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ABSTRACT

A study of various electronic processes in a class of solid-
state diodes which function analogously to thermlionic-emission
vacuum tube rectifiers is made. For experimental work, such diodes
were fabricated from an insulating cryétal (cadmiim sulfide) to
which an ohmic contact (indium) and a blocking contact (goldj were
affixed. The properties of the diodes that are most rigorously
investigated are the equilibrium space-charge-limited current-
voltage characteristic, the behavior of the blocking contact
under high reverse fields, and the capacitance dependence upon
crystal trapping-state kinetics. Electron trapping is demonstrated
to have a marked influence on most of the electronic properties
of analogue diodes. Mathematical analysis based upon the premise
that these traps are volume-distributed in the crystals of CdS

is corroborated by the experimental results.

An analytical method, which treats various trapping
configurations with energy in a unified fashion, is employed to
calculate the expected influence of traps on the space-charge-
limited current characteristic. Correspondence of this analysis
with experimental observations permits the deduction, in some
cases, of trap densities and trap depths. The theoretical treat-
ment of the influence of volume-distributed trapping states on
terminal capacitance is also shown to be consistent with measure-
ments designed to test the physical model. Use of this theory
to interpret measured capacitance variation allowed the

‘determination of some of the kinetic properties of trapping



states, thus demonstrating a new technique for obtaining this
information. Correspondénce with the results from other methods
is good. Trapping-state concentrations in actual crystals are
shown to constrain practical solid-state analogue devices to

very smell dimensions.
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~ INTRODUCTION

The noteworthy practical success that has attended a deeper
understanding of the electronic properties of semiconductors has
made the value of research on other solid materials keenly apparent.
Temperature problems in the semiconducﬁors have led naturally to
the consideration of larger band-gap materials to see whethef
these, too, can be used in practical electron devices. Of course,
some large band-gap materials have both been studied and used for
many years because of their photosensitive properties. Although
the photosensitivity of these materials was first noted as long
ago as 1873 [1], very little inrthe way of a fundamental under-
standing of the responsible physical processes preceded the era
of the transistor. There are good reasons for this time lag of
seventy-five years between experimental observation and the
beginnings of a good theoretical explanation. It has been said
that the variety of electronic behavior shown by a solid increases
roughly by an order of magnitude for each electron volt of its
Eand gap. If this is a good estimate, it is evident that the
insulators and most of the practical photoconductors, which have
band gaps of two or more electron volts, will indeed be very
complex physical systems. Complex or not, technology and the
entire solid state art have advanced to such a point that large
band-gap materials will be exploited in electronic devices. It is
therefore a necessity to develop a physical understanding of the

underlying processes which can dominate their behavior.



The increasing complexity of the large band-gap materials
makes it all the more desirable that oﬁe's method of appraisal be
gimple. Because a complete solution of even a simple approximate
model is apt to be very complex and difficult to assimilate, one
is forced to look at approximations and trends. To quote Rose
on this topic [2]: "Rigorous mathematical solutions can be made,
if simple models are assumed. If one has confidence that materials
can be fabricated with the purity demanded by these models, com-
plete solutions are, of course, Justified even 1if they are complex.
If the materials one actually deals with are more complex than
these simple models, however, then complete soluticns are practically
ruled out and one seeks a simple point of view from which to

’ :

interpret the varied behavior of the materials. Most photo-

conductors appear to fall within the second 'if'."

A general characterlstic of large band-gap materials is,
of course, a low intrinsic free-carrier concentration. Therefore,
if one seeks to make use of such a material for a practical
electron device, some way must be found to increase the interior
electron concentration so that appreciable currents may be drawn
through it. This may be done by illumination or, as in semiconductors,
by crystal doping with donor or acceptor atoms. There is, however,
a third technique for increasing the free-charge population which
becomes feasible only as intrinsic resistivities become very large.
Under suitable conditicons, there can be direct contact injection
of electrons into the crystal conduction band. As discussed by

-Parmenter and Ruppel [3], appreciable excess charge injection into



a solid becomes possible when the carrier transit time through &
region is smaller than the no-injection dielectric relaxation time
in that region. This time constant for relaxation of an initial
charge eXcess by drift processes alone is definedvas the product

of crystal permittivity and resistivity, T = Ke For semicon-

oPo*
ductors, the dielectric relaxation time 1s usually in the nanosecond
range or less, vwhile for the photoconductors it can easily be in

the order of milliseconds. Charge injection into photoconductors
is, therefore, a very practical possibility, provided a suitable
injecting contact can be found to the crystal. This mode of
increasing conductivity in a region is seen to be a direct analogue
to thermionic emission into a vacuum. One is led, therefore, to
consider the possibility of empioying it to make a new class of
solid-state devices which function analogously to vacuum tubes.

Much conjecture has already been published about the properties

that this class of devices are expected to exhibit [4][5]. What is
needed is a further experimental evaluation of the properties of
materials in which this mode of operation may be exploited. Only
with this experimental evidence can the simplifying viewpoints
which allow one to build up & tracteble, yet sufficiently accurate

model be attained. The work reported in the following chapters

was motivated by these considerations.

Tn order to look into the properties of solid-state charge
injected devices, one must be able to make injecting contacts to
an insulating crystal. It is because ample proof of this capability

existed for CdS that this material was chosen for investigation.



Cadmium sulfide is a yellow crystalline substance which can be
grown in single crystals of the close-pécked-hexagonal type. It
has a band gap of ebout 2.4 electron-volts, and has been used
commercially as a photoconductive substance for years. Many of
its properties have been investigated in both single-crystal and
powder form, and considerable information is therefore available
from previous research. In an extensive study of the properties
of metallic contacts to CdS, it has been discovered that ohmic

-~ contacts can be made with either indium or gallium [6]. All other

metals tested resulted in contacts which are blocking to electrons.

Before proceeding in our discussion, we shall pause to
clarify these terms "ohmic" and 'blocking" contact, which are used
extensively in the literature on photoconductors. An ohmic
contact is defined as an electrode which supplies an essentlally
infinite reservoir of carriers, ready tc enter an insulating
crystal as needed to keep the electric field zero at the contact.
An "ohmic contact,"” therefore, is not the type of contact which
is made to a solld, having a volt-ampere characteristic which is
described by the adjective "ohmic." This unfortunate situation
is a fact, because a solid showing a volt-ampere characteristic
that is ohmic under the general use of the terminology has a
field which is everywhere finite and constant and, therefore,
non-zero at the contact. Thus, we shall usually avoid the term
and describe a contact, having the properties mentioned above,
as being injecting. Where "ohmic contact" is used, it will be

in an effort at consistency with some pertinent reference. The



virtual cathode formed in front of a thermionic emitter in a
vacuun diode is a familiar example of ﬁn injecting contact to
the insulating vacuum space between cathode and apode. A
blocking contact, on the other hand, is incapable of supplying
excess electrons to an insulator and the field at such a contact
ié not necessarily zero. As with semiconductors, the decisibn
as to the injecting or blocking character of a metallic contact
to CdS has proven more complicated than a simple correlation
between work functions of metal and insulator would suggest.

Bube [1] reports the research done to date on this question.

Despite the feasibility of making injecting and blocking
contacts to CdS, the development of solid-state analogue devices
has not proceeded to a practical level as yet. This has been
due chiefly to the relative abundance of trapping states which
exist in the forbidden gap of crystals of the material. These
trapping states accept most of the charge injected, and, in
general, control the electronic properties of the crystal as
seen externally. Moreover, it does not appear likely that it
will be possible to make single crystals with such low trap
populations that the effects of trapplng in any large band-gap
materials will be entirely negligible. Therefore, a thorough
knowledge of the effects of these states 1s a necessity to any
exploitation of analogue solid-state devices. A large portion of
this report will accordingly be concerned with the influences of
trapping on the electronic properties of CdS. The term "trapping

state" as used in this report refers to a center located



energetically in the forbidden gap between the valence band and
the conduction band, which is capasble of capturing a free hole

or a free electron. This definition is in accordance with common
practice in semiconductor terminology and avoids the further
possible distinctions about such levels, which can be made on

the basis of the dominant mechanism responsible for the emptying
of a filled trap. A particular experiment or phenomenon will
usually make clear the role of a given trapping level, so that,
for our pufposes, the definition stated above will suffice. A
full discussion of traps and tﬁe kinetics governing their
occupation is found in Bube [1, Chapter 9]. Traps may exist only
at discrete energies, or else there may be a band of trapping
levels distributed more or less continuously in energy. Bube

[1, p. 299] discusses some of the physical reasons for this fact.
Evidence, both for traps which are continuously distributed in
energy and for traps at a disc}ete energy level, is given in
Chapter 5 of this work, and analyses for both of these cases are

presented in Chapter 1.

To perform the experimental work which we shall describe,
analogue diodes were constructed by affixing both injecting and
blocking contacts to a single crystal of CdS. In this way,
studies could be made conveniently of crystal properties under

both charge injection and no-injection conditioms.

In spite of extensive research on the effects of trapping

in CdS, there is not complete agreement on a physical picture to



.explain the experimental results. Even the spatial location of
the influential trapping levels is a matter of some dispute, with
at least one investigator taking the pcint of view that surface
states control the volt-ampere characteristics under injection
bias [7]. The diversity of curreant~voltage deﬁendences under
charge-injection conditions 1s so great, as we shall see, thét
it is not surprising that surface conditions, with their usual
labile properties, should be invoked. Owing largely to the work
of A. Rose and his group al RCA, a coherent theoretical explanation
of the extremely varied observations has been attained in terms
of bulk hehavior alcne. This interpretation, which asssumed that
the influential traps are volume distributed, will be found to
describe fully the experimental work done here and will therefore

be discussed in detail.

Both static and dynamic properties of the trapping states
in CdS were investigasted as will be described in the following
chapters. Long term equilibrium volt-ampere charactéristics
under conditions of charge injection were studied in order to
determine trapping-state densities and energy locations in the
forbidden band. This technique was intrqduced by Rose'’s group at
RCA, and will be the object of some discussion. A new approach
was used to study the kinetic properties of trapping. Previous
investigations have detected the time-dependent properties of
traps through measurements of photoconductive rise and decay
times, or of the properties of thermally-stimulated trap emptylng

'[1][8]. The technique which we shall use involves a direct



detection of the trapped charge through the measurement of the
diode terminal capacitance exhibited under conditions of charge
injection. The capacitance is found to vary with_illumination,
bias voltage and measuring signal frequency in a way which can
be correlated directly with the anticipated effects of varying

amounts of trapped charge.

The properties of the diode blocking contact under apparent
breakdown conditions were also the subject of an extensive
investigation. Evidence will be given for an apparent Schottky-
type high field emission over the barrier, although, as we shall
see, a tunneling mechanism is not entirely ruled out. The photo-
éonductive properties of the crystals are not the subject of an
intensive quantitative study for the followlng reasons: first,
research in this field has occupied many individuals for some
time now, and a fair understanding of the quantitative effects
of 1llumination has been attained; second, the equipment needed
for such study was not readily available. In general, only the
gross effects of illumination with order-of-magnitude accuracy

for intensity variations was attempted.

In order to gain a clear perspective of what is to come,
we shall conclude thils section with a synopsis of this report,
stating what was done and where it will be discussed. In
Chapter 1, a complete analysis of the possible behavior of
space-charge-limited currents in an insulator with traps is

presented. A unified approach is used to handle various trapping



configurations -with energy, which apply to the diodes studied.
Chapter 2 provides a theoretical basis for the effects of trapped
charge on the measured capacitance of an analogue diode. Thus,
Chapters 1 and 2 are completely theoretical. In Chapter 3, the
techniques used in the fabrication of £he diodes which were made
of CdS with gold and indium contacts are described. Chapteré L,

5 and 6 treat the measured characteristics of these diodes.
Chapters 4 and 5 together discuss the complete equilibrium
current-voltage behavior, with the high field effects at the

gold junction the prime subject of Chapter 4. Chapter 5 describes
the measurements made on the space-charge-limited currents observed
in the diodes, and the deductiogs as to trapping properties made
from them. Chapter 6 takes up the dependence of measured capaci-
tance on various parameters and interprets this data in terms of
the analysis of Chapter 2. Over-all conclusions form the final
portion of the report. These will comment on the significance of
the measurements and on the applicability of the various analyses

presented here and in the references.
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CHAPTER I

Theoretical Treatment of Space-Charge-Limited Currents

in an Insulator with Traps

This chapter provides a unified theoretical basis for the
properties of space-charge-limited current flow in an insulator
with traps. The aim is not a mathematically rigorous treatment,
because rigor in this case, unfortunately, leads to implicit equa-
tions between voltage and current and to a loss of the physical
picture which underlies the observed phenomena. Instead, we shall
develop the current-voltage relationships chiefly by making use
of an approach developed by Lampert [9] and used by him to
handle the discrete-energy trapping level. Lampert's work is
here extended to various energetically-distributed trapping states
in order to provide a coherent and unified structure from which
to survey experimental results. Traps distributed in energy
were first treated by Rose [10] in a different manner than we
have used. Experimental evidence, to be presented in Chapter
5, has prompted the cholce of the various energetic trapping
configurations which are treated mathematically here. The
spatial distribution of traps is assumed to be uniform in all

casesSe.

The analysis to be presented is one dimensionsal, with x
being used to denote distance. The only free-charge carriers
considered to be present are electrons and recombination is

taken to be negligible. The crystal is assumed to have an
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~Injectling contact at the cathode which exists at the plang X = Q.
The collecting electrode, which may be'either injecting or
blocking is called the anode and is situated at the plane x = L.
Positive blas is defined by making the anode positive with

respect to the cathode.

The over-all plan for the chapter is as follows. Section
1.1 will indicate some of the difficulties occasioned through
use of a straightforward analysis, and will state conditions
on the mathematical treatment which will be given in the
remainder of the chapter. Section 1.2 will explain, in detail,
the method of approximate analysis which will be used extensively
to obtain the volt-ampere characteristic for various trapping
configurations with energy. The low-voltage characteristic for
a crystal containing a discrete trapping level is considered
in Section 1.3, This is the only case of space~charge-limited
current in aAcrystal with traps that can be calculated explicitly
in a straightforward manner from considerations of the appli=-
cable differential equations. The direct mathematical derivation
of the volt-ampere characteristic is therefore given in Section
1.3.1. 1In Section 1.3.2, the simplified analysis is used to
treat this trapping configuration. The derivatiocn by both
methods provides a comparison which clarifies the application of
the simplified method. In Section 1.4k, some consideration is
given to the volt~ampere characteristic of a discrete level at
voltages near to that voltage which fills all the traps. The

-influence of the trapping parameter © on the steepness of the
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volt-ampere characteristic during trap filling is deduced by
making an approximation to the true trap-filling characteristic
in Section 1l.4%.1. Section 1.4.2 points up a limitation in

the simplified method of Section 1.2, which becomes evident
when it is applied to the trap-filling case of a discrete level.
Two or more discrete levels are considered in Section 1.5,
largely through extension of the results derived in Sections
1.3 and 1.4 for single-level trapping. Section 1.6 and its

two subsections, 1.6.1 and 1.6.2, analyze the important case of
energy-distributed traps through the use of the simplified
viewpoint of Section l.2. In Section 1.6.1, the configuration
studied is an energeticallyhcontinuous constant trap density.
In Section 1.6.2, the trap density is exponentially varying
with energy. A summary of the techniques used and tﬁe results

obtained in this chapter is incorporated in Section l.7.

1.l. Comments on an Exact Approach

The procedure in the mathematical analysis of space-charge-
limited currents in a solid 1s straightforward. The exact treat-
ment stems from the simultaneous solution of three integro-
differential equations: two of them express the definitions of
potential and of drift current. The third is Poisson's equation.
The interdependences, however, are such that in all but the
simple, trap-free case and the case of s dlscrete-energy trapping
level at low applied voltages, it is impossible to obtain from

-these an explicit relationship between current and voltage.
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Lampert treats exactly the case of discrete-energy ﬁraps
at all spplied voltages in an appendix to his work [9], the
complexity of which points up the need for a more illustrative
~approach. As an example, the exact equation for the current

density J, derived by Lampert, takes the form:

eun_V U - In(l + U)
= 2 = (1.1)
L (1/2)Ua = T & In(1l + Ua)

where Ué is defined as:

and e is the electronic charge,
is the electron mobility,
V is the applied voltage,
I, is the anode~to~cathode spacing,

is the trapped-electron density at the collecting
electrode (anode),

nta

n, is the free-electron density at the anode.
The bars refer to no-injection equilibrium values for the
corresponding quantitlies. Yet to be inserted into equation 1.1

is the dependence of n, on V, which will complicate the



1k

over-all equation still further. ZEven without this added complexity,
the form of 1.1 is too cumbersome to be of use without making
approximations valid in the various regions of operation. The
insight permitting these approximations comes, unfortunately,

from taking other than this mathematical route to a solution.

One i1s thus in the position of being led to an approximate method

to gain facllity in manipulating the exact solution to a form

already known.

These considerations led Lampert to adopt a viewpoint
which we shall build upon in this treatment, leaving the exsact
solution to be used as a check on the approximate methods.
Before beginning, we should notg that assumed in the analysis to
be given is the condition that only drift processes contribute
to the current flow. This has been proven not to lead to
inaccuracies in more complete mathematical analyses which have
taken account both of drift and diffusion. Shockley and Prim
[11], for example, considered the effect of diffusion in a trap-
free semiconductor, and showed that for applied voltages in
excess of kT/e diffusion was relatively unimportant in
determining the over-all characteristic. Sulte [12] also
considered the complete solution for a variable-width space-

charge region including traps, and reached the same conclusion.

We shall also omit consideration in this chapter of two-

carrier space-charge-limited currents¥* [3][13], because we are

* Two-carrier space-charge-limited currents would flow if holes were
freely injected at one electrode and electrons at the other: the
only constraint on the flow being the application of Polsson's
equation.
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primarily concerned with a mathematical treatment valid for
the diodes studied. There has not yet been experimental
verification of true two-carrier space-charge-limited currents

in any materials.

l.2. The Simplified Viewpoint

The basis for the simplification proposed by Lampert
lies in shifting attention from current as a function of voltage
to anode charge as a function of voltage. As in the analyses
of transistors and other semiconductor devices, this charge-
oriented viewpoint succeeds both in providing a means for the
derivation of manageable equations and in leading to a physical

picture which may be readily grasped and understood.

We may begin the mathematical analysis by writing the

applicable form of Poisson's equation:

-g:—fé = - R—:—O' [(Il - E) + (nt = Et)] (1‘2)

where E is the electric field,

Keo

n 1is the conduction-band electron density,

is the permittivity of the crystal,

n, 1is the trapped~electron density,

t

and the bars denote no-injection values (charge-free
interior).
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For all values of applied positive bias, electrons are injected

into the erystal such that n >7n and n >-Et, which implies

t
that the bracket in 1.2 is always positive. Therefore, E
changes monotonically from zero at the cathode, where dE/dx

is negatively infinite (we assume an infinite charge reservoir
for n at the cathode) to its anode value E, (figure 1.1).
Hence, E necessarily has its largest magnitude at the anode,

a fact also evident from Gauss' law since the anode is the only
source of electrical flux lines. Furthermore, using the fact

that for an applied voltage equal to V, E is constrained by

the relationship:
- P Eax = v

it can be shown quite readily that (V/L) < -E_ < 2(V/L). The
proof of this inequality is due to Lampert [9]. It may be
demonstrated by noting that the free-electron density n is
constrained through the relationship IJ[ = [qanl = constant.
Therefore, since |E| is monotonically increasing from O +to
[Eal across the diode, n must be monotonically decreasing
from its cathode value. We assume, in addition to the spatial

uniformity of trapping states, that n and n, are in quasi-

t
thermal equilibrium [9]. From this assumption, n, also must
decrease monotonically from cathode to anode. Therefore, the
curve representing E must lie within the region on figure 1.1

.marked I and indicated with cross-hatching. The boundaries

to this region represent the case of ohmic flow and that of a
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Figure 1.1. Requisite form for electric field
variation with distance. Curve must lie within
Reglon I, indicated by cross-hatched boundaries.
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constant interior-charge density. Represented physically on
figure 1.1, the integral constraint on E, just mentioned,

states that the area between the curve standing for the field

and the distance axis i1s fixed at V. gStating this area in

terms of the boundary lines to Region I establishes the inequality.
Thus, the ancde field is nefer greater thén twicé the wvalue it has
for ohmic-flow conditions. This is true independently of the

trapping configuration with energy.

Since drift alone is considered as an electronic-transport
process, we may write:

J =-emE : (1.3)

Therefore, considering the inequality derived, the actual current

may always be computed within a factor of twoe from the relationship:

J =~ epna(V/L) 7 (1.4)

Equation l.4 emphasizes the fact that the complex and
varied behavior of insulators under conditions of charge injection
is contained in the dependence of the anode free-electron density
upoﬁ the applied voltage. In fact, if n, may be obtained as an
explicit function of voltage, its insertion into equation 1.4
will yield an explicit volt-ampere characteristic, valid within

a factor of two.
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An approximate, but very useful, method for obtaining an
expression for the dependence of n, on V follows from the
integrated form of the Poisson equation. The over-all Poisson
expression, equation 1.2, may be simplified in most practical
cases by neglecting n and Et since no-injection densities are
necessarily small compared to injected charge densities undér

conditions of space-charge limitations. Integrating equation

1.2 under this assumption leads to the form:

a

e

-[ dE = -K'—ES f ndx+f ntdx

0 0 0

or
Ke B, 1 b 1 b

o = ij ndx + n dx (1.5)

0 0]

This may be written as:

where v_ is defined as —(KeOEa)/eL and the underlines denote
average densities. Equation 1.6 shows that ¥y physically
represents the average injected-charge density inside the crystal.
The inequality just derived for Ea shows us that Va will

-always be within a factor of two of the value v, = (Keov)/eLB.
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Thus, equation 1.6 provides an approximate relationship between

n, n, and V when this value for v, jis inserted into it. The
electron density needed, however,'fo obtain the current-voltage
characteristic from equation 1.4 is not the average free-charge
density n, but the anode free-charge density 0. A relationship
between n and n, must, therefore, be incorporated into
equation 1.6 to obtain the desired result - an expression for

o in terms of V., The relationship we shall assume between

these quantities is: n = o, and likewise n, = nta’ independently

t
of the applied voltage. This assumption is usually closely
fulfilled, but fails under certain conditions which, fortunately,
may be recognized beforehand. We defer further discussion of
this point until some familiarity is galned inthe simplified

technlque here expounded. Insertion of these approximste forms

for v, and n into equation 1.6 leads to:

KeOV

~ n_+n (1.7)
el

With equation 1.7, we have written all the expressions
necessary to obtain the current-voltage characteristic through
use of the simplified viewpoint. Basically, the procedure

involved is to determine the dependence of n upon n and

ta a

to insert this into equation 1.7. In general, this dependence

will be a function of the Fermi level and, thereby, also a
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function of voltage. The anode free-cha;ge density o is
then calculated in terms of applied voltage. Having n, in
terms of V, one makes use of equation 1.4 to obtain J in
terms of V. 1In certaln cases, where extra information is avall-
able, an improvement upon the accuracy of equation 1.7 is made
possible by deriving a different form through the statement éf
more exact relationships between vy and V and between n
and n . This will be illustrated in Section l.%.2. Much of
the remainder of this chapter will be concerned with the
application to various trap configurations with energy of this
simplified technique for the determination of volt-ampere

behavior.

1l.3. Crystal with a Discrete Trapping-Level at Low Voltages

The complications arising in the analysis of the crystal
with traps stem from the fact that the total space charge is
divided between mobile and immobile charge. In general, the
ratio between these charge densities is voltage dependent, which
leads to a non-linear form for the Polsson differential equation.
Fortunately, however, a speclal case in which a close approximation
allows the equations to remain linear and explicitly solvable is
applicable to many crystals. Analysis of this case both through
the direct solutions of the applicable differential eqguations
and by the method outlined in Section 1.2 provides, therefore,

g useful evaluation of the latter approach. We shall begin
(Section 1.3.1) by presenting the direct mathematical analysis

and then (Section 1.3.2) shall illustrate the simplified approach.
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1l.3.1. Direct Mathematical Solution

The basic model to be considered is a crystal with a
discrete trapping-level for electrons situated more than a few
kT above the Fermi level (figure 1.2). Under these conditions
the Maxwell-Boltzman distribution is applicable. If we assume
thermal equilibrium between the free states and the trapping
states, the interior Fermi level will rise with electron injection.
Hence, the validity of this condition is voided as the applied
voltage increases. Thus, the results of this analysis are limited
to voltages low enough so that Maxwell-Boltzman statistics remain
valid as a description of free and trapped charge. This constralnt

defines the low-voltage region.

If Maxwell-Boltzman statistics apply, the ratio of free to
trapped charge is independent of both voltage and position inside

the crystal. This ratio, which we shall call o, is given by:

o

It
dp‘ B
=

= N_z exp [-(Wy = Wp)/kT] (1.8)

where Nc is the effective density of states in the conduction
band,

N is the density of trapping states,

W. is the conduction-band energy,

W_ is the energy of the trapping level,
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Figure l.2.

Band structure proposed for analysis in Sec-
tion 1.3. The crystal contains a discrete-
energy trapping level at WT. The Fermi level
WF is sketched in a region for which equation
1.1h is essentially accurate. The dotted line
at W = Wp-2kT indicates the arbitrary 10% error
point in Maxwell-Boltzman statistics at which
equation 1.14 is assumed to lose accuracy
(Section 1.4.1). The ™trap-filling region”
(Section 1.4) corresponds to W exceeding this

F
magnitude.
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k' is Boltzman's constant,
T 1is the absolute temperature.

Using this definition, we may write Poisson's equation as:

& - =@+ - @+ W] (2.9)

For insulators such as CdS under charge-injection conditions
we may expect that often n > n and o >>Vﬁt because the
no-injection densities are so extremely small. 1In that case,

the simplified form for equation 1.9,

dE _ -en(l + @)
ax Ke .6 L)

is useful. Equation 1.10 will be used in further analysis since
it is applicable in the range of voltages that is our chief

interest.

At any x, it is also true that:

m o= . (1.11)

J
ek

so that:
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_J(1 +e)
EdE = —Eeo—pg—-dx
Hence,
( ) i/2
27(1 + 9)x
T = [ oo ] (1.12)

In equation 1.12, the constant of integration has been made zero
by taking measurements from the virtual cathode, at which point
the assumption of space-charge-limited current conditions requires

the field to be zero.

Substituting 1.12 into - OfL Edx = V we obtain:

( 3 1/2
_ 2]27(1 + o)L
Vo= 3 “Kegw (1.13)
or,
OKe , oV
§ = ey (1.1k)
8(1 + o)L

Equation 1.14 is the relationship sought. It shows that square-law
currents result in a crystal under space-charge-limited conditions
provided voltages are sufficiently low so that a Boltzman factor

can be used to describe the statistical population of the free and

trapped states.
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In practical crystals € is almost always much less than
unity, so that equation 1l.1l4 is usually written with the demon-
inator (1 + ©) factor replaced by one. However, to derive
the trap-free case from this solution, we must use the form
given in l.1lk and allow & to approach infinity (Nt approaches
zero in equation 1.8). Under these conditions we obtain the

solution of Mott and Gurney [14]:

9K€O|uV2
J = e (1.15)
8L,

Equation 1.1l5 becomes applicable to crystals having traps at
voltages exceeding that at which all traps are filled, so that
further injected charge is necessarily free. This topic will

be discussed more fully in the next section.

Before considering the spplication of the simplified
viewpoint of Section 1.2 to the analysis of this problem, we
shall derive some relationships from our work which will prove
useful. By substituting 1.1k into 1.12, we may solve for Ea
for space-charge-limited currents with a discrete trapping level.

If we denote this field value by Easd’ we have:

(1.16)

asd

=
1
S
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which is, of course, within the limits derived in Section 1.2,
From equations 1.3, 1l.14 and 1.16, we may also solve for n,

in this case, again denoted by the subscripts sd.

3K€06V
= (1.17)

n
BE 4(1 + o)erL?

It will be of interest to determine the ratio of the free-electron
density at the anode to the average free-electron density in the
crystal. Using the symbol n to denote this average density of

electrons in the conduction band, we have:

1 L
4 = 7 Of n(x)dx

which may be written for this case, using equations 1.10 and 1.16:

B -Keq0 ) 3KeOeV
R (1 + 9)eL aed 2(1 + e)eL2

Thus, from 1.1T:
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Bea = Pgeq (1.18)
Equation 1.18 implies that the average Fermi level in the crystal
is only kT(1n2) ev higher in energy than the anode Fermi level.
At room temperature this is just 0.018 ev. Thus, for the case
here analyzed, it makes little difference whether we refer to the
average or the anode Fermi level. This completes the analysis of
the space-charge-limited current flow by stralghtforward mathematical

methods.

1.3.2. Simplified Approach

We now demonstrate the @erivation of the current law,
equation 1.14%, by the simplified techniques described in Section
l.2. To do this we refer to equation 1l.7T. Inherent in equation
1.7, it will be remembered, are the approximations: n ~n,

n, ~n

n, +a? Eq = -V/L, and n >>n. For the discrete trapping

level with Maxwell-Boltzman statistics applicable as analyzed in

this section, the appropriate form of equation 1.7 is:

KEOV

X s
= n(l+6"7)
eLZ a
Thus,
KeoeV
Pa T T o d
e(l + o)L

Then, from equation 1.4 (J =~ epnaV/L), we have:
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Keouevz
J = ——— (1'19)
(L -+ G)L3

Comparison of this form with eqpatioﬁ 1.14 shows that use of the
approximate method yields a resultant characteristic which differs
from the more-exact treatment only in failing'to provide the (9/8)
factor of equation l.l4. The complete voltage dependence is
preserved with a considerable decrease in computational effort.

In more complicated cases, as we shall see, this approximate

method will prove to be a very valuable technique.

Before we consider high applied voltages for this discrete
trapping-level case, we should complete the low-voltage picture
by noting that the behavior we have derived in equation 1.1k
should not be expected at very low applied voltages. The behavior
specified by equation 1l.14 is the characteristic volt-ampere
dependence when sufficient charge has been injected to lead to
a space-charge limitation for current. TFor low applied voltages
this will not be the case; instead the normal free-electron
density inside the crystal will cause an ohmic current flow with
a constant field in the interior. We may expect that the
transition voltage for a change in behavior from ohmic current
to space-charge-limited current occurs in the vicinity of an
equality:for the solution given by the two equations, the ohmic

= g 2
relationship, J = eunV/L, and equation 1.1k, J = IKe,ueV /8(1 + e)L3
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If we denote this transition voltage by the symbol Vos’ we have:

(1.20)

Equation 1.20 emphasizes the fact that a decreasing 6 increases
the voltage necessary to obtaln space-charge-limited current
conditions. In recapitulation, the expected volt-ampere behavior
that we have derived for a crystal with a discrete trapping level
is & linear dependence at voltages below V__ (as given in
equation 1.20), with a transition to square-law currents of

the form given in equation 1l.1l4 sbove V = Vs

Clearly, the space-charge-limited characteristic of
equation 1.1k, which rests on the assumption that the ratio
n/nt is a constant, cannot be followed indefinitely as voltage
is increased. This is true because any real crystal will
contain only a finite total number of traps. After these are
completely filled by charge injection, the current-voltage
behavior will approach asymptotically the characteristic for
a trap-free crystal (equation 1.15), since, after all traps are
filled, the fraction of total injected charge that is trapped
decreases with voltage. As Lampert derives [9], the characteristic
shows a steep rise in current with voltage between the region

in which equation 1.14 is valid and the region in which equation
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1.15 applies., Neither of these two asymptotic cases applies near
to the voltage at which all the traps become filled. Consideration
of this region of the current-voltage characteristic is the
major topic of Section l.4. Before discussing this region, we
pause to note that the current-voltage behavior derived in

this section is really more general in application than to the
case of a discrete trapping level. Although the discussion is
couched in terms of a discrete level, it is evident that all that
is necessary for its validity is a constant ratio between n

and 0. This will be the case, in general, for any density of
shallow traps (i.e. traps near to Wb) at low voltage excitations
in a high-resistivity crystal. For a distribution of traps with

energy, W, and Nt in equation 1.8 become effective, averaged

T

values.

1.4, vVolt-Ampere Characteristic During Trap-Filling for a
Discrete Level

We have noted in Section 1.3.2 that the volt-ampere
characteristic near to that voltage which injects sufficient
charge to fill all traps must connect the two asymptotic-
behavior cases of space-charge-limited current as given in
equations 1.1k and 1.15. Since most of the traps are being
filled at voltages in the range connecting both of these
equations, we shall call this region of the characteristic the
trap-filling region. We start our analysis of the current-

_ voltage behavior in this region by calculating, first, the

value of the trap-filling voltage.
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The voltage which fills all the traps may be calculated
easlly under the ususl assumption that.the trapped charge far
outnumbers the free charge, so that essentially gll anode
electrical flux lines end on trapped charge in the interior.
With this in mind, it is & problem in electrostatics to
determine the voltage necessary to produce sufficient anode
flux lines to link with charge in all of the traps. Since the
charge configuration consists of uniformly-distributed trapped
charge coupled to a planar, positive density at the anode of

area A, the capacitance of the system is:

c = ZAKEO/L (1.21)

The total charge is eALNt when all possible trapped charge is

coupled to the enode. Hence, the trap-filling voltage VTFL is
given by:
Gy, LNy
VL T T T e (1. 22)

This expression is dependent only on a uniform density of trapped
charge, and is independent of the energy configuration of the

trapping levels.

Above V = VTFL the current-voltage characteristic

approaches the trap-free crystal behavior as specified in equation

~1.15 since, at these higher voltages, the ratio of free to
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trapped charge increases rapidly. The exact solution [9] shows
that the range of validity of equation 1.15 extends down almost

Deviation from the low-voltage asymptotic behavior of
equation 1.14, on the other hand, becomes significant when
Maxwell-Boltzman statistics cease to be valid in describing
the ratio n/nt. This occurs as the Fermi level inside the
crystal approaches the trapping level, necessitating the use of
Permi-Dirac statistics and, thereby, incorporating a voltage
dependence into the ratio n/nt. This voltage dependence, in
turn; leads to a high-power law in the trap-filling region. The
volt-ampere characteristic in this region will be considered

more closely in Sections 1l.4.l and 1l.k.2.

1.4.1. Derivation of a Useful Approximate Form

In this section we shall consider a heuristic form of the
volt-ampere characteristic during trap-filling in order to get
some idea of the behavior exhibited under these conditions. The
heuristic approximation is obtained by assuming a plausible
characteristic to join together the two asymptotic forms
(equation 1.1l4 and equation 1.15) which apply at low and high
voltages, respectively. The asymptotic characteristics are
held to be valid until their accuracy becomes poorer than an
arbitrary assumed tolerance. The point at which equation 1.15

is to be joined is at V= V. as we have stated (from the
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complete solution of reference 9). For the joining voltage to
equation 1.1k, we shall have to consider what voltage causes
significant error in the use of Maxwell-Boltzman statistics.
To determine this voltage, we start by writing the statistical
relationships which are accurate throﬁgh the trap-filling

region. They are:

N
£
"t T Txewm [(Wy - Wo)/KT] (1.23)
and
n = N, exp ['(Wb -_Wf)/kT] (;.zu)

where WF is the Fermi level energy. ZFrom equation 1l.23, we
can see that the inaccuracy in the use of Maxwell-Boltzman
statistics instead of Fermi-Dirac statistics is less than 10%
for (WTV— WF) > 2kT. If this degree of error is tolerated,
then equation 1.1l4 may be used so long as W, and W, differ
by 2kT or greater. The voltage at which W, = (WT - 2KT)
may be calculated by noting from 1.23 that for this voltage

n, =~ (1/8)Nt. Using the expression for the space-charge
capacitance of equation 1.21, we calculate that this charge

density implies an upper-limit voltage for the validity of

equation 1.1k, which we denote by Vj, of':
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V., = = oD
3 C 8 e, 8 'TFL (1.25)

Since the validity of 1l.l5 extends approximately down to the
voltage V = Vg ., this gives a range V = (7/8)vTFL in which
neither equation 1.1% nor equation 1.15 is valid. It is tempting
to use the approximate method we have outlined 1n Section 1.2

to obtain the characteristic in this region, but certaln
difficulties are presented by this attack. These difficulties
are ilnstructive and we shall, therefore, consider this approach
in Section l.4.2., However, at this juncture we shall meke some

speculations about the form of fhe characteristic during trap-

filling which will also prove informative.

As we have previously noted, the exact solution [9] points
up the steepness of the current-voltage characteristic during
trap-filling. It would be helpful to gain some insight into the
extent of this steepness as a function of the physical parameters
of the trapping level. The constraint we have, thus far,is that
the current-voltage relationship during trap-filling must joln
the two asymptotic forms, equations 1.1% and 1.15,in & voltage
range roughly (T/B)VTFL in extent. Since we know that the
fraction of total injected charge that is free increases as
V approaches V , we can see that the actual current-voltage

TFL

curve must have an increasing derivative as V approaches VTFL'
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A simple curve which both behaves in this fashion and satisfies
the constraints just mentioned is the constant power-law curve
implied by a straight line joining the two asymptptic charac-
teristics on a logarithmic plot. Such a curve 1s illustrated

in figure 1.3 for a © value of lO-l.

A value for e of 10T is entirely unrealistic, but was
chosen to make the graphic presentation simple; crystals usually
show values for © of approximately 1072, A diminishing value
for © translates the line corresponding to equation 1.1k
downward alcng the current axis of figure 1.3 and parallel to
itself. Thereby, a decreasing 6 acts to magnify the power law
during trap-filling. In fact, the power law implied by the
approximation to the volt-ampere characteristic under discussion
is easily calculated as a function of 6, as follows. Referring
to figure 1.3, we see that V changes by a factor of 8 as J
changes by a factor which can be calculated by taking the ratio
of equation 1.15, evaluated at Vp.., to equation 1.14, evaluated
at (1/8)VTFL. The change in J is thus 64/e. The slope this
yields for logarithmic current versus logarithmic voltage is
(log 64/0)/(log 8). Inverting the logarithms and thus converting

back to J versus V, we see that the characteristic is:

I = o

log 6

with m 2+ Hg—g—— ~ 2+ log e_l (l- 26)
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where « 1is & constant, and log signifies logarithms to the base
10. Natural logarithms are always written as 1n in this report.
Thus, for the case o = 107 $llusbrated In figure 1.3, the
trap-filling law is approximately cubic. In the more practical
case, for o = 10_5, the law would be closer te the Tth power
over the approximate decade of voltage during which trap-filling
invallidates the use of Maxwell-Boltzmen statistics. We would
note that the choice of the join point of the trap-filling law

to eguation 1.1l has little effect on the characteristic
determined. If that point had been set at (l/lO)VTFL instead
of (l/S)VTFL we would have arrived at exactly the final form
given in 1.26. Likewise, almost an ldentical form to equation
1.26 would have been obtained had one joined equation 1.15 at

V = ZV

TFL"

way in which the join points were chosen., The size of 6 1is

These facts make unimportant the generally arbitrary

the significant factor in determining the steepness of the

trap~filling law.

No pretext is made here that equation 1.26 represents an
exact sclution to the applicable differential equations during
trap-filling. Equation 1.26 is, rather, an approximation made
chiefly to indicate the dependence of the volt-ampere characteristic
in the trap-filling region on the parameter € and to show that
the characteristic in this region will indeed be steep in actual

crystals,
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1.4.2. Use of the Simplified Approach in the Trap-Filling
Region ;

We shall now attempt to use the approximate method of
Section 1.2 to calculate the characteristic during trap-filling.

The starting point is equation 1.6 (va =n + Et)' Because we

are going to join two voltage regions in which the results
derived in equations 1.16 and 1.18 (Easd = -(3v/2L); n =

znasd) are valid, one might assume that the accuracy of the

approximate form for equation 1.6, given in equation 1.7

((kegV)/et? =n_ +n )

insertion of these values directly into equation 1.6. Under

» could be improved in this case through

this condition, equation 1.6 becomes:

v, = 2(n, +n (1.27)

a ta)

with v, D[ow given by ¥, = (3KeOV)/2eL2. To solve for o, in
terms of Vg and thereby for n, in terms of 'V, the relation-
ship between n, and n,. must be inserted into 1l.27. This is
obtained by eliminating W, between 1.23 and 1.2k to obtain:

TR (1.28)

Inserting 1.28 into 1.27, and making the usual approximation that

® << 1, we have:
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n”+n (N - —=-— = 0 (1.29)

A series representation of the solution to 1.29 valid for

1 < 2Nt is:

(1.30)

Again using equation 1.16, we may write an improved form

in this case for equation 1.k:

e vV
J o= — (1.31)

Thus from l.30, assuming all terms in the series negligible when

compared to the first, we have:

J = _-J-I-L— 1 - —BT (1-32)

For the complete dependence upon V, we insert the definition for

v, into 1.32 to derive:
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T @ e i » e (1.33)

which is more meaningfully presented when normalized to V

through use of equation 1.22:

9KeoueV2 3V
‘&L3 8v

(1.34)

Equation 1.34% converges asymptotically to the form 1.1L4 at low
voltage, as expected, but obvioﬁsly does not lead to the
anticipated high~power law for current in the trap-filling
region, This is the case despite the fact that the limits of
validity of the solution in 1.30 are Vv, < th. If one trans-
lates this constraint on Va through the definition

v, = (SKEOV)/ZeLz, the corresponding voltage bound is V < BVTFL/B'
Here, however, is the step which loses physical significance
because Ea changes from the value 3V/2L and n no longer
equals Ena as the Fermi level nears the trapping level. As

seen in the exact solution, and by reasoning we shall present
shortly, these various factors become voltage dependent. Hence
although equation 1.6 remains valid, when it is converted to

functions of the anode densities as is done in writing equation

1.27 (va = Z(na + nta))’ the dependence of v is no longer
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linear with voltage. Therefore, except for the numerical
coefficients, the solution 1.32 is also still valid but the
higher power dependence of v leads to the high-power law
connecting the ranges of applicability of équations 1.14 and
1.15. Thus, the proper use of 1.3k ié for voltages below the
trap-filling region; that is for V < (1/8)VTFL' This is

1llustrated on figure 1.3.

Tt has already been shown (Section 1.2) that under no
circumstance is E_ > 2V/L. Therefore, the high-power law
for current dependence on voltage is due mainly to the
changing ratios E/na and, g/nta. Actually, it is the ratio
of n to o, that has a very large maximum near to the
trap-filling voltage, because the traps physically close to
the injecting electrode are filled prior to those at the anode.
The exact solution [9] brings out this fact. Thus, the
approximate solution procedure outlined in Section 1.2 may
not be applied to this case without obtaining, in some way,
the correct voltage-dependent variation for the ratio of n
to n,. The variation of E/na ‘with V is not easily derived
and one is therefore led, in this case, to an interpretaticn of
the exact solution. Our interest in the volt-ampere characteristic
during trap filling will not extend beyond a consideration of
the influence of 6 on the steepness of the relationship.
Since this was determined in Section 1.4.1, we shall not pursue
the topic further here. Equation 1.34 is perfectly valid in the

range of voltages below V = (l/B)VTFL where all the relationships
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used in deriving it are correct. In this voltage region it

can properly be regarded as a corrected form for equation 1.1k.

The preceding discussion was presented, and solution
1.34 derived, in order to show the‘prdblems in interpretation
that may arise in using the approximate method of Section 1.2
which is based solely upon the anode field and charge densitj.
These problems will confront one only in a case such as has
Just been examined, when the ratio of the average interior
charge density to the anode charge density i1s voltage dependent.
Requisite to a voltage dependence for n n, is an abrupt change
in the energy of the electronic states that are belng filled by
the injected charge. For complete results in such a case, the

exact solution must be considered.

This completes our consideration of the behavior of a
crystal having a discrete trapping-level under conditions of
charge injection. We have seen that such a crystal will show a
volt-ampere characteristic consisting essentially of four voltage
regions: first, an ohmic region for low applied voltages;
second, a square-law region for intermediate voltages when
currents flow under space-charge-limited conditions, but Maxwell-
Boltzman statiétics apply for free and trapped charge; third,

a high-power-law region starting roughly at V = (1/8)VTFL and
continuing until V = VTFL; and fourth, a square-law region at
voltages exceeding a value necessary to inject sufficient charge

to fill all the traps. A sketch of the expected volt-ampere
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characteristic when plotted logarithmically for a crystal with
a discrete level as well as other energetic configurations of

traps will be glven in figure 1.6.

l.5. Two or More Discrete Energy Trapping Levels

If a crystal contains more than one monoenergetic
trapping level, one would expect qualitatively that most of the
phenomena sketched in Section 1.3 would occur with slight
modification. Assume, for the sake of discussion, two trapping
levels at energies W

Ti

may use Maxwell-Boltzman statistlcs to write:

and WTz. For WF << le < WT2 we

no= Oy = 0o (2.35)
where:
8,5 = T exp [-(wC - le,z)/kT]. (1.36)
2

Hence equation 1.2 beccmes:

-1 -1
= (1 + 8, = +8, )

El&
|

1

= w (1 % ee' ) (1.37)
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with:

0, = —— | (1.38)

For low applied voltages, the transition voltage from ohmic to
space-charge-limited currents (equation 1.20), and the space-
charge-limited relationship (equation 1.14), are not altered

except that © should be replaced in these equations by ee.

There will be two.square-law fegions of the form of
equation 1.1k, with Ge characterizing the low-voltage square
law and ez characterizing the higher voltage squafe-law region.
Using the reasoning described in deriving equation 1.20, we
calculate that the lower trapping level would be filled at

Vippr1 = eLthl/EKeo and the upper level would be filled at

VrFLe ~ eLz(Ntl + Ntz)/ZKeo. Deviation from the form of equation
1.14 could first be expected in this instance when the

population of the lower trapping level ceases to be described

by Maxwell-Boltzman statistics. From this point, V‘a:(l/B)VTFLl,
until V= VTFLl

approximation, of the same sort as made in deriving equation

, a trap-filling law will be observed. An
1.26, to describe this region yields:
I = o

with m =~ 2 + log {ez/el) (1.39)
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and @ a constant. Equation 1.39 says that if o approached
i BE

L (which would necessitate N, £

exp [(WTZ - le)/kT]) the existence of the lower level would

e being of the order of N
tend to be completely obscured in the space-charge-limited
volt-ampere characteristic. Approximate square-law behavior

could continue to be observed as the first level was being filled.

After both levels have been filled at V.., = eLz(Ntl +
NtZ)/ZKEO’ the trap-free-crystal characteristic of equation
1.15 would again apply. As in the single discrete level case,
it is clear that the conclusions reached about the volt-ampere
behavior in the lower voltage ranges depend only upon the validity
of Maxwell-Boltzman statistics - not upon the actual trap
configuration with energy. The volt-ampere characteristic for
a crystal with distributed states would be indistinguishable
from that of a crystal with distinct levels until the voltage
is raised sufficiently tc invalidate the use of Maxwell-Boltzman
statistics. The behavicr we have described here may cbviously

be extended to any number of spaced trapping levels with

intervening energy regions devoid of traps.

In summary, the volt-ampere behavior under charge-injection
conditions that is expected for two or more energetically-
discontinuous trapping levels is square-law currents diminished by
a factor 6. This factor is discontinuous as the Ferml level
crosses a trap energy. The trap-filling characteristic will be

of a steepness dependent on the change in 6 and will extend
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roughly over a decade of voltage measured downward from the

trap-filling voltage.

1.6. Traps Distributed in Energy

In this section we consider thé space-charge-limited
characteristic that will be observed when energetically-dis-
tributed trapping levels are being filled. As we have pointed
out, if these levels exist at energies sufficiently above the
Fermi level so that Maxwell-Boltzman statistics are applicable,
the analysis of Section 1.3 is valid. When the Fermi level
enters the region over which the trappling levels afe energetic-
ally distributed, however, we shall see that the currents are
no longer proportional to the sépare of the voltage. The
actual behavior for two different trapping configurations
with energy will be calculated through use of the procedure
outlined in Section 1l.2. This technique will be a great
simplification over the calculations necessary for an exact
treatment. In Section 1.6.1 we shall comnsider a uniform
distribution of traps, while, in Section 1.6.2 we take up the

case of traps distributed exponentially in energy.

Since we are considering the form of the volt-ampere
characteristic for voltages at which the Fermli level remains
within the trapping levels, any relationship between the average
charge density and the anode charge density will not be a function

of voltage. This follows from the fact that there is no abrupt
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change in the electronic states occupied by the bulk of the
injected charge while the Fermi level is in the region of the
continuous trap density. Thus the problems associated with a
voltage dependence for the ratio E/na, as pointed_out in Section
l.4k.2, are not met in the analysis of-this section. Hence, we
will make the calculations for both trapping configurations by
writing the form of equation 1.7 (‘Keov/eL2 =n, + nta) that

is applicable. To do this, we must first derive the statis-

tical relationship between o and n The analysis, there-

ta’
fore, will begin at this point.

1.6.1. Uniform Density of Traps with Energy

In this section we consider a uniform energy-density of
traps extending from the conduction band downward to an energy
Wi (figure 1.4). We then define the trap density per unit

energy increment as:

- t | (1.40)

with Nt’ the total number of traps per unit crystal volume.
Thus, in an increment of energy dW 1in the range between WTL

and W

o there are dnt filled traps given by:
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z Vw:
MMM hRa ey
W
Continuous density of traps: total number per unit

volume = Nt'

Figure 1l.4. Band structure proposed for analysis in Section 1.8.
The treps are distributed continuously in energy with a constant

density between WTL and wc. The Fermi level is assumed always to

be at energles between WTL and WC. The spatial distribution of

traps is uniform.
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ptdW

t = T+ expl(W- F)/kT] (1.4h1)

We may eliminate Wf through equation 1.2k and rewrite 1.41 as:

ptdW

% - L& (Nc/n)expf(w - WC)/kT] (1.h2)

Upon integration of equation 1.42 between the limits WTL and

WC’ we obtain for n:

(1 + N /n)
1+(N /n)exp[~ (W =W )/KT]

n, = py{(Wy=Wyy )-KTln (1.43)

From equation l.24 the denominator of the logarithm will approach
unity rapidly as soon as Wﬁ is a few kT above WTL' Also,

provided Wi is at least a few kT below WC, N, >>n. Hence,

n, ~ N, - pkIn(N_/n) (1.4k)

The next step is the insertion of equation 1l.44 into

equation 1.7 to obtain:

Ke V/eL® = n_ + N, - pWTIn(N /n_) (1.45)
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As in the case of the discrete trapping-level, in general
n, << n, so that from 1.45:;

n, =~ N_ exp[-(N, - Keov/epz)/ptkT] (1.146)

Using the definition 1.40 for p,» and normalizing to V... as

given in equation 1.22 (Vv

— eLth/ZKeO), we may write this

as:

n, =N, exp[—(WC-WTL)/kT]exp[(V/zvm)(wc-wm)/k_ﬂ (1.47)

The dependence of n on V is.mDre apparent if we define

N, =N, exp[—(Wb - WTL)/kT] and rewrite equation 1.4T as:

NtV (
n = N exp|—=——osr—ro 1.11-8)
a e ZptkTWEEL ,

As a final step, we insert equation 1.48 into equation 1.4 to obtain:

- euNeV
J = T eXp (o) (1.49)

with o = Nt/ZptkTVTEL. Thus J varies roughly exponentially with

'V for this situation of the Fermi level traversing a uniform
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density of traps, a result which checks with Rose's work [10],

although his analysis does not provide the value for the exponent.

1.6.2. Traps Varylng Exponentially with Energy

As a second example of the behaﬁior of space-charge~limited
currents when the crystal Fermi level traverses a continuous trap
density, we analyze a distribution of traps which are exponentially
varying with energy in a continuous band stretching between the

two energies Wy, and Woo (figure 1.5).

The analysis is begun, as in Section 1.6.1, by deriving

a relationship between n and n We define a "temperature"

t.
Tc’ which characterizes the trap density variation with energy,

denoted by Py s through the equation:

Py = P exp[(W - W )/kT ] (1.50)

where is a constant density of states per unit increment of

Po
energy. Then, in an energy interval dW there are dNt traps

given by:

dv, = p, exp[(W - WTL)/kTC]dW (1.51)

Since thils trap density extends between WTL and WTU’ the total

number of traps per unit volume, Nt is given by:

N, = pokT, exp[(wTU - WTL)/ch] -1 (1.52)
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Figure 1.5

Band structure proposed for analysis in Section 1.6.2.
The traps are distributed continuously between WTL and

WTU and their density varies exponentially with energy.

The Fermi level is assumed always to be between WTL and

W The spatial distribution of traps is uniform.

TUJ
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and, provided (WTU = W) >> 1ch| and T, 1is positive so that
the trap density increases with W, only the first term is

necessary.

The number of filled traps is:

W
i exp[(W - WTL)/ch]dw

Po
Hy = wf T+ cxplW = W,)/ET] (1.53)
TL

This integral is not easily evaluated exactly, but an spproximate
form will preserve the important physical features. The approximate
form is derived simply by assuming the Fermi distribution to be
unity for WTL < WKL Wﬁ and zero above this value, a procedure
frequently used in analysis and increasingly correct as the
temperature is lowered. This may be done correctly, however, only
provided |Tcl > T so that the numerator in 1.53 is varying more
slowly than the denominator. Whether or not this is the case in
practice will have to be decided on the basis of correspondence
between the conclusions implied by this step and experimental

data. Under this approximation, the solution for the integral,

valid for [T [>T is:

n, = pokI, exp[(Wf - WTL)/ch] -1 (1.54)

Again, if (W? - WTL) >> |ch| and T  1is positive, the first

‘term is sufficient. Combining the forms of equations 1.54 and
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1.52, using the approximations stated, we obtain:
n, =~ N, exp[-(Vgy, - Wp)/kT,] (1.55)

To obtain the dependence of n, on n, we first rewrite equation

.
1.22 (o =N, exp -(W, - ug/km) in the form:

/T
exp (W/kI) = [n exp(W/kT)/N, 1 ° (1.56)

We now use 1.56 to eliminate WF from 1.55 and obtain thereby:

T/Tc
n, = Nt(n/Nc) exp[(WC - WTU)/ch] (1.57)

Equation 1.57 may be inserted into equation 1.7 to obtain na as

a function of V. As a simplification, we again assume that

na << nta and thus write:
TC/T
KeOV
n, = = N, ex._p[-(wC - WTU)/kT] (1.58)
NteL

Again normaliéing to VTFL through the use of equation 1.22 this

becomes;

@
n, = N (V/&Vg) © exp[-(Wy = W) /kT] (1.59)
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To derive J as a function of V, we again use equation 1.4

to obtain:
J = e, exP[~(wa-/ZTU)/kT] VE(TC/T)+l] (1.60)
(&) & L

Equation 1.60 shows that a trap density increasing exponentially
with energy (or, therefore, a trap density which decreases when
moving downward energetically from the conduction band) leads to
a power-law behavior that is greater than square law. The actual

power for the voltage is temperature dependent.

Most of the approximations used to derive equation 1.60
will be met in practice. Perhaps the poorest of these is, however,
the neglect of unity in the exact expressions for equations 1.52
and 1.54. In order to derive equation 1.60, we have specified
only that ITcI needs to be greater than T. No constraints
were put on the actual value for TC which, of course, depends
on the crystal properties. An increasing |Tc| tends to invalidate
the approximate forms for equations 1.52 and 1.54, used in deriving
equation 1.55. Likewise, if the trap density is exponentially
decreasing in energy (Tc negative), the neglect of unity with
respect to the exponential terms in equations 1.52 and 1.54 is,
of course, wholly unjustified. A solution is also possible,
however, without these approximating steps. If the exact

expressions for 1.52 and 1.54 are used in a series of calculations
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directly analogous to those used to derive equations 1.55

through 1.60, we obtain, instead of equation 1.60, the form:

TC/T
= ( ) s (1.6
J = e@[_ W. - W kT]V T b p———prri— 1. l)
L (6 TU pOchzv&FL

Equation 1.6l is a more general solution than 1.60, useful when
the trap distribution is characterized either by a negative Tc
or by a large value for T,. Equations 1.60 and 1.6l are both
limited in validity to voltages less than vTFL by the
specification that the Fermi level lie within the range of
distributed traps. For Tc negative, there are further
restrictions on the validity of equation 1.61 that stem from

the approximation that all charge is trapped, which was used

in the application of equation 1l.7. Since no observations of a
behavior characteristic of negative Tc are to be presented, we
shall not consider this case further. As we have noted, equation
1.61 is also valid for large Tc; that is for a more uniform
distribution in energy of the traps (see equation 1.50). Therefore,
using the form 1.6l we can see the smooth transition between the
case of traps varylng with energy, analyzed in this section, and

the case of a uniform density of traps, analyzed in Section 1.6.1.

Use of the identity:

. (1 + Effm = exp(ax) (1.62)
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in equation 1.61 to obtain the uniform-density case by allowing
Tc to approach infinity, gives us an identical form to equation

1.49. A1l that is necessary is to let WTU approach WC and

Py approach Py to make the two cases completely comparable.
Hence, we have obtained both a good chéck on our mathematical
results and a more general relationship in equation 1.6l which
contains the uniform trap-density case as well as the varying
density case. The size and sign of [TCI in an actual crystal

will determine whether equation 1.60 is a sufficient approximation

to equation 1.61 to be applicable in a particular case.

Both equations 1.60 and 1.6l ‘are dependent upon ]Tc[
being greater than T, a step necessary to simplify the integration
of equation 1l.53. For [Tc[ < T, the trap density becomes much
more peaked in energy, provided we limit the total number of
traps, as is necessary from considerations of physical realizability.
Hence the distribution becomes more and more like a single level
snd 1s therefore characterized by the treatment of Section 1.3.

Thus for ITCI < T, J becomes proportional to Vz.

1.7. Conclusions

We have seen in ‘this chapter that an extreme variety in
current-voltage behavior is possible in a crystal with traps
under conditions of charge injectlion. The range is from linear
proportionality between J and V for slight injection, to an

exponential dependence for J on V under space-charge-limited
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conditions for a crystal having traps distributed uniformly
with energy in the forbidden zone. The current-voltage behavior
for a hypothetical crystal having a variety:of interior trap-
configurations with energy is sketched to logarithmic scales

in figure 1.6. The regions of the chaiacteristic are seen

to be demarcated by the position of the Fermi level relative

to the trapping energies.

From figure 1.6 we see that in a glven crystal, not only
is the type of dependence extremely varied, but so also are the
magnitudes for the currents drawn in a fairly small interval
of applied voltage. These can change by factors that are several
powers of ten, within less than a decade change in applied voltage.
The currents can alsc be disparate by many factors of ten in
almost identical crystals at the same voltage. Faced with such
variations, the researcher has at his disposal a sensitive tool
for the measurement of the trapping properties of crystals. As we
shall see presently, however, he has in addition almost a Pandora's
box full of experimental difficulties and apparent anomalies with

which to contend.

Since we have mentioned the use of space-charge-limited
current measuréments to elicit trapping information, we might
pause to recapitulate what trap properties may be deduced by
this technique and the manner of their deductlon. For very low
voltages, ohmic behavior can be expected in all cases because of

the small free-charge density present in the crystal even under
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Figure 1.6
Possible behavior for space-charge-limited currents in crystals
with a variety of energy levels for volume-distributed traps.
I. Space-charge-limited current for a trap-free crystal: J = le2
IT. Ohmic region (present also in a trap-free crystal): J = kZV
ITT. Extended ohmic region for a crystal with traps.
IV. Fermi level in region void of traps: J = © le
V. Fermi level in region of continuous traps: J =k Vm or J = khexpV
VI. Ferml level again in region void of +traps: J = Oéklv

VII. All traps in crystal filled
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no-injection conditions. This ohmic behavior will, of course,
indicate the position of the Fermi level without injection but
cannot tell us much about any possible traps in the crystal.

The voltage to which this ohmic current persists as voltage is
increased, however, leads to a value for 6 through equation
1.20 (VOS = 8e512/99Keo). After the onset of space-charge-
limited current, one cannot discern anything about the actual
trapping configuration with energy as long as Maxwell-Boltzman
statistics are valid 1n describing the free and trapped charge
densities. Nonetheless, 1f Maxwell-Boltzman statistics are
appropriate, & check on © &as determined from the Vos
observation is possible through a comparison of the value of

© obtained by fitting the measﬁred square law to equation 1.1k
(7 = 9KeoueV2/8L3). When Fermi-Dirac statistics become applicable,
the behavior of the characteristic will depend on the actual’
configuration of traps with energy. To learnthe total number

of traps present, and the depth of the trapping states from
space-charge-limited current measurements, one must exceed the
trap~filling voltage pertinent to the trapping level (or levels)
in question. The trap depth is derived by solving equation 1.4
(7 = -epnaEa) vfor n_, using this number to calculate (Wc - WF)
from equation 1.24 (n = N, exp[-(wc - WF)/kT]) and recognizing

that Wﬁ ~ WT at V = vTFL'

The simplified method of Section 1.2 is seen in later
sections of this chapter to be a valuable tool for obtaining

the significant dependence of current on voltage in a straight-



62

forward manner which preserves a physical plcture of the sequence
of events. One limitation to its uée, the case of a voltage
dependent E/na, was pointed out in Section 1.4.2. The real
advantage of the method 1s apparent if an attempt is made to
handle the continuous trap-densities of Section 1.6 by writing
exact forms of the Poisson equation and solving these. Any
distribution of traps with energy not causing a voltage-dependent
E/na may, in principle, be handled by the technique of Section
1.2 by proceeding in the menner illustrated in Section 1.6.

In complicated cases, the integral of the equation corresponding
to 1.53 may, however, become difficult or imposslble to solve.
Approximate methods can nonetheless be used in its evaluation,
and one can thereby obtain an explicit current-voltage relation-
ship in all cases - a distinct advantage over the direct

mathematical spproach.

In Chapter 5, some of the conclusions of this chapter
will be put to experimental test, and others will be used to
deduce the properties of diodes made with CdS. Experimental
verification of a number of the deductions has already been
presented, largely in the papers of Smith and Rose. Reference

is made to these papers throughout the text, wherever appropriate.
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CHAPTER II

Mathematical Treatment of the Capacitance due to Trapping of Electrons

in Crystals SubJject to Charge Injection

The previous chapter dealt with the theory of the d-c
effects of traps on the crystal volt-ampere behavior. The
equations derived were valid for an equilibrium condition between
the trapping levels and conduction-band levels without constraints
as to the time allotted to reach this equllibrium. In this chapter
we shall consider theoretically one aspect of the influence that
trapping levels should exert on the sinusoidal-excitation frequency
dependence of the volt-smpere characteristics in a crystal. This
dependence comes about because the kinetics of trap-filling and
trap-emptylng are determined by such properties as the trap densities
and the capture cross-sections of the various energy states._ These
parameters are lnsensitive to any applied signal, and can result
in a limiting amount of charge storage in the crystal if the

exclting frequency is raised sufficiently.

A convenient and useful way of demonstrating the kinetic
effects of trapping follows from consideration of the measured
capacitance, since the capacitance is a direct function of the
charge stored in a region. Trapping properties have not been
studied through capacitance measurements heretofore although, as
we shall see, this technlque has a number of aspects which
recommend its use. The analysis of this chapter will be found

to be useful because sensitive means are available for measuring
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capacitance on actual devices. Corresyondence of these measured
values with those deduced from the model proposed as representative
of the physical processes in the crystals will reinforce confi-
dence 1n that model. In addlition, parameters such as frequency,
bilas voltage and illumination will be found to affect the
capacitance measurements. These may be varied independently to
provide quantitative information, when properly interpreted,

about the actual physical processes. We shall, therefore, ffame
the discussion in this chapter in terms of the expected capaci-
tance for an insulator with a uniform spatial distribution of
traps subject to charge injection. Because the bulk of the
injected charge in actual crystals is trapped, we shall neglect
the contribution to measured capacitance of the free charge.
Experimental verification of the negligibility of the contribution
of the free charge to the over-all capacitance in the samples

studied will be given in Chapter 6.

2.1. The Effect of Charge Injection on the Measured Capacitance
of a Dielectric Crystal

The measured capacitance for a crystal into which charge
may be injected will be compounded of two parts, which may
profitably be éonsidered separately. This division corresponds
to the capacitance due to charge storage on the contact
electrodes, and the capacitance due to charge storage in the
interior of the crystal. The interior charge may, in turn, be

subdivided into free and trapped components. However, unless
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one applied voltages across the crystal in the range of V = VTFL
= eLZNt/ZKeo as given in equation 1.22, the ratio of free to
trapped charge in an actual cr&stal will be very small. For
lower voltage excitation, one may profitably neglect the con-
tribution of the free charge to the measured capacitance. This
is the situation applicable to the experimental investigatioﬁs

to be described in Chapter 6 and, therefore, is the one analyzed

here.

The circuit elements representing interior and electrode
charge-storage will appear in a parallel connection externally
and their magnitudes, with free charge neglected, will be given

by the following equations:
1
¢, = C +C = 7(q +q) (2.1)

where Cm is the measured capacitance,

6 is the capacitance due to charge storage on the
electrodes,

Ct is the capacitance due to charge storage in the traps,
V 1is the impressed voltage,

Q_ is the charge stored on the electrode,
e

Qt is the charge stored in the traps.

Now:

Q
0 e
C = = 5 (2-2)
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where A 1is the junction area,

L 1s the electrode spacing,

Keo is the permittivity of the crystal.
Ce may be expected to be independent of frequency in the range
of measurements to be considered later (f.s Smc/s) since Q,e
need not enter the crystal or be trapped. The freguency variation
of the relative permittivity X, due to the response of dipole-
resonance modes in the material structure, should be very slight
below 5mc/s. Ce will not, however, be a constant with respect
to illumination because of the change in the permittivity known
as the photodielectric effect. This topic will be discussed
briefly for CdS in Chapter 6. The photodielectric effect has

been shown experimentally to lead to an enlargement for K by

factors as high as 7 in some photoconductors [1, p. 420].

The trapping capacitence C, = Qt/V, however, is a variable
with frequency changes for an applied a-c excitation, since Qt
depends on the amount of charge that can be trapped and liberated
in the available time. Assuming a uniform trap density in space,
there is a maximum value for Ct which is derived as follows.

As shown in Section 1.2, the trapped-charge density in the crystal
cannot exceed the value it has at the injecting electrode.
Therefore, the capacitance will be less in all cases than the
cepacitance of a charge system which consists of a uniform space-
charge region inside the crystal coupled to a planar sheet of
positive charge at the electrode. The capacitance value for

‘such a configuration of charge, denoted by the symbol C

tm’ 58
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Ctm = (EAKEO)/L = ZOe. In order for trapping csepacitance to be
as large as Ctm under pure a-c excitation, it would be necessary
both for the stored charge to be uniform and to inject charge
into the traps for both polarities of the applied voltage -
hence, to have two injecting contacts‘to the crystal. If a
crystal had one injecting contact and one blocking contact,
then the trappling states could be filled only during each half
cycle of a pure a-c signal and the effect of the traps on the
measured cepacitance would be only half that deduced sbove. The

maximum value for trapping capacitance can be attained only

provided an electron density of magnitude,

cC.V ZCeV
t eAl eAl,

(2.3)

can be trapped and liberated during one half cycle of the spplied

a-c signal. Otherwise C, will be less than this value and will

v
be given by:
= te f
- 2.
where n is the density of charge capable of being trapped and

te
liberated in phase with the applied voltage V (nte is the
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"effective" trapped charge). Thus, under pure a-c voltage
excitation, the maximum value for measured capacitance, denoted

by the symbol Cmm’ ise
4 = C,_ +C (2:5)

Hence, C = 3C, for a symetric structure (two injecting
electrodes), and Cmm = 2Ce for a diode structure (one injecting
electrode). The effects of a d-c bias on the results of this
section will be discussed separately in Section 2.4. As has
been pointed out, for Ct to reach the value Ctm there must
be a uniform, interior-charge density. We may argue heuristically
that a constant, trapped-charge distribution is the likely
physical situation at low applied voltages, when the crystal is
still in the region of ohmic behavior. Under this éondition, the
injected~-charge density is still too small to cause an uneven
distribution because of space-charge constraints. The uniform,
free-charge density (implied by the ohmic volt-ampere behavior)
will result in an essentially uniform, trapped-charge density.

As injection is increased toward a space-charge-limiting value,

the interior-charge distribution becomes non-uniform. This

process is considered further in Section 2.L4.

2.2. The Effect of Trapping Kinetics on the Measured Capacitance

We have established the qualitative picture of the

- mechanism of charge storage in traps which results in an
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externally-detected capacitance in Section 2.1. In this section,
we shall consider quantitatively the sequence of events responsible
for this capacitance. First, in Subsection 2.2.1, we shall derive
and discuss the equations representing the physical process of
trap~-filling and trap-emptying, since.these phenomena underlie

the detected a-c capacitance. Then, in Subsection 2.2.2, we

shall use this derived equation to calculate the expected
dependence of the measured capacitance on frequency. The

analysis of this section willl, therefore, provide us with a

means of obtaining information about the physical properties of
traps from the measurement of capaclitance in actual crystals.

It is assumed in this analysis that charge transport from the
contacts to the traps 1s infinitely fast; so that the processes

of electron capture and emission govern the mgasured capacitance.
In Section 2.3, we consider separately the electron-transport

process.

2.2.1l. Derivation and Discussion of the Differential Equation
Governing Trapping Kinetics

An electron trapping-state, as the term is used in this
chapter, is a permittéd electronic energy level which is filled
and emptied through the conduction band. Hence, if we enumerate
the mechanisms for electron transfers between free and trapped
states, we shall have an equation for the trapped-charge density.
If electron traps are filled from the conduction band at a rate
RF states per cm3 per sec and emptied back into the conduction

band at a rate RE in the same units, then the differential
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equation governing thé trapped-charge density ng is of the

form:

dnt

R (2.6)

The rate of trap-filling RF should be proportional to the
free-electron density mn, the density of empty traps (NJG - nt),
and a transition probability for capture of a free electron by

a trap which we shall call ¢ Thus, we have:

e
Ry = n(I\Tt - nt)cf : (2.7)

In a similar manner, the rate of trap-emptylng RE should be

proportional to the trap density n the density of vacant

.t)
free-electron states (Né - n), and a transition probability for
emission of a trapped electron intc the conduction band which .

we shall call oo Hence, the rate of emission is:

B, = nt(Nc - n)ce (2.8)

At this point, we may simplify matters without significant loss
of accuracy through use of the easlly satisfied approximations:
NC >>n  and Nt >0, . The first approximation is virtually

always true; the second demands only that any applied voltage is

‘ ; 2 ; s .
appreciably less than VTFL = el Nt/ZKeO as given in equation
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-1.22. Under this condition, equations 2.7 and 2.8 may be
rewritten: RF = nNicf, and RE = nthce. Hence, equation

2.6 may be written in the form:

dng

gt = = fag = i (2.9)

where y is defined by the ratio Ncce/Ntcf' From the form of
equation 2.9, we can see that y 1s the ratio of the trapped-to-
free charge when the conduction-band states and trapping levels
are in equilibrium. Therefore, if we assume that the transition-
probability ratio 1g independent of the excitation mode so that
the thermal-equilibrium value is applicable, we may take the
value n/nt at thermal equilibrium to define y. If Maxwell-
Boltzman statistics apply to the trapping levels, we have then

T = 6™ . The quantity N.e_ = RE/nt is seen to be & probability
per unit time for the escape of a trapped electron. We shall
denote this "probability-of-escape” frequency by the symbol Ve
For the case of a discrete trapping level in thermal equilibrium
with the conduction-band states and enough above the Fermi level

to be described by Maxwell-Boltzman statistics, Ve is given by

[1, p. 278]:

ve = N,V exp[-(wc - WT)/kT] (2.10)
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where (WC - W is the trap depth below the conduction band,

o
NC is the effective density of conduction-band states,
v is the electron thermal velocity (107cm/s at 300%K),

S 1s the capture cross-section of an empty trap for a
conduction-band electron.

The physical basis for equation 2.10 is not difficult to develop.
To do so0, we make use of the equality of RE and RF at thermal
equilibrium. Through the definition of Vs WE have RE =DV -
For a discrete trapping level, the rate of trap filling RF may
be expressed in terms of the capture cross-section for a trap

St by imagining that the free electrons are motionless and that
the Nt traps per cm3 move with the electronic thermal velocity
v. Then, the volume traced out‘per second by each cm3 of

these "moving" traps is VNtSt' The number of electrons captured
by the traps per second, therefore, is nvStNt. Hence, Cp in
equation 2.7 equals vSt for this case. Since at equilibrium RE
equals Ry, we have: wv_ = nVStNt/nt where n/nt has its
equilibrium value. For a discrete level at thermal equilibrium,
if Maxwell-Boltzman statistics are applicable, we have also n/nt =
(Nc/Nt)exp[—(Wb - WT)/kT] (equation 1.8). Therefore, under these
conditions: ¥ = chst exp[u(Wb = WT)/RT] as given in equation

2.10.

For continuously-distributed trapping levels sufficiently
above the Fermi level sc that Maxwell-Boltzman statistics apply,
an equation of the form of 2.10 can be derived for an effective

.value for Vi and the over-all trap density for the distributed
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levels will be governed by equation 2.9 with y and Ve
statistically-averaged values over the various states. Analysis
in terms of equation 2.9 in the case of energetically-distributed
traps corresponds to lumping together the effect of all traps in
one effective level. This is, in reaiity, the same procedufe
used in the consideration of the population of the conduction-
band states, which are all lumped together for most calculations

into an effective density Nc’ situated at the energy level WC.

If Fermi-Dirac statistics apply for the population of the
trapping-states, then the ratio m/n,b becomes dependent on the
position of the Fermi level, and thereby on the spplied voltage.
For a small a-c signal superimposed on a d-c bias, however,
n/nt is relatively constant over a cycle, and the analysis
using equation 2.9 is still meaningful. A consequence of the
dependence of n/nt on bias is that both 1 and Vs become

bias-dependent.

A discussion of trapping kinetics is often couched in
terms of the attempt-to-~escape frequency of a trap rather than
the probability-of-escape frequency. The attempt-to-escape
frequency is the number of times per second that a trapped
electron can absorb energy from its surroundings multiplied by
a probability for that absorption. It can be shown by thermo-
dynamic reasoning to be limited for thermal processes at room
temperature to 1013 per sec, and to be given by the product

N vSt [1,p. 51]. Thus, from equation 2.10 Ve is related to
~C
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the attempt-to-escape fregquency for a trapping level by the

factor exp[—(Wb - WT)/kT].

Using equation 2.10, we may rewrite equation 2.9 as:

dny

T = - (nt - yn)v (2.11)

e

A special case of this form for the trapping-rate equation is
given by Bube [1, p. 278]. Bube discusses the trapping behavior

when n d1is approximately zero and there is a finite nt at time

zero, which we shall call n The solution for the trapped-

_tol.

electron density decay is then given by: n, =n,_. exp - vet.

t t0
The rate of trap-emptying RE 1s therefore: RE = VD, XP - vet.
It is interesting to look at the inverse case (nt =0 at time
zero with a step function in conduction-band density n of
magnitude n. introduced at time zero). For this situation,

0
the solution would be n. = yn, (1 - exp - vet) so that the
rate of trap-filling RF would be v ¥Tg exp - vet. The ratio
of |dnt/dt| in these two cases is, therefore, rno/nto. T2
for a comparison, we took the initial density imbalances to be
equal (no = nto), we see that the rate of change of the trap
density is y times as large for pure filling of traps as it is
1

for pure trap-emptying. Since y is comparable to @ and,

therefore, very large in most actual crystals, we can see that
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the rates will be quite disparate for this case of equal, initial

density-deviations from equilibrium.

Under charge-injection conditions, it is possible to
modulate n, the density of free electrons, and thereby to
change ny according to the constraints of equation 2.11. To
determine the effect that these constraints will have on the
measured capacitance, therefore, one must solve equation 2.11

with the appropriate form inserted for the free-charge density.

This analysis will be the topic of 2.2.2.

2.242+ Variation of Ct with Frequency

We have derived, 1n equation 2.11, the relationship
governing the trapped-charge density inside the crystal. Under
an gpplied a-c voltage, the free-charge density is modulated by
charge injection and extraction from the contacts. The traps
are then filled and emptied via the conduction band. In order
to consider the capacitance observed at the electrodes of the
crystal due to this effect we must solve equation 2.11 after
inserting the proper variation for n to represent free-electron
injection and extraction. For a sinusoidal voltage excitation
V = Vﬁ cos am,rthe time dependence of n will depend on the
nature of the contacts made to the crystal. If we consider the
case of one ohmic electrode and one blocking electrode and
assume proportionality between spplied voltage and injected

charge density, then the waveform for the conduction band density
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during excitation will be a half-wave rectified sinusold with

a peak value of no, as in figure 2.1b. The capacitance
measured at the excitation frequency will be due only to

the component of trapped charge in synchronism with the applied
voltage. Since equation 2.11 is a linear differential equation,
we may apply the principle of superposition in its solution and
therefore use a Fourier series representation for n. In this
manner, we can immediately separate out that component of n
which is synchronous with the applied voltage and is therefore
responsible for the measured trapping capacitance. In the case
novw under ccnsideration, it is the fundamental that is the
component of n which is synchronous with the applied voltage.
Therefore, in the following equations, we denote densities
synchronous with the voltage by the subscript f. Hence, using
the Fourier analysis of the waveform given in the caption to
figure 2.1b, we have n, = (l/Z)nm cos wt, as the form to be

inserted into equation 2.11. Thus:

dntf

— = - (o - (1/2) m cos wt)v_ (2.12)

Solution of equation 2.12 for the steady-state term yields:

(1/2)m .
5 s 2/ 2)1/2 cos (wt - tan - @/v,)
w /vy

Deg
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Figure 2.la. Applied a-c voltage waveform at the collecting electrode.
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Figure 2.1b. Conduction~band dénsity for the case of a single
injecting electrode.
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Figure 2.lc. Trapped charge density for a single injecting
‘electrode. Dotted curve valid as o approaches zero. Solld curve
is the solution for the fundemental for n, at o=~ Ve* The ver-
tlical scale 1s greatly contracted from that used to plot figure 2.lb.
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_ cos wt w sin wt
ntf = (l/z)mm > 5 + 5 5 (2-13)
(L +0/v,") v (1 + 0/v.")

The value of oo at o= Ve is plotted in figure 2.lc.

Before interpreting equation 2,13, we pause to note that
the entire problem as considered thus far 1s completely analogous
to the solution for the charge stored on the capacitance in the
circuit of figure 2.2a. If the voltage source in figure 2.2a
were taken to be proportional to the conduction-band density
multiplied by vy, and the natural relaxatlon time-constant RC
for the circuit were proportional to ve-l, then QC, the charge
stored on the capacitor, would be described exactly by equation
2.11, Hence, the frequency analysis we have just performed could

have been done equally well in terms of this analogue circuit.

Thinking in terms of the eguivalent circuit suggests the
use of the phasor dliagram of figure 2.2b to represent the two
terms of the solution for the trap population obtained in
requation 2.13. The first term in this solution represents
trapped charge in phase with the applied voltage, and hence
its magnitude is proportional to the capacitance variation with
frequency. The second term is 90O out of phase with the applied
voltage, and therefore has a derivative in phase with it. Hence,
this term represents a current in phase with the voltage, and

therefore implies a conductance for the device due to traffic
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Flgure 2.2a

Circuit showing behavior analogous to trap-filling. The
charge QC’ stored on the capacitor, 1s analog?;s to the
density of filled traps nt, provided that ¥y is taken
to be propertional to the time constant RC and V is

]
taken to be proportional to ym.
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Y Flgure 2.2b

Phasor diagram representing the time-variant components of

the trapped-charge density. The component of trapped charge
in phase with the applied voltage results In a terminal
capacitance; the trapped charge in quadrature with the applied

voltage results in a conductance component.
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between the traps and the conduction band. The conductance term
is seen to have a maximum at w = Vgs OF, 88 Seems quite reason-
able, when the probability-of-escape frequency equals the driving
frequency. This term would account for only a portion of the
total conductance as measured at the terminals, however, since

it does not represent the charge actually traversing the crystal

for collection at the opposite electrode.

To express the result for n in equation 2.13 in terms

tf
of the trapping csepacitance measured at the terminals, we
recognize that the portion of this solution in phase with the
applied voltage represents the quantity that we have called 0o
in equation 2.4. Thus, if we use the symbol Cé to denocte the

low frequency value of the trapping capacitance, we have from

equation 2.k4:

eAlyn eALn

(2.1h)

where we have defined a new constant 7 = Ynm/V. This definition
serves to lump together the assumed proportionality constant
between n and V with the proportionality constant between
n, and n, which has already been defined by the symbel 1.
Since C% was shown in Section 2.1 to have a maximum value of:
Cly = AKeO/L = ¢, for a single injecting electrode, we may use
equation 2.14 to derive a limiting value for 7. This is

‘M, = &Key/L. For n less than 7, C! will be less than C_-
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Flgure 2.3
The function F = 1/(1 + cuz/%z) plotted versus logarithmic
frequency. The trapping capacitance 1s given by: Ct =C %F
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For n = N2 C% = Ce' In terms of Cé, the over-all frequency-
variant expression we have derived for the trapping capacitance

is:

(2.15)

The trapping capacitance should therefore drop from its
low frequency magnitude Cé when the voltage driving function
is raised in frequency tc a value near to the probability-cf-escape
frequency of the trapping level. Figure 2.3 is a plot on
semilogarithmic paper of the frequency dependence as represented
in equation 2.15. The figure shows that the drop in capacitance
due to trapping limitations will be spread over about two decades

of frequency centered roughly at the probability-of-escape

frequency Voo

We have discussed, thus far, the case of a single injecting
electrode to the crystal. We shall now speculate about the
situation with two injecting electrodes. When there is little
or no applied bias, the case of two injecting electrodes presents
some peculiarities which should be pointed out. The conduction-
band density for two injecting contacts and a pure a-c applied
voltage (V = V. cos wt) will be a full-wave rectified sinusoid
as sketched in figure 2.4a. The Fourier analysis of such a wave

contains no fundamental as can be seen in the representation
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Applied Voltage Free Charge Trapped Charge
Density Density
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a. Case of zero d-c blas: n =n (2/x)[1+(2/3)cos2wt-(2/15)coshut
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b. Case of slight d-c bias: Fourler analysis of n will depend
on the extent of the blas applied. Fundamental component
increases with bias.

c. Case of d-c bias voltage > 2V_. The a-c portion of n 1s a
pure cosine waveform at the ap%lied frequency of V.

Figure 2.4k. The voltage waveform, conduction-band density, and trap
density for a crystal with two injecting contacts and various values
of applied d-c bias. The abscissa is a full cycle of the variable
wt 1n all cases. The vertical scale for the trapped-charge density
is much contracted over that for the free-charge density. The
dotted curves for n, represent the solution at very low frequen-
cies; the solid lineg represent the solution at w =~ LA
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given in the caption to figure 2.4a. The trap density is,
therefore, forced to respond to twice the applied signal
frequency in addition to higher harmonics. Again using the
linear property of the fundamental equation (2.11), we calculate
that the response of each harmonic is'given by an equation of
the form of 2.13. Thus, the over-all trap density is represented

by:

2cos (2wt - tan-lZQJve)
7,172

x 3(1 + (2w) 2/ve

2cos (kat - tan—lha/ve)

§ oo (2.16)
15(1 + (4) /v, ) 2

In order to convert this form for nt into the trapping
capacitance variation, we would expect to separate out the

portion of n_ that is synchronous with the applied voltage.

t
Since equation 2.16 has no component at the fundamental
frequency, however, a first conclusion might be that the
trapping capacitance, in this case, is zero. The error in

this conclusion is evident when one considers the behavior at
low frequencies when it is certain that n, contributes to the
capacitance. The root of this conceptual problem is in the fact
that the trapped charge is always negative; whereas electrode-
stored charge, as in a normal capacitor, may change sign. The

density n, of equation 2.16 is set up by charge injection from

each of two electrodes during a single complete cycle.
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The capacitance actually measured is defined by the ratio
of the charge stored in a region to thé voltage difference between
the terminal from which the flux lines linking that charge emanate
and the edge of the charge storage reglion. Thus, one must con-
sider, in this case, not the originallsinusoidal variation in
voltage, but rather a rectified full-wave sinusoid representative
of the flux pattern causing the trapped-charge build-up over a
full cycle. The use of the absolute value for V 1s consistent
with the fact that the actual driving function for the trap
density as lnserted into equation 2.1l is not the applied voltage -
V, but the free-charge density n. The latter is inherently
positive and is proportional to the absolute value for V. fhus,
the a~c portion of the trapped-charge density that is in-phase
with the conduction-band density and, therefore, with the a-c
portion of the sbsolute applied voltage will be represented by

an external trepping capaclitance. For this case, therefore:

eALm 22 > - i > > + see
"3 (20) YY) 151 () /v, %) -
C, = - .
. v, (2/3 - 2/15 + 2/35 - 2/63 + «..4)

The series in the denominator of equation 2.17 can easily be
summed by noting that n = (2/x)n [1 + (2/3)cos 2wt - (2/15)

cos bt + «++] =n &t t =0. Hence, the denominator of
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equation 2.17 equals (n/2) - 1. Equation 2.17 gives the

proper low and high-frequency magnitudes for Ct; Ct = eALTnm/Vﬁ
at low frequencies and zero at high frequencies. The over-all
frequency dependence is seen to be complex, although the various
components of the a-c porticn of n, -go to zero quite rapidly.
Since the double-frequency component is five times as large as

the second harmonic, the frequency variation will be approximately:

C "
t

(1 + (20)%/v .

where Ct" has a maximum value of ZCe, as determined in Section
2.1. Thus, from equation 2.18, the observed trepping capacitance
should cut off in the vicinity of w = ve/z for the case of
pure a-c applied to a crystal with two ohmic contacts. The
behavior of equation 2.18 is, of course, the same as was sketched

in figure 2.3 except that the frequency scale in the graph is

shifted a factor of two to the right.

D-C bias will affect these conclusions by changing the
waveform which represents n. As sketched in figure 2.4, an
increasing d-c bias acts to increase the fundamental component
of the waveform for n. This is a smooth process, culminating
"in the a-c portion of n being pure fundamental at biases

greater than 2V (figure 2.4c). The variation of (¢, with

t
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frequency for twe ohmic contacts 1is, fherefore, represented
with fair accuracy by equation 2.18 under no bias and exactly
by equation é.l5 for biases grester than EVm. In the inter-
mediate bias case such as is represented by figure 2.4b, no
simple frequency variation applies. For an intermediate bias,
the variation of Ct with frequency must be obtained by

finding the response of all components of n, to the Fourier-
analyzed waveform for n. The ratio of this response that

is in phase with the absolute voltage to the a-c portion of
the absoiute value of applied voltage gives the magnitude of
the trapping capacitance. This analysis which corresponds to

the calculations just performed in deriving equation 2.17, will

not be of sufficient interest to be carried out here.

In summary, the detected trapping capacitance of a crystal
will be frequency dependent and will fall rapidly in the vicinity
of an applied radial frequency equal to the probability-of-
escape fregquency for the traps. In the special case of two
ohmic electrodes with no d-c bias, the capacitance roll-off
will be effective at a radian frequency roughly one half the
probability-of-escape frequency. As bias is applied in this case,
however, the roll-off of capacitance will move to higher
frequencies until it is strongest in the immediate vicinity of

the probability-of-escape frequency.

2.3. Transit-Time Effect

In considering the kinetics of the trapping states in

Section 2.3, we analyzed the constraints on the trapplng
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capacitance imposed by the state-transition kinetics between
the conduction band and trapping levels. One must also
consider the procesé of physical transport of the electrons
from the injecting contacts to the vicinity of the traps.
Since.the electrons must be introduced at the electrodes and
collected there again, they must traverse the crystal to the
region of the traps. If the capacitance-measuring fregquency

is raised untii the quartef—cycle-time* approaches the transit
time through the crystal, there will clearly be a decrease in
Ct due to lack of sufficient time for this transport, regardless
of the crystal trapping kinetics. For low voltage excitations,
if the crystal behaves ohmically, there will be a uniform field

across the crystal so that the transit time T

- is given Dby:

T, = L/v = L%w (2.19)

where vf

is the electron velocity due to the applied field.
For very small applied measuring voltages, transit-time
effects can be observed at surprisingly low frequencies. For
example, if 1Omv is used as the capacitance-charging voltage
for a 10 micron crystal of CdS (p = ZOOcmE/volts), egquation
2.19 yields 0.5 microsecond for the transit time. Since this

number is to be compared to a quarter-cycle-time of the impressed

voltage, the effect should be apparent, for this hypothetical

¥ This is the length of time for which a glven contact is injecting
electrons.
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case, at SOOkc/s. The calculation performed is, of course,,
only approximate since V, and therefore Ttr’ are actually
time variant in equation 2.19.

A mathemstical treatment of thg actual behavior of the
trapping capacitance under a transit-time limitation demands a
solution for the x-dependence of the trapped-charge distribution.

This analysis will not be necessary in considering the experi-

mental data and will not be given here.

2.4. Effects of a Bias Voltage

In Section 2.2.2, one effect of an applied d-c bias was
discussed. There, it was shown that the frequency dependence
of Ct for the case of two ohmic contacts to the crystal will
be altered by an applied d-c voltage. There are certalnly
other ways in which an applied bias can affect the trapping
capacitance. A discussion of these other effects of bias voltage

on C is the subject of this section.

t
First, we note that in order to achieve the maximum,
measured capacitance of equation 2.5, a spatially uniform,
trapped-charge densit# is necessary. The discussion of Section
2.1 indicated that such a density can be achieved only for small
voltages in the range in which the crystal is behaving ohmically:
that is, for voltages much lower than V__ = 8éﬁL2/9eKeO
(equation 1.20). If the crystal is subjected to higher voltages,

so that charge injection tends toward a space-charge-limitation,
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then the spatial arrangement of the electrons is altered from
the uniform density that was assumed in Section 2.1. This

results in a diminution of the maximum value for C The

£
extent of the deviation from a uniform charge density at
varying degrees of injection and for éach trapping configuration
with energy must be worked out separately. For the discrete
trapping level showing a space-charge-limited characteristic,
much of the work has been done in Section 1.3 sc that it is a

simple matter to calculate the effect on C in this case.

t
The average trapped-charge density 1s, using equations 1.1T

end 1.18: n = 3AK€OV/2eLz, instead of n,

in Section 2.l1l. Thus, the maximum capacitance is reduced by

= ZAKeOV/eL2 as

AKGO/ZL - (l/B)Ce, to C . = (S/Z)Ce. For lower values of
injected charge than that causing a space-charge-limited
characteristic, the reduction in C_bml can be expected to be

less than (1/2)06.

Assuming that v_ and y in equation 2.9 are specified
<
by thermal-equilibrium conditions, some further conclusions
about other effects of bias may be made. We shall discuss

these conclusions in the following paragraphs.

Provided that trapping is by a discrete level so that
the probability-of-escape frequency LN is accurately des-
cribed by equation 2.10, we would not expect any variation in
the frequency dependence of ct with bias due to a-change in

Ve If, however, Ve is an effective value obtained from an
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averaging process over a group of energyhdistributed traps
whose occupancy is subject to Fermi-Dirac statistics, then
bias could conceivably affect its value. This will occur
beéause a bias voltage acts to railse the interior Fermi level
and, thereby, to alter the statistics‘governing the averaged
value for Ver Of course, if the crystal contains one blocking
and one ohmic contact, then bias in the reverse direction so as
to attempt injection from the blocking contact will yield =
zero trapping capacitance. If, however, the diode structure
is biased to inject electrons from the contact capable of
injection, the crystal trapping capacitance should be the same

as that for a symmetric structure.

The magnitude of the terminal capacitance might also be
influenced by d-c bias. Both C% in equation 2.15 and C%
in equation 2.18 are seen to be proportional to 1y, the ratio
between n, end n under equilibrium conditions. If the
average value of the FPermi level in the crystal is enough
below the trapping levels so that Maxwell-Boltzman statistics
apply, v equals e-l (with © defined in equation 1.8) and
is independent of volﬁage. In general, howevef, v is a
function both of voltage and of illumination. The variation
of y with voltage has been discussed briefly in Chapter 1.

Tt will be described more fully in Chapter 5 along with the

dependence on illumination.

A sketch of possible behavior with bilas voltage due to

v changes at a low applied frequency 1s given in figure 2.5.
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Expected varlation of measured capacitance under sinusoidal
excltation with a d-c bias for a crystal with traps and two
injecting electrodes for the case that C,=C,_ = 2C_. The

values for capacitance at biases &V are h uristfc since
the applicability of the analysis imerms of equation 2.9
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Figure 2.5b

Expected variation of measured capacitance under sinusoidal
excitation with a d-c blas for a crystal with traps and one
injecting contact. Polarity of the bias voltage 1s that of
the collecting electrode with respect to the injecting
electrode. Applied a-c voltage is V =V _ cos wt.




93

In figure 2.5a, the case of two injecting electrodes is sketched
with the supposition that v = ol m 2.5b, the single
injecting electrode is considered for the hypothetical case
that both 1y and v, are voltage-dependent (Fermi-Dirac
statistics applicable to energetically-distributed traps).
For both figures, the applied voltage is assumed to be V = Vﬁ
cos wt. The cut-off of C_ at V. = NteLz/ZKeO (equation
1.22) occurs because above this voltage magnitude, all the

traps become terminals for the electrical flux lines generated
by the d-c component of voltage and are therefore insensitive

to the a-c signal. Thus Ct approaches zero at all frequencies
under this condition. In this voltage region, however, the

free charge becomes significant in increasing the measured
capacitance., The analysis of the capacitance due to free charge

in this region of voltage excitation is straightforward, but will

not be applicable to our work and is therefore not given here.

Tt is also possible for the contact injection efficiency,
which relates the injected free charge to the voltage applied,
to vary with & dfc blas as well as with other parameters such
as illumination. This quantity, defined as gm/Vﬁ, was lumped
together with y to form the over-all proportionality 1,
between trapped charge and applied voltage in the discussion
of Section 2.2.2. A variation in qm/jm could result, for
example, from a very limited charge reservoir at the virtual

cathode of an emitting surface. Instead of discussing all the
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possible alternatives for contact behavior at this time, we shall

reserve comment on this subject until we present experimental

results.

2.5. Conclusions

We have seen, in this chapter, that the capacitance
exhibited externally as a result of charge storage in traps has
a characteristic behavior which can provide information about
trapping properties. Before we recapitulate the expected
behavior of the capacitance due to traps and discuss the
information about the trapping levels that this behavior will
divulge, we should consider whether the expected magnitudes for
Ct will be detectable in any experimental measurements. Since
the maximum trapping capacitance Ctm is equal to ZCe where
C. = AKeO/L is the electrode capacitance, any crystal must be

e

thin to achieve a measurable value for Ct' As will be discussed

in Chapter 6, about the smallest exciting voltage that could

be used across the capacitance to measure it in a bridge circuit

was 1lOmv. If a crystal of lmm2 cross-sectional area and

10 microns thickness were used and a voltage of 1O0Omv applied,

it would take a trapped-charge density of about 6 x 1010

electrons cm_3 to contribute 1 picofarad of capacitance.

Not only is 1 picofarad a detectable capacitance but also

the inJjected, trapped-charge density can reasonably be expected
10 =3

to reach and exceed 6 x 10 electrons cm in many actual

crystals at this voltage. Therefore, for crystals in the size
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range considered, C is measurable and one could expect to test

t
the conclusions made in this chapter experimentally. Actually,
in Chapter 6 when measurements are discussed, we shall see that

even smaller trapped charge densities than this are detectable.

We shall conclude this chapter by enumerating the information

that measurements of C_ should provide on the basis of the

t
theoretical framework we have provided. The analysis of Section
2.1 showed us that under no circumstances can we expect Ct to
exceed twice the electrode capacitance Ce. This value

c = BCe will occur only for injection into the traps from

tm
both contacts and for a uniform interior-charge density. For a
single injecting contact, Ct willl be limited to values below
Ce. Hence, observation of elther of these alternatives will
indicate the nature of the contacts to the dlelectric crystal.
The frequency behavior of Ct’ analyzed in Section 2.2, is
chiefly governed by the value of the probability-of-escape
frequency. In most cases Ct will drop repidly as impressed
radial frequencies are raised to the neighborhood of ve.
Correspondence of the observed behavior of Ct with frequency
with the predictions of Section 2.2 will allow a deduction of
the value of Ve It Yy is given by equation 2.10 (ve =
chst exp[-(Wb - WT)/kT]) and the trap depth in that equation
is known independently, a value for the capture cross-section
may be obtained. As seen in Section 2.5, the behavior of Ct
with d-c bias will indicate the energy configuration of the

traps which are responsible for the measured capacitance. Finally,
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the over-all correspondence of measurements on actual samples
with this analysis will act to reinforce confidence in our
physical model, which emphasizes the importance of volume-

distributed, interior trapping states.

From this discussion, we can see that much information can
be obtained from observations of the trapped charge through
capacitance measurements. The practical aspect of this state-

ment will be made evident in the experimental results of Chapter 6.
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CHAPTER ITI

Diode Fsabrication

This chapter forms a bridge between the theoretical
analyses of the properties of an insulator with traps, described
in Chapters 1 and 2, and the experimental work with CdS to be
interpreted in Chapters 4 through 6. It is concerned with
providing the details of the processes involved in the preparation
of diodes made from single-crystal CdS. These diodes were made
bi-polar by exploiting the differing contact properties of gold
and indium to CdS. Although much research has been done on the
properties of metallic contacts to CdS, success in making
injecting contacts in the absence of illumination has been
reported only with indium and gellium. The effect of 1llumination
on the blocking character of the other metals is not fully
determined, yet. We shall give some evidence in Chapter 6
bearing on this subject. Good blocking contacts have been made
using copper, silver and gold [15]. In order to study the
properties of both injecting and non-injecting contacts to CdS
crystals, therefore, it was declded to make a diode structure
by affixing electrodes-of indium and gold to the monocrystals.
Tndium was chosen instead of gallium for the injecting contact
becauserof the convenience of acquiring and handling it. Gold
wag chosen as the material for the blocking contact for much the
same reasons, in addition to the fact that it promised to form

a non-reactive, stable electrode. In the diode fabrication, as
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we shall see, extensive care was necessary to achieve duplicable

results.

3.1. General Description of the Types of Diodes Constructed

There were two basic types of diodes made and investigated
as described in the later chapters. The diode types are distin-
guished by the nature of the single-crystal CdS material used.
Some units were cut from large crystals, and then lspped and
etched before the contacts were attached. Others were made
from small, thin platelets which were condensed in a vapor
diffusion furnace using the method of Frerichs' as described by
Bube and Thomsen [16]. Those made from large crystals were
generally of larger area and width (approximately Eimmz X O.lmm)
than the small platelets which had cross-sectional areas in the
range of O.Smm2 and thicknesses of about 10 microns. Handling
of the small crystals, which were extremely fragile, was much
facilitated through the use of a "Penfield Eductor Pickup." This
is a commercial unit which holds small samples with the very
light vacuum created at the end of a shaped hypodermic needle

through a Venturl action on escaping compressed air.

The preparation of the surface of the crystal prior to
the attachment of electrodes 1s a very important part of the
process of diode construction. As evidence of this fdct we
shall discuss briefly at the end of this report some data

taken on the photovoltage observed for these diodes. The
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photovoltage data showed conclusively that the contact properties
of gold on CdS will be dependent on the state of the surface of
the material. Crystalslfrom the same lot, processgd in

identical fashion, showed a value for photovoltage at a glven
illumination which varied considerably. In a few instances,

the photovoltage was even of an inverse polarity from that
detected for the majority of crystals. That this is a surface
effect is evident from the similarity in behavior of the same
diodes under space-charge-limited flow conditioﬁs (described

in Chapter 5), which is definitely a bulk phencmenon. To
minimiie any influence of differing surface conditions, therefore,
it is necessary to treat the materlial in a set manner, keeping
all preparstion variations to a iinimum. As described In Section
3.2, practically no surface preparation was attempted on the small
platelets. Undef these conditlons it is not too surprising that
the contact properties of these samples varlied somewhat. A far
greater degree of uniformity prevalled inthe photovoltage data
taken for the large crystals, which had a more extensive surface

preparation.

The small platelets were of speclal interest for at least
three reasons. - First, they were truly monocrystalline and hence
the analyses made under this assumption are Justified for these
platelets. It is not cerﬁain'that the larger crystals were
monocrystalline, since on many of them there were lines which
looked suspilciously like grain boundaries. Second, the thinness

'éf the small platelets enabled high fields to be easily impressed
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upon them with a small, laboratory d-c supply. The platelets for
which results were obtained were in the range of 10 microns

in width, so that fields of & million volts per meter were easy
to obtain. At these fields certain interesting phenomena were
noted which will be described more fully in Chapter 4. Third,
the thinness of the platelets also permitted the exploration of
trapping properties through capacitance measurements. The
experiments reported in Chapter 6 would have been impossible with
the larger crystals. DBecause of these three attributes, we shall
find that most of the discussion to be given resulted from

experiments on the thin-platelet crystals.

_ 3.2. Crystal Preparation

Preparation of the small crystals for the attachment of
contacts was limited to a surface cleansing with de-ionized water
followed by swabbing with di-chloromethane. The extreme fragility
of the crystals would certainly have made more extensive surface
preparations difficult. It was felt, however, that they were
unnecessary since these samples had no surface abrasion performed
on them and since CdS appears to be a relatively inactive material.
The experiments of Smith [17][18] at RCA and by Wright [4] at
Birmingham on CdS platelets were done on similarly-prepared

crystals.

The large single-crystals were first cut with a diamond saw

and lapped with successively finer garnet powders culminating in



101

W-12-grit. Care was needed in these operations, especially in
the use of the dliamond saw, owing to tﬁe structural weakness

of the material. It is advisable to set the automatic feed of
the saw at lts slowest speed to minimize hreakage. The CdS
crystals used had a close-packed—hexaéonal crystallography and
had far more strength across the hexagonal axis than along it.
All samples were cut across this axils (OOl plane). For this
mechanical work the samples were waxed to a supporting substrate.
They were then removed from the substrate and etched. A sultable
etch appears to be six-normal hydrochloric acid. The rate of
material removal is high, so that only a short time should be
allowed in the etch bath. Afte; etching, the crystals were
quenched in de-ionized water and swebbed wilth di-chloro-

methane. They were then ready for the attachment of electrodes.

3+.3. Construction of the Diodes

A great deal of experimentation and trial preceded the
successful construction of diodes. The chief problems lay in
achieving mechanical strength, and in providing sufficient
electrical insulation for the extremely thin wafers in order to

avold leakage paths around the crystal.

Based upon the procedure reported by Wright [4], initial
effort was directed toward making alloyed contacts of indium
directly to the CdS surface. This was successful in some
instances, especially in the work on the large crystals, but

proved difficult to implement with the small platelets. The
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procedure followed for the alloying began by placement of a small
indium pellet on a copper substrate with the CdS crystal perched
above it. A hot plate then provided sufficient heat to melt
the indium and thereby make a binding contact between the Cds
and the copper. An acid flux at this.point acted to increase
the mechanical strength of the Jjoint without apparent electrical

effect.

Chiefly owing to mechanical difficulties with the small
platelet crystals, later efforts were directed toward making
the indium contacts by evaporating the electrode material in a
vacuum chamﬁer. This evaporation was performed at a fairly
poor vacuum (approximately 10-5mm of mercury) from an overhead
tungsten filament. A silver paste was then used to attach the
CdS platelet to the copper substrate. The electrical path into
the crystal thus consisted of a copper plate, conducting silver-
paste, and then indium evaporated to the CdS. The silver paste
was very poor in its mechanical strength, but rigidity was
provided for the mount by the Fibreglas insulation as will be
described. ‘Figure 3.1 is a schematic diagram of the construction
used and should prove helpful as a reference as the description

proceeds. It should be emphasized that this figure is not intended

as a pictorial representation nor is it drawn to scale.

With the crystal in place on the copper substrate, a layer
of Fibreglas, a very hard, inert, alr-drying, commercial resin,

was laid to its edges covering the copper completely in the
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Figure 3.1

Sehemstic drawing of the construction of the Au-CdS-In
diodes. The drawing is not to scale and not represent-

ative of shapes - all crystals are actually of an

irregular shape.
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vicinity of each unit (there were often more than one crystal

on & single substrate). The Fibreglas had enough surface tension
to form a neat fillet at the edge of the crystal without

running over the crystal itself, provided care was taken in

this operation. The Fibreglas was peﬁmitted to dry for at least
2k hours before any further operatiqns were performed. The next
step was to treat the exposed surface of the CdS as was described
in Section 3.2, etching the larger cut pieces and cleansing the
small platelet surfaces. The Fibreglss is capable of withstanding

the etch for short periods of time.

AfTter this, the entire assembly was placed in a vacuum
chamber and the system pumped to about 5 x lO_Tmm of mercury.
It was left at this vacuum for at least an hour before evaporating
any material. The gold evaporation was done from an elevated
tungsten filament onto the assemblage, which was masked so that
only the crystal face and the Flbreglas adjacent to it were
coated. To ensure a clean surface on the evaporative source
material, the first metal evaporated was caught on a shutter used
to shield the dlode structures. The final step in the process
was lead attachment to the gold substrate. ZEarly work was done
by making this contact with a micro-manipulator until it was
discovered that very fine wires could be soldered with pure
indium to the portion of the gold film overlapping the crystal
onto the Fibreglas. The copper plate was then glued to a circuit
board, the wires from the gold film attached to stand-offs, and

‘leads attached from other stand-offs to the plate itself. This
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produced a portable, rigid structure sultable for electrical tests.
As made, the units could stand only moderate temperature changes.
Heating was limited by the melting point of indium (156.4°C) and
cooling by the effects of unequal coefficients of expansion. The
Fibreglas would crack from the copper at low temperstures and

the crystal contact to the copper base would break due to

the relative motion. ILack of facilities and units prohibited &
complete study of the permissible excursion to lower temperatures.
As a precautionary measure, completed diodes were stored in an
evacuated dessicator, although later experience suggests that this

is not necessary.

3.4. Material Sources and Properties

Cadmium.sulfide‘is now of some commercial value, and there
are, accordingly, a number of chemical supply houses from which
it is available in single-crystal form. On the advice of R. L.
Williams of RCA, relatively large (5 gram) single crystals of the
material were purchased from the Fagle Picher Company of Cincinnati,
Ohio. Other single-crystal samples of roughly the same size and
character were generously supplied by D. C. Reynolds of the Wright
Air Development Center in Dayton, Ohio. Eagle Picher sells CdS
doped with chlorine to give a range of rcom-light resistivities,
and various values were obtained for study. Chlorine and the
othér halides act as donors in CdS. They are iopized at room
temperature and can cause significant increases in dark conductivity.

" The halides are thought to be incorporated substitutionally for
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sulfur in the crystal lattice. Trivalent cations such as aluminum,
gallium and indium appear to substitute for cadmium in the

lattice and also act to increase the conductivity of CdS. Copper
and silver, on the other hand, provide energy states low in

the band gap, and thereby decrease thé conductivity of the
crystal. Since copper and silver have opposite effects from

the halides on the conduction-band population, elements from

the two groups are sometimes incorporated one after another in

a crystal to establish a given resistivity [1].

The addition of copper or silver after a halide is a
useful technigue in the condensation of the thin-platelet
crystals. While it is possible to grow the crystals from pure
vapors of HZS and cadmium, the presence of a halogen seems to
enhance their growth [6]. Therefore, high resistivity thin-
platelet crystals are sometimes made through compensation of
the incorporated halogen by copper or silver. Both pure crystals
and crystals doped with chlorine followed by copper were studied.
These were obtained through the generosity of R. W. Smith of the
RCA Princeton Laboratories, and of J. E. Johnson who is at the

Westinghouse Research Center in Pittsburgh, Pennsylvania.

Both the gold and indium used in making contacts to the
CdS were chemically-pure grades, avallable from almost any
chemical supplier. The Fibreglas resin used as an insulating
material is available at a number of hardware stores, chiefly

those dealing in marine products.
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- 3.5.  Measurement of Thin-Platelet Dimensions

It 1s necessary to establish the physical dimensions of
the crystals accurately in order to check the ele¢trical measure-
ments with theory. The diode construction made measurement of the
sample area fairly stralghtforward. ﬁith vapor-deposited contacts
it was relatively simple to cbtain this value by making use of
the graduated eyepiece in a metallurgical microscope. The procedure
was to estimate the outline of a rectangle approximating the
sample area, and to read the dimensions directly from the eyepiece
calibration. The approximate error from such a procedure is
estimated at a maximm of 10% of the linear measurement. Most
small platelets had a cross-sectional area of about half a square

mn, known with a precision estimated at * 20%.

Measurement of the‘crystal thlckness was more difficult.
Before any of the operations used in fabricating the samples were
started, all platelets were measured with a micrometer. This
proved satisfactory for the large samples, but 1t was a fairly
gross technique for the small samples since the crystal surfaces
were in general not planar, but had small spines on them. Also,
most of these samples had thicknesses in the range of ten microns.
This is é rather small measurement to make accurately wifh a
micrometer. Especially in the case of alloyed Jjunctions, 1t was
not certaln whether the electrical contact existed at the
physical surface or, perhaps, below it due to some in-diffusion

of the metals. Wright [4] gives evidence that some diffusion
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occurred from the contacts of one of his samples. For these
reasons the thickness used in all calculations for the thin
platelet was the one deduced from the capacitance_measurements.

In the discussion concerning capacitance measurements in Chapter
6, the interpretation of the capacitance data is explained, as

is the technique of making measurements. Thicknesses deduced
from measured capacitance were sbout 50% lower than those measured

initially with the micrometer.

The errors involved in the caleculation of thickness from

measured capacitance are due to:

a. The added stray capacitance from the lead
attachments. As described in Section 3.3,
it was necessary to overlap the gold film
onto the Fibreglas in order to provide a
place for soldering the leads. This over-
lap necessarily adds some capacitance in
parallel to that of the sample. The size
of this added capacitance is dependent on
the area of the overlapping gold film and the
thickness of the insulating Fibreglas.
Although some test measurements of capacil-
tance measured across the Fibreglas film
alone ran as high at 1.3pf, it is felt
that a good average for this value would

be closer to 1pf. Accordingly, in
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deducing thickness 1lpf was subtracted
from the measured value for the capaci-
tance of all dlodes. It follows, there-
fore, that the prcbable percentage errors
are highest in samples for which the
measured capacitance 1s lowest.
Inapplicability of the simple formula

L = C/AKey, with L the crystal thick-
ness, C the measured capacitance, A

the junction area, and Keo the érystal
permittivity. Error in the application
of this formula would arise due to lack of
surface planarity or uniformity of electrodes
or crystal. Owing to the extreme thinness
of the samples, this source of inaccuracy
is not likely to be great. In any case the
simple equation would give an average
thickness, which should be the most useful
in further calculations.

Error in the measurements of C or A.
The expected precision for the area has
already been discussed. The discussion
of the precision of capaciltance measure-
ments is given in Chapter 6. In the
worst case, their inaccuracy might lead

to about 30% error in L.
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d. Error in the value for the relative per-
mittivity. We shall see in the complete
discussion of capacitance measurements in
Chapter 6 that the permittivity in C4S is
a function of illumination. Bube [1l, page
276] comments also on the variation of K
with trap densities in CdS. This being
the case, it is not surprising that the
dark values given 1n various references
differ by as much as 10% from the value

10.5, which was used in this study.

In summery, it is not expected that the total error in
the thickness measurement exceeds 50%. Table 3.1 tabulates the
high frequency capacitance and dimensions for the diodes for

which mathematical analysis will be presented later in the text.

TABIE 3.1
Diode # Capacitance  Thickness Arga Volgme
pf u m _m
13- 4.0 185 5.8x107 1 7.9x107%
13-5 2.15 13.85 3.2x107 7 L.hx1071?
13-7 5.7k 9.71 6.0x10" 1 5.8x1071%

3.6. Control of Gold Film Deposition Thickness

In studying illumination effects on the completed diodes,

light was directed through the gold contact. By this means,
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information was sought bearing upon the assertion of Williams
and Bube that the photovoltaic effect ét a metallic blocking
contact to CdS results from optically-stimulated photoemission
from the metal into the crystal [15]. To test this theory, and
also to obtain a correct evaluation of photoconductive data, it

was necessary to control the thickness of the gold film.

This was done by monitoring the resistance of a square
of the deposited material placed in the vacuum at the same
distance from the source as the diode on which deposition was
taking place. Research done by Wilkinson and reported by Holland
[19, page 237] showed that the dependence of the resistivity on
film thickness for gold on glass may be fitted empirically by

the equation:

Pri1m = Pk (& + 1230/L) (3.1)

with p standing for the resistivity, and L, the thickness of
the film in angstroms. Using 3.1 and the relationship p = RL
for a square gauge, one can solve for the requisite resistance
measured across the terminals for any desired film thickness.
The evaporating metal is then simply cut off by the shutter when

this resistance 1is reached.

The precision of this method is somewhat limited due to
fluctuations of film thickness over the square area, and lnaccuracy

in the exact distances from source to sample and source to gauge.
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However, the primary goal was a means of knowing relative
thicknesses for the gold film on various samples. It is felt

that this end was served adequately by the method.

3.7. Conclusions

With the hindsight available from many trials at diode
construction, some cbservations on working with CdS may be made.
If work is done on samples cut from large crystals, the minimum
thickness for the sawn wafer should be about .02 inches. CdS
does not appear to have sufficient structural rigidity for
thinner cuts without fracturing. It is easy to reduce the
thickness considerably below the cut dimension by hand-lapping,
so that the minimum saw cut is not a thinness limitation. The
fact that the lapped crystals are not overly fragile suggests
that the problem in diamond sawing is blade vibration. Care
was observed to minimize this effect but even with such care,
twenty mils seemed the lower limit for a reasonable yield of
samples. These statements apply to cuts across the crystal
axis (001l plane}; essentially no success was achieved in dismond

sawing along the axis.

Vapor-deposited metallic contacts are recommended wherever
possible. This technique not only permits accurate geometric
control, but is as gentle as péssible to the crystal. In
addition, by building substrate heaters intc the vacuum system,

any desired heat treating can be done within an inert milleu.
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In heat treating the CdS in this fashion, it was found that
vapor-deposited, indium contacts were éapable of electron

injection even in the complete asbsence of alloylng.

The final mounting of the crystal for experimental
test is an important part of the fabrication procedure. The
mounting technique described in Section 3.3 represents the
result of a number of attempts, most of which were only
partially successful. The mounting finally adopted could
serve well for a number of different experiments with only
slight modifications. Its main and most useful features are
the use of Fibreglas to hold the sample and the employment of
indium-soldered wires to make connectlons to the vapor-deposited
contact films. Most other investigators of the properties of
CdS have worked with samples that had surfaces exposed to air
except underneath the metallic contacts. From the agreement
between thelr results and those which we shall present in
Chapter 5, we can state that the resin ambient does not signifi-
cantly alter the properties governing charge injection into the
erystal. If anything, the surface of the crystal contacting
the Fibreglas should be more stable than if it were exposed to
air so that, even in experiments where surface properties vere

more important, the Fibreglas support could be valuable.
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CHAPTER IV

CdS Diode Equilibrium Current-Voltage Characteristic:

I. Gold Contact Negative

In this chapter we shall begin the discussion of the
electrical measurements made on the CdS diodes fabricated in
the manner described in Chapter 3. The current-voltage
characteristic for the diodes under equilibrium conditions will
be the subject both of this chapter and of Chapter 5. Much of
the discussion in these two chapters is framed in terms of the
measured characteristics of diode 13-5, a thin-platelet unit
which behaved similarly to most of the diodes of its type that
were tested. Other diodes are discussed with reference to
differences from diode 13~5. Figure 4.1 is the overall volt-
ampere curve for diode 13-5, plotted to linear scales. The
voltage polarity is that of the gold contact. Figure 4.1 divides
quite neatly into three distinct regions, which are best discussed
separately. These regions are demarcated by Roman numerals on the
plot. Regions I and II are discussed in this chapter, although
the latter is common to both positive and negative excitation for

the gold film. Region IIT is discussed in Chapter 5.

As agll of the diodes made were light sensitive, the
measurements not concerned with photoelectric effects were made
in the dark. In discussing experimental results, it will always

be specifically stated where this was not so.
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4L.1. Dark Conductivity

At low applied voltages, either positive or negative,
figure 4.1 shows that the crystal exhibits an ohmic behavior
indicative of an extremely high resistivity. From this portion
of the characteristic, which we have labeled Region II, we may

deduce the free-electron density in the crystal.

Making use of the standard formula for the resistance
value deduced from the slope of figure 4.1 in Region II together
with the diocde dimensions glven in Table 3.1, we may calculate
the crystal resistivity. The indicated resistance, 2.5 x 109
ohms, implies a dark resistivity value of 5.78 x lO9ohm-cm.
Assuming a mobility for electrons in CdS of ZOO*cmz/voltwsec.,
this resistance indicates a dark electron concentration of

6. -3

5.4 x 10 em °. The dark resistivity value for diode 13-5 is
within a factor of three of that measured for the three other
pure samples checked. Some of the diodes doped with chlorine

and copper ag described in Section 3.4 had dark resistivities

an order of magnitude greater than this.

It is pertinent at this point to see what value one would
expect for the intrinsic electron density in a perfect crystal of
CdS, in order to decide whether the observed density can be

accounted for through normal excitation processes from the CdS

* There is not yet general agreement among investigators on the
value of the electron mobility in CdS. (There is absolutelg none
on a value for the hole mobility.) Values range from lOcm./volt-
sec. [20] to 200 [1, p. 269]. The latter value is used here since
it is most current and is given by Bube after a search of the
literature on the properties of CdS.
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valence band or whether it is due to lonized donor centers.

For an intrinsic material the electron density is given

W

_ e |
n = N exp i (.1)

where Wg is the gap energy and Nc is the effective density
of states in the conduction band. From Bube [1], Wg = 2.hev

for CdS. The quantity Nc is given by:

zam_k7\ Y2

Nc = 2 —-1:2—-— (4.2)

where m, is the effective mass of electrons in the conduction
band and h is Planck's constant. Bube [1] gives an ellipsoidal
average of m, = .lhmr for C4dS, where m, is the electron rest
mass., Using these values, we calculate:

18

N, = 1.38x10 Lo

3

at T = 300°K. Hence we obtain n = 1.93 x 10 3 Por inkrinele
cdS. Comparison of this extremely low density with the value
5.4 x 106cm—3, deduced from measurements, assures that the

mesasured electron density is due to effective donor centers, and
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that the Fermi level interior to the crystal is not located

at the band-gap center. Assuming that all the effective

donor centers are iconized, we can carry these calculations

one step further and determine the depth of the Fermi level in
the actual crystal below the conduction band edge through

the relationship:

Wo =Wy = KTIn ﬁz- (4. 3)

with Nd the effective donor density. For sample 13-5, if we
3

take for Nd the measured electron density n = 5.4 x 106cm- )

we obtain from equation L. 3: Wb - WF = .656ev. Hence the actual
Fermi level is distinctly elevated from its l.2ev depth in
intrinsic material. This has been a general finding among

investigators of the properties of "pure" crystals of CdS.

4.2, High Field Characteristic

As the gold film contact to the CdS is made progressively
more negative, a departure from ohmic behavior begins to become
evident at applied voltages in the neighborhood of 4O volts. This
is the portion of figure 4.1 which we have called Region I. From
the crystal thickness in Tabl¢ 3.1 we see that the average field

at the edge of Region I is 3 x thvolts/cm.

At such high fields a number of phenomena are possible,
including various types of crystal breakdown. Further consid-

erations are necessary to deduce what mechanism is responsible
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for the characteristic obtained.

A possible explanation of the mechanism leading to
departure from ohmic behavior suggests itself when the data of
figure 4.1 is replotted with logarithmic current, the ordinate,
and the square root of voltage, the asbscissa. With such a
representation the experimental data in Region I becomes an
extremely good fit to a straight line. Such a plot for sample
13-5 is given in figure 4.2. The exp(oNl/z) dependence of
current implied by this curve 1s reminiscent of the Schottky*
high-field variation for thermionlic emission into a wvacuum.
This leads one to believe that the gold film is indeed acting
as an electron emitter into the CdS at high-fields, and that
its effective emission work function is being decreased through

the action of the high electric field.

Besides Schottky emission, consideration of at least one
other solid-state phenomenon has been shown to lead to an
exp(QNl/a) dependence for current. Henisch [22, p. 202]
derives such a dependence for electrons tunneling through the
top of a variable-gidth barrier under the influence of a high
field. This hypothesis does not appear likely to explain the
results presented here both on theoretical and exXperimental

grounds, for the following reasons:

1. The hypothesis is based on the assumption that the

space-charge region is of variable width as in a back-biased

¥ See, for example, Spangenberg [21, p. 1560].
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p-n junction. The observed conductivity is so low that one
would expect the space-charge region tb extend the length of
the crystal at any reasonable applied voltage. Therefore, it
seems unlikely that one can justify the postulate that tunneling
is through a variable-width barrier unless a marked surface
concentration of donor states is present.*

2. The theory for the tunneling mechanism as gilven
by Henisch results in an expected variation of current with

voltage of the form:

1/8

ex, {ZeVNd
J = Jy eXp | g5 —KES—] (b.4)

where J is the low-voltage, Jjunction saturation current,

0
Nd 1s the effective donor-state density near to the contact,
X, is a critical thickness for tunneling such that s

barrier is assumed completely opague to tunneling
electrons for w > X, and completely transparent
to tunneling electrons for w < X.» with w the

barrier width for electrons of a given energy. A

reasonable value for x, is: x_ = 10~%n = 104°.

% If the barrier width were not variable, then the Fowler-Nordheim
[23] treatment for tunnel emission would apply. This predicts a
variation of current proportional to exp(K/E), with E, the
applied electric field and is, therefore, inconsistent with the

measured data.
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3

Insertion of the calculated donor density N, = 5.4 x lO6cm-

d
from Section 4.1 into this equation leads to a coefficient for
Vl/z in the exponential of the order of lO-6volts_l/2. As
we shall see shortly in the analysis of the experimental data,
the measured value for this coefficient is of the order of
unity. Hence, the disparity is a factor of about a million
between experiment and this theory. One might object to the use
of a bulk donor density in the calculation, argulng that surface-
state donor densities might differ significantly from those in
the bulk. However, the necessary hypothesized donor density to
insert into equation L.4 to match theory to experiment is roughly
18

10 cm—3. Such a density of donor states is unlikely, but

cannot be dismissed as impossible.

Returning to the consideration of an analogue behavior in
solids to field emission over a barrier into a vacuum, we note
that some reported research has already succeeded in an apparent
observation of this phenomenon. The mechanism was invoked by
Vermilyea [24] with apparent success to explain experimental data
on the volt-ampere characteristics that had been measured by
Charlesby on thin films of ZrOz. The simplest approach to
follow in the calculation is to assume, as did Vermilyea, a
behavior of the electrons emitted from the gold film analogous
to the well-documented vacuum situation [21]. Provided both
that our analogy is correct and that the distances involved
are significantly larger than the materiél lattice spacing,

this classical treatment should be valid.
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Consideration of the image-force potential of an emitted
electron, together with the potential related to the applied
field E, results in the apparent diminishing of the emission

work function by the value:

e en
AR = =3 e, (4.5)

Hence the actual current emitted would be given by:

1
J = JO exp | = — ¢0 -3 = (4-6)

where is the emlission work function with no applied field.

%0
If the anode potential is so high, or the current density so low,
that space charge has a negligible effect on the potential
distribution between the electrodes, then the potential gradient
at the cathode surface depends only on the anode potential and

on the geometry of the electrodes. In general, under these

conditlons, we may write:

E = By (4.7)
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where f 1is a geometrical constant which assumes the value unity
in the case of absolutely plane, parallel electrodes with no
fringing effects. Inserting equation 4.7 into equation 4.6,

we write:

1/e

In J = 1nJ e - epv

o~ %1 % * T e T

(4.8)

which implies that a logarithmic plot for either the current
density J, or the current I, should be linear versus the
square root of the applied voltage. The glope of such a graph,
if plotted on usual base 10 semi-log paper should be the
coefficient of V/? 1in equation 4.8, multiplied by the

reciprocal of 1n 10, or:

d(log I) _ 1 _ e ep

a /v 253 2kT ﬁKEOL

(4.9)

At 300°K, this value 1s 2 x J_o”l*(a/L)l/2 for CdS in the MKS

system of units. For sample 13-5, therefore, the theoretical

slope implied is 0.053(5)1/2volts'1/2. From figure 4.2, the

measured slope for diode 13-5 is 0.625 volts_l/g. This value

is typical of the order of magnitude for other measured samples,

the slepes ranging from 0.3 volts 2 .o 0.77 volts B

(crystal thicknesses were roughly equal).
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The measured characteristic, therefore, implies that the
constant P, which relates the apparenf field in the vicinity of
the emitting electrode to the average field in the interior, is
139. In Section 4.4, we shall consider the possible causes for
such a large apparent cathode field. 'Thus, at 4O volts, where
6

the apparent field emission becomes evident, Ecathode =4 x 10

volts/cm.

4.3. Calculation of Field-Emission Voltage

In principle, cne should alsc be able to calculate the
voltage at which incipient field emission will take place. This
is done by assuming the validity of the Richardson eguation [21],
and equating the emission rate>it implies to a drift flow of
electrons whose density is obtained from a thermal equilibrium
between the metal and the insulator. Such a calculation sets
equal the maximm electron transfer-rate across the junction and
the electron flow-rate away from the junction. The resultant

equation is:

euNcBerxp(—eVB/kT)
L

- AeT2 exp(-eVB/kT) (4.10)

in which the exponential factor accounts for the barrier height
EVB’ at the blocking metal-insulator junction, and Vf is the

~ applied voltage at inciplent field emlssion. Ae is the
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Richardson factor which is calculated by expressing the average
density of electrons with velocities oriented out of the crystal
and with energies above the emission work functiop. Ideally,

A, has the value 120 amps em™2 %2, fhe absolute temperature

is denoted by T, Nc is the density of states in the insulator

conduction band, and the other symbols have their usual definitions.

Solving equation 4.10 for Vo, we obtain:

A_T°I,
e & mme (4.11)

The value to use for Ae in this equation, as well as that for
B, is questionable. As an example, for vacuum emitters, the
"constant" Ae has been determined experimentally to vary from
.0l times the theoretical value for oxide emitters to T2 times
its theoretical value for tungsten as an emitter [21]. If we
assume that Ae is 30 times its theoretical value for the
situation under consideration (this appears to be typical for
the noble metals), and the B of 139 deduced from the measured
slope of the breakdown characteristic, equation 4.11 yields

Vf = 78 volts. This is a factor of two higher than the voltage
measured for sample 13-5, Whiéh is not too surprising, when we

consider the approximations that are involved. Figure 4.3 is a

sketch of a potential configuration near to the gold contact



lz71

*SUOT3BAISSCO TRIUSWTIadX® WOJJ PIoNpap 98 3083U0D

BUIY0oOTq 9y} 0% JBAIU UOTIBINITJUOD ABasus Tuljuajod oyl JO YOS

€4 2an3Td

-— JONV1SId

™~

N

//nnrﬂllmwwmﬁ TIIS]

o
98pa puBQ-UOTJONPUOC) .

sorIIaquT TBOoIsAud

18T2Ua20d \\\\\le |
30I0J-98BWT TBITSSBTO

I
|
\\\AW/ |
= Hmﬁpnmpom TenyosB _
9PTITNS uMTWpB) _ PTOD

—=—— A9Y3N3




128

which would cause a behavior such as we have noted. The steep
maximum near to the gold contact indicates the high emitter
field. Possible causes for this field are the subject of the

next sectlon.

L.4, Causes of the High Contact Field

There are at least two causes to which might be ascribed
the rather large ratio between the apparent field at the cathocde
and the average field in the interior. Tirst, the image-force
consideration involves a distance from the cathode to the

potential maximum given by [21]:

x :1% e (4.12)

Using the calculated E for diode 13-5 this gives X, = 2.92AO.
Since this number is of the order of a lattice constant, there

is certainly doubt as to the validity of the classical image
force treatment. It is, however, the same order of magnitude as
in Vermilyea's case [24]. In the case of emission into a vacuum,
agreement with simple image-force theory is quoted as being found

down to x_ = 19A° by Parker [25, p. 176].

The low value calculated for X provides one possible
explanation for the magnitude of pB. If one applied the method

 of images down to infinitesimal dimensions from the cathode, the
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force holding an electron inside the metal would approach
infinity and there could consequently 56 no emission. Hence,
when the distance of the image from the plane of the metallic
emlitter begins to shrink to lattice-constant size, the actual
force must be less than that calculatéd by the method of images.
In the procedure used in our calculations this would necessarily
show up as a higher effective electric field than that calculated
from electrostatics; hence, we would expect to find S some
number greater than unity with its value varying inversely with

x -
m

Theoretical considerations of the actual potential in
the immediate vicinity of a metal-vacuum interface have been
reported in a number of papers with a fairly up-to-date summary
presented in the work of Cutler and Gibbons [26]. In a quantum-
mechanical treatment these authors concluded that a corrected
image force potential could be used in the classical manner at
small distances from an emitting surface. Thelr corrected
potential differs from the actual potential by 3% or greater in
a length characteristic of the emitting surface. This length,
which is denoted here by A, is defined in terms of the electron

potential-well depth (Wé) by the formula:

O.l6e2

Kzgﬁ;— (MKS) (%.13)
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This equation and other work in reference 26 are hard to
apply to the situation under consideration here, since the actual
surface conditions are unknown. In equation 4.13, for example,
bath the well depth and the value to use for K at small distances
from a surface are in question. If one supposed a case where Wa
were just the difference between the work function of gold (k4.5ev)
and the electron affinity of CcdS (=~ 3.5ev), and that K, following
the considerations of MacDonald [27], was about one fifth the
bulk value*, A may be calculated from equation 4.13 to be 14.5
angstroms. Thus, for the treatment of the observations here
dlscussed, a corrected form of the potential is warranted. We have
already conjectured that this corrected‘potential would act to
cause a value larger than unity for the observed f£. Because of
a lack of more fundamental knowledge of the interface, however,
further calculations using reference 26 appear too arbitrary to

be useful.

The second possible cause for the large apparent cathode
field stems from the fact that the planarity of the surface most
certainly does not approach the magnitude calculated for X

from equation 4.12. Thus, the concept of an image in a perfectly-

* The modification of K 1s necessary near to the surface since
the relative permittivity measures the average electrical polar-
izability over all space. MacDonald's work was done with electro-
lyte-metal capacitance measurements and his deduction as to the
size of K came from considerations of the implied width of the
surface barrier. Therefore we use here only an analogy. IHis
paper is quoted as evidence that KX decreases near the interface.
As & first consideration one might think the contrary: that the
influence of the metal surface - where K becomes infinite, would
‘be to increase, rather than to decrease the relative permittivity
in the crystal.
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conducting plane surface is not satisfactory. More probably the
surface consists of small protuberances that act to increase the
fields localiy. This conclusion is strengthened by the observation
of a similar effect in atomic film emitters for vacuum tubes. A
theoretical analysis by Langmuir and Cbmpton in 1930 (described

by Parker [25]) of a specialized model was able to account on

this basis for a higher observed variation of emission with

voltage than is given by the simple theory for such emitters.

More currently, Spangenberg [21] states that the results
of experimental tests of the Schottky effect on a large number
of vacuum cathodes have indicated high slopes for log I versus
Vl/z than that predicted by the simple image-force theory which

regards the cathode field as egual to V/L.

It would not be instructive to attempt to contrive a
specialized emission model to obtein P theoretically, since
it would be a completely ad hoc theory. Conditions so close to
the surface may be of such a complexity that there are simply too

many alternatives.

k.5, Conclusions

The characteristic of the diodes under reverse blas as
determined experimentally is an ohmic behavior until average
fields of the order of 2 x lOuvolts/cm are reached in the

crystal. As voltage is increased from the value causing this

average field strength, a sharp increase in current which varies
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as exp oNl/2 with o a constant, is noted. The observed
behavior suggests strongly that Schottky emission is taking
place from the gold film into the interior of the sample. As
discussed in Section 4.2 there is some possibility of the
breakdown being due to a tunneling effect but this requires

the postulate of a large density of donor states near to the
surface. Correspondence of measurements with theory for the
Schottky-emission hypothesis demands that the ratio B of the
actual field near the blocking contact to the average applied
field be of the order of one hundred. Various physical grounds

do exist which tend to Justify such a value for B.

Current varying as exp avl/z was observed in all five

- thin platelet diodes tested for this effect. Three of these
falled under continued high voltage excitation in the range of

an average field of 5 x 1o”volts/cm. Tn failing, the units
suddenly assumed a higher apparent conductivity which persisted

at all voltages and for either polarity of voltage. Unfortunately,
the thicknesses of these crystals were only known via the
relatively inaccurate micrometer measurements, described in
Chapter 3, making a rigorous test of the constancy of £ in
equation 4.9 impossible. For the two remaining diodes, the

value of B was within 30% of the B obtained for diode 13-5,
when calculated from the measufed slope of the curve corresponding

to figure L.2, through equation 2.9.

A recent paper by Williams [28] reported experiments on

the effects of high fields on CdS as imposed at an electrolyte-
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CdS interface. Williams observed a breakdown field which
resulted in a short-circult type of fallure for his samples.

The breakdowﬁ field for seven samples averaged 2 x losvolts/cm.
This value corresponds closely to the cathode field of L4 x 106
volts/cm deduced in Section 4.2. Three diodes, as noted above,
falled iﬁ the same manner as did Williams' samples undef average
fields about 0.0l times this wvalue. This correspondence is
further evidence of the apparent high fields deduced to exist
near to the cathode. The most likely source of the breakdown,

according to Williams, is electron tunneling from valence to

conductlicn band.
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CHAPTER V

Cd3 Diode Equilibrium Current-Voltage Characteristic:

IT. Gold Contact Positive

In this chapter we shall complete the discussicn of the
equilibrium current-voltage characteristics for the CdS diodes.
In Chapter IV, we considered the diode behavior both under high
reverse bias and under low biases in the forward and reverse
direction, corresponding respectively to Regions I and II in
figure 4.1. The portion of the characteristic still to be
investigated is that which we have labelled Region III in figure
L.1. We shall see that this region, which is confined to
positive applied voltages for the gold contact, harbors a rich
variety of behavior both in apparently similar diodes and in
a single diode under slightiﬁggaﬁeter variations. The lower
boundary for Region IIT #éiéet by a departure from ohmic behavior.
Both this point and the';éture of the characteristic for diode
13-5 in Region ITII hecome more evident when the data of figure
4.1 are replotted onto logarithmic scales, as is done in figure
5.1. In figure 5.1, it is revealed plainly that the characteristic
for diode 13-5 goes from a proportional behavior (450 slope) at
low voltages to a square law behavior (26.6° slope) at higher
voltages. As can be seen, the data fit of measured points for
diode 13-5 is extremely goocd to both of these lines. From the
theory, developed in Chapter 1, this is the simplest characteristic
which can be observed under space-charge-limited current-flow

conditions. The theory of space-charge-limited inJection will
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Figure 5.1

Equilibrium Volt-Ampere
Characteristic
Diode 13-5
Gold contact positive
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be applied in this chapter to the characteristics shown by
diode 13-5, and to the characteristics measured for another
diode whose behavior was more complex. The fit between theory
and experiment, as we shall find, is good. In order to orient
our thinking we shall begin the chapter with a résumé of the
properties of space-charge-limited currents. This resumé&, the
topic of Section 5.1, will emphasize the physical processes
which are operative and therefore will act as a supplement

to the quantitative theory of Chapter 1. Succeeding sections
will present and interpret experimental results obtained on the

diodes.

5.1. Space-Charge-Limited Current in Solids: Qualitative
Discussilon

The evidence from figure 5.1 is that indium is cegpable
of acting as an electron injector into CdS. At low voltages
there are essentially only the carriers normally present in the
material conduction band, and an Chm's law behavior results. At
higher voltages, electron injection from the indium begins to
occur to an appreciable degree, and the interior assumes a net
negative charge. The amount of charge injected is governed by
a simultaneous solution of Poisson's equation and an equation
expressing the rate of charge transport across the crystal,

subject to the applied voltage as a boundary condition.

The possibility of sufficient space charge being injected

into insulators to lead to a space-charge-limited flow condition
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was first suggested and analyzed by Mott and Gurney [14]. The
authors applied an analogous attack to that used to deduce
Child's law for space-charge-limited currents in vacuum. The
differing dependence of the motion of the charge carriers

1/2 for

through the field (v = pE in a solia; v = (2eV/m)
a vacuum) leads to a square-law dependence for current on
voltage in the crystal case, instead of the 3/2 power law
of the vacuum case. If perfect crystals were svailable, so
that an insulator coﬁld be characterized as having electronic

energy states permitted only in the various bands, the solution

of Mott and Gurney would be applicable. Their solution:

9KeOuV2
I = — (5.1)
8L

is approached in the behavior of actual crystals only when the
free charge in the conduction band becomes the significant
component of the total charge injected into the solid. Equation

5.1 was derived in Section 1.3.

Actual crystals are not devoid of permitted states in the
so-called forbidden band. In fact, the large band-gap materials
such as CdS, into which one could expect to inject significant
charge, are characterized by an appreciable density of forbidden
gap states. The relative importance of these states is naturally

enhanced by a decreasing density of free electrons. States in
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the forbidden gap, which provide energy levels that immobilize
_injected charge, act to modify significantly the dependence of
current on voltage from the form of equation 5.1. Those gap
states which are in thermal equilibrium with the conduction
band, and which are filled and emptied through the conduction
band, are called electron trapping states. The bulk of the
injected charge will be found, in most cases, to reside in
these trapping states. By postulating the energy conflguration
of the trapping states, it is possible to deduce the expected
dependence of current upon voltage uﬁder space-charge;limited
conditions. A mathematical analysis for the trapping-level
configurations pertinent to the diodes studied was given in
Chapter 1. The discussion in that chapter also outlined the
procedure to follow in deducing the effects of any type of
trapping configuration on space-charge-limited current flow.
The theoretlcal treatment of Chapter 1 showed that it is
possible to obtain volt-ampere characteristics, in crystals
susceptible to space charge injection, ranging from linear to
an exponential dependence. The behavior of a given crystal will
be specified by its trapping configuration with energy and the

position of the Fermi level relative to that trapping configuration.

The governing condition for the type of volt-ampere
behavior observed under space-charge-limited conditions is the
statistical relationship between free and trapped charge. Since
only the free charge contributes to the observed current, while

‘the total charge is made up of free plus trapped charge, their
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inter-relationship has a direct bearing on the volt-ampere

characteristic obtained.

The simplest case for a crystal with traps is that in
which there is a voltage-independent proportiocnality between
the free and trapped charge. This occurs when the Fermi level
is sufficiently below the trapping levels in the band gap so
that Maxwell-Boltzman statistics apply. Under these conditions,
the trap-free current (given by equation 5.1), is reduced by
a factor equal to the ratio of free to trapped charge. When
Fermi-Dirac statistics must be used for the free and trapped
charge pcpulations, the ratio of n +to nt becomes a function
of voltage and higher power than square-law currents result.

Because of the rapid variation of the Fermi-Dirac dis-
tribution function in the region of the Fermi level, the bulk
of the traps for a discrete-energy trapping level are filled
when Maxwell-Boltzman statlistics are not applicable. This leads
to a high power law between voltage and current near to that
voltage which fills all traps. A physical insight into the
reason for this behavior comes from the realization that the
position of the Fermi level iInterior to the crystal should be of
no consaquence.with regard to the injection of electrons from
the cathode. That is, the number of electrons injected for
each increment of voltage should undergo no sharp discontinuity
as the Fermi level begins to approach the trapping level. When
the Fermi level is below the trapping level, almost all injected

electrons are trapped; when the Fermi level is above the trapping
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level, almost all injected electrons are free. Since the neutral
crystal usually contains enormously more trapping states than
free electrons we can see that as the trapping level is traversed

by the Fermi level, there will be a sharp increase in current.

If a.crystal is characterized by trapping densities
distributed over a range of energies, then & power-law higher
than of order 2 will be observed for the volt-ampere characteristic
while the Fermi level is within this range. An exponential
behavior results in the special case of a continuous constant

density.

One would expect that all these characteristics would
lead to less current at a glven voltage than that predicted for
the simple trap-free crystal. This is true because all of the
space charge i1s mobile in the trap-free case but only a portion
of it is free to move in the actual crystal. Figure 1.6
illustrated the possible behavior of a crystal contalning a
variety of trapping levels, as discussed in this section and
analyzed in Chapter 1. Figure 1.6 makes it graphically evident
that, at a given voltage, the largest currents are drawn in &

crystal which is free of traps.

5.2. Complications in Measurements

In the early course of the experimental work for this
investigation, especially with units such as will be described

in Section 5.5, certain "hysteresis" phenomena were noted. Diodes
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would apparently change thelr characteristics under low-frequency
a-c operation after roughly five minutes of what appeared to be
an eqpilibriﬁm condition. This behavior, which has been noted by
other investigators, has its explanation in the discussion of
Section 5.1. In the case of low-frequency a-c measurements, there
is a slow build-up of interior charge by the signal through
charge injection into traps from the contacts. These traps
discharge slowly, and the net result is a general straightening
of any diode non-linearity. That 1s, the traps act to keep the
conduction band chérge more néarly'constant, and therefore to
make the crystal more like a resistor. The slow discharge from
traps is evident also in d-c measurements if data are taken for

a volt-ampere characteristic by lowering the voltage from some
high value at which an equilibrium current has been established.
Unless sufficient time is allotted for equilibrium at each of the
lower voltages, an ohmic characteristic is likely to be measured.
For a typical chlorine-copper doped diode, a sufficient time is
about two and one-half days per point (in the dark). These

observations concur with the findings of R. W. Smith* at RCA.

This persistence of a non-equilibrium condition when
coupled with the extremely variable behavior of space-charge-
limited currents noted in Section 5.1, can cause not only
inconsgistent current-voltage points, but even an inconsistent
current-voltage relationship between data taken at different times.

This arises because one crystal may contain trap configurations

% Personal cammmication. See also Ruppel and Smith [29]
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of varying types spaced at intervals throughout the energy
band gap. If all these groups of levels are in thermal equi-
librium with the conduction band, the Fermi-Dirac. distribution
function acts to enhance the importance of those trapping
states near to the Fermi level relative to the others. Since
the time to reach an equilibrium is often very long, the
position of this Fermi level may depend on prior excitation
of the diode. Thus, there is the possibility of a given
crystal showing a variety of differing space-charge-limited
characteristics, dependent upon its history. This was encoun-
tered in some of the investigations performed, before it was
realized that times as long as fifty hours are sometimes

needed for an equilibrium situation to be achieved.

5.3. General Observations on the Diodes Studied

Measurements, which may be interpreted in terms of the
theory of space-charge-limited currents were obtained for all
five of the small thin-platelet diodes studied. Three of these
had no intentional impurities, while two had been doped with
chlorine followed by copper as described in Section 3.4. The
equilibrium characteristic observed most often under space-
charge-limited conditions was a proportionality between current
and the square of the applied.voltage. In all cases, however,

the current observed was less than that given by equation 5.1.
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From the discussion of Section 5.1, and the more complete
mathematical analysis presented in Chapter 1, this behavior
indicates that usually the position of the Fermi level throughout
the excitation was in a trap-free zone in the band gap and
sufficiently below the trapping levelé that Maxwell-Boltzman

statistics were applicable.

To bring out the salient features of the observations in
the remainder of this chapter, we shall discuss at length the
results for two small platelet diodes (13-5 and 13-4), the
former for which the gold-film-negative behavior has already
been discussed, and the latter for which an apparent distri-
bution of traps in energy was observed. Diode 13-5 was made
from a pure crystal of CdS, while diode 13-4 was doped both
with chlorine and copper. Experimental measurements will be
interpreted in terms of the mathematical treatment glven in

Chapter 1.

In the experimental work, most of the current measure-
ments weré at very low levels, especially for diode 13-hk. As
seen in its characteristic (figure 5.3), currents in the
picoampere range resulted for applied voltages below about
0.2 volts. Since the measurements of figure 5.3 were at
the lowest level, their accuracy is the most critical. The
precision of the measurements presented in figure 5.3 is
nonetheless belleved to be very good, since all readings

were recorded on a Varian oscillograph until an equilibrium
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condition was clearly indicated. The ammeter used was a Hewlett
Packard 425A, which has current ranges from 10 x 10_12 amperes
to 3 x 10”3 amperes. This instrument was checked and found
accurate down to the nancampere region by a Multiflex galvono-
meter which had a sensitivity limited to 4 x 10_9 amperes.
Owing to the long measuring times and the shielding of leads,
dark measurements were felt to be accurate to within 2 x 1072
amperes, a precision which makes significant measuring error
possible in only the lowest point on figure 5.4 (3 x TS
amperes). Voltage readings were not nearly as critical since

they were not required below 0.1 volt. They were taken on a

Kintel voltmeter.

5.4, Characteristic for Diode 13-5

The square-law current-voltage characteristic observed
at high voltages for dicde 13-5 implies, from Chapter 1, that
the trapping levels in the crystal are described by Maxwell-
Boltzman statistics. The traps may exist either at a discrete
energy or else be distributed energetically, but their energies
are not closer than approximately 2KkT +to the Fermi level in
the range of voltages studied. The discussion in this section
will refer to the traps as 1f they existed at a discrete energy
which corresponds, if the traps are in reality energetically-
distributed, to lumping them into an effective density at an

effective energy level.
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According to the analysis of Chapter 1, ohmic behavior
in a crystal should give way to space-charge-limited behavior
when the excess free~electron density at the collecting electrode
(in this case, the gold electrode) approaches the dark density
n of electrons in the crystal. The foltage at which this
occurs is glven by equation 1.20: V__ = (BéﬁLz(l + e))/(9eKeo).
If we use the dark electron density deduced in Chapter 4,
n=5.4x lOscm"3, and assume a trap-free crystal¥*, we calculate
from equation 1.20 that a transltion to space-charge-limited
currents should occur at Vbs = 23 X 10_6 volts for diode
13-5. From figure 5.1, the observed value for Vbs is 19
volts, so that i1t is clear that the crystal 1s not trap-free.

Therefore, we may use equation 1.20 to calculate 6:

-6
23 x10 _ .
o = =2lp—— - L.25x10

T

We have an immediate check on this value, since € can also
be computed from the measured current after the inception of

square-law behavior through equation 1.1Lk. Thus:

8g1.3

g = e
IKe KV

. % For the trap-free crystal, & approaches infinity in equation 1.20.
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Using the measured point, V = 30 volts, I = 27na, from figure
5.1 in this equation together with the diode area from Table

3.1, we obtain

B = 1.19 %2077

These two values for © are in remarkable agreement. A "best"

value for © would probably be an average between the two, or

e =1.22 x lO_T. We mey also calculate the average trap density

in the region of the square-law currents. From equations 1.8,
1.17 and 1.18, we have:
Xe oV

B o (5.2)
=t 2eL®

where Et denotes the average trap denslity, as in Chapter 1.

Hence, in the region of the transition to square-law currents for
diode 13-5, n, = lolhcm-3. If these are deep traps, such that
their occupancy probability is high, this number is a good

estimate of the actual trap density. However, if these are
relatively shallow traps which are not filled with high probability,
then we cannot yet draw a conclusion as to the actual trap density.
Nonetheless, we can derive an inequality pertaining to the trap
density. This is possible because data was accumulated for

voltages as high as U0 volts applied to the diode, without

.Observation of the steep rise in current which is characteristic
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of passage of the Fermi level through the trapping energy. As
we saw in Section 1.4, filling of discrete energy traps should
cause a noticeable deviation from square-law behavior in the

vieinity of V = (1/8)Vy. , with Vo = eL?N,/%Ke, as derived

TFL

in equation 1.22. Since square-law currents are observed for
applied voltages up to at least 40 volts for diode 13-5, we

may expect that VTFL > 320 volts for this diode. If we express

this inequality in terms of N, +through equation 1.22, we may

t

write:

2K€0(320)

>——--—-—
t eLz

N

Putting numbers into this equation, we obtain N£ >1.9x 1015cm-3
for diode 13-5. Having established this inequality, we are in a
positlion to calculate the maximum depth of the discrete trapping
level. To do this, we note that the postulate of thermal
equilibrium between conduction band and trapping level, coupled
with the camparatively low energy of the Fermi level, allows

us to write a Boltzman factor for the statistical weighting of

the filled states at the conduction~band and trapping levels.

From the Boltzman factor, we have:

n, N

W.-W. =KkTln (5.3)
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A minimum value for N, when inserted into equation 5.3, will

yield a maximum value for the trap depth (Wb - WT).

n/nt has been defined in equation 1.8 as ©. Therefore, we

The ratio

have:

with N% representing the minimum value determined for Nt'
Hence, for diode 13-5, we calculate: W = Wy < 0.56ev. This
inequality does not stipulate a very shallow trapping level.

We shall see in Chapter 6, however, that the depth of the dis-
crete level in diode 13-5 is appreciably less than this limiting

value.

The current-voltage characteristic for diode 13-5 was
found to be linear even under low-intensity illumination conditions.
From the data of figure 4.1, it is evident that if n were
increased only by as much as a factor of two from its dark value
through illumination, W would be increased to 38 volts and
ohmic behavior would prevail over the range of voltage studied.
The observed conductivity increase at low illumination indicated

roughly a factor of ten increase in n, so that the measured

chmic behavior is expected.

5.5. Characteristic for Diode 13-4

Quite a different behavior from what was observed for

diode 13-5 resulted when a positive bias was applied to the
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gold terminal for diode 13-4. This sample was also more light-
sensitive than was diode 13~5. As discussed in Section 5.3,
extreme care was necessary to obtain reproducible measurements
for this diode. The dark characteristics were taken from what
appeared to bereqpilibrium conditions (five hours of the same
reading) although this necessitated oscillograph records as
long as fifty hours, especially at the lower voltages. The
resultant dark volt-ampere characteristic is presented in
figure 5.2, along with some measurements taken in the light

which will be discussed presently.

In contrast to the behavior of diode 13-5, we note in
figure 5.2 that there is apparently no region in which diode
13-4 behaves ohmically under forward bias. The dark character-
istic consists of a region in which the current is proportional
to voltage raised to the power k4.7, followed by a square-law
region at voltages above V = 4.6 volts. The square-law
behavior may be attributed to the same phenomencn noted in
Section 5.4 in explaining the characteristic for diode 13-5.
The measured currents correspond to a © value, as calculated

from equation 1.1%, of 1.6 x 1077,

Readings were attempted sbove V = 12 volts in the dark
to add to the data on the squaré-law behavior, but these resulted
in erratic current pulses superimposed on a projected square-
law value. These pulses lasted for variable lengths of time and

greatly exceeded the square-law value. This apparent breakdown
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Figure 5.2
Equilibrium volt-ampere characteristic for diode 13-4 at
various levels of illumination with the gold contact posi-
tive. Curve I - dark; Curve IT - illumination =~ 2 candles/
£t%; Curve ITT - illumination ~ 8 candles/f£t%; Curve IV -
illumination ~ 20 candleséftz. The power law in the trap-
filling region is J =~ oV T, 'The dashed line represents
the lower square-law region implied by the data if the
trapping level being filled is discrete (o = 6.0 x 10—8,

Section 5.5).
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L

occurs at an average field strength of approximately 10
volts per cm. It was not studied further, because it was

felt that it might be destructive to the sample. -

The high power dependence of current in the low voltage
range is suggestive of a case in which trap-filling is taking
place. The energy configuration of the level or levels being
filled, however, is uncertain at this point. It is possible
that the high power law results either from a discrete-energy

trapping state, or a density of states distributed in energy.

If the characteristic were the result of filling a
discrete-energy trapping level then, since less than trap-free
currents are measured in the eventual square-law region,
the level is below shallower traps and the analysis of Section
1.5 would apply. In Section 1.5, we derived an approximate
equation (equation 1.39) for the exponent of the voltage in the
voltage range which connects the two square-law regions that
stem from the discrete levels. TFrom equatlon 1.39 and the

observed 4.7 power law we have:

2 + log ez/el = k.7

with 6. the ratio of free to trapped charge in the shallower

2
level and el its counterpart for the deeper level. Hence el =

5

92/845 or, using the value 6, = 1.6 x 107~ Jjust determined:

2

6, = 6.05 x 10'8. The characteristic corresponding to this 6;
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value is shown dashed in figure 5.2. It was not possible to
take data at a sufficiently low currenf level to ascertain
directly whether or not the diode followed this variation.
Because of the extreme linearity of the high-power-law
characteristic on the log-log plot of.figure 5.2, one might
expect that, as an alternative to the explanation just given,
the traps being filled are continuous in energy.* The exponent
on V would then imply a density that varied exponentially
with energy. Mathematical analysis of such a case has been
carried out in Section 1.6 and will be applied to the present
case more fully in Section 5.7. Briefly, this type of trapping
configuration with energy results in a characteristic J = QNm,
where m = ((TC/T) +1), T, is a "temperature" characteristic
of the trap distribution and greater than T, and « is a
constent. It is tempting to check for the applicability cf
this equation directly through temperature variation, but the
environmental range necessary for an unequivocal test would
damage the diodes. A rigorous differentiation between these
possibilities may be achieved, however, through observation of

the trap-filling characteristic under illuminated conditions.

Accordingly, three more sets of volt-ampere data were

taken for this diode, under illuminated conditions. The data

¥ The power law for a discrete level was an approximation and
one would expect the measured points to deviate somewhat from
it, especilally near the join point to the square-law charac-
teristic. A more complete discussion of this tople was given
in Section 1.k.
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obtained are also plotted in figure 5.2. The first set was
taken at a very lowrlight intensity (approximately 2 candles/
ftz) while the other two were taken at factors of illumination
four and ten times this amount respectively. The evident
differenée in the lighted and dark cufves is the marked increase
in current at a given voltage. This increase amounted to
approximately a factor of lOu at the lowest illumination and
increased from this factor. What is not evident in the figures
is the enormous decrease in fhe time necessary to reach an
eqﬁilibrium for the points on the curve. Whereas dark values
were not in eqpilibfium until times of the order of tens of
hours, even the lowest level Of‘illumination produced an
equilibrium situation within a few minutes. The lighted curves,
while duplicating ﬁhe low-voltage, 4.7-power relationship for
curreﬁt as a function of voltage, show ohmic behavior in the
higher ranges. We note also that the voltage at which the
characteristic departs from the high power law decreases with

illumination; although the variation 1s clearly not uniform.

These observations, especially the large current increase
under trap-filling conditions, cannot result from the effects
of a discrete energy trapping level. The th factor increase
in current demands a corresponding shift in the Fermi level.
gince the characteristic behavior stays the same after this
shift, trap-Tilling must still be taking place under illuminated
conditions. A single level would be almost insensitive to

- light in its current-voltage behavior as long as the Fermi
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level were in the vicinity of the trapping level. For discrete-
level trapping, all of the photo-excitéd electrons would pour
into the traps without significantly raising the Fermi level -
hence without increasing the conduction-band concentration.

This will be discussed further in the‘theoretical analysis of

Section 5.6.

5.6. Theoretical Explanation of the Observations on Diode 13-4

The measured results described in Section 5.5 are consis-
tent with a model based upon the theoretical framework for
photoconductor behavior proposed by Rose [30]. The observations
suggest a band-gap structure fo; the CdS as sketched in figure
5.3a. The gap states are of three types: shallow traps, which
may be distributed in energy or else exist at a discrete level;
traps which are distributed in energy in roughly exponential
fashion; and finally, states that have been called "primary
centers"”" by Rose. The primary centers are electron states,
low-lying in energy, through which almost all recombination
takes place; that is, by far the most likely mechanism for the
recombination of an electron-hole pair is the annihilation of
a trapped hole in a primary center by a conduction-band electron.
The specific structure of the primary centers is not indicated
since it is setill a matter of conjecture; hence, they are
indicated only by cross-hatch in figure 5.3. For this same
reason, the shallow-trap structure is also indicated by

. cross-hatching.
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Crystal band-structure proposed to explain the observed current-voltage
characteristic for diode 13-4. The symbol Wep indicates the dark
position of the Fermi level.

zx‘/zx'ﬂ//'/'l///////u////?///
% X X ¥ X|x X X X XX X[x x
Thermal Transfers Traps Filled

_Ey Illumination
VVFD —-;—

Reccmbination Path
l_/-// VP PPN rroaaoreesd

Figure 5.3 ‘
Interpretation of the effect of illumination on the populations of

Optical Excitation Path

the various gap states.



156

Under dark conditions with no applied voltage, there
is thermal equilibrium between &ll states in the crystal and

a single Fermi level (labeled Wpp in figure 5.3a) describes

D
the state populations. The Fermi level can be expected to lie
either within the trapping density or-else on 1ts lower edge
from the evidence of high-power-law currents in the dark at
very low applied voltages (figure 5.2). Visible-spectrum
illumination, which matches roughly the band gap of CdS
(2.4ev) creates hole-electron pairs in the material. Almost
all the holes are trapped immediately* by primary centers with
which the free holes are in thermal equilibrium. Electrons

in the conduction band come to a thermal equilibrium with the
shallow traps. Thus, when illuminated, the crystal may be
described by two quasi-Fermi levels situated in the vicinity
of the conduction and valence bands. The description of the
use of the two Fermi levels and the requirements for their
validity are described extensively by Bube [1, Chap. 3].
According to Bube, the Fermi level for electrons W is

n

defined by the equation W, = W, - len(Nc/n), with a similar

C

relationship holding for the Fermi level for holes Wfp. Since,

experimentally, the free holes are insignificant under lighted

or dark conditions, we shall not be interested in WFp and,

¥ Speculation as to why this i1s true has not led to conclusive

results as yet. Experimentally, no-one has reported accurate measure-
ments of free-hole lifetimes in CdS to date, although Rose [30] specu-
lates on an estimated = of approximately 10-10 seconds. One
reason for this result, Suggested by some researchers, is that the
“valence band in CdS is at such a low energy that an atomistic model,
in which all electrons are effectively trapped, is more applicable
than the band model for the valence states in the material.
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therefore, shall refer to an simply as WF in further

discussion. In figure 5.3, Wﬁn = WF is sketched under both
dark and illuminated conditions and labelled WFD and WﬁL
for these respective situations. These symbols will be used

to facilitate the discussion of the effects of illumination.

When the crystal 1s illuminated, the relative populations
of the primary centers and of the conduction band are not in thermal
egquilibrium. Recombination traffic flowing from the conduction
band through the primary centers balances the effective flow
of electrons from these centers due to the illumination. The
population of the primary centers is thus a function of the
recombination parameters describing them, and of the intensity

and frequency of the illumination.

The net effect of the light, therefore, 1s toc raise the
Fermi level in the crystal and to fill the traps existing
between the old and new Fermi levels with electrons that had
been in the primary centers (figure 5.3v). The crystal is still
electrically neutral, however, since the net charge has not
been increased, but only redistributed energetically. It is,
of course, still subject to space-charge limitations for voltage-
injected electrons. Since the traps existing between the
dark and the illuminated Fermi level are now filled, one would
suspect that the voltage necessary to inject sufficient charge
for trap-filling would decrease. This effect is noted in figure
5.2, where the variation indicates that the phenomenon is non-

A linear with illumination.
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A complete explanation of the shortening of the observed
decay times demands a rather lengthy e#position of the role of
the various band states as a function of the separation of the
hole and electron Fermi levels through photo-excitation. This
treatment is given in its entirety by Rose [31], together with
much experimental verification. The essential points in the
argument may be recounted as follows. The long decay time
for photoconductivity results from the fact that an equilibrium
condition is arrived at only after all the electrons are in the
states prescribed by the Fermi-Dirac distribution function. The
transition probabilities are sucﬁ'that essentially all electrons
captured by states above the Fermi level must return to the
conduction band before going to any other state. An individual
electron's journey through the various gap states is terminated
effectively only when it is captured by states below a
demarcation level. In most practical instances this demarcation
level is very close to the steady-state Fermi level. Hence, &
given electron may be trapped and freed many times before the
conduction-band population finally assumes an equilibrium
condition. The time to reach an equilibrium will thus be a
large factor greater than the lifetime of a free electron,
which measures only the time spent in the conduction band. The
net result of a complete analysis of this process is that the
actual decay time is greater than the free-carrier lifetime
roughly by the ratio of filled, shallow traps (i.e. traps above

the steady-state Fermi level) to free electrons. In the case
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of diode 13-4, current measurements show that nt/n changes by
3 ,

a factor of about 10' between lighted and darkened conditions,

which accounts for the response time variation from tens of

hours to tens of seconds.

The ohmic behavior in the illuminated condition after
the continuous density of trapping states is filled results
from the relatively large population of electrons in the
conduction band. From the dark characteristic we know that
the Ferml level moves from the traps distributed continuously
in energy to a region of the gap that is devoid of traps.
Above the volid region there is still a higher-energy trap
density, the population for which is described by Maxwell-
Boltzman statistics. This is the case discussed in Section
1.3 in which we found that space-charge~limited currents
supersede ohmic currents only provided the voltage is greater
then the value V__ = (BeELZ)/(99KeO), as given by equation
1.20. The transition to space-charge-limited flow at VOS
oceurs, roughly, when the anode free-charge density has been
increased by a factor of two due to charge injection. As we
see, vos is a direct function of T, the no-injection conduction
band density. This density is increased by the illumination to
such an extent that the crystal is in én_ohmic condition after
the continuous distribution of traps is filled, and hence
proportional, rather than square-law, currents are observed.

Square-law currents would be cbserved under illuminated conditions,
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as they are in the dark, if the voltage were increased above the
intersection of the dark characteristic and the chmic curves in

figure 5.2.

5.7. Quantitative Analysis of the Observations on Diode 13-4

In this section the theory developed in Section 5.6 and
in Chapter 1 will be used to analyze quantitatively the properties

of diode 13-4,

First, we have from equation 1.60 and the text of Section
1.6 the fact that the volt-smpere characteristic for the case
where the Ferml level is in an energy region of exponentlally
increasing traps is a proportionality between J and- Vm.
The exponent m equals (TC/T) + 1, where Tc is a characteristic
temperature for the trap density, defined through equation 1.50.
From the observed exponent for V of 4.7, we deduce that
Tc = ll,lOOOK which is larger than T - a condition making valid

most of the equations of Section 1.6.2.

From figure 5.2 we can deduce the depth of WTU’ the upper
limit of the continuous trap density. To do this we note that
Wf passes WTU when the dark characteristic changes from L4.7-
law behavior to square-law behavior. From the current observed
at this point on figure 5.2, we calculate n, from n, =
(27L)/(3euv), a form derived from the insertion of equation

1.16 into equation 1.3. Having n,, we can solve equation 1l.2h

for (Wb - Wﬁ) to calculate the trap depth from (Wb - WF) = kTln
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(Nc/n), since now Wflz WTU as we have noted. This procedure

yields (WC - WTU) = 0.567ev.

Using substantially the same method with the indicated
conduction-band density at the lowest voltage studied (before
any appreciable injection could take place), we deduce the
dark Fermi level to be approximately 0.830ev below the

conduction band for diode 13-k.

The number of traps filled by excitation from primary
centers is calculable by noting that the apparent trap-filling
voltage decreases from U4.7 volts to 1.4 volts under low-
level illumination. Using equation 1.22 (VTFL = eLth/ZKeO),
we see that this 3.3 volt difference implies that the traps
Filled by light equal 2.09 x 107 3em™3. As the level of
illumination is increased, the efficiency of trap-filling by
this means lessens, as evidenced by the much decreased rate of

change of V with light. At a factor of ten times the low-

TFL
level illuminetion, the apparent number of traps filled by the

light is 2.15 x lO13 per cm3.

The difference in the Fermi levels under light and dark
conditions is given directly by kT +times the ratio of

illuminated diode current to dark diode current, since:

I . i IS
- 1luminated
illuminated _ 1 I = exp[(W?L = WfD)/RT]

Idark ndark
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where W?L and WFD represent the il}uminated and dark
Fermi-level energles, respectively. This current ratio is

a factor of 1oh, indicating that (WFL - WFD) equals 0.234ev.
Since we already have deduced the upper level of the trap
density to be 0.56T7ev below the con&uction band and the

"dark Fermi level to be 0.830ev below the band, the action

of the light evidently puts the Fermi level within 0.019ev

(or about XT) of the end of the continuous trap density.

Contained in this span of energy are about 0.9 x 1O13

3

states per cm~, calculable from the necessary voltage-injected

charge to fill the traps.

The dark-characteristic square law at higher voltages
with a © value of 1.6 x 10-5 calculated in Section 5.5
is indicative of a shallow trepping level as described in
Section 1.3. The depth is unknown except for limits which
could be set, as were done in the case of dicde 13-5 in
Section 5.4. Since this procedure was demonstrated in that
case 1t will not be illustrated here. The deductions as to
the band-gap states made in this section are collected for

clarity and reference in figure 5.k4.

5.8. Summary of Trapping Properties Derived from Space-Charge-
Timited Current Observations

The complete analyses of the volt-ampere behavior of diodes
13-5 and 13-4 in Sections 5.4 and 5.7 respectively, both give

~ evidence for a density of shallow trapping states. The 6
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Calculated electronic trapping levels and densities for
diode 13-L.
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implied for the states, however, differs by a factor of 100,
being smaller in the chlorine-copper déped sample (diode 13-4).
In the case of the pure sample (diode 13-5) fair correspondence
was obtained with two other crystals so that there is reasonable
certainty as to the value for 6. There is certainly a large
margin for error in the determination of ©, considering the
uncertainty in such quantities as length of sample and electron
mobility, but a factor of 100 is felt to be indicative of a

physical difference in the level detected.

What one would like to do, of course, is to determine the
physical origin of this trapping level (or "of these levels,"
dependent on the configuration). To do this demands a great
deai of research with a variety of differing samples, only a
small amount of which has yet been done. Bube [1, p. 299]
gives an account of the meager information thus far available
in this field. The shallow levels, appearing consistently in
the pure and chlorine-copper doped samples, point to some
imperfection inherent in the CAdS lattice structure. We have
5cm-3

concluded that there are more than lOl shallow traps

in the case of the pure sample, but this is still only one in
le lattice sites which is not a very large density. A lattice-
imperfection source for the trapping levels would make the
observed variation in @ seem very reasonable, since the traps

would be dependent on the techniques and procedures observed in

crystal growing.
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Diode failure, due to unknown causes as described in
Section 5.5, did not permit increasing the voltage to the
point where the trapping levels would be traversed by the
Fermi level. This is a necessary condition for gaining infor-
mation on the density and configuratioh of states from the
observation of space-charge-limited currents. Further analysis
of these particular levels would better proceed through study
of such effects as photoconductive dependence on light intensity,
as described in [1T7]. A search of the literature has revealed
little quantitative data on the shallow levels, although their
detection is mentioned by Wright [4] and by Ruppel and Smith [29].
Figure 1 in the latter reference, which is reproduced as figure
5.5 in this work, provides some interesting information on
shallow levels in CdS but was not analyzed completely by the
authors. Sinece it has a bearing on the results presented here,
we shall calculate the crystal properties indicated. From
figure 5.5, using the dimensions given inthe text of [29] and
in the caption for the curve, we calculate a 6 due to the
shallow traps of approximately 10_5, which matches the value
obteined on diode 13-4. As we see in figure 5.5, Ruppel and Smith
were able to increase the voltage sufficiently to bring the Fermi

level in the range of the shallow traps.* The behavior at these

% Trap-filling is more likely to precede breakdown in & thin sample
than in a thicker one. Using equation 1.16 and equation 1.22, we
may express the anode (maximum) field at the trap-filling voltage
as: E, = -3V/2L = 3eNyL/2Key. Hence, the maximm field at the
trap-filling voltage increases with the length of the sample for a
given trap density. Ruppel and Smith's crystal was about L0%
‘shorter than the crystals studied here, which may account for

their results.
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D-C characteristic under forward bias of a CdS analogue diode
with indium cathode and tellurium anode. The dashed line above

the characteristic represents the trap-free space-charge-
limited behavior. The dotted line on the data points corresponds

to equation 1.39 (J = @V with m = 2 + log 6,/6,), applied
to this diode (contact area = lmmz, thickness = 10p).

+s+.. reprinted, by permission, from Ruppel and Smith [12]
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voltages indicates passage of the Fermi level through a discrete
trapping level withreven shallower traps above it. This case is
the one considered in detail in Section 1l.5. In figure 5.5, @
changes from ZLO'-5 to ZLO-2 at either side of the trap-filling
region. If, from the analysis of Section 1.k, Viwix (the
trap-filling voltage for the lower level) is taken to occur
roughly at the point of departure from the higher voltage square

law, then the evident value for VTF in figure 5.5 is about

L1
2.5 volts. This would imply, again from the arguments of
Section 1.4, that there should begin to be significant
deviation from the low-voltage square law at V = 0.3 volis.

The data of figure 5.5 is consistent with this prediction. The
dotted line connecting the asymptotes at these two points
represents the approximate trap-filling law as given in equation
1.39. This equaticn is seen to underestimate the maximum
steepness of the line drawn through actual data points. Since
the approximate law specifies a constant power for voltage over
the trap-filling region, and we know that the power will
increase as trap filling proceeds, this situation is expected.

The trap-filling behavior indicates a discrete trap

3em™3 veing filled. Using the

density of sbout 2 x 10T
analysis of Section 1.5 and equation 1.24 in the same manner
as in previous calculations for a single level, we calculate
that the trap depth is 0.570ev. Again no further information

is availsble about the traps resulting in © = 10°% at the upper
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end of the curve, since they are not filled in the characteristic

shown.

The trap depth of 0.57Cev Jjust deduced fails by a
small margin to be within the limit ((wc - WT) < 0.56ev)
derived in Section 5.4 for the shallow trapping-states in diode
13-5. In Chapter 6, however, we shall be able to make an even
more limiting inequality which will definitely exclude the same
source being operative for the traps observed in this work and
those in reference 29. The shallow traps we have observed are
consistent in depth with traps deduced by Bube to be present
in pure CdS crystals through study of the effect of temperature
on photoconductivity [8]. Bube finds states in pure CdS at
roughly 0.17 and 0.35ev Dbelow the band, which are present

13 16

in concentrations from 10 to 10 cm-3, dependent on the

crystal. In Section 5.k, N, was shown to be greater than

5n~3, mie density, coupled with the 0.56ev limit

2 x 10
for the trap depth of the shallow levels, is cconsistent with the

above deductions from reference 8.

gmith and Rose give evidence for a continuous density of
traps at a range in energy [18] which matches closely the energy
range of the energetically-continuous trapping levels, deduced
from the data of diode 13-4. In reference 18,the continuous
level was Iinterpreted to be of approximately equal density
extending from 0.55 to 0.80ev below the conduction band,

almost exactly the same range as deduced in Section 5.7 (the
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estimate there was 0.567 to 0.8ev). The crystals studied
by Smith and Rose wefe also chlorine-copper doped, and of the
same type as used in the experiments described here. From the
marked linearity for the log-log plot of figure 5.2, the deduced
exponential density variation with enérgy for the traps,in
contrast to the continuous density proposed in [18],is falrly
certain. The actual numbers do not imply as rapld a dependence
as "exponential" might conjure up. The size of kTC is
approximately O.lev so that over the 0.263ev range of
trapping-state energies, the density variation is about 10 to
1. Using crystals of the type of diode 13-4 on another occasion,
Smith [17] detected deep traps but interpreted them in terms of
a discrete density situated about 0.8ev below the conduction
band. Comparing our results with these two references to the
deep traps we find that the magnitude of the total trap density

configuration is 3 x lOl?’cm-3 as deduced in this work, 5 x lO13

c:m-3 in reference 18 and 3 x lolhcm-3 in reference 17. In

reference lB,a check on the value of Nt was made through
photoconductive response time studies, a method felt by the
author (Rose) to be less accurate than the analysis of space-

charge-limited current behavior. The photoconductive study

implied an N, of 0.5 x 10 3em™3.

Since these energetically-distributed, deep levels are
not detected in the undoped ecrystals, 1t is certseinly reasonable

to ascribe them to the added copper. The chlorine 1s not likely
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to be responsible, since 1t i1s known to create very shallow
states [16]. To check this, it would be informative to know
the copper density independently. This would add to one's
confidence in identifying the levels, but this information

was not avallable.

5.9. Conclusions

As predicted in the introduction to this chapter, an
extremely varied current-voltage behavior can be interpreted
in terms of space-charge-limited current flow in a crystal
with traps. OCbservations of such flow are a sensitive,
experimental method for the determination of various crystal
properties. Not only trapping densities, but also trap depths
can be deduced in this fashion, provided sufficient charge
injection takes place to move the Fermi level into the energy
range in which the traps exist. The effects of the variation of
illumination as well as of voltage have been shown to be
consistent with the physical picture postulated for the over-all
interior trap density. Correspondence with other methods of
trap detection and identification, such as photoconductive
studies, has been shown to be good. It has also been seen
that significant trapping~state populations exist even in
crystals assumed to be pure. Hence, currents of the magnitude
given by equation 5.1 are not to be expected, unless crystals
are made thin enough to reach a trap-filling voltage before a

breakdown effect.
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Complete identification of the source of the traps
detected will demand a large body of experimental work with
crystals of known imperfection types and densities. At present,
only a few trapping levels in CdS, orlin fact, in any other
materials, are identified with reasonable certainty. For
some trapping levels, such as those distributed continuously
in energy (detected in diode 13-4), even the nature of the
source 1s speculative. As Bube points out [1, p. 302], one
could, for example, take the viewpoint that the energetically-
distributed traps stem from small regions of short-range
order which are interspersed throughout the crystal., The
"conduction band" for these regions may act as trapping
centers for the free electrons of the rest of the crystal,
provided that these free electrons exist at higher energies.
It is also possible, however, to explain these levels as an
energetically near-continuum of states for a discrete trapping

center. Neither alternative is yet excluded.

Measurements of the space-charge-~limited current
characteristics permit only the deduction of the static
properties of traps. To determine the kineltic properties of
traps, other methods, such as will be used in Chapter 6, are

necessarye.
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CHAPTER VI

Capacitance Measurements on the Diodes

The variation of space-charge-limited currents inves-
tigated in Chapter 5 was interpreted in terms of the influence
of trapping centers in the crystal. The space-charge-limited
currents were long term equilibrium values which gave no
information on the kinetics of trap filling and trap emptying.
In this chapter, some knowledge of these properties will be
sought. In addition, thé measurements reported in this chapter
will reinforce confidence in the model for crystal behavior we
have proposed in Chapters 1 and 2 by providing direct evidence
of trapping states distributed uniformly in space. Deductions
of the trap concentraticns and configurations in the analysis
of space-charge-limited currents of Chapter 5 were all by
inference from the comparison of observed behavior with the
theory of Chapter 1. In this chapter, measurements will be
reported on the terminal capacitance exhibited by the diodes.
Since capaciltance is directly related to stored charge, these
measurements come closer to being a direct detection of the

actual trapped charge than did those of the last chapter.

The capacitance measurements reported here will be
found to be in close agreement with the analysis of Chapter 2.
The deductions made from these measurements thus represent a

new means of obtaining information about trapping kinetics.
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6.1. Technique of Making Measurements

Measurements were made of the capacitance of the diodes
both under controlled illumination and in the dark, at
frequencies ranging from 16kc/s to 5mc/s. These limits
were set by the pass band of the radio-frequency bridge
available. Positive, negative and zero d-c bias conditions were
used on the diodes to test the variation in capacitance produced
by voltage. Capacitance values were read directly from a Wayne~
Kerr radio-frequency bridge circuit, whose balancing output was
connected to a fairly elaborate null-detection apparatus. A
schematic diagram of the equipment is shown in figures 6.la and

6.1b.

Below SOkc/s, the bridge null-detector output was fed
into an amplifier which was connected to a Donner wave-analyzer
tuned to the exciting frequency. The Donner analyzer consists
of a very narrow (ZOcps) band pass filter followed by a high
gain amplifier, rectifier and meter. This allows virtual
exclusion of all noise, except that in the narrow range of
frequencies surrounding the spplied signal, and permits a
very sensitive null detection. Above 50ke/s a superheterodyne
radio receiver was used as the null detector. A convenient way
to establish the null with the radio receiver was to display
the modulated intermediate frequency from the receiver on an
oscilloscope, and to balance the impedance bridge to a zeroc in
the modulation. The signal from the bridge was coupled into the

- receiver through the external antenna jack on the superheterodyne

receiver.
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These procedures permitted an accurate measurement of
capacitance with excitation voltages at the unknown as low as
twenty millivolts (peak to peak). Impressed signals less
than this did not produce a clear null indication. On the
basis of measurements of known capacitance, it is felt that
the precision of the measurements is about plus or minus 0.2
picofarads at the higher frequencies, and slightly better

than this in the lower ranges of frequency.

6.2. Effects of Trap Filling on Capacitance: Qualitative
Treatment

Date on the measured capacitance versus applied frequency
for three different thin plateiet diodes under various conditions
of illumination are presented in figures 6.2 and 6.3. A complete
discussion of the curves drawn to fit the data of these figures
will be given in Section 6.4%. It is proposed here that the
variation noted on these curves is indicative of the nature of
the trapping states in the crystals. A complete, quantitative,
theoretical treatment of the effects of trapping on capacitance
has been given in Chapter 2. In this section we shall attempt
to clarify the concepts of that chapter, and to develop a physical
picture. The discussion to be given will simplify the actual
picture by neglecting consideration of the free charge. The
magnitude of the free-charge density will be so small, as will
be shown experimentally, that only the trapped-charge density

will be significant. In succeeding sections of this chapter,
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we shall analyze the data presented in figures 6.2 and 6.3
and present other results from an experimental investigation

of the effects of trapping on measured capacitance.

The terminal capacitance measured by a bridge circult
may conveniently be divided into two parts corresponding to
the charge stored internal to the crystal and that stored at
its surfaces. If one dealt with perfect crystals at very low
voltages, the entlire capacitance would be the latter: that 1s,
all charge storage would be at the crystal surfaces. The
presence of trapping states in the crystal, however, allows
there to be significant charge storage interior to the crystal.
This fact was graphically demonstrated by Smith [18] who
detected the trapped charge itself by dropping a CdS crystal
that had been carrying currents onto the pan of a gold leaf
electrometer. Smith and Rose also demonstrated a kinetic
property of the trapped charge, by showing that space-charge-
limited currents near to the theoretical trap-free crystal
value could be attained by pulsing the crystal with current

so quickly that the traps remained essentially empty [10].

The charge stored interior to the crystal will also make
itself evident by increasing the capacitance measured on an
a-c bridge. 8o long as there is time for the trap population
to follow the changing applied signal this interior charge
reservolr will be effective in increasing the capacitance. As

the signal frequency is increased, however, one must reckon
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with the time it taskes to fill or to empty the traps, and thus
to create or to annihilate the electrical flux lines connecting
the interior charge with an electrode. As this time beccmes
comparable with the cycle time of the applied voltage, the
traps begin to become insensitive to the voltage - either
remaining terminals for flux lines emanating from positive
charge held fixed at the metallic electrodes, or else remaining
empty.* Thus, at high frequencies, when the traps have

assumed & stable population by the process outlined above, &
further increase in measuring frequency will result in a
constant measured capacitance. This capacitance should be that
due to charge storage on the electrodes, with the crystal
acting only as a dielectric seéarator for the charge. If the
crystal is capable of injecting electrons from only one contact,
the capacitance measured under reverse d-c bias (bias Which
inhibits injection) should also be that due to the electrodes
alone, and hence should match the high frequency value measured

under injecting conditions.

6.3. Experimental Observations of Trapping Capacitance
In order to test the validity of our assumption that
the added capacitance at lower frequencies is due to trapped

charge, a number of tests were performed.

¥ Lampert and Rose analyzed the transient behavior of ohmic con-
tacts to insulating crystals by considering, as we do here, the
change in flux linkages between the trapped charge and the charge
on electrodes [32].
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First, the dependence of capacitance on d-c bias was
investigated. Noting from Chapter 4 that charge injection
in the dark is impossible when a negative bias is applied to the
gold contact, we can expect that any increase in capacitance
due to trap filling will disappear under reverse bias. As in
Chapter 5, we denote this non-injecting d-c polarity as reverse
bias, to be distinguished from the charge-injecting case, or
forward bias. The variation of capacitance with d-c bias voltage
under forward-bias conditions might take on a number of forms
dependent on the inter-relationships between trapping kinetics
and the Fermi level inside the crystal. The expected behavior
has been discussed briefly in Sgction 2.4, and is sketched in
figure 2.5.

Figure 2.5 should be compared with figure 6.4 which
represents actual data taken on diode 13-4 at a single frequency
for various values of d-c blas. This figure corroborates a
number of the features predicted in the preceding section and
in Chapter 2. First, as expected, the measured capacitance is
constant under reverse d-c bias and lower in value than under
forward bias. Second, the capacitance rises along a curving
path for low forward bilases, and then assumes a roughly constant
value above 6 volts. The constant value indicates trapping by
a level having a population density in a ratio to the free-charge
density that is independent of voltage (Section 2.4). As we
saw in Chapter 5, this constant-ratio condition demands that
-the crystal Fermi level be situated in a region devoid of traps

and enough below the trapping energy that Maxwell-Boltzman
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statistics are a good approximation for the population density.
From the space-charge-limited characteristic for diode 13-4
discussed in Section 5,8, we concluded that atrabout 6 volts

of forward bias the Fermi level moved from the midst of trapping
levels, detected in that crystal as béing distributed in energy,
to an energy region that was essentially devoid of traps. Thus,
the two observations of the behavior of dicde 13-4 are in agree-
ment. In figure 6.4, the region close to the origin of the
absclssa is sketched as a dotted line in agreement with the
‘prediction of figure 2.5. Experimental data was omitted here
because the electrolytic capacitor used for the d-c bilas
measurements (figure 6.1) needed about a half volt of reverse

bias for accurate operation of the bias circuit.

A second check on our model of trapping capacitance
variation arises from the following consideration. If the
decrease in capacitance with frequency is due to the ineffective-
ness of traps because of kinetic limitations, as we have supposed,
then the high-~frequency capacitance should assume a constant
value after all of the traps have ceased to be responsive to the
applied a-c signal. This high frequency capacitance value
should, therefore, be just the capacitance due to charge storage
on the electrodes. In the preceding paragraph, we have reasoned
that the capacitance under reverse d-c bias conditions should also
assume the value characteristic of the crystal electrodes. Such

a correspondence is found, approximately, between the high
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frequency dark value for diode 13-4 in figure 6.2, and the
back-biased dark value given for the same diode in figure 6.k4.
These values actually differ by about O.5 picofarad: however,
it is felt that this difference results from an insufficient
time allotted for complete equilibrium in the dark in the data
of figure 6.4. The capacitance values, like the space-charge-
limited current values of Chapter 5, are light sensitive and
equilibrium takes long intervals of time. To test this con-
clusion further, the data plotted in figure 6.5 were taken.
These measurements not only affirmed the conclusion we have
presented for capacitance values at illumination levels matching
those of the data in figure 6.2, but also gave evidence of
another phenomenon. We shall discuss this more fully in
Section 6.6. At this time, we merely point out that the
rising capacitance values, noted in figure 6.5 at low reverse
biases under illuminated conditions, suggest that charge
injection apparently is taking place in this region despilte

the bias condition.

A third test of the hypothesis, that interior charge
storage in volume-distributed traps is responsible for the
changes in capacitance observed, 1s contained within figures
6.2 and 6.3. We note there that the variation from maximum
to minimum of capacitance at a gilven illumination is always
less than a factor of three. For low level illumination on
diode 13-4, the ratio is close to a factor of three, but not

quite that great. This observation checks with the prediction

of Section 2.1, based upon the maximum capacitance one can
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observe in a distributed charge system, having a maximuml
density near the injecting electrode, when 1t is coupled

to a planar sheet of cparge. In discussing the frequency
dependence in Section 6.4, we shall have more to say about the
actual ratios observed between maximum and minimum capacitance.
We shall alsc comment more generally, at that time, about the

effect of illumination on capacitance.

6.4, Quantitative Analysis of the Capacitance Measurements

In this section we shall mske guantitative deductions
from the data which have been discussed briefly in Section
6.3. Certain physical parameters that are pertinent to
trapping kiﬁetics wlll be deteimined, &as well as the numerical
densities of the traps taking part in the capacitance

measurements.

The first measurements we shall consider are those
presented in figure 6.2 and figure 6.3, which show the
frequency variation of the measured capacitance. The theo-
retical analysis of Chapter 2 ﬁredicted a variation of Ct

with frequency of the form: C, = Cé/(l + w?/vez), as glven

t
in equation 2.15, and plotted in figure 2.3. The frequency
dependence exhibited by figure 2.3 appears to be a good repre-
sentation of the experimental data given in figure 6.2, and of
the intense—illﬁmination data given in figure 6.3.  The.

theoretical curve predicts that the frequency variation in
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Ct will be completed in roughly two decades range in frequency,
céntered approximately at the probability-of-escape freqpéncy

Ve for the influential trapping levels. This 1s seen to

match the approximate rénge of variation in the experimental

data. To check further on the over-all correspondenée of the data
to equation 2.15, the theoretical curve of figure 2.3 was fitted to
the experimental points of figure 6.2 and 6.3 in the manner ﬁe shall
now describe. The maximum variation noted in measured capacitance
wes multiplied by the ordinates in figure 2.3, and the resultant
values were plotted to a logarithmic scale in fregquency, which
matched physically the scale of the data to be fitted. This plot
was then positioned on the actual measﬁred points to obtain the best
fit for the data taken. The solid lines on figures 6.2 and 6.3
were drawn in this fashion. The curve fitting made it possible to
obtain a representative value for Ve simply through notice of the
posifion of thls frequency on the calculated curve, relative to

the measured data. A dilscussion of the observed values for Vs 88

noted on the experimental data will be given in Section 6.5.

The curves, drawn as we have described, are seen to be a
very good fit to the experimental points. Since no account was
taken of transit-time effects (Section 2.3) in drawing them,
charge transport from electrodés to traps apparently-does not
limit until after kinetic limitations have already nullified
the effect of the traps on capacitance. Curve IV in figure 6.3,
representing the data taken on diode 13-5, does not appear to

vary as described in egquation 2.15 and could, perhaps, be
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reflecting a transit-time limitation in its behavior. Unfortun-
ately, only the data presented in figure 6.3 is available for
this diode, since it was lnadvertently destroyed before

further measurements could be made.

No variation for the capacitance of diode 13-7 in the
dark was detectable, which would indicate an insufficiency of
injected, trapped charge in the dark for detection by the
apparatus. This experimental observation suggests that we
calculate the minimum trapped-charge density that was detectable
by the measuring technique used. As stated in Section 6.1, the
lowest practical excitation voltage across the diodes was 10mv
peak. Assuming a threshold for detection of 0.2pf, which is
our expected error in the capacitance measurements, we
calculate & corresponding detectable trapped charge of 2 x lO-15
coulombs. This is only about 1.25 x lOu electrons. The
volume of the thin platelet crystals was in the range of

5 x 10'6cm3. Hence, the trapped-charge density that could be

g

detected is 2.5 x 10 electrons per cm3 under the best of
circumstances. Actually a factor of 10 times +this amount
would be more nearly the charge density necessary for an
unequivocal meéasurement. Since only the electrode capacitance
was measured in the dark, the injected charge density that
could be trapped in diode 13-T was evidently less than about
lOlOper cm3 in the frequency range studied. As we see in

figure 6.2, the greatest amount of trapped charge, which was

detected, contributed 25pf to the over-all capacltance. For
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the signal intensity used in these measurements, (Vﬁ = 1l2mv)

eak
this capacitance corresponds to 2.4 x lOll electrons per cm3.
In the introductory preface to Chapter 2, it was stated
that the free-electron density would be essentially negligible
in its effect on measured capacitance when compared to the
trapped-charge density in actual crystals. To give experimental
evidence for this fact, we note here that the resistance of the
diocdes, as wéll as their capacitance, was measured as a function
of frequency by balancing the bridge circuit. The lowest
value for the resistance so measured was in the range of 100
kilohms. As an order-of-magnitude calculation of the free-
charge density, we may use this figure in the conductivity

D S

formula, ¢ = eun = L/AR, to obtain n = 2 x 107cm” °. From our
discussion asbove, such a denslity 1s.on the verge of detectability
and is therefore insignificant. Also, the lowest resistance
values were always consonant with the highest frequency, as

might be expected, since this condition matches the minimum
depopulation of the conduction band by trapping. As seen from
the data, the capaciténce in this range of frequency always
approached Ce’ the value stemming only from charge storage on

the electrodes. This behavior is again consistent with the

indetectability of free charge by capacitance measurements.

The electrode capacitance Ce is seen to have appre-
ciable sensitivity to illumination for diode 13-4, indicating a

sizable photodielectric effect. This capacitance, which is
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evident either under reverse bias (figure 6.5), or at high
frequencies (figure 6.2), changes roﬁghly by a factor of 3
in the range of illumination studied. Bube [1, page 420]
glves a summary of the essentially meager experimental work
done to date in stﬁdying this effect; and also comments on

the theories advanced to explain it. The photodielectric
effect was not a subject of intensive study in the experiments
done here, because of a relatively poor capability for quanti-
tative optical studies. Experimentel apparatus for gquantitative
work should include, at minimum, a light source that is well
calibrated both spectrally and in intensity. The light
intensity for the source used was only very roughly calibrated

and 1ts power spectrum was relatively broad.

A few qualitative statements can, nonetheless, be made,
based on the measqrements that are available. First, there is
at least order-of-magnitude agreement with the factor of
three change in relative permittivity, noted in this work,
and with some data presented by Bube [1] based on the work of
Garlick. Garlick studied the temperature variation of the
permittivity of ZnS powders and noted a maximum change with
temperature of roughly three times the nominal low temperature
value. OFf course, for this to have relevance, 1t must be
assumed that the same sources are operative for both the
thermal and optical variations in K. Somewhat suprisingly,

the apparent change in permittivity under illumination for
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diode 13-7 (figure 6.3) is very slight. To determine whether
this was, perhaps, due to too low a light intensity, a differ-
ent light source (150 watt bulb) was used to illuminate diode
13-7. This did result in an increased Ce’ which indicates
that this diode, too, showed a photodielectric effect under
sufficient illumination. The conjecture, attributed to
Garlick by Bube, that the increased average dipole moment
under illumination of electrons trapped at higher energies is
responsible for the photodielectric effect, appears to fit

our data. We have already spoken in Chapter 5 of the way in
which the average energy of the trapped electrons 1s increased
by illumination, which ties in‘with this last reasoning. The
electrons elevated from the primary centers to the deep traps
(0.57 to 0.83ev below wc), deduced in Chapter 5 to be
present in diode 13-4, may be responsible for the large photo-
dielectric effect in this sample. Since evidence for these
deep levels was not found in diode 13-7, the relatively slight
photodielectric effect in this unit is consistent with this
supposition. More research into this effect is certainly

desirable.

Returning now to the discussion of the fit of the
measured capacitance to the theory of Chapter 2, we take
notice of the observed values for the low frequency trapping
capacitance. From the theory of Section 2.1, for a pure a-c

signal applied, the maximm value for C/! is C_ (C% = C,
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at low frequencies for a single injecting electrode) and ECe
for Cg (Cg = Ct at low frequencies for two injecting
electrodes). The electrode capacitance Ce 1s, as has been

discussed, a different value at each different illumination.

For diode 13-4 in the dark (curve III in figure 6.2), c{
is roughly (1/2)Ce. The evidence from figure 6.5 is that the
gold contact is not injecting in this case so that the maxi-
mum trapping capacitance is Ctm = Ce. The reason for C% < Ctm
could be either a non-uniform charge density due to space-charge-
limited charge injection (Section 2.4) or an observed injection
efficiency 1 < Ny (Section 2.2.2). Under moderate illumination
(Curve II of figure 6.2), C{ is approximately 2C_, which
indicates two injecting contacts, as corrocborated by the data of
figure 6.5. Under heavy illumination (Curve I of figure 6.2)

C! approximately equals (3/2)Ce. This reduction of C} from

t
c could be the result of an 1 less than n, due, perhaps,

tm

10 a diminished voltage injection efficiency for free charge.
For the heavy illumination case, in order to achieve a Ct

equal to 2Ce, as theoretically possible, both contacts would
have to supply a trapped-charge density of 2.5 x lOll' electrons
cm"3. It could well be that the apparent photoemission from the
gold fails to provide this density and thus limits the observed

C It is also possible that non-uniformity in interior charge

t.
density results from the heavy illumination on one side of the

crystal, and that this acts to limit the capacitance. A space-
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charge-limited effect seems implausible to explain Cg < Ctm

for the heavy illumination case after the evidence of curve II.

For diode 13-7, Cg is approximately equal to Ce under
heavy illumination (curve I of figure 6.3), and is less than

Ce in all other cases. This indicates a single injecting
contact with 17 Dbeing dependent on illumination. Data under
reverse~blas conditions for this diode, similar to figure 6.5,
did not show any rise in capacitance at low reverse d-c biases
until higher illumination values than those given‘in figure

6.3. Thus, the two observations are again consistent, indicating

a blocking contact for the gold-film electrode on diode 13-T7 in

the illumination range studied.

6.5. Interpretation of the Deduced Values for the Probability-of-
Escape Frequency

As described in Section 6.4, in fitting equation 2.15 to
the measured capacitance data, one can determine the value of
the probability-of-escape frequency L For a single injecting
contact, Yo will be equal to the applied radial frequency
which halves the low frequency value of Ct' We have shown,
in Section 2.2.2, that under conditions of charge injection

from both contacts, the frequency variation of C is roughly

t
centered about ve/Z (equation 2.18). This occurs in the
double-injection case with no bias, because the trapped-charge

density must respond effectively at twice the rate of change of

~ the applied voltage. Thus, curves I and II in figure 6.2,
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which (from the evidence discussed in Section 6.4) represent
charge injection from both contacts, show a frequency drop
characteristic of ve/z while those of curve III on figure

6.2 and curves I and II of fiéure 6.3 are characteristic of

Ve itself. The frequencies correspdnding elther to Ve o©T
to ve/2 are marked on each curve of figures 6.2 and 6.3 for
which the detected behavior made such a deduction possible.

The actual values for v, are given by the radian frequencies
which correspond to 2x times the frequencies noted on figures

6.2 and 6.3. This follows from the analysis of Chapter 2.

We shall first consider the value of Ve noted in
figure 6.3 for diode 13-7. The space-charge-limited current data
of Chapter 5 indicated trapping in this diode by a discrete
level or by levels sufficiently high in energy to be subject
to Maxwell-Boltzman statistics.* Hence, if we assume that the
thermal equilibrium value for Ve applies 1n the capacitance
experiments, we may use equation 2.10 to calculate the product

Sy exP[‘(Wb - wT)/kT] from the observed value of Ve Thus,

8¢ exp[—(Wb - WT)/kT] = ve/vNé (6.1)

The value of v_ observed for diode 13-7 is (from figure 6.3)

* In Chapter 5, the discussion of crystals whose behavior indi-
cated only a discrete-energy trapping level was framed in terms
of the properties of diode 13-5. Since this unit was inadvert-
ently destroyed, continued research on diode of this trapping
character is reported for diode 13-T.
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> _ 1.13 x 1065'1. Insertion of this result

20

Ve = 2n x 1.8 x 10

in equation 6.1 ylelds: v_/vN_ = 8.2 x 107 at 300%

(v = lO7cm/s at 300%K). In order to proceed to a determination
of the capture cross-section St’ we must obtain a value for

the depth of the level. As we have ndted in Chapter 5, it

was not possible to obtain the trap depth from the space-charge-
limited behavior. However, a maximum value for the trap depth
was calculated in Section 5.4. Using the result of that
calculation ((Wb - WT) < 0.56ev) in equation 6.1, we

£ = 6.3 x lO-lzcmz. Such & cross-section

calculate a value 8
is exceedingly large: 1in fact, as Rose has pointed out [30],
the largest value one could logically expect for St for a

56~ 3P,

singly-charged trapping center at room temperature is
A cross-section of this dimension results from consideration of
the distance that the Coulomb field of a charge-capturing center
will reach out to dépress the energy potential in space a value
kT below its surrounding value. . Thus, we may assume that the

traps are in reality shallower than 0.56ev.

l5cm2, which

A commonly-reported value for St [2] is 10°
would be expected from the physical dimensidns of the atoms or
ions. If this were the cross-section for the traps under
consideration in diode 13-7, it would imply from equation 6.1
that (Wb - WT) = 0.24ev. Conversely, if the largest value of
lO'l3cm2 existed for the trapping cross-section (the trapping

center would then have to be positively charged), we could
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calculate a maximum value for (Wb - WT) using equation 6.1.
For diode 13-7, this allows us to write: (WC - Wp) < 0.36ev.
Hence, the capaciltance data indicate a smaller limit for the
depth than the 0.56ev derived as the maximum from the space-
charge-limited current considerations of Section 5.4. The
capacitance considerations have thus led both to an upper
bound for the trap depth and a probable value for it, assuming

that the center is uncharged.

In the data for diode 13-4 (figure 6.2) we note an increase
in the value of Ve obtained under increased illumination;
whereas the value of v, obtained for diode 13-7 (figure 6.3)
was Independent of illumination. In Section 2.2.1, it was
pointed out that if the ratio of total, free charge to total,
trapped charge in a crystal is specified by Fermi-Dirac statis-
tics, then the resultant Ve and Yy as used in equation 2.9,
will be dependent on the position of the Ferml level. Hence,
we conclude from the capacitance measurements that Fermi-Dirac
statistics are needed to specify n/nt at low voltages in
dlode 13-4, and furthermore that the Fermi level is sensitive
to the applied illumination. This finding is entirely consis-
tent with our investigation of the space-charge-limited current
behavior of diode 13-4, discussed in Section 5.5. A continuous
distribution of traps surrounding the Fermi level at low
voltages (and subject, therefore, to Fermi-Dirac statistics)

were deduced to be present from the measurements reported in



196

Chapter 5. The effect of illumination on the position of the

Fermi level for diode 13-4 is summarized in figure 5.3.

Figure 6.2 shows that Vg changes roughly by a factor
of 8 from its dark value to the frequency obtained under
heavy illumination. We may define an effective trap depth and
capture cross-section for the over-all trapplng process in
diode 13-4 through insertion of the measured v, into equation
2.10. With this definition, the change in ¥ with Fermi
level may elther be reflected by a change in effective
cross-section or in the effective trap depth. The latter
course seems most meaningful in light of the source of the
variation. The observed factor of eight increase in L
indicates only an 0.05ev decrease in the effective trap
depth. In Section 5.8, the evidence from space-charge-limited
current behavior indicated that light intensities in the range
of the maximum used were capable of raising the interior Fermi
level by roughly 0.25ev. We must assume, therefore, that most
of the trapping states detected by the capacltance measurements
exist appreciably above the dark Fermi level. Hence, the
frequency dependence cbtalned is a function chiefly of the

shallow trapping centers.

The lowest value obtained for W (ve =Te5 x losper s)

implies a magnitude: S, exp[(-Wy - Wp)/KT] = 5.3 x 15" P

for the product defined in equation 6.1. At maximum illumination

-l9cm2

this product climbs to approximately 4.2 x 10 . If, as
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with diode 13-7, we assume a geometrical capture cross-section
of lO_lscmz, we may calculate the effective trap depth for
the three levels of illumination in figure 6.2. .In the dark,
this value is 0.25ev; it decreases to 0.23ev at medium

illumination and to 0.20ev at high illumination.

6.6. Conclusions

The experimental work reported in this chapter has
verified the predictions of Chapter 2 in the following manner:
l. The variation with frequency of the
capacitance observed has been consistent
with the predicted variation with fre-
quency for the terminal capacitance
exhibited by trapped charge whose
density is subJject to a rate equation
of the form of 2.11 (dn /dt = -(n, -
m)v,).
2. The variastion of capacitance in magnitude
has been within the limits expected for
trapping states distributed uniformly in
-space. Furthermore, the variation in
magnitude has been predictable in terms
of the effects of environment upon trap
populations.
From these observations, the interpretation of the experimental

results in terms of the kinetic properties of trapping states

appears to be justified.
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The frequency dependence of the measured capacitance
yields directly a value for the probability-of-escape frequency
Ver To obtain a value for the trap depth from this, we noted
in Section 6.5 that a knowledge of the capture cross-section
for the trapping level was necessary. A similar situation
occurs in the study of traps through the cbservation of lumines-
cent glow-curve data [1, p. 292], a technique used extensively
in deducing trapping propertles in phosphors and employed by

Bube [8] in a study of the trapping states in Cds.

To make glow-curve measurements, crystal traps are
initially filled at liquid nitrogen temperatures by illumination.
The traps are then emptied into the conduction band by heating
the crystal at a constant rate. In the experimental method
used by Bube [8], the current passing through ohmic ccontacts
made to the crystal was monitored under constant voltage
conditions in order to provide a measure of the conduction-
band population. Peaks, which correspond to traps being emptied
into the conduction band at a maximum rate, are observed in the
plotted curve of current versus crystal temperature. A fairly
straightforward analysis relates the temperature at these
peaks to a function of the depths and capture cross-sections
for the traps which are responsible for them. Glow-curve
measurements do not provide accurate, independent values for
the depth and cross-section of a given trapping level. 1In

order to obtain both of these parameters in his study of the
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trapping properties of CdS, therefore, Bube used the further
assumption that WF ~ WT at the peak current. This assumption
depends for its validity on a number of conditions, including
the supposition that the electron population in the crystal
maintains a continuous thermal equilibrium between all
energy states despite increasing temperature. Trap depth is
easily deduced under the condition W? ] WT from the insertion
of the free-electron density, implied by the observed current,
into the Maxwell-Boltzman formula n = N exp[-(wC - WF) JET]
The equation relating trap depth and capture cross-section to
the temperature at the peak current may then be used to
calculate St' Because trap depth enters this equation exponen-
tially, however, the assumption used to obtain the depth
critically affects the magnitude for St'
Bube's data for pure CdS crystals indicate principal
shallow-trap densities at 0.17 and 0.35ev in pure crystals
and at 0.06ev in doped crystals. These depths are consistent
with the shallow levels deduced from the observations discussed
in this chapter. The capture cross-sections Bube ascribes to
these levels is about lO_lacmz, which is appreciably lower
than the 10 2cm® we had assumed in this chapter. Use of a
cross-section of 10-180m2 in the calculations of Section
6.5 would raise the effective trap depth deduced for diode
13-7 roughly to 0.0Tev below the conduction band. It is

jidle to speculate further on the correspondence between Bube's
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results and those reported here, however, because first,

the degree of similarity between Bube's crystals and those
studied here is unknown, and second, because neither the
experimental technique used in this work nor the one used by
Bube provides a dependable means forrthe separate determin-
atlon of trap depth and capture cross-section. The two
methods of trap study, luminescent glow-curve measurements and
capacitance observations, used together on a single crystal
would eliminate ambiguity in the separation of these trap
properties, because each provides an independent relationship
between capture cross-section and trap depth. We have already
discussed the possible physical sources for the shallow levels

(Section 5.6), and will not mention them further here.

The experiments on capacitance reported in this chapter
were all performed on the thin platelet diodes. The inverse
dependence for capacitance on thickness would have made the
capacitive effect due to the trapped charge undetectable for the
larger crystals. In other measurements of the capacitance of
single-crystal CdS units reported by Kallman et al [33], crystal
thicknesses were 20 to 30 times those used for the work reported
here. One would therefore not expect to detect the trapped
charge in their measurements. Kallman does report enormous
increases in capacitance under illumination for these thicker
CdS crystals, which were contacted by two gold electrodes. The

authors explain this in terms of an effective change in crystal
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thickness due to high conductivity in regions of the interior
of the CdS crystals. The crystals we have studied did not

exhibit any phenomena consistent with this physical picture.

The brief discussion on evidence for the photodielectric
effect, given in Section 6.4, does not mention the fact,
brought out by Bube [1, p. 429], that some fesearchers,
including Kallman [33], believe that the effect is confined
to powders. The evidence of figures 6.2 and 6.5 indicates
the contrary, as also does the variation in Ce for diocde

13-7 under heavy illumination, reported in Section 6.lk.

The evidence for an apparent photoemission from the
gold film into the CdS, presented in figure 6.5, is in agree-
ment with the hypothesis of Williams and Bube [15]. These
authors explain the observed photovoltaic voltage in junctions
made to CdS by gold, copper, silver and some other metals, in
terms of photon-stimulated emission from the metallic films
into the CdS crystals. The observed behavlior of the cagpaci-
tance in figure 6.5 may be explained in terms of photoemission
from the gold electrode as follows. Photoemitted electrons
would form a virtual cathode near the gold contact. One
would expect to be able to modulate the photoemitted current
by applying a voltage less than that value tending to draw the
entire virtual cathode density across the crystal. For higher
collection voltages, no modulation would be possible. The

situation is perfectly analogous to the operation of a vacuum
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diode in the emission-limited region. The only difference is
in the stimulus for the emission - liéht for the case described
here and heat in the thermionic emission case. If the injected
charge density, and therefore the trap population, can not

be modulated by the applied signal, nb trapping capacitance is
measured. Thus, in figure 6.5, an increased reverse d-c

bias acts to quench the trapping capacitance. The increased
photoemission is evident in the increased d-c voltage required
for quenching the trapping capacitance at higher illumination

values,

In assessing the effectiveness of capacitance studies
to gain information about trapping kinetics, we find both
benefits and drawbacks. The benefits include the possibility
of variation of a number of parameters. The observed dependence
of the measurements on these parameters (d-c bias, a-c signal
magnitude and frequency, illumination, temperature) can do much
to develop a physical picture of the trapping process. One
can also detect an extremely small quantity of trapped charge
through capacitance measurements; the threshold estimated in
Section 6.4 was only about a thousand electrons. The chief
disadvantage of this technique is the fact that a number of
experimental points are necessary to determine one kinetic
parameter, such as LY Frequency information is then achieved
only through curve fitting, which is apt to be a tedious process.
In general, capacitance measurements provide a valuable adjunct to

the other techniques available for the study of trapping kinetics.
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CONCLUSIONS

We shall begin this section with a short summary of the
major topics discussed in each of the chapters and of the
conclusions we might draw from our discussion of these topics.
Further observations, pertinent to the over-all report, will

then be made.

In Chapter 1, it was shown that a simplified analysis
which helps preserve the physical picture of events may be used
in a straight-forward fashion to treat mathematically the
properties of space-charge-limited currents in trap-filled
insulators. The mathematical approach used there avolded a
direct solution of the exact equations but retained the pertinent
features of the dependence of current on voltage. Chapter 2
presented a mathematical treatment of the expected dependence of
capacitance on trapping properties for an insulator under
charge-injection conditions. The predictions of that chapter led
one to believe that a study of the varlation of capacitance
with parameters such as bias voltage, illumination, and
frequency could provide a valuable adjunct to the more usual
techniques employed in the study of trapping kinetics. The
procedures followed in the fabrication of analogue diodes in

0ds were discussed fully in Chapter 3.

In Chapter 4, an experimental analysis of the properties
of the blecking contact to CdS under high reverse blas was

reported. The data corresponded to Schottky-type field emission
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over the blocking contact, although a possible tunnel mechanism
through the barrier was not ruled out.. The requisite high
effective-donor-state density near the surface for tunnel
emission made this process implausible. Such a high state
density was not detected in any of thé other experiments.

In Chapter 5, experimental data were presented which were in
direct agreement with the theory of Chapter 1. Chapter 5
thereby reinforced confidence in the physical picture of a
volume-distributed trap population which underlay the theory
of Chapter 1. A number of properties of trapping centers were
deduced in Chapter 5 and correspondence with published data

was shown to be very good. Thg experimental results of Chapter
6 were consistent with the analysis of Chapter 2 and therefore
allowed further deductions of the properties of the trapping
states in CdS; The new technique for obtaining a probability-
of-escape frequency, explained in Chapter 6, gave results that
were both plausible and of the same order of magnitude as values

deduced in a different fashion by other investigators.

The correspondence observed between experiment and
theory leaves little doubt that the physical picture emphasizing
volume-distributed traps, as developed in Chapter 1, results
in & valid description of the behavior of the crystals studied.
Thus, we may assume that space-charge-limited currents have
been observed in the CdS crystals, contrary to the premise of
control by a surface trapping layer as postulated by Rhys-Roberts

" and Tredgold [7]. The capacitance measurements of Chapter 6, in
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particular, are not consonant with surface trapping in either

magnitude or variation.

The experimental results of Chapter 5 make it apparent
that one should attempt to exceed the trap-filling voltage
vV = eNth/ZKeO (equation 1.18) in order to achieve any
appreciable, space-charge-limited current levels in an
analogue device having dimenslons of the order of the diodes
studied in this work. The trap-filling voltage must be
exceeded without applyling a field which will cause a dielectric
breakdown in the material. A breakdown field at V = VTFL
would be the limiting case of a useful analogue device. In
order to have any dynamic range and to allow for local in-
homogeneities, the field should be held to some fraction of
the breakdown value when all the traps are filled. This con-
straint can be used together with an estimated lower limit
for the crystal trap densities to calculate an approximate

thickness limitation for a solid-state analogue device, as

we shall now demonstrate.

The average field at V = VTFL

trap-filled voltage formula as E = eNtL/ZKeO. We can solve

is expressed from the

this equation for the thickness: L = ZKeO:E_/eNt. To calculate
a maximum thickness for the crystal we need only to insert a
maximum permitted E and a minimum expected Nt in this
formula. In Chapter 4, evidence corresponding to that

reported by Williams [28] indicated an apparent dielectric
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breakdown in CdS at a field of about lO6volts/cm. From what
we have said above, the maximum value for E might therefore
be set at lohvolts/cm. To choose & minimum for. N, we need
to consider the present technology of materials. Utilizing

the vast amount of experience accrued in the technology of
germanium crystal growth, specialists have been able to grow
crystals of that material having trap densities as low as
lOllc:m—3 [3+]. This perfection has not been reached for the
larger baﬁd-gap materials: with silicon the best material

has about lol3traps/cm3.* Bube [8] suggests that a perfection
comparable to this might be obtained in C4dS. A trap density of
lOl3 -3 corresponds to a single trap in almost 109 lattice
sites for CdS and therefore certainly represents & high degree
of perfection. Assuming a trap density of this magnitude
together with an electric field of lOuvolts/cm, we calculate
a maximum thickness of roughly 10 microns for a crystal
showing trap-free space-charge-limited currents over a useful
dynamic range. Poorer materials, such as the crystals studied

in this report, decrease this thickness by the ratio of the
3

% . For example, a trap density of lOl6cm

actual N, to lOl3cm—
results in a thickness maximum of only 100 angstroms. Thus, we
see that any practical solid state analogue device will
necessarily be very small indeed. Because of this, fabrication
techniques will be extremely critical, especially for three-

element devices.

¥ G. C. Dacey - personal communication

3
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The fine control of thickness and geometry, possible
with vapor-deposition techniques, has led to an attempt to
adapt this process to analogue device manufacture. Work has
been reported by Weimer onthe construction of an analogue
three-element unit in CdS made compleﬁely by vacuum deposition
of the electrodes and CdS in powder form [35]. The correspon-
dence of behavior between single crystals and powders must be
thoroughly investigated to determine what portion of the
information now availlable will be useful if this form of
fabrication is employed. Polycrystalline material will
certainly have a larger trap density than the estimate of
101 3en™3

which, if one specified V < VTFL

an even smaller thickness than the 10 microns calculated

s would necessitate

above. Vapor-deposited fabrication, however,‘might 80 reduce
the permissible size for the device that the variation of
output current with the cube of reciprocal electrode spacing
(equation 1.1k4) could compensate for the reduced © due to

an increased trap density.

If analogue devices were to be made of single crystal
material, it is probable that epitaxial growth techniques
could be profitably employed. Using epitaxial growth, a
three-element device might be made by using a thin platelet
seed crystal having a vapor-deposited metallic grid structure.
Smith and Ruppel [29] did construct a three-element crystal
amplifier on a thin platelet crystal but their geometry was

far from ideal for a practical device.
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The exploitation of insulating materials with high trap
densities in unconventional ways may be possible with crystals
of more manageable dimensions. An unconventional device could,
for example, employ the variation of trapped charge with fre=-
quency, as investigated in Chapter 6, to provide a frequency-
variant capacitance. If the source for a given trapping level
could be correctly identified and synthesized, such a device
might be tallor-made for a specified frequency range. Thickness,
for a given capacitance, would be proportional to electrode area
in this case. Variation with bias voltage of capacitance, as
described in Chapter 6, could also be used to obtain an element
with a gross (factor-of-three) change in capacitance over a

small range in bias.

One of the properties of the diodes, noted for each
unit but not studied extensively, was the polarity and intensity
variation of the open circuit photovoltage (meter resistance =
100 megohms). This effect was definitely centered at the gold
contact and differed both in magnitude and polarity in sets of
diodes made from apparently identical crystals. The majority
of the diodes had a photovoltage which resulted in the gold-
film contact becoming more positive with increasing illumination.
In a few of the thin platelet diodes, however, the indium
terminal became positive with illumination. The magnitude
of the photovoltage ranged up to 550mv when the gold contact
became positive and to 305mv when the indium contact became

positive.' A photovoltaic effect causing the gold contact to
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become positive could result from photoemission of electrons

into the CdS from the gold film. This hypothesis, due to
Williams and Bube [15], is corroborated by two effects which

we have noted. The first is the behavior of trapping capacitance
under reverse bias (Section 6.7), and the second is the fact

that for some diodes an increased thickness of gold film resulted
in an increased positive photovoltaic effect. The film thick-
nesses ranged from 500 +to 1000 angstroms. A negative photo-
voltaic effect would be possible if the dominant light absorption
were 1n the interior of the CdS. This would effectively raise
the interior Fermi level and cause an electron flow into the
gold. As has been noted, an indium-contact-positive photovoltage
was observed only in the thin platelet diodes for which the
surface preparation prior to electrode depositiqn was held to

a minimum. To fit the picture described above, we might assume,
therefore, that a poor surface at the CdS acted to inhibit
electron emission from the gold film. The capacitance variation
of diode 13-7 was consistent in this respect. Dliode 13-T showed
a gold-film-negative photovoltage and also falled to exhibit

the variation in capaciltance with reverse bias typlfied by

figure 6.5. That variation, in turn, was explained in Section
6.7 as having resulted from the photcemission of electrons from
the gold film. These conjectures point up the fact that further
study of this effect might yield useful information on the properties
of blocking contacts to CdS. Optical effects in CdS that have

been studied to date are summarized in a review article by Lambe
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and Klick [36]. This reference also has a fairly comprehensive

bibliography on other properties of the material.

Another subject which ﬁight bear further study is the
properties exhibited by some of the larger area dlodes made from
the crystals that were cut and lapped. Several of the diodes made
from chlorine-doped érystals of this type showed properties
which were superficially similar to conventional p-n junction
diodes of silicon and germanium. There was no evidence of
space-charge limitations in their behavior. Further knowledge
of the extent of the similarity of such diodes to grown or
alloyed Junction silicon and germanium units could prove
helpful in a study of the properties of metallic contacts to

Cds.
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LIST OF SYMBOLS

Section in

Which Symbol
Is Defined
A Diode cross-sectional area ‘ Lk
Al Richardson thermionic-emission factor 4.3
c Capacitance 1.4
Ce Electrode capacitance ; 2.1
Qm Measured capacitance 2.1
Ct Trapping capacitance 2ed
Ctm Maximum value of ct ‘ 2.1
C% LO? frequency value of Ct for a single
injecting contact 2.2
% Low frequency value of Ct for two
injecting contacts . 22
Ce Transition probability for trap emptying 2.2
Cp Trensition probablility for trap filling 2.2
E Electric field magnitude 1.2
E Average value for E 5.8
Ea Value of E &t the anode 142
Easd E_ under space-charge-limited conditions
th a discrete-energy trap density 1.3
e Magnitude of the electronic charge 1.1
h Planck's constant L.l
I Current 5.7
J Current density l.l
K Relative permittivity 12
k Boltzman's constant ds 3
T Crystal thickness 1.2
m An exponent for voltage ‘ i I
m, Effective mass of a free electron 4.1
m. Rest mass of an electron k.1
N Effective density of states in the

Q

conduction band Xiw 3
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Density of donor states

Trapping-state density defined for
continuously-distributed traps

Density of trapping states

Minimum value determined experimentally
for Ny

Free-electron density

Value of n under no-injection conditions
Average value for n

Value of n at the anode

Fundamental of Fourier-analyzed waveform
for n

Maximum value for n
Trapped-electron density
Value of n under no-injectlion conditions

t
Average value for n

t
Value of n, at the anode
Trapped charge effective in enhancing Ct
Fundamental of Fourier-analyzed waveform for
n
T

Rate of trap emptying

Rate of trap filling

Quantity of electronic charge

Charge stored on crystal electrodes
Charge stored in crystal traps

Value of Qt at the trap-filling voltage

Trapping-state capture cross-section for
a free electron

Absolute temperature

Characteristic "temperature" for an exponential
trap distribution

Electron transit time

Time

Applied voltage

Barrier height potential

V at incipient field emission

L.l

1.6
1-3

5.4
: |
1.8
1.3
1.2

2.2
2.4
L
158
1%
13
2l

2.2
2.2
242
1.k
Bel
2.1
1.k

2.2
1.3

2.1
2o
Z.1
1.1
L.3
L.1
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V at which two solutions to the space-charge-

limited current characteristic are joined
Maximum .value of the a-c applied voltage

V at which chmic behavior gives way to
space-charge-limited behavior

V at which all traps are filled by inJjected
charge

Values of V for discrete levels when more

than one trapping level are present

Free-electron thermal velocity
Free~electron drift velocity

Electron energy

Electron potential well depth

Energy at lower edge of conduction band
Fermi-level energy for electrons

Energy interval in the forbildden gep
Energy of discrete trapping level
Quasli-Fermi level for electrons in the dark
Quasi-Fermi level for electrons in the light
Quasi-Fermi level for electrons

Quasi-Fermi level for holes

Energies characteristic of wvarious trap
configurations

Electron barrier width for electrons having
a given energy

Distance
Critical distance defined for tunneling

Distance from emitting surface to potential
maximum in image-force considerations

A constant multiplier

Ratio of the cathode field to the average
field in the crystal

Low frequency equilibrium ratio between n

and nt

Permittivity of free space

Proportionality constant between V and oo

1.k
2.2

1.k

1.5

2
Be3
1.3
4L
1.3
1.4
L,
1n3
5.7
5.7
5.6
546

1.6

k.3
18
h.2

bl
1.k

2.2
l.1
2.2
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Ratio of n to ny for a discrete trapping
level under equilibrium conditions

Values of © characteristic of discrete
trapping levels

Characteristic length for use of image-force
potential theory

Electron mobility
Parameter defined for algebraic simplification
Value of y at the anode

Probability-of-escape frequency for an
electronic trapping state

Resistivity

Density of trapping states per energy
increment

Lifetime of a free carrier
Emission work function for electrons

Radian fregquency

1.3
1.5

.
-
l.2
12

2.2
3.6

1.6

.2
2.1
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