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ABSTRACT

A unified theory of the the-rmo—mechanical behavior of
viscoelastic media is developed from studying the thermodynamics
of irreversible processes, and includes discussions of the general
equations of motion, crack propagation, variational principles, and
approximate methods of stress analysis.

The equations of motion in terms of generalized coordinates
and forces are derived for systems in the neighborhood of a stable
equilibrium state. They represent a modification of Biot's theory
in that they contain explicit temperature dependence, and a thermo-
dynamically consistent inclusion of the tiline-temperature super-
position principle for treating media with tempera_ture—dependent
viscosity coefficients. The stress-strain-temperature and energy
equations for viscoelastic solids follow immediately from the general
equations and, along with equilibrium and strain-displacement
relations, they form a complete set for the description of the thermo-
mechanical behavior of media with temperature-dependent viscosity.
In addition, an energy equation for crack propagation is derived and
examined briefly for its essential features by applying it to a specific
problem.

The thermodynamic equations of motion are then used to
deduce new variational principles for generalized coordinates and
forces, employing convolution-type functionals. Anticipating various
engineering applications, the formulation is phrased alternately in

terms of mechanical displacement, stresses, entropy displacement,



and temperature in thermally and mechanically linear solids. Some
special variational principles are also suggested for applications
wherein the nonlinear thermal effects of temperature dependent
viscosity and dissipation may be important.’

Building upon the basic variational formulation, it is next
shown that when these convolution functionals are Laplace-transformed
with respect to time, some convenient minimum principles result
which can be employed for the approximate calculation of transformed,

T vis coelastic responses. The characteristic time dependence of exact
and approxirﬁate solutions is then derived and used in relating error
in approximate viscoelastic solutions to error in the associated
elastic solutions.

The dissertation is concluded with a study of some approximate
methods of viscoelastic a.nalysis. First, the important problem
of inverting complicated Laplace transforms to physica.l“time-d_ependent
solutions is resolved by advancing two easily applied, approximate
methods of transform inversion. -These inversion methods and
variational principles are then used in some illustrative, numerical,

examples of stress and heat conduction analysis.
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PART I
GENERAL EQUATIONS OF IRREVERSIBLE THERMODYNAMICS

WITH APPLICATIONS TO THE THERMO-MECHANICAL
BEHAVIOR OF VISCOELASTIC SOLIDS

1.1. Introduction

The thermodynamics cf irreversible processes (TIP) has been
used by several workers to develop a macroscopic theory of linear ir-
reversible phenomena., Probably the most unified and elegant treat-
ment was presented by Biot (1, 2); we shall not attempt to iist many
of the other papers dealing With the subject, since a relatively com-
plete list can be found in reference Z. Biot derived the linear equations
governing a general, inhomogeneous, thermodynamic system which is
in the neighborhood of a stable equilibrium state. In addition, he
clearly illustrated their utility when he .used them in deriving the
stress-strain equations of an anisotropic, isothermal, viscoelastic
solid (1); presenting a unified treatment of thermoelastic damping (3);
studying the behavior of porous media (4); and deducing variational
principles (2,5). While Biot's emphasis has been on the mechanics
of solids, the general equations could also be applied to other irrever-
sible phenomena, such as reacting gases near an equilibrium composi-
tion.

One of the primary objectives of this dissertation is fo establish
the relation between temperature and deformations in viscoelastic media
by using TIP. As a motivation for the theoretical development which is
given in Part I, let us consider certain aspects of the theories proposed

by Biot and some other investigators which relate to the treatment of
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thermal effects. The initial Biot formulation (1) permitted the thermo-
dynamic system to have a non-uniform temperature distribution, but
temperature variationé were treated as hidden coordinates (i.e., the
temperature at the geometric boundary of the system was maintained
at a constant reference temperature). As a consequence, _for examiﬂe,
it was not possible to use the results to deduce viscoelastic stress-
strain equations with explicit temperature dependence., Later, Biot
generalized his theory to admit temperature variations at the boundary
(2) and arrived at an analogy between thermal and mechénical variables.
In particuiar, i“c was shown that a small excess temperature (actual
temperature fninus the ‘reference temperature) applied to the boundary
plays the role of a generalized force, while its conjugate coordinate

is entropy displacement (heat flow into the system divi&ed by the
reference temperature). However, in addition to the assumption that
the excess temperature is small, it is implicit in this analogy that
temperature rise due to the second order term in the energy equation
(Rayleigh Dissipation Function) must be neglected. Another res;trictive
as sumption which was introduced in his formulafion is that the viscous
properties of the system are independent Qf temperature. These as-
sumptions made By Biot are valid within the domain of a ‘Completely
linear theory; however, they are impract‘ical for some applications.
For example, if one were to use this analogy in deducing the coupled
thermo-mechanical equations for a viscoelastic solid, important effects
would be neglected, For, not only are the viscous properties of a vis-
coelastic solid usually ’very sens-itive to temperature, but transient

deformations maintained over a long enocugh time may produce a sig-
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nificant temperature rise as a result of dissipation.,

Recently, Hunter (6) and Chu (7) have dealt directly with the
derivation of the stress-strain-temperature equations and the associated
energy equation of isotropic, wviscoelastic solids. Even though they have
relaxed certain of the above mentioned assumptions on thermal effects,
the applicability of their results is restricted since all of the implica-
tions of TIP were not utilized. - For example, Hunter assumes that the
specific heat and thermal expansion coefficient are algebraic factors
rather than integral (or aifferential) operators, while Chu only con-
siders particulalrly simple stress-strain laws, In another paper
Eringen (8) also im;roduces some explicit thermal effects in a étudy of
more general systems, however he tacitly makes thé same assumptions
cited above in regard to Hunter’s work, and assumes fﬁrther that vis-
cosity is independent of temperature.

In Part I-A of this dissertation we shall use TIP as a means
of deriving equations of motion in terms of generalized coordinates and
forces, but proceed with the th'ermodynanﬁc formulation differently than
Biot and Eringen in order to: 1) obtain explicit temperature dependence
in the equations, 2) allow for temperature-l-dependent viscous properties,
and 3) include the ‘effec:t of dissipation on temperature (or heat flow).

The results will be arrived at by studying the behavior of a thermody-
namic system with a spacewise uniform temperature which is not neces-
sarily constant‘in time, rather than with an arbitrary temperature distri-
bution as permitted by Biot. It will be seen that the equations of motion
reduce to those derived Ey Biot when thermal effects are omitted. |

Following the derivation and solution of the equations governing
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the behavior of a thermally homogeneous system, we present an exposi-
tion of Biotfs linear thermodynamic theory (2); this presentation will
serve the dual purpose‘ of contrasting the features of his development
with ours and providing background information which will be needed

in Part II.

The second half of Part I is concerned primarily with using the
results obtained in the first half to deduce the stress-strain-tempera-
ture equations and energy equation of anisotropic viscoelasticity, This
objective is readily accomplished by interpreting a viscoélastic material
element as a closed thermodynamic system at a uniform temperature,
and then assoc.iating mechanical strains and stresses with the general-~
ized coordinates and forces. When these equations are combined with
the infinitesimal strain-displacement relations and equiiibrium equa-
tions, a complete set of field equations is obtained for the coupled
thermo-mechanical, small deformation behavior of viscoelastic solids.
The set is, in general, nonlinear due to the dissiPation function in the
energy equation and the assumed temperature dependent viscosity.

It should be emphasized that the relations between stress,
strain, and temperature are deduced directly from TIP, without intro-
ducing spring-dasﬁpot models in the development. However, it is shown
that for most practical cases all moduli, coefficients of expansion, and
specific heats are integral (or differential) operators which can be repre-
sented by the well-known mechanical models consisting of Maxwell ele-
ments in parallel or Voig]: elements in series. This analogy was pointed
out by Biot (2) for isothe‘rmal moduli, but the proof for the specific

heats and thermal expansion coefficients is believed to be new. Recent
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experimental work by Kovacs and others (9, p. 411) substantiates the
deduction for thermal expansion of several polymers.

The situation in which this Voigt or Maxwell representation is
not thermodynamically admissible occurs only when the temperature
is transient and the viscous properties of the material are such that
the time~temperature superposition principle (9, p. 209) is not obeyed.
In such a case, a mechanical model can still be used to represent the
behavior, however an array of springs and dashpots is needed which
is more genefal than the simple combinations of Maxwell and Voigt
elements, As a practical matter, however; it is known that the super-
position principle applies to most linear viscoelastic metals and non-
metals, and is also predicted by simple molecular models (9, p. 201;
10).

Providing the time-temperature superposition principle is ap-
plicable, there is another interesting implication of the thermodynamic
analysis. To be specific let us suppose that a relaxation modulus of a
giveﬁ material is found to obey this superposition principle, in which
the relation between time and temperature is given by a certain tem-
perature dependent "shift factor. ® Then the implication is that all
other mechanical and thermal propérties {moduli, thermal expansion
coefficients, heat capacities) which are associated with the same mole-
cular processes also obey this superposition principle and have the same
shift factor. It may be noted that experimental work by Kovacs, Marvin,
and others (9, p. 223 and p. 414) confirms this deduction for the bulk
and shear moduli and thé thermal expansion coefficients of some poly-

mers. Birefringence in polymers, of interest to photoelasticians, is
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another property which is expected to have .the same shift factor since,
just as stress-strain behavior, it is dire'ctly related to molecular con-
figurations (ll). For example, it is anticipated that the time-dependent
strain and stress optical coefficients reported by Theocaris and
Mylonas (12) for one temperature, have the same time-temperature
superposition behavior as the corresponding moduli.

To conclude Part I, we indicate how lTIP could be used to intro-
duce rate éffects into finite deformation and crack propagation prob-
lems. Equatiohs are-postulated which enable one to make a finite
deformation analysis providing the free energy function is 1<f10wn. In
addition, an energy equation for viscoelastic solids is proposed which
can bé used in predicting the propagation of a crack if its direction of
travel is known. The equation is examined briefly forvits essential

features when applied to a special problem.

A, GENERAL THEORY

1, 2. Derivation of the Thermodynamic Equations for Systems at

a Uniform Temperature

We consider now a thermodynamic system of unit mass which
has a prescribed, space-wise constant temperature. Its thermodynamic
state is assumed to be defined by n state variables q (generalized
coordinates), and by either temperature or internal energy. If the
system is not spacewise uniform except for temperature, the state is
defined by subdividing the system into cells sufficiently small that

properties can be considered as uniform in each cell; this can be done
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as long as it is not necessary to make the size of each cell comparable
with atomic dimensions. Extensive properties such as total entropy
and internal energy are evaluated by a summation of local values over
all cells. The coordinates q; are very general and can represent
such varied quantitieés as mechanical strains, molecular configurations
in a polymer, location of interstitial atoms in a metal, chemical com-
position of reacting gases, etc. A generalized force Qi’ conjugate

to the variable q;s is defined by the condition that Q.8q. is an incre-
ment of external work per unit volume done on the system.

While the equations of motion which are derived in this section
are quite general in that they are applicable to linear systems satisfy-
ing the above assumptions, we shall use them later only for deducing
the thermo~mechanical equations of a linear, anisotrc_)pic, viscoelastic
solid, For this specific situation, six of the coordinates q; G = Liswns )
are associateci with the six independent components of the infinitesimal
strain tensor, eij' The remaining (n-6) va riables q; (i=7,00.,n)
are used to represent "internal degrees of freedom, ¥ and are called
hidden coordinates. Hidden coordinates are defined by the condition
that their conjugate (externally applied) forces are always zero. The

Bmolecular configuration®

in a polymer is an important example of a
hidden coordinate. With q (i =1,00., 6) as the strains, eij’ the incre-~
ment of work done on an element of unit mass in a small change éSqi

is (13, p. 82)

-1 -1
PTQ;8q; = P oy bey, (1. 1)

where o"ij is a component of the stress tensor and p is the density.



.

Consequently, we shall later associate the generalized force Qi
{i=1,e..,6) with the six independent components of the stress tensor.
TIP will now be applied in order to obtain the equations govern-
ing the behavior of the system defined above as it passes through non-
equilibrium states, . “First, we must calculate the rate at which en-
tropy is produced as a result of irreversibility in orderrto apply
Onsager’s Principle, which will be stated later. This calculation
requires th‘at .the basic hypothesis of TIP be used (14); namely, the
entropy of a system which is sufficiently close to equilibrium can be
defined by classical thermodynamic variables, = ~Assuming that the
entropy of a system of unit mass, s, is an explicit function of internal
energy, u, and the generalized coordinates, 90 the change in entropy

Sfesjedie

is

b3
By equilibrium we will mean classical thermodynamic equilibrium,

which some authors prefer to call thermostatic equilibriums.

>i<>'cThe legitimacy of this hypothesis has been investigated by several
workers, For example, Prigogine (15) has used the kinetic theory of
gases to show that for transport processes, the domain of validity of
this assumption extends throughout the domain of validity of linear
phenomenological laws (Fourier?s law of heat conduction, Fick's law
for mass diffusion, etc.). In the case of chemical reactions, he has
shown that the reaction rates must be sufficiently slow so as not to
perturb the Maxwell equilibrium distribution of velocities of each com-
ponent to an appreciable extent; this excludes only reactions with ab-
normally low energy of activation, Thus, for most processes, the
assumption that the entropy can be defined by classical thermodynamic

variables is expected to be valid even quite far from equilibrium.
e €
“FUnless specified otherwise, we shall use the tensor notation that a

repeated index is to be summednout, €. g

ds _ N ds _
55 ) =dqi-2 (55 ) v
= i=1 LUy

u 4
Th

I

and ?
Qidq_lz / Qidqi
i=1 1



aflid

_ ( ©s ds \
ds = (-g'a') du + (é'aﬂ ) 1 dql (1. 2.)
q1 1°u,q

:
where q denotes all coordinates Quroeosdy with exception of q;e

From the First Law of Thermodynamics the increment of heat, dh,

added to the unit mass is
dh = du -~ P—lQi dqi (1. 3)

When dqi = 0 the incremental process is reversible and from the
Second Law of Thermodynamics Tds = dh, so that, using equations 1,2

and 1.3, we have
s
T(H-au) 21 (1. 4)

where T is the {instantaneous) absolute temperature of the system.

This permits the entropy change to be written as

Tds=du+T(a§-§)

i

r dqi (1. 5)
u, ql '

“which is Gibb®s equation in generalized form. It is convenient to de-

QR
%

fine the state function as

= p-ngR) =T (-g—g ) (1. 6)

4
14, qi

and call QiR) a reversible force., With this notation, equation 1.5

becomes

T ds = dua = p”ngR) dq, (1.7)

Imagine now that the system is immersed in a large heat reser-
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voir which has the same temperature as the system. Assuming that
the combined system consisting of the reservoir and actual system is

insulated, the entropy change of the reservoir is ds_ = = dh/T, Con-

R

sequently, the incremental entropy change of the total system, ds’, is

3

g
ds = ds +dsR= ds - -+ (1. 8a)

which is the entropy change due to irreversibility, This entropy change
is readily evaluated for the system under consideration by subtraction

of equation 1,3 from 1.7, to find

(R)

i

¥ 1

ds::pT

(Q. - Q) da; (1. 8Db)

i
which, when divided by the time increment dt, yields the desired ex-

pression for the rate at which entropy is produced,

o 1 .
5 = P_T Xi qi ‘. (1. 9a)
where
= (R) '
Xi— Q:.L - Qi (1. 9b)

-
4

" and the dot denotes. differentiation with respect to time, s is termed
the entropy production per unit mass and Xi the irreversible component
of force applied to the coordinate e This force may be viewed, for

Byviscosity® in the

example, as an internal force which arises from
system and resists the motion of ;e
The important principle of TIP is now introduced, namely

Onsager’s Principle, which can be stated as follows (14): If the entropy

production is written in the form
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§ =X. 4 . (1. 10)

n
and the forces X, are proportional to the "fluxes® q;, that is,

] 1 .
_Xi =bijqj 1=1,..,j.,n (1. 11)

then the matrix of coefficients bi*J is symmetric. Equation 1.1l can be
written in the notation of 1. 9 by setting

on 1 bFI’ 1 .
Xi = 5T X.l : i TPT bij ; (1.12)

so that we obtain the set of equations for the s

(R),

Qi= Qi +bij(T)qj; 1 = T B e v 50 (1.13)

with bi' = bji’ and the matrix bij may be a function of temperature.
Another property of the matrix bij is deduce& by applying a
corollary of the Second Law of Thermodynamics, which states that for

all possible processes (16)
§ ,
ds =0 c ‘ (1. 14)

Substitution of equations 1.13 into 1. 9 and using this property of the

¢
entropy change, ds , yields

= 2 > y
= =5 bij §5 = 0 for q,9; > 0 {1.15)
which implie's that bij is a positive semi-definite matrix.,” The equality
sign is needed in order to allow for reversible processes, e.g. elastic

deformation,
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Strictly speaking, linearity between fluxes and forces must be
introduced as an assumption, rather than as information given by
Onsager’s Principle. However, this linearity has been found to be
generally true for the thermodynamic systems sufficiently close to
equilibrium; indeed, most systems exhibit this property quite far from
equilibriurn.,=J< Of course, the ultimate justification of this assumption
and its domain of validity depend on the ability of the resulting eqﬁations
1. 13 to predict experimental observations,

A more useful form of these equations is obtained by using
definition 1, 6 to express Qi(R) as a function of q; and T, To do so,

we introduce the Helmholtz free energy, £, which is defined as
f=u- Ts 3 (1.16)

Substitution of f into equation 1,7 yields

df = - s dt + p-ngR) da, (1.17)
which implies
-5 = k—g—f,:-[‘> ’ (1. 183.)
qi '
p—lggR) - gf ) ; (1.18b)
) 9 /o q
et

Use of identity 1.18b permits equations 1,13 to be written as

“Chemical reactions and the mechanical behavior of metals appear to
be the only important exceptions, However, even in these cases
linearity exists when the systems are sufficiently close to equilibrium

((19, 10).
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' of ’ :
Ql = P(—a—q—>T, q"!' biJ(T)qJ H ‘1—1,2,...,1’1 (1.19)

which is a set of n equations of motion for the s under the action
of prescribed forces, Qi’ and temperature, which are not required to
be constant in time.

It should be emphasized that the set 1.19 is expected to be valid
for many systems which are not even close to equilibrium. ‘However,
through a coﬁsideration of the free enérgy we now wish to specialize
these equations to a general system which is in the neighborhood of a
reference state, defined as the state in which all forces Qi are zero,
the temperature is T'r, and the system is in thermodynamic equilibrium.
By expanding the free energy in a Taylor series and neglecting powers

higher than second order one obtains

2
1 -9 f
)G+( )q —(——————)q.q.
2 quaqj B
: Z
o f i
+0(ggpr) 9+ 7 ( ) 8 {20
i r
where 0= T - Tr; cii and f are arbitrarily taken as zero at the
reference state, denoted by the subscript r,
Some useful properties of the coefficients in the series 1, 20

will now be enumerated. First, it is observed from equations 1.19

that, by definition of the reference state,

of . o
—BE) =0; 1=1’2,ooo’n (1°21)

In addition, definition 1.16 and identity 1l.18a show that

N
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| . 2

 du - 8s B 9 f

(37 "T(BT) bl 2) (1.22)
T q _

and

- of
(-é—T = - SI‘ . (1:. 23)
T

in which (du /@ T)q is the specific heat at constant generalized co-
i
ordinates, cq, as seen from equation 1,3, Furthermore, within the

region of validity of expansion 1,20, the specific heat is a constant
given by
2
90 f
Cq = - TI’ (E,I,_Z ) (la 24)

If we also make the definitions,

i quaqj = ij ji

> {1.25)
0 ( o~f = - B
4 §T8qi - - i
the free energy expansion becomes
1 0 “q .2
f= - Sre +—275-;- aququ - F; qul - ZTr e (1. 26)

Further information about the free energy can be deduced by
first combining the energy equation 1.3, definition 1,16, and l.8a, to

find

df = = Tds'- s dT + p_lQidqi (1. 27)
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Under the assumption that a stable equilibrium state exists at the tem-
perature T _ (which is not necessarily equal to Tr) with all forces
e

zero, the constant temperature behavior of f is found in the neighbor-

hood of this state by integrating 1. 27 with dT =0,

: %4 A
f-f =T (s_-sh+ p7 Q. dq, (1. 28)
e e e L 1

qie

where the subscript e refers lto the equilibrium state. Consider

first the limit case of reversible processes (e.g., motion of an elastic
body) so that s; = s2 and the state function f is equal to the work done
in displacing the system from equilibrium., Mechanical stability re-
quires this work to be positive and therefore f is a minimum at the
equilibrium point. For the actual case in which processes are ir-
reversible, we can determine the nature of f by applying the classical
thermodynamic result (16) that the entropy of an isolated system is a
maximum at a stable equilibrium point. If the case is considered in
which Qi = 0, the system of interest and its reservoir make up an

3
isolated system; hence at equilibrium s is a maximum and l. 28 shows

T,

that f is a minimum. Thus, the equilibrium state is distinguished by

“When the reference state is defined such that the system is under forces
which are not all zero, it is necessary to work with the Gibb's free
energy, g. Ior example, in the case of a gas whose reference state
is at a pressure pg, the Gibb's free energy is

g=1f+p_v P (a)

where v is the specific volume. It is seen that this casts equation
1. 28 in the form

-1
QiP dqi (b)

H 4 . qi
g, = Te-(se" ') ok
e
where the force conjugate to q,, (= -v) is (p - p_)p. We see that g,
rather than f, is a minimum at the reference state.
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the conditions

of - B
'a—ql-) =0 i =2liseesn (1.29)

and for stability

2
(aq aq ) dq. qu 0; dg;dg; >0 (1. 30)

s
in which the derivatives in equations 1. 29 and 1. 30 are evaluated at
an equilibrium state that is not necessarily at the reference tempera-
ture Tr"‘ It should be observed that f retains this behavior even when
forces Qi are applied, since it is a function of state variables and
therefore does not depend explicitly on the external forces., " Also, we
have included the equality sign in 1,30 in order to allow for the condi-
tion of neutral stability (non-unique equilibrium state) with respect to
some configurations. It will be seen later that this inclusion leads to
steady flow under the action of timewise constant forces,

Substitution of expansion 1, 26 into equa‘;_ion 1. 29 for the equili-
brium condition yields an expression for the equilibrium configuration,

Q.o thus

aijqje = S[Si | (1. 31

Also, inequality 1. 30 requires for stability at the equilibrium state
= .
aijdqidqj = 0; dqidqi >0 (1.32)

which implies that aij 'is a positive semi-definite matrix,
Let us now substitute the free energy expansion 1, 26 into

equations 1.19, thus deriving linear equations of motion for the system
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when subjected to mechanical and thermal perturbations:
aijqj +bij(T)qj = Qi + Bie; p T 1 S, (1. 33)

where a.. = a..,
ji

o
1) 1]

nite, It is important to observe that aij is constant, but the matrix

= bji’ and these matrices are positive semi-defi-

bij’ which represents the ¥

viscosity® in the system, can be a strong
function of temperature, and therefore time-dependent when the tem-
perature is tfansient. These equations reduce to those derived by
Biot (1) if the temperature is fixed at its reference value, © = 0,

Thus, it is observed that two of the three objectives stated in
the introduction have been accomplished; that is 1) the equations of
motion 1, 33 contain explicit temperature dependence, and 2) the viscous
properties are permitted to be temperature dependent.. The third ob-
jective, which is to bring in the effect of dissipation on temperature .

(or heat flow), is reached in section 1.4 in a study of the energy equa-

tion,.

1, 3. Solution of the Equations

The basic thermodynamic equations 1,33 will now be solved to
obtain q; as an explicit function of the thermal and mechanical loading.
A standard, convenient method of solving these equations involves the
determination of a transformation which simultaneously diagonalizes
aij and bij (i. €« , uncouples the equations of motion). It is well-
known that this fransformation can always be found when the matrices
are independent of time. (18), which is the case for our equations if
either bij is independent of temperature or the temperature is

constant in time. However, it is not actually necessary that the matrix
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b.lj be constant, but only that each element be proportional to the same
function of time; this follows from the fact that a change of time vari-

able can be made which reduces the differential equations 1. 33 to ones

with constant coefficients. Namely, if

: 3
by; = F(T)by; (1. 34)

0
where bij is independent of temperature, we can define a "reduced

¢
time® variable t by
7 :
at = St (1. 35a)
F[ T{t)]
or :
: . du
£ S\ . ' (1. 35b)
0 F[ T{(u)]

which casts equations 1. 33 in the form
dq

! -
§95.F by, E?Q- = Q. +p,0 (1, 36)
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In the remainder of Part I it will be assumed that 1. 34 is appli-
cable in order that the solutions, which are derived by diagonaliiation,
will be valid under transient temperature conditions, Further, as a
matter of convention, we shall assume that F(T) > 0,*
The details of solving equations l. 36 will not be given since the
results c‘an be written down simply by analogy with Biot's solutions (1).

Thus, we deduce that the solution of equations 1. 36, in operational

notation, is

“It will be seen later that F(T) is equal to the well-known polymer
shift factor, a (17). 'Since the use of a reduces the time and tem-
perature into one variable, t, this reduction is often called the time-
temperature superposition principle. :
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o ..
qi=Siij +ai 0; Igd = 1y By wnma B , (1. 37a)
Wher.e*_
cis) i <
S.. = Z 13 NS S (1, 37b)
J I TSFp Fp
(s)
ci8lp,
al Ev ) {1..37¢)

1
<~ 1+7 Fp

“This operational notation is purely formal, and can be defined by means
of the solutions of first order differential equations. For example, if
in equation 1, 37b we set

c(S Q, (t)
(s) _ :
o e A (a)
1+ TSFp '
then the first-order differential equation is
dq.(s)

qi(s) + ’r;F —_— = C(S)_Q(jt) , (b)

which has the solution

.t
Tr}T (Jorrten 2 (§, rritar)

0 = = : § % clEq (v v |avic
' 0

v B R Tl (o °

where the Cs are constants to be determined from initial conditions
(CS= 0 if the system is undisturbed at t=0), Thus the operational
form {a) is to be 1nterpreted as the 1ntegra1 operator in (c), Similarly,

C..Q;';(t) t C Q(v)ﬂv
7o - ), FrTer *C e

A second interpretation can be made in terms of the Laplace (or
Fourier) transform. If we denote the reduced-time transform of a
function, y(t%), as

(o0] i 0 i "
Fph = | e yteha | (e)

where the symbol p represents the transform parameter, then S..
and o.i‘ (with Fp replaced by p ) are transfer functions relatlng']
transformed forces, ., and temperature, 6, to transformed generalized
coordinates q.. In view of the generality and simplicity embodied in
the operationai notation in 1, 37, we shall use it throughout this disser-
tation.
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and
dt

The summation B‘ is extended to all distinct, finite, roots, Tgo of

ot S .
the vanishing determinant,

, .
[aij - = bij {=0 (1. 38)

Also, since the implied summation in equation 1, 37a extends over all
non-zero forces, the operator Sij‘ relates each coordinate to the forces
applied to (k) observed coordinates, with the number of hidden co-
ordinates being (n-k) However, the operational coefficient of thermal
expansion, as, defined in equation 1, 37c contains; a summation over
all indices j =1;2;000, N |

Some important properties of the coefficients in equations 1,37
follow from the symmetry and positive semi-definite character of the
matrices aij and b;j. It can be shown that

ngs) . cjff) i Cy=Cy ‘ - (1. 39)

and that these matrices are independent of temperature and are positive
semi-definite. In view of 1,39, Sij ‘is symmetric. Furthermore, the
constants 'r; (which we ShE;ll]. call retardation times in analogy with
their significance in the stress-strain equations of polymers) are real
and nqn-negativeo A zero retardatiqn time occurs when kb:J[ =0,
which corresponds to a reversible process (e.g. elastic deformation).

The coeffici ents cij correspondr to an infinite ;r'etardation time,
which occurs when laijl = 0. It is seen from equation 1,37b that the .

existence of Cij leads to steady-flow (coordinates which increase
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linearly with time) under the action of constant forces. Also it can be
shown from the equilibrium condition 1. 31 that such ste:?ldy—flow terms
do not occur in the operational coefficient of expansion, o.;).

We would now like to invert solution 1,37 and express the
applied forces in terms of observed coordinates and temperature.
This inversion is most easily done by returning to the original equations

1,36, which can be represented in matrix form as

r 10 N B ¥
1?11‘—‘ Mk J?1,1<+1‘ T *T*ln %G Qt B0
L | 1 |
1 \ .
Sy et S | By fg ~o e Brnl | « e Qt By o
Bl % S P 11®
L
1 | ‘l |
l l = :
J| ' 1 M [ \
| . | {
- - l
! o ‘ !
An, 1 - | gn ' F-z'ne
L | - N L i L |
(1. 40)

: t
where Aij = aij + pr;.j with Fp = d/dt » and the coordinates
£

matrix relating the (n-k) hidden coordinates to k observed coordi-

& o are hidden, The subsystem M 1is a symmetric square
k+l n y ¥ 4

nates and temperature. This submatrix can always be diagonalized,
in accordance with the previous discussion, and therefore we can as-
sume that the hidden variables gs, s =kt+l,.4.;n, are the normal

coordinates associated with the matrix M, which becomes

M = A (1. 41)
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?
The elements of M are AS = ag + prs. The non-negative character

of free energy and entropy production requires (assuming F(T) > 0):
a =0; b =0 {1.42)

Whenever &, = 0 or b; = 0, certain coefficients in 1.40 must
vanish in order to satisfy this non-negative requirement on free energy
at constant temperature and entropy production, This condition on the
coefficents can be seen by writing these functions with the diagonal

submatrix; from equation 1. 26 we have for 0 = 0,

k n
Fu i ? zy y +) agct=0  (1.43)
-231_ L 1_]1_] iy ISIS £, Tetal °
ij=1 i=1 s=k+l s=k+1

and from equation 1,15,

k , %& = -
o&"_ ¥ 6 o \ ? g S\ nz
s*Tprz BogHads + & 2" 2 blslsi-ubgs =0 (l.44)
ij=1 i=1 s=k+1 aTe-i]

where the summation signs are now used 'in order to distinguish be-
tween summation over hidden and observed coordinates, If b: is
‘zero, then all coefficients b;s corresponding to this (s) value must
also be zero as a result of this non-negative character of entropy pro-
duction, | Similarly, if an a vanishes, then all corresponding coef-
ficients a,  must also vanish, In addition, a; = 0 implies from
the equilibrium condition- 1, 31 that the corresponding thermal coeffi-
cient Bs must be zero,

With these points in mind, we can use 1,40 to solve for the
normal coordinates §S in terms of the observed coordinates and

temperature; these expressions are then substituted into the first (k)
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equations in 1. 40 to obtain the external forces as explicit functions
of observed coordinates and tempe rature.

This procedure leads to
the following result:

. |
= . = :
Q=) Tya -6 =l (1. 452)
=

where

(1. 45Db)
Fp +—
pS
= FpBES)
Mg = Z — *3B » (1. 45¢)
o Fp &g
pS
with the definitions
Di(‘].s)-;— ¢§s)¢§3) (1. 454)
D.. = a, -z li 2] (1. 45¢e)
j j S
S ’
i  §
P e PisPas
D,.=b,. - = (1. 451)
S S ¥
b?
{s) 2is is 1/2
Y Tr T T @ (1.45g)
= al £ b - ,
S S
b!
a %
B!s) - lei - - == J (1. 45h)
s b
S
. SBS
B, =P —? - . (1.454)
1 1, /s, a -
S
s 5
H b‘a
. B e
Ps © 3
S

(1. 455)
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where s is not summed unless indicated, and we have the symmetry
property

Ty;= Ty . : | (1. 46)

The matrices corhposing Tij are positive semi-definite, It is clear
from the definition 1, 45d that this property is true for D(;)., The non-
negativeness of the matrix Dij is shown‘by setting 6 = 0 and changing
qj very slowly. The work done in this process must be non-negative,

ic eeg
q. '
g ' Qdq, = $D.aq =0 ° (L. 47)
.

frornlwhich it follows that Dij' is non-negative, Similar'ly, fzhe power
input - Qicii must be non-negative for high rates of change of q;;
therefore Dizj has this same property.

The constant p;, defined in 1. 45j, is called the relaxation time
associated with the sth hidden normal coordinate. These constants
play a role which is similar to that of the retardation times 'T; ;
however, 'r: and p: are generally not equal since the latter repre-

4 ¢
sents the eigenvalues of the submatrix M while the quantities T

are eigenvalues of the entire (n x n) matrices.

l.4., The Energy Equation

In this section we first derive the energy equation in terms of
temperature and observed generalized coordinates. The coordinates
are then replaced by generalized forces by using results from the pre-
vious section. It will b‘e seen that by expressing the energy equation as

a function of observed variables, we are led to the concept of opera-
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tional specific heats. We further show that when the energy equation is
linearized, the total heat added to the element and the femperature
perturbation act essentially as conjugate coordinate and forc;e, re-
spectively,

Let us rewrite the energy equation 1.3 by assuming that the

internal energy is a function of (n) generalized coordinates and tem-

perature: i
dh= ¢ dT +| (au - ola, |aq (1. 48)
q bq. / T i i °
17T, q;
where
_ { du
cq = (a—T)q | (1. 49)

Making this same modification of equation 1,7 yields

- _ { Bu dT 1 du
ds = ﬁ)q 'T‘+T[ _qu>

3

- p'ngR) }dqi (1. 50)
T’ ql

Since the entropy is a state function we can write

3 .
1 87u  _ 8 |1 ,0u _.-1.(R)
T 3q8T ~ BT {“’I“' ( 8q,” P %4 )J (1. 51)
and obtain,
Su (R) o1 (R)
ﬁ-_p,Q*'T_(p Q ) =P (R - Q) (1. 52)

14
Use of identity 1,18b, expansion 1, 26 for the free energy, and equation

1.13 from Onsager?®s principle casts 1.52 in the form

du w1, _ ~1 -1 o
3q, " ° e T (. 33)
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If this equation is substituted into the energy equation 1.48 and we

divide by dt and p;l we find
H = qu + Tﬁiqi - 2D (1. 54)

where it was convenient to introduce the Rayleigh Dissipation Function

defined as

I

¥ L

b.. 9.9 . ; : _ (1. 55)

D :
1 17]

and capital letters are used to denote quantites per unit volume of the

reference state, i, e.,

o . i -1 (1. 56)

il
-
gl
O
il
-
¢}

It is seen from equation 1.15 that D is proportional to the éntropy

production per unit volume,
1 o I I .
D= > TS ' {l.57)

Equation 1. 54 can be written in terms of the reduced time, t?,

by multiplying it by - F, thus

FpH = cc'lee + TP, Fpq, - 2FD (1. 58a)
or, explicitly
dq. 1 dq. dq.
dH do i i
_r=cq—=+T{5i—z——bij—T—1'L (1. 58b)
dt dt dt - dt dt

Let us now eliminate the hidden coordinates from'l. 58 by writing
them in terms of observed coordinates and temperature by’ using the

last (n-k) equations of 1,40, With normal coordinates és for hidden
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variables we find

k 2,
I(F')—l N O s _Es_/_l?i-;-z—tpe (1. 59)
¥ P TPy = 7/, BiFPy E,F il 9 °
i p+
i=1 s ; pw.

s
where B? is the thermal expansion operator defined in equation 1,45c,
and

(1. 60)

-@N
Il
g

ot
S

in which the summation is extended over all values of s corresponding

to zero relaxation times, - Substitution of 1, 59 into 1. 58a yields

y 2
P Bs/.bs
FpH = | C_+ T+ T ) ——— |Fpo
4 s Fp & —
pS
k )
+ TZ s?qui ~ ZFD ’ (1. 61)
i=1

D can also be expressed as a function of observed coordinates and
temperatﬁ‘re by using equation 1.40. It is interesting to observe that
if we neglect the second order dissipatibn function D and assume
G/Tr << 1, the operational coefficient operating on p6 defines an

operational specific heat for fixed observed coordinates, i.e.,

.0 §H
C = (..___
66 :

. qi(]-:}-a IR RE] k) > .
: 1
) B, /by
— T
T FPt=y

Ps

_ 2
=C_+T B“+T_ (1. 62)

q

‘The symbol 6 is used since this specific heat is not an exact differ-

ential. All coefficients in this operational specific heat are non-
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negative since a = 0 and b; = 0.

The energy equation can also be eritten in terms of applied
forces in place of observed coordinates, This is easily done by using
lequations 1. 37 in order to replace all of the generalized coordinates

appearing in equation 1, 58a. Carrying out the substitution, we find
 k .
) o
FpH = [Cq+Tf31a1]FpG + TZ (Li Fin— 2FD (1. 63)

i=1
where cr.? is defined in equation 1.37c. Again, by neglecting the dissi-
pation function and setting T = Tr’ an operational specific heat at

constant applied forces is obtained,

. (s)
6H o
cl= _-) =C +7T Ba’=C_+T y ¥ (1. 64)
Q (66 Qi 'q rFiti q r/_; l+'r;Fp

‘where y(s) = Biﬁjci(jS)' CS

1. 62, and the coefficients are non-negative since ngs) is positive semi-

has the same form as the specific heat

definite, i, e;. .

o 1 ﬁiﬁjcg’? =0 - (1. 65)

It is of interest to invert equatior;s l. 61 and 1. 63 so as to obtain
temperature difference, 0, as a function df heat flow and observed
variables. This step is easily carried out by anaiogy with the solu-
tions in section 1.3, if, in equation 1. 54 we neglect D and evaluate
T at the reference yalue, Tr" Under.the assumption that this lineari-
zation is valid, integration yields
T v g
0= EHq_ -,-C;; Zl B,a; ' (L. 66)

Upon - substitution of this expression into the general equations 1.33
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there results

T

r o
[aij+ ‘C_q 61‘33] qj + bijqj = Qi + Bi 2

o|m

s i=1,2,00.,n (1. 67)

The matrix Tr /Cq[ Biﬁj] is symmetric and non-negative, so that 1, 67
has the same properties as the original equations 1.33. As a conse-
quence, all of the results of section 1.3 are applicable if we replace

T
i . .
@ by I—I/Cq and aij by ai.-f- E—q; Biﬁj. It may be noted in this regard

J
that by letting H = 0, the adiabatic operators are obtained,
Thus, in analogy with equation 1. 59 we find
k \ 2 0
o B ol b
_ o) sH’ "sH 2 H
P = /, P4 ¥ [E — 1 BH] = 5

i=1

where the subscri.pt (H) denotes the coefficients associated with the
new set of hidden normal coordinates. These coefficients are not the
same as in 1. 59 since the hidden coordinates must now be chosen such
that they are normal with respect to the matrices in equations 1. 67,

Substitution of equation 1. 68 into 1. 66 yields

qu =H - T_B;q;
2

ﬁsH
BSZH sH - H
= [(Cq— TTS )+Tr-y(F 7 )]C‘“
"; sH - EJ P q

ps.I—I
k , , .
. Trz ﬁi‘;{ a (1. 69)

where the summation Z is extended ‘over all values of ‘s (k+l = s = n)

S
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for which  a_,.# 0. The term (qu T, Z BSH/aSH) is positive since
-8

a low rate of heat addition, with qi =0 (i=1,.00,k), must produce a
temperature rise. Therefore all coefficients appearing in the operator
on I—I/C‘.cl are positive, A similar result is obtained when the observed
coordinates are replaced by the applied forces.

It is interesting to note that the operator on H/Cq has the
same positive property and form as the_diagonal operators Tii
appearing in equations 1. 45 (except for the matrix D:j)" In this regard
the heat added to the element plays the role of 2 ®coordinate® whose

" is the temperature perturbation 6. This same

conjugate "force
property exists in connection with the linearized energy equation

1. 63 in integrated form,

k
_[C +T Ll+~er 1o +T Z (1. 70)

Comparison of this expression with 1. 37 shows that temperafure again
appears as a force, with heat added as the conjugate coordinate
(except for the matrix Cij)i, We can therefore write 1, 37 in the general

form
q; = 7 S..Q.; i=1,2,0..,00H fl. 1)
od

and its inve“rse 1.45 (with 0 replaced by’ H/CCl in accordance with

equation 1. 67) as

Q. =Y T.. q. ; i=1,2,..., k4 (1.72)
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where temperature is included as one of thé forces, and heat added
as its conjugate coordinate. From different considerations, Biot (2)
observed a similar role of the thermal vai‘iables for systems with é'
non-uniform temperature, However, it must be emphasized that this
is not true unleés 8/T << 1 and the effect of dissipation on tempera-
ture is negligible, i, e., when the energy equation is linearized. In
addition, even with this linearization, the analogy is not corﬁplete
because of the existence of the matrices D;. and Cij in equationé

l. 45b and 1.37b, respectively.

ls. 5 Mechanical Models

Biot (2) has pointed out that the bperational equations 1. 37 and
1. 45 for the isothermal case (B = 0) 