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Abstract

DNA nanotechnology is an emerging field which utilizes the unique structural properties of
nucleic acids in order to build nanoscale devices, such as logic gates, motors, walkers, and
algorithmic structures. These devices are built out of DNA strands whose sequences have
been carefully designed in order to control their secondary structure - the hydrogen bonding
state of the bases within the strand (called “base-pairing”). This base-pairing is used to
not only control the physical structure of the device, but also to enable specific interactions
between different components of the system, such as allowing a DNA walker to take steps
along a prefabricated track. Predicting the structure and interactions of a DNA device
requires good modeling of both the thermodynamics and the kinetics of the DNA strands
within the system. Thermodynamic models can be used to make equilibrium predictions
for these systems, allowing us to look at questions like “Is the walker-track interaction a
well-formed and stable molecular structure?”, while kinetics models allow us to predict the
non-equilibrium dynamics, such as “How quickly will the walker take a step?”. While the
thermodynamics of multiple interacting DNA strands is a well-studied model which allows
for both analysis and design of DNA devices, previous work on the kinetics models only
explored the kinetics of how a single strand folds on itself.

The kinetics of a set of DNA strands can be modeled as a continuous time Markov
process through the state space of all secondary structures. Due to the exponential size
of this state space it is computationally intractable to obtain an analytic solution for most
problem sizes of interest. Thus the primary means of exploring the kinetics of a DNA
system is by simulating trajectories through the state space and aggregating data over
many such trajectories. We developed the the Multistrand kinetics simulator, which
extends the previous work by including the multiple strand version of the thermodynamics
model (a core component for calculating parameters of the kinetics model), extending the

thermodynamics model to include terms accounting for the fixed volume simulations, and
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by adding new kinetic moves that allow interactions between distinct strands. Furthermore,
we prove that our modified thermodynamic and kinetic models are exactly equivalent to
the canonical thermodynamics model when the simulation is run for sufficiently long time
to reach equilibrium.

The kinetic simulator was implemented in C++ for time critical components and in
Python for input and output routines as well as post-processing of trajectory data. A key
contribution of this work was the development of data structures and algorithms that take
advantage of local properties of secondary structures. These algorithms enable the efficient
reuse of the basic objects that form the system, such that only a very small part of the state’s
neighborhood information needs to be recalculated with every step. Another key addition
was the implementation of algorithms to handle the new kinetic steps that occur between
different DNA strands, without increasing the time complexity of the overall simulation.
These improvements led to a reduction in worst case time complexity of a single step being
just quadratic in the input size (the number of bases in the simulated system), rather than
cubic, and also led to additional improvements in the average case time complexity.

What data does the simulation produce? At the very simplest, the simulation produces
a full kinetic trajectory through the state space - the exact states it passed through, and
the time at which it reached them. A small system might produce trajectories that pass
through hundreds of thousands of states, and that number increases rapidly as the system
gets larger! Going back to our original question, the type of information a researcher hopes
to get out of the data could be very simple: “How quickly does the walker take a step?”, with
the implied question of whether it’s worth it to actually order the particular DNA strands
composing the walker, or go back to the drawing board and redesign the device. One way
to acquire that type of information is to look at the first time in the trajectory where we
reached the “walker took a step” state, and record that information for a large number of
simulated trajectories in order to obtain a useful answer. We designed and implemented
new simulation modes that allow the full trajectory data to be condensed as it’s generated
into only the pieces the user cares about for their particular question. This analysis tool
also required the development of flexible ways to talk about states that occur in trajectory
data; if someone wants data on when the walker took a step, we have to be able to express

that in terms of the Markov process states which meet that condition.
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Chapter 1

Introduction

DNA nanotechnology is an emerging field which utilizes the unique structural properties
of nucleic acids in order to build nanoscale devices, such as logic gates [18], motors [4, 1],
walkers [19, 1, 20], and algorithmic structures [14, 23]. These devices are built out of DNA
strands whose sequences have been carefully designed in order to control their secondary
structure - the hydrogen bonding state of the bases within the strand (called “base-pairing”).
This base-pairing is used to not only control the physical structure of the device, but also
to enable specific interactions between different components of the system, such as allowing
a DNA walker to take steps along a prefabricated track. Predicting the structure and
interactions of a DNA device requires good modeling of both the thermodynamics and the
kinetics of the DNA strands within the system. Thermodynamic models can be used to
make equilibrium predictions for these systems, allowing us to look at questions like “Is
the walker-track interaction a well-formed and stable molecular structure?”, while kinetics
models allow us to predict the non-equilibrium dynamics, such as “How quickly will the
walker take a step?”. While the thermodynamics of multiple interacting DNA strands is
a well-studied model [5] which allows for both analysis and design of DNA devices [24, 6],
previous work on secondary structure kinetics models only explored the kinetics of how a
single strand folds on itself [7].

The kinetics of a set of DNA strands can be modeled as a continuous time Markov pro-
cess through the state space of all secondary structures. Due to the exponential size of this
state space it is computationally intractable to obtain an analytic solution for most problem
sizes of interest. Thus the primary means of exploring the kinetics of a DNA system is by
simulating trajectories through the state space and aggregating data over many such tra-

jectories. We present here the Multistrand kinetics simulator, which extends the previous
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work [7] by using the multiple strand thermodynamics model [5] (a core component for cal-
culating transition rates in the kinetics model), adding new terms to the thermodynamics
model to account for stochastic modeling considerations, and by adding new kinetic moves
that allow bimolecular interactions between strands. Furthermore, we prove that this new
kinetics and thermodynamics model is consistent with the prior work on multiple strand
thermodynamics models [5].

The Multistrand simulator is based on the Gillespie algorithm [8] for generating sta-
tistically correct trajectories of a stochastic Markov process. We developed data structures
and algorithms that take advantage of local properties of secondary structures. These algo-
rithms enable the efficient reuse of the basic objects that form the system, such that only a
very small part of the state’s neighborhood information needs to be recalculated with every
step. A key addition was the implementation of algorithms to handle the new kinetic steps
that occur between different DNA strands, without increasing the time complexity of the
overall simulation. These improvements lead to a reduction in worst case time complexity
of a single step and also led to additional improvements in the average case time complexity.

What data does the simulation produce? At the very simplest, the simulation produces
a full kinetic trajectory through the state space - the exact states it passed through, and
the time at which it reached them. A small system might produce trajectories that pass
through hundreds of thousands of states, and that number increases rapidly as the system
gets larger. Going back to our original question, the type of information a researcher hopes
to get out of the data could be very simple: “How quickly does the walker take a step?”,
with the implied question of whether it’s worth it to actually purchase the particular DNA
strands composing the walker to perform an experiment, or go back to the drawing board
and redesign the device. One way to acquire that type of information is to look at the first
time in the trajectory where we reached the “walker took a step” state, and record that
information for a large number of simulated trajectories in order to obtain a useful answer.
We designed and implemented new simulation modes that allow the full trajectory data to
be condensed as it’s generated into only the pieces the user cares about for their particular
question. This analysis tool also required the development of flexible ways to talk about
states that occur in trajectory data; if someone wants data on when the walker took a step,
we have to be able to express that in terms of the Markov process states which meet that

condition.



