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Abstract

This thesis provides a unified methodology for analyzing structural properties of

graphs, along with their applications. In the last several years, the field of com-

plex networks has been extensively studied, and it is now well understood that the

way a large network is built is closely intertwined with its function. Structural prop-

erties have an impact on the function of the network, and the form of many systems

has been evolved in order to optimize for given functions. Despite the great progress,

particularly in how structural attributes affect the various network functions, there is

a significant gap in the quantitative study of how much these properties can change

in a network without a significant impact on the functionality of the system, or what

the bounds of these structural attributes are. Here, we find and analytically prove

tight bounds of global graph properties, as well as the form of the graphs that achieve

these bounds. The attributes studied include the network efficiency, radius, diameter,

average distance, betweenness centrality, resistance distance, and average clustering.

All of these qualities have a direct impact on the function of the network, and finding

the graph that optimizes one or more of them is of interest when designing a large

system. In addition, we measure how sensitive these properties are with respect to

random rewirings or addition of new edges, since designing a network with a given set

of constraints may include a lot of trade-offs. This thesis also studies properties that

are of interest in both natural and engineered networks, such as maximum immunity

to crosstalk interactions and random noise. We are primarily focused on networks

where information is transmitted through a means that is accessible by all the in-

dividual units of the network and the interactions among the different entities that
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comprise it do not necessarily have a dedicated mechanism that facilitates informa-

tion transmission, or isolates them from other parts of the network. Two examples

of this class are biological and chemical reaction networks. Such networks suffer from

unwanted crosstalk interactions when two or more units spuriously interact with each

other. In addition, they are subject to random fluctuations in their output, both due

to noisy inputs and because of the random variance of their parameters. These two

types of randomness affect the behavior of the system in ways that are intrinsically

different. We examine the network topologies that accentuate or alleviate the effect

of random variance in the network for both directed and undirected graphs, and find

that increasing the crosstalk among different parts reduces the output variance but

also contributes to a slower response.
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Chapter 1

Introduction

1.1 Motivation

The area of complex networks has seen an explosion in the last several years. Many

properties of large scale networks have been studied extensively, along with their

applications to engineering and biology [1, 8, 34, 37, 40, 45]. However, there have been

relatively few studies so far on the bounds of the structural properties of networks.

The purpose of discovering these bounds is twofold. First, these bounds will give

a clear measure of the importance of each property, especially relative to the others,

as well as their trade-offs. If for example a natural network has a clustering coefficient

that is very close to the theoretical maximum, it means that the clustering coefficient

provides some advantage, or that it is correlated with some other property that is

important for the function of the network. Otherwise, natural evolution would force

it to drift to an average value. In addition, since several of the properties of the

network require different or even contradicting topologies, usually there are limits on

how much of each property a network may have. Knowing where these trade-offs lie

can give us a clear picture of how important each property is relative to the others.

The second reason is for optimizing the way individual elements of a network

are connected and how they communicate, especially on a large scale. Knowing the

mechanisms with which specific properties affect the function of a networked system,
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it will be easier to optimize its function or design it in such a way that all constraints

are simultaneously satisfied with the given trade-offs. In biological and chemical

reaction systems, there is yet another compelling reason: Since the structure of a

natural system has been shaped by evolution, we have the chance to see the interplay

between structure and evolvability, and how they affect each other [19, 35, 50], or

even find evidence of different environmental conditions that may have shaped it [36].

On a different note, bioengineers have long started building simple biological net-

works, both as part of the cell [24] and in vitro [25, 38], but despite the many efforts,

they remain relatively small so far [57, 58], especially compared with the natural

networks, which are orders of magnitude larger and more complex [71]. Two likely

reasons why engineering biological circuits is so difficult are the unwanted physical

interactions among unrelated molecules, and the fact that noise is often times much

stronger than the signal itself.

Biological networks make use of a variety of strategies in order to reduce noise,

and to increase the robustness to random changes, but these mechanisms may be

used for many different purposes, and are not yet well understood [39, 71]. The

ones that sense the environment and process the information received are usually

implemented by changing the number of molecules that are specific to each function.

More generally, in networks where the different parts are free to physically move

in a solution, and where interactions between different molecules require them to

come in contact, there are many unmodeled interactions, since there are no dedicated

information-transmitting mechanisms. Everything depends on physical presence of

molecules, which is by definition random and displays significant internal noise [55].

Relations between different entities may also depend on their physical shape, and the

different molecules that constitute the network may have compatible shapes, making

interactions easier. As a result, many molecules temporarily form complexes that

seem to serve no purpose, and in addition, prevent the respective molecules from

transmitting information, or helping the cell achieve a useful function.
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Another problem is that these kinds of systems are very prone to noise from many

different sources [54, 56]. Although noise has been shown to be a feature and not a

drawback in some cases [23], it is usually detrimental to the function of the network,

since it may reduce its reliability and accuracy in reading external stimuli, or reacting

to environmental inputs. Both of these problems are accentuated when there are few

molecules of each type and there are many types of each molecule, as actually happens

in most biological systems, and the number of molecules of each type cannot be a

continuous variable, making accuracy and reliability even harder to achieve [54]. In

certain contexts, it has also been shown that noise imposes limits to the accuracy of

a biological network [42].

In this thesis, we tackle both aforementioned problems from a network perspective.

We first find the extremal properties that are of interest in the function of many

networks, and then we study the structure that optimizes them. Then, we design

networks that minimize crosstalk and maximize noise immunity. We also study in

detail how noise propagates in such networks. Finally, we distinguish between two

types of variance sources that contribute to a nondeterministic output, the first being

the noise in the inputs, and the second being variance in the network parameters.

These two types of variance affect the network outputs in fundamentally different

ways.

1.2 Thesis Outline and Contributions

Chapter 2 introduces some basic notions and definitions from network theory, stochas-

tic calculus, and dynamical systems theory that will be used throughout this thesis.

It also revisits some properties of graphs, Wiener processes, and linear dynamical

systems that will be used in later chapters.

Chapter 3 focuses on theoretical results regarding the structural characteristics of

general graphs. It provides a detailed study of the extremal properties of networks,
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along with methods on how to build the networks that achieve these bounds. We

describe the structure of connected graphs with the minimum and maximum average

distance, radius, diameter, betweenness centrality, efficiency and resistance distance,

and average clustering, given their order and size. We find tight bounds on these

graph qualities for any arbitrary number of nodes and edges and analytically derive

the form and properties of such networks. We determine if a graph with one or more of

these extremal properties is unique or not, depending on the property and the graph’s

order and size. We also measure the sensitivity to rewiring of each architecture, and

how robust each structure is with regard to changes in the graph.

Chapters 4 and 5 are devoted to the study of networks where information is trans-

mitted through a means that is accessible by all the individual units of the network.

Such networks include biological and chemical reaction networks, where all reactions

take place in a solution in which all molecules may physically interact with all oth-

ers, based on their physical proximity. Crosstalk is defined as the set of unwanted

interactions among the different constituents of the network and is present in vari-

ous degrees in every such system. Using concepts from graph theory, we introduce

a quantifiable measure for sensitivity to crosstalk, and analytically derive the struc-

ture of the networks in which it is minimized. It is shown that networks with an

inhomogeneous degree distribution are more robust to crosstalk than corresponding

homogeneous networks. We provide a method to construct the graph with the min-

imum possible sensitivity to crosstalk, given its order and size. For networks with a

fixed degree sequence, we present an algorithm to find the optimal interconnection

structure among their vertices.

In Chapter 5, we describe how noise propagates through a network. Using stochas-

tic calculus and dynamical systems theory, we study the network topologies that ac-

centuate or alleviate the effect of random variance in the network for both directed

and undirected graphs. Given a linear tree network, we show that the variance in

the output is a convex function of the poles of the individual nodes, so it can eas-
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ily be optimized with existing techniques [17]. Cycles create correlations which in

turn increase the variance in the output. Feedforward and feedback have a limited

effect on noise propagation when the respective cycle is sufficiently long. Crosstalk

between the elements of different pathways helps reduce the output noise, but makes

the network slower. Next, we study the differences between disturbances in the inputs

and disturbances in the network parameters, and how they propagate to the outputs.

Finally, we show how noise correlation can affect the steady state of the system in

chemical reaction networks with reactions of two or more reactants, each of which

may be affected by independent or correlated noise sources.

Chapter 6 concludes the analysis by giving an overview of the results presented

here, and by showing future directions and ideas for further research.
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Chapter 2

Background and Preliminaries

This chapter provides a brief introduction to the mathematical preliminaries that will

be used throughout this thesis. We will revisit some basic definitions and properties

from graph theory, linear control systems, and stochastic calculus.

2.1 Graph Theory

A graph (also called a network) is an ordered pair G = (V , E) comprised of a set

V = V(G) of vertices together with a set E = E(G) of edges that are unordered 2-

element subsets of V . Two vertices u and v are called neighbors if they are connected

through an edge ((u, v) ∈ E) and in this case we write u− v, otherwise we write u/−v.

A graph is simple when all edges connect two different vertices, there is at most one

edge connecting any pair of vertices, and edges have no direction. A weighted graph

associates a weight with every edge. In this thesis, when a graph is weighted, all

weights will be restricted to positive real numbers. The neighborhood Nu of a vertex

u is the set of its neighbors. The degree of a vertex is the number of its neighbors.

A vertex is said to have full degree if it is connected to every other vertex in the

network.

A network is assortative with respect to its degree distribution when the vertices

with large degrees are connected to others that have large degrees and vertices with

small degrees are connected to vertices with small degrees [47]. When vertices with
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small degrees connect to vertices with large degrees and vice versa, then the network

is called disassortative. The order N = N(G) of a graph G is the number of its

vertices, N = |V(G)|. A graph’s size (denoted by m = |E(G)|), is the number of its

edges. We will denote a graph G of order N and size m as G(N,m) or simply GN,m.

A complete graph is a graph in which each vertex is connected to every other. The

edge density of a graph is defined as ρ = m/
(
N
2

)
, representing the number of present

edges, as a fraction of the size of a complete graph, which is the total number of

vertex pairs. A clique in a graph is a subset of its vertices in which every vertex pair

in the subset is connected. The clique order is the number of vertices that belong to

it. A clique that consists of three vertices (and three edges among them) is called a

triangle. A path is a sequence of consecutive edges in a graph and the length of the

path is the number of edges traversed. A path with no repeated vertices is called a

simple path. A tree is a graph in which any two vertices are connected by exactly one

path.

The distance between two vertices u and v (usually denoted by d = d(u, v)), is

the length of the shortest path that connects these two vertices. A cycle is a closed

(simple) path, with no other repeated vertices or edges other than the starting and

ending nodes. A cycle is called chordless when there is no edge joining two nodes

that are not adjacent in the cycle. A full cycle is a cycle that includes all the vertices

of the network. A graph G is connected if for every pair of vertices u ∈ V(G) and

v ∈ V(G), there is a path from u to v. Otherwise the graph is called disconnected.

We will be focusing exclusively on connected graphs, since every disconnected graph

can be analyzed as the sum of its connected components. If the distance between u

and v is equal to k, then these vertices are called k-neighbors, and the set of all pairs

in the graph that are k−neighbors is denoted by Ek. The eccentricity of a vertex u

is the maximum distance of u from any other vertex in the graph. A central vertex

of a graph is a vertex that has eccentricity smaller or equal to any other node. A

network may have many central vertices, all of which are considered its centers. The
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eccentricity of a central vertex is called the graph radius. The graph diameter is

defined as the maximum of the distances among all vertex pairs in the network.

A cut is a partition of the vertices of a graph into two disjoint subsets. A cut

set of the cut is the set of edges whose end points are in different subsets of the cut.

A cut vertex of a connected graph is a vertex that if removed, (along with all edges

incident to it) produces a graph that is disconnected. An edge is rewired when we

change the vertices it is adjacent to. A single rewiring takes place when we change

one of the vertices that is adjacent to it, and a double rewiring occurs when we change

both of them. A subgraph H of a graph G is called induced if V(H) ⊆ V(G) and for

any pair of vertices u and v in V(H), (u, v) ∈ E(H) if and only if (u, v) ∈ E(G). In

other words, H is an induced subgraph of G if it has the same edges that appear in G

over the same vertex set. Furthermore, if the vertex set of H is the subset S of V(G),

then H can be written as G[S] and is said to be induced by S. Finally, two graphs

G and H are called isomorphic if there exists a bijective function f : V(G) → V(H)

such that

(u, v) ∈ E(G) ⇐⇒ (f(u), f(v)) ∈ E(H). (2.1)

Two graphs that are isomorphic have by definition the same order and size, and are

considered identical. A thorough treatment of the graph theory notions can be found

in any introductory graph theory text, including [31] and [48].

2.2 Wiener Processes

In this section, we will be describing some elementary properties of the Wiener process

that will be used. Let ξn, n ∈ N be a sequence of independent identically distributed

random variables with zero mean and unit standard deviation. Their sum is

Sn =
n∑

k=1

ξn. (2.2)
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We now define the piecewise constant function

Wt = lim
n→∞

S⌊nt⌋√
n

(2.3)

with t ∈ R+. According to the Central Limit Theorem, the distribution of Wt is

independent of the distribution of the sequence of ξn, as long as they have finite

variance, and are identically distributed and independent of each other. The random

process Wt is normally distributed with variance equal to the time interval it which

it is measured:

Wt = lim
n→∞

S⌊nt⌋√
nt

√
nt√
n

=⇒ Wt ∼ N (0, t). (2.4)

The difference of two sums Sb−Sa with a < b has the same distribution of the random

variable Sb−a and as a result

Wb −Wa ∼ Wb−a 0 ≤ a < b. (2.5)

Lastly, the random variablesWb−Wa andWd−Wc are independent when 0 ≤ a < b ≤

c < d, since the respective sums consist of independent random variables. More details

on the properties of the Wiener process can be found in [44]. An excellent treatment

of stochastic methods in physics, chemistry, and biology, along with examples, can

be found in [26].

2.3 General Response of Linear Systems

In this section, we briefly revisit some basic tools from control systems theory. Con-

sider a linear time invariant system with impulse response h(t, s). The general form

of the output when the input signal is u(t) is

y(t) =

∫ t

−∞
h(t, s)u(s)ds, (2.6)
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where h(t, s) is the impulse response of the dynamical system [6]. A system with m

inputs, n states, and p outputs can be written in the form

S :


dx
dt

= Ax+Bu

y = Cx,

(2.7)

where the dimensions of matrices A, B, and C are n×n, n×m, and p×n, respectively.

We will always assume that the systems we study are stable, which in this context

means that the A matrix has eigenvalues with strictly negative real parts. The output

of the system at time t when the input is an impulse applied at time s is

h(t, s) = CeA(t−s)B (2.8)

and equation (2.6) can be simplified to

y(t) = C

∫ t

−∞
eA(t−s)Bu(s)ds. (2.9)

When the network in question is comprised of elements whose outputs obey linear

time-invariant differential equations, we can also find the Fourier transform of the

network output:

H(ω) =

∫ +∞

−∞
h(t)e−jωtdt, (2.10)

where h(t) = h(t, 0) is the impulse response of the system and ω = 2πf is the angular

frequency. If the system is causal (h(t) = 0 for t < 0), then the expression above can

be simplified by replacing the lower limit of the integral with zero.

When the input is a stationary stochastic process, its output will be a stochastic

process as well. We are interested in the mean, the variance, and occasionally the

higher central moments of the system output once the system has reached its equi-
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librium state. The mean E[y(t)] and the variance V[y(t)] of the output y(t) in the

steady state will be denoted as E[y] and V[y], respectively:

E[y] = lim
t→∞

E[y(t)] and V[y] = lim
t→∞

V[y(t)]. (2.11)

If we know the impulse response of the system, the mean of the output vector can be

expressed as

E[y(t)] = E
[∫ t

−∞
h(t− s)u(s)ds

]
=

∫ t

−∞
h(t− s) · E [u(s)] ds,

(2.12)

where in the last equation we have interchanged the expectation with the integration

operator, assuming that the input functions are non-pathological, and the quantities

are finite, such that all the integrands are measurable in the respective measure

space (Fubini’s theorem, [44]). In what follows, we will always assume that all such

conditions are satisfied. Furthermore, we will disregard any nonzero mean values in

the outputs when the system is linear. The covariance matrix of the outputs, when

applying the same input, is

V[y(t)] = E[y(t) · yT (t)]− E[y(t)] · E[yT (t)]

=

∫ t

−∞

∫ t

−∞
h(t− r)

(
E
[
u(r)uT (s)

]
− E [u(r)]E

[
uT (s)

])
hT (t− s)drds.

(2.13)

Assuming that u(t) = 0 for t < 0, and according to equation (2.11),

V[y] = lim
t→∞

∫ t

0

∫ t

0

h(t− r)
(
E
[
u(r)uT (s)

]
− E [u(r)]E

[
uT (s)

])
hT (t− s)drds.

(2.14)
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Chapter 3

Extremal Properties of Complex
Networks

3.1 Introduction

Complex networks, as abstract models of large dynamical systems, match the struc-

ture of real-world networks in many diverse areas. These include both natural and

engineered systems such as gene regulation, protein interaction networks, food webs,

economic and social networks and the internet, to name a few (see [65] and references

therein). Complex systems can be described as interconnections of simpler elements,

which in turn can be analyzed abstractly as graphs.

In this chapter, we are interested in the structural properties of networks, regard-

less of the nature of their individual parts. This allows the results developed here to

be applicable in a wide range of different disciplines, such as neuroscience, biology,

social sciences, and engineering. The properties studied are of general interest, since

many network functions are sensitive to them: the average distance, betweenness

centrality, radius, diameter, efficiency, graph resistance, and average clustering. De-

pending on the application, we usually want to minimize or maximize one or more

of the above, because they are directly implicated in some performance metric of the

network. They are correlated with how fast the system responds to different input

stimuli [65] and how robust it is to the failure of individual subsystems, due to ran-
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dom failures or targeted attacks [1, 18, 28]. They also indicate how efficient message

propagation is across a network [7, 41], how easy it is for dynamical processes that

require global coordination and information flow (like synchronization or computa-

tion) to take place, and how reliable a transmitted message is in the presence of noise

[65]. Although these structural properties do not take into account the specifics of

the various systems, focusing on the structural patterns of the network topology can

give a valuable insight on how to optimize the network function, while obeying other

limitations. In general, networks need to obey many different constraints, and taking

into account all of them may result in different optimal structures, depending on the

importance (weight) given to each constraint [14].

3.2 Networks with the Minimum and Maximum

Average Distance

3.2.1 Minimum Average Distance

The average distance of a network is an important property, since it is a direct indica-

tor of how different parts of the network communicate, and exchange information. A

small average distance is a proxy for improved synchronizability, efficient computation

and signal propagation across the network [65]. In this section, we will analytically

compute the minimum average distance of a graph of fixed order and size, and find

sufficient conditions in order to achieve that minimum.

Lemma 1. If two connected graphs G and H with V(G) = V(H) have edge sets E(G)

and E(H), respectively, such that E(G) ⊆ E(H), then D̄(G) ≥ D̄(H), where D̄ denotes

the average distance of the graph.

Proof. If we start with graph G = G(N,m) with average distance D̄(G), and introduce

one additional edge, the new graph G ′ = G ′(N,m + 1) will have an average distance

D̄(G ′) < D̄(G), for N − 1 ≤ m ≤
(
N
2

)
− 1. The additional edge will connect two
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previously non-neighboring vertices s and t, changing their distance to d′(s, t) = 1.

Since they were not connected before, their distance was d(s, t) ≥ 2, so d′(s, t) <

d(s, t). For every other pair of vertices u and v, the new edge can only create new

shortest paths, so d′(u, v) ≤ d(u, v). The total average shortest path length of the

new graph is:

D̄(G ′) = 1(
N
2

) ∑
(u,v)∈V2(G′)

u̸=v

d′(u, v) <
1(
N
2

) ∑
(u,v)∈V2(G)

u̸=v

d(u, v) = D̄(G). (3.1)

Adding new edges as above, we can start from graph G, and successively construct

the graph H, which will have a strictly smaller average distance.

Lemma 2. The star graph is the only tree of order N that has the smallest average

distance equal to D̄star = 2− 2
N
.

Proof. A tree has exactly N − 1 edges among its N vertices. There will be exactly

N − 1 pairs of vertices with distance d = 1, and
(
N−1
2

)
vertex pairs that are not

connected, with distances d(u, v) ≥ 2. The star graph achieves this lower bound, and

has the minimum possible average distance.

D̄star =
1(
N
2

) ∑
(u,v)∈V2

u̸=v

d′(u, v) =
1(
N
2

) (N − 1 + 2

(
N − 1

2

))
= 2− 2

N
. (3.2)

It is also unique: If a tree is not a star, there is no vertex that is connected to all the

remaining vertices. In this case, there are at least two vertices with distance d ≥ 3,

since in every tree there is a unique path connecting each vertex pair, and at the same

time the number of neighboring vertices is the same as in the star graph.

Using the same method as above, we can find the smallest average distance of a

graph with N vertices and m edges, which we denote as D̄min(N,m).

Theorem 1. The minimum possible average distance of a graph G(N,m) is equal to

D̄min(N,m) = 2− m

(N2 )
.
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Proof. The graph G(N,m) has m pairs of vertices with distance exactly 1, and the

rest of the pairs of vertices (u, v) have distances d(u, v) ≥ 2. Consequently, its average

distance is

LG ≥
m+ 2

((
N
2

)
−m

)(
N
2

) = 2− m(
N
2

) . (3.3)

This lower bound can always be achieved. A connected graph G(N,m) with at least

one vertex with degree d = N − 1 has the star graph as an induced subgraph, so all

non-neighboring vertices will have distance equal to 2. All connected vertices have

distance equal to 1, leading to the lower bound of equation (3.3).

Corollary 1. If a graph G has at least one vertex pair (u, v) with distance d(u, v) ≥ 3,

then its average distance is LG > D̄min(N,m).

Proof. The number of pairs with distance 1 is fixed, equal to the graph’s size. All

other vertices have a distance of at least 2, and the minimum is achieved when all

non-neighboring pairs have distance equal to 2.

The next three corollaries present sufficient conditions for a graph to have the

smallest average shortest path length.

Corollary 2. In a network with the smallest average distance, all vertex pairs are

either connected, or connected to a common third vertex.

Proof. From Corollary 1, all vertices that are not connected through an edge have

distance equal to 2, which means that they have a common neighbor.

Corollary 3. A cut of a minimum average distance graph G divides its vertices into

two disjoint sets where, in at least one of the sets, all vertices have at least one

neighbor in the other.

Proof. Assume that in both sets of a graph G there is at least one vertex which has

no neighbors to the other set. The distance between these two vertices is at least

3, and according to Corollary 1, graph G will not have the smallest average shortest

path length.
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Corollary 4. Assume that the graph G of order N has the smallest average distance.

The average degree ḡNu
of the neighbors of vertex u which has degree equal to du

satisfies the inequality

ḡNu
≥ N − 1

du
. (3.4)

Proof. Since every vertex u of G has distance exactly 2 with all its non-neighbors,

the vertices in its neighbor set Nu = {V1, . . . , Vdu} should be connected to all the

remaining vertices. In other words, all the remaining N −1−du vertices of the graph

should have at least one common neighbor with u. Each neighbor Vk of u with degree

gk has gk− 1 neighbors other than u, some of which may belong to Nu. If we sum up

the number of neighbors of all these vertices (excluding u), we get:

∑
k∈Nu

(gk − 1) ≥ N − 1− du∑
k∈Nu

gk ≥ N − 1

duḡNu
≥ N − 1

ḡNu
≥ N − 1

du
.

(3.5)

Corollary 5. Networks that have the smallest possible average shortest path length

are disassortative with respect to their degrees.

Proof. It follows directly from equation (3.5) and the definition of a disassortative

network.

All nonisomorphic networks of order N = 5 and size 4 ≤ m ≤ 10 with the

minimum average shortest path length are shown in Figure 3.1.
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(a) m=4 (b) m=5 (c) m=6

(d) m=7 (e) m=8

(f) m=9 (g) m=10

Figure 3.1: All connected networks with 5 vertices and 4 ≤ m ≤ 10 edges with the smallest
average shortest path length. In these graphs, all nodes that are not connected are second
neighbors.

3.2.2 Maximum Average Distance

The networks with the largest average distance have a very different topology. They

consist of two distinct connected subgraphs, and if we remove any edge, the network

either becomes disconnected, or the previously connected vertices become second

neighbors.

Definition 1. We call a connected graph of order N and size m almost complete

when its largest clique has order N − 1 or N − 2. We distinguish these two cases by

calling them type I and type II, respectively. In order to be almost complete, a graph

needs to have
(
N−1
2

)
+ 1 ≤ m ≤

(
N
2

)
− 1 (type I), or

(
N−2
2

)
+ 2 ≤ m ≤

(
N−1
2

)
(type

II) edges. The vertices of the largest clique are called central vertices, whereas the

vertices not belonging to it are called peripheral vertices.

The two types of almost complete graphs are shown in Figure 3.2.



26

(a) Type I (b) Type II

Figure 3.2: (a) The type I almost complete graph consists of a clique of N − 1 vertices,
and one peripheral vertex (shown in red) that connects to them. (b) The type II almost
complete graph of order N consists of a clique of order N − 2, and two additional vertices
that connect to it (and possibly to each other).

Lemma 3. Assume that a vertex u with degree du is added to a network, with its

neighbor set being Nu. Rewiring edges of G such that they connect previously non-

neighboring vertices in Nu cannot decrease its eccentricity or the average distance of

u with the other vertices in the network.

Proof. Connecting any two vertices in Nu will not change the distance of u with any

of them. Furthermore, disconnecting a pair of vertices, at least one of which is not in

Nu, can only increase the distance of u with any of the vertices that do not belong to

the set of its neighbors.

More generally, connecting two non-neighboring vertices has the smallest impact

on their average distance if they have a common neighbor. Rewiring an edge in G will

increase the distance of the initially connected pair (u1, v1) to d (where d ≥ 2), and

decrease the distance of the new pair of vertices (u2, v2) with a common neighbor by
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1. The overall difference will be

∆d(u1, v1) + ∆d(u2, v2) = (dnew(u1, v1)− dold(u1, v1))

+ (dnew(u2, v2)− dold(u2, v2))

= d− 2

≥ 0.

(3.6)

Combining Lemma 3 with equation (3.6), we can easily see that for a fixed neigh-

borhood Nu of a vertex u, we can increase the eccentricity of u and at the same time

the average distance of the graph it belongs to, simply by rewiring edges to connect

vertices in Nu, until they form a clique.

Lemma 4. All connected graphs of order N ≥ 2 and size
(
N−1
2

)
+1 ≤ m ≤

(
N
2

)
have

the same average distance, equal to

D̄(N,m) = 2− m(
N
2

) . (3.7)

Proof. Assume that the largest clique in G consists of C vertices, which we will call

central vertices. The rest of the nodes belong to the set P of peripheral vertices, with

|P| = P and they may form connections to the central vertices and among themselves.

Since m ≥
(
N−1
2

)
+ 1, every vertex in the graph is either a central or a peripheral

vertex, and as a result

C + P = N. (3.8)

The average distance of equation (3.7) is equal to the minimum possible distance of a

graph as in equation (3.3), and it is achieved if and only if all non-neighboring vertices

have distance equal to 2. The only way that the network will not have an average

distance equal to D̄min is when there is a pair of vertices A and B with shortest path

length of at least 3. If there exist two such vertices, then from equation (3.3) and
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Corollary 1 we conclude that the maximum average distance of the graph will be

D(G) > 2− m(
N
2

) . (3.9)

The central vertices are by definition fully connected to each other, and any peripheral

vertex has distance two with all the central vertices it is not connected with. So, the

only case where two non-neighboring vertices do not have any common neighbors is

when both of them are peripheral vertices. We will now show that this is not possible.

For every peripheral vertex u, there are γu central vertices that are not connected

to it. Also, let h be the total number of non-neighboring peripheral vertices. The

total number of non-neighboring vertex pairs is

γ = h+
∑
u∈P

γu (3.10)

with

γ =

(
N

2

)
−m

≤
(
N

2

)
−
(
N − 1

2

)
− 1

= N − 2.

(3.11)

In addition,

h ≥ 1 (3.12)

since A and B are not connected. Combining all the equations above:

h+
∑
u∈P

γu ≤ N − 2 =⇒
∑
u∈P

γu ≤ N − 3

=⇒ γA + γB +
∑
u∈P

u̸=A,u ̸=B

γu ≤ N − 3.
(3.13)

Every peripheral vertex in P has at least one central vertex that it is not connected
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to, so

γu ≥ 1 ∀u ∈ P (3.14)

and ∑
u∈P

u̸=A,u̸=B

γu ≥ P − 2. (3.15)

Based on the last two inequalities combined with inequality (3.13), we can derive an

upper bound for the sum of γA and γB:

γA + γB ≤ N − P − 1

≤ N − 3
(3.16)

because P ≥ 2. But A and B have by assumption no common neighbors in the clique

or among any peripheral vertices, which means that

γA + γB ≥ N − 2 (3.17)

which is clearly a contradiction.

Corollary 6. There are exactly
⌊
N−2
2

⌋
non-isomorphic graphs of order N and size

m =
(
N−1
2

)
with the largest possible average distance, equal to

D̄max(N,m) = 2− m− 1(
N
2

) . (3.18)

All other graphs of the same order and size have the minimum possible average dis-

tance among their vertices, equal to

D̄min(N,m) = 2− m(
N
2

) . (3.19)

Proof. In a graph of size m =
(
N−1
2

)
, the total number of missing edges among all
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the pairs of vertices is

γ =

(
N

2

)
−
(
N − 1

2

)
= N − 1. (3.20)

Keeping the same notation as before, we sum up all the missing edges among the

peripheral vertices, and among peripheral and central vertices.

h+ γA + γB +
∑
u∈P

u̸=A,u ̸=B

γu = N − 1 (3.21)

under the constraints

γA + γB ≥ N − P,
∑
u∈P

u̸=A,B

γu ≥ P − 2 and h ≥ 1. (3.22)

These inequalities can only be satisfied in equation (3.21) if all variables are equal to

their respective lower bounds, namely

γA + γB = N − P,
∑
u∈P

u ̸=A,B

γu = P − 2 and h = 1. (3.23)

The only unknown variable above is P . Since A and B are not neighbors, there is

only one (h = 1) edge missing among peripheral vertices. If we assume that P ≥ 3,

then A and B have exactly P − 2 common neighbors, which are peripheral vertices

that are connected to both of them. This would clearly contradict our assumption.

Consequently, A and B are the only peripheral vertices and P = 2. Such a graph is

shown in Figure 3.3(a). It is clear from the previous analysis that

dA + dB + γA + γB = 2(N − 2) =⇒ dA + dB = N − 2 (3.24)

with dA, dB ≥ 1 because the graph is connected. Setting dA ≤ dB in order to count
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A B

Peripheral Vertices

dA dB

(N-2)-Complete Graph

(a) (b)

Figure 3.3: (a) A network with size m =
(
N−1
2

)
and largest possible average distance.

Vertices A and B are the only vertices without any common neighbors, and dA+dB = N−2,
the number of central vertices. (b) The graph of order N = 12 and size m = 24, with the
largest average shortest path length. It consists of a complete graph of order C = 6 (blue),
and a path graph of order P = N−C = 6 (green). Four edges (α = 4) connect the complete
subgraph to one of the two ends of the path graph.

only the non-isomorphic graphs, it is clear that there are exactly
⌊
N−2
2

⌋
pairs of

degrees dA, dB that satisfy the last equation.

Theorem 2. The graph of order N and size N − 1 ≤ m ≤
(
N−1
2

)
with the largest

average distance among its vertices consists of a complete subgraph of order C, and

a path subgraph of order P = N − C. The two subgraphs are connected through α

edges, as shown in Figure 3.3(b). In addition, the graph with the maximum average

shortest path length is unique for N − 1 ≤ m ≤
(
N−1
2

)
− 1.

Proof. Every arbitrary cut S will produce two disjoint subgraphs, both of which need

to be maximum distance graphs for the respective orders and sizes. More formally, if

A is the set of all networks of all orders and sizes with the maximum possible average

shortest path length and H is an induced subgraph of a graph G, then

G ∈ A ⇐⇒ G −H ∈ A ∀ H ⊆ G. (3.25)

The above equation is a necessary and sufficient condition for maximum average
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distance. If it does not hold for some subgraph J ⊆ G, then we would be able to

rearrange the edges in it, so that the average distance among the vertices in the

subgraph is increased. Since this would also increase the average distance of G − J

with the vertices of J , the overall average distance of G would increase.

Now suppose that we want to find the maximum average distance graph of order

N . According to the equation above, and setting one of the vertices u as the chosen

subgraph (of unit order), a graph with order N and size m has the largest possible

average distance (in which case it is denoted Gmax) when

Gmax(N,m) = argmax
G∈C(N,m)

 ∑
(u,v)∈V2(G)

d(u, v)

 , (3.26)

where C(N,m) is the set of all possible connected graphs of order N and size m. But

from equation (3.25), and considering a subgraph H of order 1, we can write the last

condition as

Gmax(N,m) = max
Nu

[
Gmax(N − 1,m− |Nu|) ∪H(1,Nu)

]
. (3.27)

We will now find the neighborhood Nu of vertex u in order to yield the graph

with the largest average distance. We will use induction. For N < 4, the theorem

holds trivially. For order N = 4, it is easy to check that graphs of all sizes have the

structure of the theorem.

Assume that all the maximum average distance graphs up to order N0 and size

m0 have the same form described above, where

N0 = N − 1 and N0 − 1 ≤ m0 ≤
(
N0

2

)
. (3.28)

It will be shown that all networks of order N also have that same form, making use of

equations (3.25) and (3.26). If du = 1, then we can connect it to the vertex w with the
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largest eccentricity. In the resulting graph, u will now have the largest eccentricity

and average distance to the other vertices. At the same time the new graph will have

the form stated in the theorem and the sum of distances of u with the rest of the

vertices will be

Du =
∑

v∈V(G)
v ̸=u

d(u, v) = 1 +
∑

v∈V(G)
v ̸=u,w

(1 + d(w, v)). (3.29)

If the degree of u is equal to the order of the clique, the resulting graph will have the

largest average distance if we connect it to all the vertices of the clique, as shown in

Lemma 3.

If du is smaller than the order of the clique, then u could be connected to clique

vertices only, path vertices only, or a combination of both. None of the above is an

optimal configuration, since they do not satisfy condition (3.25). The same argument

holds when du is larger than the size of the clique. In this case we can subtract the

order of the clique C, and consider a new vertex with degree du − C, repeating the

process if needed. According to the above analysis, the new graph will either have

the form stated in the theorem, or it will not have the largest average distance.

Finally for graphs with size N − 1 ≤ m ≤
(
N−1
2

)
, the structure that yields the

largest average distance is unique. Using induction again, we see that for N = 4,

the claim holds. For N ≥ 5, the graph with maximum average distance is unique for

N − 1 by the induction hypothesis, and adding one extra vertex u with du = 1 or

du = C yields the same graph in both cases:

Gmax(N − 1,m− C) ∪H(1, C) ≡ Gmax(N − 1,m− 1) ∪H(1, 1). (3.30)

Note that according to condition (3.25), the network should have the same form

no matter which subset of vertices we remove. The form of a graph with the largest

average distance as stated in Theorem 2 is the one that satisfies that requirement.
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The networks with the maximum average distance can be described as a combination

of a type I almost complete subgraph and a path subgraph. We can now summarize

the form of the networks with the largest average distance for any number of edges.

Corollary 7. A graph G(N,m) with the largest average distance consists of a clique

connected to a path graph as described in Theorem 2 (see Figure 3.3(b)) and is unique

for N − 1 ≤ m ≤
(
N−1
2

)
− 1. If m =

(
N−1
2

)
, then it consists of a clique of order N − 2

and two peripheral vertices as shown in Figure 3.3(a). If m ≥
(
N−1
2

)
+ 1, then all

graphs have the same average distance.

Corollary 8. Networks with the largest average shortest path length are assortative

with regard to their degrees.

The maximum possible average shortest path length of a graph is computed in

the next corollary, where we also find the order of its clique and path subgraphs.

Corollary 9. The average shortest path length among the vertices of a network with

the largest possible average distance Gmax(N,m) of order N and size m, is equal to

D̄max(N,m) =

(
C
2

)
+
(
P+1
2

)
+ (C − α)P +

(
P+1
3

)(
N
2

) , (3.31)

where

C =

⌊
3 +
√
9 + 8m− 8N

2

⌋
(3.32)

is the number of vertices that belong to the clique,

P = N − C (3.33)

is the number of vertices of the path subgraph, and

α = m− P + 1−
(
C

2

)
(3.34)

is the number of edges that connect the clique with the path graph.
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Proof. We will find the lengths of the shortest paths among all vertices, add them,

and finally divide them by their number to find the average. First, we need to find

the order of the clique. Summing up all the edges of the network, we have

(
C

2

)
+ α + (P − 1) = m. (3.35)

The total number of vertices is

C + P = N (3.36)

and replacing P in equation (3.35), we get

(
C

2

)
+ α + (N − C − 1) = m (3.37)

where C and α are integers satisfying the inequalities

1 ≤ C ≤ N − 1 , 1 ≤ P ≤ N − 1 (3.38)

and

1 ≤ α ≤ C − 1, (3.39)

respectively. Solving for C:

C2 − 3C + (2N − 2m+ 2− 2α) = 0. (3.40)

One way to find the solution of the second-order equation above, is to set α equal

to its smallest possible value, and solve for C, keeping in mind that it is always a

positive integer. As we add more edges, α increases while C stays unchanged, until

the vertex of the path subgraph is connected to all the vertices of the clique. At this

point, C increases by one and α changes from C − 1 to 1. We set α = 1, and taking
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into account that C ∈ N∗,

C =

⌊
3 +
√
9 + 8m− 8N

2

⌋
. (3.41)

We can now compute the number of the vertices that do not belong to the clique,

and the number of edges between the two subgraphs α from equation (3.35). The

distance among each pair of the C vertices of the clique is 1, so the sum of the pairwise

distances is

D1 =

(
C

2

)
. (3.42)

The sum of the shortest path lengths of the path subgraph vertices to the clique

vertices is

D2 =
P∑

x=1

[xα + (x+ 1)(C − α)] =
P∑

x=1

[(C − α) + xC]

= P (C − α) + C

(
P + 1

2

)
.

(3.43)

Finally, the sum of the shortest path lengths of nodes of the path subgraph is

D3 =
P∑

x=1

x∑
y=1

(y − x) =
P∑

x=1

x−1∑
z=0

z =
P∑

x=1

(
x

2

)
=

(
P + 1

3

)
. (3.44)

Adding all the sums of all the shortest path lengths, and dividing by the total number

of vertex pairs, we get

D̄max(N,m) =

(
C
2

)
+ C

(
P+1
2

)
+ P (C − α) +

(
P+1
3

)(
N
2

) . (3.45)

It is easy to show that when m ≥
(
N−1
2

)
, the formula for the minimum and

maximum average distance give the same result for the average distance, in accordance

with Lemma 4. In that case, equation (3.31) assumes that the network is an almost

complete graph, but this graph has the same average distance as any other graph of
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Figure 3.4: Tight bounds on the average distance of a graph with N = 40 vertices and
39 ≤ m ≤ 780 edges. These bounds have been computed analytically. The average shortest
path length for random graphs has been estimated by finding the mean shortest path length
of 104 randomly generated graphs of the same order and size. The expected average distance
of a random graph is very close to the minimum, even for relatively sparse networks. For
graphs with edge density ρ > 0.25, it is virtually identical to the minimum one.

the same order and size. An example that shows the tight upper and lower bounds

of the average distance of a graph with N = 40 and 39 ≤ m ≤ 780 vertices is shown

in Figure 3.4.

3.3 Betweenness Centrality

The betweenness centrality of a vertex or an edge is a measure of how important

this vertex or edge is for the communication and information propagation among the

different parts of the network. It is based on counting the number of shortest paths

among all pairs of vertices a given vertex or edge is a part of [48]. The betweenness

centrality of a network is particularly important when we have message passing (or
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more generally signal propagation) among various nodes of a network, since it indi-

cates how important each vertex or edge is for the function of such a network, and

how robust it is with respect to vertex or edge removal [28]. The vertex betweenness

centrality is defined as

B(u) =
∑

(s,t)∈V2(G)
s̸=u̸=t

σst(u)

σst
, (3.46)

where σst is the number of shortest paths between vertices s and t and σst(u) is the

number of shortest paths between s and t that go through vertex u. Equation (3.46)

computes the total number of shortest paths of all the pairs of vertices in the graph

that go through a given vertex u. If there is more than one such path, we divide

by their total number σst, since they are assumed to be equally important. The

betweenness centrality of a vertex is sometimes normalized by the total number of all

vertex pairs that we took into account for computing it, which is equal to
(
N−1
2

)
.

Bnorm(u) =
1(

N−1
2

) ∑
(s,t)∈V2(G)

s̸=u̸=t

σst(u)

σst
. (3.47)

The vertex betweenness is always nonnegative. The only vertices with betweenness

centrality equal to zero are the ones with degree equal to 1. In order to assess the

betweenness centrality of a network, we find the average of all vertices:

Bv(G) = 1

N

∑
u∈V(G)

B(u). (3.48)

Networks with a large betweenness centrality usually have few vertices that play

a major role in the communications among every other vertex. Conversely, small

betweenness centrality indicates that the vertices of the network tend to be equally

important or that there are many different shortest paths among the various parts of

the network.

The edge betweenness centrality is similarly defined as the sum of the fraction of
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shortest paths of all vertex pairs in the network that go through a given edge:

B(f) =
∑

(s,t)∈V2(G)
s̸=t

σst(f)

σst
(3.49)

where in this case σst(f) is the number of shortest paths between s and t that go

through edge f . The edge betweenness centrality of the network is defined in the

same manner as before:

Be(G) = 1

m

∑
f∈E(G)

B(f). (3.50)

The betweenness of an edge is always positive for a connected network.

The betweenness centrality of a graph is an important proxy of how robust the

network is to random vertex or edge removals. Removing a vertex or an edge with

large betweenness centrality means that the communication among many vertex pairs

will be affected, since they will now be forced to exchange information through al-

ternative, possibly longer paths. Graphs which include nodes or edges with large

betweenness centralities are sensitive to random removal of that set of vertices or

edges. The vertex or edge betweenness centrality of a graph does not give any in-

formation about the centralities of individual vertices or edges, which may largely

vary from edge to edge. For networks with the same betweenness centrality, large

variations among vertices or edges reveal a sensitivity to targeted attacks, since re-

moving the most central vertices may significantly disrupt the network function. In

this section we show that the betweenness centrality of a graph is inherently related

to its average shortest path length.

Theorem 3. The average betweenness centrality of a network G(N,m) is a linear

function of its average distance,

B(G) = (N − 1)(D̄(G)− 1)

2
. (3.51)
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Proof.

B(G) = 1

N

∑
u∈V(G)

B(u) = 1

N

∑
u∈V(G)

∑
(s,t)∈V2(G)

s̸=u̸=t

σst(u)

σst

=
1

2N

∑
u∈V(G)

∑
s∈V(G)
s̸=u

∑
t∈V(G)
t ̸=u
t ̸=s

σst(u)

σst
=

1

2N

∑
s∈V(G)

∑
t∈V(G)
t ̸=s

1

σst

∑
u∈V(G)
u̸=s
u̸=t

σst(u)

=
1

2N

∑
s∈V(G)

∑
t∈V(G)
t ̸=s

1

σst
σst (|P(s, t)| − 1) =

1

2N

∑
s∈V(G)

∑
t∈V(G)
t ̸=s

(d(s, t)− 1)

=
1

2N

[
2

(
N

2

)
D̄(G)− 2

(
N

2

)]
.

(3.52)

Simplifying the last equation, the average betweenness centrality of a graph becomes

the one stated in the theorem.

It is worth mentioning that the average betweenness centrality of the network is

only dependent on its size indirectly, through the average distance of the graph. For

a fixed order, the average betweenness centrality of a network decreases as we add

new edges (Lemma 1).

Corollary 10. A network has minimum (maximum) average betweenness centrality

if and only if it has minimum (maximum) average distance. The minimum possible

average betweenness centrality of a graph of order N and size m is equal to

Bmin(G) =
N − 1

2
− m

N
(3.53)

and the maximum possible average betweenness centrality of such a graph is

Bmax(G) =
(
C
2

)
+ C

(
P+1
2

)
+ P (C − α) +

(
P+1
3

)
N

− N − 1

2
(3.54)

where C, P , and α are defined in equations (3.32), (3.33), and (3.34), respectively.
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Proof. The networks with the smallest or largest average betweenness centrality are

the graphs with the smallest or largest average distance respectively. Replacing them

from equations (3.3) and (3.31), the bounds for the average betweenness centrality of

graphs follow.

Corollary 11. The minimum sum of betweenness centralities of all the vertices of a

network is equal to the number of vertices that are not neighbors.

Proof. From equations (3.48) and (3.53), we see that

min
G∈C(N,m)

[ ∑
u∈V(G)

B(u)

]
= N · Bmin(G) =

(
N

2

)
−m. (3.55)

Theorem 4. The average edge betweenness centrality of a network is directly propor-

tional to the average distance of the network, equal to

Be(G) = 1

m

(
N

2

)
D̄(G). (3.56)

Furthermore, the minimum and maximum average edge betweenness centrality of a

network of order N , and size m are, respectively

Be
min(N,m) =

N(N − 1)

m
− 1 (3.57)

and

Be
max(N,m) =

(
C
2

)
+ C

(
P+1
2

)
+ P (C − α) +

(
P+1
3

)
m

(3.58)

where C, P and α are the same as in equations (3.32), (3.33), and (3.34).
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Proof. We follow the same method as in the proof of the vertex betweenness centrality:

Be(G) =
1

m

∑
e∈E(G)

B(e) = 1

m

∑
e∈E(G)

∑
(s,t)∈V2(G)

s ̸=t

σst(e)

σst

=
1

m

∑
(s,t)∈V2(G)

∑
e∈E(G)

σst(e)

σst
=

1

m

∑
(s,t)∈V2(G)

1

σst

∑
e∈E(G)

σst(e)

=
1

m

∑
(s,t)∈V2(G)

1

σst
σstd(s, t)

=
1

m

(
N

2

)
D̄(G).

(3.59)

Replacing the average distance by its minimum and maximum bounds, we get equa-

tions (3.57) and (3.58), respectively.

3.4 Efficiency

The efficiency of a network (as defined in [41]) is a metric that shows how fast a

signal travels on average in the network, assuming constant speed from one vertex

to another. It is the sum of the inverse distances of all vertex pairs in a network,

normalized by the total number of such pairs:

F(G) = 1

N(N − 1)

∑
u,v∈V(G)

u̸=v

1

du,v
. (3.60)

Network efficiency is also correlated with the fault tolerance of the network, in

the sense of how the average distance of a network changes when one or more vertices

are removed from the network. Network efficiency has been used to assess the quality

of neural, communication, and transportation networks [41]. Below we are going to

show that the most and least efficient networks are the ones with the smallest and

largest average distance among their individual parts.

Theorem 5. A graph G = G(N,m) has the highest efficiency among all other graphs
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with the same order and size if and only if it is a graph of minimum average distance.

The highest efficiency of a network of N vertices and m edges is equal to

Fmax(N,m) =
1

2
+

m

N(N − 1)
. (3.61)

Proof. We assign a distance matrix to every graph, with its (k,m) element being the

distance between vertices k and m. For a graph G = GN,m with distance matrix D

and the minimum average distance, the sum of all the distances among all the pairs

of vertices is smaller or equal to that of any other random graph R = RN,m with

distance matrix H. ∑
k<m

dkm ≤
∑
k<m

hkm. (3.62)

The function to be maximized is convex, which means that the maximum lies on one

of the boundaries. Since we will be comparing only networks of the same order, we

will focus on the sum of inverse distances among the vertices of each network.

F ′(G) =
(
N

2

)
F(G). (3.63)

If a network R is not a minimum average distance graph, then according to Corollary

1 there exists at least one pair of vertices (a, b) with d(a, b) ≥ 3. The sum of the

inverse shortest path lengths of such a network is

F ′(R) =
∑

(u,v)∈V2(G)
u ̸=v

1

huv
=
∑
k≥1

1

k
|Ek(G)|

= m+
1

2
|E2(R)|+

∑
k≥3

1

k
|Ek(R)|.

(3.64)

On the other hand, the sum of the inverse distances of a minimum average distance
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network G is

F ′(G) =
∑

(u,v)∈V2(G)
u̸=v

1

duv
= m+

1

2
|E2(G)|

= m+
1

2

((
N

2

)
−m

)
=

1

2
m+

1

2

(
N

2

)
.

(3.65)

The difference is therefore

F ′(G)−F ′(R) =
(
1

2
m+

1

2

(
N

2

))
−

(
m+

1

2
|E2(R)|+

∑
k≥3

1

k
|Ek(R)|

)

≥ 1

2

(
N

2

)
− 1

2
m− 1

2
|E2(R)| −

1

3

∑
k≥3

|Ek(R)|

=
1

2
m+

1

2

(
N

2

)
− 1

2
|E2(R)| −

1

3

((
N

2

)
−m− |E2(R)|

)
=

1

6

((
N

2

)
−m− |E2(R)|

)
=

1

6

∑
k≥3

|Ek(R)|

> 0.

(3.66)

This shows that a maximum efficiency graph is a minimum distance graph. Normal-

izing by the total number of vertex pairs, equation (3.61) follows.

Theorem 6. A network has the lowest possible efficiency if and only if it is a largest

average distance graph.

Proof. We will use the same method as in the proof for the form of networks with the

largest average distance. When
(
N−1
2

)
+1 ≤ m ≤

(
N
2

)
, then all networks have m pairs

of connected vertices,
(
N
2

)
−m pairs of vertices that are second neighbors, and there

is no graph in which two vertices do not have any common neighbors, as shown in

Lemma 4. This clearly shows that all networks of this size have the same efficiency,

given by equation (3.61). For smaller size graphs, when N − 1 ≤ m ≤
(
N−1
2

)
, a
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necessary and sufficient condition will be

G ∈ I ⇐⇒ G −H ∈ I ∀ H ⊆ G (3.67)

with I being the set of networks with the lowest efficiency. If we consider a subgraph

of order 1 (a single vertex), its average distance to all other vertices will be the largest

when its degree is equal to 1. So, if G = H∪{u}, with H ∈ I and u is only connected

to one other vertex in the graph (its distance to which is equal to 1), it is evident

that it has to be connected to one of the vertices with the largest average distance,

which at the same time has the largest eccentricity.

F(G) = F(H) +
∑

k∈V(G)
k ̸=u

1

dku

= F(H) + 1 +
∑

k∈V(G)
k ̸=u,k ̸=v

1

1 + dvu
.

(3.68)

The last equation shows that if v is the vertex of H with degree dv = 1, then the new

graph has the smallest possible efficiency. It follows that a network has the smallest

efficiency if and only if it is a maximum average distance network.

Corollary 12. The smallest efficiency of a network of order N and size m is equal

to

Fmin(N,m) =

(
C

2

)
+

N−C∑
x=1

α + xC

x(x+ 1)
+

N−C∑
x=1

x−1∑
y=1

1

x− y(
N
2

) (3.69)

with

C =
⌊3 +√9 + 8m− 8N

2

⌋
and α = m+ 1−N + C −

(
C

2

)
(3.70)

The proof Corollary 12 is similar to the proof of Corollary 9. The lowest and
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highest efficiency bounds of a connected network with N = 40 vertices and 39 ≤ m ≤

780 edges is shown in Figure 3.5. The same figure also shows the expected efficiency

of a random graph.
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Figure 3.5: The smallest, average and largest efficiency of graphs of order N = 40 as a
function of their size, 39 ≤ m ≤ 780. The minimum and maximum bounds are analytically
computed. The statistical average is approximated by the average of the efficiency of 104

random graphs for each size.

3.5 Radius and Diameter

The radius and the diameter of a graph are also measures that have to do with

distance. In order to define the radius of a graph, we need to find a central vertex

in the network, the one that is the closest to all other vertices. A network may have

more than one central vertex. We are often interested in the radius of a network

when information is aggregated and distributed from a vertex high in the hierarchy

to other vertices lower in the hierarchy. The importance of a node is correlated with
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how central it is. Important vertices are usually the ones closest to the network center.

On the other hand, the diameter of a network becomes important when we have a

flat hierarchy, where communication or signal propagation takes place with the same

frequency among any given pair of vertices in the network. There are applications in

which we want our network to have very small or very large diameter. Usually for

signal propagation or in general diffusion phenomena, the desired network topology

has the smallest possible diameter, since the response to different inputs needs to

be processed as fast as possible. When considering a virus spreading in the network

during a fixed time interval, in order to ensure that as few nodes as possible get

infected before appropriate action is taken, the network diameter needs to be as large

as possible. In this section, we are going to show the structure of the networks with

the largest and smallest radius and diameter. As we will see below, these graphs do

not always have the same form.

3.5.1 Networks with the Smallest and Largest Radius

We will now find tight bounds for the radius of graphs of arbitrary order and size. The

networks that achieve these bounds are generally not unique. The radius of a network

is correlated with its average distance and diameter. Graphs with the smallest radius

have the smallest average distance and the smallest diameter. Surprisingly, graphs

with the largest radius may or may not have the largest average distance or diameter,

as we will see next.

Lemma 5. If (u, v) ∈ E(G), then

ecc(u)− 1 ≤ ecc(v) ≤ ecc(u) + 1. (3.71)

Proof. For every connected pair of vertices u, v such that (u, v) ∈ E(G), and a third



48

vertex w ∈ V(G),

|d(v, w)− d(u,w)| ≤ 1

=⇒ d(u,w)− 1 ≤ d(v, w) ≤ d(u,w) + 1

=⇒ max
w∈V(G)

{d(u,w)− 1} ≤ max
w∈V(G)

d(v, w) ≤ max
w∈V(G)

{d(u,w) + 1}

=⇒ ecc(u)− 1 ≤ ecc(v) ≤ ecc(u) + 1.

(3.72)

Theorem 7. A connected network of order N and size m ≥ N − 1 has the smallest

radius if and only if it has an induced subgraph which is the star graph. Such a

network has a radius equal to one, regardless of its size.

Proof. The radius R(G) of any graph G is a natural number, with R(G) ≥ 1. If a star

of the same order as G is an induced subgraph, then the central vertex has eccentricity

equal to one, which is the minimum possible. Conversely, if the radius is equal to one,

then there exists at least one vertex with full degree, which along with its neighbors

forms a star subgraph.

Corollary 13. A network with the smallest radius also has the smallest average

distance among its vertices. The opposite is not necessarily true, since there exist

minimum average distance networks with no vertices of full degree (Corollaries 2–4).

Lemma 6. The maximum radius of graphs of order N is a non-increasing function

of their size m.

Proof. Assume that the graph G = G(N,m) has the maximum radius among all

other graphs with the same order and size. If we add one extra edge among any pair

of currently non-neighboring vertices it will create a shorter path between at least

two nodes, so the eccentricity of every vertex in G will either be unchanged or will

decrease. The new graph will consequently have radius smaller or equal to G, which
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is also smaller or equal to the one of the maximum radius graph H = H(N,m + 1).

So adding one or more edges cannot increase the maximum radius.

Lemma 7. Assume that G(N,m) has radius R(G) = r, and c is a central vertex. If

d(a, c) = r for some a ∈ V(G), then there exists a vertex b ∈ V(G) such that

d(b, c) ≥ r − 1 and P(a, c) ∩ P(b, c) = {c}. (3.73)

Proof. Suppose that there does not exist such a vertex. If the first condition is not

satisfied, then

d(u, c) ≤ r − 2 ∀u ∈ V(G) =⇒ R(G) ≤ r − 1 (3.74)

which contradicts the assumption that G has radius r.

If there do not exist any vertices a and b with distances at least r and r − 1,

respectively, from c whose shortest paths to c have no other common vertex, then

there exists a different vertex w ∈ P(a, c) ∩ P(b, c) such that

d(a, w) ≤ r − 1 and d(b, w) ≤ r − 2 (3.75)

meaning that c is not a central vertex.

Lemma 8. A path graph has a radius larger or equal to any other network,

Rmax(N,m = N − 1) =
⌊N
2

⌋
. (3.76)

A cycle graph has also radius larger or equal to any other network,

Rmax(N,m = N) = Rmax(N,m = N − 1). (3.77)

Proof. According to Lemma 7, the order of a network G with radius R ≥
⌊
N
2

⌋
+ 1,



50

will be

|V(G)| ≥ 1 + 1 +
⌊N
2

⌋
+
⌊N
2

⌋
≥ N + 1 (3.78)

which is clearly a contradiction. If the path graph has an odd number of vertices, the

central vertex is the middle vertex, with distance N−1
2

from both extreme vertices. If

the order is even, then both middle vertices are graph centers, and their eccentricities

are equal to N
2
. Connecting the two vertices that are furthest from the center through

an edge does not have an impact to the graph radius, so a cycle has the largest possible

radius (Lemma 6). In this case, because of the symmetry of the network, all vertices

have the same eccentricity.

Lemma 9. A graph of order N and size
(
N
2

)
−
⌈
N
2

⌉
+ 1 ≤ m ≤

(
N
2

)
has radius equal

to 1.

Proof. It suffices to prove that there exists at least one vertex with full degree. If all

vertices have degree less than or equal to N − 2, the graph size is at most

m ≤ m0 =

⌊
N(N − 2)

2

⌋
(3.79)

which is not possible, since for all N ≥ 2

(
N

2

)
−

⌈
N

2

⌉
+ 1 > m0. (3.80)

Lemma 10. The largest possible radius for a graph of order N and size
(
N−2
2

)
+1 ≤

m ≤
(
N
2

)
−
⌈
N
2

⌉
is equal to 2.

Proof. It suffices to prove that graphs with size m ≥
(
N−2
2

)
+ 1 cannot have radius

of 3 or larger, since we can find at least one network of this size in which no vertex

has full degree [33]. Refering to Figure 3.6(a), let C be one of the central vertices.
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A B C D E F

(a)

A B C D F

G H

(b) (c)

Figure 3.6: (a) Necessary induced subgraph for a network to have radius larger or equal
to 3. The vertices shown are not allowed to have any direct connections, and vertices with
distance 3 are not allowed to have any common neighbors. (b) For order N and size m ≥ N ,
there is always at least one graph G(N,m) that has the maximum possible radius, and has
a full cycle as an induced subgraph. (c) A network with largest possible radius with N = 7
and m = 11. It consists of an almost complete subgraph of order M = 5 and a path graph
of order L = 4. The two induced subgraphs share two vertices, so that N = L + M − 2.
The red vertex has the largest degree, and is the center of the network.

According to Lemma 7, there exist at least two vertices A and F (possibly connected

to each other) such that

d(C,A) ≥ 2 and d(C,F ) ≥ 3. (3.81)

In order to respect these distance conditions and the centrality of C,

C /−F, B /−E, and A/−D. (3.82)

Because d(C,F ) ≥ 3, nodes C and F cannot have a common neighbor, so there are

N − 2 edges that are not present in the graph. In addition, B and E may not have a

common neighbor either, otherwise the radius would be at most equal to 2. There are

another N − 4 edges that cannot be present, since there are N − 2 possible common

neighbors of B and E, and we have already counted two of them previously. So the

graph is missing at least ms = (N − 2) + (N − 4) + 3 edges, and its size is at most

m ≤
(
N

2

)
−ms =

(
N

2

)
− (2N − 3) =

(
N − 2

2

)
. (3.83)
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Lemma 11. The maximum possible radius of a connected graph G of order N and

size N + 1 ≤ m ≤
(
N−2
2

)
− 2 is

Rmax(N,m) =

⌈
2N − 1−

√
1 + 8m− 8N

4

⌉
. (3.84)

Proof. For every N ≥ 3, there is at least one graph with radius equal to Rmax(N,m)

that includes a full circle as an induced subgraph. To see why, suppose that C is a

central vertex and

d(C,A) = Rmax and d(C,F ) ≥ Rmax − 1 A,F ∈ V(G) (3.85)

as shown in Figure 3.6(b). We pick vertices B and D such that

d(C,B) = 1 d(C,D) = 1, and B ∈ P(C,A), G ∈ P(C,F ). (3.86)

Also, all other vertices can be connected to B, D, and C without changing the

radius, when m ≤
(
N−2
2

)
− 2. Vertices A and F can be connected without changing

the maximum radius of the network, as shown in Lemma 8. Also, there are no edges

among vertices in P(C,A) or vertices in P(F,A), otherwise condition (3.85) would

be violated. Thus, the network described has a full circle as an induced subgraph.

We now need to compute the maximum radius of such a graph. Since a new edge

always creates new shortest paths, we have to connect vertices with distance equal

to two, such that we only create a single new shortest path between vertices that

are second neighbors (see also equation (3.6)). A simple method to find the graph

with the largest radius is to start from a cycle graph, and keep adding edges such

that we have a complete or almost complete graph connected with both ends of a

path graph, as shown in Figure 3.6(c). Because of the symmetry of this network, the

largest degree vertex is always a central vertex. If we denote with M the order of the
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complete or almost complete subgraph, and with L the order of the path subgraph,

we can find the order of these subgraphs by solving the following system of equations:

m = (L− 1) +

(
M − 1

2

)
+ α

L+M = N + 2

(3.87)

with

1 ≤ α ≤M − 1, L, C ∈ N∗. (3.88)

We compute M (and subsequently L) in the same way as in the proof of Corollary 9,

by setting α equal to its maximum value, and then choosing the smallest integer M

from the solution of the second-order equation.

M =

⌊
3 +
√
1 + 8m− 8N

2

⌋
, L = N + 2−

⌊
3 +
√
1 + 8m− 8N

2

⌋
. (3.89)

This graph has radius equal to

Rmax(N,m) =

⌊
L+ δ(a < M − 1)

2

⌋
=

⌊
N + 2 + δ(a < M − 1)−

⌊
3+

√
1+8m−8N

2

⌋
2

⌋
(3.90)

where δ is the Kronecker delta. After simplifying, the last expression becomes:

Rmax(N,m) =

⌈
2N − 1−

√
1 + 8m− 8N

4

⌉
. (3.91)

An example of the form of the function above for N = 40 is shown in Figure 3.7.
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Figure 3.7: The largest, smallest, and average radius of graphs of order N = 40 as a function
their size 39 ≤ m ≤ 780. The minimum and maximum bounds are analytically computed.
The statistical averages are estimated by the mean radius of 104 random graphs for each
size. The average radius also has a “stepwise” form.

Theorem 8. The maximum radius of a network of order N and size m is

Rmax(N,m) =



⌊N
2
⌋ N − 1 ≤ m ≤ N

⌈
2N−1−

√
1+8m−8N
4

⌉
N + 1 ≤ m ≤

(
N−2
2

)
2

(
N−2
2

)
+ 1 ≤ m ≤

(
N
2

)
−
⌈
N
2

⌉
1

(
N
2

)
−
⌈
N
2

⌉
+ 1 ≤ m ≤

(
N
2

)
.

(3.92)

Note the same stair-like form of both the maximum radius and the statistical av-

erages. The statistical average curve exhibits fewer and smoother “steps”. Networks
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with the largest radius of order N = 5 are listed in Figure 3.8.

(a) m=4 (b) m=5

(c) m=6 (d) m=7 (e) m=8

(f) m=9 (g) m=10

Figure 3.8: All connected networks with 5 vertices and 4 ≤ m ≤ 10 edges with the largest
possible radius. The first graph of each group is constructed by the method described in
the text.

3.5.2 Networks with the Smallest and Largest Diameter

In this subsection, we are going to study the form of the networks with the mini-

mum and maximum diameter. Computing the minimum diameter of a network is

fairly straightforward. In the case of the maximum possible diameter, we first prove

two lemmas that will help us show that we can find the structure of the networks

recursively.

Theorem 9. A network has the smallest possible diameter if and only if it is a

smallest average distance graph.

Proof. The diameter of a complete graph is trivially equal to one. If the graph is

not complete, the diameter is at least 2, since there is at least one pair of non-
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neighboring vertices. In a graph with the smallest average distance, all vertices that

are not connected have at least one common neighbor, and the maximum eccentricity

is equal to 2. Conversely, if the largest distance among any vertex pair is equal to 2,

then by Corollary 1, the graph has the smallest average distance.

Corollary 14. A network with the minimum radius (R(G) = 1) also has minimum

diameter (T (G) = 2) regardless of its interconnection topology. The inverse is not

always true: There are networks with minimum diameter, and radius R(G) = 2 >

Rmin(N,m).

An example of a network with minimum diameter and radius equal to 2 would be

one where there is no vertex of full degree, but in which the distance among all pairs

of vertices is equal to either 1 or 2.

Lemma 12. A network of order N and size
(
N−1
2

)
+ 1 ≤ m ≤

(
N
2

)
− 1 has diameter

equal to 2. A complete graph has diameter equal to 1.

Proof. In a complete graph, all vertices are connected to each other, so the eccentricity

of every vertex is trivially equal to 1. In a graph of size m ≥
(
N−1
2

)
+ 1, all vertices

that do not share an edge have at least one common neighbor, as shown in the proof

of Lemma 4. Consequently, every vertex has eccentricity either 1 or 2, so the diameter

is equal to 2 regardless of the graph topology.

Lemma 13. The maximum diameter Tmax(N,m) of a network of order N is at most

one larger than the maximum diameter of a network with order N − 1 and smaller

size.

Tmax(N,m) ≤ Tmax(N − 1,m− d) + 1, 1 ≤ d ≤ N − 1. (3.93)

Proof. Assume that the graph G = GN,m has diameter T (G) ≤ Tmax(N,m). Define

as D the set of unordered vertex pairs whose distance is equal to the graph diameter.

We now remove an arbitrary vertex u with degree d = du from G, and the resulting
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graph is H with order N − 1. If u ∈ D, then no shortest path between any vertex

pair in D passes through u. We distinguish two cases:

• If u is in every vertex pair in D, then the diameter of H is

T (G) = T (H) + 1 ∀ G,H

=⇒ Tmax(N,m) ≤ Tmax(N − 1,m− d) + 1.
(3.94)

• If there exists at least one vertex pair in D that does not include u, then

removing u will result in a graph H that if it is connected, it has the same

diameter as G. If u is a member of all paths among of all vertex pairs with

distance equal to the diameter, then H will be disconnected, and its diameter

will be by definition infinite.

T (G) = T (H) ≤ Tmax(N − 1,m− d)

=⇒ Tmax(N,m) ≤ Tmax(N − 1,m− d).
(3.95)

Combining the two cases, the result follows.

Corollary 15. If we remove a vertex u from a graph G, resulting in graph H, then

TH = TG − 1 =⇒ DG = {(u,w1), (u,w2), . . . , (u,wd)}. (3.96)

Conversely, if we add a vertex u with degree d to H, then

TG = TH + 1 =⇒ {(v1, w1), (v2, w2), . . . , (vd, wd)} ⊆ DH (3.97)

with w1, . . . , wd, v1, . . . vd ∈ V(H),V(G) and (u, v1), . . . , (u, vd) ∈ E(G) and D the set

of unordered vertex pairs whose distance is equal to the graph diameter.

Theorem 10. The largest possible diameter of a network of order N and size m is
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equal to

Tmax(N,m) = N −

⌊
1 +
√
9 + 8m− 8N

2

⌋
. (3.98)
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Figure 3.9: The smallest, average, and largest diameter of graphs of order N = 40 as a
function of their size, 39 ≤ m ≤ 780. The minimum and maximum bounds are analytically
computed. The statistical average is approximated by the mean diameter of 104 random
graphs of the respective size. Note that even in the average diameter, there is the “stepwise”
form of the maximum diameter graphs, although much smoother.

Proof. Lemma 13 and Corollary 15 readily show an easy way to find the largest

possible diameter of a graph of fixed order and size. According to Corollary 15, if we

add a vertex u with degree du = 1 to a maximum diameter graph H, and we connect

it to a vertex with the largest eccentricity, the resulting graph G has also the largest

diameter for its order and size (see also Lemma 5). As a result, we can write the

following recursive relation:

Tmax(N,m) = 1 + Tmax(N − 1,m− 1). (3.99)
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Repeating the process as many times as possible,

Tmax(N,m) = k + Tmax(N − k,m− k). (3.100)

The only reason why the recursion can only be implemented a finite number of times

is that there cannot exist a network with N −k−1 vertices and m−k−1 edges with

m− k − 1 >

(
N − k − 1

2

)
. (3.101)

This means that the subgraph H with N − k vertices and order m− k has size

(
NH − 1

2

)
≤ mH <

(
NH

2

)
(3.102)

and consequently has a diameter of 2 (almost complete subgraph), so the maximum

diameter of the graph is:

Tmax(N,m) = k + 2 (3.103)

where k = N−NH. One of the graphs with the maximum diameter consists of a path

graph with N −NH vertices, and a subgraph of order NH and size mH ≥
(
NH−1

2

)
+1.

If we assume without loss of generality that H is a type I almost complete graph,

then G is a maximum distance network. It consists of a path graph of order P = k+1

and a complete graph of order C, such that P +C = N , as shown in Figure 3.3(a). If

we denote by C and P the order of the clique and the path subgraphs as in equations

(3.32) and (3.33), and combine them with equation (3.103), the maximum diameter

of a graph G(N,m) is

Tmax(N,m) = k + 2 = P + 1 = N − C + 1

= N −

⌊
1 +
√
9 + 8m− 8N

2

⌋
.

(3.104)
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Corollary 16. A maximum average distance graph also has the largest possible di-

ameter. The converse is not always true.

An example of the minimum, maximum, and average diameter of graphs with 40

vertices and increasing number of edges is shown in Figure 3.9.

From the previous analysis we can conclude that the only tree with the largest

diameter is the path graph. A graph with the largest diameter is not necessarily

unique for any size N ≤ m ≤
(
N
2

)
− 2. The list of all the graphs of order N = 5 and

size 4 ≤ m ≤ 10 are shown in Figure 3.10.

(a) m=4 (b) m=5 (c) m=6

(d) m=7 (e) m=8

(f) m=9 (g) m=10

Figure 3.10: All connected networks with 5 vertices, 4 ≤ m ≤ 10 edges, and the largest
diameter. The first graph of each group is also a maximum average distance graph.

Comparing the graphs with the largest radius with the graphs with the largest

diameter, we find that graphs with the largest radius and graphs with the largest

diameter do not always have the same form.

Corollary 17. A network with the largest diameter does not necessarily have the

largest radius. Conversely, a network with the largest radius does not necessarily have

the largest diameter.

An example is given in Figure 3.11.
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(a) (b)

Figure 3.11: (a) The only graph with (N,m) = (6, 6) and radius Rmax(6, 6) = 3. (b) All
graphs with the same order and size and maximum diameter, equal to 4. No graph of the
largest diameter coincides with the maximum radius network.

3.6 Resistance Distance

The resistance distance of a graph is a property that shows how easy it is to transfer

information among different parts of the network, taking into account both the num-

ber of independent paths available and their length. It is an important quantity for

the design of many kinds of networks, including electrical networks of all scales, from

power networks to microelectronic circuits. First, we define the resistance distance

between two nodes of a network, and the overall resistance distance of a graph.

Definition 2. The resistance distance s(u, v) between two vertices u, v ∈ V(G) of a

graph G is equal to the total resistance between them when every edge represents a

unit resistor.

Definition 3. The resistance distance of a graph is equal to the minimum among of

the resistance distance of all the node pairs of the network.

S(G) = min
u,v∈V(G)

u̸=v

s(u, v). (3.105)

We can find the networks with the smallest resistance distance if we choose two

connected vertices and make sure that they have the largest possible number of com-

mon neighbors, as the next theorem shows.

Theorem 11. The smallest possible resistance distance of a simple connected graph
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G = GN,m is

Smin(N,m) =


2

m−N+3
N − 1 ≤ m ≤ 2N − 3

2
N

2N − 2 ≤ m ≤
(
N
2

)
.

(3.106)

Proof. If m = N−1, G is a tree, and it is not possible to have any resistors connected

in parallel, so Smin(N,N−1)=1. Every tree is a minimum resistance distance graph as

long as the endpoints of the circuit are two adjacent vertices. When N ≤ m ≤ 2N−3,

the network will have c = m − N + 1 independent cycles. In order to make the

resistance as small as possible, we need to choose the endpoints of the circuit to be

two adjacent nodes, and in addition to be parts of cycles that are as short as possible.

This is because the smaller the resistance of each branch of the cycle, the smaller

the resistance between the two endpoints. Since a cycle has at least 3 vertices (two

vertices cannot be connected with more than one edge, since the graphs are assumed

to be simple), the cycles need to be of length 3, and all of them have a common

edge, the endpoints of which are the endpoints of the circuit. As a result, the total

resistance will be the combination of a unit resistor in parallel to m−N + 1 pairs of

resistors connected in parallel, which means that

Smin(N,m) =
1

1 + 1
2
(m−N + 1)

=
2

m−N + 3
, N − 1 ≤ m ≤ 2N − 3. (3.107)

Adding more edges to the network has no effect on the total impedance, since all

vertices except for the circuit endpoints will have the same potential, equal to half of

the voltage difference applied to the circuit ends (assuming that we have arbitrarily

set the potential of one of the endpoints equal to zero). Consequently, no current

would flow among them, and we can write

Smin(N,m) =
1

1 + 1
2
((2N − 3)−N + 1)

=
2

N
, m ≥ 2N − 3. (3.108)
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Corollary 18. A graph with size N − 1 ≤ m ≤ 2N − 3 has minimum resistance

distance if and only if it has a subgraph consisting of m −N + 1 triangles that have

one edge in common. The endpoints of the common edge are the endpoints of the

circuit. For 2N − 2 ≤ m ≤
(
N
2

)
, any graph with at least two vertices of full degree is

a minimum resistance distance graph.

We now turn our attention to the structure of the networks with the largest resis-

tance distance. We will start from networks of relatively large size (almost complete

graphs) and then move on to finding their form in the general case.

Lemma 14. The maximum resistance of a network of fixed order is a decreasing

function of the graph size.

Smax(N,m) ≥ Smax(N,m+ g) for g ≥ 0. (3.109)

Proof. If Smax(N,m) < Smax(N,m+g), we remove g edges from the network of larger

size. This cannot decrease the total resistance, since there is now no voltage drop

between the vertices that were previously connected. Therefore, the resulting graph

will have larger resistance than the resistance of the initial network of smaller size,

which contradicts the initial assumption.

Lemma 15. The largest possible resistance distance of a network with size m ≥(
N−1
2

)
+ 1 is

Smax(N,m) =
α + C + 1

αC
(3.110)

where

C = N − 1 and α = m−
(
N − 1

2

)
. (3.111)
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Proof. The almost complete graph will have the largest possible resistance when the

endpoints of the circuit are the peripheral vertex and a central vertex it is not con-

nected to. The reason is that any other graph will have more shorter paths to the

ground vertex, and thus smaller total resistance [22]. In the almost complete graph,

because of the symmetry, all the vertices that are neighbors of the peripheral vertex

have the same potential. Similarly, all vertices that are not neighbors of the periph-

eral vertex, except for the ground vertex also have the same potential. The ground

vertex has potential equal to zero. Thus, we may remove the edges between the α

neighbors of the peripheral vertex, and the N −2−α non-neighbors of the peripheral

vertex, excluding the ground vertex. Then, we merge the edges that connect these

three sets of vertices, as if they were connected in parallel. The result is shown in

Figure 3.12. The total resistance of the transformed network is

Smax(N,m) =
1

α
+

1
1
1
α

+ 1
1

α(N−2−α)
+ 1

N−2−α

=
1

α
+

1

α + α(N−2−α)
α+1

=
N + α

α(N − 1)
.

(3.112)

Lemma 16. The maximum resistance of a network G = G(N,m) can be at most one

larger than the maximum resistance Smax(N − 1,m− 1), provided that both networks

are connected. More precisely

Smax(N,m) ≤ Smax(N − 1,m− 1) + 1. (3.113)

Proof. We start from the network H(N − 1,m − 1) with the largest resistance, and

add one extra vertex with unit degree to one of its endpoint vertices. If the Lemma
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(a) (b)

1
α

1
α(C−1−α)

1
C−1−α

1
a

(c)

Figure 3.12: (a) An almost complete graph has the largest resistance distance among all
other graphs of the same order and size. The endpoints with that resistance are the periph-
eral vertex (green) and an arbitrary central vertex that is not connected to it (red). The
central vertices that the peripheral vertex connects to (blue), all have the same potential.
All central vertices that are not connected to the peripheral vertex (yellow) also have the
same potential. (b) Taking into consideration the symmetry of the circuit, we can remove
the edges among vertices that belong to the same group. (c) The previous circuit can be
simplified by collapsing all nodes of one group to one “super-node”, considering all resis-
tors that connect different groups to be connected in parallel. The weights of the edges
correspond to the resistances among the “super-nodes”.

does not hold, then the resulting graph G = G(N,m) will have resistance

S(G) = 1 + Smax(N − 1,m− 1) < Smax(N,m). (3.114)

Now assume that the network K with the maximum resistance has vertex u with

degree du as an endpoint. If du = 1, then network H was not a maximum resistance

network and the Lemma is proved. If du > 1, then the potential difference between u

and all its neighbors will be smaller or equal to one, since the current flowing through u

will be divided among all the resistors that are adjacent to u. Consequently, removing

vertex u along with its edges, we can find a relation with the resulting networkM

Smax(N,m) ≤ ϵ+ S(M) ≤ ϵ+ Smax(N − 1,m− du) (3.115)
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with 0 ≤ ϵ ≤ 1. Combining equations (3.114) and (3.115), it is evident that

Smax(N − 1,m− 1) < Smax(N − 1,m− du)− (1− ϵ) (3.116)

which, according to Lemma 14, is not possible.

Theorem 12. The largest possible resistance distance of a simple connected graph

G = GN,m is

Smax(N,m) = P − 1 +
α + C + 1

αC
(3.117)

where C,P and α are defined in equations (3.32), (3.33), and (3.34), respectively.

Proof. Using the Lemmas above, we can analytically compute the largest resistance,

and find the form of the graphs that have it. We repeatedly apply Lemma 16, until

we are left with a type I almost complete graph, at which point we can make use of

Lemma 15.

Smax(N,m) ≤ k + Smax(N − k,m− k). (3.118)

We can achieve the equality in the last equation by connecting a new vertex with unit

degree to one of the endpoints of the previous graph, such that

k = P − 1 and N − k = C + 1 (3.119)

where the total resistance is the sum of a path graph with P vertices, and an almost

complete graph with the respective values of C and α (see also condition (3.101)).

The form of these maximum resistance networks are easy to identify: We recursively

connect in series a unit resistor in one of the two endpoints of the previous circuit.

An example showing the minimum, average and maximum resistance for networks

of order N = 40 and increasing size is shown in Figure 3.13.

Corollary 19. The number of non-isomorphic graphs with the largest resistance dis-
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Figure 3.13: The largest, smallest, and average resistance of graphs of order N = 40 and
size 39 ≤ m ≤ 780. The minimum and maximum bounds are analytically computed. The
average resistance of each graph is approximated by the mean of 104 random graphs of the
respective size. The statistical average of a network of relatively small size is very close to
the minimum resistance.

tance is

ISmax(N,m) =


P + 1 α = 1 or α = C − 1

⌈
P+1
2

⌉
2 ≤ α ≤ C − 2

(3.120)

where C, P and α are defined in equations (3.32), (3.33), and (3.34), respectively.

Proof. The order in which we place linear resistors in series has no effect on the total

resistance of the circuit. We can serially place n1 and n2 resistors at each side of the

almost complete subgraph, such that

n1 + n2 = P with n1 ≥ 0 and n2 ≥ 0. (3.121)
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The last equation has P + 1 solutions. When a = 1 or a = C − 1, then the almost

complete graph is symmetric, which means that we count every non-isomorphic graph

twice. Adjusting for this special case the number of non-isomorphic graphs, we get

the desired result.

Corollary 20. The networks with the largest average distance have the largest resis-

tance distance. The converse does not always hold.

3.7 Average Clustering

One of the prominent features that distinguishes many large natural and engineered

networks from random ones is the clustering among their individual units, and at the

same time the small average distance among them [52, 70]. These properties were

thought to be mutually exclusive, but in almost all real networks, having a small

average distance does not greatly interfere with the presence of a large clustering

coefficient, as shown in [70]. Despite the considerable amount of literature in the

area of complex networks, there has been no study exploring the properties of a

graph required in order for it to have both large average clustering and small average

distance. In this section, we will find the topology of the networks with the largest

average clustering, and show that at the same time their average distance is smaller

or equal to the average distance of any other graph. We will also study their resilience

to vertex and edge removal, and will solve the problem of finding the graph which

has the largest average clustering coefficient, for given order N and size m. There

is usually a unique graph with the largest clustering, which also has the smallest

average distance. Finally, we devise a method to make these networks more robust

with respect to vertex removal.

The local clustering coefficient of a vertex u is defined as the number of connec-

tions between vertices that are neighbors of u, divided by the total number of pairs

of neighbors of u. In other words, it is the number of triangles in which u partici-
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pates divided by the number of all possible triangles it could participate in, if all its

neighbors were connected to each other. More formally, if du is the degree of a vertex

u, and tu is the number of edges among its neighbors, its clustering coefficient is

C(u) =



0 if du = 0

1 if du = 1

tu

(du2 )
if du ≥ 2.

(3.122)

An example is shown in Figure 3.14. The clustering coefficient of a vertex can only

take values in the interval [0, 1]. Note that we deliberately choose to define the

clustering coefficient of a vertex u with degree du = 1 as equal to 1. The graphs with

the largest clustering under this convention may be different when we assume that

vertices with degree 1 have zero clustering. The method to find the largest clustering

graphs under the latter assumption is similar and will be described later.

The average clustering coefficient for a graph G is simply the average of all the

local clustering coefficients in its vertex set V(G). A large average clustering coefficient

is a proxy for increased robustness of the network, “local” structure, and increased

connection density among vertices in a neighborhood [5]. If N is the order of the

network, the average clustering coefficient is defined as

C̄(G) = 1

N

∑
u∈V(G)

C(u). (3.123)

Since we will only be comparing graphs with the same number of vertices and edges,

in order to make our analysis easier, we will be considering the sum of the clustering
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coefficients of all the vertices:

CS(G) =
∑

u∈V(G)

C(u). (3.124)

Maximizing CS(G) is equivalent to maximizing C̄(G). If a network has both a high av-

erage clustering coefficient, and a small average shortest path length among its nodes,

it is called a “small world” network [70]. This architecture is conjectured to have

other desired properties, like enhanced signal propagation speed, synchronizability

and computational power [65, 70]. As it turns out, the networks with the largest av-

erage clustering are “small world” networks, since they also have the smallest possible

average distance.

(a) (b) (c)

Figure 3.14: (a) The clustering coefficient of a vertex is the number of connections between
its neighbors, divided by all pairs of neighbors, whether they are connected by an edge or
not. The clustering coefficient of the blue vertex u is C(u) = 4/

(
5
2

)
= 0.4. The average

shortest path length is L̄G = 1.48. (b) After rewiring one edge, and decreasing the distance
between the red and the green vertex, the network has the smallest possible average distance,
equal to 1.43. All vertex pairs now have at most a distance of 2. (c) The network with
the largest possible average clustering and smallest average shortest path length. The blue
vertex is the central vertex of the induced star subgraph.

3.7.1 Recursive Computation of Graph Clustering

Assume that we add one vertex u with degree d to a graph G(N,m), by connecting

it to the vertices in a set D (|D| = d) and the result is a new graph G ′(N +1,m+ d).
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The difference of the sum of clustering coefficients of the two graphs will be

∆CS(G ′,G) = CS(G ′)− CS(G) = C(u) + ∆CS(G ′,G,D) (3.125)

where C(u) is the clustering coefficient of the new vertex, and

∆CS(G ′,G,D) =
∑
v∈D

(C ′(v)− C(v)) (3.126)

is the sum of the differences of the clustering coefficients of the vertices in D, before

and after they acquire their new edge. For all other vertices, the clustering coefficients

remain unchanged.

Lemma 17. Assume that we have a graph G(N,m) with sum of clustering coefficients

equal to CS(G), and we add one more vertex u, with degree d. The difference in the

clustering of the two graphs ∆CS(G ′,G) = C(u)+∆CS(G ′,G,D) can only be the largest

possible if the vertices in D are part of a clique Q.

Proof. If all vertices in D are part of a clique, they form an induced complete sub-

graph. The clustering coefficient of u will be the maximum possible (C(u) = 1), since

all the possible connections among its neighbors will be present. Also, each of the d

vertices of Q (with |Q| = q ≥ d) that u is connected to, will increase the number of

connections among their neighbors to the maximum extent (given the degree of u),

and they will have d − 1 additional triangles each. The clustering coefficient of the

rest of the q − d vertices of the clique will not be affected. If, on the other hand, u

forms connections with vertices that do not form a clique, its clustering coefficient

will be C(u) < 1, and the vertices it is connected to will have less extra connections

among their neighbors.

Note that when d < q, the new clustering coefficient of the vertices that will be

connected to u will be less than 1, possibly smaller than it was before connecting the

new vertex. In order to minimize the effect of the missing triangles on the overall
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clustering coefficient, we need to make sure that we connect u to those vertices of the

clique with the largest degree (which may have additional connections outside the

clique). Also, the size of the clique is an important factor. The larger the clique, the

smaller the impact of the additional vertex, since the degrees of the connected vertices

are larger, but on the other hand we may have more missing triangles in total.

Lemma 18. Assume that we have a graph G that consists of a clique Q and two

additional vertices A and B that each connects to a subset D1 and D2, with d1 =

|D1| ≤ |D2| = d2.The average clustering of G is maximized when D1 ⊆ D2.

Proof. The number of missing triangles stays the same regardless of the specific ver-

tices of the clique that A and B are connected to. So, the goal is to redistribute

the missing triangles to vertices of the largest possible degree. When D1 ⊆ D2, the

number of vertices of Q with clustering equal to 1 is maximized, and at the same

time, the vertices of Q with the largest degree have the maximum number of missing

triangles.

The above lemma can be used recursively for any number of edges connecting to

a clique. An example is shown in Figure 3.15.

Assume we have a graph G which belongs to the set SN,m of all graphs with

N vertices and m edges. We denote the clustering sum of the optimal graph with

CS(N,m). Its clustering sum will be

CS(N,m) = max
G∈SN,m

 ∑
u∈V(G)

C(u)


= max

G∈SN,m


 ∑

u∈V(G)\v

C(u)

+ C(v)


(3.127)

for any vertex v ∈ V(G). The reasoning behind the last equation is that if we pick

any vertex from the graph, it should be “optimally” connected to a smaller graph
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(a) (b)

Figure 3.15: An example of a graph with two vertices connected to a clique. The graph
in (a) has a smaller sum of clustering coefficients CS than the one in (b). By rewiring one
edge in the graph on the left, we shift the missing triangles of one orange vertex to a blue
one, with a higher degree. So the missing edges between a green and a white vertex have a
smaller effect on the overall clustering.

that is itself optimal. This in turn means that we need to make sure that the chosen

vertex has the largest possible clustering coefficient with regard to the vertices it is

connected to, the rest of the graph needs to have the largest clustering coefficient, and

the potential decrease of the clustering coefficient of the vertices after connecting the

last one is minimal. This method provides an easy way to find the maximum clustering

of a graph G of order N , by using a graph G′ of order N − 1, and connecting one

additional vertex to it. The above can be algebraically expressed by conditioning on

the set D of vertices with which the additional new vertex v of degree d = |D| forms

connections.

CS(N,m) = max
D⊆V(G0)

{CS(N − 1,m− d) + C(v) + ∆CS(N − 1,m− d,D)} (3.128)

where ∆CS(N−1,m−d,D) is the change in the clustering coefficient of the d vertices

of the set D of the graph of order N − 1 and size m− d when we connect one vertex

(vertex v) with degree d to them. The last equation shows that the graph with
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the largest possible clustering coefficient can be found by connecting a vertex to an

optimal graph with fewer vertices and making sure that the algebraic value of the

change is as large as possible.

3.7.2 Clustering of Almost Complete Graphs

Lemma 19. The total clustering for a type I almost complete graph G(N,m) is

CS(G) = N − α(N−1−α)

(N−1
2 )

, where α is the degree of the peripheral vertex.

Proof. The peripheral vertex of the almost complete graph will have a clustering

coefficient equal to 1, the α vertices with degree N−1 will have a clustering coefficient

C(u) =
(N−2

2 )+(α−1)

(N−1
2 )

, and the N−1−α vertices with degree N−2 will have a clustering

coefficient equal to 1 (see Figure 3.16(a)). The sum of the clustering coefficients for

this graph will be

CS(G) = 1 + α

(
N−2
2

)
+ (α− 1)(
N−1
2

) + (N − 1− α)

= N +
−α
(
N−1
2

)
+ α

(
N−2
2

)
+ α(α− 1)(

N−1
2

)
= N +

−α(N − 2) + α(α− 1)(
N−1
2

)
= N − α(N − 1− α)(

N−1
2

) .

(3.129)

The average clustering, as a function of α, is convex and symmetric around N−1
2

.

It decreases as α goes from 1 to ⌊N−1
2
⌋, and then it increases as α goes from ⌈N−1

2
⌉

to N − 1.

Lemma 20. A type I almost complete graph has larger clustering coefficient than any

other nonisomorphic graph of the same order and size.
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(a) (b) (c)

Figure 3.16: Clustering for the almost complete graphs. (a) The peripheral vertex (red)
has unit clustering since it is connected to vertices of a clique. The vertices that are not
connected to it (green) also have clustering equal to 1, as members of the complete graph
with no other edges. The vertices that are connected to the peripheral vertex (blue) have
clustering less than 1, since the peripheral vertex is not connected to all of their neighbors.
(b) A type II almost complete graph with the largest clustering, where the two peripheral
vertices are not connected (type IIa). (c) A maximum clustering coefficient type II almost
complete graph, with connected peripheral vertices (type IIb).

Proof. Assume a type I almost complete graph F that consists of a clique P of N −1

vertices, and one peripheral vertex with degree α that is connected to it. Further

assume that G is a graph of the same order and size, whose largest clique Q consists

of N − d ≤ N − 2 vertices (otherwise it would be isomorphic to F). The d ≥ 2

peripheral vertices form connections with the central vertices that are members of Q,

and among each other. Define γ =
(
N
2

)
− m, which corresponds to the number of

non-neighboring vertices in a graph. By assumption, 1 ≤ γ ≤ N − 2. It is easy to see

that d ≤ γ, since we have only γ edges missing, and for each peripheral vertex u, at

least mu ≥ 1 edges between itself and Q have to be missing, otherwise Q is not the

largest clique. We will add all of the clustering coefficients for all the vertices, and

then show that the sum is always greater for F . We note the following:

• The number of vertices with clustering coefficient equal to 1, is 1+ γ for F and

at most d +
⌊
γ
d

⌋
for G. The number of such vertices in G is smaller or equal

to the respective number in F , for all 2 ≤ d ≤ γ. Conversely, F has exactly

N − 1 − γ vertices with clustering coefficient less than 1, and G, has at least
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N − d−
⌊
γ
d

⌋
such vertices.

• All vertices that have a clustering coefficient smaller than 1 in F have degree

N − 1, the largest possible degree in a graph with N vertices.

We will find the sum of the clustering coefficients for both graphs in terms of the

number of missing triangles. Then, we will show that CS(F) > CS(G), for any

G ≠ F . Since γ = N − 1− α, the sum of the clustering coefficients for F , is

CS(F) = N − γ(N − 1− γ)(
N−1
2

) . (3.130)

The sum of the clustering coefficients for G is

CS(G) = N −
N∑

u=1

wu(
du
2

)
≤ N −

∑N
u=1wu(
N−1
2

)
= N − sg(

N−1
2

)
(3.131)

where wu is the number of edges missing among the neighbors of vertex u and sg =∑N
u=1wu. We only need to prove that the missing triangles of G are more than those

missing in F , in other words that

∆ = sg − sf =
N∑

u=1

wu − γ(N − 1− γ) (3.132)

is greater than or equal to zero.

We will now find the minimum number of central vertices that are connected to

at least two peripheral vertices in G. This happens when d − 2 peripheral vertices

have the largest possible degree N − d− 1, and the remaining two have the smallest

possible degrees, and consequently the minimum number of clique vertices that they

are both connected to. If we assume that b edges are not present among peripheral
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vertices, we have a total of t = d(N−d)−γ+b edges between peripheral vertices and

central vertices. If we further assume that all but 2 peripheral vertices have the largest

possible number of edges with the clique (which is N−d−1), the remaining peripheral

vertices will have a degree sum of r = t− (d− 2)(N − d− 1) = 2N − d− 2− γ + b.

Since we only have N − d vertices in Q, at least r− (N − d) = N − 2− γ + b of them

will be connected to two peripheral vertices. The total number of triangles missing

from the central vertices, because of edges missing between peripheral and central

vertices, is

MC−P =
d∑

u=1

mu(N − d−mu)

= (N − d)

(
d∑

u=1

mu

)
−

d∑
u=1

m2
u.

(3.133)

The number of triangles missing because of the absence of edges among peripheral

vertices, as shown above, is at least

MP−P ≥
b∑

e=1

(N − 2− γ + b) = b(N − 2− γ + b). (3.134)

We are now ready to count the number of triangles missing from G. We omit the

triangles missing from the peripheral vertices, and assume that all peripheral vertices

have clustering equal to 1 (otherwise the number of missing trinangles in G would

further decrease). The total number of missing triangles in G is

sg ≥MC−P +MP−P

≥ (N − d)

(
d∑

u=1

mu

)
−

d∑
u=1

m2
u + b(N − 2− γ + b)

= (N − d)(γ − b)−
d∑

u=1

m2
u + b(N − 2− γ + b)

(3.135)

with
∑d

u=1mu = γ − b, since γ edges in total are missing. In order to minimize sg,

we need to maximize the sum of squares
∑d

u=1m
2
u, under the constraints mu ≥ 1 for
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u = 1, 2, . . . d, and
∑d

u=1mu = γ − b. The maximum is achieved when mu = 1 for

u = 1, 2, . . . d− 1, and md = γ − b− (d− 1). As a result,

sg ≥ (N − d)(γ − b)−
(
(d− 1) + (γ − b− d+ 1)2

)
+ b(N − 2− γ + b) (3.136)

sg ≥ γN − γ2 + γd− bd+ d+ γb− 2γ − d2. (3.137)

The difference between sg and sf is

∆ = sg − sf

= γN − γ2 + γd− bd+ d+ γb− 2γ − d2 − γN + γ2 + γ

≥ γd− bd+ d+ γb− γ − d2

= (γ − d)(b+ d− 1).

(3.138)

By assumption, d ≥ 2 and b ≥ 0. The above product is always positive, when d < γ.

If d = γ, we have many fully connected peripheral vertices, each of which connect to

all but one vertex of Q. No two peripheral vertices are connected to the same central

ones, for in this case Q would not be maximal. As a result, there are less than γ

vertices in Q that have unit clustering, and more than N − 1− γ vertices in Q that

are missing one or more triangles, so sg > sf . In every case, CS(F) > CS(G).

There are two cases of type II almost complete graphs, depending on whether or

not there is an edge between the two peripheral vertices. If there is no such edge (type

IIa), the graph with the largest clustering takes the form of Figure 3.16(b). When

the two peripheral vertices are connected (type IIb), the graph with the form shown

in Figure 3.16(c) has the largest average clustering coefficient, as shown in the next

lemma.

Lemma 21. Assume a type II almost complete graph G(N,m) with two peripheral

vertices u and v. If u and v are not connected, the average clustering coefficient is

maximized when u and v have the smallest number of common neighbors. If u and v
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are connected, the graph with the largest clustering coefficient is the one where they

have the largest number of common neighbors.

Proof. Let c = m−
(
N−2
2

)
be the total number of edges connecting the two peripheral

vertices to the rest of the graph. Without loss of generality, assume that u has smaller

degree than v, d(u) ≤ d(v). Then, c = du + dv = 2a + b, where a is the number of

their common neighbors, and b = dv − du the neigbors of v that are not connected to

u. The sum of clustering coefficients will be

Cs(G) = N − a · 1 + (N − 2− a) + (N − 2− a− b)(
N−1
2

) − b · N − 2− a− b(
N−2
2

)
= N − c− b

2
· 2N − 3− c(

N−1
2

) − b ·
N − 2− c−b

2
− b(

N−2
2

) .

(3.139)

Since c is a constant, the sum of clustering coefficients is a function of b. By differen-

tiating, we find that it is increasing with b for all 2 ≤ c ≤ N − 2 and 0 ≤ b ≤ c− 2.

Similarly, when there is an edge between u and v, c = 2a+ b+ 1, and the sum of

vertex clustering coefficients is

Cs(G) = N − a · (N − 2− a) + (N − 2− a− b)(
N−1
2

) − b · N − 2− a− b(
N−2
2

) +
b(

a+b+1
2

)
= N − c− b− 1

2
· 2N − 3− c(

N−1
2

) − b ·
N − 2− b+c−1

2(
N−2
2

) +
b( b+c+1
2
2

) .
(3.140)

The last equation is a decreasing function of b for all 2 ≤ c ≤ N−2 and 0 ≤ b ≤ c−3.

From the above, we find that if a type II almost complete graph has maximum average

clustering coefficient, there will be a peripheral vertex with degree 1 (type IIa), or

both vertices will have the maximum number of common neighbors (type IIb).

For a given size m of a type II almost complete graph, we need to decide which of

the two variations has the largest clustering. The first two terms in both equations

differ in the fact that c and c − 1 edges connect a peripheral with a central vertex,

respectively. In the IIb type, the third term in equation (3.140) becomes very large for
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b ≥ 1, compared to the other terms for any N > 5, and a necessary condition in order

to have a type IIb almost complete graph is that b = 0 (the two peripheral vertices

have exactly the same neighbors), which means that c has to be odd, c = 2a + 1.

Then, a simple comparison of the two equations shows that if

c ≥
3N − 1 +

√
2 (N3 − 4N2 −N + 12)

N + 1
(3.141)

then the type IIa has larger average clustering than type IIb. The above number

scales proportionally to the square root of the order N .

Lemma 22. A type II almost complete graph has larger clustering than any other

graph of the same order and size.

Proof. We will use induction. The claim is true for graphs of order N = 4, shown by

exhaustive enumeration of all the graphs with 4 vertices. Now, we will assume that

it is true for all graphs of order up to N − 1, and will show that this is still true for a

graph of order N . The optimal graph will be found by using equation (3.128). The

connected graph of order N − 1 with the largest clustering coefficient is either a type

I or type II almost complete graph for all possible degrees d of the additional vertex

w, because 1 ≤ d ≤ N − 1, and by assumption
(
N−2
2

)
+ 2 ≤ m ≤

(
N−1
2

)
, so

(
N − 3

2

)
≤ m− d ≤

(
N − 1

2

)
− 1. (3.142)

If it is a type I almost complete graph, addition of one vertex will transform it into an

almost complete graph of type II, regardless of its degree. Consequently, the lemma

holds in this case. Now assume that the existing graph is a type II almost complete

graph. Assume that the two already existing peripheral vertices u and v have α and

β edges with vertices of the largest clique. If α + β + d = N − 1, then it is easy to

see that the optimal graph consists of a full graph of order N − 2, and two vertices

of degree 1 that connect to it. For every other value of α + β + d, since the initial
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graph is type II almost complete, d ≥ 2, and w has at least one neighbor in the clique.

Considering u, v, and w in pairs, we can show that a graph with three peripheral

vertices cannot be optimal, in other words, not all three can have less than N − 3

edges to the clique of order N − 3. The reason is that according to equation (3.127),

any choice of a single vertex from the graph should yield the same result, in terms of

maximizing the sum of clustering coefficients. By the induction hypothesis, in each

pair, one of the peripheral vertices should have one connection to the clique, (not

possible under the constraint α+ β + d > N − 1) or all of them should be connected

to each other and to the same vertices of the clique (also impossible for the same

reason). So, in every case, a type II almost complete graph will be optimal.

3.7.3 Graphs with the Largest Clustering

In this subsection, we will combine the previous results to show the form of the graphs

with the largest clustering for a graph of arbitrary order and size.

Lemma 23. The largest clustering graph with N vertices and 0 ≤ m ≤ N − 2 edges

consists of complete components of 2 or 3 vertices each.

Proof. For m=0, we have no edges and the clustering coefficient is equal to zero. If

m > 0, we first connect pairs of vertices, until all of them have degree 1. If we have

any edges left, we start forming triangles, by trying to keep the vertices that do not

have any edges at a minimum. In a triangle, we have the same number of vertices

and edges, and since m ≤ N − 2, the number of edges is not enough to connect all

the vertices in triangles. The above procedure will guarantee that the disconnected

graph will have a sum of clustering coefficients equal to 1.

Lemma 24. The tree that has the largest clustering (according to the convention that

a vertex with degree 1 has clustering 1) is the star graph.

Proof. Since there are no cycles in a tree (which also means no triangles), a vertex with

degree larger than 1 will have a clustering coefficient equal to zero. By minimizing
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the number of such vertices (one vertex is the minimum number since the graph needs

to be connected), we achieve the largest clustering for the star graph.

An important point to note is that the star graph is a graph with one cut vertex,

connected to several complete graphs of order 2.

Theorem 13. The graph with N vertices and N ≤ m ≤
(
N−2
2

)
+ 1 edges that has

the largest possible clustering coefficient consists of one cut vertex that is shared by

complete or almost complete subgraphs.

Proof. We will use induction on the number of vertices to find the optimal graph for

N ≤ m ≤
(
N−2
2

)
+ 1. For N=4, the statement can be found to be true, by evaluating

all the possible graphs (for computational considerations see [32]). Assume that the

optimal graph for every number of vertices up to N−1 and for the respective range of

sizes, has the form mentioned above. The graph with N vertices and m edges will be

found by connecting a new vertex of degree d to an optimal graph of order N −1 and

size m−d. The resulting graph will have the maximum possible clustering of the new

vertex (equal to 1), the maximum clustering of the rest of the graph it is attached to,

and the minimal possible decrease in clustering for the vertices it is connected to.

If d is larger than the order of the largest subgraph in G(N − 1,m − d), then

it will be connected to at least two smaller complete or almost complete subgraphs.

Now consider the subgraph that consists of these subgraphs plus the added vertex

of degree d. It has P < N vertices and R <
(
P−2
2

)
+ 2 edges. In addition, it has a

cut vertex, which connects its two or more components. This is a subgraph whose

form is not optimal, according to the induction hypothesis, meaning that there is a

smaller degree d for the vertex u, for which equation (3.128) gave a larger clustering

coefficient for order P and size R. So we only need to consider vertices with degree

d less than the size of the largest “module” if G(N − 1,m− d) is already connected.

Moreover, we only need to try to connect it to one clique. The rest of the cliques

will not change, so we focus on the clique where the new vertex with the new edges
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is added, and prove that it will still have the same form. If it is a complete graph,

then after adding the new vertex u, it will have one peripheral vertex, which makes

the claim hold (the complete graph will now be a type II almost complete graph). If

it is a type I almost complete subgraph, after the addition of the new vertex, it will

become a type II almost complete subgraph, as shown above. If the subgraph is a

type II almost complete subgraph, then connecting u to it cannot yield an optimal

subgraph, since by increasing the degree of u to the size of this subgraph, we can

make a graph with larger clustering, as shown in the lemma about the optimal form

of type II almost complete graphs. In every case, the new graph will have the form

described in the theorem.

The above arguments show the form that the optimal graph needs to have, but

not the exact arrangement of edges among its vertices. Using equation (3.128), we

can find the optimal graph in polynomial time, and we only need to consider a small

range of different degrees for the added vertex.

Corollary 21. The graph G(N,m) with the largest possible clustering coefficient has

one of the following forms, depending on its size m:

• 0 ≤ m ≤ N − 2: Disconnected graph, consisting of complete components with

2 or 3 vertices each.

• N − 1 ≤ m ≤
(
N−2
2

)
+ 1: Complete or almost complete subgraphs that share

one vertex.

•
(
N−2
2

)
+ 2 ≤ m ≤

(
N−1
2

)
: Type II almost complete graph.

•
(
N−1
2

)
+ 1 ≤ m ≤

(
N
2

)
− 1: Type I almost complete graph.

• m =
(
N
2

)
: Complete graph, with average clustering C̄ ≡ 1.
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3.7.4 Properties of the Graphs with the Largest Average

Clustering Coefficient

1. The structure of real large-scale networks have locally the structure of the net-

works with the largest average clustering, and this pattern has been observed

in many different types of networks, from social to biological [27, 52]. The sub-

networks that comprise the larger ones have a few very well connected central

vertices, that are part of many complete or almost complete subgraphs. This

pattern also helps define a hierarchical structure in natural and engineered net-

works, if each peripheral vertex that belongs to one clique is also the central

vertex to a different subnetwork. This graph form can also be used to facilitate

modeling and characterization of large-scale networks [30]. Although networks

with the largest clustering coefficient are unique, a large clustering coefficient

does not necessarily imply any specific network structure or function, since there

are ways to construct random networks with relatively high average clustering

coefficient [49].

2. The form of the optimal graphs is recursive. Every combination of clusters

(modules) that are connected through a cut vertex themselves form an optimal

graph of the respective order and size. This suggests an alternative way to

generate an optimal graph, where it can be found as a combination of smaller

complete or almost-complete subgraphs. We can find the optimal form recur-

sively with this procedure, too. Since there is always a cut vertex, we can

break the network in two smaller parts, that do not affect each other’s average

clustering coefficient, and optimize them independently.

3. When a new vertex is attached to a graph with the process described above,

it is always attached to vertices that are members of the same clique. This

property can make computation easier, since we only need to consider cliques of

size equal or greater to the degree of the candidate additional vertex, according
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to equation (3.128).

4. No graph with the largest average clustering has any chordless cycles. This is

because a cycle of length more than 3 could be changed to a triangle, therefore

increasing the clustering coefficient.

5. No graph with the largest average clustering has any induced bipartite sub-

graphs, since bipartite subgraphs have average clustering coefficient equal to

zero.

6. Every cut set is a complete graph of order 1 or more. In addition, if there

exists a cut vertex, it also belongs to all larger cut sets. The structure of the

graphs with the largest clustering is very modular, with subgraphs that serve

as modules, connected through the cut vertex. Also, graphs that locally have

the structure with the largest clustering coefficient have also very high average

clustering. Many natural networks also seem to have evolved to have modular

structure, which makes the systems more stable and robust [66].

7. For all connected optimal graphs, there is at least one vertex that is connected

to every other vertex in the graph. If the graph is not almost complete, then the

central vertex is unique. Otherwise, we may have more than one such vertex.

This architecture is locally “robust yet fragile” [20], since the structure of the

function of the network is unlikely to be affected too much if one of the vertices

in one of the almost complete subgraphs is dysfunctional or removed. On the

other hand, if the central vertex is removed, the network becomes disconnected.

For networks that locally have the form of the networks with the largest average

clustering, with many nodes of large degree, the same principle holds. The

highly connected nodes are far more likely to affect the network than the nodes

of smaller degrees, and this observation is quite independent of the nature or

function of the network [53, 69].
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8. The networks with the largest clustering coefficient also have the smallest aver-

age distance among the various vertices. For every pair of vertices that are not

connected, there is a path of length 2 that connects them. These networks are

classified as “small world”, because they have both high average clustering and

small average shortest paths, as mentioned previously.

9. From a computational standpoint, in order to find the optimal graph G(N,m),

we first need to find the optimal graphs of order N−1, for all sizes, which in turn

means that we need to compute all such graphs of all orders up to N − 1. The

complexity of this procedure is polynomial, O(N5), since we need to find the

optimal graphs for all graphs of order up to N , each of which has O(N2) edges,

and each time we need to add one vertex, trying various degrees d = O(N),

to all appropriate O(N) cliques. In order to avoid computing recursively the

same optimal graphs, we can start from the smallest possible optimal graph (for

N = 3), and build our way to the desired N , while storing all the optimal graphs

to the memory. If we had to perform an exhaustive search, the complexity would

be prohibitively large, O(2N2

2 ).

3.7.5 Fast Generation of Graphs with Small Distance and

Large Average Clustering

In the previous sections, we saw that the form of the graphs with the smallest distance

and largest clustering take the form of complete or almost complete subgraphs that are

connected through one vertex. In order to generate very large networks that have this

form, we can resort to a much simpler algorithm that has almost constant complexity,

and can generate networks with arbitrarily many vertices, with the minimal average

distance and very close to optimal clustering coefficient. Given the order and size of

the graph, we find the largest complete subgraph, which leaves enough edges for the

rest of the network to be connected. Then we subtract the number of vertices and
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edges used, and repeat the process until all the vertices and edges have been used. If

at any point during the process, it is found that we cannot form a subgraph with the

number of vertices and edges, we backtrack and reduce the order of the cluster in the

previous step (see [32]).

3.7.6 Resilience to Vertex or Edge Removal

The small-world networks studied here are very robust to edge removal. Since almost

every vertex is part of a complete graph, we need to remove at least as many edges

as the order of the smallest clique it belongs to in order to render the network dis-

connected. Even in that case, the number of vertices disconnected is at most equal

to the number of edges deleted.

(a) (b) (c)

Figure 3.17: (a) The graph with the largest clustering coefficient of order 11 and size 22
consists of three complete subgraphs. Removal of the central vertex will render the network
disconnected. (b) Addition of a few new edges among the different subgraphs creates new
alternative communication paths among the various vertices of the network. As a result,
the minimum cut set of the network is increased. (c) Adding new edges that connect one
edge with vertices in the other subgraphs essentially creates a new network with more than
one central vertex.

The situation is different for vertex removal. We immediately note that unless we

have enough edges to build an almost complete graph, the network becomes discon-

nected if we remove the central vertex, and the number of disconnected components

is the number of modules in the initial network. Real world networks on the other

hand, rarely have an articulation point. The robustness of a network to vertex failure
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is determined by its smallest cut set, and in this type of network, it consists of a sin-

gle vertex (the central vertex). Removal of the central vertex will render the network

disconnected. Depending on the application, we may be able to add new edges, which

will increase the network’s robustness to vertex failure. There are many ways to add

the new edges, all of which result in reduced clustering. One of them is to distribute

the new edges among vertices of the various modules, as shown in Figure 3.17(b).

This method ensures that if the central vertex is removed, there are still communica-

tion channels among the different subsystems of the network. Another way is shown

in figure 3.17(c), where one or more of the vertices forms new connections with the

vertices of all the other subgraphs, which in essence increases the number of ’central’

vertices. Rewiring or adding new edges will have the least effect when they connect

vertices with a large degree.

3.7.7 Alternative Definition for Vertices with Degree One

A common alternative convention for the vertices with degree 1 is to define their

clustering coefficient as equal to zero. The process of finding the graphs with the

largest clustering under this new convention is very similar to the previous case. The

biggest difference is the form of graphs with a small number of edges, when they

consist of at least one subgraph that is a tree.

For m < N − 1, the graph is disconnected, and the optimal form consists of a

group of disconnected triangles. When m = N − 1, the only form a connected graph

can take is a tree, in which case, any arrangement of the vertices will yield a clustering

coefficient of zero, since there can be no triangles. As m increases, we are able to form

the first triangles, and the vertices that have nonzero clustering are part of a triangle,

and have one more edge to the rest of the graph, keeping their degree low. As the

number of edges increases further, and every edge is part of at least one triangle, the

form of the optimal graphs resembles the form under the previous case, with only
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(a) (b) (c)

Figure 3.18: Graphs with the largest clustering coefficient, defining the clustering coefficient
of vertices with degree d = 1 as equal to zero. (a) The optimal graph for G(8, 13) has two cut
vertices, connected through a bridge. (b) The smallest type II almost complete subgraph
consists of a clique with N − 2 vertices, and both peripheral vertices have degree at 2. The
peripheral vertices are shown in red. (c) The smallest type I almost complete graph under
the new convention, where the peripheral vertex has degree 2.

one difference, and after which point, no vertex has degree 1. Some graphs, instead

of having a unique cut vertex, have two cut vertices that are connected through one

bridge edge, as shown in Figure 3.18(a). Under the initial convention, the same graph

would consist of the same two modules, plus one vertex with degree 1, connected to

the cut vertex. The last difference is that the definition of the almost complete graphs

has to be changed so that the peripheral vertices have a degree of at least 2 (Figures

3.18(b) and 3.18(c)). The process of finding the optimal graphs remains otherwise

the same, and an example for a graph of order 10 is shown in Figure 3.20. Comparing

figures 3.19 and 3.20, we immediately see the similarity of the optimal graphs in both

cases.
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Figure 3.19: Graphs of order 10 and size 9 ≤ m ≤ 45 with the largest clustering coefficient,
assuming that vertices with degree 1 have clustering coefficient equal to 1.
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Figure 3.20: Graphs of order 10 and size 10 ≤ m ≤ 45 with the largest average clustering
coefficient, assuming that vertices with degree 1 have a clustering coefficient equal to zero.



92

3.8 Relationships Among Graphs with Various Ex-

tremal Properties

From the analysis of the various graph properties, we can find relations among the re-

spective classes of graphs. This is important in order to design networks that achieve

more than one extrema simultaneously. There are two main relations. The first one

includes the set of networks with the minimum average clustering (Cmin), minimum

radius (Rmin), minimum distance (Dmin), maximum efficiency (Fmax), minimum be-

tweenness centrality (Bmin), and minimum diameter (Tmin):

Cmin ⊆ Rmin ⊆ Dmin = Bmin = Fmax = Tmin. (3.143)

We can clearly see that networks with the minimum average clustering also have, by

construction, minimum radius (equal to 1), average distance, and diameter(equal to

2). They also have the minimum possible vertex and betweenness centrality, as well as

the largest possible efficiency. This is the only class of networks in this equation that

are unique. Networks with minimum radius are not unique, since they only require one

vertex to have full degree, regardless of the connectivity pattern of all other vertices.

The network types with minimum average distance, diameter, betweenness centrality

and maximum efficiency are less constrained: all vertices are either connected or have

a common neighbor.

The second relation includes networks with the maximum average distance (Dmax),

minimum efficiency (Fmin), maximum vertex and edge betweenness centrality (Bmax),

and maximum diameter (Tmax):

Dmax = Fmin = Bmax ⊆ Tmax. (3.144)

As mentioned in the previous sections, a network with maximum average distance also

has minimum efficiency and maximum average vertex and edge betweenness centrality.
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The networks with maximum diameter are a superset of the last class of networks.

The networks with maximum radius are not part of any of the set equations above.

The same is true for networks with minimum or maximum resistance distance. This is

because of the particular requirements of each structure. The networks with maximum

diameter have a structure that has a different effect on the other properties. Networks

with minimum resistance distance have constraints on two vertices only, such that

the connectivity of the rest of the network can be arbitrary. Finally, networks with

maximum resistance are a superset of networks with the maximum distance (and

subsets of networks with maximum diameter) only when the size of the network is

not too large, in other words when they consist of an almost complete subgraph and

one or two path subgraphs.

3.9 Variance of Various Properties for Random

Networks

In order to evaluate the structure of a graph which achieves a minimum or maximum

of a given property, we need to find not only the expected value of this property

for a random network, but also its standard deviation. This way, we can measure

how much a given structure deviates from the mean, and estimate if there are many

other networks with similar structure. For a fixed order and size, a large standard

deviation (and consequently, variance) for a given property would reveal that the

respective random networks are more diverse. In contrast, a small standard deviation

means that the property in question has the same value for almost all random graphs

with the same number of nodes and edges. Small variance would make the design

of networks with properties that are further away from the mean harder, because it

would indicate that even small changes in their structure would significantly change

their properties. The standard deviation of the average distance, radius, diameter,

and resistance of a network is shown in Figure 3.21. For the average distance and
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Figure 3.21: Standard deviation of various properties of a network of fixed order as a
function of its size. The properties shown here are the average shortest path length, radius,
diameter and resistance distance. The plots are for a network of order N = 40 and size 39 ≤
m ≤ 780. The standard deviation of the average distance and resistance are monotonous
and decreasing as the size of the graph increases. The standard deviation of the radius and
diameter of the network has several local maxima. The graph sizes where it increases and
then goes back to zero are when the average value changes.

resistance, it is a strictly decreasing function of its size, as one would expect, with

distance always having variance smaller or equal to every other property shown.

The shape of the curves for both the radius and diameter closely resembles a

combination of a strictly decreasing function that quickly drops to zero (like the one

for the average distance), and a series of smooth “humps”. This is consistent with the

shape of the expected value of the radius and diameter for random graphs, as shown

in Figures 3.7 and 3.9. The graph sizes for which these local maxima are exactly the

graph sizes for which there is a transition from one value to another, between the

different “steps” in the respective plots of the averages, and when the mean values

do not change, the standard deviation is very close to zero.
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3.10 Sensitivity to Rewiring

In most cases when designing a network, there are many constraints that need to be

satisfied, and the properties discussed so far are only proxies to determining other

desirable qualities of a network. Also, it is reasonable to expect that our networks

may not be allowed to have the extremal values of the properties described in the

previous sections, especially given that sometimes there are conflicting requirements

for the network function. Given these considerations, we are interested in knowing

how robust these structures are, in other words, how sensitive these properties are to

changes in the interconnection patterns.

3.10.1 Average Distance, Radius, Diameter, and Resistance

We start with two networks with the extremal properties (minimum and maximum),

and keep rewiring one of the edges, making sure that the network remains connected.

At every step, we measure the properties of each network instance, and monitor its

evolution as we introduce more and more randomness in their structure. Eventually,

both will resemble a random graph, with the average distance, betweenness centrality,

efficiency, radius, diameter, and resistance being close to the statistical average. The

question is how fast this state is reached. If the change is very fast, this means that

a few changes in the structure are able to negate the advantages that an extremal

graph is able to provide. However, if a particular property does not change much

after several rewirings, we can afford to build networks with many other desirable

properties without the need to follow exactly the specific topology for every given

property.

We have tested the change of average distance, radius, diameter and resistance for

networks of small order. Refering to Figure 3.22, we find that the average distance of

networks with large average shortest path length decreases very quickly after a few

rewirings. Convergence to the statistical average is much slower for networks that
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Figure 3.22: Evolution of the average distance, radius, diameter and resistance of networks
after successive random rewirings. Each curve is the average of 100 experiments, rewiring
networks of the same size and order N = 500. The curves for the average shortest path
length correspond to a network of size m = 600. The curves for the evolution of radius,
diameter and resistance correspond to networks of size m = 525.

start with the smallest average distance. The number of rewirings required to get

close to the statistical average is an increasing function of the order of the network

when the edge density is constant, as one would expect, since there are more edges

that need to be rewired in order to make a difference. The same can be said for the

evolution of the network radius, diameter, and resistance.

The general conclusion is that networks with the smallest average distance, ra-

dius and diameter and resistance are much more robust to changes in their topology

because they rely on a global pattern of interconnections, and each edge has a small

role in ensuring that property, so its conservation is diffused among many edges. On

the contrary, networks with maximum distance, radius, diameter, and resistance are
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Figure 3.23: Change of the average clustering of a network of order N=500 and various
edge densities D . At every step one edge is rewired and the new clustering coefficient is
measured. We repeat the process for a number of steps equal to the number of edges in
the graph. The rate of decrease is very small at first, but increases as we introduce more
randomness in the structure. Larger networks are more robust to rewiring a fixed number
of edges.

very sensitive to change, because most vertex connections are prohibited, in the sense

that if currently non-neighboring vertices are connected, there is a dramatic trend

towards the statistical average.

3.10.2 Clustering Coefficient

In Figure 3.23, we show the evolution of the average clustering coefficient after

rewiring a percentage of the edges, for a typical large network, and for different

edge densities. If we rewire a small number of edges, this has no notable effect on the

average clustering coefficient, since most of the vertices have only a small amount of

neighbors that are not in their previous clique. The effect of rewirings depends on

the edge density of the network, with more densely connected networks being more
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robust, since the relative amount of randomness introduced in the structure becomes

smaller as the size of the network increases. This is a similar situation to that found

in [70], with the only difference being that the distance is very small from the start,

and quite robust to rewirings, increasing less than 0.1% even after we rewire a number

of edges equal to the size of the network.

3.11 Conclusions

This chapter focused on structural properties of graphs. We found tight bounds on

specific graph properties, and how they relate to the respective expected values for

random graphs. We also showed the structure of networks that achieve these bounds,

along with when these structures are unique. These properties include the average

distance of a graph, the vertex betweenness centrality, edge betweenness centrality,

efficiency, radius, diameter, resistance distance and average clustering. Finally, we

explored how sensitive these properties are with regards to rewiring a fraction of the

total number of edges for each of these structures.
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Chapter 4

Quantification and Minimization of
Crosstalk Sensitivity in Networks

Crosstalk is defined as the set of unwanted interactions among the different entities

of a network. It is present in various degrees in every system where information

is transmitted through a means that is accessible by all its individual constituents.

Using concepts from graph theory, we introduce a quantifiable measure for sensitivity

to crosstalk, and analytically derive the structure of the networks in which it is

minimized. It is shown that networks with an inhomogeneous degree distribution

are more robust to crosstalk than corresponding homogeneous networks. We provide

a method to construct the graph with the minimum possible sensitivity to crosstalk,

given its order and size. Finally, for networks with a fixed degree sequence, we present

an algorithm to find the optimal interconnection structure among their vertices.

4.1 Introduction

Crosstalk affects the function of many complex engineering systems. In microelec-

tronic circuits that operate in higher frequencies, it is increasingly hard to ensure

proper function without isolating the various components from electromagnetic in-

terference. In wireless communications, we need to make sure that the input and

output signal frequency spectrums are relatively narrow to avoid crosstalk with other
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communication systems. In chemical and biomolecular systems, different molecules

interact with each other in a solution without explicit mechanisms that bring them

in contact, creating errors that disrupt the function of the network and introduce

errors [61, 64]. In social networks, crosstalk which appears in the form of “weak ties”

and can be responsible for many macroscopic phenomena, such as diffusion, social

mobility, political organization, and social cohesion in general [29].

As a result, there is a potentially large number of spurious interactions, despite

which all natural systems seem to be able to function without problems. The plausi-

ble amount of unwanted crosstalk interactions increases as a function of the number

of the individual elements in the network, so there is the need to design systems

that are optimized to minimize or at least decrease the amount of spurious inter-

actions, in order to keep the network functional. In biological networks, this need

is more pronounced since signaling is implemented through variations of molecular

concentrations.

Crosstalk does not seem to be a problem in the cell, or any other natural biological

system, despite the large variety of molecules, and the intricate patterns of interac-

tions. However, in biological design, even the simplest systems suffer from crosstalk

between different elements, notwithstanding the small complexity of such artificial

systems [57, 58]. If there are molecules that randomly interact with each other with-

out performing any function, the effective concentration of each molecule which is

available to participate in any given pathway will tend to decrease, and therefore the

efficiency of the circuit will diminish.

In this chapter, we find the structure of graphs with the smallest possible sensi-

tivity to crosstalk, assuming that the crosstalk affinity of each vertex is either specific

to each unit in the network, or is a function of its degree.
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4.2 Model

4.2.1 General Considerations

Assume that we have a weighted graph that represents a network of interactions.

We define crosstalk as additional unmodeled interactions among the vertices of the

network. These edges are randomly distributed across the network, and typically have

smaller weights than the original ones. We assume that there cannot be any unwanted

interactions among vertices that are already connected in the original network. The

crosstalk matrix, denoted by Rxt, is the weight matrix of all the crosstalk interactions.

If there is crosstalk between vertices u and v, the matrix element wxt
u,v will contain

the intensity of that interaction. We will assume that the crosstalk affinity between

any pair of vertices (u, v) /∈ E(G), is bounded:

||Rxt||∞ = max
(u,v)/∈E

wxt
u,v ≤ ϵ. (4.1)

Definition 4. Given a local measure of the crosstalk interaction wxt
u,v = g(u, v) among

two vertices u and v, the overall sensitivity to crosstalk of a network of interactions is

defined as the sum of the intensities of all the spurious interactions among individual

units that are not connected:

K(G) =
∑

(u,v)/∈E

wxt
u,v. (4.2)

When the network in question is obvious from the context, we will refer to its

sensitivity to crosstalk simply as K. The order of the graph is finite, so the overall

crosstalk sensitivity is bounded.

||Rxt||1 =
∑

(u,v)/∈E(G)

wxt
u,v ≤

((
N

2

)
−m

)
ϵ =M. (4.3)

We will call M = M(N,m, ϵ) the maximum possible crosstalk intensity of the net-
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work. It is only a function of the size and order of the network along with the

maximum possible crosstalk intensity of any pair of vertices, which depends on the

network and is independent of its specific structure. The matrix Rxt is constant,

assuming that each crosstalk interaction represents the average over a time period.

Definition 5. We say that a graph G∗ = G∗N,m has minimum sensitivity to crosstalk,

or that it is a minimum crosstalk graph, if for any other graph G = GN,m of the same

order and size, we have

K(G∗) ≤ K(G). (4.4)

In what follows, we analyze the crosstalk sensitivity of networks in three different

cases. The first is when the crosstalk affinity of each vertex depends only on its

physical properties, specific to each network. The second and third cases assume

that the crosstalk affinity of each vertex is an increasing function of its degree. This

is a reasonable assumption, especially in biological networks, natural or man-made.

Biological molecules (proteins, for example) which are supposed to interact with many

others, have a less specific shape. This is exactly the reason why they can also

randomly interact with many other unrelated molecules. The same argument holds

for molecules that are very specific, and can interact with a small subset of the

rest of the molecules in the network. In DNA systems [25, 38, 58], if a strand is

designed to interact with many others, it is usually longer and, as a result it can

stick to many unrelated strands that are floating in the solution. In communication

networks, transceivers that are sensitive to a large spectrum of frequencies are more

likely to pick up noise or other random signals from surrounding transmitters, and

the opposite is true for transceivers which have a narrow input and output frequency

range.

4.2.2 Crosstalk Specific to Individual Vertices

In this first case, we assume that the amount of crosstalk depends on the specific

vertices of the network and the way they interact with each other. For this reason,
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we have no control over their intensity. The intensity of interactions may depend

on many different properties of each vertex, but in what follows, we will always

normalize the crosstalk interaction intensity among any pair of vertices. The larger

the size of a graph with constant order, the fewer the pairs of vertices that can

spuriously interact with each other, decreasing the overall sensitivity to crosstalk.

Two extreme cases are the tree graphs, when the number of edges is equal to the

minimum possible (m = N −1, given that the graph is required to be connected) and

the complete graphs, where m =
(
N
2

)
. In a tree graph we have

(
N
2

)
− (N −1) =

(
N−1
2

)
pairs of vertices that may spuriously interact. The complete graph has no crosstalk

interactions, simply because every vertex is designed to interact with every other. In

a network with size m, the overall crosstalk sensitivity K(G) will be bounded by these

two extremes,

0 ≤ K ≤
(
N − 1

2

)
||Rxt||∞. (4.5)

We can optimize the structure of this network, by connecting the m pairs of vertices

with the strongest interactions among each other, thus reducing ||Rxt||∞.

A more interesting problem arises when the intensity of crosstalk interaction is

a function of the vertex degrees. We denote the crosstalk affinity of vertex u with

degree du and vertex v with degree dv as

wxt
u,v = g(du, dv) (4.6)

which represents the intensity of the crosstalk interaction between u and v. The

function g is assumed to be a strictly increasing function in both its arguments,

reflecting our assumption that the more neighbors a vertex has, the more likely it is

to interact with vertices it is not connected with. We also assume that g is symmetric,

g(du, dv) = g(dv, du). (4.7)
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The affinity f = f(du) of a vertex u is similarly defined as its tendency to interact with

other vertices of the network with which it is not connected in the initial network, and

consequently it is not supposed to interact with. The following sections present two

scenarios, the first defines g as the sum of the affinity functions of the two vertices,

and the other defines g as the product of their affinities.

4.3 Pairwise Crosstalk Interactions as the Sum of

Individual Affinities

If g(x, y) is an additive function, we can write it as

g(x, y) = f(x) + f(y) (4.8)

where f : R+ → R+ is defined as the affinity of each individual vertex. We will refer

to this type of crosstalk interactions in the network as additive crosstalk. The overall

crosstalk sensitivity will be

K(G) =
∑

(u,v)/∈E(G)

wu,vg(u, v)

=
∑

(u,v)/∈E(G)

wu,v(f(u) + f(v)).
(4.9)

If we group all the terms that correspond to each vertex together, we can rewrite the

last equation as

K(G) =
∑

u∈V(G)

(∑
v/∈Nu

wu,v

)
f(u). (4.10)

The last equation clearly shows how to reduce crosstalk if vertex affinities are

fixed. We either need to make sure that vertices that are not connected do not

significantly affect the function of the network (reduce the respective weights), or

have these vertices interact with each other, removing the respective weights that
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contribute to a large increase in the overall crosstalk sensitivity.

If all weights are equal, in other words, if

wu,v = w ∀u, v ∈ V(G), (4.11)

then the overall crosstalk can be written as:

K(G) = w
∑

u∈V(G)

(N − 1− du) f(u). (4.12)

The last equation clearly shows that the overall crosstalk is independent of the network

structure, as it only depends on the affinity of each vertex and its degree, not the

neighborhood of each vertex. In what follows, we will assume that all weights are

equal to one for simplicity. In addition, we will be assuming that the affinity functions

and the crosstalk intensity functions depend on the degree of the respective vertices,

as mentioned in the introduction.

4.3.1 Structure of Networks with Minimum Sensitivity to

Additive Crosstalk

If the affinity of each vertex is a strictly increasing function of its degree, and crosstalk

interactions among all pairs of vertices contribute equally to the overall crosstalk, then

we can rewrite equation 4.9 as:

K(G) =
∑

(u,v)/∈E(G)

g(u, v) =
∑

(u,v)/∈E(G)

g(du, dv) =
∑

(u,v)/∈E(G)

(f(du) + f(dv)) . (4.13)

We will first present some lemmas that will help us formulate the main theorem

of this section.

Lemma 25. Assume that the function h : R+ → R+ can be written as the product of

two functions f and g, with f : R+ → R+ being strictly increasing, differentiable, and
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concave function, and g : R+ → R+ is strictly decreasing, differentiable, and concave.

Then h is strictly concave.

Proof. The second derivative of h is

h′′(x) = f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x). (4.14)

All three products of the right hand side are negative, since f(x) > 0, f ′(x) > 0,

f ′′(x) ≤ 0, g(x) > 0, g′(x) < 0, and g′′(x) ≤ 0, therefore h′′(x) < 0.

Lemma 26. Assume we have a differentiable function f : R+ → R+, with f ′(x) <

0 and f ′′(x) ≤ 0 for every x ∈ R+. Further assume that we have four numbers

a, b, c, d ∈ R+, such that 0 ≤ a < c ≤ d < b <∞, and for which a+ b = c+ d. Then

f(a) + f(b) ≤ f(c) + f(d).

Proof. According to the mean value theorem, there exist numbers a ≤ ξ1 ≤ c and

d ≤ ξ2 ≤ b such that

f
′
(ξ1) =

f(c)− f(a)
c− a

(4.15)

and

f
′
(ξ2) =

f(b)− f(d)
b− d

. (4.16)

Since f is concave,

f ′(ξ2) ≤ f ′(ξ1). (4.17)

Replacing these derivatives from the equations above, we get

f(b)− f(d)
b− d

≤ f(c)− f(a)
c− a

. (4.18)

Since a+ b = c+ d, the denominators are equal, and as a consequence

f(b)− f(d) ≤ f(c)− f(a). (4.19)
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After rearranging the terms, the result follows.

Definition 6. The total affinity hu of a vertex u is equal to the sum of the affinities

of u to all the vertices of the network that it is not connected with.

Theorem 14. Assume that the function f : R+ → R+ that defines the affinity

of each vertex of the network is a strictly increasing concave function of the vertex

degree. Then the total affinity of every vertex u is equal to

hu = (N − 1− du)f(du) (4.20)

and the degree distribution of the network with the minimum additive sensitivity to

crosstalk is inhomogeneous.

Proof. As shown in equation (4.13), the crosstalk intensity between any pair of ver-

tices is only a function of their degrees. Furthermore, the affinity of each vertex is

only a function of its degree, and independent of the vertices it interacts with. As a

result,

hu =
∑
v/∈Nu

f(du) =⇒ hu = (N − 1− du)f(du). (4.21)

Since hu is also a function of the vertex degree, we will denote the total affinity

as hu = h(du). From Lemma 25, the function h is positive, strictly increasing and

concave, since N − 1− du is a decreasing positive linear function for 1 ≤ du ≤ N − 1

and f is assumed to be positive, increasing, and concave.

The network which is most robust to crosstalk will be the one with degree distri-

bution d∗ = [d1, d2, . . . , dN ] such that

d∗ = argmin
d∈P

 ∑
(u,v)/∈E(G)

(f(du) + f(dv))

 (4.22)

under the constraints

1 ≤ du ≤ N − 1 ∀u ∈ V(G) (4.23)
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N∑
u=1

du = 2m ≥ 2(N − 1) (4.24)

where P is the space of graphic degree sequences for connected graphs. Rewriting

equation (4.13), we find that

K =
∑

(u,v)/∈E(G)

(f(du) + f(dv)) =
∑

u∈V(G)

(N − 1− du)f(du) =
∑

u∈V(G)

h(du). (4.25)

The functionK is a sum of concave functions, and thus concave. According to Lemma

26, the optimal d∗ will be achieved for du’s at the boundaries of the plausible values

in the inequality (4.23).

Corollary 22. When the crosstalk affinity between two vertices is an additive function

of their degrees, the overall crosstalk sensitivity only depends on the vertex degrees,

and does not depend on the structure of the network. In other words, how robust the

network is to crosstalk only depends on its degree distribution.

Proof. From equation (4.25), the overall sensitivity of the network only depends on

the degree distribution, and is independent of its structure.

Corollary 23. The tree graph that is most robust to additive crosstalk is the star

graph.

Proof. The star network has one vertex with full degree and this vertex has no

crosstalk interactions. The N − 1 peripheral vertices have degree 1, and may spuri-

ously interact with each other. Hence,

Kstar =
∑

u∈V(G)

(N − 1− du)f(du)

=(N − 1)(N − 2)f(1) + (N − 1) · 0

=2

(
N − 1

2

)
f(1).

(4.26)

Every other graph will have vertices with degrees 1 ≤ d ≤ N − 2 with at least
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one vertex with degree d ≥ 2. The total number of crosstalk interactions is equal to

twice the number of edges that are not present in the network, namely 2
(
N−1
2

)
. The

sum of all the crosstalk interactions Kalt will then be

Kalt =
∑

u∈V(G)

(N − 1− du)f(du)

> f(1)
∑

u∈V(G)

(N − 1− du)

= f(1)(N(N − 1)− 2(N − 1))

= 2

(
N − 1

2

)
f(1)

= Kstar.

(4.27)

Corollary 24. Suppose that a vertex u is connected to vertex v with degree dv, and is

not connected to vertex w with degree dw. If dv ≤ dw, and we can rewire the edge (u, v)

to (u,w) while keeping the graph connected, then the sensitivity of the new network

to additive crosstalk is smaller.

Proof. The only vertices whose affinities change are v and w, since the degree of u,

along with any other vertex in the network, stays the same. Thus,

∆K =Knew −Kold

=(N − dv)f(dv − 1) + (N − 2− dw)f(dw − 1)

− (N − 1− dv)f(dv)− (N − 1− dw)f(dw)

=− [h(dv)− h(dv − 1)] + [h(dw + 1)− h(dw)]

<0.

(4.28)

The last inequality holds because h is concave (Lemma 25) and dv < dw.

Corollary 25. In a graph with minimum sensitivity to additive crosstalk, there is

always a vertex with full degree.
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The last corollary guarantees that no matter how we rewire the vertices which do

not have full degree, the graph stays connected.

Definition 7. We define Nx−y as the set of all the neighbors of vertex x except vertex

y, such that

Nx−y =


Nx if y /∈ Nx

Nx − {y} if y ∈ Nx.

(4.29)

Corollary 26. In a graph with the minimum crosstalk sensitivity, for every pair of

vertices a and b, we have

da ≤ db ⇐⇒ Na−b ⊆ Nb−a. (4.30)

Proof. Counting the elements of the sets Na−b and Nb−a,

Na−b ⊆ Nb−a =⇒ |Na−b| ≤ |Nb−a|. (4.31)

In addition,

|Na| = |Na−b|+ δ((a, b) ∈ E), |Nb| = |Nb−a|+ δ((a, b) ∈ E) (4.32)

where δ is the Kronecker delta function, defined as

δ((u, v) ∈ E) =


1 if u and v are connected

0 otherwise.

(4.33)

As a result,

da = |Na| ≤ |Nb| = db. (4.34)
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The necessity of condition (4.30) is proved, and we will next show the sufficiency of

the statement by assuming otherwise and arriving at a contradiction.

Suppose that da ≤ db, but Na−b ⊈ Nb−a. This means that there is at least one

vertex that is connected to a, but is not connected to b. Let M ∈ V(G) be a vertex

with degree dM such that

dM ≥ du ∀u ∈ Na ∩N c
b . (4.35)

Since the graph G has minimum sensitivity to crosstalk, by Corollary 24, this means

that a is connected to all vertices that have degree larger than M . If it did not, we

could rewire the edge (a,M) to connect a with a vertex with a larger degree. The

same applies for vertex b, and since da ≤ db, the only way that vertex b would not be

connected to M , is when it is connected to some other vertex P with degree equal to

the degree of M ,

dM = dP = θ. (4.36)

Even in that case, if we rewire the edge that connects b with P , so that after rewiring

it connects b with M , the difference of overall crosstalk sensitivity for the graph G

will be negative

∆K = Knew −Kold

= h(θ + 1) + h(θ − 1)− 2h(θ)

< 0

(4.37)

because the total crosstalk affinity function h is strictly concave. This means that G

was not a graph with minimum crosstalk sensitivity, which is a contradiction.

The last derivation also shows that in a graph with minimum crosstalk sensitivity,

da = db ⇐⇒ Na−b = Nb−a. (4.38)



112

4.3.2 Rewiring Algorithm

In this section, we describe an algorithm that can be used to find the structure of the

network with the minimum sensitivity to additive crosstalk. We will first explain how

it works, and then prove that it always returns the optimal network, regardless of the

input graph. The algorithm consists of two steps: The first step (single rewirings)

ensures that condition (4.30) holds. In every iteration, it checks if each vertex could

be connected to another neighbor with larger degree, therefore decreasing the overall

crosstalk sensitivity of the graph, according to Corollary 24. The second step ensures

that the required changes that are not possible with single-vertex rewirings actually

take place.

⇒

Figure 4.1: An example of a double rewiring needed for the graph to minimize crosstalk
sensitivity. If h1 + 3h4 < h2 + 2h3 + h5 (for example when h(d) = (N − 1 − d)

√
d), there

is no edge that can be rewired keeping one of its endpoints, and that would decrease the
overall sensitivity. A double rewiring is needed, removing the edge between the red vertices
and connecting the green ones with it.

After the first step is finished (there are no more possible single-vertex rewirings),

the degrees of all vertices satisfy equation (4.30). The resulting graph is not necessar-

ily one with the minimum crosstalk sensitivity, because we may have a situation like

the one depicted in Figure 4.1, where we need to rewire one edge such that we change

both vertices it is adjacent to. In this case, we cannot perform a single rewiring, and

we need to delete an edge between a pair of vertices, and add it to another. There

are only two possible arrangements of the edges among four vertices that may need

a double rewiring transformation (shown in Figure 4.2), and the condition that the
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degrees of these vertices need to satisfy is shown in Table 4.1.

A B

C D

(a)

A B

C D

(b)

A B

C D

(c)

A B

C D

(d)

A B

C D

(e)

A B

C D

(f)

A B

C D

(g)

Figure 4.2: All nonisomorphic subgraphs of 4 vertices where A − B and C /−D. See Table
4.1 for all the allowed degree correlations among the degrees of the four vertices that satisfy
equation (4.30). Subgraphs (c) and (d) may need a rewiring of an edge between A and B to
connect vertices C and D. Note that if we apply the double-vertex rewiring, we transform
subgraph (c) to subgraph (d) and vice versa.

Theorem 15. Provided with an arbitrary graph GN,m, Algorithm 1 returns the net-

work G∗N,m with the minimum sensitivity to additive crosstalk.

Proof. We need to prove two statements, the first is that the double rewirings do

not affect the condition of equation (4.30), and the second is that the algorithm

cannot be trapped in a local minimum. Suppose that we perform a double rewiring

(removing the edge (A,B) and adding the edge (C,D)) reducing the overall sensitivity

to crosstalk by ∆K, and condition (4.30) is violated. This would only be possible if

there exists a vertex M with degree dM such that

dM = dB − 1 and NB−A ̸= NM , (4.39)

so that after removing the edge (A,B), vertices B and M have the same degrees,

and condition (4.38) does not hold. The last equation also implies that (A,M) ∈ E ,
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Graph Possible Degree Order ∆K

a dD ≤ dC ≤ dB ≤ dA > 0

b dD ≤ dC ≤ dB ≤ dA > 0

dD ≤ dB ≤ dC ≤ dA > 0

dD ≤ dC ≤ dB ≤ dA > 0

c dD ≤ dB ≤ dC ≤ dA > 0

dB ≤ dD ≤ dC ≤ dA ?

dD ≤ dC ≤ dB ≤ dA > 0

d dD ≤ dB ≤ dC ≤ dA > 0

dD ≤ dB ≤ dA ≤ dC ?

e dD ≤ dC ≤ dB = dA > 0

f dD ≤ dC ≤ dB ≤ dA > 0

dD ≤ dB ≤ dC ≤ dC > 0

g dD ≤ dC ≤ dB ≤ dA > 0

Table 4.1: All the possible degree orderings of the degrees of the four vertices shown in Figure
4.2, with the difference in the overall crosstalk sensitivity if we rewire the edge between A
and B to connect vertices C and D, and assuming that all possible single rewirings that
decrease crosstalk have already taken place. In all but two cases, the overall sensitivity to
crosstalk increases. Cases (c) and (d) may have a positive or negative difference (question
marks), depending on the crosstalk function h, and only if the degrees of the vertices
A,B,C,D are ordered as shown. Note that case (e) is not possible at any time, but is
included here for completeness.
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Algorithm 1 Find the Graph with Minimum Crosstalk Sensitivity G
Require: An arbitrary connected graph G of order N and size m
Ensure: The graph with the minimum sensitivity to crosstalk

changeflag← 1
while changeflag==1 do
changeflag← 0
for u ∈ V(G) do
if min

v∈Nu

{dv} ≤ max
w∈N c

u

{dw} then

x = argmin
v∈Nu

{dv}; y = argmin
w∈N c

u

{dw}

Remove the edge (u, x);Add the edge (u, y); changeflag← 1
if G becomes disconnected then
Revert the changes

end if
end if

end for
end while

changeflag← 1
while changeflag==1 do
changeflag← 0
for A,B,C,D ∈ V(G) do
if (A−B and A−C and A−D and B /−C and B /−D and C /−D) or (A−B
and A− C and B − C and A/−D and B /−D and C /−D) then
∆hA = h(dA)− h(dA − 1);∆hB = h(dB)− h(dB − 1)
∆hC = h(dC + 1)− h(dC); ∆hD = h(dD + 1)− h(dD)
∆KA,B,C,D = −∆hA −∆hB +∆hC +∆hD

end if
Find the vertex set (A,B,C,D) with the smallest ∆K
if min∆K < 0 and rewiring the edge A − B to C − D keeps G connected
then
Remove the edge (A,B); Add the edge (C,D); changeflag← 1

end if
end for

end while
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because otherwise NB and NM would be identical after removing the edge (A,B).

But in that case,

∆K ′ = −∆hA −∆hM +∆hC +∆hD < −∆hA −∆hB +∆hC +∆hD = ∆K (4.40)

because h is strictly concave, which means that the edge (a, b) should not be rewired

before the edge (a,M).

We will now prove that the algorithm cannot be trapped in a local minimum by

showing that all the individual steps needed in order to reach the graph with the

minimum overall crosstalk sensitivity can be reordered arbitrarily. This condition is

sufficient in order to prove that when there are no such rewirings left, we have reached

the optimal graph (see Figure 4.3).
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Figure 4.3: Algorithm 1 cannot be trapped in a local minimum. After decreasing the overall
crosstalk sensitivity (blue line), suppose it stops at a local minimum. Since we can reorder
the steps, and each step decreases the sensitivity at least as much as when taken individually
(equation (4.47)), we may perform all the decreasing transformations first and then stop,
ending up with a network with smaller overall sensitivity to crosstalk.

The single-vertex rewirings can be performed in an arbitrary order, since the only
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way there are no more such rewirings possible is when the network satisfies equation

(4.30). So it suffices to prove that the double rewirings can be rearranged. Suppose

that we have two or more such rewirings needed. For each pair of vertices that will

accept one extra edge, they can have up to one vertex in common, whose degree will

increase by at least 2. If they have no vertex in common, the double rewirings are

completely independent of each other, so the statement holds. They cannot have the

same vertices, because these two nodes will already be connected by an edge after

one them is implemented. Now assume that we can perform two double rewirings.

The first is moving the edge (A,B) to (C,D), changing crosstalk by ∆K1, and the

second is moving the edge (E,F ) to (C, J), changing crosstalk by ∆K2, based on the

current degrees of vertices A,B,C,D,E, F , and J . If C is common in both of them,

then if we perform the first rewiring and then perform the second (now changing the

overall crosstalk sensitivity by ∆K ′
2), we will show that

∆K1 < 0,∆K2 < 0 =⇒ ∆K ′
2 ≤ ∆K2. (4.41)

This means that every rewiring makes the subsequent ones decrease the crosstalk

even more than their individual contributions, and there is no way that a rewiring

that increases crosstalk could enable future rewirings to decrease the overall crosstalk

more than they would have otherwise. Denote

∆K1 = −∆hA −∆hB +∆hC +∆hD < 0 (4.42)

where

∆hA = h(dA)− h(dA − 1) > 0, ∆hC = h(dC + 1)− h(dC) > 0 (4.43)

and similarly for the differences of the crosstalk affinities of the other vertices. By



118

the same token,

∆K2 = −∆hE −∆hF +∆hC +∆hJ < 0. (4.44)

If we perform the first double rewiring ((A,B) is rewired to (C,D)), the new degree

of vertex C will increase by 1, and as a result

∆K ′
2 = −∆hE −∆hF +∆h′C +∆hJ (4.45)

where

∆h′C = h(dC + 2)− h(dC + 1) < ∆hC (4.46)

since h is strictly concave. It follows that in every case we have

∆K ′
2 ≤ ∆K2. (4.47)

The same is true when we have more than one double rewiring that decreases the

overall sensitivity and removes two or more edges from a vertex. We can similarly

show that the difference of the crosstalk affinity of this vertex increases, and since it

is negated, the decrease in crosstalk of the subsequent rewirings will be greater.

Theorem 16. We can find the graph with the lowest sensitivity to crosstalk in O(N4)

time.

Proof. The first part of the algorithm checks if each edge should be rewired, which

takes O(N2) steps, because we need to check all the vertex pairs, possibly more than

once. The second part of the algorithm checks groups of 4 vertices at a time, which

will take O(N4) steps. So the overall complexity of Algorithm 1 is O(N4).

Figure 4.4 shows an example all the connected graphs with N = 6 vertices

with minimum additive crosstalk sensitivity. Figure 4.5 shows the form of the to-

tal crosstalk affinity of each vertex, and the overall crosstalk of a graph of order

N = 40 as its size increases.
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Figure 4.4: Connected graphs of order N = 6 and size 5 ≤ m ≤ 15 which have the
smallest amount of overall crosstalk sensitivity among their vertices, when the intensity
of the crosstalk interaction between two vertices is equal to the sum of their individual
affinities, and the affinity of each vertex is proportional to the square root of its degree
f(d) = c

√
d. Note that we cannot find the optimal graph of size m recursively, by adding

one extra edge to the optimal graph of size m− 1.
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Figure 4.5: (a) An example of the overall vertex affinity function h. Here, f(d) = c
√
d,

and h(d) = (N − 1− d)f(d). (b) The minimum possible overall crosstalk sensitivity of all
graphs with N = 40 vertices and 39 ≤ m ≤ 780 edges has the shape of the vertex crosstalk
function. It is not smooth because d∗ needs to satisfy additional constraints, most notably
d∗ ∈ P.
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4.4 Pairwise Crosstalk Interactions as the Product

of Individual Affinities

If the crosstalk between two vertices is proportional to the product of each node’s

affinity, then we can write the pairwise affinity function g(x, y) as

g(x, y) = f(x)f(y). (4.48)

We will refer to this type of crosstalk interaction in the network as geometric crosstalk

or multiplicative crosstalk . If the affinity of each node is a function of its degree, the

overall crosstalk sensitivity will be equal to

K(G) =
∑

(u,v)/∈E(G)

g(du, dv) =
∑

(u,v)/∈E(G)

f(du)f(dv). (4.49)

Once again, we consider the vertex affinity function f to be a positive, strictly

increasing, and concave function of the degree of each vertex. We will first find the

networks with the minimum crosstalk sensitivity without any additional constraints.

We will then describe the connectivity of the networks with a fixed degree sequence

which have the lowest sensitivity to multiplicative crosstalk.

4.4.1 Structure of Networks with Minimum Sensitivity to

Geometric Crosstalk

We first prove some lemmas that will be needed in order to find the form of these

graphs. In this chapter, the only type of almost complete graph that we will need is

of type I, and for simplicity will just call it almost complete.

Lemma 27. In a graph with the minimum sensitivity to multiplicative crosstalk, if
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(a)
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⇒

(b)

Figure 4.6: (a) The type I almost complete graph (first defined in Chapter 3) consists of
a clique of order N − 1, and one peripheral vertex (shown in red). (b) If dA < dB and
dx > dy then rewiring the edges A−x and B−y as shown will decrease the overall crosstalk
sensitivity of the graph without changing its degree sequence.

A,B, x, y ∈ V(G), then

dA ≤ dB =⇒ dx ≤ dy ∀x ∈ NA ∩N
c

B and y ∈ NB. (4.50)

Proof. If NA ⊆ NB then the result holds trivially, since NA ∩ N
c

B = ∅. Otherwise,

there is at least one vertex x that is connected to A and not connected to B. If we

rewire the edges (A, x) and (B, y) to (A, y) and (B, x) as shown in Figure 4.6(b), the

degree distribution stays the same for every vertex in the graph. The difference in

the overall sensitivity is

∆K =f(dA)f(dx) + f(dB)f(dy)− f(dA)f(dy)− f(dB)f(dx)

=(f(dB)− f(dA))(f(dy)− f(dx)).
(4.51)

If the graph was optimal before the rewiring, this difference should be nonnegative,

and since dA ≤ dB, the this can only be true if dx ≤ dy.

Lemma 28. Assume that a graph GN,m with vertex set V and edge set E has the

minimum sensitivity to multiplicative crosstalk and that the vertex affinity f : R+ →
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R+ is a strictly increasing concave function. Then

(a, b) ∈ E =⇒ (a, x) ∈ E ∀a ∈ V and ∀x ∈ V , such that dx > db. (4.52)

Proof. Suppose that this is not the case, and there exists a vertex a and two vertices

b and c such that

(a, b) ∈ E , (a, c) /∈ E with db < dc. (4.53)

Then, by rewiring the edge between a and b so that it now connects vertices a and c,

the difference in the crosstalk sensitivity will be

∆K =Knew −Kold

=f(da)(f(db)− f(dc))

+ (f(db − 1)− f(db))
∑

u∈N c
b−a

f(du)

+ (f(dc + 1)− f(dc))
∑

v∈N c
c−a

f(dv).

(4.54)

Since f is strictly increasing,

f(db) < f(dc), f(db − 1)− f(db) < 0 and f(dc + 1)− f(dc) > 0 (4.55)

and from the concavity of f we see that

|f(db − 1)− f(db)| > |f(dc + 1)− f(dc)|. (4.56)

In addition, from Lemma 27,

∑
u∈Nb−a

f(du) <
∑

v∈Nc−a

f(dv). (4.57)
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Taking into account that the degrees of all other vertices in G remain constant after

the transformation, ∑
w∈V(G)
w ̸=b,w ̸=c

f(dw) = constant (4.58)

we find that ∑
u∈N c

b−a

f(du) >
∑

v∈N c
c−a

f(dv). (4.59)

Combining the above equations,

∆K < 0. (4.60)

This means that the overall crosstalk sensitivity of the graph G has decreased after

applying this transformation, which is a contradiction.

The last lemma shows a necessary condition for the optimality of a network with

respect to crosstalk: Every vertex should be connected with vertices of the largest

degree possible.

Corollary 27. In the network with the minimum sensitivity to multiplicative crosstalk,

the neighborhood set of every vertex u with degree du is

Nu = {N − du + 1, N − du + 2, . . . , N}. (4.61)

Corollary 28. In a network with the minimum sensitivity to multiplicative crosstalk,

there is at least one vertex with full degree.

Proof. From Corollary 27, u will connect to the du vertices with the largest degrees.

In addition, every vertex u has degree du ≥ 1, since we assumed that the graph is

connected. As a result, the vertex with the largest degree in the network is connected

to all other N − 1 vertices in the graph.

Now we are ready to prove the main theorem of this subsection.
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Theorem 17. If the crosstalk affinity of each vertex is a positive, increasing, and con-

cave function of its degree, then a graph with minimum overall multiplicative crosstalk

sensitivity consists of a complete or almost complete subgraph, and the vertices that

do not belong to it have degree equal to 1. All vertices of degree 1 have the same

neighbor vertex, which is a vertex with full degree.

Proof. We will start from any graph G that satisfies equations (4.50) and (4.52) but

does not have the aformentioned form. Then, with transformations that only reduce

the sensitivity to crosstalk, we will arrive at the graph with this structure. Suppose

that the initial graph G has a degree distribution

d = [d1, d2, . . . , dN ] (4.62)

where the elements of the vertex set V(G) = {1, 2, . . . N} are ordered in increasing

degree, such that

1 ≤ d1 ≤ d2 ≤ · · · ≤ dN ≤ N − 1. (4.63)

The overall sensitivity to crosstalk can be written as

K(G) =
∑

(u,v)/∈E(G)

f(du)f(dv)

=
∑

u∈V(G)

f(du)

[ ∑
v∈V(G)

v>u,v /∈Nu

f(dv)

]
.

(4.64)

Applying the above equation to the enumerated set of vertices,

K(G) =
N∑

u=1

f(du)

[
N∑

v=u+1
v/∈Nu

f(dv)

]
. (4.65)

Taking into account Corollary 27 (equation (4.61)), we can simplify the expression of
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the overall crosstalk sensitivity as

K(G) =
N∑

u=1

f(du)

[
N−du∑
v=u+1

f(dv)

]
. (4.66)

Now, suppose that d is not a degree sequence that corresponds to the form in the

statement of the theorem. We pick the vertex a with the smallest possible degree

such that da > 1. We also pick vertex b = a+ 1, with degree db ≥ da. From equation

(4.61), we get

Na−b ⊆ Nb−a. (4.67)

More precisely,

Na = {N − da + 1, N − da + 2, . . . , N} and Nb = {N − db + 1, N − db + 2, . . . , N}.

(4.68)

By successively rewiring edges in G, we will change the overall sensitivity each time

by ∆K, and when the graph is transformed to G∗ with

K(G∗) ≤ K(G), (4.69)

no additional transformations will be possible. If G does not have the form in the

statement of the theorem, there is at least one edge in the graph that can be rewired

from vertex a to vertex b. We delete the edge (a,N + 1 − da), and add an edge to

connect vertices b and N − db. According to Corollary 28, any such transformation

will keep the graph connected, because the vertex with full degree is connected to

every other vertex in the network as long as we do not remove any edge from a vertex

with degree 1. The size of the graph remains the same, and the new neighborhoods

of vertices a and b are

N ′
a = {N −da+2, N −da+3 . . . N} and N ′

b = {N −db, N −db+1, . . . N}. (4.70)
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We denote the vertices with the smallest degrees that are neighbors to b and a as

C = N + 1− db and D = N + 1− da, respectively. According to inequality (4.63),

C ≤ D =⇒ dC ≤ dD. (4.71)

The difference in crosstalk after applying the transformation is

∆K =f(da − 1)
N+1−da∑
u=a+1

f(du) + f(db + 1)

N−1−db∑
v=b+1

f(dv)

− f(da)
N−da∑
u=a+1

f(du) + f(db)

N−db∑
v=b+1

f(dv)

+ (f(dC + 1) + f(dD − 1))
a−1∑
z=1

f(1)

− (f(dC) + f(dD))
a−1∑
z=1

f(1).

(4.72)

Rearranging the terms, we find that

∆K =[f(da − 1)− f(da)]

[
N−da∑
u=a+1

f(du)

]

+ [f(db + 1)− f(db)]

[
N−db∑
v=b+1

f(dv)

]
+ [f(da − 1)f(dD)− f(db + 1)f(dC)]

+ [f(dD − 1)− f(dD) + f(dC + 1)− f(dC)]

[
a−1∑
z=1

f(1)

]
.

(4.73)

The sum above is clearly negative, so the transformation reduces the overall sensitivity

to crosstalk. We may repeat the process described here, reducing it at each step, until

we transform the initial graph to the graph described in the theorem statement.

Figure 4.7 shows all the graphs of order N = 6 and size 5 ≤ m ≤ 15 with the

minimum multiplicative crosstalk sensitivity.
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Figure 4.7: Connected graphs of order N = 6 and size 5 ≤ m ≤ 15 which have the smallest
overall crosstalk sensitivity, when the pairwise crosstalk intensity between two vertices is
equal to the product of the individual affinities, and the affinity of each vertex is a positive,
increasing and concave function of its degree.

Theorem 18. If the crosstalk affinity of each vertex is a positive, increasing and

concave function f of its degree, then the minimum multiplicative crosstalk sensitivity

of a graph is equal to

K =(d− 1− α)f(α)f(d− 2) + (N − d)f(α)f(1)

+ (N − d)(α− 1)f(d− 1)f(1)

+ (N − d)(d− 1− α)f(d− 2)f(1)

+

(
N − d

2

)
f 2(1)

(4.74)

where

d =

⌈
1

2

(
3 +
√
9 + 8m− 8N

)⌉
(4.75)

is the number of vertices in the (almost) complete subgraph and

α = m−
(
d− 1

2

)
− (N − d) (4.76)

is the degree of the vertex with the smallest number of neighbors in it.
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Proof. The overall sensitivity will be calculated by computing intensity of the crosstalk

interactions among the different vertex groups in the minimum crosstalk sensitivity

graphs. Suppose that the almost complete (or complete) subgraph consists of d ver-

tices, d − 1 of which form a complete subgraph and the peripheral vertex of the

subgraph has degree has degree α. The degree of the peripheral vertex is allowed to

be equal to d− 1, in which case, we have a complete subgraph. In addition, there are

N − d vertices with degree equal to 1. Counting all edges of the graph, we find that

m =

(
d− 1

2

)
+ α + (N − d). (4.77)

This equation needs to be solved for the variables d and α, under the conditions

α ∈ N∗, d ∈ N∗ (4.78)

and

2 ≤ α ≤ d− 1. (4.79)

As mentioned above, when α = d − 1, we have a complete subgraph, otherwise we

have an almost complete subgraph. In order to find the order of the almost complete

graph, we assume that the optimal graph consists of a complete subgraph of order

d0, and that α = d0 − 1. Then the equation that needs to be solved has only one

variable d0 (
d0
2

)
+ (N − d0) = m (4.80)

which after rearranging the terms becomes a second-order polynomial with respect

to d0:

d20 − 3d0 + (2N − 2m) = 0 (4.81)

with roots

d0 =
1

2

(
3±
√
9 + 8m− 8N

)
. (4.82)
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One of the solutions will be zero or negative (m ≥ N for connected graphs that are

not trees), so we need to pick the positive solution. In addition, d needs to be an

integer. Since we have artificially increased α in the above solution, d ≥ d0 and d

is the smallest integer that is larger than d0, so we need to pick the ceiling of the

positive real number from the above equation,

d =

⌈
1

2

(
3 +
√
9 + 8m− 8N

)⌉
. (4.83)

The value of α can now be found from equation (4.77). The structure of the optimal

network is now specified, and we need to add up all the crosstalk contributions from

all the vertices of the graph:

• Crosstalk between the peripheral vertex and the d − 1 − α vertices of degree

d− 2 of the almost complete graph that it is not connected to:

K1 = (d− 1− α)f(α)f(d− 2). (4.84)

• Crosstalk between the peripheral vertex and the N − d single-edge vertices:

K2 = (N − d)f(α)f(1). (4.85)

• Crosstalk among the single-edge vertices:

K3 =

(
N − d

2

)
f 2(1). (4.86)

• Crosstalk among the vertices that are connected to the peripheral vertex and

the single-edge vertices:

K4 = (α− 1)(N − d)f(d− 1)f(1). (4.87)
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In the equation above, the first term is α− 1 instead of α because the vertices

of degree 1 are all connected to one of these α vertices of the (almost) complete

graph, and the crosstalk of this vertex is zero.

• Crosstalk among the vertices of the almost complete graph that are not con-

nected to the peripheral vertex, and the single-edge vertices:

K5 = (d− 1− α)(N − d)f(d− 2)f(1). (4.88)
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Figure 4.8: The minimum possible overall crosstalk sensitivity of a graph with 40 vertices
and a size of 39 ≤ m ≤ 780 when the vertex crosstalk affinity is f(d) = d. The green and
red lines are the envelopes for the local minima and local maxima, respectively.

Adding up the above terms, we get the total amount of crosstalk interactions in

the network:

K = K1 +K2 +K3 +K4 +K5. (4.89)
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K = f(α) [(d− 1− α)f(d− 2) + (N − d)f(1)]︸ ︷︷ ︸
Total crosstalk of the peripheral vertex

+ (N − d)f(1) [(α− 1)f(d− 1) + (d− 1− α)f(d− 2)]︸ ︷︷ ︸
Crosstalk between the almost complete graph and the single-edge vertices

+

(
N − d

2

)
f 2(1).︸ ︷︷ ︸

Crosstalk among the single-edge vertices

(4.90)

An example of the overall crosstalk sensitivity as we increase the size of the graph

of given order is shown in Figure 4.8. The overall crosstalk sensitivity has “ripples”.

This happens because as we add more edges, the average degree of the vertices in-

creases, and the average crosstalk intensity among vertices also becomes larger. After

adding one edge between two nodes, the average decrease in crosstalk also increases,

because there is no spurious interaction between them any more. Consequently, the

variance of the overall crosstalk sensitivity increases with number of edges in the net-

work. The local minima are achieved when the graph consists of a complete subgraph

and the rest of the vertices have degree equal to one.

4.4.2 Minimization of Crosstalk Sensitivity For Networks with

Fixed Degree Sequence

Suppose that we have a network with a given degree distribution

d = [d1, d2, . . . , dN ] (4.91)

where the degree of each vertex 1 ≤ k ≤ N is fixed and equal to dk. If we are free

to choose the structure of the network, in order to minimize the overall crosstalk

sensitivity of the network, we need to connect vertices with similar degrees together,

as the next theorem shows.
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Theorem 19. Suppose that we have a network with a given degree distribution d.

Then, the structure that minimizes the sensitivity to multiplicative crosstalk is assor-

tative in the vertex degrees.

Proof. Suppose we have a network, where vertices A and B are connected, vertices

C and D are also connected, and there are no more edges among them. One way

to change the structure without changing the degree sequence of the graph is shown

in Figure 4.9. This method (first described in [46]) keeps the degrees of each vertex

constant.

A B

C D

A B

C D

A B

C D

T1

T2

T3

Figure 4.9: A rewiring method that keeps the degree of each vertex constant. Assume
that vertices A and B are connected, as are C and D. There are no other edges in this
induced subgraph. We can rearrange the edges by connecting A with D and B with C, or
by connecting A with C and B with D. Each transformation can be reversed, and we can
go from any subgraph to another in one step.

Initially, the overall crosstalk sensitivity among the four vertices A,B,C, and D

is

M0 = f(dA)f(dC) + f(dA)f(dD) + f(dB)f(dC) + f(dB)f(dD). (4.92)

Referring to Figure 4.9, after transformation T1, the overall crosstalk sensitivity
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among the same vertices is

M1 = f(dA)f(dB) + f(dA)f(dC) + f(dB)f(dD) + f(dC)f(dD) (4.93)

and similarly, if we apply the second transformation T2

M2 = f(dA)f(dB) + f(dA)f(dD) + f(dB)f(dC) + f(dC)f(dD). (4.94)

The difference of the overall crosstalk sensitivity of the network after applying T1 is

∆KT1 = f(dA)f(dB)− f(dA)f(dD)− f(dB)f(dC) + f(dC)f(dD) (4.95)

∆KT1 = (f(dC)− f(dA)) (f(dD)− f(dB)) . (4.96)

With transformation T2, we get

∆KT2 = f(dA)f(dB)− f(dA)f(dC)− f(dB)f(dD) + f(dC)f(dD) (4.97)

∆KT2 = (f(dC)− f(dB)) (f(dD)− f(dA)) . (4.98)

We order the degrees of the four vertices (there are 4! = 24 possible orderings), and

without loss of generality, we require that

dA ≤ dB and dC ≤ dD (4.99)

which reduces the number of possible orderings to 6, shown in Table 4.2. If both

transformations result in an increase in the overall sensitivity, this means that the

current arrangement of edges ((A,B) and (C,D)) is optimal. This happens when one

of the following inequalities holds:

dA ≤ dB ≤ dC ≤ dD or dC ≤ dD ≤ dA ≤ dB. (4.100)
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Degree Order ∆KT1 ∆KT2

dA ≤ dB ≤ dC ≤ dD ≥ 0 ≥ 0

dA ≤ dC ≤ dB ≤ dD ≤ 0 ≤ 0

dA ≤ dC ≤ dD ≤ dB ≤ 0 ≤ 0

dC ≤ dA ≤ dB ≤ dD ≤ 0 ≤ 0

dC ≤ dA ≤ dD ≤ dB ≤ 0 ≥ 0

dC ≤ dD ≤ dA ≤ dB ≥ 0 ≥ 0

Table 4.2: All possible orderings of the degrees of vertices A, B, C, and D, with dA ≤ dB
and dC ≤ dD, and the resulting difference in the overall crosstalk sensitivity among them
for transformations T1 and T2 (see also Figure 4.9).

Transformation T2 always yields a network with smaller sensitivity than T1:

∆KT3 =M2 −M1

=f(dA)f(dD) + f(dB)f(dC)− f(dA)f(dC)− f(dB)f(dD)

=(f(dA)− f(dB))(f(dD)− f(dC))

≤0

(4.101)

by the assumption of the relative degrees of the pairs (A,B) and (C,D). More

importantly,

M2 =M0 +∆KT2

=M0 +∆KT1 +∆KT3

=M1 +∆KT3 .

(4.102)

The last equation shows that the overall sensitivity of a graph does not depend on

the order in which we apply any transformations. The difference in the crosstalk

sensitivity is equal to the sum of individual differences, and it only depends on the
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structure of the network before and after the performed changes. In order to minimize

the overall sensitivity to crosstalk, we need to connect vertices with large degrees to

other vertices with large degrees and similarly for vertices with small degrees.

Lemma 29. A degree sequence d = [d1, d2, . . . dN ] is a graphic sequence if and only if

the degree sequence d′ = [d2−1, d3−1, . . . , dd1+1−1, dd1+2, . . . , dN−1, dN ] is a graphic

sequence.

Proof. See [33].

Algorithm 2 Find the Connected Graph G with Minimum Sensitivity to Multiplica-
tive Crosstalk

Require: A graphic sequence d = [d1, . . . dN ] with d1 ≤ d2 ≤ · · · ≤ dN .
Ensure: The graph with the lowest sensitivity to crosstalk.

G ← Empty Graph with V(G)=1,2,. . . N
k ← 0
while d ̸= [0] do
k ← k + 1
r ← First element of d
Connect vertex k with vertices k + 1, k + 2, . . . , k + r
d← [d2 − 1, d3 − 1, . . . , dr+1 − 1, dr+2, . . . , dN−1, dN ]

end while

while G is not connected do
Find the two components F ,S with the smallest average degrees , d̄F ≤ d̄S .
Pick vertices A,B with the largest degree in F with dA ≤ dB.
Pick vertices C,D with the largest degree in S with dC ≤ dD.
Add edges (A,C) and (B,D); Remove edges (A,B) and (C,D)

end while

Return G

Theorem 20. Algorithm 2 returns a connected network with the lowest possible over-

all sensitivity to multiplicative crosstalk, provided that a connected network with the

given degree distribution exists.
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Proof. By construction, the first part of the algorithm produces the network with

the most assortative structure possible, and therefore the network with the smallest

crosstalk sensitivity. If this network is not connected, we need to carry out a rewiring

that will have minimum impact to the overall sensitivity. It suffices to prove that the

algorithm works when the graph has two components, since this procedure can easily

be generalized for an arbitrary number of components. Suppose that the two compo-

nents F and S have degree sequence dF = [d1, d2, . . . , dc] and dS = [dc+1, dc+2, . . . , dN ],

respectively. In order to make the graph connected, we need to apply the transforma-

tion T2 of Figure 4.9, to rewire one edge in F and one edge in S so that they connect

vertices in the different components. The difference of the overall crosstalk sensitivity

is given in equation (4.98), where the four vertices have degrees

dc−1 ≤ dc ≤ dc+1 ≤ dc+2. (4.103)

The difference will be

∆c = (f(dc+1)− f(dc))(f(dc+2)− f(dc−1)), (4.104)

which is the smallest positive difference while connecting the two components. Re-

peating this procedure for all the components of the graph, we end up with a connected

graph, which has the minimum additional overall sensitivity to crosstalk.

4.5 Conclusions

In this chapter, we focused on how network structure affects crosstalk in systems

where there may be spurious connections among units that are not designed to interact

with each other. We focused on two types of crosstalk interactions: additive and

geometric. In additive crosstalk interactions, the crosstalk strength between any

pair of vertices that are not connected in the network is the sum of their individual
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affinities. We showed that in this case, crosstalk sensitivity only depends on the vertex

degree distribution, regardless of the exact interconnection topology of the network.

The sensitivity to geometric crosstalk depends on the network topology, with the

assortative network structure being the one that minimizes crosstalk, where vertices

with large degrees form cliques with other vertices of large degrees. Finally, we

have presented an algorithm which constructs a connected network that minimizes

crosstalk when there are constraints regarding its degree distribution. The methods

and algorithms described here can easily be generalized to take into account the spe-

cific details of the network function, by assigning weights to each crosstalk interaction,

depending on how much it affects the system’s normal operation.
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Chapter 5

Noise Propagation in Biological
and Chemical Reaction Networks

In this chapter, we describe how noise propagates through a network. Using stochas-

tic calculus and dynamical systems theory, we study the network topologies that

accentuate or alleviate the effect of random variance in the network for both directed

and undirected graphs. Given a linear tree network, the variance in the output is

a convex function of the poles of the individual nodes. Cycles create correlations

which in turn increase the variance in the output. Feedforward and feedback have a

limited effect on noise propagation when the respective cycles are sufficiently long.

Crosstalk between the elements of different pathways helps reduce the output noise,

but makes the network slower. Next, we study the differences between disturbances

in the inputs and disturbances in the network parameters, and how they propagate

to the outputs. Separating internal from external dynamics is important in order

to understand fluctuations in various systems [4]. We find that these fluctuations

have very different behaviors, and as a result, it is easy to analyze their origin in

networked systems. Finally, we show how noise can affect the steady state of the

system in chemical reaction networks with reactions of two or more reactants, each

of which may be affected by independent or correlated sources.
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5.1 Introduction and Overview

Noise is ubiquitous in nature, and virtually all signals carry some amount of random

noise. In addition, even the simplest systems can be represented as a set of smaller

entities interconnected with each other. There have been numerous studies on how

noise affects specific functions (e.g. [54, 59] and references therein), but few of them

have looked at how noise propagates in general networks, or the impact of network

structure on the robustness of each system to noise. Although there is evidence that

noise may degrade system performance, it is sometimes necessary for specific functions

[23]. Robustness to noise and disturbances in general is something that biological and

engineered systems depend upon for their proper function [39, 60]. It becomes even

more important if we take into account that molecule concentrations in the cell might

be carrying more than one signal through multiplexing [21, 61]. In this case, noise

may have the potential of disrupting the network function in more than one way.

We present a new method to quantify the noise propagation in a system, and

the vulnerability of each of its subsystems. We use results from graph theory and

control systems theory to quantify noise propagation in networks, and use them to

evaluate various network structures in terms of how well they filter out noise. We

study how crosstalk can help suppress noise, when the noise sources are independent

or correlated. We show that perturbations that depend on the state of the system

(for example, feedback loops that are prone to noise or noisy degradation rates)

have a fundamentally different effect on the system output, compared to noise in the

inputs. Finally, we study noise propagation in chemical reaction networks where all

reactants may introduce noise, and analytically find that noise correlations may affect

the expected behavior of such systems.
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5.2 White Noise Input

In the state space, when all parameters are deterministic and the input consists of a

deterministic and a random component (white noise), then the system (2.7) is defined

by the following equations:

S :


dx = Axdt+B(utdt+ ΣtdWt)

y = Cx,

(5.1)

where dWt = Wt+dt −Wt is the standard vector Wiener process in the time interval

[t, t + dt) and ut is a deterministic input. We will denote the value of a function

f at time t as f(t) or ft interchangeably. The matrix Σt consists of nonnegative

entries, possibly time-varying, each of which is proportional to the strength of the

corresponding disturbance input. The only difference with the system (2.7) is that

now the infinitesimal state difference dx depends not only on the current state and

the deterministic input, but also on a random term dWt ∼ N (0, dt).

It should be noted that the fraction dWt/dt does not exist as dt→ 0, so dividing

both sides of equation (5.1) by dt would not make sense mathematically. This notation

helps us to intuitively understand the effect of randomness in the system, when we

know how its state is affected by the input noise, and enables us to easily generalize

these results when the random term is a product of many noise sources. The different

Wiener processes in (5.1) may be correlated with each other but since each input may

consist of a weighted sum of all of the different processes through multiplication by

matrix Σt, without loss of generality, we may assume that they are independent.

The output of the system is the superposition of the deterministic output, and
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the response to the random input:

y(t) =

∫ t

−∞
h(t− s)(u(s)ds+ ΣsdWs)

=

∫ t

−∞
h(t− s)u(s)ds+

∫ t

−∞
h(t− s)ΣsdWs.

(5.2)

The expected value for the output, according to equation (2.12) will be

E[y(t)] =
∫ t

−∞
h(t− s)E [u(s)ds+ ΣsdWs]

=

∫ t

−∞
h(t− s)u(s)ds,

(5.3)

since Brownian motion is a martingale [44]. Applying equation (2.13) when the input

is white noise, the covariance matrix can be written as

V[y] =
∫ t

−∞

∫ t

−∞
h(t− r)E

[
dWrΣrΣ

T
s dW

T
s

]
hT (t− s). (5.4)

The inputs are assumed to be white noise processes, so the covariance among all of

them is nonzero only if they take place during the same interval, and in that case,

the covariance is proportional to its length.

V[y] =
∫ t

−∞

∫ t

−∞
h(t− r)

(
Σr

√
drδ(r − s)

√
dsΣT

s

)
hT (t− s)

=

∫ t

−∞
h(t− s) · V (s) · hT (t− s)ds,

(5.5)

where V (s) = ΣsΣ
T
s is the covariance matrix of the input random vector. For the

linear time invariant system (2.7) and white noise inputs of constant variance V (s)

is a constant matrix, and we can write

V[y] =
∫ t

−∞
(CeA(t−s)B) · V · (CeA(t−s)B)Tds = C

(∫ +∞

0

eAxBV BT eA
T xdx

)
CT .

(5.6)
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The mean and the variance of the output signal in the steady state can be written

as a function of the Fourier transforms of the input signal and the network transfer

function. From equation (2.12)

E [y(t)] = E
[∫ t

−∞
h(t− s)u(s)

]
ds = h(t) ∗ E [u(t)] (5.7)

where f(t) ∗ g(t) denotes the convolution of two functions f(t) and g(t) given that

it exists. When the input is constant with time, the expected value of the input is

constant as well (E[u(t)] = µx) and the last expression can be simplified to

E[y] = µx

∫ +∞

0

h(u)du = µxH(0). (5.8)

If the input itself is not known, but its frequency content can be estimated, we

can find the variance of the output using Parseval’s theorem:

V[y] = E[y · yT ] = lim
t→∞

∫ t

−∞
y(t)yT (t)dt

=

∫ +∞

−∞
|Y (f)|2df =

∫ +∞

−∞
Y (f) · Y ∗(f)df

=

∫ +∞

−∞
H(f)X(f)X∗(f)H∗(f)df.

(5.9)

More generally, if we know the autocorrelation function of the random processes in

the input, we may find the expected autocorrelation in the output, and then estimate

the output variance:

Ry(τ) =

∫ +∞

−∞
Sy(f) cos(2πfτ)df

=

∫ +∞

−∞
|H(f)|2Sx(f) cos(2πfτ)df

=

∫ +∞

−∞
|H(f)|2

(∫ +∞

−∞
Rx(u) cos(2πfu)du

)
cos(2πfτ)df.

(5.10)
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We will be focusing on Wiener processes exclusively, because this is the most

general approach for sums of random disturbances. According to the Central Limit

Theorem, the sum of a large number of independent identically distributed random

variables with finite mean and variance always approaches the normal distribution

(see also equation (2.4)). The only assumption in the case of additive disturbances

is that the inputs at every time are sums of independent random variables from an

arbitrary distribution with finite standard deviation. This is a reasonable assumption

in most settings. For example, in biology the Poisson distribution is frequently used to

model random disturbances [54]. The Poisson distribution can be well approximated

by a Gaussian when the event rate is greater than 10, and the same can be said for

small sums of Poisson random variables [62]. When the input disturbance at each

time is correlated with the disturbances during earlier times, the correlation structure

can be emulated by passing white noise through a filter that produces it. Lastly, if

noise cannot be expected to have equal frequency content for all frequencies up to

infinity, we can still use white noise as an input, which is then passed through a filter

with zero response for all the frequencies outside the desired range.

5.3 Tree Networks

Tree networks are a special case of networks where there is a unique path among

every pair of vertices. In other words, there are no cycles, which makes the analysis

easier. Many natural networks have been found to be locally tree-like [34]. When

analyzing the behavior of a network around an equilibrium point, or if the network

is linear, then the analysis can be significantly simplified. Since there is a unique

path from any vertex to another, it suffices to analyze path networks, which consist

of all their vertices connected in series. For each output, the total response of the

system is the superposition of the signals caused for all the individual inputs. First,

we will show that the order of the nodes in the network does not matter in the case of
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linear pathways. Then, we will find the variance of a linear path graph assuming that

every node is a first-order filter. The result can easily be generalized for arbitrary

tree graphs. Finally, we are going to find the optimal placement of poles to minimize

the output variance.

5.3.1 Output Variance of Linear Pathways

Lemma 30. The noise response of a linear pathway is independent of the relative

position of its nodes.

Proof. Without loss of generality, we can assume that the linear pathway has one

input and one output. Otherwise, since the system is linear, we can repeat the process

each time considering only the respective subtree. Under the last assumption, the

output is the state of the last node, and all inputs affect only the first node. From

equation (5.9):

V[y] =
∫ +∞

−∞
H(f)X(f)X∗(f)H∗(f)df

=

∫ +∞

−∞
H(f)(X1(f) + . . .+Xn(f))(X

∗
1 (f) + . . .+X∗

n(f))H
∗(f)df

=
n∑

k=1

n∑
m=1

∫ +∞

−∞
Xk(f)X

∗
m(f)H(f)H∗(f)df

=
n∑

k=1

n∑
m=1

∫ +∞

−∞
Xk(f)X

∗
m(f)(h1(f) · . . . · hN(f))(h∗n(f) · . . . · h∗1(f))df

=
M∑
k=1

M∑
m=1

∫ +∞

−∞
Xk(f)X

∗
m(f)

N∏
n=1

|hn(f)|2df.

(5.11)

It is evident that we can interchange the transfer functions inside the product in the

integral, without changing its value.

Assume that we have a linear pathway such that the system is described by equa-
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tion (2.7) and the dynamical and input matrices are

A =



−d1 0 0 . . . 0

f2 −d2 0 . . . 0

0 f3 −d3 . . . 0

0 0 . . . fN −dN



B =



1

0

...

0



CT =



0

...

0

1



.

For simplicity, we assume that there is only one noise source and only one output,

but since there are no cycles, there is a unique path from each node to every other,

which means we can use the result for a linear pathway repeatedly, in order to find

the total variance. The variance is independent of the deterministic input that is

applied to the pathway. Using equation (5.6), and after performing all calculations,

the variance at the output will be

Vout =

(
N−1∏
u=1

fu

)
N∑
k=1

N∑
m=1

1

(dk + dm)
N∏

a=1,a̸=k

(dk − da)
N∏

b=1,b̸=m

(dm − db)

 . (5.12)

The expression above holds even if there exist two vertices a and b such that their

reaction rates are equal, according to the next lemma.

Lemma 31. The output variance of a linear pathway is always finite, even if some

of the reaction rates are equal.

Proof. We pick two rates dx and dy and show that Vout does not depend on their
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difference. If we denote

Tk,m =
1

(dk + dm)
N∏

a=1,a̸=k

(dk − da)
N∏

b=1,b̸=m

(dm − db)
, (5.13)

the difference dx − dy appears only in the terms Tx,x, Tx,y, Ty,x, and Ty,y. Their sum

Tx−y is equal to

Tx−y = Tx,x + Tx,y + Ty,x + Ty,y

=
1

2dx(dx − dy)2
∏
s ̸=x,y

(dx − ds)
+

1

2dy(dy − dx)2
∏
s ̸=x,y

(dy − ds)

− 2

(dx + dy)(dy − dx)2
∏
s ̸=x,y

(dy − ds)
.

(5.14)

We set

Px =
∏
s̸=x,y

(dx − ds) and Py =
∏
s ̸=x,y

(dy − ds) (5.15)

so that sum above can be written as

Tx−y =
dx(dx + dy)P

2
x + dy(dx + dy)P

2
y − 4dxdyPxPy

2dxdy(dx + dy)(dy − dx)2P 2
xP

2
y

. (5.16)

Expanding the nominator of Tx−y and grouping the relevant terms together:

Tx−y =
d2xP

2
x + dxdyP

2
x + dxdyP

2
y + d2yP

2
y − 4dxdyPxPy

2dxdy(dx + dy)(dy − dx)2P 2
xP

2
y

=

(
d2xP

2
x − 2dxdyPxPy + d2yP

2
y

)
+ dxdy

(
P 2
x − 2PxPy + P 2

y

)
2dxdy(dx + dy)(dy − dx)2P 2

xP
2
y

=
(dxPx − dyPy)

2 + dxdy (Px − Py)
2

2dxdy(dx + dy)(dy − dx)2P 2
xP

2
y

.

(5.17)

It is easy to see that both terms in the nominator of the last fraction have a factor
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of order (dy − dx)2, and the lemma is proved.

5.3.2 Optimization of Linear Pathways

In this subsection, we will try to find the parameters of a linear pathway such that

the output variance is minimized.

Lemma 32. Assume that the same noise source is applied to two different pathways

with impulse responses h1(t) and h2(t), respectively. The covariance of the signals in

their output will be equal to

C(τ) = lim
t→∞

E [y1(t)y2(t+ τ)] =

∫ ∞

0

h1(r)h2(r + τ)dr. (5.18)

Proof. The two outputs y1(t) and y2(t) are

y1(t) =

∫ t

−∞
h1(t− x)dWx and y2(t) =

∫ t

−∞
h2(t− y)dWy (5.19)

whereW is the Wiener process that drives both systems simultaneously. The expected

value of the product of the first and a delayed version of the second is

C(τ) = E
[∫ t

−∞
h1(t− x)dWx ·

∫ t

−∞
h2(t+ τ − y)dWy

]
=

∫ t

−∞

∫ t+τ

−∞
h1(t− x)h2(t+ τ − y)E [dWxdWy]

=

∫ t

−∞
h1(t− s)h2(t+ τ − s)ds

=

∫ ∞

0

h1(r)h2(r + τ)dr.

(5.20)

Corollary 29. Assume that noise from a single noise source with standard deviation

σ enters a network, and propagates through N independent pathways to reach the out-

put. If the impulse response of each of the independent pathways is h1(t), h2(t), . . . , hN(t),
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respectively, the mean of the output y will be zero, and its variance equal to

Vout = σ2

∫ ∞

0

(
N∑
k=1

akhk(x)

)2

dx. (5.21)

Proof. The output vertex will receive a weighted sum of the outputs of the two inde-

pendent pathways

z(t) =
N∑
k=1

akyk(t). (5.22)

Its expected value is equal to zero at all times:

E[z(t)] = E

[
N∑
k=1

akyk(t)

]
=

N∑
k=1

E [akyk(t)]

=
N∑
k=1

ak

∫ t

−∞
hk(t− x)σE [dWx]

= 0.

(5.23)

The variance is equal to:

Vy = E[z2(t)]

= E

[(∫ t

−∞

N∑
k=1

akhk(t− x)dWx

)
·

(∫ t

−∞

N∑
k=1

akhk(t− y)dWy

)]

=

∫ t

−∞

∫ t

−∞

(
N∑
k=1

akhk(t− x)

)
·

(
N∑
k=1

akhk(t− y)

)
E [dWxdWy]

=

∫ t

−∞
σ2

(
N∑
k=1

akhk(t− s)

)2

ds

= σ2

∫ ∞

0

(
N∑
k=1

akhk(x)

)2

dx.

(5.24)

Suppose we have a linear pathway with each element representing a single-pole
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linear filter, and we need to pick the position of the poles such that the variance in

the output is minimized. The next lemma shows an easy way to find them if all the

vertices are identical and subject to symmetric constraints.

Definition 8. A symmetric multivariable function f : Rn → R is a function for

which f(x) = f(π(x)) where π(x) is an arbitrary permutation of the input vector x.

Lemma 33. Assume that a symmetric multivariable function f : Rn → R is nowhere

constant and has a sign definite Hessian matrix. Then it has a unique extremum

under symmetric constraints, such that all the inputs are equal.

Proof. Since the Hessian has the same sign everywhere, the function f is convex or

concave. Without loss of generality, we analyze the case where f is convex. Suppose

that the extremum of the function f is equal to f ∗, and the argument that achieves

this is x∗. Further assume that min(x∗) = m and max(x∗) = M are the minimum

and maximum elements of the input x∗, respectively. Since f is symmetric,

f(m,M, x∗3, . . . , x
∗
n) = f(M,m, x∗3, . . . , x

∗
n) = f ∗ (5.25)

where the arguments still satisfy the symmetric constraints. But since f is strictly

convex, every convex combination of these values will be

f(a, b, x3, . . . xn) ≤ tf(m,M, x3, . . . , xn) + (1− t)f(M,m, x3, . . . , xn)

= tf ∗ + (1− t)f ∗

= f ∗.

(5.26)

Generalizing the last argument, it is straightforward to see that

f(x1, x2, . . . xn) = f ∗ for every m ≤ x1, x2, . . . xn ≤M. (5.27)

Therefore, f(x) needs to be constant in that area, which contradicts the assumption

that the function has sign definite Hessian.
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When the constraints are convex but not necessarily symmetric, then we can use

the Lagrangian to find the optimal parameters. Considering a linear pathway, and

assuming that the input is white noise, if the poles of the different nodes are placed

at a1, a2, . . . , aN , the total variance in the output is equal to (see equation (5.9)):

Vout(a1, a2, . . . aN) =
1

2π

∫ +∞

−∞

∣∣∣∣ 1

jω + a1

∣∣∣∣2 · ∣∣∣∣ 1

jω + a2

∣∣∣∣2 · · · ∣∣∣∣ 1

jω + aN

∣∣∣∣2 dω
=

1

2π

∫ +∞

−∞

1

ω2 + a21
· 1

ω2 + a22
· · · 1

ω2 + a2N
dω.

(5.28)

The function Vout is convex with respect to all its arguments a1, a2 . . . aN , as an

(infinite) sum of products of convex functions. Consequently, it has a unique minimum

under convex constraints. The Lagrangian of the function for Vout is

L(a1, a2, . . . aN) =
1

2π

∫ +∞

−∞

1

ω2 + a21
· 1

ω2 + a22
· · · 1

ω2 + a2N
dω − λg(a1, a2, . . . , aN).

(5.29)

Differentiating with respect to ak, under the Leibnitz integral rule:

∂L
∂ak

=
1

2π

∫ +∞

−∞

1

ω2 + a21
· · · −2ak

(ω2 + a2k)
2
· · · 1

ω2 + a2N
dω = λ

∂g(a1, . . . , aN)

∂ak
(5.30)

for every k. Differentiating with respect to all the parameters will give usN equations,

and we have one more equation by requiring g(a1, . . . , aN) = 0. So we can solve the

system of N + 1 equations and N + 1 unknowns λ, a1, . . . aN , which is guaranteed to

have a unique solution as all functions are convex.

In conclusion, we can find the unique minimum of the variance of a linear pathway,

when each node is a linear filter with a real negative pole. Given that a linear tree

network with independent noise inputs can be decomposed to many linear pathways,

this method can be applied to any arbitrary tree network.
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5.4 Feedforward and Feedback Cycles

In a serial pathway where each vertex acts as a filter, the output of each node has

a different frequency content as the noise propagates through the network, being fil-

tered at each step. The variance decreases when we move further from the noise

source (Figure 5.1). As the serial pathway becomes longer, the input and the output
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Figure 5.1: Variance of the output of a unidirectional and a bidirectional serial pathway as
a function of the pathway length. All nodes are assumed to be identical single-pole filters.
In the unidirectional pathway, each node is affected only by the node immediately preceding
it, whereas in the bidirectional pathway each intermediate vertex is receiving input from
the node preceding and the node succeeding it. The bidirectional pathway is much more
efficient in filtering out noise. The variance for both pathways decreases with the pathway
length. The bidirectional pathway has variance very close to zero even when it is relatively
short.

become less correlated since their distance increases. In addition, every node changes

the phase of its inputs, which also contributes to the decreased correlation. Therefore,

applying negative feedback or setting up a feedforward cycle can only have a mea-

surable effect if the cycle length is relatively small. Figure 5.2 shows the covariances

and correlations among the vertices of two simple linear pathways, one unidirectional

and one bidirectional, as they are depicted in Figure 5.1.

Feedforward cycles can significantly increase the effect of noise in the system.

There are two reasons for this: First, the noise can now reach more vertices since
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(a) Unidirectional Pathway Covariance
Matrix

(b) Unidirectional Pathway Correlation
Matrix

(c) Bidirectional Pathway Covariance
Matrix

(d) Bidirectional Pathway Correlation
Matrix

Figure 5.2: Covariance and correlation among all pairs of nodes in a linear pathway. Every
square (x, y) in the matrices above corresponds to the value of their correlation Rx,y(τ = 0)
of nodes of distance x and y from the origin, 0 ≤ x, y ≤ N − 1. The larger the correlation,
the darker the respective square. As the distance |x− y| among the nodes increases, their
covariance and correlation decreases. The covariance among nodes of the same distance in
the unidirectional pathway decreases, and the correlation among them increases towards
the end. The covariance of the nodes in the bidirectional pathway is essentially zero within
a small distance, and the correlation is larger even when the distance is relatively large.
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the average distance among nodes decreases, and second, every node now receives the

same disturbance from at least two different paths, and the two signals are correlated,

contributing to larger variance. An example is shown in Figure 5.3, where we compare

the average variance of two systems whose only difference is the connection between

the first and the last node. Both networks receive the same inputs, but in the cycle

network, the variance is much larger. The variance is even larger when there is

correlation among the noise inputs to different nodes.
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Figure 5.3: Average variance of all nodes in a network in a cycle as compared to an identical
network without the feedback loop. Every node has a noise input which is then spread
through the network. The average variance of all the nodes for both the cycle is normalized
by the variance of the respective serial pathway. The variance cycle is always much larger
than the variance of the simple serial pathway when the noise inputs for each node are
uncorrelated (bottom left). The ratio becomes even larger when the inputs are correlated
(bottom right).

The effect of cycles on the output noise can be reduced if we make sure that

each independent pathway also changes the phase of its input by different amounts.

Different phases in the output (for at least a relatively large frequency spectrum)

will ensure that the various frequencies partially cancel each other out, reducing the

output variation. When a pathway significantly reduces the frequency content, or has
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small gain for most frequencies, then correlations do not play a significant role. This

behavior is clearly shown in Figure 5.4 for a unidirectional cycle and in Figure 5.5 for

a bidirectional cycle. Phase shifts in a pathway are equivalent to time delays, as we

will see in the next section.
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(c)

Figure 5.4: A network consisting of a feedforward cycle and the corresponding noise strength
in its output. If the nodes of the network have poles with relatively small absolute values,
then the output variance may be larger than the variance in the intermediate nodes. A
fixed number of identical nodes is divided into two pathways, whose output is combined in
the output node. If the number of nodes is similar in both pathways, then their outputs are
highly correlated, and when combined produce large random swings. This does not happen
when the poles of each node have a large negative real part (right). In the first case, the
poles are placed at a = −1, whereas in the second the poles are placed at a = −1.5.

Similarly, negative feedback carefully applied to a network contributes to better

disturbance rejection [6]. When the disturbance is white noise, the effect of feedback is

smaller when the feedback cycle is long. As we move towards the end of the pathway,

the covariance of nodes of a given distance decreases but the correlation of nodes of
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(c)

Figure 5.5: Correlations increase the variance in bidirectional networks. If the outputs of
two pathways that are correlated are combined, then the output has relatively large variance.
Here, a single output receives input from two pathways of different lengths, which consist
of identical nodes. Bidirectional pathways filter noise very effectively as shown before, and
the output variance is still small.

a given distance increases. The last observation is easily justified taking into account

that each new node acts as a filter, and the output of each node in a pathway will

tend to have very similar frequency content the more filters it has gone through.

This hints to the fact that feedback cycles have limited utility when applied to

long pathways. Figure 5.6 shows the variance of the output after we apply negative

feedback to a linear pathway. The darkness of each element (m,n) in the upper

triangular matrix shows the standard deviation of the pathway output when we apply

feedback from node n to node m. As one would expect, the effect of feedback is

directly proportional to the correlation between the source and target vertices. The

same holds for feedforward loops, both positive and negative.

In the case of negative feedforward loop, the variance in the output increases as

the loop length increases. When the feedforward interaction is positive, the variance
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(b) Output Variance

Figure 5.6: A serial pathway with a unit feedback loop. The output variance of a pathway
depends on the length of the loop, all else being equal. The variance decreases as the length
of the feedback loop becomes smaller, and vice versa.
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(b) Negative Feedforward Loop
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(c) Positive Feedforward Loop

Figure 5.7: Output variance of a linear pathway when the input is white noise, and we add
a negative (left) or positive (right) feedforward loop starting from the first vertex. For the
positive loop, the variance is largest when we connect nearby vertices (large correlation) or
we connect an early vertex to the end of the pathway, since it has a large variance that is
transmitted directly to the output without being further filtered.
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decreases at first, since the correlation among the different states also decreases, but

then goes up, partly because when it affects a node towards the end of the pathway,

it does not pass through successive filters, so the variance remains high (Figure 5.7).

5.4.1 Delayed Feedforward and Feedback Cycles

Adding delay to the interactions among any nodes in a network driven by noise

decreases their correlation. Consequently feedforward or feedback cycles will have a

smaller effect. The covariance of a white noise process with a delayed version of the

same signal can be computed the same way as in equation (5.5):

Vτ [y] = lim
t→∞

E[y(t)y(t+ τ)]

= lim
t→∞

E

[(∫ t

−∞
h(t− r)ΣrdWr

)(∫ t+τ

−∞
h(t+ τ − s)ΣsdWs

)T
]

= lim
t→∞

∫ t

−∞

∫ t+τ

−∞
h(t− s)ΣrE

[
dWrdW

T
s

]
ΣT

s h
T (t+ τ − s)

= lim
t→∞

∫ t

−∞

∫ t+τ

−∞
h(t− r)Σr

√
drδ(s− r)

√
dsΣsh

T (t+ τ − s)

= lim
t→∞

∫ t

−∞
h(t− s)VshT (t+ τ − s)ds

= lim
t→∞

∫ t

0

h(t− s)VshT (t+ τ − s)ds.

(5.31)

If the system is causal, linear, and time invariant, and the disturbance is white noise

of constant strength added to the input,

Vτ [y] =

∫ ∞

0

h(s)V hT (s+ τ)ds. (5.32)



158

As a specific example, if the impulse response is h(t) = CeAtB and the covariance

matrix is constant:

Vτ [y] =

∫ ∞

0

CeAsBV BT e(s+τ)AT

CTds

= C

(∫ ∞

0

eAsBV BT esA
T

ds

)
eτA

T

CT .

(5.33)

Note that the last equation is similar to equation (5.6), except for the exponential

delay term in the end. We assume that the dynamical matrix A has negative eigen-

values, otherwise the system is not stable. If the delay is τ > 0,

∥Vτ∥ = ∥C
(∫ ∞

0

eAsBV BT eA
T sds

)
eA

T τCT∥

≤ ∥C
(∫ ∞

0

eAsBV BT eA
T sds

)
CT∥ · ∥eAT τ∥

< ∥C
(∫ ∞

0

eAsBV BT eA
T sds

)
CT∥

= ∥V0∥.

(5.34)

The matrix norm used here is the first-order elementwise norm, since we are

usually interested in the average variance of all parts of the network:

∥M∥ =
N∑
i=1

N∑
j=1

|mi,j|. (5.35)

If we only know the autocorrelation function of the disturbance, we can compute

the output variance by moving to the frequency domain:

Ry(τ) =

∫ +∞

−∞
Sy(f) cos(2πfτ)df

=

∫ +∞

−∞
|H(f)|2Sx(f) cos(2πfτ)df

=
1

2π

∫ +∞

−∞
|C(jωI − A)−1B|2

(∫ +∞

−∞
Rx(u) cos(ωu)du

)
cos(ωτ)dω.

(5.36)
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The shape of the autocorrelation function is a good indicator of how a feedback or

feedforward loop will affect the output variation. A correlation function that quickly

goes to zero as τ increases shows that the feedback cycle will not decrease the variance

of the output by a lot. Conversely, a random signal with a long correlation structure

can be easily filtered out by applying an appropriate feedback mechanism.

5.4.2 Minimization of the Average Vertex Variance

In a general network, signals are propagated from a node to its neighbors. Every

vertex receives a filtered version of the noise signal, since each node acts as a single

pole filter. We will assume that the poles are real, and proportional to the degree

of each vertex, given that each node receives input proportional to the differences

of concentrations among its neighbors and itself, and that nodes that interact with

many others have proportionally large degradation rates. In this case, we can model

the dynamics of a first-order linear network through its Laplacian matrix. In such a

network, the state of each node xk follows the differential equation

dxk
dt

=
∑
m∈Nk

akm(xk − xm), (5.37)

where akm > 0 for every k,m ∈ V(G). The Laplacian of a matrix has been used to

model a wide range of systems, including formation stabilization for groups of agents,

collision avoidance of swarms, and synchronization of coupled oscillators [51]. It can

also be used in biological and chemical reaction networks, if the degradation rate of

each species is equal to the sum of the rates with which it is produced.

In this section, we will model the dynamics of each network with the Laplacian

matrix, where each node is affected by a noise source which is independent of all

other nodes, but has the same standard deviation. Given that each vertex contributes

equally to the overall noise measure of the graph, and since the noise entering each

node propagates towards all its neighbors, we can use Lemma 33 to see that the
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degrees of the network vertices have to be as similar as possible (see also [11] and

[33]). In addition, Figure 5.3 shows that the cycles need to be as long as possible

in order to avoid any correlations of signals through two different paths. For longer

cycles, the noise inputs go through more filters before they are combined. Lastly, the

phase shift is larger for all their frequencies, which reduces their correlation.

On the other hand, there are bounds on how long a cycle can be given the network’s

order and size, as shown in Chapter 3. Networks with long cycles tend to have a large

radius and larger average distance, which makes noise harder to propagate, having

to pass through many filters. By the same token, networks with a large clustering

coefficient will tend to be less immune to noise, since they tend to create cliques or

densely connected subnetworks, which facilitate noise propagation, especially if the

noise sources are correlated, as shown in previous sections. A method to find these

graphs is to first determine their degree sequence, and then determine which one

has the largest average cycle length. This procedure can be simplified by working

recursively, building networks with progressively larger order and size.

Lemma 34. There is always a connected graph of order N and size m in which there

are k vertices with degree d+ 1 and N − k vertices with degree d where

d =

⌊
2m

N

⌋
and k = 2m−Nd. (5.38)

Proof. We will prove the existence of such a graph by starting with its degree dis-

tribution and, by successive transformations, convert it to a graph that is known to

exist. Specifically, at each step we will remove one vertex along with its edges, re-

peating the process until we end up having a cycle graph. Assume that the degree

sequence of the graph G0 is as above, and we arrange the degrees of the vertices in a

decreasing order:

s0 = {d+ 1, d+ 1, . . . , d+ 1︸ ︷︷ ︸
k

, d, d, . . . , d︸ ︷︷ ︸
N − k

}. (5.39)
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According to the Havel-Hakimi theorem [33], the above sequence is a graph sequence

if and only if the graph sequence in which the largest degree vertex is connected to

vertices 2, 3, ..., d + 2 is also a graph sequence. The new graph will have a degree

sequence of

s1 =



{d+ 1, d+ 1, . . . , d+ 1︸ ︷︷ ︸
k − d− 2

, d, d, . . . , d︸ ︷︷ ︸
N−k+d+1

} if d < k − 2

{ d, d, . . . , d, d,︸ ︷︷ ︸
N + k − d− 3

d− 1, d− 1, . . . , d− 1︸ ︷︷ ︸
d− k + 2

} if d ≥ k − 2.

(5.40)

The key observation is that the transformation above preserves the property of degree

homogeneity. In other words, in the new graph G1 = G1(N−1,m−d+1), the minimum

and maximum vertex degrees are

dmin =

⌊
m− d+ 1

N − 1

⌋
(5.41)

and

dmin ≤ dmax ≤ dmin + 1. (5.42)

Repeating the process, there will be a graph Gr with at least one vertex of degree

dmin = 1. The graph Gr will include either one or two vertices of degree dmin = 1. If it

has two vertices with degree one, it is the path graph. If it had only one vertex with

degree one, the sum of all the degrees of Gr would be an odd number, which is not

possible, since at every transformation we removed 2dmax from the sum of degrees.

The graph Gr is a connected graph, and implementing the inverse transformations,

we connect new vertices to an already connected network, which guarantees that G0
is connected.

For small graph orders, we can find all networks with the desired degree sequence,

and among them, exhaustively search for the ones with the largest average cycle



162

length that have the smallest average variance. For N = 6 nodes, all connected

networks (with 5 ≤ m ≤ 15 edges) with most homogeneous degree distribution and

longest average cycles are shown in Figure 5.8.

Figure 5.8: All connected networks of order N = 6 and size 5 ≤ m ≤ 15 and with minimum
output variance. We assume that every vertex is affected by an independent noise source. In
addition, each vertex acts as a single pole filter. The total noise of the network is measured
as the average of the variances of all nodes.

To summarize this subsection, positive correlations increase the output variance,

and cycles create correlations that make the system more prone to random inputs.

The longer the cycles, the smaller their effect. The immunity to noise is increased

when pathways with the same output introduce different phase shifts, so that the

different noise contributions cancel each other at least partially. This result holds

both for feedforward and feedback loops. When we have some convex constraint on

the strength of the various filters, placing the poles, we can find the optimal placement

such that the output noise is reduced. Specifically, for a linear network where all

nodes act as single pole filters and the dynamics of the network are described by its

Laplacian matrix, there is a systematic way to find the network with the smallest

average variance. The optimal networks have homogeneous degree distribution, and

cycles that are as long as possible.
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5.5 Crosstalk Reduces Noise in Pathway Outputs

In this section, we will explore the relation between crosstalk and noise. We will show

that crosstalk may decrease the noise in the output of a system, if there are different

and uncorrelated noise sources in the inputs.

5.5.1 Motivating Example

Ī2 Ī2

−

V̄ 2

1

+

−

V̄ 2

2

+

R R

C C

D

Figure 5.9: A simple circuit with two noise sources. The two resistors generate thermal
noise, which is modeled as current sources in parallel to them. When the switch is open,
the two circuits are independent. When the switch is closed, the noise in both outputs has
smaller variance than before.

Assume that we have a resistor without any external voltage source. If we measure

the voltage between its endpoints, we will find that in any infinitesimal frequency

interval df there is thermal noise Vt with

E [Vt] = 0 and E
[
V 2
t

]
= 4kTRdf, (5.43)

where R is the resistance. The above equation shows that the noise increases as

temperature and resistance increase. We connect a capacitor in parallel to the resistor,

and measure the voltage between its endpoints. We are interested in the total amount

of variance of the voltage in the output of the parallel combination of the resistor



164

and the capacitor. When the switch is open, each of the two subcircuits operate

independently, and the output variance for both of them is

V̄ 2
1 = V̄ 2

2 =

∫ +∞

0

4kT

R

∣∣∣∣ R

1 + j2πfRC

∣∣∣∣2 df
=

∫ +∞

0

4kT

R

R2

1 + (RC)2(2πf)2
df

=
4kTR

2πRC

∫ +∞

0

du

1 + u2

=
kT

C
.

(5.44)

If we close the switch, the output variance becomes

V̄ 2
1 = V̄ 2

2 =
4kT

R

∫ +∞

0

∣∣∣∣ R(1 + j2πfR(C +D))

(j2πfR(C + 2D) + 1)(1 + j2πfRC)

∣∣∣∣2 df
+

4kT

R

∫ +∞

0

∣∣∣∣ j2πfR2D

(1 + j2πfRC)(1 + j2πfR(C + 2D)

∣∣∣∣2 df
=

kTD2

2C(C +D)(C + 2D)
+
kT (2C2 + 4CD +D2)

2C(C +D)(C + 2D)

=
kT

C
· C +D

C + 2D
.

(5.45)

The capacitor that connects the two subcircuits has capacitance D > 0, so if the two

noise sources are uncorrelated, then both outputs have smaller variance.

In biology, there are countless sources of noise, and the noise is often stronger

than the signal itself. It is possible that the cell needs to employ the same technique

for reducing noise, distributing it among many different and unrelated components.

Crosstalk between different elements couples the behavior of different parts of the

network, introducing more poles in the network dynamics. This is equivalent to

introducing capacitances between random parts of an electrical network. The new

system filters out noise more effectively, but it may be slower to react to various

inputs. Consequently, there seems to be a trade-off between how fast a network can

respond to changes in the input and how well it filters out noise. The next section
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studies the effect of crosstalk on the behavior of small networks.

5.5.2 Crosstalk on Single Nodes

In this subsection, we will analyze the four simple subgraphs of Figure 5.10.

σ

(a)

σ

ζ

c f

(b)

σ

n · ζ

n · c n · f

(c)
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ζ ζ
. . .

c
f

c
f

(d)

Figure 5.10: Crosstalk topologies involving one network node. (a) A node without crosstalk
interactions with white noise input having standard deviation equal to σ. (b) A node with
crosstalk interaction with one other node in the network, which also is affected by noise
with standard deviation ζ. (c) Same as before, but we assume that both the crosstalk and
the noise are increased by a factor n. (d) Crosstalk interactions with many other nodes,
each of which has an independent noise input of the same strength. See text for quantitative
analysis of these subsystems.

We will disregard any deterministic inputs, since we assume these are linear sys-

tems. Any deterministic inputs only affect the output mean, but not the variance.

System (a) obeys a simple stochastic differential equation, with one noise input, and

it has no other interactions with any other parts of the network.

dX = −aXdt+ σdWt. (5.46)

The output variance is

Va =
σ2

2a
. (5.47)

This is the trivial case without any crosstalk, and will be used for comparison to the

performance of the other subnetworks.



166

Subsystem (b) consists of one vertex that interacts with another node which may

also be prone to other noise sources. Crosstalk is modeled through a new vertex in the

network, with which the studied node exchanges flows. In chemical reaction networks

for example, the species of interest X may be forming a complex Y with species I.

The concentration of I is assumed to be constant.

X + I
c−⇀↽−
f
Y. (5.48)

We also expect X to have a constant degradation rate a. The equations for the

concentrations of X and Y are

dX = −(a+ c)Xdt+ fY dt+ σdWt

dY = cXdt− fY dt+ ζdUt

(5.49)

and the output variance is

Vb =
a+ f

2a(a+ c+ f)
σ2 +

f

2a(a+ c+ f)
ζ2. (5.50)

The next step is to see what happens if we increase the crosstalk intensity by a

factor n. We can distinguish two cases. The first is when there is crosstalk with one

other node (Figure 5.10(b)). In the chemical reaction network analogy,

X + A
n·c−−⇀↽−−
n·f

Y. (5.51)

It is straightforward to find the new differential equations, and the variance in the

output.

dX = −(a+ nc)Xdt+ nfY dt+ σdWt

dY = ncXdt− nfY dt+ nζdUt

(5.52)

Vc =
a+ nf

2a(a+ n(c+ f))
σ2 +

n3f

2a(a+ n(c+ f))
ζ2. (5.53)
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Finally, we consider the case where one node has crosstalk interactions with many

different nodes, each of which is affected by a different noise process (Figure 5.10(d)).

dX = −(a+ nc)Xdt+ nfY dt+ σdWt

dYk = cXdt− fYkdt+ ζdUk
t 1 ≤ k ≤ n

(5.54)

and the output variance is

Vd =
a+ f

2a(a+ nc+ f)
σ2 +

nf

2a(a+ nc+ f)
ζ2. (5.55)

When no noise is introduced from the crosstalk nodes (ζ = 0), crosstalk reduces

the output variance. Figure 5.11 compares the last three cases, as the strength of

crosstalk interactions among the nodes increases. The crosstalk strength in this case

is quantified by the ratio

rx =
c

c+ f
(5.56)

which is equal to the concentration of the crosstalk product Y in equation (5.49) in

the absence of degradation rates and noise inputs. It is shown that distributing the

crosstalk among many nodes (equation (5.55)) decreases the effect of noise noticeably

more, compared to the single node case. This is even more pronounced when we

normalize by the variance in the base case (equation (5.50)). When crosstalk intro-

duces additional noise, it may increase the variance in the output of any given node

if crosstalk is not strong enough to make up for the introduced noise (Figure 5.12).

It should be noted that although crosstalk affects the output variance, it leaves

the output mean unaffected. Crosstalk is modeled as additional differential equations

that couple the existing states together, and when they receive no external determin-

istic inputs, they do not alter the mean of the steady state response of the system.

Consequently, the coefficient of variation of the output changes proportionally to its

standard deviation, since the mean is unchanged.
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Figure 5.11: Output variance as a result of noise input for a single vertex in the network
given the existence of crosstalk interactions with other vertices. (a) Output variance as a
function of the amount of crosstalk (concentration of crosstalk complex), when no additional
noise is introduced. Crosstalk clearly mitigates the output variance. Having crosstalk
with two independent nodes reduces the variance even more, compared to having a single
crosstalk node. (b) Normalized output variance as a fraction of the variance when only
one crosstalk node is present. Having many small sources of crosstalk is clearly better than
having one strong crosstalk interaction. For the same amount of total crosstalk, dividing
it among many nodes drives the output noise variance to zero as the number of nodes
increases.
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Figure 5.12: Normalized variance of the output when the crosstalk introduces additional
noise. Having strong crosstalk interactions with one single node increases the variance
because noise propagates easily. When crosstalk is distributed among many nodes, the
variance may be smaller or larger than before, depending on the strength of the interac-
tions. This is because having crosstalk interactions with many other vertices introduces a
proportional amount of noise.



169

5.5.3 Parallel Pathways

We consider two pathways with crosstalk among more than one of their nodes. We

distinguish two cases, when the two pathways have the same or different outputs. In

the first case, since the two outputs are independent, it is easier to reduce the noise

variance in both of them, by “exchanging” their noise through each node, assuming

that the different noise sources are independent. When the output is the same, there

is little reduction in the output variance, since every disturbance eventually reaches

the output, and is combined with other correlated versions of the same signal (Figure

5.13). The variance reduction is then caused by the increase of the effective pathway

lengths, since they follow on average a longer path towards the output.
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Figure 5.13: Output variance when crosstalk is present among all stages of two different
pathways for various pathway lengths, when their output is different (left) or the same
(right). The output variances are normalized by the variance of a pathway without crosstalk.
We assume that every stage of the pathway has some noise input. A small amount of
crosstalk can help reduce the effect of noise in the output, but more crosstalk does not
help filtering out the noise of the system. Crosstalk has a much smaller effect when the
two pathways have the same output. Although it reduces the variance of the intermediate
nodes, it creates correlations among them that in turn increase the variance in the output.
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5.5.4 Crosstalk Modeling: Direct Conversion and Interme-

diate Nodes

Suppose we have a simple decomposed system:

dY1 = −aY1dt+ σdUt

dY2 = −aY2dt+ σdWt.
(5.57)

The two outputs of the system are completely independent, since they do not interact

in any way, and are therefore uncorrelated. The variance of each output is:

V[Y1] = V[Y2] =
σ2

2a
. (5.58)

If there is crosstalk, then the different states of the system are correlated. If we

model crosstalk as a positive conversion rate from one state to another, with the

conversion rates being equal among every pair of states, the 2−state system above

becomes:

dY1 = −(a+ c)Y1dt+ cY2dt+ σdUt

dY2 = −(a+ c)Y2dt+ cY1dt+ σdWt.
(5.59)

The variance of each of the outputs now becomes:

V[Y1] =
∫ +∞

−∞
(|h11(f)|2 + |h21(f)|2)df

=
σ2

2π

∫ +∞

−∞

(∣∣∣∣ a+ c+ jω

(a+ jω)(a+ 2c+ jω)

∣∣∣∣2 + ∣∣∣∣ c

(a+ jω)(a+ 2c+ jω)

∣∣∣∣2
)
dω

=
σ2

2a
· a+ c

a+ 2c
,

(5.60)

where h11 and h21 are the impulse responses of the first node when the input is

an impulse response to the first and second node, respectively. The symmetry is

preserved, so V[Y1] = ψ2
y = V[Y2]. The variance when crosstalk is present (c > 0) is

always smaller than the initial variance of the outputs. Generalizing the equations
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Figure 5.14: Output variation for each node in a system ofN nodes, when there are crosstalk
interactions among every pair of nodes. The variance has been normalized by the corre-
sponding variance without crosstalk. Each node is identical, and receives an independent
noise input of the same intensity. When the number of vertices increases, the noise is
distributed among all the nodes, thus the output variance is reduced.

above for N nodes (see Figure 5.14), we find that

σ2
y =

σ2

2a
and ψ2

N =
a+ c

(a+Nc)
σ2
y (5.61)

and as a result,
ψ2
N

σ2
y

=
a+ c

a+Nc
(5.62)

which tends to zero as N becomes large.

Alternatively, we can model crosstalk interactions as two species being converted
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to an intermediate complex, as has been done in the previous sections. A very simple

example of a chemical reaction network which demonstrates this type of behavior is

Y1 −→ A

Y2 −→ B

Y1 + Y2 −⇀↽− Z.

(5.63)

Crosstalk is defined by the presence of the last reaction. We are interested in the

variance of the concentration of the output products A and B, which are directly

affected by the variance of Y1 and Y2. The two pathways will interact through an

intermediate vertex. The system can be written as

dY1 = −aY1dt− cY1Y2dt+ fZdt+ σdUt

dY2 = −aY2dt− cY1Y2dt+ fZdt+ σdWt

dZ = cY1Y2dt− fZdt.

(5.64)

We assume that there is a new “crosstalk vertex” Z among each pair of original

vertices. After linearizing around the steady state (Ȳ1, Ȳ2, Z̄), the three equations

above become

dY1 = −(a+ cȲ2)Y1dt− cȲ1Y2dt+ fZdt+ σdUt

dY2 = −(a+ cȲ1)Y2dt− cȲ2Y1dt+ fZdt+ σdWt

dZ = cȲ2Y1dt+ cȲ1Y2dt− fZdt.

(5.65)

The network is now more capable of reducing the output variance (Figure 5.15).
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Figure 5.15: Comparison of the noise in the output of a simple network with two different
implementations of crosstalk, direct conversion or forming a new complex, as described by
equations (5.59) and (5.64).

5.6 Multiplicative (Geometric) Noise

There are cases where the noise intensity is proportional to a state of the system.

In biological networks for example, the degradation of various proteins depends on

specific enzymes, whose concentration may be subject to random fluctuations. This

makes the degradation of a protein prone to noise whose source is independent of

the protein concentration, but makes the rate at which it degrades proportional to

it. The noise intensity is also proportional to the state of the system when a state

is autoregulated, either with positive or negative feedback, if the rate at which the

concentration of that particular state changes is subject to random noise. We will

call this type of noise multiplicative or geometric, because it is multiplied by the state

of the system. As a specific example, consider a gene that is regulated by a single
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regulator [2]. The transcription interaction can be written as

P → X. (5.66)

When P is in its active form, gene X starts being transcribed and the mRNA is

translated, resulting in accumulation of protein X at a rate bt. The production of X

is balanced by protein degradation (by other specialized proteins) and cell dilution

during growth at rate at. The differential equation that describes this simplified

system is:
dX

dt
= bt − atX. (5.67)

If there is noise in the concentration of the degradation proteins, or the cell growth rate

is not constant, at consists of a deterministic component and a random component.

We will now show that noise in the production rate bt has a fundamentally different

effect on system behavior compared to the effect of noise in the degradation rate at,

because the latter is multiplied by the concentration of the protein itself. This analysis

focuses on the random and constant fluctuation of network parameters. When the

parameters are unknown but constant, it has been shown that there are adaptation

mechanisms that ensure the robustness of a system regardless of the exact value of

each parameter [9]. We will first study the homogenous version of the differential

equation (5.67), and then we will add the constant production term. Ignoring the

production term bt, and multiplying by dt, equation (5.67) becomes

dX = −(atdt)X. (5.68)

After adding a random component in the degradation rate, the last equation becomes

dX = (−atdt+ σtdWt)X, (5.69)
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where Wt is the regular Wiener process and dWt represents the noise term. Note that

the degradation rate and the noise intensity are allowed to be time-dependent. We

will first find the differential of the logarithm of X using Itô’s lemma [26]. We will

require that all the input functions are continuous and non-pathological, so that we

can always change the order of taking the limit and the expectation operator. All

integrals are assumed to be finite, so that we can also change the order of integration.

The technical details mentioned above are covered in more detail in [26] and [44]. We

denote by f(X, t) the logarithm of the state variable X:

f(X, t) = log(Xt). (5.70)

We apply Itô ’s lemma on the last function:

d log(Xt) = df(X, t)

=
∂f

∂t
dt+

∂f

∂X
dX +

1

2

∂2f

∂X2
dX2

= 0 +
dX

X
− 1

2

1

X2

(
a2tX

2dt2 − 2atσtX
2dtdWt + σ2

tX
2dW 2

t

)
=

(
−atdt+ σtdWt −

1

2
σ2dW 2

t

)
+X2

(
a2tdt

2 − 2atσtdtdWt

)
.

(5.71)

The last two terms can be neglected, since dt2 = O(dt) and dt · dWt = O(dt) as

dt→ 0. On the other hand, as dt becomes small,

lim
dt→0

dW 2
t = E[dW 2

t ] = dt. (5.72)

Applying the rules above to equation (5.71),

log
X(t)

X0

= −
∫ t

0

(
as +

1

2
σ2
s

)
ds+ σtWt. (5.73)
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We can now solve for X(t):

Xt = X0e
−

∫ t
0(as+

1
2
σ2
s)ds · eσtWt . (5.74)

The above derivation is valid only when the equilibrium state (concentration) is equal

to zero and we start from a state X0 ̸= 0. If the rate at and the noise strength σt are

constant, it simplifies to

Xt = X0e
−(a+ 1

2
σ2)t · eσWt . (5.75)

When the equilibrium is positive (which is the case for most systems), the following

differential equation with a deterministic input is more relevant:

dY = btdt+ (−atdt+ σtdWt)Y. (5.76)

One way to view the terms on the right hand side of equation (5.76) is that the

concentration of species X depends on a deterministic input, and is regulated by a

negative feedback mechanism which is subject to random disturbances. It has been

shown in [42] that when feedback is also noisy, there are fundamental limits on how

much the noise in the output can be reduced, because there are bounds on how well

we can estimate the state of the system. The authors focus on discrete random events

(birth-death processes) as the source of noise, and the result is that feedback noise

makes it harder to control the noise in the output.

We will also study how multiplicative noise affects the output of a system com-

pared to additive noise of equal strength, and how it propagates in a cascade of linear

filters. Using Itô’s lemma and the solution to the homogeneous equation, the solution

of the inhomogeneous stochastic differential equation is (see [26] for details):

Y (t) = Y0X(t) + bX(t)

∫ t

0

X−1(s)ds

= Y0e
−

∫ t
0(ax+

1
2
σ2
x)dx · eσtWt + b

∫ t

0

e−
∫ t
s (ax+

1
2
σ2
x)dx · eσtWt−σsWsds

(5.77)
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where X(t) is the solution of the homogeneous equation (5.74) with initial condition

X(t = 0) = 1. If the initial state is equal to zero (or when t is large), and all the

parameters are constant, then we can simplify the last expression:

Y (t) = b

∫ t

0

e−(a+
1
2
σ2)s · eσWsds. (5.78)

The form of the last equation is fundamentally different from the response of linear

systems to input noise, because the Wiener process input depends on the same time

variable as the kernel of the integral, and the output is not a convolution of the

impulse response of the system with the input. In order to see how noise propagates

through the network, it is helpful to find the autocorrelation of two versions of this

stochastic process. We cannot use equation (5.9), because the random input is now

multiplied by the system state. As a first step, we will compute the correlation of the

exponential of Brownian motion. The expected value is

E [Zt] = E
[
eσWt

]
=

∫ +∞

−∞
eσ

√
tx 1√

2πt
e−

x2

2t dx

= e
1
2
σ2t.

(5.79)

The expected value of the square of the exponential Wiener process is

E
[
Z2

t

]
= E

[
e2σWt

]
= e2σ

2t. (5.80)

Combining the last two equations:

σ2
Zt

= Var [Zt] = E
[
Z2

t

]
− (E [Zt])

2

= e2σ
2t − eσ2t

= eσ
2t
(
eσ

2t − 1
)
.

(5.81)
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The expected value of Y (t) in equation (5.78) can now be computed:

E [Y (t)] = b

∫ t

0

e−(a+
1
2
σ2)u · E

[
eσWu

]
du

= b

∫ t

0

e−(a+
1
2
σ2)x · e

1
2
σ2xdx

=
b

a
(1− e−at)

(5.82)

which means that

Ȳ = lim
t→∞

E[Y (t)] =
b

a
. (5.83)

As one would expect, it the same as when the system is completely deterministic.

Next, we compute the covariance of two samples of the random process Zt:

Cov [Zs, Zt] = E [Zs · Zt]− E [Zs] · E [Zt]

= E
[
eσWseσWt

]
− E

[
eσWs

]
· E
[
eσWt

]
= E

[
eσWs∧teσWs∨t

]
− e

1
2
σ2(s+t)

= E
[
e2σWs∧teσ(Ws∨t−Ws∧t)

]
− e

1
2
σ2(s+t)

= E
[
e2σWs∧t

]
· E
[
eσ(Ws∨t−Ws∧t)

]
− e

1
2
σ2(s+t)

= e2σ
2s∧t · e

1
2
σ2(s∨t−s∧t) − e

1
2
σ2(s+t)

(5.84)

where we follow the standard notation s∧t = min(s, t) and s∨t = max(s, t). Combin-

ing these equations, we find the autocorrelation for the geometric Brownian motion:

R(s, t) = Corr [Zs, Zt]

=
Cov [Zs, Zt]

σZs · σZt

=
e2σ

2s∧t · e 1
2
σ2(s∨t−s∧t) − e 1

2
σ2(s+t)√

eσ2s (eσ2s − 1)
√
eσ2t (eσ2t − 1)

=

√
eσ2s∧t − 1

eσ2s∨t − 1
.

(5.85)
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The general autocorrelation formula of geometric noise in the steady state is:

R(τ) = lim
t→∞

R(t, t+ τ)

= lim
t→∞

√
eσ2t − 1

eσ2(t+τ) − 1

=

√
eσ2t

eσ2(t+τ)

= e−
1
2
σ2τ .

(5.86)

The correlation is exponentially decreasing as a function of the time lag. We can now

follow the same procedure in order to find the correlation of the stochastic process

defined by equation (5.78). Its second moment is equal to

E[Y 2(t)] = b2
∫ t

0

∫ t

0

e
−
(
a+σ2

2

)
(x+y) · E

[
eσWxeσWy

]
dxdy

= b2
∫ t

0

∫ t

0

e
−
(
a+σ2

2

)
(x+y)

e2σ
2x∧ye

1
2
σ2(x∨y−x∧y)dxdy

= b2
∫ t

0

∫ x

0

e
−
(
a+σ2

2

)
(x+y)

e2σ
2ye

1
2
σ2(x−y)dxdy

+ b2
∫ t

0

∫ t

x

e
−
(
a+σ2

2

)
(x+y)

e2σ
2xe

1
2
σ2(y−x)dxdy

=
2
(
a
(
1− 2e−at + et(−2a+σ2)

)
+ (−1 + e−at)σ2

)
a (2a2 − 3aσ2 + σ4)

.

(5.87)

All integrals are assumed to be finite, meaning that a has to be greater than σ2

2
. As

t goes to infinity, we may ignore all the decaying exponentials.

lim
t→∞

E[Y 2(t)] =


∞ if a ≤ σ2

2

b2

a(a−σ2

2
)

if a > σ2

2
.

(5.88)

In what follows, we will only be interested in the behavior of the system when
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a > σ2

2
, when the standard deviation is finite. Based on equation (5.88), the standard

deviation (when it is defined) is equal to

σ2
Y =

b2σ2

a2 (2a− σ2)
=

σ2

2a− σ2
Ȳ 2. (5.89)

The standard deviation is proportional to the square of the average value of Y . The

output variance when the parameters are themselves noisy have a different form,

compared to the variance when the inputs are noisy.

A similar formalism exists in the control literature for both continuous time sys-

tems [43] and discrete time systems [15]. In control theory, the focus is on state

estimation and on finding feedback mechanisms that can accurately estimate the

state of a system, or minimize its variance. In the next subsection, we will analyti-

cally compute the mean and the variance of the output of a system when geometric

noise is supplied as input to a series of linear filters.

5.6.1 Geometric Noise Through a Low-Pass Filter

Assume that a system consists of two systems connected in series. The first one is

affected by geometric noise, and it is used as an input to the second node. We first

analyze a system where each state has one real pole, and later on we will generalize

it for an arbitrary number of poles. The equations of the system are

dX = cdt+ (−fdt+ σdWt)X

dY = bXdt− aY dt,
(5.90)

where all parameters are positive real numbers. Combining the forms for the multi-

plicative noise and the output of a single pole filter,

Y (t) = bce−at

∫ t

0

eas
(∫ s

0

e
−
(
f+σ2

2

)
u
eσWudu

)
ds. (5.91)
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The goal is to use the previous methods to explore the propagation of noise in a

network of first order filters when the input noise is geometric. The output mean is:

E[Y (t)] = bce−at

∫ t

0

eas
(∫ s

0

e
−
(
f+σ2

2

)
uE
[
eσWu

]
du

)
ds

= bce−at

∫ t

0

eas
(∫ s

0

e−fudu

)
ds

=
bc
(
a− ae−ft + (−1 + e−at) f

)
a(a− f)f

.

(5.92)

The last equation holds even if a = f , and we can find the expected value by finding

the limit as f → a. Letting the time t go to infinity,

E[Y ] = lim
t→∞

E[Y (t)] =
bc

af
(5.93)

which is the same as an equivalent system without any noise. The second moment is

E[Y 2] = b2c2e−2at

∫ t

0

eardr

∫ t

0

easds

∫ r

0

∫ s

0

e−(f+σ2

2
)(x+y)E

[
eσ(Wx+Wy)

]
dxdy. (5.94)

We break the integral above in five parts, in order to compute the expected value

inside it:

e2at

b2c2
E[Y 2(t)] =

∫ t

0

eardr

∫ t

r

easds

∫ r

0

(∫ x

0

e−fxe−fyeσ
2y dy

)
dx

+

∫ t

0

eardr

∫ t

r

easds

∫ r

0

(∫ s

x

e−fxe−fyeσ
2xdy

)
dx

+

∫ t

0

eardr

∫ r

0

easds

∫ s

0

(∫ x

0

e−fxe−fyeσ
2ydy

)
dx

+

∫ t

0

eardr

∫ r

0

easds

∫ s

0

(∫ s

x

e−fxe−fyeσ
2xdy

)
dx

+

∫ t

0

eardr

∫ r

0

easds

∫ r

s

(∫ s

0

e−fxe−fyeσ
2ydy

)
dx.

(5.95)
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The above sum of integrals is finite provided that f > σ2

2
. After performing all the

algebraic calculations,

E[Y 2] = lim
t→∞

E[Y 2(t)] =
b2c2

a2f(f − σ2

2
)
. (5.96)

The variance is

V[Y ] = b2c2
σ2

a2f 2(2f − σ2)
. (5.97)

We can write the above equation as a constant times the variance of the first state:

V[Y ] =

(
b

a

)2
c2σ2

f 2(2f − σ2)

=

(
b

a

)2

V[X].

(5.98)

The variance of Y is, also in this case, fundamentally different from the variance of a

system with white noise added directly to the input. The latter would be equal to

V0[Y ] =
b2

2a
σ2
in. (5.99)

The time evolution of the variance is shown in Figure 5.16. When the noise is geo-

metric, it takes longer for the variance to settle to its steady state value, which is also

an indication that the output variance consists of lower frequencies than in the case

of additive noise.

More generally, if we pass geometric noise through an arbitrary linear filter with

impulse response h(t), then the output is defined as the convolution of the impulse

response and the input:

Y (t) = c

∫ t

0

h(t− s)
(∫ s

0

e
−
(
f+σ2

2

)
u
eσWudu

)
ds. (5.100)
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Figure 5.16: Evolution of the output variance of a single pole filter when the input is affected
by additive and multiplicative noise, respectively. The system with additive noise has less
variance in the output compared to the one with multiplicative noise. Also, in the case of
geometric noise, the variance takes more time to settle to its equilibrium value.

The mean is

E[Y (t)] = c

∫ t

0

h(t− s)
(∫ s

0

e−fudu

)
ds

=
c

f

(∫ t

0

(1− e−fs)h(t− s)ds
)
.

(5.101)

The variance is equal to

V[Y (t)] = E[Y 2(t)]− (E[Y (t)])2

= c

∫ t

0

h(t− r)dr
∫ r

0

h(t− s)ds
∫ s

0

∫ y

0

e−f(x+y)eσ
2xdxdy

+ c

∫ t

0

h(t− r)dr
∫ r

0

h(t− s)ds
∫ s

0

∫ r

y

e−f(x+y)eσ
2ydxdy

+ c

∫ t

0

h(t− r)dr
∫ t

r

h(t− s)ds
∫ r

0

∫ x

0

e−f(x+y)eσ
2ydydx

+ c

∫ t

0

h(t− r)dr
∫ t

r

h(t− s)ds
∫ r

0

∫ s

x

e−f(x+y)eσ
2xdydx

− c2

f 2

(∫ t

0

(1− e−fs)h(t− s)ds
)2

.

(5.102)
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For example, if the filter has one pole at −a with a > 0, then h(t, s) = e−a(t−s), we

can verify that the mean and the variance are equal to the ones found in equations

(5.93) and (5.96). If we have n identical single-pole filters in series, with the same

pole at −a, with a ∈ R+, and their input is multiplied by b, then the mean is

E[Y ] = lim
t→∞

bnc

f

∫ t

0

(1− e−fs)
(t− s)n−1

(n− 1)!
e−asds

=

(
b

a

)n

· c
f

(5.103)

and the variance is

V[Y ] =

(
b

a

)2n(
c

f

)2
σ2

(2f − σ2)
. (5.104)

These results show how variation that enters the system through noisy degradation

rates affects the output of a pathway. For example, in the two-step cascade

X → Y

Y → Z
(5.105)

described by (5.90), species Y is affected by geometric noise, and then is used as an

input to the next reaction that produces Z. The second reaction acts as a first-order

linear filter, and the noise propagates to the pathway output Z. The analysis can

be used for any system that can be described by linear differential equations. If a

linear time invariant system is described by equation (2.7) then, if there is noise in the

input u or its input matrix B, then we can consider noise a new additional input as in

equation (5.1), and solve it accordingly. The same holds for the off-diagonal elements

of the dynamical matrix A. But noise in the diagonal elements of A is multiplicative

noise, and needs to be considered separately from all other noise sources, and it leads

to qualitatively different behavior.
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5.7 Noise Propagation in Chemical Reaction Net-

works

In this section, we will examine how noise propagates in general linear chemical reac-

tion networks. Noise in chemical reaction networks that do not involve bimolecular or

higher-order reactions has been studied extensively (see for example [68]) and chem-

ical reactions have also been analyzed as analog signal processing systems [63]. In

this section, we will study reactions where two or more reactants are noisy, and their

disturbances may be correlated with each other.

5.7.1 Motivating Example

Consider the following reaction:

X + Y → Z. (5.106)

Further assume that the concentration of X and Y is subject to random white noise

fluctuations around a deterministic mean value:

Xt = X0 + σXdUt

Yt = Y0 + σY dWt (5.107)

and Z degrades with a rate proportional to its concentration. The corresponding

stochastic differential equation is

dZ = (X0Y0 − aZt)dt+ d(XtYt)

= (X0Y0 − aZt)dt+X0σY dWt + Y0σXdUt + σXσY d[Ut,Wt],
(5.108)
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where Ut and Wt are standard Wiener processes. and dUtdWt = d[Ut,Wt] is the

differential of the quadratic covariation of Ut and Wt. Equation (5.108) is a natural

generalization of the case where we have only one or more noise terms that are added

to the deterministic differential equation. In all stochastic differential equations so

far, we multiply the deterministic factors that contribute to the infinitesimal change

in the state of the system by dt, and then we add the noise terms. In equation

(5.108) the deterministic part is X0Y0 and the rest is noise. If the two processes have

correlation ρ, then

d[Ut,Wt] = ρdt. (5.109)

Simplifying the last expression for dZ,

dZ = (X0Y0 + ρσXσY − aZt)dt+X0σY dWt + Y0σXdUt (5.110)

which is the familiar Ornstein−Uhlenbeck process with two noise sources. The final

expression for the concentration of Z is

Z(t) =
1

a
(X0Y0 + ρσXσY )(1− e−at) + σXY0

∫ t

0

ea(t−s)dUs + σYX0

∫ t

0

ea(t−s)dWs.

(5.111)

As the effect of the initial conditions diminishes, the mean is

Z̄ = lim
t→∞

E[Z(t)] =
1

a
(X0Y0 + ρσXσY ) (5.112)

and the variance is equal to

V[Z] = lim
t→∞

V[Z(t)] =
Y 2
0 σ

2
X +X2

0σ
2
Y + 2X0Y0ρσXσY
2a

. (5.113)

An important consequence of correlations in the input noise (ρ ̸= 0) is that the mean is

different from the case where there is no noise, even if both noise terms in (5.107) have

a mean of zero. In addition, the variance is larger when there are positive correlations
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in the two input noise terms, as expected. When the correlation is negative, the two

noise processes partially cancel each other, resulting in lower variance.

5.7.2 General Reactions

We can generalize the above results to general reactions of the form

a1X1 + · · ·+ aNXN → b1Y1 + · · ·+ bMYM (5.114)

where each of the elements on the left-hand side is assumed to be a random variable

that consists of a deterministic mean X̄k and a standard white noise process dW
(k)
t

multiplied by the standard deviation of its concentration.

Xk(t) = X̄k + σkdW
(k)
t 1 ≤ k ≤ N. (5.115)

The concentration of the product Yj is described by a stochastic differential equation:

dYj =

(
bj

N∏
u=1

X̄u − fjYj

)
dt+ bj

N∑
k=1

σk

 N∏
u=1
u ̸=k

X̄u

 dW
(k)
t

+ bj

N∑
k=1

N∑
m=1

σkσm

 N∏
u=1

u̸=k,m

X̄u

 ρk,mdt+O(dt) .

(5.116)

The last equation is derived by using Itô’s box rule [26], and the fact that higher

order products of Wiener processes have variances that tend to zero faster than dt as

dt → 0. As in the bimolecular case, we multiply the noiseless input by dt, and then

we add all the noise terms, and their products. Disregarding the initial conditions,
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we compute the mean:

E[Yj] =
bj
fj

 N∏
u=1

X̄u +
N∑
k=1

N∑
m=1

σkσm

 N∏
u=1

u̸=k,m

X̄u

 ρk,m

 (5.117)

which is different from the case when there is no noise, if there are correlations among

the noise terms. The last equation clearly shows that noisy inputs can have an effect in

the average of the concentration of the output, even if their mean is zero. The amount

by which they shift the mean depends on their own variances, their correlations, and

the product of concentrations of all other reactants. The variance is equal to

V[Yj] =
b2j
2fj

 N∑
k=1

σ2
k

N∏
u=1
u ̸=k

X̄2
u +

∑
k<m

2ρkmσkσmσ
2
k

N∏
u=1

u̸=k,m

X̄2
u

 . (5.118)

As before, positive correlations increase variance, negative correlations reduce it, and

the extent by which the correlations affect it depends on the concentrations of the

other species in the reaction.

5.7.3 Reactions with Filtered Noise

Suppose we have the following simple reaction:

X1 +X2 + · · ·+Xn → Y (5.119)

where X1 . . . XN fluctuate around an average value, but the noise has already passed

through a linear filter. The differential equation that Y satisfies is:

dY = −aY dt+
N∏

u=1

(
X̄k + σk

∫ t

0

hk(t− s)dW k
s

)
dt. (5.120)
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The terms dW k
t are standard Wiener processes, each corresponding to the respective

species k. We expand the last equation:

dY =

(
N∏

u=1

X̄u − aY

)
dt+

N∑
k=1

σk

N∏
u=1
u̸=k

X̄udt

∫ t

0

hk(t− s)dW k
s

+
N∑
k=1

N∑
m=1

σkσm

N∏
u=1

u̸=k,m

X̄udt

∫ t

0

∫ t

0

hk(t− x)hm(t− y)dW k
x dW

m
y

+O(dt) .

(5.121)

We have omitted all the terms whose order is larger than dt as dt→ 0, gathering them

under the term O (dt). By using Itô’s box rule again, we can replace the products of

Wiener processes by their correlation times the infinitesimal time interval dt.

dY =

(
N∏

u=1

X̄u − aY

)
dt+

N∑
k=1

σk

N∏
u=1
u ̸=k

X̄udt

∫ t

0

hk(t− s)dW k
s

+
N∑
k=1

N∑
m=1

σkσm

N∏
u=1

u ̸=k,m

X̄udt

∫ t

0

ρkmhk(t− x)hm(t− x)dx

+O(dt) .

(5.122)

Note that the second sum of integrals is deterministic and does not depend on any

Wiener process. Setting

f(t) =
N∑
k=1

N∑
m=1

σkσm

N∏
u=1

u̸=k,m

X̄udt

∫ t

0

ρkmhk(t− x)hm(t− x)dx

cN =
N∏

u=1

X̄u , σ̂k = σk

N∏
u=1
u̸=k

X̄u and

qk(t) = σ̂k

∫ t

0

hk(t− s)dW k
s ,

(5.123)
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the solution to the last differential equation (with zero initial conditions) is

Y (t) = cN(1− e−at) +

∫ t

0

e−a(t−u)f(u)du+
N∑
k=1

∫ t

0

e−a(t−u)qk(u)du. (5.124)

More generally, if the differential equation for the output has impulse response g(t),

and initial condition Y0,

Y (t) = Y0g(t) + cN

∫ t

0

g(t− u)du+
∫ t

0

g(t− u)f(u)du+
N∑
k=1

∫ t

0

g(t− u)qk(u)du,

(5.125)

where all terms except for the last sum are deterministic. The last equation nicely

decomposes the factors that drive the output Y (t). The first term is the effect of the

initial conditions, the second term denotes the effect of the mean value of the inputs,

the third term results from the noise correlations of the inputs, and the last term

corresponds to the sum of the random fluctuations of all input sources.

If the output of reaction (5.126) receives inputs that are affected by both filtered

and unfiltered disturbances, then we can use the same methods to find the mean

and standard deviation of the output. We will analyze the case where we have two

inputs, one of each type. The generalization to an arbitrary number of inputs is

straightforward. Suppose that the chemical species Y depends on species X1 and X2

X1 +X2 → Y (5.126)

where the inputs X1 and X2 are defined by the following differential equations:

X1(t) = X̄1 + σ1

∫ t

0

h(t− s)dUs (5.127)

and

X2(t) = X̄2 + σ2dWt, (5.128)
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where Ut and Wt are standard Wiener processes. The stochastic differential equation

for Y is

dY = (X̄1X̄2 − aY )dt+ σ2X̄1dWt + σ1X̄2dt

∫ t

0

h(t− s)dUs

+ σ1σ2

∫ t

0

h(t− s)dUsdWt

= (X̄1X̄2 + ρh0σ1σ2 − aY )dt+ σ2X̄1dWt + σ1X̄2

∫ t

0

h(t− s)dUs

(5.129)

since

dUsdWt =


ρdt if s = t

0 otherwise.

(5.130)

The output is equal to

Y (t) = Y0e
−at + (X̄1X̄2 + ρh0σ1σ2)(1− e−at) + σ2X̄1

∫ t

0

e−a(t−s)dWs

+ σ1X̄2

∫ t

0

∫ s

0

ea(t−s)h(s− x)dUx.

(5.131)

The mean is

E[Y ] =
1

a

(
X̄1X̄2 + ρh0σ1σ2

)
, (5.132)

which differs from the noiseless case by the last term, which is proportional to the

correlation and the standard deviation of the noise inputs. Similarly, the variance is

found to be equal to

V[Y (t)] = V1(t) + V2(t) + V12(t), (5.133)

where

V1(t) = e−2atσ2
1X̄

2
2

∫ t

0

∫ t

0

ea(r+s)

(∫ r∧s

0

h(s− u)h(r − u)du
)
drds, (5.134)
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V2(t) =
σ2
2X̄

2
1

2a
(1− e−2at), (5.135)

and

V12(t) = ρσ1σ1X̄1X̄2

∫ t

0

e−a(t−y)

(∫ t∧y

0

e−a(t−x)h(y − x)dx
)
dy. (5.136)

The first component V1(t) is the variance because of the noise in the first input dUt,

V2(t) the variance because of noise in the second input, and the last term V12(t) is

the variance emanating from their correlation.

When the inputs X1 and X2 in (5.126) both have a filtered multiplicative noise

component, then the differential equation becomes

dY = −aY dt+
(
X̄1λ1

∫ t

0

e−(λ1+
σ2
1
2
)xeσ1Uxdx

)(
X̄2λ2

∫ t

0

e−(λ2+
σ2
1
2
)yeσ1Wydy

)
dt.

(5.137)

In order to account for the possibly nonzero correlation between processes Ut andWt,

we write each of them as a sum of two uncorrelated standard processes:

Ut = aAt +
√
1− a2Bt

Wt = bAt +
√
1− b2Ct.

(5.138)

The processes At, Bt and Ct have correlation zero, and ρ = ab is the correlation

between Ut and Wt :

−1 ≤ a ≤ 1, −1 ≤ b ≤ 1 and − 1 ≤ ρ ≤ 1. (5.139)

We are interested in finding the mean and variance of Y . First, we compute the
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expected value of the product of the two exponential Wiener processes Ut and Wt.

E
[
eσ1Uxeσ2Wy

]
= E

[
eσ1(aAx+

√
1−a2Bx)eσ2(bAy+

√
1−b2Cy)

]
= E

[
eaσ1Ax+bσ2Ay

]
· E
[
eσ1

√
1−a2Bx

]
· E
[
eσ2

√
1−b2Cy

]
= e

1
2
(aσ1+bσ2)

2x∧ye
1
2((aσ1)

2δx+(bσ2)
2δy)(x∨y−x∧y)e

1
2
σ2
1(1−a2)xe

1
2
σ2
2(1−b2)y

(5.140)

where δ denotes the Kronecker delta with δx = δ(x ≥ y) and δy = δ(y ≥ x).

The expected value of the input of the differential equation is

E[u(t)] = E
[(
X̄1

∫ t

0

e−(λ1+
σ2
1
2
)xeσ1Uxdx

)(
X̄2

∫ t

0

e−(λ2+
σ2
2
2
)yeσ2Wydy

)]
= λ1λ2X̄1X̄2

∫ t

0

e−(λ1+
σ2
1
2
)x

(∫ t

0

e−(λ2+
σ2
2
2
)yE
[
eσ1Uxeσ2Wy

]
dy

)
dx

= λ1λ2X̄1X̄2

∫ t

0

e−λ1x

(∫ x

0

e−(λ2−ρσ1σ2)ydy

)
dx

+ λ1λ2X̄1X̄2

∫ t

0

e−(λ1+ρσ1σ2)x

(∫ t

x

e−λ2ydy

)
dx

= λ2X̄1X̄2

e−tλ1
((
1− eρtσ2σ1−tλ2

)
λ1 +

(
−1 + etλ1

)
(ρσ2σ1 − λ2)

)
(ρσ2σ1 − λ2) (−ρσ2σ1 + λ1 + λ2)

+ λ1X̄1X̄2

e−tλ2
((
1− etλ2

)
ρσ2σ1 −

(
1− etλ2

)
λ1 −

(
1− eρtσ2σ1−tλ1

)
λ2
)

(ρσ2σ1 − λ1) (ρσ2σ1 − λ1 − λ2)
(5.141)

where we assume that

λ1 >
σ2
1

2
, λ2 >

σ2
2

2
=⇒ λ1 + λ2 > ρσ1σ2. (5.142)

The inequalities above guarantee that the inputs have finite variances, as shown in

equation (5.88). In the equilibrium state,

lim
t→∞

E [u(t)] = X̄1X̄2
λ1 + λ2

(λ1 + λ2 − ρσ1σ2)
. (5.143)
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The output average is then equal to

E[Y ] = lim
t→∞

E [Y (t)] =
X̄1X̄2

a
· λ1 + λ2
(λ1 + λ2 − ρσ1σ2)

. (5.144)

The last equation clearly shows that if the input noise sources are correlated

(ρ ̸= 0), the average value of the output will be different from the value when there

is no correlation (ρ = 0). As shown in the other types of noise, positive correlations

increase the mean, and negative correlations reduce it. The variance can be computed

using the same methods. First, we will calculate the expected value of a product of

different instances of a standard Wiener process.

Lemma 35. If t1, t2, . . . tn ∈ R+ is an ordered set of times such that t1 ≤ t2 ≤ . . . ≤ tn

and σ1, σ2 . . . σn ∈ R+ are arbitrary positive numbers denoting standard deviations,

then

E

[
n∏

k=1

eσkWtk

]
= exp

1
2

n∑
k=1

(
n∑

m=k

σm

)2

(tk − tk−1)

 (5.145)

where Wt is the standard Wiener process.

Proof. For each tk, we decompose the Wiener process Wtk as a sum of independent

processes:

Wtk =
k∑

m=1

(
Wtm −Wtm−1

)
. (5.146)

Based on this sum, we can write

n∏
k=1

eσkWtk = exp

[
n∑

k=1

σkWtk

]

= exp

[
n∑

k=1

σk

k∑
m=1

(
Wtm −Wtm−1

)]

= exp

[
n∑

k=1

(
Wtk −Wtk−1

) n∑
m=k

σk

]

=
n∏

k=1

exp

[(
Wtk −Wtk−1

) n∑
m=k

σk

]
(5.147)



195

where in the last equation, we changed the order of summation making use of the

triangle rule. All terms in the last product are independent:

E

[
n∏

k=1

eσkWtk

]
= E

[
n∏

k=1

exp

[(
Wtk −Wtk−1

) n∑
m=k

σk

]]

=
n∏

k=1

E

[
exp

[(
Wtk −Wtk−1

) n∑
m=k

σk

]]

=
n∏

k=1

exp

1
2
(tk − tk−1)

(
n∑

m=k

σk

)2


= exp

1
2

n∑
k=1

(
n∑

m=k

σk

)2

(tk − tk−1)

 .

(5.148)

When one of the inputs is affected by multiplicative noise, and the other by ad-

ditive noise, the mean value of the output is not affected, even if the driving noise

is the same in both cases. The differential equation of the chemical reaction (5.126)

becomes

dY

dt
= −aY +

(
λ1X̄1

∫ t

0

e−(λ1+
σ2

2
)xeσWxdx

)(
X̄2 + σ

∫ t

0

e−a(t−y)dWy

)
. (5.149)

The input is equal to

u(t) =

(
λ1X̄1

∫ t

0

e−(λ1+
σ2

2
)xeσWxdx

)(
X̄2 + σ

∫ t

0

e−λ2(t−y)dWy

)
(5.150)

and its expected value is

E[u(t)] = λ1X̄1X̄2

∫ t

0

e−(λ1+
σ2

2
)xE
[
eσWx

]
dx

+ σλ1X̄1

∫ t

0

∫ t

0

e−(λ1+
σ2

2
)xe−λ2(t−y)E

[
eσWxdWy

]
dx.

(5.151)
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In order to compute the second term of the last equation, we will need the following

Lemma about the expected value of the product of an exponential Wiener process

with an infinitesimal difference of the same process.

Lemma 36. If Wt is a standard Wiener process, then

E
[
eσWsdWt

]
=


0 if s ≤ t

σ2e
σ2

2
sdt if s > t.

(5.152)

Proof. If s < t, then Ws and dWt =Wt+dt −Wt are uncorrelated, so

E
[
eσWsdWt

]
= E

[
eσWs

]
E [dWt] = 0. (5.153)

If a, b are two positive real numbers such that 0 < a < b < s, then

E
[
eσWs(Wb −Wa)

]
= E

[
eσWa

]
E
[
eσ(Wb−Wa)(Wb −Wa)

]
E
[
eσ(Ws−Wb)

]
= e

1
2
σ2ae

1
2
σ2(b−a)σ2(b− a)e

1
2
σ2(s−b)

= σ2e
1
2
σ2s(b− a).

(5.154)

Setting a = t and b = t+ dt, we get the desired result.

Recalling equation (5.151),

E[u(t)] = λ1X̄1X̄2

∫ t

0

e−λ1xdx+ σ3λ1X̄1e
−λ2t

∫ t

0

(∫ t

y

e−λ1xeλ2ydx

)
ds

= X̄1X̄2

(
1− e−λ1t

)
+ σ3X̄1

e−t(λ1+λ2)
(
λ1
(
1− etλ2

)
−
(
1− etλ1

)
λ2
)

λ2 (λ1 − λ2)
.

(5.155)

As time t grows large,

lim
t→∞

E [u(t)] = X̄1X̄2 (5.156)
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and the mean of the output is

E[Y ] =
1

a
X̄1X̄2 (5.157)

which is exactly the same as in the case where the two noise inputs are completely

uncorrelated. So, input noise correlation does not affect the average concentration of

the output in this case.

In this section we have analyzed how noise propagates in an arbitrary chemical

reaction network where one or more inputs include a random component, either ad-

ditive or geometric noise. The different noise sources may have arbitrary correlations

with each other. One of the main results is that even if all noise sources have mean

equal to zero, their correlations may shift the mean of the outputs, for both types of

noise. If there is positive correlation, the mean of the output increases, and when the

correlation is negative, it shifts lower, and the same is true for the output variance.

5.8 Conclusions

In this chapter, we have studied how noise propagates in networks and how a network’s

noisy parameters can affect its output. Since many biological networks are locally tree-

like, we have shown how noise propagates in the absence of feedforward or feedback

cycles. Tree networks are relatively easy to quantitatively analyze, since there is only

one path from each node to another. We have derived a method to compute the

variance of the output of any tree network, and shown that the variance is minimized

when there are no “bottlenecks” in each pathway, in other words when there is no

rate limiting step. When a network is not a tree, there are cycles, which means that

a signal can propagate through two or more paths towards the output. Feedback

cycles typically reduce the output variance, and feedforward cycles increase it. When

the noise sources are correlated, the variance in the output is larger, and small cycles

have a stronger influence on the output, compared to longer cycles in both cases.

Delays contribute to the decrease of the output noise when we have two or more
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noise sources, since their correlation is usually reduced. Crosstalk is also shown to

decrease the output variance, but the trade-off is that the output mean is lowered, or

the concentration of the inputs needs to be proportionally higher in order to ensure

the same output.

In biological and chemical reaction networks, the reaction rates are prone to noise,

since they depend on the concentration of other species. When the degradation rates

are affected by noise, the result is increased output variance, which also depends on

the concentration of the respective species, and the form of the output is different from

when the noise is in the inputs, in the sense that higher concentrations also correspond

to larger deviations from the mean. Finally, we have extensively studied how noise

propagates through chemical reaction networks where one or more of the reactants

are noisy, and their disturbances may be correlated. Even when the disturbances

have zero average, correlations may change the output mean and variance.
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Chapter 6

Summary and Future Directions

6.1 Concluding Remarks

This thesis consists of two parts, the first one is devoted to the study of the structural

properties of arbitrary networks, and the second on their applications. In the first

part (Chapter 3), we found the structure of the networks that minimize or maximize

a variety of important structural properties, including the graph’s radius, diameter,

efficiency, average clustering, average distance, betweenness centrality, and resistance.

We found similarities and differences among the networks that achieve these extremes.

Sometimes the relation between different properties is unexpected. For example, we

have found that the betweenness centrality of a network is a function of its average

distance, and consequently, networks with minimum or maximum average distance

also have minimum or maximum betweenness centrality, respectively. On the other

hand, networks with the maximum radius are not necessarily the same as networks

with the maximum diameter. In most cases, the structures that maximize a property

are unique, and the structures that minimize it are not, although there are notable

exceptions, like the network’s efficiency. Generally, the form of the graphs that max-

imize each of the aforementioned properties is very special, in the sense that most

random graphs of the same order and size will tend to be very close to the theoreti-

cal minimum. Furthermore, these architectures are quite sensitive to the addition of
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new edges, or rewiring existing edges, since even a few such changes can have a large

impact on reducing each property towards its minimum. These structural properties

can alternatively be used as a metric of how random a network is, or alternatively

how many networks with similar architectures may exist.

In the second part (Chapters 4 and 5) we have studied crosstalk and noise and the

way they affect the function of networks. We have considered two cases of crosstalk,

as a function of the number of connections in each of the nodes. In both cases,

assortative networks are more immune to crosstalk than disassortative ones. Networks

that minimize crosstalk also have a large clustering coefficient. Crosstalk leads to

smaller available concentrations of each reactant, and makes the system slower to

respond to changes in the inputs. On the other hand, although crosstalk may degrade

the performance of a system, it may help reduce noise. We explore the trade-offs

between crosstalk and noise in biological and chemical reaction networks, and find

that the form of the networks with the smallest average variance have cycles of the

largest possible length, given their order and size. Consequently, these networks have

minimum average clustering, in contrast to the networks that minimize crosstalk.

Finally, we have explored the effect of parameter noise in the output variance. Noise

in the parameters of a network, although it has the same sources, has a completely

different effect on the output, leading to noise that is harder to control with the

application of feedback.

6.2 Future Directions

There are several new directions that might be pursued based on the findings pre-

sented in this thesis. An obvious application of the theories developed here is the

study of the relation between structure and function of biological or other natural

and engineered networks. We can try to find the relative importance of each property

of these networks based on their structure, and how close they are to the theoretical
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extremes, or to the expected value of a random network. This would be useful both

for the study of existing networks, as well as for the design of new ones.

The bounds of structural properties, along with the sensitivity of the respective

architectures to rewiring can be the basis for quantifying the structural entropy of a

graph. So far, most studies have defined the entropy of a network only as a function

of its degree distribution [3, 16]. Other studies have used automorphisms to measure

entropy [72]. The first definition leaves out almost all the information about the

topology of a network, whereas the second makes it hard to measure it, or to compare

the various architectures. Knowing the minimum, maximum and average of each

structural property makes it easy to assess how much randomness there is in the

topology of a network. The number of rewirings needed to transform a network to

another one which statistically has the same properties as a random graph, can be

a measure of the amount of randomness that needs to be introduced in order to

maximize its entropy.

As it has been mentioned before, although noise is usually unwanted, and cells

employ several strategies to keep it low [42, 67], sometimes it is useful, since it is the

driving force behind cell differentiation, gene expression coordination, and evolution

in general [23]. In terms of network structure in biological networks, it would be

interesting to find structures that isolate noise in specific subsystems, and diminish it

in other parts of the network, such that processes that need to be stable are actually

stable, and processes that need variation are noisy. Furthermore, we have seen that

crosstalk and noise are orthogonal notions as far as the function and the structure

of biological networks is concerned, based on the models used in this study. A good

question would be to determine the optimal trade-off between crosstalk and noise, as

a function of the order and the size of a network, along with its specific properties,

and then compare it to data from real biological networks. Also, we may try to study

how negative correlations among noise sources are taken advantage of in order to

reduce or increase noise, as shown in Chapter 5.
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Engineers building communication systems have long been using elaborate coding

schemes to transmit information. First, a message is encoded by the sender, then

transmitted and eventually decoded by the receiver. The coding is used in order to

add redundancy in the message, so that the recipient is able to decode it despite

changes in its content due to random fluctuations in the communication channel.

This need arises from random changes in the transmitted information while it travels

through noisy channels. It is conceivable that nature might use the same mechanisms

in order to add redundancy, and increase the robustness of information propagation.

In [21], the authors present an interesting way in which biology can potentially encode

information through multiplexing. Crosstalk may be an easy way in which nature

encodes signals, since it makes the information more robust to changes both because

it has the potential to reduce the amount of noise, and by introducing redundancy in

the message.

There are a lot of experimental studies in biology focusing on input noise and how

it affects specific systems (e.g. [23, 42, 56]). It would be interesting to experimentally

study how fluctuations on the reaction rates affect biological networks, and how they

translate to geometric noise in the outputs. From a theoretical point of view, we

may also try to quantify the properties of the noise when we use a Poisson process,

instead of white noise, as in [55]. This would be useful for systems where the number

of proteins that affect the reaction rates is small.

The structural properties of natural and engineered networks are rarely the only

things that matter in a network. The way that structure helps achieve the system’s

function is the ultimate question both for evolution and engineering. As a result,

we need to find a general framework in which we can study the relations between

the dynamics of a network and its structure. Specifically, we need to find quantita-

tive measures for how each desirable or undesirable network property is affected by

structure. When this is done, we can readily optimize the network at hand based

on the imposed constraints and the relative desirability of various properties. A par-
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ticularly interesting case would be to study how these properties affect information

propagation when each node can assume a binary state. Specific examples include

neuronal networks, where neurons either fire or don’t fire, fashion preferences, disease,

and rumor propagation. Finding general rules on these types of networks would have

important consequences in many scientific fields.
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