32

Chapter 6

Multistrand : Output and Analysis

We have now presented the models and algorithms that form the continuous time Markov
process simulator. Now we move on to discuss the most important part of the simulator
from a user’s perspective: the huge volume of data produced by the simulation, and methods
for processing that data into useful information for analyzing the simulated system.

How much data are we talking about here? Following the discussion in the previous
chapter, we expect an average of O(N) moves per time unit simulated. This doesn’t tell
us much about the actual amount of data, only that we expect it to not change drastically
for different size input systems. In practice this amount can be quite large, even for simple
systems: for a simple 25 base hairpin sequence (similar to Fig 5.5D), it takes 4,000,000
Markov steps to simulate 1s of real time. For an even larger system, such as a 4-way
branch migration system (Fig 5.5C) with 108 total bases, simulating 1s of real time takes
14,000,000 Markov steps.

What can we do with all the data produced by the simulator? In the following sections

we discuss several different processing methods.

6.1 Trajectory Mode

This full trajectory information can be useful to the user in several ways: finding kinetic
traps in the system, visualizing a kinetic pathway, or as raw data to be passed to another
analysis tool.

Trajectory mode is Multistrand’s simplest output mode. The data produced by this
mode is a trajectory through the secondary structure state space. While many trajectories

could be produced for a given system, for most analysis purposes discussed in this section

33
we are only concerned with a single trajectory. Similarly, these trajectories are infinite
but unfortunately our computers have only a finite amount of storage so we must cut the

trajectory off at some point.

Starting State Time: 0.0s

GTTCGGGCAAAAGCCCGAAC GTTCGGGCAAAAGCCCGAAC

rrrrrrrrrrrrrrrrrirrnri
Visualization

(0,0)-(0,14)

Time: 79.7 ns
{(0,0)-(0,14)

Time: 99.4 ns

{‘i (oo Y (0,6)-(0,13)
Time: 523 ns

<::::::::::::: [)) (0,5)-(0,14)
Time: 548 ns

|11 R O O G). ... (0,4)-(0,15)

Time: 550 ns

N R A G b D) I (0,7)-(0,12)
Time: 603 ns

Figure 6.1: Trajectory Data

A trajectory is represented by a finite ordered list of (s,t) pairs, where s is a system

34
microstate, and ¢ is the time in the simulation at which that state is reached. We call this
time the simulation time, as opposed to the wall clock time, the real world time it has taken
to simulate the trajectory up to that point. There are many different ways to represent a
trajectory, as shown in Figure 6.1.
For practical reasons, we set up conditions to stop the simulation so that our trajectories
are finite. There are two basic stop conditions that can be used, and the system stops when

any condition is met:

1. Maximum simulation time. We set a maximum simulation time t' for a trajectory,
and stop when the current simulation state (s,t) has t > ¢'. Note that the state (s,)
which caused the stopping condition to be met is not included in the trajectory, as it

is different from the state at time t'.

2. Stop state. Given a system microstate s’, we stop the trajectory when the current
simulation state (s,¢) has s = s’. This type of stopping condition can be specified
multiple times, with a new system microstate s’ each time; the simulation will stop

when any of the provided microstates is reached.

We will now use an example to show how trajectory mode can be used to compare two
different sequence designs for a particular system. The system is a straightforward three-
way branch migration with three strands, with a six base toehold region and twenty base

branch migration region, shown below (Fig 6.2).

N\ T

Start State Branch Mlgratlon Disassociation
Figure 6.2: Three way branch migration system. The toehold region is in , and the

branch migration region is black. A few intermediate states along a sample trajectory are
shown, with transition arrows indicating not a single base-pair step but a pair of steps
that break one base-pair then form another. Many possible side reactions also exist, such
as breathing of duplex regions and sequence depedent hairpin formation within the single-
stranded region.

35
The simulation is started in the shown Start State using a toehold sequence of GTGGGT
and a differing branch migration region for which we use the designs in Table 6.1. We then
start trajectory mode for each design, with a stop condition of 0.05 s of simulation time,

and save the resulting trajectories.

Branch Migration Region
Design A | ACCGCACGTCCACGGTGTCG
Design B | ACCGCACCACGTGGGTGTCG

Table 6.1: Two different branch migration sequences

Rather than spam the interested reader with several thousand pages of trajectory print-
outs, since there are 5% 10° states in a 0.05 s trajectory for this system, we instead highlight
one revealing section in each design’s trajectory. Let us look at the state the trajectory is

in after 0.01 s of simulation time, shown below in Figure 6.3 using a visual representation.

Figure 6.3: Structure after 0.01 s simulation time for two different sequence designs.

What happened? It appears that sequence design A has a structure that can form before
the branch migration process initiates, that contains a hairpin in the single stranded branch
migration region. Does this structure prevent the branch migration from completing? In
the long run it shouldn’t, as the equilibrium structure remains unchanged, but if we look
at the final state in each trajectory (Figure 6.4), we see that design B has completed the
process in 0.05 s of simulation time and indeed was complete at 0.01 s, where A is still stuck
in that offending structure after the same amount of time. So for these specific trajectories,
it’s certainly slowing down the branch migration process.

Did this structure only appear because we were unlucky in the trajectory for design A?
We could try running several more trajectories and seeing whether it appears in all or most
of them, but a more complete answer is better handled using a different simulation mode,
such as the first passage time mode discussed in Section 6.4.

A better type of question for trajectory mode is “How did this kinetic trap form?”. In

this example, we can examine the trajectory for design A and find the sequence of system

36

Design A Design B
Figure 6.4: Final structure (0.05 s simulation time) for the two different sequence designs
from Table 6.1. Branch migration regions: Design A: ACCGCACGTCCACGGTGTCG, Design B:
ACCGCACCACGTGGGTGTCG.

microstates that lead to the first time the hairpin structure forms. This example has a
straightforward answer: the competing structure forms before the branch migration starts,
and is therefore in direct competition with the correct kinetic pathway.

We expect that the most common usage for trajectory mode is in providing the raw
trajectory data for a separate tool to perform processing on. For example, taking the raw
trajectory data and producing a movie of the structure’s conformational changes can be
very helpful in visualizing a system, and also is quite helpful for examining kinetic traps.
A quick movie of the 3-way branch migration system could identify how the kinetic trap

forms, rather than our examination of thousands of states by hand to locate that point.

6.1.1 Testing: Energy Model

We have also used the trajectory mode to aid in verifying that the kinetics model and energy
model was implemented correctly. For the energy model, we can use an augmented output
that includes the Multistrand-calculated energy for a given state, and compare that to the
energy predicted by NUPACK [24] (or whichever tool / source we are using for our energy
parameter dataset). This can be done using trajectory mode, with a cutoff time of 0 s, so
the initial state is the only one in each trajectory. Multistrand’s energy model was verified
to be consistent with NUPACK for every sequence and structure in a comprehensive test
set of secondary structures (part of the NUPACK package) that covers all possible loop

configurations.

6.1.2 Testing: Kinetics Model

Testing the kinetics model can be done by testing that the detailed balance condition in

fact holds: We know that at equilibrium, if our kinetics model obeys detailed balance,

37
the distribution of states seen by our simulator (after sufficient time to reach equilibrium)
should agree with the Boltzmann distribution on each system microstate’s energy. There
are several ways we could extract this information from trajectory mode, such as recording
all microstates seen in the trajectory (perhaps after some minimum time) and the amount
of time spent in each one.

For our testing of the detailed balance condition we use a different method that is simpler
to implement: we run many trajectories with a fixed maximum simulation time ¢ and record
only the final state in the trajectory (note that this is the state at time ¢ in the trajectory,
not the state which caused the stopping condition to be met). Assuming that the time
t is large enough for us to reach equilibrium, we can compare the probability distribution
over the final states seen by the simulation to that predicted using the NUPACK partition
function and energy calculation utilities. In particular, for each final state observed in
a trajectory we count the number of times it occured as a final state in our simulation,
and use that to compute the simulation probability for that state. We then calculate the
thermodynamic probability of observing that state using the NUPACK tools. Finally, we
take the absolute value of the difference between the thermodynamic probability and the
simulation probability for each final state observed and sum those quantities to obtain the
total probability difference between our simulator and the thermodynamic predictions.

For our test cases we found this probability difference to be less than 1% when running a
sufficient number of trajectories (approximately 10°). This measure steadily decreases with
increased trajectory count, and does not change when the simulation time is exponentially
increased, indicating that our chosen ¢ was enough to reach an equilibrium state and the
probability difference is due to the stochastic nature of the simulation. The states which we
observed accounted for 99.95% of the partition function, and that percentage also increases

with increased number of trajectories.

6.2 Macrostates

In section 2.3 we defined a system microstate, which represents the configuration (primary
and secondary structure) of the strands in the simulation volume. In this section, we will
define a macrostate of the system and show how these objects can help us analyze a system

by providing better stop states, as well as allowing new avenues of analysis, as discussed in

38

section 6.3. To make things simpler in this section, when we refer to a microstate we always
mean a system microstate unless stated otherwise.

Formally, we define a macrostate m as a non-empty set of microstates: m = {sy, 2,, $n },
where each s; is a microstate of the system. Now we wish to derive the free energy of a
macrostate, AG(m) in such a way that the probability of observing the macrostate m at

equilibrium is consistent with probability of observing any of the contained microstates.

Pr(m) = Pr(s1) + Pr(s2) 4+ ...+ Pr(s,)
= Z Pr(s;)
1<i<n
_ 3 L o~ AGueu(s)/RT
Q

1<i<n

— é* Z e_AGboa:(si)/RT (6.1)

1<i<n

Now, letting Qm = >"1<;<p e~ AGrox(si)/RT the partition function of the macrostate m,

we have Pr(m) = Qé”. Similarly, in terms of the energy of the macrostate, we can express

Pr(m) as é % e~ AGM)/ET " and plugging into (6.1) and solving for AG(m), we get:

1 acmy/RT _ é « O

o~ AG(m)/RT _ O,

—AG(m)/RT = log Qm
AG(m) = —RT xlog Qm (6.2)

Now that we have the formal definition out of the way, let’s look at an example
macrostate using the same three-way branch migration system as in the previous section,

figure 6.2.

A

Figure 6.5: Example Macrostate

What does this macrostate represent? It’s a set of microstates that has exactly one
basepair formed in the toehold region, but it’s not every such microstate — every microstate
shown has the entire branch migration region fully formed. Thus the following microstate
isn’t included in the macrostate, but it does have exactly one basepair formed in the toehold

region:

Why are these general macrostates interesting? Previously, we defined stop states as
being microstates of the system, and we can use any number of them as part of the simu-
lator’s stop conditions. From that, it’s easy to see that any given macrostate m could be
used as a stop state of the system by simply expanding it out into the list of microstates
contained within and using those as individual stop states.

Of particular interest to us are several classes of macrostates which can be described in
very simple terms and also checked efficiently by the simulator without having to individually
check for each microstate within those macrostates. The ability to check for a macrostate
efficiently is very important: if we allowed the branch migration region in the previous

example to have any structure, the macrostate would contain over 222 microstates, and

40
even if we allowed only a limited number of bases in the branch migration region to be
breathing (such as 3 base pairs, e.g. 6 bases) this is still 1140 microstates.

One useful tool in defining these classes of macrostates is a distance metric for comparing
two complex microstates ¢;,c¢;. The distance d(c;, cj) is defined as oo if ¢; and ¢; do not
have the same set of strands and strand ordering, and otherwise as the number of bases
which are paired differently between the two structures: e.g. if base x is paired with base
y in ¢;, but base isn’t paired with y in c;, or if base x is unpaired in ¢;, but base z is
paired in ¢;. This distance metric has been used in other work, using a slightly different
but equivalent formulation for example [5, 12] and references therein. Some examples are

shown below, in table 6.2.

c Structure Distance
co | oo CCCI) .

cp | (CCCCCCCNNNIID | d(cg,c1) =8
C2 o (O) d(C(),CQ)ZG
C3 | oo ((,)) d(CO,Cg) =4
cg | oo CCC)) D) d(C(],C4):3
Cs ()(,) d(CO,C5):7

Table 6.2: Distance metric examples, for complex microstates on the two strand complex
with sequences AGCTAGCT,AGCTAGCT. Bases that differ from the structure ¢y are shown
in red.

Now that we have a distance metric, we define several common macrostates that can be

used in the simulator as stopping conditions.

6.2.1 Common Macrostates

Disassoc: Given a set of strands ST and an ordering 7* on those strands, we define the
Disassoc macrostate m as the set of all system microstates s which contain a complex
microstate ¢ with exactly the strands ST and ordering 7*. Recall that a complex
microstate (Section 2.2) is defined by three quantities, the strands contained in the
connected complex, the ordering on those strands, and the base pairs present; thus
this definition implies no particular set of base pairs are present, though it does require
that the complex be connected. Note that this macrostate can only be reached by
either a association or disassociation step, allowing it to be efficiently checked as we

only need to do so when encountering a bimolecular move. It’s called Disassoc in

41

light of its most common usage, but it could also be used to stop after an association

event.

Bound: Given a single strand S, we define the Bound macrostate m as the set of all
system microstates s which contain a complex microstate ¢ with set of strands ST

that has S € ST and |ST| > 1.

Count: Given a complex microstate ¢ and an integer count k, we define the Count
macrostate m as the set of all system microstates s which contain a complex mi-
crostate ¢’ for which d(e, ') < k. Note that ¢’ which meet this criteria must have the
same strands and strand ordering, as d(c,c’) = oo if they do not. For convenience,
instead of using the integer count k we allow passing a percentage p which represents
a percentage of the total number of bases N in the complex c. If this is done, we use

a cutoff k = [p* NJ.

Loose: Given a complex microstate ¢, a integer count k and a set of bases B that is a
subset of all the bases in ¢, we define the Loose macrostate m as the set of all system
microstates s which contain a complex microstate ¢’ for which dp(c,c’) < k, where
we define dp as the distance metric d over only the set of bases B in ¢. Similar to the
Count macrostate, we allow a percentage p instead of k, for which we set k = [px|B]].
This macrostate allows us to specify a specific region of interest in a microstate, such
as just a toehold region we wish to be bound without caring about other areas in the

complex microstate.

Note that each of these macrostates is based on the properties of a single complex
microstate occuring within a system microstate; thus if desired we could make a stopping
condition which uses several of these in conjunction. For example, we might make a stopping
conditions that has Disassoc for strand A and Disassoc for strand B, thus creating a
macrostate which can be described in words as “strand A is in a complex by itself, and strand
B isin a complex by itself, and we don’t care about any other parts of the system”. Similarly
we can implement disjunction simply by using multiple independent stopping conditions.
Though the NOT operation is not currently implemented for these stop conditions, it may
be added in the future, allowing us to have the full range of boolean operations on these

common macrostates. As it is, we can easily implement the original example macrostate

42

simply by using an OR of the six exact system microstates. Or we could use Loose
macrostates to implement the one we might have intended, where we didn’t care very much
about the branch migration region (and thus allowed it to have some breathing base pairs),

only that a single base of the toehold had been formed.

6.3 Transition Mode

What is transition mode? The basic idea is that instead of every system microstate being
an interesting piece of the trajectory, we provide (as part of the input) a list T of transition
states of the system, the states which we think are interesting, and the output is then the
times when we enter or leave any transition state in the list 7. These transition states can
be exact states of the system (e.g. system microstates), or macrostates of the system (e.g.
a combinition of common macrostates such as Dissasoc or Loose macrostates), and we
note that they are not required to be technical “transition states” as in chemical reaction
theory — we are interested in how trajectories move (i.e. transition) from macrostate to
macrostate, no matter how those macrostates are defined. One way to look at this form of
output is as a trajectory across transition state membership vectors. We note that since
these transition states are defined in exactly the same way as stop states, we generally lump
them both together in the list of transition states that get reported (after all, you’d like to
know what state caused the simulation to finish, right?), with a special labelling for which
transition states are also stop states.

What is transition mode good for? The simplest answer is that it allows us to ask
questions about specific kinetic pathways. Here’s an example of this: Given a simple se-
quence that forms a hairpin, does it form starting from the bases closest to the 5’/3’ ends

(Fig 6.6B), or starting from the bases closest to the hairpin region (Fig 6.6C)?

A /Q\QD

/
\

Figure 6.6: Hairpin Folding Pathways. Blue boxes indicate regions of interest used in loose
structure definitions (Table 6.3). A) Starting State. B) Bases near the 5’/3’ ends form first.
C) Bases near the hairpin region form first. D) Final hairpin structure.

43
How do we represent these pathways in terms of transition states? Here we take ad-
vantage of the common macrostate definitions (Section 6.2.1) to define the intermediate
structures B and C, using loose macrostates with a distance of 2, while A and D are defined

with exact microstates.

Transition State Label | Sequence / Structure | State Type
GCATGCAAAAGCATGC
A (start) | oo Exact
B (((Hxxkxkxkxx))) | Loose, d < 2
C sk (((xxk%)))kk*x | Loose, d < 2
D (stop) CCCCCe oMM Exact

Table 6.3: Transition states for hairpin pathway example. State type of Exact is exactly
the given structure as a system microstate, and Loose is a loose macrostate covering only
the bases in blue (or alternately, the bases not marked with “*”).

Why is using a loose macrostate for these transition states useful? First, we note that
we produce output any time the transition state membership changes, hence each step of
the pathway is the set of all transition states which match the system microstate. Let’s look
at a possible pathway to the stop state where the first bases that form are near the 5’ and
3’ ends and the base pairs are added sequentially without ever being broken. With exact
states this would result in the following transition pathway: {4} — 0 — {B} — 0 — {D}
and with the loose macrostates it would be this transition pathway: {4} — 0 — {B} —
{B,C} — {B,C,D}. So far, so good. What about if we form two bases of B, then all of
C, then the last base of B? For loose states, this is the exact same transition pathway -
recall that we use a distance of 2, and two base pairs formed in B is exactly that distance
away from the given structure. But for exact states, this is now the (very boring) pathway
{A} — 0 — {D}, which doesn’t answer our question about which part of the helix formed
first!

Two possible transition pathways, using either the loose structures for B and C', or

exact structures:

44

Time Transition States

0.00 A Time Transition States
3.63% 1077 0 0.00 A
1.03% 1076 A 9.02% 1077 0
1.40 x 1076 0 1.31%1076 A
1.78 x 1076 B 2.26 %1076 0
1.92% 1076 B,C 2.72% 1076 D
2.15%10°° B,C,D (b) Sample Transition Pathway (Exact)

(a) Sample Transition Pathway (Loose)

Table 6.4: Two different transition pathways via transition mode simulation, using either the
given B and C' states with the loose macrostate definitions from Table 6.3, or exact system

microstates using the states from the same table with all “*” replaced by “.” (unpaired)

and distance set to 0, effectively. Note that the times listed are the times of first entering
the given state.

Does this mean every simulated trajectory takes these transition pathways? Definitely
not! The stochastic nature of the simulator means we’re likely to see many different transi-
tion pathways if we run many trajectories. So, let’s now answer the original question: which
transition pathway is more likely? We do this by accumulating statistics over many kinetic
trajectories as follows: For each transition path trajectory (such as those in Table 6.4) we
break down the trajectory into pieces which have non-empty sets of transition states, sep-
arated only by zero or one empty set of transition states. So for example, the path shown
in Table 6.4a breaks down into four separate reactions: {A} — 0 — {4}, {4} — 0 — {B},
{B} = {B,C}, and {B,C} — {B,C, D}. For our statistics, we’ll group reactions of the
form x — () — y with those of the form z — y, and for every possible reaction, we record
the number of times it occurred and the average time it took to occur. So for the single

pathway in Table 6.4a we get the following statistics:

Reaction Average Time | Number of Occurences
A— A 1.03 % 1076 1
A— B 7.43 %1077 1
B— B,C 1.47 %1077 1
B,C - B,C,D | 229%1077 1

Table 6.5: Statistics for the single transition pathway shown in Table 6.4a.

Now that we’ve seen an example of these statistics for a single kinetic trajectory, let’s
look at the same statistics over a hundred kinetic trajectories, again using the system with

loose macrostates.

45

Reaction Average Time | Number of Occurences
A— A 2.48 %1076 829
A— B 2171077 37
A—=C 2.53 %107 73
B— A 1.09 % 1076 5
B—B 1.46 %1077 2

B — B,C 3.78 %1077 33
C— A 5.63 % 10~7 5
C—=C 2.48 %1077 7

C — B,C 5.84 % 1077 7

B,C -+ B 4.32 %1077 1

B,C —C 1.21% 1077 9

B,C - B,C,D| 210%10~" 100

Table 6.6: Statistics for 100 simulated trajectories using the transition states from Table 6.3.

What can we conclude from these statistics? Both pathways do occur, but it is much
more likely that the first bases formed are those closest to the hairpin region. The average
times for each pathway are roughly within an order of magnitude of each other, and our
selection of transition states was good: we didn’t see any unexpected pathways, such as
{A} — {D}.

We could use these “reactions” as to create a coarse-grained representation of the orig-

inal system as a chemical reaction network, using as the reaction rate constants.

Whether this will be an accurate representation or not depends on the choice of transition
states and the structure of the energy landscape. For example, if we were to try this us-
ing the average times for this system, we would end up with a formal CRN in which the
A — A reaction is taken far less frequently than shown in Table 6.6. Finding appropriate

coarse-grained representations is a deep and subtle topic [13].

6.4 First Passage Time Mode

First passage time mode is the most basic simulation mode in Multistrand. It produces
a single piece of data for each trajectory simulated: the first passage time for reaching
any stop state in the system, and which stop state was reached. This is a rather striking
difference from our previous simulation modes in the amount of data produced for each
individual trajectory, but it is still quite powerful!

This first passage time data could be produced via trajectory mode: we can just discard

46

all the output until a stop state is reached. There is a distinct efficiency advantage to
making it a separate simulation mode: we don’t have to pay the overhead of reporting
every piece of trajectory data only for it to be discarded. Similarly, we could generate the
same data using transition mode by only using stop states in our list of transition states.
We implement this as a distinct simulation mode in order to better separate the reasons
for using each simulation mode: for transition mode, we are interested in the pathway our
system takes to reach a stop state, and for first passage time mode we are interested in how
quickly the system reaches the stop state(s).

What does first passage time data look like? Let’s revisit our example system from

section 6.1 (Figure 6.2):

+
% —_— 1 —_— —_—

T
[
I N L B L LR R R R R R R R R AR EN L DT === e & & == || [|1I1IIHTIHTTT

Start State Branch Migration Disassociation

We start the system as shown, and use two different stop states: the complete stop
condition where the incumbent strand has disassociated (as shown in the figure), and the
failed stop condition where the invading strand has disassociated without completing the
branch migration. Both of these are done using Disassoc macrostates, which makes it very
efficient to check the stop states. Note that we include the invading strand disassociating as
a stop state so that if it occurs (which should be very rarely), we can find out easily without
waiting until the maximum simulation time or until the strands reassociate and complete
the branch migration.

The following table (Table 6.7) shows a five trajectories worth of data from first passage
time mode on the example system, using sequence design B (Table 6.1) for the branch
migration region.

Note that we have included a third piece of data for each trajectory, which is the
pseudorandom number generator seed used to simulate that trajectory. This allows us to
produce the exact same trajectory again using a different simulation mode, stop states or
other output conditions. For example, we might wish to run the fifth trajectory in the table

again using trajectory mode, to see why it took longer than the others, or run the first

47

Random Number Seed | Completion Time | Stop Condition
0x790e400d 3.7% 1073 failed
0x38188213 3.8%1073 complete
0x47607ebf 2.1%1073 complete
0x02efe7fa 2.8%1073 complete
0x7c590233 6.7 % 1073 complete

Table 6.7: First passage time data for the example three way branch migration system. Stop
conditions are either “complete”, indicating the branch migration completed successfully,
or “failed”, indicating the strands fell apart before the branch migration could complete.

trajectory to see what kinetic pathway it took to reach the failed stop condition.

Let’s now look at a much larger data set for first passage time mode. Here we again use
the three way branch migration system with sequence design B for the branch migration
region and increase the toehold region to be ten bases, to minimize the number of trajectories
that reach the failed stop condition. We run 1000 trajectories, using a maximum simulation
time of 1 s, though no trajectory actually used that much as we shall shortly see.

Instead of listing all the trajectories in a table, we graph the first passage time data for
the complete stop condition in two different ways: first (Figure 6.7a) we make a histogram
of the distribution of first passage times for the data set, and second (Figure 6.7b) we graph
the percentage of trajectories in our sample that have reached the complete stop condition

as a function of the simulation time.

100, ‘ ‘ ‘ 100%

80%

60%

40%

of Trajectories
% of Trajectories Complete

20%

0
0.000 0.005 0.010

.01 0.015 0.020 0.000 0.005 0.010 0.015 0.020
First Passage Time (s) Simulation Time (s)
(a) Histogram of first passage times (b) Percent completion by simulation time

Figure 6.7: First passage time data for the three way branch migration system, using
sequence design B (Table 6.1) and with a ten base toehold sequence. 1000 trajectories were
simulated and all of them ended with the complete stop condition.

48

While there are many ways to analyze these figures, we note two particular observa-
tions. Firstly, the histogram of the first passage time distribution looks suspiciously like an
exponential distribution, possibly with a short delay. This is not always typical (as we shall
shortly see), but the shape of this histogram can be very helpful in inferring how we might
wish to model our system based on the simulation data; e.g. for this system, we might de-
cide that the three way branch migration process is roughly exponential (with some fitted
rate parameter) and so we could model it as a one step unimolecular process.

The second observation is that while the percentage completion graph looks very similar
to an experimental fluourescence microscopy curve, they should NOT be assumed to be
directly comparable. The main pitfall to watch out for is when comparing fluourescence
curves from systems where the reactions are bimolecular: in these the concentration of the
relevant molecules are changing over time, but in our stochastic simulation the bimolecular
steps are at a fixed volume/concentration (reflected in the AGyoiume energy term) and data

is aggregated over many trajectories.

6.4.1 Comparing Sequence Designs

A common usage of first step mode is in the comparison of sequence designs, as we previously
brought up in Section 6.1. We now run another 1000 trajectories on the same three way
branch migration system as in the previous section, including the increased toehold length,
but using the sequence design A (Table 6.1) for the branch migration region. Note the

change in x-axis scale; this design is indeed much slower than design B!

49

Il Design B
Bl Design A

of Trajectories
of Trajectories

0
0.4 0.5 0.6 0.7 0.000 .005 0.010 0.015 0.020

0.0 0.1 0.2 3 . K
First Passage Time (s) First Passage Time (s)

(a) Histogram of first passage times, design A (b) Histogram of first passage times, both designs

Figure 6.8: First passage time data for the three way branch migration system, comparing
sequence designs using histograms. For figure (b), we compare the two designs on the range
of times from 0 s to 0.02 s. The buckets for sequence design A have been reduced in visual
size to show overlapping regions, but overall bucket sizes are consistent between the two
designs (though they are slightly different from those in Figure 6.7a).

Let’s also look at the same data but using the percentage completion as a function of

simulated time graphs:

100% 100%

80% 80%
60%

60%

40% 40%

% of Trajectories Complete
% of Trajectories Complete

20% 20%
0% ‘ ‘ ‘ ‘ ‘ ‘ 0% ‘ ‘
00 01 02 03 04 05 06 07 0.00 0.02 0.04 0 0.08 0.10
Simulation Time (s) Simulation Time (s)
(a) Design comparison, percent completion graph (b) Design comparison, zoomed

Figure 6.9: First passage time data for the three way branch migration system, comparing
sequence designs using percent completion graphs. Figure (b) is a zoom in on the range of
times from 0 s to 0.1 s from Figure (a).

We can now clearly see just how different these two sequence designs are! Our results
from the trajectory mode section were clearly not unusual: the majority of sequence design

B’s trajectories finish in under 0.01 s, whereas the same amount for sequence design A

50
is over ten times longer. This is highlighted in the combined graph (Figure 6.8b), which
shows how vastly different the timescales are for each process. Looking at the percentage
completion graphs, we note that sequence design A did not actually reach 100% — it actually
had 8 trajectories reach the failed stop condition!

While both types of graphs are presenting the same information, they are frequently
useful in different cases: the first passage time histograms are helpful for gaining an intuition
into the actual distribution of times for the process we are simulating, while the percent
completion graphs are better for looking at the relative rates of different designs, especially

when working with more than two sequence designs.

6.4.2 Systems with Multiple Stop Conditions

What about our original three way branch migration system, which had toeholds of length
six? Let’s now look at this situation, where we have a system that has more than one
competing stop state. We again run the system with 1000 trajectories and a 1 s maximum
simulation time (though it’s never reached). Instead of plotting only the first passage times
for the complete stop condition, we overlay those with the first passage times for the failed

stop condition.

100%

EEm complete — complete
I failed — failed

80%

60%

40%

of Trajectories
% of Trajectories Complete

20%

0 0% " " " " " " "
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
First Passage Time (s) Simulation Time (s)

(a) Histogram of first passage times (b) Percent completion by simulation time

Figure 6.10: First passage time data for the three way branch migration system with 6 base
toeholds, comparing sequence designs.

Competing stop conditions certainly make the data more interesting! We can pick out
pieces of the kinetic pathways a lot easier using these graphs. For example, the competing

pathway leading to the failed stop condition frequently occurs faster than the complete

51
stop condition pathway; this should be unsurprising, as one pathway involves a long random

walk while the other is very unlikely to include one.

6.5 Fitting Chemical Reaction Equations

We are frequently interested in DNA systems which can be represented (with some choice
of the appropriate internal parameters/sequences) by chemical reaction equations of the

following form:

A+B™Lcyp (6.3)

These systems usually involve an intermediate step, so typically the concentration is low
enough for the above equation to actually be a good fit. Experimental observation of these
systems tend to be in the range of concentrations where the above equation is an accurate

characterization of the system.

Let us now associate the species in the equation above with actual DNA complexes
(ordered collections of connected strands). We designate strands by unique letters, and
indicate complementary strands with an asterisk. For the toehold-mediated 3-way branch

migration example, the chemical equation then becomes:

ke
y+z L gty (6.4)

Let us examine one possible DNA configuration for the state of the entire system that
could follow this equation’s implied dynamics. The left hand side could be the configuration
given in figure 6.11, and the right hand side could be the configuration given in figure 6.12.
Note that while we show particular exact secondary structures for each of these figures,
there are actually many such secondary structures that represent the appropriate parts of
the equation, which might be specified using Loose macrostates.

Finally, what would the equations look like if we did not expect them to fit equation

6.37 One possibility is as follows (as in Zhang, Winfree 2009 [25]):

52

y
+ NN
X*

Complex A Complex B

Figure 6.11: Starting Complexes and Strand labels

X y
it
X*
Complex C Complex D

Figure 6.12: Final Complexes and Strand labels

k’,f kbm / k.
A+B <= AB <% AB . 04D (6.5)
T bm

Though this model is used in several experimental papers, it is difficult for us to define
simulation macrostates in order to determine the various rates present in the equation. In-
stead, we look at a model where it is easy to separate out the steps into discrete components
which can be individually simulated. Specifically, we look at a system where the molecules
A and B can collide and form either a reactive molecule which will go to C' and D, or a
nonreactive molecule which will fall apart after some time'. We call this the first step

model, and it is described by the equations below:

A+B 2 ap 204+ D (6.6)
k;/

A+B = AB (6.7)
K,

We will use this model extensively to analyze the results of the first step mode simu-

'Thanks to Niles Pierce and Victor Beck for suggesting this approach.

53
lations discussed in section 6.6. Note that for low concentrations, the controlling step will
be the bimolecular reactions and thus we should be able to also fit to a k.y; type model in
those cases.
We discuss fitting first passage time data to the simple k.¢; model (Equation 6.3, as
well as using first step mode to generate data which can easily be fit to the first step

model.

6.5.1 Fitting Full Simulation Data to the k.;; model

For this simulation mode, we start the simulation in the exact state shown in figure 6.11,
and measure the first passage time to reach any state with the same complexes (but not
exact secondary structure, i.e. we use a Disassoc stop state) as that shown in figure 6.12.
This gives us a data set of first passage times At;, where 1 < i < n, and n is the total
number of trajectories simulated. The simulation is done at a particular concentration z.
Note that this simulation will require time inversely proportional to the simulation con-
centration, since we are simulating elementary steps. Thus we would prefer to simulate at
higher concentrations and step downwards in concentration until we are in the region where

the bimolecular reaction dominates, and equation 6.3 holds.

If we assume equation 6.3 holds and determines our distribution of first reaction times,
we can fit our data to an exponential distribution in order to determine k.f¢: Recall that (via
Gillespie [8]) in a formal chemical reaction network, a state with total outgoing propensity
ap will have a passage time (7) distribution according to the probability density function
P(7) = agp * exp(—apT). Since the propensity ag for a bimolecular reaction is the reaction
rate times the concentration, we solve for k.s; as follows, where expfit is the function that
takes a data set of first passage times (At;) and returns the parameter ag of the exponential

distribution given by those At;, and z is the simulated concentration:

kepp = expfit(At;) x 1/2 (6.8)

If we are in the regime where equation 6.3 holds, we expect this to give us a consistent

value for keys. If we are outside of that regime (and thus the unimolecular reactions from

54
equation 6.5 or equation 6.6 dominates), this will err by exactly the factor of 1/z, thus the

graph of k.y; versus concentration z should appear linear in this regime.

6.6 First Step Mode

This simulation mode makes a simple assumption: we always start the Markov simulation
by making a “join” step, that is, one where a pair of molecules A and B come together
and form a single base pair. The choice of secondary structure states for the molecules A
and B before collision can be done either by using particular exact complex microstates, or
by Boltzmann sampling the secondary structure space of the molecules. This sampling is
valid when the bimolecular reaction rates are slow enough that the initial complexes reach
equilibrium. In either case, we have a valid system microstate once we know the structure
for the A and B molecules, and then choose a “join” step from those present in the system
microstate and use the resulting system microstate (after making the join) as our start state
for a trajectory. Since this mode runs many trajectories, we must make many such random
choices for the join step and for the Boltzmann sampling of the initial molecules (if we are
using the sampling rather than exact states).

The simulation then starts from this configuration, and we track two distinct end states:
the molecules falling apart back into one of the A + B configurations, or the molecules
reacting into one of the C + D configurations. Our data then consists of first passage
times where we can separate each trajectory into one that reacted or one that failed. The
advantage to this mode of simulation is that we no longer are directly simulating the “join”
bimolecular steps, whose rates are proportional to the simulated concentration and thus are
going to be very slow relative to the normal unimolecular steps. This allows us to use the
simulator to concentrate on the trajectories where we have a collision, rather than spending
(at low concentrations) most of the time simulating unimolecular reactions while waiting

for the very rare bimolecular reaction.

6.6.1 Fitting the First Step Model

Our first step mode simulation produces the following pieces of data: Atl,,.,, the first
passage times for reactive trajectories, Até‘ail the first passage times for trajectories did not

react, the number of trajectories that reacted Nyeqot and failed N4, and the rate constant

55
keoi, the simulation’s estimate of the rate of collision (in /M/s) of the A and B molecules.
This k.o is calculated based on all the join moves possible from the initial configuration of
the A and B molecules, and thus is very likely to include many such moves which do not
lead to very stable structures and thus disassociate quickly.

We then fit to the model given in equations 6.6 and 6.7, as follows:

Nreact
k= ——"——xk 6.9
! Nreact + Nfail coll ()
Nrtair
B = —J9 6.10
! Nyeaet + Nfail colt ()
ko = expfit(Atl,,.,) (6.11)
Ky = expﬁt(At;ail) (6.12)

Thus we can directly find each of the model parameters from the collected simulation
data, in a natural way. We then use this model to predict the k.;; parameter we would

observe if we assume that the simple chemical reaction model (eqn 6.3) is valid.

6.6.2 Analysis of First Step Model Parameters

We first show a natural (but inexact) way to calculate kcsy from the first step model
parameters, using the assumption that the time used in “failed” collisions is negligible
compared to that needed for a successful reaction. In this situation, we can estimate k.
for a particular concentration z by calculating the expected average time for a reaction. We
use the fact that the expected value of an exponential distribution with rate parameter A

will be % in order to derive kqyy:

1 1
Repp= 2% T 11

I (613)
L1z + %o

Again, this makes the assumption that equation 6.3 holds and thus that the reaction
dominated by the bimolecular step. The observation from the full simulation mode still
holds: if we are not in this regime, we will err by a factor of % and thus the graph should

be linear. Note that since this simulation does not require a set concentration, we can run

56
one simulation (with a large number of trajectories) and use the extracted data to produce
the same type of graph as the full simulation mode.

We now would like to remove the assumption that the “failed” collision time is negligible:
though that assumption makes k.s straightforward to calculate, many systems of interest
will not satisfy that condition.

We now need to calculate the expected time for a “successful” reaction to occur based
on both the “failed” and “reactive” collision parameters. We do this by summing over all
possible paths through the reactions in equations 6.6 and 6.7, weighted by the probability
of those reactions. Let At.,; = m (the expected time for any collision to occur),
At = Ateoy + k% (the expected time needed for a failed collision to return to the initial
state), Atreqct = Ateoy + é (the expected time for a reactive collision to reach the final
state), p(path) is the probability of a particular path occuring, and Atpe, = nltie +
Atyeqer 18 the expected time for a path which has n failed collisions and then a successful
collision. Finally, the quantity which we want to solve for is Atcorrect, the expected time it

takes for a successful reaction to occur.

Atcor?“ect = ZAtpath*p(path) (614)
path
oo
k! k1
= At o + At L_yn 6.15
nzz;)(n fail + react)*(kl+k/l) *kl‘f‘ki ()
. . K,
To simplify the next step, let a = ,ﬁkTIk,l and o = W, and recall that for 8 > 0,

Yoo Bt = ﬁ and Y 02 n* " =[x ﬁ, and we get:

’
1
“ 5 *a+ Atreget ¥ —— * @ (616)

Atcorrect) = Atfail * m 1—do

o

Now we note that 12~ =1, and {2 = %, and simplify:

/

k
Atcorrect) = Atfail * kﬁ + Atreact (617)

57

And thus we arrive at the (full) form for kesp:

1 1
kerr=-————%— 6.18
et Atcorrect i z ()

This requires only a single assumption: that the reaction is dominated by the bimolecular
step, and thus can be described by equation 6.3. We note that this derivation can be

generalized for multiple possible stop states [2].

