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ABSTRACT 

By u oine the Fcyrunan diagram technique, a unified analyoh ia 

given of the Qunntum Electrodynamics of a Medium. We consider both 

an atomic medium and an electron ga. . The photon propagator in a 

medium i8 calculated by summing the mo.t highly divergent diagrams 

in each term of the perturbation series expansion of the photon propa-

gator. An explicit form for the interaction amplitude of two arbitrary 

currents in a medium is given. From this amplitude a complete com-

ple:, dielectric function ir.J defined (at the pole of a photon propagator). 

Furthermore, we h~ve examined the photon propagator for ita poles 

in order to obtain dispersion relatione which yield the energy-momen-

tum relation for free motion of the system. We have considered, in 

detail , an atomic oystem and an electron gas. In both casea explicit 

dispersion relations are found over a wide range of energy and momen-

tum variables. Effect. of finite temperatures are discussed. Also we 

have obtained the energy 10138 of fast incident charged particles passing 

through an atomic medium from the seli energy of the incident particle , 
in the medium. The energy loss so obtained consists of three parts: 

lOGS due to excitation of atoms , loss due to ionization of atoma, and a 

C el"enkov loss. General features of the energy 10 •• are dhcu •• ed. 

We also give a number of expressions for the 10 •• for various incident 

particles. 



PART 

I 

n 

IU 

IV 

V 

TABLE OF CONTENTS 

INTRODUCTION 

PHOTO~{ PROPAGATION IN A MEDIUM AND THE 
INDEX OF REF ACTION 

A. Quclitative Features of the Photon Pl'opagator 

PAGE 

1 

4 

in a Medium 4 
B. Calculation of the Photon Propagator in a 

Medium 6 
C. General Expression for ~~vl 11 

D. Calculation of i3..,.v in the Cale of Small K 13 

E. Current-Current Interaction. in a Medium in 
the Caee of Small K 23 

F. Index of Refraction of a Medium 29 
G. DiscuBsion of the Index of Refraction 31 
H. Calculation of f3..,.v in the Case of Large K 33 

I. r.ur rcnt-Current Intaraction in the Ca8e of 
Large.K 35 

J. Real Processes in a Medium: Pole. of the ' 
Photon Propagator 36 

ENERGY LOSS OF RELATIVISTIC CHARGED 
PARTICLES IN A MEDIUM 56 

A. Relation to Looo 56 
B. Self Energy and Decay Rate of a Particle in 

a Medium 58 
C. On the Evaluation of the Integral F R (w) 66 

D. (h the Evaluation of the Integral F S(w) 70 

E. General Expresoions for the EnoriY LOll 84 

SOME MISCELLANEOUS TOPICS 95 

A. Effect of Finite Temperature. on the Photon 
Propagator for Small K 95 

B. Damping 100 

SUMMARY AND CONCLUSIONS 

APPENDIX .A 

APPENDIX B 

REFERENCES 

109 

111 

117 

121 



-1-

I. IN TR ODUCTION 

The purp o s e of this paper is to give a unified treatment of the 

Qua nt um E lectrodynamics of a Medium. By the Quantum Electrody-

namics of a Medium we mean the quantum mechanica of a aystem of 

charged particle. (medium) interacting with the electromagnetic field 

(i. e., acalar.longitudinal and transverae photons). For the . mo~t part 

we will be dealing with an atomic medium (i. e., a medium consiating 

of atoms interacting with the electromagnetic field). 

There are a n~ber of physical problema of interest that ar18e 

in connection with the interacting system (medium plua photon field). 

For example; the propagation of photona through the medium (index of 

refraction), the normal modes of the interacting system, the energy 

loss of fast charged particles passing through the medium, etc. are 

typical problems. In the past these problema have been 8tudied mainly 

from a classical point of view. For example, the energy 1088 problem 

• was first treated by N. Bohr in 1915 using cla8sical technique8. Many 

people have since extended Bohr'o classical treatment. 

It was not until 1956 that Tidman (1) gave a non-phenomenologi-

cal quantum mechanical treatment of the energy loss that included the 

contribution to the loss from large impact parameters (or equivalently 

small momentum transfers). It is in thia region of large impact param-

eters where it 10 necessary to include the pa8sive effects of the medium 

on th e energy 108s. Tidrnan uses the hamiltonian approach, that ie, the 

• • 

A complete history of this problem may be found in the paper by 
Tidman. 
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approach described in Hoitle l°'s book (2). This approach necessitates 

the use o{ a nwnbor of approximations (e. g., that the Coulomb inter­

action in the medium does not differ from that in vacuwn). Since 

Tidman '& treatment of the atoms of the medium 18 non-relativistic, 

his results are applicable only to small momentum tranders. Further­

more, Tidman makes the approximation that the dielectric function (the 

square of the index of refraction) is real. None o{ these approxima­

tions are necessary in the method used here, the Feynman diagram 

technique. By this method the problem may be treated in a completely 

four-dimensional fashion, and it follows that the result. are valid for 

all value. of the momentum transfer. Another consequence of our {our­

dimensional formalism 18 the general validity and \I.efulne •• of the cur­

rent conservation law (e. g., this law enables \18 to derive the modifica­

tion due to the medium of the coulomb interaction) . Finally we are able 

to obtain the complete complex dielectric function for both large and 

small momentum transfers. The relation between the imaginary part 

of the dielectric function and the energy 108s of fast charged particles 

is derived. 

In addition we have appUed theae methods to a consideration of 

the normal modes of the system consisting of the atomic medium to­

gether with the electromagnetic field. By a simple extension of the •• 

methods, we arc able to derive the complete relativiatic dispersion 

relation {or the electron gas, · a relation which reduc •• in the non­

relativistic approximation to that o{ Bohm and Pines (3). 

We feel that the elegance and generality of the Feynman diagram 
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technique is particularly suited to a complete description of all coherent 

physical processes of interest in a medium. 
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II. PHOTON PROPAGATION IN A MEDIUM AND THE 
INDEX OF REFRACTION 

A. Qualitative Features of the Photon Propagator in a Medium 

In the following we are u8ing gaussian unit. with " • c II h then 

e Z ~ 1/137. Four-vectors will be denoted by .ma1l1etter. [e. g., k II 

(w, K)]. The dot product of two four a, b b taken a. a· b • atbt - -;. b. 
Ais 0, the notation <t II at''' t - -;. -:; is us ed. 

In thie section we will discua. the photon propagator in a medium. 

The follo .. ·ring assumptions are made in this paper. The medium is a.­

sumed to be nonconductive and to consist of N identical, infinitely 

heavy, nonpolar, nonmagnetic, randomly Ilituated a.toma per cubic 
, 

centimeter. We take N to be small enough ao that we may neglect 

any direct interaction between atoma of the medium. We a.sume that 

the intrinsic properties of the atom a of the medium are known, that h, 

the energy eigenfunctions ~n' energy eigenvalues ' En' and line widths 

'\' are assumed known. Also, for simplicity, we will conaider one 
n 

electron atomB. We take the temperature of the medium to be so low 

that in the g round state of the medium each atom ia in it. ground state. 

In Chapter IV we will discuss the effects of a finite temperature on the 

photon propagator. 

In order to obtain tho photon propagator in a medium we proceed 

as follows. Conoider two current sourcea in tho medium. One current, 

J("].) , is at an arbitrary space-time point 1; the other, J'(x
Z

>' at an 

arbitrary space-time point 2. 

We will be working exclusively in momentum apace ao without 
-ik t Xl 

1088 in generality the currents zr.ay be taken to vary a.' J • • .,. 
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Let us usk for the probability amplitude t hat t he current at point 1 emit. 

a photon, t he photon propagating through the medium from point 1 to 

point Z s uboequcntly b e ing abs orbed by the current at point 2. Let U8 

ca ll this amplitude A. We write A in the following manner 

• ike x,. •• -lk· x2 
Writing J~(:;) a J ~e (emits) and J,,(x2) a J~e (ab8orbs) we 

have 

(n-l) 

Now, due to the homogeneity of the medium P ~,,(:; , xz) mU8t be a 

function only of the dif~erence 1x,.-xzl. Therefore 

'. , 

" 

/kz • For the vacuum "11" is just -4" 6.,.". With a medium present TI..,." 

will differ from the v~cuum case. It will contain the effect of the medium 

on the propagation properties of the photon. In the rest of this chapter 

we will concentrate on calculating the" propagator" "f1". 
Physically we would expect that if the spatial separation between 

points ,1 and Z is larger than the mean separation between the atoms of 

the medium. which we take to be of the order of the Bohr radiua, tho 

'· 0 • +1 if f1 = " = 4. a -1 if f1 = " • 1, Z. 3 and zero otherwise. f1" 
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effe ct of the medium will be to modify the propagation properties of the 

p:~::>ton from the case of propagation in vacuum. The atoms of the 

medium will pacoivcly scatter the photons ; for example, there is a 

finite probability that the following process will occur: A photon of 

momentum l~ excites an atom of the medium to a virtual exdted state, 

the excited atom then decays re-emitting a photon of momentum k. On 

the other hand, for a spatial separation that b smaller than the separa­

tion between atoms of the medium we expect that the atom. will have 

little effect on the photon propagator for vacuum. 

B . Calculation of the Photon Propagator in a Medium 

The coupling between electrically charged particles and the 

electromagnetic field is characterized by the dimensionless constant 

e 2 
Il:S 1/137. BecaUfle this constant is much les8 than one the usual 

method of computing amplitudes in quantum electrodynamics ia to use 

perturbation theory (expanding the amplitude in a power series in ( 2). 

This is the method that is uced here. In order to calculate the contri­

butions to the amplitudes in perturbation theory we use the Feynman 

diagram technique. The utility in using Feynman diagrams is that the 

cont:..-ibution from each term in the perturbation expansion can be written 

dOVIn by inopec~ion. Figure 1 shows some of the lower orde r diagrams 

a flGociatcd with "fJ.v. Diagram la represents the propagation of a 

photon (of momentum k) from 1 to 2 without interacting with the medium 

(1. e., the photon p ropagates from 1 to 2 as a free particle). Diagram Ib 

represents a photon propagating from 1 to 3 aa a iree particle. At 3 the 
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(e) 

Figure 1. Diagra:rnatic representation of the photon propagator 
in a :rnediwn 
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photon interacts with an atom of the medium causing the atom to make 

a transition to an excited state . From 3 to 4 we have an atom in a 

virtual excited state. We represent this by 304 • At 4 the atom 

de-excites , emitting a photon (of momentum k) which propagate. freely 

from 4 to 2. Diagram lc differs from diagram lb only in that the photon 

tha t arrives at 2 is emitted before the photon coming from 1 is absorbed. 

Diagram la, lb, lc represent the complete 2nd order (in e) contribution 

to the photon propagator in a medium. Diagram.ld. 1e aro part of the 

fourth order expansions for "J1v' 

To second order P lI-v is given by. 

P = _ . 4w [(2Tl)464(k -k')6 .:fa p(2) ] • 
J1v k 2 + i~ lI-" lI-v (U-2) 

(2) . 4 4 • (2) (2) / • 2 where P J.lv is of the form (2 1T) 6 (k - k )~ J1v' In 11-2, P J.lv is -411" (k ) 

times the amplitude per unit volume that a photon of polarization JJ.. 

momentum k excites an atom of the medium to an axcited state with 

the atom aubsequenUy emitting a photon of momentum k', polarization 

/ 
• 2 

v plus -411' (k) times the amplitude per un~t volume that a photon of 

polarization v, momentum. k' is emitted by an atom of the medium, 

the atom being raiGed to a virtual excited state with the atom subsequently 

de-exciting by absorbing a photon of polarization JJ., momentum. k. 

Diagrams la, lb, 1c are the complete contribution to the photon 

propagator to second order. In the fourth order there are two 'kinds of 

diagramo that contribute: iterations of aecol'ld order diagrams (see for 

·To avoid complexity in notation in the following we wUl drop the itr on 
the Feynman propagator. 
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example figure ld) and new types of diagrams that cannot be obtained 

from iterating second order diagrams (figure Ie shows a typical dia­

gram of this type). Let us c all a diagram as proper if it cannot 

be reduced to two simpler diagrams by cutting a I ingle photon line. 

ThUB , in figure 1, (b) and (c) are proper .econd order diagrams and 

(e ) is an example of a proper fourth order diagram while (d) 18 not a · 

proper diagram. In the n'th order of perturbatiqn theory we get con­

tributions from n'th order proper diagrams plus contributions from 

iterations 01 lower order proper diagrams. 

Call tl~~ the sum of all the proper diagrams of the n'tn order. 

Then the total amplitude for the medium to ab80rb a photon of momentum 

k, polarization ~ and the medium subsequently re-emitting a photon of 

momentum k polarization v is given by [ omitting the factor 

(Z1r)464(k_k')] 

(n-3a) 

(n-3b) 

That is, 11 is proportional to the inverse of the matrix (6_tl(Z) _tl(4) - ••• ) 

which just involves proper diagramo. What we are doing in calculating 

"~v is essentially calculating the self ener3Y of a virtual photon in a 

medium due to virtual interaction. with particle. of the medium. The 

net result of these virtual interactions will be to shilt the pole of the 

• We are using the Feynman summation convention for repeated indices. 
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photon propagator at w = K (vacuum case) to somewhere else. That 

i s , the inf'nite series n-3a is a perturbation expansion calculation of 

2 this shift of the pole . Since e is 80 omall we expect that the location 

of the 1-ole will be close to w = K and also that the nature of the pole wiU 

be the same as the vacuum case (e. g., a .imple pole). We note that 

each successive term in 11-3a is getting more and mOl'~ divergent near 

w = K. Now ~Z contains a factor e Z jk2, ~(4) a factor 02(e2 jkZ) etc. 

So, for example, in the fourth order we get two terms, ~ (4) and 

(l:~(Z»Z. Both of these terms are of order e4 but nea'r- w. K, (~(Z»Z, 

the iterated second order term, dominates the ~ (4) term because of 

the extra factor l/kZ• It b easily seen that th18 will be true to all 

orders (1. e., the iterated second order term will be dominant near 

w = K). The expression U-3b is telling us that the location of the new 

pole will be determined where the matrix k2(6_~(2)_~(4)_ ••• ) -1 18 

singular. .Physically, at the pole, we obtain the relation (diapersion 

relation) between w (energy) and K (momentum) for real processes 

in a medium. Aa an approximation to n-3b we take the expression 

(n-4) 

This expression hi the sum of the n'lost highly divergent terms of the 

perturbation expansion n-3a in each order. W. shall .ee that we do 

get a pole which is simple and closo to w. K. 
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c. GENERAL EXPRESSION F OR ~ v 
!J. 

Applying the F eynma n rules (4) to diagrams Ib and Ic we get 

where 

I signifies the sum over all the atoms in a unit volume, 
. ~ i 

(n-6) 

i - i _ -iE t 
llt (x) = tp (,t)e n are the stationary solutions for the ith atomic 

n n 

electron (i. e., the wnts are the solution of (iV"~ eJj.ExT - m)w a 0, 

S • 3- ExT . normalized to <p fP d x :I 1, where A is the external field actmg 

on the electron i. e., th~ coulomb field of tho nucleus), the quantities 

'-' (~= x, y, z, t) are the familiar gamma matrices which satisfy , J.&. . 

V'tl-:Vv + 'Iv'l..,. :: 20J.&.v' and Vi is the adjoint of W (. \)+" t). The first 

term of U-S corresponds to diagram Ib and the second term to dia-

gram lc. 

After inserting II-6 into II .. S and combinina terms we get: 

* Henceforth we drop the superacript (2). 
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+ terms with k;: -k' for t 4 > t3 

• Ii • -I . .. (U-7) 

Consider the atomic matrix elements in 1I-7 . For bound state the 

wave functions (,On are non-zero for values of I'~ I up to the order 

of the Bohr radius a o• So for small K (Kao « 1) we can expand the --..... .... .... 
iK·x - iK.x --exponential factor e a8 series of powers of K: e .. l+iK· x II 

1 + iKz. we choose a coordinate system with the z axis along the · ... ec--tor K. Also in this region of K we make the nonre1ativistic approxi-

mation in the treatment of the atomic electrons. Physically in this 

region of K the atom receives a momentum which is small compared 

with the original intrinsic momentum (me
Z

) of the atomic electrons. 

On the other hand in the opposite limit, that of large K (Kao » 1), 

it is evident physically that we can regard the atomic electrons a8 

free. and at rest (atom receives a momentum which is large compared 

to meZ). This can also be seen from the atomic matrix elements in 

II-? For large K. the integrand contains a rapidly oscillating factor 

e iK• x. and the integral is almost zero if (,On does not contain a similar 

factor. Such a function ~n corresponds to an ionized atom with the 

momentum (opace part) of the emitted electron given ~y the law of con-
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-servation of xnoxncntum between the incide nt phot on (K ) and the original 

xnoxnenturn of the ele c tron (whic h is much smaller than K). 

D . CAL C ULA TION OF (3 IN THE CA SE OF SMALL K 
J.1 V 

where £ is to a pproach zero through positive values after the n 
integration ha s been done. Upon inserting II- S into U.S and rear­

• ranging te rms we get, 

x 1 + terms with k;::.k' E (l-ic;) +D 
n 

Performing the integ ralo over tl and t2 we get, 

4 2 I{SOO tS 3 -iK'.~ j p • -~ (211') 6(w-w I) dO 6(O+E iw) d);'.,"i e 'V fP i *"'" (k')'"" '-' -0:) 0 ~ 0 " 
i, n 

· In the following the dummy integration variables will be denoted by the 
s ubscripts 1 and 2. . 
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(11-9) 

To proceed further, we first examine the contribution from 

positive energy states. In II-9 for a given atom (i) the (1,i iii q1 (-; - -:i) n n -where a i is the position of the i'th nucleus. So if we write, say, 

as 

and similarly for the other terms then this form haa the integration 

variable centered around the i'th nucleus. Since all of the atoms are 

identical the atomic matrix elemente for different 1 are equal: the only - ---ia l • (K-K') 
dependence on i in II-9 will appear in a factor e Q Then 

- --~ e-ai • (K-K ) S 3- -1-;· (K-K") L - N d ae 
i 

33- -
iii N(Zv) 6 (K. K ') 



Putting everything togethe r, we finally get t hat 

-..... .... ... 
I -iKe x I I iKe x I 

4 2N 4 4 '\ { < 0 e 'I n> < n 'I eO> 
P = - 1'I'c2 (2 tr) 0 (k - k ) 6 v J.1 

J.1 v k all n En (1 - id - Eo - w 

4 4 
:I (211') 6 (k - k')~ 

JJ.V 

(n-10a) 

(U.10b) 

where <nl'l eiK·~IO>. Sd~ 'I eiK. ~". Consic1er the atomic 
JJ. n.... 0 

matrix element 

where .... = (t, x, y. z). 

In the nonrelativiotic ap~roximation a.... become., 

a~. ; <nl'lt(l + Uu)10> 

= (1 + iKz)no 

= iKz no 

(D-11) 

whe re zno = S cp: Z CPo d
3

-;; (the matrix element of 1 between n anc1 0 

va nbh because thooe states are orthogonal to each othel"). Aho 

a ~ <nl'l 10> x x 

J 3- + 
1:1 c1 xcp 0. cp 

n x 0 

= xno ' 

' $ 10> r epr es ents the ground otate of the atom. 
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- -(since in t he nonrelativi s t ic a pproximation (1 is replaced by x ) 

similarly ' 

= i(E - E )x n 0 no 

:= iw x no no 

Also for a given value of En there b a aum over the angular momen­.. 
tum statea of the atom. As is well known in the dipole approximation 

111. 1:1 :t: 1. Since the ground state of the atom is an a state the excited 

states must be p states. So for a given En there are three angular 

momentum states (m.t 1:1 0, II: 1). Now it 1s easy to aee that within the 

dipole approximation that the only non-zero terma of ~ '"'v are: f$ll' 

l3 ZZ' 1333 , 1334, j3 43' and 1344, where the lndices " corresponda to t, -3 to z (th~ direction of K). 1 and 2 to ". and ,,_ respectively 

(-:;.,iy ,'.. Xi!Y ). £ '- '- The reason or this is the following: consider, for 

example. 1313• Physically we are asking for the amplitude, in the di­

pole approximation, that an atom absorbs a right-handed polarized 

photon and emits a longitudinal photon. Now for a atven value of En 

where the :t: 1 and 0 correspond to excited states with m t II d: 1 and 0 

* ' We disregard spin hl3re becauoe the interaction hamiltonian. J. A, 
doe s not involvl3 spin variables, hence the spin operator commutes 
with the hamiltonian implying that the spin is a conserved quantity. 



(I 
respectively. So 

-17-

--since. for example. a 3 (+) = altO) a a1(-) a O. Similarly, all oif di-

agonal elements except ~34 and ~ 43 are zero. Now con.lder the 

diagonal terms 

Also 

and 

also 

There!or~ from II-lO and II-12 we obtain that the contributions from 

the sum over positive energy states is given by 

, 2 
13 13 13 8 trN e \:' ' Z I J Z ( 1 + 1 ) 

11 = 22 = 33 a • k2 ~ wno "no W -w w iw 
n+ no no 

(n-13a) 

* :t:icb iOf q1n(:!:'O) contain a iactor ,oi e and e :respectively. 
,I 

(See (2-11) ). 
**~ 1 12 Henceforth zno denotes the dipole matrix element summed over 

the orbital angular momentum states. 
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(ll-13b) 

Now in the dipole approximation we calculate the contribution 

from negative energy states. For a negative energy state En- - (m + 

Order Rydberg). Now Eo - m + Order Rydberg so En-Eo'" - 2m + 

O(Ryd.). So £0 r (a) much less than m we get, from n-9, that the 

contribution to say Pu (a ~22111 ~33) becomes (neglecting terms 01 

order Ryd./ m) 

n-

• -~ L <olYlP In><nly1IO> 
alln 

I: - ~ <oIYl,D 'V1 JO > (D-14) 

where P is the projection operator lor negative energy states (i. e., 

P In +> I: 0, P In -> • In ->. Neglecting terms of the order Ryd./m 

P can be taken to be: 

(D-15) 

Substituting 0-15 into II-14 we obtain 

1 (0-16) --
II-16 can be recognized as the contribution lrom the A2 term in the 

nonrelativistic hamiltonian. 
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The c ontribution to l3 44 from negative energy states is 

, 1 I1u 1 (y t -1) 
j3 44 - - m < 0 1 Y 4("/ , 410 > D - in < 0 J Y t --z 'V t J 0 > D 0 

Als o. the contributions to all off diagonal element. are zero. For 

exaxnpl e 

DO 

Abo 

= 0 

since 'V t J 0>::1 J 0> • 

Summing II-16 over all of the atoms per unit volume gives a 

factor N. That is (replacing all the factors) the nOn-zero contribution 

from negative energy states p e r unit vohune b. 

Z 
411'e , N) J3U :: l3ZZ = J333 II --z ,- iii 

k 
(U-16') 

, F rom II-13 and II-16' we get that the contribution to IS from both 

pos itive and, negative energy states per unit volume b. 
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(II-l?b) 

We remarlt that the expression II-I? could have been written down by 

inspection. Consider. say ~ll. Thill i8 the amplitude for transverse 

waves propagating exciting-de-exciting atoma. Treating the atomic 

electrons as 1'lonrelativiotic the amplitude for diagrams lb. lc can be 

obtained as follows: Amplitude for propagation from 1 to 3. _4,,/k2. 

amplitude for a transverse photon to excite atom to nth state. 

iew z . ~· The amplitude for the system to propagate in the inter­no no 

mediate state 3-4 is l/(E. - Ei t)' where E. h the initial energy 'in n 111 

of the system Oust prior to 3) and E int ia the energy of the system 

in the intermediate state. For both daigrams Ein iii Eo + w. For Ib, 

Ei t = E and for lc, Ei ... iii E + 2w. Amplitude for the photon to be n n n~ n 
+ emitted by the atom -iew z • Amplitude to propagate from 4 to 2. no no 

_ 4"jk2 • 

Also in the nonrelativistic approximation there is a contribution, 

2/ --for transverse waves only. from the e m (A • A) term in the hamil-

tonian. Thie term contributes, per atom, an amount e 21m. Putting 

everything together and holding back one of thCl factors 01. -4w/k2 we 

get 

9Henceforth we write I as 2:. 
n+ n .. ' 

We imply that the sum over angular momentum states has been per-
I.ormed. 
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2 -
R 4 ";ie N ~ I (. + ) I 1 + 1 ) (i ') ] + 1} 
..... 11= - k 2 10 L -lWnoZno \w+E -E w+E -2w-E WnoZno iii 

o n 0 
n 

T: s i j\\S~ II-17a. (To get the contribution per unit volume we just 

multiplied by N since the atoms do not interact with each other.) To 

get ~ 44 we note that for · coulomb ; ~ photons there 18 no contribution .- -from the A • A term hence there 18 no factor of 11m, and the atomic 

matrix elements are - Kzno. 

411'Ne
2 

'\' K21 121 1 
:: 2- ~ zno \ w -w 

k . no n 

which is just II-17b. The expressions -, II-17 may be simplified by 

making use of the Thomas Reiche awn rule (S) which say. that 

L 2 • 
f :: 2 2mw Jz I • 1 no no no 

n n 

or 

1 :: 22: C&)no 1zno l2 (n-1S) 
m 

n 

Substituting II-IS into n-17a we obtain 

• . 2 
The quantities i no• 2mwno IZno I are called the oscillator strength •• 
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and from II-13 

2 1{2 I J 12 ~44 • 8"Ne ~ w z . k' no no 
n 

1 
Z 2 

w -w no 

1 
2 Z 

w -w no 

- 2) (11-19) 

(II-20a) 

(II-20b) 

The expressions n-20a, b may be aimpUfied by expreaaing them in 

tenns of the oscillator strengths fno and the plaama frequency 

wp I: (411'Ne
2
/m)1/2. In terms of thele parameter. we iet that.> 

(n-21b) 

It appears from II-21 that for W. wn ' ~ 1& infinite. The 

reason fo I' this is that up to now we have assumed that the energy 

eigenvalues are discrete. Actually each eigenvalue i8 not di8crete 

but is spread out about some mean energy E with a half width y • n n 

Physically. each excited state haa a finite probabUity of decaying 

w!lich implies an uncertainty in the energy. In Appendix A it 18 

• • 

Henceforth we omit the subscript o. 
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shown tha t when the finite Hfetime of the excited states is taken into 

account the expressions for ~ become 

z z 
W • fit 'Vn 

E . Current-Current Interactions in a Medium in the Case of Small K 

We are now in a position to return to the expre88ion II-I for 

. the amplitude for the emission and absorption of photons by currents 

in a medium. Here we carry out the implicit 8ummation implied in 

11-1 to obtain an explicit form for the inte raction of currents in a 

medium. First of all l et rs consider the form of the interaction in 

vacuum. In this caee II-I takes the fornl 

iii 
It may be noted that II-22 may be obtained from II-2l a. b by substi-
tuting w for w. A semi-plausible justification for this is that 

'V n 

the amplit~e for a meta-stable state contains the factors e -(" /2)te -lEt 

-i(E -i -1)t 
= e . Thus the energy of a meta-stable state can be regarded 
as complex with the imaginary part being .. ,,/2. Also we note that y 
is the total line breadth of the excited states . However in the followini 
we will consider the idealized caBe where we take 'V to be the spon­
taneous line breadth. This would be the case for isolated atoms at 
zero temperature. 
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1 • c -4vj :-2 j (Il-Z3) 
f.1 k f.1 

where j, j' are the two currents involved. Now since all current. 

ara conllerved (i. e., j I: 0 which in momentum space reads 
f.1,f.1 

k j = 0), U-Z3 can be simpUfied as follows. U instead of choosing 
f.1f.1 

the space directions x. y. z one direction parallel to K (photon 

-n"omentum) and two directions tran.verse to K are taken the matrix 

element A can be written (suppressing the factor -411') 

Z tr. direc. 

1 • jtr kZ Jtr• (II-Z4) 

who re j 3 is the component of j parallel to K and Jtr• represents 

the component of j in either of the transverse directions. The fourth 

component of the current four vector. J4 • . is the charge density. 

By the conservation of current J3 can be expres8ed in terms of J4 

(or vice versa) as follows: From k .... J" • 0 it follows ' that wj4 - KJ 3- 0 

or 

(n-Z5) 

Inserting II-Z5 into Il-Z4 and combining terms we get 
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A = - 41J'[ j 4 j 4' (l- i >...!.r - '\ j 1 j' ] - - ~ - ~ L tr. ;Z tr. 
- K k 2 tr. direc. 

, 
4 [J 4J 4 + '\ j 1 J • ] 

:: 11' ~ L tr. w'l.K'l tr. 
(U-26) 

2 tr. direc. 

2 Now 11K represent:. a coulomb field in momentum space and J4 1e 

the charge density so the first term of II-26 represents an instan­

taneous coulomb interaction (s ince it i& independent of w) whUe the 

second term contains the delayed interaction throUih transverse wavee • 

. In a mediu:m we have that 

where 1I'fJ." has been discussed in Section C, D, and E. To aecond 

order 1J'tl" is given by 

(11-28) 

Ca rrying out the indicated summations implied in n-28 we have 

(temporarily SUWres sing the factor - 41J'jk2) 

• • • 
Jtr.Jtr. + J4~ 44J4 - J4~ 43J3 

2 tr. direc. 

i • • 
- J3(33~4 + J3f3 33J3 + J ~ J tr. tr. tr. tr. 

2 tr. direc. 

(II-29) 
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In a rriving at II-29 we have made use of the fact that all off diagonal 

matrix elements of ~ are zero except ~ 43 and ~34 (= ~ 43). 

Consider the term of II-29 that depend. on the transverse di-

rectionS i thieJ is given by 

411' 

k! 2 tr. direc. 

• 
Jtr.Jtr• (1. ~tr •• tr.) 

To get the contribution from all orders we note that since the trans-

verse part of ~ is diagonal that the transverse part of the inverse of 

(6 - (3) is just given by the reciprocal of ita transverse diagonal ele­

ment. . That is to all orders the tran.vera. part of A (A.,) is given 

by 

A., 41f L =::-z 
k 2 tr. direc. 

= 4" I 
2 tr. direc. 

I: 4" l 
Z tr. direc. 

Z Z Z 
or since k = w - K 

A = 4" ., 
2 tr. direc. 

• 
jtr. jtr. 

or from U-22 1+~ tr •• tr. 

• 
Jtr.Jtr• 

l w /w 

k 2 (1+ Z w
2 L n 'Vn n) 

wp :-I 2 Z 
k n w - w 

'Vn 

• 
Jtr.Jtr• 

f w /w 

(kZ + w!w
Z I n 'Yn n ) 2 Z 

w -w . n Yn 

(11-30) 
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whe r e 

k2 22: T) == 1 + -..,. 13t t = 1 + w 
~ r .• r. p w 

n 

f w Iw 
n "n n 
Z Z 

w - w "n 
(II-3l) 

On compa ring 11-30 to the corresponding term of II-26 wo aee that 

the effect of the medium on the emi&8ion and abaoprtion of transverso 

polarized photons is contained in the function 11. Note that 11 b inde-

pendent of K. 

Now we consider the scalar-longitudinal terma of A cA ). . c 

From II-29 these are 

t. • • , , 

A c= J4J4 - J3J3+ J4 i344J4 - J4i3.!3J)- J3i334J4 + J3i333j 3 (II-32) 

To s implify this expre ~ sion we note that .ince all current. involved 

• he re a re conserved O. j and the atomic electron currents) the 

longit udihal componenta of currents can be related to the scalar com-

ponent via II-25 (remember that 3 is the longitudinal direction. 

direction of K and 4 is the scalar or time direction). Upon using 

II-25. n-32 becomes 

(11-33) 

To get the contribution to all orders we note that in every order we 

can us e the same trick to eliminate longitudinal currenta in favor of 



-28-

scala r ones . With thi s fa ct it is easy to see that to all order. II.ll 

b ecomes 

(n-34) 

upon substituting for ~ 44 from 0-22 and replacing tho factor -4w/k2• 

n-34 becomes: 

A 411' 
= J4=!- j4 

c K il 
(n-35) 

kl 
where Tl:: 1 +::t. ~ 44 and is given explicitly in II-ll. On comparing 

K 
II-35 to the corresponding term of 11-26 we ,00 again that tho effect 

of the medium on the propagation of .calar photons is c ontainod in 1'} •• 

On combining II-30 and n-35 we obtain tho desired ro.ult: 

(II-36) 

This io the amplitude to propagate any type of polarized photons through 

the m edium (scala. r, longitudinal and tranaverae) for value. of K 

such t hat Ka «1. . 0 

* . The e lim ination of longi t udina l photon s in favor of scalar ones is by 
no means necessary. If we chose we could have done the contrary 
that is, by the inverse of II-l5 we replace J4 's by Jl IS. U this is 

ca rrie d out the analogue of 11-35 is J34J; (tho amplitudo to propa­

gate the longitudinally polarized photon~. '!) 
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F . Index of Refraction of a Mediwn 

In order to make a connection of the photon propagator with an 

index of refraction we conside r Maxwell's equations {or a medium which 

is c ha r a cterized by a phenomenological index of refraction n (and 

dielectric function (= n
2
). As lo well known,Maxwell. equation. can 

be written as 

and 

In momentum space II-37a, and U-37b become 

and 

or 

and 

a I: 
tr. 

41Tjtr. 

2 2 K2 
C&) n -

(U-37a) 

(U·37b) 

(U-38a) 

(n-38b) 

Now a tr• and a 4 are the potentials produced ina medium from the 

• • current j. The coupling with another current J ia J • a or 

* --Note the gauge used for II-37 is 'V. A • o· which impUe. in jeneral 
that A3 r: o. 
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Comparing II-39 to II-36 we see that the function" given by 11-31 

ca n be r egarded as the die l ectrfc {unction of the medium. Another 

wa y of looking at the situa tion is to use the fact that at the location 

of t he pole of the propagator one obtain8 the relation between energy 

and momentum (w. K) of the free waves. Now in a medium the phase 

velOcity of the wave8 i8 given by w/K. lIn where n is the index of 

refraction. i. e •• the amplitude for the propagation of a wave in a 

medium is proportional to e -i(wt-Kx) • e -iw(t-nx). Now from 11-36 

the pole of the transverse part of the propagator occur8 at w2,,_K2• 0 

or (} /K2 a 1/,,; that is 11 can be interpreted as the 8quare of the index 

of refraction. On further examining 1I-36 we aee that there is aleo 

the possibility of another pole from the coulomb term;that is another 

• pole occurs when ,,::1 O. Since '1 is not a function of K. we aee that 

at the pole dw/dK = O. i. e •• the group velocity is identically zero. 

That is the free waves due to the coulomb term does not represent a 

propagating disturbance but a purely oscillating one. We will return 

to quantitative nature of this pole later on. 

We are not the first to give a full quantum theory of the index of 

refraction. Tidman (1) has given e. quantum theory of the index based 

on an atomic model similar to the one used here. However the method 

that he uses to obtain the index is quite difierent from our8. We ob­

tained the index from the photon propagator in a medium (at the pole). 

Tidman considers only transverse waves and ullea ordinary perturbation 

theory (as opposed to the Feynman diagram method) to calculate what 

• 2 
There i also a pole at K c o. 
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he calls the polarization energy of the medium (the 8elf energy of the 

system (medium plus r adiation) due to the real photons). He then 

makes a c anonical transformation of the radiation field variables. 

The index is obtained by defining the parameter in this tranS£orma-

ti cn in Duch a way as to account for the polarization energy. The real 

part of the index that he obtains ia the same as ours . The imaginary 

part is different. However Tidman's imaginary part can be made 

equal to ours if we retain the terms that he drops . That is, replace 

(o)no by (o)no- (l"n/2) everywhere in Ticlman' . equation 5. 7. 

O. Discussion of the Index of Refraction 

Let us return to II-31 for 1). We have 

(U-40) 

n 

or since " «f.I) . 'n no 

(U·41) 

Wo see from II-40 that " (aG well a. f.l)2". K2) has poles in both 

the lower and upper half f.I) plane. That is our " is not causal. On 

the other hand the index computed classically is causal. For example 

if we treat the atomic election as bound to an origin by a damped har-

monic potential of characteristic frequencies wn and damping con­

stants "n the index would be 
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Tl :: 1 + r.l \' 2 :n 
c p ~ w - Co) - iy Co) 

n n n 

which has pole s only in the lower hal! plane. In our quantum treat-

m ent a caus al propagator does not appear. The propagator that we 

. t ain io a irl.1.ila r to vacuur.n Fcynman propagators (1. e., poles in 

upper and lower w plane) . where the mass of the particle is given 

an infinitesimal negative imaginary part. As long aa we are dealing 

with positive frequencies the predictione 01 causal prcpagators U\d 

Feynman propagators arc the same. 

We note that because of the spherical symmetry of the atoms 

(after orbital angular momentum states have been summed over) that 

"33 :: (w
2 

/K2)13 44. That is, "tr., tr. &:: (w
2

jK2)p 44 etc. Here we have 

calculated "tr., tr. and P 44 separately and we see from II-22 that 

indeed these results are attained. 

In deriving the index W'3 have assumed that the density of the 

medium is low enough 60 that we may neglect any direct interaction 

betwee n the atoms. That ie,we have assumed that the field that acts 

on a particular atom is just the applied external photon field. Actually 

the external field may induce a non-zero moment in the atoms; the 

fi eld produced by these atomic moments may be non-zero at the atomic 

sites. The field acting on the atoms then is a sum of this induced field 

and the applied external field. We expect that as the ,;ensity of the 

medium increases the effect of this induced field becomes increasingly 

more important. ThiB effect was iirst treated by Lorentz (e. g., see 

the review article by W. Brown (6» . Aa yet we have not been able 
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t o incorpora t e thi s effect wit hin the framework of the present theory 

'with a quantwn mechanical analysis . However, we believe that the 

fo nnula e that are later developed, giving the energy loos of fast 

cha r ged particles in terms of the index, are valid in dense media, 

whe re the index that we have calculated is incorrect. That la, In · 

a d ense medium, by using a more exact index (e. g., computed clas. 

sically or determined experimentally) in the energy loss expressions, 

we believe that one obtains the correct result for the energy 108s. 

H. Calculation of f3 in the Case of Large K 
J.1v 

We now return to expression II-a and consider the case of 

large K (Kao » 1). In this region the atomic matrix elements a -- .,. 
(see n-ll) are almost zero (eiK • X is rapidly oscillating) unless 

I n> contains a compensating exponential. Thie corresponds to an 

ionized atom. Since for K» ~ implies that the momentum of the 

atomic electron is much larger than the intrinsic momentum of the 

atomic electron in its ground state (which is of the order me 2c: ..!.. ) a o 
we can consider the initial state of the atomic electron to be free and 

A' at rest. Therefore, K+ (x4 , x 3) reduces to free particle propagator 

in vacuum.- It is easy to cee that equation U ... S reduces to 

+ terms with k - -:k " , .... I'.' 
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whore ui is the ith elec tron spinor of momentum Po' Po= (m,O,O,O), 

and uu = 1. We have 

+ t e rms with k - .. k } 

'= (ZlI')464(k_k')~ 
,""v 

(U .. 4l) 

On averaging the initial spin sta te and summing over the apin states 

of the intermediate state we get, from II-4l and U-4Z, 

+ terms with k - .. k } 

2 

= .. ~ { 
k 

Zp P .. k P .. k P + 6 (p. k) } 
0).1 0'11 J.1 01' v 011 J1.1' 0 

+ i 
k .. 2po· k 

(U .. 43) 

where 

Z 
w = p 

and 

p = m6 4 o 11 

Explicitly the elements of ~ are 

(n .. 44a) 
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(II-44b) 

J3 34 = J343 = K l344 , all other. are zero. (Il-44c) 

I. Current-Current Interaction in the Case of Large K 

Now we are in a position to calculate II-1 for the case of large 

K. We have 

A . j' 
, ;: J ... -I''' " (II-l) 

where 

_ ;: -.!; [(6-(3) J"'1 
~v k~ ... " 

(II-4) 

Carrying out the summation implied in II-1 and using ~ aa given in 

II-44 we obtain, after going through the same procedure that led to 

• II-36, 

where 

+ I 

4 
2 2 

m w 

z tr. direc. 

,,(w, K) II: 1 +. Z P2 
(k + 2row) (k - 2row) 

(II-45) 

(U-46) 

In this case we see that " is a function of both wand K but not a 

function of direction which is to be expected since w~ are dealing with 

<I 
Here only the elements of p aro different but in both caees k .... (3 .... : O. 
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an isotropic m e diwn. This is to be contrasted to the case Ka «1 
o 

where TJ is a function of w only. 

J. Real Processes in a Medium; Poles of the Photon Propagator 

As is well known. real processes correspond to poles in the for-

mulae for virtual proceases. In this section we will examine the 

photon propagator for ita poles. Poles ariae from both the coulomb 

term and the transverse term. First let ua examine poles from the 

coulomb te rm. 

• Poles will ariee in the coulomb term at the zero. of TJ. For 

the case of Kao «I we ha ..... e from n·3l that the pole. are de'ter­

mined from 

1 +W~L • 0 (n-47) 

n 

For the moment let us consider the case of only one excited state; 

in this case n-:-47 becomes 

1 + 
2 

W 
P 0 ( iV) Z i I: \"1- y -C/o) 

(II-48) 

where we have approximated Wy/w c 1 - iy /2"1 in the num.erator of 

* The polo at K = 0 corresponds to the interaction of two charge 
dcmoitie3 at very large (infinite) mutual separation. Therefore, in 
general. TJ(w. K = 0) gives the effective force between t he two c harges 
(i. e •• if we W3re to go to tho coordinate space repres entation of the 
coulomb interaction and take the limit Ixl- co the only component 
of TJ (w, K) that contributes is TJ(w, K = 0). In the follOwing we will 
be interested in the poles arising at TJ. O. 
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.~ "w .. • 

II-47 by 1. The solution of II-48 is 

2, i)2 2 
w . = \~ -T + wp 

• 
for the case at hand w! « ~ 80 we have (alao y« ,,\), 

z 
w i 

"1;"1 +~ .. ~ 
or 2 w 

~e = "1 +~ 
(n-49) 

We aee that the medium will oscillate at a frequency given by ~elll 

Therefore, there should be an ab80rption at w.... . ~e 

2 2 'i. [1 + (wp ft"1 )] . 

in say the energy loss of a fast charged particle passing through a 

thin film of this hypothetical medium of one state atoms. Note that 

w does not depend on K so the group velocity dw/dK III O. Hence this 

mode corresponds to a pure oscillatory mode. The imaginary part of 

w, ·y/2, tells us that the life time of this mo(\e ia l/y. Thia is 

reasonable since the only decay mechanism in our theory is the line 

breadth of the excited states. That is, after time l/y essentially all 

the atom8 will be in the ground state. 

For. the case of m.any excited states we proceed a8 follows. 

Fl·om the case of one excited sta te we saw that the pole ia essentially 

lQI 20 3 / . ..3 For N - 10 pel" cm (Wn WJ. ..., 10 • Note, for solids, Wp is of 
the Ryd •• and in some calfes 1arger than the Ryd. In these case. 
the pole is dominated by the wp term (the plasmon). 
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at the frequ ency o f the excited s ta t e . Now for frequencies near w 
n 

one term in the Gum i n II-47 will dominate. That 18, for frequencies 

n ear say wn II-47 b ecome s 

where 

r a 
n 

-a ... 

« 1 

(U"'SO) 

(the prime means to omit the term 
lor m. n) 

f +,}- ~ 
m p iJ 

m a n+l 

I m 

7 
'iro 

Calling. 1 + r = R the solution of n· 50 ia n n 

(U-Sl) 

· 22 
Note that since w «w , Rn can be taken to be real. That 18 the 

. P 'in 
pole frequencies are at 

(n • 1.2.3 •••• ) 

a nd (n-52) . 

(n = 1, 2,3, ••• ) 

So, for m a ny excited stateG we get a pole for each state tile location 

of which· is s lightly modifie d, as aeen from n ... S2. due to the effecte 

of the non-resonant atates. So much for the ca •• of small K. . 
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For the calle of large K we have. from U-46. that the pole • 

• arc determined from 

4 2 Z 
m w 

1+ 2 ~ aO 
(k + Zmw) (k .. Zmw) 

or 
4 

Z Z m w 
1 + 2 2 Pz i II 0 

(w + Zmw - K )(w - Zmw • K ) 
(U-53) 

We wish 8olutions of II-53 {or Ka »1 or K» meZ. We remark 
o . 

that if we had considered the hypothetical problem of photon propaga-

•• tion through a medium consisting of free electrons initially at rest 

(with a positive smeared out background charge to give charge neu­

trality) we would have arrived at II-53 aa the determining equation 

for the diopersion formula for all values of K. So let U8 solve II-53 

Z Z for all K. Fo r small values of K, in particular K «w, we can 
p 

compare our results to the results of Bohm and Pines (3) who have 

..:-
We have omitted the if: from the Feynman propagators. In the fol-
lowing the poles will be on the real axis. That is, there will be no 
damping of the waves. The delta fu.."lctions arising from the itt's 
imply an infinitely narrow width to the excitations (i. e •• a n infinitely 
long life time). This is to be expected here since we have assumed 
a collisionless medium. That is. once we excite an excitation (col­
lective or single particle). there is no mechanism for the excitation 
to transfer energy into other modes . For example, if a single 
electron. at rest. p~cka \lP e~ergy wand momentum K from the 
photon field {(w+m)G:: KZ+m ). it will always have energy (m+w) 
and r.nomentum K since it does not collide with any other electrons 
of the medium. That is, it will always remain a free particle. The •• 
considerations are correct only at zero temperature. At finite tem­
peraturesbecauae of the continuous distribution of p . the delta 
functiono will give a !inite imaginary part. Damping at finite tem­
peratures is discussed in Chapter IV. 

** Hypothetical because the Pauli exclusion principle will not allow 
more than one electron in a quantum atate. which impliea we cannot 
have a ystem of electrons all at reat. 
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found the dioperoion formula for longitudinal waves in an electron 

gas in the non-relativistic approximation. 

First we note that II-53 is even in w. So, in the following, 

we will consider solutions only for positive w. In the non-relativiatic 

approximation. CoI)« m, II-53 become. 

4 2 2 m Co\) 

1 - P - 0 Z 2 ' -4 -
4m Co\) - K 

or 

II 0 

with a solution, 

2 2 K4 
Col) II Col) +~ 

P 4m 

For K2« mCol) we gelt , , p 

4 
(1)= Col) (1+ K + ••• ) 

P 8 '" l. m wp 

(II-54) 

(II-55) 

(II-56) 

-Equations II-54 and U-56 are the Bohm-Pines results {or ~i = 0 

-(Pi are tho momenta of the electrons): see equations 57 and 67 of -reference 3. The restriction Pi 1:1 0 is not a serious limitation to us. -For if we had not made the assumption of Pi" 0, we would have had, 

instead of II-43, that 

2 N i ~ (r.!:)' { 2Pip.Ptv + k.."PiV + kyPiJ.L· 0tJ.y(pf k) 
[)f1Y= • Nk2 L :::1 k Z + 2 k 

~l ' ~. 

+ to rms with k - - k } (II-43 ') 



-41-

l eading to. i ns tead of II-4 6. 

2 

= 1 +~ L 
i 

- - 2 
2 r (Vi· K ) '1 w \' 1 - K (m/EI) 

:IIl-~~ Z 
I - - 2 Ik

2
) (w - vi • K) ... \ZE' 

i 

(II-57) 

leading to a dispersion relation (,,:11 0) 

1 :II (U ... 58a) 

or 

. 2 
2 w \' 

w =-l6 (U:-58b) 

i 

Equation II-58b is the relativistic analogue of the Bohm-Pines dis-

persion relati9n (see equation 57 of reference 3). Now. for 8uffl-

ciently small K. we may expand the denominator of U-58b In power. 

- - 2 vi • K 2 
of wand (zi:w ) • and get a solution for w(K). Doing thief 

we obtain 
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2 
vi 

In the non- rel ativi s tic app roxima tion (Ei I: m(l + Z), vi « I, 

w « m ) we ob ta in 

(where we have set w I: ~ in se c ond, third, and fourth terms). -Assuming an iaotropic distribution of vi we iet, after averaging . 

,.-..,,~ 2 1 
over directions (cos a I: 0, cos a I: '3), that 

2 2 { K2 2 K4 
w = w 1 + Z <v > + :2 2 

p w 4m w 

2 
5 2 K2 W } -C;<v>-:-z+, 

2m 4m 
(U-S8c) 

p p 

where 

Now, if we di s regard the last three term. of U-S8c for the moment, 

we have the dispersion formula given by Bohm and Pines (see equation 

66 of reference 3). Clernmow and Wilson (7) have considered a rela-

tivistic electron gas by using the relativistic Boltzmann equation. 

The y have wo rked out the lowest order correction. to the Bohm-Pinea 

formula. They get 

2 2 { 
W I: wp 1 + 

(see equation 39 of reference 7). 
2 

U we define w2 
I: W 

2 (1 - t< v 2> +.!p 2) (i. e.. an effective pla.ma 
p p 4m 

frequency), we get 
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2 -2 { K 2 2 K4 
w = w l+--z<v>+ 22 

p w 4m w 
p p 

which. to the same approximation. is 

2 -2 { K2 2 K4 
w = w 1 + ::z <v > + z::Z 

p w 4m w 
p p 

(n-SSe) 

2 I 2 Now if <v > »(w m) the last term in II-SSe 18 negligible com-

pared to the second term. U we assume a Maxwellian distribution for 

<v2> «v2> = ~ (where ,,= Boltzmann's constant = S. 62 x 10- 5 
m 

e. V./oK) ). we get <v2> = ~ » (w /m)2. or "T» (w /m)2m / 3• m p p 
20 -S -4 For N - 10 we have "T» 10 e. V. or T» 10 degrees Kelvin 

«v2> » 10-13). So. for just about all cases of interest. the fourth 

• term of II-SSe io small. In fact. Bohm and Pines point out that the 

third term is small compared to the second term. Note that at K- O. 

we get w2 = -W2 
'; w2

(1 .. ~ < v 2» which is a shift in the plasma fre-p p g 

5 2 - -7 quenty. ThiB shift at say room temperature is b < v > = 10 • i. e. 

very small. We note that we have not included the effects of higher 

orde r proper diagrams and that therefore the correction terma are 

only of academic interest. We have made no attempt to estimate these 

higher order terms. 

*For N - 1019_ 10 20 • (w /m)2 - 10-15• for Maxwell-Boltzman statistics 
- 0 p 0 2. -11 0 to apply. T> 100 K; for T = 100 K. <v > - 10 • for T = 1500 K. 

2 -7 -2 2 5 2 
<v > - 10 • So we can take w = w (1 - b<v ». Below 100 K 

P P 19 2 .S 
Fe rmi statistics applies. and. in this case. for N - 10 • < v >-10 • 

s o (w,~/m) 2 is still negligible. Consider some real plasmas: Solar 

coron~ N- 10 6• (w /m) Z - 10 -27. T - 106• < v 2> - 10 -3: thermo-
p 9 I 2 -17 S 2 .. 1 

nuclear plasma N - 10 • (w m) - 10 • T - 10 • <v""> - 10 • p . 



-Retllrning now to the case at hand, l arge K and Pi = 0, we now 

continue the discussion of the solutions of II-53. From II-55 we get 

2 that for K »mw , 
p 

(n-59) 

n-59 h the dispersion formula for non-relativistic values of K 

(K «m). For larger values of w we get from n-53 on dropping the 

w term, that 
p 

k4-4 2 2 = m w 

or 

(w :t:. m)2 a K2+ m 2 

(w~ m) . 

W II: = m = (K2+ m 2)1/2 . (11-60) 

It is interesting to note that a new solution exists for small Ki namely 
K2 

w = 2m{l + :-r). For K:::O this gives w· 2m. This root 18 connected 
2m 

with the phenomenon of pair production. Namely, a virtual longitudi-

nal photon is able to make a pair, electron-positron, if it haa a fre-

q uency at least equal to 2m. The other positive root of n-60. which 

is the extension of II-59 for relativistic values of K. is 

2 21/2 
w a • m + (K + m ) (n-6l) 

which, for K» m, is 

Before going on to the transverse cas., we include a brief dis-

cU8sion on the order of magnitude of the various quantities involved. 
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For our case of the atomic system, the quantities which characterize 

the atoms are the Rydberg (Ryd) and the Bohr radius a o • The medium 

i s characterized by the plasma frequency wp. First of all, 

2 

(~ I: l6"Na! 

;; 2"N x 10-24 

2 2 
W «(Ryd) . • 

p 
This is our case, e. g. , moat gases 

at S. T. P . For metals w can be of the order of a Rydberg. Second, 
p 

2 the case of large K, Kao » 1 bnplies K» l/ao .. me. For Ko c 

2 2 2. me we see that in the case considered here, wp « Ko • Summing 

up. small K'a are of the order of the Rydberg and large Kta are of 

the order of a few percent of the electron m.a ••• 

In summary then, the disper8ion formula for the caae of our 

atomic system for longitudinal photons consists of two branchc8: one 

2 
branch starts out. for Kao « I, a8 wn + (wp/2wn)' n = 1,2 ••••• 

As K increases these linea gradually merge into K2/2m which 

asymptotically tends to K· m for K» m. The other branch starta 
K 2 

out at 2m as 2m + 2m tending to K + m for K» m. Theae dis-

persion curves are plotted in figure 2. 

* 20/ 3 -2 Numerically for N - 10 em, w - 10 e. V.. Ryd;; 13.7 e. V. : 
1 4 P 1 

Ko - Z x 10 e. V. In the usual cgs units, K - length • Here, 

1 
however. since we are using natural unita ("" c • 1), lengtli 18 

equivalent to energy. 
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~---------------------~~~---------------------L------------------------------------------~.k 
2 

k = Ine o 

Figure 2. Longitudinal d ispersion curves for the atoInic systeIn 
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Now we go on to di s cuss the poles arising in the transverse 

term. Poles arise from the transverse term when wZT) - K Z = o. 

Again we will discuss separately the casea of large and small K. 

First consider the case of small K. From II-3l we have 

(II-6Z) 

Again we first consider only one excited state in order to get an idea 

of what is going on. In this case II-6Z become • . 

Z 

w2~1 + 20 wp 20 ) - 1(2 • 0 
W • W Y 

whe re Wy - "1 .. .tz. . 
Breaking this up into real and imaginary part. yield. 

where 

-2 Z ~ 
w -"1-""4 

2 
To simplify writing, let x II ~ , Q. 

wp 

II-63 become. 

iii Again we have approximated Wy /wn by 1. 
n ." 

(II-63) 

(II-64) 
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3 4 -6 F or ga ses , a - 10 - 10 , taking y - 10 ~ and ~ - Ryd. , 

r - 10 -2 _ 10 -3. The real part of II-63 18, 

(U-65) 

Equation II-65 is plotted in figure 3a. We see that. near the ori.gin. 

- dx - l-yRe = x with a slope cry = 1 - in • 1. At x. 0, y It 0; while _ Ite 6 
at x. n lit; r. YR = (1::1: -) 0 - 10 (resonance): aa x - Q), YR - x. ere 

The imaginary part of n-63 h 

(U-66) 

Equation II-66 18 plotted in figure 3b. We see that YIm 18 non-zero 

only for x- '1; for x = 0, Ytm = ¥ -105 - 107 • 

The alteration of the results for one excited state to the case of 

many excited states is essentially that, instead of having one resonance 

2/ 2 2/ 2 2/ 2 at x a ~ wp ' there will be many resonances located at ~ wp ' w2 wp ' 

• ••• The effect of the non-resonant states rn (see II-50) will in 

general be very small compared to the resonant term. Specifically 

at x = 0 • YR a 0 (1 +' r), r «1, instead of YR .. x, whUe at n e n nne 

x ;: 0 • r, r can be ignored compared with 0 / r. The imaii-n n n n n 

nary part for many states gives a aeries of spikes at x· ,On' , n • 

1, 2, • •• • 

F or the atomic system, we are intereeted in values of K up to 

2 3 
the order of Ko. l/ao • me - 10 Ryd. Thh h far beyond the 

.\ 



2 
x = (w/w ) p 
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Yr 
M 

Resonance 

c::::::=:==========:=::!::.~ 

_________ y = (k/wp)2 
~ Av~------------~--·· 

y = (k /w )2 
o P 

Figure 3a. Transverse dispersion curve for the atomic system; 
real part 

x 

Figure 3b. Transverse dispersion curve for the atomic system. 
imaginary part 
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resonance region (see fieure 3a). 

have 

or 

Now we go to the re gion of large K (Ka »1). From II-45 we 
o 

4 2 2 
w 2 \1 + z rn wlli ) • K2 • 0 

(k + 2rnw)(k - 2mw) 

6 2 2 2 2 
lt - 4m w (k • w ) • 0 p (U·67) 

Again. we will find solutions of 11-67 {or all K just as was done in 

the longitudinal case. For our atomic system we want the solution 

for K» K = me 2• o 

To aolve U-67 we first try to find aolutions for k Z » wZ • p 

11-67 becomes 

or 

2 k II .2mw 

and 

2 w 
For 2mw to be much greater than wp implies that w» w (-1? )­

p m 

10-7 wp (for gases at S. T. P.). So {or w» 10.7 wp' the solutions 

of k 2 = d: 2mw are 

2 21/2 w :I d: m II: (m + K) ; 

the two positive solutions are 



and 

~ = m + (m 2+ K2)1/Z 

K 2 = Zm+­Zm 

=K+m 

for (K «m) 

for (K» m) 

Wz III - m + (mZ+ KZ)l/Z 

KZ 
::arm 

=K-m 

for (K« m) 

for (K» m) 

(U-68a) 

(U-68b) 

Again we see from c.;, that at KilO, W II 2m, i. e., a transverse 

photon is able to make an electron position pair if its frequency b at 

Z leas t 2m. Now, Wz =: K IZm + • •• b a solution as long aa 

w» W (w 1m) ::a 10-7 w which impliea that KZ » "}. So the con-p p p p 

dition. on Wz are 

for (w «K« m) • p 

Now, the solution k 2 
=: 0 certainly does not aathfy k Z « w~. How-

, Z Z 
ever. to find the third solution try k ::a 6, where 6 - wp. We get, 

3 Z 2. Z 
from U-67, that 6 II 4m w (6 - w ), which baa the approximate solu­p 

tion 6 II w2. for w» w (w 1m) • 10-7 w. Wo have kZ. fl.? or 
p p p p p 

Z KZ + 2. w III W 
P 

(n-69) 

For K = 0, w = w (» 10-7 w) 80 U-69 is valid for all K. ' II-69 
' p p 

is recognized as the diaperDion formula for transverse wavea in a 

, - Z 2 
plasma for Pi::a O. (8). For K» wp ' we have W • K. which h 
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the dispersion formula for free light. Now we fix up Wz for K« wp. 

For K «w • 
p 

Z Z k I::S W • U-67 becomes 

. w6 _ 4mZw6(wZ_ wZ) :I 0 
P 

with solutions 

Z 
w = 0 

Z Z 
w = w p 

and 

Z 2. 
W I: (lm) 

w = wp is recognized as the limiting torm of n-69 tor K
Z « w! • 

W = Zm is recognized as "1 for K = O. Therefore. w:l 0 18 the 

limiting form of Wz for small K.The three solutiona are plotted 

in figure 4. Again we state that the portion of tho K axb that wo 

are interested in is for K» meZ• -We remark that the assumption Pi. 0 18 not a serious limi-

tation. We could. just as we did in the coulomb caso. rederive 

everythi:lg with Pi "" O. From II-43' we find that the transverse 

dielectric function (1'1. ) is 
~r. 

2 
::.l+k ~ 

"tr. Z tr .• tr. 
W 



w 

w 
p 

w 
p 
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r-----------~--~~------------------------~~ k 
k = mel 

o 

Figure 4. Transverse dispersion curves for the electron gas 
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We note that for Pi rf. 0, the transverse and coulomb dielectric func­

tion are not equal. From II-70 we £ind, in the non-relativistic ap­

proximation, that the correction to the dhperaion lormula w2 = K2 +w2, 
P 

for small K, is 

where 

2 2 -2 [ K4 
w=K+w 1+ Z::z 

p 4m w 
p 

2 
-2 2 
w • w p p [ 

5 2 w] 
1 - b < v > • ,,';1. 

2 K2 
<v>-~ 

2m 
] 
• 

(n-71) 

Except lor 11-71 we note that, in both the longitudinal and 

transverse cases, the poles where wp (collective term) can be nea­

lected are identical (compare n-59 - II-61 with n-68 a, b). Thes. 

poles correspond to single particle excitations by lonaitudinal and 

transverse photons respectively: they should be equal, since a 

particle which is initially at rest and picks up energy wand momen-

tum K from either a longitudinal or a transver.e photon must satisfy 

(w :I- m)2 II KZ. m Z, which is just the determining relation for these 

poles. 

11-71 is the dispersion formula lor light propagating through the 

medium, the w terms being the collective eUect of the medium on p 

thia propagation, and the K dependent terms the single particle 

-efiects. For wp c: 0 we get w = K. i . e., free light. For Pi _ 0 

o 
The aecond and fourth terms in t2e braces are, for small K, a 
higher order correction to the wp term and do not have anything to 
do with the motion 01 the electrons.. We bave included them here 
for completeness. 
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we have see n that "t :f:" 1 This is to be expected. For, con-r. co u • . 

eider a photon in the l ab system [described by a vector potential 

ike x 
a = constant e e (e is a unit vector)] • 
~ ~ ~ 

• I 

Now, in the rest frame 
I I 

of an electron at r/A a lo (or, equivalently r. ng. E t ~ E lo ), and r. ng. 

hence the recoil of the electron to a transverse photon 18 different from 

that to a longitudinal (or coulomb) photon (t. e., the transverse and 

coulomb index are not eqUal). Finally we note that, when K 1:1 0, the 

results for the longitudinal and transverse caeea are identical. Thia 

is to be expected since when K,. 0 (no direction 18 specified), one 

cannot tell tho differenCe between loniitudinal and transverse oscU-

lations. 
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In. ENER GY LOSS OF RELA TIVISTIC CHARGED PAR TICLES 
IN A MEDIUM 

A. R ela tian to La s s 

Up until now we have been considering only the propagation of 

photons through matter. That is, we have diacussed only the inter-

action of the electromagnetic field with the medium. Now we con-

sider the interaction of a charged particle, as opposed to the atomic 

electrons, with the medium and the electromagnetic field. Specifi­

cally we will be interested in the ~nergy los. of a relativistic charged 

particle of mass M passing through the medium. In order to get the 

energy loss per unit path length, ~, we wUl • .£irst calculate the 

probability per second that the incident charged particle, of energy 

E (momentum (E2 - M 2)l/2). makes a transition to a 8tate of energy 

(E - w) in range dw (momentum (E_w)2 .. M 2)1/2), that is, the parti­

cle loses energy w. Calling thi8 quantity dr w-w+dw the eneriY 

loss per unit path length ~ is given by 

dE 
ax ~SQ) o 

~ Sex> ~ I d(r W:--W+dW ·) dw 
o v \ QW 

(m.l) 

whe re v is the speed of the incident particle, the integral in III-l 

extends only over positive frequencies 8ince the particle can loose 

only positive energy (medium absorbs only positive frequencies). So 

the problem is to calculate the decay rate for a relativistic charged 
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particle. In order to do flO we proceed as follows: Consider the sell 

energy of a particle in the medium. that 18, the emission of a virtual 

photon by the particle with the particle subsequently reabsorbing the 

photon. In a medium the photon has an amplitude to interact with the 

atoms of the medium. From time dependent perturbation theory it 18 

known that the only ef£ect the above process has on the wave function 

representing the particle is to cause a change in ita phaae proportional 

to the time interval T over which the perturbation 18 applied. The 

resulting wave function is proportional to 

-iEt -~Et' e e 

where ~E is the energy shift due to the virtual photons. • In general 

~E may have a real and an imaginary part. The real part represent. 

the correction to the energy eigenvalue due to the emission and re-

absorption of photons (i. e., the real part representa the change in 

~cs of the particle due to virtual photons). The imaginary part of 

tho sel! energy represents the loss in amplitude required by the fact 

that tho probability that the particle remains in a state of energy E 

(momentum P = (EZ _ MZ)l/Z) decreases with time. That is, the 

imaginary part of ~E (1m AE) is minus one-half the total decay 

rate out of the initial state. This can be aeen all follows: when the 

total decay rate is r T (1. e •• probability of decay proportional to 

-r t . 
e T )" the amplitude of remaining in the original state containll a 

'In vacuum the imaginary part of ~E is zero in accordance with 
the fact that a free particle in vacuum cannot emit a photon. 
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-r T/zt 
fa ctor e ; and the tiIne dependent wave function has a factor 

-r'T/zt -itt -i({-irT/Z)t. 
e e . = e • Thu8 - r T/Z is the imaginary part 

of the energy. ThuG the ultimate problem ia to compute the self energy 

of a particle in a medium and then to take its imaginary part. Thia 

method of computing decay rate. has for example been U8ed by 

DuBois (9) to calculate pla8mon damping in an electron gaa. 

B. Self Energy and Decay Rate of a Particle in a Medium 

In order to calculate the self energy we wUl again use pertur-

bation theory via Feynman diagrams. Con.ider the diagram a in 

figureS. Diagrams a-d ••• , repreaent the exchange of one virtual 

photon and its interaction with the medium. Diagrams e-l ••• repre-

sent the exchange of two or more photona. Diagram CL represent. 

the sum of all one photon excha~ge diagram.. Diagram ~ repre8enta 

the sum of all two photon exchange diagrama. The effect of the medium 

is that the photon propagator 10 modified. Physically the particle 

interacts with the bare electromagnetic field (coupling - ey ) emitting .,. 
a photon; the photon propagates through the medium being absorbed 

and re-emitted by atoms of the medium (propagator ".,.v); finally the 

particle interacts with the bare electromagnetic field (coupUng - eyv) 

absorbing the photon. Here we ~l neglect two, three, etc. photon 

exchange processes aince they are certainly .maller than a one photon 

*Here { is the total real part of the energy (1. e •• ( include. the 
effect of virtual photon a etc.) 



-59-

p 

+ 

+ + ••• 

+ 

({3) . 

Figure 5. Diagram illustrating the self energy of a particle 
in a medium . 
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exchange procefls because of the weak coupling constant e Z• It should 

be noted that the "bubbles n in figure 5 represent the propagation of 

atom:) in excited states and not propagation of electron-position pairs. 

We now write down the amplitude that corresponds to figure 6. 

Cailing this amplitude /11, we have 

where Up Q the free particle epinor of four momentum p (p. (E, is) ) 

normalized to t1p U Q 2m . 

and 

It a photon propagator in a medium which ie given in D-4 
Jil' 

P I: particle four momentum which here ie taken as relativietlc. 

With the normaliza.tion used here the relation betw.en /fJ and AE ie 

given by 

(W-3) 

We a.re interested in r T= -2 1m ~ . ' which from UI-2 and W-3 ie 

(nI-4) 

. " 3-where Re denotes real part and d . k a dk"d K. The limite on the 

integral are from -co to + co. Now if in m-4 we perform the inte­

gration ovar K we are left with an inteiral to do over k4• Call the 

integrand of this integral F(k4). Then 
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IT 
fJ.V 

Figure 6. Diagram used to calculate the self energy of a 
particle in a medium 
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(UI-S) 

where in nI-S we have expressed r T as an ,integral over positive 

values of the fourth component of k. We now can aSlociate the inte-

grand of IU-5 a8 being the differential decay rate 

That 18 

dr dW c: F(w) + F(-w) (III-6) 

wh~re 

We write F(w) as follow. 

2 
-0 

F(w) I: 4 
(2 .. ) E 

(W-S) 

where 

Next we carry out the implied summation. in In-9. To second order 

Now proceeding in a manner that 18 exactly the eame ae the one that 

led from 11-28 to II-36, we £ind that to all orders 

$Hence!orth we call the integration variable in Ul-S w. Also we drop 
the sub cript w-w+ciw on dr. 



whe re 

.. 63-

f a X 'fI' :: 41r{~ + ~ Xtr• , tr. } 
1l 'V ll'VK - -~ ~ z i 

'11 . 2 tr. direc. w '11 - K 

2 . 
k 

" :: 1 + =z ~ 44 
K 

(nI-IO) 

(nI-ll) 

and i3 44 is given in II-22 for Kao « 1 and in 11-44 for Kao » 1. 

In arriving at III-lO we bave. in deaUng with the acalar longitudinal 

terma. replaced Y3 by (wfl<)Y" etc. (4). Now 

which we write as 

where 

and 

2 -e F(w) CI '4 Rca (~ + I~) 
(211') E 

12 c: S 
K>K o 

(nI-12) 

(nI-13) 

It : ' 1 

(m-14) 

, \ " 

F or fl we will use the expression for 11 in the ranie Kao « 1 and 

for fl. the expres 8ion for " in the rang- Kao » 1. That la, i~ 11 
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we use 1344 as given in 11-22, and in f2 we use 1344 a8 given in 

II-44. Strictly speaking, n-zz· and II-44 8hould not be used near 

K . However, as is usually the ca8e, after performing the integrala o 

the dependence on Ko in ~ and IZ is proportional to In (Ko) and 

1 
In (i<) . respectively • .. The final anawer (- ~ +IZ) ia then independent 

o 
of Ko. It 18 convenient to rewrite ~ aa 

(In-1S) 

nI-IZ become. 

(nI-16) 

(III-17) 

where 
Z 

J d
3
K'! 

-e Re 
F R:I (211')4E 1 

all K 

} and (III-1S) 
2 

) 3-F - -e Re d K(!Z· f l ) 
S - (211')4E K>K 

0 

To proceed further we need an explicit form for X • X b given 
J.1" J.1" 

in III-9. Rationalizing the denominator in nI-9 and averagini over 

the initial spins and sumr.ning over the final apin. o£ the particle we 

get 

2 {2P P _ k. 1) - k P + 6 (p' . k)} 
2 k J.1" t'"" 1''' Ill' k - 2p • 

un-19) 
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F rom ID-19 we find that 

and 

X44 = Z 2 { ZE
Z 

- ZEw + p. k } 
k - 2p • k 

• Z k - Zp • k 
{ 

w p. K} l-n---z 
ZE 

x I: l Z { Zp~r. - p. k} 
tr •• tr. k _ Zp. k " 

a l 
k - Zp • k 

4 
{

pZ _ Ew - P. it} 
tr. % 

(nl-ZOa) 

(nl-ZOb) 

- -where Pt is a component of P transverse to K. Now in all of r. 

the casea conaidered here '1 18 independent of direction SO upon Bub-

stituting In-ZOa and ill-ZOb into III-10 we find that: 

where 

Z / - -/ Z 
f 16 'If {E (1 - w ZE - p. K ZE ) 

• 2 Z k - Zp • k K '1 

Z 
P.l I: 

pI- Ew + P. K } 
+ z Z 

w'l-K 

Z tr. direc. 

e is the angle between P and it. 

Equation m-Zl becomes: · 

(nI-Zl) 



- -1 w p . K 
161rEl { - TI - lEZ-

f = 2 2 
k -: 2p. k · K " 

2 2 w p. K 
+ _V_(l_-_CO_8-=:--O_)_-~'E_+_E_2_} (fiI- ZZ) 

2 i w,,-K 

In the next two sections we evaluate the intearab F Rand F S 

respectively. 

c. On the Evaluation of the Integral F R (w) 

From UI-ZZ and III-IS we have that 

- -w P·K Z {l-n-
F -e ERr d3-K 1 2E

Z 

R--reJ 2 2 
11" all K k - 2p. k K "1 

+ 

Z( Z w P. K • 
v I - co. 0) - ~ + E2 } 

2 Z 
w"l-K . 

where "1 18 given in II-31. Now 

eZE 
F R - - --r Re (C + 1.") 

11" 

where 

C = Cl + Cz + C3 

·Henceforth we omit the "all K n on the K integral. 

(m-Z3) r 

(III-24) 

(Ul ... Z5) 

(UI-26&) 

(m-Z6b) 
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(nI-Z6c) 

and 

(nI-Z7) 

where 

T zS d 3-K (1 - cos ZO) 
l cv 1 2 Z 

. (k - Zp. k) (w 111- K ) 
. (W-28a) 

T2 • - E S d 3K" i 1 2 2 
(k - 2p. k)(w "1- K ) 

(III-Z8b) 

T3 = ~ r d3K' P. K: 
E J (k2 _ 2p • k)(w2~ ~ K2) 

(m-Z8c) 

These integrale are evaluated in Appendix B. • Th. r.sults are: 

a . 1/2 

( 
1 - 'i + (1 - a) ) 

C1 ill C. 1n _ ali (111-29a) 

(nI-29b) 

a 1/2 
. 2 [ 1/2 a ,1 - '! + (I-a) )] 

C3 =-c.(v /2) (1-a) + 'Z 1n \ -a/1. . (In-29c) 

2 2 [ 2 1- ~ +(l_~+6)l/2 
c. ~!.f-) -{ (l_a)1/2+ 161/ 2+ (6-7- ) In ( Z ) 

w . .. (~ _ 61/2) 

a 2 1 -~ + (1_a)I/2 )] 
. - Tln~ -a/'I. . (m-Z9d) . 

9 
In the remainder of thia section we drop tho subscript 1 on ". 
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1 - ~ + (1 - E: + 6)1/Z 
o.( Y ll)ln( £ 1/2 ) <llI-2ge) . 

-(Z-6 ) 

(III-29f) 

where 

a :II Zw/Pv(1 - w/ZE) 

6:11 (w
Z /P~)'I'I 

(llI-lO) 

It ia to be noted that we want the real part of the resulting expression. 

Next we substitute the expression III-lO into 1II-28 and III-29/ 

We then expand the resulting expressions as a power series in w/E. 

Now. as we shall see. the values of w that contribute to the decay 

rate from the F R terms are of the order of the Rydberg. So we 

only need the lowest order terms in the resulting e":pansion of IU-Z8 

and Ill-29 as a series in w/E. For. taking the incident particle to 

have a mass the order of the proton mass and taking ita energy to be 

of- the order ;of its rest mass theJl w/E ~ ' l-O~7 ;which ' is very small. 

So. excluding the unlikely possibility of a very large coefficient of 

• w/E etc.. we drop these higher order terms. We have 

·Thia has been verified by direct calculation of the coe!£icie.nt of the 
w/E term. 

, . . ... ' 



-69-

i {2 , . -2 
(,,) (v ,,-1) In ( 2 l/Z 

to) _ (~) 

Pv pr 
.) 

(I1l-31) 

In obtaining In .. 3I. we have dropped term. that do not contribute a 

real part. We wish the contribution to the decay rate that arbe. 

from FR. Calling this contribution (dr/ dw)R' we have from UI-6 

dr ( dw ) R = F R (w) + F R ( -w) 

Noting that " is an even function of Col), we obtain 

z . Z 
e [(1m -1) {1 ' (2Pv/w) Z} =-- " z:r Z-v 
TlV . .11 - v ,,1 

Z -1 e J - Re(v -" )('11'- ) 

(UI-32) 

where 

. (Ul-33) 
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2 
for lev Re 'I > 0 

(III-34) 

atp for l_v
2 

Re " < 0 --. 
and 

tp II tan-1 (nI-35) 

The contribution to the energy 10.8 from (dr /dw)R ia obtained 

by multiplying equation III-32 by w/v and integrating over positive 

frequencies. Calling this contribution (dE /dx)R' we bave 

2 -1 • Re (v - 'I )(.,,-8) (m-36) 

We leave 1II-36 as it stands for tbe moment, going On in 

Section D to evaluate the contribution to the decay rate that arb •• 

from F s. In Section E we will combine the results of this section 

and Section D to get the complete energy 10618 formula. 

D. On the Evaluation of the Integral F s( w) 

From III-iS we have 

s 
K>K 

o 



whe re 

and 

flaX 1fl 
~v ~v 
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(ill.37) 

In the following a quantity with the subscript 1 or Z affixed to it means 

that we are to use the expressions for the photon propagator in the 

regions Kao « 1 and Kao » 1 respectively. In IU·ZZ we have given 

• an explicit form for f. We have used this explicit form in the last 

section to calculate FR. This explicit form (for fl ) was useful be­

cause Ttl does not depend on K.. That is, on performing the K inte­

gration, "1 does not depend on the integration variables and so can 

be treated as a constant. The K integration was done by the Feynman 

parameterization technique. This technique is useful in calculating 

F R since the integration variables go over all K space. Now, F 5 

has a restriction on the range of integration. namely, K> Ko. Also, 

F 5 contains "2 (through the f2 term), which is a function of both 

wand K (see 11-46) contrasted to "1' which h a function of w 

only. In tact. "Z is a rather complicated function of w and K 

which makes the explicit form for fZ quite unmanageable. So, in 

order to perform the integration of the f2 term, we proceed as fol­

lows: We note that since K > Ko the correction to the photon propa­

gator is very omaU'so we wUl use the second order expansion of fZ. 

11)1 
By explicit form we mean an explicit form for the inverlie of the 
matrix (6 - ~). 
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Specifically. we shall u s e the following expre8aion for f2, in the cal. 

culation of F s: 

;' 411' X (6 + A ) -k! fJ. " fJ. v ... 2,.., " 
(III-38) 

where, from II-43. 

+ term. k -: -k } 

(lU·39) 

where POfJ. = m6f1v. 

We note that what we are really after 18 the contribution to the 

decay rate that comes from -F s. CalUni thi. contribution r S. we 

have from IU-6 that 

roo dr r s Iii J
o 

(dw) dw 

I: S; (F s(w) + F s( -w) ) dw 

I: S 00 F~(w) dw (UI-40) 
-00 

Upon substituting 1II-3S ' and 1II-39 into 10·40 .via m·37 we lind 

e 2 
(suppressing the factor - 4 Re) that 

(2.) E 

r s I: (1) + (2) (W-41) 

where 



-73-

roo [ S 3- ( 411'0 
(1) = J, dw d K - tV 

o K>K k 
o 

(nl-42) 

and 

(2) = - SOO dw S d
3'K [ ~ f:32JlvX.,." + terms With w- · ·w ] (UI-43) 

o K>K k 
o 

We first consider (1). Now 

6 X [ L ] f.1v l1v 1 X X X 
• k Z - = - i1 44 - 33· tr. , tr. 

2 tr. direc. 

l 
2 tr. direc. 

X tr. , tr. 

k2 (m·44) 

2 
w where we have used X33::1 ::z X44 in obtaining In-44 and X 18 

. K 
given in nl-20 • . Also 1I"1JlvXJlY s fl' and 18 ii~en in m·22 with 

'1 CI ~. Substituting in nl-42, we find: 

1 
(1 ~ fii) 

+ L X [ 21 ., .' . ., 1 if ] 
tr. ,tr. w .K~ . ~ K~ w '11-2 tr. direc. 

+ te rms with w - - w } (nl-45) 

First we consider the transverse terms in (1). We note that 

for 1 wi » Order Ryd., "1- 1 • (wp/w) 
2 

.. 1. So for I wi » Order Ryd. 

the two terms in parenthesis cancel. Abo, for I wi < Order Ryd. we 

222 may neglect the wand w '? terms with respect to \the K terms 
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3 
since K> 1<0' Fo r, taking "1 at a resonance ("1'" 10 ) ~ we have 

2 2 2 2 -3 
w "lK < w "1/Ko -10 for w -Ryd. That is, tho two terma again 

cancel. So we get no contribution to (1) from the transverae terma. 

Now we consider the contributi9n of the coulomb term to (1). 

From m -20a (repla.cing the if: on the Feynman propagator) we 

have 

2 [ - - ] II: 4E '1 _ w • (p. K)][ P. v. _ i1f6(k2• 2p. k) (W-20a) 
'iE 2EZ k20 _ 2p. k 

where P. V. denotes principal value. Uponasubstituting X44 into 

UI-45, we get two terms,. One term is from the P. V. term in III-lOa" 

and the other term is from the delta function in Ill· lOa. Remember-

ing that we want the real part of (1) we proceed ae follows. First, 

condder the contribution from the P. V. term. This contribution 

is proportional to __ 

Soo {S d3K'I. l)[l.-m-(:~f) 
P. V. dw -::r \1 • Re - ---='2----

OK> K K "1 k - lp' k 
o 

+ tenns with w - • Co) ] } (nl-46) 

In order to evaluate the contribution from this term we note that in 

the integral over w, 1 - Re..!.. is non-zero only in the immediate 
, "1 

neighborhood of the resonance frequenciea of 1'11" Specifically, near 

·We have taken N - 1019 - 10 20 and y/Ryd - 10.7 •. 
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a resonanc e fre quency wn' we get from U .. 31 that 

(m-47) 

whe re in n I-47 we hay omitted the s mall cont ribution f rom non-

-2 - 2. 2. l'os onnnt states, and w ::: W + w • That is, in the integral over w, 
n n p 

we ge t a sum of integrals of the form nl-47 located at the frequencies 

"1' w2.,... • Now, near each resonant frequency, the term. in the 

square brack ets of III-46 are slowly varying functions of w. Hence, 

we may, as a first approximation substitute w for w near each n 

resonance in the terms in the square bracketa. Doing thh, the only 

w dependence is in the 1 - Re..!.. term. Now, it is easy to see that 
"1 

the P. V. term will not contribute to the energy loss. Thie is 80 

because the contribution to the energy loss from the P. V. term ia 

obtained by inserting into the integrand a term proportional to w 

(see nl-1). The resulting integral, near each resonance, is of the 

form 

III 0 

where the resonant frequency w is included in the interval a-b. 
n 

Since there is a negligible contribution to the integral for frequencies 

outside the immediate neigbborhood of · w , the limits may be selected n - . . to symmetrical about wn and the integral vanishe •• . -By expa nding equation m-46 in a Taylor cf,eriea about Wn we find 
t hat the next term is of order ~/Ko t- 10-) times the other terms 
t~t we are keeping. 
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Now we conside r the contribution to (1) from the delta function 

term of III-ZOa. Substituting this term into 1II-45 and replacing all 

the numo rical !actoro , we find 

Z e 
(1) III 4 

(21f) E 

x (- i 1f6 ·(k
2

_ 2p.k)(1-t)}+terms with w-· wJ} 

Z SOO [ S e E -1 3- 2 
Il - --r 1m (!Ii )dw d K 6(k - 2po k) 

.. 0. K>K 
o 

x (1 • ~ - (p. K» + terms with w - • w ] 
I'.J!. 2EZ 

(nI-48) 

Consider the terms in the square bracket. in nI-48. Call this term 

(a): we have 

Soo S-1 2 
(a) 1:1 21f dK 1 d(cos e )6(k • 2Ew + 2PKco. 8)(1 • iE 

Ko 

PKcos e 
• i ) + tenns w - .. w 

2E 

S 00 dK S·l k 2 w 
1:1 P K K 1 d(cos e)6(coa e -;; + nsR )(1 • -nf 

o 

PK cos e - ) + t erms with w - • w 
ZEZ (m-49) 

We note that because of the delta function there are no contributions 

to the integral from momentum transfers K '~ 2P. In obtaining this 

result, we have made use of the fact that be cause of tho factor 1m( "i1) 
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the values of w that contribute will be of the order of a Ryd. (1. e •• 

1 
hn (-) ia a sharp spike at each resona nt froquency which are of 

"1 
the order of Ryd.). With t his uppe r limit 2P we have 

tr S 2P dK w l ' k 2 
(a ) II p ~ [1 - iE .. :=l' (Ew - T)] + terms with ~ - .. ~ 

Ko ~ 2E 

,., tr r2P 
dK [ w l ' 2 2 ] 

II P J, K 1 - ~ + :-=! (w - K) + terms with w - - ~ 
Ko 4E 

(Ill-50) 

The integral in nI-50 10 elementary: the result is 

Z 2 K2 
tT [< w w ( ZP v 0 ] (a) = 1> 1 .. E + -:::-2 )1n Ie) - T + ~ + term. with ~ - -w 

4E 0 8E 

[ Z ] tr 2P v = J) 1n ( K'" ) .. z + terms with w - -~ 
o 

(III-51) 

2 Z 2 In arriving at Ill-51 we have made use of the facts that Ko. (me) ,« 
2 MZ . 

E II (:--T) • and that the values of w that contribute are of the. 
lev 

order of the Ryd. Substituting (a) into m.48 we find that 

Z SO) 1 [ 2P 2 ] 
(1) II 2- 1m (-) dw In ( w- ) - T + tenns with 

1rV 0"1 ""0 
w- -w 

2 SO) 1 [ ZP 2 2 ] 
II !!- 1m (-) dw ln ( t"r) - V 

1rV 0 Ttl ""0 
(W-52) 

In arriving at III-52. we made U8e of the fact that " la an even 

function of CA). 

Next we calculate the contribution to r s that ariaes trom (2). 

From W - 43 we have (replacing the factors previously withheld) 

i 
F or example. tak~ng the incident particle to be a proton and with 
E I: 10 M; (Ko/E) - 10-12• . 
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2 ~ e 4 4 11' 
(2) = 4 Re d k , --:; 132 X ) 

(211') E \ k'" ~v ~v 

Upon substituting for 13 and X from lII-39 and III-l9 respectively, 

we find 

(nI-53) 

In order to evaluate III-53 we note that ainc(l in UI-53 we are deal-

ing with the ordinary Feynman propagators we may uae the well 

known rule (10) to evaluate the real part of the integral in UI-53. 

The rule says that to obtain the imaginary part of a given Feynman 
!OJ . 

diagram one imagines that we ~ut the Feynman diagram in all 

possible ways. For each cut the contribution to the imaginary part 

is obtained by replacing each Feynman propagator. l/(pZ. MZ). that 

2 2 is cut through by (2w)o(p - M ): include an overall factor of -l/Z 

and integrate .only over positive frequencies. 

The Feynman diagram that corresponds to the first term in (2) 
$. 

is shown in figure 7. We immediately see that the only cut that will 

give a non-zero contribution to (2) i~ the one that cuts the particle 

line and the electror:. line. For, if we cut the particle line and a 

photon line, we get zero. Physically, this ia because thll cut cor· 

* . We have factored out a factor i from the expression for the self-
energy integral (see ru-z and nI .. 4). Hence we want the real part 
here. . 

·We shall see that the second term in (2) givea no contribution. 
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• 

Figure 7. The proce811 of diagram cutting to obtain decay rates 
from the self eneriY 
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r esponds to a process where a free electron decays into a state of 

l ower energy by emitting a free photon. But this process cannot oc-

cur since energy and momentum cannot be conserved simultaneously. 

Mathematically we get zero for thia cut .ince we get a factor 6(kZ) 

'I ich makes the integral vanish. Hence UI-53 become. 

2 2 
ew (' 4 [ 

(Z) c: --;;/ J 8(w) ~ 6(kZ_Zp. k)6(kZ+Zpo· k) 

K>K k 
o 

x (Zp P -k P -k p +6 p. k)(Zp p +k P +k p -6 p. k) 
~ v ~ v v ~ ~v ~ ov ~ ov v o~ ~v 0 

+ terms with k- - k] (nl-54) 

where 8(w) c: 1 for w > 0; a 0 for w < O. Combining term. we get 

2 2 e w 
(Z) lIZ--..e. 

wE 
S 8(w) 4 

K>K k 
, 0 

In arriving at III-55 frequent use has been made of the delta function •• 

First of all we note that the term with k - -k i8 zero. Thls ia 80 

because this term contains facto~s of 6(kZ.Zp.k) ~nd 6(kZ-2Po·k). 

Physically this term corresponds to the .quare of the amplitude of a 

real process where a pa,rticle of energy E 108es positive energy w 

• • and the atomic electron of energy m (at rest) lose. positive energy w. 

Clearly this is impossible. Mathematically we get zero because the 

*Note th e. 8(w) ' factor insures that only positive w contribute. 
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delta functions imply that cos a must be imaginary. 

Now let us evaluate the integ rals in III-55. We have 

4 2 2 2E e m w 
(2) = P 

'If 

(III-56) 

The first delta function implie8 that k 2 • w2 • K2 • - 2mw. It abo 

impliea that .ince K 2: Ko and Ko« m that 

- z/ w <:: w III K 2m 
o 0 

(nI-S7) 

The second delta function implies an upper limit to w. Thia i. be-

cause I cos e I :s 1. Now, from the aecond delta function, we have 

that C08 e .: w/Kv - mw/PK. From thie, and noting that K II related 

to w through the first delta function, it follows that 

2 
:$ w ZmP 

w M .: m Z +- M Z + 2mE 
- (nI-S8) 

Doing the integrals over cp, K and e via the delta functionl, III-56 

becomes-

(nI-59) 

In order to give a physical interpretation of In-59 we proceed 

as follows. We note that In·59 18 the contribution to the decay rate 

that comes from momentum transfera greater than Ko. We have 
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pointed out before that for momentum transfers greater than K 
o 

the! atomic electrons can be treated as being free and at rest. Hence 

in a collision with the external particle the atomic electron picks up 

energy and momentum given by the law 01 conservation of four momen­

t~ . 0:.. p.ied to a particle at rest. That ie. we must have (m+w)2 • 

.. ~2+ m 2, but thia is just what the second delta function in III-55 la 

telling us. The incident free particle of energy E interacts with the 

atomic electrons losing energy w after which it is a free particle 

of energy E - wand momentum given by the law of conservation of 

four momentum; i. e •• (E - w)2 I: K2+ M2. but thie la just what the 

firs t d elta function in nl-55 is telling u.. We alao note that since 

K > Ko ' or, equivalently. the impact parameters involved are le.s 

than the mean separation between the atoma, that the contribution to 

the decay rate for K > Ko can also be obtained aa the decay rate that 

results from the direct collision between the incident particle and the 

atomic electrons (assumed to be free and at reat). That la. , the inci­

dent particle and the electron interact via a virtual photon (amplitude 

- 1/k2). This process is depicted in figure 8. 1l one applies the 

Feynman rule to this diagram to obtain the decay rate (i. e •• 

r:: (t1 Z~)(It 2E) 1 M 12 x density of statea) we arrive at In-59. 

in out , 

We can now substitute In-52 and nX-59 into IU-·U to get 

rso However. we really want the contribution to the energy los. that 

dE arises from these terms. call this contribution (ax) • we have. 
S 

from UI .. 1 
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k 

atonnic electron incident particle 

Figure 8. F e ynnnan diagrann illustrating the direct collision 
between the incident particle and the atonnic electron 
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( dE) = r ~ (dr) dw 
dxS J v crw s w>O 

(UI-60) 

Upon 8ubstituting III-52 and III-59 into III-40 and then aubatituting 

lll .. 40 into III- 60 we find 

2 SOO 1 [ 2P 2 2 ] + .!... 1m ( -) dw In (.."... ) • V 
1I'V 0"1 ""0 

(UI-6l) 

In the next section we will combine the reault. of thie and the last 

section to obtain the total energy 10 •• per length of a chariecl particle 

passing through the medium. 

E. General Expressions for the Energy Loss 

In this section we combine the result. of Section C ancl Section 

D to obtain general expreGsions for the energy loss per unit lenith of 

a fast charged particle in a medium. 

Combining the contributions to the 10 •• from FR . ancl F S 

(equations 111-36 and III-6l) we obtain 

(UI-62) 
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where " is given in II-31. Call the first integral in III-62 A and 

the second B . For the moment let us concentrate on B. Upon per-

forming the w integral we find 

4 
B = 2Tl'Ne 

2 mv 
(111-63) 

where, from 111-57, 2 
w = K 12m, o 0 

and wM ' the maximum energy 

transfer, is given in III-58. In obtaining 111-63 we have neglected 

terms of the order wolE compared with ~/E, etc. Eq. 111-63 

is the contribution to the energy loss from momentum transfers 

greater than K (= ...!2mw ). From now on let us take the case o 0 
. l 

M »m. For very large momenta (P» M 1m) wM becomes 

•• 
for P» Ml/m (111-64a) 

On the other hand, if M» m, and if the condition P« Ml m ia 

satisfied, then ~ becomes 

l ••• 
for P« M 1m (1II-64b) 

As an example, let us take the case given in 1II-64a. In thia case 

1II-63 becomes 

B 2'ITNe 
4 

[1 (2mE ) 3 ] = 2 n -::z- -4' 
mv K o 

(III-65) 

*For most cases of interest the third and fourth terms in the braces 
are negligible. 

** For muons this condition states P» 200 MVo" 

···For muons this condition atates P« lOO M • 
Vo 
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whe r e we have used w = K Z IZm in obtaining llI-65. o 0 

Anothe r c a se of interest is where one asks for the energy loss 

whe r e t he atom ic electron picks up energy w le.8 than some value 
-w'. whe re w ' « M . This case is of interest experimentally (for 

example (11». In this case the upper limit on the integral in B 18 

Wi (instea.d of wM ) and we find (dropping terms 01 order w' IE) 

ZTI'Ne 
4 

1 l 2mw' ) 
B= 2 n, 2" . 

mv Ko 
(In-66) 

Now let us concentrate on the firllt term in In- 62. Call thla 

term Ai we have 

. . 2 -1 
- Re (v -" )( .. -8) (111-67) 

Thill expression is exact in the sense . that we have not made ~y as-

sumption about the relative size of Re" and 1m" in deriving it. 

The only property of " that we have used la that it la only a function 

of w. Now, as we shall lIee, the frequenciell that contribute to the 

integ ral giving 

1m" is small 

A are given at the pole of '1. In our calle of gases, 

{order '{ Ryd/w2 - 10 -3. lor '{ - 10 -7 Ryd). so we 
p 

c a n expand the arctan that gives 8. From equationa III-33 through 

IU-35 we find 

2 2 
2 -1 2 -1 v (lIn "1) 

Re{v -" )(11'-9) = v 1m 1'1 (Re 1'1 + Z ) 
lev Re" 

- 2 -1 2 = v 1m" (Re,,) for 1 - v Re " > .0 . (1n-68a) 
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a nd 

- 2 -1 2 1 -1 = v 1m" (Re,,) + 1rV (1 - Z Re" ) 
v 

for 1 - v
2
Re" < 0 (III-68b) 

2 
We aee from III- 68 that for 1 - v Re " < 0 (1. e •• for the velocl ty 

of the particle greater than the phase velocity of light in the medium) 

we obtain an extra term 'to the energy 10s8. namely W'V
2(1_ ~ Re" -I). 

v 
This h . the well known Cercnkov radiation term (12). Substituting 

1II-68 into III-67 we obtain 

(III-69) 

where the prime on the last integral means that we integrate only over 

2 those frequencies such that 1 - v Re" < O. The first term in IlI-69 

is the contribution to the energy loss due to the excitation of atoms 

of the medium for momentum transfers 1e". than Ko (or equivalently. 

from impact parameters greater than l/K)~ The second term in 
. 0 

III-69 is the Cerenkov contribution to the loa". 

Focusing our attention on the fir"t term In' IU-69. we find from 

II-31 that near each resonance 



where 

and 

-1 Im T\ 
ImTj =~=-

1"11 

R = 1 + r n n 
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2 

'V W W 
'n n p 

2 -2 2. 2 2 
(w - w ) + 'Y w n n n 

.. 1 (see equation II-50) 
. 

(III-70) 

From III-69 and III-70 we aee that the abaorptlona which give 

rise to the energy 10s8 are shifted from the atomic frequenciea. 

This shift, which is proportional to w!, 18 one of the effecta of the 

medium: on the energy loas. Physically, the 10aa la divided between 

the individual excitations of the atoms and a collective loaa propor­

tional to w2 (i. e., proportional to N). That ie, part of the energy 
p 

transfer goe. into the excitation of collective 08cUlationa in the 

medium. 2 -4 2 In the case of gases, w - 10 w, and the collective los. p n 

is small compared with the individual excitation loa a. 

We wish to perform the integral in the first term of 1II-69. 

- -1 We note that away from the immediate neighborhood of w ,1m" n 
-1 is practically zero while at w = wn ' 1m" haa a aharp maximum. 

Also, near each resonance, the terms in bracea in 1I1-69 are alow1y 

v4l.rying functions of w ao we may subatituto "Wn for w in theae 

terms • . The resulting integral, near the n'th reaonance, becomes 

(m-71) 
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where the intorval a -b contains the resonance frequency and may be 

-1 extended to :i; 00 since 1m" vanishes away from the resonance. 

Incorporating these re.ults, we find 

(K .!..)2 
f [1 ( 0 w,., 
n n 11 _ vZ"rc:; ) I 

n 

+ Cerenkov term (UI-72) 

where 

Now, by combining the expreslilion. for A and B, we obtain 

an explicit expression for the energy lOGI. For the total 10., 

(UI-74) 

For ultra relativistic incident particle energies UI-74 reduce. to 

4 
(~ ) = 2rrNe 

T m 

+ Cerenkov term. . (UI-75) 

For the energy los. with energy transfer lea. than aome energy 

Wi we find 
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, dE ) 2rrNe 
4 

\ CfX ::: 2 
<WI mv 

(Ul-76) 

From equation III-76 we see that for the case of a rare gas, 

where Cerenkov radiation is not possible except at extremely high 

incident energies, that the energy los. of energy tranafers less than 

WI remains finite. In older theorie8 (13) we would have, instead of 

1 - v 2Tl, 1- v 2 in the In term. That is, in these older theories the 

energy 1088 due to excitation and ionization for energy transfers less 
I ' 

than w diverges for v - 1. Here we obtain a plateau in the energy 

loss. The physical reason for this plateau is that the field at large 

distances from the particles trajectory remains finite as opposed to 

2 -1 varying as (1 - v) as in vacuum. The field at large distances can 

be thought of as being modtfied due to the passive scatterings of the 

photon field by the atoms of the medium. These rescatterings caus. 

a destructive interference limUing the range of action. 

From lU-75 we see that the contribution to the total loss due 

to excitation-ionization by an ultrarelativiatic parttcle is proportional 

to ln (E) which diverges as E - Q). This divergence is due to col­

lisions involving large momentum transfers (i. e., small impact 

parameters). Now as the incident particle becomes more and 

more relativiotic it can transfer more and more energy to the atomic 

electron. At extreme relativistic energies the particle can 'transfer 

all its kinetic energy to an atomic electron (wM • E). 

Budini (14) has, by aemi-classical methods, calculated the 

energy 10 8 of relativistic particles in a medium. Specifically b. 
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calculateD t he ene r gy lo ss due to collision. occurring at dis tances 

greate r than some impact pa rameter p. Budini makes a classical 

calculation of the Poynting vector at a distance p from the path of 

the incid ent particle. From the Poynting vector he obt aina the photon 

ope ct rwn by dividing by flw (i. e •• the number of photons of energy 

w emerging from a cylinder of radius p about the path of the inci-

dent particle). To get the loss Budini then multiplies the photon 

spectrum by the atomic photo absorption CrOG8 section and integrate. 

over all positive frequencies. Budini then combine. thia re.ult with 

the loss for smaller impact parameters (which he obtain. from the 

Bathe-Bloch theory (13) ) to get the energy 10s8 for energy tranafer. 
, 

less tha.n some value Co). Budin! obtains an expression that is the 

same as equation lU-76. He then goes on to show that the theoretical 

results agree well with experiment. Budini also discusses the contri­

bution to the energy loss due to Cerenkov radiation. The inter •• ted 

reader is referred to Budini '. paper for more detail •• 

Tidman (1) has given a non-phenomenological quantum mechani­

cal treatment of the energy loss due to excitation. occurring at db­

lances greater than l/Ko from the path of the incident particle. 

His method is quite different from ours. He uses the hamiltonian 
. 2 

!onnalis nl to co:rnpute the decay rate to the second order (in e ) in 

perturbation theory. Tidman uses an unmodified coulomb hamU-

I 2 . 
tonia n (1. e •• - I K). For the tran.verse interaction Tidman per-

forma a canonical transformation on the usual transver.e inter-

action term to obtain a modified interaction term. Thi. modi!ied 



term deG c ribea the inte r a c tion of currents with photon a whos e energy­

moment1.un r el a tion is to)::: Kin, where n is the index of refraction. 

In Tidman's theory n is real. Tidman abo assumes that the char-

a cte riotic aboorptiona o'ccur at the atomic frequenc1e.. Tidman ob-

tains a 10sB proportional to 

In order to make a comparison with Tidman's work we consider 

the case where 1m" is a oedeo of infinitely narrow lines which 

are located at the atomic frequencies (i. e •• a series of delta func-

tiona). In this caGe In-69 yield. an energy loss proportional to 

This result was obtained with the term 1 '11 in the denominator of 

In-69 replaced by n2 s Re". The difference between our result 

and Tidman's is in the coefficient of the coulomb term (i. e •• the 

ln (Kown/v)2 term) . The reason for this is that Tidman uses the 

direct coulomb interaction (1/K2) as compared to our modified 

coulomb interaction (1/K2,,). 

The advantage in obtaining the energy loss from the self energy 

10 that we are able to handle in a straightforward manner a continuoua 

distribution for 1m". The 10s111 ao obtained contains all the contri­

butiona to the 100s (which in this case is the excitation ionisation 



-93 ... 

l oss and the Cerenkov lO BS ). In pa rticular we have .een that the 

excitation loss i s a combina tion of individual atomic excitations 

(s ingle pa r t icle effects) and a coherent collective atomic excitation 

loss . 

In deriving the energy los. we have asswned that the incident 

particle has spin liz, is distinguishable from the atomic electrons 

(no exchange effects), and has no anomalous moment. That is, the 

energy loss expression is ideal for the muon a. the incident particle. 

The effects due to other incident particle. will modify only the high 

momentum transfer part of the energy 10s8 expression, that i8, the 

expression for B (equation 1II-63) will be different for difIerent 

incident particles. We have pointed out that the expression for B 

is identical with the energy loss as computed from the direct colli-

sion between the incident particle- 'and the atomic electrons (see the 

discussion following equa,tion III-59). 

Rossi (15) has tabulated the differential cro •• section for various 

incident particles and electron.. We find that the modifications of 

our result for various incident particles are: 

I} ELECTRONS: When the energy of the primary electron is large 

compared with its 'rest mass the ~Bquare bracketa in 111-62 are re-

placed by 

[ 
1 

2 (E .. w) 

22] (1 - w/E + (w/E) ) (UI-77) 

and M == m. The modification of the total energy 10 •• is that the 

- 3/4 in equation III-75 is replaced by (9/8 - In 4) . 
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2) POSIT •• ONS: When the e n e r gy of the positron is large compared 

with its reot maGS t he s q uare bracket. in III-62 are replaced by 

[(1 - IM/E + (1M/E) ZJ 2 (III-78) 

and M iii m. The modification of the total 10 •• 18 that the - 3/4 in 

equa tion III-75 is replaced by - l1/lZ. 

3) PAR TICLE S OF MASS M AND SPIN 0: The .quare bracket. in 

equation 1II-62 are replaced by 

(III-79) 

whe re IMM , the maximum energy transfer, i8 given in equation III-58. 

The modification of the total 1088 iI that the term8 outside of the 

inner square bracket in equation III-74 are replaced by _v2• For 

ultrarelativiatic incident energies the -3/4 in equation 1II-7S is re-

placed by - 1. 

4) PR OT ONS: Pauli, in his review article (16)', baa given the cro •• 

section for the scattering of electron8 by particlea of 8pi~ l/Z, and 

magnetic moment J.L oj 1 (the proton '8 moment is 2.79). We find, 

that the modification of our re s ults due to the anomalou8 magnetic 

momont of the proton is that, for incident energies much greater than 
5 ' 

the orde r of 10 Mp the energy 1008 is dominated by the contribution 

of the anomalous moment, and is given by 

, 4 [2 ] ( ~ ) = 211'Ne ~ (m/M)(E/M) 
dX T ' m 

(III-80) 

That is, the energy 108s depends linearily on the incident energy. 
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IV. SOME MIS CE LLANEOUS TOPICS 

A. Effe ct of F inite Tempe r atures on the Photon Propagator £01" Small K 

In Chapte r II, Section D, we calculated the photon propagator 

for t he atomic system for Kao « I where we aaaumed that the ayatem 

was at zero temperature (e. g., all of the atom. were aaaumed to be in 

the g round state). In thia section we will remove the restriction of 

zero temperature and calculate the photon propagator. We will con-

aider the caae of small K (Ka
Q

« 1). The case of large K (Kao » 1) 

wae treated previouGly (see Chapter II, Section I). 

In the Ca8~ of finite temperature, the initial atate of the atom 

may be anyone of the states of the atom (ground state plua excited 

states). We assume that the probability that the atom ia in the m'th 

state ia given by Maxwell Boltzmann ataUatica. That ia, we take that 

the normalized probability Pm for the atom to b. in the m 'th atate ia 

where 

Q = L e-
En

/ KT 

n 

(IV-I) 

(IV-2) 

Now, as we have seen in Chapter II, the photon propagator in the medilUn 

may be broken down into two parts: the coulomb propagator A c and 

the tranDverae propagator ,A TO We have (aee Il-34 and II-31) 

A 411' 
=~a 

c K TI 
(IV-3a) 
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41T 

2 kl 2 
w (l + ~~ tr. , tr.) • K 

w 

(tV.3b) 

We remark that, because of the spherical symmetry of the atoma (after 

orbital angular momentum otatea have been summed over), ~tr., trC ~33' 

and because of current conservation, ' f}33 C w
2/K2 f} 44. That ia, 

l 2 ptr., tr. C w /K ~44. Therefore, the photon propagator i. characterised 

by one quantity which we take to be f} 44. 

In the case of finite temperature, ~ 44 ta given 1:ly: 

+ (w Oft ) 1. (E +Zw). i4[ 1(ieZnmK)] P J 
m n 

(tV-4) 

This io because f} 44 is _4Tf/k2 times the amplitude per unit volume that 

a coulomb photon interactB v/ith an atom in an arbitrary initial state m 

causing the atom to make a transition to an arbitrary intermediate atate 

n; the atom propagating in state n subsequently making a transition 

back to state m by emitting a coulcmb photon. Now, Pm ia the pro­

ba.bility that the atom is initially in state m; ieznmK la tho amplitude, 

in the dipole approximation, that the atom interacts with the coulomb 

field making a transition from sta.te m to n. The amplitude to propa-

gate in the intermediate state 18 E 1 _ E _ i. : there are two 
initial int. € 

possibilities, Einitial II: W + 'En' E int• a En (s •• figure Ib), and 
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E. i"' i 1 = w + E , E. t = E + 2w (oce figure 1c). The amplitude for the 
lU " Zl n ln • n 

atom to make a transition from state m to state n by emitting a 

+ coulomb photon i s .. i ez • We awn over all initial state. m and nm 

all intermediate states n to include all possible initial and intermedi-

ate otates. Since we are a8Gurning the atom. to be independent, the 

amplitude per unit volume ia N times the amplitude per atom, hence 

the factor N. 

Substituting P from ! IV .. 1 and combining terma, IV.4 be-m 

comes 

where 

and 

... E /KT 
e m 

Q 

wnm=E -E n m 

£ ;: ,mw Iz I' nm nm nm 

\' -E /KT 
0;: i; e n 

n 

z Z 
n wnm- W 

(IV. 5) 

• 

In arriving at IV-S we have made use of the Thomas-Reiche sum rule 

which states that L fnm = 1. So far we have assumed that the ~nergy 
. n 

eigenvaluea of the atom are discrete. Actua1ly all of the energy levela 

except tho ground. state are spread out due to the finite lifetimes of the 

excite d etatea. In order to take the finite lifetime into account we pro­

ceed in exactly the same way as is done in Appendix A with the only 

difference being that here, since the initial and intermediate .tate. 

* Note: fnm Ii 0 and fnm • - ·fmn• 
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arc in general not the ground state (i. e •• they both have an energy 

spread) , we replace Em and 

and average all em and en 

E by..c and [ respectively n c.. m n 

with weights G([ ) and e([) 
m n 

respectively. If we choose the form A-4 tor the function 0 and 

then perform the reculting integral. in a similar manner a. 18 done 

in Appendix A the result i.: 

where 

and · 

Since 

we have 

-E /KT 
\' e m 
L, Q 
m 

{2 II W - iy /1. nm nm nm . 

y «w n n 

. which may be written a. 

n.m 
n>In 

(I 
n 

(IV-6) 

(IV-7) 

it' 
We note that IV-6 cannot be obtained from IV-4 by replacing En by 
En - iYn/2• etc. If thece rcplaceInents are made one obtain. the di!!er­
ence r athe r than the aum of the line breadth •• 
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Now, from IV-3 and IV-7 we find 

k2 
" = 1 +:::2 (344 

1< 

2 

c: 1 +~ L 
n,m 
n>m 

(IV-8) 

The sum oign in IV-8 means to sum over the discrete energy levela and 

an integral over the continuous levela. In general, IV-8 cannot b. re­

duced to a aimpler form. 

Now. as an example. we consider a simplified cas.. Consider 

a two state system. Calling Eo a O • . El • w, and the half life of the 

excited s~ate y. we find (calling wy • c.;. - iv/2) 

Q a 1 + e 
-"'1 / K.T 

and 

"1 
tanh "2iT (IV-9) 

2 
w 

We £Ioe from IV -9 t~t. as T - 0, ,,- 1 + Z P Z • and a. T - 0), 

• w-w 
" - 1. The fact that ,,- 1 alii T - 0) can ~e understood physically 

as follows. For very high ternperatures each state has equal probability 

of being occupied. Now, being that excited states are occupied. they 

will decay incoherently to lower states. Thio incoherence will desti"oy 

the coherent effect of a. photon exciting the atoin with ita subsequently 

* . Alao £rom the general formula IV -8 for " it can b •••• n that a. 
T - 0), ,,- 1. 
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de-exciting. From IV-8 we get that for ICT » E n 

Thllt i8, 

L w ' f nmnm 
0 2 _ wZ 

n,m nm 
n>m 

• for high temperatureo (compared with the Rydberg) 

io inverae1y proportional to the tempe rature. 

(IV-10) 

(11 - 1) 

For the two state .ystem we find that the modification of the 

coulomb pole due to ,finite temperaturcu is that the real part of the pole 

is located at 

(IV-ll) 

We aee from IV-ll that for ICT» "1- w = "1- The ,reason for thia ia 

connected with the fact that at high temperatures any coherent collective 

effecta are washed out by the incoherence due to the high temperature 

(1. e., at high temperatures the atom a are being excited and de-excited 

randomly). 

Fin&lUy, we note that the effect of a finite temperature on the 

energy loos of a fast charged particle paasing through the medium ia 

that for 11 in equation UI-72 we use equatioD IV·8 in Read of equation 

II-3l_ 

B. Damping 

In this section we indicate briefly how damping arbea in the 

cnse of finite temperatures. The system considered here ia an electron 

gas (with a positive background charge to give overall charge neutrality). 

We consider only the longitudinal case aince the method ia eaaUy applied 

to the transverse case. 

* 50 Thio corresponds to T» 10 K. 
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Wh.:lt we wa nt t o calculat e i s the abaorption probability of free 

waves in an elect ron gas . The dispe rsion formula tha t determine. the 

energy-momentwn relation of the waves ari.e at the zero. of the di-

e lectric function. In Chapter II. Section I. we have discus.ed the real 

part (dispersive part) of the di persion formula. Now, we con.ider the 

imaginary part (absorptive part) of the disper.ion relation. 

A. we have aeen, poles of the coulomb propagator ariae when 

(IV-l2) 

where 
2 

~ = _ ~ \' \ m)[ 2Pir:PiY + k e
Piy + kyP1e - 6fly(Pi· k) 

.... v Nk2 f Ei' . k 2+ 2P1· k + 1e 

+ terms with k - .. k ] (IV-13) 

In IV-13, we have included the ic', that arise from the prescription 

that the mass of the particle has an infinitesimal negative imaginary 

part. From IV-13 we see that for zero temperature (Pi .... I: m6
fl4

), that 

1m ~ io proportional to delta functions (l/x.! ic = P. V. /x Y: hr6(x) ). 

For iinite temperatures, where there is a continuous distribution of 

p., we shall see tha~ we obtain a finite imaginary part. Both terms 
1 

in the brackets of IV -13 contribute to the imaginary part · of ~ 44. 

Specifically, 

2 

1m ~4411: :1 I ~).[(2Ef .+ 2Ei w + k
2
/2)6(k

2+ 2Pi·k) 
I . 

+ terms with · k - .. k ] . (tV-14) 

For a continuous distribution of Pi' 
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1 '\ _ r d3~ f(P) 
N f J (211) 3 

(IV-IS) 

where !(P) is the di~tributive function * for P (Maxwell-Boltzmann. 

Fermi-Dirac, or what have you). Substituting IV-IS into IV-14 and 

then substituting IV-14 into IV-lZ, we find 

+ term. with k - • k ] (IV-l6) 

where 

We now discuss the interpretation of the two terms in the square 

brackets of IV -16. The firtlt ter"m is proportional to the square of the 

amplitude (probability) that a wave of momentum k 18 abaorbed by an 

electron of momentum p, the electrons then having momentum p + k 

(aboorption of a wave). This process h illustrated in figure 9a. The 

oecond term ie pr.oportional to the square of tho amplitude that a wave 

"of momentum k stimulates an electron of momentum p to emit a 

wave of momentum k, the electrons having momentum p - k (atimu-

lated emission of a wave). This process is illustrated in figure 9b. 

In both cases the initial sta.tea are" the same (a wave of momentum k). 

However, the final states are different (an extra electron of momentum 

p + k; two waves of momentum k, and an extra electron of momentum 

*. p - k) . In both cases , energy and momentum can be conaerved. " 

OWe normalize f such thnt S f(P)/(Z1r)3d3p = 1. 
olC: 

This would not be true at :IIcro temperature. in thi. ca.e .tlmulated 
emia ion is not possible. 
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p+k 

electron 

wave 

Figure 9a. Absorption of a Wave 

wave electron 

k 

p 

Figure 9b. Stimulated Emission of a Wave 
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Tl'l.:lt ia, t he initial state (conoisting of a free wave) may go into two 

pooc ible fina l otat e t3 , ao io illustrated in figures 9a, b. From IV-l6, 

we see that the proba bilities for these two processes a~e to be added 

t ogethe r . That io, 1m "l i proportional to the total probability that 

. t he initia l state changes with time. Now, what we want is the proba-

bility for the effe ctive ab orption (absorption of energy) of a wave. TM 

probability of effective absorption is the difference between the proba­

bility of absorption and tbe probability of stimulated emission. That 

is, tbe effective aboorption is obtained by taking the difference of tbe 

two terms in tbe bracket of IV.l6 (rather than their aurn). 

Call equation IV -16 witb tbe plus aign between tbe two terms 

replaced by a minuo, 1m "leU. We will use 1m "leU. in the diapersion 

formula (fl = Re " + i 1m" u 1:1 0) to find the .aective damping of eu. 

waves . We have 

2 

1m fleff. III 1rWf S ~ f(P) (~) [(ZEZ+ ZEw + k Z/Z)6(kZ+ Zpok) 
K (2w) . 

- terms with k - • k ] (IV-17) 

We want to find the damping of free waves of frequency ~e(K)· 

or, equivalently, the imaginary part of the energy (frequency) near ~.o 

By e:cpancling "l (= Re '1 + i 1m fl eU.) about Wae we find 

1m flef!. 
"im III d (Ro fl) 

dW . W = wRe 

wRe(K) is determined from the equation R.". O. 

(IV-IS) 
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We note that equati.on IV -17 ia general in the sense that it holds 

for arbitrary va lues of t he four momentum and for arbitrary distribu-

tion functions . 

No \ov, l e t U D conoidar, as a epecial case, the Maxwell-Boltzmann 

dis tribution function (11). Also let us consider the two ext,reme limits, 

the non-relativistic limit, and the ultra-relativistic limit. 

Firat we consider the non-relativistic limit. In thie cas. we 

have 

(211')3 _pZ /ZmKT 
f(P) &I 37~ e 

(ZtrmlCT) 

KT «< m (IV.l9) 

and 

E= m 

,By equating the real part of " to zero we have found (e •• • quation II.S8) 

W
R
2 (K);: w2 + K2<v2> 

e p 
(IV-20) 

I: w; (for K2 <v2> «w!) , 

This i the relation between wand K for free wavee in the non-rela. 

tivistic limit. From IY.11 and IY.29 we find 

Z 

1m TIe!!. ;: #W¥ r d3~ f(P)(Zm 2) [6(k2+ 2p. k) - 6(k2• 2p· k) ] (IV-2l) 
K (2#) . 

Now, 

Since I cos e I ::s 1 and noting that we want 1m "eff. for w· wR.- Wp« m, 
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(fo r wp « leT) (IV.22) 

From IV-l8 and IY-ZO, we find, far wp « leT, that 

( 

1f' )1/2 I m":~)3/Z .. (mw~)/(ZleTK2) 
~c:.w 1r \ e 

p leTK 
(IY-Z3) 

Thio is called Landau Damping (18). So much for the non-relativistic 

case. 

Now we consider the ultra-relativistic limit. In thi.. caae, 

KT »ro, E &: P »m, and 

(IY-Z4) 

For completeness, we first discu •• briefly the roal part of 'l 

in thla limit. From II-57 we find 

where 

Re 'l II 1 .. Q. 

Z -
C1 II ..:.. rowr. r 0) P dP •• P / leT H(Pi 

4(KT)3wZ Jro 

r+1 Z 
H(P) II J (1 .. x ~ dx 2 

-1 (1 - ax) • b 

(IY.Z5) 

UV-Z6) 

(IV-27) 
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a = K/w 

and (IY.Z8) 

Z 
b = k /ZPw 

The integral in IY·Z7 must be taken in the sonae of the principle value. 

We have set the lower limit of the P integralln IV .. 26 arbitrarily at 

the order of tho rest mass m. The integral in IV.27 b elementary. 

The result ia 

(IVooZ9) 

where 

F 11:1 In I l_+_b/~ I + I )1 .. b~l + a~ I l-b7(I"":a} t Xl 1 + b 1 + a (IVoo30) 

and 

(IV .. 31) 

Now,let us just consider the case where CIi) and K are much 

leoo than P (b« 1, and 1- a «b. In thia case we find (from equations 

IV -26 .. IV -3l) 

Ci:; • mW!/(KT)K
2

[1+w/2Kln I:+~ I +iz (K/KT)'n (m/ICT)] (IV-32) 

Next, we consider the imaginary part. From IV-l7 anc11V-24 

we find 

.. terms with k - .. k] (IV-)3) 

For Col) and K omall compared with p. we find 
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1m'" 1:1 P 
. "'e!f. 4(KT)K3 

1:1 0 

fo r v ph • w/K < 1 

(IV-3") 

for '~ph. w/K> 1 

The reason there is no damplng for v ph > 1 ii, that slnce the electrons 

cannot have a speed greater than one a wave travelling with a phase 

velocity greater than one cannot transfer energy (on the average) to 

the electrons. 

Silin (19) baa conoidered the coulomb dielectric function of the 

ultra-relativistic plnoma uoing classical techniques. The real part 

of Silin's dielectric function is identical with the first two terms of 

equation IV-32, the third term being a quantum mechanical correction 

[ i. e., the third term is -- (lIKc/ICT)2 ln (mc
2/ICT)] . The imaginary 

part of Silin's dielectric function is identical with 1m'leff. a. given in 

equation IV .. 36. 

We note that the results obtained here are, strictly speaking, 

of an academic nature only. At very high temperatures .!fecta such 

as radiation of electromagnetic waves by the electron. will considerably 

modify the distribution function. 
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v. SUMMARY AND CONCLUSIONS 

We have calculated the photon propagator in a medium by using 

tho four-dimenoional Foynman diagram method. All four dire~tiona of 

photon polarization (scala r, longitudinal, and tran.ver.e) are treated 

on an equal footing. By invoking the current conservation law, longi­

tudinal photons are eliminated. We have calculated an explicit form 

for the interaction of two arbitrary currenta in a medium. From thia 

intC!raction we are able to define a coulomb and transverse dielectric 

function (which are identical in mo t caoes considered hore). By 

examining the photon propagator for it's poles we have been able to 

obtain disperaion relations which yield the energy-momentum relation 

of the free motion of the YGtem. We have diacuased both the re 1 

(diopersive) and imaginary (absorptive) pa.rts of the disperaion relation •• 

For example, we have obtained corrections to tho work of Bohm and 

Pines in the non-relativistic limit, and to the work of Silin in the ultra­

relativistic limit. ' 

By calculating the Del! energy of a fa t incident particle we have 

been able to obtain the total transition probability out of the particle • . 

initial etate and hence, the energy looa. Tho energy losa was found 

to be compooed of three parts. the excitation loal, the ionization 108a, 

and the Cerenkov 1000. In pa~ticular, we have derived the dependence 

of the e.,"Ccitation loos on the dielectric function. 

W have seen that the Feynman diagram technique i. particu­

larily suited to give a unified treatment of a large number of phyaical 

processes that tal{o place in a medium. Although our approach baa 
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000n. quar.tt .... m r.."lcchanica l, many of the results t lmt we have obtained are 

derivable claaoically (e. 3., the atomic index of refraction is essentially 

the cla:Jsical result). The advantage of our method io, that by a sinsle 

scheme (via the photon propa!jator) we have been able to treat a 1art::e 

number of problems, which previously were each treated by a different 

a pproach. That is, tho Feynrrum diaeram approach is a way (undoubtedly 

there aro others) by which one can give a unified picture of the Quantum 

Electrodynamics of a Medium. 

Finally, we are left with some problems of interest which have 

not been treated here. In our opinion, the major problem is the contri­

bution of. hieher order proper diagra.ms to the photon propagator. We 

expect that these higher order terms become increasingly more impor­

tant as the density of the medium increases. That ls, we really would 

like to apply the t heory developed here to a medium other than gases 

(e. g., to glass), and until we have an idea of the efiects of these higher 

terme we are, so to speak, l eft in the dark. Another problem that 

seems amenable to our method is, the properties of a non";isotropic 

sYDtem (e. g., a.n at~n:lic medium in the presence of an external mag­

netic field). 
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APPENDIX A 

In thio appendix we will modify tho theory preaented ln Chapter 2 

to takl3 into account the finite lifetime of the excited atatea of the atoma. 

To do thi we imagine that each excited atate ia really ~de up of a 

large number (infinite) of diflcrete states of energy en (en being 

real) centered around E with weight G( ~). We now recalculate n (..n 

expressiono II-20a and 1I-20b bY ,firot calculating for an energy level 

en (di crete and real) and then averaging over en [weight G(en»). 
We choooe a G({ n) ouch that its expectation value is En and half 

width is 'Yn , the line width. That ia, a G(Cn) ia chos.nsuch that ita 

effects describe a broadened energy level. In what followa, to avoid 

unnecesQary ~omplexity in notation" we conaide~ only one excited state 

above the ground state. 

F irst le~ us consider the tran8ver~e part of l3. Fo, a aingle 

excited state II-17a reada (suppressing an irrelevant multiplicative 

factor) 

, -
A 2 I 12(_1 + , I ' ) 1 
t"11- c.;. zl . q:;. c.;.+w "m (A-1) 

where "1 a El (1 • ie) - Eo (see 11-10). 

Also, to simplify the notation let us put Eo. 0, that la, we are 

meaouring energy r elative to the groU;t1d state. A·I become. 

p _ { 2 I 12( I + 1 ) . I } 
11 wI zl "1'" w .. ie "1 + w - if: • in 

·'Vn i the total line width of the excited atate. 



-112-

Now to t ake into account the effects of the finite lifetime we 

deBire to replace w1 by { and average overall { with' weight G({). 

Speciiically. 

CA-3) 

S OOd{G({) 
-00 

A {unction which permits the pertinent integrals to be done is given by 

(A-") 

where "V « ~. The factor of -l; in A-4 makes G(e) have the 

property S.: d [G([) = 1. , It b readily verified that this choice £o~ 
G({) satisfies the properties discussed in the precedinl paragraph. 

Substituting A·4 into A- 3 we get 

. ..!..} (A-S) , m 

where we take Iz I to be independent of [ since _G([) 18 large only 

in the immediate neighborhood of~. Now for one excited state th~ 

Gum rule. ll-18. becomes' z~ Iz1',z • L For many discrete statea 

spread about w 1 with weight G(e), the sum rulo becomes 

or 
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(A.6) 

Substituting A - 6 into A - 5 and us ing A-4 we lot 

1'1 - r» de ~ . { {1. + (1. ~ 1.{ Liz 11. 
II _ ex) , ({. 1)1.+ of { -w-i~ . {+ w • 1~ J 

en ~ fz I' { {' . {'2. } . 
= S d { z· + • ~ Iz ,'2. (A-7) 

-- ex) ({ -(
1
)' + ~ (- w - i~ [+ w - i~ 

since S ex) d { G({) { IIZ~. T o evalu ate tho integral in A-7 we use 
- 00 

c ontour integration. Considering Just the inteiral of A-7 we have 

{1. {'2. 
+----

{. w - U [+ w - i~ 

(A-8) 

Now t he terms in t he braces and the factor ({. ~ -!f) haa poles in 

the UHP { plane. The only pole in t he LHP { plane comel fro~ 

t he factor ({ - ~ + l.f). So o~ applying C~UChY'1 theorem we choose 

to cloE)e t he c ontour in the l.HP. Honce. by Caue~y'8 theorem 

~ll = - 2.1%1 (residue at ( = w1- !f) • S· 
c 

(A-9) 

where S is the integral of t he integrand. of A-8 evaluated. aloni the 
e 

infinite semicircle in the LHP. Now 
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(A-10) 

Next 

:: i"{ (A-ll) 

Upon substituting A -10 and A-ll into A-9 we let that (replacing the 

te r m retained in A -7) 

r 

Now consider the coulomb t erm ~j344: For a sinal •• tate, 

ot cetera. n .. 17b r eads 

* f has now been set equal to zero. 
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f3 - T{21 ' 12 ( 1 44 .. z -w-
1
-. -w-.~i;"':'c;- + 1 ) "1 + w - if 

Procef"ding in a manner similar to the One used on ~ll sives that the 

result of averagio. over many state8 for . f}44 is 

(A-13) 

The obvious extension to many excited states is that in A.IZ and A.13 

"1 - wn' 'I - 'In and L' The final result is u~zz. 
n 

The problem of natural line shape haa been diacussed by Low (20), 

where he applies the covariant· methods of Feynman and Dyson to the 

• problem of line shape. He discusaes both the line shift and line shape. 

Speci.£ically. Low applitss his techniques to calculate the elastic scatter-

ing rear resonance of photons by a one electron atom in its ground atate. 

He considers only ef£ects which essentially come from diagram lb. Hi. 
'1'1 n 

overall result is that wn is replaced by we.- -r' By using Low'. 

method and including diagram lc we get the same result a8 the averaging 

procedure used here. It should be not~d that Low givea a . method ~ 

He re we have assumed that E is the exact enersy (real) eigenvalue 
which includes radiative eUectl}., et cetera.., . 
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to cdcula.te the line width where we have assumed that it is known. 

We note that these results were obtained with the particular 

function G given in A-4 which was chosen because it enabled the 

averaGing process to be done analytically. Of course we expect the 

results are general and do not depend upon the particular function 

chosen. However, we muat admit that we were unahle to do the lnte­

grals analytically with such a .eeminglyappropriate weiahUna function 

as the gaussian. 
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APPENDIX B 

I thio appendix we give a method for the evaluation of the integrala 

in equation" llI-26 and llI-l7. Here we will explicitly evaluate the most 

complicated of those integrals . The other integrala are done in exactly 

the same way as we will show for the integral T1• From nl-Z8a we 

have 

To evaluate this integral we use the Feynman parameterization t chnique. 

The following relations will be u8e~ul: , 

1 Sl dx 
ab = 0 -[ -ax......;.;+;.;;(-l--x-)b-]-=i~· (B-Z) 

and 

1 ;.. r1 2y dy .. In 3 ~ 0 [ay + (l-y)b] 
( B-3) 

Now 

(B.4) 

where (1, ~ = 1. 2. 3. 

Equation B-1 becomes (dropping the all K uncleI' the integral aiin 

(B-S) 

. 2 
where A = lEw - CA). Using B-Z we find 
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(B.6) 

Now we apply B-3 to get 

Letting 00. = Ko.- (l-y)P 0. we find 
OOpp 

. d 3Q (OZ. 0. ~ po 13) 
Z51 SI S . P T 1 I; Zv Y dy dx 1 3 

o 0 (0 + ~) 
(B-S) 

(B-9) 

In arriving at B-S we ha.ve omitted terms in the numerator 

linear in 0 since theDe terms vanish beca.use they give an odd integral 

and we are integrating over aU O. Also.because of the spherical 
QZ . 

symmetry 0o.Q~ is equivalent to 3 60.W Equation B,- 8 becomes 

4 251 51
(' QZdJo 

T 1 = 'l v Y dy dx J' Z 3 
o 0 (0 + A) 

(B-10) 

Now. by elementary integration, it 1s oasUy verlfied that 

Equation B -10 becomes 
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2 251 51 1 T 1 = "iT Y Y dy dx 2 2 2 1 Z 
o 0 (A(l-y)-w 1jXy-(l-y) P ) 7 

(B.U) 

h r2y2 51 SJ dx 
II - • y dy 

15 0 0 2 A wZ 1/2 [(1-y) • ..:.:.....I1.y) +"""'"'" xy] 
. P~' p~ . 

(B-12) 

where 

2w '(1 w) a c py , -iE . 

Completing the square under the radical al.n in B·12 alvea 

(B-ll) 

where 

a:ld (B-14) 

t = a + 6 

The integral in B·13 is elementary. The result 10 

( 
2 p2\f l) 1/2 c: . 1/2 ( ~ 2) (1. ~ ~(1< +6)1/2) 

Till Q V 2' JL • it1- a ) + l 6 + 6· T In 17% 
w _ (1- 6) 

a 2 (. 1· ~ + (1 ... a)I/2) ] 
-Tin a 

-'Z 
(B-15) 

where (S-16) 
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The other inteerala are not as complicated as Tl since t hey 

only involve one parameterization while Tl involved two parameter­

izationo . These integrals were evaluated using the same method a.s 

used on Tl with t ho results given in W-29. 
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