a region is seen to be a direct analogue 

to thermionic emission into a vacuum. One is led, therefore, to 

consider the possibility of employing it to make a new class of 

solid- state devices which function analogously to vacuum tubes. 

Much conjecture has already been published about the properties 

that this class of devices are expected to exhibit [4][5]. What is 

needed is a further experimental evaluation of the properties of 

materials in which thi.s mode of operation may be exploited. Only 

wi th thi s experimental evidence can the simplifying viewpoints 

which allo" one to build up a tractable, yet sufficiently accurate 

model be .attained. The work reported in the following chapters 

-
was motivated by thes e considerations. 

In order to look into the properties of soli.d-state charge 

injected dev:i.ces, one must be able to make injecting contacts to 

an insulating crystal. It is because ample proof of this capability 

existed for CdS that this material was chosen for i nvestigation. 
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Cadmium sulfide is a yellow crystalline substance which can be 

grown in single crystals of the close-packed-hexagonal type. It 

has a band gap of about 2.4 electron-volts, and has been used 

commercially as a photoconductive substance for years. Many of 

its properties have been investigated in both single-crystal and 

powder form, and considerable information is therefore available 

from previous research. In an extensive study of the properties 

of metallic contacts to CdS, it has been discovered that ohmic 

contacts can be made with either indium or gallium [6]. All other 

metals tested resulted in contacts which are blocking to electrons. 

Before proceeding in our discussion, we shall pause to 

clarify these terms "ohmic" and .''blocking'' contact, which are used 

extensively in the literature on photoconductors. Anohmic 

contact is defined as an electrode which supplies an essentially 

infinite reservoir of carriers, ready to enter an insulating 

crystal as needed to keep the electric field zero at the contact. 

An "ohmic contact," therefore, is not the type of contact which 

is made to a solid, having a volt-ampere characteristic which is 

described by the adjective "ohmic." This unfortunate situation 

is a fact, because a solid showing a volt-ampere characteristic 

that is ohmic under the general use of the terminology has a 

field which is everywhere finite and constant and, therefore, 

non-zero at the contact . Thus, we shall usually avoid the term 

and describe a contact, having the properties mentioned above, 

as being injecting. Where "ohmic contact" is used, it will be 

in an effort at consistency with some pertinent reference. The 
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virtual cathode formed in front of a thermionic emitter in a 

vacuum diode is a familiar example of an injecting contact to 

the insulating vacuum space between cathode and anode. A 

blocking contact, on the other hand, is incapable of supplying 

excess electrons to an insulator and the field at such a contact 

is not necessarily zero. As with semiconductors, the decision 

as to the injecting or blocking character of a metallic contact 

to CdS has proven more complicated than a simple correlation 

between work functions of metal and insulator would suggest. 

Bube [1] reports the research done to date on this question. 

Despite the feasibility ot making injecting and blocking 

contacts to CdS, the development of solid-state analogue devices 

has not proceeded to a practical level as yet. This has been 

due chiefly to the relative abundance of trapping states which 

exist in the forbidden gap of crystals of the material. These 

trapping states accept most of the charge injected, and, in 

general, control the electronic properties of the crystal as 

seen externally. Moreover, it does not appear likely that it 

will be possible to make single crystals with such low trap 

populations that the effects of trapping in any large band-gap 

materials will be entirely negligible. Therefore, a thorough 

knowledge of the effects of these states is a necessity to any 

exploitation of analogue solid-state devices. A large portlon of 

this report will accordingly be concerned with the influences of 

trapping on the electronic properties of CdS. The term "trapping 

state" as used in this report refers to a center -located 
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energetically in the forbidden gap between the valence band and 

the conduction band, which is capable of capturing a free hole 

or a free electron. This definition is in accordance with common 

practice in semiconductor terminology and avoids the further 

possible distinctions about such levels, which can be made on 

the basis of the dominant mechanism responsible for the emptying 

of a filled trap. A particular experiment or phenomenon will 

usually make clear the role of a given trapping level, so that, 

for our purposes, the definition stated above will suffice. A 

full discussion of traps and the kinetics governing their 

occupation is found in Bube [1, Chapter 9]. Traps may exist only 

at discrete energies, or else there may be a band of trapping 

levels distributed more or less continuously in energy. Bube 

[1, p. 299] discusses some of the physical reasons for this fact. 

Evidence, both for traps which are continuously distributed in 

energy and for traps at a discrete energy level, is given in 

Chapter 5 of this work, and analyses for both of these cases are 

presented in Chapter 1. 

To perform the experimental work which we shall describe, 

analogue diodes were constructed by affixing both injecting and 

blocking contacts to a single crystal of CdS. In this way, 

studies could be made conveniently of crystal properties under 

both charge injection and no-injection conditions. 

In spite of extensive research on the effects of trapping 

in CdS, there is not complete agreement on a physical picture to 
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explain the experimental results . Even the spatial locati,on of 

the influential trapping levels ' is a matter of some dispute, with 

at least one investigator taking the point of view that surface 

states control the volt-ampere characteristics under injection 

bias [7]. The diversity of current-voltage dependences under 

charge-injectlon conditions is so great, as we shall see, that 

it is not surprising that surface conditions, with their usual 

labile properties, should be invoked. OWing J.argely to the work 

of A. Rose and his group at RCA, a coherent theoretical explanation 

of the extremely varied observations has been attained in terms 

of bulk behavior alone. This interpretation, Which assumed that 

the influential traps are volume distributed, will be found to 

describe fully the experimental work done here and. will therefore 

be discussed in detail. 

Both static and dynamic properties of the trapping states 

in CdS were investigated as will be described in the following 

chapters. Long term equiJ.ibrium volt-ampere characteristics 

under conditions of charge injection ',Tere studied in order to 

determine trapping-state densities and energy locations in the 

forbidden band. This technique >las introduced by Rose's group at 

RCA, and will be the object of' some discussion. A new approach 

was used to study the kinetic properties of trappin.g. Previous 

investigations have detected the time-dependent properties of 

traps through measurements of photoconductive r ise and decay 

times, or of the properties of thermally-stimulated trap emptying 

" [.1] [8]. T'lle technique which we shall use involves a dir ect 
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detection of the trapped charge through the measurement of the 

diode terminal capacitance exhibited under conditions of charge 

injection. The capacitance is found to vary with illumination, 

bias voltage and measuring signal frequency in a way which can 

be correlated directly with the anticipated effects of varying 

amounts of trapped charge. 

The properties of the diode blocking contact under apparent 

breakdown conditions were also the subject of an extensive 

investigation. Evidence will be given for an apparent Schottky­

type high field emission over the barrier, although, as we shall 

see, a tunneling mechanism is not entirely ruled out. The photo­

conductive properties of the crystals are not the subject of an 

intensive quantitative study for the following reasons: first, 

research in this field has occupied many individuals for some 

time now, and a fair understanding of the quantitative effects 

of illumination has been attainedj second, the equipment needed 

for such study was not readily available. In general, only the 

gross effects of illumination with order-of-magnitude accuracy 

for intensity variations was attempted. 

In order to gain a clear perspective of what is to come, 

we shall conclude this section with a synopsis of this report, 

stating what was done and where it will be discussed. In 

Chapter 1, a complete analysis of the possible behavior of 

space-charge-limited currents in an insulator with traps is 

presented. A unified approach is used to handle various trapping 
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configurations with energy, which apply to the diodes studied. 

Chapter 2 provides a theoretical basis for the effects of trapped 

charge on the measured capacitance of an analogue diode. Thus, 

Chapters 1 and 2 are completely theoretical. In Chapter 3, the 

techniques used in the fabrication of the diodes which were made 

of CdS with gold and indium contacts are described. Chapters 4, 

5 and 6 treat the measured characteristics of these diodes. 

Chapters 4 and 5 together discuss the complete equilibrium 

current-voltage behavior, with the high field effects at the 

gold junction the prime subject of Chapter 4. Chapter 5 describes 

the measurements made on the space-charge-limited currents observed 

in the diodes, and the deductions as to trapping properties made 

from them. Chapter 6 takes up the dependence of measured capaci­

tance on various parameters and interprets this data in terms of 

the analysis of Chapter 2. . OVer-all conclusions form the final 

portion of the report. These will comment on the significance of 

the measurements and on the applicability of the various analyses 

presented here and in the references. 
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CHAPTER I 

Theoretical Treatment of Space-Charge-Limited Currents 

in an Insulator with Traps 

This chapter provides a unified theoretical basis for the 

properties of space-charge-limited current flow in an insulator 

with traps . The aim is not a mathematically rigorous treatment, 

because rigor in this case, unfortunately, leads to implicit equa­

tions between voltage and current and to a loss of the physical 

picture which underlies the observed phenomena. Instead, we shall 

develop the current-voltage relationships chiefly by making use 

of an approach developed by Lampert [9] and used by him to 

handle the discrete-energy trapping level. Lampert's work is 

here extended to various energetically-distributed trapping states 

in order to provide a coherent and unified structure from which 

to survey experimental results. Traps distributed in energy 

were first treated by Rose [10] in a different manner than we 

have used. Experimental evidence, to be presented in Chapter 

5, has prompted the choice of the various energetic trapping 

configurations which are treated mathematically here. The 

spatial distribution of traps is assumed to be uniform in all 

cases. 

The analysis to be presented is one dimensional, with x 

being used to denote distance. The only free-charge carriers 

considered to be present are electrons and recombination is 

taken to be negligible. The crystal is assumed to have an 
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injecting contact at the cathode which exists at the plane x O. 

The collecting electrode, which may be either injecting or 

blocking is called the anode and is situated at the plane x = L. 

Positive bias is defined by making the anode positive with 

respect to the cathode . 

The over-all plan for the chapter is as follows. Section 

1.1 w~ll indicate some of the difficulties occasioned through 

use of a straightforward analysis, and will state conditions 

on the mathematical treatment which will be given in the 

remainder of the chapter. Section 1.2 will explain, in detail, 

the method of approximate analysis which will be used extensively 

to obtain the volt-ampere characteristic for various trapping 

conf'igurations ·with energy. The low-voltage characteristic for 

a crystal containing a discrete trapping level is considered 

in Section 1.3. This is the only case of space-charge-limited 

current in a crystal with traps that can be calculated explicitly 

in a straightforward manner from considerations of the appli ­

cable differential equations. The direct mathematical derivation 

of' the volt-ampere characteristic is therefore given in Section 

1. 3.1. In Section 1. 3. 2, the simplified analysis is used to 

treat this trapping configuration. The derivation by both 

methods provides a comparison which clarifies the application of 

the simplified method. In Section 1.4, some consideration is 

given to the volt-ampere characteristic of a discrete level at 

voltages near to that voltage which fills all the traps. The 

. inf'l.uence of' the trapping parameter e on the steepness of the 
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volt-ampere characteristic during trap filling is deduced by 

making an approximation to the true trap-filling characteristic 

in Section 1.4.1. Section 1.4.2 points up a limitation in 

the simplified method of Section 1.2, which becomes evident 

when it is applied to the trap-filling case of a discrete level. 

Two or more discrete levels are considered in Section 1.5, 

largely through extension of the results derived in Sections 

1.3 and 1.4 for single-level trapping. Section 1.6 and its 

two subsections, 1.6.1 and 1.6.2, analyze the important case of 

energy-distributed traps through the use of the simplified 

viewpoint of Section 1.2. In Section 1.6.1, the configuration 

studied is an energetically-continuous constant trap density. 

In Section 1.6.2, the trap density is exponentially varying 

with energy. A summary of the techniques used and the results 

obtained in this chapter is incorporated in Section ~.7. 

1.1. Comments on an Exact Approach 

The procedure in the mathematical analysis of space-charge­

limited currents in a solid is straightforward. The exact treat­

ment stems from the simultaneous solution of three integro­

differential equations: two of them express the definitions of 

potential and of drift current. The third is Poisson's equation. 

The interdependences, however, are such that in all but the 

simple, trap-free case and the case of a discrete-energy trapping 

level at low applied voltages, it is impossible to obtain from 

these an explicit relationship between current and voltage. 
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Lampert treats exactly the case of discrete-energy traps 

at all applied voltages in an appendix to his work [9], the 

complexity of which points up the need for a more illustrative 

approach. As an example, the exact equation for the current 

density J, derived by Lampert, takes the for.m: 

J = 
_e_iJ.Il...;:a~V { Ua - In(l + Ua ) 

L (1/2)U 2 - U + In(l a a 

(1.1) 

where U
a 

is defined as: 

and e is the electronic charge, 

~ is the electron mobility, 

V is the applied voltage, 

L is the anode-to-cathode spacing, 

nta 
is the trapped-electron density at the collecting 
electrode (anode), 

n is the free-electron density at the anode. 
a 

The bars refer to no-injection equilibrium values for the 

corresponding quantities. Yet to be inserted into equation 1.1 

is the dependence of n a 
on V, which will complicate the 
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over-all equation still further. Even without this added complexity, 

the form of 1.1 is too cumbersome to be of use without making 

approximations valid in the various regions of operation. The 

insight permitting these approximations comes, unfortunately, 

from taking other than this mathematical route to a solution. 

One is thus in the position of being led to an approximate method 

to gain facility in manipulating the exact solution to a form 

already known. 

These considerations led Lampert to adopt a viewpoint 

which we shall build upon in this treatment, leaving the exact 

solution to be used as a check on the approximate methods. 

Before beginning, we should note that assumed in the analysis to 

be given is the condition that only drift processes contribute 

to the current flow. This has been proven not to lead to 

inaccuracies in more complete mathematical analyses which have 

taken account both of drift and diffusion. Shockley and Prim 

[11], for example, considered the effect of diffusion in a trap-

free semiconductor, and showed that for applied voltages in 

excess of kT/e diffusion was relatively unimportant in 

determining the over-all characteristic. Suits [12] also 

considered the. complete solution for a variable-width space-

charge region including traps, and reached the same conclusion. 

We shall also omit consideration in this chapter of two-

carrier space-charge-limited currents* [3][13], because we are 

* Two-carrier space-charge-limited currents would flow if holes were 
. freely injected at one electrode and electrons at the other: the 
only constraint on the flow being the application of Poisson's 
equation. 
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primarily concerned with a mathematical treatment valid for 

the diodes studied. There has not yet been experimental 

verification of true two-carrier space-charge-limited currents 

in any materials. 

1.2. The Simplified Viewpoint 

The basis for the simplification proposed by Lampert 

lies in shifting attention from current as a function of voltage 

to anode charge as a function of voltage. As in the analyses 

of transistors and other semiconductor devices, this charge-

oriented viewpoint succeeds both in providing a means for the 

derivation of manageable equations and in leading to a physical 

picture which may be readily grasped and understood. 

We may begin the mathematical analysis by writing the 

applicable form of Poisson's equation: 

dE 
dx 

where E is the electric field, 

K€O is the permittivity of the crystal, 

n is the conduction-band electron density, 

n
t 

is the trapped-electron density, 

and the bars denote no-injection values (charge-free 
interior) • 

(1. 2) 
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For all values of applied positive bias, electrons are injected 

into the crystal such that n > nand n
t 

> nt' which implies 

that the bracket in 1. 2 is always posi ti ve. Therefore, E 

changes monotonically from zero at the cathode, where dE/dx 

is negatively infinite (we assume an infinite charge reservoir 

for n at the cathode) to its anode value Ea (figure 1.1). 

Hence, E necessarily has its largest magnitude at the anode, 

a fact also evident from Gauss' law since the anode is the only 

source of electrical flux lines. Furthermore, using the fact 

that for an applied voltage equal to V, E is constrained by 

the relationship: 

it can be shown quite readily that (V/L) < -E < 2 (V/L) • - a-
The 

proof of thi s inequality is due to Lampert [9]. It may be 

demonstrated by noting that the free-electron density n is 

constrained through the relationship IJI = I~I = constant. 

Therefore, since lEI is monotonically increasing from 0 to 

lEal across the diode, n must be monotonically decreasing 

from its cathode value. We assume, in addition to the spatial 

uniformity of trapping states, that nand are in quasi-

thermal equilibrium [9J. From this assumption, nt also must 

decrease monotonically from cathode to anode. Therefore, the 

curve representing E must lie within the region on figure 1.1 

marked I and indicated with cross-hatching. The boundaries 

to this region represent the case of ohmic flow and that of a 
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0 L 

EO 
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CATHODE ANODE 

Figure 1.1. Requisite form for electric field 
variation with distance. Curve must lie within 
Region I, indicated by cross-hatched boundaries . 
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constant interior-charge density. Represented physically on 

figure 1.1, the integral constraint on E, just mentioned, 

states that the area between the curve standing for the field 

and the distance axis is fixed at V. Stating this area in 

terms of the boundary lines to Region I establishes the inequality. 

Thus, the anode field is never greater than twice the value it has 

for ohmic-flow conditions. This is true independently of the 

trapping configuration with energy. 

Since drift alone is considered as an electronic-transport 

process, we may write: 

J -eJ..lIl. E . a a (1. 3) 

Therefore, conSidering the inequality derived, the actual ¢urrent 

may always be computed within a factor of two from the relationship: 

eJ..lIl. (VjL) a 
(1.4) 

Equation 1.4 emphasizes the fact that the complex and 

varied behavior of insulators under conditions of charge injection 

is contained in the dependence of the anode free-electron density 

upon the applied voltage. In fact, if na may be obtained as an 

explicit function of voltage, its insertion into equation 1.4 

will yield an explicit volt-ampere characteristic, valid within 

a factor of two. 
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An approximate, but very useful, method for obtaining an 

expression for the dependence of na on V follows from the 

integrated form of the ,Poisson equation. The over-all Poisson 

expression, equation 1.2, may be simplified in most practical 

cases by neglecting nand nt since no-injection densities are 

necessarily small compared to injected charge densities under 

conditions of space-charge limitations. Integrating equation 

1.2 under this assumption leads to the form: 

E 

K:O[[ [ ",Ox] f a dE ndx + 

0 

or 

K€oEa 1 JL + ~ JL eL L ndx ntdx (1.5) 

0 0 

Thi s may be written as: 

n + ~t (1.6) 

where is defined as -(K€OEa)/eL and the underlines denote 

average densities. Equation 1.6 shows that Va physically 

represents the average injected-charge density inside the crystal. 

The inequality just derived for Ea shows us that 

, always be wi thin a factor of two of the value V = a 

Va will 

2 
(K€oV)/eL • 
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Thus, equation 1.6 provides an approximate relationship between 

~'~t and V when this value for Va is inserted into it. The 

electron density needed, however, to obtain the current-voltage 

characteristic from equation 1.4 is not the average free-charge 

density ~,but the anode free-charge density n • a A relationship 

between nand n must, therefore, be incorporated into a 

equation 1.6 to obtain the desired result - an expression for 

n in terms of V. The relationship we shall assume between a 

these quantities is: n = na and likewise ~t = nta , independently 

of the applied voltage. This assumption is usually closely 

fulfi lled, but fails under certain conditions which, fortunately, 

may be recognized beforehand. We defer fUrther discussion of 

this point until some familiarity is gained inthe simplified 

technique here expounded. Insertion of these approximate forms 

for and n into equation 1.6 leads to: 

With equation 1.7, we have written all the expressions 

necessary to obtain the current-voltage characteristic through 

use of the simplified viewpOint. BaSically, the procedure 

involved is to determine the dependence of nta upon na and 

to insert this into equation 1.7. In general, this dependence 

will be a function of the Fermi level and, thereby, also a 
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function of voltage. The anode free-charge density na is 

then calculated in terms of applied voltage. Having n a in 

terms of V, one makes use of equation 1.4 to obtain J in 

terms of V. In certain cases, where extra information is avail-

able, an improvement upon the accuracy of equation 1.7 is made 

possible by deriving a different form through the statement of 

more exact relationships between Va and V and between n 

and n. This will be illustrated in Section 1.4.2. Much of a 

the remainder of this chapter will be concerned with the 

application to various trap configurations with energy of this 

simplified technique for the determination of volt-ampere 

behavior. 

1.3. Crystal with a Discrete Trapping-Level at Low Voltages 

The complications ariSing in the analysis of the crystal 

with traps stem from the fact that the total space charge is 

divided between mobile and immobile charge. In general, the 

ratio between these charge densities is voltage dependent, which 

leads to a non-linear form for the Poisson differential equation. 

Fortunately, however, a special case in which a close approximation 

allows the equations to remain linear and explicitly solvable is 

applicable to many crystals. Analysis of this case both through 

the direct solutions of the applicable differential equations 

and by the method outlined in Section 1.2 provides, therefore, 

a usefUl evaluation of the latter approach. We shall begin 

. (Section 1.3.1) by presenting the direct mathematical analysis 

and then (Section 1.3.2) shall illustrate the simplified approach. 



22 

1.3.1. Direct Mathematical Solution 

The basic model to be considered is a crystal with a 

discrete trapping-level for electrons situated more than a few 

kT above the Fermi level (figure 1.2). Under these conditions 

the Maxwell-Boltzman distribution is applicable. If we assume 

thermal equilibrium between the free states and the trapping 

states, the interior Fermi level will rise with electron injection. 

Hence, the validity of this condition is voided as the applied 

voltage increases. Thus, the results of this analysis are limited 

to voltages low enough so that Maxwell-Boltzman statistics remain 

valid as a description of free and trapped charge. This constraint 

defines the low-voltage region. 

If Maxwell-Boltzman statistics apply, the ratio of free to 

trapped charge is independent of both voltage and position inside 

the crystal. This ratiO, which we shall call e, is given by: 

n N 
e N: exp [-(We - WT)/kT] (1.8) 

where N is c the effective denSity of states in the conduction 

band, 

Nt is the density of trapping states, 

We is the conduction-band energy, 

WT is the energy of the trapping level, 
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Figure 1. 2. 

Band structure proposed for analysis in Sec­

tion 1.3. The crystal contains a discrete­

energy trapping level at w
T

• The Fermi level 

W
F 

is sketched in a region for which equation 

1.14 is essentially accurate. The dotted line 

at W = W
T

- 2kT indicates the arbitrary 10% error 

point in Maxwell-Boltzman statistics at which 

equation 1.14 is assumed to lose accuracy 

(Section 1.4.1). The "trap-filling region" 

(Section 1.4) corresponds to WF exceeding this 

magnitude. 
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k ' is Boltzman's constant, 

T is the absolute temperature. 

Using this definition, we may write Poisson's equation as: 

dE 
d.x (1.9) 

For insulators such as CdS under charge-injection conditions 

we may expect that often n» nand n
t

» n
t 

because the 

no-injection densities are so extremely small. In that case, 

the simplified form for equation 1.9, 

dE 
dx 

(1.10) 

is useful. Equation 1.10 will be used in further analysis since 

it is applicable in the range of voltages that is our chief 

interest. 

At any x, it is also true that: 

n 

so that: 

J 
-eJJE (loll) 



EdE 

Hence, 

E 

J(l + e) dx 
KEOIl9 
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1/2 _ r 2J(1 + e)x] L KEOIl9 
(1.12) 

In equation 1.12, the constant of integration has been made zero 

by taking measurements from the virtual cathode, at which point 

the assumption of space-charge-limited current conditions requires 

the field to be zero. 

Substituting 1.12 into we obtain: 

[ 1'/2 V ~ 2J(1 + e)L3 
(1.13) 

3 KEoj..Le 

or, 

2 

J 
9KEOIl9V 

(1.14) 
8(1 + e)L3 

Equation 1.14 is the relationship sought. It shows that square-law 

currents result in a crystal under space-charge-limited conditions 

provided voltages are sufficiently low so that a Boltzman factor 

can be used to describe the statistical population of the free and 

trapped states. 
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In practical crystals e is almost always much less than 

unity, so that equation 1.14 is usually written with the demon-

inator (1 + e) factor replaced by one. However, to derive 

the trap-free case from this solution, we must use the form 

given in 1.14 and allow e to approach infinity (Nt approaches 

zero in equation 1.8). Under these conditions we obtain the 

solution of Mott and Gurney [14]: 

J (1.15) 

Equation 1.15 becomes applicable to crystals having traps at 

voltages exceeding that at which all traps are filled, so that 

further injected charge is necessarily free. This topic will 

be discussed more fully in the next section. 

Before considering the application of the simplified 

viewpoint of Section 1.2 to the analysis of this problem, we 

shall derive some relationships from our work which will prove 

useful. By substituting 1.14 into 1.12, we may solve for Ea 

for space-charge-limited currents with a discrete trapping level. 

If we denote thi s fi eld value by Ea sd' we have: 

= (1.16) 
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which is, of course, within the limits derived in Section 1.2. 

From equations 1.3, 1.14 and 1.16, we may also solve for na 

in this case, again denoted by the subscripts sd. 

2 4(1 + e)eL 
(1.17) 

It will be of interest to determine the ratio of the free-electron 

density at the anode to the average free-electron density in the 

crystal. Using the symbol n to denote this average density of 

electrons in the conduction band, we have: 

which may be written for this case, using equations 1.10 and 1.16: 

E:sd 

Thus, from 1.17: 

-K€ e o E 
(1 + e)eL asd 2 2(1 + e)eL 



::sd 2n asd 
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(1.18) 

Equation 1.18 implies that the average Fermi level in the crystal 

is only kT(ln2) ev higher in energy than the anode Fermi level. 

At room temperature this is just 0.018 ev. Thus, for the case 

here analyzed, it makes little difference whether we refer to the 

average or the anode Fermi level. This completes the analysis of 

the space-charge-limited current flow by straightforward mathematical 

methods. 

1.3.2. Simplified Approach 

We now demonstrate the derivation of the current law, 

equation 1.14, by the simplified techniques described in Section 

1.2. To do this we refer to equation 1.7. Inherent in equation 

1.7, it will be remembered, are the approximations: n ... n, 
- a 

nt - nt ' E ... -VjL, and n» n. For the discrete trapping - a a 

level with Maxwell-Boltzman statistics applicable as analyzed in 

this section, the appropriate form of equation 1.7 is: 

KEOV 
n (1 + 9-1 ) 

eL2 a 

Thus, 
KE09V 

n 
eel + 9)L2 a 

Then, from equation 1.4 (J ~ e~aVjL), we have: 
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J (1.19) 

Comparison of this form with equation 1.14 shows that use of the 

approximate method yields a resultant characteristic which differs 

from the more-exact treatment only in failing to provide the (9/8) 

factor of equation 1.14. The complete voltage dependence is 

preserved with a considerable decrease in computational effort. 

In more complicated cases, as we shall see, this approximate 

method will prove to be a very valuable technique. 

Before we consider high applied voltages for this discrete 

trapping-level case, we should complete the low-voltage picture 

by noting that the behavior we have derived in equation 1.14 

should not be expected at very low applied voltages. The behavior 

specified by equation 1.14 is the characteristic volt-ampere 

dependence when sufficient charge has been injected to lead to 

a space-charge limitation for current. For low applied voltages 

this will not be the case; instead the normal free-electron 

density inside the crystal will cause an ohmic current flow with 

a constant field in the interior. We may expect that the 

transition voltage for a change in behavior from ohmic current 

to space-charge-limited current occurs in the vicinity of an 

equality for the solution given by the two equations, the ohmic 

relationship, J = e~V/L, and equation 1.14, J = 9KEo~ev2/8(1 + e)L3• 



If we denote this transition voltage by the symbol Vos' we have: 

v os 
8(1 + e)eIiL2 

geK€O 
(1. 20) 

Equation 1.20 emphasizes the fact that a decreasing e increases 

the voltage necessary to obtain space-charge-limited current 

conditions. In recapitulation, the expected volt-ampere behavior 

that we have derived for a crystal with a discrete trapping level 

is a linear dependence at voltages below V (as given in os 

equation 1. 20), with a transition to square-law currents of 

the form given in equation 1.14 above v = V • os 

Clearly, the space-charge-limited characteristic of 

equation 1.14, which rests on the assumption that the ratio 

n/n
t 

is a constant, cannot be followed indefinitely as voltage 

is increased. This is true because any real crystal will 

contain only a finite total number of traps. After these are 

completely filled by charge injection, the current-voltage 

behavior will approach asymptotically the characteristic for 

a trap-free crystal (equation 1.15), since, after all traps are 

filled, the fraction of total injected charge that is trapped 

decreases with voltage. As Lampert derives [9], the characteristic 

shows a steep rise in current with voltage between the region 

in which equation 1.14 is valid and the region in which equation 



1.15 applies. Neither of these two asymptotic cases applies near 

to the voltage at which all the traps become filled. Consideration 

of this region of the current-voltage characteris·tic is the 

major topic of Section 1.4. Before discussing this region, we 

pause to note that the current-voltage behavior derived in 

this section is really more general in application than to the 

case of a discrete trapping level. Although the discussion is 

couched in terms of a discrete level, it is evident that all that 

is necessary for its validity is a constant ratio between n 

and This will be the case, in general, for any density of 

shallow traps (i.e. traps near to WC) at low voltage excitations 

in a high-resistivity crystal • . For a distribution of traps with 

energy, WT and Nt in equation 1.8 become effective, averaged 

values. 

1.4. Volt-Ampere Characteristic During Trap-Filling for a 
Discrete Level 

We have noted in Section 1. 3.2 that the volt-ampere 

characteristic near to that voltage which injects sufficient 

charge to fill all traps must connect the two asymptotic-

behavior cases of space-charge-limited current as given in 

equations 1.14 and 1.15. Since most of the traps are being 

filled at voltages in the range connecting b oth of these 

equations, we shall call this region of the characteristic the 

trap-filling region. We start our analysis of the current-

voltage behavior in this region by calculating, first, the 

value of the trap-filling voltage. 
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The voltage which fills all the traps may be calculated 

easily under the usual assumption that the trapped charge far 

outnumbers the free charge, so that essentially all anode 

electrical flux lines end on trapped charge in the interior. 

With this in mind, it is a problem in electrostatics to 

determine the voltage necessary to produce sufficient anode 

flux lines to link with charge in all of the traps. Since the 

charge configuration consists of uniformly-distributed trapped 

charge coupled to a planar, positive density at the anode of 

area A, the capacitance of the system is: 

c (1.21) 

The total charge is eALN
t 

when all possible trapped charge is 

coupled to the anode. Hence, the trap-filling voltage is 

given by: 

~ 
--C- (1.22) 

This expression is dependent only on a uniform denSity of trapped 

charge, and is independent of the energy configuration of the 

trapping levels. 

Above V = V
TFL 

the current-voltage characteristic 

approaches the trap-free crystal behavior as specified in equation 

1.15 since, at these higher voltages, the ratio of free to 
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trapped charge increases rapidly. The exact solution [9] shows 

that the range of validity of equation 1.15 extends down almost 

to V = V
TFL

• 

Deviation from the low-voltage asymptotic behavior of 

equation 1.14, on the other hand, becomes significant when 

Maxwell-Boltzman statistics cease to be valid in describing 

the ratio n/nt • This occurs as the Fermi level inside the 

crystal approaches the trapping level, necessitating the use of 

Fermi-Dirac statistics and, thereby, incorporating a voltage 

dependence into the ratio n/nt • This voltage dependence, in 

turn, leads to a high-power law in the trap-filling region. The 

volt-ampere characteristic in this region will be considered 

more closely in Sections 1.4.1 arid 1.4.2. 

1.4.1. Derivation of a Useful Approximate Form 

In this section we shall consider a heuristic form of the 

volt-ampere characteristic during trap-filling in order to get 

some idea of the behavior exhibited under these conditions. The 

heuristic approximation is obtained by assuming a plausible 

characteristic to join together the two asymptotic forms 

(equation 1.14 and equation 1.15) which apply at low and high 

voltages, respectively. The asymptotic characteristics are 

held to be valid until their accuracy becomes poorer than an 

arbitrary assumed tolerance. The point at which equation 1.15 

is to be joined is at V ~ V
TFL 

as we have stated (from the 



complete solution of reference 9). For the joining voltage to 

equation 1.14, we shall have to consider what voltage causes 

significant error in the use of Maxwell-Boltzman statistics. 

To determine this voltage, we start by writing the statistical 

relationships which are accurate through the trap-filling 

region. They are: 

Nt 
(1.23) nt = l+e~ t(WT - WF)/kT] 

and 

n Nc e~ [-(We - WF)/kT] (1.24) 

where WF is the Fermi level energy. From equation 1.23, we 

can see that the inaccuracy in the use of Maxwell-Boltzman 

statistics instead of Fermi-Dirac statistics is less than 10% 

for (W
T 

- W
F

) > 2kT . If this degree of error is tolerated, 

then equation 1.14 may be used so long as W
F 

and W
T 

differ 

by 2kT or greater. The voltage at which WF = (WT - 2kT) 

may be calculated by noting from 1.23 that for this voltage 

n
t 
~ (1/8)N

t
• Using the e~ression for the space-charge 

capacitance of equation 1.21, we calculate that this charge 

density implies an upper-limit voltage for the validity of 

equation 1.14, which we denote by Vj , of: 
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1 

= BVTFL 

Since the validity of 1.15 extends approximately down to the 

(1. 25) 

voltage V = vTFL' this gives a range V = (7/8)VTFL in which 

neither equation 1.14 nor equation 1.15 is valid. It is tempting 

to use the approximate method we have outlined in Section 1.2 

to obtain the characteristic in this region, but certain 

difficulties a re presented by this attack. ~hese difficulties 

are instructive and we shall, therefore, consider this approach 

in Section 1.4.2. However, at this juncture we shall make some 

speculations about the form of the characteristic during trap-

filling which will also prove informative. 

As we have previously noted, the exact solution [9] points 

up the steepness of the current-voltage characteristic during 

trap-filling. It would be helpful to gain some insight into the 

extent of this steepness as a function of the physical parameters 

of the trapping level. The constraint we have, thus far. i s that 

the current-voltage relationship during trap-filling must join 

the two a symptotic forms , equations 1.14 and l.l~in a voltage 

range roughly (7/8)VTFL in extent. Since we know that the 

fraction of total injected charge that is free increases a s 

V approaches V
TFL

' we can see that the actual current-voltage 

curve mus t have an increasing derivative as V approaches VTFL ' 



A simple curve which both behaves in this fashion and satisfies 

the constraints just mentioned is the constant power-law curve 

implied by a straight line joining the two asymptotic charac-

teristics on a logarithmic plot. Such a curve is illustrated 

in figure 1.3 for a e value of 10-1 • 

A value for e of 10-1 is entirely unrealistic, but was 

chosen to make the graphic presentation simple; crystals usually 

show values for e of approximately 10- 5• A diminishing value 

for e translates the line corresponding to equation 1.14 

downward along the current axis of figure 1.3 and parallel to 

itself. Thereby, a decreasing e acts to magnify the power law 

during trap-filling. In fact, the power law implied by the 

approximation to the volt-ampere characteristic under discussion 

is easily calculated as a function of e, as follows. Referring 

to figure 1.3, we see that V changes by a factor of 8 as J 

changes by a factor which can be calculated by taking the ratio 

of equation 1.15, evaluated at VTFL, to equation 1.14, evaluated 

at (1/8)vTFL • The change in J is thus 64/e. The slope this 

yields for logarithmic current versus logarithmic voltage is 

(log 64/e)/(log 8). Inverting the logarithms and thus converting 

back to J versus V, we see that the characteristic is: 

with m 
-1 

2 log e 
+ log 8 

-1 
2 + log e (1. 26) 
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where a is a constant, and log signifies logarithms to the base 

10. Natural logarithms are always written as In in this report. 

Thus, for the case e = 10-1 illustrated in figure 1.3, the 

trap-filling law is approximately cubic. In the more practical 

case, for e ~ 10- 5, the law would be closer to the 7th power 

over the approximate decade of voltage during which trap-filling 

invalidates the use of Maxwell-Boltzman statistics. We would 

note that the choice of the join point of the trap-filling law 

to equation 1.14 has little effect on the characteristic 

determined. If that point had been set at (l/lO)V
TFL 

instead 

of (1/8)V
TFL 

we would have arrived at exactly the final form 

given in 1.26. Likewise, almost an identical form to equation 

1.26 would have been obtained had one joined equation 1.15 at 

V = 2VTFL • These facts make unimportant the generally arbitrary 

way in which the join points were chosen. The size of e is 

the significant factor in determining the steepness of the 

trap-filling law. 

No pretext is made here that equation 1.26 represents an 

exact solution to the applicable differential equations during 

trap-filling. Equation 1.26 is, rather, an approximation made 

chiefly to indicate the dependence of the volt-ampere characteristic 

in the trap-filling region on the parameter e and to show that 

the characteristic in this region will indeed be steep in actual 

crystals. 
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1.4.2. Use of the Simplified Approach in the Trap-Filling 
Region 

We shall now attempt to use the approximate method of 

Section 1.2 to calculate the characteristic during trap-filling. 

The starting point is equation 1.6 (va = ~ + ~t). Because we 

are going to join two voltage regions in which the results 

derived in equations 1.16 and 1.18 (E d = -(3V/2L)j n d = as -s 

2nasd ) are valid, one might assume that the accuracy of the 

approximate form for equation 1.6, given in equation 1.7 

((KEoV)/eL2 = na + nta ), could be improved in this case through 

insertion of these values directly into equation 1.6. Under 

this condition, equation 1.6 becomes: 

2(n + n
t 

) a a (1. 27) 

To solve for n in 
a 

terms of and thereby for na in terms of V, the relation-

ship between n 
a 

and nta must be inserted into 1.27. This is 

obtained by eliminating WF between 1.23 and 1.24 to obtain: 

(1. 28) 

Inserting 1.28 into 1.27, and making the usual approximation that 

e «1, we have: 
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2 
n + n o a a 

A series representation of the solution to 1.29 valid for 

n 
a 

+ •.• 

(1. 29) 

(1. J)) 

Again using equation 1.16, we may write an improved form 

in this case for equation 1 . 4: 

J (1. 31) 

Thus from 1.3), assuming all terms in the series negligible when 

compared to the first, we have: 

J (1. 32) 

For the complete dependence upon V, we insert the definition for 

Va into 1.32 to derive: 
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J (1.33) 

which is more meaningfully presented when normalized to V
TFL 

through use of equation 1.22: 

J = 
r
l 

_ ~]_l 
l 8VTFL 

(1. 34) 

Equation 1.34 converges asymptotically to the form 1.14 at low 

voltage, as expected, but obviously does not lead to the 

anticipated high-power law for current in the trap-filling 

region. This is the case despite the fact that the limits of 

validity of the solution in 1.30 are va < 2Nt • If one trans­

lates this constraint on va through the definition 

va = (3KEoV)/2eL2, the corresponding voltage bound is V < 8VTFL/3. 

Here, however, is the step which loses physical significance 

because Ea changes from the value 3V/2L and n no longer 

equals 2n
a 

as the Fermi level nears the trapping level. As 

seen in the exact solution, and by r easoning we shall present 

shortly, these various factors become voltage dependent. Hence 

although equation 1.6 remains valid, when it is converted to 

functions of the anode densities as is done in writing equation 

1.27 (va = 2(na + nta», the dependence of va is no l onger 
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linear with voltage. Therefore, except for the numerical 

coefficients, the solution 1.32 is also still valid but the 

higher power dependence of Va leads to the high~power law 

connecting the ranges of applicability of equations 1.14 and 

1.15. Thus, the proper use of 1.34 is for voltages below the 

trap-filling region; that is for V ~ (lj8)vTFL . This is 

illustrated on figure 1.3. 

It has already been shown (Section 1.2) that under no 

circumstance is Ea > 2VjL. Therefore, the high-power law 

for current dependence on voltage is due mainly to the 

changing ratios Elna and Elnta • Actually, it is the ratio 

of n to n 
a that has a very large maximum near to the 

trap-filling voltage, because the traps physically close to 

the injecting electrode are filled prior to those at the anode. 

The exact solution [9] brings out this fact. Thus, the 

approximate solution procedure outlined in Section 1.2 may 

not be applied to this case without obtaining, in some way, 

the correct voltage-dependent variation for the ratio of n 

to The variation of Elna with V is not easily derived 

and one is therefore led, inthis case, to an interpretation of 

the exact solution. Our interest in the volt-ampere characteristic 

during trap filling will not extend beyond a consideration of 

the influence of e on the steepness of the relationship. 

Since this was determined in Section 1.4.1, we shall not pursue 

the topic further here. Equation 1.34 is perfectly valid in the 

range of voltages below V ~ (lj8)vTFL where all the relationships 



used in deriving it are correct. In this voltage region it 

can properly be regarded as a corrected form for equation 1.14. 

The preceding discussion was presented, and solution 

1.34 derived, in order to show the problems in interpretation 

that may arise in using the approximate method of Section 1.2 

which is based solely upon the anode field and charge density. 

These problems will confront one only in a case such as has 

just been examined, when the ratio of the average interior 

charge density to the anode charge density is voltage dependent. 

Requisite to a voltage dependence for Elna is an abrupt change 

in the energy of the electronic states that are being filled by 

the injected charge. For complete results in such a case, the 

exact solution must be considered. 

This completes our consideration of the behavior of a. 

crystal having a discrete trapping-level under conditions of 

charge injection. We have seen that such a crystal will show a 

volt-ampere characteristic consisting essentially of four voltage 

regions: first, an ohmic region for low applied voltages; 

second, a square-law region for intermediate voltages when 

currents flow under space-charge-limited conditions, but Maxwell­

Boltzman statistics apply for free and trapped charge; third, 

a high-power-law region starting roughly at V = (1/8)VTFL and 

continuing until V ~ V
TFL

; and fourth, a square-law region at 

voltages exceeding a value necessary to inject sufficient charge 

to fill all the traps. A sketch of the expected volt-ampere 
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characteristic when plotted logarithmically for a crystal with 

a discrete level as well as other energetic configurations of 

traps will be given in figure 1.6. 

1.5. Two or More Discrete Energy Trapping Levels 

If a crystal contains more than one monoenergetic 

trapping level, one would expect qualitatively that most of the 

phenomena sketched in Section 1.3 would occur with slight 

modification. Assume, for the sake of discussion, two trapping 

levels at energies 

may use Maxwell-Bo1tzman statistics to write: 

n 

where: 

= 

Hence equation 1.2 becomes: 

dE -en ( -1 -1 
dx = KEo 1 + 91 + 9 2 ) 

-en (1 + g
e

- l ) 
KEO 

we 

(1. 35) 

(1.36) 

(1. 37) 
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with: 

(1. 38) 

For low applied voltages, the transition voltage from ohmic to 

space-charge-limited currents (equation 1.20), and the space­

charge-limited relationship (equation 1.14), are not altered 

except that 9 should be replaced in these equations by 

There will be two ... square-law regions of the form o:f 

9 • e 

equation 1.14, with ge characterizing the low-voltage square 

law and 9 2 characterizing the higher voltage square-law region. 

Using the reasoning described in deriving equation 1.20, we 

calculate that the lower trapping level would be :filled at 

VTFLl ~ eL~tl/2K€O and the upper level would be filled at 

VTFL2 "," eL 2 (N
tl 

+ N
t2

)/2K€0. Deviation from the form of equation 

1.14 could first be expected in this instance when the 

population of the lower trapping level ceases to be described 

by Maxwell-Boltzman statistics. From this point, V ~ (1/8)VTFLl, 

until V'"" V
TFLl

' a trap-filling law will be observed. An 

approximation, of the same sort as made in deriving equation 

1.26, to describe this region yields: 

J avn 

(1. 39) 
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and a a constant. Equation 1.39 says that if 91 approached 

9 2 (which would necessitate Nt2 being of the order of Ntl 

exp [(WT2 - WT1)/kT]) the existence of the lower level would 

tend to be completely obscured in the space-charge-limited 

volt-ampere characteristic. Approximate square-law behavior 

could continue to be observed as the first level was being filled. 

After both levels have been filled at 2 
VTFL2 ~ eL (Ntl + 

Nt2)/2KEO' the trap-free-crystal characteristic of equation 

1.15 would again apply. As in the single discrete level case, 

it is clear that the conclusions reached about the volt-ampere 

behavior in the lower voltage ranges depend only upon the validity 

of Maxwell-Boltzman statistics _ not upon the actual trap 

configuration with energy. The volt-ampere characteristic for 

a crystal with distributed states would be indistinguishable 

from that of a crystal with distinct levels until the voltage 

is raised sufficiently to invalidate the use of Maxwell-Boltzman 

statistics. The behavior we have described here may obviously 

be extended to any number of spaced trapping levels with 

intervening energy regions devoid of traps. 

In summary, the volt-ampere behavior under charge-injection 

conditions that is expected for two or more energetically-

discontinuous trapping levels is square-law currents diminished by 

a factor 9. This factor is discontinuous as the Fermi level 

crosses a trap energy. The trap-filling characteristic will be 

of a steepness dependent on the change in e and will extend 
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roughly over a decade of voltage measured downward from the 

trap-filling voltage. 

1.6. Traps Distributed in Energy 

In this section we consider the space-charge-limited 

characteristic that will be observed when energetically-dis­

tributed trapping levels are being filled. As we have pointed 

out, if these levels exist at energies sufficiently above the 

Fermi level so that Maxwell-Boltzman statistics are applicable, 

the analysis of Section 1.3 is valid. When the Fermi level 

enters the region over which the trapping levels are energetic­

ally distributed, however, we shall see that the currents are 

no longer proportional to the square of the voltage. The 

actual behavior for two different trapping configurations 

with energy will be calculated through use of the procedure 

outlined in Section 1. 2. This technique will be a great 

simplification over the calculations necessary for an exact 

treatment. In Section 1.6.1 we shall consider a uniform 

distribution of traps, While, in Section 1.6.2 we take up the 

case of traps distributed exponentially in energy. 

Since we are considering the form of the volt-am;pere 

characteristic for voltages at which the Fermi level remains 

within the trapping levels, any relationship between the average 

charge density and the anode charge denSity will not be a function 

of voltage. This follows from the fact that there is no abrupt 
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change in the electronic states occupied by the bulk of the 

injected charge while the Fermi level is in the region of the 

continuous trap density. Thus the problems associated with a 

voltage dependence for the ratio E:!na, as pointed out in Section 

1.4.2, are not met in the ana17sis of this section. Hence, we 

will make the calculations for both trapping configurations by 

writing the form of equation 1.7 that 

is applicable. To do this, we must first derive the statis-

tical relationship between n a and The analysis, there-

fore, will begin at this point. 

1.6.1. Uniform Density of Traps with Energy 

In this section we consider a uniform energy-density of 

traps extending from the conduction band downward to an energy 

W
TL 

(figure 1.4). We then define the trap density per unit 

energy increment as: 

(1.40) 

with Nt' the total number of traps per unit crystal volume. 

Thus, in an increment of energy dW in the range between WTL 

and We' there are dnt filled traps given by: 
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~~_~;F 
TL 

Continuous density of traps: total number per unit 
volume = Nt' 

77777777777777777777777777777777 Wv 

Figure 1.q.. Band structure proposed for analysis in Section 1.8. 
The traps are distributed continuously in energy with a constant 

density between W
TL 

and Wc' The Fermi level is assumed always to 

be at energies between WTL and We' The spatial distribution of 

tra.ps is uniform. 
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(1.41) 

We may eliminate W
F 

through equation 1.24 and rewrite 1.41 as: 

(1.42) 

Upon integration of equation 1.42 between the limits W
TL 

and 

We' we obtain for nt : 

From equation 1.24 the denominator of the logarithm will approach 

unity rapidly as soon as WF is a few kT above W
TL

• Also, 

provided WF is at least a few kT below We' Nc »n. Hence, 

(1.44) 

The next step is the insertion of equation 1.44 into 

equation 1.7 to obtain: 

(1. 45) 
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As in the case of the discrete trapping-level, in general 

n «nt' so that from 1.45: a a . 

(1.46) 

Using the definition 1.40 for Pt , and normalizing to V
TFL 

as 

given in equation 1.22 (VTFL = eL~t/2K€o)' we may write this 

as: 

The dependence of n on V is more apparent if we define 

Ne = Nc exp[-(WC - WTL)/kT] and rewrite equation 1.47 as: 

n a (1.48) 

As a final step, we insert equation 1.48 into equation 1.4 to obtain: 

J 
e~ V e 
-";'L~ exp (eN) (1.49) 

wi th ex = N
t
/2Pt kTV

TFL
• Thus J varies roughly exponentially with 

V for this situation of the Fermi level traversing a uniform 
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density of traps, a result which checks with Rose's work [10], 

although his analysis does not provide the value .for the exponent. 

1. 6.2. Traps Varying Exponentially with Energy 

As a second example of the behavior of space-charge-limited 

currents when the crystal Fermi level traverses a continuous trap 

density, we analyze a distribution of traps which are exponentially 

varying with energy in a continuous band stretching between the 

two energies W
TL 

and WTU (figure 1.5). 

The analysis is begun, as in Section 1.6.1, by deriving 

a relationship between n and We define a "temperature" 

T , which characterizes the trap density variation with energy, c 

denoted by Pt , through the equation: 

(1. 50) 

where Po is a constant density of states per unit increment of 

energy. Then, in an energy interval dW there are dNt traps 

given by: 

(1.51) 

Since this trap density extends between WTL and WTU' the total 

number of traps per unit volume, Nt is given by: 

(1. 52) 
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Figure 1.5 

Band structure proposed for analysis in Section 1.6.2. 

The traps are distributed continuously between WTL and 

WTU and their density varies exponentially with energy. 

The Fermi level. is assumed always to be between WTL and 

W
TU

• The spatial. distribution of traps is uniform. 
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and, provided (WTU - WTL) »lkTcl and Tc is positive so that 

the trap density increases with W, only the first term is 

necessary. 

The number of filled traps is: 

(1.53) 

This integral is not easily evaluated exactly, but an approximate 

form will preserve the important physical features. The approximate 

form is derived simply by assuming the Fermi distribution to be 

unity for W
TL 

< W < W
F 

and zero above this value, a procedure 

frequently used in analysis and increasingly correct as the 

temperature is lowered. This may be done correctly, however, only 

provided IT I > T so that the numerator in 1.53 is varying more 
c 

slowly than the denominator. Whether or not this is the case in 

practice will have to be decided on the basis of correspondence 

between the conclusions implied by this step and experimental 

data. Under this approximation, the solution for the integral, 

valid for ITc I > Tis: 

Again, if 

(1. 54) 

and T is positive, the first 
c 

term is sufficient. Combining the forms of equations 1.54 and 
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1.52, using the approximations stated, we obtain: 

(1.55) 

To obtain the dependence of nt on n, we first rewrite equation 

1.22 (n = Nc exp -(We - WJ/kT) in the form: 

TIT 
[n eXP(We/kT)/Nc] c 

We now use 1.56 to eliminate WF from l.55 and obtain thereby: 

(1. 57) 

Equation 1.57 may be inserted into equation l.7 to obtain na as 

a function of V. As a simplification, we again assume that 

n «nt and thus write: a a 

n 
a 

(1. 58) 

Again normalizing to VTFL through the use of equation l.22 this 

becomes: 

n 
a 

T IT ( I N (v/zv ) c exp[- We - WTU) kT] 
c TFL 

(1. 59) 



To derive J as a fUnction of V, we again use equation 1.4 

to obtain: 

J 
elili c exp[-(wc - WTU)/kT] [(T/T)+l] 

T IT V c 
( 2V

TFL
) c L . 

(1. 60) 

Equation 1.60 shows that a trap density increasing exponentially 

with energy (or, therefore, a trap density which decreases when 

moving downward energetically from the conduction band) leads to 

a power-law behavior that is greater than square law. The actual 

power for the voltage is temperature dependent. 

Most of the approximations used to derive equation 1.60 

will be met in practice. Perhaps the poorest of these is, however, 

the neglect of unity in the exact expressions for equations 1.52 

and 1.54. In order to derive equation 1.60, we have specified 

only that ITcl needs to be greater than T. No constraints 

were put on the actual value for Tc which, of course, depends 

on the crystal properties. An increasing ITcl tends to invalidate 

the approximate forms for equations 1.52 and 1.54, used in deriving 

equation 1.55. Likewise, if the trap denSity i s exponentially 

decreasing i n energy (Tc negative), the neglect of unity with 

r espect to the exponential terms in equations 1. 52 and 1.54 is, 

of course , wholly unjustified. A solution is also possible, 

however, without these approximating steps. If the exact 

expressions for 1.52 and 1.54 are used in a series of calculations 
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directly analogous to those used to derive equations 1.55 

through 1.60, we obtain, instead of equation 1.60, the form: 

T /T 

~ N V ] c 
J exp[-(WC - WTU)/kT]V 1 + kTtZV (1.61) 

Po c TFL 

Equation 1.61 is a more general solution than 1.60, useful when 

the trap distribution is characterized either by a negative Tc 

or by a large value for T. Equations 1.60 and 1.61 are both c 

limited in validity to voltages less than V
TFL 

by the 

specification that the Fermi level lie within the range of 

distributed traps. For Tc negative, there are further 

restrictions .on the validity of equation 1.61 that stem fram 

the approximation that all charge is trapped, which was used 

in the application of equation 1.7. Since no observations of a 

behavior characteristic of negative Tc are to be presented, we 

shall not consider this case further. As we have noted, equation 

1.61 is also valid for large 

distribution in energy of the 

T , that is for a more uniform 
c 

traps (see equation 1.50). Therefore, 

using the form 1.61 we can see the smooth transition between the 

case of traps varying with energy, analyzed in this section, and 

the case of a uniform density of traps, analyzed in Section 1.6.1. 

Use of the identity: 

_ exp(ax) (1.62) 



in equation 1.61 to obtain the uniform-density case by allowing 

T to approach infinity, gives us an identical form to equation 
c 

1.49. All that is necessary is to let WTU approach Wc and 

Po approach Pt to make the two cases completely comparable. 

Hence, we have obtained both a good check on our mathematical 

results and a more general relationship in equation 1.61 which 

contains the uniform trap-density case as well as the varying 

density case. The size and sign of ITcl in an actual crystal 

will determine whether equation 1.60 is a sufficient approximation 

to equation 1.61 to be applicable in a particular case. 

Both equations 1.60 and 1.61 are dependent upon ITcl 

being greater than T, a step necessary to simplify the integration 

of equation 1.53. For IT I < T, the trap density becomes much c 

more peaked in energy, provided we limit the total number of 

traps, as is necessary from considerations of physical realizability. 

Hence the distribution becomes more and more like a single level 

and is therefore characterized by the treatment of Section 1.3. 

Thus for ITcl < T, J becomes proportional to y2. 

1.7. Conclusions 

We have Seen in 'this chapter that an extreme variety in 

current-voltage behavior is possible in a crystal with traps 

under conditions of charge injection. The range is from linear 

proportionality between J and Y for slight injection, to an 

exponential dependence for J on Y under space-charge-limited 
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conditions for a crystal having traps distributed uniformly 

with energy in the forbia.den zone. The current-voltage behavior 

for a hypothetical crystal having a variety of interior trap­

configurations with energy is sketched to logarithmic scales 

in figure 1.6. The regions of the characteristic are seen 

to be demarcated by the position of the Fermi level relative 

to the trapping energies. 

From figure 1.6 we see that in a given crystal, not only 

is the type of dependence extremely varied, but so also are the 

magnitudes for the currents drawn in a fairly small interval 

of applied voltage. These can change by factors that are several 

powers of ten, within less thana decade change in applied voltage. 

The currents can also be disparate by many factors of ten in 

almost identical crystals at the same voltage. Faced with such 

variations, the researcher has at his disposal a sensitive tool 

for the measurement of the trapping properties of crystals. As we 

shall see presently, however, he has in addition almost a Pandora's 

box full of experimental difficulties and apparent anomalies with 

which to contend. 

Since we have mentioned the use of space-charge-limited 

current measurements to elicit trapping information, we might 

pause to recapitulate what trap properties may be deduced by 

this technique and the manner of their deduction. For very low 

voltages, ohmic behavior can be expected in all cases because of 

the small free-charge density present in the crystal even under 



1 
-

-

v (LOGARIJ~~J(r.6SCALE) 
Possible behavior for space-charge-limited currents in crystals 

with a variety of energy levels for volume-distributed traps. 
2 I. Space-charge-limited current for a trap-free crystal: J = klV 

II. Ohmic region (present also in a trap-free crystal): J = k
2
V 

III. Extended ohmic region for a crystal with traps. 
2 IV. Fermi level in region void of traps: J = QlklV 

V. Fermi level in region of continuous traps: J = k3vm or ~ k4expV 
VI. Fermi level again in region void of traps: J = Q2klV 

VII. All traps in crystal filled 
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no-injection conditions. This ohmic behavior will, of course, 

indicate the position of the Fermi level without injection but 

cannot tell us much about any possible traps in the crystal. 

The voltage to which this ohmic current persists as voltage is 

increased, however, leads to a value for e througp equation 

1.20 (v = 8enL2/geK€o). After the onset of space-charge­os 

limited current, one cannot discern anything about the actual 

trapping configuration with energy as long as Maxwell-Boltzman 

statistics are valid in describing the free and trapped charge 

densities. Nonetheless, if Maxwell-Boltzman statistics are 

appropriate, a check on e as determined .from the V os 

observation is possible through a comparison of the value of 

e obtained by fitting the measured square law to equation 1.14 

(J = 9K€O~V2/8L3). When Fermi-Dirac statistics become applicable, 

the behavior of the characteristic will depend on the actual -

configuration of traps with energy. To learn the total number 

of traps present, and the depth of the trapping states from 

space-charge~limited current measurements, one must exceed the 

trap-filling voltage pertinent to the trapping level (or levels) 

in question. The trap depth is derived by solving equation 1.4 

(J -e~ E) for n, using this number to calculate (We - WF) 
a a a 

from equation 1.24 (n = Nc exp[-(WC - WF)/kT)) and recognizing 

that at v = VTFL• 

The simplified method of Section 1.2 is seen in later 

sections of this chapter to be a valuable tool for obtaining 

the significant dependence of current on voltage in a straight-
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forward manner which preserves a physical picture of the sequence 

of events. One limitation to its use, the case of a voltage 

dependent E/na' was pointed out in Section 1.4.2. The real 

advantage of the method is apparent if an attempt is made to 

handle the continuous trap-densities of Section 1.6 by writing 

exact forms of the Poisson equation and solving these. Any 

distribution of traps with energy not causing a voltage-dependent 

E/na may, in principle, be handled by the technique of Section 

1.2 by proceeding in the manner illustrated in Section 1.6. 

In complicated cases, the integral of the equation corresponding 

to 1.53 may, however, become difficult or impossible to solve. 

Approximate methods can nonetheless be used in its evaluation, 

and one can thereby obtain an explicit current-voltage relation­

ship in all cases - a distinct advantage over the direct 

mathematical approach. 

In Chapter 5, same of the conclusions of this chapter 

will be put to experimental test, and others will be used to 

deduce the properties of diodes made with CdS. Experimental 

verification of a number of the deductions has already been 

presented, largely in the papers of Smith and Rose. Reference 

is made to these papers throughout the text, wherever appropriate. 



CHAPTER II 

Mathematical Treatment of the Capacitance due to Trapping of Electrons 

in. Crystals Subject to Charge Injection 

The previous chapter dealt with the theory of the d-c 

effects of traps on the crystal volt-ampere behavior. The 

equations derived were valid for an equilibrium condition between 

the trapping levels and conduction-band levels without constraints 

as to the time allotted to reach this equilibrium. In this chapter 

we shall consider theoretically one aspect of the influence that 

trapping levels should exert on the sinusoidal-excitation frequency 

dependence of the volt-ampere characteristics in a crystal. This 

dependence comes about because the kinetics of trap-filling and 

trap-emptying are determined by such properties as the trap densities 

and the capture cross-sections of the various energy states. These 

parameters are insensitive to any applied signal, and can result 

in a limiting amount of charge storage in the crystal if the 

exciting frequency is raised sufficiently. 

A convenient and useful way of demonstrating the kinetic 

effects of trapping follows from consideration of the measured 

capacitance, since the capacitance is a direct fUnction of the 

charge stored in a region. Trapping properties have not been 

studied through capacitance measurements heretofore although, as 

we shall see, this technique has a number of aspects which 

recommend its use. The analysis of this chapter will be found 

to be useful because sensitive means are available for measuring 



capacitance on actual devices. Correspondence of these measured 

values with those deduced from the model proposed as representative 

of the physical processes in the crystals will reinforce confi-

dence in that model. In addition, parameters such as frequency, 

bias voltage and illuminat ion will be found to affect the 

capacitance measurements . These may be varied independently to 

provide quantitative information, when properly interpreted, 

about the actual physical processes. We shall, therefore, frame 

the discussion in this chapter in terms of the expected capaci-

tance for an insulator with a uniform spatial distribution of 

traps subject to charge injection. Because the bulk of the 

injected charge in actual crystals is trapped, we shall neglect 

the contribution to measured capacitance of the free charge. 

Experimental verification of the negligibility of the contribution 

of the free charge to the over-all capacitance in the samples 

studied will be given in Chapter 6. 

2.1. The Effect of Charge Injection on the Measured Capacitance 
of a Dielectric Crystal 

The measured capacitance for a crystal into which. charge 

may be injected will be compounded of two parts, which may 

profitably be considered separately. This division corresponds 

to the capacitance due to charge storage on the contact 

electrodes, and the capacitance due to charge storage in the 

interior of the crystal . The interior charge may, in turn, be 

subdivided into free and trapped components. However, unless 



one applied voltages across the crystal in the range o~ V=V 
TFL 

= eL~t/2K€o as given in equation 1.22, the ratio o~ free to 

trapped charge in an actual crystal will be very small. For 

lower voltage excitation, one may profitably neglect the con-

tribution of the free charge to the measured capacitance. This 

is the situation applicable to the experimental investigations 

to be described in Chapter 6 and, there~ore, is the one analyzed 

here. 

The circuit elements representing interior and electrode 

charge-storage will appear in a parallel connection externally 

and their magnitudes, with free charge neglected, will be given 

by the ~ollowing equations: 

where Cm is the measured capacitance, 

is the capacitance due to charge storage on the 
electrodes, 

(2.1) 

is the capacitance due to charge storage in the traps, 

is the impressed voltage, 

is the charge stored on the electrode, 

is the charge stored in the traps. 

Now: 

( 2 . 2) 
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where A is the junction area, 

L is the electrode spacing, 

KEO is the permittivity of the crystal. 

Ce may be expected to be independent of frequency in the range 

of measurements to be considered later (f ~ 5mc/s) since Q e 

need not enter the crystal or be trapped. The frequency variation 

of the relative permittivity K, due to the response of dipole-

resonance modes in the material structure, should be very slight 

below 5mc/s. C will not, however, be a constant with respect 
e 

to illumination because of the change in the permittivity known 

as the photodielectric effect. This topic will be discussed 

briefly for CdS in Chapter 6. The photodielectric effect has 

been shown experimentally to lead to an enlargement for K by 

factors as high as 7 in some photoconductors [1, p. 420]. 

The trapping capacitance Ct = ~/v, however, is a variable 

with frequency changes for an applied a-c excitation, since ~ 

depends on the amount of charge that can be trapped and liberated 

in the available time. Assuming a uniform trap density in space, 

there is a maximum value for C
t 

which is derived as follows. 

As shown in Section 1.2, the trapped-charge density in the crystal 

cannot exceed the value it has at the injecting electrode. 

Therefore, the capacitance will be less in all cases than the 

capacitance of a charge system which consists of a uniform space-

charge region inside the crystal coupled to a planar sheet of 

positive charge at the electrode. The capacitance value for 

such a configuration of charge, denoted by the symbol Ctm, is 
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Ctm = (2AK€O)!L = 2Ce • In order for trapping capacitance .to be 

as large as Ctm under pure a-c excitation, it would be necessary 

both for the stored charge to be uniform and to inject charge 

into the traps for both polarities of the applied voltage -

hence, to have two injecting contacts to the crystal. If a 

crystal had one injecting contact and one blocking contact, 

then the trapping states could be filled only during each half 

cycle of a pure a-c signal and the effect of the traps on the 

measured capacitance would be only half that deduced above. The 

maximum value for trapping capacitance can be attained only 

provided an electron density of magnitude, 

2C. V e 
= eAL 

can be trapped and liberated during one half cycle of the applied 

a-c signal. otherwise Ct will be less than thi s value and will 

be given by: 

(2.4) 

where n
te 

is the density of charge capable of being trapped and 

liberated in phase with the applied voltage V (nte is the 
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"effecti ve" trapped charge). Thus, under pure a- c voltage 

excitation, the maximum value for measured capacitance, denoted 

by the symbol C ,is: mm 

= 

Hence, Cmm = 3Ce for a symmetric structure (two injecting 

electrodes), and Cmm 2C for a diode structure (one injecting 
e 

electrode). The effects of a d-c bias on the results of this 

section will be discussed separately in Section 2.4. As has 

been pointed out, for C
t 

to reach the value Ctm there must 

be a uniform, interior-charge density. We may argue heuristically 

that a constant, trapped-charge distribution is the likely 

phys{cal situation at low applied voltages, when the crystal is 

still in the region of ohmic behavior. Under this condition, the 

injected-charge density is still too small to cause an uneven 

distribution because of space-charge constraints. The uniform, 

free~charge density (implied by the ohmic volt-ampere behavior) 

will result in an essentially uniform, trapped-charge density. 

As injection is increased toward a space-charge-limiting value, 

the interior-charge distribution becomes non-uniform. This 

process is considered further in Section 2.4 . 

2.2. The Effect of Trapping Kinetics on the Measured Capacitance 

We have established the qualitative picture of the 

. mechanism of charge storage in traps which results in an 



externally-detected capacitance in Section 2.1. In this section, 

we shall consider quantitatively the sequence of events responsible 

for this capacitance • . First, in Subsection 2.2.1, we shall derive 

and discuss the equations representing the physical process of 

trap-filling and trap-emptying, since these phenomena underlie 

the detected a-c capacitance. Then, in Subsection 2.2.2, we 

shall use this derived equation to calculate the expected 

dependence of the measured capacitance on frequency. The 

analysis of this section will, therefore, provide us with a 

means of obtaining information about the physical properties of 

traps from the measurement of capacitance in actual crystals. 

It is assumed in this analysis that charge transport from the 

contacts to the traps is infinitely fast, so that the processes 

of electron capture and emission govern the measured capacitance. 

In Section 2.3, we consider separately the electron-transport 

process. 

2.2.1. Derivation and Discussion of the Differential Equation 
Governing Trapping Kinetics 

An electron trapping-state, as the term is used in this 

chapter, is a permitted electronic energy level which is filled 

and emptied through the conduction band. Hence, if we enumerate 

the mechanisms for electron transfers between free and trapped 

states, we shall have an equation for the trapped-charge density. 

If electron traps are filled from the conduction band at a rate 

BF states per cm3 per sec and emptied back into the conduction 

band at a rate ~ in the same units, then the differential 
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equation governing the trapped-charge density nt is of the 

form: 

(2.6) 

The rate of trap-filling ~ should be proportional to the 

free-electron density n, the density of empty traps (Nt - nt ), 

and a transition probability for capture of a free electron by 

a trap which we shall call cf ' Thus, we have: 

In a similar manner, the rate of trap-emptying ~ should be 

proportional to the trap denSity nt' the density of vacant 

free-electron states (N - n), and a transition probability for 
c 

emission of a trapped electron into the conduction band which 

we shall call c. Hence, the rate of emission is: 
e 

nt(N - n)c c e (2.8) 

At this point, we may simplify matters without significant loss 

of accuracy through use of the easily satisfied apprOXimations: 

N c » n and Nt » nt • The first approximation is virtually 

always true; the second demands only that any applied voltage is 

appreciably less than VTFL = eL
2
Nt /2K€0 as given in equation 
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1.22. Under this condition, equations 2.7 and 2.8 may be 

rewritten: RF = nNtc f , and ~ = ntNcce • Hence, equation 

2.6 may be written in the form: 

- (n - yn)N c t c e 

where y is defined by the ratio NcCe/NtCf • From the form of 

equation 2.9, we can see that y is the ratio of the trapped-to-

free charge when the conduction-band states and trapping levels 

are in equilibrium. Therefore, if we assume that the transition-

probability ratio is independent of the excitation mode so that 

the thermal-equilibrium value is applicable, we may take the 

value n/nt at thermal equilibrium to define y. If Maxwell­

Boltzman statistics apply to the trapping levels, we have then 

-1 / y = e . The quantity Ncce = BE nt is seen to be a probability 

per unit time for the escape of a trapped electron. We shall 

denote this "probabili ty-of-escape" frequency by the symbol v • e 

For the case of a discrete trapping level in thermal equilibrium 

with the conduction-band states and enough above the Fermi level 

to be described by Maxwell-Boltzman statistics, v is given by e 

[1, p. 278]: 

(2.10) 
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where (We - W
T

) is the trap depth below the conduction band, 

Nc is the effective density of conduction-band states, 

v is the electron thermal velocity (107cm/ s at 

is the capture cross-section of an empty trap for a 
conduction-band electron. 

The physical basi s for equation 2.10 is not difficult to develop. 

To do so, we make use of the equality of BE and RF at thermal 

equilibrium. Through the definition of ve ' we have BE = ntVe· 

For a discrete trapping level, the rate of trap filling RF may 

be expressed in terms of the capture cross-section for a trap 

St by imagining that the free electrons are motionless and that 

the Nt traps per cm3 move with the electronic thermal velocity 

v. Then, the volume traced out per second by each cm 3 of 

these "moving" traps is VNtSt • The number of electrons captured 

by the traps per second, therefore, is nVStNt • Hence, cf in 

equation 2.7 equals vSt for this case. Since at equilibrium ~ 

equals BF' we have: Ve = nVStNt/nt where n/nt has its 

equilibrium value. For a discrete level at thermal equilibrium, 

if Maxwell-Boltzman statistics are applicable, we have also n/nt 

(Nc/Nt)eXP[-(We - WT)/kT] (equation 1.8). Therefore, under these 

conditions: 

2.10. 

For continuously-distributed trapping levels sufficiently 

above the Fermi level so that Maxwell-Boltzman statistics apply, 

an equation of the form of 2.10 can be derived for an effective 

.value for ve ' and the over-all trap density for the distributed 
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levels will be governed by equation 2.9 with rand ve 

statistically-averaged values over the various states. Analysis 

in terms of equation 2. 9 in the case of energetically-distributed 

traps corresponds to lumping together the effect of all traps in 

one effective level. This is, in reality, the same procedure 

used in the consideration of the population of the conduction-

band states, which are all lumped together for most calculations 

into an effective density N , situated at the energy level c 

If Fermi-Dirac statistics apply for the population of the 

trapping-states, then the ratio n/nt becomes dependent on the 

position of the Fermi level, and thereby on the applied vOltage. 

For a small a-c signal superimposed on a d-c bias, however, 

n/n
t 

is relatively constant over a cycle, and the analysis 

using equation 2.9 is still meaningful. A consequence of the 

dependence of n/nt 

bias-dependent. 

on bias is that both rand become 

A discussion of trapping kinetics is often couched in 

terms of t he attempt-to-escape frequency of a trap rather than 

the probability-of-escape frequency. The attempt-to-escape 

frequency is the number of times per second that a trapped 

electron can absorb energy from its surroundings multiplied by 

a probability for that absorption. It can be shown by thermo-

dynamic reasoning to be limited for thermal processes at room 

temperature to sec, and to be given by the product 

[l,p. 51]. Thus, from equation 2.10 i s related to 
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the attempt-to-escape frequency for a trapping level by the 

Using equation 2 .10, we may rewrite equation 2.9 as: 

- (n - rn)v t e (2.11) 

A special case of this form for the trapping-rate equation is 

given by Bube [1, p. 278]. Bube discusses the .trapping behavior 

when n is approximately zero and there is a finite n
t 

at time 

zero, which we shall call ntO " The solution for the trapped­

electron density decay is then given by: nt = ntO exp - vet. 

The rate of trap-emptying BE is therefore: BE = VentO exp - vet. 

It is interesting to look at the inverse case (nt = 0 at time 

zero with a step function in conduction-band density n of 

magnitude nO introduced at time zero). For this situation, 

the sol ution would be nt = rna (1 - exp - vet) so that the 

rate of trap-filling would be The ratio 

of Idnt/dtl in these two cases is, therefore , rno/nto' If, 

for a comparison, we took the initial density imbalances to be 

equal (no = nto )' we see that the rate of change of the trap 

density is y times as large for pure filling of traps as it is 

for pure trap-emptying. Since y is comparable to -1 e and, 

therefore, very large in most actual crystals, we can see that 
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the rates will be quite disparate for this case of equal, initial 

density-deviations from equilibrium. 

Under charge-injection conditions, it is possible to 

modulate n, the density of free electrons, and thereby to 

change nt according to the constraints of equation 2.11. To 

determine the effect that these constraints will have on the 

measured capacitance, therefore, one must solve equation 2.ll 

with the appropriate form inserted for the free-charge density. 

This analysis will be the topic of 2.2.2. 

2.2.2. Variation of Ct with Frequency 

We have derived, in equation 2.11, the relationship 

governing the trapped-charge density inside the crystal. Under 

an applied a-c voltage, the free-charge density is modulated by 

charge injection and extraction from the contacts. The traps 

are then filled and emptied via the conduction band. In order 

to consider the capacitance observed at the electrodes of the 

crystal due to this effect we must solve equation 2.ll after 

inserting the proper variation for n to represent free-electron 

injection and extraction. For a sinusoidal voltage excitation 

V = V cos wt, the time dependence of n will depend on the 
m 

nature of the contacts made to the crystal. If we consider the 

case of one ohmic electrode and one blocking electrode and 

assume proportionality between applied voltage and injected 

charge density, then the waveform for the conduction band density 



during excitation will be a half-wave rectified sinusoid with 

a peak value of n , as in figure 2.lb. 
m 

The capacitance 

measured at the exci tat,ion frequency will be due only to 

the component of trapped charge in synchronism with the applied 

voltage. Since equation 2.11 is a linear differential equation, 

we may apply the principle of superposition in its solution and 

therefore use a Fourier series representation for n. In this 

manner, we can immediately separate out that component of n 

which is synchronous with the applied voltage and is therefore 

responsible for the measured trapping capacitance. In the case 

now under consideration, it is the fundamental that is the 

component of n which is synchronous with the applied voltage. 

Therefore, in the following equations, we denote densities 

synchronous with the voltage by the subscriptf. Hence, using 

the Fourier analysis of the waveform given in the caption to 

figure 2.1b, we have nf = (1/2)nm cos rut, as the form to be 

inserted into equation 2.11. Thus: 

Solution of equation 2.12 for the steady-state term yields: 

= 

(2.12 ) 
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Figure 2.la. Applied a-c voltage waveform at the collecting electrode. 

t 

O~----~~------L-------~----~ 7T 
Figure 2.lb. Conduction-band density for the case of a single 

injecting electrode. 

n = nm [lin + (1/ 2) cos illt + (2/3n) cos 2rut + ••• J 

t mm "-
\ 
\ 

for ill = V e 
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Figure 2.lc. Trapped charge densi ty for a single injecting 

electrode . Dotted curve valid as ill ' approacbes zero. Solid curve 

is the solution for the fundamental for nt at ill~ ve The ver­

tical scale is greatly contracted from that used to plot figure 2.lb. 
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(1/ 2) yn [_..::..c o,-S.."c.(I)::..:it--" 
m (1 2/ 2) + (I) Ve 

(2.13) 

The value of at is plotted in figure 2.1c. 

Before interpreting equation 2.13, we pause to note that 

the entire problem as considered thus far is completely analogous 

to the solution for the charge stored on the capacitance in the 

circuit of figure 2.2a. If the voltage source in figure 2.2a 

were taken to be proportional to the conduction-band density 

multiplied by y, and the natural relaxation time-constant He 

for the circuit were proportional to -1, then ve %, the charge 

stored on the capacitor, would be described exactly by equation 

2.11. Hence, the frequency analysis we have just performed could 

have been done equally well in terms of this analogue circuit. 

Thinking in terms of the equivalent circuit suggests the 

use of the phasor diagram of figure 2.2b to represent the two 

terms of the solution for the trap popUlation obtained in 

equation 2 .13. The first term in this solution represents 

trapped charge in phase with the applied voltage, and hence 

its magnitude is proportional to the capacitance variation with 

frequency. The second term i s 900 out of phase with the applied 

voltage , and therefore has a derivative in phase with it. Hence, 

this term represents a current in phase with the voltage, and 

therefore implies a conductance for the device due to traffic 
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R 

Figure 2.2a 

Circuit showing behavior analogous to trap-filling. The 

charge ~,stored on the capacitor, is analogous to the 
. l 

density of filled traps nt' provided that Ve - is taken 

to be proportional to the time constant RC and Vs is 

taken to be proportional to yn. 

(l/ 2)yn 
m 

Figure 2.2b 

Phasor diagram representing the time-variant components of 

the trapped-charge density. The component of trapped charge 

in phase with the applied voltage results in a terminal 

capacitance; the trapped charge in quadrature with the applied 

voltage results in a conductance component. 
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between the traps and the conduction band. The conductance term 

is seen to have a maximum at ill = V , or, as seems quite reason­
e 

able, when the probability-of-escape frequency equals the driving 

frequency. This term would account for only a portion of the 

total conductance as measured at the terminals, however, since 

it does not represent the charge actually traversing the crystal 

for collection at the opposite electrode. 

To express the result for ntf in equation 2.13 in terms 

of the trapping capacitance measured at the terminals, we 

recognize that the portion of this solution in phase with the 

applied voltage represents the quantity that we have called nte 

in equation 2.4. Thus, if we use the symbol C' t to denote the 

low frequency value of the trapping capacitance, we have from 

equation 2.4: 

C' t = 
eALyn 

m 
2V 

eALTj 

-2- (2.14) 

where we have defined a new constant Tj = yn Iv. This definition 
m 

serves to lump together the assumed proportionality constant 

between n and V with the proportionality constant between 
m 

llt and n, which has already been defined by the symbol y. 

Since Ct was shown in Section 2.1 to have a maximum value of: 

Ctm = AKEo/L = Ce for a single injecting electrode, we may use 

equation 2.14 to derive a limiting value for Tj. This is 

For Tj less than TIm' Ct will be less than C . e 
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The function F = 1/(1 + w2/~2) plotted versus logarithmic 
e 

frequency. The trapping capacitance is given by: Ct = CtF. 
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For ~ = n , G' = G . m t e In terms of Gi' the over-all frequency-

variant expression we have derived for the trapping capacitance 

is: 

G' 
t 

1 
(2.15) 

The trapping capacitance should therefore drop from its 

low frequency magnitude Ct when the voltage driving function 

is raised in frequency to a value near to the probability-of-escape 

frequency of the trapping level. Figure 2.3 is a plot on 

semilogarithmic paper of the frequency dependence as represented 

in equation 2.15. The figure shows that the drop in capacitance 

due to trapping limitations will be spread over about t wo decades 

of frequency centered roughly at the probability-of-escape 

frequency v • e 

We have discussed, thus far, the case of a single injecting 

electrode to the crystal. We shall now speculate about the 

situation with two injecting electrodes. When there is little 

or no applied bias, the case of two injecting electrodes presents 

some peculiarities which should be pointed out. The conduction-

band density for two injecting contacts and a pure a-c applied 

voltage (V = Vm cos wt) will be a full-wave rectified sinusoid 

as sketched in figure 2 .4a. The Fourier analysis of such a wave 

contains no fundamental as can be seen in the representation 



Applied Voltage Free Charge 
Density 

Trapped Charge 
Density 

a. Case of zero d-c bias: n = nm(2/n) [l+(2/3)cosZrot-(2/l5)cos4wt 
+ ••• ] 

V d-c -

b. Case of slight d-c bias: Fourier analysis of n will depend 
on the extent of the bias applied. Fundamental component 
increases with bias. 

V d-c 

\ 
\ 

\ 

\ 
\ 
\ 
\ I 
\ I 
\ / 

\ J 
.... / 

c. Case of d-c bias voltage > 2V. The a-c portion of n is a 
pure cosine waveform at the ap~ied frequency of V. 

Figure 2.4. The voltage waveform, conduction-band density, and trap 
density for a crystal with two injecting contacts and various values 
of applied d-c bias. The abscissa is a fUll cycle of the variable 
wt in all cases. The vertical scale for the trapped-charge denSity 
is much contracted over that for the free-charge density. The 
dotted curves for nt represent the solution at very low frequen­
cies; the solid lines represent the solution at (.I) . .,. ve . 
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given in the caption to figure 2.4a. The trap density is, 

therefore, forced to respond to twice the applied signal 

frequency in addition to higher harmonics. Again using the 

linear property of the fundamental equation (2.11), we calculate 

that the response of each harmonic is given by an equation of 

the form of 2.13. Thus, the over-all trap density is represented 

by: 

2yn [ 2cos (2c.ut - tan -12ro/ v ) 
~ 1 + __________ -r,--r",~e-

" 3(1 + (2ro)2/v 2)1/2 
e 

2cos(4c.ut - tan-14ro/v ) e 

In order to convert this form for n
t 

into the trapping 

capacitance variation, we would expect to separate out the 

(2.16) 

portion of nt that is synchronous with the applied voltage. 

Since equation 2.16 has no component at the fundamental 

frequency, however, a first conclusion might be that the 

trapping capacitance, in this case, is zero. The error in 

this conclusion is evident when one considers the behavior at 

low frequencies when it is certain that nt contributes to the 

capacitance. The root of this conceptual problem is in the fact 

that the trapped charge is always negative; whereas electrode-

stored charge, as in a normal capacitor, may change sign. The 

density nt of equation 2.16 is set up by charge injection from 

each of two electrodes during a single complete cycle. 



The capacitance actually measured is defined by the ratio 

of the charge stored in a region to the voltage difference between 

the terminal from which the flux lines linking that charge emanate 

and the edge of the charge storage region. Thus, one must con-

sider, in this case, not the original sinusoidal variation in 

voltage, but rather a rectified full-wave sinusoid representative 

of the flux pattern causing the trapped-charge build-up over a 

full cycle. The use of the absolute value for V is consistent 

with the fact that the actual driving function for the trap 

density as inserted into equation 2.ll is not the applied voltage 

V, but the free-charge density n. The latter is inherently 

positive and is proportional to the absolute value for V. Thus, 

the a-c portion of the trapped-charge density that is in-phase 

with the conduction-band density and, therefore, with the a-c 

portion of the absolute applied voltage will be represented by 

an external trapping capacitance. For this case, therefore: 

eALyn m ( 3(1+(",,:2/ v e 2) - 15(1+(':) 2/ v.') + ••• ) 

(2/3 - 2/15 + 2/35 - 2/63 + •••• ) 

The series in the denominator of equation 2.17 can easily be 

summed by noting that n (2/')()n [1 + (2/3)cos 2rot - (2/15) m 

cos 400t + ••• ] = n at t = O. Hence, the denominator of 
m 

(2.17) 
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equation 2.17 equals (rr/2) - 1. Equation 2.17 gives the 

proper low and high-frequency magnitudes for Ct ; Ct = eALrnm/Vm 

at low frequencies and zero at high frequencies. The over-all 

frequency dependence is seen to be complex, although the various 

components of the a-c portion of n
t 

go to zero quite rapidly. 

Since the double-frequency component is five times as large as 

the second harmonic, the frequency variation will be approximately: 

C " t 
(2.18) 

where Ct " has a maximum value of 2C , as determined in Section 
e 

2.1. Thus, from equation 2.18, the observed trapping capacitance 

should cut off in the vicinity of ill = Ve/2 for the case of 

pure a-c applied to a crystal with two ohmic contacts. The 

behavior of equation 2.18 is, of course, the same as was sketched 

in figure 2.3 except that the frequency scale in the graph is 

shifted a factor of two to the right. 

D-C bias will affect these conclusions by changing the 

waveform which represents n. As sketched in figure 2.4, an 

increasing d-c bias acts to increase the fundamental component 

of the waveform for n. This is a smooth process, culminating 

in the a-c portion of n being pure fundamental at biases 

greater than 2V m (figure 2.4c). The variation of Ct with 



frequency for two ohmic contacts is, therefore, represented 

with fair accuracy by equation 2.18 under no bias and exactly 

by equation 2.15 for biases greater than 2V • 
m 

In the inter-

mediate bias case such as is represented by figure 2.4b, no 

simple frequency variation applies. For an intermediate bias, 

the variation of Ct with frequency must be obtained by 

finding the response of all components of nt to the Fourier­

analyzed waveform for n. The ratio of this response that 

is in phase with the absolute voltage to the a-c portion of 

the absolute value of applied voltage gives the magnitude of 

the trapping capacitance. This analysis which corresponds to 

the calculations just performed in deriving equation 2.17, will 

not be of sufficient interest to be carried out here. 

In summary, the detected trapping capacitance of a crystal 

will be frequency dependent and will fall rapidly in the vicinity 

of an applied radial frequency equal to the probability-of-

escape frequency for the traps. In the special case of two 

ohmic electrodes with no d-cbias, the capacitance roll-off 

will be effective at a radian frequency roughly one half the 

probability-of-escape ·frequency. As bias is applied in this case, 

however, the roll-off of capacitance will move to higher 

frequencies until itis strongest in the immediate vicinity of 

the probability-of-escape frequency. 

2.3. Transit-Time Effect 

In considering the kinetics of the trapping states in 

Section 2.3, we analyzed the constraints on the trapping 
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capacitance imposed by the state-transition kinetics between 

the conduction band and trapping levels. One must also 

consider the process of physical transport of the. electrons 

from the injecting contacts to the vicinity of the traps. 

Since the electrons must be introduced at the electrodes and 

collected there again, they must traverse the crystal to the 

region of the traps. If the capacitance-measuring frequency 

is raised until the quarter-cycle-time* approaches the transit 

time through the crystal, there will clearly be a decrease in 

Ct due to lack of sufficient time for this transport, regardless 

of the crystal trapping kinetics. For low voltage excitations, 

if the crystal behaves ohmically, there will be a uniform field 

across the crystal so that the transit time Ttr is given by: 

L/v (2.19) 

where vf is the electron velocity due to the applied field. 

For very small applied measuring voltages, transit-time 

effects can be observed at surprisingly low frequencies. For 

example, if lOmv is used as the capacitance-charging voltage 

for a 10 micron crystal of CdS (~~ 200cm2/volts), equation 

2.19 yields 0.5 microsecond for the transit time. Since this 

number is to be compared to a quarter-cycle-time of the impressed 

voltage, the effect should be apparent, for this hypothetical 

* This is the length of time for which a given contact is injecting 
electrons. 
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case, at 500kc/s. The calculation performed is, of course,_ 

only approximate since V, and therefore Ttr' are actually 

time variant in equation 2.19. 

A mathematical treatment of the actual behavior of the 

trapping capacitance under a transit-time limitation demands a 

solution for the x-dependence of the trapped-charge distribution. 

This analysis will not be necessary in conSidering the experi-

mental data and will not be given here. 

2.4. Effects of a Bias Voltage 

In Section 2.2.2, one effect of an applied d-c bias was 

discussed. There, it was showu. that the frequency dependence 

of Ct for the case of two ohmic contacts to the crystal will 

be altered by an applied d-c voltage. There are certainly 

other ways in which an applied bias can affect the trapping 

capacitance. A discussion of these other effects of bias voltage 

on C
t 

is the subject of this section. 

First, we note that in order to achieve the maximum, 

measured capacitance of equation 2.5, a spatially uniform, 

trapped-charge denSity is necessary. The discussion of Section 

2.1 indicated that such a density can be achieved only for small 

voltages in the range in which the crystal is behaving ohmically: 

that is, for voltages much lower than 

(equation 1.20). If the crystal is subjected to higher voltages, 

so that charge injection tends toward a space-charge-limitation, 



then the spatial arrangement o~ the electrons is altered ~ram 

the uni~orm density that was assumed in Section 2.1. This 

results in a diminution o~ the maximum value ~or Ct. The 

extent o~ the deviation ~rom a uni~orm charge density at 

varying degrees o~ injection and ~or each trapping con~iguration 

with energy must be worked out separately. For the discrete 

trapping level showing a space-charge-limited characteristic, 

much o~ the work has been done in Section 1.3 so that it is a 

simple matter to calculate the e~~ect on C
t 

in this case. 

The average trapped-charge density is, using equations 1.17 

and 1.18: ~t = 3AK€oV/2eL
2

, instead o~ ~t = 2AK€ov/eL
2 

as 

in Section 2.1. Thus, the maximum capacitance is reduced by 

C = (5/2)C • mm e 
For lower values o~ 

injected charge than that causing a space-charge-limited 

characteristic, the reduction in Ctm can be expected to be 

less than (1/2)C. e 

Assuming that ve and y in equation 2.9 are speci~ied 

by thermal-equilibrium conditions, same further conclusions 

about other e~~ects o~ bias may be made. We shall discuss 

these conclusions in the ~ollowing paragraphs. 

Provided that trapping is by a discrete level so that 

the probability-o~-escape frequency ve is accurately des-

cribed by equation 2.10, we would not expect any variation in 

the frequency dependence of Ct with bias due to a . change in 

ve. I~, however, ve is an e~~ective value obtained ~rom an 
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averaging process over a group of energy-distributed traps 

whose occupancy is subject to Fermi-Dirac statistics, then 

bias could conceivably .affect its value. This wi.ll occur 

because a bias voltage acts to raise the interior Fermi level 

and, thereby, to alter the statistics governing the averaged 

value for v. Of course, if the crystal contain.s one blocking e 

and one ohmic contact, then bias in the reverse direction so as 

to attempt injection from the blocking contact will yield a 

zero trapping capacitance. If, however, the diode structure 

is biased to inject electrons from the contact capable of 

injection, the crystal trapping capacitance should be the same 

as that for a symmetric structure; 

The magni tude of the terminal capacitance might also be 

influenced by d-c bias. Both C' t in equation 2.15 and Cn 

t 

in equation 2.18 are seen to be proportional to r, the ratio 

between and n under equilibrium conditions. If the 

average value of the Fermi level in the crystal is enough 

below the trapping levels so that Maxwell-Bo1tzman statistics 

apply, r equals -1 e (with e defined in equation 1.8) and 

is independent of voltage. In general, however, r is a 

function both of voltage and of illumination. The variation 

of r with voltage has been discussed briefly in Chapter 1. 

It will be described more fully in Chapter 5 along with the 

dependence on illumination. 

A sketch of possible behavior with bias voltage due to 

y changes at a low applied frequency is given in figure 2.5. 
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t 

Fermi level enough below 
eo that i = a-' 

/~P' 
,--------+3Ce,.-.:...---.... , 

I 

o 
o-c BIAS VOLTAGE • 

Figure 2.58 
Expected variation of measured capacitance under sinusoidal 
excitation with a d-c bias for a crystal with traps and two 
injecting electrodes for the case that Ct = Ctm= 2C. The 
values for capacitance at biases ~V'l'li'I. are heuristIc since 
the applicability of the analysis in-~erms of equation 2.9 
fails for nt - Nt· t 

O-C BIAS VOLTAGE 
Figure 2.5b 

Expected variation of measured capacitance under sinuBoidal 
excitation with a d-c bias for a crystal with traps and one 
injecting contact. Polarity of the bias voltage is that of 
the collecting electrode with respect to the injecting 
electrode. Applied a-c voltage is V = V cos wt. 

~ 
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In figure 2.5a, the case of two injecting electrodes is sketched 

with the supposition that -1 
Y = e In 2.5b, the single 

injecting electrode is considered for the hypothetical case 

that both y and ve are voltage-dependent (Fermi-Dirac 

statistics applicable to energetically-distributed traps). 

For both figures, the applied voltage is assumed to be V=V m 

cos oot. The cut-off of Ce at ±VTFL = NteL2/2K€o (equation 

1.22) occurs because above this voltage magnitude, all the 

traps become terminals for the electrical flux lines generated 

by the d-c component of voltage and are therefore insensitive 

to the a-c signal. Thus Ct approaches zero at all frequencies 

under this condition. In this voltage region, however, the 

free charge becomes significant in increasing the measured 

capacitance. The analysis of the capacitance due to free charge 

in this region of voltage excitation is straightforward, but will 

not be applicable to our work and is therefore not given here. 

It is also possible for the contact injection efficiency, 

which relates the injected free charge to the voltage applied, 

to vary with a d-c bias as well as with other parameters such 

as illumination. This quantity, defined as n Iv , was lumped m m 

together with Y to form the over-all proportionality ~, 

between trapped charge and applied voltage in the discussion 

of Section 2.2.2. A variation in n/v m m could result, for 

example, from a very limited charge reservoir at the virtual 

cathode of an emitting surface. Instead of discussing all the 



possible alternatives ror contact behavior at this time, we shall 

reserve comment on this subject until we present experimental 

results. 

2.5. Conclusions 

We have seen, in this chapter, that the capacitance 

exhibited externally as a result or charge storage in traps has 

a characteristic behavior which can provide information about 

trapping properties. Before we recapitulate the expected 

behavior of the capacitance due to traps and discuss the 

information about the trapping levels that this behavior will 

divulge, we should consider whether the expected magnitudes ror 

Ct will be detectable in any experimental measurements. Since 

the maximum trapping capacitance Ctm is equal to 2Ce where 

Ce = AK€O/L is the electrode capacitance, any crystal must be 

thin to achieve a measurable value ror Ct. As will be discussed 

in Chapter 6, about the smallest exciting voltage that could 

be used across the capacitance to measure it in a bridge circuit 

was lOmv. rr a crystal or lmro2 cross-sectional area and 

lO microns thickness were used and a voltage or lOmv applied, 

it would take a trapped-charge density of about 6 x 1010 

electrons cm- 3 to contribute 1 picorarad of capacitance . 

Not only is 1 picorarad a detectable capacitance but also 

the injected, trapped-charge density can reasonably be expected 

to reach and exceed 6 x 1010 electrons cm- 3 in many actual 

crystals at this voltage, Thererore, ror crystals in the size 
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range considered, Ct is measurable and one could expect to test 

the conclusions made in this chapter experimentally. Actually, 

in Chapter 6 when measurements are discussed, we shall see that 

even smaller trapped charge densities than this are detectable. 

We shall conclude this chapter by enumerating the information 

that measurements of C
t 

should provide on the basis of the 

theoretical framework we have provided. The analysis of Section 

2.1 showed us that under no circumstances can we expect Ct to 

exceed twice the electrode capacitance C • e This value 

Ctm = 2Ce will occur only for injection into the traps from 

both contacts and for a uniform interior-charge density. For a 

single injecting contact, Ct will be limited to values below 

C. Hence, observation of either of these alternatives will e 

indicate the nature of the contacts to the dielectric crystal. 

The frequency b.ehavior of Ct ' analyzed in Section 2.2, is 

chiefly governed by the value of the probability-of-escape 

frequency. In most cases Ct will drop rapidly as impressed 

radial frequencies are raised to the neighborhood of v • e 

Correspondence of the observed behavior of C
t 

with frequency 

with the predictions of Section 2.2 will allow a deduction of 

the value of v. 
e If is given by equation 2.10 (v = e 

NcvSt exp[-(wc - WT)/kT]) and the trap depth in that equation 

is known independently, a value for the capture cross-section 

may be obtained. As seen in Section 2.5, the behavior of Ct 

with d-c bias will indicate the energy configuration of the 

traps which are responsible for the measured capacitance. Finally, 



the over-all correspondence of measurements on actual samples 

with this analysis will act to reinforce confidence in our 

physical model, which emphasizes the importance of volume­

distributed, interior trapping states. 

From this discussion, we can see that much information can 

be obtained from observations of the trapped charge through 

capacitance measurements. The practical aspect of this state­

ment will be made evident in the experimental results of Chapter 6. 



97 

CHAPTER III 

Diode Fabrication 

This chapter forms a bridge between the theoretical 

analyses of the properties of an insulator with traps, described 

in Chapters land 2, and the experimental work with CdS to be 

interpreted in Chapters 4 through 6. It is concerned with 

providing the details of the processes involved in the preparation 

of diodes made from single-crystal CdS. These diodes were made 

bi-polar by exploiting the differing contact properties of gold 

and indium to CdS. Although much research has been done on the 

properties of metallic contacts to CdS, success in making 

injecting contacts in the absence of illumination has been 

reported only with indium and gallium. The effect of illumination 

on the blocking character of the other metals is not fully 

determined, yet. We shall give some evidence in Chapter 6 

bearing on this subject. Good blocking contacts have been made 

using copper, silver and gold [15]. In order to study the 

properties of both injecting and non-injecting contacts to CdS 

crystals, therefore, it was decided to make a diode structure 

by affixing electrodes of indium and gold to the monocrystals. 

Indium was chosen instead of gallium for the injecting contact 

because of the convenience of acquiring and handling it. Gold 

was chosen as the material for the blocking contact for much the 

same reasons, in addition to the fact that it promised to form 

a non~reactive, stable electrode. In the diode fabrication, as 



we shall see, extensive care was necessary to achieve duplicable 

results. 

3.1. General Description of the Types of Diodes Constructed 

There were two basic types of diodes made and investigated 

as described in the later chapters. The diode types are distin­

guished by the nature of the Single-crystal CdS material used. 

Some units were cut from large crystals, and then lapped and 

etched before the contacts were attached. others were made 

from small, thin platelets which were condensed in a vapor 

diffusion furnace using the method of Frerichs' as described by 

Bube and Thomsen [16]. Those made from large crystals were 

generally of larger area and width (approximately 25mm2 x O.lmm) 

than the small platelets which had cross-sectional areas in the 

range of 0.5mm2 and thicknesses of about 10 microns. Handling 

of the small crystals, which were extremely fragile, was much 

facilitated through the use of a "Penfield Eductor Pickup." This 

is a commercial unit which holds small samples with the very 

light vacuum created at the end of a shaped hypodermic needle 

through a Venturi action on escaping compressed air. 

The preparation of the surface of the crystal prior to 

the attachment of electrodes is a very important part of the 

process of diode construction. As evidence of this fact we 

shall discuss briefly at the end of this report some data 

taken on the photovoltage observed for these diodes. The 
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photovoltage data showed conclusively that the contact properties 

of gold on CdS will be dependent on the state of the surface of 

the material. Crystals from the same lot, processed i n 

identical fashion, showed a value for photovoltage at a given 

illumination which varied considerably. In a few instances, 

the photovoltage was even of an inverse polarity from that 

detected for the majority of crystals. That this is a surface 

effect is evident from the similarity in behavior of the same 

diodes under space-charge-limited flow conditions (described 

in Chapter 5), which is definitely a bulk phenomenon. TO 

minimize any influence of differing surface conditions, therefore, 

it is necessary to treat the material in a set manner, keeping 

all preparation variations to a minimum. As described in Section 

3.2, practically no surface preparation was attempted on the small 

platelets. Under these conditions it is not too surprising that 

the contact properties of these samples varied somewhat. A far 

greater degree of uniformity prevailed inthe photovoltage data 

taken for the large crystals , which had a more extensive surface 

preparation. 

The small platelets were of special i nterest for at least 

three reasons. First, they were truly mono crystalline and hence 

the analyses made under this assumption are justified for these 

platelets. It is not certain that the larger crystals were 

monocrystalline, since on many of them there were lines which 

looked suspiciously like grain boundaries. Second, the thinness 

of the small platelets enabled high fields to be easily impressed 
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upon them with a small, laboratory d-c supply. The platelets for 

which results were obtained were in the range of 10 microns 

in width, so that fields of a million volts per meter were easy 

to obtain . At these fields certain interesting phenomena were 

noted which will be described more fully in Chapter 4. Third, 

the thinness of the platelets also permitted the exploration of 

trapping properti es through capacitance measurements. The 

experiments reported in Chapter 6 would have been impossible with 

the larger crystals . Because of these three attributes, we shall 

find that most of the discussion to be given resulted from 

experiments on the thin-platelet crystals. 

, 3.2. Crystal Preparation 

Preparation of the small crystals for the attachment of 

contacts was limited to a surface cleansing with de-ionized water 

followed by swabbing with di-chloromethane. The extreme fragility 

of the crystals would certainly have made more extensive surface 

preparations difficult. It was felt, however, that they were 

unnecessary since these samples had no surface abrasion performed 

on them and since CdS appears to be a relatively inactive material. 

The experiments of Smith [17][18] at RCA and by Wright [4] at 

Birmingham on CdS platelets were done on simil arly-prepared 

crystals. 

The large single-crystals were first cut with a diamond saw 

and l apped with successively finer garnet powders culminati ng in 
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W-12grit. Care was needed in these operations, especially in 

the use or the diamond saw, owing to the structural weakness 

of the material. It is advisable to set the automatic feed of 

the saw at its slowest speed to minimize breakage. The CdS 

crystals used had a close-packed-hexagonal crystallography and 

had rar more strength across the hexagonal axis than along it. 

All samples were cut across this axis (001 plane). For this 

mechanical work the samples were waxed to a supporting substrate. 

They were then removed rrom the substrate and etched. A suitable 

etch appears to be six-normal hydrochloric acid. The rate or 

material removal is high, so that only a short time should be 

allowed in the etch bath. Arter etching, the crystals were 

quenched in de-ionized water and swabbed with di-chloro-

methane. They were then ready for the attachment or electrodes. 

3.3. Construction of the Diodes 

A great deal of experimentation and trial preceded the 

successful construction or diodes. The chier problems lay in 

achieving mechanical strength, and in providing surficient 

electrical insulation ror the extremely thin warers in order to 

avoid leakage paths around the crystal. 

Based upon the procedure reported by Wright [4], initial 

effort was directed toward making alloyed contacts or indium 

directly to the CdS surface. This was successful in some 

instances, especially in the work on the large crystals, but 

proved dirricult to implement with the small platelets. The 
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procedure followed for the alloying began by placement of a small 

indium pellet on a copper substrate with the CdS crystal perched 

above it. A hot plate then provided sufficient heat to melt 

the indium and thereby make a binding contact between the CdS 

and the copper. An acid flux at this point acted to increase 

the mechanical strength of the joint without apparent electrical 

effect. 

Chiefly owing to mechanical difficulties with the small 

platelet crystals, later efforts were directed toward making 

the indium contacts by evaporating the electrode material in a 

vacuum chamber. This evaporation was performed at a fairly 

poor vacuum (approximately 10-5mm of mercury) from an overhead 

tungsten filament. A silver paste was then used to attach the 

CdS platelet to the copper substrate. The electrical path into 

the crystal thus consisted of a copper plate, conducting silver­

paste, and then indium evaporated to the CdS. The silver paste 

was very poor in its mechanical strength, but rigidity was 

provided for the mount by the Fibreglas insulation as will be 

described. Figure 3.1 is a schematic diagram of the construction 

used and should prove helpful as a reference as the description 

proceeds. It should be emphasized that this figure is not intended 

as a pictorial representation nor is it drawn to scale. 

With the crystal in place on the copper substrate, a layer 

of Fibreglas, a very hard, inert, air-drying, commercial resin, 

was laid to its edges covering the copper completely in the 
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FRONT ~ 

Figure 3.1 

gold film 

inditnn-soldered 
to gold film 

insulation 

Schematic drawing of the construction of the Au-CdS-In 

. diodes. The drawing i s not to scale and not represent­

ative of shapes - all crystals are actually of an 

irregular shape. 
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vicinity of each unit (there were often more than one crystal 

on a single sUbstrate). The Fibreglas had enough surface tension 

to form a neat fillet at the edge of the crystal without 

running over the crystal itself, provided care was taken in 

this operation. The Fibreglas was permitted to dry for at least 

24 hours before any further operations were performed. The next 

step was to treat the exposed surface of the CdS as was described 

in Section 3.2, etching the larger cut pieces and cleansing the 

small platelet surfaces. The Fibreglas is capable of withstanding 

the etch for short periods of time. 

After this, the entire assembly was placed in a vacuum 

chamber and the system pumped to about 5 x 10-7mm of mercury. 

It was left at this vacuum for at least an hour before evaporating 

any material. The gold evaporation was done from an elevated 

tungsten filament onto the assemblage, which was masked so that 

only the crystal face and the Fi breg1as adj acent to it "lere 

coated. To ensure a clean surface on the evaporative source 

material, the first metal evaporated was caught on a shutter used 

to shield the diode structures. The final step in the process 

was lead attachment to the gold substrate. Early work was done 

by making this contact with a micro-manipulator until it was 

discovered that very fine wires could be soldered with pure 

indium to the portion of the gold film overlapping the crystal 

onto the Fibreglas. The copper plate was then glued to a circuit 

board, the wires from the gold film attached to stand-offs, and 

leads attached from other stand-offs to the plate itself. This 
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produced a portable, rigid structure suitable for electrical tests. 

As made, the units could stand only moderate temper ature changes. 

Heating was limited by ·the melting point of indium (156.4°c) and 

cooling by the effects of unequal coeffi cients of expansion. The 

Fibreglas would crack from the copper a t low temperatures and 

the crystal contact to the copper base would break due to 

the relative motion. Lack of facilit i es and units prohibited a 

complete study of the permissible excursion to lower temperatures. 

As a precautionary measure, completed diodes were stored in an 

evacuated dessicator, although later experience suggests that this 

is not necessary. 

3.4. Material Sources and Properties 

Cadmium sulfide is now of some commercial value, and there 

are, accordingly, a number of chemical supply houses from which 

it is available in single- crystal form. On the advice of R. L. 

Williams of RCA, relatively large (5 gram) single crystals of the 

material were purchased from the Eagle Picher Company of Cincinnati, 

Ohio. Other single- crystal samples of roughly the same size and 

character were generously supplied by D. C. Reynolds of the Wright 

Air Development Center in Dayton, Ohi o . Eagle Picher sells CdS 

doped with chlorine to give a range of room-light resistivities, 

and various values " ere obtained for study. Chlorine and the 

other halides act as donors in CdS. They are ionized at room 

temperature and can cause significant increases in dark conductivity. 

The halides are thought to be incorporated substitutionally for 
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sulfur in the crystal lattice. Trivalent cations such as aluminum, 

gallium and indium appear to substitute for cadmium in the 

lattice and also act to increase the conductivity of CdS. Copper 

and silver, on the other hand, provide energy states low in 

the band gap, and thereby decrease the conductivity of the 

crystal. Since copper and silver have opposite effects from 

the halides on the conduction-band population, elements from 

the two groups are sometimes incorporated one after another in 

a crystal to establish a given resistivity [1]. 

The addition of copper or silver after a halide is a 

useful technique in the condensation of the thin-platelet 

crystals. While it is possible to grow the crystals from pure 

vapors of H2S and cadmium, the presence of a halogen seems to 

enhance their growth [6]. Therefore, high resistivity thin­

pla t elet crystals are sometimes made through compensation of 

the incorporated halogen by copper or silver. Both pure crystals 

and crystals doped with chlorine followed by copper were studied. 

These were obtained through the generosity of R. W. Smith of the 

RCA Princeton Laboratories, and of J. E. Johnson who i s at the 

Westinghouse Research Center in Pittsburgh, Pennsylvania. 

Both the gold and indium used in making contacts to the 

CdS were chemically-pure grades, available from almost any 

chemical supplier. The Fibreglas resin used as an insulating 

material is available at a number of hardware stores, chiefly 

those dealing in marine products. 
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3.5. Measurement of Thin-Platelet Dimensions 

It is necessary to establish the physical dimensions of 

the crystals accurately in order to check the electrical measure­

ments with theory. The diode construction made measurement of the 

sample area fairly straightforward. With vapor-deposited contacts 

it was relatively simple to obtain this value by making use of 

the graduated eyepiece in a metallurgical microscope. The procedure 

was to estimate the outline of a rectangle apprOximating the 

sample area, and to read the dimensions directly from the eyepiece 

calibration. The approximate error from such a procedure is 

estimated at a maximum of 10% of the linear measurement. Most 

small platelets had a cross-sectional area of about half a square 

rom, known with a precision estimated at ± 20%. 

Measu~ement of the crystal thickness was more difficult. 

Before any of the operations used in fabricating the samples were 

started, all platelets were measured with a micrometer. This 

proved satisfactory for the large samples, but it was a fairly 

gross technique for the small samples since the crystal surfaces 

were in general not planar, but had small spines on them. Also, 

most of these samples had thicknesses in the range of ten microns. 

This is a rather small measurement to make accurately with a 

micrometer. Especially in the case of alloyed junctions, it was 

not certain whether the electrical contact existed at the 

physical surface or, perhaps, below it due to some in-diffUsion 

of the metals. Wright [4] gives evidence that some diffUsion 
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occurred from the contacts of one of his samples. For these 

reasons the thickness used in all calculations for the thin 

platelet was the one deduced from the capacitance measurements. 

In the discussion concerning capacitance measurements in Chapter 

6, the interpretation of the capacitance data is explained, as 

is the technique of making measurements. Thicknesses deduced 

from measured capacitance were about 50% lower than those measured 

initially with the micrometer. 

The errors involved in the calculation of' thickness from 

measured capacitance are due to: 

a. The added stray capacitance from the lead 

attachments. As described in Section 3.3, 

it was necessary to overlap the gold film 

onto the Fibreglas in order to provide a 

place for soldering the leads. This over­

lap necessarily adds some capacitance in 

parallel to that of the sample. The size 

of this added capacitance is dependent on 

the area of the overlapping gold film and the 

thickness of the insulating Fibreglas. 

Although some test measurements of capaci­

tance measured across the Fibreglas film 

alone ran as high at 1.3Pf, it is felt 

that a good average for this value would 

be closer to lpf. Accordingly, in 
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deducing thickness lpf was subtracted 

from the measured value for the capaci­

tance of all diodes. It follows, there­

fore, that the probable percentage errors 

are highest in samples for which the 

measured capacitance is lowest. 

b. Inapplicability of the simple formula 

L = C/AKEO' with L the crystal thick­

ness, C the measured capacitance, A 

the junction area, and KEo the crystal 

permittivity. Error in the application 

of this formula would arise due to lack of 

surface planarity or uniformity of electrodes 

or crystal. Owing to the extreme thinness 

of the samples, this EOurce of inaccuracy 

is not likely to be great. In any case the 

simple equation would give an average 

thickness, which should be the most useful 

in further calculations. 

c. Error in the measurements of C or A. 

The expected precision for the area has 

already been discussed. The discussion 

of the precision of capacitance measure­

ments is given in Chapter 6. In the 

worst case, their inaccuracy might lead 

to about :fJ'/o error in L. 
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d. Error in the value for the relative per-

mittivity. We shall see in the complete 

discussion of capacitance measurements in 

Chapter 6 that the permittivity in CdS is 

a function of illumination . Bube [1, page 

276 ] comments also on the variation of K 

with trap densities in CdS. This being 

the case, it is not surprising that the 

dark values given in various references 

differ by as much as 10% from the value 

10.5, which was used in this study. 

In summary, it is not expected that the total error in 

the thickness measurement exceeds 50%. Table 3.1 tabulates the 

high frequency capacitance and dimensions for the diodes for 

which mathematical analysis will be presented later in the text. 

TABLE 3·1 

Diode # Capacitance Thickness Ar12a VOl:fe 
pf 1-1 m m 

13-4 4.0 13·5 5.8xlO-7 7.9xlO-12 

13-5 2.15 13.85 3. 2xlO-7 4.4xlO-12 

13-7 5.74 9·71 6.0xlO-7 5.8xlO-12 

3.6. Control of Gold Film Deposition Thickness 

In studying illumination effects on the completed diodes, 

light was directed through the gold contact. By this means, 
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information was sought bearing upon the assertion of Williams 

and Bube that the photovoltaic effect at a metallic blocking 

contact to CdS results from optically-stimulated photoemission 

from the metal into the crystal [15]. To test this theory, and 

also to obtain a correct evaluation of photoconductive data, it 

was necessary to control the thickness of the gold film. 

This was done by monitoring the resistance of a square 

of the deposited material placed in the vacuum at the same 

distance from the source as the diode on which deposition was 

taking place. Research done by Wilkinson and reported by Holland 

[19, page 237] showed that the dependence of the reSistivity on 

film thickness for gold on glass may be fitted empirically by 

the equation: 

~ulk (1 + 1230/L) 

with p standing for the resistivity, and L, the thickness of 

the film in angstroms. Using 3.1 and the relationship p = RL 

for a square gauge, one can solve for the requisite resistance 

measured across the terminals for any desired film thickness. 

The evaporating metal is then simply cut off by the shutter when 

this resistance is reached. 

The precision of this method is somewhat limited due to 

fluctuations of film thickness over the square area, and inaccuracy 

in the exact distances from source to sample and source to gauge. 
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However, the primary goal was a means of knowing relative 

thicknesses for the gold film on various samples. It is felt 

that this end was served adequately by the method. 

3.7. Conclusions 

With the hindsight available from many trials at diode 

construction, some observations on working with CdS may be made. 

If work is done on samples cut from large crystals, the minimum 

thickness for the sawn wafer should be about .02 inches. CdS 

does not appear to have sufficient structural rigidity for 

thinner cuts without fracturing. It is easy to reduce the 

thickness considerably below the cut dimension by hand-lapping, 

so that the minimum saw cut is not a thinness limitation. The 

fact that the lapped crystals are not overly fragile suggests 

that the problem in diamond sawing is blade vibration. Care 

was observed to minimize this effect but even with such care, 

twenty mils seemed the lower limit for a reasonable yield of 

samples. These statements apply to cuts across the crystal 

axis (001 plane); essentially no success was achieved in diamond 

sawing along the axis . 

Vapor-deposited metallic contacts are recommended wherever 

possible. This technique not only permits accurate geometric 

control, but is as gentle as possible to the crystal. In 

addition, by building substrate heaters into the vacuum system, 

any desired heat treating can be done within an inert milieu. 
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In heat treating the CdS in this fashion, it was found that 

vapor-deposited, indium contacts were capable of electron 

injection even in the complete absence of alloying. 

The final mounting of the crystal for experimental 

test is an important part of the fabrication procedure. The 

mounting technique described in Section 3.3 represents the 

result of a number of attempts, most of which were only 

partially successful. The mounting finally adopted could 

serve well for a number of different experiments with only 

slight modifications. Its main and most useful features are 

the use of Fibreglas to hold the sample and the employment of 

indium-soldered wires to make connections to the vapor-deposited 

contact films. Most other investigators of the properties of 

CdS have worked with samples that had surfaces exposed to air 

except underneath the metallic contacts. From the agreement 

between their results and those which we shall present in 

Chapter 5, we can state that the resin ambient does not signifi­

cantly alter the properties governing charge injection into the 

crystal. If anything, the surface of the crystal contacting 

the Fibreglas should be more stable than if it were exposed to 

air so that, even in experiments where surface properties were 

more important, the Fibreglas support could be valuable. 
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CHAPTER IV 

CdS Diode Equilibrium Current-Voltage Characteristic: 

I. Gold Contact Negative 

In this chapter we shall begin the discussion of the 

electrical measurements made on the CdS diodes fabricated in 

the manner described in Chapter 3. The current-voltage 

characteristic for the diodes under equilibrium conditions will 

be the subject both of this chapter and of Chapter 5. Much of 

the discussion in these two chapters is framed in terms of the 

measured characteristics of diode 13-5, a thin-platelet unit 

which behaved similarly to most of the diodes of its type that 

were tested. Other diodes are discussed with reference to 

differences from diode 13-5. Figure 4.1 is the overall volt­

ampere curve for diode 13-5, plotted to linear scales. The 

voltage polarity is that of the gold contact. Figure 4.1 divides 

quite neatly into three distinct regions, which are best discussed 

separately. These regions are demarcated by Roman numerals on the 

plot. Regions I and II are discussed in this chapter, although 

the latter is common to both positive and negative excitation for 

the gold film. Region III is discussed in Chapter 5. 

As all of the diodes made were light sensitive, the 

measurements not concerned with photoelectric effects were made 

in the dark. In discussing experimental results, it will always 

be specifically stated where this was not so . 
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4.1. Dark Conductivity 

At low applied voltages, either positive or negative, 

figure 4.1 shows that the crystal exhibits an ohmic behavior 

indicative of an extremely high resistivity. From this portion 

of the characteristic, which we have labeled Region II, we may 

deduce the free-electron density in the crystal. 

Making use of the standard formula for the resistance 

value deduced from the slope of figure 4.1 in Region II together 

with the diode dimensions given in Table 3.1, we may calculate 

the crystal resistivity. The indicated resistance, 2.5 x 109 

ohms, implies a dark resistivity value of 9 5.78 x 10 ohm-em. 

Assuming a mobility for electrons in CdS of 200*cm2/volt-sec., 

this resistance indicates a dark electron concentration of 

4 6 - 3 5 . x 10 cm • The dark resistivity value for diode 13-5 is 

within a factor of three of that measured for the three other 

pure samples checked. Some of the diodes doped with chlorine 

and copper as described in Section 3.4 had dark resistivities 

an order of magnitude greater than this . 

It is pertinent at this point to see what value one would 

expect for the intrinsic electron density in a perfect crystal of 

CdS, in order to decide whether the observed denSity can be 

accounted for through normal excitation processes from the CdS 

* There is not yet general agreement among investigators on the 
value of the electron mobility in CdS. (There is absolutel~ none 
on a value for the hole mobility.) Values range from 10cm /vol t­
sec. [20] to 200 [1, p. 269 ]. The latter value is used here since 
it is most current and is given by Bube after a search of the 
literature on the properties of CdS . 
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valence band or whether it is due to ionized donor centers. 

For an intrinsic material the electron density is given 

by: 

n (4.1) 

where Wg is the gap energy and Nc is the effective density 

of states in the conduction band. From Bube [1], Wg 

for CdS. The quantity N is given by: 
c 

= 

2.4ev 

(4.2) 

where m is the effective mass of electrons in the conduction 
e 

band and h is Planck's constant. Bube [1] gives an ellipsoidal 

average of m = .14m e r 
for CdS, where 

mass. Using these values, we calculate: 

m 
r 

is the electron rest 

at 
o 

T = :pO K. Hence we obtain n = 1.93 x 10-3cm-3 for intrinsic 

CdS. Comparison of this extremely low density with the value 

5.4 x 106cm- 3, deduced from measurements, assures that the 

measured electron density is due to effective donor centers, and 
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that the Fermi level interior to the crystal is not located 

at the band-gap center . Assuming that all the effective 

donor centers are ioni~ed, we can carry these calculations 

one step further and determine the depth of the Fermi l evel in 

the actual crystal below the conduction band edge through 

the relationship: 

with Nd 

take for 

the effective donor density. For 

Nd the measured electron density 

(4.3) 

sample 13-5, if we 

4 6-3 n = 5. x 10 cm , 

we obtain from equation 4.3: We - W
F 

= .656ev. Hence the actual 

Fermi level is distinctly elevated from its 1.2ev depth in 

intrinsic material. This has been a general finding among 

investigators of the properties of "pure" crystals of CdS . 

4.2. High Field Characteristic 

As the gold film contact to the CdS is made progressively 

more negative, a departure from ohmic behavior begins to become 

evident at applied voltages in the neighborhood of 40 volts. This 

is the portion of figure 4.1 which we have called Region I. From 

the crystal thickness in Table 3.1 we see that the average field 

at the edge of Region I is 4 3 x 10 VOlts/em. 

At such high fields a number of phenomena are possible, 

including various types of crystal breakdown. Further consid-

erations are necessary to deduce what mechanism is responsible 
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for the characteristic obtained. 

A possible explanation of the mechanism leading to 

departure from ohmic behavior suggests itself when the data of 

figure 4.1 is replotted with logarithmic current, the ordinate, 

and the square root of voltage, the abscissa. With such a 

representation the experimental data in Region I becomes an 

extremely good fit to a straight line. Such a plot for sample 

13-5 is given in figure 4.2. The exp(~/2) dependence of 

current implied by this curve is reminiscent of the Schottky* 

high-field variation for thermionic emission into a vacuum. 

This leads one to believe that the gold film is indeed acting 

as an electron emitter into the . CdS at high-fields, and that 

its effective emission work function is being decreased through 

the action of the high electric field. 

Besides Schottky emission, consideration of at least one 

other solid-state phenomenon has been shown to lead to an 

exp(~/2) dependence for current. Henisch [22, p. 202] 

derives such a dependence for electrons tunneling through the 

top of a variable-width barrier under the influence of a high 

field. This hypothesis does not appear likely to explain the 

results presented here both on theoretical and experimental 

grounds, for the following reasons: 

1. The hypothesis is based on the assumption that the 

space-charge region is of variable width as in a back-biased 

* See, for example, Spangenberg [21, p. 156]. 
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p-n junction. The observed conductivity is so low that one 

would expect the space-charge region to extend the length of 

the crystal at any reasonable applied voltage. Therefore, it 

seems unlikely that one can justify the postulate that tunneling 

is through a variable-width barrier unless a marked surface 

concentration of donor states is present.* 

2. The theory for the tunneling mechanism as given 

by Henisch results in an expected variation of current with 

voltage of the form: 

where 30 

Nd 

x c 

J 

is the low-voltage, junction saturation current, 

is the effective donor-state density near to the 

is a critical thickness for tunneling such that a 

barrier is assumed completely opaque to tunneling 

electrons for w > Xc and completely transparent 

to tunneling electrons for w < x , with 
c w the 

barrier width for electrons of a given energy. A 

reasonable value for x 
c is: x c 

-9 0 
= 10 m = lOA. 

(4.4) 

contact, 

* If the barrier width were not variable, then the Fowler-Nordheim 
[23] treatment for tunnel emission would apply. This predicts a 
variation of current proportional to exp(K/E), with E, the 
applied electric field and is, therefore, inconsistent with the 
measured data. 
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4 6-3 Insertion of the calculated donor density Nd = 5. x 10 cm 

from Secti on 4 .1 into this equation leads to a coefficient for 

in the exponential of the order of - 6 -1/2 10 volts • As 

we shall see shortly in the analysis of the experimental data, 

the measured value for this coefficient is of the order of 

unity. Hence, the disparity is a factor of about a million 

between experiment and this theory. One might object to the use 

of a bulk donor density in the calculation, arguing that surface-

state donor densities might differ significantly from those in 

the bulk . However, the necessary hypothesized donor density to 

insert into equation 4.4 to match theory to experiment is roughly 

1 018cm- 3. Such a density of donor states is unlikely, but 

cannot be dismissed as impossibl e . 

Returning to the consideration of an analogue behavior in 

solids to field emission over a barrier into a vacuum, we note 

that some reported research has already succeeded in an apparent 

observation of this phenomenon. The mechanism was invoked by 

Vermilyea [24] with apparent success to explain experimental data 

on the volt-ampere characteristics that had been measured by 

Charlesby on thin films of Zr0
2

• The simplest approach to 

follow in the calculation i s to assume, as did Vermilyea, a 

behavior of the el ectrons emitted from the gold film analogous 

to the well-documented vacuum situation [ 21 ]. Provided both 

that our analogy is correct and that the distances involved 

a re significantly larger than the material l attice spacing, 

thi s cl assical treatment should be valid. 
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Consideration of the image-force potential of an emitted 

electron, together with the potential related to the applied 

field E, results in the apparent diminishing of .the emission 

work function by the value: 

Hence the actual current emitted would be given by: 

(4.6) 

where ~O is the emission work function with no applied field. 

If the anode potential is so high, or the current density so low, 

that space charge has a negligible effect on the potential 

distribution between the electrodes, then the potential gradient 

at the cathode surface depends only on the anode potential and 

on the geometry of the electrodes. In general, under these 

conditions, we may write: 

E = (4.7) 
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where ~ is a geometrical constant which assumes the value unity 

in the case of absolutely plane, parallel electrodes with no 

fringing effects. Inserting equation 4.7 into equation 4.6, 

we write: 

ln J (4.8) 

which implies that a logarithmic plot for either the current 

density J, or the current I, should be linear versus the 

square root of the applied voltage. The slope of such a graph, 

if plotted on usual base 10 semi-log paper should be the 

coefficient of in equation 4.8, multiplied by the 

reciprocal of ln 10, 

d(log I) 

dJv 

or: 

At o 300 K, this value is 2 x 10-4(~/L)1/2 for CdS in the MKS 

system of units . For sample 1 3- 5, therefore, the theoretical 

slope implied is 0 .053(~)1/2vOlts -l/ 2. From figure 4.2, the 

measured slope for diode 1 3-5 is 0.625 volts-l / 2 . This value 

is typical of the order 

the slopes ranging from 

of magnitude for 

-1/2 0.37 volts 

(crystal thicknesses were roughly equal). 

other measured sampl es, 

to -1/ 2 0 .77 volts 
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The me.asured characteristic, therefore, implies that the 

constant ~,which relates the apparent field in the vicinity of 

the emitting electrode to the average field in the interior, is 

139. In Section 4.4, we shall consider the possible causes for 

such a large apparent cathode field. Thus, at 40 volts, where 

the apparent field emission becomes evident, E th d = 4 x 106 
ca 0 e 

vOlts/em. 

4.3. Calculation of Field-Emission Voltage 

In principle, one should also be able to calculate the 

voltage at which incipient field emission will take place. This 

is done by assuming the validity of the Richardson equation [21], 

and equating the emission rate it implies to a drift flow of 

electrons whose density is obtained from a thermal equilibrium 

between the metal and the insulator. Such a calculation sets 

equal the maximum electron transfer-rate across the junction and 

the electron flow-rate away from the junction. The resultant 

equation is: 

e~c~Vfexp(-eVB/kT) 
L 

(4.10) 

in which the exponential factor accounts for the barrier height 

eVB' at the blocking metal-insulator junction, and Vf 

applied voltage at incipient field emission. Ae is the 

is the 
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Richardson factor which is calculated by expressing the average 

density of electrons with velocities oriented out of the crystal 

and with energies above the emission work function. Ideally, 

A has the value 
e 

- 2 0 -2 120 amps cm K. The absolute temperature 

is denoted by T, N c is the density of states in the insulator 

conduction band, and the other symbols have their usual definitions. 

Solving equation 4.10 for Vf , we obtain : 

= 
f3e~ c 

(4.11) 

The value to u se for A in this equation, as well as that for 
e 

13, is questionabl e. As an example, for vacuum emitters, the 

"constant" Ae has been determined experimentally to vary from 

.01 t i mes the theoretical value for oxide emitters to 72 times 

its theoretical value for tungsten as an emitter [21]. If we 

assume that A is J) times its theoretical value for the 
e 

situation under consideration (this appea rs to be typical for 

the noble metals), and the 13 of 139 deduced from the measured 

slope of the breakdown characteristic, equation 4.11 yields 

Vf = 78 volts. This is a factor of two higher than the voltage 

measured for sample 13-5, which is not too surprising, when we 

consider the approximations that are involved. Figure 4.3 is a 

sketch of a potential configuration near to the gold contact 
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which would cause a behavior such as we have noted. The steep 

maximum near to the gold contact indicates the high emitter 

field. Possible causes for this field are the subject of the 

next section. 

4.4. Causes of the High contact Field 

There are at least two causes to which might be ascribed 

the rather large ratio between the apparent field at the cathode 

and the average field in the interior. First, the image-force 

consideration involves a distance from the cathode to the 

potential maximum given by [21]: 

x 
m 

Using the calculated E for diode 13-5 this gives x 
m 

(4.12) 

o 
2·92A • 

Since this number is of the order of a lattice constant, there 

is certainly doubt as to the validity of the classical image 

force treatment. It is, however, the same order of magnitude as 

in Vermilyea's case [24]. In the case of emission into a vacuum, 

agreement with simple image-force theory is quoted as being found 

down to x = 19Ao by Parker [25, p. 176]. 
m 

The low value calculated for x provides one possible 
m 

explanation for the magnitude of ~ . If one applied the method 

of images down to infinitesimal dimensions from the cathode, the 
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force holding an electron inside the metal would approach 

inrini ty and there could consequently be no emission. Hence, 

when the distance of the image from the plane of the metallic 

emitter begins to shrink to lattice-constant size, the actual 

force must be less than that calculated by the method of images. 

In the procedure used in our calculations this would necessarily 

show up as a higher effective electric field than that calculated 

from electrostatics; hence, we would expect to find ~ some 

number greater than unity with its value varying inversely with 

x. 
m 

Theoretical considerations of the actual potential in 

the immediate vicinity of a metal-vacuum interface have been 

reported in a number of papers with a fairly up-to-date summary 

presented in the work of Cutler and Gibbons [26]. In a quantum-

mechanical treatment these authors concluded that a corrected 

image force potential could be used in the classical manner at 

small distances from an emitting surface. Their corrected 

potential differs from the actual potential by 3% or greater in 

a length characteristic of the emitting surface. This length, 

which is denoted here by A, is defined in terms of the electron 

potential-well depth (Wa ) by the formula: 

(MKS) (4.13) 



13) 

This equation and other work in reference 26 are hard to 

apply to the situation under consideration here, since the actual 

surface conditions are ~own. In equation 4.13, for example, 

both the well depth and the value to use for K at small distances 

from a surface are in question. If one supposed a case where Wa 

were just the difference between the work function of gold (4.5ev) 

and the electron affinity of CdS (~3.5ev), and that K, following 

the considerations of MacDonald [27], was about one fifth the 

bulk value*, A may be calculated from equation 4.13 to be 14.5 

angstroms. Thus, for the treatment of the observations here 

discussed, a corrected form of the potential is warranted. We have 

already conjectured that this corrected potential would act to 

cause a value larger than unity for the observed ~. Because of 

a lack of more fundamental knowledge of the interface, however, 

further calculations using reference 26 appear too arbitrary to 

be useful. 

The second possible cause for the large apparent cathode 

field stems from the fact that the planarity of the surface most 

certainly does not approach the magnitude calculated for x 
m 

from equation 4.12. Thus, the concept of an image in a perfectly-

* The modification of K is necessary near to the surface since 
the relative permittivity measures the average electrical polar­
izability over all space. MacDonald's work was done with electro­
lyte-metal capacitance measurements and his deduction as to the 
size of K came from considerations of the implied width of the 
surface barrier. Therefore we use here only an analogy. His 
paper is quoted as evidence that K decreases near the interface. 
As a first consideration one might think the contrary: that the 
influence of the metal surface - where K becomes infinite, would 
be to increase, rather than to decrease the relative permittivity 
in the crystal. 



conducting plane surface is not satisfactory. More probably the 

surface consists of small protuberances that act to increase the 

fields locally. This conclusion is strengthened by the observation 

of a similar effect in atomic film emitters for vacuum tubes. A 

theoretical analysis by Langmuir and Compton in 1930 (described 

by Parker [25]) of a specialized model was able to account on 

this basis for a higher observed variation of emission with 

voltage than is given by the simple theory for such emitters. 

More currently, Spangenberg [21] states that the results 

of experimental tests of the Schottky effect on a large number 

of vacuum cathodes have indicated high slopes for log I versus 

yl/2 than that predicted by the simple image-force theory which 

regards the cathode field as equal to V/L. 

It would not be instructive to attempt to contrive a 

specialized emission model to obtain ~ theoretically, since 

it would be a completely ad hoc theory. Conditions so close to 

the surface may be of such a complexity that there are simply too 

many alternatives. 

4.5. Conclusions 

The characteristic of the diodes under reverse bias as 

determined experimentally is an ohmic behavior until average 

fields of the order of 2 x l04volts/cm are reached in the 

crystal. As voltage is increased from the value causing this 

average field strength, a sharp increase in current which varies 
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as with a a constant, is noted. The observed 

behavior suggests strongly that Schottky emission is taking 

place from the gold film into the interior of the sample. As 

discussed in Section 4.2 there is some possibility of the 

breakdown being due to a tunneling effect but this requires 

the postulate of a l arge density of donor states near to the 

surface. Correspondence of measurements with theory for the 

Schottky-emission hypothesis demands that the ratio ~ of the 

actual field near the blocking contact to the average applied 

field be of the order of one hundred. Various physical grounds 

do exist which tend to justify such a value for ~. 

Current varying as exp ~/2 was observed in all five 

thin platelet diodes tested for this effect. Three of these 

failed under continued high voltage excitation in the range of 

an average field of 4 5 x 10 vOlts/em. In failing, the units 

suddenly assumed a higher apparent conductivity which persisted 

at all voltages and for either polarity of voltage. 1Jnfortunately, 

the thicknesses of these crystals were only known via the 

relatively inaccurate micrometer measurements, described in 

Chapter 3, making a rigorous test of the constancy of ~ in 

equation 4.9 impossible. For the two remaining diodes, the 

value of ~ was within 30% of the ~ obtained for diode 13-5, 

when calculated from the measured slope of the curve corresponding 

to figure 4.2, through equation 2.9. 

A recent paper by Williams [ 28 ] reported experiments on 

the effects of high fields on CdS as imposed at an electrolyte-
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CdS interface. Williams observed a breakdown field which 

resulted in a short-circuit type of failure for his samples. 

The breakdown field for seven samples averaged 2 .x 106volts/cm. 

This value corresponds closely to the cathode field of 4 x 106 

vOlts/em deduced in Section 4.2. Three diodes, as noted above, 

failed in the same manner as did Williams' samples under average 

fields about 0.01 times this value. This correspondence is 

fUrther evidence of the apparent high fields deduced to exist 

near to the cathode. The most likely source of the breakdown, 

according to Williams, is electron tunneling from valence to 

conduction band. 



CHAPTER V 

CdS Diode Equilibrium Current-Voltage Characteristic: 

II. Gold Contact Positive 

In this chapter we shall complete the discussion of the 

equilibrium current-voltage characteristics for the CdS diodes. 

In Chapter IV, we considered the diode behavior both under high 

reverse bias and under low biases in the forward and reverse 

direction, corresponding respectively to Regions I and II in 

figure 4.1. The portion of the characteristic still to be 

investigated is that which we have labelled Region III in figure 

4.1. We shall see that this region, which is confined to 

positive applied voltages for the gold contact, harbors a rich 

variety of behavior both in apparently similar diodes and in 

a single diode under slight:i?~rameter variations. The lower 

boundary for Region III ~sset by a departure from ohmic behavior. 

Both this point and the nature of the characteristic for diode 

13-5 in Region III become more evident when the data of figure 

4.1 are replotted onto logarithmic scales, as is done in figure 

5.1. In figure 5.1, it is revealed plainly that the characteristic 

for diode 13-5 goes from a proportional behavior (450 slope) at 

low voltages to a square law behavior (26.60 slope) at higher 

voltages. As can be seen, the data fit of measured points for 

diode 1 3-5 is extremely good to both of these lines. From the 

theory, developed in Chapter 1, this is the simplest characteristic 

which can be observed under space-charge-limited current-flow 

conditions. The theory of space-charge-limited injection will 
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be applied in this chapter to the characteristics shown by 

diode 13-5, and to the characteristics measured for another 

diode whose behavior was more complex. The fit between theory 

and experiment, as we shall find, is good. In order to orient 

our thinking we shall begin the chapter with a resume of the 

properties of space-charge-limited currents. This :resum~, the 

topic of Section 5.1, will emphasize the physical processes 

which are operative and therefore will act as a sup.plement 

to the quantitative theory of Chapter 1. Succeeding sections 

will present and interpret experimental results obtained on the 

diodes. 

5.1. Space-Charge-Limited Current in Solids: Qualitative 
Discussion 

The evidence from figure 5.1 is that indium is capable 

of acting as an electron injector into CdS. At low voltages 

there are essentially only the carriers normally present in the 

material conduction band, and an Ohm's law behavior results. At 

higher voltages, electron injection from the indium begins to 

occur to an appreciable degree, and the interior assumes a net 

negative charge. The amount of charge injected is governed by 

a simultaneous solution of Poisson's equation and an equation 

expressing the rate of charge transport across the crystal, 

subject to the applied voltage as a boundary condition. 

The possibility of sufficient space charge being injected 

into insulators to lead to a space-charge-limited flow condition 
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was first suggested and analyzed by Mott and Gurney [14] • . The 

authors applied an analogous attack to that used to deduce 

Child's law for space-charge-limited currents in yacuum. The 

differing dependence of the motion of the charge carriers 

through the field (v !.IE in a solid; v ( 2eV/m)1/2 for 

a vacuum) leads to a square-law dependence for current on 

voltage in the crystal case, instead of the 3/2 power law 

of the vacuum case. If perfect crystals were available, so 

that an insulator could be characterized as having electronic 

energy states permitted only in the various bands, the solution 

of Mott and Gurney would be applicable. Their solution: 

J 

is approached in the behavior of actual crystals only when the 

free charge in the conduction band becomes the significant 

component of the total charge injected into the solid. Equation 

5.1 was derived in Section 1.3· 

Actual crystals are not deVOid of permitted states in the 

so-called forbidden band. In fact, the large band-gap materials 

such as CdS, into which one could expect to inject significant 

charge, are characterized by an appreciable density of forbidden 

gap states. The relative importance of these states is naturally 

enhanced by a decreasing density of free electrons. States in 



the forbidden gap, which provide energy levels that immobilize 

injected charge, act to modify significantly the dependence of 

current on voltage from the form of e~uation 5.1. Those gap 

states which are in thermal e~uilibrium with the conduction 

band, and which are filled and emptied through the conduction 

band, are called electron trapping states. The bulk of the 

injected charge '''ill be found, in most cases, to reside in 

these trapping states. By postulating the energy configuration 

of the trapping states, it is possible to deduce the expected 

dependence of current upon voltage under space-charge-limited 

conditions. A mathematical analysis for the trapping-level 

configurations pertinent to the diodes studied was given in 

Chapter 1. The discussion in that chapter also outlined the 

procedure to follow in deducing the effects of any type of 

trapping configuration on space-charge-limited current flow. 

The theoretical treatment of Chapter 1 showed that it is 

possible to obtain volt-am,pere characteristics, in crystals 

susceptible to space charge injection, ranging from linear to 

an exponential dependence. The behavior of a given crystal will 

be specified by i ts trapping configuration with energy and the 

position of the Fermi level relative to that trapping configuration. 

The governing condition for the type of volt-ampere 

behavior observed under space-charge-limited conditions is the 

statistical relationship between free and trapped charge. Since 

only the free charge contributes to the observed current, while 

the total charge is made up of free plus trapped charge, their 
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inter-relationship has a direct bearing on the volt-ampere 

characteristic obtained. 

The simplest case for a crystal with traps is that in 

which there is a voltage-independent proportionality between 

the free and trapped charge. This occurs when the Fermi level 

is sufficiently below the trapping levels in the band gap so 

that Maxwell-Boltzman statistics apply. Under these conditions, 

the trap-free current (given by equation 5.1), is reduced by 

a factor equal to the ratio of free to trapped charge. When 

Fermi-Dirac statistics must be used for the free and trapped 

charge populations, the ratio of n to n
t 

becomes a function 

of voltage and higher power than square-law currents result. 

Because of the rapid variation of the Fermi-Dirac dis­

tribution function in the region of the Fermi level, the bulk 

of the traps for a discrete-energy trapping level are filled 

when Maxwell-Boltzman statistics are not applicable. This leads 

to a high power law between voltage and current near to that 

voltage which fills all traps. A physical insight into the 

reason for this behavior comes from the realization that the 

position of the Fermi level interior to the crystal should be of 

no consequence with regard to the injection of electrons from 

the cathode. That is, the number of electrons injected for 

each increment of voltage should undergo no sharp discontinuity 

as the Fermi level begins to approach the trapping level. When 

the Fermi level is below the trapping level, almost all injected 

electrons are trapped; when the Fermi level is above the trapping 
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level, almost all inj ected el ectrons are free. Since the neutral 

crystal usually contains enormously more trapping states than 

free electrons we can see that as the trapping level is traversed 

by the Fermi level, there will be a sharp increase i n current. 

If a . crystal is characterized by t rapping densities 

di stributed over a range of energies, then a power-law higher 

than of order 2 will be observed for the volt-ampere characteristic 

while the Fermi level is within this range. An exponential 

behavior results in the special case of a continuous constant 

denSity. 

One would expect that all these characteristics would 

lead to less current at a given voltage than that predicted for 

the simple trap-free crystal. This is true because all of the 

space charge i s mobile in the trap-free case but only a portion 

of it is free to move in the actual crystal. Figure 1.6 

illustrated the possible behavior of a crystal containing a 

variety of trapping levels, as discussed in this section and 

analyzed in Chapter 1. Figure 1. 6 makes it graphically evident 

that, at a given voltage, the largest currents are drawn in a 

crystal which is free of traps. 

5. 2. Complications in Measurements 

In the early course of the experimental work for this 

investigation, especially with units such as will be described 

in Section 5.5, certain I~ysteresi s " phenomena were noted. Diodes 
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would apparently change their characteristics under low-frequency 

a-c operation after roughly five minutes of what appeared to be 

an equilibrium condition. 'l'his behavior, which has been noted by 

other investigators, has its explanation in the discussion of 

Section 5.1. In the case of low-frequency a-c measurements, there 

is a slow build-up of interior charge by the signal through 

charge injection into traps from the contacts. These traps 

discharge slowly, and the net result is a general straightening 

of any diode non-linearity. That is, the traps act to keep the 

conduction band charge more nearly constant, and therefore to 

make the crystal more like a resistor. The slow discharge fram 

traps is evident also in d-c measurements if data are taken for 

a volt-ampere characteristic by lowering the voltage from some 

high value at which an equilibrium current has been established. 

Unless sufficient time is allotted for equilibrium at each of the 

lower voltages, an ohmic characteristic is likely to be measured. 

For a typical chlorine-copper doped diode, a sufficient time is 

about two and one-half days per point (in the dark). These 

observations concur with the findings of R. W. Smith* at RCA. 

This persistence of a non-equilibrium condition,when 

coupled with the extreaely variable behavior of space-charge­

limited currents noted in Section 5.1, can cause not only 

inconsistent current-voltage points, but even an inconsistent 

current-voltage relationship between data taken at different times. 

This arises because one crystal may contain trap configurations 

* Personal communication. See also Ruppel and Smith [29J 
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of varying types spaced at intervals throughout the energy 

band gap. If all these groups of levels are in thermal equi­

librium with the conduction band) the Fermi -Dirac distribution 

function acts to enhance the importance of those trapping 

states near to the Fermi level relative to the others. Since 

the time to reach an equilibrium is often very long) the 

position of this Fermi level may depend on prior excitation 

of the diode. Thus) there is the possibility of a given 

crystal showing a variety of differing space-charge-limited 

characteristics) dependent upon its history. This was encoun­

tered in some of the investigations performed) before it was 

realized that times as long as fifty hours are sometimes 

needed for an equilibrium situation to be achieved. 

5. 3. General Observations on the Diodes Studied 

Measurements) which may be interpreted in terms of the 

theory of space-charge-limited currents were obtained for all 

five of the small thin-platelet diodes studied. Three of these 

had no intentional impurities) while two had been doped with 

chlorine followed by copper as described in Section 3.4. The 

equilibrium characteristic observed most often under space­

charge-limited condi tions was a proportionality between current 

and the square of the applied voltage. In all cases, however, 

the current observed was l ess than that given by equation 5. 1. 
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From the discussion of Section 5.1, and the more complete 

mathematical analysis presented in Chapter 1, this behavior 

indicates that u sually the position of the Fermi level throughout 

the excitation was in a trap-free zone in the band gap and 

sufficiently below the trapping levels that Maxwell-Boltzman 

statistics were applicable. 

To bring out the salient features of the observations in 

the remainder of this chapter, we shall discuss at length the 

results for two small platelet diodes (13-5 and 13-4), the 

former for which the gold-film-negative behavior has already 

been discus sed, and the latter for which an apparent distri­

bution of traps in energy was observed. Diode 13-5 was made 

from a pure crystal of CdS, while diode 13-4 was doped both 

with chlorine and copper. Experimental measurements will be 

interpreted in terms of the mathematical treatment given in 

Chapter 1. 

In the experimental work, most of the current measure­

ments 1-,ere at very low levels , e specially for diode 13-4. As 

seen in its characteristic (figure 5. 3), currents in the 

picoampere range resulted for applied voltages below about 

0.2 volts. Since the measurements of figure 5.3 were at 

the lowest level, their accuracy is the most critical. The 

precision of the measurements presented in figure 5. 3 is 

nonetheless believed to be very good, since all readings 

were recorded on a Varian oscillograph until an equilibrium 
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condition was clearly indicated. The ammeter used was a Hewlett 

Packard 425A, which has current ranges from -12 10 x 10 amperes 

t o 3 x 10- 3 amperes. .Thi s instrument was checked and found 

accurate down to the nanoampere region by a Multiflex galvono­

meter which had a sensitivity limited to 4 x 10-9 amperes. 

Owing to the l ong measuring times and the shielding of leads, 

dark measurements were felt to be accurate to within 2 x 10-12 

amperes, a precision which makes significant measuring error 

.possible in only the lowest point on figure 5.4 (3 x 10-12 

amperes). Voltage readings were not nearly as critical since 

they were not required below 0.1 volt. They were taken on a 

Kintel voltmeter. 

5~4. Characteristic for Diode 13-5 

The square-law current-voltage characteristic observed 

at high voltages for diode 13-5 implies, from Chapter 1, that 

the trapping levels in the crystal are described by Maxwell-

Boltzman statistics. The traps may exist either at a discrete 

energy or else be distributed energetically, but their energies 

are not closer than approximately 2kT to the Fermi level in 

the range of voltages s tudied. The discussion in this section 

will refer to the traps a s if they existed at a discrete energy 

which corresponds, if the traps are in reality energetically-

distributed, to lumping them into an effective density at an 

effective energy level. 



According to the analysis of Chapter 1, ohmic behavior 

in a crystal should give way to space-charge-limited behavior 

when the excess free-e~ectron density at the collecting electrode 

(in this case, the gold electrode) approaches the dark density 

n of electrons in the crystal. The voltage at which this 

occurs is given by equation 1. 20: v = (8euL2(1 + e»/(geKEO)' os 

If we use the dark electron density deduced in Chapter 4, 
- 4 6-3 n = 5. x 10 em ,and assume a trap-free crystal*, we calculate 

from equation 1.20 that a transition to space-charge-limited 

-6 currents should occur at V = 2.37 x 10 volts for diode os 

13-5. From figure 5.1, the observed value for Vos is 19 

volts, so that it is clear that the crystal is not trap-free. 

Therefore, we may use equation 1.20 to calculate e: 

e 
-6 2.37 x 10 

19 
1.25 x 10-7 

We have an immediate check on this value, since e can also 

be computed from the measured current after the inception of 

square-law behavior through equation 1.14. Thus: 

e 

* For the trap-free crystal, e approaches infinity in equation 1.20. 
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Using the measured point, V = 30 volts, I = 27na, from figure 

5 .1 in this equation together with the diode area from Table 

3.1, we obtain 

e 1.19 x 10-7 

These two values for e are in remarkable agreement. A ''best'' 

value for e would probably be an average between the two, or 

-7 e = 1. 22 x 10 • We may also calculate the average trap density 

in the region of the square-law currents. From equations 1.8, 

1.17 and 1.18, we have: 

where ~t denotes the average trap density, as in Chapter 1. 

Hence, in the region of the transition to square-law currents for 

14 -3 diode 13-5, ~t ~ 10 em • If these are deep traps, such that 

their occupancy probability is high, this number is a good 

estimate of the actual trap density. However, if these are 

relatively shallow traps which are not filled with high probability, 

then we cannot yet draw a conclusion as to the actual trap density. 

Nonetheless, we can derive an inequality pertaining to the trap 

density. This is possible because data was accumulated for 

voltages as high as 40 volts applied to the diode, without 

. observation of the steep rise in current which is characteristic 
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of passage of· the Fermi level through the trapping energy. As 

we saw in Section 1.4, filling of discrete energy traps should 

cause a noticeable deviation from square-law behavior in the 

vicinity of V = (1/8)vTFL, with V
TFL 

= eL1Nt /2K€o as derived 

in equation 1.22. Since square-law currents are observed for 

applied voltages up to at least 40 volts for diode 13-5, we 

may expect that V
TFL 

> 320 volts for this diode. If we express 

this inequality in terms of Nt through equation 1.22, we may 

write: 

Putting numbers into this equation, we obtain Nt > 1.9 x l015cm-3 

for diode 13-5. Having established this inequality, we are in a 

position to calculate the maximum depth of the discrete trapping 

level. TO do this, we note that the postulate of thermal 

equilibrium between conduction band and trapping level, coupled 

with the comparatively low energy of the Fermi level, allows 

us to write a Boltzman factor for the statistical weighting of 

the filled states at the conduction-band and trapping l evels. 

From the Boltzman factor, we have: 
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A minimum value for Nt' when inserted into equation 5.3, will 

yield a maximum value for the trap depth (Wc - W
T
). The ratio 

n/nt has been defined in equation 1.8 as e. Therefore, we 

have: 

with N' t representing the minimum value determined for 

Hence, for diode 13-5, we calculate: Wc - WT < O.56ev. This 

inequality does not stipulate a very shallow trapping l evel. 

We shall see in Chapter 6, however, that the depth of the dis-

crete level in diode 13-5 is appreciably less than this limiting 

value. 

The current-voltage characteristic for diode 13-5 was 

found to be linear even under lOW-intensity illumination conditions. 

From the data of figure 4.1, it is evident that if n were 

increased only by as much as a factor of two from its dark value 

through illumination, V would be increased to 38 volts and os 

ohmic behavior would prevail over the range of voltage studied . 

The observed conductivity increase at low illumination indicated 

roughly a factor of ten increase in n, so that the measured 

ohmic behavior is expected. 

5.5. Characteristic for Diode 1 3-4 

Quite a different behavior from what was observed for 

diode 13- 5 resulted when a positive bias was applied to the 



gold terminal for diode 13-4. This sample was also more light-

sensitive than was diode 13-5. As discussed in Section 5.3, 

extreme care was necessary to obtain reproducible measurements 

for this diode. The dark characteristics were taken from what 

appeared to be equilibrium conditions (five hours of the same 

reading) although this necessitated oscillograph records as 

long as fifty hours, especially at the lower voltages. The 

resultant dark volt-ampere characteristic is presented in 

figure 5.2, along with some measurements taken in the light 

which will be discussed presently. 

In contrast to the behavior of diode 13-5, we note in 

figure 5.2 that there is apparently no region in which diode 

13-4 behaves ohmically under forward bias. The dark character-

istic consists of a region in which the current is proportional 

to voltage raised to the power 4.7, followed by a square-law 

region at voltages above V~ 4.6 volts. The square-law 

behavior may be attributed to the same phenomenon noted in 

Section 5.4 in explaining the characteristic for diode 13-5. 

The measured currents correspond to a e value, as calculated 

6 -5 from equation 1.14, of 1. x 10 • 

Readings were attempted above V = 12 volts in the dark 

to add to the data on the square-law behavior, but these resulted 

in erratic current pulses superimposed on a projected square-

l aw value. These pulses lasted for variabJ.e lengths of time and 

greatly exceeded the square-law value. 1~is apparent breakdown 



H 

150 

10' ,----------- ---:=-r-,------, 

/ 
/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

I O-~.7.1 .........J--'.J1...L.LliJJ\Io- --,,!,,-_ _ _ .,(,OO 

v (VO Its) 

Figure 5. 2 

Equilibrium volt-ampere characteristic ~or diode 13-4 at 

various levels of illumination with the gold contact posi­

ti.ve . Curve I - dark; Curve II - i llumination ",, 2 ' candles/ 

~t2 ; Curve III - illumination"" 8 candles/~t2; Curve IV -

illumination"" 20 candles/~t2 . The power law in the trap­

~illing region is J"" av4 •7. The dashed line represents 

the lower square-law region implied by the data if the 

trapping level being filled is discrete (9 = 6.0 x 10-8, 

Section 5.5). 
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occurs at an average field s trength of approximately 104 

volts per em. It was not studied further, because it was 

felt that it might be destructive to the sample . 

The high power dependence of current in the low voltage 

range is suggestive of a case in which trap-filling is taking 

place. The energy configuration of the level or levels being 

filled, however, i s uncertain at thi s point. It is pos sible 

that the high power law results either from a discrete-energy 

trapping state, or a density of states distributed in energy. 

If the characteristic were the result of filling a 

discrete-energy trapping level the~ since less than trap-free 

currents are measured in the eventual square-law region, 

the level is below shallower traps and the analysis of Section 

1.5 would apply. In Section 1.5, we derived an approximate 

equation (equation 1.39) for the exponent of the voltage in the 

voltage range which connects the two square-law regions that 

stem from the discrete levels. From equation 1.39 and the 

observed 4.7 power law we have: 

with 8
2 

the ratio of free to trapped charge in the shallower 

level and 8
1 

its counterpart for the deeper level. Hence 81 

82/845 or, using 

-8 
61 = 6.05 x 10 • 

the value 6 -5 82 = 1. x 10 just determined: 

'I'he characteristic corresponding to this 81 
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value i s shown dashed i n figure 5. 2 . It was not possible to 

take data at a sufficiently low current level to ascertain 

directly whether or not the diode followed this variation. 

Because of the extreme linearity of the high-power-law 

characteristic on the log-log plot of figure 5.2, one might 

expect that, a s an alternative to the explanation just given, 

the traps being filled are continuous in energy.* The exponent 

on V would then imply a density that varied exponentially 

with energy. Mathematical analysis of such a case has been 

carried out in Section 1.6 and will be applied to the present 

case more fully in Section 5.7. Briefly, this type of trapping 

configuration with energy results in a characteristic J = ~, 

where m = «T IT) + 1), T is a "temperature" characteristic 
c c 

of the trap distribution and greater than T, and a is a 

constant. It is tempting to check for the applicability of 

this equation directly through temperature variation, but the 

environmental range neces sary for an unequivocal test would 

damage the diodes. A rigorous di f ferentiation between these 

possibilities may be achieved, however, through observation of 

the trap-filling characteristic under illuminated conditions. 

Accordingly, three more sets of volt-ampere data were 

taken for this diode, under illuminated conditions . The data 

* The power law for a discrete level was an approximation and 
one would expect the measured points to deviate somewhat from 
it, especially near the join point to the square-law charac­
teristic. A more complete discussion of this topic was given 
in Section 1.4. 
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obtained are also plotted in figure 5.2. The fir s t set was 

taken at a very low light intensity (approximately 2 candles/ 

ft2) while the other two were taken at factors of illumination 

four and ten times this amount respectively. The evident 

. difference in the lighted and dark curves i s the marked increase 

in current at a given voltage. This increase amounted t o 

approximately a factor of at the lowes t illumination and 

increased from this factor. What is not evident in the figures 

is the enormous decrease in the time neces sa ry to reach an 

equilibrium for the points on the curve. Whereas dark values 

were not in equilibrium until times of the order of tens of 

hours, even the lowest level of illumination produced an 

equilibri um situation wi thin a few minutes. The lighted curves, 

while duplicating the low-voltage, 4.7-power relationship for 

current as a fUnction of voltage, show ohmic behavior in the 

higher ranges. We note also that the voltage at which the 

characteristic departs from the high power law decreases with 

illumination; although the variation is clearly not uniform. 

These observations, especially the large current increase 

under trap-filling conditions, cannot result from the effects 

of a discrete energy trapping level. The 104 factor increase 

in current demands a corresponding shift in the Fermi level. 

Since the characteristic behavior stays the same after this 

shift, trap-filling must still be taking place under illuminated 

conditions. A single level would be almost insensitive to 

light in its current-voltage behavior as long as the Fermi 
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level were in the vicinity of t he trapping l evel. For discrete­

level trapping, all of the photo-excited electrons would pour 

into the traps without significantly raising the Fermi level -

hence without increasing the conduction-band concentration. 

This will be discussed further in the theoretical analysis of 

Section 5.6. 

5.6. Theoretical Explanation of the Observations on Diode 13-4 

The measured results described in Section 5.5 are consis­

tent with a model based upon the theoretical framework for 

photoconductor behavior proposed by Rose [30]. The observations 

suggest a band-gap structure for the CdS as sketched in figure 

5.ja. The gap states are of three types: shallow traps, which 

may be distributed in energy or else exist at a discrete level; 

traps which are distributed in energy in roughly exponential 

fashion; and finally, states that have been called '~rimary 

centers" by Rose. The primary centers are electron states, 

low-lying in energy, through which almost all recombination 

takes place; that is, by far the most likely mechanism for the 

recombination of an electron-hole pair is the annihilation of 

a trapped hole. in a primary center by a conduction-band electron. 

The specific structure of the primary centers is not indicated 

since it is still a matter of conjecture; hence, they are 

indicated only by cross-hatch in figure 5.3. For this same 

reason, the shallow-trap structure is als o indicated by 

cross-hatching. 
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Interpretation of the effect of illumination on the populations of 

the various gap states. 



Under dark conditions with no applied voltage, there 

is thermal equilibrium between all states in the crystal and 

a single Fermi level (labeled W
FD 

in figure 5.38) describes 

the state populations. The Fermi level can be expected to lie 

either within the trapping density or else on its lower edge 

from the evidence of high-power-law currents in the dark at 

very low applied voltages (figure 5.2). Visible-spectrum 

illumination, which matches roughly the band gap of CdS 

(2.4ev) creates hole-electron pairs in the material. Almost 

all the holes are trapped immediately* by primary centers with 

which the free holes are in thermal equilibrium. Electrons 

in the conduction band come to a thermal equilibrium with the 

shallow traps. Thus, when illuminated, the crystal may be 

described by two quasi-Fermi levels situated in the vicinity 

of the conduction and valence bands. The description of the 

use of the two Fermi levels and the requirements for their 

validity are described extensively by Bube [1, Chap. 3]. 

According to Bube, the Fermi level for electrons WFn is 

defined by the equation W
Fn 

= Wc - kTln(Nc/n), with a similar 

relationship holding for the Fermi level for holes WFp' Since, 

experimentally, the free holes are inSignificant under lighted 

or dark conditions, we shall not be interested in WFp and, 

* Speculation as to why this is tl~e has not led to conclusive 
results as yet. Experimentally, no-one has reported accurate measure­
ments of free-hole lifetimes in CdS to date, although Rose [30] specu­
lates on an estimated ~p of approximately 10-10 seconds. One 
reason for this result, suggested by some researchers, is that the 

. valence band in CdS is at such a low energy that an atomistic model, 
in which all electrons are effectively trapped, is more applicable 
than the band model for the valence states in the material. 
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therefore, shall refer to WFn simply as W
F 

in further 

discussion. In figure 5. 3, WFn = WF is sketched under both 

dark and illuminated conditions and labelled W
FD 

and W
FL 

for these respective situations. These symbols will be used 

to facilitate the discussion of the effects of illumination. 

When the crystal is illuminated, the relative populations 

of the primary centers and of the conduction band are not in thermal 

equilibrium. Recombination traffic flowing from the conduction 

band through the primary centers balances the effective flow 

of electrons from these centers due to the illumination. The 

population of the primary centers is thus a function of the 

recombination parameters describing them, and of the intensity 

and frequency of the illumination. 

The net effect of the light, therefore, is to raise the 

Fermi level in the crystal and to fill the traps existing 

between the old and nevi Fermi levels with electrons that had 

been in the primary centers (figure 5. 3b) • The crystal is still 

electrically neutral, however, since the net charge has not 

been increased, but only redistributed energetically. It is, 

of course, still subject to space-charge limitations for voltage­

injected electrons. Since the traps existing between the 

dark and the illuminated Fermi level are now filled, one would 

suspect that the voltage necessary to inject sufficient charge 

for trap-filling would decrease. This effect is noted in figure 

5.2, where the variation indicates that the phenomenon is non­

linear with illumination. 
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A complete explanation of the shortening of the observed 

decay times demands a rather lengthy exposition of the role of 

the various band states as a function of the separation of the 

hole and electron Fermi levels through photo-excitation. This 

treatment is given in its entirety by Rose [31], together with 

much experimental verification. The essential points in the 

argument may be recounted as follows. The long decay time 

for photoconductivity results from the fact that an equilibrium 

condition is arrived at only after all the electrons are in the 

states prescribed by the Fermi-Di~ac distribution function. The 

transition probabilities are such that essentially all electrons 

captured by states above the Fermi level must return to the 

conduction band before going to any other state. An individual 

electron's journey through the various gap states is terminated 

effectively only when it is captured by states below a 

demarcation level. In most practical instances this demarcation 

level is very close to the steady-state Fermi level. Hence, a 

given electron may be trapped and freed many times before the 

conducti on-band population finally assumes an equilibrium 

condition . The time to reach an equilibrium will thus be a 

large factor greater than the lifetime of a free electron, 

which measures only the time spent in the conduction band. The 

net result of a complete analysis of this process is that the 

actual decay time is greater than the free-carrier lifetime 

roughly by the ratio of filled, shallow traps (i.e. traps above 

the steady-state Fermi level) to free electrons. In the case 
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of diode 13-4, current measurements show that nt/n changes by 

a factor of about 104 between lighted and darl~ened condiM.ons, 

which accounts for the response time variation from tens of 

hours to tens of seconds. 

The ohmic behavior in the illuminated condition after 

the continuous density of trapping states i s filled results 

from the relatively large population of electrons in the 

conduction band. From the dark characteristic ,Te know that 

the Fermi level moves from the traps distributed continuously 

in energy to a region of the gap that is devoid of traps. 

Above the void region there is still a higher-energy trap 

densi ty, the population for which is described by Maxwell-

Boltzman statistics. This is the case discussed in Section 

1.3 in which we found that space-charge-limi ted currents 

supersede ohmic currents only provided the voltage is greater 

than the value Vos = (8enL2)/(98K€0), as given by equation 

1.20. The transition to space-charge-limited flow at Vos 

occurs, roughly, when the anode free-charge density has been 

increased by a factor of two due to charge injection. As we 

see, Vos is a direct function of n, the no-injection conduction 

band density. This density is increased by the illumination to 

such an extent that the crystal is in an ohmic condition after 

the continuous distribution of traps is filled, and hence 

proportional, rather than square-law, currents are observed. 

Square-law currents would be observed under illuminated conditions, 



as they are in the dark, if the voltage were increased above the 

intersection of the dark characteristic and the ohmic curves in 

figure 5.2. 

5.7. Quantitative Analysis of the Observations on Diode 13-4 

In this section the theory developed in Section 5.6 and 

in Chapter 1 will be used to analyze quantitatively the properties 

of diode 13-4. 

First, we have from equation 1.60 and the text of Section 

1.6 the fact that the volt-ampere characteristic for the case 

where the Fermi level is in an energy region of exponentially 

increasing traps is a proportionality between J and vm. 
The exponent m equals (Tc/T) + 1, where Tc is a characteristic 

temperature for the trap density, defined through equation 1.50. 

From the observed exponent for V of 4.7, we deduce that 

Tc 11,100oK which is larger than T - a condition making valid 

most of the equations of Section 1.6.2. 

From figure 5. 2 we can deduce the depth of W
TU

' the upper 

limit of the continuous trap density. To do this we note that 

W
F 

passes WTU when the dark characteristic changes from 4.7-

law behavior to square-law behavior. From the current observed 

at this point on figure 5.2, we calculate n a from n 
a 

(2JL)/(3e~V), a form derived from the insertion of equation 

1.16 into equation 1.3. Having ua ' we can solve equation 1.24 

for (WC - WF) to calculate the trap depth from (WC - WF ) = kTln 
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(Nc/n) , since now WF~ WTU as we have noted. This procedure 

yields (We - WTU) = 0.567ev. 

Using substantially the same method with the indicated 

conduction-band density at the lowest voltage studied (before 

any appreciable injection could take place), we deduce the 

dark Fermi l evel to be approximately O.830ev below the 

conduction band for diode 13-4. 

The number of traps filled by excitation from primary 

centers is calculable by noting that the apparent trap-filling 

voltage decreases from 4.7 volts to 1.4 volts under low­

level illumination. Using equation 1.22 (VTFL = eL~t/2KEo)' 

we see that this 3.3 volt difference implies that the traps 

filled by light equal 2.09 x l o13cm- 3. As the level of 

illumination is increased, the efficiency of trap-filling by 

this means lessens, as evidenced by the much decreased rate of 

change of V
TFL 

with light. At a factor of ten times the low­

level illumination, the apparent number of traps filled by the 

light is 2.15 x 1013 per cm3• 

The difference in the Fermi levels under light and dark 

conditions is given directly by kT times the ratio of 

illuminated diode current to dark diode current, since: 

Iilluminated 
I dark 

nilluminated 
ndark 
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where W
FL 

and W
FD 

represent the illuminated and dark 

Fermi-level energies, respectively. This current ratio is 

a factor of 104 , indicating that (W
FL 

- W
FD

) equals 0.2}4ev. 

Since we already have deduced the upper level of the trap 

density to be 0.567ev below the conduction band and the 

. dark Fermi level to be 0.830ev below the band, the action 

of the light evidently puts the Fermi level within 0 .01gev 

(or about kT) of the end of the continuous trap density. 

Contained in this span of energy are about 0.9 x 1013 

states per cm3, calculable from the necessary voltage-injected 

charge to fill the traps. 

The dark-characteristic square law at higher voltages 

with a e value of 1.6 x 10-5 calculated in Section 5.5 

is indicative of a shallow trapping level as described in 

Section 1.3. The depth is unknown except for limits which 

could be set, as were done in the case of diode 13-5 in 

Section 5.4. Since this procedure was demonstrated in that 

case i t will not be illustrated here. The deductions as to 

the band-gap states made in this section are collected for 

clarity and reference in figure 5 .4. 

5.8. Summary of Trapping Properties Derived from Space-Charge­
Limited Current Observations 

The complete analyses of the volt-ampere behavior of diodes 

1 3- 5 and 13-4 in Sections 5.4 and 5.7 respectively, both give 

evidence for a density of shallow trapping states. The e 
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Figure 5.4 

Calculated electronic trapping levels and densities for 

diode l3-4. 
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implied for the states, however, differs by a factor of 100, 

being smaller in the chlorine-copper doped sample (diode 13-4). 

In the case of the pure sample (diode 13-5) fair correspondence 

was obtained with two other crystals so that there is reasonable 

certainty as to the value for e. There is certainly a large 

margin for error in the determination of e, considering the 

uncertainty in such quantities as length of sample and electron 

mobility, but a factor of 100 is felt to be indicative of a 

physical difference in the level detected. 

What one would like to do, of course, is to determine the 

physical origin of this trapping level (or "of these levels," 

dependent on the configuration). To do this demands a great 

deal of research with a variety of differing samples, only a 

small amount of which has yet been done. Bube [1, p. 299] 

gives an account of the meager information thus far available 

in this field. The shallow levels, appearing consistently in 

the pure and chlorine-copper doped samples, point to some 

imperfection inherent in the CdS lattice structure. We have 

concluded that there are more than 1015cm-3 shallow traps 

in the case of the pure sample, but this is still only one in 

107 lattice sites which is not a very large density. A lattice­

imperfection source for the trapping levels would make the 

observed variation in e seem very reasonable, since the traps 

would be dependent on the techniques and procedures observed in 

crystal growing. 



Diode failure, due to unknown causes as described in 

Section 5.5, did not permit increasing the voltage to the 

point where the trapping levels would be traversed by the 

Fermi level. This is a necessary condition for gaining infor-

mati on on the density and configuration of states from the 

observation of space-charge-limited currents. Further analysis 

of these particular levels would better proceed through study 

of such effects as photoconductive dependence on light intensity, 

as described in [17]. A search of the literature has revealed 

little quantitative data on the shallow levels, although their 

detection is mentioned by Wright [4] and by Ruppel and Smith [29]. 

Figure 1 in the latter reference, which is reproduced as figure 

5.5 in this work, provides some interesting information on 

shallow levels in CdS but was not analyzed completely by the 

authors. Since it has a bearing on the results presented here, 

we shall calculate the crystal properties indicated. From 

figure 5.5, using the dimensions given inihe text of [29] and 

in the caption for the curve, we calcQlate a e due to the 

shallow traps of approximately 10-5, which matches the value 

obtained on diode 13-4. As we see in figure 5.5, Ruppel and Smith 

were able to increase the voltage sufficiently ·to bring the Fermi 

level in the range of the shallow traps.* The behavior at these 

* Trap-filling is more likely to precede breakdown in a thin sample 
than in a thicker one. Using equation 1.16 and equatlon 1.22, we 
may express the anode (maximum) field at the trap-filling voltage 
as: Ea = - 3V / 2L = 3eNtL/2K€O' Hence, t he maximum fi eld at the 
trap-filling voltage increases with the length of the sample for a 
gi;en trap density. Ruppel and Smith's crystal was about 40% 

·shorter than the crystals studied here, which may account for 
their results. 
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D-C characteristic under ~orward bias o~ a CdS analogue diode 

wi th indium cathode and tellurium anode. The dashed line above 

the characteristic represents the trap-~ree space-charge-

limited behavior. The dotted line on the data points corresponds 

to equation 1. 39 (J = a.f1 wi th m = 2 + log 9/91 ), applied 
2 to this diode (contact area = lmm, thickness = lO~) • 

•• ••• reprinted, by permission, :frcm Ruppel and Smith [12] 



voltages indicates passage of the Fermi level through a discrete 

trapping level with even shallower traps above it. This case is 

the one considered in detail in Section 1.5. In figure 5.5, e 

changes from 10- 5 to 10- 2 at either side of the trap-filling 

region. If, from the analysis of Section 1.4, V
TFLl 

(the 

trap-filling voltage for the lower level) is taken to occur 

roughly at the point of departure from the higher voltage square 

law, then the evident value for VTFLl in figure 5.5 is about 

2.5 volts. This would imply, again from the arguments of 

Section 1.4, that there should begin to be significant 

deviation from the low-voltage square law at v~ 0.3 volts. 

The data of figure 5.5 is consistent with this prediction. The 

dotted line connecting the asymptotes at these two points 

represents the approximate trap-filling law as given in equation 

1.39. This equation is seen to underestimate the maximum 

steepness of the line drawn through actual data points. Since 

the approximate law specifies a constant power for voltage over 

the trap-filling region, and we know that the power will 

increase as trap filling proceeds, this situation is expected. 

The trap-filling behavior indicates a discrete trap 

density of about 2 x 1013cm-3 being filled. Using the 

analysis of Section 1.5 and equation 1.24 in the same manner 

as in previous calculations for a single level, vTe calculate 

that the trap depth is O. 570ev. Again no :further information 

is available abou.t the traps resulting in e = 10-
2 

at the upper 
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end of the curve, since they are not filled in the characteristic 

shown. 

The trap depth of 0.570ev just deduced fails by a 

small margin to be wi thin the limit «WC - W
T

) < O. 56ev) 

derived in Section 5.4 for the shallow trapping-states in diode 

1 3- 5 . In Chapter 6, however, we shall be able to make an even 

more limiting inequality which will definitely exclude the same 

source being operative for the traps observed in this work and 

those in reference 29. The shallow traps we have observed are 

cons istent in depth with traps deduced by Bube to be present 

in pure CdS crystals through s tudy of the effect of temperature 

on photoconductivity [8]. Bube finds states in pure CdS at 

roughly 0.17 and 0.35ev below 

in concentrations from 1013 to 

the band, 

1016cm- 3, 

which are present 

dependent on the 

crystal. In Section 5.4, Nt was shown to be greater than 

2 x 1015cm-3. This density, coupled with the 0 .56ev limit 

for the trap depth of the shallow levels, is consistent with the 

above deductions from reference 8. 

Smith and Rose give evidence for a continuous density of 

traps at a range in energy [18] which matches closely the energy 

range of the energetically-continuous trapping levels, deduced 

from the data of diode 13-4. In reference 18,the continuous 

level was interpreted to be of apprOximately equal density 

extending from 0.55 to O.80ev below the conduction band, 

almost exactly the same range as deduced in Section 5.7 (the 



estimate there was 0.567 to 0 .830ev). The crystals studied 

by Smith and Rose were also chlorine-copper doped, and of the 

same type as used in the experiments described here. From the 

marked linearity for the log-log plot of figure 5.2, the deduced 

exponential density variation with energy for the trap~in 

contrast to the continuous density proposed in [18],is fairly 

certain. The actual numbers do not imply as rapid a dependence 

as "exponential" might conjure up. The size of kT is 
c 

approximately O.lev so that over the 0.263ev range of 

trapping-state energies, the denSity variation is about 10 to 

1. Using crystals of the type of diode 13-4 on another occasion, 

Smith [17] detected deep traps but interpreted them in terms of 

a discrete density situated about 0.8ev below the conduction 

band. Comparing our results with these two references to the 

deep traps we find that the magnitude of the total trap density 

configuration is 3 x 1013em-3 as deduced in this work, 5 x 1013 

em - 3 in reference 18 and 3 x 1014 em - 3 in reference 17. In 

reference 18, a check on the value of Nt was made through 

photoconductive response time studies, a method felt by the 

author (Rose) to be less accurate than the analysis of space-

charge-limited current behavior. The photoconductive study 

implied an Nt of 0.5 x 1013em-3. 

Since these energetically-distributed, deep levels are 

not detected in the undoped crystals, it is certainly reasonable 

to ascribe them to the added copper. The chlorine is not likely 
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to be responsible, since it is known to create very shallow 

states [16]. To check this, it would be informative to know 

the copper density independently. This would add to one's 

confidence in identifying the levels, but this information 

was not available. 

5.9. Conclusions 

As predicted in the introduction to this chapter, an 

extremely varied current-voltage behavior can be interpreted 

in terms of space-charge-limited current flow in a crystal 

with traps. Observations of such flow are a sensitive, 

experimental method for the determination of various crystal 

properties. Not only trapping densities, but also trap depths 

can be deduced in this fashion, provided sufficient charge 

injection takes place to move the Fermi level into the energy 

range in Which the traps exist. The effects of the variation of 

illumination as well as of voltage have been shown to be 

consistent with the physical picture postulated for the over-all 

interior trap density. Correspondence with other methods of 

trap detection and identification, such as photoconductive 

studies, has been shown to be good. It has also been seen 

that significant trapping-state populations exist even in 

crystals assumed to be pure. Hence, currents of the magnitude 

given by equation 5.1 are not to be expected, unless crystals 

are made thin enough to reach a trap-filling voltage before a 

breakdown effect. 
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Complete identification of the source of the traps 

detected will demand a large body of experimental work with 

crystals of known imperfection types and densitie s. At present, 

only a few trapping levels in CdS, or in fact, in any other 

materials, are identified with reasonable certainty. For 

some trapping levels , such as those distributed continuously 

in energy (detected in diode 13-4), even the nature of the 

source is speculative. As Bube points out [1, p. 302], one 

could, for example, take the viewpoint that the energetically­

distributed traps stem from small regions of short-range 

order which are interspersed throughout the crystal. The 

"conduction band" for these regions may act as trapping 

centers for the free electrons of the rest of the crystal, 

provided that these free electrons exist at higher energies. 

It is also possible, however, to explain these levels as an 

energetically near-continuum of states for a discrete trapping 

center. Neither alternative is yet excluded. 

Measurements of the space-charge-limited current 

characteristics perroi t only the d,eduction of the static 

properties of traps. To determine the kinetic properties of 

traps, other methods, such as will be used in Chapter 6, are 

necessary. 
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CHAPTER VI 

Capacitance Measurements on the Diodes 

The variation of space-charge-limited currents inves­

tigated in Chapter 5 was interpreted in terms of the influence 

of tr~pping centers in the crystal. The space-charge-limited 

currents were long term equilibrium values which gave no 

information on the kinetics of trap filling and trap emptying. 

In this chapter, same knowledge of these properties will be 

sought. In addition, the measurements reported in this chapter 

will reinforce confidence in the model for crystal behavior we 

have proposed in Chapters 1 and 2 by providing direct evidence 

of trapping states distributed uniformly in space. Deductions 

of the trap concentrations and configurations in the analysis 

of space-charge-limited currents of Chapter 5 were all by 

inference from the comparison of observed behavior with the 

theory of Chapter 1. In this chapter, measurements will be 

reported on the terminal capacitance exhibited by the diodes. 

Since capacitance is directly related to stored charge, these 

measurements come closer to being a direct detection of the 

actual trapped charge than did thos e of the last chapter. 

The capacitance measurements reported here will be 

found to be in close agreement with the analysis of Chapter 2. 

The deductions made from these measurements thus represent a 

new means of obtaining information about trapping kinetics. 
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6.1. Technique of Making Measurements 

Measurements were made of the capacitance of the diodes 

both under controlled illumination and in the dark, at 

frequencies ranging from 16kc/s to 5mc/s . These limits 

were set by the pass band of the radio-frequency bridge 

available. Positive, negative and zero d-c bias conditions were 

used on the diodes to test the variation in capaci t·ance produced 

by voltage. Capacitance values were read directly from a Wayne­

Kerr radio-frequency bridge circuit, whose balancing output was 

connected to a fairly elaborate null-detection apparatus. A 

schematic diagram of the equipment is shown in figures 6.1a and. 

6.1b. 

Below 50kc/ s, the bridge null-detector output ,las fed 

into an amplifier which was connected to a Donner wave-analyzer 

tuned to the exciting frequency. The Donner analyzer consists 

of a very narrow (20cps) band pass filter followed by a high 

gain amplifier, rectifier and meter. This allows virtual 

exclusion of all nOise, except that in the narrow range of 

frequencies surrounding the applied signal, and permits a 

very sensitive null detection. Above 50kc/s a superheterodyne 

radio receiver was used as the null detector. A convenient way 

to establish the null with the radio receiver was to display 

the modulated intermediate frequency from the receiver on an 

oscilloscope, and to balance the impedance bridge to a zero in 

the modulation. The signal from the bridge was coupled into the 

receiver through the external antenna jack on the superheterodyne 

receiver. 
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These procedures permitted an accurate measurement of 

capacitance with excitation voltages at the tmknown as low as 

twenty millivolts (peak to peak). Impressed signals less 

than thi s did not produce a clear null indication. On the 

basis of measurements of known capacitance, it is felt that 

the precision of the measurements is about plus or minus 0.2 

picofarads at the higher frequencies, and slightly better 

than this in the lower ranges of frequency. 

6.2. Effects of Trap Filling on Capacitance : Qualitative 
Treatment 

Data on the measured capacitance versus applied frequency 

for three different thin platelet diodes under various conditions 

of illumination are presented in figures 6.2 and 6.3. A complete 

discussion of the curves drawn to fit the data of these figures 

will be given in Section 6.4. It is proposed here that the 

variation noted on these curves is indicative of the nature of 

the trapping states in the crystals. A complete, quantitative, 

theoretical treatment of the effects of trapping on capacitance 

has been given in Chapter 2. In this section we shall attempt 

to clarify the concepts of that chapter, and to develop a physical 

picture. The discussion to be given will simplify the actual 

picture by neglecting consideration of the free charge. The 

magni tude of the free-charge density wi1l be so small, as will 

. be shown experimentally, that only the trapped-charge density 

will be significant. In succeeding sections of this chapter, 
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we shall analyze the data presented in figures 6.2 and 6.3 

and present other results from an experimental investigation 

of the effects of trapping on measured capacitance. 

The terminal capacitance measured by a bridge circuit 

may conveniently be divided into two parts corresponding to 

the charge stored internal to the crystal and that stored at 

its surfaces. If one dealt with perfect crystals at very low 

voltages, the entire capacitance would be the latter: that is, 

all charge storage would be at the crystal surfaces. The 

presence of trapping states in the crystal, however, allows 

there to be significant charge storage interior to the crystal. 

This fact was graphically demonstrated by Smith [18] who 

detected the trapped charge itself by dropping a CdS crystal 

that had been carrying currents onto the pan of a gold leaf 

electrometer. Smith and Rose also demonstrated a kinetic 

property of the trapped charge, by showing that space-charge­

limited currents near to the theoretical trap-free crystal 

value could be attained by pulsing the crystal with current 

so quickly that the traps remained essentially empty [10]. 

The charge stored interior to the crystal will also make 

itself evident by increasing the capacitance measured on an 

a-c bridge. So long as there is time for the trap population 

to follow the changing applied signal this interior charge 

reservoir will be effective in increasing the capacitance. As 

the signal frequency is increased, however, one must reckon 
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with the time it takes to fill or to empty the traps, and thus 

to create or to annihilate the electrical flux lines connecting 

the interior charge with an electrode. As this time becomes 

comparable with the cycle time of the applied voltage, the 

traps begin to become insensitive to the voltage - either 

remaining terminals for flux lines emanating from positive 

charge held fixed at the metallic electrodes, or else remaining 

empty.* Thus, at high frequencies, when the traps have 

assumed a stable population by the process outlined above, a 

further increase in measuring frequency will result in a 

constant measured capacitance. This capacitance should be that 

due to charge storage on the electrodes, ,-lith the crystal 

acting only as a dielectric separator for the charge. If the 

crystal is capable of injecting electrons from only one contact, 

the capacitance measured under reverse d-c bias (bias which 

inhibits injection) should also be that due to the electrodes 

alone, and hence should match the high frequency value measured 

under injecting conditions. 

§.3. Experimental Observations of Trapping Capacitance 

In order to test the validity of our assumption that 

the added capacitance at l ower frequencies is due to trapped 

charge, a number of tests were performed. 

* Lampert and Rose analyzed the transient behavior of ohmic con­
tacts to insulating crystals by considering, as we do here, the 
change in flux linkages between the trapped charge and the charge 
on electrodes [32]. 
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First, the dependence of capacitance on d-c bias was 

investigated. Noting from Chapter 4 that charge injection 

in the dark is impossible when a negative bias is applied to the 

gold contact, we can expect that any increase in capacitance 

due to trap filling will disappear under reverse bias. As in 

Chapter 5, we denote this non-injecting d-c polarity as reverse 

bias, to be distinguished from the charge-injecting case, or 

forward bias. The variation of capacitance with d-c bias voltage 

under forward-bias conditions might take on a number of forms 

dependent on the inter-relationships between trapping kinetics 

and the Fermi level inside the crystal. The expected behavior 

has been discussed briefly in Section 2.4, and is sketched in 

figure 2.5. 

Figure 2.5 should be compared with figure 6.4 which 

represents actual data taken on diode 13-4 at a single frequency 

for various values of d-c bias. This figure corroborates a 

number of the features predicted in the preceding section and 

in Chapter 2. First, as expected, the measured capacitance is 

constant under reverse d-c bias and lower in value than under 

forward bias. Second, the capacitance rises along a curving 

path for low forward biases, and then assumes a roughly constant 

value above 6 volts. The constant value indicates trapping by 

a level having a population density in a ratio to the free-charge 

density that is independent of voltage (Section 2.4) . As we 

saw in Chapter 5, this constant-ratio condition demands that 

the crystal Fermi level be situated in a region devoid of traps 

and enough below the trapping energy that Maxwell-Boltzman 
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statistics are a good approximation for the population density. 

From the space-charge-limited characteristic for diode 13-4 

discussed in Section 5.8, we concluded that at about 6 volts 

of forward bias the Fermi level moved from the midst of trapping 

levels, detected in that crystal as being distributed in energy, 

to an energy region that was essentially devoid of traps. Thus, 

the two observations of the behavior of diode 13-4 are in agree­

ment. In figure 6.4, the region close to the origin of the 

abscissa is sketched as a dotted line in agreement with the 

prediction of figure 2.5. Experimental data was omitted here 

because the electrolytic capacitor used for the d-c bias 

measurements (figure 6.1) needed about a half volt of reverse 

bias for accurate operation of the bias circuit. 

A second check on our model of trapping capacitance 

variation arises from the following consideration. If the 

decrease in capacitance with frequency is due to the ineffective­

ness of traps because of kinetic limitations, as we have supposed, 

then the high-frequency capacitance should assume a constant 

value after all of the traps have ceased to be responsive to the 

applied a-c signal. This high frequency capacitance value 

should, therefore, be just the capacitance due to charge storage 

on the electrodes. In the preceding paragraph, we have reasoned 

that the capacitance under reverse d-c bias conditions should also 

assume the value characteristic of the crystal electrodes. Such 

a correspondence is found, approximately, between the high 



frequency dark value for diode 13-4 in figure 6.2, and the 

back-biased dark value given for the same diode in figure 6.4. 

These values actually differ by about 0.5 picofarad: however, 

it is felt that this difference results from an insufficient 

time allotted for complete equilibrimfi in the dark in the data 

of figure 6.4. The capacitance values, like the space-charge­

limited current values of Chapter 5, are light sensitive and 

equilibrium takes l ong intervals of time. To test this con­

clusion further, the data plotted in figure 6.5 were taken. 

These measurements not only affirmed the conclusion we have 

presented for capacitance values at illumination levels matching 

those of the data in figure 6.2, but also gave evidence of 

another phenomenon. We shall discuss this more fully in 

Section 6.6. At this time, we merely point out that the 

riSing capacitance values, noted in figure 6.5 at low reverse 

biases under illuminated conditions, suggest that charge 

injection apparently is taking place in this region despite 

the bias condition. 

A third test of the hypothesis, that interior charge 

storage in volume-distributed traps i s responsible for the 

changes in capacitance observed, is contained within figures 

6.2 and 6.3. We note there that the variation from maximum 

to minimum of capacitance at a given illumination is always 

less than a factor of three. For low level illum.i.nation on 

diode 1 3-4, the ratio is close to a factor of three, but not 

quite that great. This observation checks with the prediction 

of Section 2.1, based upon the maximum capacitance one can 
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Figure 6.5 
Measured Capacitance of 

Diode 13-4 versus Reverse 

Bias Voltage 

at various light intensities • 

Measuring frequency = 4okc/s. 
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IIr. 
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observe in a distributed charge system, having a maximum 

density near the injecting electrode, when it is coupled 

to a planar sheet of charge. In discussing the frequency 

dependence in Section 6.4, we shall have more to say about the 

actual ratios observed between maximum and minimum capacitance. 

We shall also comment more generally, at that time, about the 

effect of illumination on capacitance. 

6.4. ~antitative Analysis of the Capacitance Measurements 

In this section we shall make quantitative deductions 

from the data which have been discussed briefly in Section 

6.3. Certain physical parameters that are pertinent to 

trapping kinetics will be determined, as well as the numerical 

densities of the traps taking part in the capacitance 

measurements. 

The first measurements we shall consider are those 

presented in figure 6.2 and figure 6.3, which show the 

frequency variation of the measured capacitance. The theo-

retical analysis of Chapter 2 predicted a variation of Ct 

with frequency of the form: Ct = Ct/(l + w2/ve
2

), as given 

in equation 2.15, and plotted in figure 2.3. The frequency 

dependence exhibited by figure 2.3 appears to be a good repre­

sentation of the experimental data given in figure 6.2, and of 

the intense-illumination data given in figure 6.3 •. The 

theoretical curve predicts that the frequency variation in 
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Ct will be completed in roughly two decades range in frequency, 

centered approximately at the probability-of-escape frequency 

ve for the influential trapping levels. This is seen to 

match the approximate range of variation in the experimental 

data. To check further on the over-all correspondence of the data 

to equation 2.l5, the theoretical curve of figure 2.3 was fitted to 

the experimental points of figure 6.2 and 6.3 in the manner we shall 

now describe. The maximum variation noted in measured capacitance 

yas multiplied by the ordinates in figure 2.3, and the resultant 

values were plotted to a logarithmic scale in frequency, which 

matched physically the scale of the data to be fitted. This plot 

was then positioned on the actual measured points to obtain the best 

fit for the data taken. The solid lines on figures 6.2 and 6.3 

were drawn in this fashion. The curve fitting made it possible to 

obtain a representative value for Ve simply through notice of the 

position of this frequency on the calculated curve, relative to 

the measured data. A discussion of the observed values for ve ' as 

noted on the experimental data will be given in Section 6.5. 

The curves, drawn as we have described, are seen to be a 

very good fit to the experimental points. Since no account was 

taken of transit-time effects (Section 2.3) in drawing them, 

charge transport from electrodes to traps apparently does not 

limit until after kinetic limitations have already nullified 

the effect of the traps on capacitance. Curve IV in figure 6.3, 

representing the data taken on diode 13-5, does not appear to 

vary as described in equation 2.15 and could, perhaps, be 
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reflecting a transit-time limitation in its behavior. Un~ortun-

ately, only the data presented in figure 6.3 is available for 

this diode, since it was inadvertently destroyed before 

further measurements could be made. 

No variation for the capacitance of diode 13-7 in the 

dark was detectable, which would indicate an insufficiency of 

injected, trapped charge in the dark for detection by the 

apparatus. This experimental observation suggests that we 

calculate the minimum trapped-charge density that was detectable 

by the measuring technique used. As stated in Section 6.1, the 

lowest practical excitation voltage across the diodes was 10mv 

peak. Assuming a threshold for detection of O.2pf, which is 

our expected error in the capacitance measurements, we 

calculate a corresponding detectable trapped charge of 2 x 10-15 

. 4 
coulombs. This is only about 1.25 x 10 electrons. The 

volume of the thin plateJ.et crystals was in the range of 

-6 3 5 x 10 cm. Hence, the trapped-charge density that could be 

detected is 2.5 x 109 electrons per cm3 under the best of 

circumstances. Actually a factor of 10 times this amount 

would be more nearly the charge density necessary for an 

unequivocal measurement. Since only the electrode capacitance 

was measured in the dark, the injected charge density thst 

could be trapped in diode 13-7 was evidently less than about 

1010per cm3 in the frequency range studied. As we see in 

figure 6.2, the greatest amount of trapped charge, which was 

detected, contributed 25pf to the over-all capacitance. For 
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the signal intensity used in these measurements, (V k = 12mv) pea 
11 3 this capacitance corresponds to 2.4 x 10 electrons per em. 

In the introductory preface to Chapter 2, it was stated 

that the free-electron density would be essentially negligible 

in its effect on measured capacitance when compared to the 

trapped-charge density in actual crystals. To give experimental 

evidence for this fact, we note here that the resistance of the 

diodes, as well as their capacitance, was measured as a function 

of frequency by balancing the bridge circuit. The lowest 

value for the resistance so measured was in the range of 100 

kilohms. As an order-of-magnitude calculation of the free-

charge density, we may use this figure in the conductivity 

formula, a = e~ = LIAR, to obtain n ~ 2 x 109cm-3. From our 

discussion above, such a density is .on the verge of detectability 

and is therefore insignificant. Also, the lowest resistance 

values were always consonant with the highest frequency, as 

might be expected, since this condition matches the min~um 

depopulation of the conduction band by trapping. As seen from 

the data, the capacitance in this range of frequency always 

approached Ce , the value stemming only from charge storage on 

the electrodes. This behavior is again consistent with the 

indetectability of free charge by capacitance measurements. 

The electrode capacitance Ce is seen to have appre­

ciable sensitivity to illumination for diode 13-4, indicating a 

sizable photodielectric effect. This capacitance, which is 



evident either under reverse bias (figure 6.5), or at high 

frequencies (figure 6.2), changes roughly by a factor of 3 

in the range of illumination studied. Bube [1, page 420] 

gives a summary of the essentially meager experimental work 

done to date in studying this effect, and also comments on 

the theories advanced to explain it. The photodielectric 

effect was not a subject of intensive study in the experiments 

done here, because of a relatively poor capability for quanti­

tative optical studies. Experimental apparatus for quantitative 

work should include, at minimum, a light source that is well 

calibrated both spectrally and in intensity. The light 

intensity for the source used was only very roughly calibrated 

and its power spectrum was relatively broad. 

A few qualitative statements can, nonetheless, be made, 

based on the measurements that are available. First, there is 

at least order-of-magnitude agreement with the factor of 

three change in relative permittivity, noted in this work, 

and with some data presented by Bube [1] based on the work of 

Garlick. Garlick studied the temperature variation of the 

permittivity of Zns powders and noted a maximum change with 

temperature of roughly three times the nominal low temperature 

value. Of course, for this to have relevance, it must be 

assumed that the same sources are operative for both the 

thermal and optical variations in K. Somewhat suprisingly, 

the apparent change in permittivity under illumination for 
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diode 13-7 (figure 6.3) is very slight. To determine whether 

thi s was, perha,ps, due to too low a light intensity, a differ-

ent light source (150 watt bulb) was used to ill~inate diode 

1 3-7 . This did result in an increased C, which indicates 
e 

that this diode, too, showed a photodielectric effect under 

sufficient illumination. The conjecture, attributed to 

Garlick by Bube, that the increased average dipole moment 

under illumination of electrons trapped at higher energies is 

responsible for the photodielectric effect, appears to fit 

our data. We have already spoken in Chapter 5 of the way in 

which the average energy of the trapped electrons is increased 

by illumination, which ties in with this last reasoning. The 

electrons elevated from the primary centers to the deep traps 

(0.57 to 0.83ev below Wn ), deduced in Chapter 5 to be 
'-' 

present in diode 13-4, may be responsible for the large photo-

dielectric effect in this sample. Since evidence for these 

deep l evels was not found in diode 13-7, the relatively slight 

photodielectric effect in this unit is consistent with this 

supposition . More research into this effect is certainly 

desirable. 

Returning now to the discussion of the fit of the 

measured capacitance to the theory of Chapter 2, we take 

notice of the observed values for the l ow frequency trapping 

capacitance. From the theory of Section 2.1, for a pure a - c 

signal applied, the maximum value for C' t 
is C e 



191 

at low frequencies for a single injecting electrode) and · 2C 
e 

for C" t (Ct = Ct at low frequencies for two injecting 

electrodes). The electrode capacitance Ce is,as has been 

discussed, a different value at each different illumination. 

For diode 13-4 in the dark (curve III in figure 6.2), C' 
t 

is roughly (1/2)C • e The evidence from figure 6.5 is that the 

gold contact is not injecting in this case so that the maxi-

mum trapping capacitance i s Ctm = Ceo The reason for Ct < C
tm 

could be either a non-uniform charge density due to space-charge-

limited charge injection (Section 2.4) or an observed injection 

efficiency ~ < ~ (Section 2.2.2). Under moderate illumination 

(Curve II of figure 6.2), Ct is approximately 2Ce , which 

indicates two injecting contacts, as corroborated by the data of 

figure 6.5. Under heavy illumination (Curve I of figure 6.2) 

C" 
t 

approximately equals This reduction of C" t from 

Ctm could be the result of an ~ less than ~ due, perhaps, 

to a diminished volta ge injection efficiency for free charge. 

For the heavy illumination case, in order to achieve a Ct 

equal to 2C , as theoretically possible, both contacts would 
e 

have to supply a trapped-charge density of 2.5 x lOll electrons 

cm- 3• It couid well be that the apparent photoem1ssion from the 

gold fails to provide this density and thus limits the observed 

Ct' It is als o possible that non-uniformity in interior charge 

density results from the heavy illumination on one side of the 

crystal, and that this acts to limit the capacitance. A space-
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charge-limited effect seems implausible to explain C" < C t tm 

for the heavy illumination case after the evidence of curve II. 

For diode 13-7,Ct is approximately equal to Ce under 

heavy illumination (curve I of figure 6.3), and is less than 

Ce in all other cases. This indicates a single injecting 

contact with ~ being dependent on illumination. Data under 

reverse-bias conditions for this diode, similar to figure 6.5, 

did not show any rise in capacitance at low reverse d-c biases 

until higher illumination values than those given in figure 

6.3. Thus, the two observations are again consistent, indicating 

a blocking contact for the gold-film electrode on diode 13-7 in 

the illumination range studied. 

6.5. Interpretation of the Deduced Values for the Probability-of­
Escape Frequency 

As described in Section 6.4, in fitting equation 2.15 to 

the measured capacitance data, one can determine the value of 

the probability-of-escape frequency v • e 
For a single injecting 

contact, ve will be equal to the applied radial frequency 

which halves the low frequency value of Ct' We have shown, 

in Section 2.2.2, that under conditions of charge injection 

from both contacts, the frequency variation of Ct is roughly 

centered about v /2 (equation 2.18). This occurs in the 
e 

double-injection case with no bias, because the trapped-charge 

density must respond effectively at twice the rate of change of 

the applied voltage. Thus, curves I and II in figure 6.2, 
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which (from the evidence discussed in Section 6.4) represent 

charge injection from both contacts, show a frequency drop 

characteristic of Ve/2 while those of curve IIJ on figure 

6.2 and curves I and II of figure 6.3 are characteristic of 

Ve itself. The frequencies corresponding either to ve or 

to v /2 are marked on each curve of figures 6.2 and 6.3 for 
e 

which the detected behavior made such a deduction possible. 

The actual values for are given by the radian frequencies 

which correspond to 2~ times the frequencies noted on figures 

6.2 and 6.3. This follows from the analysis of Chapter 2. 

We shall first consider the value of noted in 

figure 6.3 for diode 13-7. The space-charge-limited current data 

of Chapter 5 indicated trapping in this diode by a discrete 

level or by levels sufficiently high in energy to be subject 

to Maxwell-Boltzman statistics.* Hence, if we assume that the 

thermal equilibrium value for ve applies in the capacitance 

experiments, we may use equation 2.10 to calculate the product 

from the observed value of v. e 

= v /vN e c 

Thus, 

(6.1) 

The value of ve observed for diode 13-7 is (from figure 6.3) 

* In Chapter 5, the discussion of crystals whose behavior indi­
cated only a discrete-energy trapping level was framed in terms 
of the properties of diode 13-5. Since this unit was inadvert­
ently destroyed, continued research on diode of this trapping 
character is reported for diode 13-7. 
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8 5 6 -1 ve = 2~ x 1. x 10 = 1.13 x 10 s • Insertion of this result 

in equation 6.1 yields: v /VN = 8 .2 x 10- 20 at 3000K e c 

(v = 107em/s at 300oK). In order to proceed to a determination 

of the capture cross-section St' we must obtain a value for 

the depth of the level. As we have noted in Chapter 5, it 

was not possible to obtain the trap depth from the space-charge-

limited behavior. However, a maximum value for the trap depth 

was calculated in Section 5.4. Using the result of that 

calculation «wC - WT) < O.56ev) in equation 6.1, we 

6 -12 2 calculate a value St = .3 x 10 em. Such a cross-section 

is exceedingly large: in fact, as Rose has pointed out [30], 

the largest value one could logically expect for St for a 

singly-charged trapping center at room temperature is 10-13em2• 

A cross-section of this dimension results from consideration of 

the distance that the Coulomb field of a charge-capturing center 

will reach out to depress the energy potential in space a value 

kT below its surrounding value. Thus, we may assume that the 

traps are in reality shallower than 0.56ev. 

A commonly-reported value for St [2] is -15 2 10 em, which 

would be expected from the physical dimensions of the atoms or 

ions. If this were the cross-section for the traps under 

consideration in diode 13-7, it would imply from equation 6.1 

that (Wc - WT) = 0.24ev. Conversely, if the largest value of 

10-13em2 existed for the trapping cross-section (the trapping 

center would then have to be positively charged), we could 
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calcUlate a maximum value for (We - W
T

) using equation 6.1. 

For diode 13-7, this allows us to write: (We - WT) $ O.36ev. 

Hence, the capacitance data indicate a smaller limit for the 

depth than the O.56ev derived as the maximum from the space­

charge-limited current considerations of Section 5.4. The 

capacitance considerations have thus led both to an upper 

bound for the trap depth and a probable value for it, assuming 

that the center is uncharged. 

In the data for diode 13-4 (figure 6.2) we note an increase 

in the value of ve 

whereas the value of 

obtained under increased illumination; 

Ve obtained for diode 13-7 (figure 6.3) 

was independent of illumination. In Section 2.2.1, it was 

pointed out that if the ratio of total, free charge to total, 

trapped charge in a crystal is specified by Fermi-Dirac statis-

tics, then the resUltant Ve and y as used in equation 2.9, 

will be dependent on the position of the Fermi level. Hence, 

we conclude from the capacitance measurements that Fermi-Dirac 

statistics are needed to specify n/nt at low voltages in 

diode 13-4~ and furthermore that the Fermi level is sensitive 

to the applied illumination. This finding is entirely consis­

tent with our investigation of the space-charge-limited current 

behavior of diode 13-4, discussed in Section '5.5. A continuous 

distribution of traps surrounding the Fermi level at low 

voltages (and subject, therefore, to Fermi-Dirac statistics) 

were deduced to be present from the measurements reported in 



Chapter 5. The effect of illumination on the position of the 

Fermi level for diode 13-4 is summarized in figure 5.3. 

Figure 6.2 shows that ve changes roughly by a factor 

of 8 from its dark value to the frequency obtained under 

heavy illumination. We may define an effective trap depth and 

capture cross-section for the over-all trapping process in 

diode 13-4 through insertion of the measured ve into equation 

2.10. With this definition, the change in ve with Fermi 

level may either be reflected by a change in effective 

cross-section or in the effective trap depth. The latter 

course seems most meaningful in light of the source of the 

variation. The observed factor of eight increase in Ve 

indicates only an 0.05ev decrease in the effective trap 

depth. In Section 5.8, the evidence from space-charge-limited 

current behavior indicated that light intensities in the range 

of the maximum used were capable of raiSing the interior Fermi 

level by roughly 0.25ev. We must assume, therefore, that most 

of the trapping states detected by the capacitance measurements 

exist appreciably above the dark Fermi level. Hence, the 

frequency dependence obtained is a function chiefly of the 

shallow trapping centers. 

The lowest value obtained for v (v = 7.5 x 105per 5) e e 

implies a magnitude: (/ 
-ffi 2 

St exp[ -WC - WT) kT] = 5.3 x 10 em 

for the product defined in equation 6.1. At maximum illumination 

this product climbs to approximately 4.2 x 10-19cm2• If, as 
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with diode 13-7, we assume a geometrical capture cross-section 

of -15 2 10 em, we may calculate the effective trap depth for 

the three levels of illumination in figure 6.2 • . In the dark, 

this value is 0.25ev; it decreases to 0.23ev at medium 

illumination and to O.20ev at high illumination. 

6.6. Conclusions 

The experimental work reported in this chapter has 

verified the predictions of Chapter 2 in the following manner: 

1. The variation with frequency of the 

capacitance observed has been consistent 

with the predicted variation with fre-

quency for the terminal capacitance 

exhibited by trapped charge whose 

density is subject to a rate equation 

of the form of 2.11 (dnt/dt = -(nt -

yn)ve )· 

2. The variation of capacitance in magnitude 

has been within the limits expected for 

trapping states distributed uniformly in 

space. Furthermore, the variation in 

magnitude has been predictable in terms 

of the effects of environment upon trap 

populations. 

From these observations, the interpretation of the experimental 

results in terms of the kinetic properties of trapping states 

appears to be justified. 



The frequency dependence of the measured capacitance 

yields directly a value for the probability-of-escape frequency 

v. To obtain a value for the trap depth from this, we noted 
e 

in Section 6.5 that a knowledge of the capture cross-section 

for the trapping level was necessary. A similar situation 

occurs in the study of traps through the observation of lumines-

cent glow-curve data [1, p. 292], a technique used extensively 

in deducing trapping properties in phosphors and employed by 

Bube [8] in a study of the trapping states in CdS. 

To make glow-curve measurements, crystal traps are 

initially filled at liquid nitrogen temperatures by illumination. 

The traps are then emptied into the conduction band by heating 

the crystal at a constant rate. In the experimental method 

used by Bube [8], the current pas sing through ohmic contacts 

made to the crystal was monitored under constant voltage 

conditions in order to provide a measure of the conduction-

band population. Peaks, which correspond to traps being emptied 

into the conduction band at a maximum rate, are observed in the 

plotted curve of current versus crystal temperature. A fairly 

straightforward analysis relates the temperature at these 

peaks to a fullction of the depths and capture cross-sections 

for the traps which are responsible for them. Glow-curve 

measurements do not provide accurate, independent values for 

the depth and cross-section of a given trapping level. In 

order to obtain both of these parameters in his study of the 
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trapping properties of CdS, therefore, Bube used the further 

assumption that WF ~ W
T 

at the peak current. This assumption 

depends for its validity on a number of conditions, including 

the supposition that the electron population in the crystal 

maintains a continuous thermal equilibrium between all 

energy states despite increasing temperature. Trap depth is 

easily deduced under the condition W
F

"'" W
T 

from the insertion 

of the free-electron density, implied by the observed current, 

into the Maxwell-Boltzman formula n = Nc exp[-(wc - WF)/kT). 

The equation relating trap depth and capture cross-section to 

the temperature at the peak current may then be used to 

calculate St' Because trap depth enters this equation exponen­

tially, however, the assumption used to obtain the depth 

critically affects the magnitude for St' 

Bube's data for pure CdS crystals indicate principal 

shallow-trap densities at 0.17 and 0.35ev in pure crystals 

and at 0.06ev in doped crystals. These depths are consistent 

with the shallow levels deduced from the observations discussed 

in this chapter. The capture cross-sections Bube ascribes to 

these levels is about 10-18em2, which is appreciably lower 

than the 10-15em2 we had assumed in this chapter. Use of a 

-18 2 cross-section of 10 em in the calculations of Section 

6.5 would raise the effective trap depth deduced for diode 

13-7 roughly to 0.07ev below the conduction band. It is 

idle to speculate further on the correspondence between Bube's 
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results and those reported here, however, because first, 

the degree of similarity between Bube's crystals and those 

studied here is unknown, and second, because neither the 

experimental technique used in this work nor the one used by 

Bube provides a dependable means for the separate determin­

ation of trap depth and capture cross-section. The two 

methods of trap study, luminescent glow-curve measurements and 

capacitance observations, used together on a single crystal 

would eliminate ambiguity in the separation of these trap 

properties, because each provides an independent relationship 

between capture cross-section and trap depth. We have already 

discussed the possible physical sources for the shallow levels 

(Section 5.6), and will not mention them further here. 

The experiments on capacitance reported in this chapter 

were all perfor.med on the thin platelet diodes. The inverse 

dependence for capacitance on thickness would have made the 

capacitive effect due to the trapped charge undetectable for the 

larger crystals. In other measurements of the capacitance of 

single-crystal CdS units reported by Kallman et al [33], crystal 

thicknesses were 20 to 30 times those used for the work reported 

here. One would therefore not expect to detect the trapped 

charge in their measurements. Kallman does report enor.mous 

increases in capacitance under illumination for these thicker 

CdS crystals, which were contacted by two gold electrodes. The 

authors explain this in ter.ms of an effective change in crystal 
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thickness due to high conductivity in regions of the interior 

of the CdS crystals. The crystals we have studied did not 

exhibit any phenomena consistent with this physical picture. 

The brief discus sion on evidence for the photodielectric 

effect, given in Section 6.4, does not mention the fact, 

brought out by Bube [1, p. 429], that some researchers, 

including Kallman [33], believe that the effect is confined 

to powders. The evidence of figures 6.2 and 6.5 indicates 

the contrary, as also does the variation in Ce for diode 

13-7 under heavy illumination, reported in Section 6.4. 

The evidence for an apparent photoemission from the 

gold film into the CdS, presented in figure 6.5, is in agree­

ment with the hypothesis of Williams and Bube [15]. These 

authors explain the observed photovoltaic voltage in junctions 

made to CdS by gold, copper, silver and some other metals, in 

terms of photon-stimulated emission from the metallic films 

into the CdS crystals. The observed behavior of the capaci­

tance in figure 6.5 may be explained in terms of photoemission 

from the gold electrode as follows. Photoemitted electrons 

would form a virtual cathode near the gold contact. One 

would expect to be able to modulate the photoemitted current 

by applying a voltage less than that value tending to draw the 

entire virtual cathode density across the crystal. For higher 

collection voltages, no modulation would be possible. The 

situation is perfectly analogous to the operation of a vacuum 
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diode in the emission-limited region. The only difference is 

in the stimulus for the emission - light for the case described 

here and heat in the thermionic emission case. If the injected 

charge density, and therefore the trap population, can not 

be modulated by the applied signal, no trapping capacitance is 

measured. Thus, in figure 6.5, an increased reverse d-c 

bias acts to quench the trapping capacitance. The increased 

photoemission is evident in the increased d-c voltage required 

for quenching the trapping capacitance at higher illumination 

values. 

In assessing the effectiveness of capacitance studies 

to gain information about trapping kinetics, we find both 

benefits and drawbacks. The benefits include the possibility 

of variation of a number of parameters. The observed dependence 

of the measurements on these parameters (d-c bias, a-c signal 

magnitude and frequency, illumination, temperature) can do much 

to develop a physical picture of the trapping process. One 

can also detect an extremely small quantity of trapped charge 

through capacitance measurements; the threshold estimated in 

Section 6.4 was only about a thousand electrons. The chief 

disadvantage of this technique is the fact that a number of 

experimental points are necessary to determine one kinetic 

parameter, such as ve' Frequency information is then achieved 

only through curve fitting, Which is apt to be a tedious process. 

In general, capacitance measurements provide a valuable adjunct to 

the other techniques available for the study of trapping kinetics. 
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CONCLUSIONS 

We shall begin this section with a short summary of the 

major topics discussed in each of the chapters and of the 

conclusions we might draw from our discussion of these topics. 

Further observations, pertinent to the over-all report, will 

then be made. 

In Chapter 1, it was shown that a simplified analysis 

which helps preserve the physical picture of events may be used 

in a straight-forward fashion to treat mathematically the 

properties of space-charge-limited currents in trap-filled 

insulators. The mathematical approach used there avoided a 

direct solution of the exact eqUations but retained the pertinent 

features of the dependence of current on voltage. Chapter 2 

presented a mathematical treatment of the expected dependence of 

capacitance on trapping properties for an insulator under 

charge-injection conditions. The predictions of that chapter led 

one to believe that a study of the variation of capacitance 

with parameters such as bias voltage, illumination, and 

frequency could provide a valuable adjunct to the more usual 

techniques employed in the study of trapping kinetics. The 

procedures followed in the fabrication of analogue diodes in 

CdS were discussed fully in Chapter 3. 

In Chapter 4, an experimental analysis of the properties 

of the blocking contact to CdS under high reverse bias was 

. reported. The data corresponded to Schottky-type field emission 
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over the blocking contact, although a possible tunnel mechanism 

through the barrier was not ruled out. The requisite high 

effective-donor-state density near the surface for tunnel 

emission made this process implausible. Such a high state 

density was not detected in any of the other experiments. 

In Chapter 5, experimental data were presented which were in 

direct agreement with the theory of Chapter 1. Chapter 5 

thereby reinforced confidence in the physical picture of a 

volume-distributed trap population which underlay the theory 

of Chapter 1. A number of properties of trapping centers were 

deduced in Cha,pter 5 and correspondence with published data 

was shown to be very good. The experimental results of Chapter 

6 were consistent with the analysis of Chapter 2 and therefore 

allowed further deductions of the properties of the trapping 

states in CdS. The new technique for obtaining a probability­

of-escape frequency, explained in Chapter 6, gave results that 

were both plausible and of the same order of magnitude as values 

deduced in a different fashion by other investigators. 

The correspondence observed between experiment and 

theory leaves little doubt that the physical picture emphasizing 

volume-distributed traps, as developed in Chapter 1, results 

in a valid description of the behavior of the crystals studied. 

Thus, we may assume that space-charge-limited currents have 

been observed in the CdS crystals, contrary to the premise of 

control by a surface trapping layer as postulated by Rhys-Roberts 

and Tredgold [7]. The capacitance measurements of Chapter 6, in 



particular, are not consonant with surface trapping in either 

magnitude or variation. 

The experimental results of Chapter 5 make it apparent 

that one should attempt to exceed the trap-filling voltage 

V = eNt L2/2K€o (equation 1.18) in order to achieve any 

appreciable, space-charge-limited current levels in an 

analogue device having dimensions of the order of the diodes 

studied in this work. The trap-filling voltage must be 

exceeded without applying a field which will cause a dielectric 

breakdown in the material. A breakdown field at V = VTFL 

would be the limiting case of a useful analogue device. In 

order to have any dynamic range and to allow for local in­

homogeneities, the field should be held to some fraction of 

the breakdown value when all the traps are filled. This con­

straint can be used t ogether with an estimated lower limit 

for the crystal trap densities to calculate an approximate 

thickness limitation for a solid-state analogue device, as 

we shall now demonstrate. 

The average field at V = V
TFL 

is expressed from the 

trap-filled voltage formula as E eNt L/2K€O' We can solve 

this equation for the thickness: L = 2K€o!VeNt • To calculate 

a maximum thickness for the crystal we need only to insert a 

maximum permitted E and a minimum expected Nt in this 

formula. In Chapter 4, evidence corresponding to that 

reported by Williams [28] indicated an apparent dielectric 
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breakdown in CdS at a field of about 6 10 vOlts/cm. From what 

we have said above, the maximum value for E might therefore 

be set at 104volts/cm. To choose a minimum for Nt' we need 

to consider the present technology of materials. utilizing 

the vast amount of experience accrued in the technology of 

germanium crystal growth, specialists have been able to grow 

crystals of that material having trap densities as low as 

1011cm- 3 [34]. This perfection has not been reached for the 

larger band-gap materials: with silicon the best material 

has about 1013traps/em3.* Bube [8] suggests that a perfection 

comparable to this might be obtained in CdS. A trap density of 

1013em-3 corresponds to a single trap in almost 109 lattice 

sites for CdS and therefore certainly represents a high degree 

of perfection. Assuming a trap density of this magnitude 

together with an electric field of 4 10 VOlts/em, we calculate 

a maximum thickness of roughly 10 microns for a crystal 

showing trap-free space-charge-limited currents over a useful 

dynamic range. Poorer materials, such as the crystals studied 

in this report, decrease this thickness by the ratio of the 

For example, a trap density of 

results in a thickness maximum of only 100 angstroms. Thus, we 

see that any practical solid state analogue device will 

necessarily be very small indeed. Because of this, fabrication 

techniques will be extremely critical, especially for three-

element devices. 

* G. C. Dacey - personal communication 
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The fine control of thickness and geometry, possible 

with vapor-deposition techniques, has led to an attempt to 

adapt this process to analogue device manufacture. Work has 

been reported by Weimer onthe construction of an analogue 

three-element unit in CdS made completely by vacuum deposition 

of the electrodes and CdS in powder form [35). The correspon­

dence of behavior between single crystals and powders must be 

thoroughly investigated to determine what portion of the 

information now available will be useful if this form of 

fabrication is employed. Polycrystalline material will 

certainly have a larger trap density than the estimate of 

1013cm-3 which, if one specified V < V
TFL

, would necessitate 

an even smaller thickness than the 10 microns calculated 

above. Vapor-deposited fabrication, however, might so reduce 

the permissible size for the device that the variation of 

output current with the cube of reciprocal electrode spacing 

(equation 1.14) could compensate for the reduced e due to 

an increased trap density. 

If analogue devices were to be made of single crystal 

material, it is probable that epitaxial growth techniques 

could be profitably employed. USing epitaxial growth, a 

three-element device might be made by using a thin platelet 

seed crystal having a vapor-deposited metallic grid structure. 

Smith and Ruppel [29) did construct a three-element crystal 

amplifier on a thin platelet crystal but their geometry was 

far from ideal for a practical device. 
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The exploitation of insulating materials with high trap 

densities in unconventional ways may be possible with crystals 

of more manageable dimensions. An unconventional device could, 

for example, employ the variation of trapped charge with fre­

quency, as investigated in Chapter 6, to provide a frequency­

variant capacitance. If the source for a given trapping level 

could be correctly identified and synthesized, such a device 

might be tailor-made for a specified frequency range. Thickness, 

for a given capacitance, would be proportional to electrode area 

in this case. Variation with bias voltage of capacitance, as 

described in Chapter 6, could also be used to obtain an element 

with a gross (factor-of-three) ,change in capacitance over a 

small range in bias. 

One of the properties of the diodes, noted for each 

unit but not studied extensively, was the polarity and intensity 

variation of the open circuit photovoltage (meter resistance = 

100 megohms). This effect was definitely centered at the gold 

contact and differed both in magnitude and polarity in sets of 

diodes made from apparently identical crystals. The majority 

of the diodes had a photovoltage which resulted in the gold­

film contact becoming more positive with increasing illumination. 

In a few of the thin platelet diodes, however, the indium 

terminal became positive with illumination. The magnitude 

of the photovoltage ranged up to 550mv when the gold contact 

became positive and to 305mv when the indium contact became 

positive. A photovoltaic effect causing the gold contact to 



become positive could result from photoemission of electrons 

into the CdS from the gold film. This hypothesis, due to 

Williams and Bube [15], is corroborated by two effects which 

we have noted. The first is the behavior of trapping capacitance 

under reverse bias (Section 6.7), and the second is the fact 

that for some diodes an increased thickness of gold film resulted 

in an increased positive photovoltaic effect. The film thick­

nesses ranged from 500 to 1000 angstroms. A negative photo­

voltaic effect would be possible if the dominant light absorption 

were in the interior of the CdS. This would effectively raise 

the interior Fermi level and cause an electron flow into the 

gold. As has been noted, an indium-contact-positive photovoltage 

was observed only in the thin platelet diodes for which the 

surface preparation prior to electrode deposition was held to 

a minimum. To fit the picture described above, we might assume, 

therefore, that a poor surface at the CdS acted to inhibit 

electron emission from the gold film. The capacitance variation 

of diode 13-7 was consistent in this respect. Diode 13-7 showed 

a gold-film-negative photovoltage and also failed to exhibit 

the variation in capacitance with reverse bias typified by 

figure 6.5. That variation, in turn, was explained in Section 

6.7 as having resulted from the photoemission of electrons from 

the gold film. These conjectures point up the fact that further 

study of this effect might yield useful information on the properties 

of blocking contacts to CdS. optical effects in CdS that have 

been studied to date are summarized in a review article by Lambe 
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and Klick [36]. This reference also has a fairly comprehensive 

bibliography on other properties of the material. 

Another subject which might bear further study is the 

properties exhibited by some of the larger area diodes made from 

the crystals that were cut and lapped. Several of the diodes made 

from chlorine-doped crystals of this type showed properties 

which were superficially similar to conventional p-n junction 

diodes of silicon and germanium. There was no evidence of 

space-charge limitations in their behavior. Further knowledge 

of the extent of the similarity of such diodes to grown or 

alloyed junction silicon and germanium units could prove 

helpful in a study of the properties of metallic contacts to 

CdS. 
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LIST OF SYMBOLS 

Diode cross-sectional area 

Richardson thermionic-emission factor 

Capacitance 

Electrode capacitance 

Measured capacitance 

Trapping capacitance 

Maximum value of Ct 
Low. frequency value of Ct for a single 
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Density of donor states 

Trapping-state density defined for 
continuously-distributed traps 

Density of trapping states 

Minimum value determined experimentally 
for Nt 

Free-electron density 

Value of n under no-injection conditions 

Average value for n 

Value of n at the anode 

Fundamental of Fourier-analyzed waveform 
for n 

Maximum value for n 

Trapped-electron density 

Value of under no-injection conditions 

Average value for nt 
Value of at the .anode 
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1.3 

Trapped charge effective in enhancing Ct 2.1 

Fundamental of Fourier-analyzed waveform for 
n
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2.2 

Rate of trap emptying 2.2 

Rate of trap filling 2.2 

Quantity of electronic charge 1.4 
Charge stored on crystal electrodes 2.1 

Charge stored in crystal traps 2.1 
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Trapping-state capture cross-section for 
a free electron 2.2 

Absolute temperature 1.3 
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trap distribution 2.1 

Electron transit time 2 .2 

Time 2.1 

Applied voltage 1.1 
Barrier height potential 4.3 
V at incipient field emission 4.1 
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V at which two solutions to the space-charge­
limited current characteristic are joined 

Maximum ,value of the a-c applied voltage 

V at which ,ohmic behavior gives way to 
space-charge-limited behavior 

V at which all traps are filled by injected 
charge 

Values of VTFL for discrete levels when more 
than one trapping level are present 

Free-electron thermal velocity 

Free-electron drift velocity 

Electron energy 

Electron potential well depth 

Energy at lower edge of conduction band 

Fermi-level energy for electrons 

Energy interval in the forbidden gap 

Energy of discrete trapping level 

Quasi-Fermi level for electrons in the dark 

Quasi-Fermi level for electrons in the light 

Quasi-Fermi level for electrons 

Quasi-Fermi level for holes 

Energies characteristic of various trap 
configurations 

Electron barrier width for electrons having 
a given energy 

Distance 

Critical distance defined for tunneling 

Distance from emitting surface to potential 
maximum in image-force considerations 

A constant multiplier 

Ratio of the cathode field to the average 
field in the crystal 

Low frequency equilibrium ratio between 
and nt 
Permittivity of free space 

Proportionality constant between V and 

n 

n m 

1.4 
2.2 

1.3 

1.4 

1.5 

2. 2 

2.3 

1.3 
4.4 
1.'3 

1.4 
4.1 
1.3 
5.7 
5.7 
5.6 
5.6 

1.6 

4.3 
1. 2 
4.2 

4.4 
1.4 

4.2 

2 . 2 

1.1 
2 . 2 



e 

v 

T 
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Ratio of n to llt for a discrete trapping 
level under equilibrium conditions 

Values of e characteristic of discrete 
trapping levels 

Characteristic length for use of image-force 
potential theory 

Electron mobility 

Parameter defined for algebraic simplification 

Value of v at the anode 

Probability-of-escape frequency for an 
electronic trapping state 

Resistivity 

Density of trapping states per energy 
increment 

Lifetime of a free carrier 

Emission work function for electrons 

Radian frequency 

1.3 

1.5 

4.4 

1.2 

1.2 

1.2 

2.2 

3.6 

1.6 

5.6 
4.2 
2.1 
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