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ABSTRACT 

1. F rozen aqueous solutions of thymine and N, N'-dimethyl-

thymine have been irradiated at 2537 A to yield two dimers from N,N'-

dimethylthymine and a s ingle dimer from thymine. In all cases irradi-

o 
ation of the dimer in liquid aqueous solution at 2537 A causes reversion 

to the monomer. One of the photodimers obtained from N,N'-dimethyl-

thymine is identical to a product obtained by exhaustively N -methylating 

the single photodimer obtained from thymine. Nuclear magnetic reson-

ance and ultraviolet absorption data support a structure containing a 

cyclobutane ring. 

II. Action spectra for formation of thymine dimer in E. coli 

DNA have been taken. The initial quantum yield is not strongly dependent 

on wavelength. The ratio of thymine dimer to thymine in the photo- . 

stationary state is much more dependent on wavelength. At the 235 m fJ. 

photo steady state 1. 7% of the thymine is present as dimer. This shifts 

to 6.5% at 254 mfJ. and to 20% at 275 mfJ.. While the change in the position 

of the photosteady state with wavelength fails to fit a simple model, the 

data do indicate that not all thymines are capable of participating in 

dimer formation. 



III. Irr a diation of ultraviolet irradiated DNA with photoreactiv ­

atin g light (370 mfJ-) in the presence of an extract from baker's yeast 

containing photoreactivating enzyme causes the disappearance of thymine 

photodimer. The agent causing thymine photodimer to disappear i s heat 

labile. These results suggest that the molecular basis of photoreactiv­

ation of biological damage to microorganisms is the reconver s i on of 

thymine photodi mer to thymine. 
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1. INTRODUC TION 

Ever gr eater attention is being focused on nucleic acid photo­

chemistry, not only because of the discovery of some rather novel 

photochemical reactions, but also because of the implication of nucleic 

acids as the primary site of ultraviolet damage to microorganisms. 

The goal of this type of research is first of all to find out what photo­

chemical changes take place in nucleic acids and then to measure the 

quantum yields for these reactions. Finally one would like to know 

which photochemical damages account for the biological effects of ultra­

violet light upon microorganisms. 

In the work reported in this thesis, information pertaining both 

to nucleic acid photochemistry and ultraviolet radiobiology has been 

obtained about a particular ultraviolet event, the conver sion of thymine 

to thymine photodimer. 
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II. A REVIEW OF NUCLEIC ACID PHOTOCHEMISTRY 

In 1958 there appeared in the Dutch chemical journal Recueil 

des Travaux Chimiques des Pays-Bas the first of a series of papers 

by Beukers, Berends and coworkers (1,2,3,4,5,6,7,8,9,10) which were 

destined to stimulate a rapid increase in our understanding of nucleic 

acid photochemistry. Indeed, the advances initiated by their discovery 

of thymine photodimer are so profound that the very excellent review 

article recently wr itten by Shugar (11) is all but antiquated. Therefore 

I have sought to review the status of the field in the light of these recent 

discoveries and to place the role of thymine dimerization in nucleic acid 

photochemi stry in per spective with the many other photochemical events 

which take place in DNA. The review is not intended to be compre­

hensive; it is intended to tell the important aspects of the story. 

Photochemical alterations of nucleic acid components 

General features. It was reported some time ago that pyrim-

idines are generally more sensitive to ultraviolet irradiation than 

purines , (12,13). Few exceptions to this observation have been reported 

and all four pyrimidines which occur commonly in nucleic acids, thy­

mine, uracil, cytosine, and (in T-evenbacteriophages) 5-hydroxymethyl­

cytosine, are more sensitive to ultraviolet light than the commonly 

occurring purines, adenine and guanine (11). 
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Hydration. It was not until 1949, when Sinsheimer found that 

uracil photochemically added water across its 5 , 6 -double bond (14, 15), 

that a "one - hit" photochemical reaction was characterized for a nucleic 

acid component: 

bv 

Although the photoproduct is stable at room temperature, either heat, 

acid or alkali will catalyze its reconver s i on to uracil. The -OH group 

has been shown to re side at the 6 - posi ti on on the uracil ring (16,17,18 , 

19 ) and other nucleophiles, s uc h as -OCH3 and - CN, w ill add instead 

of -OH under appropriate conditions (20,21 ,22,23). 

Thymine will not form a stable water adduct upon ultraviolet 

irradiation although Wang has h ypothesized that it forms a transient 

water adduct (24). Very little is known about 5-hydroxymethylcy tosine 

photochemistry (25). 

Cytosine seems to undergo a reaction similar to uracil, but its 

photoproduct is rather unstable and reverts back to cytosine in a mat -

ter of hours, even at DoC (26). A controversy is currently raging over 

whether the photoproduct of cytosine is really a water adduct (27,28) or 

merely involves a proton shift (29) : 
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or 

1 II 

Dr. Hammond has pointed out to me that if the primary photo-

chemical product is the water adduct (1) in analogy w ith uracil, it is not 

at all unreasonable that it should rapidly revert to compound II , giving 

a net reaction of a proton shift (30). Wor k in progress in Dr. Wang's 

laboratory (31) should shortly resolve this question. 

Dimerization in frozen solution. An important advance in our 

understanding of nucleic acid photochemistry was made by Beukers and 

Berends, who irradiated frozen aqueous solutions of nucleic acid com-

ponents (2). They f ound that frozen aqueous solutions of thymine 

derivatives were much more sensitive to ultraviolet irradiation, as 

e v idenced by'lossof the 264 m}-l absorption band, than the corresponding 

thawed solutions. Mor eover, they made the exciting discovery that 

when a frozen solution was irradiated and then thawed, irradiation w ith 

254 m}-l ultraviolet light caused the 264 m}-l absorption band of thymine 

to reappear (5). Over a period of a year or so the nature of this 

phenomenon became clear. The product of ultraviolet irradiation of 

frozen aqueous solutions of thymine is a dimer, bonded across the 5,6-

double bonds of two thymines (8,9,23,32). Both monomer_dimer and 
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dimer __ monomer reactions are photochemically induced. However, 

the rate of the forward reaction will depend additionally upon the prox-

imity of the 5, 6-double bonds of the two thymine molecules which are 

to dimerize. 
, -4 

With photolysis of quite dilute thymine solutions ("'10 ~), 

customarily used for study in year s past because of their conv enience 

for spectrophotometric assay, the photo steady state lies almost entirely 

on the side of the monomer (1). Upon freezing, thymine molecules are 

postulated to become concentrated into microaggregates in which the 

5, 6 -double bonds of two adjacent thymines happen to be favorably 

oriented for dimer formation (23). 

Obs ervations which support this interpretation include: (1) Irradi-

ation of concentrated thymidine solutions ("-I M) with 254 mJ-L ultr aviolet 

light causes a decrease of absorption at 264 mJ-L. Upon diluting the 

solution, further ultraviolet irradiation causes an increase in absorption 

at 264 mJ-L (33). (2) That something more than mere concentration of 

thymine molecules is required is supported by the observation by Mr. 

R. F. Stewart that thin crystals of I-methyl thymine are more sensitive 

to ultraviolet irradiation than the Hoogsteen adenine-thymine hydrogen 

bonded dimer (34). Although crystals of both compounds contain thymine 

molecules stacked upon one another, the 5, 6-double bonds of adjac ent 

thymines in I-methyl thymine are i n direct contact wi th one another, 

while in the case of the Hoogsteen dimer they are not (35,36). (3) Wang 

irradiated thin films of thymine which had been formed by slow 
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evaporation of aqueous thymine solutions. Sometimes he obtained 

thymine dimer; sometimes no reaction occurred (23,37). This result 

may be rationalized by saying that the thymine photodimer obtained in 

this way originates fr om thymine monohydrate, which has a crystal 

structure such that the 5, 6.;.double bonds of adjacent thymines are 

favorably oriented for photodimer formation (38). Thymine monohydrate 

crystals are unstable at humi dities l ess than 700/0 (38). If one assumes 

that the dehydration product of thymine monohydrate does not have 

close 5, 6 -double bonds, a plausible explanation for Wang's frequent 

failure to obtain dimer by this evaporation technique i s at once found. 

My failure to obtain thymine photodimer by ultraviolet i rradiation of 

thin crystals of anhydrous thymine (crystal structure unknown) may be 

rationalized in a similar manner (39). 

Among other nucleic acid components onl y uracil has been 

shown to dime rize upon ultraviolet irradiation of its frozen aqueous 

solution (2,23,40,41,42,43). Many N - substituted thymines and uracils 

undergo similar frozen solution photochemistry (2,23,32,43,44). In 

general with the se compounds, complete conver sion to dim er cannot 

be obtained, which presumably means that the monomer~dimer 

photo steady states of these compounds lie more on the side of monomer 

than does the photosteady state characteristic of frozen thymine solu-

tions. 

Thymine photodimer is not formed upon ultraviolet irradiation 
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of frozen aqueous solutions of thymine containing 5% glycerol or 

methanol (5). If an aqueous solution of thymine photodimer containing 

50/0 glycerol or methanol is frozen and irradiated, thymine is obtained 

(9). These results indicate that the photo steady state is apparently 

shifted to the side of the monomer by addition of methanol or glycerol 

before freezing. The reason for this shift is suggested by the results 

of Wang (23), who irradiated a frozen aqueous solution of uracil with 

5% methanol added. He obtained addition of methanol across the 5,6-

double bond of uracil, in the same manner as water would have added 

upon irradiation of the thawed solution. Wang has interpreted this to 

mean that freezing of uracil in methanolic water causes "puddles" of 

uracil in methanol to be formed instead of the usual microcrystals of 

uracil. Addition of methanol across the 5, 6-double bond would then 

take place upon ultraviolet irradiation. 

In addition to organic solvents such as methanol and glycerol, 

adenine and 5-bromouracil (5-BU) inhibit thymine photodimer forma­

tion, although cytosine has no effect (45). Mixtures of uracil and thymine 

yield uracil-thymine hybrids in addition to the homologous uracil and 

thymine dimers (41,42). Although 5-BU has no increased photosen-

sitivity upon irradiation in frozen solution, mixtures of 5-BU and 

cytosine-2-C-l4 yield several photoproducts, all of which are not radio­

active (45). Mixtures of uracil and 5-BU give photoproducts derived 

only from uracil, only from 5-BU and 5-BU-uracil crossproducts (45). 
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Apparently the intermolecular orientation which occur s in a frozen 

solution of a single purine or pyrimidine may be sometimes altered by 

fre e z i ng in the presence of another purine or pyrimidine. 

Dimerization: The effect of paramagneti.c ions. The photosteady 

state of orotic acid in dilute (fluid) aqueous solution is such that an 

appreciable proportion of the orotic acid is dimerized, even at concen-

-4 
trations as low as 10 ~(4). Addition of oxygen or paramagnetic ions 

to the solution pushes the photo steady state to the side of the monomer; 

removal of oxygen and paramagnetic ions shifts it towards the dimer 

(4,7). A study of the effect of paramagnetic ions on the individual for-

ward and back reactions has yet to be done, as has an investigation of a 

possible paramagnetic ion effect on photodimerization in concentrated 

thymidine solutions. It is tempting to speculate that paramagnetic ions 

act by retarding the forward reaction bV- quenching a triplet state inter-

mediate. 

Action spectrum of dimerization in a dinucleotide. Since thymine 

photodimerization is favored by bringing the 5, 6-double bonds of adjacent 

thymines close to each other, one might expect that irradiation of a 

dilute solution of thymine dinucleotide would result in appreciable thymine 

photodimerization. Indeed irradiation of thymine dinucleotide with 254 mfl 

ultraviolet light brings about a photo steady state in which approximately 

30% of the thymines exist as photodimer (9,42,44). 

The position of the photosteady state in thymine dinucleotide is 
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strikingly dependent upon the wavelength of light used: Almost all thy­

mines become photodimerized at the photo steady state upon irradiation 

with 275 mf-L light, while the photo steady state lies almost entirely on 

the side of the monomer upon irradiation with 235 mf-L light (46). The 

quantum yield of both the forward and back reactions is relatively little 

affected by wavelength, but the ratio of the extinction coefficient of the 

dimer to that of the monomer varies by a factor of about 200 between 

275 mf-L and 235 mf-L (46,47), thus causing the dramatic wavelength 

dependence observed for the position of the photo steady state. 

Photochemistry of DNA 

Hydration. It is extremely difficult to say what role hydration 

has in the photochemistry of DNA. Spectral studies of photohydration 

i n nucleic acids (48,49,50) are difficult to interpret because one does 

not know how any given photochemical lesion will affect the extinction 

coefficients of nearby undamaged nucleotides. Also one does not know 

what part of the observed spectral changes are due to photohydration and 

what part are due to competing photochemical reactions. The instability 

of cytosine photohydrate would make it impossible to estimate the con­

centration of this component by direct hydrolysis of irradiated DNA. 

The stability of cytosine photohydrate in irradiated DNA is not 

known. It has been speculated that thymine in DNA will form a stable 

photohydrate even though it forms no stable photohydrate by itself (24). 
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Dimerization. Thymine dimer has been isolated from acid 

hydrolysates of DNA (6,51). A photo steady state with about 10% of the 

thymine converted to thymine dimer is formed by sufficient irradiation 

of E. coli DNA with 254 mfl ultraviolet light--C42). In work reported in 

this thesis, it is shown that the dependence of the position of the photo-

steady state on wavelength of light used for irradiation is roughly the 

same as was observed by Johns et al. for thymine dinucleotide (46), 

except that an appreciable fraction of the thymines do not seem to be 

able to partake in dimerization. The results are roughly consistent with 

the idea that only thymine-thymine nearest neighbor pairs are able to 

dimerize. 

There has been some speculation that thymine photodimer forma-

tion in DNA is preceded by a "softening up" of the DNA by other photo-

chemical damages. In such a case one would find that no thymine dimer 

is formed below a certain dose. Thymine dimer formation i ,s linear with 

2 
dose down to 3000 ergs/mm at 254 mfl; reliable data at lower doses 

have not yet been published. 

It is not known whether cytosine-cytosine photodimers or cytosine-

thymine photohybrids are formed in ultraviolet irradiated DNA. 

Physical properties. Several workers have studied the effect 

of ultraviolet light on the physical properties of DNA (48,52,53,54). It 

seems clear that little or no detectable changes in most physical properties 

occur at ultraviolet doses below those needed to establish the thymine-
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thymine photodimer steady state at 254 mfl. However, at sufficiently 

high ultraviolet doses several changes characteristic of a general 

degradation and decrease in stability of the DNA structure occur, 

including an oxygen accelerated decrease in viscosity and molecular 

weight and an increase in sensitivity to heat, acid, and formaldehyde 

denaturation. With somewhat lower ultraviolet dose, an increase in the 

density at which the DNA bands in a cesium chloride density gradient 

occurs (52,53,54). 

Crosslinking. Irradiation of a dry film of DNA results m the 

formation of crosslinks between molecules (55,56). 

A certain amount of crosslinking also occurs in ultraviolet 

irradiated aqueous solutions of DNA (52,53,54). The crosslinks seem 

to be formed only between two strands of the same DNA molecule. It 

has been hypothesized that these crosslinks are due to thymine dimer­

ization. At a dose when about half of the DNA molecules are crosslinked, 

there are about 100 thymine dimers per DNA molecule. Thus, if the 

crosslinking is due to thymine dimerization, it represents only a small 

fraction of the total thymine dimer present in the system. It is not known 

whether crosslinks can form at very low doses; it is quite conceivable 

that they should form only after primary damages " soften up" the DNA 

sufficiently. 

The molecular basis of ultraviolet death to microorganisms 

The preponderant biological effect of ultraviolet light on 
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microorganisms is a killing action. This killing seems to be intimately 

associated with some sort of damage to the DNA of the microorganism; 

the molecular nature of the ultraviolet lesions is not known (57). 

It has been generally speculated that thymine dimer is this lethal 

lesion ever since its discovery by Beuker s and Berends. Perhaps the 

simplest and best suited system from a biological point of v iew for 

investigating the validity of this hypothesis i s the ultraviolet inactivation 

of the T-even bacteriophages. At present no direct comparison of the 

number of thymine dimer s per bacteriophage per lethal hit has been 

published. It is not only necessary to measure the ultraviolet cross­

section for thymine dimer formation in the bacteriophages themselves, 

but it is also necessary to measure the cross-section for dimer formation 

at the extremely low doses needed to kill bacteriophages because of the 

possibility that dimer formation takes place only after a primary ultra­

violet le sion fir st "softens up" the DNA. 

The role of other possible damages in ultraviolet inactivation is 

in general not understood. However, there is some indication that if 

any heat reversible damages ( such as cytosine hydration) are produced 

upon ultraviolet irradiation of biologically active transforming DNA, 

they do not cause loss of biological activity (53). 

Thymine photodimer and photoreactivation 

"Photoreactivation" is a terOm used to describe a phenomenon 

whereby the survival probability of an ultraviolet irradiated microorganism 
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is found, l.n some cases and under some circumstances, to be markedly 

higher if the organism is incubated in the presence of 370 rnfllight 

following ultraviolet irradiation. (See Jagger (58) for an excellent review 

article on this sub j ect.) Rupert has obtained an enzyme preparation from 

bak er's yeast which can photoreactivate ultraviolet damage to biologically 

active transforming DNA (59,60,61). This enzyme forms a complex 

specifically with ultraviolet irradiated DNA. Upon incubation in the 

presence of photoreactivating light, photoreactivable damages are re­

paired and the enzyme-substrate complex dissociates. In this thesis it 

is shown that, in the presence of the enzyme preparation, irradiation 

with photoreactivating light (370 mfl) of u. v. damaged DNA causes thy ­

mine dimer to disappear. These results strongly suggest that thymine 

dimer is an important cause of ultraviolet inactivation of transforming 

DNA and that photoreactiv ating enzyme restores biological activity to 

transforming DNA by reconverting thymine dimer to thymine. 



ON THE NATURE OF THYMINE PHOTOPRODUCT~ 

DANIEL L. WULFF AND GIDEON FR;\ENKEL 

Gates and Crellin LabJratories of Chemistry, California Institute of Technology, 

Pasadena, Calif. (U.S.A.) 

(Received January 13th, 1961) 

SUMMARY 

Frozen aqueous solutions of thymine and N,N'-dimethylthymine have been irradiated 
at 2537 A to yield two dimers from N,N'-dimethylthymine and a single dimer from 
thymine. In all cases irradiation of the dimer in liquid aqueous solution at 2537 A 
causes reversion to the monomer. One of the photodimers obtained from N ,N'­
dimethylthymine is identical to a product obtained by exhaustively N-methylating 
the single photodimer obtained from thymine. Nuclear magnetic resonance and ultra­
violet absorption data support a structure containing a cyclobutane ring. Fourdifferent 
isomers consistent with these data are depicted in the text. 

Chemical shifts and spin coupling constants have been obtained for thymine and 
the three dimers. 

INTRODUCTION 

BEUKERS, IjLSTRA AND BERENDSI have found that thymine in frozen aqueous 
solution is converted by ultraviolet light into a new compound which has no thymine­
like ultraviolet absorption band near 265 mp,. This photoproduct, which may be iso-

* Contribution No. 2654. 

Biochim. Biophys. Acta, 51 (1961 ) 332-339 
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lated in crystalline form, is stable in 6 N NaOH and fuming perchloric acid. BEUKERS 
et al.2 made the interesting and exciting discovery that ultraviolet irradiation of a 
liquid aqueous solution of thymine photoproduct brings about the restoration of 
thymine. BEUKERS AND BERENDS have shown that thymine photoproduct has the 
same empirical formula as thymine and a molecular weight twice that of thymine3• 

Infrared absorption bands are found for thymine photoproduct in the neighborhood 
of 870 em-I. BEUKERS A~D BERENDS have attributed these bands to cyclobutane 
ring vibrations. This evidence and the "improbability of other possibilities" have led 
them to the conclusion that thymine photoproduct has the following structural 
skeleton: 

Formation of the cyclobutane ring is accompanied by saturation of the 5,6 double 
bond of thymine. BEUKERS AND BERENDS state further that nuclear magnetic reso­
nance spectra show no spin-spin splitting of the proton attached to the 6 carbon atom 
of one thymine ring by the proton attached to the 6 carbon atom of the other thymine 
ring and that the isomer formed must therefore be one in which the 6 carbon atoms are 
not adjacent. This argument is invalid since these hydrogens are in equivalent mag­
netic environments, regardless of isomer; hence in this case no spin-spin splitting is 
to be expected!. 

Not only is the photochemically reversible conversion of thymine into a dimer 
interesting as a purely chemical phenomenon, but such alteration of thymine may be 
the primary source of ultraviolet damage to the genetic function of microorganisms. 
Indeed thymine photoproduct has been isolated from irradiated aqueous solutions of 
deoxyribonucleic acid5 and from irradiated bacteria6• The question as to whether or 
not the photochemical reconversion of thymine photoproduct to thymine is related 
to the biological phenomenon of photoreactivation is one which invites further in­
vestigation. 

In this communication we wish to report structural investigations of compounds 
produced by ultraviolet irradiation of frozen solutions of thymine and N,N'-dimethyl­
thymine. 

MATERIALS AND METHODS 

General 

All materials were of reagent grade unless noted otherwise. Thymine of CfP grade 
was obtained from the California Corporation for Biochemical Research. Dimethyl 
sulfoxide, from the Crown Zellerbach Corporation, was dried with Davison molecular 
sieve powder and fractionated at 3.5 mm, b.p. 39.5-40.5°. Dimethyl-d6 sulfoxide 
(99 %D) was obtained from Merck and Co., Ltd. of Canada. Deuterium oxide (99 %D) 
was obtained from General Dynamics Corporation. 

Molecular weights were determined to ± 10 % by freezing point depression in 
camphor. 

Ultraviolet absorption measurements were made either with a Beckman Model 
DU or with a Cary Model 14 spectrophotometer. 

Nuclear magnetic resonance spectra were determined with the Varian high re­
solution nuclear magnetic resonance spectrometer, using a R.F. unit for 60 Me, as 

Biochim. BioPhys. Acta, 51 (1961) 332-339 



334 D. L. WULFF, G. FR.-\ENKEL 

described previously7. Chemical shifts were calibrated by the method of side-band 
audiomodulation with an accuracy of ± I cyc./sec (see ref. 8). The solvent peaks 
(dimethyl sulfoxide and water) were located relative to hexane as an external standard 
in separate experiments and the solute peaks were determined relative to the solvent 
peaks. The proton resonance in dimethyl sulfoxide occurs at +7.50 on the Tiers scale. 
Solutions used for nuclear magnetic resonance analysis were approx. 5 %. 

Preparation of thymine photoproduct 

A Ioo-ml portion of a I % thymine solution was cooled to ~78 0 in a shallow 
aluminum refrigerator tray of surface area 600 cm2• The frozen solution was irradi­
ated for about I h with two 8-\V General Electric germicidal lamps placed about 5 em 
from the surface of the solution. About 60 % conversion to photoproduct was obtained 
in this way. Several batches of thawed solution were concentrated to one-fourth of 
the original volume, using a steam bath and water aspirator. The solution was heated 
to 100°, filtered to remove debris, and allowed to crystallize overnight at 4°. Thymine 
photoproduct (solubility 0.5 gil in water at room temperature) precipitated while 
thymine (solubility 4 gil in water at room temperature) stayed in solution. The crystal­
line precipitate was recrystallized from hot water and oven-dried at 100°. Long white 
needles were obtained. Since no trace of an aromatic absorption band centered at 
265 m,u could be detected spectrophotometrically (Fig. I), it was concluded that no 
thymine was present in this material. 

1.4 .------,----,-------,--------, 

1.2 

1.0 
>­
u 
z 
« 
[(] 0.8 
a: 
o 
lIJ 
cD 
<i 0.6 

0.4 

0.2 

220 240 260 280 300 

WAVE LENGTH, mp. 

Fig. r. Upper line is the absorbancy of a 20 p,g/ml (1.6' 10-41VI) solution of thymine; lower line is 
the absorbancy of a 20 flg/ml solution of thymine photoproduct. 

1'\1. ethylation oj thymine photoproduct 

Sodium hydroxide (0.5 g) was dissolved in 6 ml of water and thymine photo­
product (0.7 g) was added. The resulting slurry was cooled in an ice bath and 1.4 ml 
of dimethyl sulfate was added drop wise over a period of about 5 min with continuous 
stirring. Stirring was continued for about 4 hat 0° and then overnight at room tempera­
ture. The solution was extracted with three Io-ml portions of chloroform. The chloro-

Biochim. Biophys. Acta, 51 (1961) 332-339 
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form extracts were evaporated and there remained a viscous brown oil. Most of the 
oil dissolved upon addition of 20 ml of hot benzene; the residue was discarded. An 
alumina column of dimensions 1.8 cm2 X 10 cm was prepared from a slurry of alumina 
(acid washed" from Merck and Co., Inc.) in hexane. 10 ml of benzene were passed 
through the column, followed by the solution of methylated photoproduct in benzene. 
Elution was carried out by adding solvent to the column as follows: 50 ml of benzene, 
50 ml of benzene~ether (1: I), 50 ml of ether, 50 ml of I % ethanol in ether, 50 ml 
of 2 % ethanol in ether, etc. up to 50 ml of 12 % ethanol in ether, and then finally 
100 ml of ethanol. 20-ml aliquots were collected and evaporated to dryness. A crystal­
line material was eluted in 9-10 % ethanol yielding, upon recrystallization from 
chloroform-hexane, white crystals in the form of hexagonal dght prisms, m.p. 
246- 247°. 

Anal. Calcd. for C7H lON 202: C, 54.53 %; H, 6.54 %; N, 18.17 %. Found: C, 
54-63 %; H, 6.47 %; N, 18.35 %. Mol. wt. for (C7H lON 202)2: 308. Found: 321. 

I rradiation of N ,N' -dimethylthymine 

N,N'-Dimethylthymine was prepared from thymine by the method of DAVIDSON 

AND BAUDISH9. A 2.5 % aqueous solution was irradiated in the same manner as was 
thymine. However, dimethylthymine could only be irradiated to about 60 % loss of 
absorbancy at its maximum of 270 mIL; further loss of absorbancy at 270 mIL could 
not be effected by thawing the solution, refreezing, and then irradiating again. The 
irradiated solution was evaporated on a steam bath under reduced pressure to give a 
yellow oil. Final traces of moisture were removed by drying in vacuo over anhydrous 
calcium sulfate. One gram of residue was placed on top of a freshly prepared alumina 
column of dimensions 1.8 cm2 X 19 em (in retrospect, we think it would be better to 
first dissolve the powder in hot benzene) and eluted with benzene, benzene-ether, 
ether, ether-ethanol, and ethanol. Aliquots were evaporated to dryness and residues 
were recrystallized from chloroform-hexane. A crystalline material which was eluted 
with benzene-ether had an ultraviolet absorption spectrum identical to that of N ,N'­
dimethylthymine; while a crystalline material which was eluted from ether-ethanol 
had an ultraviolet absorption spectrum similar to that of thymine photoproduct. 
Since nuclear magnetic resonance spectra indicated that the ether-ethanol eluate was 
a mixture of two photoproducts, further separation on alumina was carried out: 
The recrystallized ether-ethanol eluate was placed as a powder upon a freshly prepared 
alumina column (1.8 cm2 X 19 cm) and eluted with successive Ioo-ml portions of 
diethyl ether, I % ethanol in ether, 2 Sio ethanol in ether etc., to 12 °/~ ethanol in ether, 
and then finally with ethanol. Io-ml fractions were collected and evaporated to 
dryness. Residue first appeared upon elution of the column with 4-5 % ethanol, dis­
appeared upon elution with 6-7 % ethanol, and then reappeared upon elution with 
8-9 <j.~ ethanol. The residue eluted by 4-5 oj,) ethanol was combined and recrystallized 
from chloroform-hexane to give white crystals in the form of parallelepipeds, m.p. 
224-225°, and was labelled dimethylthymine photoproduct I. The residue from 8-9 ~'o 
ethanol was treated similarly to give white crystals in the form of hexagonal right 
prisms, m.p. 250-251°, and was labelled dimethylthymine photoproduct II. The 
nuclear magnetic resonance spectra of dimethylthymine photoproducts I and II, 
which are formed in approximately equal amounts, can be superimposed to give the 
nuclear magnetic resonance spectra of the material before separation. 

Biochim. Biophys. Acta. 51 (1901) 33 1 339 
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Anal. Caled. for C7H 12N 20 2 : C, 54.53 ~~; H, 6.54 (~~; N, 18.17 (>~. Found for di­
methylthymine photoproduct I: C, 54.51 %; H, 6.57 %; N, 18.17 (;/~. Found for di­
methylthymine photoproduct II: C, 54.35 (;/~; H, 6.50 %; N, 18.16°<). Mol. wt. for 
(C7H 12N 20 2)2: 308. Found for N,N'-dimethylthyrnine photoproduct I: 292. Found for 
N,N'-dimethylthymine photoproduct II: 289. 

RESULTS AND DISCeSSION 

Nuclear magnetic resonance spectra of thymine 

Since both thymine and thymine photoproduct are quite insoluble in water, it 
was necessary to use either perchloric acid or dimethyl sulfoxide as a solvent for 
nuclear magnetic resonance studies. Both solvents were used and yielded similar 
results, although better resolution was obtained in dimethyl sulfoxide. 

Fig. 2a shows the nuclear magnetic resonance spectrum of thymine in dimethyl 
sulfoxide. The peaks due to the two hydrogens that are bonded to nitrogen (referred 
to as "NH" peaks) are identified by their appearance at extremely low fields and by 
their disappearance upon addition of a small amount of D 20 to the solution. The 
broader NH peak is due to the NH adjacent to CH while the other is derived from 
CONHCO. Of the two peaks derived from protons that will not exchange with D 20, 
one must be due to the hydrogen that is bonded to the 6 carbon atom of thymine 
(referred to as the "CR" peak) and the other must be due to the hydrogens of the 5 
methyl group of thymine (referred to as the "C-CH3" peak). These two peaks are 
identified on the basis of relative peak heights and chemical shifts. Further support 
of the assignment of absorption peaks as shown in Fig. za is given by an analysis of 
spin-spin splitting. While the two NH peaks are too broad to be resolved into sub­
peaks, the CH peak is split into two equal lines by the proton on the I nitrogen, 
J CH,NH = 5·7 cyc./sec. This splitting disappears when the I nitrogen atom is deuter-

20 
Nil NH 

-356 -331 

THYMINE IN DIMETHYLSULFOX IDE 

eli 
-158 

H-

THYMINE PHOTO PRODUCT IN DIMETHYLSULFOXIDE 

NH NH 
-326 -179 

2b 
H-

THYMINE PHOTOPRODUCT IN d6 -DIMETHYLSULFOXIDE 

Nfl NH 
-326 -179 

2c 
H-

S 
+122 

Fig. 2. Nuclear magnetic resonance spectra, 60 Mc, 29°. (a) Thymine in dimethyl sulfoxide. (b) 
Thymine photoproduct in dimethyl sulfoxide. (c) Thymine photoproduct in dimethyl-ds sulfoxide. 
Key: S, resonance of solvent protons; SB, spinning sideband from solvent; C13, carbon thirteen 
satellite from solvent; H 20, water or impurities in solvent that will rapidly exchange with water; 
T, impurity in solvent. The assignment of peaks is discussed in the text. In the figure the chemical 

shift is given in cyc./sec from external water. The magnetic field increases to the right. 
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ated, since JH,D/JH,H ,...., I/7, and JeH,c-cH3 is found to be 1.I cyc./sec. The C-CH3 
peak is resolved into an equal doublet and the CH peak appears as a I, 3,3, I quartet. 
This last coupling constant is 1.I cyc./sec in N,N'-dimethylthymine also. 

Nuclear magnetic resonance spectra of thymine photoproduct 

The nuclear magnetic resonance spectrum of thymine photoproduct in dimethyl 
sulfoxide is shown in Fig. 2b. Aside from absorption by the solvent, only three peaks 
are visible. Since it was thought that a fourth photoproduct peak might be hidden 
under a solvent peak, the nuclear magnetic resonance spectrum of thymine photo­
product was determined in dimethyl-ds sulfoxide. Indeed a fourth photoproduct peak 
appeared at the site of one of the lac satellite peaks of non-deuterated solvent, as 
shown in Fig. 2C. 

The two NH peaks were established on the basis that they both disappeared 
upon addition of D 20. The one furthest downfield disappeared in less than 5 min, 
while the other one disappeared over a period of 20 min. The fact that, even before 
addition of D 20, they are smaller than the CH peak is attributed to exchange of 
nitrogen protons with deuteratedexchangeableimpuritiesin thedimethyl-dssulfoxide. 

H20 

+0 DIMETHYL THYMINE PHOTOPRODUCT I IN 020 

N-CH~ N- CH~ C- CH 3 

+94 +100 + 191 

CH 

30 -" L. .1+ 53 
l )~ ·P'-----J 1 

3b 

3c 

H 20 

to 

H-

DIMETHYLTHYMINE PHOTOPRODUCT II IN 020 

N-CH3 N- CH 3 
+99 +102 

H-

THYMINE PHOTOPROOUCT, METHYLATED, IN °20 

H20 

to 

H-

C- CH 3 
+193 

Fig. 3. Nuclear magnetic resonance spectra, 60 Mc, 29°. (a) N,N/-Dimethylthymine photoproduct I 
in D:p. (b) N,N'-Dimethylthymine photoproduct II in DzO. (c) Thymine photoproduct, methyl­
ated, in D 20. The small unlabelled peaks in Fig. 3c are due to impurities. (A less pure sample than 
described in the experimental section was used for nuclear magnetic resonance studies.) Key: 
H 20, resonance of solvent protons. The assignment of peaks is discussed in the text. In the figure 
the chemical shift is given in cyc./sec from the H 20 peak. The magnetic field increases to the right. 
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These peaks may be made to approach the CH peak height (in a solution to which 
no D 20 has been added) by making the solution about I % in H 20. If no carbon­
hydrogen bonds are broken in the photochemical process, which is quite reasonable 
on chemical grounds, the remaining two peaks must be the CH and the C-CH3 peaks. 
They are assigned on the basis of relative peak heights, as shown in Fig. 2C. 

Note the large chemical shift to higher field of the CH peak in thymine photo­
product as compared to the CH peak in thymine. Whereas the CH peak in thymine 
appears at a chemical shift typical for a proton on an aromatic ring, the CH peak in 
thymine photoproduct appears at a chemical shift typical for a proton on a saturated 
carbon atom. Thus nuclear magnetic resonance spectra point strongly to a saturated 
5,6 double bond in thymine photoproduct. 

The photoproducts of frozen lV,1\l' -dimethylthymine solutions 

Two photoproducts were isolated from irradiation of N ,N'-dimethylthymine in 
frozen solutions as described above. These two compounds have the same empirical 
composition as N,N'-dimethylthymine and are dimeric; both lack an ultraviolet 
absorption-band characteristic of an aromatic ring. Both will revert to N ,N' -dimethyl­
th.ymine upon irradiation at 2537 A in liquid aqueous solution as determined spectro­
photometrically. The nuclear magnetic resonance spectra of these isomers in D 20 are 
shown in Fig. 3. \Vith the exception of the N-CH3 peaks, which have replaced the 
NH peaks, these spectra are quite similar to the nuclear magnetic resonance spectrum 
of thymine photoproduct in dimethyl-ds sulfoxide. In fact the chemical shift of the 
CH peaks strongly suggest that the 5,6 double bond has become saturated in these 
two dimethylthymine photodimers. All this evidence indicates that frozen dimethyl­
thymine solutions may be irradiated to give two isomers, both of which have the 
structural skeleton proposed by BEuKERs AND BERENDS for thymine photoproduct. 

H 

co 

(meso) 

I 

H 

co 

NH 

(d,l ) 

ill 

NH 

co 

co 

co 

NH co 

(meso) 

.lY 

NH 

co 

Fig 4. The four possible thymine dimers that contain a cyclobutane ring. 
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Comparison of thymine photoproduct with N ,N' -dimethyUhymine photoproducts I and I I 

In order to compare thymine photoproduct with the two photoproducts from 
N ,N'-dimethylthymine, thymine photoproduct was first exhaustively N-methylated 
to give a compound with the empirical composition of dimethylthymine and a mole­
cular weight twice that of dimethylthymine. The nuclear magnetic resonance spec­
trum of the methylated dimer (Fig. 3) and its elution behaviour on an alumina column 
indicated that it might be identical to N ,N'-dimethylthymine photoproduct II. A 
mixed melting-point determination confirmed this hypothesis. 

The four dimers with cyclobutane rings 

There are four physically different dimers that have the empirical composition 
of thymine and that involve a cyclobutane ring formed by saturation of the 5,6 
double bond (Fig. 4). It is impossible to tell from nuclear magnetic resonance studies 
alone which two of these isomers are obtained from N,N'-dimethylthymine. 

Of these four isomers it is clear from inspection of molecular models that only 
I of Fig. 4 will arise from photodimerization of adjacent thymine moieties on deoxy­
ribonucleic acid. On the other hand, cross linkage in irradiated DNA films lO might 
arise from formation of one or both of the trans isomers, II and IV of Fig. 4. It is 
possible that all three of these isomers are formed in vivo under the proper conditions. 
This question requires further study. 
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IV. EXPERIMENTAL METHODS FOR WORK WITH 

D NA -THYMINE-H
3 

Preparation of DNA-thymine-H
3 

Radioactive isotope. Thy midine -methyl-H
3

, 5 c/mM from 

New England Nuclear Corporation, was used without further purification. 

Bacterial strain and growth conditions. The triple auxotroph 

E. coli 15 T--A -U - (requiring thymine, arginine, and uracil) was kindly 

supplied by Dr. P. Hanawalt and grown in a medium described by Maali>e 

and Hanawalt (62). 

Incorporation of thymidine-methyl-H3 into E. coli 15 T-A-U-

DNA. An overnight culture of bacteria w as harvested and resuspended 

at 5 x 10
7 

per ml in medium containing 4 flg/f1l of thymidine-methyl-H
3 

(specific activity 1. 3 c/mM) as the source of thymine. The bacteria were 

8 
allowed to grow to about 8 x 10 per ml and then collected by centrifuga-

tion. 

Isolation and purification of DNA-thymine-H3 T he bacteria 

were washed with 1(40 volume saline-versene (0.15 M NaCl plus 0.1 M 

versene at pH 8), harvested by centrifugation and suspended in 0.7 ml 

f I " ( "" 1 10 ) o sa lne-versene glvlng '" 0 per ml • Lysis was effected by adding 

0.05 ml of 25% dupanol and heating to 65°C for 10 minutes. Deprotein-

ization was carried out by making the solution 1 ~ in NaCIO 4 with 5 N 

NaCIO 4' adding an equal volume of chloroform-isoamyl alcohol, 
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24: 1 (v/v), and shaking for 15 minutes. After separation of the solution 

into two layer s by centrifugation for 15 minutes at 5000 RPM in a 

Servall centrifuge, the aqueous phase was withdrawn and 1. 35 g H ° 
2 

and 3.03 g of CsCl were added. The insoluble CsCl0
4 

was removed by 

a 5 minute centrifugation at 5000 RPM. After adjusting the density to 

p = 1.70 (determined by weighing 100 f.!-l of solution), the solution was 

centrifuged in a lusteroid tube in a model L Spinco preparative centrifuge 

at 33,000 RPM at room temperature for 36 hours. After the rotor had 

coasted to a stop, the lusteroid tube was carefully secured and a pin hole 

was put in the bottom. Three drop fractions were collected in test tubes 

containing 0.6 ml of water. The fractions containing the DNA (tubes 13, 

14 and 15 out of 27 tubes) were determined spectrophotometrically with 

a Cary Model 14 recording spectrophotometer and pooled. The concen-

tration of radioactive label in the DNA fraction was about 20 times the 

concentration of radioactive label in tube 5. The DNA fraction was 

dialyzed at 4°C for 24 hour s against two changes of 0.15 ~ NaCl, 0.015 

M sodium citrate and stored at 4°C. (This procedure for - preparing 

DNA is quite similar to that of Marmur (63).) 

Ultraviolet irradiation of DNA 

Irradiation of DNA solutions was performed using a General 

Electric BH6 high pressure mercury lamp and a quartz monochromater 

as described by Johns, Rappaport and DelbrUck (46). The bandwidth 

between half peak intensity points was about 7 mf.!-. The intensity of the 
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lamp generally varied significantly with wavelength in the vicinity of the 

wavelength of irradiation. As a result, the effective wavelength of 

irradiation was up to 3 miJ- different from the stated wavelength. The 

ultraviolet intensity was measured with a photocell which had been cali­

brated both with a standard thermopile and with the malachite green 

leucocyanide actinometer sy stem (46). 

Solutions containing 2 ml of 0.3 iJ-g/ ml of DNA (in O. 015 ~ NaCl, 

O. 0015 ~ sodium citrate) in a Beckman rectangular cell were stirred 

during irradiation with a glass stirring rod at 3350 RPM. For long 

irradiations, after about 10
5 

ergs/mm
2 

had been delivered, sampl es 

were stirred only intermittently because of evaporation and bubble forma­

tion. Samples for analysis were withdrawn from time to time in a 10 iJ-l 

pipette. A correction was made for the loss in volume of the solution 

being irradiated, although this was small in comparison with experimental 

error. 

Hydrolysis and chromatography of DNA 

DNA samples were evaporated at 90°C with the aid of a gentle 

stream of air and subjected to formic acid hydrolysis (0.003 iJ-g to 0.3 iJ-g 

of DNA in 25 iJ-l of 88% formic acid) in evacuated tubes at 175° for 30 

minutes (64). The yield of thymine and thymine photodimer from irradi­

ated DNA was independent of hydrolys i s time over a range of 15 to 60 

minutes at 175°C. 
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After hydrolysis, a sample was evaporated to dryness at room 

temperature with the aid of a gentle stream of air and the residue was 

taken up in 10 jJ.l each of a 1 jJ.g/!J.l solution of thymine photodimer in 6 N 

HCl and a 1 jJ.g/ jJ.l solution of thyrDine. The sample was placed on the 

origin of an inch wide strip of Schleicher & Schuell 589 White Ribbon 

chromatography paper which had been previously washed by chromatog­

raphy in ethyl acetate: acetic acid : water (10: 3: 1). The hydrolysis tube 

was washed with 1 drop of water, which was then also transferred to the 

paper. After drying, the sample was concentrated into a narrow band . 

by a brief chromatography in water. (Both thymine and thymine photo­

dimer move with the solvent front.) 

The sample was then subjected to descending paper chromatography 

in isopropanol: conc. HC1: water (68: 15. 5: 16. 5). 

In order to locate the position of thymine and thymine photodimer 

on the strip of paper, a strip of paper containing just carrier thymine and 

thymine dimer was chromatographed adjacent to each strip of paper con­

taining radioactive sample. The thymine spot on this control paper was 

located by reason that thymine quenches fluorescence of ultraviolet 

irradiated paper. The thymine dimer spot on this control paper, after 

being reconverted to thymine by irradiation of the control paper strip 

for 8 minutes with a bank of four 16 watt germicidal lamps at 6 inches 

distance, could be detected by the ultraviolet fluorescence quenching 

method also. On the basis of this control, an intelligent guess was made 

as to the position of thymine photodimer in the paper containing tritiated 
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sample. 

A strip of paper 4 cm long which supposedly contained thymine 

photodimer was cut (usually near R = 0.6) and clamped to the origin of 
F 

another strip of washed paper with the aid of microscope slides and paper 

clips. The strip was subjected to chromatography in water until the 

solv ent front had mov ed about 1 cm beyond the end of the microscope 

slides. After drying, the paper clips and microscope slides w ere 

removed and the strip was again subjected to a brief chromatography in 

water. This method served to quantitatively transfer thymine dimer 

from a diffuse spot on the original strip of paper into a narrow band on 

the new strip of paper. 

This thymine dimer band was now subjected to descending 

chromatography in saturated ammonium sulfate: 1 N sodium acetate: 

isopropanol (40: 9:1). Thymine dimer was located as before and a 4 cm 

strip (usually around RF = 0.7) was cut as before. 

Radioactive thymine from the first chromatography was located 

directly by the fluorescence quenching method and a 4 cm strip centered 

at the thymine spot was cut (usually around RF = 0.8), a s well as one 

2 cm strip on each side. 

All radioactiv e paper samples were transferred to the polyethylene 

vials used for liquid scintillation counting and 1 ml of water was added to 

each vial. The recovery of carrier thymine dimer from chromatography 

was now assayed spectrophotometrically in the following manner: After 

an overnight soaking, an aliquot of the thymine photodimer eluate was 
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placed into a 0.6 ml Beckman spectrophotometer cell. The ultraviolet 

spectrum was run on the Cary Model 14 before and after placing the 

sample for 10 minutes at 6 inches from a bank of four 16 watt germicidal 

lamps which caused maximal reconver sion of carrier thymine dimer to 

thymine. The sample was returned to the v ial after spectral analysis. 

This procedure was standardized by adding 1 ml of water containing 

10 f.lg of thymine dimer to a 4 cm strip of paper which previously had 

been treated exactly as the 4 cm strip containing radioactive dimer. 

It was also necessary to do a control with blank paper and water because 

the absorption spectrum of the eluate of blank paper is depressed upon 

ultraviolet ir:c.adiation. (This correction generally amounted to about 

l5%~ ) 

Regarding the accuracy of this method: (1) The spectrophoto-

metric assay for recovery of carrier thymine dimer is reproducible to 

better than + 10%. (2) No difference could be detected between the RF 

value of thymine dimer prepared from frozen thymine solution and the 

RF value for H3 -thymine dimer obtained from irradiated DNA (it is 

conceivable that these two dimer s are isomer s and not identical). 

(3) Each of the two 2 cm strips adjacent to the 4 cm thymine strip was 

less than 10% as radioactive as the thymine strip. All three strips 

together constituted 98% of the total radioactivity in uni r radiated DNA 

and the sum of their activities was taken as the thymine activity for any 

given sample. 
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Estimation of thymine and thymine dimer by liquid scintillation counting 

Tritium was counted in a Packard liquid scintillation spectrometer, 

using the dioxane-water (15 ml: 1 ml) system of Butler (65). 

Concerning the accuracy in counting: (l) The paper from 

chromatography did not interfere with the counting and was left in the 

bottom of the sample vial. (2) The efficiency of counting was independent 

of the salts and impurities eluted from the paper into the system. 

(3) The radioactivity was quantitatively eluted upon overnight soaking. 

(4) The counts per minute of a sample remained the same for at least 

three months. (5) The counting of any given sample is accurate to 

+ 2% or better. 

Tr eatment of DNA with an enzyme from baker 1 s yeast 

DNA which had been given 3100 ergs/mm
2 

of 254 mfl ultraviolet 

light (2 ml of 0.7 flg/ml in 0.03 M NaCl, 0.003 M sodium citrate) 

was dialyzed 24 hour s against O. 0015 ~ NaCl, O. 00015 ~ sodium citrate 

and concentrated to 200 f.11 at 60°C, using a gentle stream of nitrogen. 

The solution was adjusted to a volume of 280 f.11 and a salt concentration 

of O. 015 ~ NaCl, 0.0015 M sodium citrate. An aliquot was withdrawn 

for a direct determination of the fraction of thymine present as thymine 

dimer. 

The partially purified (ammonium sulfate) preparation of yeast 

photoreactivating enzyme, sent to me by Dr. Rupert in the form of a 

filter cake, was dissolved in 0.01 M phosphate, pH 6 .8, to give a total 
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concentration of 10 mg/ml and a protein concentration of 2500 I-lg/ml. 

(According to Dr. Rupert, the filter cake was 25% protein by weight.) 

One aliquot was heated at 65°C for 10 r;ninutes. (Photoreactivating 

enzyme is reduced to 5% activity in 2 minutes at 65°C (60,61).) Into 

each of two 1 dram vials containing 60 I-ll of DNA solution was placed 

60 I-ll of unheated enzyme solution, into a third vial containing 60 I-ll of 

DNA solution was placed 60 I-ll of heated enzyme preparation. This gave 

a final concentration of 2.5 I-lg/iJ.l DNA and 1250 I-lg/I-ll protein. 

Photoreactivating light was supplied by "blacklight" fluorescent 

bulbs which transmit light between 300 and 400 ml-l' The shorter wave-

lengths were filtered out with a shee t of window glass which had a 

cutoff wavelength of 340 ml-l. The int ensity of irradiation was calculated 

2 
at about 2000 I-lwatts/cm from the manufacturer's data. 

Incubation mixtures were warmed to 37°C for 30 minutes either 

in the dark or in the light. On the basis of previous experience with 

transforming DNA, this would be expected to give maximum repair of 

the biologically significant damage (66). The mixtures were then diluted 

to 1 ml with 1. 5 ~ NaCl and deproteinized by shaking with an equal 

volume of chloroform-octanol (9: 1). The aqueous phase was dialyzed 

-4 -5 
against 1. 5 x 10 M NaCl, 1. 5 x 10 M sodium citrate before analysis 

for thymine and thymine dimer. 

About 70% of the radioactivity was routinely lost during this 

procedure. 
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- V. EXPERIMENTAL RESULTS AND DISCUSSION: ACTION 

SPECTRA OF THYMINE DIMER FORMATION IN DNA 

General features. Ultraviolet action spectra for the formation 

of thymine dimer in E. coli DNA are shown in figs. 1, 2 and 3. Qual­

itatively, the spectra may be interpreted to mean that thymine dimer s 

are initially formed upon ultraviolet irradiation of DNA, but that at 

sufficiently high dose a photosteady state is formed between dimer and 

monomer. E vidence for a photoreversible system is shown in figs. 3, 

4 and 5, where it is seen that the photosteady state characteristic of 

275 m fJ- may be fir st converted to the 250 mf-l photosteady state with 

250 mf-llight and then back to the 275 m f-l photosteady state with 275 mf-l 

light. 

The photosteady state formed upon irradiation with 275 mf-llight 

the second time lies more on the side of the monomer than the photo­

steady state initially formed by 275 . mf-l irradiation. One rationalization 

of this result is to say that the position of the photosteady state is affected 

by other ultraviolet damages to the DNA which slowly accumulate with 

increasing dose and are not reverted by 254 mf-llight. Whatever the 

cause of the slow shift of the photos t eady state towards monomer, it is 

clear that the dose required to bring about an appreciable shift in the 

photosteady state is somewhat larger than the dose required to form the 

photosteady state. 
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Calculation of quantum yields for the dimerization. The prob-

ability that a given ultraviolet dose will cause one thymine molecule to 

become half of a thymine dimer molecule may be calculated from the initial 

slope s of the curve s shown in fig s. 1, 2 and 3. Knowing the extinction 

coefficients per mole of phosphorus fo r DNA {Table I), it is pos sible to 

calculate the quantum yields for the dimerization (Table II). The 

T able I 

Extinction coefficients for DNA per mole of phosphorus 

and for thymine dimer 

DNA* 
A(m fi) ElF 

235 3000 

254 6400 

275 4500 

*Courtesy Mr. R. J ensen 

+Courtesy Dr . H. J ohns 

Table II 

Thymine dimer+ 

E: 

1570 

285 

14.8 

Quantum y ield for dimerization 

Q 

235 .009 

254 .012 

275 .016 

Q = Fraction of thymine dimerized per q uantum absorbed per 
nucleotide. 
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quantum yields increase ~lightly with increasi ng wavelength. The data 

are not quite accurate enough for one to be confident of this trend; ln 

any case, it is clear that the quantum yields are not strongly dependent 

upon wavelength. 

Ideal statistics of dimer formation in a polynucleotide chain. 

Before further analyzing dimer formation, it is necessary to present a 

model for thymine dimerization in DNA and to explore some of its 

predictions. This model is as follows: Photodimerization can take 

place between any two thymine s which are adjacent to each other along 

a polynucleotide chain. The probability that an incident quantum will 

cause a photodimerization of an adjacent pair of thymines, X ,is a 
m 

constant independent of ultraviolet dose and independent of the identity 

of the surrounding nucleotides. Conversely, the probability that an 

incident quantum will cause a photodimer to revert, X
d

' is also a con-

stant independent of dose and the identity of surrounding nucleotides. 

I n order to calculate the position of the photosteady state in 

terms of Xm and X
d

' it is necessary to make a further assumption 

about the distribution of thymine nucleotides in the polynucleotide chain. 

Suppose that we start at one end of the chain and proceed to the other, 

noting which of the four nucleotides immediately follows each thymine 

nucleotide. The probability, ~, that a thymine nucleotide follows a 

thymine nucleotide is defined as the thymine-thymine nearest neighbor 

frequency. Mor eover, the thymine -thymine near est neighbor s will occur 



38 

in sequences of two or more consecutive thymines, terminated at each 

end by a nucleotide different from thymine. The task at hand is to first 

express, in terms of Xm and X
d

, the fraction of thymine dimerized at 

the photo steady state in a sequence of :: consecutive thymines. Then, 

a random distribution of the thymine-thymine nearest neighbor s in the 

polynucleotide chain will be as sumed and the contribution made by each 

sequence of consecutive thymines to the position of the photo steady state 

will be assessed. 

Let a sequence of n consecutive thymines be represented by a 

succession of n dots: 

Let a state in which two of these thymine s are dimerized be 

represented by drawing a line between the dots representing the par­

ticipating thymines, thereby converting two of the dots into one dash: 

If Xmis the probability of two dots going to a dash, and Xd the 

probability for the rever se process, then, at the photo steady state, the 

ratio of the concentration of anyone state with one dash to the concen ­

tration of the state with no dashes is (Xm!X
d

}, = K. Similarly, the 

r atio of the concentration of anyone state with p dime r s to the concen­

tration of the state with no dimer s is KP. In general, there are many 

different states containing any particular number, p, of dimers. The 

number of different states contai ning p dimer s is just the number of 
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different ways of permuting p dashes and n - 2p dots, or 

(n - p)! 

p! (n - 2p)! 

The system can be normalized by putting the sum of the relative 

concentrations of all the states equal to unity: 

p = n/ 2 

2: 
en - p)! 

p = 0 p! (n - 2p)! 

The fraction of thymine present as dimer in a state containing p 

dimer s is 2p/n. Therefore, anyone state containing p dimers con -

tributes a fraction of 

2p 
K P 

n 

p?!.n/2 
(n - p)! 

KP 2: 
p=O p! en - 2p)! 

to the total amount of thymine present as dimer. The fraction of thymine 

present as dimer in a sequence of n consecutive thymines is then given 

by 

p=n/2 
,~ 

L.J 
2p en - p)! 

K P 

p=O 
n 

p! (n - 2p)! 
f = (la) 
n 

p=n/2 (n - p)! 
K P 

2: 
p! en - 2p)! 

p=O 
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It is possible to sum the series ln equation la (67) to give 

4K 
:----

(l+4K) 

( -Ji+4"K-l/n)(fl+4K+1)n +( _l)n( -/l+4i? + l/n) (-v'i+4K'_l)n 

(-/1+ 4K' +1) n+1 + (-1) n (.; 1+4K' _It+1 

(lb) 

A random distribution of the thymine-thymine nearest neighbor s 

in the polynucleotide chain will now be assumed and an expression for 

the fraction of thymine occurring in chains of n consecutive thymines 

will be derived: Arbitraril y choose a particular thymine in the poly-

nucleotide chain. If the thymine-thymine nearest neighbor frequency is 

~, the probability that this thymine will have something different from 

thymine on both sides of it is (1 - a)Z. The probability that it will have 

a thymine followed by non -thymine on one particular side of it and non-

Z 
thymine on the other side is a(l - a) • The probability that it will have 

a thymine on either the one side or the other of it, followed by terminat-

ing non-thymines will be Za(l - a)Z. In general, the probability that the 

arbitrarily chosen thymine will have a particular number of thymines 

on one side of it and a particular number of thymines on the other side 

n-J., Z 
of it is a tl - a) , where ~ is the number of thymines in the sequence. 

Since there are n ways that the thymine neighbors can be distributed 

between one side of the arbitrarily chosen thymine and the other, the 

probability that any thymine is a member of a sequence of n thymines 

is 

n-l( Z 
na 1 - a) 
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The fraction of the tot al thymine present as dimer is then 

F = 
00 

n-l 2 
L na (1 - a) f 

n 
n=2 

where f is given by equation la or lb. 
n 

( 2) 

In E. coli DNA, the thymine -thymine nearest neighbor frequency 

is 0.30 (68). Using a=O. 30 and equation 2, the fraction of thymine present 

as dimer has been plotted against ~ in fig. 6 for the case of a random 

distribution of thymine-thymine nearest neighbors. Of course, the 

distribution of thymine-thymine nearest neighbors along the chain need 

not be random. Using a = O. 30, the fraction of thymine present as dimer 

has been plotted against ~ in fig. 6 for the following cases: (1) All 

thymines occur in runs of 1 and 2 consecutive thymines (n = 2). (2) All 

thymines occur in runs of 1 and 3 consecutive thymines (n = 3). (3) All 

thymines are either isolated or occur in infinite chains of consecutive 

thymines (n = 00). 

Comparison of the observed photosteady states with those pre-

dieted by the model. In order to compare the photo steady state observed 

at a given wavelength with that predicted by the model, it is necessary 

to estimate the K characteristic of any given wavelength. To do this, 

the rate of the forward reaction is calculated from the initial rate of 

dimerization at the particular wavelength in question in the following 

way: The quantity directly measured is the fraction of total thymines 

dimerized per unit dose; the quantity desired is the fraction of thymine-
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Legend for Fig. 6: 

The solid line s signify the fraction of thymine present as dimer at the 

photosteady state (for K = 0.02 to K = 60) for various modifications of 

the model: 

n = 2 

n=3 

n = co 

random 

Thymine-thymine nearest neighbor frequency 0.3; all thymines 
occur in runs of land 2 consecutive thymines. 

Thymine-thymine nearest neighbor frequency 0.3; all thymines 
occur in runs of land 3 consecutive thymines. 

Thymine-thymine nearest neighbor frequency 0.3; all thymine­
thymine nearest neighbors occur in long chains of thymines. 

Thymine-thymine nearest neighbor frequency 0.3; distribution 
of thymine-thymine nearest neighbors is random along the 
polynucleotide chain. 

The observed photo stationary states for 235 mfl-' 254 mfl-, and 275 mfl-

are plotted against the K values for these three wavelengths. The K 

values were calculated from the initial measured rates of dimerization, 

the extinction coefficients for thymine dimer, and an assumed quantum 

yield .of o. 6 for the back reaction, a s explained in the text. 
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thymine nearest neighbor pairs dimerized per unit dose. Taking the 

nearest neighbor frequency as 0.3, the fraction of nearest neighbor 

pairs dimerized per unit dose is 1/0.3 of the fraction of total thymines 

dimerized per unit dose. The rate of the reverse reaction is calculated 

by multiplying the extinction coefficients of thymine dimer in aqueous 

solution (Table I) by 0.6, the quantum yield for reversion of thymine 

dimer in aqueous solution (46,47). The photo steady state constants, K, 

calculated in this manner are plotted in fig. 6 against the observed 

fraction of thymine dimer, together with an estimate of the uncertainty 

in the given values. The experimental uncertainty in K lies partly in 

the uncertainty in measuring the initial slope of the forward reaction 

and in a systematic error of 2:100/0 in measuring the fraction of thymine 

dimer. The uncertainty in the effective wavelength of irradiation (no 

more than 3mfl as discussed in the experimental section) introduces 

an uncertainty of up to a factor of 1. 5 in the calculated ~. T he uncer­

tainty in the photosteady state lies in the systematic error of +100/0 in 

measuring the fraction of thymine dimer and the indication that the 

fraction of thymine dimer in the photosteady state s l owly decreases, 

most clearly shown by comparing fig. 3 to fig. 5. 

From fig. 6 it is clear that the fraction of thymine dimer observed 

at any given wavelength is significantly lower than that which was pre­

dicted. This anomaly is explained if either (1) the K calculated for a 

given wavelength is wrong or (2) the model does not accurately describe 

the system. If the K calculated for the system is wrong, then the 
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discrepancy might lie in the val ue as sumed for the back reac tion. (The 

rate of the for w ard reaction was directly determined from experimental 

data.) In order to make the observed values lie in the v i cini ty of the 

experimental curves one must multipl y the cross-section for the reverse 

reaction, X
d

, by about 2.5 at 235 mjJ- and by 10 or ev en more at 254 m jJ­

and 27 5 mjJ-. There i s one direct measure of the rate of the back reaction 

in DNA, namely the initial rate of dimer reversion found upon irradiating 

DNA containing 200/0 thymine dimer with 250 mjJ- ultraviolet light. The 

initi a l sl ope for dimer reversion (fig. 4 ) gives a quantu m yield of 0 . 9, 

i. e., a cross-section for the rev erse reaction which is 1.5 times that 

assumed in calculating K. I n spi te of the uncertainty in measuring the 

slope, the observ ed cross-section f or the back reaction seems to be 

significantly less than the v alue one must assume in order to place the 

photosteady states observ ed at 250 mjJ- and 27 5 mjJ- in the vicinity of the 

theoretical curve. On the other hand, it is quite conceivable that the 

discrepancy at 235 mjJ- is due to using too low a cross - section for the 

rate of the back reaction. 

It thus seems qui te likely that the fai lure of the experimental 

points to fit the expected curv es is due in large part to inadequacies 

in the model. Possibly K is not the same f or all thymine - thymine 

nearest neighbor pairs. Possibl y the rate of the forward reaction is 

dependent upon the fraction of thymine dimerized and/ or other ultraviolet 

damages to the DNA in such a way as to make the initial K greater than 
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the K characteristic of the photo steady state. 

It should be noted that Wacker (42) obtained a somewhat higher 

254 mfL photo stationary state than that reported here (9.7% of the thy mine 

present as dimer instead of 6.5%). Although this result may be due to 

a difference in effective wavelength of irradiation, it also may result 

from the fact that I purified thymine dimer to a greater extent than 

Wacker. In order to understand the situation more fully, both thymine 

and thymine dimer should be highly purified so that one does not have 

the fear that the radioactivity he measures is largely due to some degrada­

tion product of thymine. Then one would be able to accurately estimate 

the quantum yield for irreversible de struction of thymine and calculate 

its effect on the position of the photo steady state. One could then 

evaluate the possibil ities mentioned in the preceding paragraph. 

In spite of these uncertainties, it is clear that the position of the 

photosteady state in DNA is strongly dependent upon the wavelength of 

light used for irradiation. Moreover , the fraction of thymine present 

as dimer at the 275 mfL photosteady state is much less than what was 

observed by Johns et al. (46) for thymine dinucleotide and the change of 

the fraction of total thymine present as dimer at the photo steady state 

with wavelength is much less marked than was observed for thymine 

dinucleotide. These results strongly indicate that a large fraction of 

the thymine in DNA either cannot undergo dimerization at all, or else 

dimerizes at a very slow rate. 
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VI 

DISAPPEARANCE OF THYMINE PHOTODIMER IN ULTRAVIOLET 

IRRADIATED DNA UPON TREATMENT WITH A 

PHOTOREACTIVATING ENZYME FROM BAKER'S YEAST
a 

Daniel L. Wulff* and Claud S. Rupert+ 

Gates and Crellin Laboratories of Chemistry, * California Institute of 
Technology, Pasadena, California, and Department o f Biochemistry, 
The Johns H opkins University School of Hygiene and Public Health, 
J ohns Hopkins University, Baltimore 5, Maryland 

A dimer of thymine is formed by ultraviolet irradiation of frozen 

aqueous solutions of thymine (Beukers and Berends, 1960 and 1961, 

Wang, 1961, and Wulff and Fraenkel, 1961). 

Thymine dimer has been isolated by hydrolysis of ultraviolet 

irradiated DNA (Beukers, Ijlstra and Berends, 1960 and Wac ker, Dell -

weg and Weinblum, 1960). Thi:s suggests the interesting hypothesis 

that formati on of thymine dimer is the, or one of the, significant chem-

ical events in ultrav iolet damage of microorganisms. Furthermore, the 

discovery that short wavelength ultraviolet ir radiation of dilute aqueous 

solutions of thymine dimer causes reconversion to thymine (Beukers , 

Ijlstra and Berends, 1959) leads to the speculation that "photoreactiva-

tion" of 254 mfl ultraviolet damage to liv ing microorganisms by light of 

* NSF Predoctoral Fellow 

+ Curren t add re ss: University I nstitute of Microbiology, C openhagen, 
Denmar k * Contribution No. 2801 

a The f ollow ing is a verbatim copy of a manusc r ipt to be published in 
Biochemic al and Bi ophy sical Re sear ch C ommunica tion s. 
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wavelengths centering around 370 mfi might be due to a similar recon-

version of thymine dimer to thymine. This hypothesis is supported by 

the present work in which it is shown that thymine dimer formed in 

irradiated DNA in vitro can be eliminated by illuminating the DNA in 

the presenc e of a photoreactivating enzyme from baker's yeast which 

repairs ultraviolet damage to bacterial transforming DNA (Rupert, 

1960). (It may be recalled that irradiation of aqueous solutions of 

• thy mine dimer with light around 3700 A in the absence of enzyme does 

not cause reconversion to thymine (Wang, 1960).) 

Preparation and i rradiation of H3 -thymine DNA. H3 -thymine 

DNA (1. 2 ' flc/ flg obtained by growing E. coli 15 A -T-U- in a medium 

3 
containing methyl-H thymidine) was purified by cesium chloride cen-

2 
trifugation (Marmur, 1961) and exposed to 3100 ergs/mm of 254 mfl 

ultrav iole t light in an apparatus described by Johns et al. (in press). 

Tr eatment of H3 -thymine DNA with an enzyme from baker's 

yeast. Incubation mixtures, containing 2.5 flg / ml DNA and 1250 fig/ ml 

of a partially purified (ammonium sulfate) preparation of yeast photo-

reactivating enzyme were warmed to 37° for 30 minutes either in the 

dark or illuminated with 2000 f.L watts/cm
2 

of 340-400 mfilight from 

suitably filtered "blacklight" fluor escent bulbs. On the basis of previous 

experience with transforming DNA, this would be expected to give max-

imum repair of the biologically significant damage. The mixtures were 

then deproteinized with 1/3 volume 6 M NaCl and chloroform-octanol. 
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Heat inactivated enzyme was prepared by warming a 2S00 fJ.g/ ml 

enzyme solution to 6Soc for 10 minutes. Photoreactivating enzyme is 

reduced to S% activity in 2 minutes at 6SoC (Rupert, 1961 and in press). 

Analysis for thymine and thymine dimer. DNA was subjected to 

formic acid hydrolysis (.03 to .3 fJ.g of DNA in 2S fJ.l of formic acid) in 

evacuated tubes at 17SoC for 30 minutes (Wyatt and Cohen, 19S3). The 

yield of thymine dimer from irradiated DNA was independent of hydrol­

ysis time over a range of IS to 60 minutes at 17SoC. 

DNA hydrolysates, to which were added 10 fJ.g carrier thymine 

dimer (prepared from u. v. irradiated frozen thymine solutions) and 10 

fJ.g carrier thymine, were paper chromatographed in isopropanol: ~ 

HCl: water (68: IS. S : 16. S). Thymine dimer was further purified by 

paper chromatography in saturated ammonium sulfate 1 N sodium 

acetate: isopropanol{40: 9: 1) (Wacker, 1960). 

Tritium was counted in a liquid scintillation spectrometer, using 

the diox ane-wateu{lS ml : 1 ml) system of Butler (1961). The paper and 

salts from chromatography did not interfere with counting. The thymine 

activity constituted more than 98% of the total radioactivity in unir­

radiated DNA hydrolysates. The recovery of carrier thymine dimer 

(considerably less than 100%) was assayed spectrophotometrically after 

u.v. induced reconversion of thymine. (This estimation procedure was 

standardized with 10 fJ.g carrier thymine dimer.) 
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Results and Discussion 

In the second and third columns of Table I are tabulated the net 

radioactivities observed for thymine and thymine dimer in the various 

hydrolysates. In the fourth column the recovery of carrier thymine 

dimer is tabulated and in the fifth column the appropriate correction 

is made for the loss of H3 -thymine dimer upon chromatography. The 

fraction of thymine present as dimer is shown in the last column. 

Table I 

Fraction of 
Observed Corrected Thymine 

Thymine Dimer % Dimer Dimer Present 

Sample cpm cpm Recovery cpm as Dimer 

Unirradiated DNA 48884 8 91 

49671 6 66 

u. v. 'd DNA 50199 447 84 533 .011 

41971 418 86 483 .011 

u.v. 'dDNA+ 14124 81 54 151 .011 
Enzyme in Dark 

15439 ' 97 64 150 .010 

U.v. 'd DNA+ 10676 107 91 1 18 .011 
Heated Enzyme 
in Light 8109 84 88 95 .012 

u.v. 'd DNA + 9307 ' 4 91 4 < • 001 
Enzyme in Light 

8497 0 91 0 <.001 

Results of duplicate hydrolyses and analyses of a single sample 
are listed. Columns explained in text.' 
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The important result is that, whereas samples of irradiated DNA 

incubated with photoreactivating enzyme in the dark and samples 

incubated with heat inactivated enzyme in the light both show the same 

amount of thymine dimer as is present in the untreated irradiated DNA, 

incubation of irradiated DNA with enzyme plus light destroys over 90 

percent of the dimer present. 

A similar result was obtained independently by Wacker (1961), 

using a crude yeast extract which would be expected to contai n photo­

reactivating enzyme. Both findings permit the interpretation that the 

enzyme causes the dimer in DNA to di sappear upon incubation with 

light, presumably by converting it back to thymine. 
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Addendum to the foregoing manuscript 

Dr. Rupert has pointed out that the mechanism by which thymine 

dimer disappears upon incubation with the photoreactivating enzyme 

preparation could be quite different from the mechanism by which 

ultraviolet damage to the biolo gical activity of transforming DNA is 

repaired. In a recent letter to me he stated: 

What we now know is that a heat-labile entity in our 

very impure enzyme preparation will act in the light to change 

thymine dimer in DNA to something else. We would like to 

think that this entity is the same as the photoreactivating 

enzyme which repair s UV damage in DNA. Simultaneous 

as say of dimerizati on and UV damage in the same DNA samples 

furnishes the means for testing this point. One should (1) 

Measure the fraction of dimer repaired and the fraction of 

UV damage repaired after partial photoreactivati on of ir­

radiated H3 DNA, to determine if these two numbers cor­

respond within the accuracy permitted by the data. This 

should be done (at With enzyme of the present purity. 

(b) Enzyme of the highest purity possible. (c) Enzyme 

partly inactivated by heat or heavy metals . (d) With the 

reacting system illuminated" at several different wavelengths 

showing different effectiveness for DNA repair. 
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PROPOSITION #1 

It is desirable to know if: thymine dimer formed in u.v. irradiated 

DNA constitutes a lethal ultraviolet damage to microorganisms. It is 

propo sed to u. v. inactivate the bacteriophage T2 to about 1 lethal hit 

per phage (37% survival) and to analyze for the fraction of thymine 

p resent a s thymine photodimer, using phage labeled w ith H3 -thymine. 

If this constitutes on the order of one or more thymine dimers per 

phage, then thymine dimer may indeed be a primary cause of phage 

inac tivation. By allowing the irradiated phage (labeled with H3 DNA) 

to go through an infection cycle with its host (in nonradioactive medium) 

and analyzing for the fraction of H3 -thymine present as dimer in the 

p rogeny, one measures to what extent thymine dimer is a lethal photo­

chemical alteration of bacteriophage. 

In the case that no thymine dimers are found in the progeny, 

one would like to eliminate the possibility that this was merely because 

the thymine dimer s had been chemically altered. To demonstrate that 

this has not happened, one should show that thymine dimer ~ trans­

fe rred to progeny if the bacterium is coninfected with a high multiplicity 

of non-u.v. 'd phage. iHershey and Burgi (1) found that lethal u. v . 

damages in parental phage are transferred to progeny under these con­

ditions. ) 
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In detail, one prepares T2 labeled w ith 10 c/mM of thymine_H
3 

by the method of Cairns (3), obtaining'" 6 x 10
9 

phage/fJ.g thymine. 

One irradiates to "'37% survival ('" 55 ergs/mm
2

) and analyzes one 

aliquot for thymine dimer. (If one thymine dimer is formed per phage, 

then the fraction of thymine dimerized is 2 x 10-
5

• One needs", 100 

-7 
cpm to measure this with liquid scintillation counting or '" 4 x 10 mc 

of H3 -thymine dimer. 
-2 

This means that one must analyze", 2 x 10 mc 

3 10 
of H -phage or 10 phage. ) 

10 3 10 
To infect, one adds '" 2 x 10 H - phage to '" 6 x 10 bacteria 

In "'400 m!. One induces lysis after 50 phage per infective center are 

formed. About 50% of the parental phage DNA will be transferred to 

the progeny (1). 12 
One then analyzes the'" 10 progeny phage (containing 

'" 200 fJ.g DNA) for thymine and thymine dimer. If thymine dimer is not 

transferred to progeny in single infection but is transferred to progeny 

in multiple infection, then the fraction of parental thymine present as 

dimer in the progeny will be '" 0.3 of the fraction of thymine present 

as dimer in the parents. If more than this amount is transferred to 

progeny, then not all thymine dimer s are lethal in single infection. U 

less than this amount is transferred to progeny , that amount which has 

b een transfer red to progeny mayor may not be entirely derived from 

bacteria ~' infected with more than eme phage. 
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To do the control experiment (second paragraph), one adds 

'" 2 x 10
10 

H3 -phage and "-3 x lOll cold phage to "J 6 x 10
10 

bacteria in 

'" 400 ml. One proceeds as befor e , only this time one must analyze 

12 
'" 3 x 10 progeny phage (containing '" 600 fLg DNA). 
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PROPOSITION #2 

There are several lines of evidence indicating that the common 

laboratory strains of E. coli can chemically repair ultraviolet damages 

{l}. Two mutants of E. coli, strains BS
l 

and Bs
2

, have been isolated 

which have high u.v. sensitivity (2,3). The bacteriophage Tl has a 

'V6-fold increase in u.v. sensitivity when plated on strain BS
l 

fl}. A 

method is proposed for selecting for mutant bacteria on which temper-

ate phage have high u. v. sensitivity: 

The bacterial population is infected with a lightly irradiated 

temperate phage at a rather high multiplicity (say A on E. coli K12 at 

m=5 with a u.v. dose such that 900/0 of the non-mutated bacteria yield 

infective phage\ . Those bacteria which are u. v. resistant (i. e. have 

their repair mechanisms intact) will repair many of the ultraviolet 

damages in the absorbed phage. The phage will replicate, kill the bac-

terium, and progeny will be liberated. (Anti- A serum must be added 

after absorption to keep these progeny phage from infecting the surviving 

bacteria.) Those bacteria which cannot repai r u.v. damages will not 

repair the u. v. damages to the absorbed phage. As a result, the phage 

will remain inactivated and the host bacterium will live, inasmuch as 

u. v. -killed A doe s not inactivate its host (4). A bacterium on which 

A has a 5-fold increase in u.v. sensitivity will be concentrated by a 

factor of 5 to 10 in this way, as estimated from Fig. 4 of Kellenberger 
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and Weigle (5). After several cycles of infection with lightly irradiated 

phage, bacteria with high u. v. sensitivity will be concentrated with 

respect to the original culture. 

The strains BS
l 

and BS
Z 

were found among survivors of u.v. 

inactivated E. coli B. This kind of strain is apparently formed to about 

-4 ( 1 or Z% when E. coli B is u. v. irradiated to 10 survival 3). Ifa 

similar strai n is formed with about the same frequency from u.v. 

irradiated E. coli K1Z, then 3 cycles of the procedure outlined in the 

above paragraph would concentrate these mutants to greater than 50%. 

It is also quite conceivable that this procedure, when used with-

out prior u. v. inactivation, will select for different kinds of mutants 

than those obtained by the procedure of Hill. 
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PROPOSITION #3 

There is some interest in these laboratories in measuring the 

polarization of electronic transitions in thin crystals of purines and 

pyrimidines in order to better under stand the elec tronic behavior of 

nucleic acids and their components. Since one wishes to relate the 

preferred direction of absorption of light in the crystal to the preferred 

direction of absorption of light in the molecules, only crystals of known 

crystal structure are useful. One limitation in this work is the limited 

number of crystals of known structure which are available. 

It is proposed that information regarding the polarization of 

electronic absorption in the thymine analog 5-bromouracil{5-BU) 

(crystal structure unknow.n ) may be obtained by "doping" calcium 

thymidylate crystals, whose crystal structure is k nown (1), with the 

calcium salt of 5-bromouracil deoxyriboside-5'-phosphate and making 

the reasonable assumption that the orientation of this 5-BU derivative 

in the unit cell is the same as the orientation of calcium thymidylate. 

One most establish that the "dop ed" crystal has the same arrange­

ment of calcium thymidylate molecules as the pure calcium thymidylate 

crystal. A reasonable criterion for this is that the unit cell dimensions 

in the doped crystal must be the same as in the pure crystal (2). The 

maximum amount of the 5-BU derivative one can thus incorporate into 

the calcium thymidylate structure will determine the spectral range over 
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which 5-BU transitions may be studied. Since 5-BU absorbs much 

more strongly than thymine in the region of 300 to 320 m\-L, only a few 

percent 5-BU incorporation will be necessary in order to observe the 

absorption of light by the 5-BU moiety in this spectral region. It would 

even be possible to determine the transition moment for 5-BU at its 

absorption maximum, where the thymine moiety absorbs a comparable 

amount of light, if the crystal structure of the 5-BU derivative is iso­

morphous with the crystal structure of calcium thymidylate. (If the 

unit cell dimensions of the calcium salt of 5-bromouracil deoxyriboside-

5 ' -phosphate and calcium thymidylate are the same, then these crystals 

are quite likely isomorphous (2).) 
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PROPOSITION #4 

The u. v. survival probability of a temperate bacteriophage is 

higher if the host bacterium is first given a light dose of u. v. (1,2). 

This so-called "u. v. reactivation" has been interpreted as due to genetic 

exchange between genetically homologous regions of the lightly u. v. 

irradiated host and the infecting u. v. irradiated phage, with the resultant 

formation of undamaged phage genomes. (Pre-irradiation of the host 

is supposed to make the phage survival probability higher by encouraging 

this crossover.) It is proposed to test this hypothesis by techniques of 

bac ter ial conjugation: 

A lightly u.v. 'd, A-resistant Hfr bacterium is conjugated with a 

non-u.v. 'd A- sensitive F bacterium and the "u.v. reactivability" 

marker is mapped by stopping conjugation at various times and assaying 

for the u .• v. survival of A on the F • If the interpretation of Garen 

and Zinder is correct, the "u. v. reactivability" marker should coincide 

with the site of A lysogenization. In the case of a u. v. reactivable 

phage different from A, the "u. v. reactivable" marker should coincide 

with the site of lysogenization of that phage with the bacterial genome. 
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PROPOSITION #5 

A procedure for estimating the stability of cytosine photohydrate 

in irradiated DNA is proposed: If an aqueous solution of cytosine 

labeled with H3 on the 5-carbon atom is irradiated, the cytosine water 

adduct will have an H3 atom and an HI atom attached to its 5-carbon 

atom (see page 4 of this thesis). If this adduct now reverts back to 

cytosine, a tritium atom will sometimes be eliminated from the 5-

position i nstead of the proton. To estimate the stability of cytosine 

hydrate in irradiated DNA, one incubates the DNA at a given temperature 

and determines the rate of H3 appearance in the water by quenching 

aliquots in dry ice and subliming the water away from the DNA. (Cyto­

sine hydrate is not decomposed under these conditions (I).) In order 

to calculate the rate constant, k, one assumes first order kinetics for 

the elimination and that the relative efficiency of H3 to HI elimination 

remains constant over the course of the reaction. It should be noted 

that one is actually measuring the stability of the photohydrate of cyto­

sine_H
3 

in DNA, which will be different from the stability of the photo­

hydrate of cytosine-HI DNA, depending on the magnitude of the isotope 

effect involved. 

Since the release of H3 into-the wa te r may be quite inefficient, 

one must be able to prepare DNA containing cytosine-5-H
3 

at high 

specific activity . This may be done by growing E. coli 15 T-A-U on 
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uracil-H
3 

(2) and isolating its DNA. Uracil-H
3 

(3 c/mM ) may be 

purchased from New England Nuclear Corporation for $50/mc (3). I 

do not know how the H3 is distributed between the 5 and 6 carbon atoms. 

It should be possible to make uracil-5-H
3 

of extremely high activity by 

reducing 5 -bromouracil w ith tritium gas in the presence of Pd-C (4). 

One must use a non-hydroxylic solvent to prevent exchange of the tritium 

gas with the solvent (3). Fully tritiated uracil-5-H
3 

has a specific 

activity of '" 30 c/ mM. New England Nuclear Corporation will react 

15 curies of tritium gas with any submitted compound for $200 (3). One 

might reasonably hope to obtain '" 1. 5 c of ",1 0 c/mM uracil_5_H
3 

in this way. Using the growth conditions of Maali>e and Hanawalt (2), one 

might reasonably hope to obtain '" 100 mc of DNA-cytosine-5-H
3 

of 

specific activity "' 10 mc/mg. One could analyze 1 mc aliquots for 

release of tritium into the water. If the non-u . v. induced rate of H3_ 

exchange with the water is negligible. one now has a very sensitive way 

of measuring u. v. induced release of tritium into the water: 

Ultimately about 100 cpm of tritium (using liquid scintillation 

counting) must be released into the water following irradiation in order 

to obtain sufficiently accurate data. Assuming a 10% counting efficiency, 

this corresponds to 4 x 10-
7 

mc of tritium. If one irradiates to 1% of 

the cytosines hydrated and analyzes 1 mc aliquots, at least one out of 

every 25, 000 hydrogens coming off the 5-carbon atom of the cytosine-

3 
5 -H photohydrate must be a tritium in order for one to be able to 

measure the stability of cytosine hydrate in u. v. -irradiated DNA. 
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