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ABSTRACT IV 

Abstract 

In chapter 2 vanous parameterizations for the orbits under local unitary 

transformations of three-qubit pure states are analyzed. It is shown that the 

entanglem ent monotones of any multipartite pure state uniquely determine the 

orbit of that state. It follows that there must be an entanglement monotone for 

three-qu bit pure states which depends on the Kempe invariant defined in [1]. 

A form for such an entanglement monotone is proposed. A theorem is proved 

that significantly reduces the number of entanglement monotones that must be 

looked at to find the max.imal probability of transforming one multipartite state 

to another. 

In chapter 3 Grover's unstructured quantum search algorithm is generalized 

to use an arbitrary starting superposition and an arbitrary unitary matrix. A 

formulafm the probability of the generalized Grover's algorithm succeeding after 

n iterations is derived . This fmmula is used to determine the optimal strategy 

for using the unstructured quantum search algorithm. The speedup obtained 

illustra tes that a hybrid use of quantum computing and classical computing 

techniques can yield a performance that is better than either alone. The analysis 

is extended to the case of a society of k quantum searches acting in parallel. 

In chapter 4 the positive map r : p --+ (Trp) - p is introduced as a separability 

criterion. Any separable state is mapped by the tensor product of r and the 

identity in to a non-negative operator, which provides a necessary condition for 

separability. If r acts on a two-dimensional subsystem, then it is equivalent to 

partia l transposition and therefore also sufficient for 2 x 2 and 2 x 3 systems. 

Finally, a connection between this map for two qubits and complex conjugation 

in the " magic" basis [2] is displayed. 
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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introd uction 

At this point in history quant um mechanics is the best description of nature 

that exists. No repeatable experiment has ever contradicted it, yet it is still 

not very well understood. Compared to classical mechanics, the principles of 

quantum mechanics are less intuitive and the mathematics is often more difficult. 

Nevertheless, if one wants to know what is possible in nature, one must look 

a t the true quantum mechanical description , not the approximation of classical 

mechanics. 

In the last 30 years computers and digital information have become impor­

tant in our society. This has been made possible by, among other advances, our 

understanding of computation, algorithms, information compression and error 

correction. These areas of study have, until recently, been based solely on classi­

cal principles and intuit ion. In the last decade is has been shown that by looking 

at the true quantum mechanical description new phenomena are possible (e. g ., 

Shor's algorithm, teleportation, Grover's algorithm, quantum error correction). 

This has led to the studies of quantum computation and quantum information 

theory. 

The concept of entanglement is central to the study of quantum information. 

Al! of classical information theory is based on physical systems with zero entan-
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glement. These systems are said to be represented by a separable state. The 

correlations between t he subsystems of an entangled (i. e., non-separable) state 

cannot be fully explained by classical physics. The first step in understanding 

what new phenomena are possible with quantum information is to find out what 

states are non-classical. In chapter 4 a criterion for detecting separability called 

the "reduction criterion" is investigated. This criterion is shown to be equiv­

alent to the already known Peres criterion in 2 X N systems and to be helpful 

in the calculation of the entanglement of formation (a particular m easure of 

entanglement) for 2 x 2 systems. 

Entanglement between more than two subsystems is more complicated and 

hence less well understood than the entanglement between two subsystems. 

This problem is addressed in chapter 2. A framework for characterizing the set 

of all measures of entanglement , called entanglement monotones, is proposed. 

This framework is used to show that there are some important yet undiscovered 

entanglement monotones for systems with 3 two-dimensional subsystems. Some 

properties of these entanglement monotones are derived and an explicit form is 

proposed for one of them. 

The study of quantum computation is concerned with algorithms on a quan­

tum computer. Certain algorithms (Shor 's algorithm , Grover 's algorithm, quan­

tum Fourier transform) for a quantum computer will execute in less time steps 

t han any known classical algorithm. For instance, Grover 's algorithm can search 

an unstructured database of size N in O( VN) queries whereas the best clas­

sical algorithm takes O(N) queries. If we assume a query time of 1 I'second, 

then a search that t akes 9.5 hours using Grover's algorithm would take about 

20 million years with the best classical algorithm. Unfortunately, no practical 

quantum computer exists yet that can operate on more than a few qubits (i. e. , 

quantum bits). 
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In chapter 3 an equation for the computation time of grover's algorithm with 

an arbitrary starting state, unitary transformation and number of target states 

is derived. This equation is then used to show that there is a moderate speedup 

of the algorithm on average if one measures before the peak probability. Also, 

the idea of parallelizing Grover 's search is introduced and the computation time 

is analyzed. 
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Chapter 2 

Properties of Entanglement 

Monotones 

2.1 Introduction 

Entanglement is at the heart of the studies of quantum computation and quan­

tum information theory. It is what separates these studies from their classical 

counterparts. If we are to understand what new phenomena occur when we 

look at the true quantum mechanical description of nature as opposed to the 

approximations of classical mechanics , then we must understand how the quan­

tum mechanical description differs from the classical description. Entanglement 

is a measure of this difference. While entanglement between two parties is quite 

well understood [3] [4] [5] [6], the entanglement within a quantum algorit hm 

or in a state shared between many parties involves multipartite entanglement 

which is just beginning to be understood [7] [8] [9]. 

An integral part of the study of entanglement is determining the probability 

of transforming one pure state into another by Local Operations and Classical 
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Communication (LOCe). For two part systems this problem is solved, or at 

least reduced to the problem of finding the eigenvalues of a hermitian matrix, 

by [5] [6]. For a N x M pure state the Schmidt decomposition tells us we can 

write 

(2.1) 
;=1 

w here the AT are in increasing order, Ei AT = 1, the 1 i) and 1 i') are an orthonor­

mal set of vectors in space A and B respectively, and n = min(N, M). If we 

define 
k 

Edl-,p)) = I:>-T k = 1, .. . ,n-1 (2.2) 

then the highest attainable probability of transforming l-,p) to 14», P(I-,p) -t 14»), 

is given by [6] 
. Edl-,p)) 

P( I-,p) -t 14») = n;:n Ek (14))) (2.3) 

The proof of this theorem is constructive so we can actually write down the 

transformation that gives us 14» from l-,p). For pure states of more than two 

parts no such nice theorem is known. The question of whether two t hree-qubit 

pure states can be transformed into each other with non-zero probability by 

LOCC has been solved by Diir et al. [10] but just getting a reasonable upper 

bound on that probability when it is a non-zero is unsolved. In this paper I 

attempt to make some progress towards solving this problem for three-qubit 

pure states and hopefully shed some light on how we might solve it for larger 

dimensional spaces and more parts. 

One way to find P(I-,p) -t 14») is to look at the entanglement monotones 

E(I-,p)) for the two states. For the duration of the paper "state" will refer to a 

pure state unless explicitly called a mixed state. An entanglement monotone, 

EM, is defined as a function that goes from states to positive real numbers and 

does not increase under LOCC. As a convention the value of any EM for a 

separable state is O. For mixed and pure states of any dimension and number 
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of parts, the following theorem holds [11): 

( ') . E (p) 
p p -+ P = min E (pi) (2.4) 

where the minimization is taken over the set of all EMs [11). This can be seen by 

considering P(p -+ pi) as an EM for p. The problem is that t his minimization is 

difficult to take since there is no known way to characterize all the entanglement 

monotones for multipartite states. We would like a "minimal set" of EMs similar 

to the Ek for the bipartite case in order to take the minimization. 

The situation for three or more parts is somewhat different than for bipar­

tite pure states. Firstly, generic M x M bipartite states have a stabilizer (i. e., 

the set of unitaries that takes a state to itself) of dimension IvI - 1 isomor­

phic to U(1)0 M - 1 while pure states with more parts generically have a discrete 

stabilizer. States whose parts are not of the same dimension may ha.vp. largp.r 

stabilizers but biparti te states are the only ones that a lways have a continu-

ous stabilizer. Secondly, the generalized Schmidt decomposition, however you 

choose to generalize it [12) [13), has complex coefficients for pure states with 

three or more parts. This implies that generically these states are not local uni­

tarily equivalent to their complex conjugate states (i. e., the state with each of 

its coefficients complex conjugated). Also, for bipartite pure states all the local 

unitary (L U) invariants can be calculated from the eigenvalues of the reduced 

density matrices but this does not hold for more parts. I will go into more detail 

about LU invariants in the next section. 

The structure of the paper is as follows: in section 2.2 the interconvertibil-

ity, behavior under measurement , symmetry properties, parameter ranges and 

calculability of two generalizations of the Schmidt decomposition of equation 

(2.1) and the polynomial invariants (defined below) are looked at. In section 

2.3 it is shown that the entanglement monotones uniquely determine the orbit 

of multipartite pure states, and this is used to show that there must be an EM 
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algebraically independent of the known EMs. A form for this EM is proposed 

and studied. Section 2.4 discusses other monotones that m ust exist and their 

properties. Lastly, in section 2.5 a theorem is proved that significantly reduces 

the number of EMs that must b e minimized over to get P(p -+ pi) of equation 

(2.4) . 

2.2 Decompositions and Invariants ofThree-Qubit 

Pure States 

Let l..p) be a multipartite state in llJ ® 1£2 ... ® lln and let Ai') : 1£. -+ 1£; be 

Krauss operators for an operation on t he hilbert space 1£. with Lk Ai') t Ai') = 

I . and I i is the identity acting on 1£ •. A (non-increasing) EM is a real valued 

function E (I..p» such that 

( (') ) E (I..p» :::: 2(Pk E h ® ... ® A~ ... ® In l..p ) (2.5) 

for any state l..p), operation At), and space i where 

(2.6) 

This definition for pure states is taken from the definit ion for a general state in 

[11] . One can always transform a state into product states and a product state 

cannot be transformed into anything but another product state so the value of 

an EM for a product st ate is chosen to b e zero and all other states must have 

a non-negative value for the EM. Since Aii) can be a unitary operator or the 

inverse of that operator, equation (2.5) implies that all EMs must b e invariant 

under LU. Hence, a first step to understanding t he EMs is to look at the LU 

invariants that parameterize the set of orbits . 

There are many ways to find LU invariants for three-qubit states [14] [13] 

[15] [12] [7] [16] [17], some of which can be generalized to more parts and larger 
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spaces , but for now I will concentrate on the three-qubit case. The three sets 

of invariants I will look at in this section are t he polynomial invariants [14], 

what I will call the diagonalization decomposition [13] and what I will call the 

maximization decomposition [12]. 

2.2.1 The Polynomial Invariants 

A general polynomial invariant P",T (11/») for a state of the form 

1 

I1/» = L t ijk lijk) (2.7) 
i )j,k=O 

is written as 

where (J" and T are permutations on n elements , repeated indices are summed 

and t stands for the complex conj ugate of t [14]. If one applies a unitary to 

any of the qubits in I1/» and explicitly writes out P" ,T (11/») again , it becomes 

apparent that P",T (1 1/» ) is invariant. Of course, any polynomial in t erms of the 

polynomial invariants P",T (11/») is another polynomial invariant. In fact, it can 

be shown t hat all the polynomial invariants are of this form. 

We know from [12] that generic three-qubit states have a discrete stabilizer 

so the number of independent polynomial invariants is given by 

dim [C 2 0 C2 0 C2
] - 3 dim[SU(2)]- dim[U(1)]- 1 = 5 (2.9) 

where the last - 1 is due to t he fact that we are using normalized states. The 

five independent continuous invariants are 

It Pe,(12) 

Ia P (12),(12) 
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14 P(123) ,(132) 

15 12: tidl k l t i 2j2k'l t i 3j3k3 t i.d<Jk4 

X €i 1 i2 f i3i 4 fjd2 fj 3j" €k 1 i 3 Ek 2i412 (2.10) 

where EOO = En = 0, and EOI = - f lO = 1 and again repeated indices are 

summed. 14 is the Kempe invariant referred to in the abstract. If one writes 

out Is and uses the identity f; jfr • = eli relj , - eli. elj r , it can be shown that Is 

is just the sum and difference of 64 polynomials of the form in equation (2.8). 

With one more discrete invariant, 

h = sign[Im[ P(34)(56) ,(13524)]] , (2. 11) 

the LV orbit of a three-qubit state is determined uniquely [13] [18]. I will 

define sign[x] as 1 for non-negative numbers and -1 otherwise. The polynomial 

invariants have the advantage of being easy to compute for any stat e and t he 

four previously known independent EMs [7] are the following simple functions 

of h, 12 , fa and Is 

T(AB)C 2(1 - h) 

T(AC)B 2(1 - 12) 

T(BC)A 2(1 - fa) 

TABC = 20s. (2.12) 

2. 2. 2 T he Diagonalizat ion D ecomposition 

The diagonalization decomposition, DD, introduced by Acin et al. [13] is ac­

complished by first defining matrices (To)j ,k = to ,j ,k and (TJ)j ,k = tl ,j ,k, then 

finding a unitary operation on space A that makes To singular, finding unitaries 

on space B and C that make To diagonal and using the remaining phase freedom 
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to get rid of as many phases as possible. What is left is a state of the form 

I-rPDD) = 50 1000) + $I ei <P 1100) 

+521 101) + VfI31110) + vfii41111) (2.13) 

where J.li 2: 0, J.!o + J.!1 + J.!2 + J.!3 + J.l4 = 1 and 0 ::; ¢ ::; 1r. Note that generically 

there are two unit aries that will make To singular, but it can be shown that 

only one will lead to ¢ between 0 and 1r. If there is another solution, with 

¢ between 1r and 21r exclusive, it is referred to as the dual state of I-rPDD)' 

Some nice properties of DD are that there is a 1 to 1 correspondence with the 

orbits and there are a set of invertible functions between the parameters of the 

decomposition and the set of polynomial invariants given above. Namely, 

h 1 - 2J.!O( J.! 2 + J.!4) - 2~ 

I 2 1 - 2J.!O(J.!3 + J.!4) - 2~ 

Ia 1 - 2J.!O(J.!2 + J.!3 + J.!4) 

I4 1 - 3[(J.! 2 + J.!3)(J.! O - J.!4) + J.!4(1 - J.!4) 

-J.!2J.!3J.!O + (1 - J.! o)(~ - J.!1J.!4)] 

Is 4J.!6J.1~ 

h = sign[sin( ¢) J.!6V J.!1J.! 2J.! 3J.! 4 

x(~ - J.! 4(1 - 2J.!o + J.!J) - J.!2J.!3)] (2.14) 

where ~ = J.! 1J.!4 + J.! 2J.! 3 - 2VJ.!1J.! 2J.!3J.!4 cos(¢ ) and if we define 

h = ~ ( 1 - h - h + Ia - 2VIs) 

J2 = ~ (1 - h + h - Ia - 2VIs) 

Ja ~ (1 + I I - h - I 3 - 2VIs) 

J4 = VIs 

J5 = ~ (~- h - h - Ia + iI4 - 2VIs) (2.15) 
4 3 3 
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then the coefficients are given by 

= 

J4 + J5 ±VT 
2(JI + J4 ) 

Ji 
-::±' i=2,3,4 
J.'o 
1 _ ,,± _ h + h + J4 

,..0 ± 
J.'o 

J.'tJ.'; + J.'~J.'t -!t 
2JJ.'tJ.'~J.'tJ.'; 

h sign[JJ.'tJ.'~J.'tJ.';[JI - J2h 

-J4(h + h + J4 - (J.'~)2)]] (2.16) 

where Y = (J4 +J5)2_ 4(JI +J4)(h+J4)(h+J4) 2: O. The + and - solutions 

for the coefficients correspond to I'liDD} and its dual state. The inversion of the 

equations for Ii was done independently in [18]. Note that their definition of 14 

is different from the one in this thesis. 

Another nice property of the DD is that we can perform an arbitrary mea­

surement on it in space A and stay in the DD form. Since any measurement 

can be broken into a series of two outcome m easurements [19], we can look at 

the two outcome measurement Al and A2 where AI Al + A1A2 = I. Using the 

singular value decomposition , we can write A i = UiDi V where V does not de­

p end on i because the two p ositive hermitian operators AI Al and A1A2 sum to 

the identity and therefore must be simultaneously diagonalizable. The diagonal 

m atrices, Di , can be written as 

(2.17) 

where 0 ::; x, y ::; 1 [10]. Since we are only concerned with what orbit the 

outcom es are in, we may choose the Ui transformation. Also, matrices of the 
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form 

(2.18) 

where .pI and .pz are real numbers, commute wit h the Di matrices so the most 

general V can be written as 

(2 .19) 

where 0 < a < 1 and e is real. If we choose 

1 [ yo 
_x~eiO 

1 
UI 

V"Y x~e-iO ya 

'Y y2 a2 + x2(1 _ (2) (2.20) 

and similarly for U2 with (x, y) replaced with (-J1="X2, vIl7), then in going 

from I.pDD) to AII.pDD) the DD coefficients undergo the following transforma-

tions: 

-+ 
x Zy2pO 

Po - --
'Y 

PI -+ ~ ICiO(xZ 
- y2)a Jpo(l - ( 2) + ei4> 'Yv1'lf 

Pi -+ P i"! i = 2, 3,4 

<P -+ arg [e - iO (x2 - y2)aJ Po(1 - ( 2) + ei 4>'Y'Ji:ll] (2.21) 

and again similarly for A zl.pDD). Things become more complicated when <p 

becomes larger than 11: and we have a dual solution . In this case we need to 

transform to the dual state which can be quite tedious. It should also be noted 

that if we want to plug the new form for the DD coefficients into equations 

(2.14), then the normalization must be taken into account. The normalizat ion 

will just be the sum of the new forms for Po through P4. 



CHAPTER 2. PROPERTIES OF ENTANGLEMENT MONOTONES 13 

2.2.3 The Maximization Decomposition 

The Maximization Decomposition [1 2], MD, has a somewhat different way of 

decomposing the three qubit states. First we find the states , I¢A), I¢B) and 

I¢c) each defined up to an overall phase, that maximize 

(2.22) 

and apply a unitary such that I¢A) I¢B)I¢c) becomes 1000). Defining 11), up 

to an overall phase, as the vector perpendicular to 10) , then the derivative of 9 

along 11) at the point 1000), 

1
. g(IO) + Ell), 10) , 10» - g(IO), 10) , 10» 
1m 

€-tO <: 

= 2Re [(,p1 100)(0001,p)] (2.23) 

must be zero because g(IO), 10), 10» is a maximum. Since we still have phase 

freedom in 10) and 11) this implies that (,pll00) = a and similarly for (,p laID) 

and (,p1001). Using the remaining phase freedom in the choice of 10) and 11 ), 

we can eliminate all but one phase leaving us with 

I,pMD) = aei<P IO OO) + blOll ) + c1101) + dlllO) + filII ) (2.24) 

where a2 + b2 + c2 + d2 + f 2 = 1, 0 :s ¢ :s 27T , 0 :s a, b, c, d, f and b, c, d, f :s 
a. Note that g(lOA )' lOB ), lac» = a2 Unfortunately, the parameters as they 

are given above are not in 1 to 1 correspondence with the orbits. While t he 

decomposition is generically unique , there are choices of the parameters within 

the given ranges t hat are not t he result of the decomposition. For example, 

states with a 2 = ~ + €, b2 = c2 = d 2 = f2 = ~ - ~ and any choice of ¢ have 

(2.25) 

for € :s 0.014. Hence, these choices of the parameters are not a result of the 

decomposit ion . The true ranges of the parameters that would give a 1 to 1 

correspondence with the orbits are as yet unknown. 
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A nice property of the MD is that is it symmetric in particle exchange. 

Exchanging t he particles is equivalent to exchanging b, c and d. This makes the 

permutation properties of the polynomial invariants easier to see when written 

in terms of the MD coefficients. They take the following form: 

It 1 - 2 ((a 2 + d2)(b2 + c2) + a2 f2) 

h 1- 2 ((a 2 + c2)(b2 + d2) + a 2 f2) 

fa 1 - 2 ((a2 + b2)(c2 + d2) + a 2 f2) 

I. 1 - 3(a2 (1 - a2
) - Wc2 + b2d2 + c2d2 )(1 - 2a2) 

_ 2b2c2 d2 - 2abcdf2 cos(q,)) 

15 a 2
1 af2 + 4bcde i <P 12 

Is sign[abcdf2sin(q,)(a2(1 - 2a2)(1- 2a2 - f2) 

_4b2c2d2 - 2abcdf2 cos(q,))]. (2.26) 

It is apparent from these equations that It, h and fa are symmetric in permuta-

tions of particles AB, AC and BC respectively and 14 , Is and Is are symmetric 

in any permutation of the particles. Unfortunately, the equations in (2.26) are 

not as easy to invert as those in (2.14). In fact, just calculating the MD co­

efficients for an arbitrary state is not an easy task, as it is in the case of the 

polynomial invariants and the DD coefficients, since determining the unitaries 

for the MD involves maximizing over a six-dimensional space with typically 

many local maxima. 

One more interesting fact about the MD is that 1 - a 2 is a non-increasing 

EM. We know this because in [17] it is shown that a function of the form 

(2.27) 

where r x is a kx-dimensional projector on system X = A, B, C, IS a non-

decreasing EM and E I,l,l(11/») = a2. The EM 1 - a2 can be shown to be 
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independent of the T from equation (2.12) by looking at the gradient vectors of 

the T, 1 - a2 and N = a2 + b2 + c2 + d2 + f2 at, for instance, the point a = 3, 

b, c, d, f = 1 and ¢ = ~. Since the gradient vectors span a six-dimensional space, 

1- a2 cannot be written in terms of the T and N. The problem with using 1- a2 

as an EM is that one needs to find the global maximum of a six-dimensional 

space with many local maxima to calculate it . This is a difficult task for most 

states. 

2.3 Fifth Independent EM 

In section 2.2 it was shown that all EMs must be invariant under LV and hence 

are determined by the orbit of the state. For three qubit states this means that 

EMs are a function of only the polynomial invariants , DD coefficients or MD 

coefficients. In fact, this determination is unique. 

Theorem 1 The set of all EMs for any multipartite pure state, 11/», uniquely 

determine the orbit of the state. 

Proof. Suppose two states I1/» and I¢) in 11.1 0 11.2· .. 0 1I.n have the same 

values for the EMs but lie in different orbits. We know by using equation (2.4) 

that 

P(I 1/» --+ I¢» = P( I¢) --+ 11/») = 1 (2.28) 

so I1/» can be transformed to I¢) (and vice versa) by n-party LOCC, n-LOCC, 

with probability 1. Since EMs are non-increasing with any n-LOCC, they must 

remam constant during the entire transformation from I1/» to I¢) (and vice 

versa). Also, we know that any EM between a system X = A, B, .. . and the 

rest of the systems thought of as one (e. g., between Band (ACD .. . », I will 

call these EMs 2-EMs, is also an EM for multipartite states. This is because 

any n-LOCC on the multipartite state is also a 2-LOCC between X and the rest 
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of the systems, since the 2-EM is non-increasing over 2-LOCC it must also be 

non-increasing over n-LOCC. In particular, the sum of the lowest k eigenvectors 

of the reduced density matrices, 

k 

Ef( I'ifi» = I>T(px(I'ifi»), (2.29) 
i =l 

(i. e., the 2-EMs in equation (2.2» must be EMs. So the Ef(I'ifi» must remain 

unchanged and hence the spectrum of Px is unchanged during the transforma­

tion from l'ifi) to IqI). In particular , a measurement on space X, given by Al and 

A 2 , must be such that 

px ( ~») = u px (I'ifi» Ut (2.30) 

where N is the normalization. The only way this can be satisfied is if 7Ft is 

a unitary matrix. This means that l'ifi) and IqI) are uni tarily equivalent which 

contradicts our original supposition. 0 

Since we know there are 5 parameters that determine the orbit of a three 

qubit state, then by theorem 1 there must be 5 independent, continuous EMs. 

To the best of the author 's knowledge, the only 4 known independent continuous 

EMs that don't require a difficult maximization over a multidimensional space 

are the four r EMs defined in equation (2.12). Any candidate for the fifth 

independent EM must depend on 14 since the r are invertible functions of 11, 

12 , h and Is respectively. The following function fulfills that criterion: 

(2.31) 

and numerical results suggest that it is an EM. After generating over 300,000 

random states and applying a random operation to each of them, the inequality 

in equation (2.5) was never violated by (J' ABC . Also , note that (J' ABC is sym­

metric in particle permutations as is r ABC. For the duration of this paper I will 

assume that (J' ABC is an EM. Indeed, it may be that there is a set of measure 
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zero or perhaps just a very small measure for which" ABC is not a monotone and 

my numerical test didn't explore this space but there must exist some function 

of the polynomial invariants which is independent of the T S and is an EM. For 

it to be useful in improving our upper bound for P (Iv» --t 11>}) , there should be 

pairs of states Iv>} and 11>} such that 

and I have found such states numerically. The largest value of 

-," A:.:.:B:,,::C-7( I,.:,.V>;+}) _ min _T _( Iv>_}_) 
"ABc(I1>}) T T(I1>}) 

(2.32) 

(2.33) 

that I found in my limited number of examples was 0.01 and I was able to find 

examples of stat es for which T (Iv>}) / T (11)}) is greater than one for all T and 

"ABC( IV>})/ "ABc(I 1>}) is less than one. 

2.4 Other EMs and the Discrete Invariant 

T he five independent continuous EMs, T(AB)C , T(AC) B , T(BC)A ' TABC and" ABC, 

can easily be inverted to find h - Is but to completely determine the orbit of 

a state we must also have an EM that will give us the value of the discrete 

invariant 16 • This is equivalent to finding an EM that is not the same for a 

state and it complex conjugate state. Note that Ir , ... Is and hence t he T and 

" ABC do not change when a state is conjugated, but by looking at any of the 

sets of LV invariants we can see that generically a state is not LV equivalent 

to its conjugate. By looking at equation (2.4) we can see that this implies that 

there must be EMs that are not the same for the generic state and its conjugate. 

It is also easy to see that for any operation that takes a st ate IV>} to its conjugate 

I ~} with probability p, there is an operation that takes I ~} to Iv>} wit h the same 

probability. So, for a generic state IV>} there must be an EM that goes down for 
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the operation I'¢»~ ~ I '¢»~ and a similar one that goes down the same amount for 

\~) ~ \'¢». So, EMs of the following form must exist: 

{ 

v+v' 
v± (\'¢») == v 

±h == 1 
(2.34) 

o.w. 

where v and v' are functions of T(AB) C, T(AC)B, T(BC)A, T ABC and (j ABC. 

Also, from [10] we know t hat there are two classes of three-part entangled 

states (i. e., states with T(AB) C, T(AC)B, T(BC)A > 0) that can be converted into 

each other with some non-zero probability within the class and zero probability 

between the classes. Namely, the GHZ-class which contains 

\GHZ) == ~ (\000) + \lll )) (2.35) 

and has non-zero TABC and the W-class which contains 

\W) == Js (\001) + \010) + \100)) (2.36) 

and has TABC == O. Looking again at equation (2.4), we see that TABC tells 

us that P(\,¢>W) ~ \'¢>GHZ)) == 0 but none of the previously defined EMs tell 

us that P(\'¢>GHZ ) ~ \'¢>W)) == o. Since the only way to get P(\ '¢>GHZ ) ~ 

\'¢>W)) == 0 is to have an EM that is finite for GHZ-class states and infinite 

for W-class states or zero for GHZ-class states and non-zero for W-class states , 

such an EM must exist. 

2.5 Finding a Minimal Set 

Since T(AB) C, T(A C)B, T(BC )A, TABC, (jABC and v± determine the orbit of the 

state, all other EMs must depend on them. A fairly general way to create new 

EMs from known EMs is to use what I will call f-type functions. 

D efinition 1 A function f : SeWn ~ W is an f-type function if it satisfies 

the following: 
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1. f(O) = 0 

2. if x; ~ Yi for all i = 1,2, ... n then f(i) ~ fUJ) for i, if £ S 

3. f(pi + (1 - p)ilJ ~ pf(i) + (1 - p)f(ilJ for any i, if E S and 0 :S p :S 1. 

For a set of EM, {Ed , we h ave 

Ei(I",» ~ pE; ( Aj;») + (1 - p)E; (~) (2.37) 

for any m easurement A 1 , A2 and any state I"'). SO, we have 

f[E(I"'»] > f [PE ( Aj;») + (1 - p)E (~) ] 

> pf [E (Aj;»)] + (1- p)f [E (J;I~~)] 
(2.38) 

where the first inequality comes from property 2 and the second comes from 

property 3. Hence , f(E1, ... , Em) is also an EM. We can show that any EM 

f(E1, ... ,Em ) that is an f -type function of monotones E 1, ... E m does not 

modify the upper bound on P(I"') -+ 1<1>)) given by 

(I) 1"-» . E; (I"'» 
P '" -+ 'I' :S n:,m E; (1<1>)) . 

First for the one-dimensional case. 

Lemma 1 If f(x) is an f-type fun ction with n = 1, then 

f(x) . {x } 
f (y) ~ mm y,l 

for any x, y £ S. 

Proof. 

Case 1 For x ~ y from property 2 we know f( x) ~ f(y) and hence 

f( x ) > 1. 
f(y) -

(2.39) 

(2.40) 

(2.41) 
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Case 2 For x < y if we choose p = ~ f [0,1), then we know from properties 1 

and 3 that f(py) 2: pf(y) and so 

f(x) > ~. 0 
fry) - y 

(2.42) 

For n dimensions we have the following theorem (proved with S. Daftuar 

and D. Whitehouse). 

Theorem 2 If f(x) is an f-type junction, then 

fry) . {Xi } -(_) 2: mm -,1 f y Yi 
i=1,2, ... n (2.43) 

faT Y, Yf S. 

Proof. Let 

. {Xi} c=mm -
Yi 

(2.44) 

then we have 

Case 1 If c 2: 1 then from property 2 fry) 2: frY) and so 

fry) 
frY) 2: L (2.45 ) 

Case 2 If c < 1 then define 

Xi 
Zi == - i== 1,2, ... n 

c 
(2.46) 

and g(T) = f(TZ). Notice that g(1') is an f-type function with n = 1 and 

hence 

or substituting in f we have 

g( c) 
-() >c 9 1 -

fry) 
f(i) 2: c. 

Using Zi 2: Yi and property 2 we have 

fry) 0 
fry) 2: c. 

(2.47) 

(2.48) 

(2.49) 
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For t hree-qubit states if we take the minimum of E(I1/»)/E(I¢» over E = 

{7(AB)C, 7(AC)B, 7(BC)A' 7 ABC, (J" ABC, v±} we are actually taking the minimum 

over the infinite set of all J-type functions of E. Although from theorem 1 we 

know that all EMs must be a function of E, it is possible that there exist EMs 

that are not J-type functions of E. These EMs could cause P(I 1/» -+ I¢» to be 

lower than the minimum of E(I1/»)/E(I¢» over E. The EM mentioned at the 

end of section 2.4 is an example of such an EM. 

2.6 Conclusions and Further Research 

Theorem 1 along with theorem 2 implies that there should be a (not necessarily 

finite) minimal set of EMs, M, for which all EMs for three-qubit states or simi­

larly for any type of multipartite states are J-type functions of M. I conjecture 

that such a minimal set should be simple since the J-type functions seem to 

be a rather general way of creating EMs that are functions of other EMs. The 

difficult part seems to be finding the EMs that are minimal and showing that 

they are minimal. Using numerical results it seems that the 7 may be minimal. 

I looked at functions of the 7 that are almost but not quite J-type such as 71.01 

and numerically tested whether they are EMs or not. None of them were EMs. 

I cannot say the same for (J" ABC and definitely not for v± since I do not have 

an explicit form for the v. 

There is further research that may help these problems. If one could invert 

the equations in (2.26) to write a, b, c, d, J and ¢ in terms of h, ... , Is that 

would allow us to calculate the EM 1 - a2 not to mention find the ranges for 

and calculate the values of a, b, c, d, J and ¢. The EM 1 - a2 could be used 

to replace (J" ABC, or perhaps as an addition to E, and may prove more useful 

than (J" ABC. As far as finding the minimal EMs and showing that they are 

minimal, the arbitrary measurement on the DD at the end of section (2.2.2) 
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may be useful since it allows us to look at the value of It , . .. , h before and 

after an arbitrary measurement on an arbitrary state with far less parameters 

than if we didn't take out the LU freedom. Also, it may be able to t ell us 

the maximal probability of transforming the general complex state I1/» to its 

conjugate state l,p) and this is a crucial piece of information that is needed to 

calculate V i in equation (2.34) . Unfortunately, most of these tasks involve trying 

to solve nontrivial equations or systems of equations with many variables which 

can be difficult or even impossible. 
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Chapter 3 

Generalized Quantum 

Search 

3.1 Introduction 

The field of quantum computing has undergone a rapid growth over the past few 

years . Simple quantum computations have already been performed using nuclear 

magnetic resonance [20, 21 , 22, 23 , 24, 25] and nonlinear optics technologies [26, 

27]. Recently, proposals for specialized devices that rely on quantum computing 

have also been m ade [28]. Such devices are far from being general-purpose 

computers, nevertheless, they constitute significant milestones along the road 

to practical quantum computing. 

In tandem with these hardware developments, there has been a parallel de­

velopment of new quantum algorithms. Several important quantum algorithms 

are now known [29, 30, 31, 32, 33, 34]. Of particular importance is the quan­

tum algorit hm for performing unstructured quantum search discovered by Lov 

Grover in 1996 [31]. Further analysis of this algorithm is given by Jozsa [35] 
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and an optical implimentation is given by K wiat [36]. Grover's algorithm is able 

to find a marked item in a virtual" database" containing N items in O( v'Jii) 

computational steps. In contrast, the best classical algorithm requires O( N /2) 

steps on average, and O(N) steps in the worst case. Thus Grover's algorithm 

exhibits a quadratic speedup over the best classical counterpart . 

Although Grover's algorithm exhibits only a polynomial speedup, it appears 

to be much more versatile t han the other quantum algorithms. Indeed, Grover 

has shown how his algorithm can be used to speed up almost any other quantum 

algorithm [37]. More surprisingly, even search problems that contain " structure" 

in the form of correlations between the items searched over often reduce to 

an exhaustive search amongst a reduced set of possibilities. Recently, it was 

shown how Grover's algorithm can be nested to exploit such problem structure 

[32]. This is significant because NP-hard problems, which are amongst the most 

challenging computational problems that arise in practice, possess exactly this 

kind of problem structure . 

In order to appreciate the full versatility of Grover's algorithm, it is impor­

tant to examine all the ways in which it might be generalized . For example, 

whereas the original Grover algorithm was started from an equally weighted 

superposition of eigenstat es representing all the indices of the items in the 

database, a natural generalization would be to consider how it performs when 

started from an arbitrary initial superposition instead . This refinement is im­

portant, because if Grover's algorithm is used within some larger quantum com­

putation, it is likely to have to work on a arbitrary starting superposition rather 

than a specific starting eigenstate. Similarly, the original Grover algorithm uses 

a particular unitary operator , t he Walsh-Hadamard operator, as the basis for a 

sequence of unitary operations that systematically amplifies the amplitude in the 

target state at the expense of the amplitude in the non-target states. However, 
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it is now known that this is not the best choice if there is partial information 

as to the likely location of the target item in the database. In such a situation 

a different unitary operator is desirable [38]. Hence, it is equally important to 

understand how Grover's algorithm performs when using an arbitrary unitary 

operator instead of the Walsh-Hadamard operator. 

Each of these refinements have been analyzed in detail separately: Biham 

et al. have considered the case of an arbitrary starting superposition [39], while 

Grover considered the case of an arbitrary unitary operator [38]. In this pa­

per, we present the analysis of the fully generalized Grover algorithm in which 

we incorporate both of these effects simultaneously. Our goal is to determine 

the exact analytic formula for the probability of the fully generalized Grover 

algorithm succeeding after n iterations when there are ,> targets amongst N 

candidates. Having obtained this formula, we will recover the Biham et al. and 

Grover results as special cases. We will then show that the optimal strategy, on 

average, for using the fully generalized Grover algorithm consists of measuring 

the memory register after about 12% fewer iterations than are needed to obtain 

the maximum probability of success. This result confirms a more restricted 

case reported in [40]. Finally, we show how to boost the success probability and 

reduce the required coherence time by running a society of k quantum searches 

independently in parallel. In particular, we derive an explicit formula connect­

ing the degree of parallelism, i.e., k, to the optimal number of iterations (for 

each agent in the society) that minimizes the expected search cost overall. We 

then derive the expected cost of optimal k-parallel quantum search. 
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3 .2 Grover's Algorithm 

The problem we have to solve is the following. Given a function f(Xi) on a set 

X of input states such that 

if Xi is a target element 
(3.1) 

otherwise 

How do we find a target element by using the least number of calls to the 

function f(x;)? In general, there might be r target elements, in which case any 

one will suffice as the answer. 

To solve the problem using Grover's algorithm we first form a Hilbert space 

with an orthonormal basis element for each input Xi EX. In this paper, we refer 

to the basis of input eigenstates as the measurement basis. Let N = IX I be the 

cardinality of X. Without loss of generality, we will write the target states as Iti ) 

(with i = 1", .r), and the non-target states as Iii) (with i = 1,···N - r). T he 

function call is to be implemented by a unitary operator that acts as follows: 

IXi) ly) -+ IXi)l y Ell f(x;) (3.2) 

where Iy) is either 10) or 11). By acting on 

(~ lil l; ) + 1; kj Itj») ~ (10) - 11 ») (3.3) 

with this operator we construct the state 

(3.4) 

where the r measurement basis states It i) are the target states and the N - r 

measurement basis states Iii) are the non-target states . If we now disregard the 

state 7:; (10) - 11 ») then all we have done is to invert the phase of the target 

states . Hence, the operator we have achieved is equivalent to the operator 
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r 

1- 2 L li i)(ii l (3.5) 
i = l 

although we emphasize that this operation can be performed without knowing 

the target states explicitly but only through the knowledge of f(x). 

Next we construct the operator Q defined as 

(3.6) 

where la) can be thought of as the state with respect to which an "inversion" 

is performed. Different choices of la) give rise to different unitary operators for 

performing amplitude amplification. In the original Grover algorithm, the state 

la) was chosen to be 

la) = _1 L Ix) 
v'N xEX 

(3.7) 

and was obtained by applying the Walsh-Hadamard operator, U, to a starting 

state Is), i.e., la) = Uls). Hence, the operation 2Ia)(al-1, which Grover referred 

to as "inversion about the average," is equivalent to -U I,Ut with U being the 

Walsh-Hadamard operator and Is being 1 - 2Is)(sl. By knowing more about 

the structure of the problem, we can choose other vectors la) that will allow us 

to find a target state faster. Techniques for doing this are given in [37]. 

If we write out Q, we get 

r N-r 

Q = L Iti)(ti 1- L Ilj )(lj 1+ 2Ia)(al- 4vla)(tl (3.8) 
j=l 

where Ii), the normalized projection of la) onto the space of target states, is 

given by 

1 r 

It) = - L (ti la) Iti) 
v i=l 

r 

v2 = L I(ti laW 
i=l 

(3.9) 
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We can see from this that Q only acts non-trivially on the space spanned by 

la) and It). We can make these vectors an orthonormal basis for this space by 

using 

1 
II) = ~ (Ia) - vlt») 

1 - v2 
(3.10) 

instead of la). The vector II) is just the normalized projection of la) onto the 

space of non-target states. The rest of the space (i. e., the space orthogonal to 

It) and II») can be broken up into the space of target states (ST) and non-target 

states (SL)' We can now write Q as 

Q = cos ¢ (It)(tl + 11)(11) + sin ¢ (It)(II- 11)(tl) + IT - h , (3.11) 

where IT and h are the identity operators on (ST) and (SL), respectively, and 

¢ == arccos [1 - 2v2]. From this we can see that Q is just a simple rotation 

matrix on the two-dimensional space spanned by II) and It), and acts trivially 

on the rest of the space. The operator Q has been independently shown by 

Jozsa [35] to be an exact rotation in the special case of one solution and with 

la) given by equation (3.7). 

An arbitrary starting superposition Is) for the algorithm can be written as 

(3.12) 

where the states 1st) and lSI) (which must have a norm less than one if the 

state Is) is to be properly normalized overall) are the components of Is) in (ST) 

and (Sd respectively. Also, a, fJ and b are positive real numbers. After n 

applications of Q on an arbitrary starting superposition Is), we have 

Qnl s) = (acos(n¢) +,8eib sin(n¢) It)+(,8eibcos(n¢) - asin(n¢) 11)+lst)+(-1)n lsl). 

(3.13) 
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If we measure this state our probability of success (i.e., measuring a target state) 

will be given by two terms. T he first term is t he squared magnitude of Qn ls) 

projected into the space Sr. It is equal to (s tlSt) and is unchanged by Q. The 

second term is the squared magnitude of the component of It) which is given by 

g(n) == l(t IQnls)12 

= \ 0: cost n,p) + ,8eib sin( n,p) \2 

= a't{3' + "';{3' cos(2n,p) + 0:,8 cos (b) sin(2n,p) 

= a't{3' - ~ \0:2 + ,62e2ib \ cos(2n,p + ,p) 

(3.14) 

where ,p == arccos [1"C;,::.bl] ' This is the term t hat is affected by Q , and is 

the term we wish to maximize. The probability of success after n iterations of 

Q acting on Is) is thus 

p(n, I ', N) = (St ISt ) + g(n). (3.15) 

Assuming that n is continuous (an assumption that we will justify shortly), the 

maxima of g(n), and hence the maxima of the probability of success of Grover's 

algorithm , are given by the following: 

-,p + (1 + 2j)rr 
nj = 2,p j = 0,1,2, . (3.16) 

The value of g(n) at these maxima is given by 

(3.17) 

In practice, the optimal n must be an integer and typically the n/s are not 

integers. However, since g(n) can be written as 

(3.18) 
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around nj and most interesting problems will have v « 1 and hence ¢ ~ 2v « 1, 

simply rounding nj to the nearest integer will not significantly change the final 

probability of success. So, we have 

( ) a2+/32 112 /322ib l (I) 0(2) P n max , r , N = 2 +"2 a + e + St St - v (3.19) 

as the probability of measuring a target state after n max applications of Q. 

3.3 Recovering the Special Cases 

As a check on our fully generalized formula for the probability of success after 

n iterations, we attempt to recover the corresponding formulae obtained in the 

analyses of Biham et al. (for a fixed unitary operator and an arbitrary starting 

superposition) [39] and Grover (for an arbitrary unitary operator and a fixed 

starting superposition) [38]. 

In the case of Biham et aI., the starting state is arbitrary, but the averaging 

state I a) is given by 

1 
la)= - L Ix). 

VN xE-l' 

(3.20) 

In this case 

v - rr -YN 

It) ="* I::~=1 Iti ) (3.21) 

II) = v'~-r I::;:~r Iii)' 

In the analysis of [39] they use /,;(0) and /(0) to represent the average amplitudes, 

in Is), of the target and non-target states respectively, and (Tk and (Tl to represent 

the standard deviations of those amplitudes. With some algebra one can see 

that the following relationships connect our notation to theirs: 
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Figure 3,1: Plot of the probability of success of Grover's algorithm after n iter-

ations of amplitude amplification when there are " solutions amongst N = 64 

possibilities. White regions correspond to probability 1, black regions corre-

spond to probability 0, Note that the success probability is periodic in the 

number of amplitude amplification iterations for a fixed number of solutions, 
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a -+ k(O )yIr 

f3e i b -+ 1(0)'" N - r 

(st lst) -+ rO"~ 

(stlsl ) -+ (N - r)O"l 
(3.22) 

¢; -+w 

1j; -+ 2Re[c/>] 

n -+t 

no -+T. 

By substituting these rela t ionships into equations (3.14) , (3.16) , and (3.19) , one 

reproduces the results of [39]. 

The second special case, in which la) (with respect to which inversion is 

done) is an unknown normalized vector , while Is) is given by 

Is) = la) = ~Il) + vlt) (3.23) 

was considered by Grover. Hence, a = v, f3 = v'f=V2 and b = O. Also, 

1st) = lSI) = O. These substitutions lead to 1j; = ¢; . Plugging this into equations 

(3. 16) and (3.19) , we get 

(3.24) 

and 

(3.25) 

which agree with the results of [38]. If we examine equation (3.15) in this case, 

we get 

p(n) = 1 - cos«l + 2n)¢;) = sin2 «1 + 2n)¢;/2) 
2 

(3.26) 
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as the probability of measuring a target state after n iterations of Q. 

3.4 Application of the Formula for p(n) 

Next, we show how to apply our analytic formula for the probability of success 

after n iterations , P(n), to slightly speed up the quantum unstructured search 

algorithm. Although the speedup we obtain is not dramatic, it is worth making 

the point that it is possible at all as Zalka has proved, correctly, that Grover's 

algorithm is exactly optimal [41]. Many people have assumed, therefore, that 

it is impossible to beat Grover's algorithm. However, by combining techniques 

of quantum computing with those of classical computing , we show that it is 

possible to do a little bit better than Grover's algorithm on average. The result 

we report was apparently discovered previously by Boyer et al. [40] and later 

by Zalka [42] in the case where la) is a uniform superposition [as in equation 

(3.7)]. It is shown here to persist for the more general case when Is) is arbitrary 

but equal to la) which is the case treated in [38]. 

We consider a punctuated quantum search algorithm that works as follows: 

Algorithm: Punctuated Quantum Search 

1. Run the quantum search algorithm for n iterations. 

2. Read the memory register. 

3. If the result is a target state halt; else, reset the register to the starting 

superposition and return to step 1. 

The average time, Tavg(n), it will take to find a target state if we stop the 

generalized quantum search algorithm after n iterations of Q is 
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Tavg(n) = L~l (1- p(n))i-l p(n) in 

=pf,;-J (3.27) 

_ 2n 
- l - cos[(1+2n)¢I' 

We can find the optimal strategy, i.e., the best number of iterations to use before 

we attempt to measure the register, by minimizing the expected running time 

Tavg. To do this, we set the derivative of Tavg to zero and solve for n = nopt: 

oTavg 2 - 2 cos[(l + 2n)¢]- 4n¢ sin[(l + 2n)¢] 
--= 2 =0. 

on (1 - cos[(l + 2n)¢]) 
(3.28) 

Typically, n will be much larger than one, so we can make the approximation 

(1 + 2n)!::: n¢ == x, so that we obtain 

1 - cos 2x = 2x sin 2x 

2 sin 2 x = 4x sin x cos x (3.29) 

2x = tanx. 

which gives Xopt = 1.1656 as the lowest positive solution. This solution corre­

sponds to the minimum of the function. Hence the optimal value of n is 

Xopt 1.1656 
nopt ::: T = --¢-. (3.30) 

This value of n gives a probability of success of 

p( nop,) = sin2 Xopt = 0.8446 (3.31) 

at each measurement, and corresponds to an average number of iterations of 

1 Xopt 
Tavg(n op,) ::: A. . 2 

'+' SIn Xopt 

1.3801 
¢ 

(3.32) 

This must be compared to 2rr¢ = 1.5;08 iterations if we run Grover's algorithm 

until the probability is maximal. Thus, we get a 12% reduction of the average 

computation time by making use of a punctuated algorithm. 
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It is interesting to note that, if we restrict the analysis some more to the 

case where la) is a uniform superposition and where there is only one target 

state, then we have ¢ = 2/VN, so that Tavg(nopt) ~ 0.6900VN. This is faster 

than the lower bounds in [43], [44], [40], and [41], but we are using a somewhat 

different model. They are looking at the minimum time it would take without 

measuring to find a solution with certainty up to errors from rounding n max 

to the nearest integer. Instead, the model we use here allows for punctuated 

measurements and resets of the quantum search algorithm. Nevertheless, the 

punctuated quantum search algorithm is faster on average. Note that we have 

assumed that the time it takes to measure, check if a solution was reached , and 

reset the algorithm is negligible. This is reasonable as checking a solution only 

requires one function call. 

The punctuated quantum search algorithm has another advantage in that it 

is less sensitive to decoherence. If we wait until we have the maximal probability 

of measuring a target state, then we must maintain coherence for 1.5;08 steps as 

compared to only 1.~55 steps for the fastest measure and restart method. This is 

because we do not need to maintain coherence through the measurment stage of 

this method. In fact, the punctuated search that takes the same number of steps 

on average as the standard or maximal probability method (i.e., 2"'" = 1.5;08 

steps) need only maintain coherence for 4"'" = 0 .7:54 steps at a time. This 

represents only 50% of the coherence time required in the standard Grover 

method, and corresponds to waiting for a 50% probability of success and then 

measuring. 

3.5 k-Parallel Quantum Search 

A way to speed up Grover's algorithm still further is to have a society of k 

computational agents all running Grover's algorithm independently at the same 
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time. This is promising because the standard deviation 

(J"T = p~) V[1 - p(n)] (3.33) 

in the computation time of punctuated quantum search is fairly large, and hence 

having multiple searches running may give a considerable speed up. 

Suppose that we know that there are exactly 7' solutions amongst N can­

didates. Given p(n, r, N), the probability of success for a single agent after 

n iterations, we can boost the success probability by using k agents acting in 

parallel. In particular, the probability that at least one agent, in a society of 

k independent agents, succeeds after each agent has undergone n iterations is 

given by 

pdn) = 1 - (1- p(n))k . (3.34) 

Thus, the expected cost, T~e~ , of performing k-parallel quantum search is given 

by 

co 
n 

TJ~b(n) = j;Pk(n)(1- pdn)F-
1 

j n = Pk~n) = 
1- cos2k ((1 + 2n)¥) 

(3.35) 

As in equation (3.27) we can find the value of n that minimizes the expected 

aTi~~(n) 
cost. To find the mimimum, we find where an is equal to zero. This 

derivative is given by 

(k) 8Tavg (n) 
8n 

1 - cos2k ((1 + 2n) ¥) (1 + 2k nq., tan ((1 + 2n) ¥ ) ) 
(1- cos2k ((1 + 2n)¥)f 

(3.36) 

For N « 1, i.e., when there are very few solutions amongst the items searched 

over, we have q., = arccos(1 - ~) »J 2VJi. As before, substituting x == nq., ::: 

(1 + 2n)q.,/2 and realizing that n » 1, we obtain 

1- cos2k( X) (1 + 2kx tan(x)) 

(1- cos2k(x))2 
(3.37) 
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In order to find the mIllunum, we thus have to solve the transcendental 

equation 

1 - cos 2k(x) = 2k X cos2k(X) tan(x). (3.38) 

The variable x < 1 provided n < ! ( j!i- - 1). We know that we can solve the 

problem with near certainty if we iterate Grover's algorithm to the maximum 

probability state in O(!kj!i-) iterations. Hence, for a large enough number of 

parallel search agents, k, there is a reasonable chance that the optimum number 

of iterations, nopt('" N, k) at which the expected search cost is minimized, sat­

isfies the criterion that x < 1. We therefore expand equation (3.37) as a series 

approximation in x about x = O. Actually, it appears that x scales as O(1/Vk), 

so it tends to 0 as k tends to infinity. If we make such an expansion up to order 

x 2
, we get 

8Ti~b(n) ~ _1_ (-1 3k - 1.2 5k
2 

- 1.4 O( 6)) 
8n - kx2 + 6 x + 20 x + x . (3.39) 

A aT(k) (n). d d .. 2' bId I' s "a~ = 0 IS a secon -or er equatIOn III x , It can e so ve ana ytlcally. 

Three of the roots are non-physical, but one corresponds to an approximation 

to the true minimum of Ti~1( n). Specifically, we find that Ti~b (n) is minimized 

when x is given by 

Xopt :::::: 
5 - 15k + V5v -31 - 30k + 225k2 

-3 + 15k2 (3.40) 

We note that x < 1 for all k :::: 2, so that the derivation of the optimum formula 

is self-consistent. This expression for Xopt can be expanded in 1/kl / 2 , giving 

Xopt c::: 1.1118 k;/2 + 0.0829 k;/2 + 0 (k;/2) . (3.41) 

Using 1> c::: 2v = 2J7>/N and equation (3.41), one gets the corresponding ex-

pression for nopt = x opt!1>, i.e., the predicted optimal number of iterations for 
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Figure 3.2: Plot of the optimal number of iterations to use in k-parallel quantum 

search as a function of the degree of parallelism k for r = 1 to r = 5 solutions (top 

to bottom in the figure) for the case of a database of size N = 220 . The dashed 

curves correspond to the optima as predicted by our approximate formula for 

nopt('" N, k). The points correspond to the exact optima obtained by numerical 

methods. 

each of k quantum searches acting independently in parallel. In Fig. 2, this 

formula is shown to be in very good agreement with the exact result, obtained 

by numerical optimization. 

Now, if we are only interested m the scaling in Nand k of the optimal 

number of iterations and expected computation time, it is enough to consider 

the expansion of &T5;~(n) [equation (3.39)] up to order 0(1). This simply yields 

(3.42) 
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This formula is only valid at the limit of large k, when Xopt tends to zero. The 

corresponding expression for the optimal number of amplitude amplification 

iterations is 

(3.43) 

We can then estimate the expected cost for optimal k-parallel quantum search: 

(k) _ .!:. Xopt 
Tavg(n,r,N) - ", _ 2k(. ). 

v' 1 cos Xopt 
(3.44) 

Again, using the series expansIOn around x 0, that IS , xj(1 - COS 2k(X)) = 

I/(kx) + O(x), we get 

(k) 1 1 ( 1 ) Tavg(n,r,N) c:::' -:;;-k c:::' 0 ,,' 
'I' Xopt ¢vk 

(3.45 ) 

Remembering that ¢ Rj JrIN, we conclude that Tavg scales as 0 (jTi;). Thus, 

using k agents in parallel simply amounts to having each of them performing a 

search in a restricted space of size Nlk, so that the gain in computation time 

is of order 0(4). Interestingly, this gain is not as good as when parallelizing 

a classical algorithm.1 Accordingly, the . cumulative time Tcumul = kTavg , i.e., 

the sum of the time that all agents spend on quantum search, is increased by a 

factor 0(4) with respect to the case of a single agent (k = 1). 

Our results have implications for the design of prototypical quantum com­

puters. If it is possible to maintain coherence indefinitely, for example, by 

building fault-tolerance into the computer and by using quantum error correc-

tion schemes, our analysis suggests that it is better to use a single agent quantum 

search. This strategy minimizes the net computational resources expended in 

solving the problem. However, if coherence time is limited, as it most likely 

lIn the latter case, a computation time of order O(N/r) is ideally reduced to 0 (~) by 

using k agents in parallel, so that one has a speedup of order O(k). 
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will be in prototypical quantum computers, then a parallel punctuated quan­

tum search strategy becomes necessary, with the degree of parallelism set by 

the desired computation time and desired probability of success. The computa­

tional time can be made small by making the degree of parallelism sufficiently 

large but, of course, at the expense of greater net computational resources being 

expended on solving the problem. 

Let us now consider the situation where the coherence time T is fixed by 

some practical considerations, regardless of the value of Nand ". The number 

of agents k must then be of the order of 0 (If,-) for the parallel time not 

to exceed the coherence time. This is an interesting result as it implies that 

the number of agents decreases quadratically for an increasing T. The classical 

counterpart would be a linear law only.2 On the other hand, the bad result 

comes if we reexpress the cumulative computation time for k agents with this 

value of k: 

Tcumul = kTavg = kr = 0 (~) . (3.46) 

This means that we lose the square root speedup of Grover's algorithm (i.e., 

T,erial does not scale as VN) whenever the coherence time is fixed. In order 

to exploit Grover's quantum speedup, the coherence time T must necessarily 

increase as VN, i.e., as the square root of the size of the search space. 

3.6 Conclusions 

In this paper, we have shown how to generalize the analysis of unstructured 

quantum search to incorporate the effects of an arbitrary starting superposition 

and an arbitrary unitary operator (or, equivalently, arbitrary state la») simulta-

2 Classically, if the parallel computation time for each agent is restricted to T I then the 

number of agents k should scale as 0 (;:,..). 
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a replacement for it. Our results in section refparaQsearch exposes precisely the 

space/time tradeoff between quantum coherent computing and classical paral­

lelism, at least in the context of unstructured quantum search. 

Note: Some of the results obtained in this paper have been derived indepen­

dently by C. Zalka in a revised (and unpublished [42]) version of Ref. [41]. 
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Chapter 4 

Reduction Criterion for 

Separability 

4.1 Introduction 

The state of a quantum bipartite system AB is described as separable (or classi­

cally correlated) if it can be obtained by two parties A and B that prepare their 

subsystem according to some common instructions (see, e.g., [45,46]). Mathe­

matically, this means that the density operator p characterizing the state of the 

bipartite system can be written as a convex sum of product states, that is 

(4.1) 

where the weights Wi satisfy Ei Wi = 1 and 0 ::; W i ::; 1. The Wi'S can be viewed 

as the probability distribution of a classical random variable that is known to 

both parties A and B and used by them to prepare their subsystem. Namely, 

if the subsystem A (and B) is prepared in state pjA) (and piE)) when the 

classical variable takes on value i, the state of the joint system AB is given by 
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equation(4.1). A separable state p satisfies several interesting properties. The 

joint statistics of any pair of local observables 0 A and OB (measured separately 

on each subsystem) can be described classically, based on an underlying global 

"hidden" variable. For example, the quantum expectation value of the product 

OAOB is given by 

(4.2) 

where (a)i = Tr[p;A)OA] and (b) i = Tr[p;B)OB]. In other words, the joint 

statistics of 0 A and 0 B can be understood classically, by assuming that the 

local statistics of the outcomes can be described separately for each piA) and 

piB), and that the correlations originate from a hidden variable i distributed 

according to W i . Moreover, a separable system always satisfies Bell's inequalities 

(the converse is not true), so that the latter represent a necessary condition for 

separability (see, e.g., [45]). Note that any joint probability distribution can be 

represented as a convex combination of product distributions, so that classical 

probabilities are always separable in the above sense. 

The decomposition of a separable state p into a convex mixture of product 

states is not unique in general, but the fact that p is separable implies that there 

must exist at least one such decomposition. If no such decomposition can be 

found, then p is termed inseparable or entangled, and it can be viewed as quan­

tum correlated. Except for the special case where p describes a pure state, the 

distinction between separable and inseparable states appears to be an extraor­

dinarily difficult problem. More precisely, some mixed states can be "weakly" 

inseparable, in the sense that it is very hard to establish with certainty their 

inseparability. This is basically due to the difficulty of enumerating explicitly 

all the possible convex combinations of product states in order to detect that a 

state is actually inseparable. Still, it is possible to find some conditions that all 

separable states must satisfy, therefore allowing the detection of inseparability 
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when a state violates one such condition. The most common example of such 

a necessary condition for separability is the satisfaction of Bell's inequalities. 

A state that violates Bell's inequalities is inseparable, while a state satisfying 

them may be separable or weakly inseparable [45]. 

More recently, a surprisingly simple necessary condition for separability has 

been discovered by Peres [46], which has been shown by Horodecki et al. [47] to 

be strong enough to guarantee separability for bipartite systems of dimension 

2 x 2 and 2 x 3. If the state p is separable, then the operator obtained by 

applying a partial transposition with respect to subsystem A (or B) to p must 

be positive, that is 

(4.3) 

Thus, this criterion amounts to checking that all the eigenvalues of the partial 

transposition of p are non-negative, which must be so for all separable states. In 

Hilbert spaces of dimensions 2 x 2 and 2 x 3, this condition is actually sufficient, 

that is, it suffices for ruling out all inseparable states [47]. In larger dimensions, 

however, it is provably not sufficient, in the sense that it does not detect some 

weakly inseparable states [47,48]. A general necessary and sufficient condition 

for separability in arbitrary dimensions has been found by Horodecki et al. [47], 

which states that p is separable if and only if the tensor product of any positive1 

map (acting on A) and the identity (acting on B) maps p into a positive operator. 

Although very important in theory, this criterion is hardly more practical than 

the definition of separability itself since it involves the characterization of the 

set of all positive maps. It appears to be useful mainly for 2 x 2 and 2 x 3 

bipartite systems, where such a general characterization has been found [47]. 

In this paper, we introduce a positive map, r : p -+ (Trp) - p, inspired by 

the structure of the conditional amplitude operator discussed in Ref. [49, 50]. 

1 A map is defined as positive if it maps positive operators into positive operators. 
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This map gives rise to a simple necessary condition for separability in arbitrary 

dimensions. More specifically, it is shown in section 4.2 that any separable 

state is mapped by the tensor product of r (acting on one subsystem, A) and 

the identity (acting on the other, B) into a non-negative operator. In other 

words, the eigenvalues of the operator (r <0 I)p = (lA <0 TrAP) - P must all 

be non-negative if P is separable, which provides a simple test for separability 

called reduction criterion. 2 In the case where r is applied to a two-state system 

(quantum bit or spin-l/2 particle), as studied in section 4.3, this corresponds 

to the time-reversal operation applied on one system with respect to the other 

one. As Peres' criterion has been shown to be unitarily equivalent to such a 

"local" time-reversal by Sanpera et al. [52], this reduction criterion is simply 

equivalent to Peres' for 2 x n composite systems. Therefore, it also results in a 

sufficient condition for 2 x 2 and 2 x 3 systems , according to Ref. [47]. It also has 

a very simple geometric representation in the Hilbert-Schmidt representation of 

the bipartite state. Finally, we demonstrate that the map r is connected to the 

complex conjugation operation in the "magic" basis for two qubits introduced 

recently by Hill and Wootters [2], which underlies an interesting connection 

with the entropy of formation [53]. In Appendix A, we illustrate the reduction 

separability condition by applying it to several separable or inseparable states, 

and compare it to the separability criterion based on partial transposition. 

4.2 Separability of bipartite mixed states of ar­

bitrary dimension 

We consider a bipartite quantum system characterized by the density operator 

PAB defined in the joint Hilbert space 1I.AB = 1I.A <01I.B, where 1I.A and 1I.B 

2This reduction separability criterion has been independently derived by M. Horodecki and 

P. Horodecki in Ref. [51]. 
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have arbitrary dimensions dA and dB· 

Definition 1: Define a linear map A which maps Hermitian operators on 1lAB 

into Hermitian operators on 1lAB: 

(4.4) 

This map commutes with a unitary transformation acting locally on A and B. 

Indeed , if PAB undergoes a unitary transformation of the product form, i. e., 

(4.5) 

it is easy to check that P'e = TrA[p~Bl = UBPBul, so that 

(4.6) 

I.e., AAB transforms just like PAB. As a consequence, the spectrum of AAB IS 

invariant under a UA @ UB isomorphism on PAB, as expected. 

Theorem 1: A necessary condition for the separability of the state PAB of 

a bipartite system AB is that it is mapped by A into a positive semi-definite 

operator, i.e., APAB ?: O. 

We need to prove that any separable state is mapped into a positive semi-

definite operator AAB. Consider a separable bipartite system AB characterized 

by a convex combination of product states: 

with L Wi = 1 and 0 :S Wi :S 1 (4.7) 

where p~) and p~) are states in 1lA and 1lB, respectively. It is easy to verify 

that the operator AAB = APAB is positive semi-definite , 

AAB = L W i ( (1A - p~)) @ p~) ) ?: 0 

i ~Yo 
(4.8) 

- -

since a sum of positive operators is a positive operator. D 
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In short, the map A reveals non-separability:3 if AAB t. 0, then PAB is 

inseparable. Moreover, it is easy to see that A conserves separability since it 

is linear and maps product states into product operators: if PAB is separable, 

then AAB 2: 0 is also separable (or, in general, written as a convex sum of direct 

products). Let us now calculate the partial traces of AAB: 

(4.9) 

(4.10) 

where dA is the dimension of llA . This shows that A does not preserve the 

trace in general. Indeed , the trace is scaled by an integer factor under A, that 

is, Tr[AAB) = (dA - 1)Tr[PAB ). Thus, A is tmce-preserving only in the special 

case where A is a two-state system (i.e., dA = 2). It is also interesting to note 

that A is always reversible, the inverse map being given by 

(4.11) 

where AB is defined as above. Note that A is equal to its inverse A -1 only if 

dA = 2. In that case, if AAB is separable, then A -1 : AAB ~ PAB 2: O. (The 

fact that the inverse map reveals inseparability is true in this case only.) 

The separability condition based on A is illustrated in Appendix A, where 

we consider several separable and inseparable states. As we will show in section 

4.3, AAB 2: 0 results in the same condition as Peres' in the case of two quantum 

bits, in which case it is sufficient (see Theorem 4); for larger dimensions, it is 

only necessary. 

Rernar k 1: Following the approach of Horodecki et al. [47), the map A can be 

written as the tensor product of a positive linear map r and t he identity, that 

3This necessary condition for the separability of mixed states is direct ly related to that 

based on the conditional amplitude operator (although it is simpler as it does not require the 

calculation of the latter operator) [50]. 
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IS 

with r : p -+ (Trp) - P (4.12) 

where r acts on Hermitian operators in 1lA and the identity acts on opera­

tors in 1lE . Since r is a positive map, A = r ® I maps separable states into 

positive operators [47]. It therefore results in a necessary condition for separa­

bility, according to Theorem 1. The map r commutes with an arbitrary unitary 

transformation U , that is 

(4.13) 

which makes the separability condition based on A = r ® I independent on the 

basis chosen for A and B . In the same manner, the inverse map A- I can be 

written as 

A- 1 =r- 1 ® I with r -1 : p -+ Trp _ P 
d-1 

(4 .14) 

where d is the dimension of the Hilbert space of p. Note that r- 1 is not a positive 

map for d > 2, so that A-I is in general useless as far as detecting inseparability 

is concerned. This emphasizes that the reduction separability criterion is quite 

special in two-dimensions (e.g ., for a spin-1/2 particle or a quantum bit), as will 

be studied in section 4.3. Specifically, we will show that r applied to a two­

dimensional system can be interpreted as time reversal. Consequently, the map 

A amounts to applying time reversal on subsystem A, while leaving subsystem 

B unchanged. Such a link between "local" time-reversal and separability has 

recently been pointed out by Sanpera et al. [52]. 

Remark 2: It is interesting to consider the classical analog of the maps r 

and A = r <8> I to gain some insight into t heir physical meaning. First , apply­

ing r to a classical probability distribution p; (diagonal p) corresponds to the 

transformation: 

Pi -+ q; = LPk -P; 
k 

(4.15) 
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(Obviously, qj :::: 0 is not normalized except for a binary distribution.) The 

classical analog of A = r 18> I is 

Pij --+ qij = (~Pklj - Pi lj ) Pj = Pj - Pij. (4.16) 

Since Pilj is a probability distribution in i, we always have 1 - Pilj :::: 0 so that 

qij :::: 0 and the separability criterion is fulfilled. This emphasizes that quan­

tum inseparability ("qij < 0") may be viewed as resulting from a conditional 

probability that exceeds 1 (more precisely, an eigenvalue of PAIB which exceeds 

1) [50]. 

D efinition 2: Two additional maps from operators on 1iAB to operators on 

1iAB can be defined: the dual map 

Ji. : PAB --+ ).AB = PA 18> IB - PAB ( 4.17) 

and the symmetric map 

IvI : PAB --+ J.LAB = l A 18> IB - PA 18> IB - lA 18> PB + PAB (4.18) 

The map A which we considered until now is related to the conditional 

amplitude operator of A conditionally on B, that is PAIB [50]. Of course, a 

similar linear map can be defined using the amplitude operator PBIA, and exactly 

the same conclusions follow. This is the dual map A defined in equation (4.17). 

It is trace-preserving and self-inverse in the case where dB = 2. It can obviously 

be written as the tensor product Ji. = 1 18> r , where r now acts on operators on 

1iB, and therefore commutes with a UA 18> UB isomorphism. Since r is positive, 

A maps separable states into positive (separable) operators, which results in 

another separability condition, i.e., ).AB > O. As we will see in section 4.3 , 

the operators .AAB and ).AB can be shown to have the same spectrum when 

dA = dB = 2, in which case they result in the same separability condition . 
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However, this property does not hold in larger dimensions, i.e. , AAB and AAB 

do not have the same spectrum in general (see Appendix A). 

We can also construct another linear map by cascading A and A. (the order 

is irrelevant), which results in the symmetric map M = A.A = r 181 r defined 

in Eq. (4.18). Any separable PAB is mapped by M into a separable operator 

J.lAB 2:: 0, as expected. The symmetric map also commutes with a U A 181 U B 

isomorphism, 

(4.19) 

so that the spectrum of J.lAB = IvI PAB is invariant under local transformations 

on PAB. It is also reversible, its inverse map M- 1 = r-1 181 r- 1 being given by 

M - 1 : J.lAB -+ 1Al8l1B-(dB-1)-1(J.lA l8l 1B)-(dA-l)-1(lA I8I J.lB)+J.lAB = PAB 

( 4 .20) 

where J.lA = TrB [J.lAB] = (dB - l)(lA - PAl and J.lB = TrA [J.lAB] = (dA -l )(lB­

PB). As expected, this map is trace-preserving and self-inverse only in the case 

where dA = dB = 2. It corresponds then to a time-reversal operation applied to 

the joint system AB. In this case, M by itself is not useful as far as revealing 

inseparability is concerned since it is positive, i.e., M PAB 2:: O. Therefore, all 

inseparable states of two quantum bits are mapped into positive operators just 

as are separable states. Still, M is important when analyzing the separability of 

two quantum bits as it is equivalent to the complex conjugation operation in the 

"magic" basis introduced by Hill and Wootters [2] (see Theorem 6). Whether 

the positivity of IvI holds in arbitrary dimensions is not known. 

Theorem 2: The reduction separability criterion (ApAB 2:: 0) is not a sufficient 

condition for the separability of PAB. 

In order to prove that this criterion is not sufficient, we show that it is 

possible to find an inseparable system with AAB 2:: 0, i.e., such that its insep-



CHAPTER 4. REDUCTION CRITERION FOR SEPARABILITY 52 

arability is not revealed by A. We will construct such an inseparable system 

by extending an inseparable component with a separable one, "diluting" the in­

separability [50]. Consider an inseparable system A' B' with AA'B' t. O. Let us 

extend A' B' with a separable system A" B", and apply the reduction criterion 

to the joint system AB where A == A' A" and B == B' B". Since the joint system 

is characterized by PAB = PA'B' Q!;IPA"B", its associated operator under the map 

A is given by 

(4.21) 

Using the operators AA'B' = APA'B' = lA ,Q!;I PB'-PA'B' and AA"B" = APA"B" = 

lA" Q!;I PB" - PA"B" corresponding to A applied to each component system, we 

obtain 

( 4.22) 

with AA'B' t. 0 and AA"B" 2: 0 (since A" B" is separable). The dilution of 

entanglement comes from the fact that the third term on the right-hand side 

of equation (4.22) is 2: o. As a consequence, equation (4.22) cannot guarantee 

that AAB t. 0 even though t he composite system AB contains an inseparable 

component as AA'B' t. 0 (i.e., even though the sum of the first two terms on the 

right-hand side of equation (4.22) is t. 0). 0 

Note that, even when both components are inseparable with AA'B', AA"B" t. 
0, then AAB t. 0 is not necessarily true, so that the inseparability of the joint 

system AB is not always revealed by A.4 Conversely, equation (4.22) implies 

t hat, if both components have AA'B' 2: 0 and AA" B" 2: 0, t hen AAB 2: O. It is 

not difficult to find examples of such inseparable states AB whose inseparability 

4This property contrasts with t he situation prevailing when using the conditional amplitude 

matrix. If the conditional amplitude operator o f each component admits an eigenvalue> 1 , 

then so does the corresponding operator for the whole system. [50] 
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is masked (i.e. , AAB :::: 0) by extending an inseparable component A' B' that 

satisfies AA' B' 'l 0 with a separable one A" B". For example, let A' B' be one of 

the Bell states, e.g ., PA'B' = 1<1> +)(<1> +1 with 1<1>+) = 2- 1/ 2 (100) + 111)), and let 

A" B" be a product of two random quantum bits, i.e., PA"B" = (lA" 0 1B" )/4. 

Since PB' = 1B';2 , we have AA'B' = 1A'B,/2 - PA'B' 'l 0, as expected. Using 

AA" B" = PA" B", we see that equation (4 .22) yields 

(4.23) 

which is obviously a non-negative operator, so t hat the inseparabili ty of AB 

is hidden. The example of weakly inseparable states with a positive partial 

transpose (see Ref. [48]) is t reated in Appendix A, to illustrate that AAB :::: 0 is 

not a sufficient conditiun in general. 

R emark 1: The mechanism of dilution of inseparability can be understood by 

examining the action of the map r on product states. Indeed , when applying 

A = r 0 I on the state PAB = PA'B' ® PA"B", r acts on the state PA' ® PA" 

(B and B' are left unchanged by 1). Let us consider a density operator of the 

product form P = pi ® p". Since we have Tr(p) = Tr(p')Tr(p"), we see that it is 

mapped to 

r(p' 0 p") Tr(P')Tr(P") - P' 0 p" 

[Tr(p') - pi] 0 [Tr (p") - p"] + Tr(p') 0 p" + pi 0 Tr(p") - 2p' 0 p" 

r pi ® r p" + r pi ® p" + pi 0 r p" ( 4.24) 

which implies the relation 

r = r l 0 r" + r l ® I" + I' 0 r" ( 4.25) 

where r l (or r") stands for the same map but acting on the subspace of pi (or 

p") while r acts on the j oint space. Using the same notation for A (i.e. , AI acts 
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on the subspace of A' B' while A" acts on t he subspace of A" B") , the latter 

equation gives 

A = r @ I = A' @ A" + A' @ 1" + l' @ A" ( 4.26) 

which implies equation (4.22). The same reasoning can be applied to the dual 

map A = I @ r and to the symmetric map M = r @ r. Thus, even if the maps 

A' and A" reveal inseparability by themselves , the combined map , equation 

(4.26) , is not guaranteed to do so because the non-positivity of (A' @ A")p = 
(A' p') @ (A" p") can be masked by one of the last two terms (the one where A 

is applied to the separable component). 

Remark 2: It is worth noting that the separability criterion based on the 

partial transposition [46] does not suffer from this dilution of inseparability 

(even though it is not a sufficient condition in general). Consider, as before, 

a system AB characterized by PAB = PNB' @ PA"B", where the inseparable 

component A' B' is detected by partial transposition, i.e., (PNB' )TA , :t. O. Since 

(PAB VA = (PNB' )TA , @ (PN' B" )TA ", we have TrA" B" [(PAB)TA 1 = (PNB' )TA , :t. 
O. Since the partial trace of a non-negative operator is a non-negative operator, 

this implies that (PAB)TA :t. 0, so that the inseparability of the extended system 

AB is detected provided that the inseparability of a component of it (here A' B') 

is detected. 

4.3 Separability of two two-dimensional systems 

Theorem 3: The m ap r acting on a two-dimensional system corresponds to 

time-reversal , and is therefore equivalent to applying the complex conjugation 

operator f{ followed by a rotation R y by an angle 7r about the y-axis , that is, 

r = RyIC 

Let us write the arbitrary state of a two-dimensional quantum system (a 
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quantum bit) in the Bloch-sphere picture: 

p= ~(1+i".0') 
2 

( 4.27) 

where 0' represent the three Pauli matrices and i" = Tr(pO') is a real vector in the 

Bloch sphere (of radius 1). The vector i" describes the statistics of measurements 

on the system, as, for example, the quantum expectation value of the spin 

component along an axis defined by the vector ii is Tr [p( ii . 0')] = (ii, r). Using 

equation (4.27) , it is straightforward to check that 

rp = 1 - P = ~(1- i". 0') 2 . ( 4.28) 

Thus, r performs a spin-flip, or, equivalently, performs a parity transformation 

on the Bloch vector i" -+ -i". This can be viewed as time-reversal, and therefore 

can be decomposed into a complex conjugation K followed by a rotation Ry of 

an angle 7r about the y-axis, that is r = 7 = R yK [54]. 0 

R emark 1: In order to see this explicitly, consider the action of the map 

A = r <8> I on a product state />1» = /a) <8> /b ). Using PAB = Pa <8> Pb with 

Pa = /a )(a/ and Pb = /b) (b/ , we have 

( 4.29) 

where Pal. = r(/a)(a/) = 1A -/a)(a / is the projector on the subspace orthogonal 

to /a). In the case where dA = 2, Pal. is a rank-one projector as the total trace 

is preserved. Then , P;- = /al. )(al./ , where /al.) is a state vector orthogonal 

to /a).5 It is easy to check that /al.) can be obtained by applying a complex 

conjugation K on the components of /a) followed by a rotation Ry of angle 7r 

about the y-axis. Indeed, any state /a ) = a /D ) + .8 /1 ) (with /a/ 2 + /.8/ 2 = 1) is 

5Note that it is impossible to construct a state la.L) that is orthogonal to an arbitrary state 

la) by applying a unitary transformation a lone. 
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t ransformed into la.l) = - ,B'IO) + a'11) by applying the rotation 

Uy = exp( -i1fuy /2) = - iuy = UxUz = ( °1 -01) ( 4.30) 

(tha t is, a bit- and phase-flip) to the state vector a'IO) + ,B'11). The transformed 

state la.l) is such that (a.lla) = ° and la.l)(a.ll = IA - la)(al , as expected. 

Thus, r coincides with t ime-reversal for a spin-1 / 2 system (dA = 2) as the 

latter is equal to complex conjugation f{ followed by the rotation n y, i. e. , 

T = n y f{ [54]. Consequently, r is an antiunitarif operation on state vectors 

in a two-dimensional Hilbert space (see Appendix B). 

Corollary: For the Hilbert-Schmidt decomposition of PAB, the map A = r 0 I 

corresponds to a sign-flip of the Pauli matrices acting on A while leaving tho,e 

acting on B unchanged. 

Let us consider the Hilbert-Schmidt decomposition of an arbitrary state of 

two quantum bits (or spin-1/2 particles) [55]: 

PAB = ~ (I A 0 IB + r· ii' A 0 IB + I A 0 5 ' ii'B + m~l tn ,m u~n) 0 ukm») 
(4.31 ) 

where u~) and ukm
) stand for the Pauli matrices (with n = 1,2,3) in the A and 

B space, respectively. equation (4.31) depends on 15 real parameters, the two 

three-dimensional vectors f and 5, and the 3 x 3 real matrix tn,m. The vectors 

f and 5 correspond to the state of A and B in the Bloch sphere since we have 

PA = TrB [PAB ] = ~(IA + f · ii'A) 

PB TrA[PAB]= ~(IB +5'O'B)' 

(4.32) 

( 4.33) 

They characterize the reduced systems A and B , t hat is the local (marginal) 

statistics of any observable on A or B. The matrix tn,m = Tr[pAB(U~) 0 

6For any two state vectors la) a nd la), we have (al.lal.) = (ala)'. 
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O"km )) ] describes the joint statistics of A and B as it characterizes the correlation 

between the measured spin components along two axes (defined by the vectors 

a and b): Tr [p(a'O'A 0b'O'B) ] = (a,tb). Using equations (4.31) and (4.33), 

it is checked by straightforward calculation that A simply flips the sign of the 

\ 1 ( _ _ _ _ ~ (n) (m) ) 
AAB=4 l A0 1B- l"O"A 0 1B+ I A 0 s'O"B - m~ltn,m O"A 0 0"B 

(4.34) 

This implies that A = r 0 I applied to a 2 x n system corresponds simply to 

"local" t ime-reversal T 0 I , that is , performing t ime-reversal on the subsystem 

A while leaving the subsystem B unchanged [52]. 

R eIllark 2: The dual map A = 1 0 r flips the sign of the Pauli matrices adiug 

on B while leaving the sign of those acting on A unchanged. T he action of the 

symmetric map M = r 0 r on the Hilbert-Schmidt decomposition of PAB is 

to flip the sign of the Pauli matrices 0' A and 0' B. This operation corresponds 

therefore to t ime-reversal applied to A and B simultaneously, and is equivalent 

to complex conjugat ion in the "magic" basis (see Theorem 6). It is worth noting 

that the set of states that remain invariant under t he symmetric map Mare 

those with r = s = 0, that is, mixtures of generalized Bell states (the latter being 

defined as the states obtained by applying any local transformation to the four 

Bell states). These states are called "T-states" by Horodecki et al. [55], and 

are such that the entropy of A and B is maximal, that is S(PA) = S(PB) = l. 
(The only pure states in this set are the fully entangled states of two qubits , i .e., 

the generalized Bell states.) T hus, in particular, the (generalized) Bell states 

are left unchanged by the action of M. In contrast, a (separable) product state 

PA 0 PE is mapped into the distinct (non-negative) state Ji-AB = (I A - PAl 0 

(IE - PEl. Because of t his property, Ji- AE by itself is uninteresting as far as 

revealing inseparability is concerned, as mentioned earlier. 
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Theorem 4: A bipartite system of two-dimensional components A and B char­

acterized by an arbitrary joint density operator PAB is separable if and only if 

the operator AAB = APAB is positive semi-definite. 

It is enough to show that A is equivalent to a partial transposition up to a 

completely positive map (in fact, a unitary transformation), since Peres' separa­

bility criterion is known to be necessary and sufficient in this case [47]. Since we 

are dealing with Hermitian operators, the map T 0 I, where T is the standard 

transposition of operators on llA, is equivalent to the "partial conjugation,,7 

operation K 0 I , where K is the complex conjugation operator acting on states 

on ll A . Thus, Theorem 3 reads r = nyT. We can now use the fact that any 

positive map II acting on density operators in a two-dimensional Hilbert space 

can be written as [47] 

(4.35) 

where IIfP and II~P are completely positive maps (which therefore do not reveal 

inseparability). With the identification IIfP = 0 and II~P = ny, we see that the 

map r can be used rather than the transposition operator T (or K) in order to 

test the positivity of the operator resulting from applying any element of the set 

of maps II 0 Ion PAB (this follows from the reasoning used in Ref. [47]). Thus, 

using the fact that the complex conjugation operator K is unitarily equivalent to 

r, we have shown that APAB 2: 0 results in a necessary and sufficient condition 

for the separability of PAB. 0 

Remark 1: The map r applied to a two-dimensional system is unitarily equiv­

alent to the transposition operator T. Since the spectrum of an operator is 

conserved by a unitary transformation (ny), the spectrum of the operator ob­

tained by partial transposition in subspace A, (T0I)PAB = P~B' is the same as 

7Note that , although 1« is well-defined, partial conjugation I( 01 is only defined for product 

state vectors in llAB [48]. 
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the spectrum of AAB = ApAB. Therefore, testing Peres ' separability condition 

or t he positivity of AAB is operationally equivalent, and these condit ions can 

be used interchangeably in t he case of two quantum bits, as illustrated in Ap­

pendix A. Moreover, AAB and p~'B have the same spectrum for 2 x n systems, 

so that the conditions are also equivalent if r is applied on the two-dimensional 

subsystem. As a consequence, the separability condition based on A is necessary 

and sufficient for 2 x 3 systems, while it is only necessary for 2 x n systems with 

larger n, just as Peres' condition [47] . Numerical evidence suggests that, for 

systems with dA , dB> 2, the reduction condition is weaker than (or equivalent 

to) t he one based on partial transposition 8 

R emark 2: It is instructive to illustrate Theorem 4 for "T-states" [55], that 

is, in the case where A and B have a maximal reduced entropy. The T -states 

(1"= s= 0) are such that the reduced density operators are given by PA = PB = 

1 /2 , so that the reduced entropies are S(PA) = S(PB) = l. These states are 

thus completely characterized by the matrix t n,m ' It has been shown in Ref. [55] 

that any T-state can be transformed by a unitary transformation of the product 

form U A 181 U B into a state for which tn ,m is diagonal. As far as separability is 

concerned, we can thus restrict ourselves to the class of all states with diagonal 

t, since these are representative of the entire set of T-states (up to an U A 181 U B 

isomorphism) . 

The class of states with diagonal t is a convex subset of the set of T-states, 

and any state belonging to this subset can be characterized by the real vector 

{= (t ll , t n , t33 ) made out of the diagonal elements of t. It was proven in 

Ref. [55] that an operator PAB of the form given by equation (4.31) with 1" = 

s = 0 and diagonal t corresponds to a state (i.e., a positive unit-trace operator) 

if and only if the vector {belongs to a tetrahedron with vertices i;, = (-1 ,1,1)' 

8This has been later proven in Ref. [51]. 
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t; (1, -1, 1), t; = (1,1, -1), and ~ = (-1, -1, -1). In other words, any 

state of this class can be represented by a point inside this tetrahedron. In 

this representation, the four Bell states Iq;±) = 2- 1 / 2 (100) ± Ill») and l\ji±) = 

2- 1/ 2 (101) ± 110») correspond to the vertices of the tetrahedron, that is 

Iq;-)(q;-I = ~ (IA 0 IB - u~) 0 u~) + u!:) 0 u}l') + u~) 0 u~)) 

Iq;+)(q;+ I = ~ (IA 0 IB + u~~) 0 u~) - u!:) 0 u}l') + u~) 0 u~)) 

l\ji+)(\ji+ I = ~ (IA 0 IB + u~) 0 u~) + u!:) 0 u}l') - u~) 0 u~)) 

Ir)(\ji-I = ~ (IA 0IB - u~x) 0 u~) - u!:) 0 u}l') - u~) 0 u~)) 

In Ref. [55), it is also shown that a state PAB of this T-diagonal class is separable 

if and only if the vector t characterizing PAB belongs to an octahedron with 

vertices 0/ = (±1, 0, 0), 02± = (0, ± 1, 0), and ot = (0,0, ±1). Let us consider 

the action of A in this representation. As shown earlier, A flips the "spin" 0' A. 

Within the set of T-states, this amounts to changing the sign of the tn,m matrix, 

that is, to flipping the sign of the vector t for T-diagonal states. Therefore, the 

criterion for separability .\AB = APAB 2: 0 translates, in this representation, 

to the condition that the "parity" operation on the vector t characterizing a 

separable state results in a positive operator (i.e., a legitimate state). Thus, -t 
must belong to the tetrahedron. It is easy to see that the set of points of the 

tetrahedron which are such that their image under parity still belongs to the 

tetrahedron corresponds exactly to the octahedron defined above. Therefore, no 

inseparable state exists that satisfies APAB 2: 0, so that A provides a necessary 

and sufficient condition for separability within the class of T-states, as expected. 

Theorem 5: The symmetric map M acting on two two-dimensional systems 

conserves the spectrum, so that the separability criteria resulting from the map 

A and its dual A are equivalent. 

As a consequence of Theorem 3, /1'[ = r0r amounts to performing a complex 
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conjugation I< (or transposition) of the joint density operator in llAB, followed 

by a tensor product of the rotation ny defined by Uy = exp( -i1r<Ty /2) = -i<Ty, 

that is, Uy ® Uy = -<Ty ® <Ty . Note that, as we are dealing with Hermitian 

(density) operators, their spectrum is unchanged by l(. The same is true for 

the rotation Uy ® Uy . Therefore, /-tAB = fill PAB has the same spectrum as PAB 

when dA = dB = 2. As r is self-inverse (r 2 = I) when d A = dB = 2, we have 

the relation J ® r = (r ® J)(r ® r) or in short A = AM. This implies that 

( 4.36) 

which in turn results in 

( 4.37) 

as A commutes with Uy ® Uy and complex conjugation. Since AAB is Hermitian 

(just as PAB), the latter expression shows that the spectrum of ):AB and AAB 

are identical, so that the resulting criteria for separability are equivalent. 0 

Theorem 6: The symmetric map M applied to a bipartite system of two­

dimensional components (i.e., global time-reversal) is equivalent to complex 

conjugation in the "magic" basis introduced in Ref. [53].9 

Since r = nyl(, the symmetric map M = r ® r applied to the state PAB of 

a bipartite system results in 

(4.38) 

where Uy ® Uy = -<Ty ® <Ty . Since fill is antiunitary and self-inverse (M2 = I), 
it is a conjugation [57]. It can be written as the complex conjugation operator 

if expressed in a specific basis. Let us assume that V is the unitary operator (in 

9This was pointed out independently in Ref. [56], which was brought to our attention after 

completion of this work. 
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the joint space) that transforms the product states into the states {lei)} that 

form this specific basis, that is 

le3) = V110) ( 4.39) 

We would like to show that M is equivalent to rotating the states lei ) into the 

product states, taking the complex conjugation of the density matrix (in the 

product basis), and then rotating the product states back to the lei)'s: 

( 4.40) 

where V T is the transpose of the unitary matrix V. Identifying equations (4.38) 

and (4.40), we obtain 

0 0 0 1 

VVT = Uy <2) Uy = -(Ty <2) (Ty = 
0 0 - 1 0 

(4.41) 
0 -1 0 0 

1 0 0 0 

It is easy to prove that, if V is unitary, then VVT is unitary and symmetric 

(but not necessarily Hermitian). In order to find a solution for V that satisfies 

equation (4.41), we first diagonalize the matrix (Ty <2) (Ty. Consider the unitary 

matrix 

It is in fact a real orthogonal matrix , so that W- 1 = W t = W T . It can easily 

be shown that W diagonalizes1o (Ty <2) (Ty, that is, 

( 4.43) 

lOIt is not the only such matrix, as CTy &Jay is obviously also diagonalized by exp( -i~ax) ® 

exp( - i"iax) . However, we are looking here for a (real) rotation matrix rather than a general 

unitary matrix. 
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Note that the matrix W is self-inverse, i.e., W2 = 1, so that it is also symmetric 

(WT = W). By multiplying equation (4.41) by Won the left and the right , we 

obtain 

-1 0 0 0 

wv(wvf = -{Tz 0 {Tz = 
o 1 0 0 

( 4.44) 
o 0 1 0 

o 0 0 -1 

which implies that the product WV can be written as a diagonal matrix D: 

±i 0 0 0 

o ±1 0 0 
WV=D= ( 4.45) 

o 0 ±1 0 

o 0 0 ±i 

This yields a (non-unique) solution for the unitary matrix V = WT D = WD 

that defines the basis {Ie;)}. The states lei) are thus obtained by applying the 

rotation matrix W to the product states ±iIOO), ±IOl), ±II0), and ±il11). It is 

worth noticing at this point that the rotation matrix 

1 1 1 -1 

W=~ 1 1 -1 1 
( 4.46) 

2 1 -1 1 1 

-1 1 1 1 

transforms the product states into the four maximally entangled states which 

are obtained by applying a local transformation H 0 1 on the four Bell states, 

l.e., 

WIOO) 

WIOl) 

WIlD) 

Will) 

(H 01)1<1>+) = (100) + 101) + 110) -111))/2 

(H 01) l\.li+) = (100) + 101) - 110) + Ill) )/2 

(H 01) 1<1>-) = (100) -101) + 110) + 111))/2 

(H 01)1W-) = (-100) + 101) + 110) + 111))/2 (4.47) 
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where H is the Hadamard transform. (As a matter of fact, the unitary trans­

formation W corresponds simply to a controlled-NoT gate where the control is 

in the dual basis {10) + 11), 10) -II)} rather than the standard basis.) T herefore, 

the unitary transformation V = W D is such that the product states are rotated 

into the four generalized Bell states with the appropriate phases 

leI) = VIOO) 

le2) = VIOl) 

le3) = V110) 

le4) = Vlll) 

±i(H @ 1) 1<1>+) 

±l(H @ l)lw+) 

±l(H @ 1)1<1>-) 

±i(H@l)lw-). 

(4.48) 

These states lei ) are therefore equivalent, up to a local change of basis H @ 1 

and a phase i that are irrelevant here, to the "magic" states introduced in 

Ref. [53]. (Any four states obtained from the le;)'s up to an overall phase 

and a unitary transformation acting locally on each quantum bit are legitimate 

"magic" states.) This implies that, when expressed in this basis, the symmetric 

map M = r @r reduces the the complex conjugation operation that was used in 

the context of the calculation of the entropy of formation of a pair of quantum 

bits (see Refs. [2, 56]) . 0 

Theorem 7: A distinct necessary separability condition for the bipartite state 

PAB is that its support can be spanned by a set of product states which are 

such that the corresponding product operators obtained by applying r to the 

state vector in 1lA span the support of AAB = ApAB. 

\Ve only consider this condition in the case where dA = 2. Let us first show 

that if PAB is a separable state, then AAB is a separable operator obtained by 

replacing the states la) in 1lA by projectors pc/: orthogonal to them. Consider 
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the separable state 

PAB = :L Wi ( Iai)(a; 10Ib;)(b; I) ( 4.49) 

where the lai) 0lbi) are pure product states [using the spectral decomposition 

of p~) and p~), it is easy to rewrite equation (4.7) into this form]. As a result 

of Theorem 3, we see that PAB is mapped by A into the separable operator 

(4.50) 

The operator AAB is a unit-trace operator in the case d A = 2 since each com­

ponent pure state la) 0 1b) is mapped into a pure product state, la1.) 0 Ib), in 

which case it simply reads 

(4.51) 

Let us show that equation (4.51) results in a simple necessary condition for 

separability (distinct from A AB 2: 0) , inspired from the condition recently pro­

posed by Horodecki [48]. The central point is to note that, if PAB is separable, 

then the ensemble of product states lai) 0 lbi) span the entire support of PAB. 

(Conversely, any state lai) 0 lbi) must belong to the support of PAB and cannot 

have a non-vanishing component orthogonal to it.) From equation (4.51), we 

see that the ensemble of states laf-) 0 Ibi) span the entire support of the cor­

responding separable state AAB obtained by applying A on PAB [cf. equation 

(4.51)]. (Also, any state laf) 0 Ibi) cannot be outside the support of AAB.) This 

results in a necessary condition for separability which can be stated as follows: 

if a state PAB is separable, then it must be possible to span its support by a set 

of product states la) lb) which are such that their image (i.e., the product states 

obtained by rotating the complex conjugate of state vector la) in the A space 

by an angle 11" about the y-axis while leaving the state vector Ib) in the B space 

unchanged) span the support of the m apped state AAB = ApAB. 0 



CHAPTER 4. REDUCTION CRITERION FOR SEPARABILITY 66 

4.4 Conclusion 

Given a bipartite system characterized by a density operator PAB , we construct a 

simple separability criterion based on the positive linear map r : P -7 (Trp) - p. 

Any separable state PAB is mapped by the tensor product of r (acting on 

A) and the identity I (acting on B) into a positive operator. Therefore, a 

necessary condition for separabili ty is based on checking the non-negati vi ty of 

the operator (r <8> I)PAB = 1A <8> PB - PAB. This condition, along with the one 

based on the dual map I <8> r, can be shown to be non-sufficient for a system 

of arbitrary dimension because entanglement dilution can thwart the map's 

sensitivity. Since r commutes with any unitary transformation, the spectrum 

of the operator (r <8> I)PAB is invariant under a local unitary transformation 

U A <8> U B, making this reduction criterion independent of the basis in which A 

and B are expressed. 

In the case of a two-dimensional system, r is shown to be the time-reversal 

operator , which flips the sign of the spin matrices (or, equivalently, reverses the 

Bloch vector characterizing the state of the quantum bit) , so that the map r <8> I 

amounts to changing the arrow of t ime for subsystem A with respect to subsys­

tem B. Such a relation between time-reversal and Peres ' partial transposition 

has been pointed out previously by Sanpera et al. [52], who showed that the 

partial transposition operator is unitarily equivalent to "local" time-reversal. 

Thus, the reduction criterion for separability based on r <8> I is equivalent to 

Peres' criterion [46) for 2 x n systems (when applying r on the two-dimensional 

subsystem). As a consequence, it is necessary and sufficient for 2 x 2 and 2 x 3 

systems while it is only necessary for larger systems, just as is Peres ' [47). For 

systems with dA , dB > 2, however, the reduction condition is generally weaker 

than the one based on partial transposition. 

Finally, we consider the symmetric map (r <8> r)PAB 1A <8> 1B - PA <8> 
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IB - IA 0 PB + PAB· The states which are left invariant under this map are 

mixtures of generalized Bell states, which include the maximally entangled pure 

states as well as the product of two independent (unentangled) random bits. It 

can be seen that r 0 r is related to quantum non locality even though it does 

not directly reveal inseparability of two quantum bits. Indeed, it reduces to 

the complex conjugation in the "magic" basis that has been introduced in the 

context of the calculation of the entropy of formation of a pair of quantum bits 

(see Refs. [2, 56]). It might therefore be interesting to look for a simple relation 

between the map r (related to the reduction criterion for inseparability) and 

the entropy of formation . 

. 1 Examples 

Here we consider several examples illustrating the separability criterion AAB 2: 

0, and compare it to Peres' criterion [46] . Examples 1-4 deal with states of 

two quantum bits, and illustrate the fact that the A-criterion is necessary and 

sufficient (the spectrum of AAB is identical to the spectrum of pTA). Examples 5-

6 illustrate that the A-condition is not sufficient for systems in larger dimensions 

(3 x 3 and 2 x 4) whose partial transpose is posi ti ve (cf. Ref. [47]). In fact, 

the A-condition is equivalent to Peres' condition for 2 x n systems, so that it is 

also necessary and sufficient for 2 x 3 systems [47] while it is only necessary for 

larger n. 

EXaInple 1: Consider a Werner state [45] with parameter x (0 :S x :S 1), that 

is, a mixture of a fraction x of the singlet state 1\][- ) and a random fraction 

(1 - x). We shall see that AAB 2: 0 is equivalent to Peres' criterion, and is 
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therefore sufficient. Indeed, the joint density matrix 

I-x 0 0 0 -4-

(1 - x) 0 .!..±£ x 0 
PAB = x IW-)(W- 1 + -4-(1 @1) = 

4 - "2 

0 x .!..±£ 0 - "2 4 

(52) 

0 0 0 I-x 
-4-

is mapped by A into the matrix 

.!..±£ 0 0 0 4 

0 I-x x 0 
AAB = 

- 4- "2 

0 x I-x 0 "2 - 4-

(53) 

0 0 0 .!..±£ 
4 

which admits three eigenvalues equal to (l+ x )/4 and a fourth equal to (1-3x )/4. 

The latter becomes negative if x > 1/3 , so that AAB is positive semi-definite 

only if x ::; 1/3, which has been proven to be the exact threshold for separability 

(any Werner state with x ::; 1/3 is separable as it can be written as a mixture of 

product states [58]). As expected, the spectrum of AAB is equal to the spectrum 

of the partial transpose of PAB, so that the A-condition is sufficient to ensure 

separability for Werner states. 

Example 2: Consider a mixed state that is made out of a fraction x of the 

entangled state 11/» = alOl) + bllO), and fractions (1 - x)/2 of the separable 

product states 100) and Ill) (see [59]). The joint density matrix is of the form 

I -x 0 0 0 - 2-

I-x I-x 0 x la l2 xab* 0 
PAB = x l1/>)(1/> I+ -2-100)(001+-2-lll)(1l1 = 

0 xa*b xlW 0 

0 0 0 I-x 
- 2-

(54) 



CHAPTER 4. REDUCTION CRITERION FOR SEPARABILITY 69 

with a and b satisfying lal 2 + Ibl 2 = 1. It is mapped by A into the matrix 

xlW 0 0 0 

0 1-x -xab* 0 
AAB = 

- 2-
(55) 

0 -xa*b 1-x 0 -2-

0 0 0 xlal 2 

The eigenvalues of AAB are xlal 2
, xlbl 2

, and (1 - x ± 2xlabl)/2. This implies 

that PAB is inseparable if x > (1 + 2Iabl)-l, exactly as predicted by Peres using 

the partial transpose of PAB. Since we are dealing with two qubits, this is the 

exact limit between separability and inseparability [46, 47]. 

Example 3: In the simpler case where PAB is a mixture of a fraction x of the 

singlet state 1'11-) and a fraction (1- x) of the separable product state 100), 

I-x 0 0 0 

0 x/2 -x/2 0 
PAB = x I ?,b) (?,b I + (1- x) IOO)(OOI = (56) 

0 -x/2 x/2 0 

0 0 0 0 

we obtain 

x/2 0 0 0 

0 0 x/2 0 
AAB = (57) 

0 x/2 I-x 0 

0 0 0 x/2 

The latter matrix admits two eigenvalues equal to x /2 and two eigenvalues equal 

to (1- x ± V(I- X)2 + X2) /2, so that its determinant is equal to _(X/2)4 

Thus, this state is inseparable whenever x > 0, as expected. (It is separable 

only if it is the pure product state 100).) 

Example 4: Consider the class of 2-qubit inseparable states described by 

Horodecki et al. [47], a mixture of two entangled states: 

(58) 
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where I,h) = aIOO) + bill) and 1'1'2) = a lOl) + bllO), with a, b > 0 and satisfying 

lal 2 + Ibl 2 = 1. The joint density matrix 

pa 2 0 0 pab 

0 (1 - p)a 2 (1 - p)ab 0 
PAB = (59) 

0 (1 - p)ab (1 - p)b2 0 

pab 0 0 pb2 

is mapped by A to 

(l-pW 0 0 -pab 

0 pb2 (p - l)ab 0 
AAB = (60) 

0 (p - l)ab pa 2 0 

- pab 0 0 (1 - p)a2 

The latter matrix admits two eigenvalues equal to (p ± J p2 + 4a2 b2 (1 - 2p)) /2 

and two eigenvalues equal to (1 - p ± J(I- p)2 + 4a2b2 (2p - 1)) /2, so that 

its determinant is equal to - a4 b4 (1 - 2p) 2 This state is therefore inseparable 

whenever ab i= 0 and p i= 1/2, in perfect agreement with Ref. [47]. 

Example 5: Consider the 3 x 3 system in a weakly inseparable state introduced 

by Horodecki [4S], 

a 0 0 0 a 0 0 0 a 

0 a 0 0 0 0 0 0 0 

0 0 a 0 0 0 0 0 0 

0 0 0 a 0 0 0 0 0 
1 

(61) 
PAB = 1 + Sa a 0 0 0 a 0 0 0 a 

0 0 0 0 0 a 0 0 0 

0 0 0 0 0 0 l±£ 0 yl - a' 
2 2 

0 0 0 0 0 0 0 a 0 

a 0 0 0 a 0 yl-a> 0 l±£ 
2 2 
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where a is a parameter (a f= 0, 1). As shown in Ref. [48], the partial t ranspose 

of this state is positive , although PAB is inseparable, which makes t he insepara-

bility of PAB undetectable using Peres' criterion. It is simple to check that the 

A-mapped mat rix 

lH!! 0 V I- a' 0 - a 0 0 0 - a 2 2 

0 2a 0 0 0 0 0 0 0 

v1- a 2 0 lH!! 0 0 0 0 0 0 2 2 

0 0 0 lH!! 0 v1 - a2 0 0 0 2 2 
1 

AAB = 1 + 8a -a 0 0 0 2a 0 0 0 - a 

0 0 0 v1 - a2 0 1+3a 0 0 0 2 2 

0 0 0 0 0 0 2a 0 0 

0 0 0 0 0 0 0 2a 0 

-a 0 0 0 -a 0 0 0 2a 
(62) 

is positive (with a trace equal to 2), so that A cannot reveal the inseparability 

of PAB either. Accordingly, the determinant of AAB is equal to 6a7(1 - a)(5a + 

3)/(1 + 8a)9 and thus positive. Note t hat the dual map also yields a positive 

operator ).AB (of trace 2) , although the eigenvalues of ).AB are distinct from 

those of AAB, as is its determinant Det().AB) = 24a7(1 - a2 )/(1 + 8a)9. This 

example emphasizes the fact that A does not result in a sufficient separability 

condition for 3 x 3 systems, just as Peres ' condition [47]. 

Example 6: Following Horodecki [48], we consider a 2 x 4 system in an insep-
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arable state 

b 0 0 0 0 b 0 0 

0 b 0 0 0 0 b 0 

0 0 b 0 0 0 0 b 

1 0 0 0 b 0 0 0 0 
PAB = 1 + 7b ill y'I-b2 

(63) 
0 0 0 0 2 0 0 2 

b 0 0 0 0 b 0 0 

0 b 0 0 0 0 b 0 

0 0 b 0 y'I-b2 
0 0 ill 

2 2 

that has a positive partial transpose, where b is a parameter (b # 0,1) . Applying 

A, we see that 

ill 0 0 y'I-b2 

0 -b 0 0 2 2 

0 b 0 0 0 0 -b 0 

0 0 b 0 0 0 0 - b 

A __ 1_ 
y'I-b' 0 0 ill 0 0 0 0 2 2 

(64) AB - 1 + 7b 
0 0 0 0 b 0 0 0 

-b 0 0 0 0 b 0 0 

0 - b 0 0 0 0 b 0 

0 0 -b 0 0 0 0 b 

has eigen val ues 0, b, 2b, and (1 + 2b ± .)(1 + 26)2 - 2b(3 + b)) /2 so that it is 

always non-negative. Note that the spectrum of AAB is the same as the spectrum 

of the partial transpose P~B (cf. (48)) , as expected. This confirms that the 

condition based on A = r <8> I and Peres' separability condition are equivalent 

for 2 x n systems (when r is applied to the two-dimensional system and I to the 

n-dimensional one). In this example, applying the dual map A = 1 <8> r yields a 

positive operator which traces to 3. 
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.2 The antiunitary map r 

Consider the action of the map r : p -t (Ttp) - p on the density operator p 

characterizing a two-dimensional system (e.g., a quantum bit). Since p can be 

written as a linear combination of the unit matrix and the three Pauli matrices 

0' with real coefficients, it is sufficient to consider the action of r on these 

(Hermitian) basis matrices. We find that r is an antiunitary operator that 

leaves the unit matrix unchanged and flips the sign of the Pauli matrices I7x ,y ,z, 

1~1 (65) 

The complex conjugation operator J{ (or equivalently the transposition, as we 

deal with Hermitian operators) corresponds to an antiunitaryoperator which 

acts on the four basis matrices as 

(66) 

(Remember that it is enough to consider the action of l{ on the basis matrices 

as the coefficients are real.) Also, n y is a unitary operation characteri zed by 

the unitary matrix U y == exp( - i1rl7y /2) == -il7y == I7x l7z which maps pinto 

UypUJ == l7ypl7y , so that the basis matrices are transformed according to 

(67) 

It is straightforward to check, using equations (65), (66) and (67) , that r is the 

product of J{ and n y . (It is a general property of an antiunitary transforma­

tion that it can be written as the product of a unitary transformation and a 

fixed antiunitary operator such as time-reversal.) This can be verified easily by 

applying n y l{ to a system is in a state given by equation (4.27). We get 

u*ut - * _1(1 (--*) ) _1 (1 -"-) -r (68) yp y - l7y P l7y - 2 + l7y r ·17 l7y - 2 -'·17 - P 

where we have used the fact that r is a real vector and that l7yO'l7y == -0'* . 

This generalizes what was shown in section 4.3 for pure states, namely that if 
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la) = aiD) + ;'111) and lal.) = Uy(a*IO) + ;'1*11») = - ;'1*10) + a*11), then we have 

(69) 
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