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ABSTRACT iv

Abstract

In chapter 2 various parameterizations for the orbits under local unitary
transformations of three-qubit pure states are analyzed. It is shown that the
entanglement monotones of any multipartite pure state uniquely determine the
orbit of that state. It follows that there must be an entanglement monotone for
three-qubit pure states which depends on the Kempe invariant defined in [1].
A form for such an entanglement monotone is proposed. A theorem is proved
that significantly reduces the number of entanglement monotones that must be
looked at to find the maximal probability of transforming one multipartite state
to another.

In chapter 3 Grover’s unstructured quantum search algorithm is generalized
to use an arbitrary starting superposition and an arbitrary unitary matrix. A
formula for the probability of the generalized Grover’s algorithm succeeding after
n iterations is derived. This formula is used to determine the optimal strategy
for using the unstructured quantum search algorithm. The speedup obtained
illustrates that a hybrid use of quantum computing and classical computing
techniques can yield a performance that is better than either alone. The analysis
is extended to the case of a society of k quantum searches acting in parallel.

In chapter 4 the positive map ' : p — (Trp)—p isintroduced as a separability
criterion. Any separable state is mapped by the tensor product of I' and the
identity in to a non-negative operator, which provides a necessary condition for
separability. If I acts on a two-dimensional subsystem, then it is equivalent to
partial transposition and therefore also sufficient for 2 x 2 and 2 x 3 systems.
Finally, a connection between this map for two qubits and complex conjugation

in the ”magic” basis [2] is displayed.
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Chapter 1

Introduction

At this point in history quantum mechanics is the best description of nature
that exists. No repeatable experiment has ever contradicted it, yet it is still
not very well understood. Compared to classical mechanics, the principles of
quantum mechanics are less intuitive and the mathematics is often more difficult.
Nevertheless, if one wants to know what is possible in nature, one must look
at the true quantum mechanical description, not the approximation of classical
mechanics.

In the last 30 years computers and digital information have become impor-
tant in our society. This has been made possible by, among other advances, our
understanding of computation, algorithms, information compression and error
correction. These areas of study have, until recently, been based solely on classi-
cal principles and intuition. In the last decade is has been shown that by looking
at the true quantum mechanical description new phenomena are possible (e. g.,
Shor’s algorithm, teleportation, Grover’s algorithm, quantum error correction).
This has led to the studies of quantum computation and quantum information
theory.

The concept of entanglement is central to the study of quantum information.

All of classical information theory is based on physical systems with zero entan-
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glement. These systems are said to be represented by a separable state. The
correlations between the subsystems of an entangled (i. e., non-separable) state
cannot be fully explained by classical physics. The first step in understanding
what new phenomena are possible with quantum information is to find out what
states are non-classical. In chapter 4 a criterion for detecting separability called
the “reduction criterion” is investigated. This criterion is shown to be equiv-
alent to the already known Peres criterion in 2 x N systems and to be helpful
in the calculation of the entanglement of formation (a particular measure of
entanglement) for 2 x 2 systems.

Entanglement between more than two subsystems is more complicated and
hence less well understood than the entanglement between two subsystems.
This problem is addressed in chapter 2. A framework for characterizing the set
of all measures of entanglement, called entanglement monotones, is proposed.
This framework is used to show that there are some important yet undiscovered
entanglement monotones for systems with 3 two-dimensional subsystems. Some
properties of these entanglement monotones are derived and an explicit form is
proposed for one of them.

The study of quantum computation is concerned with algorithms on a quan-
tum computer. Certain algorithms (Shor’s algorithm, Grover’s algorithm, quan-
tum Fourier transform) for a quantum computer will execute in less time steps
than any known classical algorithm. For instance, Grover’s algorithm can search
an unstructured database of size N in O(v/N) queries whereas the best clas-
sical algorithm takes O(N) queries. If we assume a query time of 1 psecond,
then a search that takes 9.5 hours using Grover’s algorithm would take about
20 million years with the best classical algorithm. Unfortunately, no practical
quantum computer exists yet that can operate on more than a few qubits (i. e.,

quantum bits).
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In chapter 3 an equation for the computation time of grover’s algorithm with
an arbitrary starting state, unitary transformation and number of target states
is derived. This equation is then used to show that there is a moderate speedup
of the algorithm on average if one measures before the peak probability. Also,
the idea of parallelizing Grover’s search is introduced and the computation time

is analyzed.
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Chapter 2

Properties of Entanglement

Monotones

2.1 Introduction

Entanglement is at the heart of the studies of quantum computation and quan-
tum information theory. It is what separates these studies from their classical
counterparts. If we are to understand what new phenomena occur when we
look at the true quantum mechanical description of nature as opposed to the
approximations of classical mechanics, then we must understand how the quan-
tum mechanical description differs from the classical description. Entanglement
is a measure of this difference. While entanglement between two parties is quite
well understood [3] [4] [5] [6], the entanglement within a quantum algorithm
or in a state shared between many parties involves multipartite entanglement
which is just beginning to be understood [7] [8] [9].

An integral part of the study of entanglement is determining the probability

of transforming one pure state into another by Local Operations and Classical
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Communication (LOCC). For two part systems this problem is solved, or at
least reduced to the problem of finding the eigenvalues of a hermitian matrix,
by [5] [6]. For a N x M pure state the Schmidt decomposition tells us we can

write
9= VAT (21)

where the \] are in increasing order, ; AT = 1, the |¢) and |¢/) are an orthonor-
mal set of vectors in space A and B respectively, and n = min(N, M). If we

define
k
Bi(l4) =3 Al k=1,...,n-1 (2.2)
=1

then the highest attainable probability of transforming |¥) to |¢), P(|¥) — |¢)),
is given by [6]

— (%)
P(1¥) = 16)) = min g0

The proof of this theorem is constructive so we can actually write down the

(2.3)

transformation that gives us |¢) from |%). For pure states of more than two
parts no such nice theorem is known. The question of whether two three-qubit
pure states can be transformed into each other with non-zero probability by
LOCC has been solved by Dir et al. [10] but just getting a reasonable upper
bound on that probability when it is a non-zero is unsolved. In this paper I
attempt to make some progress towards solving this problem for three-qubit
pure states and hopefully shed some light on how we might solve it for larger
dimensional spaces and more parts.

One way to find P(|¢) — |#)) is to look at the entanglement monotones
E(|3)) for the two states. For the duration of the paper “state” will refer to a
pure state unless explicitly called a mixed state. An entanglement monotone,
EM, is defined as a function that goes from states to positive real numbers and
does not increase under LOCC. As a convention the value of any EM for a

separable state is 0. For mixed and pure states of any dimension and number
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of parts, the following theorem holds [11]:

Plo-s i) =mo 28 -

where the minimization is taken over the set of all EMs [11]. This can be seen by
considering P(p — p’) as an EM for p. The problem is that this minimization is
difficult to take since there is no known way to characterize all the entanglement
monotones for multipartite states. We would like a “minimal set” of EMs similar
to the E} for the bipartite case in order to take the minimization.

The situation for three or more parts is somewhat different than for bipar-
tite pure states. Firstly, generic M x M bipartite states have a stabilizer (i. e.,
the set of unitaries that takes a state to itself) of dimension M — 1 isomor-
phic to U(1)®™ -1 while pure states with more parts generically have a discrete
stabilizer. States whose parts are not of the same dimension may have larger
stabilizers but bipartite states are the only ones that always have a continu-
ous stabilizer. Secondly, the generalized Schmidt decomposition, however you
choose to generalize it [12] [13], has complex coefficients for pure states with
three or more parts. This implies that generically these states are not local uni-
tarily equivalent to their complex conjugate states (i. e., the state with each of
its coefficients complex conjugated). Also, for bipartite pure states all the local
unitary (LU) invariants can be calculated from the eigenvalues of the reduced
density matrices but this does not hold for more parts. I will go into more detail
about LU invariants in the next section.

The structure of the paper is as follows: in section 2.2 the interconvertibil-
ity, behavior under measurement, symmetry properties, parameter ranges and
calculability of two generalizations of the Schmidt decomposition of equation
(2.1) and the polynomial invariants (defined below) are looked at. In section
2.3 it is shown that the entanglement monotones uniquely determine the orbit

of multipartite pure states, and this is used to show that there must be an EM
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algebraically independent of the known EMs. A form for this EM is proposed
and studied. Section 2.4 discusses other monotones that must exist and their
properties. Lastly, in section 2.5 a theorem is proved that significantly reduces
the number of EMs that must be minimized over to get P(p — p') of equation

(2.4).

2.2 Decompositions and Invariants of Three-Qubit
Pure States

Let |¢) be a multipartite state in H1 ® Ha ... ® H, and let A,(j) : M — Hi be
Krauss operators for an operation on the hilbert space #; with >, A,(j)TA,(j) =
Z; and Z; is the identity acting on #;. A (non-increasing) EM is a real valued

function F (|#)) such that

Le..0AY®.. .0 Ly
E(|9) > ZpE( i ) (2:5)

for any state |¢), operation A® , and space ¢ where

=|L®.. .04 ®.. .0 LW (2-6)

This definition for pure states is taken from the definition for a general state in
[11]. One can always transform a state into product states and a product state
cannot be transformed into anything but another product state so the value of
an EM for a product state is chosen to be zero and all other states must have
a non-negative value for the EM. Since Ag) can be a unitary operator or the
inverse of that operator, equation (2.5) implies that all EMs must be invariant
under LU. Hence, a first step to understanding the EMs is to loock at the LU
invariants that parameterize the set of orbits.

There are many ways to find LU invariants for three-qubit states [14] [13]

[15] [12] [7] [16] [17], some of which can be generalized to more parts and larger
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spaces, but for now I will concentrate on the three-qubit case. The three sets
of invariants I will look at in this section are the polynomial invariants [14],
what I will call the diagonalization decomposition [13] and what I will call the

maximization decomposition [12].

2.2.1 The Polynomial Invariants

A general polynomial invariant P, (|¥)) for a state of the form

1

|} = Z tijk|igk) (2.7)

i,5,k=0

is written as

By () = 3 toim, - MuibiaBitotushniiy = Pndstuiisio (2.8)

where o and 7 are permutations on n elements, repeated indices are summed
and t stands for the complex conjugate of ¢ [14]. If one applies a unitary to
any of the qubits in |1} and explicitly writes out P, , (|¢)) again, it becomes
apparent that P, (|1)) is invariant. Of course, any polynomial in terms of the
polynomial invariants Py ; (|#)) is another polynomial invariant. In fact, it can
be shown that all the polynomial invariants are of this form.

We know from [12] that generic three-qubit states have a discrete stabilizer

so the number of independent polynomial invariants is given by
dim [C? ® C* ® C?] — 3dim[SU(2)] — dim[U(1)] -1 =5 (2.9)

where the last —1 is due to the fact that we are using normalized states. The

five independent continuous invariants are

L Pe (12)
I = Paae

I; = Payaz
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I+ = Paaayase)
I5 — l E :ti1j1k‘1tizjzkzt'iajakati4j4kq
2
xeflizeiaiqchjzejajdéklia61\’254‘ (2'10)
where €go = €11 = 0, and €93 = —e¢19 = 1 and again repeated indices are
3

summed. [, is the Kempe invariant referred to in the abstract. If one writes
out Is and uses the identity €;;¢,s = J4rd;; — 0isd;r, it can be shown that I
is just the sum and difference of 64 polynomials of the form in equation (2.8).

With one more discrete invariant,

Is = sign[Im[ P(a4)(s6),(13524)] ] , (2.11)

the LU orbit of a three-qubit state is determined uniquely [13] [18]. I will
define sign[z] as 1 for non-negative numbers and —1 otherwise. The polynomial
invariants have the advantage of being easy to compute for any state and the
four previously known independent EMs [7] are the following simple functions

of _[1, Iz, 1T;3 and 15

T(AB)C’ = 2(1 —_ I]_)
T(AC)B = 2(1 == 12)
T(BC’)A = 2(1 — I3)

rapc = 20/Is. (2.12)

2.2.2 The Diagonalization Decomposition

The diagonalization decomposition, DD, introduced by Acin et al. [13] is ac-
complished by first defining matrices (7p)jx = tojx and (T1)jx = t1,5k, then
finding a unitary operation on space A that makes 7Tp singular, finding unitaries

on space B and C that make Ty diagonal and using the remaining phase freedom
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to get rid of as many phases as possible. What is left is a state of the form

l¥pp) = /Ao [000) + /i1 €¢]100)
/82 [101) + /a3 [110) + /i [ 111) (2.13)

where p; > 0, po+ p1 + p2+ p3+ pa = 1 and 0 < ¢ < 7. Note that generically
there are two unitaries that will make Ty singular, but it can be shown that
only one will lead to ¢ between 0 and . If there is another solution, with
¢ between 7 and 27 exclusive, it is referred to as the dual state of |¢pp)-
Some nice properties of DD are that there is a 1 to 1 correspondence with the
orbits and there are a set of invertible functions between the parameters of the

decomposition and the set of polynomial invariants given above. Namely,

I = 1—=2puo(pu2+ pe) — 24
I = 1—2po(us+ pa) —2A
Is = 1—2p0(pa + p3 + pa)
Iy = 1—=3[(p2+ pa)(po — pa) + pa(l — pa)

—papspo + (1 — po)(A — p1pa)]

Is = 4pgps
Is = sign(sin(¢)pug/s1papiatia
X(A = pa(l — 2p0 + p1) — p2ps)] (2.14)

where A = 1 pa + paps — 2./H1papapa cos(¢) and if we define

1
Jl = Z( —]1 I2+13—2\/—‘)
Jo = %(1—11+12ﬁ13—2\/ﬂ)
1
Jo = Z(1+Il 2—13—2\/E)
Ji = VI
1(5 4
de = Z(E_II—I2_13+§I4_2\/I—5) (2'15)
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then the coefficients are given by

1 J4+J5:EN/T
& 2(J1 + 1)
7
;1.;'.‘: = Tz, 1=2,3,4
Ho
Jo+ Jz3+ J.
i o= 1oppo Bl
0
b JA + .+
a5 —J
COS(¢:£) _ Pk iauilui = 1
24/ 17 13 B3 pY
sign[(sin(¢%)] = Issign[\/pfpfpdpf(h — Jads

—Ja(Jo + Js + Ja — (u)H)]] (2.16)

where Y = (Ja+ J5)% —4(J1 + Ja)(J2 + Ja) (Js+ J4) > 0. The + and — solutions
for the coefficients correspond to | ) and its dual state. The inversion of the
equations for I; was done independently in [18]. Note that their definition of I,
is different from the one in this thesis.

Another nice property of the DD is that we can perform an arbitrary mea-
surement on it in space A and stay in the DD form. Since any measurement
can be broken into a series of two outcome measurements [19], we can look at
the two outcome measurement A; and A, where AIAl + A;Ag = [. Using the
singular value decomposition, we can write A; = U; D;V where V does not de-
pend on i because the two positive hermitian operators A] A; and Al A, sum to
the identity and therefore must be simultaneously diagonalizable. The diagonal

matrices, [);, can be written as

Ty = - (2.17)
0 vy 0 1— 42

where 0 < z,y < 1 [10]. Since we are only concerned with what orbit the

outcomes are in, we may choose the U; transformation. Also, matrices of the
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form

(2.18)

where ¥, and 5 are real numbers, commute with the D; matrices so the most

general V can be written as

o V1 — o2et?

| (2.19)
—/1—aZe o
where 0 < o <1 and @ is real. If we choose
" 1 ya —z/1 — a2e'?
1 = —
VT | ay/T—aPeit ya
¥ = yat+2%(1-a?) (2.20)

and similarly for U, with (z, y) replaced with (/1 — 22, /1 — y2), then in going
from [¢pp) to A1 |Ypp) the DD coefficients undergo the following transforma-
tions:

i
Hy o = % |e_*'9(a:2 — o/ (l — a?) + ei‘”'y\/u_lr

ds

M iy i=2,3,4

¢ — arg [e‘ie(wz — ¥ a/po(l — a?) + ei‘#'y\/u_l} (2.21)

and again similarly for As|Yppy). Things become more complicated when ¢
becomes larger than m and we have a dual solution. In this case we need to
transform to the dual state which can be quite tedious. It should also be noted
that if we want to plug the new form for the DD coeflicients into equations
(2.14), then the normalization must be taken into account. The normalization

will just be the sum of the new forms for po through pa.
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2.2.3 The Maximization Decomposition

The Maximization Decomposition [12], MD, has a somewhat different way of
decomposing the three qubit states. First we find the states, |¢a), |¢5) and

|¢c) each defined up to an overall phase, that maximize

9(164), 188), [¢c)) = [[(L1¢a)6B)|bc)l* (2.22)

and apply a unitary such that |¢4)|éB)|¢c) becomes |000). Defining |1), up
to an overall phase, as the vector perpendicular to |0), then the derivative of g
along |1) at the point [000),

L 9(10) + €1),10),10) ~ g0}, [0),[0)

=0 €

= 2Re [(1|100)(000%)] (2.23)

must be zero because ¢(]0),|0),]0)) is a maximum. Since we still have phase
freedom in |0) and |1) this implies that (4|100) = 0 and similarly for (+|010)
and (%|001). Using the remaining phase freedom in the choice of |0) and |1),

we can eliminate all but one phase leaving us with
l¥pp) = ae?|000) + b[011) + c|101) + d|110) + F[111) (2.24)

where a? + b2 +c?2 +d?+ f2=1,0< ¢ < 2m, 0 < a,b,¢,d, f and b,¢,d, f <
a. Note that g(|04),|08), |0c)) = a®. Unfortunately, the parameters as they
are given above are not in 1 to 1 correspondence with the orbits. While the
decomposition is generically unique, there are choices of the parameters within
the given ranges that are not the result of the decomposition. For example,

states with a®> = 1 +¢, 2 =2 =d? = f2 = 1 — £ and any choice of ¢ have

1 1 1
" (ﬁum +10), 75(00) + 1), 75 (10) + D) ETSCED

for € < 0.014. Hence, these choices of the parameters are not a result of the
decomposition. The true ranges of the parameters that would give a 1 to 1

correspondence with the orbits are as yet unknown.
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A nice property of the MD is that is it symmetric in particle exchange.
Exchanging the particles is equivalent to exchanging b, ¢ and d. This makes the
permutation properties of the polynomial invariants easier to see when written

in terms of the MD coeflicients. They take the following form:

L = 1-2((a® +d)(* +¢?) + a*f?)
I = 1-2((a®+?)(b* +d?) + a’f?)
Iz = 1-2((a®+%)(c® + d?) + a®f?)
I = 1-3(a%(1—a®) — (°c* 4+ b%d? + ¢*d?)(1 — 20?)

—2b%c2d? — 2abedf? cos(¢))
Is = a*|af?+ 4bcde™®|?
Is = sign[abedf?sin(¢)(a®(1 — 2a%)(1 — 24® — f?)

—4b%c?d? — 2abedf? cos(9))]. (2.26)

It is apparent from these equations that /;, I5 and I3 are symmetric in permuta-
tions of particles AB, AC' and BC respectively and I, Is and Is are symmetric
in any permutation of the particles. Unfortunately, the equations in (2.26) are
not as easy to invert as those in (2.14). In fact, just calculating the MD co-
efficients for an arbitrary state is not an easy task, as it is in the case of the
polynomial invariants and the DD coefficients, since determining the unitaries
for the MD involves maximizing over a six-dimensional space with typically
many local maxima.

One more interesting fact about the MD is that 1 — a? is a non-increasing

EM. We know this because in [17] it is shown that a function of the form

Eg g ki (|¥)) = max T4 @ T ® a9, (2.27)

i 2 l"C|

where I'x is a kx-dimensional projector on system X = A B,C, is a non-

decreasing EM and FEj11(|¢)) = a?. The EM 1 — a? can be shown to be
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independent of the 7 from equation (2.12) by looking at the gradient vectors of
the 7, 1 —a? and N = a® + b% + ¢? + d® + f? at, for instance, the point a = 3,
b,c,d, f =1and ¢ = 7. Since the gradient vectors span a six-dimensional space,
1—a? cannot be written in terms of the 7 and N. The problem with using 1 — a?
as an EM is that one needs to find the global maximum of a six-dimensional
space with many local maxima to calculate it. This is a difficult task for most

states.

2.3 Fifth Independent EM

In section 2.2 it was shown that all EMs must be invariant under LU and hence
are determined by the orbit of the state. For three qubit states this means that
EMs are a function of only the polynomial invariants, DD coefficients or MD

coefficients. In fact, this determination is unique.

Theorem 1 The set of all EMs for any multipartite pure state, 1), uniquely

determine the orbil of the state.

Proof. Suppose two states [¢) and |¢) in H1 & Ha...® H, have the same
values for the EMs but lie in different orbits. We know by using equation (2.4)

that
P(l¢) = [¢)) = P(l¢) = |[¥)) =1 (2.28)

so |¥) can be transformed to |¢) (and vice versa) by n-party LOCC, n-LOCC,
with probability 1. Since EMs are non-increasing with any n-LOCC, they must
remain constant during the entire transformation from |¢) to |¢) (and vice
versa). Also, we know that any EM between a system X = A, B,... and the
rest of the systems thought of as one (e. g., between B and (ACD..))), I will
call these EMs 2-EMs, is also an EM for multipartite states. This is because

any n-LOCC on the multipartite state is also a 2-LOCC between X and the rest
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of the systems, since the 2-EM is non-increasing over 2-LOCC it must also be
non-increasing over n-LOCC. In particular, the sum of the lowest % eigenvectors

of the reduced density matrices,

k

EX (1) = > Mex (%)), (2.29)

=1
(i. e., the 2-EMs in equation (2.2)) must be EMs. So the E¥ (|¢/)) must remain
unchanged and hence the spectrum of px is unchanged during the transforma-
tion from |1)) to |¢). In particular, a measurement on space X, given by A; and

As, must be such that

px (22} = 0o () 0" (2.30)

where N is the normalization. The only way this can be satisfied is if % i
a unitary matrix. This means that |¢) and |¢) are unitarily equivalent which
contradicts our original supposition. O

Since we know there are b parameters that determine the orbit of a three
qubit state, then by theorem 1 there must be 5 independent, continuous EMs.
To the best of the author’s knowledge, the only 4 known independent continuous
EMs that don’t require a difficult maximization over a multidimensional space
are the four 7 EMs defined in equation (2.12). Any candidate for the fifth

independent EM must depend on I; since the 7 are invertible functions of Iy,

15, I3 and I5 respectively. The following function fulfills that criterion:
capc =3—(h+ I+ )14 (2.31)

and numerical results suggest that it is an EM. After generating over 300,000
random states and applying a random operation to each of them, the inequality
in equation (2.5) was never violated by ¢capc. Also, note that o4pc is sym-
metric in particle permutations as is Tagc. For the duration of this paper I will

assume that capc is an EM. Indeed, it may be that there is a set of measure
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zero or perhaps just a very small measure for which o4 p¢ is not a monotone and
my numerical test didn’t explore this space but there must exist some function
of the polynomial invariants which is independent of the 7s and is an EM. For
it to be useful in improving our upper bound for P (|#) — |¢)), there should be

pairs of states |¢) and |¢) such that

gasc(|¥) 7 (%)
————— < min (2.32)
T 7(|4))

canc(|¢))
and I have found such states numerically. The largest value of

capc(¥)) _ . 7(%)
agapc(|9)) T 7(|$))

that I found in my limited number of examples was 0.01 and I was able to find

(2.33)

examples of states for which 7 (|+)) /7 (|¢)) is greater than one for all 7 and

oapc(|¥))/capc(|¢)) is less than one.

2.4 Other EMs and the Discrete Invariant

The five independent continuous EMs, 74B)c, T(ac)B; T(BC)A; TABc and daBc,
can easily be inverted to find Iy - I5 but to completely determine the orbit of
a state we must also have an EM that will give us the value of the discrete
invariant fg. This is equivalent to finding an EM that is not the same for a
state and it complex conjugate state. Note that I7,...J; and hence the T and
gapc do not change when a state is conjugated, but by looking at any of the
sets of LU invariants we can see that generically a state is not LU equivalent
to its conjugate. By looking at equation (2.4) we can see that this implies that
there must be EMs that are not the same for the generic state and its conjugate.
It is also easy to see that for any operation that takes a state |¢) to its conjugate
|1Z)) with probability p, there is an operation that takes |z,7)) to |¢) with the same

probability. So, for a generic state |1¢) there must be an EM that goes down for
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the operation |¢/) — |#) and a similar one that goes down the same amount for

) — |%). So, EMs of the following form must exist:

vE (|9) = bl et (2.34)

v c.w.

where v and v’ are functions of 7 4B)c, T(ac)B: T(BC)A, TaBC and capc.
Also, from [10] we know that there are two classes of three-part entangled
states (i. e., states with 7ap)c, T(ac)B, T(Bc)a > 0) that can be converted into
each other with some non-zero probability within the class and zero probability
between the classes. Namely, the GHZ-class which contains
1
V2

and has non-zero T4pc and the W-class which contains

|GHZ) = — (|000) + |111)) (2.35)

W) 1001) + [010) + [100)) (2.36)

1
==l
and has T4pc = 0. Looking again at equation (2.4), we see that Tagc tells
us that P(|vw) — [Yguz)) = 0 but none of the previously defined EMs tell
us that P(|Yguz) — [¥w)) = 0. Since the only way to get P(|lvquz) —
l¥w)) = 0 is to have an EM that is finite for GHZ-class states and infinite

for W-class states or zero for GHZ-class states and non-zero for W-class states,

such an EM must exist.

2.5 Finding a Minimal Set

Since T aB)C, T(AC)B, T(BC)As TABC, 0aBc and v¥ determine the orbit of the
state, all other EMs must depend on them. A fairly general way to create new

EMs from known EMs is to use what I will call f-type functions.

Definition 1 A function f : § C R™ — R is an f-type function if it satisfies

the following:
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1. f(0)=0

2. ifw; >y foralli=1,2,...n then f(Z) > f(7) for Z,7¢ 8

5. f(pi +(1—p)) > pf(E) + (L—p)f(§) for any &7 S and 0 < p < 1.
For a set of EM, {E;}, we have

Bi(1¥)) 2 o1 ( \/‘;”)m—pm,. (22) (2.57)

for any measurement Ay, A, and any state ). So, we have

AR 2 [pF () 47 (224)
> o [B(20)] - [7 (2]

(2.38)

where the first inequality comes from property 2 and the second comes from
property 3. Hence, f(E41,..., Ey) is also an EM. We can show that any EM
f(E1,...,Ey) that is an f-type function of monotones Ej,...E, does not

modify the upper bound on P(|1)) — |¢)) given by

P() 1) < min o0l (2.39)

First for the one-dimensional case.

Lemma 1 If f(z) is an f-type function with n = 1, then

% > min{%,l} (2.40)

forany z,y € S.
Proof.
Case 1 For ¢ > y from property 2 we know f(z) > f(y) and hence

fl=) o
) > (2.41)
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T

Case 2 For z < y if we choose p = v

and 3 that f(py) > pf(y) and so

> —. O

20

€ [0,1), then we know from properties 1

(2.42)

For n dimensions we have the following theorem (proved with S. Daftuar

and D. Whitehouse).

Theorem 2 If f(z) is an f-type function, then

;Eg zmin{%,l} i=1,9...n

or T,y ¢ S.
Y

Proof. Let

4 {23‘1}
¢ = W4 ~—
Yi

Case 1 If ¢ > 1 then from property 2 f(Z) > f(¥) and so

then we have

f(@)
—~ > 1.
fy) ~
Case 2 If ¢ < 1 then define
ot =18

(2.43)

(2.44)

(2.45)

(2.46)

and g(r) = f(rZ). Notice that g(r) is an f-type function with n = 1 and

hence

or substituting in f we have

Using z; > y; and property 2 we have

/(@)

—=>c0

f(&)

(2.47)

(2.48)

(2.49)
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For three-qubit states if we take the minimum of E(|¢))/E(|¢)) over £ =
{maB)c,T(aC)B, T(BC)A, TABC, GABC, V™= } We are actually taking the minimum
over the infinite set of all f-type functions of £. Although from theorem 1 we
know that all EMs must be a function of £, it is possible that there exist EMs
that are not f-type functions of £. These EMs could cause P(|¢) — |¢)) to be
lower than the minimum of E(|))/E(|¢)) over £. The EM mentioned at the

end of section 2.4 is an example of such an EM.

2.6 Conclusions and Further Research

Theorem 1 along with theorem 2 implies that there should be a (not necessarily
finite) minimal set of EMs, M, for which all EMs for three-qubit states or simi-
larly for any type of multipartite states are f-type functions of M. I conjecture
that such a minimal set should be simple since the f-type functions seem to
be a rather general way of creating EMs that are functions of other EMs. The
difficult part seems to be finding the EMs that are minimal and showing that
they are minimal. Using numerical results it seems that the 7 may be minimal.
I looked at functions of the T that are almost but not quite f-type such as 7101
and numerically tested whether they are EMs or not. None of them were EMs.
I cannot say the same for ¢4pc and definitely not for v+ since I do not have
an explicit form for the v.

There is further research that may help these problems. If one could invert
the equations in (2.26) to write a,b,¢,d, f and ¢ in terms of Iy,..., I that
would allow us to calculate the EM 1 — a? not to mention find the ranges for
and calculate the values of a,b,c,d, f and ¢. The EM 1 — a® could be used
to replace oc4pc, or perhaps as an addition to £, and may prove more useful
than oapc. As far as finding the minimal EMs and showing that they are

minimal, the arbitrary measurement on the DD at the end of section (2.2.2)
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may be useful since it allows us to look at the value of I3,..., Is before and
after an arbitrary measurement on an arbitrary state with far less parameters
than if we didn’t take out the LU freedom. Also, it may be able to tell us
the maximal probability of transforming the general complex state |¢) to its
conjugate state 1) and this is a crucial piece of information that is needed to
calculate v/ in equation (2.34). Unfortunately, most of these tasks involve trying
to solve nontrivial equations or systems of equations with many variables which

can be difficult or even impossible.
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Chapter 3

Generalized Quantum

Search

3.1 Introduction

The field of quantum computing has undergone a rapid growth over the past few
years. Simple quantum computations have already been performed using nuclear
magnetic resonance [20, 21, 22, 23, 24, 25] and nonlinear optics technologies [26,
27]. Recently, proposals for specialized devices that rely on quantum computing
have also been made [28]. Such devices are far from being general-purpose
computers, nevertheless, they constitute significant milestones along the road
to practical quantum computing.

In tandem with these hardware developments, there has been a parallel de-
velopment of new quantum algorithms. Several important quantum algorithms
are now known [29, 30, 31, 32, 33, 34]. Of particular importance is the quan-
tum algorithm for performing unstructured quantum search discovered by Lov

Grover in 1996 [31]. Further analysis of this algorithm is given by Jozsa [35]
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and an optical implimentation is given by Kwiat [36]. Grover’s algorithm is able
to find a marked item in a virtual ”database” containing N items in O(v/N)
computational steps. In contrast, the best classical algorithm requires O(N/2)
steps on average, and O(N) steps in the worst case. Thus Grover’s algorithm
exhibits a quadratic speedup over the best classical counterpart.

Although Grover’s algorithm exhibits only a polynomial speedup, it appears
to be much more versatile than the other quantum algorithms. Indeed, Grover
has shown how his algorithm can be used to speed up almost any other quantum
algorithm [37]. More surprisingly, even search problems that contain ”structure”
in the form of correlations between the items searched over often reduce to
an exhaustive search amongst a reduced set of possibilities. Recently, it was
shown how Grover’s algorithm can be nested to exploit such problem structure
[32]. This is significant because NP-hard problems, which are amongst the most
challenging computational problems that arise in practice, possess exactly this
kind of problem structure.

In order to appreciate the full versatility of Grover’s algorithm, it is impor-
tant to examine all the ways in which it might be generalized. For example,
whereas the original Grover algorithm was started from an equally weighted
superposition of eigenstates representing all the indices of the items in the
database, a natural generalization would be to consider how it performs when
started from an arbitrary initial superposition instead. This refinement is im-
portant, because if Grover’s algorithm is used within some larger quantum com-
putation, it is likely to have to work on a arbitrary starting superposition rather
than a specific starting eigenstate. Similarly, the original Grover algorithm uses
a particular unitary operator, the Walsh-Hadamard operator, as the basis for a
sequence of unitary operations that systematically amplifies the amplitude in the

target state at the expense of the amplitude in the non-target states. However,
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it is now known that this is not the best choice if there is partial information
as to the likely location of the target item in the database. In such a situation
a different unitary operator is desirable [38]. Hence, it is equally important to
understand how Grover’s algorithm performs when using an arbitrary umtary
operator instead of the Walsh-Hadamard operator.

Each of these refinements have been analyzed in detail separately : Biham
et al. have considered the case of an arbitrary starting superposition [39], while
Grover considered the case of an arbitrary unitary operator [38]. In this pa-
per, we present the analysis of the fully generalized Grover algorithm in which
we incorporate both of these effects simultaneously. Our goal is to determine
the exact analytic formula for the probability of the fully generalized Grover
algorithm succeeding after n iterations when there are r targets amongst N
candidates. Having obtained this formula, we will recover the Biham et al. and
Grover results as special cases. We will then show that the optimal strategy, on
average, for using the fully generalized Grover algorithm consists of measuring
the memory register after about 12% fewer iterations than are needed to obtain
the maximum probability of success. This result confirms a more restricted
case reported in [40]. Finally, we show how to boost the success probability and
reduce the required coherence time by running a society of & quantum searches
independently in parallel. In particular, we derive an explicit formula connect-
ing the degree of parallelism, i.e., k, to the optimal number of iterations (for
each agent in the society) that minimizes the expected search cost overall. We

then derive the expected cost of optimal k-parallel quantum search.
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3.2 Grover’s Algorithm

The problem we have to solve is the following. Given a function f(z;) on a set

X of input states such that

1 ifz; is a target element
flz:) = ; (3.1)

0 otherwise

How do we find a target element by using the least number of calls to the
function f(xz;)? In general, there might be r target elements, in which case any
one will suffice as the answer.

To solve the problem using Grover’s algorithm we first form a Hilbert space
with an orthonormal basis element for each input z; € X'. In this paper, we refer
to the basis of input eigenstates as the measurement basis. Let N = |X| be the
cardinality of X'. Without loss of generality, we will write the target states as |¢;)
(with i =1,-..7), and the non-target states as |l;) (with ¢ =1,---N —r). The

function call is to be implemented by a unitary operator that acts as follows:

lz:)|y) = |z:)ly @ f(x:)) (3.2)

where |y) is either |0) or |1). By acting on

&)

N-—r r
Sl + Dkl | 5= (10) = 1) (3.3)

with this operator we construct the state

N-r r 1
Dl = D kil | == (10) = 1)) (3.4)
= £ V2
i=1 =1
where the  measurement basis states |t,') are the target states and the N —r
measurement basis states |I;) are the non-target states. If we now disregard the

state __\/1? (J0) — |1)) then all we have done is to invert the phase of the target

states. Hence, the operator we have achieved is equivalent to the operator
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r
1-2) [t)t] (3.5)
=il
although we emphasize that this operation can be performed without knowing

the target states ezplicitly but only through the knowledge of f(z).

Next we construct the operator ) defined as

Q= —(1-2[a)(al) (1—22|M)(ti|) (3.6)
=1

where |a) can be thought of as the state with respect to which an “inversion”
is performed. Different choices of |a) give rise to different unitary operators for
performing amplitude amplification. In the original Grover algorithm, the state

|a) was chosen to be

1
@) = 7 2 Ie) (3.7)

zeX
and was obtained by applying the Walsh-Hadamard operator, U, to a starting

state |s), 1.e., |a) = U|s). Hence, the operation 2|a){a|—1, which Grover referred
to as “inversion about the average,” is equivalent to —U I, U with U being the
Walsh-Hadamard operator and I, being 1 — 2|s){s|. By knowing more about
the structure of the problem, we can choose other vectors |a) that will allow us
to find a target state faster. Techniques for doing this are given in [37].

If we write out @, we get

Q=Y el — 3 Is)is|+ 2la)(al — 40la) (.)

where [t), the normalized projection of |a) onto the space of target states, is

given by

=2 Sulale) o =3 Kula)l” (39)
i=1 i=1
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We can see from this that @ only acts non-trivially on the space spanned by
|ay and |t). We can make these vectors an orthonormal basis for this space by

using

) =~ (ja) = v1t)

instead of |a). The vector |I) is just the normalized projection of |a) onto the

(3.10)

space of non-target states. The rest of the space (i. e., the space orthogonal to
[t) and |I}) can be broken up into the space of target states (Sr) and non-target

states (Sr). We can now write () as

Q = cos ¢ (1E)(t] -+ 1Y) + sin & (1£)¢1] — [0)Ct]) + T — I, (3.11)
where It and Iy are the identity operators on (S7) and (81), respectively, and

= arccos [l — 22)2]. From this we can see that @ is just a simple rotation
matrix on the two-dimensional space spanned by |I) and [t), and acts trivially
on the rest of the space. The operator @ has been independently shown by
Jozsa [35] to be an exact rotation in the special case of one solution and with
|a) given by equation (3.7).

An arbitrary starting superposition |s) for the algorithm can be written as

|s) = alt) + Be™|I) + |se) + 1) (3.12)
where the states |s;) and |s;) (which must have a norm less than one if the
state |s) is to be properly normalized overall) are the components of |s) in (Sr)
and (8r) respectively. Also, «, # and b are positive real numbers. After n

applications of Q on an arbitrary starting superposition |s), we have

Q™|s) = (acos(ng) + Be'’ sin(ng)) [t)+(Be™ cos(ng) — asin(ng)) [1)+|s:)+(—1)"|s:).
(3.13)
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If we measure this state our probability of success (i.e., measuring a target state)
will be given by two terms. The first term is the squared magnitude of Q"|s)
projected into the space Sr. It is equal to (s¢|s;) and is unchanged by Q. The

second term is the squared magnitude of the component of |¢t) which is given by

g(n) = [HQ" )’
= |acos(ng) + Be® sin(ng)|”
= O‘Q;j;ﬁ + 9587 cos(2n¢) + af cos(b) sin(2né)
- 0245 e L |a? 4 B2 cos(2n¢ + ¥)

(3.14)

2 2
-

where ¢ = arccos []az_h@gezml

]. This i1s the term that is affected by @, and is
the term we wish to maximize. The probability of success after n iterations of

Q acting on |s) is thus

p(n, 7, N) = (st|st) + g(n). (3.15)

Assuming that n is continuous (an assumption that we will justify shortly), the
maxima of g(n), and hence the maxima of the probability of success of Grover’s

algorithm, are given by the following;:

=Y+ (1+2j)m

nj = - §=0,1,2,- (3.16)

The value of g(n) at these maxima is given by

a2+ﬂ2
2

1 .
g(n;) = +5 lo® + B%e*?|. (3.17)

In practice, the optimal n must be an integer and typically the n;’s are not

integers. However, since g(n) can be written as

a(nj £68) = g(n;) — ¢ |a® + B%e*®| 6% + O(6*) (3.18)
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around n; and most interesting problems will have » < 1 and hence ¢ >~ 2v < 1,
simply rounding n; to the nearest integer will not significantly change the final

probability of success. So, we have

G'Z—i-ﬂz

p(”ma:ﬂyr:N): 2

-+ % |o? + 32| + (s¢]s¢) — O(v?) (3.19)

as the probability of measuring a target state after n,,,, applications of Q.

3.3 Recovering the Special Cases

As a check on our fully generalized formula for the probability of success after
n iterations, we attempt to recover the corresponding formulae obtained in the
analyses of Biham et al. (for a fixed unitary operator and an arbitrary starting
superposition) [39] and Grover (for an arbitrary unitary operator and a fixed
starting superposition) [38].

In the case of Biham et al., the starting state is arbitrary, but the averaging

state |a) is given by

1
|la) = i > =), (3.20)

zeX

In this case

v =VE
1) = 2T lt) (3.21)
B = A= )

In the analysis of [39] they use k(0) and I(0) to represent the average amplitudes,

in |s), of the target and non-target states respectively, and o} and oy to represent
the standard deviations of those amplitudes. With some algebra one can see

that the following relationships connect our notation to theirs:
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ze]
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No. iterations, n

Figure 3.1: Plot of the probability of success of Grover’s algorithm after n iter-
ations of amplitude amplification when there are r solutions amongst N = 64
possibilities. White regions correspond to probability 1, black regions corre-
spond to probability 0. Note that the success probability is periodic in the

number of amplitude amplification iterations for a fixed number of solutions.
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a — k(0)/7
et —TOWN=F
(Stl.Sg) —F 7”0‘%

{si|]s1) — (N —r)o}

(3.22)
¢ —w
¥ — 2Re[d]
n —1i
ng —7T.

By substituting these relationships into equations (3.14), (3.16), and (3.19), one
reproduces the results of [39].
The second special case, in which |a) (with respect to which inversion is

done) is an unknown normalized vector, while |s) is given by

[s) = |a) = V1 —v2|l) +o|t) (3.23)

was considered by Grover. Hence, a = v, 8 = +/1—v? and b = 0. Also,
|s¢) = |s1) = 0. These substitutions lead to ¢ = ¢. Plugging this into equations
(3.16) and (3.19), we get

T 1 ™ 1 v 9
nmar—ﬂ—i—g—i—ﬂﬁ-ow) (3.24)
and
p(nmaa:) i O('UE) (325)

which agree with the results of [38]. If we examine equation (3.15) in this case,

we get

p(n) = 2OV _ oz (1 4+ 2m)g2) (3.26)
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as the probability of measuring a target state after n iterations of Q.

3.4 Application of the Formula for p(n)

Next, we show how to apply our analytic formula for the probability of success
after n iterations, P(n}, to slightly speed up the quantum unstructured search
algorithm. Although the speedup we obtain is not dramatic, it is worth making
the point that it is possible at all as Zalka has proved, correctly, that Grover’s
algorithm is exactly optimal [41]. Many people have assumed, therefore, that
it 1s impossible to beat Grover’s algorithm. However, by combining techniques
of quantum computing with those of classical computing, we show that it is
possible to do a little bit better than Grover’s algorithm on average. The result
we report was apparently discovered previously by Boyer et al. [40] and later
by Zalka [42] in the case where |a) is a uniform superposition [as in equation
(3.7)]. 1t is shown here to persist for the more general case when |s) is arbitrary
but equal to |a) which is the case treated in [38].

We consider a punctuated quantum search algorithm that works as follows:

Algorithm: Punctuated Quantum Search

1. Run the quantum search algorithm for n iterations.

2. Read the memory register.

3. If the result is a target state halt; else, reset the register to the starting

superposition and return to step 1.

The average time, Tyug(n), it will take to find a target state if we stop the

generalized quantum search algorithm after n iterations of ) is
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Tavg(n) =352, (1= p(n) " p(n) in

o (3.27)

Il

3

— 2n
T 1—cosl(142n)¢]"

We can find the optimal strategy, i.e., the best number of iterations to use before

we attempt to measure the register, by minimizing the expected running time

Tovg. To do this, we set the derivative of Tyyy to zero and solve for n = ngp:

O0Tavg 2 —2cos[(1+ 2n)¢] — Angsin[(1 + 2n)¢]
on (1 — cos[(1 + 2n)4])*
Typically, n will be much larger than one, so we can make the approximation

=0. (3.28)

(1+ Zn)g ~ n¢ = z, so that we obtain

1—cos2x = 2xsin2z
2sin’z = 4asinzcosz (3.29)
2r =tanz.

which gives 2,,, = 1.1656 as the lowest positive solution. This solution corre-

sponds to the minimum of the function. Hence the optimal value of n is

-'Eo;nt - 11656

Nopr = & 3 (3.30)
This value of n gives a probability of success of
P(nopt) = sin® 2,y = 0.8446 (3.31)

at each measurement, and corresponds to an average number of iterations of

1 ZLopt 1.3801
Tavg(n o P = . 3.32
ﬂ‘Ug( OPt) é sinZ Topt é ( )
This must be compared to 55 = 1'5;08 iterations if we run Grover’s algorithm

until the probability is maximal. Thus, we get a 12% reduction of the average

computation time by making use of a punctuated algorithm.
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It is interesting to note that, if we restrict the analysis some more to the
case where |a) is a uniform superposition and where there is only one target
state, then we have ¢ = 2/\/JV, so that Tyyg(Nepr) 0.6900+/N. This is faster
than the lower bounds in [43], [44], [40], and [41], but we are using a somewhat
different model. They are looking at the minimum time 1t would take without
measuring to find a solution with certainty up to errors from rounding npy 4y
to the nearest integer. Instead, the model we use here allows for punctuated
measurements and resets of the quantum search algorithm. Nevertheless, the
punctuated quantum search algorithm is faster on average. Note that we have
assumed that the time it takes to measure, check if a solution was reached, and
reset the algorithm is negligible. This is reasonable as checking a solution only
requires one function call.

The punctuated quantum search algorithm has another advantage in that it
is less sensitive to decoherence. If we wait until we have the maximal probability

of measuring a target state, then we must maintain coherence for

%ﬂ steps as

steps for the fastest measure and restart method. This is

compared to only %

because we do not need to maintain coherence through the measurment stage of

this method. In fact, the punctuated search that takes the same number of steps

m  __ 1.5708
Y 29 T @

steps at a time. This

on average as the standard or maximal probability method (i.e.

steps) need only maintain coherence for % = 94'%"&
represents only 50% of the coherence time required in the standard Grover
method, and corresponds to waiting for a 50% probability of success and then

measuring.

3.5 k-Parallel Quantum Search

A way to speed up Grover’s algorithm still further is to have a society of k

computational agents all running Grover’s algorithm independently at the same
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time. This is promising because the standard deviation

o = z% - p(n)] (3.33)
in the computation time of punctuated quantum search is fairly large, and hence
having multiple searches running may give a considerable speed up.

Suppose that we know that there are exactly r solutions amongst N can-
didates. Given p(n,r, N), the probability of success for a single agent after
n iterations, we can boost the success probability by using & agents acting in
parallel. In particular, the probability that at least one agent, in a society of
k independent agents, succeeds after each agent has undergone n iterations is

given by
pr(n) =1— (1—pn)*. (3.34)

Thus, the expected cost, Ta(:fg;, of performing k-parallel quantum search is given

by

T (n )(1 - A e =
avg Zpk pr(n)) = J pk(n) 1 — cos2k ( 1+ 2n) 2)

P

(3.35)

As in equation (3.27) we can find the value of n that minimizes the expected

oI, (n)

— is equal to zero. This

cost. To find the mimimum, we find where
derivative is given by
Ty (m) 1 —cos® (1 +2m)%) (1+2kng tan ((1+20)%))
= 2
i (1 — cos?k ((l + Qn)%))

For £ <1, i.e., when there are very few solutions amongst the items searched

(3.36)

over, we have ¢ = arccos(l — %) ~ 2,/%. As before, substituting 2 = n¢ ~

(1 +2n)¢/2 and realizing that n 3> 1, we obtain

AT (n) L Locos™ (e )(1+2k:cta.n(z))
on (1— coszk(z))

(3.37)
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In order to find the minimum, we thus have to solve the transcendental

equation

1 —cos® (2) = 2k 2 cos?*(z) tan(z). (3.38)

The variable z < 1 provided n < % (\/J;z— 1). We know that we can solve the
problem with near certainty if we iterate Grover’s algorithm to the maximum
probability state in O(%\/J;Z) iterations. Hence, for a large enough number of
parallel search agents, k, there is a reasonable chance that the optimum number
of iterations, ngp:(r, N, k) at which the expected search cost is minimized, sat-
isfies the criterion that @ < 1. We therefore expand equation (3.37) as a series
approximation in  about x = 0. Actually, it appears that z scales as O(l/\/ﬁ),

so it tends to 0 as k tends to infinity. If we make such an expansion up to order

2

z”, we get
OTH)(m) | 1 _1+3k-—1£2+5k2~1‘4+0( ‘) (5565
on ka? 6 TR b '
T ¥) (n) q o s B ;
As —5=— = 0 is a second-order equation in z*, it can be solved analytically.

Three of the roots are non-physical, but one corresponds to an approximation
to the true minimum of Téfjg(n) Specifically, we find that Téi};(n) is minimized

when @ is given by

—3 + 15k? : (5-40)

\/5 — 15k + +/5+/—31 — 30k + 225k2
Lopt =
We note that £ < 1 for all £ > 2, so that the derivation of the optimum formula

is self-consistent. This expression for z,p; can be expanded in 1/k1/2, giving
1 1 1 4l
Lopt = 11118m+00829m+0 W . (3 )
Using ¢ ~ 2v = 24/7/N and equation (3.41), one gets the corresponding ex-

pression for nep: = Topt/¢, 1.e., the predicted optimal number of iterations for
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Figure 3.2: Plot of the optimal number of iterations to use in k-parallel quantum
search as a function of the degree of parallelism k for » = 1 to » = 5 solutions (top
to bottom in the figure) for the case of a database of size N = 22°. The dashed
curves correspond to the optima as predicted by our approximate formula for
nopt (7, N, k). The points correspond to the exact optima obtained by numerical

methods.

each of k quantum searches acting independently in parallel. In Fig. 2, this
formula is shown to be in very good agreement with the exact result, obtained
by numerical optimization.

Now, if we are only interested in the scaling in N and % of the optimal
number of iterations and expected computation time, it is enough to consider

the expansion of L [equation (3.39)] up to order O(1). This simply yields

s ,/ﬁﬁ_—l w0 (k) (3.42)
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This formula is only valid at the limit of large &k, when x,,; tends to zero. The
corresponding expression for the optimal number of amplitude amplification

iterations is

= Bt g
Rope = = _O(WE). (3.43)

We can then estimate the expected cost for optimal k-parallel quantum search:

L z
(k) R . |
Ta'ug(nr 7”, N) ¢ 1 _ COSQk([L'Opt) 4 (344)

Again, using the series expansion around z = 0, that is, z/(1 — cos®®(z)) =

1/(kz) + O(2), we get

i 1 1
TE) (n,p, N) =~ = ~0 (—) 3.45
avg(m: 75 N) T /S (3.45)

Remembering that ¢ ~ \/7’/_]\7, we conclude that T, 4 scales as O (\/% . Thus,
using & agents in parallel simply amounts to having each of them performing a
search In a restricted space of size N/k, so that the gain in computation time
is of order O(v/k). Interestingly, this gain is not as good as when parallelizing
a classical a,lgorithm.1 Accordingly, the cumulative time Toymur = kToug, i-€.,
the sum of the time that all agents spend on quantum search, is increased by a
factor O(vk) with respect to the case of a single agent (k = 1).

Our results have implications for the design of prototypical quantum com-
puters. If it is possible to maintain coherence indefinitely, for example, by
building fault-tolerance into the computer and by using quantum error correc-
tion schemes, our analysis suggests that it is better to use a single agent quantum
search. This strategy minimizes the net computational resources expended in

solving the problem. However, if coherence time ¢s limited, as it most likely

'In the latter case, a computation time of order O(N/r) is ideally reduced to O (%) by

using k agents in parallel, so that one has a speedup of order O (k).
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will be in prototypical quantum computers, then a parallel punctuated quan-
tum search strategy becomes necessary, with the degree of parallelism set by
the desired computation time and desired probability of success. The computa-
tional time can be made small by making the degree of parallelism sufficiently
large but, of course, at the expense of greater net computational resources being
expended on solving the problem.

Let us now consider the situation where the coherence time 7 is fixed by
some practical considerations, regardless of the value of N and r. The number
of agents k& must then be of the order of O(%) for the parallel time not
to exceed the coherence time. This is an interesting result as it implies that
the number of agents decreases quadratically for an increasing 7. The classical
counterpart would be a linear law only.? On the other hand, the bad result
comes if we reexpress the cumulative computation time for & agents with this

value of k:

Tewmut = kTng =kr=0 (l) . (346)
rT

This means that we lose the square root speedup of Grover’s algorithm (i.e.,
Tieriar does not scale as v/ N) whenever the coherence time is fixed. In order
to exploit Grover’s quantum speedup, the coherence time 7 must necessarily

increase as VN, i.e., as the square root of the size of the search space.

3.6 Conclusions

In this paper, we have shown how to generalize the analysis of unstructured
quantum search to incorporate the effects of an arbitrary starting superposition

and an arbitrary unitary operator (or, equivalently, arbitrary state |a)) simulta-

2Classically, if the parallel computation time for each agent is restricted to =, then the

number of agents k should scale as O (%)
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neously. We have also shown that, rather than iterating the amplitude amplifi-
cation operator until the maximum probability of success is attained, i.e., after
0(0.785398+/N) iterations, it is better to measure after only O(0.6900+/N) iter-
ations (when the probability of success is only 84%). This punctuated strategy
is approximately 12% faster than Grover’s algorithm on average, and requires
a shorter coherence time.

Moreover, an even better quantum search algorithm can be obtained by
running k independent quantum searches in parallel, stopping as scon as any
of the quantum searches finds a solution. We find that the optimal k-parallel
punctuated quantum search strategy is different from that of single agent punc-
tuated quantum search strategy. In general, the higher the degree of classical
parallelism, the less (parallel) time is needed to perform the quantum compu-
tation. This intuition is captured in equation (3.41), which gives the explicit
connection between the optimal number of amplitude amplification iterations
Topt = @opt/ @ and the degree of parallelism &. This result is of practical utility
to experimental realization of a quantum search algorithm. In particular, in any
physical embodiment of a quantum search, there will be some natural coherence
time beyond which the computation becomes unreliable. Of course, quantum
error correction and fault-tolerant computation allow this time to be extended
greatly, arguably indefinitively, if the individual error probability per gate op-
eration can be made sufficiently small. Nevertheless, in practice, this might
be extraordinarily difficult to achieve. Instead, if we can predict the degree of
parallelism needed so that the quantum search has a good chance of complet-
ing within the natural coherence time of the physical system being used as the
quantum computer, then the strategy of massive parallelism might provide a
realistic alternative to relying solely on quantum error correction. Thus, we see

the classical parallelism as an adjunct to quantum error correction rather than
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a replacement for it. Our results in section refparaQsearch exposes precisely the
space/time tradeoff between quantum coherent computing and classical paral-

lelism, at least in the context of unstructured quantum search.

Note: Some of the results obtained in this paper have been derived indepen-

dently by C. Zalka in a revised (and unpublished [42]) version of Ref. [41].
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Chapter 4

Reduction Criterion for

Separability

4.1 Introduction

The state of a quantum bipartite system AB is described as separable (or classi-
cally correlated) if it can be obtained by two parties A and B that prepare their
subsystem according to some common instructions (see, e.g., [45, 46]). Mathe-
matically, this means that the density operator p characterizing the state of the

bipartite system can be written as a convex sum of product states, that is
A B
p=> wi (" &) (4.1)
i

where the weights w; satisty >, w; = 1 and 0 < w; < 1. The w;’s can be viewed
as the probability distribution of a classical random variable that is known to
both parties A and B and used by them to prepare their subsystem. Namely,
if the subsystemn A (and B) is prepared in state pZ(A) (and pi(B)) when the

classical variable takes on value i, the state of the joint system AB is given by
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equation(4.1). A separable state p satisfies several interesting properties. The
joint statistics of any pair of local observables O4 and Op (measured separately
on each subsystem) can be described classically, based on an underlying global
“hidden” variable. For example, the quantum expectation value of the product
0405 is given by
Tr[p(Oa ® OB)] = Zwi<a>i(b)i (4.2)
i

where {(a); = Tr[pEA)OA] and {b); = Tr[pr)OB]. In other words, the joint
statistics of @4 and Op can be understood classically, by assuming that the

(4)

local statistics of the outcomes can be described separately for each p;”’ and
pi(B), and that the correlations originate from a hidden variable ¢ distributed
according to w;. Moreover, a separable system always satisfies Bell’s inequalities
(the converse is not true), so that the latter represent a necessary condition for
separability (see, e.g., [45]). Note that any joint probability distribution can be
represented as a convex combination of product distributions, so that classical
probabilities are always separable in the above sense.

The decomposition of a separable state p into a convex mixture of product
states is not unique in general, but the fact that p is separable implies that there
must exist at least one such decomposition. If no such decomposition can be
found, then p is termed inseparable or entangled, and it can be viewed as guan-
tum correlated. Except for the special case where p describes a pure state, the
distinction between separable and inseparable states appears to be an extraor-
dinarily difficult problem. More precisely, some mixed states can be “weakly”
inseparable, in the sense that it is very hard to establish with certainty their
inseparability. This is basically due to the difficulty of enumerating explicitly
all the possible convex combinations of product states in order to detect that a

state is actually inseparable. Still, it is possible to find some conditions that all

separable states must satisfy, therefore allowing the detection of inseparability
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when a state violates one such condition. The most common example of such
a necessary condition for separability is the satisfaction of Bell’s inequalities.
A state that violates Bell’s inequalities is inseparable, while a state satisfying
them may be separable or weakly inseparable [45].

More recently, a surprisingly simple necessary condition for separability has
been discovered by Peres [46], which has been shown by Horodecki et al. [47] to
be strong enough to guarantee separability for bipartite systems of dimension
2 x 2 and 2 x 3. If the state p is separable, then the operator obtained by
applying a partial transposition with respect to subsystem A (or B) to p must
be positive, that is

pPa= () 2 0. (4.3)

Thus, this criterion amounts to checking that all the eigenvalues of the partial
transposition of p are non-negative, which must be so for all separable states. In
Hilbert spaces of dimensions 2 x 2 and 2 x 3, this condition is actually sufficient,
that is, it suffices for ruling out all inseparable states [47]. In larger dimensions,
however, it is provably not sufficient, in the sense that it does not detect some
weakly inseparable states [47, 48]. A general necessary and sufficient condition
for separability in arbitrary dimensions has been found by Horodecki et al. [47],
which states that p is separable if and only if the tensor product of any positive!
map (acting on A) and the identity (acting on B) maps p into a positive operator.
Although very important in theory, this criterion is hardly more practical than
the definition of separability itself since it involves the characterization of the
set of all positive maps. It appears to be useful mainly for 2 x 2 and 2 x 3
bipartite systems, where such a general characterization has been found [47].
In this paper, we introduce a positive map, I' : p — (Trp) — p, inspired by

the structure of the conditional amplitude operator discussed in Ref. [49, 50].

1A map is defined as positive if it maps positive operators into positive operators.
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This map gives rise to a simple necessary condition for separability in arbitrary
dimensions. More specifically, it is shown in section 4.2 that any separable
state is mapped by the tensor product of I' (acting on one subsystem, A) and
the identity (acting on the other, B) into a non-negative operator. In other
words, the eigenvalues of the operator (' ® I)p = (14 ® Trap) — p must all
be non-negative if p is separable, which provides a simple test for separability
called reduction criterion.? In the case where I is applied to a two-state system
(quantum bit or spin-1/2 particle), as studied in section 4.3, this corresponds
to the time-reversal operation applied on one system with respect to the other
one. As Peres’ criterion has been shown to be unitarily equivalent to such a
“local” time-reversal by Sanpera et al. [52], this reduction criterion is simply
equivalent to Peres’ for 2 x n composite systems. Therefore, it also results in a
sufficient condition for 2 x 2 and 2 x 3 systems, according to Ref. [47]. It also has
a very simple geometric representation in the Hilbert-Schmidt representation of
the bipartite state. Finally, we demonstrate that the map T is connected to the
complex conjugation operation in the “magic” basis for two qubits introduced
recently by Hill and Wootters [2], which underlies an interesting connection
with the entropy of formation [53]. In Appendix A, we illustrate the reduction
separability condition by applying it to several separable or inseparable states,

and compare it to the separability criterion based on partial transposition.

4.2 Separability of bipartite mixed states of ar-
bitrary dimension

We consider a bipartite quantum system characterized by the density operator

pap defined in the joint Hilbert space Hap = Ha @ Hp, where Hy and Hp

2This reduction separability criterion has been independently derived by M. Horodecki and
P. Horodecki in Ref. [51].
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have arbitrary dimensions d4 and dg.

Definition 1: Define a linear map A which maps Hermitian operators on Hap

into Hermitian operators on Hapg:
A:pap > A =14 ®pB — paB with pp = Tra[pan] (4.4)

This map commutes with a unitary transformation acting locally on A and B.

Indeed, if p4p undergoes a unitary transformation of the product form, i. e
pas = plap = (Ua ® Us)pan(UL @ UL), (4.5)
it is easy to check that pls = Tra[pp] = Uspn U};, so that
Aag = Nyp = (Ua @ Up)Aas (U} ® UL), (4.6)

i.e., Ayp transforms just like psp. As a consequence, the spectrum of Aap is

invariant under a U4 @ Up isomorphism on pap, as expected.

Theorem 1: A necessary condition for the separability of the state pap of
a bipartite system AB is that it is mapped by A into a positive semi-definite

operator, i.e., Apap > 0.

We need to prove that any separable state is mapped into a positive semi-
definite operator Aap. Consider a separable bipartite system AB characterized
by a convex combination of product states:

PAB = Zwi (pg) ® pg)) with Zw,— =land 0<w; <1 (4.7)

where pg) and pg) are states in H 4 and Hp, respectively. It is easy to verify

that the operator Aup = Apap is positive semi-definite,

M =Y wi((1a-p{)® o) ) >0 (4.8)
3 >0 >0

since a sum of positive operators is a positive operator. O
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In short, the map A reveals non-separability:® if Aap % 0, then pup is
inseparable. Moreover, it is easy to see that A conserves separability since it
1s linear and maps product states into product operators: if pap is separable,
then A4p > 0 is also separable (or, in general, written as a convex sum of direct

products). Let us now calculate the partial traces of Aap:

Aa = Trp[Aas]=14—pa (4.9)

Ap = Tra[Aap]=(da—1)pB (4.10)

where d4 is the dimension of # 4. This shows that A does not preserve the
trace in general. Indeed, the trace is scaled by an integer factor under A, that
is, Tr[Aag] = (da — 1)Tr[pap]. Thus, A is trace-preserving only in the special
case where A is a two-state system (i.e., d4 = 2). It is also interesting to note

that A is always reversible, the inverse map being given by
A_l:AAB%(dA—l)_1(1A®)\B)—)\AB:pAB (4.11)

where Ap is defined as above. Note that A is equal to its inverse A~! only if
dsa = 2. In that case, if A4p is separable, then A= : Ay — pap > 0. (The
fact that the inverse map reveals inseparability is true in this case only.)

The separability condition based on A is illustrated in Appendix A, where
we consider several separable and inseparable states. As we will show in section
4.3, Aap > 0 results in the same condition as Peres’ in the case of two quantum
bits, in which case it is sufficient (see Theorem 4); for larger dimensions, it is

only necessary.

Remark 1: Following the approach of Horodecki et al. [47], the map A can be

written as the tensor product of a positive linear map I' and the identity, that

2This necessary condition for the separability of mixed states is directly related to that
based on the conditional amplitude operator (although it is simpler as it does not require the

calculation of the latter operator) [50].
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is

A=T®I with T': p = (Trp) — p (4.12)
where T' acts on Hermitian operators in 74 and the identity acts on opera-
tors in H.p. Since T is a positive map, A = I' ® I maps separable states into
positive operators [47]. It therefore results in a necessary condition for separa-
bility, according to Theorem 1. The map I' commutes with an arbitrary unitary

transformation U, that is
DU pUT) = U(Tp)U? (4.13)

which makes the separability condition based on A = I'® I independent on the
basis chosen for A and B. In the same manner, the inverse map A~! can be
written as

A"l=Tr"1@7 with 1 :p—)d;Ii—pl—p (4.14)

where d is the dimension of the Hilbert space of p. Note that I'"! is not a positive
map for d > 2, so that A~! is in general useless as far as detecting inseparability
is concerned. This emphasizes that the reduction separability criterion is quite
special in two-dimensions (e.g., for a spin-1/2 particle or a quantum bit), as will
be studied in section 4.3. Specifically, we will show that T' applied to a two-
dimensional system can be interpreted as time reversal. Consequently, the map
A amounts to applying time reversal on subsystem A, while leaving subsystem
B unchanged. Such a link between “local” time-reversal and separability has

recently been pointed out by Sanpera et al. [52].

Remark 2: It is interesting to consider the classical analog of the maps I’
and A = T ® I to gain some insight into their physical meaning. First, apply-
ing T to a classical probability distribution p; (diagonal p) corresponds to the

transformation:

Pi— i =Y Pk —Pi (4.15)
k
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(Obviously, g; > 0 is not normalized except for a binary distribution.) The

classical analogof A=T® [ is

Pij = qij = (Zpku - pnj) Pi = Pj — Pij- (4.16)
k

Since p;|; is a probability distribution in 7, we always have 1 — p;); > 0 so that
gi; > 0 and the separability criterion is fulfilled. This emphasizes that quan-
tum inseparability (“g;; < 0”) may be viewed as resulting from a conditional

probability that ezceeds 1 (more precisely, an eigenvalue of p4p which exceeds

1) [50].

Definition 2: Two additional maps from operators on Hap to operators on

Hap can be defined: the dual map
A:pap — Aap = PA®@1lp —pap (4.17)
and the symmetric map
M:pap > pap=14®@1p—pa®@1p—14® pB + paB (4.18)

where ps = Trp[pag] and pp = Tralpas].

The map A which we considered until now is related to the conditional
amplitude operator of A conditionally on B, that is pqp [50]. Of course, a
similar linear map can be defined using the amplitude operator pp|4, and exactly
the same conclusions follow. This is the dual map A defined in equation (4.17).
It is trace-preserving and self-inverse in the case where dp = 2. It can obviously
be written as the tensor product A = I ® I, where I now acts on operators on
Hp, and therefore commutes with a U4 ® Up isomorphism. Since T is positive,
A maps separable states into positive (separable) operators, which results in
another separability condition, i.e., Xas > 0. As we will see in section 4.3,
the operators Aap and Aip can be shown to have the same spectrum when

da = dp = 2, in which case they result in the same separability condition.
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However, this property does not hold in larger dimensions, i.e., Ay4p and B
do not have the same spectrum in general (see Appendix A).

We can also construct another linear map by cascading A and A (the order
is irrelevant), which results in the symmetric map M = AA =T ® T defined
in Eq. (4.18). Any separable psp is mapped by M into a separable operator
pap > 0, as expected. The symmetric map also commutes with a Us ® Up

isomorphism,
M ((Us © Up)pan(U} ® UL)) = (Ua ® Us)(Mpan) (U} © UL),  (4.19)

so that the spectrum of yuap = Mpap is invariant under local transformations

on pap. It is also reversible, its inverse map M~ = I'"! @ I'"! being given by

M~ :pap - 14@1p—(dp—1)"" (1a®18)—(da—1)"" (1a®ps)+1aB = paB

(4.20)
where p4 = Trp[pas] = (dB—1)(1a—pa) and pp = Tralpas] = (da—1)(1p—
pB). As expected, this map is trace-preserving and self-inverse only in the case
where d4 = dp = 2. It corresponds then to a time-reversal operation applied to
the joint system AB. In this case, M by itself is not useful as far as revealing
inseparability is concerned since it is positive, i.e., Mpap > 0. Therefore, all
inseparable states of two quantum bits are mapped into positive operators just
as are separable states. Still, M is important when analyzing the separability of
two quantum bits as it is equivalent to the complex conjugation operation in the
“magic” basis introduced by Hill and Wootters [2] (see Theorem 6). Whether

the positivity of M holds in arbitrary dimensions is not known.

Theorem 2: The reduction separability criterion (Apap > 0) is not a sufficient

condition for the separability of pap.

In order to prove that this criterion is not sufficient, we show that it is

possible to find an inseparable system with Agp > 0, i.e., such that its insep-
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arability is nof revealed by A. We will construct such an inseparable system
by extending an inseparable component with a separable one, “diluting” the in-
separability [50]. Consider an inseparable system A’'B’ with Aa/p: # 0. Let us
extend A'B’ with a separable system A” B, and apply the reduction criterion
to the joint system AB where A = A’ A" and B = B’ B". Since the joint system
is characterized by pap = pa'p' ® parp», its associated operator under the map

A is given by
AAB = APAB — (lAl ®pBl) ® (]-A” ® pBu) — pAlBl ®PA”B" (421)

Using the operators Ag/pr = Aparp = 1la®ppr—parp and A 4npgn = ApAuBu =
1an ® ppr — panpn corresponding to A applied to each component system, we

obtain
AAB = Aarg @ Aanpgn + AAIBJ @ parpt +pap @ Aanpn (422)

with Aq:pr 2 0 and Agvpr > 0 (since A”B" is separable). The dilution of
entanglement comes from the fact that the third term on the right-hand side
of equation (4.22) is > 0. As a consequence, equation (4.22) cannot guarantee
that Agp # 0 even though the composite system AB contains an inseparable
component as A4:p: # 0 (i.e., even though the sum of the first two terms on the

right-hand side of equation (4.22) is 2 0). O

Note that, even when both components are inseparable with A4:p/, Aavgn %
0, then Agp # 0 is not necessarily true, so that the inseparability of the joint
system AB is not always revealed by A.* Conversely, equation (4.22) implies
that, if both components have Aqrg: > 0 and Agvpgr > 0, then Aap > 0. It is

not difficult to find examples of such inseparable states A B whose inseparability

4This property contrasts with the situation prevailing when using the conditional amplitude
matrix. If the conditional amplitude operator of each component admits an eigenvalue > 1,

then so does the corresponding operator for the whole system.[50]
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is masked (i.e., Aap > 0) by extending an inseparable component A’B’ that
satisfies Aasp: % 0 with a separable one A” B”. For example, let A’B’ be one of
the Bell states, e.g., parp: = |®FW®F| with |@+) = 271/2(]00) + |11}), and let
A" B" be a product of two random quantum bits, i.e., parpr = (Lar @ 1g1) /4.
Since ppr = 1p:/2, we have Aarpr = Larp' /2 — parpr 2 0, as expected. Using

/\AHBH = pArp!n, We see that EC{U.ELtiOIl (422) yields
Aap = (lap — parp') ® parpe (4.23)

which is obviously a non-negative operator, so that the inseparability of AB
is hidden. The example of weakly inseparable states with a positive partial
transpose (see Ref. [48]) is treated in Appendix A, to illustrate that A4p > 0 is

not a sufficient condition in general.

Remark 1: The mechanism of dilution of inseparability can be understood by
examining the action of the map I' on product states. Indeed, when applying
A =T ® I on the state pap = parp' ® parpn, I' acts on the state psr @ pan
(B and B’ are left unchanged by I). Let us consider a density operator of the
product form p = p' @ p”’. Since we have Tr(p) = Tr(p')Tr(p”), we see that it is

mapped to

L' @p") = Tr()Te(p") — o' ® p"

= [Tr(¢") — P1®[Tr(p") — "] + Tx(p) @ p” + ¢’ ® Tr(p") — 29’ ® p”

I\pl®rpﬂ+l-\pl®pll+pl®l—|pll (424)
which implies the relation
Ir=r'er+r'el"+rer” (4.25)

where IV (or I'”') stands for the same map but acting on the subspace of p’ (or

p"") while T acts on the joint space. Using the same notation for A (i.e., A’ acts
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on the subspace of A’B’ while A” acts on the subspace of A”B”), the latter
equation gives

A=T@I=ANAN +AQI"+I'®A" (4.26)

which implies equation (4.22). The same reasoning can be applied to the dual
map A = I @ T and to the symmetric map M = [ ® I'. Thus, even if the maps
A’ and A" reveal inseparability by themselves, the combined map, equation
(4.26), is not guaranteed to do so because the non-positivity of (A’ ® A”)p =
(A'p') ® (A"p") can be masked by one of the last two terms (the one where A

is applied to the separable component).

Remark 2: It is worth noting that the separability criterion based on the
partial transposition [46] does not suffer from this dilution of inseparability
(even though it is not a sufficient condition in general). Consider, as before,
a system AB characterized by pap = pap' ® panpn, where the inseparable
component A’B’ is detected by partial transposition, i.e., (parp/)T4" # 0. Since
(paB)"™* = (par' )™ @ (pavpr)T4", we have Tranpn[(pap)™] = (parp) T+ #
0. Since the partial trace of a non-negative operator is a non-negative operator,
this implies that (p45)74 # 0, so that the inseparability of the extended system
AB is detected provided that the inseparability of a component of it (here A’ B’)

is detected.

4.3 Separability of two two-dimensional systems

Theorem 3: The map I' acting on a two-dimensional system corresponds to
time-reversal, and is therefore equivalent to applying the complex conjugation
operator K followed by a rotation R, by an angle w about the y-axis, that is,

r==R,K.

Let us write the arbitrary state of a two-dimensional quantum system (a
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quantum bit) in the Bloch-sphere picture:
1 Lo
p= 5(1 +7- &) (4.27)

where & represent the three Pauli matrices and ¥ = Tr(p&) is a real vector in the
Bloch sphere (of radius 1). The vector # describes the statistics of measurements
on the system, as, for example, the quantum expectation value of the spin
component along an axis defined by the vector 7 is Tr[p(ﬁ'- Er')] = (¥, 7). Using

equation (4.27), it is straightforward to check that
1 -
I'p:l—ng(l—'r-a'). (4.28)

Thus, I' performs a spin-flip, or, equivalently, performs a parity transformation
on the Bloch vector # — —7. This can be viewed as time-reversal, and therefore
can be decomposed into a complex conjugation K followed by a rotation R, of

an angle m about the y-axis, that is I' =7 = R, K [54]. O

Remark 1: In order to see this explicitly, consider the action of the map
A =T ® I on a product state [¢) = |a) @ [b). Using pap = P, ® P, with
P, = |a){a| and P, = |b)(b|, we have

dap =P, @ B (4.29)

where Pt = T'(|a){a|) = 14 — |a)(a| is the projector on the subspace orthogonal
to |a). In the case where da = 2, P is a rank-one projector as the total trace
is preserved. Then, P} = |at){a*|, where |a') is a state vector orthogonal
to |a).® It is easy to check that |al) can be obtained by applying a complex
conjugation K on the components of |a) followed by a rotation R, of angle w

about the y-axis. Indeed, any state |a) = «|0) + B|1) (with |a|? +|B]? = 1) is

5Note that it is impossible to construct a state |a') that is orthogonal to an arbitrary state

|a) by applying a unitary transformation alone.
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transformed into |a*) = —3*|0) + a*|1) by applying the rotation

Uy = exp(—inoy/2) = —ioy = 0,0, = 0 - (4.30)

1 0
(that is, a bit- and phase-flip) to the state vector a*|0)+4*|1). The transformed
state |a*) is such that (a‘|a) = 0 and |at){at| = 14 — |a)(a|, as expected.
Thus, T coincides with time-reversal for a spin-1/2 system (da = 2) as the
latter is equal to complex conjugation K followed by the rotation Ry, i.e.,

T = RyK [64]. Consequently, I' is an antiunitary® operation on state vectors

in a two-dimensional Hilbert space (see Appendix B).

Corollary: For the Hilbert-Schmidt decomposition of p4p, the map A=T@® I
corresponds to a sign-flip of the Pauli matrices acting on A while leaving those

acting on B unchanged.

Let us consider the Hilbert-Schmidt decomposition of an arbitrary state of
two quantum bits (or spin-1/2 particles) [55]:
1 3
pAB =7 (1A ®lp+7 Ga@1p+14®F o+ 9. tnmoy) ®cr§§”’)

mn=1

(4.31)
where crfin) and o'gn) stand for the Pauli matrices (with »n = 1,2, 3) in the A and
B space, respectively. equation (4.31) depends on 15 real parameters, the two
three-dimensional vectors # and §, and the 3 x 3 real matrix ¢, ,,. The vectors

7 and § correspond to the state of A and B in the Bloch sphere since we have

1 =
pa = Trplpas] = 5(1,4 +7-Ga) (4.32)

1 =
ps = Tralpasl= 5(13 +5-6B)- (4.33)

They characterize the reduced systems A and B, that is the local (marginal)

statistics of any observable on A or B. The matrix t,m = Tr[pAB(a_g") ®

6For any two state vectors |a) and |@), we have {@1|al) = (@|a}*.
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o-J(Bm))] describes the joint statistics of A and B as it characterizes the correlation
between the measured spin components along two axes (defined by the vectors
@ and b): Tr [p(c'i-&'A ®b- 6‘3)] = (d@,tb). Using equations (4.31) and (4.33),
it is checked by straightforward calculation that A simply flips the sign of the

terms in & 4:

N

a
Aap = (1A®IB—F'EA®1B+1A®E'EB_ Z tn,m‘ffqn)‘g‘fém))

m,n=]1
(4.34)
This implies that A = I' ® I applied to a 2 x n system corresponds simply to

“local” time-reversal 7 ® I, that is, performing time-reversal on the subsystem

A while leaving the subsystem B unchanged [52].

Remark 2: The dual map A=1I@T flips the sign of the Pauli matrices actling
on B while leaving the sign of those acting on A unchanged. The action of the
symmetric map M = I' ® T' on the Hilbert-Schmidt decomposition of pap is
to flip the sign of the Pauli matrices &4 and &p. This operation corresponds
therefore to time-reversal applied to A and B simultaneously, and is equivalent
to complex conjugation in the “magic” basis (see Theorem 6). It is worth noting
that the set of states that remain invariant under the symmetric map M are
those with 7 = § = 0, that is, mixtures of generalized Bell states (the latter being
defined as the states obtained by applying any local transformation to the four
Bell states). These states are called “T-states” by Horodecki et al. [55], and
are such that the entropy of A and B is maximal, that is S(ps) = S(ps) = 1.
(The only pure states in this set are the fully entangled states of two qubits, i.e.,
the generalized Bell states.) Thus, in particular, the (generalized) Bell states
are left unchanged by the action of M. In contrast, a (separable) product state
pa ® pp is mapped into the distinct (non-negative) state pap = (1a — pa) @
(1 — pB). Because of this property, pap by itself is uninteresting as far as

revealing inseparability is concerned, as mentioned earlier.
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Theorem 4: A bipartite system of two-dimensional components A and B char-
acterized by an arbitrary joint density operator pap is separable if and only if

the operator Aap = Apap is positive semi-definite.

It is enough to show that A is equivalent to a partial transposition up to a
completely positive map (in fact, a unitary transformation), since Peres’ separa-
bility criterion is known to be necessary and sufficient in this case [47]. Since we
are dealing with Hermitian operators, the map 7' ® I, where T is the standard
transposition of operators on .4, is equivalent to the “partial conjugation™”
operation K ® I, where K 1s the complex conjugation operator acting on states
on H 4. Thus, Theorem 3 reads I' = R,T". We can now use the fact that any
positive map II acting on density operators in a two-dimensional Hilbert space

can be written as [47]

= T5F 4 IR (4.35)

where IITF and IISF are completely positive maps (which therefore do not reveal
inseparability). With the identification II{¥ = 0 and TIS¥ = R, we see that the
map I' can be used rather than the transposition operator T (or K') in order to
test the positivity of the operator resulting from applying any element of the set
of maps I1® I on psp (this follows from the reasoning used in Ref. [47]). Thus,
using the fact that the complex conjugation operator K is unitarily equivalent to
T', we have shown that Apag > 0 results in a necessary and sufficient condition

for the separability of pap. O

Remark 1: The map I' applied to a two-dimensional system is unitarily equiv-
alent to the transposition operator 7'. Since the spectrum of an operator is
conserved by a unitary transformation (R,), the spectrum of the operator ob-

tained by partial transposition in subspace A, (T'®I)pap = pi’}g, is the same as

"Note that, although K is well-defined, partial conjugation K @I is only defined for product

state vectors in H 4 p [48].
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the spectrum of Aap = Apag. Therefore, testing Peres’ separability condition
or the positivity of Aap is operationally equivalent, and these conditions can
be used interchangeably in the case of two quantum bits, as illustrated in Ap-
pendix A. Moreover, Asp and pﬁ% have the same spectrum for 2 x n systems,
so that the conditions are also equivalent if I' is applied on the two-dimensional
subsystem. As a consequence, the separability condition based on A is necessary
and sufficient for 2 x 3 systems, while it is only necessary for 2 x n systems with
larger n, just as Peres’ condition [47]. Numerical evidence suggests that, for
systems with d4,dp > 2, the reduction condition is weaker than (or equivalent

to) the one based on partial transposition.®

Remark 2: It is instructive to illustrate Theorem 4 for “T-states” [55], that
is, in the case where A and B have a maximal reduced entropy. The T-states
(7= §=0) are such that the reduced density operators are given by pa = pp =
1/2, so that the reduced entropies are S(pa) = S(pg) = 1. These states are
thus completely characterized by the matrix ¢, . It has been shown in Ref. [55]
that any T-state can be transformed by a unitary transformation of the product
form Uy ® Up into a state for which ¢, ., is diagonal. As far as separability is
concerned, we can thus restrict ourselves to the class of all states with diagonal
t, since these are representative of the entire set of T-states (up to an Uy @ Ug
isomorphism).

The class of states with diagonal ¢ is a convex subset of the set of T-states,
and any state belonging to this subset can be characterized by the real vector
i = (t11,%22,%33) made out of the diagonal elements of ¢. It was proven in
Ref. [565] that an operator pap of the form given by equation (4.31) with 7 =
§= 0 and diagonal ¢ corresponds to a state (i.e., a positive unit-trace operator)

if and only if the vector  belongs to a tetrahedron with vertices #; = (-1,1,1),

8This has been later proven in Ref. [51].
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ty = (1,—1,1), t3 = (1,1,—-1), and 3 = (—1,—1,—1). In other words, any
state of this class can be represented by a point inside this tetrahedron. In
this representation, the four Bell states |®*) = 2-1/2(]00) + |11)) and |T%) =

271/2(]01) £ |10)) correspond to the vertices of the tetrahedron, that is

& i |3~ D~| = % (1A®1B—o—;’”)®o~§§”)+aﬂf)®a§”+aff)®a§§))
s |@TYW@T| = }1(1A®1B+o"(f)®ag)—0f)®ag)+o'f:)®a'j(;))
ts [T+ (et | = % (1A @1+ ®cf +o{ 0¥ oo af;))
£ )@ = 7 (@15 -0 @0 — o} @0 — 0§ 50}

In Ref. [65], it is also shown that a state pap of this T-diagonal class is separable
if and only if the vector ¢ characterizing pap belongs to an octahedron with
vertices Jli = (#1,0,0), 5'2": = (0,+1,0), and 5'3i = (0,0,%1). Let us consider
the action of A in this representation. As shown earlier, A flips the “spin” 74.
Within the set of T-states, this amounts to changing the sign of the ¢,, , matrix,
that is, to flipping the sign of the vector ¢ for T-diagonal states. Therefore, the
criterion for separability Aup = Apap > 0 translates, in this representation,
to the condition that the “parity” operation on the vector i characterizing a
separable state results in a positive operator (i.e., a legitimate state). Thus, —t
must belong to the tetrahedron. It is easy to see that the set of points of the
tetrahedron which are such that their image under parity still belongs to the
tetrahedron corresponds exactly to the octahedron defined above. Therefore, no
inseparable state exists that satisfies Apap > 0, so that A provides a necessary

and sufficient condition for separability within the class of T-states, as expected.

Theorem 5: The symmetric map M acting on two two-dimensional systems
conserves the spectrum, so that the separability criteria resulting from the map

A and its dual A are equivalent.

As a consequence of Theorem 3, M = I'®I' amounts to performing a complex
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conjugation K (or transposition) of the joint density operator in H 4, followed
by a tensor product of the rotation Ry defined by Uy, = exp(—inoy/2) = —ioy,
that 1s, Uy @ Uy = —oy @ oy. Note that, as we are dealing with Hermitian
(density) operators, their spectrum is unchanged by K. The same is true for
the rotation Uy ® Uy. Therefore, pap = Mpap has the same spectrum as pap
when ds = dp = 2. As T is self-inverse (I'2 = I) when d4 = dg = 2, we have

the relation I @ T = (I'® I)(T @ T) or in short A = AM. This implies that
Apap =AUy @ Uy)pap (U @ U])] (4.36)
which in turn results in
Aap = (Uy ® U)X (U @ UJ) (4.37)

as A commutes with Uy ® Uy, and complex conjugation. Since Aap is Hermitian
(just as pap), the latter expression shows that the spectrum of Aag and Asp

are identical, so that the resulting criteria for separability are equivalent. O

Theorem 6: The symmetric map M applied to a bipartite system of two-
dimensional components (i.e., global time-reversal) is equivalent to complex

conjugation in the “magic” basis introduced in Ref. [53].°

Since I' = Ry K, the symmetric map M = T ® I’ applied to the state pap of

a bipartite system results in
Mpap = (Uy ® Uy)pap (U] @ U)) (4.38)

where Uy ® Uy = —0y ® ay. Since M is antiunitary and self-inverse (M? = I),
it is a conjugation [57]. It can be written as the complex conjugation operator

if expressed in a specific basis. Let us assume that V' is the unitary operator (in

9This was pointed out independently in Ref. [56], which was brought to our attention after

completion of this work.
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the joint space) that transforms the product states into the states {|e;}} that

form this specific basis, that is
ler) = V|00) lea) = V|01) les) = V|10) les) = V|11). (4.39)

We would like to show that M is equivalent to rotating the states |e;) into the
product states, taking the complex conjugation of the density matrix (in the

product basis), and then rotating the product states back to the |e;)’s:
Mpag =V(VipapV)*' VT = (VVT)plhp (VYT (4.40)

where V7T is the transpose of the unitary matrix V. Identifying equations (4.38)
and (4.40), we obtain

0 0 0 1
’ 0 0 -1 0
0 -1 0 0
1 0 0 0

It is easy to prove that, if V is unitary, then VV7 is unitary and symmetric
(but not necessarily Hermitian). In order to find a solution for V' that satisfies
equation (4.41), we first diagonalize the matrix o, ® o. Consider the unitary

matrix
W =exp (—%(1 —0z)®(1— o’x)) = (1Q14+180s 40, @1 —0,®0,;)/2 (4.42)

It is in fact a real orthogonal matrix, so that W= = W1 = W7, It can easily

be shown that W diagonalizes'® oy ® oy, that is,

W(oy @ oy )WL =0, @0, (4.43)

10Tt is not the only such matrix, as oy @ oy is obviously also diagonalized by exp(—150z)®
exp(—i50z). However, we are looking here for a (real) rotation matrix rather than a general

unitary matrix.
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Note that the matrix W is self-inverse, i.e., W? = 1, so that it is also symmetric

(WT = W). By multiplying equation (4.41) by W on the left and the right, we

obtain
-1 0 0 0
0 1 0 0
WVwvl = -0, @0, = (4.44)
0 0 1 0
0 0 0 -1

which implies that the product WV can be written as a diagonal matrix D:

= 0 0 0

0 +£1 0 0
WV =D= (4.45)

0 0 £1 0

0 0 0 =z
This yields a (non-unique) solution for the unitary matrix V.= W7D = WD
that defines the basis {|e;)}. The states |e;) are thus obtained by applying the
rotation matrix W to the product states +¢|00), £[01), £[10), and £:|11). It is

worth noticing at this point that the rotation matrix

W=z (4.46)

transforms the product states into the four maximally entangled states which
are obtained by applying a local transformation H ® 1 on the four Bell states,

1.e.,

Wi00) = (H®1)|&*) = (J00)+ [01) + [10) — [11))/2
wioly = (H® 1)|‘~If+) = (]00) 4 [01} — |10) + [11))/2
WI10) = (H®1)|®7)=(]00)— |01)+ |10)+ |11))/2

W11} (H @ 1)[¥~) = (—[00) + [01) + [10) + [11))/2  (4.47)
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where H is the Hadamard transform. (As a matter of fact, the unitary trans-
formation W corresponds simply to a controlled-NoT gate where the control is
in the dual basis {|0) 4 |1}, |0) — |1} } rather than the standard basis.) Therefore,

the unitary transformation V' = WD is such that the product states are rotated

into the four generalized Bell states

le1) = V|00)
lez2) = V|01)
les) = V[10)
lea) = V|11)

with the appropriate phases

+i(H © 1)|8T)
+1(H @ 1)[¥™)
+1(H @ 1)|37)

+i(H ® 1)),

(4.48)

These states |e;) are therefore equivalent, up to a local change of basis H @ 1
and a phase i that are irrelevant here, to the “magic” states introduced in
Ref. [53]. (Any four states obtained from the |e;)’s up to an overall phase
and a unitary transformation acting locally on each quantum bit are legitimate
“magic” states.) This implies that, when expressed in this basis, the symmetric
map M = I'®@T reduces the the complex conjugation operation that was used in

the context of the calculation of the entropy of formation of a pair of quantum

bits (see Refs. [2, 56]). O

Theorem 7: A distinct necessary separability condition for the bipartite state
paB is that its support can be spanned by a set of product states which are
such that the corresponding product operators obtained by applying T* to the

state vector in H 4 span the support of Aup = Apap.

‘We only consider this condition in the case where d4 = 2. Let us first show
that if pap is a separable state, then A4p is a separable operator obtained by

P orthogonal to them. Consider

replacing the states |a) in H 4 by projectors



CHAPTER 4. REDUCTION CRITERION FOR SEPARABILITY 65

the separable state
pap =Y wi(lai)(a:| @ |bi)(b:]) (4.49)

where the |a;) ® |b;) are pure product states [using the spectral decomposition
of pg) and pg), it is easy to rewrite equation (4.7) into this form]. As a result

of Theorem 3, we see that psp is mapped by A into the separable operator
Aap =Y wi (P ® [bi){b:) - (4.50)
i

The operator Asp is a unit-trace operator in the case d4 = 2 since each com-
ponent pure state |a) ® |b) is mapped into a pure product state, |at) ® |b), in

which case it simply reads
Aap =Y wi(laf)(af| @ b)) - (4.51)
i

Let us show that equation (4.51) results in a simple necessary condition for
separability (distinct from Agp > 0), inspired from the condition recently pro-
posed by Horodecki [48]. The central point is to note that, if p4p is separable,
then the ensemble of product states |a;) ® |b;) span the entire support of pap.
(Conversely, any state |a;) ® |b;) must belong to the support of p4p and cannot
have a non-vanishing component orthogonal to it.) From equation (4.51), we
see that the ensemble of states |a") @ |b;) span the entire support of the cor-
responding separable state Ayp obtained by applying A on pap [cf. equation
(4.51)]. (Also, any state |a;) ®|b;) cannot be outside the support of A4p5.) This
results in a necessary condition for separability which can be stated as follows:
if a state pap 1s separable, then it must be possible to span its support by a set
of product states |a)|b) which are such that their image (i.e., the product states
obtained by rotating the complex conjugate of state vector |a) in the A space
by an angle 7 about the y-axis while leaving the state vector |b) in the B space

unchanged) span the support of the mapped state Ayp = Apyp. O
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4.4 Conclusion

Given a bipartite system characterized by a density operator pag, we construct a
simple separability criterion based on the positive linear map T' : p — (Trp) — p.
Any separable state pap 1s mapped by the tensor product of I' (acting on
A) and the identity I (acting on B) into a positive operator. Therefore, a
necessary condition for separability is based on checking the non-negativity of
the operator (I' ® I)pag = 14 ® pg — pap. This condition, along with the one
based on the dual map I ® T, can be shown to be non-sufficient for a system
of arbitrary dimension because entanglement dilution can thwart the map’s
sensitivity. Since T' commutes with any unitary transformation, the spectrum
of the operator (I' ® I)pap is invariant under a local unitary transformation
Ua ® Up, making this reduction criterion independent of the basis in which A
and B are expressed.

In the case of a two-dimensional system, I is shown to be the time-reversal
operator, which flips the sign of the spin matrices (or, equivalently, reverses the
Bloch vector characterizing the state of the quantum bit), so that the map T ® I
amounts to changing the arrow of time for subsystem A with respect to subsys-
tem B. Such a relation between time-reversal and Peres’ partial transposition
has been pointed out previously by Sanpera et al. [52], who showed that the
partial transposition operator is unitarily equivalent to “local” time-reversal.
Thus, the reduction criterion for separability based on ' ® I is equivalent to
Peres’ criterion [46] for 2 X n systems (when applying I" on the two-dimensional
subsystem). As a consequence, it is necessary and sufficient for 2 x 2 and 2 x 3
systems while it is only necessary for larger systems, just as is Peres’ [47]. For
systems with da,dpg > 2, however, the reduction condition is generally weaker
than the one based on partial transposition.

Finally, we consider the symmetric map (' ® I')pap = 14 ® 1p — pa ®
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1p — 14 ® pp + pap. The states which are left invariant under this map are
mixtures of generalized Bell states, which include the maximally entangled pure
states as well as the product of two independent (unentangled) random bits. Tt
can be seen that T' ® T is related to quantum nonlocality even though it does
not directly reveal inseparability of two quantum bits. Indeed, it reduces to
the complex conjugation in the “magic” basis that has been introduced in the
context of the calculation of the entropy of formation of a pair of quantum bits
(see Refs. [2, 56]). It might therefore be interesting to look for a simple relation
between the map I' (related to the reduction criterion for inseparability) and

the entropy of formation.

.1  Examples

Here we consider several examples illustrating the separability criterion Aap >
0, and compare it to Peres’ criterion [46]. Examples 1-4 deal with states of
two quantum bits, and illustrate the fact that the A-criterion is necessary and
sufficient (the spectrum of A4 p is identical to the spectrum of pT4). Examples 5-
6 illustrate that the A-condition is not sufficient for systems in larger dimensions
(3 x 3 and 2 x 4) whose partial transpose is positive (cf. Ref. [47]). In fact,
the A-condition is equivalent to Peres’ condition for 2 x n systems, so that it is
also necessary and sufficient for 2 x 3 systems [47] while it is only necessary for

larger n.

Example 1: Consider a Werner state [45] with parameter z (0 < ¢ < 1), that
is, a mixture of a fraction z of the singlet state |¥~) and a random fraction

(1 — z). We shall see that Aap > 0 is equivalent to Peres’ criterion, and is
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therefore sufficient. Indeed, the joint density matrix

e 9 0 0
1— 0 1+ _z 0
pas =ale )|+ L7 001) = = (52)
0 _z 14z 0
2 4
o 0 o0 =
is mapped by A into the matrix
4z 9 0 0
0 & & 0
AaB = 4 (53)
1—
0 5 5 0
0 0 0 U=z

which admits three eigenvalues equal to (1+2)/4 and a fourth equal to (1—3z) /4.
The latter becomes negative if # > 1/3, so that Aap is positive semi-definite
only if # < 1/3, which has been proven to be the ezact threshold for separability
(any Werner state with @ < 1/3 is separable as it can be written as a mixture of
product states [58]). As expected, the spectrum of A4 p is equal to the spectrum
of the partial transpose of pap, so that the A-condition is sufficient to ensure

separability for Werner states.

Example 2: Consider a mixed state that is made out of a fraction 2 of the
entangled state |#) = a|01) + b|10), and fractions (1 — z)/2 of the separable

product states [00) and |11) (see [59]). The joint density matrix is of the form

Lo 0 0 0

1—z zla|* xab* 0

paB = z|Y)(Y|+ )

1 —
|oo><00|+T“’|11><11| =
za*b z|b]2 0

[e=) o Ow‘

0 0 1-z

2

(54)
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with a and b satisfying |a|? + |b|> = 1. It is mapped by A into the matrix

zb|2 0 0 0
0 iz _zab* 0
’\AB = - " (55)
0 —za*b I_Tm 0
0 0 0 z|al?

The eigenvalues of Aap are z|al?, z|b|?, and (1 — z + 2x|ab|)/2. This implies
that pap is inseparable if = > (1+ 2|ab|) 71, exactly as predicted by Peres using
the partial transpose of pap. Since we are dealing with two qubits, this is the

exact limit between separability and inseparability [46, 47].

Example 3: In the simpler case where pap is a mixture of a fraction z of the

singlet state |[¥~) and a fraction (1 — 2) of the separable product state [00),

l—= 0 0 0
0 z/2 —=2/2 0
par = alw)p] + (1 - 2)|00)(00] = (56)
0 —z/2 /2 0
0 0 0 0

we obtain
z/2 0 0 0
0 0 z/2 0
Aap = : (57)
0 /2 1—-z O
0 0 0 z/2
The latter matrix admits two eigenvalues equal to z/2 and two eigenvalues equal
to (1 —zt+/(1—2)2+ .1:2) /2, so that its determinant is equal to —(z/2)*.
Thus, this state is inseparable whenever & > 0, as expected. (It is separable

only if it is the pure product state |00).)

Example 4: Consider the class of 2-qubit inseparable states described by

Horodecki et al. [47], a mixture of two entangled states:

pap = pl1){¥1| + (1 — p)|a)(be] (58)
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where |t1) = a|00) + b|11) and |¢2) = a|01) + |10), with a, b > 0 and satisfying

la|?> + |b]? = 1. The joint density matrix

pa? 0 0 pab
0 (1-p)a®> (1—p)ab 0
PAB = (59)
0 (l—plab (1—p)p2 0
pab 0 0 pb?
is mapped by A to
(1 - p)b? 0 0 —pab
0 pb? (p—1)ab 0
Aap = . (60)
0 (p—1)ab pa? 0
—pab 0 0 (1 —p)a?

The latter matrix admits two eigenvalues equal to (p ++/p? + 4a2b2(1 — 2p)) /2

and two eigenvalues equal to (1 —p++/(1 —p)2 + 4a2b2(2p — 1)) /2, so that
its determinant is equal to —a*h*(1 — 2p)?. This state is therefore inseparable

whenever ab # 0 and p # 1/2, in perfect agreement with Ref. [47].

Example 5: Consider the 3 x 3 system in a weakly inseparable state introduced

by Horodecki [48],

¢ 00 0a 0O 0 0 a
0 a 0000 0 0 0
00a 000 0 0 0
000a 00 0 0 0
”AB=1+180, a 000 a0 0 0 a (61)
00000a 0 0 0
000000 4= o -
000000 0 a O
a 00 0 a 0 ¥ o L
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where a is a parameter (@ # 0,1). As shown in Ref. [48], the partial transpose
of this state is positive, although p4p is inseparable, which makes the insepara-
bility of p4p undetectable using Peres’ criterion. It is simple to check that the

A-mapped matrix

Hsa g Mz 0 —a 0 0 0 -a

0 2 0 0o 0o 0 0 0 0

a2 0 H3e 0 0 0 0 0 0

0 0 0 43 g 1= g g g

Aap = T +18a —a 0 0 0 2a 0 0 0 -a
0 0 0 ¥==¥ g 48 g g g

o 0 0 0O 0 0 2 0 0

o 0 0 0 0 0 0 2 0

—a 0 0 0 —a 0 0 0 2a

(62)
is positive (with a trace equal to 2), so that A cannot reveal the inseparability
of pap either. Accordingly, the determinant of Aap is equal to 6a”(1 — a)(5a +
3)/(1 + 8a)® and thus positive. Note that the dual map also yields a positive
operator kam (of trace 2), although the eigenvalues of Aap are distinct from
those of Aap, as is its determinant Det(Asp) = 24a”(1 — a2)/(1 + 8a)®. This
example emphasizes the fact that A does not result in a sufficient separability

condition for 3 x 3 systems, just as Peres’ condition [47].

Example 6: Following Horodecki [48], we consider a 2 x 4 system in an insep-
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arable state

5000 0 b0 0
0b 00 0 0b 0
0060 0 00 b
S 000b 0 00 0 -
14761 g 0 0 0 1 ¢ o L
b OOO 0 50 0
0600 0 0%b 0
00 b 0 ¥ o o 1

2 2
that has a positive partial transpose, where b is a parameter (b # 0, 1). Applying

A, we see that

g 0 =2 0 5 0 0
0 b0 0 0 0 —b 0
0 0 b 0 0 0 0 =b
Apgy = L =2 0 0 X 0 0 0 o0 -
L4 ¥ 0O 0 0 0 b 0 0 0
5 0 0 0 0 b 0 0
0 =t 0 0 0 0 b 0
0 0 b 0 0 0 0 b

has eigenvalues 0, b, 2b, and (1 + 264 /(1 + 2b)2 — 2b(3 + b)) /2 so that it is
always non-negative. Note that the spectrum of A4 p is the same as the spectrum
of the partial transpose p%% (cf. [48]), as expected. This confirms that the
condition based on A = I' ® I and Peres’ separability condition are equivalent
for 2 x n systems (when I is applied to the two-dimensional system and [ to the
n-dimensional one). In this example, applying the dual map A = I ® I yields a

positive operator which traces to 3.
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.2 The antiunitary map I

Consider the action of the map I' : p — (Trp) — p on the density operator p
characterizing a two-dimensional system (e.g., a quantum bit). Since p can be
written as a linear combination of the unit matrix and the three Pauli matrices
@ with real coefficients, it is sufficient to consider the action of I' on these
(Hermitian) basis matrices. We find that I' is an antiunitary operator that

leaves the unit matrix unchanged and flips the sign of the Pauli matrices o .,
Q| I i —0z oy 2y —0oy i —0,. (65)

The complex conjugation operator K (or equivalently the transposition, as we
deal with Hermitian operators) corresponds to an antiunitary operator which

acts on the four basis matrices as
K K K K
1—1 Oz — Oy Oy —F —0Oy o — 0. (66)

(Remember that it is enough to consider the action of K on the basis matrices
as the coefficients are real.) Also, Ry is a unitary operation characterized by
the unitary matrix U, = exp(—inoy/2) = —iocy = 0,0, which maps p into
Uy pUJ = oy poy, so that the basis matrices are transformed according to

R R R R
1351 Oy —2 —0g Oy — Oy o i S, (67)

It is straightforward to check, using equations (65), (66) and (67), that I’ is the
product of K and Ry. (It is a general property of an antiunitary transforma-
tion that it can be written as the product of a unitary transformation and a
fixed antiunitary operator such as time-reversal.) This can be verified easily by
applying R, K to a system is in a state given by equation (4.27). We get

1

pr*UJ = ayp*ay = 5

(+oy(F-3")a) = 5(1-7-8)=Tp  (68)

where we have used the fact that # is a real vector and that oyGo, = —™.

This generalizes what was shown in section 4.3 for pure states, namely that if
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la) = «]0) + B|1) and |at) = Uy, (a*|0) + B*|1)) = —B*|0) + «*|1), then we have

la* Ya'| = I(la)(al). (69)
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