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Chapter 6

Multistrand : Output and Analysis

We have now presented the models and algorithms that form the continuous time Markov

process simulator. Now we move on to discuss the most important part of the simulator

from a user’s perspective: the huge volume of data produced by the simulation, and methods

for processing that data into useful information for analyzing the simulated system.

How much data are we talking about here? Following the discussion in the previous

chapter, we expect an average of O(N) moves per time unit simulated. This doesn’t tell

us much about the actual amount of data, only that we expect it to not change drastically

for different size input systems. In practice this amount can be quite large, even for simple

systems: for a simple 25 base hairpin sequence (similar to Fig 5.5D), it takes 4,000,000

Markov steps to simulate 1s of real time. For an even larger system, such as a 4-way

branch migration system (Fig 5.5C) with 108 total bases, simulating 1s of real time takes

14,000,000 Markov steps.

What can we do with all the data produced by the simulator? In the following sections

we discuss several different processing methods.

6.1 Trajectory Mode

This full trajectory information can be useful to the user in several ways: finding kinetic

traps in the system, visualizing a kinetic pathway, or as raw data to be passed to another

analysis tool.

Trajectory mode is Multistrand’s simplest output mode. The data produced by this

mode is a trajectory through the secondary structure state space. While many trajectories

could be produced for a given system, for most analysis purposes discussed in this section
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we are only concerned with a single trajectory. Similarly, these trajectories are infinite

but unfortunately our computers have only a finite amount of storage so we must cut the

trajectory off at some point.

Time: 603 ns

( 0 , 7 ) - ( 0 , 1 2 )....((((....))))....

Time: 550 ns

( 0 , 4 ) - ( 0 , 1 5 )....(((......)))....

Time: 548 ns

( 0 , 5 ) - ( 0 , 1 4 ).....((......)).....

Time: 523 ns

( 0 , 6 ) - ( 0 , 1 3 )......(......)......

Time: 99.4 ns
.................... ( 0 , 0 ) - ( 0 , 1 4 ).................... ( 0 , 0 ) - ( 0 , 1 4 )

( 0 , 0 ) - ( 0 , 1 4 )

Time: 79.7 ns

(.............).....

GTTCGGGCAAAAGCCCGAAC
....................

Starting State Time: 0.0s

Structure / MoveVisualization

G T T C G G G C A A A A G C C C G A A C

Figure 6.1: Trajectory Data

A trajectory is represented by a finite ordered list of (s, t) pairs, where s is a system
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microstate, and t is the time in the simulation at which that state is reached. We call this

time the simulation time, as opposed to the wall clock time, the real world time it has taken

to simulate the trajectory up to that point. There are many different ways to represent a

trajectory, as shown in Figure 6.1.

For practical reasons, we set up conditions to stop the simulation so that our trajectories

are finite. There are two basic stop conditions that can be used, and the system stops when

any condition is met:

1. Maximum simulation time. We set a maximum simulation time t� for a trajectory,

and stop when the current simulation state (s, t) has t > t�. Note that the state (s, t)

which caused the stopping condition to be met is not included in the trajectory, as it

is different from the state at time t�.

2. Stop state. Given a system microstate s�, we stop the trajectory when the current

simulation state (s, t) has s = s�. This type of stopping condition can be specified

multiple times, with a new system microstate s� each time; the simulation will stop

when any of the provided microstates is reached.

We will now use an example to show how trajectory mode can be used to compare two

different sequence designs for a particular system. The system is a straightforward three-

way branch migration with three strands, with a six base toehold region and twenty base

branch migration region, shown below (Fig 6.2).

. . .
Start State Branch Migration Disassociation

Figure 6.2: Three way branch migration system. The toehold region is in green, and the
branch migration region is black. A few intermediate states along a sample trajectory are
shown, with transition arrows indicating not a single base-pair step but a pair of steps
that break one base-pair then form another. Many possible side reactions also exist, such
as breathing of duplex regions and sequence depedent hairpin formation within the single-
stranded region.
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The simulation is started in the shown Start State using a toehold sequence of GTGGGT

and a differing branch migration region for which we use the designs in Table 6.1. We then

start trajectory mode for each design, with a stop condition of 0.05 s of simulation time,

and save the resulting trajectories.

Branch Migration Region
Design A ACCGCACGTCCACGGTGTCG

Design B ACCGCACCACGTGGGTGTCG

Table 6.1: Two different branch migration sequences

Rather than spam the interested reader with several thousand pages of trajectory print-

outs, since there are 5∗106 states in a 0.05 s trajectory for this system, we instead highlight

one revealing section in each design’s trajectory. Let us look at the state the trajectory is

in after 0.01 s of simulation time, shown below in Figure 6.3 using a visual representation.

Design A Design B
Figure 6.3: Structure after 0.01 s simulation time for two different sequence designs.

What happened? It appears that sequence design A has a structure that can form before

the branch migration process initiates, that contains a hairpin in the single stranded branch

migration region. Does this structure prevent the branch migration from completing? In

the long run it shouldn’t, as the equilibrium structure remains unchanged, but if we look

at the final state in each trajectory (Figure 6.4), we see that design B has completed the

process in 0.05 s of simulation time and indeed was complete at 0.01 s, where A is still stuck

in that offending structure after the same amount of time. So for these specific trajectories,

it’s certainly slowing down the branch migration process.

Did this structure only appear because we were unlucky in the trajectory for design A?

We could try running several more trajectories and seeing whether it appears in all or most

of them, but a more complete answer is better handled using a different simulation mode,

such as the first passage time mode discussed in Section 6.4.

A better type of question for trajectory mode is “How did this kinetic trap form?”. In

this example, we can examine the trajectory for design A and find the sequence of system
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Design A Design B
Figure 6.4: Final structure (0.05 s simulation time) for the two different sequence designs
from Table 6.1. Branch migration regions: Design A: ACCGCACGTCCACGGTGTCG, Design B:
ACCGCACCACGTGGGTGTCG.

microstates that lead to the first time the hairpin structure forms. This example has a

straightforward answer: the competing structure forms before the branch migration starts,

and is therefore in direct competition with the correct kinetic pathway.

We expect that the most common usage for trajectory mode is in providing the raw

trajectory data for a separate tool to perform processing on. For example, taking the raw

trajectory data and producing a movie of the structure’s conformational changes can be

very helpful in visualizing a system, and also is quite helpful for examining kinetic traps.

A quick movie of the 3-way branch migration system could identify how the kinetic trap

forms, rather than our examination of thousands of states by hand to locate that point.

6.1.1 Testing: Energy Model

We have also used the trajectory mode to aid in verifying that the kinetics model and energy

model was implemented correctly. For the energy model, we can use an augmented output

that includes the Multistrand-calculated energy for a given state, and compare that to the

energy predicted by NUPACK [24] (or whichever tool / source we are using for our energy

parameter dataset). This can be done using trajectory mode, with a cutoff time of 0 s, so

the initial state is the only one in each trajectory. Multistrand’s energy model was verified

to be consistent with NUPACK for every sequence and structure in a comprehensive test

set of secondary structures (part of the NUPACK package) that covers all possible loop

configurations.

6.1.2 Testing: Kinetics Model

Testing the kinetics model can be done by testing that the detailed balance condition in

fact holds: We know that at equilibrium, if our kinetics model obeys detailed balance,
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the distribution of states seen by our simulator (after sufficient time to reach equilibrium)

should agree with the Boltzmann distribution on each system microstate’s energy. There

are several ways we could extract this information from trajectory mode, such as recording

all microstates seen in the trajectory (perhaps after some minimum time) and the amount

of time spent in each one.

For our testing of the detailed balance condition we use a different method that is simpler

to implement: we run many trajectories with a fixed maximum simulation time t and record

only the final state in the trajectory (note that this is the state at time t in the trajectory,

not the state which caused the stopping condition to be met). Assuming that the time

t is large enough for us to reach equilibrium, we can compare the probability distribution

over the final states seen by the simulation to that predicted using the NUPACK partition

function and energy calculation utilities. In particular, for each final state observed in

a trajectory we count the number of times it occured as a final state in our simulation,

and use that to compute the simulation probability for that state. We then calculate the

thermodynamic probability of observing that state using the NUPACK tools. Finally, we

take the absolute value of the difference between the thermodynamic probability and the

simulation probability for each final state observed and sum those quantities to obtain the

total probability difference between our simulator and the thermodynamic predictions.

For our test cases we found this probability difference to be less than 1% when running a

sufficient number of trajectories (approximately 105). This measure steadily decreases with

increased trajectory count, and does not change when the simulation time is exponentially

increased, indicating that our chosen t was enough to reach an equilibrium state and the

probability difference is due to the stochastic nature of the simulation. The states which we

observed accounted for 99.95% of the partition function, and that percentage also increases

with increased number of trajectories.

6.2 Macrostates

In section 2.3 we defined a system microstate, which represents the configuration (primary

and secondary structure) of the strands in the simulation volume. In this section, we will

define a macrostate of the system and show how these objects can help us analyze a system

by providing better stop states, as well as allowing new avenues of analysis, as discussed in
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section 6.3. To make things simpler in this section, when we refer to a microstate we always

mean a system microstate unless stated otherwise.

Formally, we define amacrostatem as a non-empty set of microstates: m = {s1, s2, ...., sn},

where each si is a microstate of the system. Now we wish to derive the free energy of a

macrostate, ∆G(m) in such a way that the probability of observing the macrostate m at

equilibrium is consistent with probability of observing any of the contained microstates.

Pr(m) = Pr(s1) + Pr(s2) + . . .+ Pr(sn)

=
�

1≤i≤n

Pr(si)

=
�

1≤i≤n

1

Q
∗ e−∆Gbox(si)/RT

=
1

Q
∗

�

1≤i≤n

e−∆Gbox(si)/RT (6.1)

Now, letting Qm =
�

1≤i≤n e
−∆Gbox(si)/RT , the partition function of the macrostate m,

we have Pr(m) = Qm
Q . Similarly, in terms of the energy of the macrostate, we can express

Pr(m) as 1
Q ∗ e−∆G(m)/RT , and plugging into (6.1) and solving for ∆G(m), we get:

1

Q
∗ e−∆G(m)/RT =

1

Q
∗Qm

e−∆G(m)/RT = Qm

−∆G(m)/RT = logQm

∆G(m) = −RT ∗ logQm (6.2)

Now that we have the formal definition out of the way, let’s look at an example

macrostate using the same three-way branch migration system as in the previous section,

figure 6.2.
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Figure 6.5: Example Macrostate

What does this macrostate represent? It’s a set of microstates that has exactly one

basepair formed in the toehold region, but it’s not every such microstate – every microstate

shown has the entire branch migration region fully formed. Thus the following microstate

isn’t included in the macrostate, but it does have exactly one basepair formed in the toehold

region:

Why are these general macrostates interesting? Previously, we defined stop states as

being microstates of the system, and we can use any number of them as part of the simu-

lator’s stop conditions. From that, it’s easy to see that any given macrostate m could be

used as a stop state of the system by simply expanding it out into the list of microstates

contained within and using those as individual stop states.

Of particular interest to us are several classes of macrostates which can be described in

very simple terms and also checked efficiently by the simulator without having to individually

check for each microstate within those macrostates. The ability to check for a macrostate

efficiently is very important: if we allowed the branch migration region in the previous

example to have any structure, the macrostate would contain over 222 microstates, and
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even if we allowed only a limited number of bases in the branch migration region to be

breathing (such as 3 base pairs, e.g. 6 bases) this is still 1140 microstates.

One useful tool in defining these classes of macrostates is a distance metric for comparing

two complex microstates ci, cj . The distance d(ci, cj) is defined as ∞ if ci and cj do not

have the same set of strands and strand ordering, and otherwise as the number of bases

which are paired differently between the two structures: e.g. if base x is paired with base

y in ci, but base x isn’t paired with y in cj , or if base x is unpaired in ci, but base x is

paired in cj . This distance metric has been used in other work, using a slightly different

but equivalent formulation for example [5, 12] and references therein. Some examples are

shown below, in table 6.2.

ci Structure Distance
c0 ....(((( ))))....

c1 (((((((( )))))))) d(c0, c1) = 8
c2 ....(((( ))....)) d(c0, c2) = 6
c3 ......(( ))...... d(c0, c3) = 4
c4 ....(((( )))....) d(c0, c4) = 3
c5 .(....)( )....... d(c0, c5) = 7

Table 6.2: Distance metric examples, for complex microstates on the two strand complex
with sequences AGCTAGCT,AGCTAGCT. Bases that differ from the structure c0 are shown
in red.

Now that we have a distance metric, we define several common macrostates that can be

used in the simulator as stopping conditions.

6.2.1 Common Macrostates

Disassoc: Given a set of strands ST and an ordering π∗ on those strands, we define the

Disassoc macrostate m as the set of all system microstates s which contain a complex

microstate c with exactly the strands ST and ordering π∗. Recall that a complex

microstate (Section 2.2) is defined by three quantities, the strands contained in the

connected complex, the ordering on those strands, and the base pairs present; thus

this definition implies no particular set of base pairs are present, though it does require

that the complex be connected. Note that this macrostate can only be reached by

either a association or disassociation step, allowing it to be efficiently checked as we

only need to do so when encountering a bimolecular move. It’s called Disassoc in
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light of its most common usage, but it could also be used to stop after an association

event.

Bound: Given a single strand S, we define the Bound macrostate m as the set of all

system microstates s which contain a complex microstate c with set of strands ST

that has S ∈ ST and |ST | > 1.

Count: Given a complex microstate c and an integer count k, we define the Count

macrostate m as the set of all system microstates s which contain a complex mi-

crostate c� for which d(c, c�) ≤ k. Note that c� which meet this criteria must have the

same strands and strand ordering, as d(c, c�) = ∞ if they do not. For convenience,

instead of using the integer count k we allow passing a percentage p which represents

a percentage of the total number of bases N in the complex c. If this is done, we use

a cutoff k = �p ∗N�.

Loose: Given a complex microstate c, a integer count k and a set of bases B that is a

subset of all the bases in c, we define the Loose macrostate m as the set of all system

microstates s which contain a complex microstate c� for which dB(c, c�) ≤ k, where

we define dB as the distance metric d over only the set of bases B in c. Similar to the

Countmacrostate, we allow a percentage p instead of k, for which we set k = �p∗|B|�.

This macrostate allows us to specify a specific region of interest in a microstate, such

as just a toehold region we wish to be bound without caring about other areas in the

complex microstate.

Note that each of these macrostates is based on the properties of a single complex

microstate occuring within a system microstate; thus if desired we could make a stopping

condition which uses several of these in conjunction. For example, we might make a stopping

conditions that has Disassoc for strand A and Disassoc for strand B, thus creating a

macrostate which can be described in words as “strand A is in a complex by itself, and strand

B is in a complex by itself, and we don’t care about any other parts of the system”. Similarly

we can implement disjunction simply by using multiple independent stopping conditions.

Though the NOT operation is not currently implemented for these stop conditions, it may

be added in the future, allowing us to have the full range of boolean operations on these

common macrostates. As it is, we can easily implement the original example macrostate



42

simply by using an OR of the six exact system microstates. Or we could use Loose

macrostates to implement the one we might have intended, where we didn’t care very much

about the branch migration region (and thus allowed it to have some breathing base pairs),

only that a single base of the toehold had been formed.

6.3 Transition Mode

What is transition mode? The basic idea is that instead of every system microstate being

an interesting piece of the trajectory, we provide (as part of the input) a list T of transition

states of the system, the states which we think are interesting, and the output is then the

times when we enter or leave any transition state in the list T . These transition states can

be exact states of the system (e.g. system microstates), or macrostates of the system (e.g.

a combinition of common macrostates such as Dissasoc or Loose macrostates), and we

note that they are not required to be technical “transition states” as in chemical reaction

theory – we are interested in how trajectories move (i.e. transition) from macrostate to

macrostate, no matter how those macrostates are defined. One way to look at this form of

output is as a trajectory across transition state membership vectors. We note that since

these transition states are defined in exactly the same way as stop states, we generally lump

them both together in the list of transition states that get reported (after all, you’d like to

know what state caused the simulation to finish, right?), with a special labelling for which

transition states are also stop states.

What is transition mode good for? The simplest answer is that it allows us to ask

questions about specific kinetic pathways. Here’s an example of this: Given a simple se-

quence that forms a hairpin, does it form starting from the bases closest to the 5’/3’ ends

(Fig 6.6B), or starting from the bases closest to the hairpin region (Fig 6.6C)?

D

C

A

B

Figure 6.6: Hairpin Folding Pathways. Blue boxes indicate regions of interest used in loose
structure definitions (Table 6.3). A) Starting State. B) Bases near the 5’/3’ ends form first.
C) Bases near the hairpin region form first. D) Final hairpin structure.
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How do we represent these pathways in terms of transition states? Here we take ad-

vantage of the common macrostate definitions (Section 6.2.1) to define the intermediate

structures B and C, using loose macrostates with a distance of 2, while A and D are defined

with exact microstates.

Transition State Label Sequence / Structure State Type
GCATGCAAAAGCATGC

A (start) ................ Exact
B (((**********))) Loose, d ≤ 2
C ***(((****)))*** Loose, d ≤ 2

D (stop) ((((((....)))))) Exact

Table 6.3: Transition states for hairpin pathway example. State type of Exact is exactly
the given structure as a system microstate, and Loose is a loose macrostate covering only
the bases in blue (or alternately, the bases not marked with “*”).

Why is using a loose macrostate for these transition states useful? First, we note that

we produce output any time the transition state membership changes, hence each step of

the pathway is the set of all transition states which match the system microstate. Let’s look

at a possible pathway to the stop state where the first bases that form are near the 5’ and

3’ ends and the base pairs are added sequentially without ever being broken. With exact

states this would result in the following transition pathway: {A} → ∅ → {B} → ∅ → {D}

and with the loose macrostates it would be this transition pathway: {A} → ∅ → {B} →

{B,C} → {B,C,D}. So far, so good. What about if we form two bases of B, then all of

C, then the last base of B? For loose states, this is the exact same transition pathway -

recall that we use a distance of 2, and two base pairs formed in B is exactly that distance

away from the given structure. But for exact states, this is now the (very boring) pathway

{A} → ∅ → {D}, which doesn’t answer our question about which part of the helix formed

first!

Two possible transition pathways, using either the loose structures for B and C, or

exact structures:
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Time Transition States
0.00 A

3.63 ∗ 10−7 ∅
1.03 ∗ 10−6 A
1.40 ∗ 10−6 ∅
1.78 ∗ 10−6 B
1.92 ∗ 10−6 B,C
2.15 ∗ 10−6 B,C,D

(a) Sample Transition Pathway (Loose)

Time Transition States
0.00 A

9.02 ∗ 10−7 ∅
1.31 ∗ 10−6 A
2.26 ∗ 10−6 ∅
2.72 ∗ 10−6 D

(b) Sample Transition Pathway (Exact)

Table 6.4: Two different transition pathways via transition mode simulation, using either the
given B and C states with the loose macrostate definitions from Table 6.3, or exact system
microstates using the states from the same table with all “*” replaced by “.” (unpaired)
and distance set to 0, effectively. Note that the times listed are the times of first entering
the given state.

Does this mean every simulated trajectory takes these transition pathways? Definitely

not! The stochastic nature of the simulator means we’re likely to see many different transi-

tion pathways if we run many trajectories. So, let’s now answer the original question: which

transition pathway is more likely? We do this by accumulating statistics over many kinetic

trajectories as follows: For each transition path trajectory (such as those in Table 6.4) we

break down the trajectory into pieces which have non-empty sets of transition states, sep-

arated only by zero or one empty set of transition states. So for example, the path shown

in Table 6.4a breaks down into four separate reactions: {A} → ∅ → {A}, {A} → ∅ → {B},

{B} → {B,C}, and {B,C} → {B,C,D}. For our statistics, we’ll group reactions of the

form x → ∅ → y with those of the form x → y, and for every possible reaction, we record

the number of times it occurred and the average time it took to occur. So for the single

pathway in Table 6.4a we get the following statistics:

Reaction Average Time Number of Occurences
A → A 1.03 ∗ 10−6 1
A → B 7.43 ∗ 10−7 1

B → B,C 1.47 ∗ 10−7 1
B,C → B,C,D 2.29 ∗ 10−7 1

Table 6.5: Statistics for the single transition pathway shown in Table 6.4a.

Now that we’ve seen an example of these statistics for a single kinetic trajectory, let’s

look at the same statistics over a hundred kinetic trajectories, again using the system with

loose macrostates.
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Reaction Average Time Number of Occurences
A → A 2.48 ∗ 10−6 829
A → B 2.17 ∗ 10−7 37
A → C 2.53 ∗ 10−7 73
B → A 1.09 ∗ 10−6 5
B → B 1.46 ∗ 10−7 2

B → B,C 3.78 ∗ 10−7 33
C → A 5.63 ∗ 10−7 5
C → C 2.48 ∗ 10−7 7

C → B,C 5.84 ∗ 10−7 77
B,C → B 4.32 ∗ 10−7 1
B,C → C 1.21 ∗ 10−7 9

B,C → B,C,D 2.10 ∗ 10−7 100

Table 6.6: Statistics for 100 simulated trajectories using the transition states from Table 6.3.

What can we conclude from these statistics? Both pathways do occur, but it is much

more likely that the first bases formed are those closest to the hairpin region. The average

times for each pathway are roughly within an order of magnitude of each other, and our

selection of transition states was good: we didn’t see any unexpected pathways, such as

{A} → {D}.

We could use these “reactions” as to create a coarse-grained representation of the orig-

inal system as a chemical reaction network, using 1
avg time as the reaction rate constants.

Whether this will be an accurate representation or not depends on the choice of transition

states and the structure of the energy landscape. For example, if we were to try this us-

ing the average times for this system, we would end up with a formal CRN in which the

A → A reaction is taken far less frequently than shown in Table 6.6. Finding appropriate

coarse-grained representations is a deep and subtle topic [13].

6.4 First Passage Time Mode

First passage time mode is the most basic simulation mode in Multistrand. It produces

a single piece of data for each trajectory simulated: the first passage time for reaching

any stop state in the system, and which stop state was reached. This is a rather striking

difference from our previous simulation modes in the amount of data produced for each

individual trajectory, but it is still quite powerful!

This first passage time data could be produced via trajectory mode: we can just discard
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all the output until a stop state is reached. There is a distinct efficiency advantage to

making it a separate simulation mode: we don’t have to pay the overhead of reporting

every piece of trajectory data only for it to be discarded. Similarly, we could generate the

same data using transition mode by only using stop states in our list of transition states.

We implement this as a distinct simulation mode in order to better separate the reasons

for using each simulation mode: for transition mode, we are interested in the pathway our

system takes to reach a stop state, and for first passage time mode we are interested in how

quickly the system reaches the stop state(s).

What does first passage time data look like? Let’s revisit our example system from

section 6.1 (Figure 6.2):

. . .
Start State Branch Migration Disassociation

We start the system as shown, and use two different stop states: the complete stop

condition where the incumbent strand has disassociated (as shown in the figure), and the

failed stop condition where the invading strand has disassociated without completing the

branch migration. Both of these are done using Disassoc macrostates, which makes it very

efficient to check the stop states. Note that we include the invading strand disassociating as

a stop state so that if it occurs (which should be very rarely), we can find out easily without

waiting until the maximum simulation time or until the strands reassociate and complete

the branch migration.

The following table (Table 6.7) shows a five trajectories worth of data from first passage

time mode on the example system, using sequence design B (Table 6.1) for the branch

migration region.

Note that we have included a third piece of data for each trajectory, which is the

pseudorandom number generator seed used to simulate that trajectory. This allows us to

produce the exact same trajectory again using a different simulation mode, stop states or

other output conditions. For example, we might wish to run the fifth trajectory in the table

again using trajectory mode, to see why it took longer than the others, or run the first
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Random Number Seed Completion Time Stop Condition
0x790e400d 3.7 ∗ 10−3 failed
0x38188213 3.8 ∗ 10−3 complete
0x47607ebf 2.1 ∗ 10−3 complete
0x02efe7fa 2.8 ∗ 10−3 complete
0x7c590233 6.7 ∗ 10−3 complete

Table 6.7: First passage time data for the example three way branch migration system. Stop
conditions are either “complete”, indicating the branch migration completed successfully,
or “failed”, indicating the strands fell apart before the branch migration could complete.

trajectory to see what kinetic pathway it took to reach the failed stop condition.

Let’s now look at a much larger data set for first passage time mode. Here we again use

the three way branch migration system with sequence design B for the branch migration

region and increase the toehold region to be ten bases, to minimize the number of trajectories

that reach the failed stop condition. We run 1000 trajectories, using a maximum simulation

time of 1 s, though no trajectory actually used that much as we shall shortly see.

Instead of listing all the trajectories in a table, we graph the first passage time data for

the complete stop condition in two different ways: first (Figure 6.7a) we make a histogram

of the distribution of first passage times for the data set, and second (Figure 6.7b) we graph

the percentage of trajectories in our sample that have reached the complete stop condition

as a function of the simulation time.

(a) Histogram of first passage times (b) Percent completion by simulation time

Figure 6.7: First passage time data for the three way branch migration system, using
sequence design B (Table 6.1) and with a ten base toehold sequence. 1000 trajectories were
simulated and all of them ended with the complete stop condition.
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While there are many ways to analyze these figures, we note two particular observa-

tions. Firstly, the histogram of the first passage time distribution looks suspiciously like an

exponential distribution, possibly with a short delay. This is not always typical (as we shall

shortly see), but the shape of this histogram can be very helpful in inferring how we might

wish to model our system based on the simulation data; e.g. for this system, we might de-

cide that the three way branch migration process is roughly exponential (with some fitted

rate parameter) and so we could model it as a one step unimolecular process.

The second observation is that while the percentage completion graph looks very similar

to an experimental fluourescence microscopy curve, they should NOT be assumed to be

directly comparable. The main pitfall to watch out for is when comparing fluourescence

curves from systems where the reactions are bimolecular: in these the concentration of the

relevant molecules are changing over time, but in our stochastic simulation the bimolecular

steps are at a fixed volume/concentration (reflected in the ∆Gvolume energy term) and data

is aggregated over many trajectories.

6.4.1 Comparing Sequence Designs

A common usage of first step mode is in the comparison of sequence designs, as we previously

brought up in Section 6.1. We now run another 1000 trajectories on the same three way

branch migration system as in the previous section, including the increased toehold length,

but using the sequence design A (Table 6.1) for the branch migration region. Note the

change in x-axis scale; this design is indeed much slower than design B!
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(a) Histogram of first passage times, design A (b) Histogram of first passage times, both designs

Figure 6.8: First passage time data for the three way branch migration system, comparing
sequence designs using histograms. For figure (b), we compare the two designs on the range
of times from 0 s to 0.02 s. The buckets for sequence design A have been reduced in visual
size to show overlapping regions, but overall bucket sizes are consistent between the two
designs (though they are slightly different from those in Figure 6.7a).

Let’s also look at the same data but using the percentage completion as a function of

simulated time graphs:

(a) Design comparison, percent completion graph (b) Design comparison, zoomed

Figure 6.9: First passage time data for the three way branch migration system, comparing
sequence designs using percent completion graphs. Figure (b) is a zoom in on the range of
times from 0 s to 0.1 s from Figure (a).

We can now clearly see just how different these two sequence designs are! Our results

from the trajectory mode section were clearly not unusual: the majority of sequence design

B’s trajectories finish in under 0.01 s, whereas the same amount for sequence design A
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is over ten times longer. This is highlighted in the combined graph (Figure 6.8b), which

shows how vastly different the timescales are for each process. Looking at the percentage

completion graphs, we note that sequence design A did not actually reach 100% – it actually

had 8 trajectories reach the failed stop condition!

While both types of graphs are presenting the same information, they are frequently

useful in different cases: the first passage time histograms are helpful for gaining an intuition

into the actual distribution of times for the process we are simulating, while the percent

completion graphs are better for looking at the relative rates of different designs, especially

when working with more than two sequence designs.

6.4.2 Systems with Multiple Stop Conditions

What about our original three way branch migration system, which had toeholds of length

six? Let’s now look at this situation, where we have a system that has more than one

competing stop state. We again run the system with 1000 trajectories and a 1 s maximum

simulation time (though it’s never reached). Instead of plotting only the first passage times

for the complete stop condition, we overlay those with the first passage times for the failed

stop condition.

(a) Histogram of first passage times (b) Percent completion by simulation time

Figure 6.10: First passage time data for the three way branch migration system with 6 base
toeholds, comparing sequence designs.

Competing stop conditions certainly make the data more interesting! We can pick out

pieces of the kinetic pathways a lot easier using these graphs. For example, the competing

pathway leading to the failed stop condition frequently occurs faster than the complete
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stop condition pathway; this should be unsurprising, as one pathway involves a long random

walk while the other is very unlikely to include one.

6.5 Fitting Chemical Reaction Equations

We are frequently interested in DNA systems which can be represented (with some choice

of the appropriate internal parameters/sequences) by chemical reaction equations of the

following form:

A+B
keff−� C +D (6.3)

These systems usually involve an intermediate step, so typically the concentration is low

enough for the above equation to actually be a good fit. Experimental observation of these

systems tend to be in the range of concentrations where the above equation is an accurate

characterization of the system.

Let us now associate the species in the equation above with actual DNA complexes

(ordered collections of connected strands). We designate strands by unique letters, and

indicate complementary strands with an asterisk. For the toehold-mediated 3-way branch

migration example, the chemical equation then becomes:

x∗y + x
keff−� xx∗ + y (6.4)

Let us examine one possible DNA configuration for the state of the entire system that

could follow this equation’s implied dynamics. The left hand side could be the configuration

given in figure 6.11, and the right hand side could be the configuration given in figure 6.12.

Note that while we show particular exact secondary structures for each of these figures,

there are actually many such secondary structures that represent the appropriate parts of

the equation, which might be specified using Loose macrostates.

Finally, what would the equations look like if we did not expect them to fit equation

6.3? One possibility is as follows (as in Zhang, Winfree 2009 [25]):
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Complex A Complex B

x
y

x*
+

Figure 6.11: Starting Complexes and Strand labels

Complex C Complex D

y
+

x

x*

Figure 6.12: Final Complexes and Strand labels

A+B
kf−��−
kr

AB
kbm−��−
kbm

AB� kr−� C +D (6.5)

Though this model is used in several experimental papers, it is difficult for us to define

simulation macrostates in order to determine the various rates present in the equation. In-

stead, we look at a model where it is easy to separate out the steps into discrete components

which can be individually simulated. Specifically, we look at a system where the molecules

A and B can collide and form either a reactive molecule which will go to C and D, or a

nonreactive molecule which will fall apart after some time1. We call this the first step

model, and it is described by the equations below:

A+B
k1−� AB

k2−� C +D (6.6)

A+B
k�1−��−
k�2

AB� (6.7)

We will use this model extensively to analyze the results of the first step mode simu-

1
Thanks to Niles Pierce and Victor Beck for suggesting this approach.
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lations discussed in section 6.6. Note that for low concentrations, the controlling step will

be the bimolecular reactions and thus we should be able to also fit to a keff type model in

those cases.

We discuss fitting first passage time data to the simple keff model (Equation 6.3, as

well as using first step mode to generate data which can easily be fit to the first step

model.

6.5.1 Fitting Full Simulation Data to the keff model

For this simulation mode, we start the simulation in the exact state shown in figure 6.11,

and measure the first passage time to reach any state with the same complexes (but not

exact secondary structure, i.e. we use a Disassoc stop state) as that shown in figure 6.12.

This gives us a data set of first passage times ∆ti, where 1 ≤ i ≤ n, and n is the total

number of trajectories simulated. The simulation is done at a particular concentration z.

Note that this simulation will require time inversely proportional to the simulation con-

centration, since we are simulating elementary steps. Thus we would prefer to simulate at

higher concentrations and step downwards in concentration until we are in the region where

the bimolecular reaction dominates, and equation 6.3 holds.

If we assume equation 6.3 holds and determines our distribution of first reaction times,

we can fit our data to an exponential distribution in order to determine keff : Recall that (via

Gillespie [8]) in a formal chemical reaction network, a state with total outgoing propensity

a0 will have a passage time (τ) distribution according to the probability density function

P (τ) = a0 ∗ exp(−a0τ). Since the propensity a0 for a bimolecular reaction is the reaction

rate times the concentration, we solve for keff as follows, where expfit is the function that

takes a data set of first passage times (∆ti) and returns the parameter a0 of the exponential

distribution given by those ∆ti, and z is the simulated concentration:

keff = expfit(∆ti) ∗ 1/z (6.8)

If we are in the regime where equation 6.3 holds, we expect this to give us a consistent

value for keff . If we are outside of that regime (and thus the unimolecular reactions from
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equation 6.5 or equation 6.6 dominates), this will err by exactly the factor of 1/z, thus the

graph of keff versus concentration z should appear linear in this regime.

6.6 First Step Mode

This simulation mode makes a simple assumption: we always start the Markov simulation

by making a “join” step, that is, one where a pair of molecules A and B come together

and form a single base pair. The choice of secondary structure states for the molecules A

and B before collision can be done either by using particular exact complex microstates, or

by Boltzmann sampling the secondary structure space of the molecules. This sampling is

valid when the bimolecular reaction rates are slow enough that the initial complexes reach

equilibrium. In either case, we have a valid system microstate once we know the structure

for the A and B molecules, and then choose a “join” step from those present in the system

microstate and use the resulting system microstate (after making the join) as our start state

for a trajectory. Since this mode runs many trajectories, we must make many such random

choices for the join step and for the Boltzmann sampling of the initial molecules (if we are

using the sampling rather than exact states).

The simulation then starts from this configuration, and we track two distinct end states:

the molecules falling apart back into one of the A + B configurations, or the molecules

reacting into one of the C + D configurations. Our data then consists of first passage

times where we can separate each trajectory into one that reacted or one that failed. The

advantage to this mode of simulation is that we no longer are directly simulating the “join”

bimolecular steps, whose rates are proportional to the simulated concentration and thus are

going to be very slow relative to the normal unimolecular steps. This allows us to use the

simulator to concentrate on the trajectories where we have a collision, rather than spending

(at low concentrations) most of the time simulating unimolecular reactions while waiting

for the very rare bimolecular reaction.

6.6.1 Fitting the First Step Model

Our first step mode simulation produces the following pieces of data: ∆tireact, the first

passage times for reactive trajectories, ∆tifail the first passage times for trajectories did not

react, the number of trajectories that reacted Nreact and failed Nfail, and the rate constant
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kcoll, the simulation’s estimate of the rate of collision (in /M/s) of the A and B molecules.

This kcoll is calculated based on all the join moves possible from the initial configuration of

the A and B molecules, and thus is very likely to include many such moves which do not

lead to very stable structures and thus disassociate quickly.

We then fit to the model given in equations 6.6 and 6.7, as follows:

k1 =
Nreact

Nreact +Nfail
∗ kcoll (6.9)

k�1 =
Nfail

Nreact +Nfail
∗ kcoll (6.10)

k2 = expfit(∆tireact) (6.11)

k�2 = expfit(∆tifail) (6.12)

Thus we can directly find each of the model parameters from the collected simulation

data, in a natural way. We then use this model to predict the keff parameter we would

observe if we assume that the simple chemical reaction model (eqn 6.3) is valid.

6.6.2 Analysis of First Step Model Parameters

We first show a natural (but inexact) way to calculate keff from the first step model

parameters, using the assumption that the time used in “failed” collisions is negligible

compared to that needed for a successful reaction. In this situation, we can estimate keff

for a particular concentration z by calculating the expected average time for a reaction. We

use the fact that the expected value of an exponential distribution with rate parameter λ

will be 1
λ in order to derive keff :

keff =
1

z
∗ 1

1
k1∗z + 1

k2

(6.13)

Again, this makes the assumption that equation 6.3 holds and thus that the reaction

dominated by the bimolecular step. The observation from the full simulation mode still

holds: if we are not in this regime, we will err by a factor of 1
z and thus the graph should

be linear. Note that since this simulation does not require a set concentration, we can run
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one simulation (with a large number of trajectories) and use the extracted data to produce

the same type of graph as the full simulation mode.

We now would like to remove the assumption that the “failed” collision time is negligible:

though that assumption makes keff straightforward to calculate, many systems of interest

will not satisfy that condition.

We now need to calculate the expected time for a “successful” reaction to occur based

on both the “failed” and “reactive” collision parameters. We do this by summing over all

possible paths through the reactions in equations 6.6 and 6.7, weighted by the probability

of those reactions. Let ∆tcoll =
1

(k1+k�1)∗z
(the expected time for any collision to occur),

∆tfail = ∆tcoll +
1
k�2

(the expected time needed for a failed collision to return to the initial

state), ∆treact = ∆tcoll +
1
k2

(the expected time for a reactive collision to reach the final

state), p(path) is the probability of a particular path occuring, and ∆tpath = n∆tfail +

∆treact is the expected time for a path which has n failed collisions and then a successful

collision. Finally, the quantity which we want to solve for is ∆tcorrect, the expected time it

takes for a successful reaction to occur.

∆tcorrect =
�

path

∆tpath ∗ p(path) (6.14)

=
∞�

n=0

(n∆tfail +∆treact) ∗ (
k�1

k1 + k�1
)n ∗ k1

k1 + k�1
(6.15)

To simplify the next step, let α = k1
k1+k�1

and α� =
k�1

k1+k�1
, and recall that for β > 0,

�∞
n=0 β

n = 1
1−β and

�∞
n=0 n ∗ βn = β ∗ 1

(1−β)2 , and we get:

∆tcorrect) = ∆tfail ∗
α�

(1− α�)2
∗ α+∆treact ∗

1

1− α� ∗ α (6.16)

Now we note that α
1−α� = 1, and α�

1−α� =
k�1
k1
, and simplify:

∆tcorrect) = ∆tfail ∗
k�1
k1

+∆treact (6.17)
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And thus we arrive at the (full) form for keff :

keff =
1

∆tcorrect
∗ 1

z
(6.18)

This requires only a single assumption: that the reaction is dominated by the bimolecular

step, and thus can be described by equation 6.3. We note that this derivation can be

generalized for multiple possible stop states [2].


