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Abstract

Deficiencies in DNA mismatch repair (MMR) have been implicated in the development of
several forms of cancers, and MMR-deficient cells tend to be resistant to commonly employed
cancer therapeutics such as cisplatin. Mismatch-targeting metalloinsertors developed in
our laboratory have shown great promise as therapeutic and diagnostic agents for MMR-
deficient cancers. In this work, we examine fundamental aspects of binding interactions of
octahedral rhodium and ruthenium complexes to DNA mismatches, and strive to develop
a luminescent sensor for mismatches inside cells.

We first demonstrate that the mismatch binding affinity of rhodium metalloinsertors
directly correlates with their antiproliferative effect against MMR-deficient colorectal carci-
noma cells. Smaller ancillary ligands on the rhodium center facilitate binding to mismatches
via metalloinsertion from the narrow minor groove of DNA. Complexes with higher mis-
match binding affinity in turn selectively inhibit the growth of MMR-deficient cells compared
to MMR-proficient ones. This correlation suggests that DNA mismatches are indeed the
biological target of rhodium metalloinsertors inside cells.

Besides rhodium metalloinsertors, luminescent ruthenium complexes are found to bind
DNA mismatches as well. Mismatch binding is accompanied by enhanced luminescence
intensity. We determined two crystal structures of A-Ru(bpy)2dppz?* bound to oligonu-
cleotide duplexes. For an oligonucleotide containing AA mismatches, the atomic-resolution
structure revealed that the ruthenium complex binds to DNA mismatches also through
metalloinsertion: the complex inserts a planar ligand into the mismatched site from the
minor groove, ejecting the mismatched bases out of the helix. Several binding geometries
of the complex intercalated between well-matched DNA were also observed.

To improve the mismatch selectivity of luminescent ruthenium complexes, we teth-
ered the complexes to organic dye molecules in an effort to amplify mismatch-associated

luminescence signal through resonance energy transfer. We also modified the structure



vi
of the inserting ligand in an attempt to improve the binding affinity to mismatches over
well-matched DNA. Coupling mismatch binding to luminescence response has proved most
challenging in these endeavors.

Finally, we venture into the realm of RNA. Unlike their nonspecific binding to DNA,
ruthenium complexes bind poorly to well-matched RNA but quite avidly to RNA mis-
matches. As a result, mismatched RNA produces a higher luminescence signal from bound
ruthenium. We subsequently applied the ruthenium complex to image RNA mismatches

inside live HeLa cells using fluorescence microscopy.
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Chapter 1

Role of Ancillary Ligands in DNA Mismatch Recognition
and Cellular Antiproliferation by Rhodium Metalloinsertors

Adapted from Russell J. Ernst, Hang Song, and Jacqueline K. Barton, Journal of the American Chemical
Society, 2009, 181 (6), 2359-2366. R. J. E. synthesized Rh(DIP)QchrysiSJr and performed all cellular
proliferation assays.



1.1 Introduction

The integrity of genetic information is ensured by the correct base pairing between the two
strands of DNA: adenine (A) always pairs with thymine (T), and guanine (G) with cytosine
(C) (Figure[L.1)). This strict base-pairing scheme allows the sequence of a complementary
strand to be determined solely from that of the template strand, which forms the basis for
DNA replication. Errors in DNA replication will cause DNA base mismatches, which, left
unrepaired, will become mutations in subsequent rounds of replication.t** Healthy cells rely
on their mismatch repair (MMR) pathway to maintain a genome that is virtually free of
mismatches (1 in a billion base pairs per cell division).®* The MMR pathway corrects single
base errors and insertion/deletion loops that arise during DNA synthesis, increasing the
fidelity of DNA replication by a factor of 50-1000." If uncorrected, mismatches are converted
to mutations in subsequent cycles of DNA replication, and cells with MMR deficiencies, not
surprisingly, exhibit elevated mutation rates.®’ Germline mutations in hMLH1 or hMSH2,
essential genes for MMR in humans, dramatically increase the risk of developing hereditary
nonpolyposis colon cancer (HNPCC), the most common type of inherited colon cancer.®
HNPCC is marked by early onset and the presence of cancers in several other tissue types.
Roughly 15% of sporadic colorectal cancer cases have also been linked to MMR deficiency.!
Epigenetic silencing of the MMR, genes has been identified as the cause of MMR, deficiency
in these cases.™' In addition to colorectal cancer, mismatch repair deficiencies have been

found in approximately 16% of solid tumors of all tissue types. 12
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Figure 1.1. Base pairing in DNA.
Importantly, MMR deficiency confers resistance or tolerance to many of the anticancer

agents currently in clinical use.’?14Alkylation by the commonly used chemotherapeutic

agents N-methyl-N-nitrosourea (MNU) and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG)
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at the O6 position of guanine nucleotides triggers an apoptotic response after recognition
of O6-meG:C and O6-meG:T base pairs by the MMR, pathway, while MMR-deficient cells
tolerate this DNA methylation.™#1% Failure to recognize DNA adducts is also involved
in the resistance of MMR-deficient cells to the platinum compounds cisplatin and carbo-
platin.131% The incorporation of antimetabolites such as 5-fluorouracil and 6-thioguanine
into DNA triggers cell cycle arrest and apoptosis through the MMR pathway, and conse-
quently MMR-deficient cells are resistant to these agents as well. 248 Other studies have
shown low-level resistance to the type I topoisomerase poisons camptothecin and topotecan
in hMLH1-deficient lines and to the type Il topoisomerase poisons doxorubicin, epirubicin,
and mitoxantrone in hMLH1- or hMSH2-deficient lines.!? It has also been hypothesized that
treatment regimens with agents such as cisplatin might enrich tumors for MMR-deficient
cells,?Y and it has been shown that a substantial portion of secondary, or therapy-related,
leukemias show signs of MMR deficiency.2%2l Collectively, these results show the broad
involvement of MMR in mediating drug response, the effects of MMR deficiency on this re-
sponse, and the need to develop therapeutic agents that specifically target MMR-deficient
cells, perhaps through broad recognition of DNA mismatches.

DNA mismatch recognition is commonly achieved through oligonucleotide- or enzyme-
based methods. Oligonucleotide-based detection schemes rely on differential hybridization
between fully complementary and mismatched duplexes.*?"2” Enzyme-based methods typ-
ically employ mismatch recognition enzymes such as E. coli MutS.% Small molecule-based
detection schemes are relatively less common. Saito and Nakatani groups have demon-
strated the use of naphthyridine dimers to recognize several mismatches by hydrogen bond-
ing to the bases.“? 31 Teulade-Fichou and co-workers reported a luminescent bisanthracene
derivative that discriminates between well-matched and mismatched DNA.52 In the field
of inorganic small molecules, our laboratory has developed metal complexes that recognize
over 80% of all base mismatches, and the therapeutic effect of these metal complexes are
being investigated.

The successful design of this new class of metal complexes to recognize mismatches was
predicated on a careful examination of the structure and dynamics of mismatches. Mis-
matches are similar to Watson-Crick base pairs in terms of their hydrogen bonded structures,
and do not distort the double helical structure of duplex DNA (Figure .34’37 However,

compared with Watson-Crick base pairs, mismatches are thermodynamically less stable, a



4

trait reflected by the fact that melting temperatures decrease notably for oligonucleotides
containing mismatches (though not always for G-containing mismatches).%339 Mismatches
also show increased dynamic motion and longer base-pair opening lifetimes, as observed in
NMR. 38402 Thege characteristics of mismatched bases led our laboratory to devise recog-
nition strategies that enabled the synthesis of metal complexes which bind mismatches with

high affinity and specificity.

o u M
Purine-Purine }\l—§j\ e '*-.rz:T"‘m
Mismatches " ﬁ,
i )
o
G=A GG
Purine-Pyrimidine o i r
Mismatches i A 6
)—-— A .
AH'-C G
L] I—H;l
Pyrimidine-Pyrimidine ™ '—% D . e
Mismatches I v P
TT T-C C-C

Figure 1.2. Chemical structures of base mismatches.

phi dppz chrysi phzi

Figure 1.3. Chemical structures of intercalating and inserting ligands.

The most important trait of the new class of mismatch-recognizing metal complex is
a sterically expansive ligand, either chrysi (chrysene-5,6-quinone diimine) or phzi (benzo-
[a]-phenazin-5,6-quinone diimine, Figure that confers this mismatch specificity. Chrysi
or phzi, at 11.3 A in width, does not fit into a well-matched DNA 7-stack. For compari-
son, smaller ligands such as phi (9,10-phenanthrenequinone diimine) or dppz (dipyrido[3,2-
a:2’,3-c|phenazine), also shown in Figure fit easily between the DNA backbone, allowing
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resultant metal complexes to intercalate between almost any two neighboring base pairs.
Thus, although incapable of intercalation between well-matched base pairs, chrysi or phzi is
able to insert into the 7-stack at destabilized mismatch sites via the minor groove, ejecting
the pair of mismatched bases out of the helix. This insertion mode of binding via the mi-
nor groove was fully elucidated by the crystal structure determination of Rh(bpy)gchrysi?’Jr
bound to AC mismatches in a 12-mer duplex (Figure .43 Later crystal structures re-
vealed identical structural features of Rh(bpy)gchlrysi?’Jr insertion at an AA mismatch.4%
Further, NMR studies also support the minor-groove insertion of the chrysi ligand and ejec-
tion of mismatched bases in solution.?? Interestingly, this insertion mode of binding was
first proposed almost half a century ago by Lerman,4% but had never been confirmed exper-
imentally with small organic or inorganic molecules until the discovery of metalloinsertors.
In total, Rh(bpy)gchrysigJr has been shown to bind specifically to a single mismatch in a
2725bp linearized plasmid heteroduplex, and recognize over 80% of mismatch sites in all the
possible single base pair flanking sequence contexts.*” Similar to Rh(L)2<phi)3+ complexes,
Rh(L)ychrysi® " or Rh(L)yphzi® " photocleaves the DNA backbone when irradiated between
300 and 400 nm. They also show extremely enantiospecific binding, the A-enantiomer
(Figure being much more effective at binding to B-form DNA 48

The in vivo effects of Rh(bpy)gchrysig+and Rh(bpy)gphzi?’Jr have been characterized
in the isogenic cell lines HCT116N and HCT1160.%? The HCT116 cell line is a colorectal
carcinoma line deficient in the hMLH1 gene. Two derivative cell lines, HCT116N and
HCT1160, have been made through transfection of human chromosome 3 (ch3) and human
chromosome 2 (ch2), respectively. The presence of a functional copy of ch3 restores MMR
proficiency in the HCT116N line, while the HCT1160 line transfected with ch2 remains
MMR deficient.”¥ The mismatch recognition compounds were shown to selectively inhibit
the proliferation of the repair-deficient HCT1160 line.4?

Recent work within our laboratory on luminescent ruthenium complexes has also shown
that these tris(chelate) complexes are taken up inside cells through passive diffusion facili-
tated by the membrane potential.®%2 Variations in ancillary ligands have dramatic effects
on cellular uptake, with increased lipophilicity facilitating uptake. Uptake can also be
increased through functionalization with a nuclear localizing peptide.>?

In this chapter, we examine the effects of ancillary ligand variation in the Rh(L)gchrysi3Jr

family (Figure on the ability of these complexes to target DNA mismatches in vitro and



Figure 1.4. Crystal structure showing the insertion of Rh(bpy)gchrysi3Jr (red) via the
minor groove at two AC mismatch sites in a 12-mer duplex. The mismatched bases are
ejected (adenosine is colored green and cytosine colored blue).

Figure 1.5. A- (left) and A- (right) isomers of Rh(bpy)Qchrysi3+.

in vivo. Importantly, we establish that the differential inhibition of cellular proliferation in

MMR-deficient cells is correlated with mismatch binding affinity.

1.2 Experimental protocols

1.2.1 Materials

RhCl3 was purchased from Pressure Chemical (Pittsburgh, PA). [Rh(NHz3)5Cl]Cly was ob-
tained from Strem Chemical (Newburyport, MA). Isoquinoline, 2,2’-dipyridylamine (HDPA),
4,7-diphenyl-1,10-phenanthroline (DIP), and Sephadex ion-exchange resin were obtained
from Sigma-Aldrich (St. Louis, MO). Sep-Pak C18 solid-phase extraction cartridges were



Rh(phen),chrysid+ Rh(DAP),chrysi3+ Rh(DIP),chrysi3+

Figure 1.6. Chemical structures of [Rh(Lg)(chrys.i)]3+ complexes surveyed in this study.

purchased from Waters Chemical Co. (Milford, MA). Phosphoramidites were purchased
from Glen Research (Sterling, VA). Media and supplements were purchased from Invitro-
gen (Carlsbad, CA). BrdU, antibodies, buffers, and peroxidase substrate were purchased
in kit format from Roche Molecular Biochemicals (Mannheim, Germany). All commercial

materials were used as received.

1.2.2 DNA synthesis, purification, and quantification

Oligonucleotides were synthesized on an AB 3400 DNA synthesizer using standard phos-
phoramidite chemistry. DNA was synthesized with a 5’-dimethoxy trityl (DMT) protecting
group. The oligonucleotides were cleaved from the beads by reaction with concentrated am-
monium hydroxide at 60 °C overnight. The resulting free oligonucleotides was purified by
HPLC using a C18 reverse-phase column (Varian, Inc.) on a Hewlett-Packard 1100 HPLC.
The DMT group was removed by reaction with 80% acetic acid for 15 min at room temper-
ature. The DMT-free oligonucleotides were precipitated with absolute ethanol and purified

again by HPLC. Positive identification of the oligonucleotides and their purity were con-
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firmed by MALDI-TOF mass spectrometry. Quantification was performed on a Beckman
DU 7400 spectrophotometer using the extinction coefficients at 260 nm (egg9) estimated for

single stranded DNA.

1.2.3 Rhodium complex synthesis

The compound 1,12-diazaperylene (DAP) was synthesized according to literature proce-
dures.”® Chrysene-5,6-dione, Rh(bpy)QChrysi?’Jr and Rh(phen)gchrys.i?’Jr were laboratory stocks
synthesized according to established protocols.®>

[Rh(NHj3)4(chrysi)|OTf;. Rh(NH3)sOTf3 was prepared as described by Sargeson. 297
Rh(NH3)sOTf3 (200 mg, 0.3 mmol) was reacted with chrysene-5,6-dione (78 mg, 0.3 mmol)
in 150 mL of acetonitrile and 50 mL of water with 0.6 mL of 1IN NaOH as a catalyst. The
reaction mixture (an orange suspension) was left stirring for 16 h at room temperature
and turned into a dark orange-red suspension. Hydrochloric acid was added until the pH
reached neutral. Acetonitrile was removed under vacuum and the resulting suspension fil-
tered to remove unreacted chrysene quinone. The product was separated from unreacted
Rh(NH3)sOTf3 on a Sep-Pak C18 cartridge eluting with 1:1:0.1% H2O:CH3CN:TFA. The
eluant was lyophilized to recover the solid product (50 mg, 38%). "H-NMR (300 MHz,
dg-DMSO): § 13.5 (s, 1H), 12.9 (s, 1H), 8.7-8.5 (m, 3H), 8.45 (dd, 2H), 8.2 (d, 1H), 8.0-7.6
(m, 4H), 4.4 (s, 3H), 4.35 (s, 3H), 3.7 (s, 6H). ESI-MS: calc. 427.11, obs. 427.0 (M-2H"),
410.0 (M-NH3-2H"), 391.1 (M-2NH;3-2H"), 374.0 (M-3NH3-2H"), 356.9 (M-4ANH3-2H™).

rac-[Rh(DAP)2(chrysi)|OTfs. Rh(NH3)4ChI‘ySi3+ (20 mg, 0.02 mmol) was reacted
with 1,12-diazaperylene (DAP) (20 mg, 0.08 mmol, excess) in 45 mL of ethanol and 45 mL
of water. The bright orange solution was heated under reflux for 16 h. The reaction mixture
turned a darker orange color upon heating. Ethanol was removed under vacuum and the
resulting solution filtered to remove any residue. The filtrate was concentrated on a Sep-
Pak C18 cartridge eluting with 1:1:0.1% HyO:CH3CN:TFA, lyophilized and purified on an
alumina column eluting with 5% MeOH in CH5Cly. The fractions were collected and dried
in vacuum to give an orange-brown solid (6.3 mg, 30%). ESLI-MS: calc. 865.2 (M-2H"),
obs. 865.3 (M-2H"), 611.1 (M-DAP-2H"), 433.2 (M-H>"). UV /vis (H,O, pH 5): 267 nm
(53100 M~ cm™1), 479 nm (16200 M~ cm™'), 509 nm (16000 M~! ecm™1).

rac-[Rh(HDPA)2(chrysi)|OTf3. Rh(NH3)4Chrysi3+ (15 mg, 0.02 mmol) was reacted
with HDPA (20 mg, 0.12 mmol, excess) in 20 mL ethanol and 20 mL water. The dark red
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solution was heated under reflux for 16 h. The reaction mixture turned reddish brown upon
heating. Ethanol was removed under vacuum and the resulting solution filtered to remove
any residue. The filtrate was concentrated on a Sep-Pak C18 cartridge eluting with 1:1:0.1%
H>0:CH3CN:TFA, lyophilized and purified on an alumina column eluting with 2% MeOH
in CHoClsy. The fractions were collected and dried under vacuum to give an orange-brown
solid (8mg, 39%). "H-NMR (300 MHz, dg-DMSO): § 12.84 (s, 1H), 12.34 (s, 1H), 11.78 (s,
1H), 10.32 (d, 1H, 8.7 Hz), 8.63 (d, 1H, 6.9 Hz), 8.40 (d, 1H, 8.4 Hz), 8.31 (d, 1H, 9.3 Hz),
8.14 (m, 2H), 8.07 (d, 1H, 8.7 Hz), 8.04 (d, 1H, 5.4 Hz), 7.94 (m, 4H), 7.77 (m, 5H), 7.58
(m, 2H), 7.48 (d, 1H, 8.1 Hz), 7.41 (d, 1H, 8.4 Hz), 7.32 (s, 1H), 7.14 (m, 2H), 7.04 (t, 1H,
6.8 Hz), 6.98 (t, 1H, 6.9 Hz), 6.81 (t, 1H, 6.5 Hz) ppm. ESI-MS: calc. 699.2 (M—2H+), obs.
699.2 (M-2H"), 350.1 (M-H>"). UV/vis (Hy0, pH 5): 287 nm (42200 M~! cm™!), 321 nm
(23000 M~t cm™1), 442 nm (8800 Mt em™!).

rac-[Rh(DIP)2(NH3)2]OTfs. RhCl; and 2 equiv. of DIP were combined in 1:1
ethanol:water and refluxed overnight. The solvent was removed in vacuo, and the product
was recrystallized by dissolving in acetonitrile at 60 °C and cooling to —20 °C. The precip-
itate was collected by filtration, washed in diethyl ether, and dissolved in neat triflic acid.
The solution was again cooled and added dropwise to NH;OH at —20°C. The pale white
precipitate was collected by filtration and washed with a small amount of water to give
[Rh(DIP)2(NH3)2]OTfs.

rac-[Rh(DIP)2chrysi|Cls. rac-[Rh(DIP)y(NH;3)2]OTf3 was combined with a 10% ex-
cess of chrysene-5,6-quinone and a catalytic amount of NaOH in acetonitrile and stirred at
room temperature overnight. The condensation reaction was terminated by addition of a
stoichiometric amount of HCI. The solvent was removed in vacuo, and the product was
purified by alumina column chromatography. Unbound chrysi ligand eluted first with ethyl
acetate, and the purified product then eluted with acetonitrile. Finally, the compound was
dissolved in 3:2 CH3CN:H30, and the triflate counterion was exchanged for chloride ion
with Sephadex QAE-125 ion-exchange resin. ESI-MS (cation): calc. 1023 m/z (M-H?T),
obs. 1020.9 m/z (M-2H™), 511.0 m/z (M-H?*). UV /vis (H20, pH 5): 290 nm (104000 M1
cm1), 335 nm (43900 M~ em™1), 373 nm (22300 M~! em™1).
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1.2.4 Photocleavage titrations

The oligonucleotide was *2P_labeled at the 5-end by incubating DNA with 32P—’yATP and
polynucleotide kinase (PNK) at 37 °C for 2 h, followed by purification using gel electrophore-
sis.?? A small amount of the labeled DNA (less than 1% of the total amount of DNA) was
added to 2 uM DNA in 100 mM NaCl, 20 mM NaP1i, pH 7.1 buffer. The DNA was annealed
by heating at 90 °C for 10 min and cooling down slowly to room temperature over a period
of 2 h. Rhodium complex solutions ranging from nanomolar to micromolar concentration
were made in Milli-Q water. 10 uL of annealed 2 uM DNA and 10 pL of Rh solution at
each concentration was mixed in an eppendorf tube and incubated at 37°C for 10 min. A
light control (LC), in which the DNA was mixed with 10 uL of water and irradiated, and
a dark control (DC), in which the DNA was mixed with the highest concentration of Rh
complex without irradiation, were also prepared. The samples were left in the heat block
and irradiated on an 1000-W Hg/Xe arc lamp (320-440 nm, Oriel) for 5 min. The irradiated
samples were dried and electrophoresed in a 20% denaturing polyacrylamide gel. The gel
was then exposed to a phosphor screen, and the relative amounts of DNA in each band

were quantitated by phosphorimagery (ImageQuant).

1.2.5 Binding constant determination

The fraction of DNA cleaved in each lane on the gel was normalized and plotted against
the log of the concentration of rhodium complex. At least three photocleavage titrations
were carried out for each racemic metal complex. The pooled data were fit to a sigmoidal
curve using OriginPro 6.1. The resulting midpoint value (i.e., the log of [rhodium complex]
at the inflection point of the curve) was converted to units of concentration ([Rh50%)]).
The dissociation constant was calculated according to Kp = [Rh50%] — 0.5[DNA], and
the binding constant was defined as Kp = 1/Kp. The errors were derived from the er-
rors associated with the midpoint values. For complexes that did not photocleave DNA,
a binding competition titration was carried out with a constant amount (1 uM) of rac-
Rh(bpy)gchrysingadded to each sample. The binding and dissociation constants of the non-
photocleaving complex were calculated by solving simultaneous binding equlibiria involving

DNA, Rh(bpy)gchrysi3+, and the complex in question in Mathematica 6.0.
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1.2.6 MALDI-TOF mass spectrometry

Irradiation samples were prepared similarly to those used in photocleavage titrations, ex-
cept that 2 uM of unlabeled DNA and 2 uM of Rh complex were used instead of 1 pM.
The samples were heated at 90°C for 30 min after irradiation to convert any metastable
photocleavage products to stable one(s). Water (30 uL) was added to each sample, and
the entire volume was passed through a Bio-Rad Microbio-spin chromatography column.
The samples were dried and desalted using the ZipTip procedure (Millipore). The desalted
oligonucleotides were then dried and redissolved in 1 uL of water. MALDI-TOF mass spec-
tra were taken on a PerSeptive Biosystem Voyager-DE Pro instrument. The samples were
prepared by the dry droplet method, using 3-hydroxypicolinic acid and diammonium citrate

as matrix. Several scans of 100 shots each were taken and averaged.

1.2.7 Fluorescence spectroscopy

Steady state fluorescence spectra were recorded on an ISS-K2 fluorimeter at ambient tem-

peratures in aerated solution (5mM Tris, 50 mM NaCl, pH 7.5).

1.2.8 Structural modeling

Geometries of metal complexes were optimized in ChemDraw3D (CambridgeSoft) using
MM2 minimization. All modeling sessions were performed in PyMol using the DNA crystal
structure (PDB entry 201L).%% Metal complexes were combined with the DNA structure
by superimposing the Rh atom with that in Rh(bpy)gchrysi:pr in the crystal structure and
maximally overlapping the chrysi ligands. For clarity only one Rh complex is shown in each

model.

1.2.9 Cell culture

HCT116N and HCT1160 cells were grown in RPMI medium 1640 supplemented with 10%
FBS, 2 mM L-glutamine, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 100
units/mL penicillin, 100 pg/mL streptomycin, and 400 ug/mL Geneticin (G418). Cells
were grown in tissue culture flasks and dishes (Corning Costar, Acton, MA) at 37 °C under

5% COq atmosphere.
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5" GGCAGGPATGGCTTT

PQ = AT, CC, AC, TT, AG, GG
3" CCGTCCQTACCG T T

Figure 1.7. Sequence of the DNA hairpin used in Rh(chrysi) complex-DNA binding ex-
periments.

1.2.10 Cellular proliferation ELISA

HCT116N and HCT1160 cells were plated in 96-well plates at 2000 cells/well and allowed
24 h to adhere. The cells were then incubated with rhodium complexes for the durations
specified. For incubation less than 72 h, the Rh-containing medium was replaced with fresh
medium, and the cells were grown for the remainder of the 72 h period. Cells were labeled
with BrdU 24 h before analysis. The BrdU incorporation was quantified by antibody assay
according to established procedures.?®? Cellular proliferation was expressed as the ratio

of the amount of BrdU incorporated by the treated cells to that of the untreated cells.

1.3 Results

1.3.1 Binding affinities of metal complexes at single base mismatches

The binding constants of the family of Rh(L)gchlrysi3+ complexes at a CC, AC or TT mis-
match in a 29-mer DNA hairpin (Figure were measured. The hairpin sequence allows
cleavage site determination on either strand around the DNA mismatch site. By irradiating
samples of DNA titrated with varying concentrations of a rhodium complex, a photocleavage
titration curve is obtained, from which the binding constant of the Rh complex is deter-
mined. A typical autoradiogram of electrophoresced samples in a photocleavage titration
with Rh(bpy)zchrysi?’+ and CC-containing DNA is shown in Figure The position of
the photocleavage band indicates that Rh(bpy)gchrysi3+ cleaves one base away from the
mismatch site near the 3’-end.

MALDI-TOF mass spectrometry of similar irradiation samples (but without the ra-
dioactive label) shows peaks corresponding to the parent DNA and one major cleavage
product (Figure [1.9)), which is assigned to 5-GGCAGGCATGGCTTTTTGCCATC-Pi-3".
The assignment agrees with the band position on the autoradiogram and is consistent

with previous work on the determination of photocleavage products using MALDI-TOF
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Figure 1.8. Autoradiogram of a denaturing 20% polyacrylamide electrophoresis gel show-
ing a representative photocleavage titration. Conditions are DNA (CC mismatch, 1 uM),
Rh(bpy)gchrysi?’Jr (lanes 1 to 17: 5 nM, 10 nM, 20 nM, 50 nM, 0.1 M, 0.2 M, 0.3 uM,
0.4 uM, 0.5 pM, 0.6 uM, 0.7 uM, 0.8 pM, 0.9 uM, 1 pM, 2 pM, 3 uM, 4 uM, lane 20: no
Rh complex, lane 21: 4 pM), NaCl 50 mM, NaPi 10 mM, pH 7.1 at room temperature.
Samples were irradiated at 365 nm on a 1000W Hg/Xe lamp for 5 min. The dark control
in lane 21 was not irradiated. Lanes 18 and 19 are Maxam-Gilbert sequencing reactions.
The mismatched sites are marked with red arrows.

mass spectrometry.®d This cleavage pattern is found to be true of 1:{h(phen)gchrysi3Jr and
Rh(DIP)gChrysi3+ as well. No other photocleavage bands are visible, demonstrating the high
specificity of Rh(chrysi) complexes binding to the mismatch. The photocleavage titration
curve is generated from the autoradiogram by quantitating the amount of photocleavage
relative to the total amount of DNA at each Rh concentration. Pooled data from at least
three repeats were fitted to a sigmoidal curve (Figure . The dissociation constant for
Rh(bpy)gchrysi?’+ at a CC mismatch is found to be (30 &+ 3) nM, which translates into a
binding constant of (3.4 4 0.3) x 10" M~!. At an AC and TT mismatch, the respective
binding constants are (2.2 4+ 0.2) x 10° M~! and (6.3 4+ 2.0) x 10° M~!. The dissoci-
ation constant for Rh(phen)gchrysi?’Jr is found to be (320 + 20) nM at a CC mismatch,
which corresponds to a binding constant of (3.2 + 0.3) x 10° M~!. The binding affinity of
Rh(phen),chrysi®® to AC is (1.4 + 0.2) x 105 M. At a TT mismatch, the photocleavage
efficiency of Rh(phen)gchrysi?’Jr is too low to allow meaningful quantification.

In the case of 1:{h(DIP)2(:hrysiS+7 the quantitation of the fraction of DNA bound to the

metal complex is complicated by the presence of a slower-running band above the parent
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Figure 1.9. MALDI-TOF mass spectrum of CC-containing DNA after irradiation in the
presence of Rh(bpy)achrysi® ™.
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Figure 1.10. Left: plot of normalized fractions of DNA cleaved versus the log of
Rh(bpy)gchrysi?’Jr concentration in nM from three repeats of a photocleavage titration at
37°C. The pooled data are fit to a sigmoidal function. Right: plots of normalized fraction
of DNA cleaved versus the log of Rh(NH3)40hrysi?’Jr concentration in nanomolar from three
repeats of a binding competition titration at 37 °C. The pooled data are fit to a sigmoidal
function.
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Figure 1.11. Autoradiogram of a denaturing 20% polyacrylamide electrophoresis gel
showing photocleavage titration using Rh(DIP)Qchrysi3+. Conditions are DNA (1.5 uM),
Rh(DIP)gChrysi3+ (lanes 1 to 16: 0.5 uM, 1 uM, 2 uM, 3 uM, 4 pM, 5 M, 6 uM, 7 uM, 8
uM,; 9 uM, 10 pM, 15 pM, 20 pM, 25 pM, 30 uM, 35 uM, lane 17: no Rh complex, lane 18:
40 pM), NaCl 50 mM, NaPi 10 mM, pH 7.1 at 37 °C. Samples were irradiated on a 1000-W
Hg/Xe lamp (320-440 nm) for 5 min except for the dark control in Lane 9. In addition to
the photocleavage band, a slower-running band above the parent band is visible.

band (Figure . The intensity of this band is proportional to that of the photocleavage
band, which suggests that its origin is somewhat mismatch related. This is confirmed by
irradiating samples of Rh(DIP)QchrysigJr and a DNA hairpin with a matched AT base pair
in place of CC (Figure . Without a mismatch, the slower-running band is not observed.

Piperidine treatment after irradiation shows that a small fraction of the slower-running
band is due to the formation of a lesion prone to cleavage by piperidine, perhaps 8-oxo-
guanine (Figure . MALDI-TOF mass spectrometry detects an additional cluster of
peaks around m/z ~ 9601 (m/z for parent DNA = 8836). These peaks are tentatively
assigned to covalent Rh-DNA adducts with both DIP ligands but without the chrysi ligand
(calculated mass for DNA+Rh+2DIP = 9603). Thus, the quantitation of the fraction of
DNA photocleaved is carried out by dividing the photocleavage band intensity over the
total DNA in a given lane including the slower-running band. The dissociation constant
for Rh(DIP)QChrysi3Jr is found to be (11 £ 2) uM and the binding constant is (9 £ 1)
x 10* M~! (Table . It should be noted that if we treat the slower-running band as
a mismatch-specific photoreaction product and combine it with the normal photocleavage
band, the measured binding constant will not differ much, since the two bands are pro-
portional to each other and will give similar normalized fractions regardless of whether the
slower-running band is included. With an AC mismatch, Rh(DIP)schrysi®t does not yield
any photocleavage up to 100 uM; thus, its Kp value is estimated to be greater than that.
In the case of TT mismatch, again no photocleavage band was observed. For both the

AC and TT mismatches, the intensity of the parent DNA band decreases and that of the
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Figure 1.12. Autoradiogram of a denaturing 20% polyacrylamide electrophoresis gel com-
paring Rh(DIP)ychrysi® " reaction with matched (AT) and mismatched (CC) DNA. Condi-
tions are DNA (1 uM), Rh(DIP)ychrysi®® (lanes 1 and 5: 3 uM, lanes 2-4, 6-8 and 10: 40
uM, lane 9: no Rh complex), NaCl 50 mM, NaPi 10 mM, pH 7.1 at 37°C. Samples were
irradiated on a 1000-W Hg/Xe lamp (320-440 nm) for 5 min except for the dark control
in Lane 10. Samples in lanes 3 and 7 were heated at 90°C for 30 min after irradiation.
Samples in lanes 4 and 8 were treated with piperidine after irradiation. The mismatched
sites are marked with red arrows. Guanine doublets are labeled. Lanes 11 and 12 are
Maxam-Gilbert sequencing reactions.
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slower-running band increases as the concentration of Rh(DIP)gchrysi3Jr increases, until the
entire parent band disappears.

Rh(DAP)QChI‘ySi?H_ photocleaves DNA; however, instead of producing a single photo-
cleavage band, a smear is seen in the autoradiogram, implying extremely nonspecific bind-
ing and cleavage (Figure . The same smear is seen from irradiations at 313, 320-440,
or 495 nm. We attribute this nonspecific interaction with DNA to the shape of the DAP
ligand: the DAP ligand resembles a phi ligand in terms of its size and distance from the
Rh center. Thus, it is not surprising that it can intercalate and cleave at multiple positions
in the duplex. More interestingly, Rh(DAP)QChrySiB+ is found to be luminescent in water,
emitting at 560 nm. The luminescence intensity is not proportional to its concentration,
with the intensity at 1 M being much less than 100-fold of the intensity at 10 nM, which
implies that the complex is self-quenching. When DNA is added to a buffered solution of
Rh(DAP)gchrysi3+, its luminesence decreases as the amount of DNA added increases. The
extent of the decrease is similar in the presence of matched or mismatched DNA (Figure
. Consistent with the results from irradiation experiments, these observations again
point to nonspecific interactions with DNA and the quenching of the DAP ligand in a hy-
drophobic environment (in this case propbably stacked between base pairs). Thus, due
to its nonspecific interactions with DNA, it was not feasible to extract mismatch-specific
binding constant for Rh(DAP)gchrysi3+.

As with phenanthrenequinone diimine complexes of rhodium containing saturated amine
ligands, Rh(NH3)4chrysi3+ and mc—Rh(HDPA)Qchrysi?’Jr promote relatively little DNA cleav-
age upon irradiation.%? As a result, their binding affinities were determined through binding
competition titrations with 1 uM rac—Rh(bpy)gchrysig+. A typical autoradiogram of elec-
trophoresced samples in a binding competition titration is shown in Figure On the ba-
sis of the binding constant of Rh(bpy)gchrys13+, the binding constant of Rh(NHg)4ch1rysi3+
is calculated by solving simultaneous equilibria at the inflection point of the photocleavage
titration curve. Through this competitive titration, the binding constant of Rh(NH3)4ch1rysi3+
at a CC mismatch is found to be (1.0 & 0.2) x 10® M~!. The binding constant is (3.4 &
0.3) x 10° M~! at an AC mismatch, and (8.8 & 2.0) x 10° M~! at a TT mismatch. From
similar binding competition titrations, the binding constant of TCLC—Rh(HDPA)QCthSi3+ is
found to be (2.0 + 0.3) x 10" M~! at a CC mismatch and (2.6 + 0.2) x 105 M~!at an

AC mismatch. The dissociation and binding constants of the entire series of Rh(chrysi)
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Figure 1.13. Autoradiogram of a denaturing 20% polyacrylamide electrophoresis gel show-
ing Rh(DAP)gChrysi3+ photoreaction. Conditions are DNA (1 uM), Rh(DAP);chrysi®"
(lanes 1-5: 0.25 pM, 1.25 uM, 2.5 uM, 6 pM, 12.5 uM, lane 7: 0.6 uM, lane 8: 6 uM,),
Rh(bpy)gchrysiBJr (lanes 6-8: 1 M), NaCl 50 mM, NaPi 10 mM, pH 7.1 at 37°C. Samples
were irradiated on a 1000-W Hg/Xe lamp (320-440 nm) for 10 min.

complexes are summarized in Table

As Rh(NH3)4ChI'ySi3+ exhibits very tight binding to CC and AC mismatches, its ability
to recognize guanine-containing mismatches was also investigated. The metallointercalator
Rh(bpy)zphi3+ was used to photocleave a DNA hairpin containing either an AG or a GG
mismatch in a nonspecific manner. Rh(NHg)schrysi®™ was added to compete for binding
with Rh(bpy)gphiSJr. The binding of Rh(bpy)gphi?’Jr at the mismatch site decreased sig-
nificantly in the case of AG mismatch and to a lesser extent in the case of GG mismatch,
as evident in the reduction in photocleavage around the mismatched sites (Figure [1.16]).
Photocleavage by Rh(bpy)gphigJr at other sites in DNA was not as significantly affected.

1.3.2 Inhibition of cellular proliferation by enzyme-linked immunosor-

bent assay (ELISA)

An ELISA for DNA synthesis was used to quantify the effects of the metalloinsertors on the
proliferation of HCT116N cells (MMR-proficient) and HCT1160 cells (MMR-deficient).4?
Both cell lines were incubated with 0-25 M of each member of the Rh(L)gchrySi3Jr com-
plexes family except Rh(DIP)gchrysig+, which was administered at 0-5 uM concentrations

due to its greater uptake characteristics. Incubations were performed for 12, 24, 48, or 72
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Figure 1.14. FEmission spectra of Rh(DAP)QCthSi3+ in the absence and presence of
matched (top left) or mismatched (top right) DNA (excitation wavelength = 470 nm).
The sharp peak at 560 nm is due to Raman scattering of solvent water. The difference
spectra (i.e., the difference in intensity, I, between the spectra recorded in the presence of
100 nM and 1 M DNA, as well as the difference in I between the spectra in the absence
and presence of 1 M DNA) are shown in the bottom row. Qualitatively there is no dif-
ference between the fluorescence response in the presence of matched versus mismatched
DNA. The fluorescence intensity (I) decreases with increasing amounts of either matched
or mismatched DNA.

h. After the 12, 24, and 48 h incubations, the medium containing Rh was replaced with
fresh medium, and the cells were grown for the remainder of the 72 h period. The extent
of cellular proliferation is expressed as the ratio of BrdU incorporated by the rhodium-
treated cells compared to untreated controls. Figure shows representative data for
Rh(NHg)4(:h1rysi3+ at various incubation times. No significant preferential inhibition of the
HCT1160 cell line is seen at incubation times less than 24 h, consistent with previous re-
sults for Rh(bpy)gchrysig+, with the exception of Rh(DIP)gChrysi3+, which displays a small
differential effect at 12 h.*? With longer incubation times, however, Rh(NH3)4ChI‘ySi3+ dis-
plays a strong differential effect with preferential inhibition of the MMR-deficient HCT1160
cell line over the MMR-proficient HCT116N cell line. In particular, 48 h treatment with
10 uM Rh(NH3)4ChI‘ySi3+ inhibits the proliferation of the HCT1160 line by 82 + 2% while
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Figure 1.15. Autoradiogram of a denaturing 20% polyacrylamide electrophoresis gel
showing a representative binding competition titration. Conditions are DNA (1 uM),
Rh(bpy)gchrysi?’+ (1 uM except for the light control), Rh(NHg,)ZLChrysi?’+ (lanes 3 to 20:
50nM, 0.1 puM, 0.2 pM, 0.25 pM, 0.3 uM, 0.4 uM, 0.5 pM, 0.6 M, 0.7 M, 0.8 uM, 0.9 M,
1 puM, 1.5 uM, 2 pM, 2.5 M, 5 pM, 7.5 uM, 10 M, lane 21: no Rh complexes, lane 22: no
Rh(NH3)4chrysiS+), NaCl 50 mM, NaPi 10 mM, pH 7.1 at 37°C. Samples were irradiated
on a 1000-W Hg/Xe arc lamp (320-440 nm) for 5 min. The dark control in lane 21 was not
irradiated. Lanes 1 and 2 are Maxam-Gilbert sequencing reactions. The mismatched sites
are marked with red arrows.

exerting little to no effect on the HCT116N line (7 + 6% inhibition).

Figure[T.18shows the ELISA results for members of the metalloinsertor family as a func-
tion of incubation time. We have shown previously that the A-enantiomer of J—r{h(bpy)gchrysi3Jr
is biologically inactive® and that structurally binding to a mismatch site is enantiospecific
for the A-isomer.?? For this reason, treatment with the 10 M achiral tetraammine complex
was compared to treatment with 20 M racemic mixtures of the Rh(L)gchrysi?’Jr complexes
(L = HDPA, bpy, or phen). The differential effect of rhodium treatment between the cells
lines was quantified by subtracting the normalized percentages of cellular proliferation for
each cell line. Notably, the optimal incubation time for each compound is inversely related
to the hydrophobicity of the ancillary ligands, with mc—Rh(phen)gchrysi?’Jr exhibiting an
optimal incubation time of 24 h. This trend also continues with rac—Rh(DIP)gchrysi3+,
which exhibits differential effects in as little as 12 h at concentrations as low as 2 uM (Fig-
ure . Based on the early effect at 12 h, the HDPA complex may have different uptake
characteristics. With the exception of the HDPA complex, this variation in activity with

incubation time for the family of complexes parallels closely results seen earlier for uptake in
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Table 1.1. Binding constants®? of Rh(Lg)chrysiBJr complexes® to a single mismatch

Complex Structure Kp(CC)/M~t Kp(AC)/M~! Kp(TT)/ Mt
= e
Rh(NHs)schrysi®" <E’>Thi”§§3 1.0 x 108 3.4 x 106 8.8 x 100
> 7w
P
=0y
Rh(bpy)achrysi®" ’O‘)g 3.4 x 107 2.2 x 106 6.3 x 106
s
m/NH _‘3+
= HV :h»“/)
h(HDPA)ochrysi®® S5 3 |N 2.0 x 107 2.6 x 10° d.d
Rh( )ochrysi H'!“NQ 0 x 10 6 x 10 n.d
_ NH
!\ —|3+
N - (%
Rh(phen)achrysi R e 3.2 x 108 1.4 x 10° n.d.
Rh(DIP)ychrysi® 9 x 10* <10* <10%
“Uncertainties are estimated to be 10%—15%. Binding constants are determined from pho-

tocleavage or binding competition titrations using a DNA hairpin with the sequence 5’-
GGCAGGXATGGCTTTTTGCCATYCCTGCC-3’ (XY = CC, AC, or TT). Samples were irradiated with
a solar simulator (320-440 nm) at 37 °C in 50 mM NaCl, 10 mM NaPi, pH 7.1, as described in the Experi-
mental Protocols. °For the polypyridyl complexes, values are given for racemic mixtures. “Not determined.

HeLa cells by Ru(bpy)2dppz?™, Ru(phen)gdppz2+, and Ru(DIP)depZ2+, where the most
rapid uptake is apparent with the lipophilic DIP complex.?!

Figure [.20] summarizes the differential effects on cell proliferation and the incubation
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Figure 1.16. Autoradiogram of a denaturing 20% polyacrylamide electrophoresis gel show-
ing binding competition between Rh(NH3)4ChI‘ySiS+ and Rh(bpy)gphi3+ to a DNA hairpin
containing an AG or GG mismatch. Conditions are DNA (500 nM), Rh(bpy)ophi®™ (10 M
except for the light control), Rh(NH3)4ChrySi3+ (0 nM, 100 nM, 500 nM, 1 uM, 5 uM), NaCl
50 mM, NaPi 10 mM, pH 7.1. Samples were irradiated on a 1000W Hg/Xe arc lamp (320 -
440 nm) for 30 min and heated at 90 °C for 25 min after irradiation. The light controls were
irradiated without Rh complexes. The dark controls were not irradiated. Lanes “A+G”
and “C+T” are Maxam-Gilbert sequencing reactions. The mismatched sites are marked
with red arrows.

time for the family of complexes. Clear correlations with the binding constants for these
complexes are evident (Table . Significantly, the differential effect in inhibiting cell
proliferation in MMR-deficient cells is directly correlated to the binding affinity of the
compound for DNA mismatches. Rh(NHg,)4(:h1rysigJr (Kp =1 x 108 M~! at a CC mismatch),
for example, shows the largest differential effect in inhibiting proliferation of MMR-deficient
versus MMR-proficient HCT116 cells after 72 h (79 + 5%), while Rh(phen)schrysi®t (K
= 3.2 x 105 M1 at a CC mismatch) shows a small differential effect (17 & 7%). The DIP
complex is rapidly taken up by the cells but also shows only a small differential inhibitory

effect correlating with its poor specific binding at the mismatch site.
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Figure 1.17. Inhibitory effects of Rh(NH3)4ChI'ySi3+ as a function of incubation time on
cellular proliferation. Shown are plots of BrdU incorporation (a measure of DNA synthesis
and therefore cellular proliferation) normalized to the BrdU incorporation of untreated cells
as a function of rhodium concentration. Standard error bars for 5 trials are shown. MMR-
proficient HCT116N cells (green) and MMR-deficient HCT1160 cells (red) were plated and
allowed 24 hours to adhere before incubation with 0-25 M Rh(NHg,)4(:h1rysi3+ for 12, 24,
48, or 72 hours. At the end of the 12, 24, and 48 hour incubations, the media containing
Rh was replaced with fresh media for the remainder of the 72 hours, followed by ELISA
analysis. BrdU was added to the media 24 hours prior to analysis.
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Figure 1.18. Inhibitory effects of rhodium metalloinsertors as a function of incubation
time. Shown are plots of BrdU incorporation normalized to the BrdU incorporation of
untreated cells as a function of rhodium concentration. The inhibition differential is the
difference of the normalized percentages of cellular proliferation for each cell line, with

standard error bars (Sy_o=1/s% + s5). ELISA were performed as in Figure [1.17] Cells

were incubated with no rhodium, 2 yM rac—Rh(DIP)gchrys13+, 10 uM Rh(NH3)4Chrysig+,
or 20 uM mc—Rh(L)Qchrysi?’Jr (L = HDPA, bpy, or phen).
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Figure 1.19. Inhibitory effects of mc—Rh(DIP)Qchrysing. Shown are plots of BrdU incor-
poration normalized to the BrdU incorporation of untreated cells as a function of rhodium
concentration. Standard error bars for 5 trials are shown. MMR-proficient HCT116N cells
(green) and MMR-deficient HCT1160 cells (red) were plated and allowed 24 hours to ad-
here before incubation with 0-5 uM rac-Rh(DIP)schrysi®t for 12 hours. At the end of the
incubation, the media containing Rh was replaced with fresh media and cells were grown
for an additional 60 hours before ELISA analysis. BrdU was added to the media 24 hours
prior to analysis.
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Figure 1.20. Inhibitory effects of rhodium metalloinsertors as a function of metal complex
identity. Shown are bar graphs of BrdU incorporation normalized to the BrdU incorporation
of untreated cells as a function of rhodium concentration. The inhibition differential is

the difference of the normalized percentages of cellular proliferation for the two cell lines,
HCT1160 versus HCT116N. ELISA were performed as in Figure[1.17] Cells were incubated

with no rhodium, 2 uM mc—Rh(DIP)Qchrysi3+, 10 uM Rh(NH3)4chrysiS+, or 20 uM rac-
Rh(L)gchrysi3+ (L = HDPA, bpy, or phen). A correlation between mismatch binding affinity

and differential inhibition of MMR-deficient cells is evident.

1.4 Discussion

A clear trend emerges when comparing the binding constants of the series of rhodium com-
plexes to mismatched sites: the DNA mismatch binding affinity increases as the size of the
ancillary ligand decreases. This trend is consistent with what we have learned from the
structural studies, specifically that mismatch binding by insertion via the minor groove is
subject to stringent space constraints. With major groove intercalation, the base rise is
increased, and the major groove offers space to accommodate the ancillary ligands. In con-
trast, with insertion, there is no increase in base pair rise; the mismatched bases are instead
ejected and replaced by the deeply inserted chrysi ligand. Moreover, the minor groove,
small even for hydrophobic groove binding molecules, offers little space for the ancillary
ligands. While little enantioselectivity is apparent for intercalation of bpy complexes into
B-form DNA, A—Rh(bpy)Qchrysi?’Jr binds enantiospecifically to single base mismatches. 4361
Thus, steric interactions of the ancillary ligands are seen as an extremely important factor

governing the binding affinity of a metal complex at the mismatch site.

We have previously demonstrated that mismatch binding affinity is correlated with ther-
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modynamic destabilization over all mismatch identities and sequence contexts.4"52 Here, we
see for all the complexes that binding to the CC mismatch is tighter than binding to the AC
mismatch. This is consistent with our previous observations, since AC is the thermodynam-
ically more stable mismatch and, in this case, the melting temperature of the AC hairpin
is 5°C higher than that of the CC hairpin (Table [2.1)). We assume, then, that the general
trend holds for all members of this metalloinsertor family. This stabilization is translated
into a higher dissociation constant (smaller binding affinity) for the entire series of rhodium
complexes. This decrease in binding affinity depends upon the greater energy required to
eject the mismatched bases from the base pair stack, as evident crystallographically and
by NMR.4345 Nonetheless, for the family of chrysi complexes, the inverse relationship be-
tween the size of the ancillary ligand and the binding affinity still holds, with the smallest
complex Rh(NH3)4ChI'ySiB+ showing the highest affinity and that of the largest complex,
Rh(DIP)gchrysiH7 more than 2 orders of magnitude lower.

Figure compares the crystal structure of A—Rh(bpy)gchrysigJr bound to the mis-
match site® with models of A-Rh(DIP),chrysi® and Rh(NHs)schrysi® ™ similarly bound
via the minor groove through metalloinsertion. Preserving the DNA conformation from the
crystal structure, we see that A—Rh(DIP)gChrysi3Jr runs into substantial steric hindrance, as
its axial phenyl rings extend up and down into the groove, directly clashing with the bases.
However, its equatorial phenyl rings do not pose any steric problems, as they point away
from the DNA. These observations are supported by the small binding constant measured for
Rh(DIP)gchrysiS+. Rh(phen)gchrysing, intermediate in size, shows binding affinities for the
mismatches that are an order of magnitude lower than those of the bpy derivative but more
than an order of magnitude higher than those of the DIP complex. Rh(HDPA)QChrysi3+
is slightly larger in size than the bpy derivative, but the HDPA ligands are more flexi-
ble, and there is an opportunity for hydrogen bonding; as a result, Rh(bpy)gchrysi?’Jr and
].:{h(HDPA)gchrysi3+ have comparable affinities for the mismatch. Analogously, the large
binding constant of Rh(NH3)4ch1rysi3+ can be mostly attributed to its small size. Here it is
reasonable to suggest that the axial ammines may also hydrogen bond with the neighboring
base pairs to form additional stabilizing interactions. Nonetheless, as evident in Figure|1.21
the small cone size of the tetraammine structure clearly facilitates deep insertion within the
minor groove site. In fact, the clear inverse correlation of binding affinity with ancillary

ligand size, and the finding that Rh(DIP)Qchrysi3+, despite its cumbersome size, is able to
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bind at all to a mismatch site with some specificity, corroborate our understanding of the
driving force and the dynamics of mismatch recognition: the rw-stacking between the in-
serted chrysi ligand and the adjacent bases provides the major stabilizing force for binding,
and both the metal complex and DNA distort their conformations to accommodate each
other in the bound state.

Importantly, the DNA mismatch binding affinities of the Rh(L)gchrysi?’Jr family corre-
late well with the differential biological effects seen between the repair-proficient HCT116N
and repair-deficient HCT1160 cell lines. This correlation supports the hypothesis that DNA
mismatches are the target of rhodium metalloinsertors in vivo. Because of this correlation,
we may attribute the preferential inhibitory effect on MMR-deficient cells to binding of the
complexes to DNA mismatches. Since the MMR-deficient cells contain more mismatches,
the tighter binding complexes would be expected to display a greater inhibitory effect. It
should be noted that finding any inhibitory effect with these complexes was at first sur-
prising, since they bind DNA noncovalently and might be expected to be readily displaced.
Although the mechanism of inhibition is not yet fully understood, it is likely that protein
recognition of the metal-mismatch complex, perhaps by RNA polymerase or topoisomerase,
may generate a covalent protein-DNA lesion and contribute to the cellular response.

The differential inhibitory effect seen with Rh(HDPA )ochrysi®' cannot be understood
simply on the basis of binding affinities. Despite having essentially the same mismatch
binding affinity as Rh(bpy)gchrysi3+, the HDPA complex preferentially inhibits the MMR-
deficient cell line almost as well as Rh(NH3)4ChI'ySiB+ with long incubation times; with short
times of incubation, the differential inhibitory effect by Rh(HDPA)QChTYSiS+ is greatest.
Both the HDPA ligand and the amine group have the potential to form hydrogen bonds.
This hydrogen bonding capability and flexibility of the ligands might serve to make them
more effective inhibitors of any protein-DNA interactions. Indeed, ruthenium complexes
bearing HDPA ligands have been shown to exhibit DNA binding and cytotoxicity.®

Certainly, as with any pharmaceutical design, cellular uptake must also be considered.
In the case of the HDPA complex, based upon the variations in inhibitory effect with in-
cubation time, the amine ligands may facilitate nuclear uptake. For the bpy complexes,
the 48 h incubation time required for Rh(bpy)gchlrysi3+ to exert its antiproliferative effect
matches the 48 h requirement observed for Ru(bpy)2dppz?t uptake in HeLa cells. 4251552

The more lipophilic Rh(DIP)gchlrysi3+ here is found to exert anti-proliferative effects at
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Figure 1.21. Crystal and model structures of rhodium metalloinsertors bound to the
mismatch site. Rhodium insertors (red) are shown bound to the DNA (gray) from the minor
groove at the mismatch site with the bases (adenine in blue, cytosine in yellow) ejected and
the chrysi ligand stacked fully with the adjacent base pairs. The crystal structure of A-
Rh(bpy)zchrysi3Jr bound to the CA mismatch is shown in panel (A), along with structural
models of A-Rh(DIP)gchrysig’Jr (B) and Rh(NH3)4chrysi3+ (C) binding based on the crystal
structure. Superposition of the DIP complex upon the rhodium center of the bpy complex
leads to steric clashes with the sugar-phosphate backbone (possible atoms involved in green),
whereas the tetraammine complex is easily accommodated.
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much shorter incubation times and lower concentrations, which also matches the acceler-
ated uptake observed for Ru(DIP)zdppz2+. Cellular uptake is surely a rate-limiting factor
in biological activity of the rhodium metalloinsertors, yet cellular uptake is not the only
challenge: proper subcellular localization must also be achieved in order for any drug to act
on its target. It has been well established that lipophilic cations preferentially target the
mitochondria, whereas hydrophilic cations do not.%65 It may be that Rh(HDPA)gchrysi3+
and Rh(NHg,)ZLch]rysi?’Jr lack the lipophilicity required for mitochondrial accumulation, al-
lowing a greater proportion of these compounds to reach the nucleus once inside the cell.

This difference in intracellular partitioning could then account for the differential effects of

Rh(HDPA )ychrysi®™.

1.5 Conclusions

In the development of octahedral rhodium complexes as anticancer agents, the choice of
ancillary ligand can be seen as a design trade-off, with the binding affinity for a DNA
mismatch greatly outweighing uptake properties as the critical factor in the successful tar-
geting of repair-deficient cells. Beyond their effects on DNA binding and overall cellular
uptake, it is highly likely that the ancillary ligands affect the cellular response in other
ways, including the potential for hydrogen bonding and differences in uptake and intracel-
lular distribution. Here we are confronted with a trade-off that may seem inevitable: more
hydrophobic ligands facilitate cellular uptake but impede mismatch binding. Perhaps this
trade-off can be avoided by making conjugates arranged with functional moieties tethered
with consideration of the structure of the DNA-bound complex associated snugly in the
minor groove. Most importantly, these data support the contention that the cell-specific in-
hibitory effect we observe depends upon binding to the DNA mismatch inside the cell. This
cell-specific strategy thus represents a promising direction in the development of small metal
complexes that react preferentially in MMR-deficient cells, those susceptible to cancerous

transformation.
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Chapter 2

Sensitivity of Ruthenium Luminescence to DNA Defects

Adapted from Mi Hee Lim, Hang Song, Eric D. Olmon, Elizabeth E. Dervan, and Jacqueline K. Barton,
Inorganic Chemastry, 2009, 48, 5392-5397. M. H. L., H. S. and E. E. D. performed the steady state
fluorescence experiments. E. D. O. performed lifetime measurements.
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2.1 Introduction

Cells have evolved intricate enzymatic pathways to screen for and repair DNA lesions such
as base pair mismatches and abasic sites to maintain the integrity of the genome.™*? Be-

35 3 means of recog-

cause unrepaired DNA defects can lead to cancerous transformation,
nizing DNA lesions is a crucial step in the development of early cancer diagnostics. Many
approaches have been developed to target DNA lesions and particularly single base mis-
matches in DNA.®20 Ag discussed in Chapter |1} our laboratory has focused on the design
of bulky metalloinsertors as probes of DNA mismatches.“! Although these bulky complexes
target mismatches with high specificity, they have not yet achieved sufficient sensitivity to
serve as luminescent probes for mismatches in cellular assays.“? In this chapter, we explore
the use of the simple luminescent probe for DNA, Ru(bpy)2dppz?*, in targeting single base
mismatches and abasic sites.

Ru(bpy)2dppz2T, which has been dubbed a “molecular light switch for DNA,” displays a
remarkable increase in luminescence upon intercalation into duplex DNA (Figure .22’26
In nonaqueous solvents, the complex luminesces brightly owing to the excitation to a metal-
to-ligand charge transfer state, but in water the luminescence is quenched through hydrogen
bonding with the phenazine nitrogen atoms.*®2® Studies have shown that the Ru complex
binds well-matched duplex DNA avidly through intercalation, where the planar dppz ligand
intercalates into the helix, stacking with the DNA but not disturbing base pairing.2272422
Our results have indicated that the complex, like other metallointercalators,? binds the
duplex from the major groove side.?? Others have provided some evidence in support of
minor groove association.?1"33 In any case, through this intercalative stacking, the phenazine
nitrogen atoms of the dppz become somewhat protected from water, and hence, bound to
DNA in aqueous solution, Ru(bpy)2dppz?* shows luminescence.

Our laboratory has also carried out extensive studies to explore rhodium diimine com-
plexes that contain a bulky ligand that is inhibited from binding duplex DNA by intercala-
tion; owing to the expanse of the ligand, the complex instead targets single base mismatches
in DNA through metalloinsertion (for details, see Chapter .18 Rh(bpy)gchrysig+ (chrysi
= 5,6-chrysenequinone diimine), for example, binds both single base mismatches and aba-

sic sites in DNA with high specificity through metalloinsertion (Figure .34’36 X-ray

crystallography and NMR studies have shown that, in contrast to intercalation, in this
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Figure 2.1. Chemical structures of Rh(bpy)gchrysiSJr and Ru(bpy)2dppz?*t isomers.

metalloinsertion mode, the sterically expansive chrysi ligand binds deeply into the mis-
match site from the minor groove with complete ejection of the mismatched base pair into
the major groove %38 In short, the Rh complex behaves as a m-stacking replacement of the
mismatched pair in the DNA base stack. Upon light activation, the Rh complexes promote
direct strand cleavage adjacent to the DNA lesion. DNA photocleavage studies on the full
range of single base mismatches in all sequence contexts have shown a strong correlation
between mismatch binding affinity by the metal complex and the thermodynamic destabi-

h.3486 Thus, the easier it is to eject the mismatched

lization associated with the mismatc
base pairs, the tighter the binding through metalloinsertion.

The intercalating dppz ligand of Ru(bpy)2dppz?" is narrow and long compared with
the chrysi ligand and therefore does not seem suitable for binding through metalloinsertion
(Figure . Moreover extensive studies have shown the tight binding of dppz complexes
to well-matched DNA through classical intercalation.22262931H53 Here we explore the lu-
minescent properties of Ru(bpy)2dppz?t in the presence of DNA duplexes that contain a

single base mismatch or an abasic site. We find significant luminescent enhancements asso-

ciated with binding to these defects compared to binding to well-matched duplex DNA. Our
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results suggest binding to these defects is through metalloinsertion. These data indicate a

powerful new application of Ru(bpy)2dppz?* in probing DNA defects.

2.2 Experimental protocols

2.2.1 Materials

All reagents and solvents were purchased from commercial suppliers and used without fur-
ther purification. The DNA-binding organic fluorophores, ethidium bromide (EB) and
TO-PRO-3 were obtained from Sigma-Aldrich and Invitrogen, respectively. Ruthenium
complexes were prepared and enantiomers separated by previously reported methods; all
complexes were utilized as chloride salts.242459 The oligonucleotides used for measurements
of steady state luminescence and excited state lifetimes were synthesized on an ABI 3400
DNA synthesizer (Applied Biosystems) and purified as previously described.* The copper
complex Cu(phen)%Jr was generated in situ by reacting the phen ligand with CuCls in a

ratio of 3:1.41%42

2.2.2 Steady state fluorescence

Luminescence spectra with emission intensities ranged from 560 to 800 nm were recorded
on an ISS-K2 spectrophotometer at ambient temperature in aerated solutions and then
integrated. For all titrations, the experiments were performed at least three times. UV-

visible spectra were taken on a Beckman DU7400 spectrophotometer.

2.2.3 Time-resolved fluorescence

Time-resolved emission measurements were carried out at the Beckman Institute Laser Re-
source Center where samples were excited using a Nd:YAG-pumped OPO (Spectra-Physics
Quanta-Ray).#3%% Laser power at 470 nm ranged from 4.0 to 4.5 mJ per pulse at 10 Hz.
Emitted light was collected and focused onto the entrance slit of an ISA double grating (100
mm) monochromator and detected by a PMT (Hamamatsu R928). Each measurement is
the average of 500 shots. Emission decays were fit to biexponential functions using nonlinear

least-squares minimization.43 49
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Matched: 3 -CTG GTC GAATAG TGG GGATCTATT CGC -5
Mismatched: 3’' - CTG GTC GAA TAG TCG GGA TCT ATT CGC - %'

Abasic: 3 —CTG GTC GAATAG TRG GGATCTATTCGC -5’
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Figure 2.2. Titrations of Ru(bpy)2dppz?T with DNAs containing defects. Top: DNA
sequences of matched, mismatched and abasic 27-mer duplex DNA (R denotes a tetrahy-
drofuranyl abasic site). Bottom: plots of the integrated emission intensity (Ae; = 440 nm)
of rac- (left), A- (middle) and A-Ru(bpy)adppz?™ (right) (100 nM) upon increasing the
concentration of DNA in 50 mM NaCl, 5 mM Tris, pH 7.5. Error bars indicate standard
deviations in the measurements.

2.3 Results and discussion

2.3.1 Steady state luminescence of rac-, A-, and A-Ru(bpy).dppz*" bound

to oligonucleotides

We first investigated the luminescent response of Ru(bpy)adppz?tin the presence of in-
creasing concentrations of 27-mer oligonucleotide duplexes that were either fully matched
or contained a single base mismatch or an abasic site (Figure . After adding the Ru
complex (100 nM, rac-, A-, or A-) to a solution containing various concentrations of DNA
(0-100 nM oligomer) in 50 mM NaCl, 5 mM Tris, pH 7.5, the resulting steady state lumi-
nescence was measured. We find a marked increase in Ru luminescence as the concentration
of DNA increases until saturating conditions are reached. Significantly, the luminescence
increase is greater with those oligonucleotides containing the single site defect.

Both A- and A-Ru enantiomers exhibit an increase in luminescence in the presence of
DNA defects versus well matched DNA (Figure 2.2). Specifically, rac- and A-Ru show a

1.5-fold enhancement in luminescence with DNA containing a CC mismatch or an abasic site
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compared to well-matched DNA. It should be noted that A-Ru exhibits higher integrated
luminescence intensity with all three duplexes, reflecting that the A-enantiomer binds more
tightly than the A-enantiomer to right-handed B-form DNA 252646l Nonetheless, for rac-
and A-Ru, 90% saturation is reached at a Ru/DNA ratio of 3:1 with the matched duplex and
4:1 with the mismatched duplex. This stoichiometry reveals that an additional Ru is bound
to the mismatch without affecting the loading of Ru at matched sites. Interestingly, A-Ru,
unlike rac-Ru and A-Ru, presents a significant increase in luminescence with abasic DNA
over well-matched DNA (2.5-fold) or mismatched DNA (1.8-fold), as shown in Figure
(bottom right). This characteristic of A-Ru suggests that it may be useful in the detection
of abasic sites in DNA.

2.3.2 Comparison with other DNA-binding fluorophores

To compare the luminescent properties of the Ru complex to other commonly used DNA-
binding fluorescent probes, we employed ethidium bromide (EB)4” and TO-PRO-3%® (Fig-
ure . When the intercalator EB is incubated with each DNA duplex, no distinguishable
difference in luminescence intensity is observed among the three oligonucleotides (Figure
bottom left). TO-PRO-3, a known minor groove binding agent, shows a small decrease
in luminescence in the presence of DNA containing a mismatch or abasic site compared
with well-matched DNA. Neither of these two commonly used luminescent DNA binding
agents show any evidence of luminescence enhancement with DNAs containing a defect.
The different luminescence behavior of Ru in the presence of mismatched and abasic
DNA versus the well matched duplex reports on its structural characteristics at the de-
fect binding site: the defect sites afford the complex a higher degree of protection from
solvent water molecules versus a well-matched duplex site. This result also suggests that
Ru binding at mismatches and abasic sites is fundamentally different from intercalation
between matched bases or groove binding, because if Ru(bpy)2dppz?t were to bind to mis-
matches or abasic sites through classical intercalation or groove binding, we might expect

the luminescence response to resemble that of EB or TO-PRO-3.

2.3.3 Luminescence behavior of Ru with different base mismatches

We investigated also the ability of Ru to report on other types of DNA base mismatches by

using a short hairpin oligonucleotide containing a mismatch near the center of the duplex.
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Figure 2.3. Comparisons with common DNA-binding fluorophores. Structures of EB and
TO-PRO-3 are shown along with plots of the integrated emission intensity of EB (100 nM)
and TO-PRO-3 (100 nM) in the presence of 27-mer duplex DNAs (Figure ez for EB
= 512 nm, A, for TO-PRO-3 = 642 nm) in 50 mM NaCl, 5 mM Tris, pH 7.5. Error bars
indicate standard deviations in the measurements.
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Table 2.1. Melting temperatures (7},,) of DNA hairpins containing a single mismatch®

Mismatch T, (°C)°
CT 65
CC 65
TT 66
AA 67
AC 70
GT 70
AG 71
GG 73
AT (well-matched) 75

“Absorbance at 260 nm was monitored as a function of temperature to determine the Ty,,. DNA hairpins
(Figure [2.4) were used. *Uncertainties are +1 °C.

As evident in Figure we detect enhanced luminescence intensities with AA, AC, and CC
mismatches, which are relatively destabilized compared to Watson-Crick base pairs (Table
.49 With the thermodynamically stable G-containing mismatches (GG, GA, GT), the
Ru complex acts in a manner similar to that with well matched DNA (AT). Indeed, the
luminescence intensity of Ru is correlated with the relative thermodynamic stability of each
mismatch.

An exception to this thermodynamic correlation that must be noted is that there is no
significant increase in the luminescence of Ru with CT and TT mismatches, even though
the dppz ligand may insert into pyrimidine-pyrimidine mismatches more easily than purine-
purine ones (Figure . The absence of an increase in luminescence with CT and TT may
be related to an intermolecular hydrogen bonding interaction between thymine and the
phenazine moiety of dppz, which, like hydrogen bonding with water, yields quenching.

This dependence on mismatch thermodynamic stability strikingly resembles that ob-
served in DNA binding studies of the metalloinsertor Rh(bpy)gchlrysiSJF.34’36 Binding of
the chrysi complex to a mismatched site occurs via insertion with the ejection of the mis-
matched bases, and this binding is correlated with the thermodynamic instability of the
mismatch; the easier it is to eject the mismatched base pair from the stack, the tighter the
binding of the metalloinsertor. Thus, these luminescence data, showing a similar correla-
tion with mismatch instability, suggest that Ru(bpy)2dppz?* complexes may bind similarly

to thermodynamically destabilized sites via insertion of the dppz ligand from the minor
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Figure 2.4. Titrations of Ru(bpy)2dppz2+ with hairpin DNAs containing different mis-
matches. Top: Hairpin DNA sequences. Bottom: plots of the integrated emission intensity
(Aez = 440 nm) of A-Ru (100 nM) with with increasing concentrations of hairpin DNA
containing mismatches: GG (open circle), GT (open square), AT (filled black circle), AG
(x), TT (+), CT (purple triangle), AC (green circle), AA (blue diamond), and CC (red
square) in 50 mM NaCl, 5 mM Tris, pH 7.5. Error bars indicate standard deviations in the
measurements.
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groove, possibly causing the ejection of one or both bases into the major groove. Accord-
ingly, because insertion into the minor groove allows for deeper binding, one could explain
the greater luminescence at these mismatched sites.

It should also be noted that a higher differential luminescence intensity of Ru between
mismatched and matched DNA is observed with the hairpin oligonucleotides (3-fold in-
crease) compared with the longer 27-mer duplex (1.5-fold increase) for the same mismatch
(CC). This observation is expected; only one Ru complex can bind to the single mismatch
on both duplexes, while the longer duplex can accommodate more Ru in matched duplex
sites. Thus, shortening the DNA increases the probability of binding to the destabilized

site which in turn enhances the differential in luminescence intensity.

2.3.4 Excited state lifetimes of Ru

To elucidate further the luminescent characteristics of the Ru complexes bound to DNA
defects, we examined their excited state lifetimes in the presence of the 27-mer oligonu-
cleotides. The excited state decay profiles for the Ru complexes have been fit to biexponen-
tial luminescent decays (Table . We have previously seen biexponential decays for the
Ru complexes with B-form DNAs and, through quenching studies and NMR experiments,
have characterized this biexponential decay structurally in terms of side-on and perpendic-
ular components.?22429 Iy the perpendicular binding mode, the dppz ligand intercalates
such that the Ru-dppz axis lies along the DNA dyad axis; in contrast, when Ru intercalates
via a side-on approach, the Rudppz axis lies along the long axis of the base pairs. As a re-
sult of these intercalative differences, the perpendicular binding mode places the phenazine
moiety between the base pairs in a way that is more protected from quenching by water
compared to the side-on bound phenazine moiety, yielding a longer fluorescent lifetime for
the perpendicular versus side-on mode.

In the presence of a DNA mismatch, the A-Ru complex shows an increase in the long-
lived excited state lifetime (Table . This observation is consistent with binding through
metalloinsertion, where the complex is expected to be more deeply held and certainly more
protected from water in the small minor groove. Rh(bpy)gchrysi3Jr appears to bind a mis-
matched site in a strictly perpendicular orientation, 3”38 but the longer dppz complex enjoys
a higher degree of rotational freedom than the short chrysi complex, likely allowing both

orientations of the inserting dppz ligand (Figure . For the A-Ru complex, little signif-
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Table 2.2. Luminescence Decay Parameters for rac-, A- and A-Ru(bpy)adppz?™ with

DNA®
Complex DNA 1 (ns)? 7 (ns)?  Tim©
rac-Ru Matched 72 212 83:17
Mismatched 74 213 77:23
Abasic 86 192 69:31
A-Ru Matched 83 245 88:12
Mismatched 91 296 86:14
Abasic 90 204 79:21
A-Ru Matched 41 199 89:11
Mismatched 37 156 78:22
Abasic 69 167 41:59

“Samples containing 10 uM Ru and 20 ygM DNA (5 mM Tris, pH 7.5, 50 mM NaCl) were used for the
excited state lifetime measurements (Aez = 470 nm, Aer, = 610 nm). The 27-mer oligonucleotides (matched,
mismatched and abasic DNA, Figure were used. Uncertainties in excited state lifetimes are <10%.
“Relative contributions of each lifetime to the overall decay.

icant difference is evident with the mismatch; this result is not surprising based upon the
steady state titration. It is noteworthy here that A—Rh(bpy)Qchrysig+ binds enantiospecifi-
cally through metalloinsertion at the mismatched site because of the very small size of the
right-handed minor groove at the mismatched binding site.245

We have previously found for Rh(bpy)gchrysigJr that binding to an abasic site resembles
closely binding to a mismatched site.?">! We see similar results for A-Ru(bpy)2dppz®*.
It appears that the luminescent enhancement associated with binding to the abasic site is
reflected in an increase in the excited state lifetime of the side-on component but a higher
population of the perpendicular component. For the A-isomer these effects are still more

substantial. These enhancements likely reflect a looser binding of the A-isomer within the

abasic site pocket.

2.3.5 Luminescence response of Ru toDNA in the presence of Cu(phen)3*

To explore further whether the Ru complex interacts with DNA defects from the mi-
nor groove, we measured the steady state luminescence of Ru with DNA in the pres-
ence of the DNA-binding quencher, Cu(phen)%Jr. Upon increasing the concentration of
Cu(pherl)g—ir,‘ﬂ"l2 the luminescence intensity of Ru with matched DNA is unchanged, while

that with mismatched and abasic DNA decreases to the same level as that with matched
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Figure 2.5. Plot of the integrated emission intensity of rac-Ru(bpy)2dppz** (100 nM)
with increasing concentration of Cu(phen)%Jr in the presence of 27-mer duplex DNA (Figure
Aez = 440 nm). The Ru complex was incubated with DNA previously treated with
Cu(phen)%+ for 30 min (5 mM Tris, pH 7.5, 50 mM NaCl). Error bars indicate standard

deviations in the measurements.

DNA (Figure . Thus Cu binding selectively quenches the luminescence from Ru bound
at the defect sites but not of Ru bound at well-matched sites. Since the Cu complex binds
in the minor groove,#*2 these data further support binding by Ru(bpy)2dppz?T to well
matched DNA in the major groove. Moreover, since the quenching is selectively at the
defect sites, these data also indicate that binding of the Ru complex to the defect sites
appears to occur from the minor groove side. We expect that Cu quenching at these sites
is the result of paramagnetic quenching rather than displacement of the Ru complex, since
titrations indicate binding to the mismatched DNA is comparable in affinity to binding to
well-matched DNA and thus far tighter than weak minor groove association by the copper
complex. Nonetheless, irrespective of the quenching mechanism, this loss of the enhanced lu-
minescence associated with Ru binding to defects by the minor groove-binding Cu(phen)%Jr
strongly implies that Ru binds to the DNA defects via the minor groove. Like the metal-
loinsertor Rh(bpy)gchrysig+, the binding mode of Ru into the destabilized site thus is likely

to be insertion from the minor groove. 5758
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2.3.6 Selective quenching of Ru luminescence with matched DNA by Nal

To improve the luminescence differential of bound Ru between matched and mismatched
or abasic DNA, we used Nal to quench preferentially the Ru luminescence associated with
matched DNA (Figure . Todide is an anionic luminescent quencher, and its efficiency in
quenching a small molecule bound to DNA depends upon how closely the small molecule
is protected from the quencher by the DNA polyanion.?? On the basis of the electrostatic
profile of B-DNA, along with the greater exposure of a Ru complex bound to the major
groove versus the minor groove, we might expect greater quenching by I~ of Ru bound in
the major versus minor groove. Appropriate amounts of nonquenching KCIl were added
to maintain a constant ionic strength in all samples. Upon initial addition of KCI alone,
we observe a marked decrease in luminescence for all three duplexes; and interestingly,
simply increasing this ionic strength leads to some increase in the ratio of luminescence for
mismatched:matched DNAs. The increased counterion concentration of the solution must
inhibit Ru binding electrostatically and more so for the matched versus mismatched binding.
Moreover, as the concentration of the quencher Nal increases, Ru luminescence with all three
duplexes decreases further. As a result, in comparing the luminescence ratios without 200
mM salt versus with 200 mM Nal, the relative differential luminescence improves from 1.5-
fold to 4-fold. At constant ionic strength, comparing ratios for 200 mM KCI versus 200 mM
Nal, we see the ratio for mismatched to matched luminescence change from 2.3 to 3.8. Thus
we see some preferential quenching of matched DNA with iodide. This result too suggests
that Ru binds to DNA defects from the minor groove. DNA defect-bound Ru is expected
to be less accessible to an anionic quencher and thus show less decrease in luminescence
upon addition of the quencher.

Changes in the excited state lifetimes for A-Ru in the presence of KCl and/or Nal sup-
port our conclusions from the steady state measurements (Table . Again, all data were
fit to biexponential decays. Compared with the lifetimes before the addition of salt (Table
, in the presence of 1M KCI, the longer-lived component shows a substantial increase in
excited state lifetime for matched, mismatched, and abasic DNA. This increase may reflect
deeper perpendicular stacking of the dppz moiety betweenDNA bases. As the Nal concen-
tration increases, the relative proportion of the longer-lived component increases as well,

indicating that the shorter-lived species is more accessible to the quencher. The lifetime of
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Figure 2.6. Plot of the integrated emission intensity of rac-Ru(bpy)2dppzt (200 nM)
with increasing Nal in the presence of 27-mer duplex DNA (Figure Aez = 440 nm).
Appropriate amounts of KCI were added to keep the ionic strength constant. Error bars
indicate standard deviations in the measurements.

both components decreases with higher quencher concentrations, revealing that the excited
state is dynamically quenched by iodide. However, both of the components continue to
show a longer lifetime with mismatched DNA even at the highest quencher concentration,
thus maintaining a high luminescence differential between matched and mismatched DNA.
It should be noted that in all cases the instantaneous emission intensity decreases as iodide
concentration increases, suggesting that high concentrations of the quencher also result in
sphere of action static quenching. Importantly, this decrease is most substantial in the case
of matched DNA for both binding modes. These observations are consistent with the notion
that minor groove—bound Ru is buried deeper in the duplex and thus is less likely to be
in the proximity of a quencher. Consequently, Ru bound in the major groove is preferen-
tially quenched, thereby accentuating the differential luminescence between defective and

matched DNA.

2.4 Conclusions

While small organic DNA binding molecules EB and TO-PRO-3 show either a small de-

crease or no change in luminescence when combined with defective DNA, Ru(bpy)2dppz?*
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Table 2.3. Luminescence Decay Parameters for A-Ru(bpy)2dppz?t with DNA in the
Presence of Nal®

DNA [Nal]/[KCl] (mM/mM) 71 (ns)® 7 (ns)? 7:m°
Matched 0/1000 83 305 74:26
500/500 81 295 66:34

1000/0 76 275 63:37

Mismatched 0/1000 111 448 80:20
500/500 103 357 74:26

1000/0 99 325 75:25

Abasic 0/1000 97 300 85:15
500/500 90 200 75:25

1000/0 85 177 73:27

“Samples containing 2 M Ru and 4 pgM DNA (5 mM Tris, pH 7.5, 50 mM NaCl) were used for the
excited state lifetime measurements (Aez = 470 nm, Aer, = 610 nm). The 27-mer oligonucleotides (matched,
mismatched and abasic DNA, Figure were used. Uncertainties in excited state lifetimes are <10%.
“Relative contributions of each lifetime to the overall decay.

displays an increase in luminescence in the presence of mismatches and abasic sites. Sev-
eral observations suggest that binding of Ru into the mismatch or abasic sites occurs in a
manner analogous to that of the metalloinsertor Rh(bpy)gchrysi?’+ (that is, insertion from
the minor groove): (i) the correlation of the luminescent enhancement with the thermo-
dynamic instability of mismatched sites, (ii) the preferential quenching of the enhanced
luminescence at defects with Cu(phen)%+ and (iii) the increase in differential luminescence
at defects upon iodide quenching. Remarkably, even though the intercalating dppz ligand
is structurally very different from the chrysi ligand, its similar manner of binding at mis-
matches and abasic sites suggests that metalloinsertion may be the general binding mode
of octahedral metal complexes into the destabilized mismatched and abasic sites. To ob-
tain direct evidence supporting this proposal, we will examine an atomic-resolution crystal
structure of A-Ru(bpy)2dppz?™ bound to DNA mismatches in the next chapter.

In this chapter, we thus extend the utility of Ru(bpy)2dppz?t to probing small local
distortions in the structure of DNA by showing the ability of Ru(bpy)adppz?* to act as a
light-activated signal for DNA defects. Using Nal, we have magnified the luminescence dif-
ferential with Ru(bpy)2dppz?t between matched and defective DNA by selectively quench-
ing the luminescence from Ru bound to matchedDNA. This selective quenching strategy

may prove useful for the direct visualization of biological samples containing DNA defects.
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Certainly these data underscore the utility of Ru(bpy)2dppz?t as a sensitive luminescent

reporter of DNA and its defects.
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Chapter 3

Crystal Structures of A-Ru(bpy).dppz®>" Bound to
Mismatched and Well-matched DNA
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3.1 Introduction

The development of DNA-binding transition metal complexes as diagnostic and therapeutic
agents necessitates a thorough understanding of the structural basis of their interactions
with target DNA. Octahedral, polypyridyl complexes of second- and third-row transition
metals are commonly employed to elucidate noncovalent binding interactions. In partic-
ular, dppz complexes of ruthenium have become a subject of particular interest owing
to their unique photophysical response to DNA. Typically, these complexes exhibit little
luminescence in water, but their luminescence is significantly enhanced upon binding to
double-stranded DNA, hence the “light switch” effect.!! Extensive studies in solution have
established that these complexes bind to DNA by intercalation through the planar dppz
ligand.”® Due to their highly dynamic and nonspecific nature of DNA binding, solution
or crystal structures have largely remained elusive. Although the discovery of the unique
photophysical properties of this class of complexes was made over two decades ago, the first
crystal structure of the complex bound to DNA was not obtained until very recently,” and
the crystal structure did not capture dppz intercalation into a native DNA duplex.
Besides binding to well-matched DNA, dppz complexes of ruthenium, exemplified by
Ru(bpy)odppz?* (Figure , show further enhanced luminescence in the presence of DNA
defects such as base mismatches.® Its augmented luminescence sensitivity to DNA mis-
matches makes it a promising parent complex for the design of luminescence-based mis-
match sensors. As mismatch repair (MMR) deficiencies have been linked to increased rate

15 3 luminescent probe for DNA mismatches

of mutation and several types of cancers,
would provide a direct, fast and sensitive detection method for MMR deficiency. A better
structural understanding of Ru(bpy)2dppz?™ bound to DNA mismatches will undoubtedly
aid in the development of future generations of luminescent DNA probes.

We have proposed that the binding of Ru(bpy)2dppz?* to mismatches occurs by metal-
loinsertion, in an analogous fashion to how mismatch-specific Rh(bpy)gchrysi?’+ recognizes
mismatches.® In this binding mode, the intercalating ligand (e.g., dppz or chrysi) inserts
into the mismatch site and extrudes the mispaired bases out of the helix, effectively taking
their place in the base stack.19¥ Here we report the crystal structure of A-Ru(bpy)2dppz?*
bound to mismatched DNA at atomic resolution (1.0 A, Figure , as well as a crystal

structure of A-Ru(bpy)2dppz?t with well-matched DNA (at 2.2-A resolution, Figure .
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Figure 3.1. Chemical structure of A-Ru(bpy)2dppz>*.

These two structures provide several independent views of Ru(bpy)2dppz?* binding to DNA
through dppz intercalation or insertion, illustrating in detail the structural basis of the in-
teractions between DNA and the “light switch” molecule as captured by crystallization in

the solid state.

3.2 Experimental procedures

3.2.1 Materials

[Ru(bpy)2dppz|Cly was synthesized according to previously reported procedures.?’ The
enantiomers were separated using a CYCLOBOND I 2000 DMP HPLC column (Sigma)
on a Hewlett-Packard 1100 HPLC, with an isocratic solvent composition of 60/40 (v/v)
CH3CN:100 mM KPFg(aq). The A-enantiomer eluted first, followed by the A-isomer. The
assignment of the two fractions was confirmed by circular dichroism.?! The fractions were
lyophilized and washed with water to remove excess KPFg and exchanged for chloride salt
on a QAE anion-exchange column. Oligonucleotides (Integrated DNA Technologies) were
purified by reverse-phase HPLC using a C18 reverse-phase column (Varian) on a Hewlett-
Packard 1100 HPLC. Quantification was performed on a Beckman DU 7400 spectropho-

tometer.

3.2.2 Crystallization and data collection

Oligonucleotides were incubated with A-[Ru(bpy)2dppz]Cls before crystallization. Subse-
quent manipulations were performed with minimal exposure of the complex to light. Crys-

tal was grown from a solution of 1 mM d(ClGQG3A4A5A6T7T8A9010011G12)2, 2 o0or 3
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mM enantiomerically pure A-Ru(bpy)2dppz*, 20 mM sodium cacodylate (pH 7.0), 6 mM
spermine-tetrahydrochloride, 40 mM NaCl or KCl, 10 mM BaCly, and 5% 2-methyl-2,4-
pentanediol (MPD) equilibratd in sitting drops versus a reservoir of 35% MPD at ambient
temperature. The crystals grew in space group P1 with one biomolecule per asymmetric
unit and unit cell dimensions: a = 24.0 A, b =248 A, ¢ =375 A, o = 74.7°, B = 84.4°,
and v = 76.2° (Table [3.1)).

Crystal [2| was grown from 1 mM d(C1G2G3T4A5A6T7TsAgC19C11G12)2 and 4 mM
enantiomerically pure A-Ru(bpy)2dppz?t. Other conditions remained the same as those
for crystal [I, The crystals grew in space group C'121 with one biomolecule per asymmetric
unit and unit cell dimensions: @ = 80.1 A, b =272 A, ¢ =496 A, o« = v = 90°, and § =
115.8° (Table [3.1)).

The data for crystal [1f were collected from a flash-cooled crystal at 100 K on an R-
axis IV image plate using Cu Ka radiation produced by a Rigaku RU-H3RHB rotating-
anode generator with double-focusing mirrors and a Ni filter. High-resolution data were
subsequently collected from a different crystal on beamline 12-2 at the Stanford Synchrotron
Radiation Laboratory (Menlo Park, CA; A = 0.7749 A, 100 K, PILATUS 6M detector).
The data were processed with MOSFLM or XDS“% and SCALA from the CCP4 suite of
programs. >

The data for crystal 2| were collected from a flash-cooled crystal at 100 K on the Rigaku
diffractometer described above, processed with XDS,*? POINTLESS, and SCALA .23

3.2.3 Structure determination and refinement

Both structures were determined by single anomalous dispersion phasing using the anoma-
lous scattering of ruthenium with the Shelxc/d/e suite of programs.?* For both crystals,
five heavy atoms were located per asymmetric unit. Structures were built in COOT2 and
refined with PHENIX version 1.7.2% For structure 1} the anomalous contribution of ruthe-
nium was taken into account and alternative conformations of phosphates were included in
the refinement; for non-hydrogen atoms, anisotropic temperature factors were refined. For
structure |2 further refinement is underway. Figures were drawn with Pymol.“” Alignment

was performed with LSQMAN 28
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Table 3.1. Data collection and refinement statistics

structure structure

Data collection
space group P1 121
cell dimensions

ab,c (A) 24.0, 24.8, 37.5 80.1, 27.2, 49.6

a,B,y (deg) 74.7, 84.4, 76.2 90.0, 115.8, 90.0
wavelength 0.7749 1.5418
resolution 23.3-1.00 (1.05-1.00) 25.5-2.17 (2.32-2.17)
Rierge 0.029 (0.212) 0.021 (0.263)
Rpim 0.017 (0.124) 0.021 (0.250)
I/oI 24.0 (5.6) 19.1 (3.5)
completeness (%) 86.1 (81.4) 99.4 (99.6)
redundancy 3.9 3.0
Refinement
no. of reflections 37763 5407
Ryork/ Riree 0.125/0.144 0.247/0.305
rmsd for bond lengths (A) 0.025 0.017
rmsd for bond angles (deg) 1.471 2.954

3.2.4 Steady state fluorescence

Luminescence spectra (excitation wavelength = 440 nm) with emission intensities ranged
from 560 to 800 nm were measured in 40 mM sodium cacodylate (pH 7.0), 80 mM KCI,
20 mM BaCl, on an ISS-K2 spectrophotometer at 4°C in aerated solutions. Cu(phen)%Jr
was formed in situ using 1:3 CuCls and phenanthroline. Experiments were performed in

triplicate.

3.3 Results and discussion

3.3.1 Cocrystallization of A-Ru(bpy).dppz*" with DNA

To elucidate the structural basis for Ru(bpy)2dppz?" interaction with both mismatched and
well-matched DNA, we cocrystallized A-Ru(bpy)2dppz?t with 12-mer palindromic DNA
sequences. The sequence used in structure [1} d(C1G2G3A4A5A6T7TsAgC10C11G12)2, con-
tains two AA mismatches (underlined) and has been previously used to obtain two crystal
structures of A-Rh(bpy)gchrysi?’Jr bound to mismatched DNA . The sequence in structure
d(C1G2G3T4A5A6T7TsAgC19C11G12)2, was designed to be well matched throughout the
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duplex, with a TA base pair in place of the AA mismatch. Both crystals took longer than 8
weeks to appear in the crystallization wells. Although the starting ratio of Ru:duplex was
different (2:1 or 3:1 in structure (1| and 4:1 in structure , the crystals each incorporated
five ruthenium complexes per DNA duplex, which together forms the asymmetric unit in
both cases. For the two sequences, crystals formed in two different space groups. Crystal
diffracted to atomic resolution, revealed three binding modes of the ruthenium complex:
(i) metalloinsertion at the mismatched sites with ejection of the mispaired adenosines, (ii)
metallointercalation between well-matched base pairs and (iii) end-capping between two
(crystallographically related) duplexes (Figure [3.2]). To our surprise, crystal structure
which started with a fully complementary DNA sequence, also exhibited the three bind-
ing modes in the final structure (Figure . Interestingly, despite a global resemblance
between the two structures, the orientation of the dppz ligand is rather different. These
structures, taken together, illustrate the generality of metalloinsertion and the versatile
DNA binding modes attainable for dppz complexes, and also point to the force of crystal

packing in forming intricate molecular structures.

3.3.2 Structure [1

In crystal[1] the metal complex and the oligonucleotide containing A A-mismatches cocrys-
tallized in space group P1. The biological molecule consists of a full DNA duplex and five
ruthenium complexes. All five ruthenium complexes are inserted or intercalated through the
dppz ligand from the minor groove, providing five independent views of ruthenium binding
to DNA. Crystallographically related duplexes are stacked head to tail, forming parallel long
rods in the crystal lattice (Figure . Aside from the end-stacking interactions between
consecutive duplexes, mediated by an end-capping metal complex, neighboring parallel rods
do not have detectable contacts with one another.

At destabilized AA mismatches, the metal complex inserts deeply from the minor groove
and fully ejects the mispaired adenosines. We had proposed that Ru(bpy)2dppz?* binds
to DNA mismatches through insertion via the minor groove, and that metalloinsertion
may be a general binding mode for octahedral metal complexes bearing planar ligands.®
Here, consistent with our proposal, the ruthenium complex indeed binds tightly to both
mismatched sites through metalloinsertion, with the dppz ligand stacked between the two

flanking base pairs, effectively replacing the mispaired adenosines in the base stack. All four
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Figure 3.2. Crystal structure (1)) of A-Ru(bpy)2dppz?* (red) bound to the oligonucleotide

d(CGGAAATTACCG); (gray). The AA mismatches (blue) are extruded out of the helix
by inserted ruthenium complexes.
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Figure 3.3. Crystal structure of A-Ru(bpy)2dppz?t (magenta) bound to the oligonu-

cleotide d(CGGTAATTACCG): (gray). An AT base pair (blue) is extruded out of the helix
by an inserted ruthenium complex.
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Figure 3.4. Top: one duplex (blue, ruthenium complex in cyan) stacks on top of a
symmetry-related duplex (gray, ruthenium complex in red) to form a long rod in the crystal
lattice. Bottom: view down the helical axis of nine parallel rods.
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ejected adenosines are folded back in the minor groove. They adopt the syn conformation
and stack with the very ruthenium that is inserted at their respective mismatched site. An
overlay of the two separate metalloinsertion sites shows that the local geometry of the DNA
and the relative orientation of the ruthenium complex is highly similar between the two
sites (Figure . The dppz is inserted in a head-on fashion, positioned halfway between
the phosphate backbones. On the other hand, if we only consider the relative orientation
of the dppz with respect to the base pairs above and below the insertion site, the dppz is
inserted at an acute angle with respect to either dyad axis of the flanking base pairs. Unlike
in the rhodium structure, where the minor groove widens to accommodate the sterically
expansive chrysi ligand, ™2 the insertion of the narrower dppz ligand and the bpy-stacked
adenosines do not lead to groove widening.

Of the remaining three ruthenium complexes, two are intercalated between well-matched
base pairs, also via the minor groove. This mode of intercalation, namely from the minor
groove, is somewhat unexpected, and appears to contrast what we would predict from
previous solution studies, in which we had deduced a major groove preference for metal-
lointercalation.®®2? However, we note that in this structure (and structure [2| vide infra),
intercalation occurs in conjunction with stacking interactions between an ancillary bpy lig-
and of the intercalating complex and either an extruded adenosine or the bpy ligand from
a neighboring complex. These stacking interactions, likely due to crystal packing, serve to
stabilize the intercalated complex in the minor groove, which indicates that the energetic
difference between intercalation from the major groove versus the minor groove is small.
Computational studies of ruthenium-dppz complexes intercalated into a dinucleotide step
also support the notion of very small differences in intercalation energetics from the two
grooves."Y In this intercalative binding mode, the dppz ligand is positioned inside the base
stack also in a head-on fashion. The intercalation of the dppz ligand is so deep that the
end most distal from the ruthenium center protrudes into the major groove. An overlay of
the two independent intercalation sites, aligned using DNA backbone atoms, reveals subtle
differences in the relative position of the complex (Figure . In the 5-C1G2-3’ step, the
dppz is right in the middle of the two strands and intercalated more deeply, with most of
the stacking interactions formed between the central ring of the phenazine portion and the
bases. In comparison, at the 5-AgT7-3’ step, the dppz is closer to one strand than the

other, and both the distal and the central rings of the phenazine are involved in stacking.
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Figure 3.5. Superposition of the two independent views of metalloinsertion by the ruthe-
nium complex at mismatched sites in structure (a) View from the minor groove of
A-Ru(bpy)adppz** insertion and extrusion of the mismatched adenosines. (b) View down
the helix axis. The two binding sites were superimposed using only the DNA backbone
atoms (rmsd of 42 atoms = 0.607 A).



68

Figure 3.6. Superposition of the two independent views of intercalation by the ruthenium
complex in structure (a) View from the minor groove of A-Ru(bpy)2dppz?* intercalation
between 5-C1G2o-3’ (light blue, Ru in orange) and 5-AsT7-3’ (gray, Ru in magenta). (b)
View down the helix axis. The two binding sites were superimposed using only the DNA
backbone atoms (rmsd of 27 atoms = 1.001 A).



Figure 3.7. The duplex (dark gray) is end-capped by a ruthenium complex (red), which
is stacked between an extruded adenosine (blue) and the first complex (yellow) in a crys-
tallographically related duplex (light gray). The last GC base pair (cytidine in cyan and
guanosine in green) forms a frayed end.

The fifth ruthenium complex is sandwiched between two crystallographically related
duplexes (Figure . The last GC base pair becomes a frayed end, with the cytidine
and the guanidine pointing down into the minor and major groove of the next duplex,
respectively. The dppz ligand of the end-capping ruthenium complex effectively replaces
this terminal base pair in the helix, providing an anchor for the next duplex to stack on.

Throughout the DNA helix, the minor groove is densely populated by alternating metal
complex and extruded adenosines. The five metal complexes are evenly spaced out, binding
to DNA at every two base steps. The four mismatched adenosines are sandwiched between
the five metal complexes, and the last metal complex makes contact with the first one in
the next repeating unit. The DNA maintains its B-form, albeit with some local deviations
from ideal B-form geometry (Table . The overall structure is slightly bent toward the
major groove, similar to what we have observed in the rhodium structure with the identical
DNA sequence.™ All base pairs show some degree of unwinding to accommodate inserted

and intercalated complexes, as expected, since unwinding of DNA is always associated with
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Table 3.2. DNA helical parameters® in structure |1

Step  Ru binding mode  Shift (A) Slide (A) Rise (A) Tilt (°) Roll (°) Twist (°)

C1/Ga intercalation 0.12 2.08 6.26 13.00 4.42 18.35
G2/Gs - 0.91 0.21 2.92 -3.43 -5.89 30.16
Gs/As insertion 0.69 3.42 7.16 7.27 13.01 68.64
As/Ag - -0.58 -0.14 2.95 0.96 0.28 26.52
Ag/Tr intercalation -0.14 0.53 7.09 -1.06 10.82 23.50
T7/Ts - 0.41 -0.33 2.84 -1.70 3.88 23.70
Ts/Cio insertion -0.69 3.46 7.37 -7.19 11.20 69.50
C10/C11 - -0.94 -0.23 3.02 3.31 -8.85 23.67
B-DNA - -0.1 -0.8 3.3 -1.3 -3.6 36

“Geometrical relationships between consecutive base pairs: shift, translation into the groove; slide, trans-
lation toward the phosphodiester backbone; rise, translation along the helix axis; tilt, rotation about the
pseudo-twofold axis relating the DNA strands; roll, rotation about a vector between the C1’ atoms; and
twist, rotation about the helix axis. *Data were calculated using 3DNA.34

intercalators.®1™33 The rise is approximately doubled at each ruthenium binding site as
the metal complex serves as an additional base pair in the helix, but interestingly, the
rise between native consecutive base pairs are less than 3.3 A. This compression of the
vertical space between consecutive base pairs may be an indication that stacking between
the bpy ligands and extruded adenosines is a dominating interaction, such that the base
pairs between the intercalation sites have to shorten their rise in order for the adenosines
and bpy ligands to reach each other. The average distance between a bpy and an adenosine
is in fact 3.3 A. This is consistent with our notion that the adenosine-bpy stacking may be
driving ruthenium intercalation from the minor groove. But importantly, the adenosines
are extruded in the first place because ruthenium complexes are inserted at the mismatched

sites, and we fully anticipate metalloinsertion to occur via the minor groove.

3.3.3 Structure 2|

Structure [2|is not fully refined as yet, due to difficulties from possible crystal growth defects
and/or radiation damage. Preliminary results are presented and discussed here.

In crystal [2 the metal complex and the fully complementary oligonucleotide cocrystal-
lized in space group C'121. The asymmetric unit is a full DNA duplex with five bound

ruthenium complex. Again, we are provided with five independent views of ruthenium
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binding to DNA. The crystallization conditions are highly similar to those used in crystal
and the sequence is identical except for the previously mismatched base pairs. However,
except for the end-capping complex and the 5’-Ag-Ru-T7-3’ step, compared to crystal[1], the
ruthenium molecules are bound at different steps along the DNA (i.e., the sequence context
is altered), and the global crystal packing is more intricate, hence the different space group.

The sequence for structure|2|is intended to be self-complementary and thus well matched
at all base pairs, but one metal complex is found to bind by metalloinsertion at an AT step
(which is a different step than the AA mismatch in structure[L)). Upon ruthenium insertion
from the minor groove, the adenosine and thymidine are both ejected from the base stack.
Much like the case in structure [1, the adenosine is folded back into the minor groove and
stacks between the inserted and a neighboring complex. The exact conformation of the
adenosine, i.e., whether it is anti or syn, remains to be determined upon further refinement.
In contrast, the thymidine is extruded into the major groove and stacks with the same
thymidine from a crystallographically related duplex. This unexpected metalloinsertion
event suggests that the extruded AT base pair is the least stabilized region of the duplex
(besides the frayed end, wide infra). Metalloinsertion at this weak point along the helix
would then anchor the inserted ruthenium complex and provide additional crystal packing
interactions through the extruded bases.

Perhaps more intriguing than metalloinsertion at a well-matched base step is that the
inserted complex is separated from a neighboring complex, also in the minor groove, by
just a single base pair. In other words, this arrangement appears to violate the nearest-
neighbor exclusion principle, which states that intercalators cannot bind at higher loading

39538 However, since the inserted ruthenium complex is

density than one per two base pairs.
causing the extrusion of a base pair, we do not consider it a bona fide intercalator that the
nearest-neighbor exclusion principle is concerned with. Yet this unusual nearest-neighbor
insertion-intercalation binding event shows that local DNA conformations can become very
flexible to accommodate multiple ligand binding at high loading density. In this case,
the intercalative binding is further complicated by the three-dimensional structure of the
octahedral metal complex—the ancillary bpy ligands of these two nearest neighbors are
stacked with each other. As a result, the minor groove widens at the intercalation site

to allow a rather canted binding orientation for both complexes. Groove widening is only

observed for this nearest-neighbor arrangement, and is absent in all the other intercalation



Figure 3.8. Metalloinsertion of A-Ru(bpy)adppz?T (magenta) at an AT base pair (blue).
The dppz ligand is inserted into the base stack (gray) from the minor groove, ejecting
the adenosine and thymine. The adenosine is stacked with the bpy ligand of the inserted
ruthenium. The other bpy ligand is stacked with the next complex, which is located only
one base pair away.

or insertion sites. Furthermore, the twist of the helix at the insertion step is about 80°,
compared with the normal 72°(= 36° x 2) for two base steps in ideal B-form DNA. This
additional positive twist is likely a result of crystal packing, as it is absent in other insertion
sites and is directly associated with the extruded thymidine. Fortunately, the extended
shape of the dppz ligand enables it to stack effectively with the two almost orthogonal
flanking base pairs (Figure [3.8]).

Similar to structure [1} the last GC base pair forms a frayed end rather than being
properly hydrogen bonded. However, in this structure, the cytidine is positioned in the
minor groove and sandwiched between the end-capping ruthenium and the first complex of
the next repeating unit. Thus, much like the case in structure [1} in structure |2] four out of
the five ruthenium complexes form ancillary stacking interactions with either an extruded
base or a neighboring complex, which we have hypothesized to be the driving force behind
minor groove intercalation. We notice, however, that there is one exception. The fifth
metal complex, which is also intercalated between two well-matched base pairs (5-AgCjo-
3’), does not appear to have ancillary interactions through its bpy ligands, yet it still binds
via the minor groove. It is located approximately halfway between its neighbors, with two

base-pair separation on one side and three base-pair separation on the other side. In this
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case, we suspect that the preference of the metal complex for the minor groove may be a
result of the major groove being less available in the crystal. In this structure, two large
densities are present in the major groove, which are tentatively fit to Ba atoms, coordinated
by the O6 and N7 of guanines. A Ba atom was also located in the major groove in a recent
structure of A—RU(TAP)depZQJr bound to DNA.” One of the Ba atoms is only one base
pair away from the 5’-AgC1¢-3’ intercalation site. At the same time, the ruthenium complex
at 5’-AgT7-3’, intercalated deeply into the DNA base stack, has its dppz ligand protruding
out into the major groove. Thus, the space in the major groove becomes rather restricted,
which may have prompted the last ruthenium complex to bind in the minor groove even
without ancillary interactions.

In this crystal, stacking from extruded thymidines connects two side-by-side, antiparal-
lel, crystallographically related duplexes (Figure and . Symmetry-related duplexes
are also stacked head-to-tail to form a rod along the long axis (Figure . The two rods
stemming from the two side-by-side duplexes are at an angle of ~35° with respect to each
other (Figure . Thus, each duplex within a rod forms thymine-thymine interactions
with a different rod in the lattice. Altogether, parallel rods and their thymine-stacking

partner rods make up a crisscross pattern in the lattice.

3.3.4 Differences and similarities between the two structures

The foremost difference between the two crystals is the DNA sequence. In crystal a
palindromic 12-mer oligonucleotide containing two AA mismatches were employed, while
a fully complementary 12-mer sequence is used for crystal Crystal [1] formed with an
initial ratio of 1:2 or 1:3 duplex-to-ruthenium, but crystal 2| only formed at a ratio of 1:4
duplex-to-ruthenium (1:2 or 1:3 did not yield crystals.) However, the screen conditions
are identical and rather similar to the conditions used for previously solved rhodium-DNA
structures, suggesting that these conditions may represent a good starting point for metal
complex-DNA cocrystallization. In both cases, the stoichiometry of ruthenium complex to
DNA is found to be five Ru per duplex, which is higher than the starting metal-to-DNA
ratio. This high binding density might in fact be the key to obtaining these structures: as
Ru-dppz complexes are known to be nonspecific binders to DNA, DNA with lower binding
density may have heterogenous ruthenium distribution and thus less likely to pack uniformly

into a single crystal.



74

Figure 3.9. Two side-by-side, crystallographically related duplexes are connected through
thymine-thymine (red) stacking.

Figure 3.10. Long rods formed by end-to-end stacking of symmetry-related duplexes are
positioned at an angle with respect to each other.
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Taken together, the two structures offered three independent views of metalloinsertion,
five of metallointercalation, and two of end-capping. All binding events occurred from the
minor groove, with the dppz ligand inserted deeply into the DNA base stack, m-stacking with
the bases above and below the binding site. The orientation of the dppz ligand varies quite
significantly among the binding sites. In structure [1], the dppz ligand is always centered
between the sugar-phosphate backbones, but in structure [2] it is always intercalated side-
ways (Figure . Given that dppz is a narrow but long ligand with the entire phenazine
portion available for m-7 stacking, we had previously proposed these two types of binding
orientation based on NMR and luminescence lifetime studies.%29 Although our proposal
was predicated on binding in the major groove, the crystal structures presented here clearly
show that even when the ruthenium complex is restricted in the minor groove, it can bind in
either a head-on or canted fashion. In the head-on orientation, the two phenazine nitrogens
are equally protected from the solvent; in the canted orientation, one nitrogen is perceiv-
ably more solvent accessible than the other. The difference in binding orientation in the
crystal structures may have originated from the DNA being more “symmetric” in structure
but less so in structure [2| In the former, the two symmetric AA mismatches are the most
destabilized regions of the duplex, where initial binding of ruthenium by metalloinsertion
must have occurred. Curiously, in the second crystal, even though the DNA sequence is
also palindromic, it appears that once the ruthenium recognizes a weak point (the extruded
AT) in the helix, the rest of the helix must have been affected in a way that the previously
symmetric AT pair is no longer a weak point (in the case of an AA mismatch, it will al-
ways remain destabilized relative to well-matched regions). Consequently, the remaining
ruthenium complexes are intercalated along the helix at different steps from those in the
mismatched duplex. Furthermore, the two AT pairs are only two base pairs away from each
other (versus four base-pair separation for the AA mismatches), and it is possible that this
difference ultimately affects binding geometries.

Besides intercalation through the dppz ligand, the most striking similarity between the
two structures is the prevailing ancillary interactions between two bpy ligands, or a bpy and
an extruded base. Ancillary interactions are present in related rhodium-DNA structures,
but this is the first time we observe direct stacking between two neighboring complexes, or
between an extruded base and the very complex that has caused its ejection. In two of the

rhodium-DNA structures, a Rh(bpy)gchlrysi3+ is intercalated between well-matched base
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Figure 3.11. Ruthenium intercalation in structure [2]at 5-'G2G3-3" (top), 5-AT7-3" (mid-
dle) and 5-AgC10-3" (bottom).
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Table 3.3. DNA base step parameters in structure

Step  Ru binding mode Shift (A) Slide (A) Rise (A) Tilt (°) Roll (°) Twist (°)

C1/Ga - -0.04 0.88 291 -1.06 -0.76 27.48
G2/Gs intercalation -0.13 0.52 7.01 -4.16 15.99 26.76
Gs/Ty - -0.57 -0.02 2.91 -1.90 0.66 21.47
Ta/Ag insertion 0.42 4.60 6.83 -5.95 1.05 80.41
Ag/ T intercalation 0.78 -0.07 6.43 3.24 13.50 8.44
T7/Ts - -0.10 0.56 3.19 3.23 4.60 32.20
Ts/Ag - -0.53 1.74 3.25 1.63 5.74 34.38
Ag/Cyp intercalation -0.22 0.18 6.65 -19.15 13.88 22.07
C10/C11 - -0.03 -0.10 3.03 5.22 -0.72 25.37
B-DNA - -0.1 -0.8 3.3 -1.3 -3.6 36

“Data were calculated using 3SDNA .24

pairs from the major groove, while its bpy ligands are end-stacked with crystallographically
related duplexes.19 The intercalative Rh binding event, absent in solution, was attributed
to crystal packing through ancillary interactions. Likewise, in the two ruthenium-DNA
structures, these interactions act to stabilize intercalated ruthenium complexes, rigidifying
the entire structure and potentially facilitating crystallization.

Overall, the DNA helix in both structures is unwound at almost every step — the majority
of the helical twist parameter between two consecutive, stacked base pairs is between 20 and
30° — so as to accommodate the high density of intercalated metal complexes (Table and
3.3). Both structures also show a wide range of propeller and buckle angles, as the DNA
adapts to multiple ligand binding and base extrusion. All of the sugar pucker is C2’-endo or
the closely-related C3’-exo and C1’-exo. Given that five independent views of intercalation
are illustrated between the two structures, it seems that alternating C3’-endo/C2’-endo

puckering is not a requirement for intercalation.

3.3.5 Comparisons to other structures

The first structure of a ruthenium dppz complex bound to DNA is that of a A-enantiomer
of Ru(TAP)sdppz®t (TAP = 1,4,5,8-tetraazaphenanthrene) bound to a 10-mer oligonu-
cleotide.” The ruthenium complex is found to bind through semi-intercalation of a TAP

ligand between two GC base pairs, as well as intercalation of the dppz ligand between a GC
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and a reverse Watson-Crick-paired terminal AT pair, with the adenine and thymine coming
from symmetry-related strands. Besides having a different ancillary ligand, this complex is
of the opposite chirality of our ruthenium complex. We have demonstrated in our structures
that the A-isomer intercalates through the dppz ligand between natively well-matched base
pairs, but this mode of binding is absent in the TAP structure. This is consistent with
early solution studies of the binding of intercalative metal complexes to DNA: the ancil-
lary ligands of the A-isomer are sterically repelled by the backbone of right-handed B-form
DNA, while the A-isomer has complementary shape to fit in the grooves.?” In the TAP
structure, the DNA duplex adopts an overall B-form despite large local distortions, and
dppz intercalation occurs only at the interface between two duplexes, which are positioned
perpendicular to each other rather than form a continuous helix. At the same time, the
semi-intercalation of TAP induces a severe kink in the DNA. Taken together, these obser-
vations suggest that the A-configuration indeed does not favor intercalation. In contrast,
the A-isomer, as shown in the structures reported herein, bind avidly to the right-handed
helix through full intercalation.

Next, we compare our structures with that of A-Rh(Meatrien)phi®* (Megtrien = 2R,9R-
diamino-4,7-diazadecane) intercalated in an 8-mer oligonucleotide.” The rhodium structure
shows only one complex bound per 8-mer duplex, as opposed to five ruthenium complexes
per 12-mer duplex in our structures. Functional groups were installed on the rhodium
complex to form sequence-specific contacts with the DNA in the major groove, hence the
single-site binding at a specific step in the base stack. The ruthenium dppz complex, on the
other hand, binds nonspecifically to DNA. Thus, binding at multiple sites along the duplex
was observed in both ruthenium structures. The sequence context of the intercalation sites—
purine-purine, purine-pyrimidine, and pyrimidine-purine—also speaks to the nonspecific

nature of ruthenium dppz binding to DNA.

3.3.6 Solution luminescence

We measured the solution luminescence of A-Ru(bpy)2dppz2* bound to the two sequences in
order to determine if the crystal structures reflect binding preferences in solution. Asthe AA
mismatch-containing duplex has a low melting temperature of 22 °C, the experiments were
conducted at 4°C to ensure all DNA strands are properly hybridized. The luminescence

from A-Ru(bpy)2dppz?" bound to mismatched DNA is about three times the luminescence
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Figure 3.12. Top: DNA sequences used in the solution luminescence measurements and
crystallization. Bottom: integrated emission intensity of A-Ru(bpy)2dppz?* in the presence
of oligonucleotides with increasing concentrations of the minor groove-specific quencher
Cu(phen)%Jr. Luminescence is quenched more significantly for the AA mismatch-containing
DNA. Conditions are 1 uM A-Ru(bpy)2dppz?t, 1 uM duplex, 0-200 M Cu(phen)%+ in
40 mM sodium cacodylate (pH 7.0), 80 mM KCI, 20 mM BaCl, at 4°C. The ruthenium
complex is excited at 440 nm and emission intensity from 560 to 800 nm is integrated.

with the well-matched duplex (Figure , consistent with previously observed higher
sensitivity of Ru(bpy)2dppz?t luminescence response to mismatched DNA.

To determine the groove preference of ruthenium complex binding, we employed the
minor groove-specific quencher, Cu(phen)?,E'ﬂl’m:I to quench the luminescence from ruthe-
nium (Figure . The luminescence associated with mismatched DNA is significantly
quenched (by 34%) with increasing concentrations of Cu(phen)ng7 while luminescence as-
sociated with the matched sequence is quenched to a lesser extent (12%). This differential
quenching is consistent with the mismatch-bound ruthenium complexes being located in
the minor groove, but those bound to well-matched DNA are mostly in the major groove.
Therefore, although the crystal structures provide a very detailed picture of metalloinsertion
and metallointercalation in the minor groove, they fail to capture intercalation events occur-

ring in the major groove. Perhaps the inherently dynamic nature of ruthenium intercalation
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from the major groove, as reflected in the fast exchange and multiple binding conformations
revealed in NMR studies,® hinders the formation of well-packed crystals. Nonetheless, the
crystal structures still provide invaluable insights into intercalation of A-Ru(bpy)odppz?*

when it is in the minor groove.

3.4 Conclusions

The two structures presented here, one at 1.0-A resolution, depict in detail the versatile
binding modes attainable for octahedral metal complexes bearing an intercalating ligand.
Altogether, the structures showed three independent views of metalloinsertion, five of inter-
calation, and two of end-capping. At destabilized regions of the DNA, the metal complex
binds through metalloinsertion via the minor groove, accompanied by extrusion of the mis-
matched bases. This binding mode was previously observed with a sterically expansive
ligand, but the ruthenium-dppz structures reported here clearly demonstrate that a nar-
rower ligand such as dppz is equally capable of recognizing mismatches by metalloinsertion,
pointing to the generality of this binding mode. The smaller size of the dppz ligand also al-
lows the ruthenium complex to bind through classical intercalation between two consecutive
well-matched base pairs. Multiple intercalation geometries are displayed between the two
structures. Curiously, intercalated complexes are all located in the minor groove as well, for
which we hypothesize that the extensive presence of ancillary interactions is responsible; in
solution, intercalation takes place in the major groove. This discrepancy notwithstanding,
the two structures attest to the remarkable structural flexibility of DNA upon high-density
ligand binding, illustrate the nuanced binding geometries sampled by a noncovalently bound
small molecule, and highlight the dominance of metalloinsertion as the preferred binding
mode to destabilized regions of DNA. We hope these newly garnered structural understand-
ings will help guide the development of future generations of metal complexes as chemical

tools and medicinal agents.
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Chapter 4

Ruthenium-Dye Conjugates as Luminescent Reporters of
DNA Mismatches
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4.1 Introduction

Deficiencies in mismatch repair (MMR) subject cells to a higher rate of mutation and
render them more susceptible to the development of cancers (for details, see Chapter [1)).
Thus, early detection of DNA mismatch accumulation will greatly aid in the diagnosis and
prognosis of MMR-deficient cancers. To this end, molecular probes that can detect DNA
base mismatches directly in biological samples will be a powerful tool. An attractive choice
for probing such biological systems is luminescent small molecules that specifically recognize
NDA mismatches, as they offer a rapid and sensitive means of detection.

The “DNA light switch” molecule Ru(bpy)2dppz?* was recently found to show enhanced
luminescence at DNA mismatches (Chapter [2)).Y) However, Ru(bpy)2dppz?* by itself is not
an effective reporter of mismatches in biological samples, even with iodide quenching, due
to its strong binding affinity to matched DNA and the low frequency of mismatches in cells
(~1000 in the entire genome?). Thus, in order for Ru(L)(L’)dppZZJr complexes to become
more sensitive and specific probes of DNA mismatches, we employed a tethering strategy
to selectively register the signal from ruthenium bound to mismatched DNA through flu-
orescence resonance energy transfer (FRET). As matched-DNA binding occurs from the
major groove and mismatch binding occurs from the minor groove, we envisioned a design
in which a RET acceptor, which emits only when bound to DNA from the minor groove,
is tethered to ruthenium, so that emission from the RET acceptor is observed only when
ruthenium is also in the minor groove, i.e., in the presence of a mismatch (Figure . The
ideal RET acceptor should (i) be a light switch for DNA, (ii) binds only from the minor
groove, and (iii) has good spectral overlap with Ru(L)(L’)dppzzJr (i.e., absorption close to
620 nm).

Red-absorbing benzothiazole-quinolinium cyanine dyes, which bind DNA and exhibit
substantially enhanced fluorescence in the bound form, were considered a promising FRET
acceptor in this conjugate design. In particular, TO-PRO-3, a trimethine thiazole orange
(TO) derivative with a positively charged side chain (Figure Chapter ,3 has been
shown to effect RET with Ru(bpy)2dppz?* efficiently when added simultaneously to DNA.%
A ruthenium-TO-3 (herein abbreviated Ru-TO) conjugate design has two advantages over
a ruthenium-only light switch. First, TO-3 has a much higher quantum yield compared to

ruthenium, thus the resultant RET signal will be several-fold stronger than the correspond-
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660 nm

Figure 4.1. Ilustration of Ru-TO-3 conjugate binding to well-matched (left) and mis-
matched (right) DNA. TO-3 emission through RET is detectable only in the presence of a
mismatch (red) when both the ruthenium and TO-3 are bound in the minor groove.

ing ruthenium signal without TO-3. Second, ruthenium fluorescence has a long lifetime,
which will be translated to a longer lifetime for TO-3 emission through RET. A longer
lifetime allows better distinction of probe signal from cellular background fluorescence.?
Both stronger emission intensity and longer lifetimes have been observed in an untethered
system of Ru(bpy)2dppz?* and TO-PRO-3 simultaneously bound to DNA % and we expect
these emission features to be preserved in our conjugated system. In this chapter, we report
the synthesis and luminescence properties of four conjugates Figure in the

presence of mismatch-containing oligonucleotides.

4.2 Experimental protocols

4.2.1 Materials

Commercially available chemicals were used as received from Sigma-Aldrich. DNA was
synthesized and purified as described in Chapter |l Amine-modified bpy ligands @ and

were laboratory stocks synthesized from established protocols. 87

4.2.2 Synthesis of dye, metal complex, and conjugates

The following compounds were prepared based on literature procedures: DPA-(CHz)g-
COOH,% Ru(L)(phen)(dppz)** (L = (CO),,8 HDPA or DPA-(CH,)s-COOH), TO-COOH
and ethidium-COOH [11'. Amide coupling with HBTU/DIEA was used to link the
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Figure 4.2. Chemical structures of Ru-dye conjugates: Ru-10-TO , Ru-1-TO , Ru-
7-TO (3), Ru-Eth (4).
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components in all conjugate syntheses.*12 Briefly, HBTU was added to the carboxylic
acid-terminated moiety and DIEA was added to the amine-terminated moiety, both in a
solution of DMF. The two parts were then mixed and the coupling reaction was allowed
to proceed overnight at room temperature under a dry Ar atmosphere. The compounds
[9] [10] and [12] were recrystallized by vapor diffusion of diethyl ether into a MeOH solution.
Purity of the final conjugates was checked by analytical HPLC. Characterization of the
compounds are reported below.

TO-COOH [5 'H-NMR. (300 MHz, DMSO) 6 8.51 (d, J = 7.2 Hz, 1H), 8.46 (d, J =
8.6 Hz, 1H), 8.07 (dt, 2H), 7.97-7.89 (t, 1H), 7.83 (m, 2H), 7.73-7.63 (t, 1H), 7.52 (d, 1H),
7.45 (t, 1H), 7.26 (t, 1H), 7.09 (d, J = 13.1 Hz, 1H), 6.41 (d, J = 11.9 Hz, 1H), 4.68 (t, J
= 7.1 Hz, 2H), 3.68 (s, 3H), 2.41 (t, 2H). ESI-MS: calc. 389.13, obs. 389.2 (M™).

Ru(phen)(HDPA )dppz"* @ TH-NMR (300 MHz, CD3CN) § 11.64 (s, 1H), 9.77 (dd, J
= 8.2, 1.3 Hz, 1H), 9.45 (dd, J = 8.2, 1.3 Hz, 1H), 9.17-9.05 (m, 2H), 8.77 (d, J = 7.1 Hz,
1H), 8.53-8.41 (m, 3H), 8.30 (d, J = 8.9 Hz, 1H), 8.20-8.12 (m, 4H), 8.07-8.01 (m, 1H),
791 (dd, J = 5.3, 1.2 Hz, 1H), 7.79 (dd, J = 5.4, 1.3 Hz, 1H), 7.69-7.52 (m, 5H), 7.46 (dd,
J =8.2,5.3Hz, 1H), 7.30 (d, J = 5.8 Hz, 1H), 7.20 (d, J = 5.7 Hz, 1H), 6.65-6.50 (m, 2H).
ESI-MS: cale. 735.14, obs. 734.2 (M-H)T, 367.6 (M2T). UV-vis (H20): 357 nm (32,000
M~tem™1), 374 nm (36,000 M~tem™!), 410 nm (23,000 M~ tem™1).

Ru(phen)(DPA—(CHg)g—COOH)dpp22+ ESI-MS: calc. 863.23, obs. 431.7 (M?%).
UV-vis (H20): 357 nm (32,000 M~tem™1), 374 nm (35,000 M~tem™1), 410 nm (24,000
M~tem™1).

Ru(phen)(DPA—(CHg)g—CONH—(C’Hg)g—NHg)dpp22+ ESI-MS: calc. 905.29, obs. 452.7
(M2+).

Ru-10-TO [1] ESI-MS: calc. 1276.41, obs. 425.8 (M3*).

Bpy-1-TO @ 'H-NMR (500 MHz, CDyCly) & 8.59 (d, J = 4.9 Hz, 1H), 8.56-8.47 (m,

), 8.38 (d, J = 7.4 Hz, 2H), 8.29 (d, J = 8.1 Hz, 2H), 7.98-7.85 (m, 3H), 7.69-7.59 (m,

), 7.53-7.46 (m, 1H), 7.39-7.27 (m, 5H), 6.87 (d, J = 13.4 Hz, 1H), 6.25 (d, J = 12.3 Hz,
1H), 4.86 (t, J = 6.8 Hz, 2H), 4.52 (d, J = 6.0 Hz, 2H), 3.71 (s, 3H), 3.15 (t, J = 6.8 Hz,
2H), 2.50 (s, 3H). ESI-MS: calc. 570.23, obs. 570.1 (M™).
Ru-1-TO |2l 'H-NMR (500 MHz, CD3CN) 6 9.63 (d, J = 8.3 Hz, 1H), 9.51 (d, J = 8.3
Hz, 1H), 8.83 (d, J = 19.5 Hz, 2H), 8.71 (d, J = 7.7 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.50
(d, J = 8.5 Hz, 1H), 8.44 (d, J = 7.8 Hz, 1H), 8.40 (d, J = 8.6 Hz, 1H), 837 (d, J = 7.3

2H
1H
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Hz, 1H), 8.28 (d, J = 10.5 Hz, 2H), 8.26-8.22 (m, 3H), 8.21-8.17 (m, 3H), 8.01 (m, 3H),
7.96 (d, J = 8.0 Hz, 1H), 7.94-7.90 (m, 1H), 7.90-7.84 (m, 1H), 7.82 (d, J = 5.9 Hz, 1H),
7.76-7.67 (m, 3H), 7.62-7.55 (m, 2H), 7.50 (d, J = 6.2 Hz, 1H), 7.43 (d, J = 7.4 Hz, 1H),
7.32 (d, J = 6.2 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.16-7.09 (m,
2H), 6.95-6.90 (m, 2H), 6.22 (d, J = 12.3 Hz, 1H), 4.86 (t, J = 6.2 Hz, 2H), 4.54-4.46 (m,
2H), 3.54 (s, 3H), 2.62 (s, 3H). ESI-MS: calc. 1134.30, obs. 378.3 (M3*), 566.3 (M-H)?*,
623.0 (M+TFA)2*.

Bpy-71-TO TH-NMR. (500 MHz, CD5Cly) § 8.63-8.48 (m, 2H), 8.46-8.30 (m, 3H),
8.15 (d, 1H), 8.01 (t, 1H), 7.92-7.83 (m, 2H), 7.66-7.60 (m, 2H), 7.51-7.46 (m, 1H), 7.42
(d, 1H), 7.36-7.27 (m, 4H), 6.92 (d, J = 13.4 Hz, 1H), 6.25 (d, J = 12.3 Hz, 1H), 4.81 (t,
J = 6.7 Hz, 2H), 3.68 (s, 3H), 3.18 (dd, J = 12.7, 6.9 Hz, 2H), 2.88 (t, J = 6.3 Hz, 2H),
2.79-2.63 (m, 2H), 2.51 (s, 3H), 1.68 (m, 2H), 1.46 (m, 2H), 1.34 (m, 4H), 1.27 (m, 2H).
ESI-MS: calc. 654.33, obs. 654.2 (M*), 327.8 (M+H)?*.

Ru-7-TO (3] "TH-NMR (500 MHz, CD3CN) § 9.67 (d, J = 8.3 Hz, 1H), 9.58 (d, J = 8.3
Hz, 1H), 8.69 (d, J = 8.4 Hz, 1H), 8.59 (d, J = 8.2 Hz, 1H), 8.50 (m, 4H), 8.37 (d, J = 8.9
Hz, 1H), 8.28 (m, 3H), 8.23 (d, J = 6.4 Hz, 1H), 8.20-8.16 (m, 2H), 8.09 (d, J = 6.6 Hz,
2H), 7.98 (m, 2H), 7.92 (m, 2H), 7.84 (m, 1H), 7.70 (m, 4H), 7.62 (m, 1H), 7.50 (m, 2H),
7.46 (d, J = 7.2 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.30 (t, J = 7.5 Hz,1H), 7.22 (d, J =
5.6 Hz, 1H), 7.14-7.10 (d, J = 5.6 Hz, 1H), 6.94 (d, J = 13.5 Hz, 1H), 6.75-6.70 (m, 1H),
6.30 (d, J = 12.1 Hz, 1H), 4.73 (t, J = 6.5 Hz, 2H), 4.49 (s, 3H), 3.63 (s, 2H), 3.14-3.06 (m,
2H), 2.79 (m, 2H), 2.56 (s, 3H), 1.68 (m, 2H), 1.31 (m, 6H), 1.24-1.18 (m, 2H). ESI-MS:
cale. 1218.39, obs. 406.3 (M3*), 608.8 (M-H)?*, 665.0 (M-+TFA)?*.

Ethidium-COOH [11] 'H-NMR (300 MHz, CD30D) 6 8.73 (d, J = 8.9 Hz, 2H), 8.26 (dd,
J =92, 23 Hz, 1H), 7.85-7.72 (m, 4H), 7.65-7.62 (m, 2H), 7.43-7.40 (m, 2H), 4.71-4.64
(m, 2H), 2.39-2.27 (m, 2H), 2.18 (t, J = 7.1 Hz, 2H), 1.93-1.83 (m, 2H), 1.53 (t, J = 7.2
Hz, 3H). ESI-MS: calc. 428.20, obs. 428.2 (M™).

Bpy-ethidium '"H-NMR (300 MHz, CD30D) § 8.74 (d, J = 9.3 Hz, 2H), 8.55 (d, J
= 5.2 Hz, 1H), 8.43 (d, J = 4.9 Hz, 1H), 8.25 (dd, J = 9.1, 2.4 Hz, 1H), 8.18 (d, J = 14.8
Hz, 2H), 7.77 (m, 4H), 7.63 (m, 2H), 7.42 (m, 2H), 7.34 (d, J = 5.2 Hz, 1H), 7.26 (m, 1H),
4.67 (m, 2H), 4.47 (s, 2H), 2.44 (s, 3H), 2.38 (dd, J = 14.2, 7.2 Hz, 4H), 2.00 (m, 2H), 1.53
(t, J = 7.1 Hz, 3H). ESI-MS: calc. 609.30, obs. 609.3 (M*).

Ru-Eth [4] ESI-MS: calc. 1173.36, obs. 391.1 (M3+).
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Figure 4.3. Scheme showing the synthesis of TO-COOH 9

OH

4.2.3 Steady state fluorescence

Luminescence spectra were recorded on an ISS-K2 spectrophotometer at ambient temper-
ature in aerated solutions. Standard deviations in integrated luminescence intensity were
calculated from three samples. Concentrations of Ru-TO conjugates were estimated using
€630=102,000 M~ Tem 1.2 All DNA concentrations are reported as the duplex concentration.

Raman scattering of water at 520 nm (Aez = 440 nm) is shown in all emission spectra.

4.3 Results and discussion

4.3.1 Ru-TO-3 conjugates

The FRET acceptor TO-3 was modified with a carboxylic acid group” (Figure to facili-
tate subsequent coupling with an amine-terminated linker. The synthesis of trisheteroleptic
Ru(L)(L’)dppz2+ complexes is outlined in Figure 8 The DPA-derivative was used in
the synthesis of conjugate [1| (Ru-10-TO, Figure . However, it was difficult to obtain
shorter linkers derivatized from HDPA. In particular, DPA-CHy-COOH coordinates poorly
to ruthenium and tends to dissociate from the metal center. Thus, in the synthesis of Ru-
TO conjugates with shorter linkers (Ru-1-T'O |2| and Ru-7-TO |3| Figure , a modified
bpy was used as the ligand bearing the linker.

Parent ruthenium complexes Ru(phen)(HDPA)dppz°* |§| and Ru(phen)(DPA-(CHas)s-
COOH)dppz2+ behave as light switches for DNA (Figure , as expected. Their lu-

minescence in acetonitrile (Ae; = 440 nm) is approximately 25% of Ru(bpy)2dppz2", with
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HBTU, DIEA, DMF
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Figure 4.6. Scheme showing the synthesis of conjugates [2| (Ru-1-TO) and |3| (Ru-7-TO).

Amaz red-shifted to 650 nm (Figure . They show moderate luminescence enhancement
when bound to mismatched and abasic DNA (Figure , With apparently binding tighter
to mismatches and abasic sites. However, the level of discrimination achieved with [7] was
not enough to give any differential luminescence at a matched:mismatched base pair ratio
of 2726:1 (Figure . Thus, a larger innate luminescence differential between ruthenium
bound to matched and mismatched DNA is necessary to enable discrimination at higher
matched:mismatched ratios relevant to biological samples. The conjugate design, as ex-
plained before, was one potential way to achieve such differential.

The first Ru-TO-3 conjugate we synthesized was Ru-10-TO As amine-terminated
DPA derivates did not coordinate to Ru (or Rh), a carboxylic acid-terminated DPA was
used as the linker-bearing ligand. The trisheteroleptic Ru complex [7| was then reacted
with ethylene diamine to generate an amine-terminated Ru moiety [8) which was coupled
to a carboxylic acid-functionalized TO-3 (TO-COOH [5)) in the final step (Figure . The
entire linker region consists of 14 atoms and, if fully extended, spans 18.8 A between the
amino nitrogen on DPA and the quinolinium nitrogen on the TO-3. The conjugate emits
extremely weakly in acetonitrile, indicating that FRET serves to quench Ru luminescence
in the absence of DNA. This is consistent with the notion that TO-3 only emits when
bound in a rigid form to DNA.14 Upon excitation at 440 nm in the presence of DNA, the
conjugate emission shows a characteristic profile of TO-3 fluorescence, and the resulting

emission intensity is much higher than the parent Ru complex at the same concentration
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5 — GAC CAG CTT ATC ACC CCTAGATAAGCG -3’
Matched: 3'—CTG GTC GAA TAG TGG GGA TCT ATT CGC -5
Mismatched: 3' - CTG GTC GAA TAG TCG GGA TCT ATT CGC - 5'

Abasic: 3'—CTG GTC GAA TAG TRG GGA TCTATT CGC -5
4 4
351 35
34 3
525 _25
g 15| g5l
1+ 1
05} 05
%00 550 600 650 700 750 800 %00 550 600 650 700 750 800

wavelength (nm) wavelength (nm)

Figure 4.7. Top: DNA duplexes used for all fluorescence measurements. Bottom: emission
spectra of Ru(phen)(HDPA)dpszJr @ (left) and Ru(phen)(DPA—(CHQ)(;—COOH)dppz2+
(right) in the presence of matched (black), mismatched (red) and abasic (blue) DNA. Con-
ditions are 100 nM Ru complexes, 100 nM duplex in 5 mM Tris, 50 mM NaCl, pH 7.5, A¢,
= 440 nm.
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Figure 4.8. Emission spectra of Ru(bpy)2dppz®t (black), Ru(phen)(HDPA)dppZ2+ @
(red) and Ru(phen)(DPA-(CH,)g-COOH)dppz>" [7 (blue) in acetonitrile. Aep = 440 nm.
[Ru complex] = 100 nM.
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Figure 4.9. Emission spectra of Ru(phen)(DPA—(CH2)6—COOH)dppz2Jr B (100 nM) in
well-matched (M) DNA duplexes only (black, [M] = 1 uM), and a mixture of matched and
mismatched (MM) duplexes (red, [M] = 1 pM, [MM] = 10 nM). Conditions are 5 mM Tris,
50 mM NaCl, pH 7.5, A\¢; = 440 nm.

(Figure . In fact, 10 nM of conjugate produces similar levels of luminescence signal
to 100 nM Ru complex, demonstrating efficient FRET between Ru and TO-3 as intended.
However, this conjugate does not show any luminescence differential between matched and
mismatched DNA. We initially suspected that the long linker might allow simultaneously
binding of Ru and TO-3 in both grooves, which would lead to signal magnification regardless
of the presence of a mismatch.

To correct for the long linker, we subsequently prepared conjugate Ru-1-TO |2, which
bears a 5-atom linker. With this short linker, again no luminescence differential was detected
between matched and mismatched DNA when the conjugate is excited at 440 nm (Figure
4.11). Upon excitation at 590 nm, which probes only the luminescence from TO-3 and
not from RET, emission intensity was stronger for TO-3 in the presence of fully matched
DNA and weaker in the presence of mismatched DNA, indicating that FRET efficiencies
are higher in the presence of DNA defects.

The linker in |2[is so short that it is not expected to allow binding of the conjugate in
both grooves simultaneously, thus TO-3 must be able to bind in the major groove as well.
Given the relative binding affinities of Ru and cyanine dyes to DNA (10%-107 M~! versus

10%-10% M~1) 1415 we expect the binding preference of ruthenium to dominate. The realiza-
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Figure 4.10. Emission spectra of Ru-10-TO (1] in the presence of matched (black), mis-
matched (red) and abasic (blue) DNA (left: [Ru-10-TO] = 100 nM, [DNA] = 200 nM; right:
[Ru-10-TO] = 10 nM, [DNA] = 100 nM). Conditions are 5 mM Tris, 50 mM NaCl, pH 7.5,
Aez = 440 nm. Pink traces are luminescence spectra without DNA.

tion that TO-3 binds in the major groove prompted us to carry out quenching experiments
to determine the groove preference of TO-3 binding to DNA in conjugate Quenching
with Cu(phen)%Jr, a minor groove binder, shows that the conjugate is more susceptible
to quenching in the presence of DNA defects, although quenching was seen with matched
duplexes as well. In other words, TO-3 is indeed in the minor groove with the ruthenium
when DNA defects are present, but it still binds alongside ruthenium in the major groove
in the absence of DNA defects. Alternatively, in light of the minor-groove intercalation
revealed in the crystal structures of Ru(bpy)2dppz?* bound to DNA (Chapter [3)), it is pos-
sible that the ruthenium complex, now tethered to TO-3, binds to well-matched DNA also
in the minor groove. These multiple binding modes significantly complicate the behavior of
the conjugates, giving rise to enhanced luminescence with both well-matched and defective
DNA.

Finally, the conjugate with an intermediate linker length, Ru-7-TO restored the
luminescence differential between matched and mismatched DNA (Figure . At regular
ionic strength (50 mM NaCl), the luminescence differential (~1.8-fold) is slightly higher
than that shown by Ru(bpy)adppz?® (~1.5-fold); at high ionic strength (500 mM NaCl),
the absolute luminescence intensity decreases, but the differential is increased to 3-fold

between mismatched and matched DNA (versus 2.3-fold with Ru(bpy)2dppz**) (Figure
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Figure 4.11. Integrated emission intensity of Ru-1-TO [2| (left) and Ru-7-TO [3| (right).
Conditions are [conjugate] = 50 nM, [DNA] = 100 nM, 5 mM Tris, 50 mM NaCl, pH 7.5.
For A, = 440 nm, emission from 560 to 800 nm is integrated. For A, = 590 nm, emission
from 610 to 800 nm is integrated. Error bars are standard deviation of measurements from
three samples.

4.12). The fact that increasing ionic strength improves the luminescence differential (at
both 440 nm and 590 nm excitation) suggests that there is a slight preference for TO-3 to
bind from the minor groove. High ionic strength leads to dissociation of loose binders from
DNA, leaving behind tight binders. At high ionic strength, TO-3 bound to well-matched
DNA appears to dissociate more readily than that bound to defective DNA. As a result,
the relative amount of conjugate bound to mismatched DNA over matched DNA increases.
Again, FRET efficiencies are higher in the presence of DNA defects. Excitation scans of
the conjugate shows a strong absorption band at 640 nm, which is indicative of intercalated
TO-3.16In fact, this absorption band was present in all three Ru-TO-3 conjugates. These
observations, together with the differential quenching by Cu(phen)ng7 suggest that TO-3
can bind DNA in both grooves through a mostly intercalative mode, rather than the minor-
groove binding mode we initially thought it might prefer. Overall, the three conjugates
improved the ruthenium luminescence intensity through FRET, and [3|is a slightly better

luminescence reporter of DNA defects than the parent Ru(bpy)adppz?™ complex.
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Figure 4.12. Integrated emission intensity of Ru-7-TO [3| (50 nM) at high ionic strength.
Conditions are [DNA] = 100 nM, 5 mM Tris, 500 mM NaCl, pH 7.5. For A, = 440 nm,
emission from 560 to 800 nm is integrated. For A\¢; = 590 nm, emission from 610 to 800
nm is integrated. Error bars are standard deviation of measurements from three samples.
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Figure 4.13. Scheme showing the synthesis of conjugate E| (Ru-Eth).

4.3.2 Ru-Eth conjugate

The choice of ethidium as the FRET acceptor was inspired by a recent paper reporting
FRET between phenanthridine and Ru(bpy)gphenﬂ.17 Here, instead of following the re-
ported modification scheme, ethidium was tethered at a different position to simplify the
synthesis. Moreover, instead of tethering from the alkyl group, ethidium was modified
at the 3-amino group to bear a carboxylic acid,’ which was then tethered to an amine-
terminated Ru (Figure . The modified ethidium (ethidium-COOH or N-glycyl Et,
has a UV-vis spectrum very similar to ethidium, except that the absorption band at 485
nm is blueshifted to 450 nm (Figure [£.14).

Upon excitation of the conjugate at 440 nm (A4, for Ru), the emission profile resembles
mostly that of the parent Ru complex (Figure. Mismatch discrimination is observed at
a similar level to Ru only. Upon excitation at 512 nm, which should mostly probe ethidium
luminescence, very weak emission is observed, which is, at first, unexpected, given the high
quantum yield of the organic fluorophore. Clearly, FRET did not occur for this conjugate.

A careful examination of the deviation of our conjugate from the reported system (the

Turro system) reveals three critical differences that may account for the lack of FRET in
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Figure 4.15. Emission spectra of Ru-Eth 4] (100 nM) in the presence of matched (black),
mismatched (red) and abasic (blue) DNA (left: A\ju:= 440 nm; right: A= 512 nm).
Conditions are 100 nM duplex, 5 mM Tris, 50 mM NaCl, pH 7.5.
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the ruthenium-ethidium conjugate. First of all, modifying the ethidium at the amines blue-
shifted its absorption by 35 nm (F igure. As Ru emission is already at longer wavelength
than ethidium absorption, blueshifting the acceptor absorption would undoubtedly reduce
FRET efficiency. In the Turro system, modifying off the alkyl group on ethidium effectively
made it more like propidium spectroscopically, which has redshifted absorption. Thus, the
Turro system has better spectral overlap, as the acceptor absorption is moved closer to
donor emission.

Furthermore, in our system, dppz is used in place of phen. The emission maximum
of dppz complexes of ruthenium is redshifted by about 30 nm from that of bpy or phen
species. This shift in donor emission further aggravated the already poor spectral overlap
by pushing the donor emission further away from the acceptor absorption.

Finally, tethering through the terminal amines on ethidium with a rather short linker
probably prevented the proper intercalation of ethidium into the DNA duplex. This is
evident from the poor ethidium emission of the conjugate. Intercalation would redshift
ethidium absorption, increasing the spectral overlap between ethidium and Ru. Since in-
tercalation of ethidium was not observed, the absorption of ethidium would not be different
from that of free ethidium in solution, which is just too far away from Ru emission. Teth-
ering through the alkyl group, even with a short linker such as the one in the Turro system,
apparently gives ethidium much greater freedom of movement and does not interfere with
its intercalation. To allow intercalation of N-glycyl ethidium while the Ru is bound, a much
longer linker might be necessary. Indeed, N-glycyl ethidium was observed to intercalate
properly with a linker that was more than twice the length of the one in Ru-Eth.1Y

Although the Ru-Eth conjugate did not show FRET and thus was not an effective
conjugate at improving the mismatch specificity, it serves as an example that underscores

the sensitivity of FRET efficiency to small structural perturbations.

4.4 Conclusions

In this chapter, we attempted to improve the mismatch selectivity of ruthenium fluorophores
through conjugation with a DNA-binding FRET acceptor. A trimethine benzothiazole-
quinolinium cyanine dye (TO-3) and ethidium were used as the FRET acceptor, and four

conjugates were synthesized. FRET was observed for all three of the Ru-TO conjugates,
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significantly enhancing the fluorescence signal intensity of the parent Ru complex. For the
conjugate Ru-7-TO (3] the fluorescence differential in the presence of mismatched versus
matched DNA was ~3-fold at high ionic strength, which was a slight improvement from the
unconjugated Ru(bpy)2dppz?t (~2.3-fold). Further improvement in mismatch selectivity
was hindered by the complexity of conjugate binding to DNA. Clearly, the binding prefer-
ences of each component is not necessarily preserved in the final conjugate. In the Ru-Eth
conjugate system, FRET was not observed due to poor spectral overlap. The current level
of mismatch selectivity may not seem adequate for direct application in imaging mismatch-
containing biological samples, but the conjugate strategy illustrated the feasibility of using a
FRET acceptor to preferentially enhance the luminescence associated with mismatch-bound
ruthenium. Presumably, a more dedicated minor groove binder would make a better FRET
acceptor in this conjugate design. In the absence of such a FRET acceptor, the mismatch

binding selectivity will be of critical importance.
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Chapter 5

Ru Complexes of DPPZ Derivatives and Chrysi Analogues

Mi Hee Lim and Elizabeth Dervan synthesized ruthenium complexes bearing DPPZ derivatives. Eric
Olmon performed fluorescence lifetime measurements.



106

5.1 Introduction

In Chapter 4 we employed a tethering strategy in an attempt to selectively amplify the
luminescence of ruthenium DPPZ complexes bound to DNA mismatches through FRET.
However, this strategy was limited by the binding preferences of the FRET acceptor, as
well as the tendency of the ruthenium complex to bind in both grooves of DNA. In this
chapter, we revisit untethered ruthenium complexes, and explore different modifications to
the DPPZ ligand in an effort to improve the mismatch selectivity of the resultant complexes,
while preserving their luminescence properties.

Up to date, the truly selective binders of DNA mismatches are the chrysi and phzi com-
plexes of rhodium (see Chapter . Their remarkable binding affinity toward mismatched
over well-matched DNA stems from the sterically expansive intercalating ligand, chrysi,
or phzi. These ligands, at 11.3 A wide, are simply too bulky to fit between well-matched
DNA base pairs, which are 10.8 A in width. However, they are able to take advantage of
the thermodynamic destabilization of mismatches and bind at mismatched sites through
metalloinsertion.! In contrast, the DPPZ ligand of ruthenium complexes is long and nar-
row, which facilitates intercalation at both well-matched and mismatched sites. A natural
design consideration to improve the mismatch binding selectivity of the ruthenium DPPZ
complexes would be to increase the width of the intercalating DPPZ ligand, such that like
chrysi or phzi, it no longer fits between well-matched base pairs. In this chapter, we report
several chemical modifications to the DPPZ ligand to increase its steric bulk, and discuss
the luminescence properties of the resultant complexes in the presence of well-matched and
defective DNA. Besides DPPZ derivatives, we also prepared chrysi complexes of ruthenium.
Taken together, these efforts highlight the sensitivity of both the binding and luminescence
properties of ruthenium complexes to structural perturbations. The challenge to design a

true “light switch” for DNA mismatches remains.

5.2 Experimental protocols

5.2.1 Materials

All reagents and solvents were purchased from commercial suppliers and used without fur-

ther purification. Phenylene diamine , 3,4-diaminobenzoic acid , 2,3-diaminonaphthalene
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(4), and pyrene-4,5-dione were obtained from Sigma-Aldrich. The oligonucleotides 5’-
GAC CAG CTT ATC ACC CCT AGA TAA GCG-3’ and 3-CTG GTC GAA TAG TXG
GGA TCT ATT CGC-5’ [X = G (M), C (MM) or R (AB, R denotes a tetrahydrofuranyl
abasic site)] were synthesized and purified as described in Chapters |1 and

5.2.2 Synthesis of metal complexes

3,6-Diethynylbenzene-1,2-diamine . Eight equivalents of LiAlH4 (in THF) were added
dropwise over 10 min to a solution of 4,7-diethynylbenzo[c][1,2,5]thiadiazole® (200 mg, 1.1
mmol), 30 mL THF, purged with Ar for 30 min, and cooled to 0°C). The resulting solution
was stirred for 10 min at 0 °C, and the temperature was allowed to reach room temperature.
The reaction was quenched by addition of water after stirring for 4 h at room temperature,
and the solution was filtered. The filtrate was extracted with CH2Cly (three times). After
removal of CHyCls, the crude product was purified by SiOs column chromatography with
a solvent gradient (50%:50% Hx:CH3Cly to 100% CH3Cls) to obtain the desired product
(153 mg, 0.98 mmol, 89%). 'H NMR (CDCl3, 300 MHz, 6 (ppm)): 6.82 (s, 2H), 3.98 (br,
s, 2H), 3.44 (s, 2H). HREI (m/z) for M caled. 156.0687, found 156.0687.
1,4-Dibromo-2,3-diaminonaphthalene was synthesized according to reported proce-

dures.?

DPPZ derivatives. Ligands were synthesized by refluxing and |5 (0.63
mmol) with 1,10-phenanthroline-5,6-dione, or by refluxing |§| and |7| with 5,6-diamino-1,10-
phenanthroline (0.63 mmol) in ethanol (10 mL) for 8 h, as shown in Figure The yellow
precipitates were collected, washed with cold ethanol (three times, 20 mL), dried under
vacuum, and used for preparation of the Ru complexes without further purification.

DPPA. Yield: 86%. ESI(+)MS (m/z) for [M+H]" caled: 327.1, found: 327.2.

DPPAE. Yield: 40%. ESI(+)MS (m/z) for [M+H]" caled: 331.1, found: 331.2.

DPPN. Yield: 83%. ESI(+)MS (m/z) for [M+H]|' caled: 333.1, found: 333.1.

Bry DPPN. Yield: 75%. ESI(+)MS (m/z) for [M+H]*+ caled: 490.9, found: 491.0.

Pyrene-phen. Yield: 90%. ESI(+)MS (m/z) for [M+H]" caled: 407.1, found: 407.3.

Ru complezes. The Ru complexes, [Ru(bpy)2DPPZ](X), and [Ru(bpy)atactp](X)e
X = PFg or Cl) were prepared by previously described procedures.*® For the rest,
ethylene glycol (7 mL) was added to a mixture of Ru(bpy)2Cly (0.069 mmol) and the
DPPZ derivatives (0.069 mmol), and the solution was heated to 130°C for 12 h (Figure



108

5.2)). After cooling the reaction mixture to room temperature, the solution was diluted
with water (7 mL) followed by addition of excess NH4PFg (s). The orange precipitates
were collected, washed with water (3 x 5 mL), and dried under vacuum. The complexes
were recrystallized by addition of Et20O into their CH3CN solution at room temperature
and afterward converted to the soluble Cl salt by an anion exchange column on Sephadex
QEA. They were further purified by preparative HPLC using a gradient of HoO (with 0.1%
TFA) to CH3CN (with 0.1% TFA) over the course of 30 min.

[Ru(bpy )2 (DPPA)](X)o @ X = PFg or Cl). Yield: 63%. '"H NMR (CD3CN, 500 MHz,
d (ppm)): 9.76-9.68 (m, 2H), 9.06 (m, 1H), 8.70 (m, 1H), 8.59-8.54 (m, 4H), 8.49 (1H,
m), 8.22 (s, br, 2H), 8.14 (m, 2H), 8.05 (m, 2H), 7.94 (m, 2H), 7.89 (m, 2H), 7.79 (2H,
m), 7.49 (m, 2H), 7.30 (m, 2H). ESI(+)MS (m/z): [M-2(PF¢)]** caled. 370.1, found 370.0;
[M-PFg]T caled. 885.1, found 885.2. UV-vis (in HyO, A (nm, € (x 10* M~lem™1))): 284
(10), 362 (1.9), 378 (1.9), 444 (1.6).

[Ru(bpy)2 (DPPAE)](X), (10). The Ru complex was prepared as described above. The
crude product was purified via preparative TLC (silica, 4:4.5:1, CH3CN:water:NH4Cl (sat,
aq)) followed by preparative HPLC (a gradient of HoO (with 0.1% TFA) to CH3CN (with
0.1% TFA)). The Cl salt was then obtained using anion exchange chromatography on
Sephadex QEA. Yield: 20%. ESI(+)MS (m/z): [M-2Cl?>T caled. 372.1, found 372.0.
UV-vis (in HoO, A (nm, € (x 10*, M~tem™1))): 244 (4.3), 272 (sh, 4.7), 288 (6.3), 306 (4.3),
364 (1.2), 380 (1.5), 426 (1.4), 440 (1.3).

[Ru(bpy)2(DPPN)](X )2 . Yield: 72%. 'H NMR (CD3CN, 500 MHz, & (ppm)):
9.71-9.681 (m, 2H), 9.17-9.16 (m, 2H), 8.57 (dd, J = 8.0 Hz, 4H), 8.41-8.39 (m, 2H), 8.18-
8.14 (m, 4H), 8.10-8.05 (m, 2H), 7.94-7.88 (m, 4H), 7.82-7.78 (m, 4H), 7.52-7.49 (m, 2H),
7.34-7.31 (m, 2H). ESI(+)MS (m/z): [M-2(PFg)]?* caled. 373.1, found 373.1; [M-PFg]"
calcd. 891.1, found 891.2. UV-vis (in HoO, A (nm, € (x 10*, M—'em™'))): 244 (5.3), 286
(7.0), 324 (7.4), 390 (1.6), 412 (2.2), 442 (2.0).

[Ru(bpy )2 (Bro DPPN)](X )s . Yield: 69%. 'H NMR (CD3CN, 500 MHz, § (ppm)):
8.43-8.41 (m, 2H), 7.49-7.46 (m, 2H), 7.43-7.39 (m, 4H), 6.96-6.94 (m, 2H), 6.87-6.84 (m,
2H), 6.79-6.76 (m, 2H), 6.66-6.55 (m, 8H), 6.23 (2H, m), 6.06 (2H, m). ESI(+)MS (m/z):
[M-2(PFg)]** caled. 451.0, found 451.0; [M-PFg]* caled. 1049.3, found 1049.1. UV-vis (in
H20, A (nm, € (x 10*, M~tem™1))): 254 (3.7), 286 (4.5), 324 (4.3), 396 (1.0), 420 (1.4), 446
(1.4).
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[Ru(bpy)s (pyrene-phen)](X )2 (14). Yield: 76%. 'H NMR (CD3CN, 500 MHz, § (ppm)):
9.71 (d, J = 7.5 Hz, 2H), 947 (d, J = 7.5 Hz, 2H), 8.59 (t, J = 9.3 Hz, 4H), 8.27-8.23 (m,
4H), 8.19-8.11 (m, 4H), 8.06 (td, J = 8.0 Hz, 1.2 Hz, 2H), 8.0-7.92 (m, 4H), 7.84 (d, J
= 5.1 Hz, 2H), 7.74 (s, 2H), 7.52 (m, 2H), 7.34 (m, 2H). ESI(+)MS (m/z): [M-2(PFg)]**
caled. 410.8, found 410.2; [M-PFg]™ caled. 965.1, found 965.4. UV-vis (in HoO, A (nm, €
(x 104, M~tem™1))): 236 (3.7), 288 (5.0), 348 (1.1), 452 (1.3), 476 (1.3).

The synthesis of Ru(bpy)g(‘,hrysi2+ was adapted from Eva Riiba’s protocol (unpublished
results from our laboratory).

[Ru(bpy)2(NHs)2]Cls. Ru(bpy)2Cla (0.40 g, 0.83 mmol) was dissolved in methanol (5
mL), to which 10 mL of ¢. NH4OH was added. The reaction mixture was heated under reflux
(60°C) for 3 h. After cooling to RT, the solvent was removed under reduced pressure.
The residue was taken up in methanol to give a dark red solution. Diethyl ether was
added to crash out the product as a black fine powder (0.44 g, quantitative yield). The
hexafluorophosphate salt of the product was obtained by adding NH4PFg to an aqueous
solution of the chloride salt and collecting the red precipitate. The ppt was washed with
copious amount of water to remove any excess NHyPFg. '"H-NMR. (300 MHz, CD30D) §
9.20 (d, J = 5.0 Hz, 2H), 8.64 (d, J = 7.9 Hz, 2H), 8.47 (d, J = 7.8 Hz, 2H), 8.26-8.13 (m,
2H), 7.88-7.76 (m, 4H), 7.65 (d, J = 5.0 Hz, 2H), 7.25-7.14 (m, 2H), 2.93 (s, 6H).

[Ru(bpy)z2chrysi/Cly. This reaction was carried out under Ar and using anhydrous sol-
vents. To a solution of [Ru(bpy)2(NHs)s](PFg)2 in acetonitrile, NaH (excess) was added.
After 15 min, chrysene quinone (slight excess) and ethanol was added. The reaction mixture
was stirred at RT overnight, protected from light with foil. If the volume of the reaction
mixture is small, it may be loaded directly to a preparative silica TLC plate. Otherwise,
remove some of the solvent on the rotovap before loading onto the TLC plate. The plate was
run under an Ar atmosphere in water/acetonitrile/sat. NH4Cl (6:3:1 v/v/v) for 40 min-1h.
The pink band is isolated as the PFg salt, washed with water, and lyophilized. The chloride
salt is obtained by passing an acetonitrile/water (3:2 v/v) solution of the hexafluorophos-
phate salt through a sephadex QAE anion exchange column. 'H-NMR (500 MHz, CD3CN)
6 12.78 (s, 1H), 12.41 (s, 1H), 8.53 (m, 6H), 8.47 (d, J = 8.0 Hz, 1H), 8.34 (m, 1H), 8.25 (d,
J = 8.7 Hz, 1H), 8.12 (m, 5H), 7.94 (d, J = 5.1 Hz, 2H), 7.82 (t, J = 7.9 Hz, 1H), 7.71-7.62
(m, 5H), 7.46 (m, 4H). ESI-MS: calc. 669.14 (M-H)*, 334.57 (M?*), found 335.2 (M?"),
669.2 (M-H)", 814.9 (M+PFg)*. The concentration of the complex was roughly estimated



110
using esq9 = 50,000 M~ tem ™!,

[Ru(bpy)2(Megchrysi)]Cly. To a solution of [Ru(bpy)achrysi]TFAs in acetonitrile, NaH
(excess) was added. After 15 min, iodomethane (excess) was added, and the reaction
mixture was stirred under Ar at RT for 2 h. The solution was neutralized with dilute HCI,
filtered, and the solvent evaporated to dryness under reduced pressure. The residue was
redissolved in water and crashed out as the hexafluorophosphate salt with the addition of
NH4PF¢. The chloride salt was obtained by passing an acetonitrile/water (3:2 v/v) solution
of the hexafluorophosphate salt through a sephadex QAE anion exchange column. '"H-NMR
(400 MHz, CD3CN) § 8.73 (d, J = 8.4 Hz, 1H), 8.66-8.55 (m, 3H), 8.53 (d, J = 8.2 Hz,
1H), 8.44 (d, J = 8.9 Hz, 1H), 8.34 (d, J = 7.7 Hz, 1H), 8.29-8.23 (m, 2H), 8.17 (dd, J =
14.2, 6.4 Hz, 1H), 8.10 (dd, J = 10.3, 6.7 Hz, 3H), 7.98 (d, J = 8.1 Hz, 1H), 7.79 (t, J =
7.7 Hz, 1H), 7.72 (dd, J = 9.1, 5.7 Hz, 2H), 7.59 (m, 2H), 7.45 (m, 3H), 7.37-7.33 (t, J =
6.7 Hz, 1H), 7.27 (d, J = 5.7 Hz, 1H), 7.24-7.17 (t, J = 8.0 Hz, 1H), 5.92 (d, J = 8.5 Hz,
1H), 3.75 (s, 3H), 3.21 (s, 3H). ESI-MS: calc. 697.17 (M-H)*, 349.09 (M?*), found 349.2
(M21), 684.2 (M+H-CH3)*, 697.2 (M-H)*. The concentration of the complex was roughly

estimated using es3o = 30,000 M~ tem 1.

5.2.3 Steady state fluorescence

Luminescence spectra were recorded on an ISS-K2 spectrofluorometer in 5 mM Tris, 50 mM
NaCl, pH 7.5 at room temperature in aerated solutions. For luminescence measurements
at 77 K, complexes were dissolved in 10 M LiCl to form a clear glass.9 The sample cuvette

was immersed in a dewar sample holder filled with liquid nitrogen.

5.2.4 Fluorescence lifetimes

Samples were excited using a Nd:YAG-pumped OPO (Spectra-Physics Quanta-Ray). Laser
power at 470 nm ranged from 4.0-4.5 mJ per pulse at 10 Hz. Emitted light was collected
and focused onto the entrance slit of an ISA double grating (100 mm) monochromator and
detected by a PMT (Hamamatsu R928). Each measurement is the average of 500 or 1000
shots. Emission decays were fit to single or biexponential functions using nonlinear least

squares minimization.
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Figure 5.1. Synthesis of derivatives of the DPPZ ligand.
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Figure 5.2. Synthesis of ruthenium complexes bearing the DPPZ or DPPZ-derivative
ligand.

5.3 Results and discussion

5.3.1 Ru complexes bearing DPPZ derivatives

Design considerations. Inspired by the activity of Rh(bpy)gchrysi?’+ and Ru(bpy)oDPPZ?*
toward DNA,™ we aimed to develop a new framework for detecting DNA lesions based
on luminescence. The key feature of the Rh(chrysi) complex that enables it to specifically
recognize destabilized sites in DNA is the sterically expansive inserting chrysi ligand (see
Chapter [1). Meanwhile, the luminescence-based detection for DNA by Ru(bpy)2DPPZ**
is based on the intercalation of the DPPZ ligand.” Y Thus, by combining characteristics
of the chrysi and dppz ligands into a single ligand, it may be possible to create a Ru
complex which luminesces only when specifically bound to DNA lesions. Guided by these
design considerations, derivatives of the Ru(DPPZ) complex, based on the structures of
both Rh(bpy)gchrysi?’Jr and Ru(bpy)oDPPZ2", were prepared as candidates of luminescent
reporters for DNA defects (Figures and [5.2). Simple substituents (CO2H, acetylene,
Br, and phenyl), shown in Figure were incorporated into the DPPZ ligand in order to
increase its width, length, or both. The wider ligand framework such as in DPPAE and tactp
is similar to that of the sterically bulky chrysi ligand. Lengthening DPPZ to create DPPN
(Figure might induce a significant increase in luminescence only from intercalation or

insertion into destabilized sites in DNA. Since DPPN is longer than DPPZ, the nitrogen
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atoms responsible for luminescence enhancement on DPPN might be less protected from
water than those on DPPZ when they bind to well-matched DNA in the major groove.
Furthermore, increasing both length and width (see BroaDPPN and pyrene-phen, Figure
could combine the effects on the recognition of a DNA lesion that would be expected
from DPPAE, tactp and DPPN. Lastly, the DPPZ derivatives were coordinated to the
Ru(bpy)2 skeleton in order to preserve the light switch behavior of (8] initiated by metal-to-
ligand charge transfer (MLCT) upon excitation (Figure [5.2).

Synthesis of Ru(DPPZ) derivatives. The Ru complexes Ru(bpy)DPPZ*+ and
Ru(bpy)atactp?t were prepared by previously published methods.#? For the ligands
DPPA, DPPAE, DPPN, and BryDPPN (Figure , the amine moieties were condensed
with 1,10-phenanthroline-5,6-dione in ethanol.?*? The pyrene-phen ligand was obtained
by condensation of pyrene-4,5-dione with 5,6-diamino-1,10-phenanthroline in ethanol.
The complexes [9] and [I4] were obtained by refluxing a solution containing
Ru(bpy)2Cls and 1 equivalent of the corresponding DPPZ derivatives in ethylene glycol at
130°C over 8 h, as depicted in Figure Addition of excess NH4PFg (s) into the reaction
solution of 1:1 ethylene glycol:water allows the isolation of the Ru complexes as PFg salts,
followed by purification via recrystallization or column chromatography. All complexes
show the characteristic MLCT transition absorption in the visible region at ~440 nm.

Steady state luminescence of the Ru complexes with DNA. As shown in Figure[5.3] all Ru
complexes (8] —[14) show “light switch” properties with matched (M), mismatched (MM)
and abasic (AB) DNA. In the absence of DNA, complexes having extensively 7-conjugated
ligands - present noticeable intensity in luminescence. The Ru(DPPA) complex
@D exhibits luminescence enhancement in the presence of M, MM and AB, similar to
but its binding affinity is lower than that of [8] (Figure and Table . Introduction of
the expansive DPPZ derivatives DPPAE and tactp, employing acetylene and chrysene func-
tionalities respectively to increase the width of the ligand, does not improve luminescence
response toward DNA defects (Figure [5.3). In the case of the Ru(tactp) complex (11)), a
previous study demonstrates that the luminescence increases occur not only by interaction
with DNA but also by dimerization or aggregation of the complex itself with or without a
DNA template.?

Attachment of a phenyl group to the end of the phenazine moiety increases the length of
the DPPZ-type ligand (DPPN, Figure. Significantly, the Ru complex containing DPPN
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Table 5.1. DNA concentration at half-saturation in luminescence titrations®

Ru Complex Ligand [Ru]® (uM) DNA ([DNA]/[Ru]);/s [DNAJ® (uM)

DPPZ 0.1 M 0.090 0.0090
MM 0.047 0.0047
AB 0.065 0.0065
9] DPPA 1 M 0.12 0.12
MM 0.070 0.070
AB 0.11 0.11
DPPAE 1 M 0.050 0.050
MM 0.050 0.050
AB 0.043 0.043
tactp 0.1 M 0.023 0.0023
MM 0.020 0.0020
AB 0.013 0.0013
DPPN 5 M 0.42 2.1
MM 0.48 2.4
AB 0.51 2.6
Br,DPPN 10 M 0.47 4.7
MM 0.47 4.7
AB 0.44 4.4
pyrene-phen 0.1 M 0.067 0.0067
MM 0.040 0.0040
AB 0.047 0.0047

“The value of (DNA/Ru) at the midpoint of the integrated emission intensity in Figure *The concentra-
tion of Ru used for luminescence measurements. “The calculated concentration of DNA from (DNA/Ru); 2
and [Ru].
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exhibits an increase in luminescence with MM over M and AB (Figure . This may
be because the extended DPPN ligand of when bound to well-matched DNA in the major
groove, affords less protection of the phenazine nitrogens from solvent water molecules than
DPPZ. But binding to mismatches presumably occurs from the minor groove, which is deep
and narrow, thus allowing deeper intercalation of the ruthenium complex and consequently
better protection of the ligand from solvent water. However, the luminescence of upon
incubation with DNA is unstable, which means that further application or modification
would be limited.

Incorporation of substitutions on DPPN was also made to widen the ligand. The dervia-
tives of DPPN are BroDPPN and phen-pyrene (Figure , which are both wider and
longer than DPPZ. The Ru complexes and having BroDPPN and phen-pyrene do
not show any differential luminescence with M, MM and AB, however (Figure . The
weak luminescence of [L3| was probably due to heavy-atom quenching by bromine. Increased
luminescence of [14] would occur in a manner similar to that of the structurally homologous
5 In sum, the luminescence measurements of suggest that structural modifications
to the intercalating ligand of the Ru complex are not enough to improve detection of DNA
defects.

FEzxcited state lifetimes. Greater protection of the phenazine moiety from water via
intercalation leads to longer excitation lifetimes for the two binding modes (side-on and
perpendicular), a higher relative population of the longer-lived species, or both. As de-
scribed in Table displays a higher relative abundance of species associated with the
perpendicular mode in the presence of DNA following the order AB > MM > M. This
supports the observation from steady state measurements that the luminescence intensity
of [8]is present in the following order: AB > MM > M (Figure .8 In the case of |§|, longer
lifetimes corresponding to the perpendicular mode (AB > MM > M) are observed, which
can explain the ordering of the steady state luminescence measurements of [9] as shown in
Figure Furthermore, which shows differential luminescence turn-on with MM over
M and AB, indicates longer lifetimes in both binding modes only with MM. In general, the
excited state lifetime measurements indicate that the complexes[8] [9] and [12] present longer
lifetimes or a higher portion of the perpendicular mode in the presence of DNA contain-
ing a lesion over well-matched DNA, indicating more protection of the phenazine nitrogens

responsible for luminescence enhancement upon binding to DNA defects.
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Table 5.2. Luminescence decay parameters of ruthenium complexes in the presence of M,
MM and AB?

~ DNA + DNA

Complex (Ligand) 7 (ns)>¢ DNA 7 (ns) 7 (ns)¢ 7:7o
8 (DPPZ) 1807 M 72 212 83:17
MM 74 213 77:23

AB 86 192 69:31

9] (DPPA) 192 M 32 192 955
MM 32 245  96:4

AB 26 544 93:7

[L0| (DPPAE) 188 M 275 3908 60:40
MM 391 4277 67:33

AB 503 4640 62:38

11| (tactp) 206 M 1211 - —
MM 1177 - -

AB 1121 - -

12 (DPPN) 171 M 62 843 51:49
MM 196 1010 49:51

AB 35 709 58:42

[13] (Br,DPPN) 200 M 99 1056 63:37
MM 134 876 66:34

AB 82 801  54:46

(pyrene-phen) 186 M 929 - -
MM 879 - -

AB 808 - -

“Aez = 470 nm, Aer, = 610 nm, 10 pM [Ru] and 20 M [DNA] (5 mM Tris, pH 7.5, 50 mM NaCl). b[Ru} =
10 uM, CH3CN. ®Error is estimated to be +10%. “reference 10. 20 uM [Ru] and 40 M [DNA].
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The compounds and which can aggregate in the presence of a DNA template,
exhibit single exponential luminescent decays with DNA (Table , suggesting that their
luminescence enhancement originates mainly from nonspecific binding to DNA. The com-
pounds [10f and which have increased steric bulk on the phenazine fragment but utilize
different substituents from and present biexponential decays in emission. Lower
abundances of long-lived species in [10] and shorter lifetimes in [13]in the presence of a DNA
lesion were detected in their lifetime measurements. This is consistent with the higher
steady state luminescence of [10] and [13] with well-matched DNA (Figure [5.3)).

Taken together, the Ru(DPPZ) derivatives are prepared in order to specifically target
DNA defects and report their presence by luminescence turn-on. The luminescent responses
to DNA containing a lesion were not noticeably enhanced by the Ru complexes containing
DPPZ derivatives, however. Still, the narrow ligands (DPPA and DPPN) show differential
behavior in luminescence in the presence of a DNA lesion. Based on the excited state lifetime
measurements, the Ru complexes [8] [9] and [12] display longer lifetimes or a higher portion
of the perpendicular mode with MM and AB, which corresponds to their luminescence
enhancement. Recent studies of 8| suggest that the perpendicular binding of Ru along
the DNA dyad axis occurs at the destabilized site through the minor groove,® which was
confirmed in an atomic-resolution crystal structure (Chapter [3|). The Ru complexes with the
extensively m-conjugated ligands such as tactp and pyrene-phen indicate mainly nonspecific
binding to DNA. In addition, widening the DPPZ ligand using a simple functionality such
as acetylene or Br does not enhance targeting of destabilized regions in DNA. In summary,
the structural features of the ligand are important for intercalation or insertion into a
destabilized region, but unlike the Rh(chrysi) complex, steric bulk on the DPPZ ligand of
the Ru complexes does not boost specific recognition of DNA defects as reflected in their

luminescent response.

5.3.2 Chrysi analogues of ruthenium

Work described in the previous section adopted a luminescence-based approach to modify
the intercalating DPPZ ligand of ruthenium complexes in an attempt to improve their
mismatch selectivity. In this section, we discuss a structure-based approach, starting from
the mismatch-selective chrysi ligand to make Ru(bpy)gchrysi2Jr and applying subsequent

modifications to bring about enhancement in its luminescence properties.
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Figure 5.5. UV-vis spectra of Ru(bpy)zchrysi2+ and Ru(bpy)g(Megchrysi)2+ in water.

Ru(bpy)gchlrysi2+ was synthesized in an analogous fashion to ].Z{h(bpy)gchrysi?’Jr and
methylated with iodomethane to give Ru(bpy)g(Megchrysi)2Jr (Figure . The UV-vis
spectrum of Ru(bpy)gc:hrys,12Jr shows two excitation bands above 350 nm, with the longer-
wavelength band at 549 nm blueshifted to 532 nm upon methylation (Figure. Ru(bpy)zchrysi2+
is nonluminescent at room temperature in water or acetonitrile (Ae; = 440 or 550 nm);
however, in a glass at 77 K, it becomes luminescent upon excitation at 440 nm, with an
emission and excitation profile resembling those of Ru(bpy)%Jr (Figure . Methylation of
Ru(bpy)gchrysi2Jr restores luminescence at room temperature in both water and acetoni-
trile (Figure [5.7)). However, when DNA is added to the dimethylated complex, mismatch
discrimination in terms of luminescence output is not apparent (Figure .

The fact that Ru(bpy)g(:hrysi2Jr is luminescent when it is frozen in a solid suggests
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Figure 5.8. Emission (solid line) and excitation (dotted line) spectra of

Ru(bpy)2(Meachrysi)®t (~5 uM) in the presence of matched and mismatched DNA (5
uM).

that the exchangeable imino protons are responsible for quenching the luminescence at
room temperature through solvent relaxation. Freezing typically improves luminescence
quantum yields significantly for metal complexes by shutting off nonradiative relaxation
pathways.1 4 Methylation removes the imino protons and thus allows the luminescence to be

restored. However, after methylation, the complex Ru(bpy)g(Megchrysi)2Jr

is permanently
turned on, which then precludes “light switch” behavior. It is therefore not surprising that
there is no mismatch discrimination in terms of luminescence when DNA is added. In
fact, Ru(bpy)Qchrysi2Jr at 77 K does not show mismatch discrimination either, as it is also
always “on” in a frozen state without regard to its DNA-binding status. It is unclear if
Ru(bpy)g(Megchrysi)2+ binds preferentially to mismatched sites, since methylation is bound
to cause strain on the chrysi ligand due to steric clashes between the methyl groups and
hydrogens on the fused ring system, possibly bending the ligand and forcing it out of a
planar arrangement. Further experimentation with Ru(bpy)2(Megchrysi)2+ was hindered
by the decomposition of the dimethylated complex. "H-NMR of the dimethylated complex

after short periods of storage showed loss of the methyl groups.
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5.4 Conclusions

In this chapter, we continue our efforts in developing a luminescent ruthenium probe for
DNA mismatches. We increased the steric expanse of the DPPZ ligand in order to en-
hance the mismatch-binding selectivity of the resultant ruthenium complexes. While some
complexes show preferential binding to mismatches, none of the DPPZ derivatives achieved
significant improvement in their luminescence differential between mismatched and well-
matched DNA. In a separate approach, the nonluminescent chrysi complex of ruthenium
was methylated to restore emission at room temperature. However, the luminescence of
the dimethylated complex is no longer sensitive to changes in its environment upon DNA
binding. These efforts highlight the challenge of coupling mismatch-selective binding to the
luminescence properties of ruthenium complexes. The quest for a true “light switch” of

DNA mismatches goes on.
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Chapter 6

RNA Mismatch Recognition by Ru(bpy).dppz?*
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6.1 Introduction

An early observation about the DNA “light switch” molecule, Ru(L)gdppz%, is that it
binds well to and luminesces strongly in the presence of B- and Z-form DNA, but does
so very weakly with A-form RNA.M2 More recently, our laboratory has discovered that
Ru(bpy)2dppz?T binds more strongly to mismatched DNA, as evident in its enhanced lumi-
nescence in the presence of base mismatches;? the structural details of the complex bound
to a mismatch have been elucidated in an atomic-resolution crystal structure (see Chapter
. The higher affinity of Ru(bpy)2dppz?t for base mismatches and the general lack of
binding to well-matched A-form RNA have thus prompted us to examine the effect of a
base mismatch in an RNA duplex on the luminescence response of the ruthenium complex.
In this chapter, we show that Ru(bpy)2dppz** indeed binds selectively to mismatched over
well-matched RNA. Correspondingly, it behaves as a “light switch” for RNA mismatches.
We also explore the application of Ru(bpy)2dppz®t as a luminescent sensor for RNA mis-
matches inside cells. Specifically, we encoded an artificial DNA sequence to be transcribed
into an mRNA segment that contains several base mismatches, and imaged cells expressing

this artificial sequence using confocal microscopy.

6.2 Experimental protocols

6.2.1 Materials

All commercially available materials were used as received. [Ru(bpy)2dppz|Cly was labora-
tory stocks synthesized according to previously reported procedures.#*? RNA was purchased
from Dharmacon. DNA was synthesized and purified as described in Chapter[l} SYTO Red
nucleic acid stain and cell culture supplies were purchased from Invitrogen, unless otherwise

noted. Doxycycline was purchased from Sigma-Aldrich.

6.2.2 Steady state luminescence

Emission spectra were recorded on an ISS-K2 fluorimeter in 5 mM Tris, 50 mM NaCl, pH
7.5 at room temperature in aerated solutions. Experiments were performed in triplicate,

and the standard deviation from the three samples was calculated.
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6.2.3 Molecular cloning of artificial sequence encoding mismatched mRNA

Plasmids obtained commercially are propagated in either DH5« or XL1 Blue competent
cells (Invitrogen) and stored at -80°C.

Mismatch-containing RNA is designed to be generated from the following DNA sequence:
5- CGC GGA TCC TGG ACG CTG CGA CGC GGT ACG AGATTT TTT TTC TCA
TAC CAC GTC ACA GCA TCC ATA TTA TAT TGG ACG CTG CGA CGC GGT ACG
AGA TTT TTT TTC TCA TAC CAC GTC ACA GCA TCC ATA TTA TAT TGG ACG
CTG CGA CGC GGT ACG AGA TTT TTT TTC TCA TAC CAC GTC ACA GCA TCC
AGT CGA CCG C -3’. BamH]I and Sall restriction sites are shown in bold.

The DNA insert (denoted by 4CAx3) was obtained from Integrated DNA Technologies
as a miniGene in pIDT-SMART-Amp and PCR-amplified using PreMix G of the FailSafe
PCR PreMix Selection Kit (Epicentre Biotechnologies). The insert and the tetracycline
(tet)-responsive vector pTRE-Tight (Clontech) were double digested with BamHT and Sall
(New England BioLabs) and purified by agarose gel electrophoresis. The insert was then
ligated into pTRE-Tight, resulting in plasmid pTRE-Tight-4CAx3. The formation of the
ligated product was confirmed by sequencing (Laragen) using the following primers: 5’-
GCT CGT TTA GTG AAC CGT CAG -3’ (left primer) and 5- GGG AGG TGT GGG
AGG TTT T-3 (right primer). Plasmids used in subsequent transfections were isolated
with QIAprep Spin Miniprep Kit (Qiagen) and the purity was confirmed by 0.9% agarose

gel electrophoresis.

6.2.4 Cell culture

Tet-on HeLa cells (Clontech) were maintained in DMEM supplemented with 10% Tet-
approved FBS (Clontech), 4 mM L-glutamine, 100 units/mL pennicillin, 100 pg/mL strep-
tomycin, and 100 pg/mL Geneticin (G418). Cells were grown in tissue culture flasks (Corn-
ing Costar) and well plates (Falcon) at 37°C under 5% CO2 and a humidified atmosphere.

6.2.5 Transfection, induction and expression of plasmids

Cells were plated and allowed to adhere overnight before transfection. Transfection was
carried out with FuGENE HD Transfection Reagent (Roche) according to manufacturer’s

instructions, using 5:2 ratio of FuGENE:DNA. Briefly, the plasmids were diluted with OP-
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TIMEM I (Invitrogen) and incubated with FuGENE for 15 min at room temperature prior
to addition to cells in complete media. After 6 h the media was replaced with complete
media containing 0 to 1 pug/mL doxycycline to induce the expression of Tet-on genes. pTRE-
Tight-Luc (Clontech), phRL-TK (Promega) and pGEM-3Z (Promega) were cotransfected
along with pTRE-Tight-4CAx3. Expression levels of pTRE-Tight-Luc and phRL-TK were

measured using the Dual-Glo Luciferase Assay System (Promega).

6.2.6 Confocal microscopy

Cells used for microscopy were seeded on glass-bottom 96-well plates (Whatman) and al-
lowed to adhere overnight. Approximately 5000 cells were seeded in 200 uL of complete
media per well. After transfection and induction with doxycycline, cells were left to grow for
another 12-15 h before staining with ruthenium. The cells were incubated with 150-200 M
[Ru(bpy)2dppz]Cls and 100 nM SYTO 61 in Hank’s Balanced Salt Solution (HBSS) supple-
mented with 2% FBS and 10 mM HEPES for 1 h, washed with HBSS and imaged in phenol
red-free complete media. For costaining with ER Tracker Green (Invitrogen), 500 nM ER
Tracker Green was added along with ruthenium and SYTO 61. Live cells that exclude the
dead-cell stain Trypan Blue were imaged. Images were collected on a Zeiss LSM 5 Exciter
inverted laser scanning microscope using a 63x/1.4 oil immersion objective at the Caltech
Biological Imaging Center. The optical slice was set to 1.1 pm. The ruthenium complexes
were excited at 458 nm, with emission observed using a long-pass 560 nm filter. SYTO 61
was excited at 633 nm, with emission observed using a long-pass 650 nm filter. ER Tracker

Green was excited at 488 nm, with emission observed using a 503-530 nm bandpass filter.

6.3 Results and discussion

6.3.1 Ru luminescence with a mismatched RINA hairpin

We first measured the luminescence of rac-Ru(bpy)2dppz?™ in the presence of mismatched
and well-matched RNA hairpins (Figure . The melting temperature of the mismatch-
containing RNA hairpin is 46°C, compared to 56°C of the well-matched counterpart (Table
6.1). The difference in the melting temperatures reflects the destabilization to the hairpin
duplex caused by the base mismatch. There is very little luminescence from Ru(bpy)odppz?*

added to well-matched RNA, consistent with previous observation that ruthenium lumines-
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Figure 6.1. Titrations of Ru(bpy)2dppz?t with RNA and DNA. Top: sequences of matched
and mismatched RNA hairpins. DNA of identical sequences is used. Bottom: plots of
integrated emission intensity (\e; = 440 nm) of Ru(bpy)2dppz?T (500 nM) upon increasing
concentrations of RNA (left) and DNA (right) in 5 mM Tris, 50 mM NaCl, pH 7.5. Error
bars indicate standard deviations in the measurements.

cence is weak in the presence of A-form nucleic acids.™? However, when the CA mismatch
is incorporated into the hairpin, the luminescence of the ruthenium complex is significantly
enhanced (Figure[6.1]), up to 6-fold at 500 nM Ru and 500 nM RNA (Table [6.1)).

In contrast, when Ru(bpy)2dppz?™ was added to DNA of identical sequences, although
the overall luminescence increased for both well-matched and mismatched DNA, the dif-
ferential decreased to less than 2-fold (Figure Table . The higher luminescence
intensity reflects the higher binding affinity of Ru(bpy)2dppz?* for B-form DNA; the pres-
ence of a mismatch increases the luminescence only by a small amount. Consistent with
its higher binding affinity to DNA, luminescence saturation was achieved at a lower DNA
concentration (500 nM versus >2 uM for RNA).

The fact that ruthenium luminescence is extremely weak with well-matched RNA du-
plexes but significantly enhanced when a mismatch is present is consistent with the notion
that Ru(bpy)2dppz?* binds to well-matched nucleic acids via the major groove but inserts
into mismatched sites via the minor groove. As the intercalation of dppz into the base stack

is a prerequisite for luminescence turn on, with well-matched RNA, the luminescence from



130

Table 6.1. Melting temperatures and luminescence intensity of Ru(bpy)2dppz?t with RNA
and DNA

Tn(°C)® relative luminescence ratio
luminescence®  (Mismatched/Matched)
RNA  Matched 56 1
Mismatched 46 6.5 6.5
DNA Matched 52 13.9
Mismatched 36 20.1 1.5

@Uncertainties are estimated to be +£1°C. ®Conditions are 500 nM Ru(bpy)2dppz?* and 500 nM RNA or
DNA in 5 mM Tris, 50 mM NaCl, pH 7.5 (Aez= 440 nm). Emission from 560 to 800 nm is integrated.

ruthenium is minimal, indicating lack of binding from either groove. The major groove of
RNA, an A-form nucleic acid, is deeper and narrower, which is less accessible for ruthenium,
yet ruthenium does not bind from the wider and shallower minor groove either, suggesting
that binding from the minor groove is disfavored. However, the presence of an RNA base
mismatch leads to a significant increase in ruthenium luminescence, consistent with inter-
calative binding at the mismatched site. This binding event is presumably metalloinsertion,
as we have shown that metalloinsertion is the general binding mode of octahedral metal
complexes at destabilized regions of nucleic acid duplexes, and that it occurs from the minor
groove. In the case of DNA, ruthenium binds avidly to well-matched DNA, whose wide and
shallow major groove is readily accessible. In the presence of a DNA base mismatch, the
ruthenium complex can additionally bind to mismatched site from the minor groove through
metalloinsertion, which leads to a small increase in luminescence compared to well-matched
DNA. We note that in the case of mismatched RNA, the extrapolated luminescence inten-
sity at saturation would be comparable to the saturation intensity with well-matched DNA,
suggesting that fundamentally the ruthenium complex in an RNA base stack is as protected
from solvent water as it is in a DNA base stack.

The relatively weak luminescence intensity of Ru(bpy)2dppz?™ bound to RNA at low
concentrations can be amplified through fluorescence resonance energy transfer (FRET). We
measured the emission of Ru(bpy)2dppz>* in the presence of the nucleic acid stain SYTO
Red series. Representative emission spectra in the absence and presence of a SYTO stain
(SYTO 61) are shown in Figure With SYTO 61 (Aez/Aem = 628/645 nm), upon exci-

tation at 440 nm, the donor ruthenium emission is replaced by acceptor SYTO 61 emission,
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Figure 6.2. Emission spectra of Ru(bpy)2dppz?t with matched (M) and mismatched
(MM) RNA hairpin (sequence shown in Figure in the absence and presence of the
FRET-acceptor SYTO 61 (A, = 440 nm). Conditions are 500 nM Ru, 500 nM RNA, 1
uM SYTO 61 in 5 mM Tris, 50 mM NaCl, pH 7.5.

as evident in the narrower profile of the emission peak and redshifted emission maximum.
The emission intensity is increased more than 3-fold. The luminescence differential between
mismatched and matched RNA decreased slightly from 6-fold to 4-fold, which is mostly due
to residual luminescence of SYTO 61 itself when excited at 440 nm, and can be corrected
by subtraction. Enhanced luminescence through FRET was also observed for SYTO 17,
59, 60, 63, 64 and TO-PRO-3. Thus, with its high mismatch selectivity and ease of signal
amplification through FRET, Ru(bpy)2dppz?" holds great potential as a first-generation

luminescent sensor for RNA mismatches.

6.3.2 Confocal microscopy of Tet-on HeLa cells expressing mismatch-

containing mRNA

The luminescence turn-on response of Ru(bpy)2dppz?t to RNA mismatches immediately
suggests the possibility that it may be used to image RNA mismatches inside cells. Real-
time imaging of RNA, in particular mRNA, has been much sought after, as regulation of
mRNA production and trafficking is believed to be an important avenue to effect the spatial
and temporal control of protein expression.® Established mRNA imaging techniques often
require fixing the cells and thus only allow determination of cellular mRNA distribution at

the instance of cell fixation.”* Recent developments in live-cell imaging employ tags fused to
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PolyA

Figure 6.3. Schematic illustration of the mRNA with the mismatch (MM) tag, which
consists of three hairpins, each with four CA mismatches (red).

T ®©1T®

Figure 6.4. Scheme showing detection of RNA mismatches inside cells using
Ru(bpy)2dppz?™. The tet-inducible plasmid (green) containing the DNA sequence encoding
the mismatch-rich mRNA (red) is transfected into Tet-on HeLa cells. Addition of Dox in-
duces the expression of the DNA and the mRNA transcript is detected through ruthenium
luminescence.

the gene of interest and subsequent binding of the mRNA transcript by multiple fluorescent

Single-molecule resolution

proteins fused to RNA-binding proteins that recognize the tags.
is possible with this tagging strategy.ld In an analogous fashion, the ruthenium complex
may be used to recognize a special type of tag—RNA mismatches—and fluorescently track,
in real time, any mRNA that displays the tag. This approach was very recently used to track
RNA tagged with an aptamer for a fluorophore resembling the core of fluorescent proteins. ™2
Unlike large fluorescent proteins fused to RNA-binding proteins, the ruthenium complex is
a small molecule, and its binding to an mRNA transcript is expected to minimally disturb
the natural fate of the mRNA. Thus, as an exploratory first step toward the development
of a ruthenium probe and a suitable mismatch (MM) tag for real-time imaging of cellular
mRNA, we designed a DNA sequence that will generate a mismatch-rich mRNA segment
(Figure , and imaged Tet-on HeLa cells expressing this sequence after staining with
Ru(bpy)odppz?t (Figure .

The DNA sequence we used to generate the mismatch-rich mRNA is 181bp long (see

experimental section for full sequence), about 6% of the length of an average gene (3000

bpﬂ:ﬂ). The mRNA transcript, if folded as designed, contains three identical RNA hairpins,
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Figure 6.5. Relative luminescence intensity (in relative luminescence units, RLU) of tet-
inducible firefly luciferase and constitutively expressed Renilla luciferase as a function of
time after induction. The expression of Renilla luciferase increases steadily over time, but
the expression of tet-inducible firefly luciferase peaks and decreases as the effect of Dox
wears off.

each with four CA mismatches (Figure . Since the RNA hairpins are identical, alterna-
tive folding into different configurations will still generate the mismatches. To control the
expression of this DNA sequence, we cloned it into the tet-inducible pTRE-Tight vector
and transiently transfected the plasmid into Tet-on HeLa cells. To confirm that transfec-
tion and induction with doxycycline (Dox) are successful, we cotransfected the cells with
pTRE-Tight-Luc and phRL-TK, which are tetracycline (tet)-inducible firefly luciferase and
constitutively expressed Renilla luciferase, respectively, and measured the luminescence of
the two luciferases (Figure . Luminescence is detected from the Renilla luciferase within
a few hours of transfection, indicating that the cells have successfully taken up the plasmids
into the nucleus. The luminescence level continues to increase over time as the cells grow
and divide. In the absence of Dox, no luminescence is detected from the firefly luciferase at
all times, confirming the tightness of the tet-inducible expression system. With the addition
of Dox, the firefly luminescence is turned on, its intensity peaking after a day, and then
declining gradually as the effect of Dox wears off. Based on the expression profile of the
luciferases, we performed most imaging experiments 12-15 h post induction.

To accelerate the natural uptake of ruthenium complexes into the cells,™* we stained
the cells with [Ru(bpy)2dppz]Cly for 1 h in buffer with reduced serum (0%—2% FBS, see
Experimental section for details). For cells expressing the MM tag, fluorescence from the

ruthenium complex was observed mostly in a dense perinuclear region, likely the endoplas-
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mic reticulum (ER) (Figure . Cells that were similarly transfected but did not receive
Dox show less concentrated staining in the perinuclear region, with a more diffused fluo-
rescence pattern in the cytosol, some of which is cellular autofluorescence. The proportion
of cells showing prominent perinuclear staining was estimated by counting 332 cells treated
with Dox (and thus expressing the MM tag), and 163 untreated cells. About 54(£5)%
of treated cells show distinct perinuclear staining with very weak cytosolic fluorescence;
for comparison, only 40(£8)% of untreated cells show any perinuclear accumulation of the
ruthenium complex (and often with reduced fluorescence intensity). This small but signif-
icant difference in the staining pattern and intensity suggests that the more concentrated
ruthenium fluorescence originated from the MM tag.

We costained the cells with SYTO 61, the nucleic acid stain that was found to be an
effective FRET acceptor of ruthenium (Figure . At 1 uM in complete media, SYTO 61
stains the nucleus strongly, with very weak but uniform residual fluorescence in the cytosol.
At 100 nM in reduced-serum buffer, it stains the nucleus with medium intensity, but the
stringy morphology of the bright cytosolic staining indicates that it now accumulates more
in the mitochondria (Figure . Merging the ruthenium and the SYTO 61 channels shows
that the two did not colocalize. As a result, there was probably no FRET between ruthenium
and SYTO 61 inside the cells. Thus, if we were to pursue the amplification of ruthenium
fluorescence through FRET), either a different, colocalizing or a covalently tethered acceptor
may be necessary.

We also costained the cells with a dye for the ER, ER Tracker Green, which confirmed
that the perinuclear staining of ruthenium occurs in ER regions (Figure . This is
consistent with our expectation that ruthenium is bound to folded mRNAs exported from
the nucleus. In fact, when tet-inducible firefly luciferase is expressed after Dox addition, we
observe more perinuclear staining compared to the Dox-free cells, as the luciferase mRNAs
accumulate. Counting 148 cells expressing the firefly luciferase, 44(£8)% was found to show
the ER-staining pattern. This increase in ruthenium fluorescence with nonspecific mRNA
production points to the importance of having a bright signal from the MM tag. Our
current design gives only a small difference between MM tag-expressing cells and control
cells, and there is much room for further development through modification of the tag and
also the ruthenium complex. After all, the cell is abundant with folded RNA structures

and unpaired RNA bases, and the probe molecule for the mismatch-rich tag has to emerge
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Figure 6.6. Confocal microscopy of Tet-on Hela cells transfected with pTRE-Tight-
4CAx3. Top: with the addition of Dox, Ru(bpy)2dppz?T shows prominent staining in the
perinuclear region (red). SYTO 61 (green) stains the nucleus and mitochondria. Bottom:
in the absence of the inducer Dox, Ru(bpy)2dppz?* shows a more diffused staining pattern
in the cytosol, with less accumulation in the perinuclear region.
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Figure 6.7. Costaining of Ru(bpy)2dppz** (red) with an ER Tracker (blue) reveals that
Ru(bpy)2dppz?™ is localized to the ER regions in Tet-on HeLa cells expressing the MM tag.
Co-staining with SYTO 61 (green) shows that the ruthenium complex is mostly excluded
from the nucleus or mitochondria.
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from this background. Nevertheless, the exploratory imaging experiments reported here
demonstrate the proof of principle that an RNA mismatch-selective metal complex may be

used to fluorescently report on cellular RNA that displays a mismatch-rich tag.

6.4 Conclusions

In this chapter, we showed that Ru(bpy)2dppz?t behaves as a “light switch” for RNA
mismatches. While it luminesces extremely weakly in the presence of well-matched RNA due
to poor binding, its luminescence is significantly enhanced by binding to an RNA mismatch,
presumably through metalloinsertion. Its luminescence intensity can be further amplified by
several folds through a FRET acceptor. As a preliminary test for the biological application of
this luminescent probe for RNA mismatches, we demonstrated that the ruthenium complex
may be used to image RNA mismatches incorporated into an mRNA transcript in live
HeLa cells. This early cell work suggests that Ru(bpy)2dppz?t and future generations of
complexes will be promising biological probes for real-time tracking of mismatch-tagged

cellular RNAs.
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This work revolves around DNA mismatches, a precursor to mutations. Cells guard
against the deleterious effects of mismatches through mismatch repair (MMR) pathways.
Occasionally, MMR fails to function properly, predisposing the cell to cancerous transfor-
mations. While the cause and consequences of MMR-deficiency may take on different forms,
its foremost and ultimate signature—elevated levels of base mismatches in the genome—
remains a persistent target for medicinal agents. We hope that work described in this thesis
contributes to the development of small molecule-based therapeutics and diagnostics in the
fight against MMR-deficient cancers.

Rhodium metalloinsertors exhibit biological activity against MMR-deficient cells, which
otherwise tend to be drug-resistant. Structure-activity relationship of first-generation rhodium
metalloinsertors was elucidated in the opening chapter. Smaller ancillary ligands on the
rhodium were found to improve both the mismatch-binding affinity in vitro and the prefer-
ential antiproliferative activity in MMR-deficient carcinoma cells. This correlation suggests
that the rhodium complexes do act on their intended target—DNA mismatches—inside
cells. The cellular uptake of rhodium metalloinsertors and possibly the subcellular local-
ization also varied significantly with structure. The mechanism underlying the biological
activity is currently under investigation in our laboratory, as we work to further enhance
the efficacy of rhodium metalloinsertors for targeted therapeutics.

On the diagnostic front, luminescence-based sensing of DNA mismatches promises to be
a fast and sensitive detection method for MMR-deficiency in biological samples. Chapters
and [3| focus on luminescent dipyridophenazine (dppz) complexes of ruthenium and examine
in detail the molecular interactions between the metal complex and DNA mismatches. We
found that ruthenium dppz complexes, known as a “light switch” for DNA, inherently ex-
hibit higher luminescence in the presence of DNA mismatches, as a result of tighter binding
to mismatches through metalloinsertion. This binding mode was captured (twice) in the
first crystal structure of the A-isomer of the complex bound to mismatched oligonucleotides:
just like rhodium metalloinsertors, the ruthenium complex inserts at the mismatched site
from the minor groove, extrudes both mismatched bases, and effectively replaces them in
the base stack with its own planar, w-conjugated dppz ligand. In the same structure, the
complex is also intercalated at well-matched sites from the minor groove, which compelled

us to rethink ruthenium metallointercalation in a different light.



142

Two more chapters were devoted to the development of ruthenium complexes for sens-
ing DNA mismatches through luminescence output. Substantial efforts were directed to-
ward improving the luminescence differential of the complex between mismatched and well-
matched DNA through conjugation and derivatization. Concurrent with our pursuit of a
luminescent sensor for DNA mismatches, we discovered that the same dppz complexes of
ruthenium behave as a better luminescent reporter of RNA mismatches. Preliminary cell
work suggests that the ruthenium complexes may be applied in direct imaging of cellular
RNA fused to a mismatch-rich tag, as described in the last chapter.

This thesis strives to address both fundamentals and applications of mismatch-binding
octahedral metal complexes. Chemical basis of the interactions between the metal com-
plexes and DNA informs on our design of future medicinal agents; the biological effects of
these agents in turn guide us to examine molecular details of the metal-DNA complex.

Our academic exercises have been carried out with every intent to spawn practical
applications. In the end, we hope that the scientific insights garnered from this work will
serve as lessons and inspirations for the future development of metalloinsertors as targeted

therapeutic and diagnostic agents for a broad range of cancers.
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