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ABSTRACT

By using the Feynman diagram technique, a unified analyais {s
given of the Quantum Electrodynamics of a Medium. We consider both
an atomic medium and an electron gas. The photon propagator in a
medium is calculated by summing the most highly divergent diagrams
in each term of the perturbation series expansion of the photon propa=
gator. An explicit form for the interaction amplitude of two arbitrary
currents in a medium is given. From this amplitude a complete com=
plex dielectric function is defined (at the pole of a photon propagator).
Furthermore, we hidve examined the photon propagator for its poles
in order to obtain dispersion relations which yield the energy-momen-
tum relation for free motion of the system. We have considered, in
detail, an 'atomic gsystem and an electron gas. In both cases e:gplicit
dispersion relations are found over a wide range of energy and momen-
tum variables. Effects of finite temperatures are discussed. Also we
have obtained the energy loss of fast incident charged particles passing
through an atomic medium from the self energy of the incident particle
in the medium. 'I:he energy loss so obtained consists of three parts:
loss due to excitation of atoms, loss due to {onization of atoms, and a
Cerenkov loss. General features of the energy loss are discussed.

We also give a number of expressions for the loss for various incident

pazrticles.
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I. INTRODUCTION

The purpose of this paper is to give a unified treatment of the
Quantum Electrodynamics of a Medium. By the Quantum Electrody-
namics of a Medium we mean the quantum mechanics of a system of
charged particles (medium) interacting with the electromagnetic field
(i. e., scalar longitudinal and transverse photons). For the most part
we will be dealing with an atomic medium (i.e., a medium consisting
of atoms interacting with the electromagnetic field).

There are a nymber of physical problems of interest that arise
in connection with the interacting system (medium plus photon field).
For example; the propagation of photons through the medium (index of
refraction), the normal modes of the interacting system, the energy
loss of fast charged particles passing through the medium, etc. are
typical problems. In the past these problems have been studied mainly
from a classical point of view. For example, the energy loss problem
was first treated by N. Bohr in 1915 using classical techniques. * Many
people have since extended Bohr's classical treatment.

It was not until 1956 that Tidman (1) gave a non-phenomenologi-
cal quantum mechanical treatment of the energy loss that included the
contriﬁution to the loss from large impact parameters (or equivalently
emall momentum transfers). It is in this region of large impact param-
eters where it is necessary to include the passive effects of the medium

on the energy loes. Tidman uses the hamiltonian approach, that is, the

*A complete history cf this problem may be found in the paper by
Tidman.
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approach described in Heitler's book (2). This approach necessitates
the use of a number of approximations (e. g., that the Coulomb inter-
action in the medium does not differ from that in vacuum). Since
Tidman's treatment of the atoms of the medium is non-relativistic,
his results are applicable only to emall momentum transfers. Further-
more, Tidman makes the approximation that the dielectric function (the
square of the index of refraction) is real. None of these approxima-
tions are necessary in the method used here, the Feynman diagram
technique. By this method the problem may be treated in a completely
four-dimensional fashion, and it follows that the results are valid for
all values of the momentum transfer. Another conscquence of our foure
dimensional formalism is the general validity and usefulness of the cure
rent conservation law (e. g., this law enables us to derive the modifica-
tion due to the medium of the coulomb interaction). Finally we are able
to obtain the complete complex dielectric function for both large and
amall momentum transfers. The relation between the imaginary part
of the dielectric function and the energy loss of fast charged particles
is derived.

In addition we have applied these methods to a consideration of
- the normal rmodes of the system consisting of the atomic mediurp to-
gether with the electromagnetic field. By a simple extension of these
methods, we are able to derive the complete relativistic dispersion
relation for the electron gas, a relation which reduces in the non-
relativistic approximation to that of Bohm and Pines (3).

We feel that the elegance and generality of the Feynman diagram
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technique is particularly suited to a complete description of all coherent

physical processes of interest in a medium.
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II. PHOTON PROPAGATION IN A MEDIUM AND THE
INDEX OF REFRACTION

A. Qualitative Features of the Photon Propagator in a Medium

In the following we are using gaussian units with h = ¢ = 1; then
ez % 1/137. Four wectors will be denoted by small letters [e.g., k =
(w.-ﬁ)] . The dot product of two four a,b is takenas a*b = atbt- a- ?.

Also, the notation = a.y -:--y. is used.

t

In this section we will discuss the photon propagator in a medium.
The following assumptions are made in this paper., The medium is as-
sumed to be nonconductive and to consist of N identical, infinitely
heavy, nonpolar, nonmagnetic, randomly situated atoms per cubic
centimeter., We take N to be small enough so that we may neglect
any direct interaction between atoms of the medium. We assume that
the intrinsic properties of the atoms of the medium are known, that is,
the energy eigenfunctions ¢ Lt Snergy eigenvalues 'En. and line widths
Y, ave assumed known. Also, for simplicity, we will .consider one
'el'ectron atoms. We take the temperature of the medium to be so low
that in the ground state of the medium each atom is in its ground state.
In Chapter IV we will discuss the effects of a finite temperature on the
photon Ipropagator.

In order to obtain the photon propagator in a medium we proceed

as follows., Consgider two current sources in the medium. One current,
J(xl). is at an arbitrary space-time point 1; the other, J'(xz). at an
arbitrary space-time‘point 2.

We will be working exclusively in momentum space so without

ik » x
loss in generality the currents may be taken to vary as J“o ' 1.
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Let us ask for the probability amplitude that the current at point 1 emits
a photon, the photon propagating through the medium from point 1 to
point 2 subsequently being absorbed by the current at point 2. Let us

call this amplitude A. we write A in the following manner

A= SS' d*xdte, T )P, 6, %,)3)(x,)

ke %) . , ik’ x,
Writing J“(xl) = j“e (emits) and Jv(xz) = j‘;e (absorbs) we
have '
{(ke x, =k'» %)
Aws,|§§ataatem oumpe 1 2y
=3P, kK, . (z-1)

Now, due to the homogeneity of the medium Pp.v(xl‘ xz) must be a

function only of the difference le' le. Therefore

Pl k') = (20 tet (e k), ()

is just --41:/1{‘(26"'“,..I With a medium present =

For the vacuum w v

uv
will differ from the vacuum case. It will contain the effect of the medium

on the propagation properties of the photon. In the rest of this chapter

we will concentrate on calculating the ¥ propagator" 'pv

.

Physically we would expect that if the spatial separation between
points 1 and 2 {s larger than the mean separation between the atoms of

the medium, which we take to be of the order of the Bohr radius, the
e

5‘” 2+ if p=ved, =1 if p=v=],2,3 and zero otherwise.
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effcct of the medium will be to modify the propagation properties of the
photon from the case of propagation in vacuum. The atoms of the
medium will passively scatter the photoné; for example, there is a
finite probability that the following process will occur: A photon of
momentum k excites an atom of the medium to a virtual excited state,
the excited atom then decays re-emitting a photon of momentum k. On
the other hand, for a spatial separation that is smaller than the separae

tion between atoms of the medium we expect that the atoms will have

little effect on the photon propagator for vacuum.

B. Calculation of the Photon Propagator in a Medium

The coupling between electrically charged particles and the
electromagnetic field is characterized by the dimensionless constant
e 1/137. Because this constant is much less than one the usual
method of computing amplitudes in quantum electrodynamics is to use
perturbation theory (expanding the amplitude in a power series in ez).
This is the method that is used here. In order to calculate the contrie-
butions to the amplitudes in perturbation theory we use the Feynman
diagram technique. The utility in using Feynman diagrams is that the
contribution from each term in the perturbation expansion can be written
dowa by inspection., Figure l shows some of the lower order diagrams
associated with "pv’ Diagram la represents the propagation of a
photon (of momentum k) from 1 to 2 without interacting with the medium
(i. e., the photon propagates from 1 to 2 as a free particle). Diagram 1b

represents a photon propagating from 1 to 3 as a free particle. At 3 the
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Figure 1. Diagramatic representation of the photon propagator
in a medium
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photon interacts with an atom of the medium causing the atom to make

a transition to an excited state. From 3 to 4 we have an atom in a
virtual excited state. We represent this by 3© . At 4 the atom
de-excites, emitting a photon (of momentum k) which propagates freely
from 4 to 2. Diagram lc differs from diagram lb only in that the photon
that arrives at 2 is emitted before the photon coming from 1 is absorbed.
Diagram la, 1lb, lc represent the complete 2nd order (in e) contribution
to the photon propagator in a medium. Diagrams ld, le are part of the

fourth order expansions for 'p,v

To second order P“v is given by,

"
- . 4o 4.4 ol 4 (2) -
pP'V k2+ Py [(Zv) §'(kek )5’“# P’w ] (I1-2)

where P(:‘), is of the form (Zn)464(k-k')ﬂ(:3. In [I-2, P(:3 is -41r/(k')z

times the amplitude per unit volume that a photon of polarization g,

momentum k excites an atom of the medium to an axcited state with

the atom subsequeatly emitting a photon of momentum k'. polarization

v plus =-4un/ (1:')2 times the amplitude per unit volume that a photon of

polarization v, momentum k' is emitted by an atom of the medium,

the atom being raised to a virtual excited state with the atom subsequently

de=~exciting by absorbing a photon of pol#rization #, momentum k.
Diagrams la, 1lb, lc are the complete contribution to the photon

propagator to second order. In the fourth order there are two kinds of

diagrams that contribute: iterations of second order diagrams (see for

*To avoid complexity in notation in the following we will drop the i€ on
the Feynman propagator.
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example figure 1d) and new types of diagrams that cannot be obtained
from iterating second order diagrams (figure le shows a typical dia-
gram of this type). Let us call a diagram as proper if it cannot
be reduced to two simpler diagrams by cutting a single photon line.
Thus, in figure l, (b) and (c) are proper second order diagrams and
(e) is an example of a proper fourth order diagram while (d) is not a
proper diagram. In the n'th order of perturbation theory we get con-
tributions from n'th order proper diagrams plus contributions from
iterations of lower order proper diagrams.

Call ﬁ(:3 the sum of all the proper diagrams of the n'th order.
Then the total amplitude for the medium to absorb a photon of momentum
k, polarization p and the medium subsequently re-emitting a photon of
momentum k polarization v is given by [ omitting the factor

2 *s*(k-k"]

pv  Tpv
(2) (2) (2) .
B“U o_pﬁpv Tooo ) (n-3a)
] -4‘“ - (2)- (4)¢ .1 -
<z {6 - g9 5ty ) (II-3b)

That is, w 1is proportional to the inverse of the matrix (S-B(Z)-b(4)-. ve)
which ju.st involves proper diagrams. What we are doing in calculating
Ty is essentially calculating the self enérgy of a virtual photon in a |
medium due to virtual interactions with particles of the medium. The

net result of these virtual interactions will be to shift the pole of the

‘We are using the Feynman summation convention for repeated indices.



photon propagator at w= K (vacuum case) to somewhere else. That
is,the infinite series Il-3a is a perturbation expansion calculation of
this shift of the pole. Since ez is so small we expect that the location
of the pole will be close to w= K and also that the nature of the pole will
be the same as the vacuum case (e. g., a simple pole). We note that
each successive term in II-3a is getting more and mozre divergent near
w= K. Now ﬂz contains a factor ez/kz. 5(4) a factor ez(ez/kz) etc,
So, for example, in the fourth order we get two terms, ﬁ(4) and

@122

the iterated second order texrm, dominates the ﬁ(4) term because of

. DBoth of these terms are of order 04 but near w= K, ({5(2))2.

the extra factor l/kz. It is casily seen that this will be true to all
orders (i.e., the iterated second order term will be dominant near
w = K). The expression II-3b is telling us that the location of the new

pole will be determined where the matrix kz(ﬁ-ﬁ(z)-$(4)-. win ) -1

is
singular. Physically, at the pole, we obtain the relation (dispersion
relation) between w (energy) and K (momentum) for real processes
in a medium. As an approximation to II-3b we take the expression

m = - 2F ((ep (11-4)

This expression is the sum of the most highly divergent terms of the
perturbation expansion II~3a in each order. We shall see that we do

get a pole which is simple and close to w= K.
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C. GENERAL EXPRESSION FOR ﬁpv

Applying the Feynman rules (4) to diagrams 1b and lc we get

2 ike x
(2) _ _ i4me ZS‘ 4. .4 4ori = { ~
va - —;f— d x3 d x4 e VO (x » t4)Y“K‘i‘(x oxs)YV‘I’o(x3o t3)

i
‘ik" X3 ¢ i
X e +terms with kK - k (II-5)
where (
Y = = “iEL(tget3)
2, Palxgle (x3)e : for t,> t,
Pos.E
Kl x3) =< : (2-6)
-Z ?a(xg)e (x3)e for t,< t,
Neg. En

N
Z signifies the sum over all the atoms in a unit volume,

'8
. =iE_t
\El; (x) = ¢:(x)e B are the stationary solutions for the ith atomic

ExT

electron (i.e., the \I'n's are the solution of (iV » el - m)¥ =0,

5 is the external field acting

normalized to S ¢‘¢ d}:? =}, where AEx
on the electron {.e., the coulomb field of the nucleus), the quantities
\ (b =x, vy, 3, t) are the familiar gamma matrices which satisfy
Y, Yy +yvy“ = Zépv' and ¥ is the adjoint of W (= W+yt). The first
term of II-5 corresponds to diagram lb and the second term to dia=-
gram lc.

After inserting II-6 into II-5 and combining terms we get:

“Henceforth we drop the superscript (2).
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o ST T 3 S

Poa.

-iE (t -t,) -u{. eiK'e x
4 73 “s &
x e 6"‘ PV ’n)t 6“‘ *2Pa¥v® “@o)s

+ terms with k = k' for ty> t,

2
{4 we
""(‘1';')7' oéo’z e o e fOr t4<t3 (n-7)
Neg.Eu

Consider the atomic matrix elements in II-7. For bound states the
wave functions ¢ are non-zero for values of I-::l up to the order
of the Bohr radius a . So for small K (Ka << 1) we can expand the

o’
KX as series of powers of K: eiK' s 1HK x =

exponential factor e
1 +iKz; we choose a coordinate system with the z axis along thc vec-
tor K. Also in this region of K we make the nonrelativistic approxi-
mation in the treatment of the atomic electrons. Physically in this
region of K the atom receives a momentum which is small compared
with the original intrinsic momentum (mez) of the atomic electrons.
On the other hand in the opposite limit, that of large K (Kao >> 1),

it is evident physically that we can regard the atomic electrons as
free, and at rest (atom receives a momentum which is large compared
to mez). This can also be seen from the atomic matrix elements in
II-7. For large K, the integrand contains a rapidly oscillating factor
eiK' x. and the integral {s almost zero if v does not contain a similar

factor. Such a function Pa corresponds to an {onized atom with the

momentum (space part) of the emitted electron given by the law of con-



servation of momentum between the incident photon (E{.) and the original

momentum of the electron (which is much smaller than R.).

D. CALCULATION OF ﬁpv IN THE CASE OF SMALL K

First let us consider the case of small K (Kao <<1). Now
i(t -t3)§2

Q —  amm  —
K} egex3) = 757 Z S E,Ter 71 PalglPnlis) (11-8)
all n

where € is to approach zero through positive values after the 2
integration has been done. Upon inserting II-8 into II-5 and rear-

ranging terms we get,

-i (E +u+52) it (E +w+2)
" _ 4mel ZS‘ a0 atdt e | 2 1
18 2 2‘5’1
(k
-iK x. K. x,
K i 2 I — 1
x Z (g d *290° van) i (S‘ d x1¢n\’p° ’o)i
alln

: 1 = i
x E-n—(rm + terms with k -k

Performing the integrals over t and t, we get,

2 o - <=iK'x
™ ::-i-%z (2w) 6(w-w") Z{S‘.w di2 §(Q+E  +w) \S‘ d3"7_¢o° ZYV'Pn)i
1.0

e

{Kex, (o2]
3>— 1 1
. d‘d xl¢nyp° 'Po)i Enh-idﬁi +S‘.md0 6(Q+E°-u)

*In the following the dummy integration variables will bc denoted by the
subscripts 1 and 2.
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K- x.
3= - 2 I
- Kgd *2%0° quon)ikgd *1PnYy® 9’ > E U-]CS‘*Q }

- e ) ([ €57, S ),

3 ‘K-. 1
x &S'd X @ Y. e @ )
"n'p i E (1 ie)-u-ﬁ.

K- x iK' x,
3= 2 K 1
+ d d X9 Yp"n) { d d X1PnYy® ’o)l

1
3 spreepen — (11-9)
I (I-le) 7o Lo}

To proceed further, we first examine the contribution from

i

positive energy states. In II-9 for a given atom (i) the O = ¢n(;c.- :i)

where —;i is the position of the i'th nucleus. So if we write, say,

(S‘ da-’:lanyusx. xx’o)t

as
(§ @6 T3, 2y ) om 152

and similarly for the other terms then this form has the integration
variable centered around the i'th nucleus. Since all of the atoms are
identical the atomic matrix elements for different { are equal; the only

.121 . (K-K")

dependence on i in II-9 will appear in a factor e « Then
--a-. . (-K’.R. ) . ‘-'. -—..—.'
§ o B (oneT @R
i

= N(Zw) 3 (K- K"
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Putting everything together, we finally get that

N 4.4 v:Ole'iK x, |n><n|y e‘K"‘lo>
P, = - 250 Gotetei) ) {
By k E (1 - {¢) - -w
alln n o
0le i Y, [n><nlyé K- I0> } (11-10a)
En(l - ig) - Eo +w
= (206 - 108, (11-10D)

— — oy

where <n|y#eu{' *lo>= S‘daxcpny“eu{'xv o+ Consider the atomic

matrix element

B, = <n|ypeu{'x|0> . (II1-11)

where p = (t, x, y, 2).

In the nonrelativistic approximation ., becomes:

2 = <nly,(1 +ikz)[0>

= (1 +iKz)n°

= iKzn i

where 20" g¢:2¢ ods-; (the matrix element of 1 between n and o

vanish because thegse states are orthogonal to each other). Also

a ¥ <nly_|0>

S‘dxv

no'

|0> represents the ground state of the atom.



(since in the nonrelativistic approximation a is replaced by x )
= HE - Eghxe

= 0, 0%no
similarly

Ry ® 0 Vo 20d B "l S

Also for a given value of En there is 2 sum over the angular momen-
tum states of the atom. " As is well known in the dipole approximation
Af = 1, Since the ground state of the atom {s an 8 state the excited
states must be p states. So for a given En there are three angular
momentum states (ml = 0, 1), Now it is easy to see that within the
dipole approximation that the only non-zero terms of ppv are: ﬁu.
Pao (333. ﬁ»34. ﬁ43. and [344. where the {ndices 4 corresponds to t,
3to z (thg direction of K), 1and 2 to x + and x_ respectively
(:%'211 te %i_z )« The reason for this is the following: consider, for
example, ﬁ13. Physically we are asking for the amplitude, in the die
pole approximation, that an atom absorbs a right-handed polarized
photon and emits a longitudinal photon. Now for a given value of En

Byy™ 8y (H1a,(4) +27(0)a (0) +al(-)a (o)

where the 1 and 0 correspond to excited states with m, = & land 0

¢We disregard spin here because the interaction hamiltonian, j- A,
doe 8 not involve gpin variables, hence the spin operator commutes
with the hamiltonian implying that the spin is a conserved quantity.
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respectively. = So
-+ + +
B3~ 2, (Mag(#) +a,(0)a5(0) +al(-)as(-) = 0

since, for example, a,(+) = ,(0) = a;(-) = 0.** Similarly, all off di-
agonal elements except ﬁ34 and ﬂ43 are zero. Now consider the
diagonal terms '

B

By ~ (la (912412024 Ja(2)]%) = Ja (9 ]%m 02 |2 |2

Also
Paz ™ laz(')lzz la1(+)lznu:°]zn°]z b
P33~ 123007 = Jayn|® = o 1z, |2
and
By~ l2g0]% = x|z |2
also
. 2
p34: = ﬁ43 Kmnolznol

Therefore from II-I'O and II-12 we obtain that the contributions from

the sum over positive energy states is given by

: 2
8nlNe " 2 1 1
ﬁ11 . ﬁ?.2. % ‘333 - _-1:2 Z “no ]znol (u - + W tw ) (11-13a)
1 no no

Ei¢ 10¢

g‘g’n(:t »0) contain a factor of e and e respectively.
*see (2-11) ).

¥ Henceforth ]znolz denotes the dipole matrix element summed over

the orbital angular momentum states.
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Pgg = "I‘\L“y S B o *unolm ) P3g= Py3= g Pyq (U-13D)

Now in the dipole approximation we calculate the contribution
from negative energy states. For a negative energy state En" - (m+
Order Rydberg). Now E_~m + Order Rydberg so E_- E_~ - 2m +
O(Ryd.). So for w much less than m we get, from II-9, that the
contribution to say ﬁn (= ﬁzza ﬂ33) becomes (neglecting terms of
order Ryd./m)

ﬂu"z <0]y1]n.><n-ly110> (-2-1; - zi—ﬁ)

Ni=

= x-:'z z <O|y1pln><n]y1l0>

alln

% é<0]y1p y,lo> (I-14)

where p is the projection operator for negative energy states (i.e.,
ﬂ |a%> =0, ﬂ [n> = |n">. Neglecting terms of the order Ryd./m

can be taken to be:

p — 17(\(( 1) (I1-15)

Substituting II-15 into II-14 we obtain

+1) 1
Bus™ = = <o|y4ﬂy4|0> PR <0|yt....2._.. [0>= - = (1-16)

II-16 can be recognized as the contribution from the Az term in the

nonrelativistic hamiltonian.
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The contribution to {344 from negative energy states is

Baa = =5 <OIvgOglo> = - - <Oly ——y,J0> = 0
Also, the contributions to all off diagonal elements are zero. For

example

1 (Yt‘l) (Yt'l)
Pra ™ ‘[T:E <Oy, —3—v,[0>+<0]y; 5~ Vxl°>]

1
= 5 <OI(Y1Y2+ yzyl) o>

=0

Also
Pay™ * 5 [<°1Y3 g gl 0 4By ey Y31°>]

1 (v,-1) (ve-1) -
= e [<OIV3Y4 s [0>+<0| —-z—-y4y3]0>:l

=0
since y [0>= [0>.
Summing II-16 over all of the atoms per unit volume gives a
factor N. That is (replacing all the factors) the non-zero contribution

from negative energy states per unit volume is,

2
Pp = Pz = P33 ® 4:2 (-= | el

"From II-13 and II-16' we get that the contribution to B from both

positive and negative energy states per uait volume {is,



«20=

4nwNe 4 1 1 1 .
P= Paz= Bss® —-——{Z[ ol (e v i) - &) e
w 4uNe? 2 2; 1 1 *
P3q4= RPagl Pyg" 3% K|z |\ o= * o ) (I1-17b)
n+ no no

We remark that the expression II-17 could have been written down by
inspection. Consider, say ‘311' This is the amplitude for transverse
waves propagating exciting-de=-exciting atoms. Treating the atomic
electrons as nonrelativistic the amplitude for diagrams 1lb, 1c can be
obtained as follows: Amplitude for propagation from 1 to 3, -4r/kz.
amplitude for a transvérse photon to excite atom to nth state,
iewnozn'o‘;w The amplitude for the system to propagate in the inter-
mediate state 3-4 is 1/(E-in' E; ;) where E  is the initial energy
of the system (just prior to 3) and Eint is the energy of the system
in the intermediate state. For both daigrams Ein B E°+ w For 1b,
E = E  andfor lc, E

int n int
emitted by the atom -iew z+ Amplitude to propagate from 4 to 2,

no no’
- 4'/kz °

Algo in the nonrelativistic approximation there is a contribution,

= En+ 2w, Amplitude for the photon to be

for transverse waves only, from the ez/m (—K -X) term in the hamile
tonian. This term contributes, per atom, an amount ez/m. Putting
everything together and holding back one of the factors of -4:/];2 we

get

*Henceforth we write z as Z "
n+ n

"We imply that the sum over angular momentum states has been per=-
formed,



B =-4”‘“~21‘"{3‘ (-iw_2z¥ )( Tp— (lo, 2 ) |+ % }
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This is just Il-17a. (To get the coatribution per unit volume we just
multiplied by N since the atoms do not interact with each other.) To
get P 44 We note that for coulomb: ' photons there is no contribution
from the A + A term hence there is no factor of l/m. and the atomic

matrix elements are ~ Kz_ .

no
B, = - Ame’N z (-ika? ) (g e )uks, )
44 2 no’ \ Wtk _-L& WTE _~2w=8 no
k s o n o n
_ 4mNe? Z T L QR NS W
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which is just II-17b. The expressions II-17 may be simplified by

making use of the Thomas Reiche sum rule (5) which gsays that

2 &
D =) 2malz ]
n n

2 z wnolznolz (11-18)

n

or

Substituting II-18 into II-17a we obtain

l"The quanﬁties £ o~ men Iz are called the oscillator strengths.

ol%ao
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B, = Z |z |“w +—2o .2 I1-19
n-"z - no no( o e o _+e ) ( )
& Bl 2 wz l IZ 1
WiNe -kT wno Zno -—z——-z-. (n-ZO‘)
n “’no -
and from II~13_
B = 8aNe2 K2 2 i
44 = SN 7 “nol%po| P (11-20D)
n no

The expressions II-20a,b may be simplified by expressing them in
terms of the oscillator strengths fno and the plasma frequency

@, = (4:Nez/m)l/z. In termas of these parameters we get that*'

, ,
pll = wp 22- _2__!_12__ (I-2la)
k W =W
n n
and
2 { 3
Pgq = “’;Z, 5 Z —— (II-21b)
k a Yamw

It appears from II-21 thaé for w= W f is infinite. The
reason for this is that up to now we have assumed that the energy
eigenvalues are discrete. Actually each eigenvalue is not discrete
but is spread out about some mean energy En with a half width p
Physically, each excited state has a finite probability of decaying

which implies an uncertainty in the energy. In Appendix A it is

. :
Henceforth we omit the subscript o.
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shown that when the finite lifetime of the excited states is taken into

account the expressions for P become

2 wZ w
Pu= Pa2= P33= vy =2 z g

(11-22)*

Yn
where w_- i—z-.
Yn n

E. Current-Current Interactions in a Medium in the Case of Small X

We are now in a position to return to the expression II-1 for
the amplitude for the emission and absorption of photons by currents
in a medium. Here we carry out the implicit summation implied in
II-1 to obtain an explicit form for the interaction of currents in a
medium. First of all let's consider the form of the interaction in

vacuum. In this case II-1 takes the form

l°lIt may be noted that II-22 may be obtained from II-21a,b by substi=
tuting wY for w. A semi=-plausible justification for this is that
n
the amplitude for a meta-stable state contains the factors o~ i¥/2)t ~1Et
i(E-i -})t

= e . Thus the energy of a meta-gtable state can be regarded
as complex with the imaginary part being = y/2. Also we note that y
is the total line breadth of the excited states. However in the following
we will consider the idealized case where we take y to be the spone
taneous line breadth. This would be the case for isolated atoms at
zero temperature.
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6 .
& \V
14 = -41!’_] —tz— jV

anj L g
2 = ———
'll’j“ ka jl‘

(11-23)
where j, j' are the two currents involved. Now since all currents
are conserved (i.e., _j*1 P-t 0 which in momentum space reads
kpjp= 0), II-23 can be simplified as follows. If instead of choosing
the space directions x, y, z one direction parallel to K (photon

mwromentum) and two directions transverse to f(’ are taken the matrix

element # can be written (suppressing the factor -4u)

SN
ke 72
1! 1 1,
B AR A b £ F z der T2, (724

2 tr. direc.

where j3 is the component of j parallel to K and jtr. represents
the component of j in either of the transverse directions. The fourth
component of the current four vector, j4. is the charge density.

By the conservation of current j3 can be expressed in terms of ig
(or vice versa) as follows: From kpjp = 0 it follows that qj4- Kj;= 0

or

3= R4 (11-25)

Inserting II-25 into II-24 and combining terms we get
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2
A= etn| 555025 L - Z boo <, ]
44\ " TR T2 tr. .2 tr.
- B K g dires. B
Sl -
= 4"[';;2‘ + Z der. ET -‘:r.] (11-26)

2 tr, direc.

Now I/K2 represents a coulomb field in momentum space and j4 is
the charge density so the first term of II-26 represents an instan-
taneous coulomb interaction (since it is independeixt of w) while the
second term contains the delayed interaction through transverse waves.

In a medium we have that

. .
A= Sl (II-27)
where 'pv has been discussed in Section C, D, and E. To second
order v“v is given by
vpv z - % (8}w+ ppv). so that // becomes
4w !
A=- _1?5"(6*“’+ By e (11-28)

Carrying out the indicated summations implied in II-28 we have

(temporarily suppressing the factor = 4r/kz)

A~ 434 =3333 - Z Jer dtr. YIgPagly = 34P43i3
2 tr, direc.

t (] "
- 33P3gdy I3Pasls ¥ Z Ser.Ber. tedpe,  (11-29)
2 tr, direc.
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In arriving at II-29 we have made use of the fact that all off diagonal
matrix elementa of B are zero except ‘343 and 934 (= 543).
Consider the term of II-29 that depends on the transverse di-

rections; this is given by

4 '
:2' Z Jtr.jtr. = pt:'. o t2, )
2 tr. direc.

To get the contribution from all orders we note that since the trans-
verse part of P is diagonal that the transverse part of the inverse of
(6 = B) is just given by the reciprocal of {ts transverse diagonal ele~

ments. That is to all orders the transverse part of )4(14,') is given

wne=-K

by ; j'
247 = f—% z +tr. 1L or from II-22
k" 2 tr. direc. E¥e 5%
]
= & 7 jtr.jtr.
- 2 {n“’ /un
2 tr. direc. k2 (“_uz © VYn )
Py W W
s Y
n
]
& 4 jt:r. jtr.
al fnw /un
2 tr, direc. (kz + 2“22 Yn )
wp W W
By,
or since kz = wz - Kz
' '
Jo. 3
A , = 4w z _2_‘_".._‘21_'._ (11-30)

2 tr. direc.
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where
+k2 1% et fnwyn/w
Mt P TV ), T (i3l
n Yn

On comparing II-30 to the corresponding term of Il-26 we see that
the effect of the medium on the emission and absoprtion of transverse
polarized photons is contained in the function 7m. Note that n is indee
pendent of K.

Now we consider the scalar-longitudinal terms of A (Ac)‘

From II-29 these are
' ' ] 1) e
A= Sgis 333+ P addam IPasdsm 93P3adgt 3B asds {1-32)

To simplify this expression we note that since all currents involved
here are conserved (j, j. and the atomic electron currents) the
longitudinal components of currents can be related to the scalar come
ponent via II-25 (remember that 3 is the longitudinal direction,

direction of K and 4 is the scalar or time direction). Upon using

I-25, 11-32 becomes

A 31.1'{1-“’2 +8 (1-2"’2+“‘4)}
c Tlgds g raat T TA

a2 {1ra-2e,)
ol =2 ~20P4y
kZ 2

' k

‘ (I1-33)
K

To get the contribution to all orders we note that in every order we

can use the same trick to eliminate longitudinal currents in favor of
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scalar ones. With this fact it is easy to see that to all orders II-33

becomes

2 2 2.2
) ' X K 2
ﬂc"i‘z-’d‘z{";{?"«* (;z) (Bygq) *}
kK, 0 1
1+.K7p“

upon substituting for P 44 from II-22 and replacing the factor -4w/kz.

I-34 becomes:

A, = 14;{%'; j; (11-35)

2
where =1+ . p and is given explicitly in II-31., On comparin
2 P peri

II-35 to the corresponding term of II-26 we see again that the effect
of the medium on the propagation of scalar photons is contained in n.‘

On combining II-30 and II-35 we obtain the desired result:

E 1 ' 5‘ » 1 '

JyTuvdy = 4'[ Tzt L v, T 27 ] (11-36)
n 2 tr, direc. n

This is the amplitude to ﬁropagate any type of polarized photons through

the medium (scalar, longitudinal and transverse) for values of K

such that Kao << 1,

l°lThe elimination of longitudinal photons in favor of scalar ones is by
no means necessary. If we chose we could have done the contrary
that is, by the inverse of II-25 we replace j 's by j3's. If thisis

carried out the analogue of II-35 is j3-é%r-j; (the amplitude to propa=-
gate the longitudinally polarized photoné‘s,n
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F. Index of Refraction of a Medium

In order to make a connection of the photon propagator with an
index of refraction we consider Maxwells equations for a medium which
is characterized by a phenomenological index of refraction n (and
dieclectric function ¢ = nz). As is well known,Maxwells equations can

be written as

VA, - B -——z-ezA“" = 4wJ (12-37
and
2 41rJ4 &«
v A4 = - (I-37b)
In momentum space II-37a, and II-37b become
2 2.2
(K= wn )atr. = 4'jtr'
and .
gl 4
Kas=<dy
or
49ee,
S, T NT g | \ii»35m)
wn =K
and
‘h'a'j4
a, = (II-38b)
4 K
Now 2. and a 4 @re the potentials produced ina medium from the

current j. The coupling with another current j' is j'-a or

] 1 L
4‘{ e z tr. T2 7 -’t.]
K'e 2 tr, direc. ¥ wn K )

‘Note the gauge used for II-37 is V. A =0 which implies in general
that A3 = 0.
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Comparing II-39 to II-36 we see that the function n given by II-31
can be regarded as the dielectric function of the medium. Another
way of looking at the situation is to use the fact that at the location
of the pole of the propagator one obtains the relation between energy
and momentum (w, K) of the free waves. Now in a medium the phase
velocity of the waves is given by w/K =1/n where n is the index of
refraction, i.e., the amplitude for the propagation of a wave in a

~iut=Kx) | eloltenx) oo o o I1-36

medium is proportional to e
the pole of the transverse part of the propagator occurs at uzn-Kza 0

or («;z/K2 = 1/n; that is n can be interpreted as the square of the index
of refraction., On further examining II-36 we see that there is also

the possibility of another pole from the coulomb term;that is another
pole occurs when n = 0. * Since n is not a function of K, we see that
at the pole dw/dK = 0, {.e., the group velocity is identically zero.

That is the free waves due to the coulomb term does not represent a
propagating disturbance but a purely oscillating one. We will return

to quantitative nature of this pole later on.

We are not the first to give a full quantum theory of the index of
refraction. Tidman (1) has given a quantum theory of the index based
onanatomic model similar to the one used here. However the method
that he uses to obtain the index is quite different from ours. We ob-
tained the index from the photon propagator in a medium (at the pole).
Tidman considers only transverse waves and uses ordinary perturbation-

theory (as opposed to the Feynman diagram method) to calculate what

2

*There is also a pole at K" = 0,
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he calls the polarization energy of the medium (the self energy of the
system (medium plus radiation) due to the real photons). He then
malkes a canonical transformation of the radiation field variables.

The index is obtained by defining the parameter in this transformae
tion in such a way as to account for the polarization energy. The real
part of the index that he obtains {s the same as ours. The imaginary
part is different. However Tidman's imaginary part can be made
equal to ours if we retain the terms that he drops. That is, replace

w . by w

- L]
5 L& (iyn/Z) everywhere in Tidman's equation 5.7.

G. Discussion of the Index of Refraction

Let us return to II-31 for 7. We have

L

n=1+ w; z o (II-40)

n (mo T u)(w --2--"'0)

or since Y, << © o

n®lw y - (II-41)
n “no” o’ iYn no
We see from I1-40 that n (as well as wz'q - Kz) has poles in both
the lower and upper half w plane. That is our 7m is not causal. On
the other hand the index computed classically is causal. For example
if we treat the atomic election as bound to an origin by a damped hare
monic potential of characteristic frequencies w, and damping cone

stants y, the index would be
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f
n

2
'r]c=1+wp

s V]

Z_ Z-i &
W - w Y

which has poles only in the lower half plane. In our quantum treate-
ment a causal propagator does not appear. The propagator that we
obtain is similar to vacuura Feynman propagators (i.e., poles in
upper and lower w plane) where the mass of the particle is given
an infinitesimal negative imaginary paft. As long as we are dealing
with positive frequencies the predictione of causal prcpagators and
Feynman propagators are the same.

We note that because of the spherical symmetry of the atoms
(aftér orbital angular momentum states have been summed over) that
ﬁ33 = (wz/Kz)B44. That is, ptr. i, ® (uz/Kz)p“ etc. Here we have

calculated P and B 44 Separately and we see from II-22 that

tr. , tr.
indeed these results are attained.

In deriving the index wa have assumed that the density of the
medium is low enough eo that we may neglect any direct interaction
between the atoms. That is,we have assumed that the field that acts
on a particular atom is just the applied external photon field. Actually
the external field may induce a non~zero moment in the atoms; the
field produced by these atomic moments may be non-zero at the atomic
sites. The field acting on the atoms then is a sum of this induced field
and the applied external field. We expect that as the censity of the
medium increases the efféct o.f this induced field becomes increasingly

more important., This effect was first treated by Lorentz (e. g., see

the review article by W. Brown (6) )« As yet we have not been able
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to incorporate this effect within the framework of the present theory
with a quantum mechanical analysis. However, we believe that the
formulae that are later developed, giving the energy loss of fast
charged particles in terms of the index, are valid in dense media,
where the index that we have calculated is inéorrect. That is, in-

a dense medium, by using a more exact {ndex (e. g., computed clas-
sically or determined experimentally) in the energy loss expressions,

we believe that one obtains the correct result for the energy loss.

H. Czlculation of ﬁ}w in the Case of Large K

We now return to expression II-8 and consider the case of

large K (Kao >>1). In this region the atomic matrix elements ap

(see II-1l) are almost zero (eiK' X is rapidly oscillating) unless

|n> contains a compensating exponential. This corresponds to an

ionized atom. Since for K >> 'S.L implies that the momentum of the
o

atomic electron is much larger than the intrinsic momentum of the

2_ 1

= =)
(3
we can consider the initial state of the atomic electron to be free and

atomic electron in its ground state (which is of the order me

at rest. Thereifore, K‘:‘ (x4. x3) reduces to free particle propagator

in vacuum. It is easy to seo that equation I-5 reduces to

2
van - ——kT (2w) "6 "(k~k") E \{i(Yl_), Bi°+,.’7 - m Y\')“i
: i

+ terms with k = <k
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where u, is the ith electron spinor of momentum Py» Po= (m, 0,0,0),

and uu =1, We have

41’1’\. N

4.4 - 1 .
Fuv® ==z (29178 e {3 (y, mvv) e
+ terms with k= = k} (II-41)
‘ 4.4
= (2m) 76" (x-K"B,,

On averaging the initial spin state and summing over the spin states

of the intermediate state we get, from II-41 and II-42,

Sp [(g +mly (B +K+m)y ]
(F,* ¥ - m®

ﬁpva é:'?'ZE('Z)(Zm){

+ terms with k —~ -k}

+k p,, tkp (P,

2
2
- _:’g { PouPoy pzo op” Ev
k k +2p°- k

zPoupov' kppov' kVPOp M spv(po. k) }

+ > (11-43)
kK = Zpo- k
where
2 4pNe?
() -
P m
and
P * m&P 4

Explicitly the elements of p are

™

4mzu

"o

\ -2-) (II-44a)

L

ﬁ = = =
1 Faa™ Pys (k%+ 2muw)(k® = 2mw)
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2 4m2wz
P

X
Peg = 3 P33 =
) [#]

2
K .
— = (I1-44Db)
(k™+ me)(kz- 2muw) (k )

Pygy = By3 = ﬁ By4s 2ll others are zero. (I1-44c)

I. Current-Current Interaction in the Case of Large K

Now we are in a position to calculate II-l1 for the case of large

K. We have
A= j“'ij; (11-1)
where
4w -1
"pw 5 e -;2- [:(5--[3)’w ] (I1-4)

Carrying out the summation implied in Il-1 and using f as given in

II-44 we obtain, after going through the same procedure that led to

11-36, *
Sady i, 3
4’4 tr. “tr,
7 417[ K2(1+k2 B +2 tr. direc k™Q +ﬁtr tr )
;Ez 44 ° . . .
Ry 5o e
434 tr,"tr.
= 47w [ KZ + Z (TT-EZ) ] (11-45)
1 2 tr. direc. ¥ n
where 2 2
4m W
Nw, K) =1 + (I1-46)

(k%4 2ma) (k= 2muw)

In this case we see that 7 is a function of both w and K but nota

function of direction which is to be expected since we are dealing with

*Here only the elements of B are different but in both cases kpﬁpg 0.



%36

an isotropic medium. This is to be contrasted to the case Kao <<1

where 7 is a function of w only,

J. Real Processes in a Medium; Poles of the Photon Propagator

As is well known, recal processes correspond to poles in the for-
mulae for virtual processes. In this section we will examine the
photon propagator for its poles. \Poles arise from both the coulomb
term and the tz;ax\averae term. Firstlet us examine poles from the
coulomb term.

Poles will arise in the coulomb term at the zeros of 1. * For

the case of Ka  <<1 we have from II-31 that the poles are deter-

mined from

v, /)
1+ w —-——2-—-—2- = 0 (I1-47)
Yn

For the moment let us congider the case of only one excited state;

in this case II-47 becomes

2
W

_135)2 2
-w

=0 | (11-48)
("’1' 2

where we have approximated wy/u =] - iy/Zul in the numerator of

“The pole at K = 0 corresponds to the interaction of two charge
densities at very large (infinite) mutual separation. Therefore, in
general, n(w, K=0) gives the effective force between the two charges
(i. e., if we ware to go to the coordinate space representation of the
coulomb interaction and take the limit |x|== co the only component
of 7(w, K) that contributes is n(w, K = 0). In the following we will
be interested in the poles arising at n = 0. :
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II-47 by 1. The solution of II-48 is

wz= (wl-i;;j—)z"f'wlz)

o
2 2
for the case at hand @y <<w 80 we have (also y << ul).

2
g Futgl -3
or
(I1-49)

2
“Re * @ i
"’Ima'%

We sce that the medium will oscillate at a frequency given by Wpe®
“’1[1 + (wlz) /‘Zwi,')] - Therefore, there should be an absorption at wp,
in say the energy loss of a fast charged particle passing through a
thin film of this hypothetical medium of one state atomsa. Note that
w does not depend on K so the group velocity dw/dK = 0. Hence this
mode cor’responds to a pure oscillatory mode. The imaginaiy part of
w, =y/2, tells us that the life time of this mode is 1/y. This is
reasonable since the only decay mechanism in our theory is the line
breadth of the excited states. That is, after time 1/y essentially all
the atoms will be in the ground state,

For the case of many excited states we proceed as follows.

Frorm the case of one excited state we saw that the pole is essentially

“For N~10%° per em? [ ~ 10°3. Note, for solids, is of
the Ryd., and in some cadcs larger than the Ryd. In these cases
the pole is dominated by the up term (the plasmon).
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at the frequency of the excited state. Now for frequencies near W,
one term in the sum in II-47 will dominate. That is, for frequencies

near say . II-47 becomes

2
1 +;’:—~"u tr =0 (11-50)
Yn
where . wz ;
r, = ‘ .21"__‘2.2 (the prime means to omit the term
W ew for m = n)
m Yoo
2 n-l
~ @ 2 fm
= e -% £m+ Up
“ m= ‘ m=n+l "y
<1

Calling 1 +r =R the solution of IlI-50 is

o = w;n * (;’i)a{; (1-51)
Note that since w; << w‘zl'n' Rn can be taken to be real. That is the
pole frequencies are at
4 wz
“ne"‘“n*(f;) Zg-n (a=1,2,3,...)
and (II-52)

whn"‘o-zg (331.2.3,o.0)

So, for many excited states we get a pole for each state tae location
of which' is slightly modified, as seen from II-52, due to the effects

of the non-resonant gtates. So much for the case of small K. .
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For the case of large K we have, from II-46, that the poles

0
are determined from

4 2 2
m-w
1+ ) xZ) =0
(k4 2mw)(k”“ = 2muw)
or
4mzw2
1+ = 0 (I1-53)

(uz'l- 2mw = KZ)(uzo 2Zmw = Kz)

We wish solutions of II-53 for Kao >> 1 or K> mez. We remark
that if we had considered the hypothetical problem of photon propaga-
tion through a medium consisting of free electrons initially at reatml
(with a poaitivé smeared out background charge to give charge neu-
trality) we would have arrived at II-53 as the determining equation
for the dispersion formula for all values of K. So let us solve II-53
for all K. For small values of K, in particular Kz << u;. we can

compare our results to the results of Bohm and Pines (3) who have

"We have omitted the ie¢ from the Feynman propagators. In the fol-
lowing the poles will be on the real axis. That is, there will be no
damping of the waves. The delta functions arising from the ie's
imply an infinitely narrow width to the excitations (i. e., an infinitely
long life time). This is to be expecied here since we have assumed
a collisionless medium. That is, once we excite an excitation (col=-
lective or single particle), there is no mechanism for the excitation
to transfer energy into other modes. For example, if a single
electron, at rest, p*c.:s up energy w and momentum K from the
photon field ((w+m) = K4+m¥%), it will always have energy (m+tw)
and momentum K since it does not collide with any other electrons
of the medium. That is, it will always remain a free particle. These
considerations are correct only at zero temperature. At finite tem-
peraturesbecause of the continuous distribution of P, the delta
functions will give a finite imaginary part., Damping at finite tem-
peratures is discussed in Chapter IV,

**Hypothctical because the Pauli exclusion principle will not allow
more than one electron in a quantum state, which implies we cannot
have a system of electrons all at rest.
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found the dispersion formula for longitudinal waves in an electron
gas in the non-relativistic approximation.
First we note that II-53 is even in w. So, in the following,
we will consider solutions only for positive w. In the none-relativistic

approximation, w<<m, II-53 becomes

4mzwz
1 - gyl = 0
4dm w = K
or
m2
1 - + = 0 (u-“)
wZ. K
4m
with a solution,
4
oF el By (1-55)
P 4m

For Kz << mup we get

4

wea iy K +..) (11-56)
P 8m w
P
Equations [I-54 and lI-56 are the Bohme-Pines results for 15: =0

(i;i are the momenta of the electrons); see equations 57 and 67 of
reference 3, The restriction '131 = 0 is not a serious limitation to us.
For if we had not made the assumption of -i;t = 0, we would have had,
instead of II-43, that

2 N :
b= = 23 0, (E)] 2PiuPiv* 1, Pev ¥ Ky Py By, (Pyr )
B Nk = k% +2p - k

i=1l

$terms with Xk » k } " (u-43")
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leading to, instead of II-46,
2
k
n=1+ p
2 Pas

2
v, K
] 4Ef[1 -.(—R—i ) ](m/Ei)
(kz+2Eiw)(k2-ZEiu)+8Etw($‘- K) - 4(F;- K)?

.
ZhsEro
N

2

%y ‘-1‘(:’%—1{‘)]““@1’
i(m-v K).(ZE')

leading to a dispersion relation (n = 0)

Bl-

(I1-57)

(11-58a)

g_z 1 (‘—R— ) -l(m/Ei)

(@ v+ K) '(T‘)

-

o [1- C%—Lf ](m/E

or

(II-58b)

Equation II-58b is the relativistic analogue of the Bohm~Pines dis-
persion relation (see equation 57 of reference 3). Now, for suffi-

ciently small K, we may expand the denominator of II-58b in powers

;i. : E k2 ¢
and (m— , and get a solution for w(K). Doing this,

we obtain

2 — -— — — —

LW v,* K v, K v,*K 2 .
22523 [ O e e 5 o5 o) )
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2
v

In the non-relativistic approximation (Ei = m(l +Ti). vi <<1,

w << m) we obtain

z~3§ vy K Ky C ek 2 :’.1'?2 1.2
""‘Nz{“?‘( wp)+3( wp) +( Zmup)'( 23 .)"2"’:}

(where we have set w = in second, third, and fourth terms).
“p

—

Assuming an igotropic distribution of vy we get, after averaging .

over directions (cos© = 0, cosze = %- ). that

2
2 4 2 w
2_ 2 K p K 5 2 K
w =wp{1 + -3 <vT> +——-—2-—2---6<V >-—2-+—22-} (I1-58c¢c)
up 4m”w 4m
where
2 1 2
Sy FIZ Vi

Now, if we disregard the last three terms of II-58c for the moment,
we have the dispersion formula given by Bohm and Pines (see equation
66 of reference 3). Clemmow and Wilson (7) have considered a rela-
tivistic electron gas by using the relativistic Boltzmann equation.
They have worked out the lowest order corrections to the Bohm«-Pines

formula. They get

2
uz=u§{1+£:-z-<v
P

2

2 5 ’,
> -z(V P}

(see equation 39 of reference 7).
‘ 2 ,
> +2p ,) (i.e., an effective plasma

4m

If we define 3; = ulz)(l - -§< vz

frequency), we get
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L& 4 2
wz=;; {1+-I—\,‘——<v2>+ K @ K }.

w& 4m2u2 2m
P P

which, to the same approximation, is

2 4 2
-2 K 2 K
up 4m up 2m

Now if <v2> >> (wx/m)z the last term in 1I-58e is negligible com-

pared to the second term. If we assume a Maxwellian distribution for

2 3kT 5
m

<v™> (< vz> = (where & = Boltzmann's constant = 8, 62 x 10°

e. V./°K) ), we get <ve> u %%:-I-‘ >> (up/m)z, or KT > (wp/m)zm/3.

For N~10%° we have xT >>10~8

2 13

e.V. or T> IQ"'l degrees Kelvin

(<v®> >> 107%7). So, for just about all cases of interest, the fourth

term of II-58e is small. o In fact, Bohm and Pines point out that the

third term is small compared to the second term. Note that at K= 0,

2

we get W = ;P = w;(l - -2 <vz>) which is a shift in the plasma fre-

7

quenty. This shift at say room temperature is -2-<vz> 21077, i.e.

very small. We note that we have not included the effects of higher
ordér proper diagrams and that therefore the correction terms are
only of academic interest. We have made no attempt to estimate these
higher order termas.

xe 15; for Maxwell-Boltzman statistics

*For N~1027-10%°, (b /m)®~10"

to apply, T 5 100° K; for T = 100° K, <v®> ~10"Y; for T = 1500° K,
<vz> s 10-7. So we can take 32 = wz(l - §<vz>). Below 100 K
Fermi statistics applies, and, Ii)n :ml: case, for N~ 1019, <vz>""10°8

80 (m“/m)2 is still negligible. Consider some real plasmas: Solar
corona N=~ 106. (w /m)2~10'27. 'I“"106. <vz>"'10-3; thermo=

P 6 R QN NS |
nuclear plasma N~10", (up/m) 107°°, T~10°, <v 1077,
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Returning now to the case at hand, large K and P‘ = 0, we now
continue the discussion of the solutions of II-53. From I[I-55 we get

that for Kz >> mw ,

P
KZ Zmzmz
uam(1+——x{7&+.-o) (II-59)

II-59 {is the dispersion formula for non-relativistic values of K
(K << m). For larger values of w we get from II-53 on dropping the

up term, that

Al JP R

(w2 m)
or
(w = m)z = Kz+ mz

o= ma (K2+m2)/2 (11-60)

It is interesting to note that a new solution exists for small K; namely
w= 2m(l + -—IS;- )« For K=0 this gives w = 2m. This root is connected
with the pheix?menon of pair production. Namely, a virtual longitudi-
nal photon ig able to make a pair, electron-positron, if it has a fre-

quency at least equal to 2m. The other positive root of II-60, which

is the extensiox} of II-59 for relativistic values of K, {s

on = m + (K2 +md/2 | (11-61)
which, for K >> m, is

w=Kem

Before going on to the transverse case, we include a brief dis-

cussion on the order of magnitude of the various quantities involved.
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For our case of the atomic system, the quantities which characterize
the atoms are the Rydberg (Ryd) and the Bohr radius ag. The medium

is characterized by the plasma frequency wor First of all,

2
(;}-,Rd) = 16w Nag

g 2¢N x 10724

So, for N << 1024. u; << (Ryd)Z. Thie 18 our case, e.g., most gases

at S.T.P. For metals “y can be of the order of a Rydberg. Second,
the case of large K, Ka_>>1 implies K>>1/a = me’. For K_s
tne2 we see that in the case considered here, u: << K: .. Summing
up, semall K's are of the order of the Rydberg and large K's are of
the order of a few percent of the electron mass.

In summary then, the dispersion formula for the case of our
atomic system for longitudinal photons consists of two branches: one
branch starts out, for Kao <<1, as W, + (u;/an). a8 Qive »

As K increases these lines gradually merge into KZ/Zm which
asymptotically tends to K e« m for K >> m. The other branch starts

2

out at 2m as 2m + ‘IZ{r—n tending to K+m for K>> m. These dis-

persion curves are plotted in figure 2.

* 20, 3
Numerically for N~ 10“" /cm”, w, ~ 107
1 <4

2 e.V.; Ryd®13.7 e. V.3

o et 1
Ko 5 x 10"e.V. In th_e usual cgs units, K m . Here,
1
however, since we are using natural units (h=c=1), m is
equivalent to energy.
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>

v, 1
2V >k
2

ko" me

Figure 2. Longitudinal dispersion curves for the atomic system
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Now we go on to discuss the poles arising in the transverse

term. Poles arise from the transverse term when w n - Kz

Again we will discuss separately the cases of large and small K.

= 0,

First consider the case of small K. From II-3]1 we have

£
w"(l-l-wzz —'Z-——n—z-) OKZ.O*
pn W - W

Yn

(I1-62)

Again we first consider only one excited state in order to get an idea

of what is going on.

2
u2(1+-7—u2-5)-x"'-o'
wy.u

- -i
where oy = o —}.

In this case II-62 becomes

Breaking this up into real and imaginary parts yields

wZ [ (mZ

-2
-@) -t
w2(1 . 1: ol Y“’l]

where
2
T X
wZ
To simplify writing, let x = = , Q=
W

P

el

II-63 becomes

(x - 2) =il
x\l = Ity ) = =0
k (x=- Q"+ I

Again we have approximated « /un by 1.
n

=

2
RN P )‘K sk
w-u)-ryux

° r__Y_‘;l_.‘n
w

P

d y=

(I1-63)

(I11-64)
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For gases, 2~ 1% « 104, taking y ~ 10'6 @ and W~ Ryd.,
2 -3

I'~10"° -10"°. The real part of II-63 is,
(x - )
x(1 - =y (II-65)
( o)+ T2 ) Re

Equation II-65 is plotted in figure 3a. We see that, near the origin,

T x withaslope gF = 1- wn S1. At x= 0, y= ; while

YRe qYIie
at x= Q= T, YRe = (1= -]-."—)ﬂ e 106 (resonance); as x - o, YRe ™~ *-

The imaginary part of II-63 is

x
=y (I1-66)
(x = ﬂ)2+ I‘Z Im

Equation II-66 is plotted in figure 3b. We see that Yim is non-zero
~ - ind 7
only for x~ 2; for x=Q, y; =% ~10% - 10",

The alteration of the results for one excited state to the case of
many excited states is essentially that, instead of having one resonance
at x = wf/w: , there will be many resonances located at ulz/u;. wg/w:.
ees o The effect of the non-resonant states T, (see II-50) will in
general be very small compared to the resonant term. Specifically
at x = Qn. YRe = Qn (1 +'rn). r, << 1, instead of YRe = % while at
x = Qnt I‘n. r can be ignored compared with Qn/ I‘n. The imagi-
nary part for many states gives a series of spikes at x = Qn.' n=
1. 2. ee 0 o

For the atomic system, we are interested in values of K up to

the order of Ko = 1/a° = mez - 103 Ryd. This is far beyond the
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'/Resonance
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el v i Y $( /wp)
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y = (k,/w)
Figure 3a. Transverse dispersion curve for the atomic system;
real part
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Figure 3b. Transverse dispersion curve for the atomic system;
imaginary part



resonance region (see figure 3a).

Now we go to the region of large K (Ka° >>1). From II-45 we

have
% 4m2w‘2 2
W21+ Ry ) eK2=0
(k"+ 2muw)(k"~ 2mw)
or

k% - amZa2( - u;) =0 (11-67)

Again, we will find solutions of ‘11-67 for all K just as was done in
the longitudinal case. For our atomic system we want the solution
for K>> K, = mez.

To solve II-67 we first try to find solutions for k2 >> w;z

1I-67 becomes

k% - 4m%u?k® = 0
or

k% = & 2mw
and

x% =0

w
For 2mw to be much greater than u; implies that w>> up( -l%)"

-7

10 wp (for gases at S. T. P.). So for w >> 10'7 "’p’ the solutions

of kz = & 2muw are
R (mz+xz)x/z‘

the two posgitive solutions are
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w = m + (rnz+ KZ)I/Z

KZ

aZm-ﬁ—z-E- for (K << m)
(I1-68a)

=K+m for (K >> m)

and
w, = -m + (mz+ KZ)I/Z
KZ

o - for (K<< m)
(I1-68b)

= Ke-m for (K>> m)

Again we see from w thatat K=0, w=2m, {.e., a transverse
photon is able to make an electron position pair if its frequency is at
least 2m. Now, Wy = Kz/Zm +... is a solution as long as

7 2 2

w>> wp(up/m) =10" @y which implies that K >> W So the con-

ditions on w, are

for (up << K<< m).

g8

)

N

2

Now, the solution k” = 0 certainly does not satisfy k™ << u:. How-

ever, to find the third solution try kz = §, where &6~ u;. We get,
from II-67, that 63 = 4mzw2(6 - u;). which has the approximate solu-

tion &= uﬁ for w>> wp(wp/m) = 10-7(0?. We have kz = uxz, or

W = K* 4 u; ' (11- 69)

For K=0, w=o, (> 10°7 ©) 80 I-69 is valid for all K. II-69

is recognized as the dispersion formula for transverse waves in a

plasma fox; f;i =2 0. (8). For K> up. we have 02 = Kz. wﬁich is



B

the dispersion formula for freec light. Now we fix up w,y
"For K << Wy k% w wz. II-67 becomes

for K<< w .
P

' u6 - 4m2u6(uz- w;) =0

with solutions

and

o? = em)>

W= W, is recognized as the limiting form of II-69 for K% << w:; H

w=2m 1is recognized as W for K=0, Therefore, w=0 is the
limiting form of w, for small K. The three solutions are plotted
in figure 4. Again we state that the portion of the K axis that we
are interested in is for K >> mez.

We remark that the assumption f’.‘ = 0 is not a serious limi-
tation. We could, just as we did in the coulomb case, rederive

everything with 3‘ # 0, From II-43' we find that the transverse

dielectric function (1'1tr ) is

2
N, '1+;'Z‘3tr..tr. 5 - =2
2 G-==) - [ (B) | 55
.1-:’222 ’E'.‘;{ =) - v ) 22"’ }(n-m)

Nw

i 2
@ smizem ) = L)
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2m

V’L

11/_/\\, 1 > K

Figure 4. Transverse dispersion curves for the electron gas
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We note that for P, # 0, the transverse and coulomb dielectric funce

i
tion are not equal. From II-70 we find, in the non-relativistic ap-

proximation, that the correction to the dispersion formula w?= Kz*w;,

for small K, is
4

4 2 2
2, =2
w?s K to, [1+—15z:2- +—lf_-2- <vz>-—15-2 ] (IX-71)
4dm w 3w 2m
P P
where wz
'u'iznuz [1-%<vz>+ ]
P P 4m

Except for II-71 we note that, in both the longitudinal and
transverse cases, the poles where "’p (collective term) can be neg-
lected are identical (compare II-59 - II-6]1 with II-68a,b). These
poles correspond to single particle excitations by longitudinal and
transverse photons respectively; they should be equal, since a
particle which is initially at rest and picks up energy w and momen-
tum K from either a longitudinal or a transverse photon must satisfy
(w + m)z = Kz+ mz. which is just the determining relation for these
poles.

II-71 is the dispersion formula for light propagating through the
medium, the wp terms being the collective effect of the medium on

this propagation, and the K dependent terms the single particle

effects. For wp =0 we get w=K, {.e., free light. For f’:# 0

*The gsecond and fourth terms in tge braces are, for small K, a
higher order correction to the term and do not have anything to
do with the miotion of the electrons. We have {ncluded them here
for completeness. '
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we have seen that ey # M This is to be expected. For, con-

ccul,.
sider a photon in the lab system [described by a vector potential

ap = constant e eik'x (e is a unit vector)] . Now, in the rest frame

of an electron a . & along. lon

1}
- (or, equivalently E, %E

g ), and
hence the recoil of the electron to a transverse photon is different from
that to a longitudinal (or coulomb) photon (i. e., the transverse and
coulomb index are not equal). Finally we note that, when K = 0, the
results for the longitudinal and transverse cagses are identical. This

is to be expected since when K = 0 (no direction is specified), one

cannot tell the difference between longitudinal and transverse oscil-

lations,
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II. ENERGY LOSS OF RELATIVISTIC CHARGED PARTICLES
IN A MEDIUM

A. Relation to Loss

Up until now we have been considering only the propagation of
photons through matter. That is, we have diacussed only the inter=
action of the electromagnetic field with the medium. Now we con-
sider the interaction of a charged particle, as opposed to the atomic
electrons, with the medium and the electromagnetic field, Specifi=
cally we will be interested in the energy loss of a relativistic charged
particle of mass M passing through the medium. In order to get the
energy loss per unit path length, -g;‘E-: » we will.first calculate the
probability per second that the incident charged particle, of energy
E (momentum (Ez- Mz)l/z). makes a transition to a state of energy
(E - @) in range dw (momentum (E-w)z- Mz)l/ 2), that is, the parti-
cle loses energy w. Calling this quantity drw"‘w'!'du the energy
loss per unit path length %—E is given by |
2L « Sm - dr’

dx 0 W widw

<ic

(<) ar .
=3"0 8 (et obde )du | (I1-1)

where v is the speed of the incident particle, the integral in III-l
extends only over positive frequencies since the particle can loose
only positive energy (medium absorbs only positive frequencies). So

the problem is to calculate the decay rate for a relativistic charged
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particle. In order to do so we proceed as follows: Consider the self
energy of a particle in the medium, that i{s,the emission of a virtual
photon by the particle with the particle subsequently reabsorbing the
photon. In a medium the photon has an amplitude to interact with the
atoms of the medium. From time dependent perturbation theory it is
known that the only effect the above process has on the wave function
representing the particle is to cause a change in its phase proportional
to the time interval T over which the perturbation is applied. The

resulting wave function is proportional to

c-iEte-iAEt'

where AE is the energy shift due to the virtual photons. In general‘
AE may have a real and an imaginary part. The real part represents
the correction to the energy eigenvalue due to the emission and re=-
absorption of photons (i. e., the real part represents the change in
mass of the particle due to virtual photons). The imaginary part of
the self energy represents the loss in amplitude required by the fact
that the probability that the particle remains in a state of energy E
(momentum P = (Ez- Mz)l/z) decreages with time. That is, the
imaginary part of AE (Im AE) is minus one-half the total decay

ratec out of the initial state. This can be seen as follows: when the

tctal decay rate is I‘T (i. e., probability of decay proportional to

e T)\, the amplitude of remaining in the original state contains a

#In vacuum the imaginary part of AE {s zero in accordance with
the fact that a free particle in vacuum cannot emit & photoa.
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» and the time dependent wave function has a factor

Tt ~i(E il )t *
e T/2 e ift =e T/2 . Thus = I"T/Z is the imaginary part

factor e

of the energy. Thus the ultimate problem is to compute the self energy
of a particle in a medium and then to take its imaginary part. This
method of computing decay rates has for example been used by

DuBois (9) to calculate plasmon damping in an electron gas.

B. Self Energy and Decay Rate of a Particle in a Medium

In order to calculate the self energy we will again use perture
bation theory via Feynman diagrams. Congider the diagrams in
figure 5. Diagrams a-d..., represent the exchange of one virtual
photon and its interaction with the medium. Diagrams e-f... repre-
sent the exchange of two or more photons. Diagram a represents
the sum of all one photon exchahge diagrams. Diagram P represents
the sum of all two photon exchange diagrams. The effect of the medium
is that the photon propagator is modified. Physically the particle
interacts with the bare electromagnetic field (coupling ~ ey“) emitting
a photon; the photon propagates through the medium being absorbed
and re-emitted by atoms of the medium (propagator 'pv)‘ finally the
particle interacts with the bare electromagnetic field (coupling ~ ey,)
absorbing the photon. Here we _wﬂl neglect two, three, etc. photon

exchange processes since they ars certainly smaller than a one photon

TalHere (_C is the total real part of the energy (i.e., é_ includes the
effect of virtual photons etc.)
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Figure 5. Diagram illustrating the self energy of a particle
in a medium
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exchange process because of the weak coupling constant eZ. It should

be noted that the "bubbles" in figure 5 represent the propagation of

atoms in excited states and not propagation of electron-position pairs.
We now write down the amplitude that corresponds to figure 6.

Cailing this amplitude M » we have
M =12 Lk - 1
12 g
= je ;—Z:)j p (YV m YP) Up'p.v (III 2)

where U ™ the free particle spinor of four momentum p (p = (E, P))
normalized to 'ﬁpU = 2m

v‘w = photon propagator in a medium which is given in II-4
and |

p = particle four momentum which here is taken as relativistic.

With the normalization used here the relation between /Ml and AE is

given by

AE = -/2"? (I1-3)

We are interested in I"T= -2 Im & which from IIl-2 and III-3 is

L. = '«fiReS‘ a*ie T ( ] ) U (111-4)
v E m: P W ERM Y Tpiuv

where Re denotes real part and 'd‘?k = dk4d3l—{.. The limits on the
integral are from - to +®. Now if in [II-4 we perform the inte-
gration over K we are left with an integral to do over k,. Call the

integrand of this integral F(k,). Then
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Figure 6. Diagram used to calculate the self energy of a
particle in a medium
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co
rT =S F(k4) dk4
-0

(o]
o S‘O [F(k4) + F("' 4)] dk4 (nl's)

where in III-5 we have expressed I".r as an integral over positive

values of the fourth component of k. We now can associate the inte-

ar L
w= w+dw
grand of III-5 as being the differential decay rate e
That is
& = Flo) + F(-w) (11-6)
where
e IS.ZFE e y SR Yy m Y UpTy y=1]
We write F(w) as follows
Flw) = -®_ e gd3x X w (1I1-8)
(2')4 E By By
whére
1
X o™ Up (YV my“) Up o (IX=-9)

Next we carry out the implied summations in III-9. To second order

‘ll "-—-z(& pv)-

Now proceeding in a manner that {s exactly the same as the one that

led from II-28 to II-36, we find that to all orders

“Henceforth we call the integration variable in III-5 w. Also we drop
the sublcript w—~whdwon dI'.
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4 X

- tr. tr.
f= X}w “p.v = 41:{—-2— + Z T_LZ_.

wne-K

2 tr. direc.

where

kz

n=1+ g
;3‘44

(I11-10)

(III-11)

and 644 is given in II-22 for Kao <<1 and in II-44 for Kao >> 1.

In arriving at III-10 we have, in dealing with the scalar longitudinal

terms, replaced y, by (w/K)y, etc. (4). Now
3 %

which we write as

2
-e

F(w) -m Re (11 +Iz)

where

and

(I1-12)

(II1-13)

(III-14)

For fl we will use the expression for 7m {n the range Ka°'<< 1 and

for fz the expression for w in the range Kzo >> 1. That is, \tp ‘1
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we use 644 as given in II-22, and in fz we use 544 as given in
1I-44. Strictly speaking, II-22 and II-44 should not be used near
Ko’ However, as is usually the case, after performing the integrals
the dependence on K in I1 and I, is proportional to In (Ko) and
In (-I%-) respectively. .The final answer (~ Il +Iz) is then independent
o
of Ko' It is convenient to rewrite I1 as
3= 3=,
I1 = d Kfl - dK ‘l (II1-15)
all K K>K°

III-12 becomes

Flw) = _-_e;_ Re{ S‘ K, + S' (L, fl)} (II1-16)

(2%)"E all K K> K,
= FR(w) + FS (w) (I11-17)
where
F, = -e? R aKs
. - g i
(2m)"E all K
and } (II1-18)
2
_ =@ 320 o
Fs-m Re S‘ dK(fz fl)
K>K,_

To proceed further we need an explicit form for va. XPV is given
in III-9. Rationalizing the denominator in IlI-9 and averaging over
the initial spins and summing over the final spins of the particle we

get

1 | 1
X“vﬂ m— ('z) SP{(# * M)YV(I‘ - “ ¥ M)Yp}

z 2 .
= - = + . m-l
k“=2p- k {zp“pv kl‘p\' kppv 6'“,(? k)} ( 9)
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From III-19 we find that

2 2
X44=—z—-——-- {ZE - ZEQ"'p'k}

k"= 2p - k
. .2.____4’32 {1 .- .__i_i-?. K (I11-20a)
k"= 2p- k ZE 2E
and
2 2
X e { 2P® - p. k}
tr.,tr. 2 2p* k tr.
4 { 2 Ew - Fo K }
= e P’ - S —— , (III-20Db)
k - zp . k tr.
where Ptr is a component of P transverse to K. Now in all of

the cases considered here 7 1is independent of direction so upon sub-

stituting III-20a and III-20b into III-10 we find that:

fe . l6%w E2(1 - w/2E - B. K/2E%)
k- 2p . k K%n
& P -zEw‘l’Pz-K } (II1-21)
wn=-K
where
pf = Z Ptzr. = Pz(l - 'coaz 0);

2 tr., direc.

© is the #ngle between P and K.

Equation III-21 becc.ames:'



5 ,2“_’- - 2'_?_ vz(l - cosze) - % +—E.—2Ii- (I11-22)
16wE - 2E E
{= 5 2 + 2 2
k°= 2pek K“n wn - K

In the next two sections we evaluate the integrals FR and FS

respectively.

C. On the Evaluation of the Integral FR(w)

From III-22 and III-18 we have that

19 . P-K
. -e2E S‘ 3= 1 ZE " T ,p2
= Re d"K
R .3 ké-2p. k K
all K P W1
2 2 P.E °*
vl - cos“0)- §+-——2—
& - E (1-23)
wn =K :
where W, is given in II-3l. Now
ez‘?
Fp= -5 Re (C+T) (111-24)
v
where
C=C, +C, +C, (I11-25)
c, = S a5 . 1 5 (I11-26a)
(k"= 2p « K™, .
w 3> 1
CZ s - TE. S‘d K (m-26b)

(k%= 2p+ WK®n

®Henceforth we omit the "all K" on the K integral,
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1 3= Pe K
C. = - 5 a’K 1-26
37 gt (k- 2p - WKom, .
and
TaT + T2‘ + T, ‘ (II1-27)
where
2
zS‘ 3= (1 - cos“Q)
T, =v d"K - (II1-28a)
1 (k%< 2p + W(wPn - K2)
T, = - ES‘ 3K — . — (II1-28b)
(k"= 2p+ K)(w™n = K7)
1 S‘ 3= P. K
T, = a’K (I11-28¢)
3" g (- 2p - 1) (wn, = K?)

These integrals are evaluated in Appendix B. The results are: .

-%4-(1'- a)l/z

C,=aln (1 — ) (I1I-29a)

C,=- f’ﬁ c, ; (III-29b)

le- % + (1-3.)1/z
)] (II1-29¢)

C, =-a(vZ/2) [(1-9.)1/ 2+ S0 (—= e

Rt 2 - t-erd)/?
PRyt (-S04 £ /2 5-50 1 (<2 ——)
“(w=87")
2 - 1-24+0-a)1/2
- (—E; )] (I1-294)

*In the remainder of this section we drop the subscript 1 on 7.
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1-%+(1-e +5)1/2
-(£- 679

T, = o(gn)a ( ) (II1-29e) -

1 --§+u-¢+a>‘/2
-(§-87%

T, = a(-nv?) [(1 -e+5)/2. 51/2+§ In ( )] (I11-299)

where
2
a = ix“/Pnq

a = 2w/Pv(l = w/2E)

(II1-30)
6 = (w?/P)q

ce=a+d

It is to be noted that we want the real part of the resulting expression.
Next we substitute the expression III-30 into III-28 and III-29,/
We then expand the resulting expressions as a power series in w/E.
Now, as we shall see, the values of w that contribute to the decay
rate from the FR terms are of the order of the Rydberg. So we
only need the lowest order terms in the resulting expansion of III-28
and III-29 as a series in w/E. For, taking the incident particle to
have a mass the order of the proton mass and taking its energy to be
of-the order ‘of its rest mass then w/E~ 10-7:which is very small,
So, excluding the unlikely possibility of a very large coefficient of

w/E etc. .* we drop these higher order terms. We have

2 ) 2
. e E ; e I .
Fp= -—Tr Re(C +7T) = -—3-17 Re (cl+ C,+ Cy+ T + T+ Ty) =

*This has been verified by direct calculation of the coefficient of the
w/E term.
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-.---E_-;Re[(%){(vzn-l)ln(w ‘.jz 1/2 )
m-(;p

o o2 1/z 2Pl 2 =

In obtaining III-31, we have dropped terms that do not contribute a
real part. We wish the contribution to the decay rate that arises

from Fp. Calling this contribution (dI‘/du)R. we have from III-6

(350 = Frlo) + Fpl-u)

Noting that m is an even function of w, we obtain

( r) =--—R (£)1 v?nen (2 (-——'—2-2-—:71-
do [ N {" = PR )

»

+1a 2‘712 ))'vz} ]

P
= -- [—){(vn-l)(ln(%%%f—“—)- -VZ)}]
= - -E-é [(Im n ){1 Eg%%l vz} - Re(vz-n'l)(tr-e)]
(I1-32)

where

1= nvzl = +[(1-v Re 1) 2 (v Im ﬂ)z‘ 1/2 (I11-33)
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0 = tant (-2plm1 )

l=-v Ren
2
2R for lev Ren>0
' (II1-34)
=@ for loszo__g <0
and
-1 vzlm
¢ = tan (II1-35)
l-v" Ren

The contribution to the energy loss from (dI /dm)R is obtained
by multiplying equation III-32 by w/v and integrating over positive
frequencies. Calling this contribution (dE /dx)R. we have

; 2 © N 2
@); 2] v e (82) 7]

: Re (v2=n"})(x-0) (111-36)

We leave III-36 as it stands for the moment, going on in
Section D to evaluate the contribution to the decay rate that arises
from FS. In Section E we will combine the results of this section

and Section D to get the complete energy loss formula,

D. On the Evaluation of the Integral Fglw

From III-18 we have
5 -

F 8 - 2 R d3K f .f
R KS:K 8
o



7] =

where

fl = vawlpv

and _ (I11-37)

f.=X =w

2 BV 2pv

In the following a quantity with the subscript 1 or 2 affixed to it means
that we are to use the expressions for the photon propagator in the
regions Ka 5 5% 1 and Kao >>1 respectively. In III-22 we have given
an explicit form for f.‘ We have used this explicit form in the last
section to calculate Fpe This explicit form (for fl) was useful be~
cause 7 does not depend on K. That is, on performing the K inte~
gration, N does not depend on the integration variables and so can

be treated as a constant. The K integration was done by the Feynman
parameterization technique. This technique is useful in calculating

FR since the integration variables go over all K space. Now, FS
has a restriction on the range of integration; namely, K> K 5 Also,
FS contains 1, (through the ‘2 term), which is a function of both
w and K (see 1l1-46) contrasted to Ny which is a function of w
only. In fact, M, is a rather complicated function of w and K
which makes the explicit form for fz quite unmanageable. So, in
order to perform the int'egration of the fz term, we proceed as fol-

lows: We note that since K> K > the correction to the photon propa=-

gator is very small so we will use the second order expansion of fz.

*By explicit form we mean an explicit form for the inverse of the
matrix (6 - B).
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Specifically, we shall use the following expressaion for fz in the cale-

culation of Fs:

f,=X

2 BV prv

4 |
= - ;.2. xpv(spv+ pr.v) (111-38)

where, from II-43,

ZPOpPov+kppov+ kvpo,.;' 6p.v(po° k)
kz+ 2p°- k +1ie¢

+ termes k —~ -k}

2
W
(I11-39)
where pop. = mﬁpv.
We note that what we are really after is the contribution to the

decay rate that comes from ‘Fg. Calling this contribution I's. we

have from IlI-6 that

o0
dr
Ig= go (G5! dw

o
= (Tirge +rg0)

0
m .
=S Fs(w) dw (I11-40)
-
Upon substituting III-38 and III-39 into III-40 wia II1-37 we find
2
(suppressing the factor = _eﬁ_ Re) that
(2w) 'E
I‘s = (1) +(2) ' , (I1I1-41)

where
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o 3 4wd =
(1) = S‘o dm[ g d" K (- —;ZE-— xpv' .lwxw> +terms with w— -u]
K >K°

(I11-42)

and )
Sy 3¢| 4w 4
(2) = -S‘ dw d°K| =5 szvx’w + terms with 0= = w | (III-43)
Y k
K>K

We first consider (1). Now

-i‘—z-l‘-8 i o 2 [ x, e x E X
- X - kZ 44% 33 ° tr. ,tr.
2 tr., direc.,
X X
44 § tr. , tr,
= -—Z—K + —'—z—'—k (m'44)

2 tr. direc.

2
where we have used X33 - 9122 X‘M in obtaining IIl-44 and X is

given in III-20. " Also le.vXPv = fl'
n=n. Substituting in III-42, we find:

% 3= %44 1
(1) = 41:S dw d" K g (1 o =)
. {Kgl{ K k!
(<]

and is given in III-22 with

1 1
+ Z xtro ’ tl’. [ Z-KZ - “2 - Kz ]
2 tr. direc. - W1

+ terms with w = « w} (I11-45)

First we consider the transverse terms in (1) We note that
for |w| >> Order Ryd., m;~ 1 - (up/u)zu l. So for |w| >> Order Ryd.
the two terms in parenthesis cancel. Also, for |w| < Order Ryd. we

may neglect the uz and uznl terms with respect to the Kz terms
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since K> Ko. For, taking N at a resonance (nl"- 103) % we have
2 2 2 2 . an™d
w 'ql/K <w 1‘11/1{o 10

cancel. So we get no contribution to (1) from the transverse termas.

for w ~Ryd. That is, the two terms again

Now we consider the contribution of the coulomb term to (1).
Trom III-20a (replacing the ie¢ on the Feynman propagator) we
have

x44""2"'4-E‘i'"' [1‘%'&23)]

k°-2p-k +ie€

= 4E° [‘1 - 2. ‘Pz I::ZK) ][ kz_i'p Vk - §ub(k2- 2p: k)] (III-20a)
where P.V. denotes principal value. Uponssubstituting X4 4 into
[II-45, we get two terms, One term i{s from the P. V. term in III-20a,
and the other term i{s from the delta function in III-20a. Remember-
ing that we want the real part of (1) we proceed as follows. First,
congider the contribution from the P. V. term. This contribution

is proportional to

e gy - BE
P.V.S dw{ S (1-Re-—[ e tE
K>K K= 2ps &
+ terms with u-'-u]} (I11-46)

In order to evaluate the contribution from this term we note that in

the integral over w, 1 ~ Re -nl- is non-zero only in the immediate
1
neighborhood of the resonance frequencies of M. Specifically, near

20

*We have taken N~ 1017 < 102% and y/Ryd ~ 107,
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a resonance frequency ;n' we get from II-31 that

2, 2 =2
1 - wp(u - wn)
1 o0y,

where in III-47 we have omitted the. small contribution from none
recsonant states, and Z;i = ux?; + u;i . That is, in the integral over w,
we get a sum of integrals of the form III-47 located at the frequencies
:\l’ 32. .+. « Now, near each resonant frequency, the terms in the
square brackets of III-46 are slowly varying functions of w. Hence,
we may, as a first approximation substitute Bn for w near each
resonance in the terms in the square brackets. Doing this, the only
w dependence is in the 1 = Re -r%l— term. Now, it is easy to see that
the P.V. term will not contribute to the energy loss. This is s0
because the contribution to the energy loss from the P. V. term is
obtained by inserting into the integrand a term proportional to w
(see III-1). The resulting integral, near each resonance, is of the

form

b (mz- 752) w dw

S‘ n . x dx -0

( 2_-2)2+ 3 3 xZ+ A
a w (o)n ann Yn‘l)n

where the resonant frequency 'Gn is included in the interval a-b.

Since there is a negligible contribution to the integral for frequencies

outside the immediate neighborhood of -‘;n’ the limits may be selected

to symmetrical about w_  and the integral vanishes. *

*By expanding equation INI-46 in a Taylor ;eriea about W, we find
that the next term is of order y/Kg(*10°7) times the other terms
that we are keeping.
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Now we consider the contribution to (1) from the delta function
term of III-20a. Substituting this term into III-45 and replacing all
the numerical factoras, we find

(1) 5 e Fs d[ dK qenEdq - 2.2 (B2 K),
arir telly w57 eesto- 5 EL0
(o]

x (= w6 (k%- 2p- K)(1 - -T-‘l-))+ terms with w=> = u]}
L .

2 @ e
= .S S Im (_n;‘)dw[ S' K 8(k2- 2p-k)
w 0 K>K°

x(x.-z'%- LE—E'-ZL{))'#termnwith w-’-u:] (I11-48)

Consider the terms in the gquare brackets in III-48. Call this term

(a); we have

(a) = ngm dKSm1 d(cosO)&(kZ- 2Ew + 2PK cos 6)(1 - ';E
Ko 1

s .1.35_5_032_9.)+termn W .w
2E
2

@ -1
= % ‘S‘K SKK gl d(cos 0)5(cos 6 » % +Z'%R - -%’E

o

PK cos 0
T

) +terms with w = « w (II1-49)

We note that because of the delta function there are no contributions
to the integral from momentum transfers K 2 2P, In obtaining this

result, we have made use of the fact that because of the factor Im( n{ 1)
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the values of w that contribute will be of the order of a Ryd. (i.e.,

Im ( 'rlT') is a sharp spike at each resonant frequency which are of
1

the order of Ryd.). With this upper limit 2P we have

2P ' 2
w dK X 1 k
(a) = !‘SS‘I{ T([I-E.-E.Z—IE (Ew--z—)]*ftermnwith W -w
o
2P .
= {55 %[1-%‘*-}7(@2-!(2)] +terms with w— - w
Ko 4E
: (II1-50)
The integral in III-50 is elementary; the result {s
2
2 2 K
(a) = %[(1 --%’: + -“’—2 )n ( %—? ) -Yz- +-—°2]+termn with w == -w
4E o 8E
A [1:;( 2P ) - Vz ]+termn with w=" ~w (I1I-51)
Plialx ) -7

In arriving at III-51 we have made use of the facts that K: = (mez) z<<
2
Ez = (-—M-Z- ) *. and that the values of w that contribute are of the
lev

order of the Ryd. Substituting (a) into III-48 we find that

2 oo 2
1 2P
(1) = s—m, S‘O M(-ﬁ-—l—) dw[ln( R_o) --vz-]'ftorml with W= -

2 poo 2
1 2P 2

In arriving at IlI-52, we made use of the fact that N is an even

function of w.

Next we calculate the contributionto I’ s that arigses from (2).

From III-43 we have (replacing the factors previously withheld)

For example, taking the incident particle to be a proton and with
E=10M; (K,/E)*~10-12, ‘
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2

‘2>=WRe§dk( =Z Pauv “v)

Upon substituting for p and X from III-39 and III-19 respectively,

we find

2p, P,k P, -kp +8§ (p:k)

. 2: 2 ‘
. - "R RTHR \
20°E °S K ke

K>K

Oy
k"- 2p-k +ie

x[ 2Py Poy * K Poy. kvpo;:.° ayv(po' k)

2 + terms with k — bk]
k“+ Zpook + ie

(II1-53)

In order to evaluate III-53 we note that sinco in III-53 we are deal-
ing with the ordinary Feynman propagators we may use the well
known rule (10) to evaluate the real part of the integral in III-53,

The rule says that to obtain the imaginary part of a given Feynman
diagram# one imagines that we cut the Feynman diagram in all
possible ways. For each cut the contribution to the imaginary part
is obtained by replacing each Feynman propagator, 1/(pz- Mz). that
is cut through by (Zw)a(pz- Mz); include an overall factor of -1/2
and integrate only over positive frequencies.

The Feynman diagram that corresponds to the first term in (2)
is shown in figure 7.'“ We immediately see that the only cut that will
give a non-zero contribution to (2) ig the one that cuts the particle
line and the electron lina; For, if we cut the particle line and a

photon line, we get zero. Physically, this is because this cut core

“We have factored out a factor { from the exprelnibn for the self-
energy integral (see III-2 and III-4). Hence we want the real part
here. ’

"We shall see that the second term in (2) gives no contribution.



TG

Figure 7. The process of diagram cutting to obtain decay rates
from the self energy
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responds to a process where a free electron decays into a state of
lower encrgy by emitting a free photon. But this process cannot oce
cur since energy and momentum cannot be conserved simultaneously.
Mathematically we get zero for this cut since we get a factor 6(kz)

which makes the integral vanish. Hence III-53 becomes

efo? d*k 2 2
(2) = “"EE:* S' 0(w) o [5(k -2p- k) 6(k *ZPO‘ k)
k
K>K
°
x (prpv-kp‘pv -kvp“i»&p WP k)(Zpoppov*k“pov'l‘kvpop-6pvp o’ k)
+ terms with k= - k] (II1-54)

where 0O(w) =1 for w>0; =0 for w< 0. Combining terms we get

e’w a‘k [, 2 2.2, 2
(2) a..;EP. 0(w) = [6(21:- ( +p) )6k +2p_* K)(4E®m?-4m?Ew

K>K
~ °

« 2M%mw + 2m%0?. 2m3u) + terme with k — -k] (II1-55)

In arriving at IlI-55 frequent use has been made of the delta functions.
First of all we note that the term with k == <k {8 zero. This is s0
because this term contains Iactozja of 6(kz-2p- k) and 5(kz-2p°- k).
Physically this term corresponds to the square of the amplitude of a
real process where a particle of ene'rgy E loses positive energy w
and the atomic electron of energy m (at rest)loses positive energy w.‘
Clearly this is impossible. Mathematically we get zero because the

“Note the ©O(w) factor insures that only positive w contribute.
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delta functions imply that cos 0 must be imaginary.

Now let us evaluate the integrals in III-55. We have

(2) = 4e oalea g g ‘"7 S dfcos e)y do &(kZ+2p_+ k)

% &{2ke (pp ) )1 = we M + w? - 25 (I11-56)
° B UnE? 2E%  2E°
2 2

The first delta function implies that k" = "= Kz = « 2mw, It also

implies that since K = K, and Ko << m that

~ .2
wZw = Ko/Zm (I11-57)

The second delta function implies an upper limit to w. This is be-
cause Icos Gl =1. Now, from the lec§nd delta function, we have
that cos @ = w/Kv » mw/PK. From this, and noting that K {is related
to w through the first delta function, it follows that

2

2mP ;
e (I11-58)
M h® + M® +2mE

Doing the integrals over ¢, K and 0 via the delta functions, III-56

becomes

(2) = ZvNe S‘de 1_(% )“’*—'2']

(II1-59)

In order to give a physical interpretation of III-59 we proceed
as follows., We note that IlI-59 is the contribution to the decay rate

that comes from momentum transfers greater than Ko‘ We have
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pointed out before that for momentum transfers greater than K,

the atomic electrons can be treated as being free and at rest. Hence
in a collision with the external particle the atomic electron picks up
energy and momentum given by the law of conservation of four momene
tur . applied to a particle at rest. That is, we must have (m-H..a)z =
’.;2+ mz. but this is just what the second delta function in III-55 {s
telling us. The incident free particle of energy E interacts with the
atomic electrons losing energy w after which it is a free particle

of energy E - w and momentum given by the law of conservation of
four momentum; {.e., (E = m)2 = Kz+ Mz. but this is just what the
first delta function in III-55 {s telling us. We also note that since

K >K o O equivalently, the impact parameters involved are less
than the mean separation between the atoms, that the contribution to
the decay rate for K> K, canalso be obtained as the decay rate that
results from the direct collision between the incident particle and the
atomic electrons (assumed to be free and at rest). That is, the inci-
dent particle and the electron interact via a virtual photon (amplitude
- l/kz). This process is depicted in figure 8. If one applies the
Feynman rules to this diagram to obtain the decay rate (i.e.,

I's m?{-(ﬁ-m—ﬂ IM[Z x density of states) we arrive at III-59.
in out

We can now substitute III-52 and III-59 into IlI-41 to get
I‘s. However, we really want the contribution to the energy loss that
arises from these terms; call ﬁhh contribution (%;E)s. we have,
from III-1
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atomic electron incident particle

Figure 8. Feynman diagram illustrating the direct collision
between the incident particle and the atomic electron
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Upon substituting III-52 and III-59 into III-40 and then substituting

III-40 into III=-60 we find

(&= ‘ZnNe4S‘wMgg[l.(l+ ME, m o ]
H/s vt Jo, @ E omE? 2E%  2EC

2 roo 2
e 1 2P 2
+ — " Im(;l-l-)du[ln(R;)-v ] (II1-61)

In the next section we will combine the results of this and the last
section to obtain the total energy loss per length of a charged particle

passing through the medium.

E. General Expressions for the Energy Loss

In this section we combine the results of Section C and Section
D to obtain general expressions for the energy loss per unit length of
a fast charged particle in a medium.

Combining the contributions to the loss from FR and Fs

(equations III-36 and III-'61) we obtain

dE dE dE
&~ e )R“ (az)s
2 po (K V/w)z
e (‘ ! .1 (o] Z. .1 "
a-;—vj‘)o mdu[lm T]l In (ml) - Re(vTe=n Nw 9)]

4 2 2
4 27Ne S“"M %" [x-u(in» MT a8 ] (I11-62)
mv Uo '

2mE* 2E 2E*
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where 7 is given in II-31. Call the first integral in III-62 A and
the second B. For the moment let us concentrate on B. Upon per-

forming the w integral we find

2
4 M mw *
2wNe [ “M M . “M ]
B = In { —= g + + (111-63)
mve ( ) E 2mE* 2E® 4E‘

where, from III-57, w = K:/Zm. and )., the maximum energy
transfer, is given in III-58. In obtaining III-63 we have neglected
terms of the order uo/E compared with uM/E. etc. Eq. III-63

is the contribution to the energy loss from momentum transfers
greater than K_ (= \/m: ). From now on let us take the case

M >> m. For very large momenta (P >> Mz/m) g becomes

, v
Wy = E for P> M“/m (I11-64a)

On the other hand, if M >> m, and if the condition P << M® m is

satisfied, then “M becomes

vaz 2 .
Wy = -—z for P<< M“/m (III-64Db)

-v
As an example, let us take the case given in Ill-64a. In this case

III-63 becomes

B & 21rNe [ (ZmE

] ' (II1-65)

l°‘For most cases of interest the third and fourth terms in the braces
are negligible.

*®or muons this condition states P >> 200 M,,.

"*For muons this condition states P << 200 Mp.
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where we have used w = Ki/Zm in obtaining III-65.

Another case of interest is where one asks for the energy loss
where t};e atomic electron picks up energy w less than some value
w', where w'<< M. This case is of interest experimentally (for
example (11) ). In this case the upper limit on the integral in B is

w' (instead of w),) and we find (dropping terms of order w'/E)

4
B = ZwNe n ( Zm ) (I11- 66)
mv
Now let us concentrate on the first term in III-62. Call this
term A; we have
o2 1o 41 (K, v/u )
A=« -3 S' wdw Imn ln )
wv” Y0 [1-v nl
.2 _=1
- Re (vi=n ")(w=-0) (I11-67)

This expression is exact in the sense that we have not made any as-
sumption about the relative size of Ren and Imn in deriving it.
The only property of m that we have used is that it is only a function
of w. Now, as we shall see, the frequencies that contribute to the
integral giving A are given at the pole of m. In our case of gases,

-7 Ryd), so we

Im n is small (order y Ryd/urz, ~1073, for vy~ 10
can expand the arctan that gives 0. From equations III-33 through
IlI-35 we find

2
v¥(Imn,)

Re(vz- n'l)(w-e) = v*Im n'l(Rc'q + ) for 1-v’Re n>0

l-.v"Ren

= szm n'l(Re n) for 1 - szo n>0" (II1-68a)
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and
2 4 g vimml, 2. 1 o1
Re(vi-1")(w-0) = v‘Imn " Ren + =00 ) + av(l - s Re 1™
. l-v"Ren v

for 1 - sze n< 0

% viim n'l(Re n) + wz(l - —17 Re 'q'l)
v
for 1 - v’Ren <0 (I11- 68b)

We see from III-68 that for 1 - sze n<0 (i.e., for the velocity
of the particle greater than the phase velocity of light in the medium)
we obtain an extra term 'to the energy loss, namely wz(lo -12- Re n'l).
This is the well known Cerenkov radiation term (12). Subetrtuting
III-68 into III-67 we obtain

2
2 p@ (K v w)
A= == wdw Im nv"l [ln 2 - szen ]
w2 Jo ( [1-vZn|
2 ]
+ 2 S wde (v- B2l ) (111-69)
wv [n]

where the prime on the last integral means that we integrate only over
those frequencies such that 1 - vZRe'n < 0. The first term in III-69
is the contribution to the energy loss due to the excitation of atoms
of the medium for momentum transfers less than Ko (or equivalently;
from impact parameters greater than I/Ko). The second term in
1I1I-69 is the Cerenkov contribution to the loas.

Focusing our attention on the first term in IIl-69, we find from

II-31 that near each resonance
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Tin 71-1 gImn _ Yrg"nw;
[n] (W= ;i, *Yf;“i
where
Samult (;%") “,2, (111-70)
and B

Rnsl'l'rn

=1 (see equation II-50)

From III-69 and III-70 we see that the absorptions which give
rise to the energy loss are shifted from the atomic frequencies.
This shift, which is proportional to u;. is one of the effects of the
medium on the energy loss. Physically, the loss is divided between
the individual excitations of the atoms and a collective loss propor-
tional to wf, (i. e., proportional to N). That is, part of the energy
transfer goes into the excitation of collective oscillations {n the
medium. In the case of gases, w; ~ 10'4 ui. and the collective loss
is small compared with the individual excitation loss.

We wish to perform the integral in the first term of III-69.
We note that away from the immediate neighborhood of ;n' Im 11.1
is practically zero while at w = W Im 'q'l has a sharp maximum.
Also, near each resonance, the terms in braces in III-69 are slowly

varying functions of w 80 we may substitute ©  for w in these

terms. The resulting integral, near the n'th resonance, becomes

gb dolmnle-wels (I1-71)
aw w n wp-zn
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where the interval a-b contains the resonance frequency and may be
extended to * 00 since Im 11'1 vanishes away from the resonance.

Incorporating these results, we find

4 (K .1.’..)7'

2nNe o 2 -
A= £ [1 e v Re n( )]
—_fmznnn(m])' TR

+ Cerenkov term (I111-72)
where
-vn(G )| = +[(-v?Ren(T )2+ (viimn(T )2 /2 (m-73)

Now, by combining the expressions for A and B, we obtain
an explicit expression for the energy loss. For the total loss

(W= w_) we find
m

( lee4 [z £ [ 1n ( - MM(V/EI)Z) -v*Re "'l (wn)]

T mv N » Il-vzn('c;n)l
“M "’1:24
-t ] + Cerenkov term. (I11-74)
- 4E2 |

For ultra relativistic incident particle energies III-74 reduces to

ZmE/w
dEY  2mNe? [ £ {m ) Ron(w)] 3]
(& ) | Z - (Il-n(w)l b
+ Cerenkov term. : (I11-75)

For the energy loss with energy transfer less than some energy

w we find



t je=2
2m w /wn)

1 -vzn(Un)l

)- veRe 'q(TJn)]. (II1-76)

From equation III-76 we see that for the case of a rare gas,
where Cerenkov radiation is not possible except at extremely high
incident energies, that the energy loss of energy transfers less than
@' remains finite. In older theories (13) we would have, instead of

l-vzn. l-vz

in the ln term. That is, in these older theories the
energy loss due to excitation and ionization for energy transfers less
than .diverges for v =~ 1. Here we obtain a plateau in the energy
loss. The physical reason for this plateau is that the field at large
distances {rom the particles trajectory remains finite as opposed to
varying as (1~ v®)?! a5 in vacuum. The field at large distances can
be thought of as being modified due to the passive scatterings of the
photon field by the atoms of the medium. These rescatterings cause
a destructive interference limiting the range of action. |

From III-75 we see that the contribution to the total loss due
to excitation-ionization by an ultrarelativistic particle is proportional
to In(E) which diverges as E — . This divergence is due to col-
lisions involving large momentum transfers (i.e., ﬂmall impact
parameters). Now aa the incident particle becomes more and
more relativistic it can transfer more and more energy to the atomic
electron. At extreme relativiatic energies the particle can transfer
all its kinetic energy to an atomic electron (""M = E).

Budini (14) has, by semi-classical methods, calculated the

energy loss of relativistic particles in a medium. Specifically he
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calculates the energy loass due to collisions occurring at distances
greater than some impact parameter p. DBudini makes a classical
calculation of the Poynting vector at a distance p from the path of
the incident particle. From the Poynting vector he obtains the photon
spectrum by dividing by fw (i.e., the number of photons of energy

w emerging from a cylinder of radius p about the path of the inci-
dent particle). To get the loss Budini then multiplies the photon
spectrum by the atomic photo absorption cross section and integrates
over all positive frequencies. Budini then combines this result with
the loss for smaller impact parameters (which he obtains from the
Bethe~Bloch theory (13) ) to get the energy losa for energy transfers
less than some value w'. Budini obtains an expression that is the
same as equation [II-76. He then goes on to show that the theoretical
results agree well with experiment. Budini also discusses the contri-
bution to the energy loss due to Cerenkov radiation. The interested
reader is referred to Budini's paper for more details.

Tidman (1) has given a non-phenomenological quantum mechani«
cal treatment of the energy 1oss due to excitations occurring at dis-
tances greater than 1/K o from the path of the incident particle.

His method is quite different from ours. He uses the hamiltonian
formalism to c0mpu£e the decay rate to the second order (in cz) in
perturbation theory. Tidman uses an unmodified coulomb hamil-
tonian (i.e., ~ I/KZ). For the transverse interaction Tidman per-
forms a canonical transformation on the usual transverse inter-

action term to obtain a modified interaction term. This modified
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term describes the interaction of currents with photons whose energye~
momentum relation is w = K/n, where n is the index of refraction.
In Tidman's theory n is real. Tidman also assumes that the char-
acteristic absorptions occur at the atomic frequencies. Tidman obe-

tains a loss proportional to

[“m (Kom/v)z + 1 71 21 T vz/n(un)z]
n(w ) A =via(w )%)
In order to make a comparison with Tidman's work we consider
the case where Immn is a gseries of infinitely narrow lines which
are located at the atomic frequencies (i.e., a series of delta funce

tions). | In this case III-69 yields an energy loss proportional to

1 [1 (K )2 +1 1 ]_ 2 /o )z]
[ n(wn)4 n oun/v nm v /n un

This result was obtained with the term |n| in the denominator of

1II-69 replaced by n?

@ Re . The difference between our result
and Tidman's is in the coefficient of the coulomb term (i.e., the
In (K oun/v)z term). The reason foxr this is that Tidman uses the
direct coulomb interaction (I/KZ) as compared to our modified
coulomb interaction (I/Kzn).

The advantage iu obtaining the energy loss from the self energy
is that we are able to hapdle in a straightforward manner a continuous

distribution for Im n. The loss so obtained contains all the contrie-

butions to the loss (which in this case is the excitation ionization
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loss and the Cerenkov loss). In particular we have seen that the
excitation loss is a combination of individual atomic excitations
(single particle effects) and a coherent collective atomic excitation
loss., |

In deriving the energy loss we have assumed that the incident
particle has spin 1/2, is distinguishable from the atomic electrons
(no exchaﬁge effects), and has no anomalous moment. That is, the
energy loss expression is ideal for the muon as the incident particle.
The effects due to other incident particles will modify only the high
momentum transfer part of the energy loss expression, that is, the
expression for B (equation III-63) will be different for different
incident particles. We have pointed out that the expression for B
is identical with the energy loss as computed from the direct colli-
sion between the incident particle and the atomic electrons (see the
discussion following equation III-59),

Rossi (15) has tabulated the differential cross section for various
incident particles and electrons. We find that the modifications of
our result for various incidenf particles are:

1) ELECTRONS: When the energy of the primary electron is large

compared withits restmass the Zr_ldsquare brackets in III-62 are re-

placed by

2
[(—E—l—)z—' (1-w/E+ (w/E)z) ] (II1-77)
(E - w

and M = m. The modification of the total energy loss is that the

- 3/4 in equation III-75 is replaced by (9/8 = ln 4).
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2) POSITRONS: When the energy of the positron is large compared

with its rest mass the square brackets in III-62 are replaced by

;12
[-(1 - w/E + (w/E) ] (111-78)

and M= m. The modification of the total loss is that the =-3/4 in
equation III-75 is replaced by - 11/12.
3) PARTICLES OF MASS M AND SPIN O: The square brackets in

equation III-62 are replaced by

[1 . vz(u/wM) ] (111-79)

where Wy go the maximum energy transfer, is given in equation III-58.
The modification of the total loss is that the terms outside of the
inner square bracket in eciuation III-74 are replaced by -vz. For
ultrarelativistic incident energies the -3/4 in equation III-75 is re-
placed by =1,
4) PROTONS: Pauli, in his review article (16), has given the cross
section for the scattering of electrons by particles of lpiﬁ 1/2, and
magnetic moment u #1 (the proton's moment is 2.79). We find,
that the modification of our results due to the ahomaious magnetic
moment of the proton is that, for incident energies much greater than .
5

the order of 10 MP the energy loas is dominated by the contribution

of the anomalous moment, and is given by

: 4 2
dE\ _ 2aN (p-1)
= T-_ b [ 1*4 (m/M)(E/M)] (I111-80)

That is, the energy loss depends linearily on the incident energy.
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IV. SOME MISCELLANEOUS TOPICS

A. Effect of Finite Temperatures on the Photon Propagator for Small K

In Chapter II, Section D, we calculated the photon propagator
for the atomic system for Ka << 1 where we assumed that the system
was at zero temperature (e.g., all of the atormne were assumed to be in
the ground state). In this section we will remove the restriction of
zero temperature and calculate.the photon propagator. We will con-
sider the case of small K (Ka° <<1l). The case of large K (Kao >> 1)
was treated previously (see Chapter II, Section I).

In the case of finite temperature, the initial state of the atom
may be any one of the states of the atom (ground state pluas excited
states). We assume that the probability that the atom is in the m'th
state is given by Maxwell Boltzmann statistics. That is, we take that

the normalized probability P__ for the atom to be in the m'th state is

-E
P_=te =/T (1v-1)
where ;
.En/KT
Q= z e (IV-2)
n

Now, as we have seen in Chapter II, the photon propagator in the medium
may be broken down into two parts: the coulomb propagator A & and
the transverse propagator ')4 T We have (see II-34 and II-31)

A, = ‘f,;' = dw (1V-3a)

K™ K«‘B(1 +§‘_'2 Byy)




G

and

A e AT x | (IV-3b)
Ll S Z >

“’zu +l<'2'ptr..tr.) - K
w

We remark that, because of the spherical symmetry of the atoms (after
orbital angular momentum states have been summed over), ptr. S ﬂ33.
and because of current conservation, ﬁ33 = uz/Kz 544. That is,

ﬁt 2 ot uz/Kz B 24° Therefore, the photon propagator is characterized
by one quantity which we take to be P 44°

In the case of finite temperature, § 44 is given by:

Peg =~ ff; Z {Z [““’nmx)((w.+ﬁ;) “E_-Te
n

m

1
YeTE_) S (B FZoTe1e )““nmx)] R m}

(IV-4)

This is because f 44 18 -41r/k2 times the .amplitude per unit volume that
a coulomb photon interacts with an atom in an é.rbitrary initial state m
causing the atom to make a transition to an arbitrary intermediate state
n; the atom propagating in state n subsequently making a transition
back to state m by emitting a coulcmb photon. Now, Pm is the pro-
bability that the atom is initially in state m; iezan is the amplitude,
in the dipole approximation, that the atom interacts with the coulomb

field making a transition from state m to n. The amplitude to propa=-
1
initial” “int. "~

possibilities, Einitial = W +'En, Eint. = En (see figure 1lb), and

; there are two

gate in the intermediate state is E

& 1€
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= w+ En’ E = En+ 2w (see figure lc). The amplitude for the

int.

atom to make a transition from state m to state n by emitting a

initial

coulomb photon is = lez:m. We sum over all initial states m and
all intermediate states n to include all possible initial and intermedi-
ate states., Since we are assuming the atoms to be independent, the
amplitude per unit volume is N times the amplitude per atom, hence
the factor N.

Substituting Pm from (JVe-l and combining terms, IV-4 be-

comes
-E /:c'r
Peg = "Br Z R —- Z "z——z"

where

W = E «E (IV-5)

nm n m

[
2

x'nm = 2m“"mxx|"nml

and
-E_/KT
Q 32 a =2
n

In arriving at IVe5 we have made use of the Thomas~-Reiche sum rule

which states that z fnm = 1. So far we have assumed that the energy

: n
eigenvalues of the atom are discrete. Actually all of the energy levels

except the ground state are spread out due to the finite lifetimes of the
excited states. In order to take the finite lifetime into account we pro-
ceed in exactly the same way as is done in Appendix A with the only

difference being that here, since the initial and {ntermediate states

)
Note: inm 0 and fnm 2 e fmn'
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are in general not the ground state (i. e., they both have an energy
spread), we replace Em and En by fm and {n respectively
and average all (fm and fn with weights G((_rm) and G(fn)
respectively. If we choose the form A-4 for the function G and
then perform the resulting integrals in a similar manner as is done

in Appendix A the result is:

2.2 -E__ /KT
) -"’pK Zem ( nmﬂnm/nm)
44 k2 @)
m n
where
‘ (IV-6)
L an/ &
and
Yom = Yo ¥ Y
Since
Vn << Wy
we have
Ww2K2 -Em/x'r ¢
B .5 B z e ( nm )
44 k& Q QZ . 2
m n ““am” ¢

which may be written as

22

z (-E /x'r -E/It

Pgq = )("'Z'—z> | (1v-7)

n>m
*We note that IV-6 cannot be obtained from IV-4 by replacing E, by

E,- iyn/2, etc. If these replacements are made one obtains the differ-
ence rather than the sum of the line breadths.
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Now, from IV-3 and IV-7 we {find

1+ ) (e )‘—z——'z (1v-8)

n>m

The sum sign in IV-8 means to sum over the discrete energy levels and
an integral over the continuous levels. In general, IV-8 cannot be re-

duced to a simpler form.

Now, as an example, we consider a simplified case. Consider

a two state system. Calling E . 0, I"J1 = w, and the half life of the

excited state y, we find (calling @ = iy/2)

-w /KT
Q=1+e ““1
and
- e-wl/KT uZ
n=1+( G /RT )—z
1+ y “
0.)2 (dl
Y 2
W,
We seefromIV-‘)that. as T =0, n—-1+—2—P—2-. andas T — o,

@ -Ww
R 1. The fact that n—1 as 'r - o can be understood physically

as follows. Yor very high temperatures each state has equal probability
of being occupied. Now, being that excited states are occupied, they
will decay incoherently to lower states. This incoherence will destroy

the coherent effect of a photon exciting the atom with its subsequently’

“Also from the general formula IV-8 for m it can be seen that as
T, "1
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de-cxciting. From IV-8 we get that for KT >> Eﬂ

_S;Z) “rminm

n=lt Z 0% .ol (v=i9)
n,m nm
n>m

That is, for high temperatures (compared with the Rydberg‘) (n=-1)
is inversely proportional to the temperature.

For the two state system we find that the modification of the
coulomb pole due to finite temperatures is that the real part of the pole

is located at

m; tanh (u/KT) (1v-11)

We see from IV-ll that for KT >> W W= W, The reason for this {s

wzawlz'l'

connected with the fact that at high temperatures any coherent collective
eficcts are washed out by the incoherence due to the high temperature
(i.e., at high temperatures the atoms are being excited and de-excited
randomly).

Finally, we note that the effect of a finite temperature on the
energy loss of a fast charged particle passing through the medium {s
that for 7m in equation III-72 we use equation IV-8 instead of equation
11.31.

B. Damping
In this section we indicate briefly how damping arises in the

case of finite temperatures. The system considered here {s an electron
gas (with a positive background charge to give overall charge neutrality).
We consider only the longitudinal case since the method is easily applied
to the transverse case,

gThia corresponds to T >> 105 °K.



-101-

What we want to calculate is the absorption probability of free
waves in an electron gas., The dispersion formula that determines the
energy~-momentum relation of the waves arise at the zeros of the di-
electric function. In Chapter II, Section I, we have discussed the real
part (dispersive part) of the dispersion formula. Now, we consider the
imaginary part (absorptive part) of the dispersion relation.

As we have seen, poles of the coulomb propagator arise when

z .

neld Epyn0 (1v-12)

K
where .
2
2p, + + - .
B . == SBZZK%")[ Py Piy kp.piv kvpip. ap.v(Pi k)
pv Nk 1 i _ k2+ Zp"k +ie

+ terms with k = <k ] ' (IV-13)

In IV-13, we have included the i€'s that arise from the prescription
that the mass of the particle has an infinitesimal negative imaginary
part. From IV-13 we see that for zero temperature (pip = m&i‘t 4). that
Im f is proportional to delta functions (1/x +ie = P.V./x ¥ iwd(x) ).
For {inite temperatures, where there is a continuous distribution of
Py We ghall sec that we obtain a finite imaginary part. Both terms
in the brackets of IV-l13 contribute to the imaginary part of P 44°

Specifically,
2
e
Im By = —5 Z (.E‘-) {(zzf + 2E,0 + K2/2)8(k%+ 2p, X)
g 2 o
+terms with k= « k ] Ty (1V-14)

For a continuous distribution of Py



«]l02 -

1
= - f(P) IV-l5

]
where £(P) is the distributive function for P (Maxwell-Boltzmann,
Fermi-Dirac, or what have you). Substituting IV-15 into IV-l4 and
then substituting IV-l4 into IV-12, we find

Im n = _g. S' 1(P) ("E') [(ZE + 2Ew + kzlzmk +2p+ k)
+terms with k= = k ] : (IV-16)
where
E= (pz+ m2)1/2 .

We now discuss the interpretation of the two terms in the square
brackets of IV-16. The first term is proportional to the square of the
amplitude (probability) that a wave of momentum k is absorbed by an
electron of momentum p, the electrons then having momentum p+k
(absorption of a wave). This process is illustrated in figure 9a. The
gecond term is proportional to the square of the amplitude that a wave
‘of momentum k stimulates an electron of momentum P to emita
wave of momentum k, the electrons having momentum p-k (stimue
lated emission of a wave). This process is illustrated in figuré 9b.

In both cases the initial states are the same (a wave of momentum k).
However, the final gtates are different (an extra electron of momentum
p tk; two waves of momentum k, and an extra electron of momentum

p k). In both caseg, energy and momentum can be conserved.

We noxrmalize £ such that S‘f(P)/(Zw) d P= ) 8

**Ihis would not be true at zero temperature; in this case stimulated
emission is not possible,
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electron

wave

Figure 9a. Absorption of a Wave

k P-k

wave electron

Figure 9b. Stimulated Emission of a Wave
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That is, the initial state (consisting of a free wave) may go into two
possible {inal states, as is illustrated in figures 9a, b. From IV-16,
we see that the probabilities for these two processes are to be added
together. That is, Im n is proportional to the total probability that
-the initial state changes with time. Now, what we want is the proba-
bility for the effective absorption (absorption of energy) of a wave. The
probability o.f effoctive abgorption is the difference between the probae
bility of absorption and the probability of ltimulatéd emission. That
is, the effective absorption is obtained by taking the difference of the
two terms in the brackets of IV-16 (rather than their sum).

Call equation IV-16 with the plus sign between the two terms
replaced by a minus, Im Nots, We will use Im Nesf. in the dispersion

formula (n=Ren+ilmn oft. ™ 0) to find the effective damping of

waves. We have

'n'w
Im v g, = S‘—-—g £(P) (--) [(zmz+ 2Ew + k2/2)6(k%+ 2p+ k)

- terms with k==« k ] (IV-17)

We want to find the damping of free waves of frequency wp ‘(K).
or, equivalently, the imaginary part of the energy (frequoncy) near wp ..
By expanding n (= Ren +1iImn,. ) about wp, we find

Ten neff

“m” L (Re m)

(1V-18)

W= Wpe

*wRe(K) is determined from the equation Re n = 0,
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We note that equation IV=-17 is general in the sense that it holds
for arbitrary values of the four momentum and for arbitrary distribue
ticn functions.

Now, let us congider, as a special case, the Maxwell-Boltzmann
distribution function (17). Also let us consider the two extreme limits,
the non=-relativistic limit, and the ultra=-relativistic limit.

First we consgider the non=-relativistic limit. In this case we

have
2
3 «P“/2mKkT
i(P) = (27) <)
{(20mKT)
and
E=zm

By equating the real part of n to zero we have found (see equation [I-58)

2 2 2 2
wRe(K)-mp-l-K <v >
(IV-20)
= w; (for Kz <vz> << uxz))

Thisg is the relation between w and K for free waves in the nonerelae
tivistic limit. From IV-17 and IV~29 we find

u’wz % fond

d° P 2 2 2
Im Negs, ° —-%3 S‘ —3 f{P)(2m ) [5(k + 2pe k) « 6(k"- 2p° k)] (Iv-21)

K (2%w)

Now, .
k% +2p+ k= k% + 2m(w = Kv cos 0)

Since [cos 8| =1 and noting that we want Im Nogr, fOF W= wp & wy<<m,
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we find (using IV-19)

. f; 23 1/2 -(mw;)/(ZKTKz)
m Megg, = 23 (%) o

w
sinb (55 )
1/2 2m 3/2  =(mw?)/(2kTK?)
2 - (%) ;ig (%) " mup

(for ""p << KT) (IV-22)

From IV-18 and IV-20, we find, for w, << KT, that
1/2 (mmz

3/2 - (mwd)/(2kTK?)
) e P
KTK

o1 = = @ (g) (1v-23)

This is called Landau Damping (18). So much for the none-relativistic
case,
Now we consider the ultra~relativistic limit. In this case,

KT >>m, E=P >> m, and

-P/KT

£(P)/(2n)° = 1/8w(kT) e (1V-24)

For completenesas, we {irst discuss briefly the real part of n

in this limit. From 1«57 we find

Ren=lea (IV-25)
where
muw, (o]
G 8 ——— S P dP o'p/"TH(P', (IV=26)
4{KT) w m
1 2
H(P) = g Qox)dx, | (1V-27)
1 (1 «ax)"«Db
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a=Klow
and (IV-28)
b= kz/ZPw
The integral in IV«27 must be taken in the sense of the principle value.
We have set the lower limit of the P integral in IV«26 arbitrarily at
the order of the rest mass m. The integral in IVe27 {is elementary.

The result is

Hs - 3a?(1o2 sp)r- 5. 2 (1V-29)
a
where
Feln '1 +b/(1 -2 +1n li_i.gé{.}_}%;l (IV-30)
and
2 2
b“= (1 « 2)~.
G=z=1ln l-—z-————z l (IV-3])
b"= (1 +a)

Nové,let ug just consider the case where w and K are much
less than P (b<<], and l~a << b. In this ¢ase we find (from equations

IV-26 « 1V=3l)

+ 47 (K/KT)n (m/kT)]  (1V-32)

o= - mw /( T)K [1+w/2K1n lw'K

Next, we conegider the imaginary parte From IVel7 and IV=-24

we {ind
rwzm
Im q ’_TTS Pdpe'P/"T[(zp +2Pw + kz/Z) (k + 2p- k)
4(KkT)"K

- terms with k== < k] (IV-33)

For w and K small compared with P, we find
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WTIMw,

Im. n ﬂ———pj— for v, = w/K< 1
eff 4K ph
(1V-34)
= 0 for vph- w/K>1

The reason thére is no damping for vph > 1 is, that since the electrons
cannot have a speed greater than one a wave travelling with a phase
velocity greater than one cannot transfer energy (on the average) to
the electrons.

Silin (19) has considered the coulomb dielectric function of the
ultra-relativistic plasma using classical techniques. The real part
of Silin's dielectric function is identical with the first two terms of
equation IV-32, the third term being a quantum mechanical correction
[i.e., the third term is ~ (fch/I(T)z In (mcz/x'r)] . The imaginary
part of Silin's dielectric function {s identical with Im n off. 89 given in
equation IV-36.

We note that the results obtained here are, strictly speaking,
of an academic nature only. At very high temperatures effects such
as radiation of electromagnetic waves by the electrons will considerably

modify the distribution function.
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V. SUMMARY AND CONCLUSIONS

We have calculated the photon propagator in a medium by using
the four-dimensional Feynman diagram method. All four directions of
photon polarization (scalar, longitudinal, and transverse) are treated
on an equal footing. DBy invoking the current conservation law, longie
tudinal photons are eliminated. We have calculated an explicit form
for the interactiocn of two arbitrary currents in a medium. From this
interaction we are able to define a coulomb and transverse dielectric
function (which are identical in most cases considered here). By
examining the photon propagator for its poles we have been able to
obtain dispersion relations which yield the energy-momentum relation
of the free motion of the system. We have discussed both the real
(dispersive) and imaginary (absorptive) parts of the dispersion relations.
For example, we have obtained corrections to the work of Bohm and
Pines in the non-relativistic limit, and to the work of Silin in the ultrae~
relativistic limit. -

By calculating the self energy of a fast incident particle we have
been able to obtain the total transition probability out of the particles
initial state and hence, the energy loss. The energy loss was found
to be composed of three parts; the excitation loss, the ionization loss,
and the Cerenkov loss. In particular, we have derived the dependence
of the excitation loss on the dielectric function. |

We have seen that thé Feynman diagram technique is particu-
larily suited to give a unified treatment of a large number of phyasical

procesases that take place in a medium. Although our approach has
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been quantum mechanical, many of the results that we have obtained are
dcriv:;ble classically (e. g., the atomic index of refraction is essentially
the classical result). The advantage of our method is, that by a single
scheme (via the photon propagator) we have been able to treat a large
number of problems, which previously were each treated by a different
approach. That is, the Feynman diagram approach i{s a way (undoubtedly
there are others) by which one can give a unified picture of the Quantum
Electredynamics of a Medium.

Finally, we are left with some problems of interest which have
not been treated here. In our opinion, the major problem is the contrie
bution of higher order proper diagrams to the photon propagator. We
expact that these higher order terms become increasingly more impore
tant as the density of the medium increases. That is, we really would
like to apply the theory developed here to a medium other than gases
(e. g., to glass), and until we have an idea of the effects of these higher
terms we are, 8o to speak, left in the dark. Another problem that
seems amenable to our method is the properties of a non-isotropic
system (e. g., an atomic medium in the presence of an external mage

netic field).
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APPENDIX A

In this appendix we will modify the theory presented in Chapter 2
to take into account the finite lifetime of the excited states of the atomas.
To do this we imagine that each excited state is really made up of a
large number (infinite) of discrete states of energy én (fn being
real) centered around En with weight G(f n). We now recalculate
expressions [I-20a and 1I-20b by first calculating for an energy level
{n (discrete and real) and then averaging over é-n [ weight G(¢& n)] .
We choose a G({ n) such that its expectationvalue is En and half
width is y,, the line width.” Thatis, a G{¢ ) is chosen such that its
effects describe a broadened energy level. In what follows, to avoid
unnecessary corxiplexity in notation, we consider only one excited state
above the ground state. _ v

First let us consider the tra.nevdrge part of P. For a single
excited state II-l7a reads (suppreining an {rrelevant multiplicative

factor)

o 2o 2F % L 1 1
pll o] lzll‘(ai-w ‘+ wl'l‘w )’ _r.ﬁ : (A.l)_

whezre mlB El(l - ig) - Eo (see 11-10).

Also, to simplify the notation let us put Eo s 0, that is, we are

measuring energy relative to the ground state. A<l becomes

Pn”~ {wllzllz(ul_w_ie ﬁ}w.“ m}  (Ae2)

*Yn is the total line width of the excited state.
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Now to take into account the effects of the finite lifetime we
desire to replace @, by £ andaverage overall ¢ with weight G(&).

Specifically, A-2 becomes .

L lezclz é‘zlzelz
S..md{G(f) F-weic +{+m-1e

f_:d{ G(E)

A function which permits the pertinent integrals to be done is given by

-
m

(A-3)

Pn~

&) e % ————r (A-4)
(£ -0+ X
where y << . The factor of -g,‘-r in A-4 makes G({) have the
o
property dE G(F) =1 It is readily verified that this choice for

-0
G({ ) satisfies the properties discussed in the preceding paragraph.

Substituting A-4 into A-3 we get

& E2s|? le=|z 1
Pn~ § “m( (A3)
-oo (6""1)+L {‘“’{e {1‘0"6

where we take lz] to be independent of ¢ since G(£) is large only
in the immadiate neighborhood of ;. Now for one excited state the
sum rule, II-18, becomes 2mw, Izlxlz = 1. For many discrete states
spread about w, with weight G(£) the sum rule becomes

(% e ctbrzme s |2 =1

-0
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[+ %]
= -5" dE€ &) 2€ |22 (A-6)

Substituting A-6 into A-5 and using A-4 we get

(P T & : }',z
Pu S‘-ood{ (- 1)2+.%Z_ E-w-ic f{-&u-i& g

- £ %’;l"‘lz 62 I+ } 2
S.oodf({_%)z+%f E- w-ie {un-ie 5y i e

©
since g dE GlEHE = .. To evaluate the integral in A-7 we use
-

coatour integration. Considering just the integral of A-7 we have
2
u -® ({-ul-t-i%)([-wl--izx) {-u-u é-+0-i€

(A-8)

Now the terms in the braces and the factor (f - - L}) has poles in
the UHP £ plane. The only pole in the LHP & plane comes from
the factor ({ W + —Zy- ). So on appiying Ca.uchy'l theorem we choose
to cloge the contour in the LHP. IHence, by Cauchy's theorem

ﬂu s « 29 (residue at { = Wy i{-) - S. (A-9)
c

whezre 5 is the integral of the integrand of A-8 evaluated along the
c
infinite semicircle in the LHP., Now
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-2ni(residuc at {: w, - 121’.) = -Zn('ix{r)(filv) (“o-—izx)z
®
Y G i%}

e T e

i tee-4 »,3»-1;} (a-10

Next
10
S' L T ('}-.‘1) ire'®a0 . -2 210 \ 22,210 }
¢ R=o0v0 (Rew-w )+-Y;; Rew-u- ic Row-un- ie
(J-) iR 30319 2) a0
=lim
S 3,310
= iy (A-11)

Upon substituﬂng A-1l0 and A-ll into A-9 we get that (replacing the
term retained in A=7)

[ ){‘“1' __} . }”Y’z“’x]

-il (0 + u%--
= |g]? iy + “l .
[ l(“’l )[ - _(_ w1+“_ig_ Z-J
- 2% [z [¥(o,- _})L ( i;)z . (A-12)
wl- -

Now consider the coulomb term B,,: For a single state,

et cetera, II-17b reads

€ has now been set equal to zero.
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~ 2. 12 1 1
544 K l“l (wl-m-ic +wl+u-i€)

w2k % acan{ztm 7}
S.:d{ (o)

Proceeding in a manner similar to the one used on B, gives that the

result of averaging over many states for. ﬁ44 is

e et 12 1 1
Paa T I “ﬁ'“'%f“’x*""%‘)

"lz 12 .
(ul - %—) - 02

The obvious extension to many excited states {s that in A-12 and A-13

= K2z (A-13)

W, Y Y, and Z + The final result is 1I-22.
- :

The problem of natural line shape has been discussed by Low (20),
where he applies the covariant methods of Feynman and Dyson to the
problem of line shape. He discusses both the line shift and line shape. *
Specifically, Low applies his te'chniques to calculate the elastic scattere
ing rear resonance of photons by a one electron atom in its ground state.
He considers only effects which essentially come from diagram 1lb. His
overall result is that w, is replaced by @ - i—;—‘-‘- . By using Low's

method and including diagram lc we get the same result as the averaging

procedure used here. It should be noted that Low gives a method -

“Here we have assumed that E_ is the exact energy (real) eigenvalue
which includes radiative effects, et cetera. . ‘
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to calculate the line width where we have assumed that it is known.

We note that these results were obtained with the particular
function G given in A-4 which was chosen because it enabled the
averaging process to be done analytically. Of course we expect the
results are general and do not depend upon the particular function
chosen. However, we must admit that we were unable to do the inte-
grals analytically with such a seemingly appropriate weighting function

as the gaussian.
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APPENDIX B

In this appendix we give a method for the evaluation of the integrals
in equations III-26 and III-27. Here we will explicitly evaluate the most
complicated of those integrals. The other integrals are done in exactly
the same way as we will show for the integral T,. Fron; III-28a we

have

2

2 3 (1 -« cos®0)

T, = (v9) da°K (B-1)
1o S (k- 2p* k)(w?n - K°)

To evaluate this integral we use the Feynman parameterization technique.
The following relations will be useful:

1 x
1 dx
= B2
25 S‘o [ax + (1-x)b] ¢ BBt
and
1 S‘l 2y dy |
= (B-3)
:Z; 0[ay + (1-y)b) * .
Now
2 PP KK,
con’d = (-i:,KK PSKZ B | (B-4)

where a,p =1, 2, 3.

Equation B-l becomes (dropping the all K under the integral sign

(K2- 25. B+ A)(—2 C)Ke

g ZKZKKPP
a3

where A = ZEu - uz. Using B-2 we find



-118=

L
(PK-KKPP)
Puﬁ (B-6)

(K%- 27. K + A)K®- w’nx)®

vz 1 3=
Tl = -Z S dx g d" K
P 0

Now we apply B-3 to get

(P%K2. K KPP

o )
T, aly \ 2yd S\ldx a K apap
L2 i, § [ K%-28 K(l-y)-wlmeys(l-y)A) 5

VSJZdSldeId .KKPJ ‘ (B-7)
— Y Y -
2 [(R’- (1-9)F )2+ All-y)-o?rxy- (1-y)?P9] 3

Letting Q_ =K - (1-y)P_, we find

dSa"(QZ. QO‘ZE‘PGPP)

1

2
T. =2 d ‘gldx B-8)
1= Soy 7 Jo S Q% a)° (

where A = A(l-y) = uznxy - (1-y)sz . (B=9)

In arriving at B-8 we have omitted terms in the numerator
linear in Q since these terms .va.nish because théy give an odd integral
and we are irntegrating over all Q. Alao.because of the spherical

symmetry Q Q. is equivalent to . Equation B«8 becomes
7 Sa 8 T af .

2
2 Q%d"Q
T, = 3v S' ydydexg—-z-—-3 (B-10)
Now, by elementary integration, it is casily verified that

S‘ Qz T 324V z,
(Q + A) g 3 :

Equation B-10 becomes
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1
T, =« 2y ydy | dx (B-11)
S f (A(l-y)-wimey-(1-y)éP4) Y @

A3
22 e
[(1-y)%- ;2-(1-7) +-‘§2 xy] /2

it Lt Sth [(t -t a.+--2) +——§)

1/2
/ - (t2-at)/ "-] (B-12)

where
2= 2 (-5x) -

Completing the square under the radical sign in B-12 gives

T, - 21,21, 2 1-e/zdx (x " .T)l/zgx-a/z(x ‘1‘) x/zdx "

e/z -a/2
where
;- <w"‘ )
and , (B-14)
E=a+d

The integral in B~13 is elementary. The result {s

2 : le o +(1€ +08) 1/2
T, = a(v"' %}[ . %(1-a)1/ %% /2, (5 )m( z 7

-(z-8

2 1-24 (1ea)/?
-2 1n (—2 )] (B-15)

:X

1;2
where a = 1PT\ 5 (B-16)
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The other integrals arc not as complicated as 'I‘1 since they
only involve one paramecterization while 'I'1 involved two parametere
izations. These integrals were evaluated using the same method as

used on T, with the results given in IlI-29.
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