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ABSTRACT 

A unified theory of the thermo-mechanical behavior of 

viscoelastic media is developed from studying the thermodynamics 

of irreversible processes, and includes discussions of the general 

equations of motion, crack propagation, variational principles, and 

approximate methods of stress analysis . 

The equations of motion in terms of generalized coordinates 

and forces are derived for systems in the neighborhood of a stable 

equilibrium state. They represent a modification of Biot1s theory 

in that they contain explicit temperature dependence, and a thermo­

dynamically consistent inclusion of the time-temperature super­

position principle for treating media with temperature-dependent 

viscosity coefficients. The stress-strain-temperature and energy 

equations for viscoelastic solids follow immediately from the general 

equations and, along with equilibrium and strain-displacement 

relations, they form a complete set for the description of the thermo­

mechanical behavior of media with temperature-dependent viscosity. 

In addition, an energy equation for crack propagation is derived and 

examined briefly for its essential features by applying it to a specific 

problem. 

The thermodynamic equations of motion are then used to 

deduce new variational principles for generalized coordinates and 

forces, employing convolution-type functionals. Anticipating various 

engineering applications, the formulation is phrased alternately in 

terms of mechanical displacement, stresses, entropy displacement, 



and temperature in thermally and mechanically linear solids. Some 

special variational principles are also suggested for applications 

wherein the nonlinear thermal effects of temperature dependent 

viscosity and dissipation may be important. ' 

Building upon the basic variational formulation, it is next 

shown that when these convolution functionals are Laplace-transformed 

with respect to time, some convenient minimum principles result 

which can be employed for the approximate calculation of transformed, 

.' viscoelastic responses. The characteristic time dependence of exact 

and approximate solutions is then derived and used in relating error 

in approximate viscoelastic solutions to error in the associated 

elas tic solutions. 

The dissertation is concluded with a study of some approximate 

methods of viscoelastic analysis. First, the important problem 

of inverting complicated Laplace transforms to physical time-dependent 

solutions is resolved by advancing two easily appli'ed, approximate 

methods of transform inversion. -These inversion methods and 

variational principles are then used in some illustrative, numerical, 

examples of stress and heat conduction analysis. 
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PART I 

GENERAL EQUATIONS OF IRREVERSIBLE THERMODYNAMICS 
WITH APPLICATIONS TO THE THERMO-MECHANICAL 

BEHA VIOR OF VISCOELASTIC SOLIDS 

1.1. Introduction 

The therITlodynaITlics of irreversible processes (TIP) has been 

used by several workers to develop a ITlacroscopic th'eory of linear i r -

reversible phenoITlena. Probably the ITlost unified and elegant treat-

ITlent was presented by Biot (1,2); we shall not atteITlpt to list ITlany 

of the other pape rs dealing w ith the subject, since a relatively COITl-

plete list can be found in refe'rence 2. Biot derived the linear equations 

gove rning a general, inhoITlogeneous, the rITlodynaITlic systeITl which is 

in the neighborhood of a stable equilibriuITl state. In addition, he 

clea rly illustrated their utility when he used them in deriving the 

stress-strain equations of an anisotropic, isothermal, viscoe lastic 

solid (1); pres enting a unified treatITlent of the rITloelastic daITlping (3 ); 

studying the behavior of porous ITledia (4); and deducing varia tional 

principles (2,5). While Biot's eITlphasis has been on the ITlechanics 

of solids, the gener,al equations could also be applied to other irreve r-

sible phenoITlena, such as reacting gases near an equilibriuITl COITlposi-

tion. 

One of the priITlary objectives of this dissertation is to establish 

the relation between teITlperature and deforITlations in viscoelastic ITledia 

by using TIP. As a ITlotivation for the theoretical developITlent whi c h is 

given in Part I, let us ,consider certain aspects of the theories proposed 

by Biot and SOITle other investigators which relate to the treatITlent of 
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thermal effects. The initial Biot formulation (1) permitted the thermo-

dynamic system to have a non-uniform temperature distribution , but 

temperature variations were treated as hidden coordinates (i. e., t he 

temperature at the geometric boundary of the system was maintained 

at a constant reference t emperature). As a consequence, for example , 

it was not possible to use the re sult s to deduce v i scoelastic stress-

strain equations with explicit temperature dependenc e . Later, Biot 

generalized his theory to admit temperature variations at the boundary 

(2) and arrived at an analogy between thermal and mechanical va riables. 

In particular, it was shown that a small excess temperature (actual 

temperature minus the referenc e temperature) applied to the boundary 

plays the role of a generalized force, while its conjugate coordinate 

is entropy displacement (heat flow into the system divided by the 

reference temperature). However, in addition to the assumption that 

the excess temperature is small, it is implicit in' this analogy that 

temperature rise due to the second order term in the energy equation 

(Rayleigh Dissipation Function) must be neglected. Another restrictive 

assumption which was introduced in his formulation is that the viscous 

properties of the system are independent of temperature. These as-

sumptions made by Biot are ~alid within the domain of a completely 

linear theory; however, they are impractical for some applications. 

For example, if one were to use this analogy in deducing the coupled 

thermo-mechanical equations for a viscoelastic solid, important effects 

would be neglected. For, not only are the viscous properties of a vis-
, 

'co elastic solid usually very sensitive to temperature, but transient 

deformations maintained over a long enough time may produce a sig-
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nificant temperature rise as a result of dissipation. 

Recently, Hunter (6) and Chu (7) have dealt directly with the 

derivation of the stress-strain-temperature equations and the associated 

energy equation of isotropic, viscoelastic solids. Even though they have 

relaxed certain of the above mentioned as sumptions on thermal effects, 

the applicability of their results is restricted since all of the implica­

tions of TIP were not utilized. For example , Hunter assumes that the 

specific heat and thermal expansion coefficient are algebraic factors 

rather than integral (or differential) operators, while Chu only con­

siders particularly simpl e stress-strain laws. In another paper 

Eringen (8) also introduces some explicit thermal effects in a study of 

more general systems, however he tacitly makes the same assumptions 

cited above in regard to Hunter1s work, and assumes fu rther that vis­

cosity is independent of temperature. 

In Part I-A of this dissertation we shall use TIP as a means 

of deriving equations of motion in terms of generalized coordinates and 

force's, but proceed with the thermodynamic formulation differently than 

Biot and Eringen In order to: 1) obtain explicit temperature dependence 

in the equations, 2) allow for temperature-dependent viscous properties, 

and 3) include the effect of dissipation on temperature (or heat flow). 

The results will be arrived at by studying the behavior of a thermody­

namic system with a spacewise uniform temperature which is not neces­

sarily constant in time, rather than wi'th an arbitrary temperature distri­

bution as permitted by Biot. It'will be seen that the equations of motion 

reduce to those d erived by Biot when thermal effects are omitted. 

Following the derivation and solution 6f the equations governing 
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the behavior of a thermally homogeneous system, we present an exposi-

tion of Biot1s linear the rmodynamic theory (2); this presentation will 

serve the dual purpose of contrasting the features of his development 

with ours and providing background information which will be needed 

ln Part II. 

The second half of Part I is concerned primarily with using the 

re sults obtained in the first half to deduce the stress:"strain-tempera-

tur e equations and energy equation of anisotropic viscoelasticity. This 

objective is readily accomplished by interpreting a viscoelastic material 

element as a closed thermodynamic system at a uniform temperature, 

and then associating mechanical strains and stresses with the general-

ized coordinates and forces. When these equations are combined with 

the infinitesimal strain-displacement relations and equilibrium equa-

tions, a complete set of field equations is obtained for the coupled 

thermo-mechanical, small deformation behavior of viscoelastic solids. 

The set is, in general, nonlinear due to the diss~:pation function in the 

energy equation and the assumed temperature d e pende nt viscosity. 

It should be emphasized that the relations between stress, 

strain, and temperature are deduced directly from TIP, without intro-

ducing spring-dashpot models in the development. However, it is shown 

that for most practical cases all moduli, coefficients of expansion, and 

specific heats are . in~egral (or differential) operators which can be repre-

sented by the well-known m .echanical models consisting of Maxwell ele-
, 

ments in parallel or Voigt elements in series. This analogy was pointed 

out by Biot (2) for isothermal moduli, but the proof for the specific 

heats and thermal expansion coefficients is believed to be new.. Rec ent 
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experimental work by Kovacs and others (9, p. 411) substantiates the 

deduction for thermal expansion o f seve ral polymers. 

The situation in which this Voigt or Maxwell representation is 

not thermodynamically admissible occurs only when the temperature 

is transient and the viscous prope rties of the material ar e such that 

the time-temperature supe rposition principle (9, p. 209) i s not obeyed. 

In such a case, a mechanical mode l can still be used to r epresent the 

behavior, however an array of springs and dashpots is needed which 

is more gene ral than the simple combinations of Maxwell and Voigt 

elements. As a practical matter, however, it is known that the super­

position principle applies to most linear viscoelastic metals and non­

metals, and is also predicted by simple molecular models (9, p. 201; 

10 ). 

Providing the time-temperature superposition principle is ap­

plicable, there is another intere sting implication of the the rmodynamic 

analysis. To be specific let us suppose that a relaxation modulus of a 

given material is found to obey this superposition principle , in which 

the relation · between time and temperature is given by a certain tem­

perature d ependent Ushift factor. It Then the implication is that all 

other mechanical and thermal properties (moduli, thermal expansion 

coefficients, heat capacities) which are associated with the same mole ­

cular processes also obey this superposition principle and have the same 

shift factor. It may be noted that experimental work by Kovacs, Marvin, 

and others (9, p. 223 and p. 414) confirms this deduction for the bulk 

and shear moduli and the thermal expansion coefficients of some poly­

mers. Birefringence in polymers, of interest to photoelasticians, is 
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another property which is expected to have the same shift factor since, 

just as stress-strain behavior, it is directly related to molecular con-

figurations (ll). For example, it is anticipated that the time-dependent 

strain and stress optical c oefficients reported by Theocaris and 

Mylonas (12) for one temperature, have the same time-temperature 

superposition behavior as t he corresponding moduli. 

To conclude Part I, we indicate how TIP could be u se d to intro-

d uce rate effects into finite deformation and crack propagation prob-

lems. Equations are postulated which enable one to make a finite 

d efo rmation analysis providing the free energy function is known. In 

addition, an energy equation for viscoelastic solids is proposed which 

can be. used in predicting the propagation of a crack if its direction of 

travel is known. The equation is examined br:iefly for its essential 

features when applied to a special problem. 

A. GENERAL THEORY 

1.2. Derivation of the Thermodynamic Equations for Systems at 

a Uniform Temperature 

We consider now a thermodynamic system of unit mass which 

has a prescribed, space-wise constant temperature. Its thermodynamic 

state is assumed to be defined by n state variables q. 
1 

(gene ral iz ed 

c oordinates), and by either temperature or internal energy. If the 

system is not spacewise uniform except for temperature, the state 1S 

defined by subdividing (he system into cells sufficiently small that 

properties can be considered as uniform in each cell; this can be done 
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as long as it is not neces sary to rnake the size of each cell cornparable 

with atornic dirnensions. Extensive properties such as total entropy 

and internal energy are evaluated by a surnrnation of loc a l values over 

all cells. The coordinates q. are very general and can represent 
1 

such varied quantities as rnechanical strains, rnolecular confi gurations 

in a polyrner, location of interstitial atoms in a rnetal, chemical com-

position of reacting gases, etc. A generalized force a., conjugate 
1 

to the variable q., is defined by' the condition that a.oq. is an incre-
1 1 1 

rnent of external work per unit volume done on the system. 

While the equations of rnotion which are derived in this section 

are quite general in that they are a pplicable to linear syste rns satisfy-

ing the above assurnptions, we shall use them later only for d e ducing 

the therrno-rnechanical equations of a linear, anisotropic, viscoelastic 

solid. For this specific situation, six of the coordinates q. 
1 

(i = 1, ••• , 6) 

are associated with the six independent cornponents of the infinitesirnal 

strain tensor, e ..• 
1J 

The rernaining (n-6) variables q. (i = 7, ••• , n) 
1 

are used to represent liinternal degrees of fr eedorn, Ii and are called 

hidden coordinates. Hidden coordinates are defined by the condition 

that their conjugate (externally applied) forces are always zero. The 

I1rnolecular configuration n in a polyrne r is an irnportant exarnple of a 

hidden coordinate. With q . (i = 1 •••• ,6) as the strains, e .. , the incre-
1 1J 

ment of work done on an element of unit mas s in a small change oq. 
1 

is (13, p. 82) 

-1 -1 P a.liq. = p <T •• lie . . 
1 . 1 ' 1J 1J 

(l. 1) 

where <T • • is a cornponent of the stress t .ensor and p is the density. 
1J 
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Consequently, we shall later associate the generalized force Q. 
1 

(i = 1, ••• ,6) with the six independent components of the stress tenS01". 

TIP will now be applied in order to obtain the equations govern-

ing the behavior of the system defined above as it passes through non-

):0:-

equilibrium states. -- First, we must calculate the :rate at which en-

tropy is produced as a result of irreversibility in order to apply 

Onsager's Principle, which will be stated later. This calculation 

requires that the basic hypothesis of TIP be used (14); namely, the 

entropy of a system which is sufficiently close to equilibrium can be 

~:(>.'( 

defined by classical thermodynamic variables. Assuming that the 

entropy of a system of unit mass, s, is an explicit function of internal 

energy, u, and the generalized coordinates, q., the change in entropy 
1 

:.!c::.:,= ~:c 
is 

,', 
. By equilibrium we will mean classical thermodynamic equilibrium, 
which some authors prefer to call thermostatic equilibrium. 

~():c 

The legitimacy of this hypothesis has been investigated by several 
workers. For example, Prigogine (15) has used the kinetic theory of 
gases to show that for transport processes, the domain of validity of 
this assumption extends throughout the domain of validity of linear 
phenomenological laws (Fourier's law of heat conduction, Fickis law 
for mass diffusion, etc.). In the case of chemical reactions, he has 
shown that the reaction rates must be sufficiently slow so as not to 
perturb the Maxwell equilibrium distribution of velocities of each com­
ponent to an appreciable extent; this excludes only reactions with ab­
normally low energy of activation. Thus, for most processes, the 
assumption that the entropy can be defined by classical thermodynamic 
variables is expected to be valid ev:en quite far from equilibrium. 

):C~o:< 
Unless specified otherwise, we shall use the tensor notation that a 

repeated index is to be summed out, e. g. 
n 

(;:. ) t dqi == L (;:.) tdqi 
1 u,q. 1.=1 1 u,q. 

~ 1 

and 
n 

Q.dq. == "\ Q.dq. 
1 1 6 1 1 

i=l 
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ds = (~~) du + 
qi 

where qi denotes all coordinates ql' ••• ' qn with exception of 

(1. 2) 

q .• 
1 

From the First Law of Thermodynamics the increment of heat, dh, 

added to the unit mas s is 

-1 
dh = du - p Q. dq . 

1 1 
(1. 3) 

When dq. = 0 the incremental process is reversible and from the 
1 

Second Law of Thermodynamics Tds = ·dh, so that, using e quations 1.2 

and 1.3, we have 

(1. 4) 

where T is the (instantaneous) absolute temperature ·of the system. 

This permits the entropy change to be written as 

T ds = du + T (: s. ) i dqi (1. 5) 
ql U, q. 

1 

. which is Gibb£s equation in generalized form. It is convenient to de­

fine the state function Q~R) as 
1 

(l. 6) 

and call Q~R) a reversible force. With this notation. equation 1. 5 
1 

becomes 

T ds = du _ p-1Q~R) dq . 
1 1 

(1.7) 

Imagine now that the system is immersed in a large heat reser-
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voir which has the same temperature as the system. As suming tha t 

the combine d system consisting of the reservoir and actua l sys t e m is 

insulated, the entropy change of the reservoir is dS
R 

= - dh/T. Con­

sequently, the incremental entropy cha nge of the total system, ds i, is 

I dh 
ds = ds + dS R = ds - T (1. 8a) 

which is the entropy change due to irreversibility. This entropy change 

is readily evaluated for the sys t em under consideration by subtraction 

of equation 1. 3 from 1.7, to find 

ds i = ~T (Q . _ Q ~R» dq. 
p 1 1 1 

(1. 8b) 

which, when divided by the time increment dt, yields the desired ex-

pres sion for the rate at which entropy is produced, 

where 

. ' 
s · = 1 • 

-T X . q . P 1 1 

X. == Q. _ Q~R) 
1 1 1 

(1. 9a) 

(1. 9b) 

• i 
and the dot denotes. differentiation with respect to time. s is termed 

the entropy production per unit mass and X. the irreversible component 
1 

of force applied,. to the coordinate q.. This force may be viewed, for 
1 

example, as an internal force which arises from ttviscosityli in the 

system and resists the motion of q .• 
1 

The important principle of TIP is now introduced, namely 

Onsageris Principle, which can be stated as follows (14): If the entropy 

production is written in the form 



" . 
s = X. q. 

1 1 

II 
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and the forces Xi are proportional to the "fluxes" qi' that is, 

" x. = 
1 

II • 
b .. q. 

1J J 
i=l, ..• ,n 

(1. 10) 

(1. 11) 

then the matrix of coefficients b~l. 1S symmetric. Equation loll can be 
1J 

written in the notation of 1. 9 by setting 

" 1 X. =- X 
1 pT i 

(1. 12) 

so that we obt ain the set of equations for the qi' 

Q.= Q~R)+ b .. (T)q.; 1 = 1,2, ••• , n 
1 1 1J J 

(1. 13) 

with b .. = b .. , and the matrix b .. may be a function of t e mperature, 
1J J1 1J 

Another property of the matrix b ij is deduced by applying a 

corollary of the Second Law of Thermodynamics, which states that for 

all possible processes (16) 

I 

ds 2: 0 (1. 14) 

Substitution of equations 1.13 into 1. 9 and using this property of the 

I 
entropy change, ds , yields 

• I 
S for q.q. > 0 

1 1 
(1. 15) 

which implies that b .. is a positive semi-definite matrix. The equality 
1J 

sign is needed in order to allow for reversible processes, e. g. elastic 

deform.ation. 
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Strictly speaking, linearity between fluxes and forces must b e 

i nt roduc,ed as an assumption, r athe r than as info rmation given by 

Onsager1s Principle. However, this linearity has been found to be 

generally true for the thermodynamic s ystems sufficiently close to 

equilibrium; indeed, most systems exhibit this property quite far from 

,~ 

equilibrium. Of course, the ultimate justification of this assumption 

and its domain of validity depend on the ability of the resulting equations 

1.13 to predic t experimental observations. 

A more useful form of these equations is obtained by using 

definition 1. 6 to express Q~R) as a function of q, and T. To do so, 
1 1 

we introduce the Helmholtz free e n e rgy, f. which is defined as 

f = u - Ts 

Substitution of f into equation 1. 7 yields 

which implie s 

df ::: - s dt + p -lQ~R) dq. 
1 1 

-s::: (~~) 
q. 

1 

Use of identity 1.l8b permits equations 1.13 to be written as 

(1. 16) 

(l. 17) 

(l. 18a) 

(1.18b) 

,', 
'Chemical reactions and the mechanical behavior of metals appear to 
be the only important exceptions. However, even in these cases 
linearity exists when the systems are sufficiently close to equilibrium 

( (19,10). 
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Q. 
1 

= p (:f) + b .. (T)q . 
q. T I IJ .J 

1 , qi 
1=1,2, •.. ,n (1. 19) 

w hich is a set of n equations of motion for the q . , under the action 
1 

of prescribed forces, Q., and tempe rature, which are not required to 
1 

be constant in time. 

It should be emphasized that the set 1.19 is expected to be valid 

for many systems which are not even close to equilibrium. However, 

through a consideration of the free energy we now wish to specialize 

these equations to a general system which is in the neighborhood of a 

reference state, defined as the state in which all forces Q. are zero, 
1 

the temperature is T , and the system is in thermodynamic equilibrium. 
r 

By expanding the free energy in a Taylor series and neglecting powers 

higher than second order one obtains 

f = (:.;) e + (oaf.) q. + 
r qJ r J 

) q.q . 
r 1 J 

(1. 20) 

where e:; T - T ; q. and f are arbitrarily taken as 'zero at the 
r 1 

reference state, denoted by the subscript r. 

Some useful properties of the coefficients in the series 1. 20 

will now be enumerated. First, it is observed from equations 1.19 

that, by definition of the reference state, 

(:~.) = 0; i = I.2, •••• n 
1 r 

(1. 21) 

In addition, definition 1.16 and identity 1.18a show that 
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(;~ ) 
r 

= - s 
r 
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(1.22) 

(1. 23) 

in which (au/aT) is the specific heat at constant generalized co-
qi 

ordinates, c , as seen from equation 1.3. 
q 

Furthermo re, within the 

region of validity of expansion 1. 20, the specific heat is a constant 

given by 

If we also make the definitions, 

= a .. = 
1J 

- (3. 
1 

the free energy expansion becomes 

1 
f = - s e +-2- a .. q .q. 

r P r 1J 1 J 

(1. 24) 

a .. 
J1 

(1. 25) 

(1. 26) 

Further information about the free energy can be deduced by 

first combining the energy equation 1. 3, definition 1.16, and 1. 8a, to 

find 

-1 
df = - T ds I - s d T + p Q .dq . 

1 1 
(1. 27) 
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Under the assumption that a stable equilibrium state exists at the tem-

perature T (which is not necessarily equal to 
e 

T ) 
r 

with all forces 

zero, the constant temperature behavior of f is found in the neighbor-

hood of this state by integrating 1. 27 with d T ::: 0, 

I 
f - f ::: T (s -

e e e 
(1.2 8 ) 

where the subscript e refers to the equilibrium state. Consider 

first the limit case of reversibl e processes (e. g., motion of an elastic 
, 

body) so that S ::: S 
e 

and the state function f is equal to t he work done 

in displacing the system from equilibrium. Mechanical stability re-

quires this work to be positive and therefore f is a minimum at the 

equilibrium point. For the actual case in which processes are ir-

reversible, we can determine the nature of f by applying the classical 

thermodynamic result (16) that the entropy of an isolated system is a 

maximum at a stable equilibrium point. If the case is considered in 

which Q. ::: 0, the system of interest and its reservoir make up an 
1 . 

I 
isolated system; hence at equilibrium s IS a maximum and 1.28 shows 

>:c 
that f is a minimum. Thus, the equilibrium state is distinguished by 

,', 
. When the reference state is defined such that the system is under forces 
which are not all zero, it is necessary to work with the Gibb's free 
energy, g. For example, in the case of a gas whose reference state 
is at a pressure Pe. the Gibb1s free energy is 

g ::: f + Pe v (a) 

where v is the specific volume. It is seen that this casts equation 
1. 28 in the form 

, 
::: T (s - s ') 

e · e 
r q · + J 1 

qie 

-1 Q.p dq. 
1 1 

(b) 

where the force conjugate to qv ( ::: - v) is (p - Pe)P. We see that g, 
rather than f, is a minimum at the reference state. 



-16-

the conditions 

i :: 1 •••• , n (1.29) 

and for stability 

) dq.dq . 2: 0; dq .dq. > 0 
T 1 J 1 1 

(1. 30) 

e 

in which the derivatives in equations 1.29 and 1.30 are e valuated at 

an equilibrium state that is not necessarily at the reference tempera-

ture T. It should be observed that f retairi:s this behavior even when 
r 

forces Q. are applied, since it is a function of state variables and 
1 

.therefore does not depend explicitly on the external forces • . Also, we 

have included the equality sign in 1.30 in order to allow for the condi-

tion of neutral stability (non-unique equilibrium state) with respect to 

some configurations. It will be seen later that this inclusion l eads to 

steady flow under the action of timewise constant forces. 

Substitution of expansion 1. 26 into equation 1. 29 for the equili-

brium condition yields an expression for the equilibrium configuration. 

q. , thus 1e 

a . . q. :: 9{3. 
1J J e · 1 

(1. 31) 

Also, inequality 1.30 requires for stability at the equilibrium state 

a .. dq .dq. >- OJ 
1J 1 J 

dq.dq. > 0 
1 1 

which implie s that a .. ' is a positive semi-definite matrix • . 
1J 

(1. 32) 

Let us now substitute the free energy expansion 1.26 into 

equations 1.19, thus deriving linear equations of motion for the system 
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when subjected to mechanica l and thermal perturbations: 

a . . q. + b .. (T)q . = Q. + 13.9; i = 1,2, ••• , n 
IJ J IJ J 1 1 

(1. 33) 

where a .. = a .. , b .. = b .. , and these matric es are positive semi-defi-
~ Jl ~ Jl 

nite. It is important to observe that a . . 
IJ 

is constant, but the matrix' 

b . . , which represents the "viscosity" in the system, can be a strong 
IJ 

function of temperature, and therefore time -dependent when the tem-

p e rature is transient. These equations reduce to those derived by 

Biot (1) if the temperature is fixed at its reference value, 9 =' O. 

Thus, it is observed that two of the three objectives stated In 

the introduction have been accomplished; that is 1) the equationS ' of 

motion 1.33 contain explicit temperature dependence, and 2) the viscous 

properties are permitted to be temperature dependent. The third ob-

jective, which is to bring in the effect of dissipation on temperature 

(or heat flow), is reached in section 1.4 in a study of .the energy equa-

tion. 

1.3. Solution of the Equations 

The basic thermodynamic equations 1.33 will now be solved to 

obtain q. as an explicit function of the thermal and mechanical loading. 
1 

A standard, convenient method of solving these equations involves the 

determination of a transformation which simultaneously diagonalizes 

a. . and b. . (i. e., uncouples the equations of motion). It is weIl-
IJ 1J 

known that this transformation can always be found when the matrices 

are independent of time , (1 8), which is the case for our equations if 

either b .. is independent of temperature or the temperature is 
1J 

constant in time. However, it is not actually necessary that the matrix 
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b .. be constant, but only that each element be proportional to the same 
IJ 

function of time; this follows from the fact that a change of time vari-

able can be made which reduces the differential equations 1. 33 to ones 

with constant coefficients. Namely, if 

t 

b .. ::: F(T}b .. 
IJ IJ 

(1.34) 

i 
where b .. IS independent of temperature, we can define a "reduced 

IJ 
i 

time tt variable t by 

i dt 
dt ::: ---

F[ T(t}] 
or 

which casts equations 1.33 in the form 

i 

a .. q. + b .. 
IJ J 1J 

dq. 
-J- ::: Q.+ i3.e 
dt 1 1 

(1.35a) 

(1. 35b) 

(1. 36) 

In the remainder of Part I it will be assumed that 1. 34 i s appli-

cable in order that the solutions, which are derived by diagonalization, 

will be valid under transient temperature conditions. Further, as a 

~, 

matter of convention, we shall assume that F(T} > O. 

The details of solving equations 1.36 will not be given since the 

results can be written down simply by analogy with Biot's solutions {l}. 

Thus, we deduce that the solution of equations 1.36, in operational 

notation, is 

':'It will be seen later that F(T} is equal to the well-known polymer 
shift factor, aT (17) • . Since tIre use of aT reduces the time and tem­
perature into one variable, t, this reduction is often called the time-
temperature superposition principle. . 
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o 
q. :=: S . . Q. + a . 8; 

1 1J J 1 
i~ j = 1, 2, •• 0 , n (1. 37a) 

~( 

where 

d~ ) C .. 

L S .. 1J + ---2.:l. I 1J 
(1. 37b) 

1 + T Fp Fp 
s s 

C(s) (3. 
0 '\' 1J J a. =L I 1 (1. 37c) 

1 + T Fp 
s s 

,', 
'This operational notation is purely forrnal. and can be defined by means 
orthe solutions of first- order differential equations. For example, if 
in equation 1. 37b we set 

d~)Q.(t) 
q~s):=: 1J IJ (a) 

. 1 1 + T Fp 
s 

then the first-order differential equation is 
(s) 

(s) I dqi () () 
qi + T s F CIt :=: C ijQ jt 

which has the solution 

(b) 

:~(S~F[~fu)J)[ -%-(SVF[~(u)J) . } 

q~s):=: e s, steT s 0 d~)Q.(v) dv ] dv+C 

1 Ts oL 1J J F[ T(v)] (c) s 

where the C are constants to be determined, from initial conditions 
(C :=: 0 if theSsystem is undisturbed at t:: 0). Thus the operational 
folm (a) is to be interpreted as the integral operator in (c). Similarly, , 

1J J = 1J J 
C .. Q :(t) st C .. Q ~(v) dv 
Fp - 0 -=¥F;-r["""T'<7(v-')~J- +C s (d) 

A second interpretation can be made in terms of the Laplace 
Fourier) transform. If we denote the reduced-time transform of a 
function, y(t~), as 

- I r OJ -p't; i I 
yep ) :=: J

o 
e yet )dt (e) 

i . 
whe re the symbol p represents t)le transform parameter, then S . . 
and as' (with Fp replaced by p ') are transfer functions relating1J 

(or 

1 - -transfo'rmed forces, Q., and temperature, e, to transformed gene ralized 
coordinates q.. In vie~ of the generality and simplicity embodied in 
the operational notation in 1.37, we shall use it throughout this diss e r­
tation. 
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The sununation ), is extended to all distinct, finite, roots, 
L.../ 

the vanishing dete"rlninant, 

I 

Ts' of 

(1. 38) 

Also, s IDce the implied summation in equation 1. 37a extends over all 

non-zero forces, the operator S .. relates each coordinate to the forc·es 
lJ 

applied to (k) observed coordinates, with the number of hidden co-

ordinates being (n - k). However, the operational coefficient of thermal 

expansion, 
o 

ai' defined in equation 1. 37c contains a summation over 

all indices j = 1, 2, ••• ,n. 

Some important properties of the coefficientsln equations 1.37 

follow from the symmetry and positive semi-definite character of the 

I 
matrices a .. and b... It can be shown that 

1J lJ 

c .. ::: C .. 
lJ Jl 

(1. 39) 

and that these matrices are independent of temperature and are positive 

semi-definite. In view of 1. 39, S.. is symmetric. 
lJ 

Furthermore, the 

constants 
, 

Ts (which we shall call ·retardation times in analogy with 

their significance in the stress - strain equations of polymers) are real 

and non-negative. A zero retardation time occurs when 

which corresponds to a reversible process (e. g. elastic deformation). 

The coeffici ent;:; C.. correspond to an infinite retardation time, 
lJ 

which occurs when la .. I::: O. It is seen from equation 1. 37b that the 
lJ 

existence of C .. leads to steady - flow (coordinates which increase 
lJ 
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linearly with time) under the action of constant forces. Also it can be 

shown from the equilibrium condition 1.31 that such steady-flow terms 

do not occur in the operational coefficient of expan sion. a~. 
1 

We would now like to invert solution 1.37 and express the 

applied forces in terms of observed coordinates and temperature. 

This inversion is most easily done by returning to the origin'al equations 

1.36, which can be represented in matrix form as 

~l, k+l 
I I 

-----A 
I
ln 

I 
I 

----A 
k,n Akl --- ).kk I Ak • k+l 

Ak+~-,-:~-/ 
A 

n.l 

I I M 

::/ 
:: 

(3 El 
n 

(1.40 ) 

where A .. 
1J 

I 
:: a .. + Fpb .. 

1J 1J 

. r 
with Fp = dicit. and the coordinates 

£k+l···£n are hidderi. The subsystem M is a symmetric square 

matrix relating the (n-k) hidden coordinates to k observed coordi-

nates and temperature. This submatrix can always be diagonaliz e d. 

in accordance with the previous discussion. and therefore we can as-

sume that the hidden variables £s' s:: k+1 ••••• n, are the normal 

coordinates associated with the matrix M. which becomes 

M :: (1. 41) 
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r 
The elements of M are A = a + Fpb. The non-negative character s . s s 

of free energy and entropy production requires (assuming F(T) > 0): 

a :> 0 
S 

Whenever a = 0 . s 

; 
b :::: 0 

s 

1 

(1. 42) 

or b = 0, certain coefficients in 1. 40 must 
s 

vanish in order to satisfy this non-negative requirement on free energy 

at constant temperature and entropy production. This condition on the 

coefficents can be seen by writing these functions with the diagonal 

submatrix; from equation 1.26 we have for e = 0, 

(1. 43) 

and from equation 1.15, 

+ f b ~ € 2} :> 0 (1. 44) l..J s s 
s=k+l 

where the summation signs are now used ·in order to distinguish be-

tween summation over hidden and observed coordinates. 
~ 

If b is s 

zero, then all coefficients b~ corresponding to this (s) value must 
IS 

also be zero as a result of this non-negative character of entropy pro-

duction. Similarly, if an a vanishes, then all co.rresponding coef­
s 

ficients d. must a l so vanish. 
IS 

In addition, a. = 0 implies from 
IS 

the equilibrium condition 1.31 that the corresponding thermal co effi-

cient j3 must be zero. 
s 

With these points in :mind, we can use 1. 40 to solve for the 

nor:mal coordinates s~ in terms of the observed coordinates and 

te:mperature; these expressions are then substituted into the first (k) 
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equati ons in 1. 40 to obtain the exte rnal forces as expl icit functions 

of observed coordinates and tempe rature. This procedure leads to 

the following result: 

T - p'o. e . . q. t-' 
~J J ~ 

(i == 1, ••• , k) 

w here 

f 
+ D : . + D .. Fp 

~J ~J 

s 

FpB~ s) 
13~ == L ~ + B. 

1 ~ 
Fp +-v ~ 

s 
ps 

w ith the definitions 

== ljJ~s)ljJ~s) 
~ J 

-I a. a 
sj 

D .. == 
~s 

a .. 
~J ~J a 

s 
s 

, I , t -), 
b. b 

sj 
D .. == b .. 

lS 

~J ~J .'-J b
t 

s S 

i 

y.,~s) 
a . b. 

1/2 lS l S 
== :vz a 

1 b
t s 

a 
s s 

t 

== 13 [~ s a 
s 

b . ] lS - --
bE 

S 

B. == 13. - \' 
1 1 , .0 

b~ 
s 

p . == 
s a s 

s 

(1.45a) 

{I. 45b) 

(1.45c) 

(1. 45d) 

{I. 45e) 

(1. 45f) 

(I. 45 g) 

{I. 45h) 

(1.45i) 

{I. 45j) 
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where s IS not summed unle ss indicated, and we have the symmetry 

property 

T .. - T . . 
IJ J1 

(1. 46) 

The matrices composing T .. are positive semi-definite. It IS cle ar 
1J 

from the definition 1. 45d that this property is true for D(.~). The non­
lJ 

negativeness of the matrix D . . is shown by setting 8 = 0 and changing 
1J 

q . very slowly. The work done in this process must be non-negative, 
J 

Sqi Q.dq. = 
' 0 ,1 1 

1 D :> 0 -2 , .q.q. 
IJ 1 J , 

(1. 47) 

from, which it follows that D .. , is non-negative. Similarly, the power 
IJ 

input Q .q. must be non-negative for high rates of change of ql'; 
1 1 

i 
therefore D,. has this same property. 

IJ 

The constant p I , defined in 1. 45j, is called the relaxation time 
s 

associated with the sth hidden no r mal coordinate. These constants 

playa role which is similar to that of the retardation times 

7 i 

I 
7' . 

s ' 

however, 7' and p are generally not equal since the latter repre-
s s 

R 
sents the eigenvalues of the submatrix M while the quantities 7's 

are eigenvalues of the entire (n x ,n) matrices. 

1. 4. The Energy Equa tion 

In this section we first derive the energy equation in terms of 

temperature and observed generalized coordinates. The coordinates 

are then replaced by generalized forces by using results from the pre-

vious section. It will be seen that by expressing the energy equation as 

a function of observed variables, we are led to the concept of opera-
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tiona1 specific heats. We further show that when the energy equation is 

linearized, the total heat added to the element and the temperature 

perturbation act essentially as conjugate coordinate and force, re-

spectively. 

Let us rewrite the energy equation 1.3 by assuming that the 

internal energy is a function of (n) generalized coordinates and tem-

perature: 

dh = CdT+i(au\ t 
q L aq. JT 1 , q. 

. 1 

-1 J - p Q. dq. 
1 1 

where 

Making this same modificatiori of equation 1.7 yields 

ds = (~) d T + 1 [(~) _ 
aT T "T aq.t 

q. 1 T,q. 
P -1Q{.R) Jd 

1 qi 
1 1 

Since the entropy is a state function we can write 

and obtain, 

1 a2
u 

T aq.aT 
1 

a 
= aT [ 

~ ( au _ . -lQ~R) ) ] 
T aq. p 1 

1 

(I. 48) 

(1.49) 

(1. 50) 

(1. 51) 

(1. 52) 

Use of identity 1. 18b, expansion 1. 26 for the free energy, and equation 

1.13 from Onsager's principle casts 1.52 in the form 

au 
aq . 

1 

, 
p-1Q . = 

1 

-1 -1· 
Tp 13. - P b . . q. 

r 1 r 1J J 
(1. 53) 
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If this equation is substituted into the energy equation 1. 48 and we 

divide by dt and p;l we f i n d 

H = c e + Tj3.q . - 2D q 1 1 
(1. 54) 

whe r e it was conveni ent to introduce the Rayleigh Dissipation Fun cti on 

defined as 

D := 1 b " -2 ., q.q. 
IJ 1 J 

(1. 55) 

and capital letters are used to denote quantites per unit volUIne of the 

reference state, i. e., 

. . 
H:= p h 

r 
c _ P -1 c 

q r q (1. 56) 

It is seen from equation 1.15 that D IS pr,?portional to the entropy 

production per unit volume, 

1 • I 

D = "2 TS (1. 57) 

Equation 1. 54 can be writt e n in terms of the r educed time, t : , 

by mult iplying it by . F, thus 

FpH;: C Fp8 + Tj3 . Fpq . - 2FD 
q 1 1 

or, explicitly 

~ = C d8 + 
dt q dt I 

dq . 
1 

Tj3. --
1 . dt i 

1 dq. dq. 
1 J 

b .. -'--1-
IJ dt dt 

(1. 58a) 

(1. 58b) 

Let us now eliminate the hidden· coordinates from 1.58 by writing 

them in terms of observed coordinates and temperature :by· using the 

last (n-k) equations of 1.40. With norrnalcoordinates ~s for hidden 
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variables we find 

(32/b r 
s s 

1 
Fp+-

2 P . 
s 

(1.59) 

where (3~ IS the therInal expansion operator defined in e quation 1.45c, 
1 

and 

(1. 60) 

s 

in which the s uInIna tion is extende d over all values of s corresponding 

to zero relaxation tiInes. Substitution of 1. 59 into 1. 58a yields 

2 ~ 

FpH = . [Cq + T(32+ T L (3sfb s 
]FP 6 1 

Fp +-
s r 

Ps 

k 

+ TL 0 
2FD (3. Fpq. -

1 1 
(1. 61) 

i=l 

D can also be expressed as a function of observed coordinates and 

teInperature by using equation 1.40. It is interesting to observe that 

if we n eglect the second order dissipation function D and aSSUIne 

6 / T « 1, the ope rational coefficient operating on p6 defines an r . 

operational specific h eat for fixe d observed coordinates, i. e . , 

(IiH) . 
Ii 6 qi(i=l, • • • , k) 

= C + T (32 + T ') 
q r rL...J 

s 

(32/b t 
s s 

1 
Fp+-f 

P s 

(1. 62) 

-The sYInbol Ii IS used since this specific heat is not an exact diffe r-

ential. All coefficients in this operational specific heat are non -
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negative since 
~ 

a 2:: 0 and b 2: 
s s 

o. 

The energy equation can also be written in ter:ms of applied 

forc es in place of observed coordinates. This is easily done by using 

equations 1. 37 in order to replace all of the generalized coordinates 

appearing in equation I, 58a. Carry ing out the substitution, we find 

FpH == [C + T(3.u?] FpEl + 
q 1 1 

o 
u. FpQ.-

1 1 
2FD (1. 63) 

i==l 

where u? ' is defined in equation 1. 37c. Again, by neglecting the dissi-
1 

pation function and setting T == T , an operational specific heat at . r . 

constant applied forces is obtained, 

C~= (~~)Q.== 
1 

'\' (s) 
C + T (3: U? == C + T I. ~ 

.q r 1 1 q r .'-I 1+7" Fp 
s s 

(1. 64) 

whe re y(S) == (3. (3.C.(s) • 
1 J 1J 

o 
C

Q 
has the sa:me for:m as the specific heat 

1. 62, and the coefficients are non-negative since 

definite, i. e. , 

y(s} == (3. (3.C~~) >- 0 
1 J 1J 

is positive se:mi-

(1. 65) 

It is of inte rest to invert equations 1. 61 and 1. 63 so .as to obtain 

te:mperature difference, e, as a function of heat flow and observed 

variables. This step is easily carried out by analogy with the solu-

hons in section 1.3, if, in equation 1. 54 we neglect D and evaluate 

T at the reference value, T. Under .the assu:mption that this 1ineari-: 
r 

zation is valid, integration yields 

H e == C­
q 

(1. 66) 

Upon · substitution of this expression into the general equations 1.33 
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T 
[a . . + e r 13.13 .] q. 

1J 1 J J q 
+ b .. q. 

1J J 
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i = 1, 2, 0 CJ. , n (1. 67) 

The matrix T Ie [13.13.] is symmetric and non-negative, so that 1.67 
. r q 1 J 

has the same properties as the original equations 1. 33. As a conse-

quence, all of the results of section 1.3 are applicable if we replace 
T 

e by Hie and a .. by a .. + e r 13.13 .• It may be noted in this regard 
q 1J 1J q 1 J 

that by letting H = 0, the adiabatic operators are obtained. 

Thus, in analogy with equation 1.59 we find 

k 

J3iHq i = I 
i=l 

+ 132 
] _E:!. H e 

q 
(1. 68) 

where the subscript (H) denotes the coefficients associated with the 

new set of hidden normal coordinates . These coefficients are not the 

same as in 1.59 since the hidden coordinates must now be chosen such 

that they are normal with respect to the matrices in equations 1. 67. 

Substitution of equation 1.68 into 1.66 yields 

e e = H - T J3.q. q r 1 1 

2 

2 
J3sH 
--Fp 

[(e - T L J3sH 
Tr ~~pa:Hl~ ) ] 

H = -) + C q .r'--l asH q 
s 

P sH 

(1. 69) 

i=l 

where the summation I is extended ·over al1 values of ' s (k+l ~ S ~ n) 

s 
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for w hich asH'" O. '""") 2 The term (C - T (3 la ) 
q r LJ sH sH 

is positive sinc e 

· s 

a low rate of heat addition, with q. = 0 (i;::: 1, ••• , k), must produce a 
1 

temperature rise. Therefore all coefficients appearing in the operator 

on H/c are positive. A similar result is obtained whe n the observed 
q 

coordinates are replaced by the applied forces. 

It is interesting to note that the ope;rator on H/c has the 
q 

s2.me positive property and form as the diagonal operators T .. 
11 

. ( f appearing in equations 1.45 except for the matrix D .. ). 
1J 

In this regard 

the heat added to the element plays the role of a ncoordinatel! whose 

conjugate tlforce" is the temperature perturbation 8. This same 

prop e rty exists in connection with the linearized energy equation 

1. 63 in integrated form, 

\' (s) 
H= [C +Tr.0 Y t 

q 1+ 7 Fp 
s s 

o 
u. Q. 

1 1 
(1. 70) 

Comparison of this expression with 1. 37 sh!=lws that temperature again 

appears as a force, with heat added as the conjugate coordinate . 

(except for the· matrix C .. )" We can therefore write 1. 37 in the general 
1J 

form 

k+l 

q. = l S .. Q. 
1 1J J 

i = I, 2, •.• , n +l {I. 71} 

j=l 

and its invers e 1. 45 {with 8 replaced by' H Ic 1n accordance with 
. q 

equation 1. 67} as 

k+l 

Q i = L 
j=l 

T .. q. 
1J H J 

i = 1,2, • • • , k+l {1. 72} 
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where temperature is included as one of the forces, and heat added 

as its conjugate coordinate. From different considerations, Biot (2) 

observed a similar role of the thermal variables for systems with a' 

non-uniform temperature. However, it must be emphasized that this 

is not true unless efT «1 and the effect of dissipation on tempera-

tureis negligible, i. e., when the energy equation IS linearized. In 

addition, even with this linearization, the analogy IS not complete 

because of the existence of the matrices D~. 
IJ 

and C .. 
IJ 

In equations 

1. 45b and 1.37b, respectively. 

1. 5. Mechanical Models 

Biot (2) has pointed out that the operational equations 1. 37 and 

1.45 for the isothermal case (8:::: 0) can be represented by mechanical 

models consisting of Voigt elements in series (Kelvin model, figure 

1.1) and Maxwell elements in parallel (Wiechert model, figure 1. 2), 

respectively. ·We shall now show that by making an intuitive modifi-

cation of these models, they can also be used to represent non-iso-

thermal behavior. Also, it will be seen that the operational specific 

heats, for example, have these same mechanical analogs. 

Consider first the series arrangement of Voigt elements, each 

consisting of a spring and dashpot, as shown in figure 1.1. The vis-

cosity of each dashpot is denoted by "s and the compliance of the cor­

responding spring is k • s 

It is assumed that each spring extends linearly with tempera-

ture in the absence of f,orce so that the force-displacement law for the 

th 
s spring is 
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Figure 1.1. Kelvin Model 

Figure 1.2. Wiechert Model 

Q 

4-q 

(1. 73) 

th 
where Q is the force in the s spring and q 1S the correspond-

sk s 

ing displacement. Also, the force in the sth , dashpot is 

(1.7 4) 

where we assume that 'I' is a constant while F(T) 1S the temperature 
s 

dependence. Using the assumption that the total force (Q:: Q + Q ) 
sk sYJ 

in each Voigt element is the same,. and that the total displacement of 

the model is q:: L qs' we derive. operationally, the force-displace-

s . 
ment-temperature equatlon: 

s 

k , 
s 

t 
1+7 Fp 

s 

+_,_1_ 
; 

T] Fp 
s 

a 
s 
i 

1+7 Fp s 

(1. 75) 
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where the retardation time has b een defined as 
r 

T. = 
1 

This r e sult 

is identical in form with equation 1. 37, . which verifies the model repre-

s e ntation if we l et q{t) b e an observed generalized coordinate and 

Q{t) be a generalized force. The cor respondenc e between coefficients 

is obvious, 

k s 
1 

C .. --t 
1J 'l1 

a 
s 

(l. 76) 

It is also observed that we can think of the thermal expansion operator, 

o 
a , 

s 

a 
s 

t 
l+TFp s 

(l. 77) 

and specific heats 1.62 and 1. 64 as being represented by their own 

Kelvin model (but without a free dashpot 'l1 t) fo r which e is the applied 

force. 

In v iew of the remarks made previously about the coefficients 

in equation 1. 37. compliances, 

ing to diagonal components, i. e. 

ks' and viscosities, 

(s) 
C.. and C .. , a re 

11 11 

I 
'l1 , correspond -

positive. How-

ever, this property is not required by thermodynamics for the off-

diagonal operators. 

The force-displacement-temperature equation associated with 

the Wiechert mode l shown in figure 1.2 can be derived in a similar 

fashion. D e noting the modulus of the " sth . spring by m • the v iscos ity 
s 

i 

by FTJ , and the coefficient of thermal expansion by 
s 

the following relations: 

we obtain 



and 

q = qs + q 
m s11 

s 

a 8] 
s 
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, 
11s 

p := 
s m 

s 

(1.78) 

where q 
s 

are the displacements in the 
th 

s spring and 
m 11 

dashpot, respectively. The expressions 1.78 combine to yield 

Q = [me + 1) I Fp + j msFp 

-; Fp +~ s 
Ps 

m a Fp 
s s 

1 
Fp+-r 

Ps 

(1.79) 

This equation has the same form as the general operational expression 

1.45; consequently, as befo re, a fo rrnal correspondence b e tween model 

parameters and thermodynamic derivatives can b e made. In addition, 

thermodynamics requires that the spring moduli be positive only 

when they are associated with a model representing a diagonal term 

of the matrix T... Furthermore, the opera'tor 
1J 

m a Fp 
s s 

Fp +.J:.., 
I 

P 
s 

(1. 80) 

t 

can be represented by its own model but without the dashpot (11). 

It can be noted in passing that if all expansion coefficients are 

equal , i. e. 

Q= 

a = a, and 11' = 0, then equation 1. 79 becomes 
s 

s 

m Fp 
s 

] [q-a8 ] (1. 8 1) 
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With Q = 0, the strain is simply p roportiona l to temperat ure change. 

The assumption of equ a l expan sion coefficients would appear to be 

physically reasonable for isotropic viscoelastic solids, for example. 

However, the behavior resulting from s'uch an as sumption contradicts 

experimental findings, at least for polymers near the glass tran sition 

temperature (9)0 

As a final remark, it is clea r from the figures that if the 

Kelvin and Wiechert models are us e d to represent the same system, 

they must exhibit the same basic behavior. For example, if steady 

flow and instantaneous deformation occur in a viscoelastic solid, then 

the Kelvin model must have a fre e spring and dashpoto The operator 

equation b e comes 

q =[ L 
s 

k s 
,~ 

1+7 Fp s 

+k 
o 

1 + a 
1"] Fp 

(1.82) 

where k and a 
~ 

correspond to the free spring for which 'To = 0 0 , 0 0 

The equivalent 
t 

Wiechert model must be such that m = 0 and 11 = 0, 
e 

which casts the invers e operator e quation in the form 

Q =[2 
s 

m Fp s 
, 1 

Fp+-
I 

Ps 
s 

m a Fp s s 
1 

Fp +-
p' 

s 

(lo 83) 

10 6. G e neraliz a tion to Systems with Non- Uniform Temp e rature 

We shall now d e rive the line arized equations for a closed 

thermodynamic system, whose t emperature may now vary from point 

to point. This section therefore is an exposition of Biot~s thermodynamic 

theory (2). 
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It is assumed that the system is in the neighborhood of a stabl e 

equilibrium point, so that its thermodynamic state is completely de -

fined by n variables q .• 
1 

As b efore, these coordinates are very 

general, but we shall now include local temperatures {and later heat 

flow} in this set of variables. In addition, generalized forces Q. 
1 

are defined somewhat differently than before, in that Q.oq. i s to 
1 1 

represent total work, rather than work per unit volume. The system 

is to be divided into cells in order to specify its state if it i s not 

uniform. It is clear that such a system is, for example, the thermo-

dynamic model of a viscoelastic solid whose mechanical and thermal 

properties may be non- uniform. 

The derivation follows a pattern which is similar to the one 

used in section 1. 2; namely, entropy production is first evaluated in 

order to apply Onsageris principle, and then the form of a n energy 

function is determine d for small d epa rtures of the system from a refer-

ence state. 

To begin, w e assume tha t the system has its geometric bound-

ary fully covered with one or more heat reservoirs, in which t he 

temperature of the ith reservoir is T . • 
1 

Later, it will b e necessary 

to assume that Ti is close to a reference value Tr' and therefore 

we sha ll introduce for convenience the temperature difference 8. de-
" 1 

fined as 8. = T. - T. The total system consisting of the actual sy ste"m 
1 1 r 

and all of the reservoirs is assumed to be insulated. The entropy 

change of this total adiabatic system during any incremental process 

is 
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dS. 
1 

(1. 84) 

i 

where dS
i 

is the entropy increase of the ith reservoir and dS
T 

that of the system of interest. It should be · noted in this regard that 

the system's entropy, ST' is the total value which is calculated by 

summing over all cells. Cons ervation of energy is expressed as 

dUT = Q.dq. + \' dh. 
J J 6 1 

(1. 85) 

i 

where U
T 

is the system is total internal energy and dh
i 

the incre­

ment of heat injected into the system by the ith reservoir. By 

hypothesis, the reservoirs undergo only reversible processes, hence 

we can write 

e. 
dh.= -dS.(T +e.) = -dS.T (1 + Tl 

1 1 r 1 1 r 
(i not summed) 

and solving for 

i 

dS .• 
1 

T \' dS. = r0 I 

i 

dh. 
1 = -"\ dh. 6 1 

i 

r 

e.dh. 
1 1 

+ e. 
(1+ Tl ) T r 

r 

(1.86) 

(1. 87) 

Substituting equation 1.87 into 1.84 and using the energy equation 1.85, 

we find 

S.dh. 
r 

T dS
T 

= T dS T - dU T + Q.dq. + 
r . r J J 

I I 
(1. 88) e. 

(1+ .:.2.. ) T . T r 
r 

The state function V IS now defined, 

(1. 89) 
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whic h Biot calls the generalized free energy. Let us assume that 

8./T «1, so that equation 1.88 becomes 
1 r 

dV
T 

+ -)~ Q.dq. 
-.J J J 
J 

8.dh. 
1 1 +-r 

r 

or, per unit time 

h. 
V

T 
+ Q.q. 

J J 

1 
+ 8 i T 

r 

(1. 90) 

(1. 91) 

Biot calls the quantity h. IT the entropy flow S., and its time integral 
1 r 1 

Si:; hilT r e ntropy displacement. This title is scmewhat misleading 

since h./T is the actual entropy flow only when 8. = O. However, 
. 1 r 1 

this name will b e retained even with 8'" 0 for lack of a b ett er term. 
, i 

The function ST i s the entropy of an adiabatic system and .. 
therefore ST is the entropy production for which Onsageris principle 

is applicable. In accordance with the remarks in section 1.2, we must 

first express the right-hand side of equation 1.91 such that it is in the 

fo rm 

. 
X.q . 

J J 
(1. 92) 

where q. are thermodynamic sta t e variables. It is clear from equa tion 
J 

1.91 that it is n ecessa ry to include the entropy displacement, S · : h·/T , 
. 1 1 r 

in this colle ction of variables . Since entropy displacement defines, in 

effect, the net heat addition, it is necessary to ,be able to express V 

as a function of local heat addition rather than local temperature. The 

restriction under w hich heat addition is a state variable can be deduc e d 

by referring to the energy equation 1.54. It is observed that by n eg -

le cting t he second-order dissipation function, D, equation 1.54 can be 
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integrated and then used to replace the loc a l temperature dependenc e 

of V T b y heat addition. 

In the r emainder of this section we shall assume that entropy 

displacement , h./T , r a ther than temperature, is included in the set 
1 

of generalized coordinates. Furthermore, equa tion 1. 90 s hows that 

0. plays the rol e of a n e xternal force conjugate to the variable h./T , 
1 1 r 

which allows us to incorporate the excess temperature e. into the 
1 

set of gene ralized forces. With this association, equation 1. 91 can be 

written 

(1. 93a) 

or 
8V '" T • 

- -" - + Q.)q . 
uq. J J 

J 

(1. 93b) 

where the implied summation e xtends over all mechanical and therma l 

va r iables. 

Onsager1s principle i s now used (see equations 1.10. 1.11) by 

assuming linearity b e tween the itfo rces 17 X. and IIfluxes ll q. which 
1 1 

appear in the entropy production 1. 92, thus 

=: X. ::: b .. q. 
1 1J J 

(1. 94) 

whe r e 

b . . =: b . . 
1J J1 

from which it follow s that 

o i G 00 

T ST =: b . . q.q. - 2DT >- 0 
r 1J 1 J 

(1. 95) 
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The refer ence state is de f i ne d as in section 1.2; namely, the 

equilibrium state for which Q.:: q. :: 0. For motion in which Q.= 0, 
111 

we have from equ ation 10 93a 

I 
Since the e ntropy of an isolated sys tem, ST' is a maximum at equili-

brium, V T is a minimum. This minimum characte r of V T In the 

neighborhood of the refer e nce state exists of course even when 

Q
i 

"* 0 since V T is a function of o n ly state variables. Hence, V T 

i s a quadratic function of q. when terms higher than second order 
1 

are neglected In a Taylor s e ries expansion, thus 

where 

a .. -
IJ oq.E>q . 

1 J q.=O 
1 

=: a .. 
Jl 

and a .. is a positive semi-definite matrix • 
. IJ 

(1. 97) 

The linear equations of motion are now easily derive d by sub-

stituting the free energy 1. 97 into e quation 1.94, which yields 

. 
a .. q . + b . . q. =: Q. 

IJ J IJ J 1 
i = 1, 2, .•• , n ( 1. 98) 

" where b .. =: b .. , a .. ::: a . . , and both of these matrices are positive s e mi-
IJ Jl IJ J 1 

definite. 

These eqlR tions are of the same form as equations 1.33 which 

were derived for a system a t a prescribed, . spacewise, uniform tem-

perature. However, the matrices a .. 
IJ 

and b .. 
IJ 

in 1. 98 are not equal 
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to the corresponding matri ces in 1.33; this observation follows from the 

fac t that the thermal variabl es , entropy displacement and temperature ' 

perturbation, are now included in the sets of generalized coordinates 

and fo rces. Furthermore, if ·b .. in the set of equations 1. 98 is tem-
1J 

p e r a ture dependent, this set is non-linear unle ss the temperatu re is 

presc ribed throughout the the rmodynamic systern. Also , the simple 

temperature dependence 1. 34 is not realistic if the temp e rature is not 

spacewise constant. In view of these complications, it i s assum ed that 

b .. in 1.98 is a constant matrix, or, what 1S equivalent, we retain only 
1J 

the constant, referenc e value in a Taylor series expansion of b .. (T). 
1J 

With this latte r assumption, all of the results of section 1.3 

are a pplicable for the solution of equations 1.98 after setting F = 1, 
t , 

/3. = 0, and dropping the primes on p 
1 S 

t 
and T • 

S 
In addition, it is 0 b-

served that the analogy betwe ep. thermal and m echanical variables, 

which was deduced in section 1. 4 after linearizing t he energy equation 

(see equations 1.71 and 1.72) is consistent with the results of the pres ent 

Finally, we should add tha t Biot has indicated that the theory 

in this section is applicabl e to more general systems, such as open 

systems and systems with electrical energy (2). The extension is 

made by simply choosing the correct generalized "forces" and "co-

ordinates 11 as was done with temperature and entropy displacement. 
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B. APPLICATIONS TO VISCOELASTIC SOLIDS 

1.7. The Stress-Strain-Temperature Equations 

a . Anisotropic continuum. In view of our earlier remarks 

1n section 1.2 on the association of stress and strain with generalized 

forces and coordinates, the results of section 1. 3 can be used to de-

duce the stress - strain-temperature equations of a general visco-

elastic, anisotropic solid. This straightforward procedure of obtaining 

the most general, thermodynamically admissible, viscoelastic equa -

tions is to b e contrasted with the work of previously mentioned authors, 

e. g. Hunter (6), in which TIP was not fully utilized. 

Denoting the three orthogonal coordinate axes by xl' x
2

, x
3

, 

we let 

(1. 99a) 

where 

e . . = e .. 
1J J1 

and cr .. = cr .. 
1J J1 

(1. 99b) 

With these definition, equation 1.45 becomes 

cr = 
flY 

Z ij e .. _ 130 a 
flY 1J flY 

(l.lOOa) 
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in which the operationa l moduli a re 
);C 

l 
F D ij(s) 

Zij :: 
p fJ-v + 'D ij + D'ij Fp 

fJ-v 1 fJ- v jJ.v 
Fp + - . s 

p~ 

(1. lOOb) 

and the thermal expans ion ope.rators are 

0 l 
FPI3(s) 

l3fJ.v 
::: 

fJ-v 
+ I3fJ.V 1 

Fp + -s i 
Ps 

(1-. 100 c) 

i 
wherep s > O. The operators satisfy the symmetry prope rty 

(I. 101) 

as consequenc e s of the symmetry of (J" • • 

1J 
and e . ' 0 

1J 
TIP a l so requires 

that they satisfy the property 

zij ::: 
f.lv 

(1 .102) 

The inverse of these operators can be obtained in a s imil ar 

fashion by using equations 1.37 . This a llows us to wr i te 

* . For many viscoelastic materials the r e ar e a l arge number of relaxa -
tion t i mes w hic h are closel y spaced. T h is permit s t he series in 
equa tion 1.100b to b e app r oxima ted by i ntegral s 

ij .. . SOO F pH (p) dp . . i .. 
Z 1J ::: f.lv + D1J + D 1J Fp 

fJ.v 0 (Fp +.!. ) p f-tv fJ.v .. 
p 

(a) 

in which H ij
v (p) i s called the relaxati on spect r um. Thus. the i nter­

nal coordin!i:te space is repl aced by the mathematical model of a 
continuum. in the same sens e that a macroscopic system is repre ­
sented by a continuum . 
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A 1J (5" • • + a O 8 
fJ.v 1J fJ.v 

where the operational compliances are 

A ij 
fJ.v 

o 
a 

fJ. 

=2 
s 

=2 
s 

cij(s) 
fJ.v .,.--

1 + T Fp 
s 

(s) 
a 

fJ.v 
t 

1 + T Fp s 

cij 

+~ 
Fp 

+ a 
fJ.v 

(1.103a) 

i · . 

-I' C 1J 
fLv 

(1.103b) 

(1.103c) 

i 
where T > 0, and the same symmetry properties exist as shown in 

s 

equations 1.101 and 1.102. We have removed from the summation in 

1.103b and 1.103c those coefficients corresponding to zero retardation 
!. . -: 

times. These coefficients, C 1J and a • provide the solid with 
fJ.v fJ.v 

!l: instantaneous elas ticity. !"4 i. e. , instantaneous straining under the 

action of timewise step change in stress or temperature. They are 

thermodynamically admissible when we require only that entropy 

production be non-negative. rather than positive. 

The coefficients C
ij 

give rise to strains which change linear­
f.Lv 

ly in time under constant applied stress, i. e. Rsteady flow.!i These 

coefficients occur when the free energy change can be zero for some 

configurational motion. 

It should be observed that the operators in equations 1.100 and 

1.103 are the most general ones which are permitted by thermody-

namics. For example. the operational coefficient of expansion, 

cannot contain a term a /Fp 
f.Lv 

compliances; similarly~ f3~v 

such as appears in the operational 
i 

is not allowed to have a term f3 Fp. 
fJ.v 

Furthermore, the simple operational form is less general than would 
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be obtai ned by means of a purel y mathemat i cal appro ach to linea r 

viscoe l asticity. In order t o illus trate this point, consider the general 

linear r e l a tion b e t wee n stress-'strain and t emperatu re 

s 

whe re 

P == d dt • 

(1.104) 

s s 

Solving for the stress, under the assumption of time independent co-

efficients. we obtain 

(J" = 
jJ,v 

. pij 
e . . 

jJ,v 1J 
o 8 

Yf.LV (1. 105) 

w h e re the e lement s of the matrice s o 
and y f.Lv are to be e xpand e d 

in partial fractions. Howeve r , as pointed o ut by Biot (2), thes e p a rtial 

fractions may be quite different from those in equations 1.100 because : 

1. 

2. 

3. 

The root s ~ o f [\ aij~s) pS ] may b e complex conju-
Ps LJ f.L 

s 
gates. This condition can ari se in the the rmodyna mic 

results only when hidde n variables poss ess non-random 

kinetic e nergy, which we have neglected from the start. 

1 n 
There may be fractions of the t y pe 1) correspond-

p+-
Ps 

ing to multiple roots. 

The m a trix pij 
J::-v 

is not necessarily symmetric , i. e. 
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Additional propertie s of the matrices in the operators 

and A 1 J follow immediately from the properties of the general ones 
iJ.v 

relating 

in C' zij 

Q., q., and e. 
1 1 

F or example, all constant matrices compos-

'" I.LV 
are positive semi-definite. 

it is required for all tensors Y .. '" 0 that 
1J 

[l 
s 

and 

[ 
\' dj(s)+ d j 
i.J .... v flY 

S 

> 0 
, .. 

+ D 1J 
iJ.v ] Y . Y 

1J iJ.v 

+ C tij l Y .. Y 
iJ.v 1J I-\-v 

> 0 

However, for stability, 

(1. 10 6a) 

(1. 106b) 

which implies that Zij 
iJ.v 

and Aij a re positive definite (rather than 
fJ.v 

semi-definite) when Fp is real and positive. Thes e requirements 

l.106 follow from the observation that if it were possible to find 

Y ij '" 0 such that expression 1.106aor 1.106b vanished, then I z~v I 
or I A ij j would vanish for all Fp. 

I-\-v 

bi Isotropic continuum. The stress-strain equations for a 

linear isotropic material are obtained from the general relations 

1.100a and 1.103a just as in elasticity. That is, we require the 

relation between stres s;" strain and temperature to remain inva riant 

under all rotations of the coordinate axes . This implies that there 

are only two operational moduli or compliances and one ther.mal ex-

pans ion operator. Using notation analogous to that used for elastic 

bodies we can write 

where 

() . . 
. 1J 

= 2fJ.(p)e .. + X.(p)&.1r - (3°e 
1J 1J 

(1.107) 
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{

I, i = j 

0" = 
1J 0, i"* j 

and lJ.{p} and >..{p} the operational equival ents of the Lame elastic 

constants. These ope rators, as well as the one for thermal expansion, 

are obta'ined from equations 1.100 and 1.103. We have 

FPIJ.(s) I 

"'::""'''-=-1;- + fl. + fl. Fp 
Fp +-, 

fl.(p} = I (1.108) 

s 
Ps 

with a similar representation for >..(p) , and 

+ {3 (1. 10 9) 

The coefficients in lJ.(p) are positive since IJ.(p} corresponds to the 

diagonal term z~; (13), however this . positiveness is not required 

for >..(p}. 

It is often convenient to have the operator corresponding to 

the bulk modulus, which is defined by 

e 0 3 = K(p)&-- {3 e (1. 110) 

where e == 0"1 + 0"2 + O"y from which i t follows that 

2 
K(p) = 3 IJ.{p) + A(p) (1 . lll) 

With simple pres s urization, e and are the only observed conju-

gate variables, and hence K (p) mus t be of the form 

K(p) = I 
s 

FpK(s) + K + K'Fp 

Fp + Jr-
Ps 

(1.112) 
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In which all coefficients are po sitive. The inverse of equation 1.110 

i s written 

(1.113a) 

where 

[K(p)]-l =L B(s) B r 
B(p) = + + B 

I Fp 
1 +7 Fp 

s s 

(1. 113 b) 

0 
B(p) 130 L 

(s) 
i a 

a ::: = +a 
I 

1 +7 Fp 
s s 

(1. ll3c) 

with all positive coefficie nts in the operational bulk compliance B(p). 

A similar result is obtained for the operational tensile modulus and 

compliance by letting the one-dimensional stress and strain be the 

observed conjugate varia bles . 

1.8. The Coupled Thermo -Mechanical Field Equations 

a~ Anisotropic continuum. For a complete description of 

the thermo-mechanical behavior of vi s coelastic solids it is necessary 

to include the equations of strain-displacement, mechanical equilib-

rium, and heat conduction along with the stress - strain-temperature 

and energy equations considere d a bove. We shall assume that strains 

. . * are small so that the strain-displacement equations can be written as 

':'A comma before a subscript denotes differentiation with respect to 
the corresponding orthogonal cartesian coordinate, e. g. , 

and 

au. 
1 

U i , j = ax . 
J 

(J.. • 

IJ, J 

aer; .. 
::: IJ 

ax:­
J 

a0:
3 + _ _ i_ 

aX3 
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1 
e .. =: -z (u .. + u .. ) 

IJ I,] J, 1 
(1. 114) 

where the displacement components (U
l

' u
z

, u
3

) are referred to an 

orthogonal set of cartesian axes, (xl' xz ' x 3 ). The equilibrium equa-

tions are 

(J" ••• +F. =:O 
IJ, J 1 

(1. 115) 

where F. IS the body force per unit volume. Also, the experimental 
1 

):c 
law of heat conduction for a general anisotropic body is 

. 
K .. 6, . = - h. 

IJ J 1 

. 
(1. 116) 

where h . is the heat flow per unit area In the x. direction and K .. 
1 1 IJ 

is the thermal conductivity tensor. TIP can be used to show that K .. 
IJ 

is positive definite and symmetric (14) . The net amount of heat flow 

into an infinitesimal element of unit volume is 

H= h . . 
1, 1 

so that from equation 1.116 

. 
H=:CK .6,.) 

IJ J,. 
I 

(1. 117) 

(1. 118) 

~:, 

We have omitted inte raction coefficients which give ris e to coupling 
between the irreversible processes of heat flow and d eformation, such 
as included by Eringen (8). This omission is done on the basis of 
Curie's syrnmetry principle which states that macroscopic causes do 
not have more elements of symmetry than the effects they produce (19); 
while heat flow is a vector, the thermodynamic variables considered 
in section 1. Z are assumed to be tensors of rank two (e. g. strains) 
and scalars (e. g. hidden coordinate s), 
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Under the assumption that the time - temperature superposition prin -

ciple is valid, we can write the energy equation 1. 61 as 

F{K. .8, .) 
1J J, i 

:: COeFpe + Ti3°. Fpe .. - 2FD 
1J 1J 

(1.119) 

where CO IS the operational specific heat at zero strain defined by 
e 

equation 1. 62, 
o 13 .. is given by 1.100c, and D is the dissipation func­
IJ 

tion which can be expressed in terms of stress or strain rates and 

temper ature by means of equation 1.40, The energy equation can also 

be express ed in terms of stresses by using equation 1. 63. 

Equations 1.114, lollS, 1.119, and the stress - strain t empe ra-

ture equations 1.100, together with appropriate bounda ry conditions, 

form a complete set for calculation of the sixteen dependent variables 

(} .. , e .. , U. , and e , It should be noted that they are nonlinear if pro -
IJ 1J 1 

perties are tempera ture dependent or if the dissipation function is 

r etained. 

b. Isotropic continuum, The equations of isotropic vis co-

elasticity are easily obtained from the preceding ones. The strain-

displacement and equilib rium equations 1.114 and 1.llS r emain the same, 

·of course, while the energy equation 1. 119 becomes 

F{Ke,.) == COe Fpe + Tf3
0

F p - 2FD 
J , . 

J 
{1.120) 

and the stres s - strain-temperature equations are given by 1.107. 

We would like to conclude this section by considering a few 

practical points in regard to solving the general set of viscoel astic 

equations. First, a simplification may be achieved thro u gh a change 
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of variables given by 

I 

x. = x. 
1 1 

dV (1. 121) 
F[ T(v, x.)] 

1 

which was suggested by Morland a nd Lee (20) for the uncoupled prob-

lerna Under this substitution all spa cial derivatives transform accord-

ing to 

ox. 
1 

= a + a 
I "t I ox. u 
1 

x at 
ox. 

1 

(1.122) 

and the stress-strain-temperature equations and specific heat have 

operators with constant co e fficients. Because of the second term 

appearing in .equation 1.122 this transformation mayor may not simpli-

fy the calculation, depending on the particular application. For ex- · 

ample, if the temperature is transient, but independent of x., then 
1 

I 

the spacial derivatives 1. 122 in the new coordinates x . are the same 
1 

as with x . ; in this case the equations are much simpler in the primed 
1 

I . I 

variables t and x.. If, however, the temperature is independent of 
1 

time, but a function of 

venient. 

the original system (t, x.) is more con-
1 

It is often pos sible to neglect the terms in the energy equation 

1.119 (or 1.120) which are due to straining and to take the specific heat 

~:< 

as an algebraic factor, rather than an operator. These approximations 

* . . The effect of rate-of-temperature-change on the specific heat at 
constant pressure has been studied experimentally by Davies aud 
Jones (21). Using several polymers and super - cooled liquids, they 
found that the specific heat is rate-dependent with moderate rates, if 
the temperature is near the glass transition temperature. Further­
more, for all substances studied, it was observed that for sudden 
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pe rmi t the tempe rature dis tribution to be obt ained from the clas sica l 

heat conduction equation. The me chanical equations for stresses and 

displacements are then solved with this res u lt. These latter equations 

are linear in this case, but they h a ve variable coefficients due to the 

function F(T) if the temperature is not constant. 

The error introduced through the assumption which makes the 

temperature distribution i ndepende nt of the straining can be readily 

estimated for some problems by comparing the limit case of adiabatic 

deformation with isothermal deformation. The dependence of the 

energy equation on e .. (except for D) and the operational character 
1J 

of CO results from the free energy derivatives (3., as can be seen 
e 1 

from equation 1. 54. These are analogous to the coefficients which 

occur in elastic bodies in that they repres e nt "reversible" coupling. 

These coefficients are known to produce only small temperature changes 

(with small strains) in steel and polymers (6), for example • . The dissi-

pation function, however, may produce considerable temperature 

temperature changes, the short time (high rate) value of specific 
heat was approximately one-half the long time (low rate) value. The 
theoretical expression for the constant pr e ssure (or force) specific 
heat, which is given by equatio n 1. 64, is consistent with this latte r 
observation; namely, the positive property of all coefficients predicts 
that the short time value will always be smaller than the long time 
response to sudden chang es in temperature. 

It has also been found.that the coefficient of expansion of many 
isotropic polymers has the same quantitative behavior near the glass 
transition temperature (9). Such similar behavior is not surprising 
in view of the close thermodynamic connection which exists between 
the heat capacity and thermal expansion operators, as exhibited by 
the relation 1. 64 in generalized notation, specifically 

o = C + T (3.a. q r 1 1 



-53-

changes if deformation rates are non-zero for sufficiently long times. 

But fo r simple loading conditions, such as uniaxial cre e p under constant 

load, a temperat ure rise due to dissipation of only a few degre e s is 

typica l for small-strain, adiabatic deformation of polymers (6). 

1. 9. Extensions to Larg e Deformation a nd Crack Propagation 

Theory 

This section deals wit h the role of the rrriodynamic s in problems 

of finite viscoelastic d efo rmation and crack propagation. Since the dis-

sertation is concerned mainly w ith small deformation behavior, our 

discussion will be brief. However, it is hoped that the comments 

suggest a fruitful approach to the solution of such problems. 

a. Large deformation theory. The thermodynamics of irre-

versible processes provides a natural means of incorporating viscous 

rate effects into the large deformation theory of solids. Indeed, if 

the imposed strain rates are not too high it ·is reasonable to assume 

that the linear rate law loll is ' applicable, regardless of the magnitude 

of deformation. Such an assumption was used by Biot (22) when he 

indicated how the stress-strain equations given in section L 7 can be 

used in an incremental formulation of large strain problems. 

An alternate app roach is to work directly with the equations 

of motion 1.19, for a unit mass, namely 

Q . 
1 

= P (88f ) , + b .. q. ; 
q. T 1J J 

1 , q. 
1. 

i = 1, ••• , n (1.123 ) 

where the matrix b .. may possibly be a function of temperature and 
1J 

generalized coordinates. If the free energy density, f, and the tem-
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perature and coordinate dependence of b .. were known, these equations 
IJ 

could b e used to deduce the stress-strain-temperature equations of 

large deformation viscoelasticity. 

b. Crack propagation ·theory. An energy equation will be de-

rived which should b e useful in the study of isothermal, viscoelastic 

crack propagation. First it must be realized that equation 1.123 is 

not only valid for a homogeneous system of unit mass, but with a 

modification of the notation can be applied to an arbitrary, inhomo-

geneous system at spacewise constant temperature. 

Let us now multiply equat ion 1.123 by q., sum over all vari-
1 

ables, assume a constant tempe ra ture (in time as well as space), and 

thereby obtain the energy equation, 

Q.q. 
. . 

= FT + b .. q.q. 
1 1 1J 1 3 

or, equivalently 

. 
Q .q. = FT + 2DT 

1 1 

where Q .q. is the total rate of work input to the system, 
1 1 

(1. 124a) 

(1. 124b) 

. 
F T IS the 

rat e of change of t o tal Hel mholtz free energy (incl uding mol ecular or 

atomic bond energy), and DT is the tot al dissipation. This equation 

is applicable, in particular, to an inhomogeneously strained solid with 

propagating cracks when the kinetic energy is negligible. On the other 

hand if the fracture takes place at high speed, it would be necessary 

to include the kinetic energy K
T

, givi ng in this case 

Q.q. 
1 1 

(l.124c) 
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An illustrative example: We shall now illustrate the 

useful.ness of equation 1.124c by using it to predict slow;j' 

crack motion in a specific problem. Anticipating a fracture problem 

currently being investigated by Knauss (23), consider the geometry 

shown in figure 1.3. An infinitely long, thin, plate of viscoelastic 

material, containing a semi-infinite crack along the x-axis, is clamped 

along its upper and lower edges.; 

y 

c >< 

I -
// 7 7 7 7 7 7 7 / 7 7 7 7 7 

Figure 1.3. Crack Propagation in a Long Sheet 

It is desired to find an expression for the steady-state crack 

velocity, 'c, which is attained after the grips are pulled apart and then 

held stationary. It should be noted, however, that this steady-state 

assumption is made only for simplicity, and is not required by equa-

tion 1. l24c. 

In this stationary state the rate of change of kinetic energy is 

zero and the rate of change ofJree energy is 

E c 
s 

E c 
00 

(1. 125) 

>~ 
We define a slow moving crack as one in which the effect of stres s 
waves on crack velocity is negligible. 
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where E is the (constant) elastic strain energy per uni t length i n 
00 

the sheet at large, negative values of x, and E is the surface (bond) 
s 

,!c 
energy per unit crack length (both surfaces of crack). In addition, 

since the grips are fixed the rate of energy input is zero. Thus, ac-

cording to 1.124c, the crack velocity must satisfy the equation 

o = -(E - E )c + 2D 
00 s T 

(1.126) 

which, in this form, is valid for large strains. 

Before considering a calculation of D
T

, let us assume that 

the velocity, c, is smaU, and use 1.126 to determine its value. Since 

DT vanishes when the velocity is zero, and is also positive definite, 

the dissipation function can be approximated at small velocities by 

1 b 2 "Z c (I. 127) 

where 

which, when substituted into equation 1.126, yields the stable, steady­

** state velocity 

~, 

A tacit assumption used in writing equation 1.125, which must be em-
phasized, is that all bond-breaking is associated with the formation of 
one crack; hence, in order for this expression to be reasonably ac­
curate, little or no fracture should occur away from the line of the 
crack. When this assumption does not apply, one can still consider 
Es as containing all of the broken-bond energy, however it probably 
will be velocity dependent. . 

~"'~:c: 
It is easy to show that when E002:: Es this velocity is stable, while 

c = 0 is not stable. Such a proof is made by examination of equation 
1.126; when the right-hand side is positive for small positive velocity 
perturbations, D.c, abo,ut a solution, c, this solution is sta ble since 
the maintenance of such a perturbation requires positive external work. 
On the other hand, a negativerigbt-hand side implies an instability 
since the velocity could increase without the help of an external energy 
source. 

. , 



c = 
E - E 

00 s 
b 
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E > E 
00 s 

(1.12 8 ) 

as well as the solution c = 0 which is unstable when E > E ; the con-
00 s ~ 

dition E = E corresponds to the well-known Griffith criterion for 
00 s 

initiation of crack growth in elastic bodies. Thus , if the elastic energy 

per unit length far ahead of the crack tip remains slightly larger than 

the surface energy absorbed per unit crack length, the crack will run 

at a low velocity given approximately by equation 1.128. 

When the velocity is not small enough to permit the quadratic 

approximation to D
T

, it becomes necessary to make an explicit cal c u-

lation of DT in order to examine the propagation characteristics. We 

shall not attempt here to make more than an approximate calculation 

of the dissipation using a simplified model and small strain theory. 

Consider therefore the crack shape shown in figure 1. 4, in which the 

actual (dotted lines) shape is approximated by the solid, straight lines, 

and the distance L may be a function of the crack speed c. It will be 

assumed that the field "for x < 0 is unaffected by the crack, and has 

the constant strain components, 

11 " 

c_ X 

Figure 1.4. Idealized Crack 
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e e e = 0 y - 00' x x<O (1.129a) 

while for x> 0 we shall aSSUITle that the strain e 1S independent of 
y 

y, but has the approxiITlate x dependence, 

and 

e = 0 
y 

e = 0 ; x 

x 2: L 

x>O 

(1. 129b) 

(1. 129c) 

In addition, all shear strains will be neglected in the calculation of 

With the strain cOITlponents given by 1.129a, plane stress, and 

the further siITlplifying assuITlption of incoITlpressibility, the stress-

strain law is 

4 
(J =-ITle 

y 3 e y 
(1.130) 

so that the strain energy per unit s~at length becoITles 

(1. 131) 

where ITl is the equilibriUITl (long-tiITle) uniaxial tensile ITlodulus, 
e 

and the sheet thickness is arbitrarily taken as unity. 

The dissipation will be calculated using the general Wiechert 

ITlodel, figure 1.2, (but without the free dashpot, ,,) to repres ent the 

uniaxial tensile response of the sheet. The dissipation per unit voluITle 

is given by 

2D = ~ L (1 . 132) 

s 
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The dashpot strain rates e " can be evaluated most easily by using , s 
1') d d ' 

the steady-state transformation, cit - c dx ' so that 

ZD (
' des1') )Z 

1')s dx (1.133) 

s 

In order to evaluate de /dx in terms of the strain components given 
s 1') 

by equation 1.lZ9b, the model equations given in section 1. 5 are used , 

but with d/dt replaced by c(d/dx). Carrying out this calculation, 

and integrating the result over 0 S; x < 00, we finally obtain the total 

ene rgy dis sipation, 

-L/cp 5 ] 
(1 - e ) (1. 134) 

L 

in which it is assumed that Ps and L are finite and non-zero, but 

it is not required that L be independent of v e locity. First, consider 

the low speed (cp /L« 1) and higher speed .(cp /L »1) limit cases. 
s s 

The dissipation at low velocities is 

Zh Z c e 
00 

L 
s 

cp 
s 

L 
« 1 (1.135) 

so that from equation 1. lZ 7 we calculate b = 4he Z \' 11 /3L, and the oo~s 
s 

velocity is given by equations 1.lZ8 and 1. 131, thus 

c = 
Z Z -hrne -E 
3 e 00 s 

4 he~ \' 
3L ~ 11s 

« 1 (1.136) 
L 

s 

which is stable when the numerator is positive (see previous footnot e ). 

cPs 
Another interesting limit case is when ""'L'""" »1, in which 

case the dissipation is 
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2 2 
2D = - che (m-

T 3 00 g 
2 2 L,ms 

m )- - hLe - . 
e 9 00 p' 

s 

cp 
_ _ s» 1 
L 

(1. 137) 

s 

where we have defined the "glassy" modulus m as 
g 

m =\ m +m 
g ~ s e 

(1. 138) 

s 

Substitution of 1. 13 7 into the energy equation 1.126 yields 

3. hLe 2 L 
m 

s 
9 00 Ps cPs 

C = s » 1 (1.139) 
2 2 L 
"3 he (m - 2m ) + E 

00 g e 'S 

which is a stable solution when the denominator does not vanish. It 

is observed that, regardless of the value of E and e ,the velocity 
s 00 

1S never unbounded when m 2: 2m , which is the case for polyme rs g e 

below their g l ass transition temperature; in fact it is usually true that 

(9) • 
>" 

cp cp 
F o r case s othe r than low ( L s « 1) and higher ( L s »1) 

speeds, the velocity must be calculated from the equation 

2 2 

[ 
c p. - L / c p ] -3 hm e - E 

" 1 _ _ _ s (1- e s ) = . e 00 s 
s L . 4~2 

(1. 140) 

s 00 

3L 

,', 
'It should perhaps be noted that for brittle materials m '" m , and it 
is theoretically possible to make e oo such that the den&rninftor in 
1. 139 vanishes, and therefore have c - 00 . Furthermore, it is r e called 
that under our assumptions kinetic energy does not put an upper limit 
on the speed since it does not enter into the energy equation 1. 126 under 
steady-state conditions; the kinetic energy affects only the crack ac­
celeration. The unboundedness occurs because the assumed dissipation 
is too small to absorb the strain energy ahead of the crack, and conse­
quently this energy must go into increasing the kinetic energy. Of 
course with sufficiently high crack speed s in r eal materials, there 
will b e enough energy transfer through stress wave action to put an 
upper limit on the speed. 
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It can be easily shown that for each s, 

L" Lin · s s zp--z-
s 

as c - CD (1. 141) 

and that this function increases monotonically from zero, with increas -

ing c, to the limiting value Lm /2. Therefore , the sum in equation 
s 

1.140 increases monotonically with c, so that there is at most one 

solution to equation 1.140 for each set of physical constants and strain. 

Furthermo re, as long as 

2 2 
-hm e -E 

~l o < 3 e CD s L 
m} 

4he
2 < m = -{m -

s 2 . g e 
{1.l42} 

CD s 
~ 

there will be one finite, stable, velocity c which satisfies equation 

1.140. Criterion 1.142 can be written as 

m - 2m >-
g e 

3 Es 

"2 he2 
CD 

{1.143} . 

with -3
2 

hm e
2 > E • which is the same condition needed to prevent 

e CD s 

vanishing of the denominator in equation 1.13 9, as it should b e . As ob -

served earlier, we see from this inequality that when m ;> 2m the 
g e 

velocity will never be {mathematically} infinite, .. re gardles s o f the 

magnitude of the applied strain e • 
. CD 

The crack propag ation model will not be p u rsue d fu rthe r h ere., 

but this example does indicate a simple ·method for incorporating a 

dissipation mechanism into the criterion for slow fracture of visco -

elastic m e dia. 
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PART II 

VARIATIONAL PRINCIPLES FOR IRREVERSIBLE SYSTEMS 
WITH APPLICATIONS TO THE THERMO-MECHANICAL 

, BEHA VIOR OF VISCOELASTIC SOLIDS 

2.1. Introduction ' 

The important role of minimum principles in mechanic s is 

well established. In the area of static, elastic stress analysis, for 

example, variational methods have been applied to appropriate energy 

functionals in order to generate approximate theorie.s and numerical 

solutions to varying degrees of accuracy. The potential energy (13) 

is used to obtain approximate displacements, while if only stres ses 

are desired the complementary energy (B) can be used. Hemp (24) 

has extended these principles to problems in thermoelasticity for the 

case in which the temperature field is unaffected by deformation. 

Inertia can be included in the elastic problem by using Hamilton's 

principle (25). 

While much of the interest in variational principles for solids 

has been with these reversible processes, several notable papers have 

appeared recently dealing w ith the thermodynamic development and 

application of principles for systems with irreversibility. Biot (2,5) 

has shown that the general equations of linear irreversible systems, 

equations 1.98, can be obtained from an operational-variational 

principle. This basic principle was applied to heat conduction (3), 

thermoelasticity (3), and isothermal viscoelasticity (5). Rosen (26) 

utilized a principle of minimum entropy production to derive station-
, 

ary functions for heat conduction and viscous fluid flow. Besseling 

(27) obtained variational principles which are directly applicable to 
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the nonlinear plasticity and creep problems of metals. The distin­

guishing characteristic of all these variational principles for irreve r­

s ible systems is that the stationary functionals do not contain an inte­

gration with respect to time; hence, time and its derivatives are 

treated more or less as known parameters in the variation. An im­

portant implication therefore is that the stationary point of these 

functionals is not a true mini).TIum, but is minimum only when time 

derivatives are not varied. This restriction on the admissible vari­

ations is to be contrasted with Hamilton's principle for reversible 

dynamic processes in which both time .and space are treated alike. 

Bes seling believes that this special role of the time va riable 

in a basic variational principle results from the defective treatment 

given time in classical non-relativistic thermodynamics, while Rosen 

states that this role probably results from the fact that ana lyses of 

irreversible problems are approximate because of the statistical 

methods us ed. 

One of the purposes of this chapter is to show, however, that 

the general equations of linear systems are the Euler equations of a 

variational principle which is analogous to Hamilton's principle in 

that it consists of a time integral which has definite thermodynamic 

s ignificance. In o 'rder to obtain this variational principle we have 

introduced a functional which is a convolution integ ral with respect 

to time. It is shown that this new concept treats time dependence as 

an initial value problem in the:; sense that varied paths have to satisfy 

only initial conditions. 

The above mentioned Euler equations 1.98 are differential 
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equations for generalized coordinates which are conjugate to specified 

generalized forces. It is also of practical importance to e stablish a 

functional whose Euler equations solve the inverse problem; namely, 

integral equations for unknowrl forces that are conjugate to prescribed 

coordinates. It will be seen that the coordinate principle represents 

an extension of the potential energy theorem for displacements in 

linear elastic bodies to general linear irreversible systems, while 

the variational principle for generalized forces is an extension of the 

complementary energy theorem. We shall derive this "complemen­

tary" principle directly from the original one for coordinates. The 

principle for coordinates and the one for forces are called "homo­

geneous" variational principles. 

Following this development, w,e apply the results to the deter­

mination of functionals whose Euler equations are the field equations 

for the thermal and mechanical behavior of linear solids. It will be 

seen that all of the functionals can be deduced directly from the basic 

thermodynamic ones by calculating the appropriate free energy and 

dissipation functions. That such a unified treatment is possible can 

be attributed to the fact that linear solids must obey .the same equa­

tions which are common to all ,processes satisfying the assumptions 

of TIP. 

In order to illustrate the essential features of applying the 

basic principles, we :c·onsider first the simple heat conduction prob­

lem using the analogy between thermal and mechanical variables dis­

cussed in Part I. It will be recalled that the excess temperature 

(difference between actual and referencevalues) applied to a .boundary 
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plays the role of a force whose conjugate coordinate is the "entropy 

displacement" (total amount of heat which has flowed in through this 

boundary divided by the reference teITlperature). Thus, by applying 

the coordinate principle we arrive at a variational principle for the 

entropy displacement field, while application of the complementary 

theorem leads to one in terms of temperature. This t emperatu re 

principle is similar to the one given by Rosen (26). but derived in a 

different manner. 

Following this simple example. we derive variational princi-

pIes for the linear thermo-mechanical behavior of viscoelastic solids. 

By linearity we mean that all thermodynamic 'va riables are r e lated to 

one another through linear differential or integral equations. Sinc e 

temperature (or entropy displacement) is one of the variables, it must 

be sufficiently close to a reference value so that all properties (in-

cluding viscosity) can be taken as constants with .respect to tempera-

ture. Furthermore. strains must be small enough to use the linear 

strain-displacement relations. Linearity imposes another restriction 

which limits the coupling between· temperature and deformation to 

reversible effects; it is necessary to ass.ume that the influe nce of 

viscous . dissipation on temperature is negligible~ 

A principle which is homogeneous in displaceme nts (mechani-

cal and entropy displacements) and one which is homogeneous in stres ses 

(me chanical stresses and temperature) are deduced. Further. varia-

tional principles for mixed. mechanical and thermal variables are 
, 

given; namely. one for mechanical displacement and temperature, 

and one for mechanical .stres ses 'and entropy displaceme nt. It will be . 
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seen that the stress and mixed variable principles can be derived 

directly from the original displacement theorem, in accordance with 

the general theory. In addition, it is shown that a generalization of 

Reissner's principle (28, 29) for mechanical displacements and 

stresses to thermo-viscoelasticity is obtained as a direct result of 

this change of variables, and that Reissner's principle is essentially 

the complementary theorem in which Lagrange multipliers are used 

with the equilibrium equations. 

Another point of interest is concerned with the relation that 

exists between the thermo-elastic and thermo-viscoelastic variational 

principles when the above ,linearity assUInptions are valid. It is shown 

that Laplace time-transforms of the functionals associated with visco­

elastic and elastic principles are identical in form, with the only dif­

ference being that the vis coelastic one contains operational quantities 

in place of elastic constants. Thus, an approximate (or exact) trans­

formed thermo-viscoelastic solution can be obtained from a transformed 

elastic solution by simply replacing elastic constants with appropriate 

operators. This is an extension of the correspondence rule deduced 

by Biot for isothermal, anisotropic viscoelasticity (2), as well as the 

one stated by Lee for exact solutions With isotropic media (30). 

An additional item, which is of importance for the calculation 

of approximate solutions, is that the two homog'eneous principles for 

mechanical and thermal stresses and displacements are true minimum 

principles when the Laplace transform parameter is real and positive. 

However, the two non-homogeneous principles (i. e. the one for me­

chanical displacements and temperature, ' and the one for mechanical 
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stresses and entropy displaceITlent) have this ITliniITluITl property only 

if the temperature field is prescribed, so that the thermal variables 

are independent of ITlechanical stres s es and displaceITlents. 

Following the discussion of principl es for linear behavior, we 

suggest how these principles can be ITlodified to include temperature 

depe ndent properties as well as the influence of viscous dissipa tion. 

However, . we were not able to d educe .full variational principles, but 

only ones in which certain artificial constraints are required in the 

variational process. Perhaps further investigation will yield principles 

in which such constraints are not required • . Nevertheless, it is indi-

cated briefly how these ITlodified principles can be used in approximate 

analyses. 

2.2 • . Basic HOITlogeneous Variational Principles for Linear SysteITls 

a~ Principle for generalized coordinates. We consider the 

saITle therITlodynaITlic systeITl defined in section 1. 6, whose state is 

specified by n generalized coordinates qi' The equations governing 

the behavior of the systeITlwere shown to be 

a . . q . + b .. q . = Q. (i, j = 1,2,o.o,n) 
lJ J . lJ J 1 

(2.1) 

where 

a .. = a .. and b .. = b .. 
lJ Jl lJ Jl 

( 2. 2) 

and both matrices, a , and · b .. , are assumed to be constant. An 
ij lJ 

equivalent representation of equation 2. 1 is the Lagrangian form 

aV
T 

aD
T __ .01- = Q . 

aq. a 1 
1 qi 

. (2. 3) 



with 

-68-

U
T 

= total internal energy 

ST = total entropy 

T = reference temperature 
r 

(2. 4) 

which is a non-negative quadratic function for small departures from 

the reference state, 

1 V
T 

= .,., a .. q.q. 2: O. (2.5) 
~ 1J 1 J 

Similarly, the dissipation function, D
T

, is a non-negative function 

which is proportional .to the total entropy production ST' 

and is given by 

1 •• 
= -2 b .. q.q. 2: 0 

1J 1 J 

(2. 6) 

(2. 7) 

Biot (2) has indicated that equation 2.1 can be obtained from 

an operational-variational principle in which an operational form of 

the dissipation function is introduced as 

D ' ;: 1 b 
T -2' .pq.q. 1J 1 J 

(2. 8) 

pis the time derivativ~, d /dt, which must be treated like a constant 
, 

parameter in calculating the variation of D
T

• The equations of motion 
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2.1 are then equivalent to 

oI' (2. 9) 

for all arbitrary variations of q. and, with all Q. prescribed. 
1 1 

Use of the time derivative in this fashion is purely formal and 

does not lead to a variational principle that has a physical significance 

analogous to Hamilton's principle, in the sense that this l atter principle 

consists of a time integral of certain energy functions. Of course, 

as pointed out by Biot, this operational notation i s compact and there-

fore is convenient to use in applications because of its simpliCity. 

However, we will now discuss a variational principle which does not 

require this operational notation, but does contain 2.9 as a special 

case. This more general one will be seen to have a wider range of 

application in the approximate solutions of linear problems. 

First we introduce the functional I (t) given by the convolution q . . 

time integral, 

whe re 

t,c 1 
V

T 
= -; a .. q.(T)q.(t-T) 

.:. IJ J 1 

~:c 1 
D = b T '2 ij 

dq.(T) 
J q. (t-T) 

1 

(2. lO a ) 

(2. lOb) 

(2.10c) 

Befo re proceeding with the statement of ;the theorem, a few remarks 

will be made in regard to the term Qj! (T)qj! (t-T). Equations 2.1 con-
. . 

tain all coordinates needed to define the thermodynamic state, inc1ud-

ing those which are specified in a particular problem • . However, only 
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those which are not specified (and whose conjugate forc e must be g i ven) 

)'c: )'c: 

should be included in the tenn Q.e (r)q.e (t-7'), while V ~ and Dr are 

to contain all coordinates . Also, since the generalized forces Q. 
J 

are defined in such a way that Q.e (7') 0 q.e (7') is the virtual work of 

forces external to the system,. there may be a large number of coordi-

nates whose conjugate force is identically zero, partic ul a rly if the 

system is an inhomogeneous collection of cells representing the the r-

modynarnic model of a continuum. The theorem is now stated: 

Conside ring a linear irreversible system as 

d e fined above and assumed to be at rest in its 

reference state q.= 0 for t = 0, the actual path 
1 

followed by the state variables q. is determined 
1 

by making I (t) stationary with respect , to all ' 
q 

small variations oq. of the unspecified coordinates 
1 

from the actual values. That is, the Euler equa-

tions of 

are equations 2.1 

where the index .e ranges only over those values 

corresponding to unspecified coordinates while j 

indicates summation over all n coordinates. 

(2.11) 

(2.12) 

We shall prove this theorem by showing that the stationary 

condition 2.11 requires that q. satisfy 2.12. The variation is obtained 
J 
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by letting q.(t) - q.(t) + oq.(t) in 2.l0a with q.(O) = oq.(O) = 0 and 
1 1 1 1 1 

dropping terms of second order in Oq.(t): 
1 

1 It 01 = -2 {a .. [q.(T)oq.(t-T) + oq.(T)q .(t-T)] 
q 0 1J 1 J 1 J 

dOq.('T) dq.(T) 
+ b .. [ d

1 
q.(t-T) + d

1 
oq.(t-T)]} dT ·. lJ T J . T J 

Using the symmetry of a .. 
1J 

we find 

t .. t 
a .. r oq.(7")q.(t-T)d7" = a .. r q.(7")oq.(t-7")dT 

1J J 0 1 J . 1J J 0 1 J 

Also, by integrating the factor of b
ij 

by parts, using the symmetry 

of b .. , and applying the initial condition oq .' (O) = (((0) = 0 yields 
~ 1 1 

b .. st 
1J 0 

doq.(T) st dq.(T) 
1 1 

d 
q . (t-T)d7" = b.. --;"d--

. T J 1J 0 7" 
oq. (t-T)dT 

1 

Since oq. = 0 for i"* I., the variation equation 2.11 becomes 
1 

01 = st {al. .q.(T) 
q 0 J J 

dq.('/") 
+ bJ.

J
. -dJ 

7" 
(2.13) 

Because oql. (t-T) is arbitrary, the Euler equations are 2.12, which 

proves the theorem. Further, it can be easily shown that the second 

variation of 1 is nqt positive definite, which implies that the value 
q 

of 1 in terms of the actual q . . is not necessarily an absolute mini-
q 1 

mum. 

As a converse theorem, it can be stated that the actual path 

followed by the process is such as to make I stationary with r es pect 
q 

to all small variations of unprescribed state variables satisfying zero 
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initial conditions. 

If the state variables are not initially zero but have some o t he r 

prescribed value, the variational principle can be extended to this case 

by making either a shift of the time origin or adding 1 - -2 b .. q.(t)q.(O) 
1J 1 J 

to the functional I • 
q 

In addition if some coordinates contribute kinetic energy (in 

the macroscopic sense), the internal energy will be composed of the 

I . . 
usual static terms plus the ene rgy -2 m . . q.q . (m . . = m .. ); hence, the 

1J 1 J 1J J 1 

functional to be used for the variational principle is 

~:< ~1( 

where V T and D~ are defined by 2.10b and 2.10c, and 

dq. (t-1') 
1 

d(t-1') 

dq. (1') 
J 

CiT 

The stationary condition on IqT yields the Euler equations 

with the initial conditions q . (0) = q. (0) :: O. 
1 1 

(2.14) 

(2.15) 

It is important to observe that the convolution variational 

principle treats time dependence as an i.nitial value problem, as it 

actually is; whereas in Hamilton's principle q. must be prescribed 
1 

at two different end points in time, which corresponds to a boundary 

value problem in this respect. 

To show the correspondence between the functional I and 
q 

Biot's I', equation 2.9, we take the Laplace (or Fourier) transform 

of I in 2.10: 
q 
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T (p) = SeD I (t}e:"'ptdt; I = 0 for t::; 0 
q 0 q q 

(2.1 6 ) 

in which the transformed variable is denoted with a bar. The trans-

form as a function of the complex parameter p is the Laplace 

transform, while if we let p - iw (w = freque ncy) then definition 

2.16 becomes the Fourier transform of I. Using the product rul e 
q 

of transform theory with e quation 2.10, we find 

T = .!.2 [a .. q.(p}q .(p} + b .. pq.{p}q.(p}] ~ Qn {p}qn (p) 
q 1J 1 J 1J 1 J .<.< 

(2.17) 

, 
Compar ing this with I in 2. 9 it is clear that if the variable s in 2. 9 

are interpreted as being transforms of the physical quantities qi' 

and the time operator p . as the parameter p, then 

- . , 
I (p) = I {p} 
q 

(2.18) 

Furthermore, a property which is of considerable practical 

importance is that the stationary point of I (t) makes I (p) an abso-
q . q 

lute minimum when p is real and positive. This positive definite 

nature of T will be discussed in Part III in regard to obtaining ap­
q 

proximate solutions. 

In deriving the following variational principle for forces, as 

~:::: 

well as principles· for a cont"inuum, it will be helpful to evaluate V 
T 

,~ 

and DT by using a property of bilinear functions. Namely, multip1y-

ing 2.1 by q . (t-T) yields 
1 

a . . q.(T}q. (t-T) + b .. 
1J J 1 1J 

so that 

dq. (7) 
} 

dT 
q.(t-7} = Q.(7}q.(t-T} 

1 1 1 

2[ v'T:' + D"'] = Q.(7}q.(t-7} 
. TIl 

(2.1 9 ) 
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It is iInportant to note that Q.q. 1n 2.19 consists of a ll state variables, 
1 1 

whether or not q. 1S prescribed 1n a particular probleIn. 
1 

b. Principle for generalized forces. A change of variables in 

2.10 will now be Inade in order to obtain a variationa l principle whose 

Euler equations are the inverse of equations 2.1. We shall call this 

a " coInpl eInentary " or "force" principle in distinction to the previous 

one for coordinates or "displaceInents. If The wo rds "force "and 

"displaceInent" are used in Inore general sense than Ineaning just the 

Inechanical quantities, as will becoIne clear in the section 2.3 on 

applications. It will be seen that this variable change leads to a 

IIcoInpleInentary!' variational principle in analogy to the well-known 

cOInpleInentary energy principl e of elasticity. Stric tly speaking, 

the derivation of the cOInpleInentary principle froIn the one for coordi-

nates is heuristic and hence Inust ultiInately be rigorously justified 

on the basis that it leads to the correct Euler equations. However, 

it will be seen later that ,the procedure followed in the derivation here 

is very useful in deducing the appropriate functions for a continuuIn. 

Let us first write 

(2.20) 

whe re 1 -< i :5 n, and k ranges over those indices corresponding to 

specified coordinates, while J. indicates sUITlInation o ve r the speci-

fied forces. Substituting equation 2.20 into I
q

• equation 2.l0a, yields 

(2 . 21) 

, 1Q is now defined as the negative of Iq , 



-75-

which can also be written as 

(2.23 ) 

w here identity 2.19 has been used. 
i.e ~:, 

The function V T + DT in equation 

2.23 is to be expres sed in t e rm s of Q. by solving e quations 2.1 and 
1 

then substituting the result, q . (Q.). into identity 2.19. 
1 1 

In v iew of t he 

discussion in sections 1. 3 and 1.6, the solution to e quation 2.1, for all 

, 
coordinates, is given by equation 1.37 after setting T F == T = constant 

s s 

and dropping the terms 13·8; thus, 
1 

[2: 
C~~) 

C . . ] 1J . 1J 
Q. q. :: 

l+r p .+ - -
1 P 1 

S 
S 

:l,e )lc 
and · V T + DT becomes 

s 

(s) . 
C .. Q.(T) 

1J J 

1 + T P s . 

C . . Q.{T) ] + 1)) 

P 

[ C~~) t vJ.. 
.!.. Q.(t-T) \' ---2Le- t /T s I e / ' sQ~{v)dv 
2 1 . L- T S . JO J 

s 

+ C .. It Q.(v) dV] 
1) J 0 J ' . 

(2.24a) 

(2. 24b) 

It should be noted th.a t equation 2. 24a is valid for all coordinates, 

qi' while only those with index k (prescribed co'ordinates) are needed 

to determine the unknown forces Qk. Therefore, on the basis of the 

above relation betwee.n IQ and I we expect the Euler equations of 
q . 

the variation of 2. 23 to be 
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C ts ) 
kj 

T 

-tiT st v/T st 
e s e sQ.(v.)dv + C

k
. Q .{v) dv 

. 0 J J 0 J S 
s 

The complementary force theorem can now be stated: 

Considering a linear system as defined above and 

assumed to be at rest in its reference state at t= 0, 

the actual path followed by the forces Qk' which 

are conjugate to the specified generalized coordi-

nates qk' is determined by making 1Q stationary 

with respect to all small variations 6Q
k 

from. the 

actual values; that is, the integral equations 2.25 

are the Euler equations of the variation 

where 1Q is defined by equation 2.23.' 

(2.25) 

(2.26) 

By completing this variation, the Euler equations are found to be 

equations 2. 25. 

It is clear that the converse theorem is also true', i. e., the 

variation 2.26 vanishes as a result of 2.25. In addition, it can be 

shown that the actual value of 16 is not an extremal, but is just a station­

ary point. However, as with Iq for p real and positive, IQ is an 

absolute minimum for the actual path. 

It is noted from equation 2.22 that the name "complementary" 

principle is appropriate since 
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(2.27) 

for the actual solution. 

Another point of interest conc e rns the physical m eaning that 

can be attached to the convolution functionals 2.l0a and 2.23 in con ­

trast to the standard form used for reversible process es , e. g . Hamil­

ton's principle. A basic fact is, of course, that energy is d eg raded 

in any natural (irreversible) process. For example, if a viscoelastic 

body is loaded by mechanical forces, but is not in thermodynamic 

equilibrium, the motion of the state variables is such that mechanical 

. energy is converted continuously into thermal energy, with an associ­

ated entropy increase. However, by using products of forward and 

backward running coordinates and forces in energy functionals, this 

irreversibility is removed in the sens.e that these functionals have the 

stationary property during the entire process. 

2.3. Application of the Basic Homogeneous Principl es to Vis coelastic 

Solids 

While the general variational principles developed in section 

2.2 apply directly to a system defined by n thermodynamic state 

variables, it is the purpose of this section to use them to formulate 

variational principles for the thermal and mechanical behavior of 

s:olids whose thermodynamic state is, in general, described by an 

infinite number of these variables. As mentioned earlier, a differ­

ential mass element of a continuum can be interpreted as being a 

uniform cell whose thermodynamic state is defined by m .variables, 

say; and that this interpretation is valid as long as spacewise changes 
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of variables are small relative to characteristic atomic or molecular 

distances. The total system is then defined by a set of m variables 

which vary continuously throughout the body. Consequently, the 

thermodynamic functions, V T and D
T

, and the external energy 

supplied to the system are given by volume and surface integrals 

with integrands consisting of a sum over the m variables of each 

cell. 

It will be seen that this method of deducing continuum princi-

pIes, in 'which thermodynamic f unctions are suggested b y the discre t e 

cell analysis, has several advantages. For one, the determination of 
. 

variational principles is straightforward even though they are not at 

all obv ious by simply examining the field (Euler) equations. In addi-

tion, this method provides functionals which are expres s e d in terms 

of ,thermodynamic invariants, and conseque ntly the functionals are 

independent of the particular coordinate system used. Another ad-

vantage is that the 'Euler equations are guaranteed to be consistent 

with thermodynamics. ' 

We now proceed to determine both IIdisplacement" and "force" 

(or stress) principles for anisotropic media; first for pure h eat con­

duction a.nd then for the combined thermo-mechanical behavior of 

v iscoelastic =edia. It will be assu=ed that inertia effects due to 

straining are negligible and that all variables vanish at the time origin. 

If this is not the case in any particular problem, the appropriate 

functional can be modified as discussed in section 2.2. We also as-

sume that the geometric boundarie s of the solid do not change with 

time except for small deformations and that all properties are inde-
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pendent of temperature. 

a. A simple example-,-heat conduction. 

n) Principle for entropy displacement: The the rmody':' 

namic state of a solid which is assumed to experience only thermal 

energy changes is defined by the absolute temperature, T, at each 

point. However, it has been shown that the variahonal principle 2.11 

applies if entropy displacement, rather than temperature, is used as 

the thermodynamic variable •. That this can be done follows from the 

conservation of energy statement 

where 

-­. 
div h 

. . 
h. , = - c e 

1, 1 
(2.28) 

c = specific heat, per unit volume (assumed independent 

of temperature) 

--The relation 'between entropy displacement, ' S , =, (S1' S2' S3)' and tem-

perature is then obtained by integration, 

ce 
S .. = - T 

1, 1 r 

where the entropy displacement is defined as , 

(2. 29) 

(2. 30) 

It is clear from equation 2.29 that S. completely specifies 
, 1 

the temperature, and hence the thermodynamic state of the body. It 

is interesting to observe that the temperature is only a function of 
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div S and therefore is independent of curl S. This property is 

analogous to the role of Inechanical displace:ment, u, since the rota-

->-
tion of :material ele:ments, curl u, has no effect on the ther:mody-

na:mic state of each ele:ment. 

Let us now evaluate the ter:ms V; and D; In I
q

, equation 

2.10, by using identity 2.19. Biot (2) calculated these functions fro:m 

their ther:modyna:mic definitions; however, for our purposes it is 

easier to use the identity 

(2.31) 

where n. is the outer unit nor:mal to the exterior surface A, and the 
1 

variables t and Tare i:mplied. In writing equation 2.31 we have 

used the ther:mo-:mechanical analogy discussed in Part I, section 6. 

In this, the boundary te:mperature 8 acts as a generalized force In 

the sense that 

-s A 
en. 6S. dA 

1 1 
= Q.Oq. 

1 1 
(2. 32) 

is virtual work (or energy addition) done . on the body; the negative sign 

,', 
accounts for the definition that n

i 
is an outer nor:mal. Since V ~ 

~:c 

and D Tare volu:me integrals of density functions, they can be deter-

mined by applying the divergence theore:m to the surface integral in 

2. 31. This provide s the identity 

S en.S.dA =: S [es . . + 8,.$.] dB 
All . B 1,1 1.. 1 

(2. 33) 

where B denotes volu:me integration. 

Fro:m equation 2.29 we have 
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T 
8S . . = _ Cr (S . . )2 

1, 1 1, 1 
(2.3 4 ) 

In order to express the second t e rm in the volume inte g ral in 2.33 a s 

a function of entropy displaceme nt, we must utilize the l aw of heat 

conduction given in P a rt I, equa tion 1.116, 

K .. 8, . = - h . -
1J J 1 

which can be inverted to find 

8, . = - T A. . ·.S . 
1 r 1J J 

T S . 
r 1 

K . . = K .. 
1J J1 

where A. .. is the the rmal resi s tivity matrix defined as 
1J 

(2. 3 5 ) 

(2. 36) 

A. .. = [K. .]-l (2. 3 7) 
1J 1J 

which is assumed to be independent of 8. Using equation 2.36 we 

now have 

. 
8, .S. = - T A. . . S.S . 

1 1 · r 1J 1 J 
(2. 3 8 ) 

Substitution of equations 2.38 and 2.34 into identity 2.33 and 

us ing relation 2. 31 y ields 

~( '~S Tr T r • · V
T 

+ DT = {2C S . . (r)S .. (t .. r) + ~2 A. . . S.(r)S.(t-r)} dB 
B 1, 1 J, } 1J 1 J 

(2.3 9 ) 

On comparing this with equations 2~ 5, 2.7, and 2.10, the generalized 

free energy density, V (per unit volume) is identified as 

Tr 2 
V = ..,..,.,C (S .. ) 

L.L 1, 1 
(2.40) 

which can also be expressed as a function of temperature by means 

of the ene r gy ·equation 2. 29, 
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The dissipation density, D, is observed to be 

D= 
T r •• 
-2 A .. S.S. 

1J 1 J 

or, in terTIlS of teTIlperature, 

K .. 
_ 1J 

D - ZT e, ie, j 
r 

(2.41) 

(2. 42) 

(2. 43) 

The functional I for entropy displaceTIlent, corresponding to 
s 

I in the general theory, can now be writt~n by substituting equation 
q 

2. 39 into equation 2. lOa, 

Sts . Tr · T r • . 
I = {-2C S . . (r)S .. (t-r) +-2 A .. S.(r)S .(t-r)} dBdr 
sOB " 1 ;., } 1J 1 J . 

rts . + J 6(T)n.S.(t-r)dA dT 
o A" . e 

(2.44) . 

where Ae .is the portion of the surface on which e = e is .prescribed, 

and S.n. TIlust satisfy the boundary conditions' on A where heat flow 
1 1 S 

is prescribed. This latter requireTIlent arises froTIl the fact that q. 
. 1 

in the general theory TIlust satisfy constraints, which are the heat flow 

boundary conditions. In order to siTIlplify the notation, we shall use 

the usual notation for convolution integrals, 

(2.45) 

where f and g are functions of tiTIle. Two useful properties of the 

,~ 

product f g are 

~( >!c 
f g = g f 

>:< 1.1: )'e 
(f + g) h:; f' h + g' h (2. 46) 
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In this simplified notation, the functional '2.44 becomes 

S Tr'~ Tr "~ " 
Is::: B { 2C S. . S. . + -2 A. .. S . S.} dB 

J, J 1, 1 IJ 1 J 

+ S e':'n.S. dA 
" A 1 1 

8 

(2. 47) 

The variational principle for entropy displacement can be stated as 

oI ::: 0 
S 

(2. 48) 

for all arbitrary variations of S . consistent with its boundary condi-
1 

tions. It can be shown that the Euler equations of 2.48 are the heat 

conduction equations 

1 
[ C ,S .. ] ::: LS . 

" 1, 1 'j J1 1 
In "B (2. 49) 

and the natural boundary condition is 

ce s . . :::--
1,1 T " 

r 

(2. 50) 

That these are indeed the experimentally correct equations for entropy 

displacement is verified by substitution of equation 2.29 into the law 

The Euler equations of 2.48 can be obtained in the same form as 

the general equations 2.1 if we first write 

~( 

S. ::: S . :(x.)q . (t) 
1 IJ 1 J 

(2. 51) 

In passing it may be recalled that even though the principle 2.48 was 
derived from thermodynamics under the assumption of 8/T r « 1, 
it may have a wider r~nge of applicability; this follows from the fact 
that the temperature range for which it is sufficiently accurate rests 
ultimately on the accuracy of its Euler equations in satisfying experi­
mentally observed behavior. 
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where the quantities S .. (x.) 
IJ 1 

are as sumed functi on s of x., consistent 
1 

with the boundary conditions on S., and q.{t) are unsp ecified func -
1 J 

tions of t ime . Substitution of 2.51 into the va r i ational equations 2. 48 

yields differential equations for t he q. which are identical in fo rm 
J 

with the basic relations 2.1. 

13) Princ iple for t emperature: In numerical applications, 

once the entropy di s plac e ment i s found, from e qua tion 2. 48, the tem-

perature distribution can be calculated from the ene rgy equat ion 2.2 9. 

This procedure is similar to the one followe d w ith the potential 

energy theorem of e lasticity, wherein displac e ments are first calcu-

lated from the varia tional principle, and then stres s -strain equations 

are us ed to f ind stresses. However, as in the e lasticity problem, in 

many cas es it may be more des irable to obtain temperature ( "stress ") 

directly from a variational principle. This can be done by using the 

complementary function 2.23 for heat conduction, in which e co rre-

sponds to the generalized force Q.. Equation 2.41 provide s us im-
1 

mediate ly with V; as a function of temperature. The f unction D; 
is found b y combining equations 2.38 and 2.35, 

" _ S ,~ - ' 1 } _ 1 } e, j 
DT - D dB - -""" e, .S. - 2T e, .K," ~B 

B c. B 1 1 r B 1 IJ P , 
(2. 52) 

The func tional for t emperature, Ie' can now be ,written by making the 

appropriate substitution in 2.23, thus 

C ':' l'~ e, j 
{Te e +Te,.[K. .-]} 

r r 1 IJ P 
dB 

+ r e ~'n . S . dA J 1 1 
As 

(2. 53) 
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whe re AS is the portion of the boundary where heat flow is prescribed. 

It will probably be more convenient to use the time 'derivative of Ie 

in applications, 

dB 

(2. 54) 

The temperature distribution is found from the variational equation 
>;C . 

iiI - 0 e - (2. 55) 

for all variations of e which satisfy the boundary conditions on Ae' 

It can be easily verified that the Euler equation of 2.55 is 

ce ::: [K. ,e,.J ' 
. , 1J J, i 

in B (2. 56) 

and the boundary condition is 

. 
n.K .. e, . ::: - h.n . 

1 1J J 1 1 
(2. 57) 

Since these are also obtained by combining equations 2.29 and 2.35, 

the variational principle is valid under the same conditions as is the 

entropy displacement principle., It may be noted in passing that equa-

tion 2.56 for an isotropic, homogeneous solid takes the well -known 

form 

(2. 58) 

,', 
'This variational principle is similar to R.osen's (26); however, he 
does not include a tim~ integral so that e must be held constant in 
making the variation. 
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Let us now show that identity 2. 27 is valid for the application at 

hand. Let e{x., t} be the actual tempe rature distribution, and S. 
1 1 

the corresponding entropy displacement for a body with n.S. pre -
1 1 

scribed on AS arid e prescribed on Ae' Adding functionals 2.47 

and 2.53, 

{2. 59} 

;;.'0:; :.:< 
Since (y ~ + D

T
, satisfies equation 2.31 we arrive at the simple result 

that for the "exact" solution, 

{2.60} 

The same complementary property can be expected in other appli-

cations as a consequence of the fact that the underlying thermodynamic 

equations of motion are the same for all linear systems. In fact, this 
. . 

simple example of heat transfe r illustrates well most of the essential 

features found in other applications. 

b. Thermo-viscoelasticity. In this section variational principles 

for the linearized equations of thermo-viscoelasticity win be derived. 

It should be recalled that the thermodynamic linearity assumption r e -

quires material properties to be independent of temperatur e ' and the 

effect of dissipation on temperature to be neglecte-i. , Even though 

these assumptions are often too restrictive for thermal stress prob-

lems, several important sub-cases can be obtained from the general 

linear analysis. For example thermoelasticity, viscoelasticity {with-

out temperature}, and heat conduction appear as special cases. 
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u~ Principle for m ec hanical and entropy displacements: 

We proceed as in the previous e xample by evaluating v; + D; in 

terms of displacement with the aid of equation 2.19. For the case 

of both mechanical and thermal perturbations we have 

Q.q. 
1 1 

= r T.u.dA + \. F.u. dB _ r en.S . dA JA ll ' B 11 JA 11 
(2.61a) 

where T. is the surface force p e r unit area, F. the pre scribed body 
1 1 

forc e per unit volume, u. the mechanical displacement, and the 
1 

variables t and .,. are implied. The entropy displacement integral 

is written in terms of density functions by utilizing equation 2.33. 

The integrals representing mechanical energy can also be expressed 

as volume integrals by means of the divergence theorem. We find (13) 

""S T.u.dA + S F.u.dB = S [cr ... + F.] u.dB + S cr .. e .. dB 
All B . 1 " 1 B lJ, J 1 " 1 B lJ lJ 

where e .. is the strain tensor, 
lJ 

" I 
e .. = -2 (u .. + u .. ) 

1J l,J J,l 

(2.6Ib) 

(2. 62) 

)'.:, ':<: 
and cr

ij 
the stress tensor. Since V ~ and DT are defined as functions 

of state variables, they "must be evaluated under the condition of mechani-

cal equilibrium; this requires (neglecting inertia), 

cr ... + F . = '0 
1J,J 1 

1n B (2.63) 

Substitution of equation 2. 61a into equation 2.19, after making use of 

equations 2.33, 2.61b, and 2.63 yields 

= C {cr .. e .. - es . . - e, .S. }dB J B 1J lJ 1, 1 1 1 
(2. 64) 
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The last term in equa tion 2.64 can be expressed immediately 

as a function of entropy displacement by using the heat conduction l aw, 

2.36, to obtain equation 2.38; the assumption that the heat conduction 

equation is unaffected by deformation was discussed in section 1.8. 

Also, the operational stress -strain-temperature equation 1.100a, 

is us ed to obtain 

(f . . e .. 
IJ IJ 

e ] e. . - [ (3~. 8] e .. 
J.1v IJ IJ IJ 

(2. 65) 

In the previous example it was possible to evaluate the second 

term in equation 2.64 , 8S .. , through the use of the energy equation 
. 1 , 1 

2.29. However, ·we must now utilize the linearized version of equa-

tion 1.119, which can be written as 

. H = - T S. · . = d' 8 + T /30
. e:. 

r 1, 1 e r IJ IJ 
(2. 66) 

or 

e = [ 0] -1 [ 0] -1 0 T C S . . -T C (3 .. e .. 
r e 1, 1. r e IJ ' 1J 

(2.67) 

where, in equation 1.119, we have set 
I 

P s = P s = constant, D = 0, and 

integrated with respect to time. The inverse of the specifi.c heat · 

operator, [ Co] -1, is of the form 
e 

s 
P +_1_ 

"PSH 

(2. 68) 

in which d and d(s) are positive constants; this property is ob-
e e 

tained by comparing equation 2.67 and the earlier equation 1. 69. It 

, 0 -1 0 
is also seen from equation 1. 69 that [C] (3.. has this same form, 

e 1J 

but the coefficients are not necessarily positive. 
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Let us now substitute equations 2.65, 2.67, and 2.38 into 

identity 2. 64 to find, 

t . * . 
2 (' (V

T
':' + DT~' )d'T:: S {[ Zfl.v e ] ':'e .. + a

T
-[ COa] 

JOB 1J iJ. v 1J ' r e 

. " + T A .. 5: S. }dB 
r 1J 1 J 

(2. 69) 

in which the convolution notation 2,45 is indicated and we have used 

the fact that 

o )!( ':c 0 
[ 13·· a] e .. :: a [13·· e.

J
.] 

1J 1J 1J 1 
(2. 7 0) 

This identity can easily be ve rifi e d by operating on it w ith the L aplace 

transform. Elimina tion of the tempe rature from equation 2.69 and 

s ubstituting the r es ult into equation (2.10a) yields the f u nctional to 

be used in the variational principle: 

I 
US 

1 (' . iJ.v ' ~, 0 -1 0 ~, 0 
:: -2J ([Z . . e ] e .. + T [(C) (5 .. + j3 .. e .. )] [5 . .. +j3 .. e .. ] 

B 1J f.L v 1J r e . 1,1 1J 1J 1, 1 1J 1J 

. • );c 
+ T A . . 5 . S.}dB 

r 1J 1 J 

S ,', 
+ e'n.S.dA 
All . . a 

S ':' S * - . T. u . dA- · F . u.dB 
All " B 1 1 

T 

(2. 71) 

where the force vector Ti is pres cribed on AT and temperature e 
is prescribe d on Aa' Also, the strains must be expressed as functions 

of displacement by using equation 2.62. 

The equations for mechanical and entropy displacements are 

determined by the stationary condition 

6I :: 0 
us 

(2. 72.) 

fo r all arbitrary . variations of u . and S. compatible with thei r 
1 1 

boundarY .conditions. B y carrying out the variation we find that the 
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Euler equations of 2.72 are the three equilibrium equations; 

in B 

(2.73) 

and the three heat conduction equations 

o' 0 
Cx. . . S . -S . .. -13 u .=0 

e 1) 1 1,1) fJ.Y fJ.,Y) 
in B (2. 74) 

This same set of equations c an b e obtained directly from the stress-

strain - temperature equations, ene rgy equation 2. 67, and heat con-

duction equation 2.36; on the basis of this remark as well as the fact 

that the natural boundary conditions of the variation 2.72 are 

= {[ fJ.v 0 0 0 -1 0 -1 _ n.CJ .. (u , S ) - Z .. + T 13 13 .. (C) ] e + T (C) 13 .. S }n.- T. 
) 1) V fJ. 1) I' fJ. v 1) e fJ. v r e 1) fJ., fJ.) 1 

S .. 
1, 1 

(2.75) 

(2.76) 

we conclude that the variational principle is valid within the region 

of validity of the field equations 2.73. and 2.74. 

Some special cases of the vari?-tional principle 2.72 will now 

be c ons idered. For viscoelasticity without thermal effects, set e =0 

in equation 2.64 and use the r es ult to write 

IS * ' ~ '~ r * I =...,. CJ .. e .. dB - F. u.dB - \ T. u.dA 
u "- B 1) lJ B 1 . 1 .J All 

T 

(2. 77) 

in which the stress tensor is to be expressed as a function of the 

strains through the operator equation appropriate for the desired 

de gre e of anisotropy. In order to obtain the functional for the case 

i n which there are strains due to temperature, but the tempe rature 
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field is prescribed, it is necessary to,first write equation 2.64 in 

terrns of strains and temperature. This situation will be considered 

later in connection with "non-homogeneous" variational principles. 

The functional for adiabatic deformation'is obtained immediately 

from equation 2.71 by setting S. = S .. = O. Furthermore, the vari-
1 1, 1 

ational principle for thermoelasticity is deduced from 2.71 by simply 

replacing the operators zij , CO and 
f.Lv e 

o 
13 .. 

1J 
with their corresponding 

elastic constants. It is 2.1so clear that the ' functional for pure heat con-

duction results by equating the displacement field to ze roo 

In view of the remarks on the general principles in section 2.2, 

the variational principle 2.72 can be formulated in terms of the 

Laplace transforms of displacement. This is done by transfo rming 

I with the help of the convolution theorem, thus 
us 

1 
us 

_ 1 S { f.Lv- - 0 -1- 0- 2 --} - -2 Z.,. e e .. + T (C) is .. +I3 .. e .. ) +T "' .. pS.S. dB 
B 1J f.L v 1J l' e 1, J. 1J 1J r 1J 1 J 

S -- S = - r--- F.u.dB+ on.S.dA-j T.u.dA 
B 11 A 11 All 

e 'f 

(2.78) 

where all time derivatives in the operational coefficients are replaced 

by the transform parameter p. It can be shown that the stationary 

point of 1 is actually an absolute minimum for p real and positive. 
us 

Furthermore, it is clear that the Euler equations and natural boundary 

conditions of 

olus = 0 (2.79) 

are the same equations 'one obtains by transforming equations 2.73, 

2.74, 2.75 and 2.76. 
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Thus, it is seen that the thermo - viscoelastic variational prin-

ciple in t e rms of tra nsformed v aria bles is formally identic al with the 

one for thermo-elasticity. This leads to a correspondenc e rule in 

which an approximate (or exact) transformed viscoelastic solution 

can be obtained directly from a transfo rmed "associated" elastic 

solution as calculated from a v a ria tional principl e; it is o n ly necess a r y 

to replace all material constants by the appropriate operators, e. g . , 

Zi~v(p). This same rule extends to all principles which we shall de­

rive from the basic thermodynamic ones. The correspondence rule 

stated here is a generalization of the one shown by Biot for isothermal 

viscoelasticity (2). 

Before we discuss the complementary principle, l et us ex ­

amine briefly an alternate method of calculating V; + D;, i. e ., use 

of the thermodynamic definitions for the generalized free energy and 

entropy production directly. This will show more clearly the close 

correspondence between the basic form of the variational principle 

g i ven i n section 2. 2 and the one 'derived in this section. 

First, the generalized free energy density, V, (per unit volume) 

is obtained by relating it to the Helmholtz free energy density, F. 

We have the definitions 

Reference to 

V==U-TS 
r 

F == U - (e + T )S = V - es . r 

equations 1. 18a and 1. 26 shows that 
'. . c e2 

e (ElF) = ~2 [a . . q .q . + -T
q 

] 
ElT IJ 1 Jr ' 

qi 

V = F -

(2. 80a) 

(2. 80b) 

(2.81) 
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where C is the specific h e at (per unit v olume). It is impli c it In 
q 

the expression that the local thermodynamic state is defined by 

e xcess. temperature, e, and the n coordinates q., six of which 
1 . 

(ql' q2"" , q6) are the me chanical strains 

total free energy is 

e ... 
1J 

Therefore, the 

(2. 82) 

Since the variational principle must be written in terms of e ntropy 

displacement, rather than temperature, it is necessary to use the 

linearized ene rgy equation 1. 66. Elimination of temperature differ ~ 

ence. 9, provides us with the appropriate formof the generalized 

free energy, 

IS Tr . 2 V T ::; -2 {a .. q.q . + -C (S .. t f3 . q.) } dB 
B 

1J 1 J 1; 1 . 1 1 .. 
q . 

(2. 83) 

The entropy production per unit volume separates into non-
,,~ 

thermal and thermal components. The thermal component leads 

to the dissipation per unit volume given by equation 2.42 

T _ r 
D t = -2 A .. S.S. 

1J 1 J 
(2.84), 

The non":therrnal contribution to dissipation is .obtained from equation 

1. 55, 

(2. 85) 

Thus, we can write the total dissipation function as 

':'This follows from the assumption that the thermal contribution to 
entropy p;roduction is· of a different degree of symmetry than the 
other causes, as discussed in section L 8. 
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DT ::: ~2 r {b .. q.q. + T A .. 5.5. r dB JB IJ 1 J l' 1J 1 J 
(2. 86) 

:.:::: ):~ 

It is now possible to substitute V T and D T , corresponding to 

the functions given by equations 2. 83 and 2. 86, directly into the vari­

ational principle 2. 11. We thereby obtain a variational principle for 

hidden coordinates as well as the observed variables of m.echanical 

and entropy displacem.ent, 

61 = 0 qs 

with the definition 

IS .,:' Tr ,~ 
I =-2 {(a .. q.+ b .. q.) q. + -c (S .. + i3.q.) (S .. + i3.q.) 
q s B IJ J IJ J .'1. q I, 1 1 1 1, 1 1 1 

+ T LS . S.} dB 
l' 1J 1 J 

S 
,', 

T: u.dA 
All 

T 

(2.87) 

(2. 88) 

where the strains e.. [::: q . (i:= 1, 2, . . . , 6)] are to be expre s sed as 
1J 1 

functions of the m.echanical disp1acem.ents using equation 2. 62. It 

can be shown that; the Euler equations of 2. 87 are not only the m.echani-

cal equilibrium. and heat conduction equations, but also (n-6) equations 

for hidden coordinates as given by equation 1. 40. If, hQwever, we 

initially elim.inate the hidden coordinates from. equation 2.88 by 

solv ing the (n-6) equations, then the functional 2.88 becom.es identi-

cal with the first one we derived, equation 2.71. 

13) Principle for m.echanical stresses and tem.perature: 

The com.plem.entary principle for stresses and tem.perature will now 

be deduced from. the basic functional 2.22. While it was possible to 

use the sim.p1er form. 2. 23 in deriving the heat conduction principle, 
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it cannot be used now. This sterns from the fact that when we intro-

duce equation 2.19 •. [2(V'T:' "" D'T:') == Q.(7)q.(t-7)). it is tacitly assumed 
.11 

that the internal stress field is in equilibrium. The additional term 

which must be added if this is not the case is 

S [!<T.. .f F.] u. dB 
B 1J. J 1 1 

as seen by referring to equation 2. 61b. Thus we have 

Q.q. - (V'T:' + D;T") :::: S [0" ... + F.] u.dB + (V;T" + D'T:') (2.89) 
lIB 1J. J 1 1 

where V; + D; is to be written as a function of stress and tempera-

ture with the help of equation 2. 64. 

For the mechanical component, use is made of the stress-

strain-temperature equation 1. l03a derived in Part I. so that 

®" .. e .. =G .. [AJ:L.vq;- ] + !W .. [a~.8] 
1J 1J 1J 1J fL v 1J 1J 

(2. 90) 

In order to express the first thermal integrand in equation 

2. 64 in terms of temperature we use the energy e'quation 1. 63. After 

linearizing and integrating with respect to time we find. 

S .. 8 -
1,. 1 

o 
a .. G .. 

1J 1J 
(2. 91) 

where CO is the constant-stress specific heat operator whose form 
[(J" 

is given by equation 1.64. Therefore 

-8S .. 
1. 1 

== T8 [C~8] -I- 8[ a~.O" . .] 
v 1J 1J 

(2. 92) 
r 

, 
The second thermal term is found immediately by using the heat con-

duction law 2. 35. 
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. . 0 •. 
[K.._J J 

IJ P 
(2. 93) 

Now that . V; + D; is known as a function of t empe rature and 

.stress, we can substitute equation 2. 89 into equation 2. 22 to obtain, 

the complementary function a l I!G"0' 

S U'\, .. n.cIA + S 0':'n.S.cIA 
Au 1 IJ J ' As 1 1 

~:( 0 
20 [a .. «Y • • J 

IJ IJ 

(2. 94) 

where displacements U . are prescribed on A a nd the entropy. dis -
1 . U 

p lacement (i. e., heat flow) is given on A. The me chanical dis-. s 

placement field, ui~ ca.n b e e liminated from this functional by requir­

ing that all admis sible sta te s of stre s s in ;the variationaI principle 

satisfy the equilibrium equations. This is accomplishe d by expressing 

the stresses as derivatives of certain s'tress fUpctions (31). How-

eve r, an equivalent procedure is to interpret continuous functions 

u . as Lagrange multipli:ers associated With side condition, 
1 

fIT . . • + F. = 0 . in B 
IJ, J 1 

(2. 95) 

This latter method will b e used since it leads to an easier proof. 

As the compleme ntary principl e we state that actual stress 

and temperature distributions are determined by the variational 

e quation 
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01 =; 0 ' 
luG ' 

(Z. 96) 

where all a dmissible stresses satisfy the stre ss boundary conditions, 

O'" •• n. =; T. 
, 1J J 1 

(Z. 97) 

and all admissible temperature fields ' satisfy the bounda r y conditions 

on Ae' Performing the variation with stresses and displacements 

varied independently we arrive at the' Eul~r equations, which are the 

six compatibiiity conditions 

I-lV 0 _ 1 
A .. If5' + a .. e - -Z (u .. + u . . ) 

1J j-L V 1J I, J J, 1 
in B (Z. 98) 

the three equilibrium conditions , 

<0' •• • of F. =; 0 
1J , J 1 

in B (Z. 99) 

and the conservation of energy statement, 

e, . 
['K.. __ J], . =; cOe + T a?aT .. in, B 

1J P 1 liT r 1J 1J , 
(Z.lOO) 

In addition, the natural boundary conditions of the variation are th.e 

conditions on the Lagrang.e multiplier 

, u. = U . 
1 1 

on A 
u 

u., 
, 1 

and the e ntropy 'displacement boundary condition, 

e, . 
n.K .. __ J 

1 1J P 
T S.n. 

r 1 1 
on 

(Z. 101) 

(Z.lOZ) 

Equations 'z. 98 - Z. 102 are a complete set for calculation of 

the stresses and temperature fie l d. It isclear ,th<!.t these are the 
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correct equations; the, compatibility condition 2. 9B relates str e ss-

depende nt strains to displacement -dependent strains, while equation 

2.100 is simply the line a rized energy equation 2.91 combine d with heat 

conduction law 2. 35. 

It is interesting that if the equilibrium equations are not 

identically satisfied in the varia tion, application of Lagrange multi-

pliers with the equilibrium equations gives a principle for displace-

ments as well as stresses and temperature. In "fact, it will now be 

shown that this principle is an exte nsion of Reissner's principle for 

elastic stresses and displacements (28) to thermo-viscoelasticity, 

except for the constraint on boundary values. The functional 2.94 

is cast in Reissner's form by using identity 2. 6lb in order to replace 

the first integral in this functional. We find 

= 1 r { ':' ':' [ fJ. v ) } I -2 J -.,. .. (u. .1l- u .. ) + lIT •• A .. lIT dB 
au . B 1J ' 1, J J, 1 1J 1J fJ. v 

S -', 
+ ' T~ u.dA 

A 1 J. 

T 

(2.103) 

where the thermal terms have been omitted for simplicity. As before, 

Ti , is the pr~scribe d stress vector on AT and ' Fi is the prescribed 

body force. ' Reissner's principle for viscoelasticity can be stated as 

follows:' 

Among all displac ements which satisfy the dis-

, placement boundary conditions and among all 

stress states, the actual stresses and displace-

ments are determined by the variational 
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in which the stresses and displacements are 

varied independently. 

(2. 104) 

As Euler equations we find the six stress-displacement compatibility 

c onditi ons, 

1 
=: -2 (u . . + u .. ) 

1 , J J. 1 
In B (2.105 ) 

and the three equilibrium equations 

~ .•• -Ii' F. = 0 
IJ, J 1 

in B (2.106) 

The natural boundary conditions are on the stresses, 

1(J' •• n. =: T. 
IJ J 1 

on ( 2.107) 

These field equations and boundary conditions are sufficien t for cal-

culation of the six stresses and three displacement components; It 

should be noted that the admissible displacements in 2.103 must 

satisfy their boundary conditions , while the stresses are not re-

stricted. However , just the converse is true in .the functional 2.94. 

Nevertheless, from a practical standpoint, in using these principles 

to generate approximate solutions it probably will be desirable to 

choose stresses and displacements which satisfy their respectiv e 

boundary conditions. In this case, the two principles are identical. 

In concluding this section on the complementary principle, 

it should be remarked that it has properties which are similar to 

those of the displacement principle 2.72; 1. e .• concerning special 
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lirnit cases , the correspondence rule, and an absolute minimum point. 

As an example of an important limit case, consider the situation 

occurring most frequently in practice in which the temperature change 

due to stresses is negligible, so that the temperature is prescribed 

variable in the functional 2.94 .(i. e., it is calculated prior to making 

the stress analysis by using the equation for heat conduction). In 

this case, the pure thermal terms in 2.94 do not affect the variation 

and can therefore be omitted. Thus, the functionai becomes 

S -', 
I 8 =: [u".+ F.]"u.dB 
" B 1J, J 1 1 

1 S . ,;, [p.v ] . + -2 {,(T.. A .. u . + 
B IJ 1J fLY 

-,-
U:" «T .• n. dA 

1 1J J 

(2.l08) 

In which 8 is to be held constant when calculating the variation. 

In regard to the minimum property, it can be shown that the 

exact stresses and temperature make I,,8(P), with p real and 

positive, an absolute minimum with respect to all stresses satisfying 

the equilibrium equations 2.95 and stress boundary condition 2.97, 

and all temperature fields satisfying the boundary conditions on tem-

perature. It should be added that in proving this minimum property, . 

one must use the thermodynamic relations between AI;1.v, u?, · and CO 
, 1J IJ " 

which are given in generalized coordinate notation in Part 1. 

,;< 
Thi s minimum character does not exist if the varied state s of stre s s 
do not identically satisfy the equilibrium equations and stress boundary 
conditions. Thus, the ,transform of the functional in Reissner's 
principle, equation 2.103, is just stationary on the positive real 
p-axis. 
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2.4. D ete rmination of Non-Homogeneous Variational Principles 

from the Homogeneous Princ i p les for Linear Systems 

So far in the applications we have utilized t wo b asic variational 

t he orems which are homogene ous in displacement and str e ss variables; 

i. e . equation 2.11 for mechanical a nd thermal displace m ents , and 

equation 2. 26 for mechanical and thermal stresses. In addition, it 

was shown that the stress the ore m cou l d be derived dir ectly from 

the original one for displace m e nts by making a change of variables . 

Furthermore, in section 2. 3b thi s change ,of variables led to a non-

hO l'llogene ous principle for mechanical displacements and stresses by 

r etaining the equilibrium equations with Lagrange multipliers. An 

analogous principle for t e mpe rature and entropy displacement could 

h ave also been deduc e d in the heat conduction example; in this case 

the he at conduction law 2. 36 would appear with a Lagrange multiplier. 

Thus, it seern$ reasonable that a principle could be derived 

fo r the calculation of all functions, U .• -1:) ••• e.and S.. Indeed,it 
1 1J " 1 

can b e shown that all of the above mentioned principles are special ' 

cases of this more general one . 

We shall not h e re derive this general principie, but examine 

brie fly t w o additional vari a tional principles which are .also special 

cas es . It will be seen that they are of practical importance and 

r epresent companions to the homogeneous thermo-viscoe lastic 

principles in section 2. 3b. The first one considered is for mechani-

cal displacements and temperatur e and the second one is for mechani--

cal stresses and entropy displacement. 
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a. Principle for m.echanical displacem.ents and tem.peratur e. 

The functional is derived m.ost easily by m.eans of a heuristic argul"nent 

using generalized variable s. Let Q,q, be divided into m.echanical 
J J 

variables ~Qr " and:therm.al variables qsQs' In analogy to the 

derivation of equation 2. 22 we obtain the functional 

(2.109) 

where the index k indicates sum.m.ation over prescribed therm.a1 

" coordinates, and index" i indicates sum.m.ation over prescribed 

m.echanical forces. The" term. in the square" brackets is to be written 

as a function of m.echanical coordinates and ther"m.al forces. 

We now identify the therm.al energy Qsqs with its continuum. 

representation 

Q q == - S eniS, dA 
·s sA" ~ 

(2.110) 

and fi .... st; use identity 2. 33 as well as 2.64 in determ.ining the disp1ace-

m.ent and tem.perature dependence of 
, ~!< :.::: 

(V
T 

+ DT - q Q ); the procedure s s . 

for elim.inating the mechanical stresses and entropy displacem.ent is 

sim.ilar to what we have followed with the previous cases. When 

the results 'of this calculation are substituted into equation 2. 109 the 
.I 

functional for displacement and tem.pe rature is obtained. 

I " = 1 S .{ [ Zf-L v" ] * 
ue -2 .. e e .. -

B · 1J f-Lv " 1J 

;,1 [K ,"" e, j] }"dB. S T'~ dA S F"'~ d"B 
iJ P 

- , u, - . , u. 
A 1 ~ B 1 1 

r " T. 
(2. lll) 
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where Tiis prescribed on AT and Si is specified on AS. The 

displaceme nt and temperature fields are determined by the stationary 

condition 

6 I = 0 ua 
(2.112) 

in which all admissible displacements andtemperatur es must agree 

with their respective boundary values on Au and Aa. The Euler 

equations are the three equilibrium equations, 

zI:L.Vu . - !3?a, . + F. = 0 
IJ fL' vJ IJ J 1 

and the energy equation 

a, . 
[K. ._J ]= cOa + T !3?e .. 

IJ p . 'i e r IJ IJ 

with the natural boundary conditions 

[zI:L:"u - !3?a]n. = T . 
.1J fL' v 1J J 1 

, a •. 
n.[ K.._J] 

1 1J P 
T S.n. 

r 1 1 
on 

in B (2.113) 

in B (2. 114) 

(2. 115) 

(2.116) 

It is yasily verified that the se equations are the complete, correct set 

for the description of the displac e ment and temperature distributions. 

An important limit case of 2.112 is when the t emperatu re fi e ld 

is prescribed, and therefore is assumed independent of displacements. 

The variational principle for this condition is .obtained by omitting the 

pure thermal terms in equation 2.111 and holding the temperature fixed 

in theva:dation 2.112. With the temperature prescribed, it can be 

shown that ~mong all di,splacements satisfying the displacement 

boundary conditions~those which satisfy the equilibrium equations 
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make Iua an absolute minimum when p in on the positive real a xis. 

However, if the temperature is a function of the displace m ent, Iua 

is only stationary. 

b. Principle for mechanical stresses and entropy displa ce-

ment. The functional for the mixed variables of mechanical stress 

and entropy displacement is derived in a similar manne r. We find 

that the field equations and natural boundary conditions for 

S. are obtained from the variational equation 
1 

where 

I us 

61 :: 0 
us 

:: r [lIT ... + F.]*u.dB + l2S' {[AI:".v" ]'\1' .. JB . lJ, J 1 1 B 1J IL v 1J 

<T •• 
1J 

and . 

( 2.117a) 

o -1 . o~' o . . ':' 
T [(C) (S .. +d .. IIT .. )] [S .. f 0I .. 1!1" .. ] - T S. [ A. .. S.]} dB 

r iQ" 1, 1 1J 1J 1, 1 , 1J 1J r 1 1J J 

-S U:!IT .. n.dA - Jr @':'n.s.dA(2.117b) 
A 1 1J J All 

, u a 

in wJ;tich U i is given on Au and @ is spe~ified on AEl" The admis­

sible stresses and entropy displacements in 2.117 must satisfy the 

boundary conditions on AT and AS' respectively. Furthermore, 

as with the complementary principle. the displaceme,nts appearing 

in the first integral are Lagrange multipliers which drop out if all 

varied states of stress are chosen such that the equilibrium equations 

are identically satisfied. ' We Lind that the Euler equations are the six 

compatibility conditions, 

(2.118) 
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and the heat c.onducti.on equati.on 

with the natural b.oundary c.onditi.ons 

.on A 
u 

(2. 119 ) 

( 2.120) 

(2. 121) 

which f.orrn the c.orrect, c.ornplete , set f.or the calculati.on .of s t re ss and 

'entr.oPy displacernent fields. 

When the entr.oPy displac erne rit is pre scribed,the e x a ct s tr es s 

state makes the fUIicti.onal Io-s(p) an abs.olute rninirnurn ( with p r eal 

and P.ositive) with respect t.o varied stress sta tes which s atisfy e qu ili-

briurn and stress c.oundary b.onditi.ons. As with the previ.ous n.on-

h.orn.ogene.ous principle, this minirnurnpr.ope rty d.oe s n.ot exi s t in the 

general c.oupled therrn.o-rnechanical pr.oble m.. Furtherm..ore, it is 

clear that the adiabatic limit cas e is .obtained by setting S. == 0 in the 
1 

functi.onal 2. 117. 

2.5. C.ornm.ents .on Special V a ria ti.onal Principles when 'DisS i pati.on 

and Tem.perature Depende nt VisC.osity ar e C.onside r ed 

It has been ernphasized tha t the pr evi.ous v ariati.ona l p rinciples 

are valid .only f.or therm.odynam.ica11y linear s yste m.s. a nd tha t this 

assurnpti.op. requires the dissipati.on functi.on in the energy e qua ti.on 

and the tem.perature dependence .of material pr.operties t.o b e n egle c t ed. 

There d.oes not appear. at this tim.e, t.o be a variati.onal princi p l e 

which can be used f.or the se n.online ar effects in the genera l the rm..o-
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,mechanical problem. without imposing artificial constraints on 

admissible variations. However. by slightly modifying the functionals 

in the linear variational principles and imposing certain constraints, . 

some useful results can be obtained. As illustrations of the method, 

let us briefly consider two cases. 

First, we shall indicate the necessary modifications of the 

mechanical displacement-temperature principle presente d in section 

2. 4a in order to include dissipation, but retain all other assumptions. 

The only Euler equation which is changed is the energy equation 2.114. 

It is seen from equation 1.119 that the energy equation with dissipation 

,is 

(2.122) 

where D is the mechanical diss'ipation per unit volume, equation 2. 85, 
m 

which is to be expressed as a function of temperature and strains. Thus, 

if the integral 

D * 2S (~ ) S dB 
B . P , 

is added to the functional IuS' and 

(2.123) 

D 
m is held constant in ' the variation, 

p 

the energy e,quation 2.122 will be obtained as one of the Euler equations. 
D 

It is ~bserved that this procedure treats 2 ~. as if it were a known 
p 

thermal energy source. 

Now, consider the case in which the temperature field is pre-

scribed and the viscosity is temperature dependent, but with the time­

temperat~re superposition principle applicable. If the temperature 

is con~tant in time, the two functionals , '2. 108 for stre s se sand 
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2. III for displacements, can be used directly without modification. 

On the other hand, when the temperature varies with both time 

and space, the se original principles must be modified in order to 

obtain the correct Euler equations. The necessary modifications 

are determined by examination of the effect of the temperature on 

the Euler equations and boundary conditions. If the variable transfor­

mation 1. 121 is used to change from real time to reduced time, the 

time dependence of material properties is removed; however new 

terms with time-dependent coefficients ' are introduced thr ough the 

spacial derivatives, according to equation 1. 122. Consequently, the 

Euler equations and boundary conditions, as functions of reduced 

time, will contain terms which are identical with those for a problem 

without temperature dependent viscosity, as well as terms which arise 

from the spacial variation of temperature. Thus, variational princi­

ples for mechanical variables can be obta,inedimmediately from the 

previous ones, 2.108 and 2.111, if the necessary terms are added to 

the functionals (as was done with the dissipation function considered 

abov.e) and these te'rms are treated as known quantities in the variation; 

of course,' these modified functionals depend on reduced time, rather 

than physical time. 

Another approach is, to use full operational-variational principles, 

such as suggested by Biot (3). These can be employed for the most 

general case of coupled thermo-mechanical behavior. The appropriate 

functionals are obtained by simply removing the convolution integrals 

, from the functionals in the previous sections, and adding the dis sipation 
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function,if desired . . Variation of these functionals will lead to the 

correct Euler equations and boundary conditions if all time deriva­

tives, p, dissipation, and all temperature dependent properties are 

·treated as known quantities. Once the variation is carried out and 

the Euler equations are obtained, the se fictitiously constrained 

quantities are to take on their .actual significance. 

Finally, as a practical point, it should be added that even 

though the modified principles suggested in this section appear to be 

quite artificial, it is possible to use them to calculate approximate 

solutions. This follows frGm the fact that the stationary condition 

makes the approximate Euler equations orthogonal to certain weighting 

functionsj thus, the use of these principles is closely related to the 

well-known methods of Galerkin and Kantorovich (13). Consider, 

for example, the problem of calculating an approximate solution in 

which the solution is assumed in the form of a series of prescribed 

spacial functions with arbitrary, time dependent coefficients. By 

substi~uting the series into the appropriate functional and carrying 

out the variation with respect to the coefficients, a set of integro­

differential equations for the coefficients is obtained. The ease with 

which these resulting equations can be solved relies, of course, on the 

particular problem, and the practicality of such a procedure will 

depend upon further study. 
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PART III 

MATHEMATICAL PROPER TIES OF SOLUTIONS OBTAINE D 

FROM LAPLACE TRANSFORMED VARIATIONAL PRINCIPLES 

3. 1. Introduction 

-There are several ways in which the pr eceding variational 

'principles for viscoelastic media can be used to obtain approximate 

solutions. For example, the methods of Ritz and Kantorovich (13), 

commonly used with the minimum principles of elasticity, could be 

applied to the convolution principles; time dependenc e would be treated 

just the same -as spacial dependence. However. for many cases, the 

simplest .procedure will be to take the variation of a Laplace trans-

formed functional and thereby obtain an approximate or exact trans-

forme d solution; the time dependence is then found by inversion of 

the transform. Of course, the final step of inverting the transform.s 

may prove to be extremely difficult if standard. exact methods are 

use_d. "T.\'lerefcire. it will often be expedient to use approximate inver-

sion tec:hniques; this subject is discussed later in Part IV. Discussion 

of the convolution principles. in relation to their usefulness for the 

calculation of approximate variational solutions. is als 0 deferred to 

Part IV. where two examples are given to illustrate the essential , 

features. 

In this Part. transformed variational principles will be studied. 

First, we shall deduce the general form of time dependence of exact 

and approximate solutions which are obtained from certain transformed 

principles; all prescribedloads and displace;me nts (thermal and me­

chanical) are assumed to be :step functions of time applied at t = O. 
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This analysis is then used in a discussion of the relation b e tween 

errors in approximate and exact viscoelastic and elastic solutions. 

The conclusions reached in Part III apply to responses calculated 

from those principles whose transform on the positive, real p-axis 

attains an absolute minimum for the exact solution; namely, the 

homogeneous principles 2.72 and 2.96 for both mechanical and ther­

mal variables, and the non-homogeneous principles 2.112 and 2.117 

with the thermal variables prescribed throughout the body. The 

remaining principles given in Part II do not fall within the scope of 

the present discussion. 

While all results estab~ished in this Part apply directly to 

bodies subjected to step inputs in time, they can be also used to 

obtain the behavior for arbitrary time-dependent displacement and 

load prescriptions;, one needs only to employ the Duhamel-super­

position integral. ,Furthermore, for simplicity, but without loss of 

generalit"y, we have omitted all thermal variables in the actual 

calculations. 

Before summarizing the results, let us discuss briefly the 

mQtivation for our study of time dependence. A clue to the fact that " 

definite statements can be , made about the time dependence of solutions 

' is provided by the general thermodynamic equations 1. 98 

(3. 1) 

With zero initial conditions, the transformed solution to these equations 

is given by equation 2.24a 



s 
1 + 7 P . s 

-111-

+ C ij ] TI. 
p J 

(3. 2) 

If, for example, all 'forces are prescribed as step functions of time, 

i. e. 

r:; 
• t< 0 

Q. = 1 

, t> 0 

(3.3) 

~ 

where the Q. are ,constants, the time' dependence of q. can be writt e n 
1 1 

immedia:tely as . 

q. =\ d~)(l 
1 L 1J 

S 

-tiT s ~ 

e ) Q. 
J 

+ C .. Q.t 
1J J 

or, if steady flow does not occur 

-tiT s ~ 
e ) Q

j
. 

. (3. 4a) 

(3. 4b) 

Thus, as was initially observed by Biot (5), apart from the steady flow 

term (C ' .. Q.t) the time dependence of 'all coordinates is given by a 
~ J . . 

serie,s of decaying exponentials. By interpreting the observed coordi-

nates as mechanical displacements in vi·scoelastic media, it is expect e d 

that the actual displacements would have the same time d e p e nc;lence 

if all applied loads are step functions of time. 

In section 3. 2 it is shown that approximate displac e ments 

likewise have this property. Also, it is proved that this behavior 

extends to mixed boundary conditions and to exact and approximate 

stresses obtained from the above mentioned variational ·principles. 
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We should m.ention that a rigorous proof is m.adefor only those 

responses which are r ep r esent ed by a finit e sum. of spacial functions 

with tim.e dependent coefficients. However. on the basis of certain 

physically reasonable argum.ents. it is postulate d that this exponential 

b e hav ior applies to all viscoelastic responses. 

After establishing the tim.e dependenc e of solutions, we use the 

results to exam.ine the error b e twee n approxim.a te and exact v is co­

e lastic solutions. It is shown that uniform. convergence for certain 

ranges of elastic constants, of a sequence of approxim.ate , associated, 

elastic solutions to the exact solution, im.plies that the corresponding 

sequence of approxim.ate viscoelastic solutions converges (in the m.ean) 

to the exact function; this argum.ent rests on the assum.ption that certain 

infinite series and im.proper integrals are absolutely .convergent or 

else that the transient responses are quadratically integrable over 

o .,; t < 00. 

~nowledge that the tim.e dependence of stress and displacem.ent 

solutions is of the form. 3.4 has additional practical im.portance. For 

exam.ple t it is known a priori that all of the singularities of Laplace 

transform.ed s 'olutions are on the non-p 0 sitive real axis. Thus, in 

orde r to invert a transform.ed solution exactly, it is only necessary 

to study behavior on this axis rather than the entire com.plex p-plane. 

Also, the form. 3.4 lends itself readily to an approxim.ate inversion 

m.ethod which will be discussed in Part IV. 
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3.2. Time Dependence of Solutions for Step-Displaceme nt a nd Step­

.Load Inputs 

a. Displacement respons e . In this section w e sha ll u s e the 

transformed displacement variational principle to calculate 'time de-

pendence of displacements which are given by the series 

(a.) ~ 
u. = f. (x.)q (t) + U . (x.)H(t) 

1 1 1 a 1 1 
(3. 5) 

In thi s expre s sion summation over o. · (= I, 2, .•.• N) is implie d. 

f~o.)(x.) . are functions of the coordinates x. and vanish on the por-
1 1 1 

tion of the boundary Au where displacements are prescribe d , qo. 

are time-dependent generalized coordinates. and U. (= U .H) is the 
. 11 

prescribed displacement vector for which H(t) is the Heavis.ide step 

function, 

H(t) = 
{ 

0, 

I, 

(3. 6) 

t < 0 

t> 0 

It is not required that these displacements satis'fy the equilibrium 

equations or stress boundary conditions. 

Let us now apply the Laplace transformed variational principle 

2.79 in order 'to calculate q (p) when the f(o.) are given f unctions: 
a 1 

For simplicity thermal effects are neglected and zero initial con-

ditions are assumed. The appropriate displacement functional is 

- - 1 S· { flov- -} S --I =." Zoo eooe dB - F.u.dB 
u L. B 1J 1J flo v . B . 1 1 

_ r T.ll.dA 
J All 

T 

where T. ' and F. are 'prescribed forces given by 
1 1 

(3. 7) 
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T.(x.) 
1 1 

P 
F. = 

1 

F . (x.) 
1 1 

P 

and the transfonned displacement vector is 

~ 

( ) U. 
- 0. - 1 
u· = f. q +-

1 1 0. P 

Also, from 1.100b 

l 
Dij(s) 

p p.v 
= 1 

p+­
s p s 

+ Dij + D'ij 
p.v P P.v 

(3. 8a) 

(3.8b) 

(3. 9a) 

where each matrix in 3. 9a is positive semi-definite, i. e. for all e .. 
1J 

D ij{ s) e e..;::: 0; 
fLv fJ.v 1J 

D ij e e..;::: 0; 
fLv fLv 1J 

, .. 
D 1J e e .. :> 0 

fLv fLv 1J 
(3. 9b) 

but the matrix made up of the sum of those in 3. 9a is positive definite, 

[ l ij (s ) ij 'ij ] D + D+ D . e e .. > 0; e . . e . . > 0 
fJ.v fLv fLv fJ.v 1J 1J 1J 

(3.9c) 

s 

We now write I as a function of q by using the transformed 
u 0. . 

strain-displacement relations 

to find 

where 

1 _ . 
e .. = -2 (u , . + u . . ) 

1J 1, J J. 1 

(0.) _ 
e .. . = 

1J 
~ 

E .. ;: 
1J 

1 [f~o.! + f.{o.) ] 
L: 1, J J, 1 

1 ~ ~ 

.... [U .. +U . . ] 
c. 1,J J,l 

(3.10) 

(3.1 2) 

(3.13 ) 
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The generalized coordinates can be found by minimizing I 
u 

with resp'ect to each q. This leads to the following N linear 
a 

alge braic equa.tions, 

in which the following definitior::s are employed, 

D : ij{s) D1J 

C =s {\ iJ.v +~ 
a/3 B.0 P +_1_ p 

s Ps 

Q = S 'Tj/3) dA + S F.f~/3) dB 
/3 A 11 B 11 

T 
Dij{S) 

p iJ.v 
1 

P +­Ps 

(3.14) 

(3.l5a) 

(3.l5b) 

It is noted that the singularities of Q/3 are simple poles (or 

branch cuts if P = P (x,)) on the negative real p-axis, but if the s s 1 

boundary conditions are all on stress, Q/3 

Also, froin th~ symmetry of Zij we ' have 
iJ.v 

is independent of p. 

tional moduli in equations 3.15' have been left in the volume integrals 

since properties inay be functions of x,. 
1 

We shall now establish the 

dependence of Cia on p, and thereby obta~n the time dependence of 

displacements. 

First, the following theorem will be proveC:: 

Theorem I - The singularities of Ci occur only on the non­
a 

positive real p-axis. 

The proof 'will be made 'by showing that the determinant of C a/3( Ie a/3 l) 

does not vanish when p is complex or real and positive. Let p=u+iv 
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and substitute this into 3.15 to find 

where 

and 

I . == 
af3 1 2 

(u+-) 
Ps 

D ij 
+ fJ.v 

2+ 2 u v 

(3.1 6) 

(3.17a ) 

(3.l7b) 

(3.l7c) 

It is noted by reference to equations 3.9 that Raf3 is positive definite 

when u> 0, but it is indefinite when u < 0; also Iaj3 is positive s emi ­

d e finite for all u and v. 

Let us assume that I C AI = 0 and determine the permiss ible 
at' ' 

values of u and v. This means that a non-trivial (real or complex) 

solution y can be found such that 
a 

(R A - ivI A)y :;; 0 
at' at' a 

(3.18) 

If the complex conjugate of Ya is denoted by Ya' multiplying equation 

3.18 by Y f3 and summing yields 

Since Raf3 and Ia~ are real symmetric matrices, Raf3Y aY f3 and 

I Y YA are real numbers; in addition, the latter one is non-negative. 
af3 a t' 
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First, assume that I
af3YaY f3 > O. But equation 3.19 cannot b e satisfie d 

unles s . v is zero since the left -hand side is rea l while the right-hand 

side is imaginary. Now, suppose I y -y - 0 which can b e seen 
af3 a f3-

from equation 3.17a to imply that 

(3. 20) 

But equation 3. 9c requires that this be a (non-zero) positive number 

and therefore equation 3.19 cannot be satisfied. Thus, the determinant 

of C
af3 

cannot vanish unless p is real. 

It only remains to show that there are no zeros of I C a(31 on 

the positive real axis. That this is indeed the case follo ws immediatel y 

from the fact that Raf3 is positive definite when u> O. Theor e m I 

is therefore proved for the most general stress-strain relations whi ch 

are thermodynamically admissible. 

Further inforI:\'lation about the singularities of qa will now b e 

obtained. However, in the following discussion we shall assume that 

the relaxation times, p s' are independent of x .• 
1 

This assumption 

permits C af3 (defined by equation 3. 15a) to be written as 

c = af3 

with the definitions 

s 

F(s) F I 

P :~ + paf3 + F af3 

Ps 

(3. 21) 

(3. 22a) 

(3. 22b) 
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and the equation for qo. becoIlles 

. 1 
p +-

s P s 

The following theoreIll will be proved: 

TheoreIll II - When the relaxation tiIlles, p s' are constant 

the singularities of q are siIllple poles except 
a. 

at the origin where a double pole Illay occur. 

(3. 22c) 

(3. 23) 

For the present let us aSSUIlle that Q/3 is constant. Also let 

a. = 1,2, ••• , Nand s = 1, 2, ••• , M, so that we can write equation 3.23 

as 

G -q -
0./3 a. -

s=l 

1 (p +-) 
ps 

in which each eleIllent of Go./3 is at IllOSt a polynoIllial of order 

N(M+l). TheoreIll I iIllplies 

R III 

= G 1T (p + _1 ) r 
Yr r::l 

(3.24) 

(3. 25) 

where 
~h a::

o
: r(pa:~ relal) ~o:~~v¥o:st:t:~M:~. 

is the :multiplicity 

Yr L r 
r=l 

of the It follows that 

qo. can be expressed as a ratio of pOlynoIllials in p given by 
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II (p +....!... ) mr 

. Yr r:::l 
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(3. 26) 

The ratio multiplying Qj3/p can be written as a sum of partial fractions 

if the order of the numerator is lower than that of the denominator; 

if they are of equal order then q will contain an additional constant a .. 

term multiplying , Qj3A>. That either of these conditions is , always 

satisfied can be shown to follow from equation 3.23 by letting p - 00. 

ri" . . 
If jD J [ > 0, then from equation 3. 22c we have 
. !-Lv 

tion 3.23 shows that qa must behave'like l/pZ. 

fr (p +....!...) mr 
r:::l Y r 

1 
as p- co 

p 

and eqtja-

as p - 00; hence 

(3. 27 a) 

If, however, [F~j3 [ ;:: 0 (which can only occur if [D~~ [ ::: 0) then 

constant as p - co (3. 27b) 

Conseque'ntly, it is always possible to write qa as the partial fraction 

series 

where 

q ::: 
a 

- . R 

~[I 
r:::l 

and Saj3 are real symmetric matrices. 

(3. 28) 
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The order of the poles of qa can be determined by examining 

the behavior of q in conjunction with equation 3.23 as p approaches 
a 

the roots of I Gar.>.l. Consider, then, p = E: - ~ and IE: 1« 1; with 
t-' '( t 

P close to -'(t only the term in equation 3.28 which behaves like 

-mi: 
E: need be retained, thus 

(3.29) 

Multiplying equation 3.23 by q {3 and summing over (3, and then sub­

stituting equation 3.29 for qa yields 

where p == € 

\~ F(s) + F + F' _ . 1 Q- (t) m t 

L +_1_ 
s p p 

s 

p - Ii (3g{3 E: 

F 

FI 

and 

F g(t)g(t) 2: 0 
- a{3 a (3 

F I (t) (t) >- 0 
- a{3ga g{3 

(3.30) 

(3. 31a) 

(3.31b) 

(3. 31c) 

The right-hand side of equation 3.30 h;;s a zero of .order m
t
, whose 

value ~ust agree with the left-hand side. However, the latter can 

have only simple zeros at all poles of:q since its first derivative 
a 

can never vanish in the finite p plane, which is 

-[I 
s 

1 2 
(p rf- - ) 

Ps 

+Lz ] <0 
p 

(3. 32) 

Thus m
t 
= 1 for all finite and infinite values of '(t" It is to be noted 
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that this conclusion applies even when a root , '{t is equal to one of the, 

relaxation time s p • , s R e f e renc e to equa tion 3. 3 0 shows that this 

equality can o c cur only if F{s) == o (this requires I D ij (s) I == 0). 
~v 

Also, e quation 3.23 indic a tes tha t the d e terIllinant IG a (31 has a zero 

at the origin i f and only if IF a(31 == 0 (which requires I D~v I == 0). 

If this latter condition e x i s ts q has a double pole at the orig in. 
, ·a 

TheoreIll II is thlis proved for the case in which Q(3 is 

constant. FurtherIllore, the previous considerations lead to the follow-

/ ing tiIlle dependence of the generalized coordinates: 

l~ When 

q = a 

3. When [ F a(3 [ == [F ~(3 [ = 0 

N{~+l) -1 -t/ -,[ L - (r) '{r q == Q , '{ S (l- e ) a (3 r a(3 
, r=l 

(3.33a) 

(3.33b) 

(3.33c) 

The restriction that the Q(3 are constant can be easily re-

Illoved. When Q (3 are of the general fo = given by equation 3.15b, 

with p cons tant, then q 
s a 

1 
contairusiIllple poles at - - as well as 

Ps 
1 ~c 

at - - • q (t) therefore has tiIlle dependence siIllilar to that shown 
'{ r a 

* ' This can be shown to be true even when (-lips) is a zero of I G a (3 I 
by using the fact that F(s) vanishes in such a case. 
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in equations 3.33, except there will be additional exponentials with 

tiIne constants p • Also the. correspondence between the vanishing . s 

of a g iven deterIninant and the tiIne dependence indicated in cases 1, 

2, and 3 above will not necessarily be the saIne. For exaInple, if 

T . and F. in equation3.15bare z e ro and D
ij 

::: 0, then q will 
1 1 ~v a 

contain at Inost a siInple pole at the origin; hence it will not have the 

terIn proportional to tiIne which is shown in equation, 3. 33co 

b. Stress. response. Stresses which are derived froIn the 

transforIned cOInp1eInentary principle can be shown to have tiIne de-

pendence siIni1ar to that of the disp1aceInents discussed above. We 

consider .stresses that are given by 

(J •• 

• 1J 
(a) -::: f .. {x. )Q (t) + (J • . (x.)H{t) 
1J 1 a 1J ,1 

in which a. is to be s wnIned out (a.::: 1, 2, •• 0 , N), 

(3; 34) 

given functions of the coordinates xi which vanish on AT wher_e 

stresses are prescribed, Qa are tiIne dependent functions which we 

shall call generalized stresses, and on AT the vector (J .• n.H is equal 
1J J 

to the prescribed surface .force, T io It is further asswned that for 

each a, the l~) satisfy the equilibriwn equations 
1J 

l~). ::: ° (3.35) 
1). J 

.-
and th~ stresses (J .• H(t) satisfy the equilibriwn equations with pre-

1J 

scribed body forces F.H(t). 
1 

hence 

(J •• • + F '.· = ° 
1J, J 1 

(3.36) 

It is not required that the stres ses (J •• 
1J 

satisfy cOInpatibility or the 
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boundary conditions on displacement. 

The Laplace tran sform o f the complementary functional, 

equation 2.94, is t with temperature neglected for . simplicity) 

1 
T<T- 2' S {A~~O: . . O: }dB - r u.o: .. n.dA 

B IJ IJ I-'-v J A 1 IJ J 
u 

(3.37) 

where U . is the transformed, prescribed surface displacement 
1 

u. = 
1 

"-' 

U.{x.) 
1 1 

p 
(3.3 8 ) 

·d h . 1 l ' . AI-'-.. v . an t e operatllZlna COITlP lance ITlatrlx 
IJ 

is given by equation 1.103a 

s 
l+TP s 

(3.39) 

. and each ITlatrix cOITlposing A ij satisfies the same properties as .those 
I-'-v 

cOITlposing z~.v given b y equations 3. 9b and 3. 9c. 
J.J 

The generalized. stresses are obtained just as ;the generalized 

coordinates wer.e in the previous discussion. NaITlely, the transforITled 

stresses,· 

<T • • = f~~) Q 
IJ IJ a 

<T • • 

-i' ..2J. 
p 

(3.40) 

are substituted into r and then the stationary condition or ::: 0 
<T <T 

provides :us with a Bet of N alg'ebraic equations for the IT , which is 
. a 

" B Q a!3 .u 

where we define 

C ij( s) 
I-'-v 

1# p 
. s . 

(3.41) 

(3. 42a) 
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cij( s) 

SB { '\' -;-;--!'fl::..:.-V 
L 1+T P s 
s 

(3. 42b) 

The similarity between the present set of equations 3.41 and 

equations 3. 14 which occur with the displaceme nt principle is evident. 

However, an important difference is in the factors J:... and 
p 

the right-hand side which multiply the prescribed quantities 

on 

and 
,~ 

Q p; it is seen that TIp cannot have a double pole 'at the origin. Thus,' 

in analogy with the previous theorems I and II we can state two com-

I 
panion theorems: 

Theorem III - The singularities of Q occur only on the 
a. 

non-positive real p- axis. 

Theorem IV - When the retardation time s, Ts' are 

constant the singularities of Qa. are 

simple poles. 

The time dependence of the generalized stresses is therefore 
I 

Q (t) = '\' T(r)e -t/A.r + T 
a. La. a. 

r 

(3. 43) 

where T(r) an:d T are constants and the A. are positive constants . 
a. a. r 

Since a double pole at the origin does not occur there is no term 

proportional to time. 

* There is another point which should be mentioned concerning the 
behavior of TIp at p = 00. It is noted from equations 3. 41 and 3.42 

that if Ui'* 0 and [C ~iJ I = 0, then TIp is a non-zero constant at 

p '" 00. Since this leads to an infinite (delta function) stre s s at t = 0 
we shall rule this out in all of the follOwing work by as surning 

Ie tij I > O. However, ' the analysis could be extended. if de sired, to 
flv 

include this singular behavior. 
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c. Generalizations. Strictly speaking, the theorem.s in 

sections 3. 2a and 3. 2b apply to a restricted class of stresses and 

displacements. To reiterate. theorems I and III are rigorously valid 

for only those approximate and exact solutions which can be expressed 

as finite sums of terms. each of which is a simple product of a space 

dependent function and a time dependent function. Except for this 

restriction, they are valid for the most general s6:ess-:strain rela-

tions consistent with thermodynamics; it should be noted that the 

integral repres~ntation 

rooo is replaced by J, 

(see first footnote in section 1. 7a) in which 

can 'be used also. However, theorems II and 

reg.uire, in addition to the re striction cited above, that the finite 

sum I representation of the stress-strain relations be used. 

Furthe~more, the relaxation and retardation time s must be constant; 

this requirement can actually be modified in that these time constants 

need be , constant only over fini~e regions of a body, since the total 

volume integrals in equations 3.15 and 3.42 then separate into inte-

grals each having constant values of 7s or Ps' 

When the above mentioned conditions are satisfied, we showed 

that the time dependence of all solutions is given by a series of de-

caying exponentials, with possibly a term proportional to time. In 

"this section we shall discuss the time dependence of generalized 

coordinates and stresses ,_when the restrictions are removed. The 

most general behavior which is expected will be first postulated and 

then the statements will be justified, to s orne extent, on physical 

grounds and by showing that the correct result is obtained for special 
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cases. 

Consider now the following postulates for stresses and dis-

p1aceme_nts in media which are subjected to loads and displacements 

that are step functions of time. Exact solutions as well as approxi-

mate solutions obtained from the transformed variational principles 

are applicable. 

Postulate I - Thermodynamically admis sible displaceme nts 

and stresses in bounded media ,can be repre-

sented by finite or uniformly convergent infinite 

ser,ies as given by equations 3.5 and 3. 34, 

respectively. 

This postulate appears to be reasonable since one expects 

that a thermodynamically admissible stress or displacement field 

can always be approximated arbitrarily well by a finite number of 

spacial functions (Fourier series, for example), each with a time 

dependent coefficie'tl.t. Also, it is exp:cted that when the body is un­

bounded. the discrete sum is replaced by an integral (e. g. Fourier 

integral). 

Postulate, II - ' The most gene ra1 time dependence of the 

generalized coordinates is 

Sao - tiT I 

q = S (r)e - d'T + S + S t 
a a .< a a 

. 0 , 
(3. 44a) 

' and the generalized stresses is 

Q = seo T (T)e -tiT d'T + T 
a 0 ' a a 

(3. 44b) 

where S (T) and T (7) are spectral distri-
a a, 
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butions of the variable '7 which ITlayconsist . 

entirely or .partly of Dirac -delta functions. 

It is clear that the finit e degree of freedoITl cas e s considered 

in sections 3. 2a and 3. 2b are obtained iITlITlediately by setting 

where 6( T) 

S (7) = u I S(r)6(T_'{ ) 
u r 

r 

T (7) = u I T(r) 6(T-A. ) 
u r 

r 

is the Dirac delta function, 

6( 7) = 0, ,. if. 0 

s 00 6(T)dT = 1 . 
-00 

Thus, the forITls 3. 44a and 3. 44b for the generalized .variables 

(3. 45a) 

(3. 45b) 

(3. 46) . 

appear to be a natural :e.;xte nsion of the earlier results to probleITls 

for which finite SUITlS ar e r e plac e d by integrals and infinite SUITlS. 

As additional justification of the postulate, let us exaITline 

the case in which certain orthogonality pr operties exist; it will be 

sufficient to consider just the stress principle. Suppose that the 

spadal functions i?") in equation 3. 34 satisfy the orthogonality 
. IJ . . 

property ·(see equations 3.41 and 3.42) 

6 uj3 is the Kronecker delta 

6· = uj3 [
1 " 

o , 

u=j3 

9- if. j3 

(3. 47a) 

(3.47b) 
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and the finite sum ( 2~ ) in Aiv is to be replaced by an infinite 

integral (SOO). Wi~h this orthogonality property the set of equations 
. 0 

3.41 reduces to the uncoupled set 

(13 not summed) (3. 48) 

The time dependence of QI3 is obtained immediately from Stieltjes 

transform theory (32) (a,ssuming certain rea'E;onable convergence, 

properties of the improper integrals) and it is found to be the same 

/ as given by equation 3. 44b. 

With the postulates appearing to be valid, we now turn to an 

error analysis which makes direct use of them. 

3. 3. Relation Between the Error in Approximate Viscoelastic and 

Elastic Solutions 

It will be assumed in the following calculations that all infinite 

series and improper integrals are absolutely convergent in order to 

perform the necessary operations, such as interchanging order of' 

integrations. Strictly speaking, such an assumption should be verified 

for each particular problem but we shall not pursue this point any 

further. Use of Postulates I and II in connection with the series 3.5 

and 3. 34 yields the most general time dependence of both approximate 

and.exact displacements and stresses, 

(3. 49a) 

(3. 49b) 



where, by assumption 

u. = fT •• = 0 
1 1J 
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for t < 0 (3.49c) 

For the presentlet us omit the steady-flow term in u i ' and 

concern ourselves with a representative exact solution 

S
oo ' / -t.,. , 

ljJ == <,0 (T}e d.,. + ljJ (00) 
~ 0 e e 

(3. 50a) 

and approximate solution 

r.OO / -t .,. 
tj; ~ \ cp (7)e dT + ljJ (00) 
a. J O a a 

(3.50b) 

where ljJ, ljJ(oo), and <,0(7) are implied functions of x. 
1 

which repre-

sent the corresponding functions in u. or 0"" •• ; i. e. , ,J, is to be 
, , 1 ~ ~ 

interpreted as either a stress or displacement in order to simplify 

the notation: It will also b ,e convenient to define the t;ansient com-

ponent of the solutions as 

square error, €; = (L::.ljJe 

L::.ljJ == ljJ - ljJ(oo). Let us now integrate the 

- L::.ljJ )2, over all positive time' to find, 
a , ' 

2 ~"oo [ , J [ - 1 - 1 J € = <,0 (7) - <,0 (T) L::.ij; (-) - L::.ljJ (-) d.,. 
-0 e a e 7 a ,. (3. 51) 

where L::.ljJ ( .!..) denotes the transient component transformed with , 7 

respect to the transform parameter ~ = p,and it is assumed that 

€ 2,< 00. Now with p on the posi~ive real axis, p[ ljJ(p )] (=pL::.ljJ+ljJ(oo) } 

is identical with an elastic solution whose, elastic moduli or com-

pliances are numerically equal to Z~J 
fJ." 

" A' ij or . 
fi" 

Furthermore, ljJ( oo} 

is ~n elastic solution with moduli which are equal to Zij evaluated 
, , fill 

at p = O. Therefore, an important implication of equation 3. 51 is 
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- 1 
tha~ if tVa(-r} is one solution out of a sequence of approxim.ate elastic 

' solutions which is known to converge uniform.ly to the exact solution 

(with respect to 'elastic constants whose values range over the values 

taken by Z ij or Aij on the real interval 0,,;; F < oo), then the 
lJ-v lJ-v 

corresponding sequence of tim.e-dependent solutions converges (in the 

m.ean) to the exact solution. An equivalent statem.ent is that the 

integrated square error in the tim.e-:-dependent solution is "sm.all" 

when the error on the real p axis is suffiCiently "small" for 

o :;; p < 00. 

The foregoing conclusion can be readily m.odified to allow for 

the presence of a steady-flow term. in thedisplacem.ents, equation 

3. 49a. It is only necessary to redefine tV as 

(3. 52a) 

and L.tj; as 

L.ljJ == tV - 'tV( oo} - tV't (3. 52b) 

, " 

With the exception of tVa' the convergence of tV to tV is established a, ,e 

by the previous, results. However, th~ sequence of values for 

will also ~onverge to the correct value if a sequence of associated 

elastic solutions with com.pliances equal to cij (see equation 3. 39) ' 
f1 v , 

has this behavior. : This follows from. the fact that the long-tim.e . ' , 

(p - 0) value of , tV is the sam.e as an elastic solution with com.pli­

ances e,qualt,~ (pAiv)p=o. 

The 'problem. of relating error in tim.e dependence to error 
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. on the positive real p-axis can be approached in another way. 

Erdelyi (33,34) has derived Laplace inversion formulas from which 

I it is possible to expand Li.lj;(t) in an infinite series of orthogonal . . 

functions, whos.e coefficients contain Li.ljj(p) 'evaluated at a discrete 

number of positive, real values of p. The only assumption needed 

is 'that Li.lJ;(t) be quadratically inte grable, i. e. 

S; [Li.lJ;(t)) 2 dt < ro (3. 53) 

which is satisfied by.6.lJ; and Li.lJ; if the . integral$in equations 3.50 e a 

are absolutely convergent. These inversion formulas. . lead to the same 

conclusion deduced from equation 3.51; namely, a "small" error on 

the positive real p-axis implies a "small" integrated square error in 

time. 

It is clear that the error estimate, equation 3.51, cannot 

actually b,e used in practice since it ,requires knowledge of an exact 

solution. Rather, it only indicates that a suffici~ntly close approxi-

mation to an associated elastic solution leads to a good approximate 

viscoelastic solution. It is felt that a stronger statement of what 

is meant'by " sufficiently close" must cOD;le from a study of numerical 

examples. nlustrations along these lines will be discussed in Part IV. 
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PART IV 

APPROXIMA TE METHODS OF TRANSFORM INVERSION AND 

NUMERICAL APPLICATIONS OF VARIATIONAL PRINCIPLES 

4. 1. Intr oduction 

Som.e num.erical exam.ple s are given in this Part which illustrate 

the use of variational m.ethods in obtaining approxim.ate viscoelastic 

solutions. It has already been m.entioned in Part II how a transform.ed 

viscoelastic solution can be easily derived from. an associated elastic 

problem. by applying the correspondence rule. However; as the re-

suIting transform. is often very difficult to invert, particularly when 

realistic m.aterial properties are used, we shall first proceed to 

develop two m.ethods of approxim.ate inversion, each of which can 

often be used as a check on the other, followed by specific illustrations 

of the variational process. 

The first one considered in section 4. 2 is a m.odification of 

Alfrey's rule (9), and the second one is a collocation m.ethod which 

is based on the characteristic tim.e dependence deduced in Part III. 

Withboth techniques it is necessary to know only an associated elastic 

solution num.erically for certain ranges of elastic constants and nu-

m.erical values of the operational properties (e. g. m.oduli) for real, 

positive v alues of p. It will be seen that a tim.e depende nt solution 

can be calculated with very little effort once these num.erical quantitie s 

have been determ.ined. Exam.ples in which the results of these approxi-

m.ate inversion m.ethods are com.pared to exact inversions are pre-
, 

sented in an expanded version elsewhere (35). 
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In addition to the usefulness of the first ; method for inversion, 

for those problems in which it is applicable , it also shows that if the 

associated elastic solution is approximate, the "quality" of the visco­

elastic response is essentially the same as that of the elastic problem. 

Section 4. 3 gives two numerical examples using transformed 

variational principles. In the fir st we derive the approximate trans­

forme d displacementsin a thin plate with mixed boundary conditions. 

The transform is deduced using an elastic solution obtained from 

the potential energy principle. This example serves two purposes. 

For one, the transform, though a very eomplicated function of an 

operational Pois son's ratio, is easily i:riverted to illustrate the sim­

plicity of the approximate methods given in section 4. 2 . Secondly, 

the type and location of all singularities of the transformed solution 

are examined. The findings are not used to calculate the exact in­

version (of the approximate transform) numerically, but to show that 

the analytical form of time dependence agrees wi,th that predicted from 

Postulates I and II in Part III. 

As the next example, we use the compleme ntary energy prin­

ciple to calculate approximate stresses in a long, symmetrically 

loaded cylinder. Two different app:roximate solutions are obtained 

and both the elastic and viscoe lastic' responses are compared with 

the exact stresses. This comparison serves to illustrate the relation 

between elastic and viscoelastic errors which was discussed in Part III. 

To conclude our discussion on numerical applications of vari­

ational principles, it is suggested in section 4.4 how convolution 
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principles can be em.ployed when it is not convenient or possible to 

use the Laplace transform. m.ethod. This latter situation aris e s when 

assum.ed solutions are nonlinear functions of generalized coordinates 

and is illustrated by a one-dim.ensional heat conduction problem.. 

4.2. Approxim.ate Methods of Laplace Transform. Inversion 

a. Direct m.ethod. Of the two inver sion technique s to be dis-

cussed, the· sim.plest one is calle d the "direct m.ethod" . It will be 

shown to yield good results when the derivative of the tim.e de pendent 

solution with respect to logarithm.ic tim.e, log t, is a slowly varying 

function of log t. A m.odification of this m.ethod is also suggested in 

order to handle functions for which the derivative of their. logarithm. 

has this slowly varying property. 

'The problem. which we pose is to find an approxim.ate repre­

sentation' of a viscoe lastic response, ljJ(t), from. the integral equation 

. tjJ(p).= S: ljJ(t)e -ptdt (4.1) 

where ljJ(p) is the Laplace eransform. of ljJ(t) and is known at least 

num.e rically for all real, non-negative values of the transform. 

param.eter, p. Let us represent pljJ(p) as a function of log p and 
:' 

define 

/\ -
f( u) == pljJ(p) u == log p (4. 2) 

f(v) == ljJ(t) v == log t (4. 3) 

w=u-tv (4.4) 
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which renders 4.1 in the form. 

1\ roo W _lOW 
f{u) = In 10 \ f{w-u)lO e dw 

J_ oo 
(4. 5) 

where In =: loge and · log =: 10glO· 
w 

The weighting function, 10 we -10 • 
,~ 

is drawn in figure 4. 1 

which shows that it is practically a delta function if f{v) changes 

slowly enough. This behavior im.plies that an approxim.ation to f{v) · 

A . . w _lOW 
can be obtained directly in term.s of f{u) by replacing (In 10)10 e . 

with. 6{ w -:: w 0)' i. e. a Dirac delta function located at the point 

which will yield an approxim.ate inversion form.ula 

w o ' 

(4. 6) 

The point Wo is som.ewhat arbitrary in view of the spread of the 

weighting function, which is about two decades. However we shall 

now calculate the "best" value to use when f is closely approxi-

m.ated by a straight line in the two-decade interval, Iw-w I'<l. o 

To do so, we first expand f(v) in a Taylor series about the point 

v 0 (=: Wo - u) 

, . 1 . 2 
f(v) = f{v 0) t f (vo)(v-v 0) t 2" f"{v o)(v-v 0) t ... (4. 7) 

where prim.es denote differentiation with respect to v. Substitution 

of this expression into 4 . 5 yields 

./'. , S 00 lOW 
f{u) :::. f{v ) t (In 10)f (v) (w-w )lOw e - dw 

o D 0 
-00 

(4. 8) 

,~ 

All figures for part IV follow the text. 
*>!< ! 

It ·should be recalled that a delta function is defined such that 

6{w-w
o

) ::: 0 if w*·wo ; SOO 6{w-wo)dw = 1 
-00 
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where only the constant and linear t e r m in 4. 7 have been retained. 

It is seen that the approxim.ate inversion form.ula 4 . 6 is obtained if 

the integral in 4. 8 vanishes. This condition locates w at the o 
w 

centroid of the area under the curve lOwe-lO , which is 

w = SOO(lOg t)e -tdt Z ;n ~O 
o 0 

where C is Euler's constant 

Soo ' -t 
C "". - 0 (In t)e dt 

0.58 

(4. 9a) 

(4. 9b) 

When this value for w is substituted into 4. 6 and the re-, 0 

sulting expres sion is written in term.s ' of the original functions tj;(t) 

* aI:'.d ptj;(p) by using 4. 2 and 4. 3, we find 

tj;(t).!::! [p.p(p) 1 -c 
p= e /t 

(4. lOa) 

.:.C 
where e .::: O. 56. Due to the ske wed form of the weighting function 

it has been found thfl,t a somewhat better formula is 

.p(t)::::. [p.p(p) 1 
p = O. 5/t 

(4. lOb) 

I 

It is important to recognize that 4. 10 was derive d using an 

as~;umption about the exact inve rsion .p(t), rather than p.p(p). Since 

i n practice this solution will not be known, one m.ust assume that if 

* . 
The fact that the weighting function is essentially ze ro except for a 
two decade interval suggests that this inversion will be good at thos e 
times in which the solution (as a function of log t) is linear, or nearly 
.linear, for at least two' decades. If there is a strong curvature, but 
it is somewhat rem.oved from this linear region., this curvature 
should not pr oduce a significant error in th,e linear porti.on. 
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d?(pljJ(p) )/ d(log p)2 is small for p ~ 0 then ljJ{t) behaves similarly. 

In the event that log pljJ(p) is essentially linear for several 

decades of p when plotted against log p, so that ' pljJ(p).::: Apm, it 

can be easily verified for m < I that an approximate inversion for-

mula is 

ljJ( t) (4. 11) 

where 

a= SOO -m -x' 
x ' e dx 

o 

While thi s further approximation is valid for many practical situations, 

it shouldbe recognized that the approximation is poor when m is 

close to + 1. 

Finally, we should remark that there does not' appear to be 

an easy method of qua.ntitatively estimating the error involved in this 

direct method. However, there are some qualitative techniques 

which can be used. As one, the approximate solution could be 

transformed numerically or analytically, and then compared to the 

original transform for p ~ O. If the approximate solution is physically 

acceptable, and its transform is relatively "close" to the original one, 

it is reasonable. to assume that the error in time dependence is small. 

Another check 'on the direct method can be made by comparing the in-

version to the result. of the method which will be discussed next. 

b. Collocation method. We would now like to discuss a second 

technique which is not as simple as the direct method, but it has other , 

advantages. For one, it is not restricted to functions whose derivative 
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is slowly varying with respect to logarithmic time. In addition, the 

time dependence is given by a simple series of exponentials which 

can be used readily in the Duhamel integral for the calculation of 

responses to prescribed loads and displacements that are not step 

functions. Thirdly, the accuracy of the inversion can be improved 

by adding more terms to the series. 

In Chapter III it was argued that with prescribed quantities 

as step functions of time, the transient component of both exact and 

approximate solutions obtained from minimum principles can be 

expressed in terms of an integral 

SOO -tiT 
.6tj; ::; <p( T)e d T 

o . 
(4. 12) 

Assuming that this integral is absolutely convergent, a Dirichlet series 

n 

.6~ ::; 
o l 

i=l 

-t/y. 
1 

S.e 
1 

(4. 13) 

,,~ 

can be used as an approximation to the solution '.6tj;(t). The present 

method makes use of this series for which the 'Y. are prescribed posi-
. 1 

tive constants, -and the S. are unspecified coefficients to be , calculated 
1 

by minimizing the total square error between .6tj; and .6tj; . o 

The total square error is 

* Actually, a neces sary and sufficient condition on .6tj;(t), in order that 
it can be expanded in a Dirichlet series, is that it be quadratically 
integrable (~3), i. e . 

. ~; (.6tj;)2dt< 00 

which is less restrictive than requiring that it be given by the absolutely 
convergent integral 4. 12. 
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(4. 14) 

with the minimization yielding 

i =- 1. 2, ... , n (4. 15a) 

so that n relations are obtained between the Laplace transforms of 

.6ljiD(l/y.) = .6lji(l/v.); i:::: 1.2, ... ,n 
1 1 

(4.15b) 

-1 A more convenient form is obtained by multiplying these by Y
i 

• 

which yields 

"fp.6ljiD (p)] / = [p.6lji(p) ] ; i = I, 2, ... ,n 
p=l y. p=-l/y. 

1 1 

or explicitly 

n 

l 
j=l 

S. 
_J_ = 

y. 
1+_1 

Yj 

[p.6lji(p) ] ; i = I, 2, ... , n 
p=l/y. 

1 

(4.16a) 

(4.1pb) 

These equations are suffiCient for calculating the coefficients S. and . . . J 

hence dependence of the transient component .6lji(t). To obtain the 

total solution, equation 3. 52.a, the constants lji' and lji(co) are 

evaluated exactly by examining the behavior of pljJ(p) and p2 , ljJ(p) as 

p tends to zero. 

Thus, we see that the total square error is minimized by col-

locating the p-multiplied transform of the Dirichlet serie s 4.13 and , 

an as sociated elastic solution, p.6ljJ(p), at n points p = l/y .. 
1 

With 
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this elastic solution given nUITlerically or graphically for 0 <: P < 00, 

-, 
suitable values of y. can be prescribed siITlply by inspection. 

. 1 . 

With regard to the er r or involved in this approximate ITlethod, . 

it is of interest to calculate the total square error, E2, by using 4.14; 

( 4.17) 

which becoITles 

2 seo . [1 1 } In [- 1 1 ~ E = <peT) 6.ljJ( -) - 6.ljJD( -) dT - S. 6.lj;(:-=-1 - 6.ljJD(-· .. ) o . T '( 1 y. y . 
. i=l 1 . 1 

(4.18) 

It is iITlportant to recognize that the sUITlITlation in 4.18 does not neces­

sarily vanish unless exact values of 6.lii(J....) ' are collocated with 
y. 

_ 1 _ 1 1 

6.lj;D(-). Since, in practice, 6.lj;(-) can be evaluated only within 
Yi . Yi 

certain numerical accuracy , this sUITlITlation is generally not z e ro. 

Consequently, if an approxiITlate inversion has been obtained with n 

terITls, and itis desired to reduce the square error by using additional 

terITls, it will be necessary in SOITle cases to evaluate the transforITls 

6.lii{J....) and 6.ljJn(J....) with increased accuracy. When the transforms 
Yi Yi . 

are calculated with enough numerical accuracy, equation 4.18 shows 

that if they are Ilsufficiently close ll for OS p < eo, the total square 

error of the approximate tiITle dependence is IisITlall. n 

* . Of course, it is possible to deterITline the paraITleters Yi by minimiz-
ing the square error 4.14 with respect to each one. However, this 
procedure leads to a nonlinear set of equations in which the slopes of 
6.liiD and 6.lii are collo<;:ated at the (initially) unk nown points l/Yi. 
Thus, it g enerally will be desirable to choose enough values of Yi s o 
that the slope condition is (closely) satisfied using only equation 4.1 6 . 



.~ 

-141-

4.3. Numerical Applications of the Transformed Variational Principles 

a. Displacement principle-Kantorovich method. We shall now 

solve, approximately, a two-dimensional mixed boundary-value prob-

lem. The method of Kantorovich (13) will be used in conjunction with 

the potential energy principle to first calculate approximate elastic 

displacements u and v. The elastic constants will then be replaced 

by the appropriate viscoelastic operators and the boundary pressure 

by a transformed pressure. On the basis of the correspondence rule 

this procedure yields the approximate, transformed viscoelastic solu-

tion. The inversion of this solution will be accomplished by using the 

approximate methods in section 4.2. 

Consider now the thin plate shown in figure 4.2, which is loaded 

by a uniform tensile stress, . (T , on the edges x = + a, and clamped 
o -

along the edges y = ..:!: b. It is assumed to be in plane stress and com-

. posed of homogeneous, · isotropic, material. 

a) Elastic solution: The elastic potential energy V E' is 

WdB - (' T.u.dA 
J A 1 1-

T 

(4.19) 

where W is the strain energy density, and all other symbols have been 

defined in· earlier !> ·e. ctions~ . The stationary condition, 6V E= 0, is used 

to determine approximate displacements which are taken in the form 

. . 2 
u = b(l - " )f(p) 

2 
.v = b(l -" )"g(p) 

where we define the dimensionless variables 

" ;: Y.. b 
p = x 

a 

(4. 20a) 

(4. 20b) 

(4.20c) 
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It is seen that u and v bo t h s .a tis fy the displacement boundary con-

ditions (as requir e d by the variational principle) and have physically 

r easonable depende nce on y . f(p) and g(p) are unspecifi e d functions 

which are calculate d from the Eul e r equations and natural boundary 

conditions of OV E::; O. The s e equations for f and g co uld b e ob­

tained by substituting equations 4.20 directly into equation 4.19 and the n 

taking the variation. Howeve r, the s ame set results from the simpler 

procedure of substituting them into the general stationary condition (13) 

::; -·S {(T •• • )ou.dB + S «T .. n.-
B 1J, J 1 A . 1J J 

T 

T.)ou .dA 
1 1 

(4. 21) 

in which the stresses are to be expressed iIi terms of the displacement 

by using the stress-strain e quations, 

(T • • ::; l2p.2
v 

0 .. 1..9-'+ 2p.e .. 
1J - V 1J 1J 

For the problem at hand, the variations ou . are, 
1 

2 
ou ::; bel - "l ) of 

2 ' 
ov::; bel - "l )nog 

the equilibrium equations, (J . . 'J 
1J,J 

are 

(4. 22) 

(4. 23) 

(4. 24) 

where A. is the aspect ratio, A. == -S' and the applied surface force, 

is T ::; (T • 
x 0 

Substitution of equations 4.23 and 4.24 into the 

stationary condition 4.21, and noting that of and og are arbitrary, 

yields the Euler equatiop.s 

a(T aT 2 " ( at + A. a"lx
y 

) (1 - "l ) d"l. ::; 0 (4. 25~) 
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(4. 25b) 

and natural boundary conditions 

11 2 

J (0- I - 0- ) (1 - 'l1 )d'l1 = 0 
o x p=l 0 

(4. 26a) 

Sl 3 
'r I. ('l1-'l1 )d'l1 = 0 

o xy p=l 
(4. 26b) 

By expressing the stresses in terrns of displacements, u and v, 

and performing the indicated integrations, we obtain two differential 

equations corresponding to equations 4.25 

(_8_)f" _ ~ (1 - v)f + _2_(1 +V)gl = 0 (4. 27a) 
15,,23 15" 

(i-v) 4 ,,4 2 (1 + v)f' = 0 (4. 27b) ,,2 IQ5'"g - sg-BI"' -

where primes denote differentiation with respect to p, and th.e boundary 

conditions at p = 1, 

2 f _ 3 - 34v+3v 

147A2(l+v) 

,,(l-v) (4. 28a) 

f" + S(l-v) fiv = 0 

147A
4

(l+V) . 
(4.2ab) 

It is also required, on the basis of the symmetry in this problem, that 

f is an odd function of p while g is even. 

The solution of these equations leads to the displacements, 

(4. 29) 



v 
0" b 
(~) 

fJ. 

where 

2 
-3+34v-3v 

42{1 +v) 

2 
ljJ ::: l7l-34v+3v 

I-v 
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(4.30) 

and the involved dependence upon the Po{sson~ ratio is. especially to be 

noted. As a typical result, u/(O" b/fJ.) is plotted in figure 4.3 against o 

v fo r O. 3 :5 v :5 O. 5 and T]::: 0, p ::: 1, A.::: 1. 

13) Viscoelastic solution: To illustrate calculation of 

the viscoelastic solution, it is sufficient to consider just the u-dis-

placeITlent with T]::: 0, P = 1, A.::: 1. The transforITled response is 

found iITlITlediately by the correspondence rule. With the stress 

as a step function of time, its transforITl is 

u(p) ::: 0" b J(p) ~ (p) 
o p 

0" /p and we have o 

0"0 

(4.32) 

where it is convenient ·to introduce the operational shear cOITlplianc~, 

J(p) = l/iJ,{p), and the diITlension~ess function '(i(p), which depends on 

p through only Poisson1s ratio according to equation 4.29, viz., 
/ 

(4. 33) 
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in which we have set A;::: P = 1, T) = O. 

/\ 
Since u is numerically equal to the elastic displacem.ent shown 

in figure 4.3, for engineering purposes it could be taken as a constant 

and evaluated as som.e average value of Poisson's ratio. Then, recog-

nizing that J{p)/p is the transform. of the creep com.pliance in shear, 

J (t), which can be m.easured experim.entally, the displacem.ent would 
c 

be sim.ply 

A 

u{t) .::::. (J buJ (t) o c (4.34) 

Furtherm.ore, for typical polym.ers, J {oo)/J (0);;:' 1000 so that in 
c c 

this case the error due to taking ~ as a constant would be very sm.all 

relative to the total variation of u{t). 

However, since one of our objectives is to illustrate the sim.-

plicity of the approxim.ate inversion m.ethods by inverting a transform. 

which is a very involved function of m.aterial properties, we shall con-

A 
sider here the p-dependence of u. In order not to m.ask this dependence 

by the large variation of J{p), 'G: will be inverted separately. Also, 

it will 'be sufficient for our purposes to calculate just the tim.e dependence 

A , 

due to the variation of u because the total solution can always be ob-

tained by using 'the inversion rule for transform. products, which pro-

vides the result 

u{t) 
(J b 

o 

where we have defined 

Ii)p) = 

dJ (T) 
c u (t-7") dT' 

dT v 
(4.35a) 

(4~35b) 
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which is the function that will be inverted .by the approximate methods. 

These methods require that v(p) be calculated for 0::5 P < roo 

We shall assume that the bulk modulus is constant and evaluate v(p) 

from the well_known relation for isotropic bodies (13) 

v(p) = 3K- 2f1.(p) . = 
2(3K +J.L(p) } 

3KJ(p) -2 
2{3KJ{p} +1} (4. 36) 

in which J(p) is to be calculated from exper.imental shear data obtained 

on glass':filled polyisobutylene unde r constant frequency sinusoidal 

,r loading (36) .! Such a test provides the frequency dependence of the so-

called complex shear complianc e , which is equal to the r atio of the 

Fourier transformed strain to. the t'ransformed stress. The real part 

of the complex compliance, J'(w), is plotted in figure 4.4. 

One possible way of determining the operational compliance,' 

J(p), is to express J(p) as an integral of J'(w). The integral is derived 

by first writing the 'creep compliance as a Fourier sine transform of 

, 
J (w) (32) and then taking the p-multiplied Laplace transform of the 

creep compliance. Omitting the details of this calculation we find 

J(p) Real p :> 0 (4. 37) 

J 

where J G == J (ro), which was numerically integrated for p real and 

,~ 

positive, and the result is shown in figure 4.4. It should be noted that 

this integration is quite laborious because 
J 

J (w)' varies over many 

decade s of frequency. In fact, it was found that an alternate model-

* . . 
The similarity betweej:l the curves occurs b ecause the integrand in 
equation 4 .• '37, when expressed in terms of log w, contains a weighting 
function which is similar to the one in the Laplace transform, figure 
4.1. 
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fitting scheme (37) provided the same results with much less effort. 

Substitution of J(p) from figure 4.4 into equa tion 4.36 yields the 

operational Poisson1s ratio which is shown in figure 4.5, with K 

chosen such that v(p =:: co) =:: 0.3. 

The transformed displacement puv(p) is now readily obtained 

for p real and positive by combining the curves in figures 4.3 and 4 . 5 

and recognizing the fact that 

(4. 38) 

The direct method of inversion yields immediately 

(4.39) 

whose transient component, I::.uv == uv - uv(co), is plotted in figure 4.6. 

An alternate approximation will now be calculated by the col-

location method. An approximate solution is assumed in the form 

u (t) =:: 
v D 

where, by definition 

and 

S :::: 
o 

S 
o 

n 

l 
i=::l 

-t/y. 
S.e 1 

1 

-t/y. 
S.e 1 

1 

0.285 

(4.40 ) 

The coefficients, S., are calculated from the system of equations 
1 

4.l6b, with pI::. Uv rep+acing pI::.ljj(p). Examination of pI::. U 
v 

in figure 4.6 indicates that a five-term series (n::::5) will provide a 

good approximation with 
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y . = 1O-(4+i) 
1 

1=1.2 •.• • • 5 

Substitution of thes e time consta nt s a nd val ues for r pt; Uv 

into 4.l6b yields the following system of equations: 

I 
"2 

I 
r.-l 
I 

T.OT 

1 
1. 001 

1 
1.0001 

1 
IT 

1 
"2 

I 
r.T 

I 
1. 01 

1 
1. 001 

1 
TOT 

I 
IT 

1 
"2 

1 
T.l 

1 
T.OT 

1 
TOOT 

I 
TOT 

I 
IT 

1 
"2 

1 
r.T 

1 
10001 

I 
1001 

I 
TOT 

1 
IT 

1 
"2 

(4. 41) 

J 
p=l/y . 

1 

-+0. 20 

+lg 20 

+6.25 

+8.20 

Because of the relative magnitude of the mat rix elements, this system 

can be easily solved by iteration to yield the time dependence 

[

. 5 6 7 
t;u ::: +10- 2 0.3le-10. t+i.24e-10 t+ 2• 72e -10 t 

v D 
8 9 ' 

+4.698-10 t_ 0 • 60e -10 tJ 

::: U (t) -0.285 v D 

(4.43 ) 

which is plotted in figure 4. 6. It was found by adding two additional 

terms to the series 4.40, with. 
. -8.5 . -9.5 

y ::: 10 and 10 ,only the short 

time behavior of Lluv was affected slightly as shown in the same figure. 
. D 

In view of this, as well as the reasonably good agreement with the 

direct method, it can be assurned :that the Dirichlet series 4.43 repr e -

sents a good approxima~ion to the exact inversion. 

y) Behavior of the transformed displace~ent: Let us 

now determine the form of time dependence of the u-displaceme nt 
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by examining the singularities of its transform, and thereby determine 

whether or not it agrees with the behavior 3.50 deduced from Postulates 

I and II. In order to simplify the analysis, we shall consider the semi-

infinite plate shown in figure 4.7. 

For this geometry, the transformed displacement is found 

from equation 4.29 and written as 

u/rr b == J(p) ~(p) 
o P 

with 'J.{p) given by 

where we have defined 

<fJ z = 

and all a., (i == 1, ••• ,4) are given in equation 4. 31. 
1 

(4.44) 

(4.45) 

(4.46) 

/\ 
First, the singularities of u{p) which are seen to depend on p 

only through Poisson1s ratio,will be' found. The square roots appear-

ing in 0.
1 

and 0.
2 

give branch points at 

v == -13. 9~ -2.13, 36.3, 2.33, 1, + 00 o 
(4.47 ) 

" Also, after a considerable amount of algebra, it is found that u{v) 

diverges only at the values 

v == 2.33, ' -2.76, -1 o ' 
(4. 48) 

which are simple poles in the v -plane. 
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All of these singularitie s will now be shown to lie on the negat ive 

real axis in the p-plane by using the relation 4.36 and analytical repre-

sentations of K(p) and f.L(p) as derived from thermodyna mics. Sub-

stitution of equations 1.108 and 1.112 into equation 4.36 yi e lds 

s· 

(s') ( s') 
3K (1-2v )- 2j-l (l+v) + 3K'(1-2V)-

1 
(p + -) 

P s· 

I 
2j-l (l+v) = 0 (4.49) 

where p , can be a positive real number or infinite and all coefiicien ts . s 

K(s), f.L (s'), Ki and j-l' are positive. This equation must hold for all 

values of v, and in particular the real valu·es given by equations 4.47 

and 4.48. Setting p = r + is and equating the imaginary component of 

4.49 to zero gives the restriction on s, 

(4. 50) 

s' 

S · 11 ' l ' f < 1 d 1. . 1 h Ince a slngu ar pOInts occur or v,_ - an V> '2 It IS C ear t at 

s must vanish at these points. Also, by setting the real part of 4.49 

1\ 

to zero we find that r must be negative at the singularities of u(p). 

" Thus, all poles and branch points of u(p) occur on the negative real 

p-axis. 
1\ 

In order to determine the behavior of u(p) in the nej.ghborhood 

of each singularity (except v = .::: co) we calculate dv /dp fro~ equation 
. "r'". 

4.49 to find 

dv 1 
= dp '2 

s' 

3K(s') + j-l(s) r · , 
---1;-'-- + 3 K + f.L 

(p +-) 
Ps 

(4. 51) 
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which does not vanish at any of the values, v , ln equations 4.47 and 
o 

4.48. Thus, in the neighborhood of each of these values (except 

v = ':::co) 

+ ( dV
) () d V = V P - P + higher or er terrns 

o dp v 0 
(4. 52) 

o 

so that at each v the behavior of ';i wi th respect to p is the same 
o 

/' 

as with respect to v; hence, all poles of u(p} are simple, and the 

character of the branch points of ~(v(p)} is the same as for ~(v). 
j\ 

As indicated in equation 4.47, it is found that u has branch 

points at v = + 00; furthermore, it can be shown~ that 

A 1 
u-

rv 
as v.,..... + co (4. 53) 

To examine this in the p-plane, we solve equation 4.49 for v, which 

yields 
3K(s') _ 21: (s) I I I 

1 + 3K - 2fl 
P +-s' P s' 

v = 
3K(s') + fl (s') 

(4. 54) 

[I I 1 2 
+~ 

+ 3K + fl 
s' p 

Ps' 

It is seeri that the poles of v(p) occur only when the denominator 

vanishes, and that these are simple poles since the derivative of the 

denominator does not vanish in the finite p-plane. Thus, at each of 

the singularities of v, ps say, 

as p - Ps (4. 55) 

In order to complete the examination of u, equation 4.44, we 

have only to determine whether or not the poles of J(p) fall on the 
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'" poles of u(p). T h e form of J(p) is obtained from equation 1.103b, 

J(p) = L 
s 

+!. 
p 

(4. 56) 

where J(s), J, and 7 are non-negative.· We shall also make use of 
s 

the inverse of the bulk modulus. 
. -1 

B(p) = K(p) ,as given by equation 

1. 113 b, 

. 1 \' 
B (p) == KfPI::; ~ 

s 

B
· (s) . 

+ B 
l+7p P s 

(4. 57) 

where B (s) and B are non-negative. Substitution of equations 4.56 

and 4.57 into Poisson's ratio, equation 4.36, yields 

3J - 2B v ::; 
2(3J + B) 

>. 3J(s) _ 2B(s) + 3J - 2B 
!-J 1 + 7 P P s 

s 
(4. 58) = 

3J(s) + B(s) 
2[I + 3J ; B] 

1 + 7 P s 
s 

Now if p::; - 1/7 , which is a pole of J(p) if J(r)* 0, then Poissonis 
r 

ratio must satisfy 

Here, at each pole of J(p), Poissonis ratio is restricted to the interval 

-1 < v::S: ~ . which is free of the singularities of 4 (p). 

To summarize, it has been shown that all singularities of u(p) 

are on the non - negative ,real p - axis and that all poles are simple ex-

cept at the origin where a double pole occurs if J in equation 4. 56 

does not vanish. With this information, the time dependence can 
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be calculated by :means of the Bro:mwich- Wagner Inversion Integral (38) 

given by 

u{t) = -Zl . r eptu{p)dp 
TTl .) BR 

1 

,r6 +ioo t-
=~ e P u{p) dp 

6-ioo 
(4.60) 

where 6> O. Since it is clear fro:m the above exa:mination that u{p) 

behaves like lip or I/pZ as p - 00, the Bro:mwich contour, indi-

cated by BRI in the inversion integral, can be defor:med to the contour, 

BR
Z

' shown in figure 4.8 (38). Writing the integral 4.60 along BR
Z 

leads to the ti:me dependent solution u(t); 

-tu 1 I Soo L -U . t 
u(t) = 0 e S{u)du + . Si e + S t (4. 61) 

1 

where this integral results fro:m branch cuts along the negative real 

axis and the series represents contributions fro:m the poles. Further-

:more, it can be shown that the -integral is absolutely convergent for 

O:::S t < 00. Thus, the ti:medependence of u(t) is in agree:ment with 

the general behavior predicted by Postulates I and II. 

b. Stress principle - Ritz :method. As another illustration of 

the correspondence rule, we shall apply the Ritz :method, in conj unction 

with the co:mple:mentary energy principle, to co:mpute two approxi:mate 

stress distributions in an elasti c cylinder and then use the results to 

obtain viscoelastic stresses. In a ddition, the approxi:mations will be 

co:mpared to the exact solution. 
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u} Elastic solution: Consider an isotropic, h omogeneous, 

cylinder in plane strain with the o uter boundary rigidly supported and 

the inner boundary loaded by a pressure, Pi' applied stepwis e at 

t = 0, as shown in figure 4.9. The exact elastic stresses are easily 

found to be 

2 
radial: cr = - Pi +A (A2 _ b 2 ) 

re e 
(4. 62a) 

r 
; 

tangential: p . + A (A
2 b

2 

) cree = +2 1 e 
(4. 62b} 

r 

where 

A = b A 1 - 2v - = 
+ A 

2 
(1 - 20 

Pi u e 
1 

and the shear stress, .,. re' is identically zero because of symmetry. 

The approximate stresses are not required to satisfy com-

patibility, but they must fulfill the equilibrium condition, 

dcr r cr r - cr e 
dr + r = ° 

and the stress boundary condition, . cr = 
r 

stres se s satisfying thes e conditions are: 

cr " = rU 

Pi at r = a . 

(4. 63) 

Two sets of 

(4. 64a) 

(4. 64b} 

(4. 65a} 

(4. 65b) 

with.,. re = ° in both sets. The coefficients,"a and (3, are determined" 
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~:( 

. by m inimiz ing the c omple menta.ry e nergy V w ith respect to each 

one. For a c y linder in plane strain, the compl e mentary e n e r gy is 

,', Sb 
V' = . W(21Tr) 

a 
dr 

2 Sb = 21T(1 - v} {~( 2 + 2) 
E 2 O'r 0'8 

a 
(4.66) 

w.her e W is the strain energy d e nsity. 

* Substitution of stre s s e s 4.64 into V , carrying out the integ ration, 

and minimizing, i. e. 

,~ 

BV au = 0 

yields 
( 1-2v }ex. - I) p . 

I -v 1 
0.= (4, 67a) 

- -L.+ (~- _v_}x.2 _(1-2v }(2X.-l) 
• • L. '± I-V I-v 4X. . . 

Similarly, for approximation 4.65 

(4. 67b} 

Substituting these expressions for a. and f3 into the r e spe ctiv e stresses, 

we obtain the elastic stresses which are, along with the exact solu tion, 

shown in figure 4.10 for v = 0.45 an:d X. = 2. 

f3} Viscoelastic solution: We turn now to calculation of 

the vi s coelastic stresses. On the basis of the corresponde nce rule , 

the time dependent stresses are obtained by Ireplacing Pois son's ratio , 

stresses,and internal pressure in equations 4.64, 4.65, and 4.67 by 

transformed quantiti e s and the n inve rting. 

For specification of an operational Poisson's · ratio, a constant 
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bulk rn.odulus, K, is assurn.ed along with an operational shear rn.odu-

Ius given by 

fJ.(p) 
fLrn.P 

:: --1 
p+ T 

(4. 68) 

which corresponds to a Maxwell rn.odel. Substituting K and fJ.(p) 

into equation 4.36, Poisson's ratio becorn.es 

2v(p) :: 

2fJ. 
(3 - T )rp + 3 

fJ. 
(3 + ~ ) rp + 3 

K 

(4.69) 

where we . shall take J.l. /K:: 0.6 in order that v (p :: (0) :: 0.25. The 
rn. . . 

pres sure is taken to be a step function, of rn.agnitude p., applied at 
1 

t :: 0 so that p. appearing in the elastic solutions is to be replaced 
1 

by p./p. Making these substitutions for v and p. and then inverting 
11 ' 

yields the approxirn.ate tirn.e-dependent stresses: 

0" /p.:: -1 + 0.416(2'::' _ lie -0.325 t/T 
ru 1 . b 

(4. 70a) 

0" /p . :: -1 + 0.416(4 {- _ lie -0. 325t/T 
Su 1 . 0 

(4.70b) 

0" /p.:: -1. + 0.980(1 _ .!. .!:)e -0. 284t,lr 
r(3 1 2 r ' 

(4.71a) 

/ 
:: -1 + 0 980 -0. 284t/r 

O"e(3Pi . • e (4. 7lb) 

Furtherrn.ore, it is easy to verify that the exact stresses are given by 

2 . 
, / :: _ 1 + 0.167(4 _ b

2 
)'e -0. 278t/r , 

0" re Pi (4.72a) 
r 
2 

O"s /p.:: -1 + 0.167(4 +~ )e-0.278t/r 
e 1 2 

(4.72b) 
r 

All of these stresses are plotted in figure 4.11 for r/b:: 0.7. 
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It is seen fr.om the equati.ons that the time dependence is in c.omplete 

agreement with P.ostulates I aud II. " Furtherm.ore, " the graph sh.ows that 

the quality .of appr.oximati.on (13) is better than that of (a) for bath the 

visc.oelastic and elastic solutions, which is nat unexpected in view of 

the remarks made in section 3.3. 

4.4. Numerical Applications .of C.onv.oluti.on Var iati.ona l Principles 

The e.ase with which appr.oximate visc.oelastic s.oluti.ons were 

calculated in the previous two secti.ons suggests that for mast linear 

pr.oblems it is not essential to use ,the conv.olution principles. H.ow-

ever, we shall now discuss two classes .of proble"ms far which it may 

be either mare convenient .or else necessary to use them instead of 

the transf.ormed principles and related approximate (or: exact) inver:" 

sian meth.ods. 

a. C.omments on the dynamic ,Problem. " In wave pr.opagati.on 

and vibrati.on problems the time dependence .of a resp.onse may be a 

~:.: 

rapidly changing and .oscillating function of l.ogarithmic time. In 

suc:hacas~,the direct method is not expected t.o yield goad results. 

The c.ollocation meth.od can still be used, in principle, if the transient 

resp.onse is quadratic;ally integrable. H.owever, many exp.onential 

terms may be needed t.o obtain a satisfact.ory solution, which will 

p.os~ibly require an extremel y accurate evaluation .of the transf.orms 

(see equati.on 4.l8). Thus, while the appr.oximate transf.orm may be 

,', 
'This behavi.oris actually mare .of an excepti.on than a rule far vis c.o-
elastic wave propagati,on probl e ms. In fact Arenz (39) is currently 
applying the direct and c.ollocati.on meth.ods to .one- and tw.o -dimen­
si.onal pr.oblems with consid~rable success. 
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relatively easy to obtain, inversion may be impractical to perform. 

In viewof this possible complication, a simpler procedure 

might be to assume approximate solutions which consist of prescribed 

functions of time along with some arbitrary parameters. These 

parameters could be calculated from the condition that the appropriate 

convolution functional be stationary. 

Let us briefly illustrate this with the displacement principle, 

equation 2.111. With temperature neglected for simplicity, but with 

kinetic energy included (s ee equation 2.14) we ·have 

1 stlS {[o fJ.v ',l I = 2." Z .. e (7~ e .. (tl-or) + p 
u . 0 B lJ fJ.v lJr 

dU
i 
(t

l 
-7) 

d(tl-T) 

Stl S j'tlS - F.(7)U.(t
l

-T)dBdT - T.(T)U.(tl-T)dA 
OB l 1 OA 1 1 

. T. 

dT 

(4. 73) 

where tl is written for the upper limit on the time integral to em­

phasize the fact that we must restrict ourselves to a definite interval 

of time; 0 S;. t S; ~, in the approximate method. As s urne displace­

ments represented by the series 

(a. ) 
u. = C f. (x., t)+ U. (4.74) 
lo.l . l 1 

in which f~o.) are ~pecified functions of x. and t that vanish on A , 
l · 1 U 

the U
i 

are prescribed boundary displacements, and the Co. are 

arbitrary constants which are to be determined from the stationary 

condition 

iiI = 0 
·U 

(4. 75) 
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for all arbitrary variations 5C. By carrying out the inte grations in a 

equation 4. 73 and the variations, a system of linear algebraic equa-

tions is obtained for determination of the constants Ca' It can be 

shown that the matrix of coefficients which multiply C is symmetric; 
a 

this is a consequence of the symmetry of Zfl~ and the property of 
ij 

the convolution integral that 

(4. 76) 

where 0 is an operator (e . g. an e lement of zJ:1.v ). and f and g 
lJ 

are time dependent functions. It is important to reiterate that I 
u 

is made stationary for jus t the interval 0 ~ t ~ t
l

, and hence the r e ­

sulting solution will not be valid for times larger than " t
l

• 

b. Beat conduction example. There is another class of problems 

in which the transformed prin"ciples (or correspondence rule) cannot be 

used. Namely, that class for which the assumed solution is a non-

linear function of the unspecified generalized coordinates. This 

application will be illustrated with a one-dimensional heat conduction 

problem. 

Gonsider the isotropic, homogeneous, semi-infinite solid 

shown in figure 4.12. At t = 0, the face x = ° is suddenly brought to 

a constant temperature 8 • It is "assumed "that the temperature, 8, 
o 

is zero for t < 0. 

For comparison purposes, let us first give the exact solution 

which is derived by solving the heat conduction equation 
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8 =' 0 for t < 0, x=:: 0 

8 = 8 for x = 0, t > 0 
o 

8 - 0 as x - CXl~ t > 0 

(4. 77) 

where C is the specific heat per unit volume and K is the heat con-

duction cQefiicient. The solution is well-known and is given by 

(4.78) 

For the approximate solution a simple form is assumed which 

satisfies the temperature boundary conditions at x = 0 ' and x = 00: 

e 
8 
, a. = -x/q(t) 

e (4. 79) 
o 

where q(t) is a generalized , coordinate that is , to be determined by 

using the variational principle, equation 2.55. For the particular 

case considered here, the variational principle is ' 

(4. 80a) 

which is' equivalent ' to 

S tlSOO (c 88(T) - K 8 25l (T)) 68(t -'r)dx dT = 0 
o 0 8T 8 xz. 1 

Substitution of the temperature 4.79 and the variation, , 

, 8 x 
o -x/q = -- e 6q 2 

(4. 81) 
q 
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into equation 4. 80b arid r e cog nizing that 6q is arbitrary yields 
):.: 

SO:> [dq(T) 2 K ] -x (q(~) + q(t~-T))dx _ 0 
o ---;:r.r-x -ex e - (4. 82) 

Performing the integration over x the E 'uler equation for q('O 

is obtained, thus 

2C dq(T) _ 1 + 1 
K dT - q(T) q('-'-t---T-'-)-

1 

in which tl is to be treated as a constant parameter. 

by first noting that it can also be written as 

2C 
K 

dq(tl-T) 

d(tl-T) = 

Taking the ratio of 4.83 and 4.84 we find 

-dq(t
l

- T) = dq(T) 

which integrates to 

(4. 8 3) 

This is solved 

(4. 84) 

(4.8Sa) 

(4.8Sb) 

When this is substituted into the differential equation 4.83 and the 

result integrated we find 

-"2 ( 2 A) K 
q l-"3 q . = C (4. 86a) 

in which the non-dimens ional variables are defined, 

,', 
. It is interesting to observe that the weighting function, 

( I + 1 ) 
-x q{T) q{tl -T} 

e 
is a symmetric function with respect to the point T = tl/2 as the time 
variable T range S ove r the inte rval O;S; T ;s; t

l
• 
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" T T :: 
tl 

/' /' /\ 

(4. 86b) 

so that O::S: T ::s: 1. Setting 7:: q :: 1 in equation 4.86 yields the value 

(4. 87) 

Using this value for q(t
l

) in equation 4. 86a provides an expression 

directly relating q A 

and 7, 

(4.88) 

/\ 
which is plotted in figure 4.13. The values for q can now be used .in 

the solution if the temperature 4 .• 79 is written as 

where 

9 a ; e -X!ci'(T) 
e-o 

" x= x 
q(t

l
) 

(4. 89a) 

(4. 89b) 

This approximate solution is plotted in figure 4.14 along with the exact 

temperature, which, in terms of the variables ;; and r is 

9 
e e= 
o 

2 

rrr (4. 90) 

It is of interest to compare the approximate temperature given 

above with one calculated using 09(7) as a weighting function in equa-

tion 4. 80b in place of 09(t
l
-7). Such a procedure is analogous to the 

way in which a spacial weighting function is employed in Gale rkin IS 
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method (13). Using e quation 4.79 and 58(7) in equation 4. 8 0b we find 

Soo (d 2 K) -2 ~ ~x - -x e qdx=O o d7 C 

which yields the differential equation 

,', 
This is easily solved to find' 

q = ~ 2~7 

so that the approximate temperature is 

~= 
8 o 

e 
-1. 225 (~/~) 

which is also shown in figure 4.14. 

(4. 91) 

(4. 92) 

(4.93 ) 

(4.94) 

It is observed that for T <: 0 .8, 8 
a. is clo se r than e {3 to the 

r.. 
exact solution, except at small values of x. Because of this, 

appears to be the best approximation in the sense that 

Slr
OO 

(8 -6 )2cJ.idT < r
l
r

OO

(6{3_ 6 )2dX d9 
OJ O a. e· JOJ O e 

8 a. 

(4. 95) 

It should be added, in this regard, that the stationary condition on the 

convolution functional, equation 4.80, minimizes the transfo rm, T 8' 

with respect to. q . for p real and positive . . In contrast, condition 4.91 

i s not associated with the minimization of a functional. 

'~It is of interest to mention that the same result is obtained by applying 
the di r ect method of inversion to the exact transformed solution of 
equation 4. 77. 
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Although further study on the use of convolution variational 

principles is needed, this section does suggest that they are useful 

tools for approximate analysis. 
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