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Abstract

Advances in integrated circuit technology have made possible the
application of LSI and VLSI techniques to a wide range of computational
problems. Image processing is one of the areas that stands to benefit most
from these techniques. This thesis presents an architecture suitable for
VLSI implementations which enables a wide range of image processing
operations to be done in a real-time, pipelined fashion. These operations

include filtering, thresholding, thinning and feature extraction.

The particular class of images chosen for study are fingerprints. There
exists a long history of fingerprint classification and comparison techniques
used by humans, but previous attempts at automation have met with little
success. This thesis makes use of VLSI image processing operations to
create a graph structure representation (minutia graph) of the inter-
relationships of wvarious low-level features of fingerprint images. An
approach is then presented which allows derivationr of a metric for the
similarity of these graphs and of the fingerprints which they represent. An
efficient algorithm for derivation of maximal common subgraphs of two
minutia graphs serves as the basis for computation of this metric, and is
itself based upon a specialized clique-finding algorithm. Results of cross

comparison of fingerprints from multiple individuals are presented.
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Chapter 1

Background and Motivation

1.1. Use of VLS| in Image Processing

Image processing algorithms have traditionally been implemented on
sequential, general purpose computers. Such machines are not well suited
to dealing with large arrays of data, particularly where a given sequence of
operations must be repeated many times for each data item. It is not
unreasonable to consider dealing with images containing over 107 total bits
(1000x1000 image with 12 bits per pixel), yet the explicit iterations required
to implement even the most trivial transformations on such an image result
in very long execution times. Though the fingerprint images dealt with in
this work are digitized only to a resolution of 400x400 with B8 bits per pixel,

the resulting 1.2 million bits suffice to make the problem evident.

It has been clear for many years that some form of parallel
computation is necessary in order to achieve reasonable execution times,
particularly in real-time interactive applications such as robotics. For
example, a computer controlled manipulator arm equipped with a television
camera will be of little use if many minutes are required to process each
image frame received from the camera. The use of parallel processors for
image transformation is particularly appropriate in such a context, since

the human visual system makes use of similar computational techniques
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when extracting information from incoming images.

The majority of the special purpose image processing computational
structures considered in the literature are of what may be called the "large
array" variety. By this it is meant that an attempt is made to produce an
array of computational units which is large enough that one unit exists for
each pixel in the image. Each such unit is typically connected to various of
its neighbors, in order teo provide for the communication necessary for
operations such as pattern matching, and to allow the input and output of
the image itself. Even through the use of modern VLSI techniques it is not
possible to provide a computational unit for each pixel in the image, and

therefore some means for performing operations on sub-images is required.

A typical instance of such a system, known as CLIP, was designed by
Duff at University College, London [Wong79]. The most recent version,
currently implemented in NMOS LSI and known as CLIP4, consists of small,
special purpose processors (eight per chip) that can be configured in either
a rectangular or hexagonal array as desired. Each processor is connected
to its immediate neighbors and executes instructions that have been
downloaded from a master controller. The operations that can be
performed by each processor consist of simple Boolean functions, bit
propagation, and single-bit arithmetic. As with all syétems of this type,
performance tends to be limited both by the need to subdivide the original
image into manageable parts, and the overhead encountered in loading the

data into the array and reading out the result -- often in a bit serial fashion.

A somewhat different approach is taken in the PICAP system,
implemented by Bjorn Kruse of Linkoeping University [Kruse]. PICAP

consists of a minicomputer, a special purpose computational unit, and
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image 1/0 devices all resident on a common bus. The computational unit
receives commands from the minicomputer over the bus, which specify the
operations it is to perform on the image stored within it. The operations
are performed on 3x3 neighborhoods in the image, which are extracted '4
through the use of three single image-line buffers, in a manner similar to
that used by the '"cytocomputers" described below. Fundamental to the
functioning of this unit is the concept of a "template match”. Particular
values (up to 4 bits per pixel, or "don't care') can be specified for each
location in the 3x3 template. This template is then in effect scanned over
the image, and a specified transformation is applied to the center pixel of
the current 3x3 window only if the template matches the actual pixel values
in the neighborhood. Along with the definition of the template to be used is
included information describing what, if any, rotations of that template are
also to be applied. Use of rotations of the template does not require
additional passes over the image. Many very powerful image processing
functions can be performed based upon such template match primitives, at
a rate of about one operation every 2.5 ms for the current PICAP system
when operating on 64){6;]: images. The thinning algorithm described later in
this work is based upon a template-matching approach similar to that of

PICAP.

The PICAP architecture points the way toward another form of parallel
execution image processor known as the "cytocomputer” [LougheedB0].
First proposed in 1976 [Sternberg?76], a cytocomputer consists of a serial
pipeline of special-purpose processors, each performing a particular
operation on small neighborhoods as the image moves by. Pictures "flow"
through the pipeline in serial fashion at a constant rate, while shift registers

in each of the processors hold three scan lines worth of pixels. As a result,
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the values of the pixels in a 3x3 neighborhood are always available to the
"neighborhood logic module”, which is responsible for applying the
appropriate transformation to the neighborhood pixels (Figure 1.1). The
constant flow of the image pixels through the pipeline in effect simulates
the motion of the 3x3 processing window over the input image, in raster

scan fashion.

Cytocomputers have several advantages over large parallel arrays of
processors, including low complexity, high bandwidth, and considerable
architectural flexibility [LougheedB0]. The chaining of large numbers of
physically identical, low cost modules is an ideal solution to the processing
of serial data, such as is encountered with raster-scanned images. In
addition, such processors are ideal candidates for VLSI implementatioﬁs. as
their inherent serial nature eliminates many problems due to limited pin
counts on VLSI packages. Note that this is in direct contrast to the
situation for the large-array image processing structures, where pin count
may well be an important factor limiting the amount of processing that can

be integrated onto one chip.

All of the image processing operations used in this work are
implemented on generalized cytocomputer processors, which we call
"neighborhood processors”. In order to accommodate some of the complex
processing necessary for the analysis of fingerprint ridge patterns, many

extensions of the basic cytocomputer structures were made.
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Figure 1.1: Cytocomputer Module
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Images are not constrained to be binary (i.e., one bit per pixel), and a bit-
slice approach is described which enables straightforward expansion of the
"word size" at any point in the pipeline. This can be used to store grey-level
information, or to contain labels for features identified in the images. Each
pixel in the window is considered to be mapped onto one member of an
array of generalized processors, each ﬁth the ability to communicate with
its neighbors. In effect the cytocomputer structure has been combined
with a small rectangular processor array — an interesting blend of the two

image processing paradigms previously discussed.

1.2. Why Fingerprints?

Fingerprint images, considered as a class, are an attractive choice as a
test case for the development of VLSI image processing techniques. Though
far from trivial in their information content, they are still considerably
simpler than an average outdoor scene, with its multitude of complex
overlapping objects, and are thus more appropriate for use during initial

research into VLSI image processing structures.

In addition, fingerprints and analysis of their properties has been an
area of great historical interest, dating back to early cave drawings of
finger ridge patterns, though until the recent advent of experimental
automated systems, all fingerprint analysis has of course been done by
human beings. The need for automated systems becomes obvious when one
realizes that the FBI alone is called upon to classify and file over six
thousand sets of fingerprint cards each day, and currently has a backlog of

over 400,000 unfiled cards.
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The possible applications of a reliable automated fingerprint matching
and analysis system extend far beyond the classical usage of ten-finger
print cards for identification of criminals. One can imagine fingerprints
used for control of entry to secure areas, banking identification, and even
as a control on the fraudulent use of credit cards. All such applications
require a system that is capable of ciuickly and efficiently verifying identity
based upon a single fingerprint image, with very little chance of an

incorrect identification.

Previous work in the area of automated fingerprint analysis did not
make use of the processing power available through VLSI, and has met with
little success. Details of several such attempts are presented in Section 2.1.
Much can be learned from the fingerprint analysis methods employed by
human beings and, in fact, the computational approach taken in this work

has many similarities to those methods.

1.3. Non-automated Fingerprint Matching

Upon looking at a typical fingerprint (Figure 1.2), it is seen that the
print consists basically of a series of segments known as ridges, some
curved and some fairly straight. These ridges are of widely varying length,
quite uniform width, and are packed tightly together over most of the print.
The ridges are raised areas on the surface of the friction skin of the hands
and feet. This skin is so called because the corrugated surface is effective

in improving the ability to grasp objects with minimal slippage.



Figure 1.2: Typical Fingerprint
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As can be seen in a good quality fingerprint image, the friction ridges
are dotted with small circular openings -- the sweat pores. The perspiration
exuded from these pores remains on a surface after it has been touched,
forming the latent fingerprints often searched for at crime scenes.
Fingerprints form definite patterns, and it is a fundamental premise of
fingerprint identification that the friction ridge patterns of an individual do
not vary throughout his or her life. In fact, the fingerprint pattern is
determined during the third or fourth month of prenatal development, at
which time special skin layers known as "primary ridges” begin to form
beneath the epidermis. These strips grow and eventually develop into the
visible ridge structure. Their pattern of growth is determined by a series of
irregularly distributed "pegs" known as dermal papillae, which form at the
junction of the epidermis and the dermis [Moenssens71]. In addition, since
the dermal papillae are buried quite far beneath the skin surface, any
damage to the epidermis will result in the ridge pattern growing back to its
original configuration. Only if the injury reaches deep enough to destroy
the papillae and interfere with the proper growth of new epidermal cells will
a permanent séar form. There is a long history of attempts by criminals to
modify their fingerprint patterns by some form of mutilation, such as
cutting, sanding, burning, acids, and surgery. Most such attempts have
been unsuccessful, as sufficient unmodified ridge structure usually remains
to allow identification of the individual. Even destruction of the key core
and delta areas used in most classification schemes does not prevent
identification because, as will be explained below, single print identification

is based upon quite different principles than those used for classification.

The classification system now in widespread use by the FBI and most

other law enforcement agencies is the "Henry" system, which has been
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modified and extended to allow the FBI to maintain on file a collection of
over 200,000,000 sets of prints, This system, which can only produce a
classification if a full ten-finger print set is available, makes use of general
topological characteristics of the ridge patterns. Some of the major types
of patterns are shown in Figure 1.3. The complete classification for a print
set consists of a series of letters and numerals, consisting of sections known
as primary classification, secondary, subsecondary, major division, final
classification, and key. The Henry system is rather ad hoc, having been
derived empirically over a period of many decades. For example, in
determining the primary classification, even-numbered fingers are
considered together, as are the odd-numbered fingers. For the secondary
classification level, however, the fingers are grouped together by hand. The
major division classification is based solely on the pattern on the thumbs,

while the key classification is based upon the little fingers,

Fingerprint cards are filed by classification formula, beginning with the
primary. The primary classification yields 1024 possible combinations, but
these are not at all evenly distributed. The secondary classification, based
mainly upon index finger patterns, is used to further break down the
categories. The ordering process is continued through the final and key
sequences to obtain greater resolution. With all of this however, there will
still be a substantial number of prints with identical classifications if the set
being searched is large. In fact, when attempting a match of a print-set
with the FBI database, it is typical for the classification formula to isolate
the necessary search only down to one or more file cabinets of fingerprint
cards, each of which must then be carefully compared to the prints in

question by a hurnan expert print matcher.
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Note that, in addition tc making use of human judgement to describe
complex topological characteristics of the ridge patterns, the Henry system
is also less than ideal in that it absolutely requires a complete ten-finger
print set to produce a classification formula.” Thus it is essentially useless
for identification of a single latent print found at the scene of a crime, or
for other personal identification applications. It is commonly but
incorrectly thought that a criminal can be tracked down based upon a
carelessly left fingerprint at a crime scene. A single latent print can only
be of use if the set of possible people from which it may have come is
limited by other means to a small subset of the FBI's collection (at most
several hundred cards). Classification schemes for single fingerprints do

exist, but have met with only limited use and success.

As was mentioned, the system used for comparison of individual
fingerprints is quite different than the classification system just described.
It relies not upon global topology, but upon quantitative and qualitative
comparisons of the low-level ridge characteristics, known as minutiae.
Minutiae are composed primarily of ridge endings, forks (bifurcations),
enclosures, islands or ridge dots, and short ridges. Also sometimes included
in the definition [Moenssens71] are ridge breaks, ridge crossings, and

trifurcations (Figure 1.4).

A fingerprint image as prepared for exhibition in court is shown in
Figure 1.5, with lines drawn to some of the minutiae. When two prints are
being compared, it is of course first necessary that they be of the same
pattern type. This is not to say that an entire latent print is necessary, but
rather that if the pattern type information is available for both prints (i.e.

they are complete), then the pattern types must not differ.



[Numbers indicate minutige]

Figure 1.5: Print Prepared as Exhibit
for Presentation in Court [ Trauring61]
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The key to the comparison process is the type and position of the minutiae.
Sufficient minutiae must be 1_;he same in both prints, in that they are of the
same type, and face in the same direction. In addition, the number of
intervening ridges between any two minutiae in cne print must be the same
as the corresponding number of ridges in the other print. Thus if a fork
and a ridge-end ére found to be separated by three ridges in one print, and

two in another, the minutiae pairs certainly do not match.

Given that it is possible to identify sets of matching minutiae in the
prints being compared, the question arises as to exactly how many such
matching minutiae are necessary in order to state with a high degree of
confidence that the prints came from the same finger. It is generally
agreed that ten to twelve "points" (as matching minutiae are called) are
sufficient to establish identity. Yet such a guideline is only an
approximation, as the rate of occurrence of the various forms of minutiae is
not the same. Ridge-endings and bifurcations are the most frequently
occurring minutiae [Moenssens71], while islands, enclosures, and
trifurcations are rather rare. Thus fewer than ten points can and have been
used to establish identity in criminal cases, particularly when the
properties of the minutiae involved were in some way unusual. Since the
typical fingerprint contains from 50 to 150 identifiable minutiae, the

abundance of information available for comparison is encouraging.

Thus we see that fingerprints as they have been employed in the past
are of very limited use as a means of identification. The Henry system is
cumbersome, difficult to master, and requires a large number of subjective
judgments on the part of the person doing the actual classification. The

steps in the classification procedure itself are far from logical, and not well
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ordered. The frequency of occurrence of each of the possible classifications
is not at all uniform, therefore usually requiring tedious manual comparison
of hundreds of print sets, In addition, only full ten-finger print sets can be
classified in this manner, severely limiting the usefulness of the system as a
tool for criminal investigation. Most importantly, the minutiae matching
method used for the ultimate comparison of the fingerprint images is

totally unrelated to the classification system [Foote74].

The Henry system by its very nature dbes not lend itself to automation
— nor would one want to use a system which requires complete ten-
fingerprint sets as the basis for an automated classification and
identification system. Rather, a system more closely related to the
minutiae-based comparison approach just described is more desirable, and

indeed forms the basis of the work in this thesis.
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Chapter 2

Automated Fingerprint Analysis

2.1. Previous Work

Many attempts have been made to automate the fingerprint matching
and recognition process. Particularly since the advent of modern digital
computers, there has been a widespread feeling that such automation could
and should be done. Several previous approaches, none of which have been

particularly successful, are described below.

Perhaps the first significant work in this area was done by J.H. Wegstein
of the Naticnal Bureau of Standards Center for Computer Sciences and
Technology. His system was based upon computer matching of clusters or
"constellations” of ﬁngefprint minutiae (ridge-ends or forks), 50 to 100 of
which exist in a typical print [Wegstein6Ba]. The positions of the minutiae in
the fingerprint image were determined by a human operator and then
entered into the program. Also determined were the coordinates of each
minutiae point, and the "direction of flow" of the ridge away from that
point, as seen in Figure 2.1. The next step was the generalion of
"constellations"”, which are groups of minutiae both physically close to one
another and having similar flow angles. Each minutia may belong to no
more than one constellation, and is eventually considered as a potential

focal point for the growth of such a constellation. Each constellation is then



-17-

subjected to a coordinate transformation, which moves the origin of the
coordinate system to the center of mass of the constellation. The angle of
each minutia is then used to classify it as "upward-pointing" or "downward-
pointing”. The integer coordinates of the minutiae on the new, center-of-
mass based coordinate system, along with the bits indicating their
direction, form the total descriptor for the constellation. These
descriptors, which contain relatively few bits, can then be filed for later

comparison with other encoded prints.

In later work [Wegstein69], a somewhat different encoding approach
and matching procedure is described. Specifically, each minutia point is
labeled with an X, Y, and angle value. The minutiae from the two prints to
be compared are then sorted by angle. The comparison process consists of
building constellations by selecting candidate pairs of minutiae (one from
each print), and verifying that their angles and relative displacements agree
within a predefined tolerance. If so, they form the basis for growing a
constellation of similar minutiae. If not, new pairings are chosen, and the

process continues.

Further refinements of these matching procedures [Wegstein70]
enabled a file of encoded fingerprints to be searched using statistical
string-matching procedures. Several problems were encountered however,
including sensitivity to stretched, twisted, or misaligned prints. As a result,
the system was not truly practical. The concept of making use of local
groups of features is a sound one however, and is adhered to by one of the

encoding systems described later in this werk.
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Holographic and other optical techniques for the comparison of
‘ﬁngerprint images have been used by several investigators. In [Hughes67]
it is proposed that coherent optical correlation form the basis for the
matching procedure. It is assumed that both the fingerprint image to be
identified and the file of candidate matching images are available as
photographic transparencies. The unidentified pattern is used as a spatial
filter through which the laser light is passed, after first passing through a
series of lenses (Figure 2.2). When another pattern is introduced into the
light path, a bright central spot will be produced if the two images are
identical. Variations in the similarity of the two images result in a pattern
that bears less and less resemblance tc a small spot as the difference
between the prints increases. Systems based on this technique have been
proposed by, among others, Hughes, McDonnell Douglas, and Computer

Corporation of America.

Optical correlation has serious limitations. Perhaps most importantly,
it is required that the information about each filed fingerprint be in the
form of a photographic transparency of the entire print, which is far from
being a compact form of storage. Contrast this with the system described
later in this work, which encodes all the information needed from a single
fingerprint in a few hundred bits. Even if the data storage problem is
ignored, optical correlation has at least two other drawbacks. First, strong
correlation peaks are often obtained for particular displacements of the
unknown image with respect to the reference image, though no justification
for such a correlation exists. Second, a given unknown image will often
correlate rather strongly with reference images which, though they may
resemble the unknown image, differ from it in significant ways. Both of

these problems are indicative of an approach that relies too heavily on



-21-

global properties of the images, and has insufficient sensitivity to the exact

positions and shapes of the low-level fingerprint features.

Another class of proposed automatic fingerprint classification systems
could be called "syntactic description systems"”. The major work in this
area has been done by W.J. Hankley and J.T. Tou [Hankley]. They

recommended a topological encoding with the following features:

(1) The proposed scheme is a single-print system, and thus does not rely

on the existence of a complete ten-finger print set.

(2) The system learns the print structure, in the sense that interpretation

decisions are based upon previous such decisions.

(3) The interpretation program performs contextual filtering to correct for

imperfections such as ridge gaps and contiguous ridges.

(4) The coding scheme is topological, and thus is invariant to distortions

caused by rolling or stretching of the skin or translation of the print.

The fingerprint image is input optically, and then quantized both
spatially and in terms of intensity. The interpretation program extracts
properties of the ridge. contour pattern, such as finding the core and
describing the shape of a few surrounding ridges. As a result of the core
detection and ridge tracing, the general class of the pattern can be
determined as one of whorl, plain arch, loop-left, loop-right or tented arch.
The next pass, known as the "topological coding program', generates a code
sentence to describe finer details of the shape of the core and surrounding
ridges. The resulting code sequence can then be used for print
classification. Unfortunately, the system as described is not capable of
classifying prints to a fine enough level to be used alone for absolute print

comparison. Rather, it is useful as an automatic top-level classification
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system. [Moayer76] presents a related approach te syntactic encoding.
Some form of such a system is probably appropriate for use as a pre-
processor for the matching process described in this work, as a means of

minimizing overall computation time in "production” fingerprint matchers.

The Federal Bureau of Investigation has been actively involved in the
development of an automated fingerprint analysis system since 1965
[FBI7?7]. Due to the large volume of prints with which they deal, any system
if it is to be useful, must be capable of extreme refinement in classification.
Initial requirements called for development of a machine reader capable of
detecting ridge detail (particularly ridge ends and bifurcations) to act as a
front-end to the algorithms developed by the National Bureau of Standards
and described in section 2.1. The contract was awarded to Cornell
rAeronautical Laboratories in 1967, and a prototype reader system was
installed in 1972. It is called FINDER, from "FINgerprint reaDER". FINDER is
a computer-controlled flying spot scanner based system that is responsible
for all processing steps from initial input through identification and
enhancement of the extracted minutiae pattern. In 1974 a contract was
awarded to the Autonetics Group of Rockwell International for the
construction of five advanced versions, to be known as "FINDER II" readers.
The FINDER/FINDER II system is designed to accept as input standard 10-
finger inked fingerprint cards, which are then optically scanned. The image
processing operations that follow are implemented using special-purpose

hardware, in an attempt to obtain reasonable processing speed.

As of 1977, work sponsored by the FBI was underway to produce
special-purpose hardware implementations of the NBS matching algorithms,

in order to complete the implementation of a high-speed automated
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classification system. Though the expected completion time was less than
two years, no successful implementation yet exists, due partly to some of
the limitations inherent in the NBS encoding and matching algorithms. An
article appearing in the Los Angeles Times in mid-1981, headlined "FBI Cuts
Fingerprint Checks, Citing 400,000-Case Backlog", underscores the problems
that would be relieved by a properly functioning automatic processing

system. To quote part of that article:

"Because of a backlog of 400,000 unfiled fingerprint cards, the FBI has
informed state agencies it will not make fingerprint checks after Oct. 1
unless they are in reference to criminal cases... One effect of the
decision will be that state agencies will no longer be able to have
fingerprint checks run on applicants for private security guard
positions..."

2.2. Guiding Principles

The process of analyzing a fingerprint image, with the intention of
comparing it with a stored representation of another fingerprint image to
determine if they are from the same finger, can be approached in many
different ways. Several attempts at automating this analysis have already
been presented. Though none has been totally successful, careful study of
the methods used, and of the problem itself, has resulted in a set of
observations about what properties are desirable or even essential in a good
fingerprint analysis systern. The two systems of encoding fingerprint
information described later in this work conform as much as possible to the

following principles:

(1) The analysis techniques used must be tolerant of the inevitable noise

contamination of the fingerprint images under study. Even with a
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high-quality input system, there will always be imperfections in the
images obtained (e.g. due to dirt specks on the finger). Also, even the
best of input systems cannot prevent changes in the fingerprint image
due to actual meodification of the ridge structure on the finger, as by
scarring. Imperfections in the image can take many other forms, a few
of which are illustrated in Figure 2.3. Some of these imperfections are
correctable, in that they can be removed by an appropriate pre-
processing step. An example of this is the removal of heles in the

ridges (i.e. pores), the algorithm for which is described in Section 3.3.3.

Some authors [Hankley] have suggested that small breaks in individual
ridges can be removed in a similar manner. Yet direct observation of a
sufficient number of fingerprints will show that such breaks sometimes
occur naturally, thus calling into question the correctness of their
removal. For this reason, no attempt was made to remove breaks in
ridges. A related problem appears if an attempt is made to distinguish
between ridge-ends and bifurcations. Though they may appear quite
different in the original ridge pattern, the removal or addition of a very
small number of pixels will transform a bifurcation inte a continuous
ridge plus a ridge-end, as demonstrated in Figure 2.4. Thus no attempt
should be made to distinguish between ridge-ends and bifurcations.
Rather, the occurrence of either should simply be considered as a
"feature"”, as is done in this work This definition is in actuality quite
natural, for ridge-ends and bifurcations are really duals of one another
- if one simply considers the white inter-ridge spaces to be ridges, and
vice versa, ridge-ends become bifurcations, and bifurcations become

ridge-ends.
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Maximize the use of local properties of the fingerprint image, rather
than global ones. In other words, we would prefer to make statements
about the relationship between features (minutiae) which are physically
close together on the print, rather than at opposite edges. This is
consistent with the practice of human print comparison experts, who
tend to match features which are in close proximity, due to the
increased probability of having good data integrity in the region
between the features. Similar reasons apply to an automated system.
Immunity to noise will be much improved if locality is maintained, as
destruction of a small region of the print due to noise or scarring will
then have a minimal impact on the derived data structure. If locality
is not maintained, even very minor changes to small regions can have a
profound effect on the result of the encoding. Similarly, immunity to
large scale geometric distortions will be improved, as such distortions

have less effect when considered over a small region.

Rely as much as possible on descriptions of the topology of the
fingerprint, rather than on precise metrics, such as exact position or
angle of fidges or minutiae. It is worth noting that the Henry
classification system is strongly topological in nature, and though in
many ways cumbersome, is the most successful system in use. This is
not to suggest that that system or anything similar should be adopted
for automated analysis, but rather that a major advantage of the Henry
approach should not be ignored. By making use of print topology
rather than strict metrics, a great deal of immunity to geometric
distortion is gained. Inked fingerprints are particularly susceptible to
such distortions, due to differences in the rolling technique used and if

possibie ink on paper should be avoided as an input mechanism. The
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finger-on-prism method used for this work makes geometric distortions
due to variables such as finger pressure much less of a problem, but

good distortion immunity is nonetheless desirable.

Produce a compact representation of the fingerprint. The original
digitized image may contain several million bits of information. Yet it
is desired that we be able to store representations of large numbers
(millions) of such prints. The representations described below
compress the information needed to do the fingerprint matching into
at most several hundred bits. This is quite practical for storage of data
for many prints. Such a compact representation also aids in the
efficient searching of a fingerprint database for a matching print, a
procedure of considerable interest to law enforcement agencies, and
not now practical with current systems. Though this work was not
oriented toward a latent print matching system (but rather toward
applications such as identity verification, where only one potential
match need be considered), most of the results are applicable to latent
print identification. One necessary change would be that no
assumptiohs could now be made regarding the physical orientation of
the fingerprint image, and as a result the comparison process would be

somewhat slowed.

The system must be capable of rapidly deciding if the fingerprint image
presented to it matches the previously encoded and stored
representation. It should take no more than 10 to 15 seconds, and
preferably less. This speed should easily be obtained by means of the
special purpose VLSI computational structures described in this work,

and would be impossible if a traditional computer was used.
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(6) The system must be accurate. In particular, it must be very unlikely to
decide that two fingerprints match when they in realily are from
different fingers, as this would be a serious security problem.
Somewhat less importantly, the system must not often reject a
properly matching print, though cccasional instances of such rejection
due to defects such as serious scarring are acceptable, and can be
dealt with by use of another fingerprint from each individual as a

backup.



Figure 2.3: Image Imperfections
[ Hankley]

Figure 2.4: Ambiguity in Distinguishing
Between Bifurcations and Ridge—Ends
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Chapter 3

Image Processing Operations

3.1. Neighborhood Processors

The special-purpose computational elements of the proposed image
processing pipeline have in commeon the ability to access in parallel all of
the picture elements within an NxN window into the image. It is necessary
that this window be, conceptually at least, scanned across the entire image
in raster-scan fashion. This is accomplished not by any motion of the
window or its associated processing hardware, but rather by using the shift-
register based approach shown in Figure 3.1, where the serialized image is
moved through a sequence of N interconnected shift registers, each of
length equal to the number of pixels on one scan line of the input image
(M). The images considered in this thesis are digitized to a resolution of
400x400, yielding between five and ten pixels across the width of a typical
ridge. This has proven to be more than adequate, and results in each of the
N shift registers being 400 pixels in length. For the remainder of this work,
the notion of "scanning a window over an image" implies serially shifting the
bits of the image through the shift registers, so as to simulate a processing
window scanning over the image. This architecture is a very natural one
when dealing with images that originate with a television camera, due to the

inherent raster scan nature of such a medium.
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The choice of the value for N used to implement any particular image
processing operation is dictated by the inherent "locality” of the operation
itself. In many cases it is sufficient that we have access only to a pixel and
its B nearest neighbors. This is true for operations such as thinning and
ridge numbering, and for these a 3x3 pixel ("Small”) window is used. A
second class of image processing operations is also used in this work. These
include among others, spur removal and ridge adjacency coding, and
require that we be able to deal with pixels farther removed from the center
of the window than the immediate neighbors. In fact in each of these cases
it is necessary that the window size be large enough to span the gap
between fingerprint ridges. These operations can typically be implemented
with a 15x15 pixel ("Large") window. Thus we see that considerations of
over what distance inter-processor communication must occur lead to the
observation that only two values of N (3 and 15) are sufficient to implement

the wide variety of operations described in this work.

Though these neighborhood processors must each contain MN cells of
storage, access is requireld only to the data in the central N cells of each M-
length register, considerably simplifying the design and layout problems
involved. For the case of a processor designed to work on single-bit per
pixel images, the neighborhood processor becomes essentially a two port
device, with serial input and output bit streams. Here, the assumption is
that the logic necessary to accomplish the intended operation of the
module will be on the same chip, connected to the array of shift-registers
by N? data wires. Whether or not resident on the same chip as the shift
registers, the processing array consists of a single processor for each pixel

in the current window, as seen in Figure 3.2.
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Since each processor is operating upon a stream of data, the
architecture of the neighborhood processors is particularly well suited for
connection in a pipeline. The advantage of using a pipeline configuration is
that, though many sequential operaticns may have to be performed on any
one image, the pipeline considered as a whole is able to apply all needed
operations simultaneously. This is due to the presence within the pipeline
of a sequence of images in varying stages of transformation. Also, little or
no time is wasted in input/output transfers. This is in marked contrast to
the large-array type of image processor often proposed, in which
considerable time is spent loading the array with each image frame and

removing the result afterwards.

The speed of operation of a pipeline processor is easily quantified. Let
us presurne that the pipeline contains S stages of neighborhood processors,
with window sizes N,, N, .. Ns. The data are shifted through the

processors at a rate of one pixel shift per T seconds. The total number of

bits of storage in the pipeline is B=§:N,-. Thus, time BT is taken to fill the
i=1

pipeline (the "latency" of the pipeline). After the pipeline is full, data
emerge from the pipeline at a rate of one pixel per T. The images we are
processing each have M? pixels, resulting in a time to process one image of
M?T. Even if only one image is to be processed, the latency time is likely to
be insignificantly small for images with M large. In the more general case,
as for example if we are designing a real-time vision system, images will be
following each other through the pipeline in immediate succession, and thus

the latency time will be of no consequence.

The neighborhood processor architecture described results in each of

the operations in the pipeline being performed on an image in immediate
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succession. In particular, suppose that operation B follows operation A in
the pipeline. As soon as a particular neighborhood of the image has been
operated on by A4, it is passed to B. Thus we have the situation that B may
be transforming one part of the image while A is working on an earlier part
of the same frame. Most often this is not a problem, as for example with
operations such as thinning and filtering. But some operations, in
particular the ridge numbering processor to be described in a later section,
rely on the communication of derived data from one processor in the
pipeline to a succeeding one by a path outside the normal data flow. In
order to be sure that the earlier processor has been able to complete its
operation on a given image (and therefore has finished collecting the
information needed by the next processor), we can introduce a delay
element between the two stages of the pipeline involved. The introduction
of this delay, while increasing the overall latency time somewhat, has no

effect on the throughput of the pipeline.
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It is not necessary that the actual logic that performs the computation,
based upon the values of the image pixels, reside on the same chip as the
shift registers. It may in some cases be preferable to have a standard shift
register chip, containing N shift registers, with values from the center N
pixels of each register brought off chip. In this way, these N? wires can be
connected to an arbitrary computation unit, be it random logic, PLA, or
even a sufficiently fast microprogrammed processor. Of course, for the
Large (i.e. 15x15 pixel) windows it becomes more and more attractive to
design a special purpose chip containing both the shift registers and the

processing, in order to avoid the needed N® wire interface.

Not all of the images being dealt with will have only one bit per pixel --
most will initially contain B or more bits per pixel (particularly if color
images are involved). Thus each pixel as discussed above really consists of
several bits. This added dimension can be handled without the need to
design special purpose shift register modules -- one for 1-bit deep images,
one for 2-bit deep, etc. By making use of a "bit-slice” approach to the
problem, we may parallel any needed number of single-bit shift register
modules. For example, if the operation to be performed requires a 3x3
window operating on a 4-bit per pixel image, we would parallel four shift
register modules, each containing 3 line-length shift registers (see Figure
3.3). The resulting 36 bits of window data would then be connected to the
appropriate processing unit, which could itself be made up of single-bit

processing slices interconnected in the conventional manner.
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Note that multiple-bit per pixel images are not restricted simply to the
representation of gray-level or color attributes of the image. Very
commonly, in the algorithms to be described later, multi-bit images are
used to support labeling. For example the ridge numbering algorithm,
though its input is a binary image (a thinned fingerprint), produces as
output an B-bit per pixel image, where the 'value" of a particular pixel is
really just the assigned label of the ridge to which it belongs. This use of
multi-bit images requires the introduction into the pipeline at some
locations of special purpose processors. These processors are responsible
for image format conversion, from 1-bit per pixel to multi-bit, and vice
versa. As an example, the conversion processor used ahead of the ridge
numbering step has as its input a stream of pixels of value either O or 1. Its
output consists of a stream of pixels each B-bits wide. If the input pixel had
value 0 the output pixel has value 0, and similarly for 1" pixels. But now
the extra bits in the output stream are available for containing ridge
numbers. Thus we may see a pipeline with 8-bit format on the input, 1-bit
format after the thinner, followed by several switches from 8-bit to 1-bit and

back, dependibg on the needs of the intermediate processing steps.

Each of the neighborhood processor algorithms described in the
remainder of this work was simulated in software using the SIMULA language
on a Decsystem-20. Strict adherence to the neighborheod architecture was
maintained, even though the resulting simulation software was often far
from being an efficient implementation of the desired algorithm. Due to
address space limitations, the pixel values were thoroughly compacted into
the 36-bit words of the DEC-20, thus requiring significant overhead for
access to a particular pixel. This compaction was made transparent to the

programmer by use of SIMULA classes which had built into them the data
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de-compaction algorithm, as well certain fundamentally useful concepts
such as 'neighbor" and "window-size". The result was that it was
straightforward to write the code to simulate a given neighborhood
processor, but the resulting code might require several orders of magnitude
more time to transform an image than would the VLSI processor being
simulated. Selected examples of the SIMULA code used to produce the
results in this work are included in Appendix 2. It should be noted that
although as has been discussed above, window processors of only two sizes
(3x3 and 15x15 pixels) are necessary to implement all of the processing
operations described, windows smaller than 15x15 (e.g. 11x11) were
occasionally used in the simulations. This was done in order to minimize

computation time, and has no significant effect on the results obtained.

3.2. Composition of Pipeline Stages

In the implementation just described, each function is implemented by a
separate stage in the processing pipeline. It is not always necessary that
this be true, and we must give consideration to the possibility of combining
one or more processing steps in a single pipeline stage. Doing so has the
advantage of reducing the number of special-purpose VLSI circuits that
must be built into the system, as well as reducing the latency time due to
the shortening of the pipeline. In the general case there are many
operations which could be merged in this way. To consider a simple
example, if one were to have two sequential processing stages that
implemented convolutional filters analogous to the low-pass done in this

work by the FILTER program, it would be a simple matter to produce a new
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set of window weights which would implement in one pass the same filter
function as would be obtained by having the data pass through both of the
original processing steps. This is really just an example of functional
composition, for if we describe the operation performed on the data stream
by the first processing stage as F(s), and that performed by the second
stage as G(s), the new composite stage must simply implement C(s), where
C(s) = G(F(s)). In the case of convolutional filters it would certainly be to
one's advantage to do this compression of the pipeline, as the new single
stage processor would not be inferior to either of the original two in terms

of speed or complexity.

The situation becomes less clear cut when we consider the possibility of
combining some of the more complex processing stages used in this work.
As will be seen later in this chapter, many of the operations performed
meake use of "waves' of communication amongst the processors in the
window, with the central processor sending out what are essentially requests
for information from the other cells, with the result eventually being
propagated back to thel center for a final decision. While this form of
computation does not inherently prevent the combination of successive
stages in the pipeline into one, there are some very real practical
difficulties encountered if we attempt to do sc with the processing

operations used in this work.

Perhaps the most serious problem is caused by the varied nature of the
operations involved. Though all make use of the same window processor
architecture, they differ very much in their inner details. We need only
contrast the Pore Removal stage with the Thinning stage which follows it.

The fundamental operation of Pore Removal is to determine if a path can be
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found from the center of the window to an edge without encountering a
ridge pixel. Thinning, in contrast, relies upon successive matching of a
number of templates to the pixel pattern contained in the window, with the
result of the matching process determining if the center pixel is to be
deleted. Though it is not fundamentally impossible to combine two such
operations in one window processor, it is also not a combination which
appears either natural or obvious. Even the means used to represent the
data changes as we move from one stage in the pipeline to the next - at one
point a value of "1" will represent the grey level of a pixel, while farther
down the pipeline a "1" will mean that the pixel is part of a ridge. At a still
later stage a "1" may be a label assigned to a pixel indicating the name of
the ridge to which it belongs. Though one would of course be free to modify
the data representation used as was needed to aid in the stage compression
process, the differences just described are in fact indicative of the deep
underlying dissimilarity of the operations.

Even if one were to combine two or more such complex operaticns in a
single window processor, their disparate nature makes any benefits gained
from doing So questionable. For unlike the case for the simple
convolutional filters, each processing cell would now be called upon to
perform significantly more operations per window position than would the
original, separate processing stages. As a result, one would expect that
either the complexity of each processor would increase, or the speed at
which the data could be shifted through would decrease, or both. Any
decrease in speed is certainly undesirable, as optimization of throughput
was the initial motivation for use of a pipeline structure. Thus we see that
composition of successive processing stages is an option to be considered,

but only where the similarity of the operations being performed justify it.



-41]1-

Unfortunately, the sequence of operations used in this work is such that

little if any benefit would derive from reducing the length of the pipeline.

3.3. The Processing Steps

This section describes the steps involved in processing the fingerprint image
from the point at which it is first formatted into an B-bit per pixel gray-level
image on the DEC-20 until the thinned, binary image is ready for the chosen
feature extraction algorithm (see Figure 3.4). Lack of a graphics hard-copy
device capable of reproducing images with grey-level information forces us
to illustrate typical input and output data for the processing steps that
follow with 2-level binary images. Nevertheless, the effects of each of the

processing steps should be evident.

3.3.1. Spatial Filtering (Smoothing)

The introduction of unwanted noise into the images under consideration
is unavoidable. This noise can stem from many sources, such as dirt on the
finger, imperfections in the optics, and A/D converter quantization error.
The removal of such noise is important in order to prevent confusion later
in the processing chain due to the presence of, for example, spurious pixels.
Fortunately, such noise is usually concentrated at high spatial frequencies,
while the desired fingerprint data is at lower frequencies. In fact, due to
the rather regular ridge structure in fingerprint images, the majority of the

useful information is at spatial frequencies less than a particular frequency
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Which we Wﬂl Call Fcutoff 5

It is clear that Fiy,.ry is determined by the minimum spacing of the
ridges in the fingerprint images under consideration, measured in pixels.
Though there is some variation of ridge spacing, both within a given print
and between individuals, it is still possible to establish a minimum ridge
spacing value which will remain correct for a given set of optics. For the
purposes of this work the minimum ridge spacing is considered to be
approximately B pixels, which is equivalent to a spatial frequency of .125

cycles per sample (pixel distance), abbreviated cy/pid.

Thus a low-pass filter properly matched to the desired information in
the image will have minimal attenuation at spatial frequencies of .125
cy/pid, with the attenuation increasing for higher frequencies. The filter
chosen has a Gaussian frequency domain transfer function, with an
attenuation of 8 dB at .25 cy/pid. The transfer function of the filter is
shown in Figure 3.5a. The inverse Fourier transform of the transfer function
results in the normalized impulse response shown in Figure 3.5b, along with
its discrete approximation. The filtering operation is implemented by
convolution of the image and the impulse response. As can be seen in
Figure 3.5b, the chosen filter cutoff frequency results in an approximated
impulse response with only three significant terms, and as a result the
necessary convolution is implemented by making use of a Small (3x3)

processing window,

This convolution is simulated in the program FILTER, with due care to
insure that all operations performed are consistent with the specified
architecture for VLSI image processors. Specifically, the 3x3 window of

weights shown in Figure 3.6 is "moved across” the entire image, with the
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pixel that is currently at the center of the window being replaced in the
output image by the weighted average of its neighbors. The weight values
are chosen to match the desired impulse response for the filter after
appropriate scaling. Using the standard notation for describing the pixels
in a 3x3 window shown in Figure 3.7, we may express the filtering process
algebraically as:

401d¢6ﬂ¢8? +2(Dld2+0ld4+ 0M3+Olda)+0ld1+ Old3+0ld5+ﬁld7
NeWeenter . — g 18

See Figure 3.8 for a thresholded version of the image input to the filtering
process, and Figure 3.9 for the thresholded result. The reduction in the

level of high frequency noise is significant.

3.3.2. Thresholding

Though the fingerprint image is originally digitized to B-bit (258 grey
level) accuracy, this intensity information is needed only for some of the
initial image processing steps, such as filtering. At some point it becomes
necessary (and desirable from an information storage point of view) to
convert the grey-level image to one containing only one bit of information
per pixel - i.e,, a binary image. This conversion operation is known as
thresholding, and is used to define disjoint regions in the image with closed
connected boundaries [Castleman79]. In the case of fingerprint images, the
regions are of two types, "ridges” and "background”. Thresholding is what is
known as a “point” coperation, in that on a pixel by pixel basis the following

rules are applied:
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Gz, y)<T-G(z,y):=0
Gz y)=T-G(zy):=1

where G(x,y) is the grey-level value of the pixel located at (x,y). In other
words, all pixels whose grey-level value falls below the threshold are
assigned to the background, while any pixels with value at or above the

threshold become part of the ridges.
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Figure 3.8: Unfiltered Image



Figure 3.9: Filtered Image
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In the simplest case, the threshold T is a single grey-level value, which
remains constant for the entire image. This approach is known as '"global
thresholding”, and works well only if the image background is of roughly
constant intensity, and if the contrast of the cbjects above the background
is also approximately constant. These assumptions are not in general true
for the fingerprint images, and as a result global thresheclding produces
inferior results (Figure 3.10).

A more effective system is known as "adaptive thresholding”, whereby
the grey-level threshold varies appropriately throughout the image. The
key to such a thresholding algerithm is the method used to determine the
threshold for each pixel in the image, In this case a methed is chosen that
is consistent with the neighborhood processor architecture. In particular, a
window of sufficient size to guarantee that it is larger than the width of any
one ridge (i.e., a Large (15x15) window) is passed over the image. For each
position of the window, the histogram of the grey-level values of the N?®
pixels within the window is computed. It is this "window histogram" that is
used to decide the threshold value for the pixel at the center of the window,
in a manner to be descriﬁed.

Given the histogram of all of the pixels within the current window, there
are two cases to be considered:

(1) The histogram is bimodal (two peaks)
(2) The histogram is unimodal (one peak)

See Figure 3.11 for example histograms. If the histogram is unimodal,

then the window must be filled completely with background pixels, for we

have assumed that the window is so large as to prevent its being filled solely

with ridge pixels. If the histogram is bimodal, then we have both
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background and ridge pixels within the window, and must use the shape of
the histogram to determine the proper threshold to apply to the pixel at

the window center.

Given a bimodal distribution, one common approach to determining the
proper threshold position is to use clustering theory (in particular the so-
called ISODATA procedure [Duda73]). Unfortunately, such procedures tend
to be quite sensitive to the relative heights of the peaks in a bimodal
distribution, and often choose the threshold incorrectly. It was for this
reason, and for reasons of simplicity in VLSI implementation, that another
approach was chosen. If we assume for a moment that the histogram for a
particular window is known to be bimodal, we may calculate a threshold as
follows: Determine for the histogram the largest and smallest gray-level
values for which the number of pixels taking on that value is non-zero. Call
these values L and S, respectively. We may then set the threshold a fixed
fraction of the distance between L and S. The choice of this fraction is -
dependent upon knowledge of the relative widths of the peaks typically
encountered for the type of images being analyzed. For the [ingerprint
images, a value of % has been found to be suitable. In other words, we are
setting the threshold to be in the center of the non-zero portion of the
window histogram. See Figure 3.12. The median is used here rather than
the weighted mean, in order to minimize the sensitivity of the algorithm to
the relative heights of the two peaks in the histogram - such heights being
directly related to variables such as finger pressure used when inputting

the image.

Of course we would not want to apply the above algorithm to a

unimodal histogram, as the threshold would then be placed in the center of
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the peak, with meaningless results. Thus we need a method of deciding
when the histogram is unimodal. The simplest solution consistent with the
assumptions made above is to simply decide based upon the width of the
non-zero portion of the histogram - narrow histograms are assumed to be
unimodal; wide ones are assumed to be bimodal. It is now necessary Lr
specify a "meta-threshold” T’, which is the dividing line between "wide" and
"narrow’. As a practical matter this value is easily chosen after processing
a small number of fingerprint images, and is not critical. Any value in the
range of 20-25 has proven adequate for all fingerprint data encountered. So
now, rather than choose a fixed grey-level threshold as in the global
thresholding approach, we need only choose this meta-threshold. The value
of the meta-threshold is determined by general properties of the type of
images under consideration (i.e. the spread in pixel gray-levels), and

therefore need not be varied for a given configuration of input hardware.

As an improvement to the above approach one can consider a method
for automating the choice of T'. For each position of the window on the
fingerprint image, we 'have computed a histogram. FEach of these
histograms has a particular width of its non-zero portion. If a higher level
histogram (mefa-histogram) is now made of the widths of the window
histograms, we can now analyze the meta-histogram using techniques
similar to those being discussed to decide upon the meta-threshold.
Obviously it would be pointless to recurse infinitely in this decision process,
and thus the meta-threshold is conveniently chosen as the halfway point in
the meta-histogram. Unfortunately the computation of such a meta-
histogram is a global operation, and as such does not fit well into the
proposed processing architecture. Thus the simpler approach outlined

above was used in these simulations.
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Figure 3.10: Globally Thresholded
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Figure 3.12: Threshold Determination
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The simulation of the method described above works quite well, but
requires substantial amounts of computer time due to the need to compute
the histogram of a 15x15 window for each point in a 400x400 image. In
order to minimize the time necessary for the simulation, the histogram is
computed differentially, relying on the fact that the window moves only by
one pixel each time. Thus only a small number of the 225 entries in the
histogram must be updated. However the situation is even better when we

consider the VLSI implementation of the thresholding algorithm. Because of

L+S

) method described above for determining the threshold

the use of the

for each window position, it is not necessary that a complete histogram be
calculated at all. Rather, each processor cell in the 15x15 array need only
pass information about the maximum and minimum grey-level values
encountered toward the center of the window (i.e., propagate the values of L
and S toward the center). When the center processor has received this
information from all the other cells, it can verify that 1-S is greater than
the meta-threshoeld (i.e. the histogram is bimodal), and then, if its grey-level
L+S

value is less than = change itself into a background pixel, or if its grey-

level value is greater change to a ridge pixel. The time necessary for this to

occur is proportional to the linear dimensions of the window used.

Compare Figure 3.10, thresholded using a global thresholder, with

Figure 3.13, for which the adaptive thresholder simulation was used.

3.3.3. Pore Removal

The resolution of the optical system used to input the fingerprint

images is such that upon close inspection one can see small white areas
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that lie within the ridges of the fingerprint. These pinhole-like areas are
skin pores, which appear at irregular intervals along each ridge. These
pores are visible in Figure 3.9, which is the thresholded version of a filtered
image. It is desirable to remove the pores before the image is thinned, as
otherwise the resultant skeleton will contain small, closed circles at the
pore sites (see Figure 3.14). These circles are topologically equivalent to
pairs of ridge bifurcations, and thus would tend to interfere with any

feature extraction scheme that made use of bifurcations.

The program used to do pore removal is called DEPORE, and simulates
a moving-window type of image processor, using a Large (i.e. 15x15 pixel)
window. This windowsize was chosen based upon observation of the sizes of
the largest pores encountered. In order to be removed, a pore must fit
entirely within the window. Yet one would not want to make the window
overly large when doing simulations, as the CPU time required increases
quickly for large windows. Note that this is a limitation of the simulation,
not of the computing structure proposed. As will be explained below, VLSI
implementations of this algorithm are possible for which execution time
increases no worse than linearly in the window dimensions (i.e. proportional

to the square-root of the number of processors present).

A pore is defined as a region of white (background) pixels completely
enclosed by a black (ridge) region. Before proceeding with the description
of the pore removal algorithm, it is necessary to first consider the issue of
connectivity of pixels within regions. Given a pixel, we may speak of it
having two different sets of neighbors: its "4-neighbors" which are the pixels
immediately above, below, to the right, and to the left of the pixel, and its

"B-neighbors” which consist of its 4-neighbors plus its four diagonal
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neighbors (see Figure 3.15). We define two pixels to be "4-connected" if
they are 4-neighbors of each other. Similarly, two pixels are "B-connected"

if they are B-neighbors of each other.

For purposes of pore removal, we will use the concept of 4-
connectedness when dealing with background pixels, and B-connectedness
when dealing with ridge pixels. Figure 3.16 demonstrates the reason for
this choice. The circular white region is completely surrounded by the
black region, and is considered a pore. If we had not defined the
connectivity of the ridge and background pixels in this way, the circular
white region would be connected to the remainder of the background, and

would no longer be considered a pore.

The DEPORE program is implemented using the following algorithm:
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FOR each position of the window DO

BEGIN
IF center pixel of window is a background pixel THEN

BEGIN
IF Is-A-Pore-Pixel?(CENTER PIXEL) THEN
set to black all pixels connected to the center pixel,
as well as the center pixel (i.e., fill in the pore);
END;
END;

BOOLEAN PROCEDURE Is-A-Pore-Pixel?(PIXEL);

IF PIXEL is a ridge pixel THEN Is-A-Pore-Pixel?:=TRUE ELSE
lif run into a ridge pixel, then we may be in a pore;

BEGIN

IF we are at the edge of the window THEN Is-A-Pore-Pixel: =FALSE
lwe ran into edge of window, so may not be in a pore,

ELSE BEGIN
mark this pixel as connected to center pixel;

IF Is-A-Pore-Pixel?(left neighbor) AND
Is-A-Pore-Pixel?(right neighbor) AND
Is-A-Pore-Pixel?{upper neighbor) AND
Is-A-Pore-Pixel?(lower neighbor) THEN
Is-A-Pore-Pixel?:=TRUE;
lif all the 4-neighbors are in a pore then so are we;
END;
END;

Thus we can see that the boolean procedure Is-A-Pore-Pixel? is invoked
recursively, beginning with the pixel at the center of the window, and
spreading outward in an ever-expanding "decision wave". If at any point
this wave encounters the edge of the window, then we know that the
background region containing the center pixel is not completely surrounded
by ridge pixels (at least within the confines of the window), and we simply go

on to the next window position. If, however, only ridge pixels are
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encountered, then the center pixel of the window must be inside a pore
region; thus it and all of the pixels that have been marked as connected to

it are transformed into ridge pixels, thereby filling in the pore.

An efficient VLSI implementation of this algorithm would not use the
above described recursive form of the algorithm. Rather, it would be
preferable to use an array of small processors, each connected to its 4-
neighbors. The determination of whether the center pixel of the window is
in a pore is then a simple matter of the center processor asking each of its
4-neighbors "are you connected to a pixel at the edge of the window?". Each
of the neighbors in turn asks this question of its neighbors, etc., until all
processors in the window have been queried. When this questioning process
encounters a ridge pixel, the question is not further propagated. If no
answers of "yes'" are received back at the center processor, then the center
pixel of the window is obviously completely surrounded by ridge pixels, and
is therefore within a valid pore. At this point a command to "change all
questioned pixels to ridge pixels" (fill in the pore) can be sent out. Note
that this method requires time proportional to the linear size of the window,
while the recﬁrsive form used in the simulation requires, at best, time

proportional to the window area.

The immediate result of pore removal can be seen in the image of

Figure 3.17.



Figure 3.13: Adaptively Thresholded



Figure 3.14: Thinned (No Pore Removal)
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Figure 3.15: Neighbor Connectivity

Figure 3.16: Pore Detail




Figure 3.17: Result of Pore Removal



3.3.4. Thinning

The amount of pressure that can be used when making a fingerprint
impression, whether with ink or on an optical encoding device, may vary
from several ounces to as much as ten pounds without significant loss of
important feature information [Moenssens71]. Yet over this range of finger
pressures the one parameter that will vary substantially is the apparent
width of the ridges on the print. For this reason, and for reasons of data
compaction, it is desirable to remove the ridge width information from the
fingerprint images — i.e., to "thin" them.

The subject of thinning has been studied widely in the image processing
and pattern recognition literature, with mixed results. “Thinning"” can be
described intuitively as "transforming a figure into a set of pixels which has
unit thickness everywhere and still retains significant information of both a
topological and geometric nature" [ArcelliB1]. Yet, this definition points to
no one "correct” algorithm. In fact, dozens have been proposed, differing
both in apprecach and results. Two common approaches are
"skeletonization", which means finding an approximation to the medial axis
of the objects in question [PavlidisB0], and "shrinking"”, which means the

reduction of a set of pixels to its smallest topological equivalent.

Perhaps the most important consideration when choosing a thinning
algorithm is the behavior of the algorithm in the presence of the
unavoidable noise in the image. In the case of fingerprints we are dealing
with objects (ridges) which may be considered "nearly thinned” due to their
long, narrow shape --but which also have significant variations in local
outline. The width of a given ridge may vary by a factor of two or more

within a short distance, as well as having many small-scale indentations and
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protuberances. Unfortunately, many thinning algorithms are quite sensitive
to such variations and will produce a thinned image that is replete with
small "spurs" - many only a few pixels in length. One such popular
algorithm, which attempts to simplistically distinguish interior from
exterior pixels, and then strip away the exterior pixels [Wong79], was
applied to a typical fingerprint image. The result (Figure 3.18) is clearly

unsatisfactory.

Such sensitivity to small details in the image is not merely a question
of "good" vs. "bad" implementations of thinning algorithms, but rather is
directly related to the definition chosen for "thinning”. An entire range of
algorithms are possible, from a pure medial axis derivation (which will follow
the most minor variations in the contour), to a less sensitive, but more
intuitive thinner. In fact, an algorithm has been described [ArcelliB1] which
by variation of a single parameter spans the entire range, making use of
local curvature measures to determine the significance of variations in the
shape of an object. In order to make use of such curvature information,
this (and many other) thinning algorithms require the extraction of the
contour of the objects in the image as a preliminary stage to the actual
thinning operation. Though contour extraction can be done in a wide
variety of ways, none seems particularly well suited to the neighborhood
processor architecture we desire to use. As a result, an alternative thinning

algorithm was implemented.

The method used consists of two parts. First, a connectivity preserving
shrinking transformation is applied to the image by use of a Small (3x3)
window neighborhood processor (program THIN). This transformation is a

modified form of an algorithm described by Kruse, and assumes that the
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objects are B-connected. Though a form of shrinking algorithm, and
therefore rather immune to the noise problems described above, some
spurious segments are still produced. The second part of the thinning
process (program DESPUR) is designed to remove virtually all of these

spurs, and will be described below.

The shrinking transformation actually makes use of several passes of
neighborhood processors over the input image. The need for multiple
passes by somewhat different neighborhood processors is not a problem, as
each of the special purpose processors may simply be placed one after
another in a pipeline, each modifying the image in its turn. The image that
is to be thinned is represented in a one-bit per pixel format, having already
passed through the thresholding step. Yet at various points in the thinning
pipeline, the image will be represented using multiple bits per pixel, in
order that pixels may be given labels other than “ridge" and "background”.
These labels are temporary only, and are for use by one of the subsequent
processing steps. This need for multiple bits per pixel (typically no mere
than two) is easily met by paralleling single bit window processing "slices",

as described in the Section 3.1.

The fundamental operation used in the shrinking transformation is that
of a template match. We specify a pattern of values for the cells in the 3x3
window and, as the window is "moved over' the image, if the pixels in the
image match the template, the center pixel is re-labeled as specified by the
particular transformation in use. The image is assumed to originally consist
of only pixels with values 0 (background) and 1 (ridge). A value of -1 in a

template is a “don't care"”, and matches any pixel value.



oy

Figure 3.18: Improperly Thinned Image
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The first two templates applied to the image are shown in Figure 3.19a.
Template A marks “potentially deletable” pixels with the value 2, while
template B deletes any pixel marked as deletable by A which has the
correct pattern of neighbors. In particular, no pixel labeled "2" is deleted
unless it has a neighboring ridge pixel, thus serving to preserve the B-
connectivity of the ridges. Note that, though for each of templates A and B
only a single pattern is shown, all eight rotations of the specified template
are used in trying to find a match with the pixels in the window. Each of
these templates (or rather sets of eight templates) is passed over the image
multiple times, until no further change occurs. The number of passes
necessary is bounded above by the largest expected ridge thickness (in
pixels). Therefore it is not necessary to iterate until no change is observed
- rather, we can simply place a sufficient number of thinning stages
sequentially in the pipeline. No harm is done if an already thinned portion
of the image is processed again, as template B will not delete the pixels of a
completely thinned ridge. The number of thinning stages need only be
sufficient to guarantee complete processing of the thickest ridges. The
resulting image is then an approximately thinned version of the input
image. Specifically, the resulting thinned pattern may be two pixels in

width at some points, a condition remedied by latter passes.

To obtain unit width of the thinned ridges, we apply the sixteen
templates shown in Figure 3.19b, in order. Only two basic patterns are
involved, with all eight of their rotations, but each of the rotations is
explicitly shown. See Figure 3.20 for an example of an image that has been
thinned by templates A and B (with their rotations), and Figure 3.21 for the

same image after thinning down to unit ridge width.
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O X |1
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O X |1

- (all 8 rotations)

~ (X ==> "don't care")

O X |X
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O X |X

If template matches, center pixel is relabeled "2"

(all 8 rotations)

(X ==> "don't care")

If template matches, center pixel is set to "O"

Figure 3.19a: Initial Thinning Templates
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Fi:gure 3.19b: Templates Used to Thin
Image to Single—pixel Line Width



Figure 3.20: Thinned to 2 Pixels Wide



Figure 3.21: Thinned to 1 Pixel Wide
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The simulation of the operation of this pipeline of window processors
requires, not surprisingly, a substantial amount of CPU time. This is due to
the fact that each of the 32 templates involved must be compared to the
nine pixels in the window for each of the 160,000 window positions in the
400x400 image. With a correct VLSI implementation however, the template
match process is performed by a small set of gates (or a PLA) which serve
to decode the nine input pixel values and decide the correct output value
for the center pixel. So we see that the VLSI pipeline implementation will

certainly be capable of real-time image thinning.

The small spurious strings of pixels remaining in the image when
thinned by the above process are undesirable, both from an aesthetic point
of view, and in order to avoid unnecessary complication of the feature
extraction processes to come later. Fortunately, we can make use of our a
priori knowledge of the geometric properties of fingerprint ridges to allow
the removal of these "spurs”. Specifically, we know that the vast majority
of fingerprint ridges are much longer than they are wide. Thus if we were
to remove ridges (and branches of ridges) whose lengths were less than a
particular threshold, we would have minimal impact on valid ridge
structure, yet would remove essentially all of the spurs. A convenient value
for this threshold is on the order of the typical inter-ridge spacing, and

values from 10 to 15 were used successfully.

Before presenting the details of the spur removal algorithm, it is
necessary to define two special types of pixels that occur frequently in
fingerprint images. These are what we will call "ridge-end” and "fork"
pixels. A ridge-end pixel is simply a pixel that occurs at the extreme end of

a ridge or a branch of a ridge (see Figure 3.22a). Defined precisely, a
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ridge-end pixel is a pixel that has exactly one neighbor (as always, we use
the concept of B-neighbors for ridges). A fork pixel is a pixel positioned at
the intersection of two or more ridge branches. Though the concept of a
fork pixel is intuitively straightforward, a precise definition is complicated
by the varied forms encountered in real images. As can be seen in Figure
3.22b, valid fork pixels may have from three to five neighbors, in various

configurations.

The exact definition of a fork pixel requires the concept of "transitions"
in the neighborhood of a pixel. The number of transitions present in the
neighborhood of a pixel is defined to be the number of times a change takes
place from "ridge” to "background"” or vice versa as the B neighbors of the
pixel are traversed in order (for example in the sequence 1, 2, 3, 4, 5, 6, 7,
B, 1) (see Figure 3.7 for the standard neighbor numbering scheme). In
other words, if we consider the eight neighbors of a pixel to form a circle of
pixels surrounding it, we simply start at any one of the neighbor pixels and
move around the circle, counting ridge-to-background and background-to-
ridge transitions, until we arrive back at the starting neighbor. The total
number of ti‘ansitions counted is the "number of transitions in the
neighborhood of the pixel”. Given this definition, it can now be stated that a
fork pixel is any pixel that has 3, 4, or 5 neighbors, and has at least 6

transitions in its neighborhood.
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Figure 3.22a: Ridge—end Pixel

Figure 3.23: Dual Fork—pixels
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Figure 3.22b: Typical Fork Pixels
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The algorithm for spur removal uses a neighborhood processor with a
Large (15x15) window. This window size was chosen based upon the length
of the longest ridge or ridge branch which we want considered a spur and
therefore removed. If a smaller size {(such as 11) was wanted for the
maximum spur length, then the window size would be reduced accordingly,
as was done in some of the examples. The window is scanned over the
image, until a position of the window is found such that the center pixel is a
ridge-end, as defined above. A ridge-end pixel has only one neighbor, and
we now begin following the ridge by looking at this neighbor. This ridge
following process is continued, until one of four possible termination

conditions occur:

(1) The edge of the window is encountered. In this case we presume that
we were following a long ridge (i.e., not a spur), and we move on to the

next window position (Figure 3.24a).

() A fork pixel (as defined above) is encountered. We now mark for
deletion all the pixels along the ridge we have been following, up to but
not including the fork pixel itself (deleting the fork pixel would likely
break into two parts the ridge to which the current spur is attached)
(Figure 3.24b) .

(3) A pixel is encountered which has more than two neighbors, but is not a
fork pixel. In this case all the pixels along the ridge we have been
following are marked for deletion, including the pixel with more than
two neighbors (Figure 3.24c).

(4) Another ridge-end pixel is encountered. We clearly have been following
a short, isolated ridge, so we mark all the pixels on it for deletion.

(Figure 3.24d).
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The pixels marked for deletion by the above process will actually be
deleted during another pass over the image (i.e., by the next processor in

the pipeline).
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Figure 3.24a: Edge of Window Encountered
During Spur Removal
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Figure 3.24b: Fork Encountered
During Spur Removal
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Figure 3.24c: Multi—neighbor Pixel
Encountered During ‘Spur Removal
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Figure 3.24d: Ridge—end Pijxel
Encountered During Spur Removal
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The SIMULA implementation of the algorithm just described made use
of its ability to random access the pixels within the processing window. The
correct VLSI implementation would have no need for such random access,
as a separate processor would be mapped onto each pixel in the window,
with each of these.processors connected to its eight neighbor processors.
By making use of the pixel values passed to it by its neighbors, each
processor can quickly determine if its pixel is a ridge-end or a fork pixel.
When the center processor detects that its pixel is indeed a ridge-end, it
passes a message to the appropriate one of its neighbors, and the process
continues as described above. When a processor elsewhere in the window is
passed a message specifying it as being on the ridge currently being
followed, it checks to see if its pixel meets one of the termination
conditions. If not, it passes the message on to the correct one of its
neighbors. If so, based upon which of the termination conditions was
encountered, it passes a message back along the chain of processors in the
reverse direction previously used, specifying which, if any, pixels should be

deleted.

See Figure 3.25 for an example of a thinned image from which spurs

have been removed.

The principle "defect” remaining in the image of Figure 3.25 is the
occasional bridge between two adjacent ridges. Such bridges are not always
spurious, since this type of "H-shaped" ridge pattern does occur naturally,
and as a result no attempt was made to remove them. The thinned image is
now suitable for the feature extraction processing, where the final data
compression will occur. Two approaches to the creation of a compact graph

representation of the information in the fingerprint are considered below.



Figure 3.25: Image After Spur Removal



-B3-

Chapter 4

Ridge Adjacency Graphs

4.1. Introduction

The next step in the fingerprint analysis process is the creation of a
graph representation of key information in the print image. Many choices
regarding exactly what information should be used are possible. Two are
considered in this work - "ridge adjacency graphs" and "minutiae graphs".
This chapter considers the details of the construction and significance of
the first of these, the ridge adjacency graphs. In this encoding, each ridge
in the print is mapped onto a node in the resulting graph, with links being
placed between two nodes if and only if the two corresponding ridges are
"adjacent” - i.e, if they have only background space separating them for at
least some non-trivial part of their length. This representation for
fingerprints was not used to produce the results of this work, but is
presented here because the algorithms involved are instructive in

demonstrating applications of the neighborhood processing architecture.

4.2. Ridge Numbering

The first step necessary in the construction of the adjacency graph for

a given fingerprint image is the assignment of a unique numeric label to
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each ridge in the print. The simplest approach to the assignment of these
labels is to scan a Small (3x3) window over the image and, as unlabeled
ridges are encountered, assign them the next unused ridge number. Only a
Small window is needed because the only information necessary to dr;cide
the correct ridge number to assign to a pixel are the current ridge
numbers (if any) of its B8 immediate neighbors. Though the input to this
ridge numbering step (program RIGNUM) is a 1-bit per pixel image, it is first
converted to 8-bit per pixel format, so that the storage of values other than
0 or 1 can be used to assign numerical labels to the ridges. An additional
complexity is introduced by the fact that, though the ridges are the entities
we want to label, the actual labels are carried on each pixel It is therefore
necessary that we determine if any of the neighbors of a given pixel are

already labeled before choosing a label for the pixel in question.

The most complex problem appears because we are assuming that the
image is being processed in strict raster-scan order. Thus it is possible
(and in fact quite likely) that at some point in the labeling process we will
encounter an irreconcilable conflict - i.e., a pixel which has neighbors with
two or more .different ridge numbers. The simplest case in which this
occurs is that of the '"V-shaped"” ridge, as seen in Figure 4.1. Let us assume
that, as the image is being scanned raster-wise, we are assigning ridge
numbers of "5" to the pixels on the left arm of the V, and "10" to the pixels
on the right arm. Of course there is no way to know that both of these
arms are part of the same ridge — at least not until the pixel at the apex of
the "V" is reached. It now becomes necessary to assign a ridge number to
this pixel. Should it be "5"? Or "10"? And what about the fact that we now
have two halves of a ridge which are assigned different labels? Clearly some

renumbering of the ridge pixels will be required.
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Figure 4.1: "V—shaped" Ridge
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Figure 4.2: Ridge Numbering Units
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In order to accomplish this renumbering while still adhering to the
pipeline processing architecture it is necessary to introduce two special
purpose processing units to the pipeline (see Figure 4.2). Last in the flow
sequence is the “Renumbering Unit”, which has the responsibility of
resolving conflicts, such as that just described, by renumbering the pixels
in the image as needed. In this case, the Renumbering Unit could change
the label of all pixels labeled “10" to "5", thus removing the inconsistency.
In general, the Renumbering Unit will maintain a table (called the
“replacement table") indicating what transformation is to be applied to the
labels of the ridge pixels as they pass through. The default action is, of

course, not to change the label at all.

The information used to produce the replacement table must be
acquired by the renumbering unit from a previous stage in the pipeline,
specifically from the unit doing the actual assignment of ridge numbers (the
"Numberer"). This occurs via the special purpose data connection shown.
The algorithm used by the Numberer to label ridges and generate data for

the Renumbering Unit is as follows:
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FOR each position of the 3x3 processing window DO

BEGIN
IF the center pixel in the window has no labeled neighbors

THEN Label the center pixel with next available ridge number;
ELSE BEGIN
IF the center pixel has one or more labeled neighbors, all of
which have the same label

THEN Label the center pixel with the same label as
its neighbors;

ELSE BEGIN
IF the center pixel has 2 or more labeled neighbors
any two of which do not have the same label
THEN Label the center pixel with the smallest of
the labels held by its neighbors, and report
the details of the conflict encountered to the
Renumbering Unit over the special data path;
END;

END;
END;

Thus, as the conflicts in ridge numbering (and therefore the requisite
renumberings) are found, they are reported to the Renumbering Unit, which
uses this information tol construct the replacement table. Since we are
assuming that the only internal storage present in the Numberer is the
usual 3 scan lines of shift register (for processors using 3x3 windows), it is
necessary to introduce the Delay unit between the Numberer and the
Renumberer. This is due to the fact that we will not have found all of the
conflicts until the entire image has finished passing through the Numberer.
If no Delay were present, the Renumbering Unit would be attempting to
renumber parts of the image before all details of the necessary
transformations were known. Thus, we introduce a delay of one image time

into the pipeline, so as to allow all conflicts in an image to be found and
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sent to the Renumbering Unit before actual renumbering of that image
commences. Of course, while the Renumbering unit is being sent conflict
information about the image currently being numbered, it must be in the
process of renumbering the preceding image frame. Thus we require
double buffering of the replacement table in the Renumbering Unit -- the
ability to input data for one table, while simultaneously making use of the
previous version of the table. In addition, we also require that the
Renumbering Unit have the ability to follow simple chains of renumbering
instructions while creating the replacement table. For example, if an entry
already exists in the table specifying that all ridges numbered "7" are to be
renumbered with "5", and we then find a conflict causing us to specify that
all ridges numbered "5" are to be renumbered "2", it is necessary that the

7-5 rule be modified also, to now read 7-2.

The ridge numbering system as described considers all branches of a
ridge (i.é. parts of a ridge separated by forks) as belonging to the same
ridge. If desired, it would be straightforward to modify the algorithm so that
such branches would be considered separate ridges, and assigned unique
labels. The sirﬁulation of the ridge numbering process was implemented to
treat all branches of a ridge as having the same label. The result of ridge
numbering a typical (manually thinned) fingerprint image can be seen in
Figure 4.3, where the ridge numbers have been added next to their

respective ridges.



Figure 4.3: Thinned Fingerprint With
| Ridgenumbers Indicated
(manually thinned)
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4.3. Ridge Adjacency

As was mentioned above, the adjacency graph representation for a
fingerprint maps each ridge in the print onto a node in the graph, and
places a link between the two nodes if the corresponding ridges are
anywhere adjacent. Figure 4.4a is a fragment of a fingerprint ridge pattern.
As examples, ridges A and C are adjacent, as are ridges E and F. Ridges B
and G are not adjacent, nor are E and C. The corresponding adjacency
graph for the print fragment is shown in Figure 4.4b. The motivation for the
choice of this representation stems from several areas. Perhaps most
important is the fact that such a representation is purely topological -- i.e.
no distance measurements are used. Thus the representation is very much
immune to the type of plastic distortions that can be encountered in
fingerprint images. This immunity to distortion will be demonstrated in a
later section. In addition, by encoding the fingerprint pattern in terms of
ridge adjacency we are in many ways imitating the methods used by human
fingerprint experts to describe and compare details of prints. Human
experts will make statements such as "we have here a short, curved ridge
which is next to a long ridge ending in a bifurcation". Rather than mention
distances, use is made of the natural coordinate system of the fingerprint:

namely the large numbers of adjacent, roughly parallel ridges.

Of course, by limiting ourselves to making statements only about
immediate adjacency of ridges, we are imposing a somewhat arbitrary
restriction. Indeed it is certainly meaningful to incorporate into cur graph
structure the fact that in Figure 4.4a not only is ridge D adjacent to ridge B
and ridge B adjacent to ridge E, but also that ridge D "overlaps ridge E, but

at a distance of 2 ridge spacings”. Such an encoding makes even better use
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of the natural coordinate system. In fact, this process can be continued
almost arbitrarily far. We can say for example that ridge F is also adjacent
to D, because they in some sense overlap. The only limitation on how "far"
(measured in terms of number of ridge spacings) two ridges can be apart
and still be considered to overlap is that our intuitive notion of when two
ridges do overlap begins to break down when they are far apart, particularly

in the presence of significant ridge curvature.

It is instructive to consider what the situation would be like if all ridges
were straight line segments, rather than being arbitrarily curved. We would
then have a picture similar to that of Figure 4.5. It now becomes much
simpler to think in terms of "overlap" of ridges. In fact, if we consider each
ridge to be mapped onto a segment of the real line, then we may say that
two ridges overlap if and only if the segments of the real line they represent
have a non-zero intersection. Thus ridges T and U overlap, asdoXand Y. W
and Z do not overlap. Note that we apply no restriction here as to the
"distance" between ridges. So, ridges T and Y overlap, even though several

other ridges are "between" them.

4.4, Interval and Circular-Arc Graphs

The arrangement of ridges (segments) in Figure 4.5 and the graph that
would result is identical to what is known as an ‘"interval graph'.
Specifically, given a set of intervals on the real line, if we map each of the
intervals onto the node of a graph, and connect two nodes if and only if
their corresponding intervals overlap, the resulting graph is an interval

graph. The invention and study of interval graphs was motivated by a
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biological application concerning the fine structure of genes [Benzer59]. In
particular, the problem was to decide whether or not the subelements of
the genes are linked together in a linear fashion. For certain
microorganisms there exist both a standard form and mutants. The
mutants result from the standard form by alteraticn of some connected
part of the genetic structure. It can be determined experimentally whether
or not the blemished parts of two mutant genes intersect. Given a large
number of such mutants, together with the information about when
blemished portions of pairs of mutants intersect, the goal is to determine
whether this information is compatible with a linear model of the gene
[FulkersonB5]. In other words, given that we represent the blemished,
possibly overlapping sections of the genes as intervals, if the resulting graph
is indeed an interval graph, then the data is consistent with a linear model

for the gene.

Since their invention, interval graphs have been applied to a variety of
areas, ranging far afield from genetics. For example, in a recent paper
[Ohtsuki?79], interval graphs are used to generate efficient MOS VLSI
implementations of logic equations by simplifying the process of optimum
placement of gates along wiring tracks. In addition to their application to
diverse research areas, interval graphs have been well studied from a more

theoretical point of view - see [Gilmore84] and [Lekkerkerker62].

Interval graphs have many properties that distinguish them from more
general graphs. Perhaps most important and useful of these is the fact that
algorithms are known that allow the determination in linear time of whether
or not two given interval graphs are isomorphic [Lueker79]. This is in

remarkable contrast to the situation for general graphs, where
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determination of isomorphism is quite difficult (actually the problem is
known to be in NP, but has yet to be proven to be in either P or to be NP-
complete [Lubiw81] [JohnsonB1]). Determination of strict isomorphism is
not practical as a means for comparison of graphs representing fingerprint
images. This is because the definition of isomorphism is too restrictive, in
that two graphs are either isomorphic or not — there is no middle ground.
For the purposes of [ingerprint comparison, we must consider "fuzzier"
versions of iscmorphism in order to gain the requisite immunity to noise

and distortions.

Returning to the construction of ridge adjacency graphs for fingerprint
images, we see that if we allow our definition of adjacency to include ridges
that are not immediately next to one another, the resulting graph will be
similar to an interval graph. Unfortunately, the curving nature of typical
fingerprint ridges prevents us from discussing overlap of ridges spaced
apart by arbitrary distances. Thus we must set a limit for the maximum
"distance” (measured in ridge spacings) allowable between two ridges said
to be adjacent. If this adjacency threshold is set to one, we have the simple

immediate adjacency graphs discussed initially.



D

Figure 4.4b: Adjacency Graph



-95-

Figure 4.5: Some Straight Ridges

(encode as interval graph)

=

=

Figure 4.6: Some Very Curved Ridges

(encode as circular—arc graph)
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An additional complication is introduced by the possible ridge
configuration shown in Figure 4.6. The same ridge curvature which requires
that we use a small finite value of the above mentioned threshold, also
allows for a situation that is impossible in a standard interval graph, namely
a phir of ridges that overlap in two non-contiguous regions. Though the
ridge configuration shown is rather pathological and not likely to often
occur in actual fingerprints, the implications of such an occurrence must
be considered. A generalization of interval graphs known as "circular-arc
graphs” exists, and is relevant in this situation. A circular-arc graph is
produced according to almost the identical rules used for interval graphs,
with the exception that the intervals involved are now arcs around the
circumference of a circle, rather than intervals on the real line. The
configuration seen in Figure 4.8 is quite legal for circular-arc graphs.
Circular-arc graphs are not as well studied as interval graphs, though some
work has been done in the area [Tucker] [Tucker74] [GareyB0]. In general,
the time complexity of operations on circular-arc graphs is greater than for
the same operation on interval graphs, despite their apparent similarity
[JohnsonB82]. It should be noted that interval graphs are mentioned here as
analogies only - the results derived both for them and for circular arc

graphs cannot be directly applied to adjacency graph structures.

4.5. Determining Adjacency

The adjacency graphs used to describe fingerprints in this work were
all derived on the basis of immediately neighboring ridges, in order to

maintain compatibility with the desired neighborhood processor
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architecture. The fundamental operation used to determine ridge
adjacency is that of "growing" a vector from a given point on a ridge in a
direction approximately perpendicular to the local slope of the ridge at that
point. As the growth of this vector proceeds, we are constantly checking for
a "collision” with any other ridge. Such a collision would indicate adjacency
of the ridges in question. Figure 4.8 shows a number of vectors being grown
in the manner described. The vectors can be grown from ridge points as
the points are encountered while the image is being scanned raster-wise.
Note that although there are two possible perpendicular directions for
vector growth from each ridge pixel, only one of these directions need be
used. In the figure only the more "downward"” of the two vectors has been

grown.

This method, although guaranteeing that all existing ridge adjacencies
will be found, is rather expensive computationally, and generates much
redundant information. The basis for a significantly better approach is
shown in Figure 4.9. Here we are only growing vectors from the endpoints
of each fingerprint ridge, rather than from all the points of the ridge. The
fact that ridgeé are defined to be continuous curves allows us to make this
very useful simplification. Unfortunately, as can be seen in the figure, it is
now no longer sufficient to grow vectors in only one of the two possible
perpendicular directions. With vector growth in one direction only, the
adjacencies of the pair AB was not found. Thus the correct approach (shown
in Figure 4.10) grows vectors only from the ridge ends, but in both possible

directions.

The input image to the ridge adjacency window processor is assumed to

be a multi-bit per pixel image, with each pixel location containing a value
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identifying the ridge to which the pixel belongs. The output is a list of ridge
adjacencies or, in other words, a list of the links in the adjacency graph.
Thus it is at this point in the processing pipeline that we use for the last
time a neighborhood processor. The remainder of the processing will deal
not with images but with graphs. The original input image contained
approximately 1.2 million bits of information. The output of the adjacency
processor is only a few hundred bits, yet contains sufficient information to

permit accurate fingerprint matching.

The determination of adjacency proceeds as follows: For each position
of the window on the input image, the center pixel (processor) of the
window determines whether or not it is mapped onto a ridge-end pixel. If
not, nothing is done. If so, then the slope of the end of the ridge in the
immediate area of the ridge pixel is calculated. Two vectors are then grown
out from the ridge-end pixel in the two directions that are approximately
perpendicular to the slope of the end region of the ridge. The vectors are
grown until they encounter either the edge of the window (nothing is done),
or another ridge (we report a ridge adjacency pair). Thus the two
operations thﬁt must be supported by the window processor are slope
determination and vector growth, each of which will now be considered in

detail.

Fundamental to the concept of ridge adjacency as just described is the
notion of "in which direction to look” for a neighboring ridge. Intuitively,
the correct direction is in some sense perpendicular to the end of the ridge
in question. Yet the nature of the small scale variations in ridge structure
makes it essential that more than two or three pixels at the end of the

ridge be used in the slope determination procedure. The method chosen
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makes use of a number of pixels at the end of the ridge equal to one-half of
the size of the window in use. Specifically, for each of the last N pixels

along the ridge (not including the ridge-end pixel itself), we compute:

]b_nélAXn

and
L3

=y BT
N n=1 "
where AX, and AY, are the X and Y displacements of the n** point along the
ridge measured with respect to the ridge-end pixel. The results are, in fact,
the X and Y coordinates of a "mean point"”, and our slope estimate is simply
the slope of the segment connecting this mean point with the ridge-end (see

Figure 4.11). So the slope estimate is

N
» AY,

slope = "’;1
2 AX,

n=1
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Figure 4.8: Vector Growth

\

Fingre 4.9: Growth Only From Ridge—ends
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Figure 4.10: Better Approach For
- Vector Growth

Figure 4.11: Estimation of Ridge Slope
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It is not difficult to see how a VLSI implementation would handle the
slope computation. Beginning with the processor at the ridge-end pixel,
each processor simply passes to its neighbor along the ridge a message
containing both information about the coordinates within the window of the
processor sending the message, as well as a counter of how many pixels
have been traversed. In effect, a "running average" of the coordinates of
the pixels traversed is kept. When such a message finally reaches a
processor which cannot pass the information along to an appropriate
neighbor, due to having reached the edge of the window, sufficient
information exists to compute the slope of the ridge end. The slope
information can then be sent back to the originating ridge-end pixel to be

used to determine the correct directions for vector growth.

The algorithm used to generate the vectors for determining ridge
adjacency is the so-called non-symmetric Digital Differential Analyzer (DDA)
[Newman73]. Using this approach, one coordinate (X or Y) is identified as
the direction of greatest change per step of the vector growth process. This
coordinate is then always incremented (or decremented as appropriate) by
1, while to thé other coordinate value is added the slope of the desired
segment (a fractional value). The resulting value is then rounded to the
nearest integer, and the next pixel in the vector is placed at that point.

Assuming X is the coordinate of greatest change, we have:

Yo = Yotart

AY
AX
Yoew = int (Yo +))

=Y+

The process continues in this manner for as long as desired. The
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determination of which of the two coordinates is "changing faster” is made
based upon the sign of the slope of the ridge-end, as well as whether the
slope value calculated is greater or less than 1. Lines which are closer to
vertical than horizontal have Y as the fast-changing variable, and vice versa.
If the slope calculated for the vector to be grown (which is of course the
reciprocal of the slope of the end of the ridge) is greater than 1, it is
inverted before use, so that the fractional increment used in the DDA

calculation is always less than one.

The number of bits used to represent the fractional values determines
the overall accuracy obtained in the generated vectors. In the software
simulation of the vector generation process, three bits were used to
represent the desired slope of the vector and two bits were used to
represent the fractional part of the slowly changing coordinate. In addition,
one other bit is used to specify whether X or Y is the more rapidly changing
variable. The use of 3 bits to specify slope gives an angular resolution of
approximately eleven degrees in the vector generation process, which
proves to be quite adequate. A VLSI implementation of the vector
generation process would make use of exactly the same data
representation. Thus the center processor in the window, after receiving
information on the slope of the ridge-end as described above, would begin
the vector growth process by passing messages containing the necessary six
bits of state information to the correct two of its neighbors. The remainder
of the vector growth would then consist of each processor doing the simple
computation described above to determine to which of its neighbors to pass
on the updated information. This of course continues until the window edge
or another ridge is encountered — such an event generating an "adjacent

ridges found" message as part of the output of this pipeline stage.
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The process described above was simulated (program GRAPH), and the
results of deciding ridge adjacency for a typical fingerprint image (Figure
4.3) can be seen in the graph representation of Figure 4.14. In the
representation used for the adjacency graph, the first number on each line
represents the label of a particular ridge, while the numbers following the

colon are other ridges that were found to be adjacent te the original ridge.

An improved method for determining the adjacency of fingerprint
ridges is what we will call "circular growth”, and was suggested by Carver
Mead. In this method, rather than attempting to determine the slope of a
line fit to the last few pixels at the end of each ridge so that vectors can be
grown in the two perpendicular directions, we instead "grow" an ever-
expanding circle of pixels surrounding the ridge-end pixel. As this circle of
pixels contacts neighboring ridges we gain the required adjacency
information. Specifically, the algorithm makes use of a Large (15x15)
window, as the window must at least span the distance between ridges. As
the window is "scanned" across the fingerprint image, the center processor
in the array (i.e. the one mapped onto the center pixel of the window) is
continually checking to see if the pixel currently positioned there is a
ridge-end pixel. If so, the center processor begins the growth of ther
circular "wave” by sending a message to each of its B-neighbors, who in turn
do the same. If at any point in this process another ridge is encountered,

this information is propagated back to the center processor.

This circular growth approach overcomes one of the more serious
limitations of the previously described vector growth method, which is the
performance in the face of a situation such as that in Figure 4.15. Here we

have two ridges which overlap only marginally, if at all. Whether the vector
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growth algorithm would determine them to be adjacent depends upon the
fine details of the vector generation process, such as limited angular
resolution, and thus is not straightforward to predict. In addition, it is
likely that rather minor geometric distortions would affect the adjacency
determinations. Circular growth on the other hand produces a consistent

adjacency decision.

Circular growth is much more consistent with the stated philosophy
underlying this work, in that it decides adjacency almost completely based
upon pure topological considerations, as contrasted with vector growth
which makes use of metrics such as line slope - and has as a result
problems with image distortion. As is clear from the above description of
the circular growth algorithm, a VLSl implementation would be
straightforward, and indeed simpler than that required for the vector

growth method.
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Figure 4.15: Marginal Ridge Overlap

——

Figure 4.16: Circular Growth
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4.6. Immunity of Adjacency Graph Encoding to Geometric Distortion

Central among the possible differences that may be encountered
between a stored "reference" fingerprint and a print with which it is being
compared are those due to geometric distortions of the ridge patterns.
This distortion may be due to a number of causes, the most likely being the
use of excessive finger pressure in recording the fingerprint image. As was
mentioned elsewhere, acceptable fingerprint images are obtained with
finger pressures ranging from several ounces to over ten pounds. Yet the
resiliency and elasticity of the finger and the skin can cause problems. For
example, if finger pressure is applied in such a way that the angle between
the body of the finger and the recording surface is far from normal,
distortion of the image will result. See Figure 4.17 for an example of two
inked fingefprint impressions from the same finger that show significant

differences due to pressure distortion.

Fortunately, much of the pressure distortion seen in inked fingerprint
impressions like those of Figure 4.17 is due to variations in the rolling
motion used to record such prints. This problem is much less likely to
occur with the optical system used for this work, as it merely requires that
a finger be placed lightly against a glass surface without rolling.
Nevertheless, it is desirable that a fingerprint encoding system be immune
to at least local distortions in the print image. Lack of such distortion
immunity has been the downfall of many of the proposed automatic
recognition systems, particularly those that attempt to make use of global

measurements of the position of features within a print.

Both encoding systems described in this work have sufficient immunity

to local distortions. The "minutiae graph" approach (described in Chapter
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5) obtains this immunity by not making use of distance measurements
between features that are separated by more than a specified small
distance. In this way, severe distortions or disruptions in one area of a
print will have minimal effect on the information contained in other areas.
The "adjacency graph” approach has outstanding immunity to even very
severe distortions, whether they be global or local, due to the topological
nature of the adjacency graph encoding. In other words, the concept of
distance is not used at all - rather we speak ofra ridge being "adjacent to"
other ridges. Adjacency of ridges is a property of fingerprint images which

remains unaffected by any reasonable geometric distortion.

In order to dembnstrate the excellent distortion immunity of the
adjacency graph encoding, a fingerprint image was artificially distorted.
Figure 4.18 shows a typical thinned fingerprint image, along with the same

image after having been transformed by the equations

.=
z'=x + 5 sin—
10

= = O
y:=0.By + 3 cos 13

Figure 4.19 is a representation of the adjacency graphs derived from the
undistorted and distorted prints. The number at the beginning of each line
is the number given to a ridge in the fingerprint. Following the colon are
the numbers of all ridges which are connected (i.e. adjacent) to the first
ridge, The graph derived from the original print has 81 nodes (ridges), and
104 links (adjacencies). The distortion process resulted in a net change to
the graph of only 3 links removed and 1 link added. This is excellent
performance, particularly since the distortions used are greater than any

likely to be encountered with the present optical input system.
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Figure 4.17: Pressure Distortion

Comparison of two inked fingerprints
taken from the same finger using
different amounts of pressure.

[ Moenssens71]
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In addition to immunity to geometric distortions, we must also consider
the behavior of any chosen encoding system when faced with the noise
typically present in a fingerprint image. One of the most common
manifestations of this noise will be small, random breaks in ridges, where no
such breaks exist in the original fingerprint. Note that it is essentially
impossible to remove such accidental breaks with a post-processor as we do

with pores, as some breaks occur naturally in fingerprints, and there: is no
way to distinguish the noise-induced from the genuine breaks. With the
adjacency encoding system just described, an extra break added to a ridge
will result in the two ridge fragments being labeled as individual ridges and
therefore being mapped onto two distinet nodes in the graph
representation. Similarly, the links which would have been attached to the
node representing the original, unbroken ridge will now be split between the
two new nodes which have replaced the single node in the graph. The
method ultimately used to compare the resulting graphs must therefere

have a reasonable degree of immunity to such splitting of nodes.
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Chapter 5

Feature Extraction and Minutia Graphs

5.1. Feature Extraction

Comparison of fingerprints by human experts is. not done by the purely
topological Henry system used for classification of ten-finger sets, but
rather by a system based upon descriptions of the relationships of the low-
level features of the prints, known as minutiae. The graph encoding to be
described also makes use of selected ones of these features, along with the

distances separating them.

The specific features used in the minutia graphs are ridge-ends and
ridge-forks (bifurcations). These were chosen because they are the most
fundamental of the entire class of minutiae, and in fact all of the others
(ridge breaks, trifurcations, etc.) can be considered as combinations of
these two. Though it is necessary for the feature extraction process to
separately identify forks and ridge-ends, beyond this stage no attempt is
made to distinguish between them, due to their inherent similarity as was
explained earlier. Doing so would seriously compromise the noise immunity
of the resultant encoding. Thus the basic step involved in the process of
creating a minutia graph representation for a given fingerprint image is the
identification and extraction of the ridge-ends and forks from a properly

processed and thinned image.
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The identification of exactly which pixels are to be considered forks was
discussed in detail in the section on spur removal. To summarize, a "fork
pixel” is any pixel with 3, 4, or 5 neighbors, that has at least 6 on-to-off or
off-to-on transitions around its immediate neighborhood. See Figure 3.22b
for examples. The definition of a ridge-end pixel is somewhat simpler, as a
ridge-end pixel is simply any pixel in the image with exactly one neighbor
(Figure 3.22a). It is thus straightforward to produce a final stagei in our
image processing pipeline which is responsible for extracting the IjOW and
column coordinates of each of the features in the image. The input to this
stage is the binary image output from the spur removal process, and it
produces as a result a list of ordered pairs of row and column coordinates.
Note that this is truly the final stage in the pipeline, for it is at this point
that the data are finally converted to a form different from that of a
sampled image. It is also at this point that the desired data compression
has occurred, for what was originally some sixteen-million bits of
information has now been reduced to approximately one-hundred ordered

pairs of small integers - a compression by four orders of magnitude.

The architecture of the processing stage responsible for this feature
extraction (simulated by the program 'FEATUR') is straightforward. A 3x3
window, with a limited amount of processing power at each cell is required.
The ridge-end detection function requires only that the center cell be able
to ascertain when it has exactly one neighbor. We will assume that the
center cell receives a single bit from each of the peripheral cells in the
window indicating whether or not that neighbor is “on”. The sum of these
single bit quantities will then be the "number of neighbors” (NON)

parameter needed.
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Fork detection also makes use of the calculated NON value. By the
previous definition, in order for the center pixel to be a potential fork, we
must have NON in the range of 3 through 5, inclusive. Given this, it must
then be determined how many transitions from on to off and vice versa
occur in the surrounding eight pixels. This is easily done in a manner
similar to the NON calculation: Each neighbor pixel (processor) reports a
change (a value of 1) if it is different than the next pixel arourid the
neighborhoed in say the clockwise direction. It reports no change (ai value
of 0) if its state is the same as that of the next pixel. The sum of these
values (computed by the center processor) is the "number of changes”
(NOC) in the neighborhood of the center pixel. If NOC > B, then our

candidate fork pixel is indeed a valid fork pixel.

The result of this feature extraction process can be seen in Figure 5.1,
in which the location of each identified feature has been indicated by a dot
in an image, as well as in Figure 5.2, which is a partial list of the actual
output of the feature extraction stage, namely the coordinates of the
features found. The fingerprint from which these data are derived is shown

in Figure 5.3.
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Figure 5.1: Locations of Features
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# Row CoL
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Figure 5.2: Typical Feature Coordinates
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Figure 5.3: The Original Fingerprint
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When looking at Figure 5.1, the "halo” surrounding the main body of
features is quite obvious. It is made up of features which are really
spurious. They consist of ridge-ends generated by the fact that we are
examining a limited section of the fingerprint, with the resultant cut-off at
the edges of the image. The inclusion of such features is undesirable, as
they are not present on the finger itself, and their position wﬁll vary
amongst prints taken from the same finger as the pressure and angige used
to record the print changes. Removal of these features is accompiisiled by
a modification to the feature extraction processing stage which serves to

identify such "edge features”.

The size of the window used is increased from the minimum 3x3 window
necessary for the basic feature identification process just described, to a
size that is substantially larger than the largest inter-ridge spacing
expected. The basis for the identification and removal of the spurious
features is the observation that essentially all of the features which appear
at the outer edges of the print are in fact spurious. The definition of "being
at the edge" used in the? algorithm is simply that at least a ninety-degree
sector of the extended neighborhood of the feature in question contains no
"on" (i.e. ridge) pixels. For sufficiently large neighborhood sizes, any such
pixel cannot be in the interior of the print. See Figure 5.4 for examples of

typical situations.

In order to remain consistent with the standard neighborhood
processor architecture in use, it is desirable to make use of a standard
square neighborhood, rather than the idealized round neighborhoods
implied above. Figure 5.5 is a representation of the approach used. A

square neighborhood of size 2L+1 (L an integer) is divided into eight
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overlapping areas, known as "half-edge regions"”. If at least two half-edge
regions are found which do not contain any ridge pixels, than the feature at
the center of the region is rejected as being too close to the edge of the
fingerprint, and therefore spurious. The parameters L and W in Figure 5.5

are chosen based upon the observation that features closer to the edge of
the print than I-W (%(L-W) worst case) will be deleted. In additionboth L

and W should be greater than the largest ridge spacing. Values rangmg
from L=8, W=4 to L=16, W=10 have been employed, with excellent results,
and very little sensitivity to the exact values chosen. Figure 5.6 is the set of
extracted features after removal of the spurious ones, and can be compared
with Figure 5.1 in order to see that indeed only the spurious features at the

image edge have been removed.
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Figure 5.4: Feature Neighborhoods
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Figure 5.5: The "Half—Edge Regions”



7 N

Figure 5.6: Valid Feature Locations
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5.2. Minutia Graphs

After identification of the features in a particular print is complete, the
next task is creation of the appropriate representation for the information
contained in the print. The previously discussed adjacency graphs are one
such representation. Minutia graphs are a second, and in many ways lmore
effective representation. Where in the adjacency graph each nodeé was
mapped onto a single ridge in the original fingerprint, with minutia grlaphs
each node corresponds to a single feature (ridge-end or fork) in the print.
The links between the nodes are created based upon the "distance” between
any two nodes (features). Distance is used here in a general sense, as many
specific distance definitions may be used and will be discussed below. Two

nodes in the minutia graph are connected by an edge if and only if the

"distance"” between them is less than a fixed value (the "local-region size").

One obvious choice as a definition of "distance" would simply be to
count the number of intervening ridges between any two features under
consideration. For example, the ridge-ends in Figure 5.7 can be said to be
at a distance of "3" from .each other, as there are clearly three intervening
ridges. This method of specifying distance is quite appealing, as it makes
use of what one might call the "natural coordinate system" of any
fingerprint, namely the ridge pattern. Unfortunately, this coordinate
system is really rather one-dimensional, since the ridges do not form a
"cross-hatch” pattern, but are instead collections of roughly parallel curves.
As a result, situations such as that shown in Figure 5.8 occur, where the line
connecting two features is essentially parallel to the local direction of the
ridges, and determination of a unique (or accurate) value for the "distance"

becomes impossible.
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The solution is to make use of some form of geometric distance
between the features, measured in, for example, units of pixels. Because
the inter-ridge spacing in a fingerprint can be considered to be roughly
constant, there is considerable 'analogy between this approach and the
ridge-counting system. The primary distinction between the two methods is
in the area of immunity to plastic distortion of the fingerprint im?ge. As
has been discussed, such distortion is often encountered, particuiarly in
prints obtained by inked transfer. The ridge-counting definition of distance
is more immune to such distortions, since the number of intervening ridges
is (at least in the ideal case) not affected by distortion. However, in the
minutia graph encoding, distances are only used between features that are
in the same "local region”, i.e. that are close to each other in the print. As
a result, immunity to most global distortions remains excellent. Similarly,
any distortions that are locally severe will affect only a limited part of the
data structure, and therefore not greatly interfere with matching of the

prints.
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Figure 5.7: Ridge Counting
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Figure 5.8: Ridge Counting Ambiguity
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It should be noted that the method used by human fingerprint experts
to describe the similarities between two prints also makes much use of
inter-feature distances. It is in fact quite common for such an expert when
testifying in court to make a statement describing two features in terms of
the number of intervening ridges. Thus it can be seen that the minutia
graph representation is quite consistent with the stated goals for ? good
fingerprint representation, in that it makes use primarily of local
information, has good distortion immunity, and bears certain similarit‘:ies to

methods successfully in use by humans.

As a further refinement of the minutia graph concept, rather than
computing the actual geometric distance between two features in question,
we simply compute and keep the Az and Ay values (i.e. zz—z, and Yz—Y1)
complete with sign. Thus we are in effect measuring not only the distance
between the two features, but also the angle (slope) of the line connecting
them. This additional information proves useful in the comparison process,
as it serves to further "prune" the search tree when doing node by node
matching of the minutia graphs. An added benefit is the simplicity of
computing Az and Ay rather than the true distance, as no square root is
involved. See Figure 5.9 for a typical pair of features with Az and Ay
indicated. Use of Az and Ay rather than actual distance results in the
matching procedure not being independent of the relative rotation of the
two fingerprint images. This is acceptable however, as we are assuming
throughout this work that the images are approximately aligned before we
begin (as would be the case with, for example, fingerprint-controlled

security systems).



Figure 5.9: Measuring Inter—Feature

Distances
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Oné of the most important factors in the selection of a print
representation is the question of noise immunity - i.e., how sensitive is the
representation to the inevitable broken ridges, dark patches, and other
disturbance of the ridge pattern? It is in this area that the minutia graph
approach showé a significant advantage over the previously described
adjacency graph encoding. When using the adjacency graphs, a breaik in a
single ridge results in what was :Snce a single node in the graph being I‘:}'split“
into two new nodes, with the links that were connected to the originai node
being distributed between the two new nodes. These links may extend
arbitrarily to other points in the graph, since many fingerprints have single
ridges which "wander" through most of the print area (ie. a very long
ridge). A break in such a ridge has serious effects on the entire adjacency
graph representation. This property that a small, very localized error
introduced into the data can cause global changes in the graph is obviously

undesirable.

With minutia graphs however, defects such as blotches and ridge
breaks serve only to add spurious features {(nodes) to the graph, with links
only to other, physicall); near nodes. These additional nodes are easily
ignored by the graph matching procedures used (and to be explained
below). Thus though adjacency graphs are superior with regard to
immunity to geometric distortion, the locality properties of minutia graphs
make them a better choice, particularly when a low-distortion (non-inked)
input mechanism is used. It is for these reasons that the remainder of this
work will deal primarily with results obtained by use of the minutia graph
encoding. Further details of that encoding will become apparent as the
method used to do the graph matching is explained in the next chapter.

But first the general issue of comparison of non-identical, yet similar graphs
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needs to be explored...
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Chapter 6

Graph Comparison

6.1. Introduction

Given that a particular pair of fingerprints have been encoded into a
form of graph representation such as the adjacency or minutia graphs
already described, the key problem now becomes determination of "how
similar" the graphs, and therefore the original fingerprints, are.
Consideration of that question leads directly inte subjects such as Fuzzy
Theory as well as relatively unexplored areas of graph theory dealing with

partial isomorphisms. But first, we will consider an idealized case.

Suppose that at some time in the past, an image of a particular finger
has béen taken and encr;ded into a minutia graph as described in the last
chapter. We are now presented with another image of a finger, and must
determine if it is from the same finger as the original. So we proceed to
process the new image, producing a second minutia graph. Even if we
assume that no changes have occurred in the finger itself, and that no noise
or distortion was introduced anywhere in the process, it is likely that
whatever labelings we have for the nodes in the two graphs are not
identical, due simply to differences in finger orientation. So the problem
becomes: Given two graphs, determine if there exists an adjacency

preserving one-to-one correspondence between the vertices [Harary69].
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This is the much-studied "isomorphism problem" in graph thecry. Graph
isomorphism has application in widely varied fields such as chemistry,

switching theory, and information retrieval.

It was stated above that the isomorphism problem consisted of finding
a one-to-one correspondence between the vertices of the two graphs in
question. Beyond that is the more important issue of finding a GOQD (i.e.

efficient) algorithm for determining if two graphs are indeed isomorp!::jic,

6.2. Isomorphism Determination

One way of demonstrating the inherent difficulty of the isomorphism
problem is examination of some typical graphs, such as those in Figure 6.1.
Though they seem quite different from one another, all three are, in fact,
simply different ways of drawing the identical graph. Thus we see that the
usual "line and dot" representation of a graph can be quite misleading.
Another common representation of a graph is the adjacency matrix form, as
shown in Figure 6.2. Hei‘e, each row and column of a matrix is labeled with
the name of a node in the graph, and the entries in the matrix are 1 if and
only if the pair of nodes corresponding to the row and column of the entry
are linked. Unfortunately, this representation is also often misleading, as
there are as many adjacency matrix representations of a given graph as
there are unique labeling of the nodes in the graph. See Figure 6.3 for an
alternate labeling and adjacency matrix for the graph of Figure B8.2.
Nevertheless, as we will see below, the adjacency matrix representation can

be quite useful.
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Figure 6.1: Three lsomorphic Graphs
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Figure 6.2: Graph and lts Adjacency

Matrix
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Figure 6.3: Same Graph With New Labeling
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The difficulty in determining isomorphism of two given graphs is not
one of finding an algorithm that will do the determination, but rather one of
finding .a.n algorithm that will do so in a short enough period of time (the
'good’ algorithm mentioned above). For if execution time were of no
consequence, we could simply try all possible labelings for the nodes in each
graph, and then compare the resulting adjacency matrices until either a
match was found or all possible labelings had been exhausted - cle;jc\rly a
very time-consurning process. More specifically, let us assume that we have
two graphs, G, and Gy, each having n vertices. The nodes of each graph can
then be labeled with the integers 1, 2....n. For each such labeling, there
exists a unique adjacency matrix, as previously described. Further assume
that an arbitrary labeling is used for graph G,. If G, and Gp are indeed
isomorphic, then there must exist a labeling of G, which results in the same
adjacency matrix as that for &,. Thus we need only try all possible labelings
of Gz (there are n! of them), comparing the resulting adjacency matrices
for each such labeling. As there are n? elements in each adjacency matrix,
the comparison operation must take O(n?®) operations. Thus the entire
process of determining if there exists an identical pair of adjacency
matrices (and that the graphs are therefore isomorphic), would take O(n?
n!) operations. Unfortunately, this requires time that is more than
exponential in the number of nodes in the graphs, and is therefore
impractical for graphs with more than a few nodes. What is of course
desired is an algorithm that requires only a polynomial amount of time, and
the search for such algorithms is closely tied te the general area of

computational complexity.

A brief foray into the terminclogy of complexity theory seems

appropriate. A problem is said to be in P, if it can be solved in polynomial
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time on a deterministic, one-tape Turing machine. Such a problem is
equivalently solvable in polynomial time on a conventional Von Neumman-
style computer. A problem is said to be in NP if it can be solved in
polynomial time on a one-tape non-deterministic Turing machine. A non-
deterministic Turing machine may be informally described as a Turing
machine that allows simultaneous evaluation of all paths in a searclgl tree.
Though it would seem that a non-deterministic Turing machine sho;ﬂd be
inherently more powerful than a deterministic one, this is in fact an open
question ("does P=NP?"), and has been the subject of considerable
attention. A special class of problems in NP exists, known as the NP-
complete problems. They have the property that if any of the NP-complete
problems are in P, than all problems in NP are in P (i.e,, P=NP). It is
generally believed that P#NP. Many famous graph theoretical problems
have been shown to be NP-complete, including k-clique, Hamiltonian cycle,

and vertex cover.

The graph isomorphism problem is in NP, but as no polynomial time
algorithm has yet to be found, it is not known whether it is in P. More
interestingly, it has yet to be shown that graph isomorphism is NP-
complete. It is thus in a rather special class, known as the Isomorphism
Complete problems [LubiwB1], which includes chordal graph isomorphism,
acyclic digraph isomorphism , and others. It is possible (though considered
unlikely) that the Isomorphism Complete problems are in P, while the NP-
complete problems are not. A recent proof [Ladner75] shows that if P#NP,
than there must exist problems in NP which are neither in P nor NP-
complete. The Isomorphism Complete problems may well fall into this
category, thus explaining the lack of success in trying to prove the

isomorphism problem NP-complete.
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Though no algorithms have been found that can be proven to solve the
isomorphism préblern in polynomial time, many algorithms have been
developed for specific applications. Such algorithms are often reasonably
efficient if certain assumptions are made limiting the generality of the
graphs to which they are applied. For example, efficient isomorphism
algorithms are known if the graphs involved are interval graphs (linear time,

[Lueker79]]), or planar graphs (linear, [Hoperoft74]).

An alternative approach is to make use of heuristic algcrithﬁs for
deciding isomorphism - in other words, an algorithm that will not always
produce an answer in reasonable time, but does so often enough as to still
be useful. The first work in this area was done by Unger, with the creation
of a program known as GIT [Unger64]. GIT uses a variety of processes to
narrow the search for an isomorphism, beginning with the obvious step of
comparing the number of nodes in each of the two graphs under
consideratipn. Of course isomorphism is impossible unless both have
identical numbers of nodes. The program then classifies nodes in terms of
the number of arcs entering and leaving the node. Consider the set {A4,, 4;,
As} of all nodés in G, having exactly one arc leaving the node, and the
similarly defined set {B;, B, Bg} for graph Gz Clearly any mapping of
nodes in G, to nodes in G; being considered must map elements of the first
set of nodes only onto elements of the second. This classification serves to
reduce the number of mappings that must be considered considerably

below the original n!.

Other functions can be computed for each node, and used to speed up

the search for a possible isomorphism. Three of those used in GIT are:
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(1) The number of nodes that can be reached from a given node by means

of paths not longer than a set length.

(2) A binary-valued function that is equal to 1 on those nodes which are

included in circuits (closed paths) of length n.

(3) The number of nodes from which a given node can be reached by

means of paths not longer than a set length. {

Brute force isomorphism testing is, as was mentioned, tMe-consuﬁng.
Unger calculates that at a rate of one-millisecond per node-pairing trial it
would take about one hour to compare two 10-node graphs, and more than
40 years for 15-node graphs. GIT was observed to routinely match 24-node
graphs of a type particularly difficult for the algorithms chosen in about 2
minutes. "Random" 24-node graphs typically were processed much faster.
Though the true "worst cases" for GIT were likely not found, the

improvement over a brute force approach is apparent.

GIT is but the earliest example of the type of approach to isomorphism
testing that has come to be called a 'Vertex Classification”" algorithm
[Read72]. The most common such algorithms use what is known as iterative
vertex classification. Given a graph with set of vertices V, consider an
ordered collection of subsets V), Vo, V3 ... V., where the ordering is
determined by the value of some function like those just enumerated. In
general these functions describe each node in terms of basic adjacency
information (such as the number of incoming arcs). To each vertex x we
assign a list a,, a;,..., a;, where each g; is the number of vertices in subset
V; adjacent to x. We now use these lists to partition each of the sets of
vertices V; into subsets, each subset consisting of all vertices with a given

list. Each of these subsets can then be ordered lexically based upon the
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corresponding list, thus obtaining a refinement of the collection of subsets.

This process may be repeated continually as long as further refinement
is obtained, at which time a new function may be used to continue the
process. II at any point all of the subsets are sufficiently small, than the

product of all of the permutations of the elements of each subset [] [p;!]
i

will be small enough to allow exhaustive enumeration of all of the piossible
mappings. |

Of course in the general case the refinement will not proceed far
encugh to allow exhaustive enumeration as an efficient alternative. It is
then necessary to consider what approach to use from that point. Let us
assume that the vertex classification algorithm has been applied to both
graphs, resulting in the two partitionings V;, Va, ..., Vi and W,, Wp,..., Wi.

We first verify that for all j, ’KFJW-’] as this is an obvious necessary

condition for isomorphism. Further we observe that if the graphs are
indeed isomeorphic, than the mapping between the vertices must be such

that vertices in ¥; are mapped only onto vertices in #;, for all i.

If we consider all possible mappings between nodes of the two graphs,
under the constraints imposed by the partitionings, we get a tree structure
such as that shown in Figure 86.4. This was derived from the graph in the
figure, using the degree of each node as the classification function.
Searching this tree is the obvious next step. In fact, most attempts to
produce isomorphism algorithms appropriate for a given application are no
more than elaborations on one of two standard tree search methods -

depth-first or breadth-first.
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Figure 6.4: Node Mapping Tree
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Breadth-first tree search proceeds by choosing an arbitrary vertex x in
¥;. This vertex is then mapped onto all vertices in ¥;. In other words, all
mappings of X onto vertices of the other graph are tried, within the
constraints imposed by the existent partitionings. For each such mapping,
it may be possible to refine the vertex partitionings and if so this is done.
When one graph is so further partitioned, it is necessary that the ?econd
graph exhibit identical behavior, else they are not isomorphic. The pi'x;ocess
continues either until such evidence for non-isomorphism is found, or all
isomorphisms are produced. This breadth-first search method is most
useful if the two graphs involved are NOT isomorphic, as this is likely to be
determined rather early. Unfortunately, in the case where the graphs is

indeed isomorphic, it may take considerable time to demonstrate that fact.

The depth-first search also begins with the arbitrary pairing of two
vertices, one in ¥, and one in W;. Based upon this pairing, the vertex
partitioning is refined, and a new pairing is arbitrarily chosen. Thus we
proceed "down" the search tree, continuing either until an isomorphism is
produced, or it becomes clear that the set of choices made so far cannot
lead to an isox:horphism. If an isomorphism is found, we are of course done,
and often in very little time. In the case where we reach a "dead-end", it is
necessary to backtrack, and choose a new set of pairings. The behavior
here is quite the opposite of the breadth-first search - if the graphs are
isomorphic we will likely soon finish, but if they are not it may require
considerable time to determine that fact. Such backtracking procedures
have been widely discussed in the graph isomorphism literature. In
[Schmidt76], the distance matrix representation of the graphs are used in
order to produce an initial partitioning of the vertices, after which a

backtracking procedure is used to determine isomorphism. In [Berztiss73],
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the algorithm is based upon a linear formula representation of the graph.
An excellent example of a backtracking isomorphism algorithm is
[Corneil70], where considerable effort is devoted to producing a good
partitioning of the vertices, and as a result a polynomial bound is claimed
for the time required. Though a counter-example to their claim has been

found, the algorithm as presented is still quite efficient for "typical” gri-aphs.

6.3. Beyond Isomorphism

In this work a backtracking procedure is also used, with the vertex
partitioning based upon the labels of both the nodes and edges in the graph.
The need for an efficient backtracking procedure is made even more
important by the fact that the "maximal common subgraph" problem being
treated here is in fact NP-complete [Garey79], and therefore likely to be

harder than the strict isomorphism problems so far discussed.

The above consideration of algorithms for determining isomorphism of
two given graphs cannot be directly applied to the fingerprint matching
problem, no matter which of the above discussed graph representations for
a print is used, primarily because the very concept of "isomorphism" of two
graphs is far too inflexible to deal with the omnipresent corruption of the
fingerprint images due to various forms of noise and distortion. Two graphs
are either isomorphic or they are not -- no middle ground is considered. If
we encode two fingerprints from the same finger into their minutia graph
representations, the graphs obtained will be quite similar. Perhaps there
will be a number of missing or extraneous ridges or nodes in one graph as

compared to the other - but the majority of the nodes and edges will be the
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same. We need to be able to recognize the inherent similarity of such
resultant graphs if we are to have any hope of using graph encodings to

compare fingerprints.

Using the terminology of conventional set theory, given a graph G, one
can divide the universe of graphs into two sets: the set Y containing all
graphs isomorphic to G, and the set N of all graphs which arle not
isomorphic to G. When presented with a graph H, one can, by algozlaithms
such as those discussed above, determine to which of the two sets (Y or N)
H belongs - and it must belong to one or the other. The property which
here decides membership in the set Y is "isomorphism to the graph G", and

since isomorphism is a Boolean function, membership in G is well-defined.

When comparing non-identical graphs, the situation is best described as
a problem in the field of Fuzzy Set theory [Kandel79]. Rather than using
isomorphism as the criterion for set membership, we use an as yet
undefined function S, which we shall call the "similarity” of two graphs. For
any two graphs A and B, assume that we can compute S(A,B), such that 0 <
S(AB) = 1. Let the set Y' contain graphs g;, gz .. as elements. Each
element of the set has associated with it a characteristic function f;, where
fi = 5(G,g;). In other words, each element of the set is "tagged" with a
value in the range 0 to 1, indicating the 'grade of membership” of the
element in the set. The set Y' as so defined is a fuzzy set, with membership

function S.

If we further assume that the function S is in some sense a measure of
the "alikeness" of its operands, then it is clear that elements of Y' with
membership values close to 1 are graphs which are more like G, while

graphs with values close to 0 are quite different than G. Values near .5
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imply some intermediate situation. Given the existence of such a function
S, we have a powerful tocl for using graph structures to represent 'real-
world"' objects, and in particular fingerprint images. No longer need we
limit discussions to "are graphs A and B isomorphic?”, but can now

quantitatively discuss "how similar are graphs A and B?".

The definition and method of determination of the function S isjone of
the major results of this work, and will be considered in detail. Thoﬁ;gh the
function described has been derived specifically to be applied to minutia
graph encodings of fingerprint images, it is in fact applicable to a wide

variety of problems making use of labeled graphs.

Yery little work has been done in the area of comparison of similar, but
non-isomorphic graph structures. Some of the earliest was by Edward
Sussenguth [Sussenguth85], who was interested in the problem of producing
an efficient chemical information retrieval system. In a typical such
system, the chemist formulates his request as the structural diagram of a
chemical, which is then searched for in a large library of compounds. There
are (and were at that time) many systems which would, given a diagram for
a complete Iﬁolecule, determine if that molecule already existed in the
database, and retrieve any existing information associated with it. This is
simply the already described graph isomorphism problem. The more
generally useful system is, however, one that allows the specification of an
arbitrary fragment of a compound. The system will then return with
information regarding which chemical compounds in the library contain the
specified fragment as an integral part. In graph terminology, we are asking
the system to locate those graphs (compounds) in the library that contain a

subgraph isomorphic to the specified graph (fragment), where a subgraph of
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a graph G is defined as a graph having all of its nodes and edges present in
G [Harary69]. Sussenguth’'s system relied on calculation of characteristic
functions for each node of the graphs, based upon connectivity with
adjacent nodes. A matching procedure was then used to pair nodes based
upon their characteristic functions. The usual matching rules (e.g. the
requirement that two nodes must have the same number of links) I‘were

suitably modified to handle the subgraph isomorphism case.

Later, A. Roger Meetham [Meetham68] also used a graph theoretic
approach to finding structural similarities in organic molecules. He
assumed that each molecule had been encoded as a graph, with the nodes
labeled with the atom type (e.g.. C, H, Cl...), and the links labeled with bond
type (single, double, or triple). The algorithm was limited to tree-like
molecules (no rings), and required time exponential in the number of
atoms. This work was unique though, in that it considered a more difficult
case than had Sussenguth: Given the graph representation of two
molecules, find the molecular fragments (subgraphs) that are shared by the
two original molecules. Such subgraphs are known as common subgraphs.
His algorithm, 'though ultimately inefficient, did work acceptably well for

small (i.e. less than 10-15 atom) molecules.

We have thus identified three isomorphism-related graph problems,

which can be listed in order of increasing difficulty as:
(1) Graph isomorphism: is G; isomorphic to G,?
(2) Subgraph isomorphism: is any subgraph of G; isomorphic to G,?

(3) (Maximal) Common subgraphs: find the (maximal) isomorphic graphs g,

and gz such that g, is a subgraph of G;, and g3 is a subgraph of G.
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The computational complexity of problem (1) has already been
discussed. Problems (2) and (3) have been shown to be NP-complete, and
are computationally equivalent to the well known CLIQUE problem

[Garey79].

6.4. Maximal Common Subgraphs

Maximal common subgraph (MCS) derivation is an excellent choice as
the algorithm for comparison of graph representations of both fingerprint
and other images. The errors most commonly encountered when dealing
with the minutia graph representation consist of missing or extraneous
links or nodes. Though such an encoding is relatively immune to even
major geometric distortion, minor distortions can still result in two nodes
moving far enough apart that they will not be linked in the minutia graph.
Extraneous links can also be created by a similar mechanism. Use of
maximal common subgraphs for comparison is ideal in such cases, as the
only consequence of the changes in the graphs is likely to be a small

reduction in the size of the common subgraphs found.

MCS determination is a quite general means for comparison of graphs,
and has appliéation in any area where graph representations are used. It
has been mentioned in the artificial intelligence field as a method for
describing the relationships between objects in a scene [Barrow76]
[Ambler73]. Unfortunately, being an NP-complete problem, it is not
currently possible to preduce an algorithm that will be efficient in all cases.
It is however possible to write heuristic algorithms which, though

exponential in the worst case, are efficient for many or even most sets of
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input data.

The procedure used for finding the maximal common subgraphs of a
given pair of graphs will first be presented in a general manner, with latter
explanation of the specializations built into the algorithm to optimize
performance with fingerprints and minutia graphs. The algorithms
presented here for transforming the maximal ‘commeon subgraph piroblem
into a clique-finding problem are modifications of those presen%ed in
[Levi73].

Determination of the maximum common subgraphs of a given pair of
input graphs can be done via a very straightforward (albeit inefficient) two-
step method. Assume we wish to find all common subgraphs of order k (i.e.,
having k nodes) of two graphs G, and G, of order m and n respectively.
Step 1 is to derive sets of subgraphs of order k from each of G, and G
Step 2 is to test all such pairs for isomorphism. If step 2 is simply
implemented by comparing all possible permutations of the graph

adjacency matrices, deriving common subgraphs of order k requires

m!n!
k!(m—k)(n—k)

absurd, and a better algorithm, such as that now to be described, is clearly

matrix comparisons. The times thereby required are

needed.

The initial part of the algorithm is basically concerned with
transformation of the MCS problem into an equivalent clique-finding
problem. We assume that the two input graphs are G,(N,, E,) and Gy(Ng,
E;), where N; and E; are the nodes and edges of graph G;. The graphs are
each specified by their adjacency matrices M,(i,j) and M»(i,j), said matrices
having m? and n? elements, respectively. The minutia graphs under

consideration are labeled graphs, and this is reflected in their adjacency



-181-

graph representation. The value of the element M(i,j) is the label of edge

(ni. m;), while the value of the elements M(i,i) is the label of node n;.

In order to make the process clearer, we will consider a small example,
Figure 6.5 shows two graphs, G, and Gy of order m and n respectively, and
their associated adjacency matrices M, and M,. As can be seen, the graphs
involved are quite small, G, having 4 nodes, and Gz having 3. Sincée the
graphs are unlabeled, the entries in the adjacency matrices%‘ are
straightforward, with a 1 implying an edge between the corresponding
nodes, and a 0 implying no edge. An edge connecting a node to itself (if
allowed), would be represented by a 1 in the appropriate diagonal entry of

the matrix.

We next construct what will be called the "Node Correspondence Table",
N(i.j). This matrix, shown in Figure 8.6, has m rows, corresponding to the
nodes of &), and n columns, corresponding to the nodes of G,. The element
N(i.j) is concerned with the possible mapping of the i'th node of G, (ny!) onto
the j'th node of G ('njz), for the purposes of finding isomorphic common
subgraphs. The entries in the table are binary, with a 1 indicating that a
mepping between the nodes is possible, and a 0 indicating that it is not. As
can be seen in Figure 6.6, in this case all entries in the table are 1, implying
that no restrictions exist on node mappings - an obvious result of the fact
that the original graphs G, and G, were unlabeled, However, if we were
concerned with matching of molecules, then the graphs would have each
node labeled with the type of its corresponding atom. Were this the case, it
would be clear that there is no reason to consider the possibility of mapping
say a carbon atom onto an oxygen atom, and zeroes would be placed

appropriately in the Node Correspondence Table.
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Figure 6.6: Node Correspondence Table
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Each of the non-zero entries (i,j) in the Node Correspondence Table
thus represents a possible mapping of a node in &; onto a node in Gs.
Though each such mapping is legal when considered individually, an
important further reduction in allowable mappings can be made by
considering the mappings (i.e. the entries in N) in pairs. As an example,
Figure 6.7a shows a pair of node mappings between &G; and G;. In thi':g; case,
we have mapped node 1 of G, (n{) onto node 2 of G, (n#), and node 4 of G,
(n}) onto node 3 of Gz (n§). Figure B.7b shows another pair of mappings,
specifically node 1 of G, (n}) onto node 2 of Gz (n§), and node 3 of G, (nd)
onto node 1 of Gy (n?). There is an obvious difference between these two

pairs of mappings. The pair n}-nf, n{-n§ is a legitimate pair of

mappings. The second pair n{-nf, nd-»>n? is invalid, since nodes 1 and 3
are not linked in G;, yet nodes 2 and 1 are linked in Gz, As a result we

cannot consider the second pair of mappings, as they are not consistent

with the adjacency-preserving clause in the definition of a subgraph.
In general, given a pair of graphs G,(N,, F,) and Gg(Njz, E3), a pair of
node mappings (N!->NZ, Nj>Nj?) is "compatible” only if one of the following

two conditions is met:

1) (n,nl) isin E,, and

(nén?) is in £ or

2) (n!, nf) is not in £, and

(nZ, n®) is not in E,

In other words, a pair of node mappings is compatible cnly if the nodes
concerned are either linked in both &; and G», or are not linked in both G4

and Gg.
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Given this definition, we can now create a list of incompatible pairs of
node mappings. Figure 6.8 is that list for the example under consideration.
It is divided into two halves, depending upon whether the incompatibility
derives from condition 1 or condition 2 above. The first item on the list, for
example, is ((1,1),(2,3)). Its presence on the list indicates that the
mappings of &; node 1 to Gz node 1 and &; node 2 to Gz node 3 E,laLre not
compatible. For the graphs given there are 16 entries in the %list of
incompatible pairs.

As the next step, we create the "Compatibility Table". This table is a
matrix of maximum size mn by mn (i.e. m? n? total elements), which has
as its elements all valid pairs of node mappings. As can be seen in Figure
8.9, the labels along the edges of the matrix are the non-zero entries of the
Node Correspondence Table. In the example shown, since the Node
Correspondence Table has no zero entries, the Compatibility Table is of
maximum size. FEach entry in the Compatibility Table C{p.q) is a bit
specifying whether the mapping p (a cell in the Node Correspondence Table)
is "compatible” with the mapping q (another cell from that table), under the

definition that

Two cells in the Node Correspondence Table are not compatible 1f
(1) They occupy the same row or same column in the table, or
(2) They are in the list of incompatible pairs.

Two cells that occupy the same row or the same column in the Node
Correspondence Table are not compatible due to the need to maintain
uniqueness of the node mappings - e.g. if we map node 1 of G; onto node 3
of Gz, we cannot also map node 1 of &; onto a different node of Go.

Similarly, if we map node 1 of &, onto node 3 of Gz, we cannot also map a
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different node of &, onto node 3 of G,.
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C(1,1) , (2,3))
((1,3) , (2,1))
(€1,1) , (4,3))
((1,3) , (4,1))
(€2,1) 5 (3:,3))
((2,3) , (3,1))
((2,1) , (4,3))
((2,3) , (4,1))

((1,1) , (3,2))
€€1:2) , (3,1))
(C1s2) 5 3:.30)
(€133) » (3,2))
((3,1) , (4,2))
((3,2) , (4,1))
((3,2) , (4,3))
((3:3) s C(4,:2))

Figure 6.8: Incompatible Mapping Pairs
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In the Compatibility Table shown in Figure 6.9 the cells that are zero
due to both of the above compatibility criteria are indicated. The
remainder of the cells are of value one, indicating pairs of compatible
mappings. In fact the matrix is symmetric, and thus values are indicated

only in one-half of the table.

6.5. C-graphs

Each row and column of the Compatibility Table is labeled with the
node mapping which it represents, and we may consider the entire
Compatibility Table to be the adjacency matrix representation of a new
undirected graph, which we will call the C-graph. Each node in the C-graph
is labeled with a mapping of a node in &, onte a node in Gz. Two nodes in
the C-graph are linked if and only if the mappings that they represent are
compatible, under the definition given above. The C-graph for the example

under consideration is shown in Figure 6.10, and has 12 nodes and 20 edges. '
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The usefulness of the C-graph representation becomes apparent when
we consider the significance of the cliques of the C-graph. A clique of a
graph is defined as a maximal complete subgraph of that graph [Harary69].
In other words, it is a set of nodes, each of which is connected (linked) to
each of the other nodes in the set. In addition, no other node of the graph
may be added to the set without violating the connectedness critenia (i.e.,
the set is maximal). A clique of the C-graph can now be interpréted to
mean a maximal set of mappings of nodes from &; to Gg, all of which are
mutually compatible. Since, by the definition of compatibility given above,
any set of mutually compatible mappings is equivalent to a common
subgraph of G, and Gz, a clique of the C-graph is in fact equivalent to a

maximal common subgraph of &; and Gs.

Figure 6.11 is a list of all 14 cliques containing two or more nodes
present in the C-graph of Figure 6.10. Thus we see that there are 14 non-
trivial maximal common subgraphs of &, and Gp. Of these, the four largest
contain three nodes each, and the mappings which they imply are shown in
detail in Figure 6.12. Though it is not apparent from this simple example,
the transformétion of the problem of finding maximal commeon subgraphs
into that of clique finding is of great benefit, as powerful algorithms can be
used to attack the clique problem, as will be detailed below.
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Figure 6.11: Cliques Found
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Figure 6.12: Mappings Implied
Largest Cliques



-185-

One obvious concern with the C-graph construction is simply that of
size. Assuming that, as before, we begin with two unlabeled graphs G, and
Gz, having m and n nodes respectively, the Node Correspondence Table will
be a matrix of size m by n, and therefore have a total of mn entries. The

resulting Compatibility matrix will be of size mn by mn, and though

m*n?

2
which the number of nodes is in the range of 50 to 200, as is true for the

symmetric, will still require the storage of bits. For input grak)hs in

minutia graphs used for fingerprint analysis, this quantity of information is
unmanageable. Fortunately, it is not necessary to explicitly create the
Node Correspondence and Compatibility matrices. In fact, little more space
is needed than thaf: required to store the x and y coordinate data for all of
the features in the two input graphs. The minutia graph adjacency matrices
and the entries in the Compatibility matrix can then be computed as

needed by the clique-finding algorithm, as follows.

The coordinates of the features in the input graphs are stored in four
arrays, G1X(nodenum,), | G1Y(nodenum,), G2X(nodenumy), and
G2Y(nodenum,), containing the x and y coordinates for each of the features
in G, and G, respectively. The subsequent creation of the minutia graph
adjacency matrices and the Node Correspondence Table need not be done
at all. Rather, we create a translation table which will, when given the (i,j)
cell in the Compatibility Table for which we desire the value, allow us to
directly look up the corresponding node-numbers in the input graphs, and
therefore have access to the x and y coordinates of the node. Note that if
all entries in the Node Correspondence Table were 1, the construction of
this translation table would be straightforward (and superfluous). In the

general case (and for comparing fingerprints in particular), it is necessary



-166-

to create this translation table by the following algorithm:

Initialize Counter;
FOR i:=1 tom DO
FOR j:=1 ton DO
BEGIN
IF G1X(i) is close enough to G2(j)
AND G1Y(i) is close enough to G2Y(j)
'the nodes are in the same local region;
THEN BEGIN
Increment Counter;
glcoeff%Counter}:i;
glcoeff[Counter|:=j; !fill translation table;
END;
END;

The definition of "close enough” is based upon the local region size in
use. The resultant arrays glcoeff and gRlcoeff are used in the following
manner. Given a cell (i,j) in the Compatibility Table (and the corresponding
mapping of a pair of nodes from G; into Gg) , glcoeff(i) will be the
nodenumber of the first node of the pair in G,, while glcoeff(j) will be the
nodenumber of the second node of the pair in G;. Similarly, g2coeff(i) is
the nodenumber of the first node of the two in Gg, and glcoeff(j) is the
nodenumber of the second. Thus if we need, for example, the x coordinate
of the second node in Gs being mapped by the Compatibility Table cell (ij),

we need only compute G2X(g2coeff(j)).

Now let us assume that we desire to know the state of the (ij) cell of the
Compatibility Table. By the previous discussion, this cell represents the

following two node mappings:

glcoeff(i) » gRcoeff(i) and
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glcoefi(j) -» g2coeff(j)
For compactness, let

o; = glcoeff(i)
a; = glcoeff(j)
b; = gRcoeff(i)
b; = gRcoeff(j)

We may then determine the state of the C(i,j) cell by the following
algorithm:
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IF oq; = a; OR b; = b; THEN C(i,j)=0
! mapping must be unique;
ELSE BEGIN
Compute G1AX,G1AY,GRAX,GRAY, 'the inter node deltas;

IF G1AX < local region_size AND G1AY < local region size
THEN linked_in 1 := TRUE; !nodes in G, are in same local
Iregion (and therefore linked in minutia graph);

IF GRAX< local region size AND G2AY < local region_size
THEN linked_in 2 := TRUE, 'nodes in & are in same local |
Iregion (and therefore linked in minutia graph);

IF (linked_in_1 AND NOT linked_in 2)
OR (NOT linked_in_1 AND linked_ in 2) THEN C(i,j):=0
lif nodes are in same region in only one of the two
linput graphs then the mapping pairs are not
lcompatible;
ELSE BEGIN
IF (NOT linked_in_1 AND NOT linked_in 2)
THEN C(i,j)=1 !nodes are not in same region in either
lgraph, so all we can do is say the
'mappmgs are compatible;

1AY—-GRA matchmg._crlterlon)
THEN C(i,j):=1 !the inter-node distances
land angles are close enocugh;
ELSE C(i,j):=0; !linked in both, but the
!distances and angles don't match well enough;
END;
END;
END;

ELSE BE
L GlAX G2 rnatchmg_r:ntermn AND

Though complex, the above algorithm executes quite rapidly, and thus
it poses no problem to compute each of the C(i,j) elements repeatedly, as
they are needed. Use of this algorithm solves the space requirements
problem, but excessive time would still be required were it not for the

labeling of the nodes and edges of the minutia graphs.

To demonstrate the advantages of such labeling, let us re-consider the

previous example, but this time with labels added to the nodes of both
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graphs. The labels used will separate the nodes into two categories, type
“A", and type “B", as shown in Figure 6.13. The resulting Node
Correspondence Table (Figure 6.14) now has zero entries in five of its twelve
cells, as we cannot map a type A node onto a type B, and vice versa. The
existence of these disallowed mappings reduces the size of both the list of
incompatible pairs, and most importantly, the Compatibility Table, as|shown

in Figure 6.15. The size of this table has been reduced from the previéus 72
2
(%ﬁ entries to less than 25. As a result, once incompatible pairs are

eliminated, we obtain a considerably simpler C-graph, which is shown in
Figure 6.16 along with the list of all its non-trivial cliques. Note that there
now exist only two maximal maximum commeon subgraphs (size three in this
case), and the node mappings which they imply are indicated in Figure 6.17.
The algorithms used to compare minutia graphs in this work make use of
labels on both the nodes and edges, resulting in even more improvement in
speed. Specifically, the nodes are labeled with a rough approximation of
the X-Y position of the corresponding features in the print image, while the
edges are labeled with the approximate angle and direction of the features
with respect to one another. Much more detail on the labeling technique

used is presented in Section 6.7.
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Figure 6.16: C—graph (with Labels)
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Figure 6.17: Mappings Implied by
Largest Cliques (with Labels)
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6.6. Finding Cliques

The problem of finding cliques of a given graph in a reasonably efficient
manner has received only a small amount of attention in the computing
literature. In 1965, Moon and Moser [MoonB5] derived several results
constraining the number and size of cliques that may be found in particular
types of graphs. However none of that work is of use in finding a good
algorithm - it simply serves to quantify the worst case possible. In th; early
1970's, work done by Augustson and Minker in the field of automating
information retrieval systems made use of clique-finding algorithms to do
cluster analysis on databases [Augustson70]. The best algorithm available
at that time was the so-called "Bierstone algorithm' [Mulligan72], which
attempts to simultaneously "grow" cliques from various starting peints in
the graph. Though useful, the time required per clique found is large, and

grows ever larger as the size of the input graph increases.

The algorithm used for clique-finding in this work is based upon an
algorithm due to Bron and Kerbosch [Bron73]. In the current
implementation, it has the advantage of requiring an essentially constant
amount of computation time per clique found, independent of the number
of nodes in the input graph. The core of the algorithm is a recursively
defined function which is used to extend the size of the clique currently
under consideration, and if necessary backtra_ck and make new selections of

nodes for membership in the clique.
Three sets of nodes are kept as the algorithm progresses:

(1) COMPSUB, which is the current complete (though not necessarily
maximal) subgraph under consideration. At each step in the process,

COMPSUB will either be extended by the addition of a new node, or have
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a node removed as a result of a backiracking step. The nodes added
and removed are collected in the other two sets, which together consist

of all nodes such that each is connected to all nodes in COMPSUB.

(2) CANDIDATES, which is the set of all nodes which will, at some future

point in the search process, be used as extensions of COMPSUB.

(3) NOT, which consists of all nodes which have already been uskd as
extensions of COMPSUB at some point in the past, and aré now

excluded from such use in the future.

There are two criteria that must be satisfied before we can declare at
any point in the search process that a valid clique has been found. First,
the set CANDIDATES must be empty. This is obvious, for if there was a node
remaining in CANDIDATES, the set COMPSUB could be extended by the
addition of that node, and therefore COMPSUB was not a maximal complete
subgraph (i.e., not a clique). Second, the set NOT must also be empty. This
criterion is less obvious, but necessary, By the definition of NOT, any nodes
in it were in the past used as an extension of the current COMPSUB, and all
nodes in it are connected to each member of COMPSUB. Thus if a node
remains in NOT, the current configuration of COMPSUB was at some point in
the past contained in another configuration, and is therefore not maximal,

and not a clique.

The search portion of the algorithm proceeds by invoking the recursive
function mentioned above, which, given the current configuration of
COMPSUB as input, produces all extensions of COMPSUB possible given the
current set of CANDIDATES. This process can be separated into steps, as

follows:
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(1) Select a node from CANDIDATES, and add it to COMPSUB.

(2) Create new sets CANDIDATES and NOT, by removing from the old
versions of them any nodes which are not connected to the node just
added to COMPSUB. This is necessary in order to remain consistent
with the definition that all members of NOT and CANDIDATES are

connected to all members of COMPSUB. 5

(3) Recursively invoke the extension function, so that it operates upé)n the

versions of COMPSUB, CANDIDATES, and NOT just formed.

4 on return, the candidate just added to is removed, an
( Up t th didate just added to COMPSUB d d
placed in the old version of the set NOT (i.e. the version of NOT at this

recursion level),

If at any point in this search process, the set NOT contains a node
which is connected to all nodes in the set CANDIDATES, then we know that
this node will never be removed from NOT (in step 2) by further selection of
CANDIDATES, and therefore this particular branch of the search tree can
never lead to a clique, and need be followed no further. It is this pruning
step (bound condition) tﬁat is responsible for much of the efficiency of this

algorithm.

The algorithm is implemented by keeping the set COMPSUB as a global
array, while the sets NOT and CANDIDATES are combined in a local one-
dimensional array that is passed to each call of the extension function. This
array, with its associated index values is shown in Figure 6.18. The values of
ne and ce are adjusted as necessary. The simplest form of the algorithm
would always choose the element at ne+1 as the CANDIDATE selected for
addition to COMPSUB (i.e., the first element of CANDIDATES). Though this

works, it not most efficient. It is in fact preferable to more carefully choose
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the element of CANDIDATES to be added. The goal is to minimize the total
number of recursive calls necessary to search any given branch of the tree.
Since the most likely result of any such search is that the bound condition
mentioned above will be encountered, it is desirable to cause this to occur
as early as possible - i.e. to find ourselves in the situation where there

exists a node in NOT which is connected to each node in CANDIDATES. ?

Let us imagine that for each node in the set NOT we have a cr:Sunter.
which keeps track of the number of members of CANDIDATES to which the
node is not connected. After return from the extension operator, when a
node is added to the set NOT, the values of the counters are decremented
by one for each member of NOT which is not connected toc the new node. No
counter is ever decremented by more than one, and when any counter
reaches zero we have a node that is connected to all of the members of
CANDIDATES, implying we have reached the bound condition and can

terminate this branch of the search tree.

In order to minimize the time required for this situation to occur, we
would like to arrange- our choice of new members of COMPSUB {and
therefore the new members of NOT when the recursion is complete) so that
we decrease the counter associated with one particular member of NOT -
each time. This situation, combined with an initial choice of this so-called
"fixed point” so that it has the smallest values of all of the counters,
guarantees that we will reach the bound condition as fast as possible. The
time advantage of this optimal selection strategy is apparent upon
examination of Figure 8.19, which compares the just described algorithm (in
both its simple and optimal forms) with the Bierstone algorithm for

randomly generated graphs with number of nodes varying from 10 to 50
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[Bron 73]. Plotted is computing time per clique in milliseconds, versus
number of nodes in the graphs. The important observation is that though
the time per clique increases with increasing number of nodes for both
Bierstone and the simple algorithm as explained above, when the choice of
the node to be used to extend COMPSUB is made in the more optimal way,
the computing time per clique remains almost constant. The storage
required for this algorithm is on the order of M? where M is the numf?er of
nodes in the largest connected component of the input graph. The
Bierstone approach on the other hand requires an amount of storage that

varies as the number of cliques found, which can be quite large.
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In the current application, it is only the large cliques that are of
interest - there will always be a myriad of small cliques found, but given two
input graphs, it is the sizes of the larger maximal common subgraphs that
are of interest. Thus we further optimize the algorithm towards finding
large cliques. The optimal form of the algorithm tends to procduce the
largest cliques first, but still spends considerable time pursuing bran%’:hes of
the search tree that though they may eventually lead to a clique, can never
lead to a "large” one. We define a parameter K, which is the size of the
smallest clique that is of interest. It is observed that if at any time
size(CANDIDATES) + size(COMPSUB) < K, than the current branch of the
search tree can never lead to a clique of size greater than or equal to K,
and should be abandoned. While maintaining size(CANDIDATES) +
size(COMPSUB) = K is certainly a necessary condition for generation of a
clique containing K or more nodes, it is not sufficient, and thus some
smaller cliques will be found (and ignored). The number of small cliques

found is, however, dramatically reduced.

It will not in general be apparent at the outset of the running of the
clique-finding algorithm what the appropriate value for K is. Thus the
algorithm begins with a K-value of 0, allowing all cliques to be output. As
soon as a clique is found, the value of K is set to the number of nodes in
that clique, so that we establish a lower bound on the size of all future
cliques. New cliques will now have size greater than or equal to the size of
the last one found. If a new clique is found which is larger than the current
value of K, the value of K is increased to the size of the new clique. As a
result, with the possible exception of the initial "ramp-up" time for K, we
produce only the very largest of the existent cliques. In fact, since the

largest cliques tend to be produced first in any case, we rarely get small
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cliques at all.

6.7. Finding Maximal Common Subgraphs of Minutia Graphs

The minutia graphs used in this work are labeled on both the nodes and
the edges, in order to make the finding of maximal common suﬁgraphs
more efficient. Each edge is effectively labeled with the geometric d_{stance
between the nodes it is linking. As mentioned in Chapter 5, rather than
computing the squares and square root necessary for use of actual distance,
we simply use the Az and Ay values between the nodes, which can be
computed by simple subtraction. These inter-node distances need only be
approximations, and are used to provide a rough guide as to similarity of
node pairs (i.e., to enable the setting of some cells in the Compatibility
Table to zero). In addition, the use of the Az and Ay values has the added
advantage of retaining the information regarding the relative direction of
the nodes with respect to each other, which would otherwise be lost. Since
links exist only between nodes in the same "local region” - i.e., nodes that
are close together - these inter-node distances are measured on a local
basis only, thus maintaining the desired distortion immunity of the

encoding.

Each node is itself labeled with its approximate coordinates (x and y)
within the fingerprint image. These are used in the early stages of the
comparison process to enable some cells in the Node Correspondence Table
to be zeroed. As was demonstrat-ed above, the presence of these zerces has
a dramatic effect on the size of the resulting C-graph, and the time required

to find cliques. Of course such use of absolute feature coordinates does
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restrict the possible relative orientations of the two fingerprint images
being compared, as well as increasing the sensitivity of the comparison
process to problems such as image distortion. To minimize these problems,
such labels are used only in a very approximate manner, and primarily to
avoid the needless waste of processing time which would occur if the
algorithm attempted to match features at opposite edges of the {input
prints. The strictness enforced in the matching of labels on both node;s and
edges is determined by the tradeoff between acceptable execution time and
the flexibility required in the fingerprint comparison process. Since
throughout this work it has been assumed that the crientation of the two
prints being compared is roughly the same (as would be the case in say a
fingerprint controlled area access system), considerable latitude is available
in selection of these parameters. Details of the actual values used will be

presented below.

6.8. An Example

In order to demonstrate the operation of the algorithms described for
finding maximal common subgraphs of two input graphs, the two moderate
size graphs shown in Figure 6.20 were produced, based upon two sets of
randomly generated feature locations within the 20 x 20 grid indicated.
Once the locations of the features had been determined, the usual minutia
graph creation rules were applied, with the parameters specified below, to
produce the graphs G; and Gg, which contain 20 and 25 nodes (features)

respectively.
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These two graphs, along with the coordinates of the nodes, were used as
input to the three relevant stages in the processing - creation of the
minutia graphs, creation of the C-graph, and the finding of maximal
cliques within the C-graph. The input parameter settings used for each

of these stages are now described:

Creation of the minutia graphs (feature extraction). The pardmeter
that must be specified is the size of the region (D) surroundin:é each
feature that is considered "local” to it, and therefore the set of other
features to which it will be connected in the minutia graphs. A value of

5 pixels was used as the "radius” for the local region in this example.

Creation of the C-graph. The concern here is with the criteria used to
place entries in the Node Correspondence and Compatibility tables.
The first parameter is Dg;, the distance to within which feature
coordinates must match in order to allow mapping between them as a
possibility, and thus put a 1 in the corresponding cell of the Node
Correspondence Table. A value of Dr¢ of 5 pixels was used. The second
parameter is Dy, ﬁhich is the criterion used for matching the Az and
Ay distances between features. Specifically, in order for a pair of
nodes n{ and nj in G, to be compatibly mapped onto a pair of nodes

n? and nf in Ge we must have:
i g

niz—nd; <D
1 )
niy—nzy <D

2
nf, —nf, <Dy

2
™ lgy -TNnzy <Dir
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A value for Dy of 1 pixel was used in this example.

(4) Clique-finding. The value used here (K) determines the size of the
smallest clique which is of interest to us. For purposes of this example,

a value of 1 was used for K, in order that all cliques might be examined.

¥ith the parameter values as just described, a total of 85,161 cliques
was found, ranging in size up to 10 nodes per clique. Eight cliques il,.of this
size were found. A ten-node maximal common subgraph found% when
comparing two graphs having only on the order of twice this many nodes
each, would at first seem to indicate that the original two graphs were quite
similar. Yet this is not the case, for as can be seen, the randomly
generated graphs being used are quite different from one another. The
explanation lies in the only aspect of the graphs matching procedure not
yet considered - the connectivity of the resulting maximal common
subgraphs. Figure 6.21 shows the same graphs G, and Gp, but with the
nodes contained in one of the larger maximal common subgraphs indicated.
Two observations may be made. First, it is seen that the algorithm did an
excellent job of finding 'a set of nodes which map from cne graph to the
other, and maintain not only inter-node connectivity, but also the
coordinates of the nodes, and the distances and orientations of the links.
Second, it is obvious that the MCS found is made up of not one, but five sets

of connected nedes.
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The result of interest in the above example is then not truly the sizes
of the largest cliques (maximal common subgraphs) found, but rather the
size of their largest connected components. For it is always possible to find
trivial maximal common subgraphs of the two input graphs that consists
primarily of disconnected nodes. Thus we now have the final step in the
comparison process - we must process the maximal common subgraphs
found, extracting information as to the sizes of their largest con::i‘ilected

components.

6.9. The Overall Algorithm Summarized

The function S mentioned earlier as the membership function used in
the definition of fuzzy isomorphism can now be quantified. The two input
graphs are processed as described, producing the corl;esponding C-graph.
The largest cliques present in this gr-aPh are derived, using the K-stepping
modification to the clique algorithm. These cliques are then analyzed for
the sizes of their conne;:ted components, the final result being a single
number (S'), which is “the number of nodes in the largest connected
component of the maximal maximum common subgraph” of the two input

graphs. For the example above, the value found for S' was three.

While it is clear that finding an S' value (maximum connected
component size) of three when the input graphs haye twenty or more nodes
each is indicative of a lack of similarity in the input graphs, we must further
analyze the connected components found, in order to take into account
those of trivial size. To provide some insight into this question, over a

dozen random graphs of various edge densities were generated and
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compared with one another. Both the settings of the parameters used and
the sizes of the graphs involved were typical of those encountered in the
comparison of two fingerprint minutia graphs. In no case was a connected
component in the maximal common subgraph of size larger than five nodes
encountered, By far the most commeon value for S' was 3, with a few values
of 4 and only one of 5. Thus we see that if there is no real sim]ilarity
between two graphs, it is still likely that small connected componen%.s will
be found. These results with random graphs indicate that an approi)riate
definition for "trivial” (and therefore ignored) small connected components

is that a connected component is trivial if it contains less than five nodes.

(1) We can now finalize the definition of the similarity measure S, as
follows: S is "the total number of nodes (features) that are contained
in non-trivial components of the maximal maximum commeon subgraph
of the two input graphs". For the random graph comparison just
mentioned, we would therefore have found an S value of zero in all
cases but the one that produced a connected compenent of size five, in
which case S would ‘t.>e 5. This résult is an indication that the algorithm
chosen haé the desirable property of not finding a strong correlation
between unrelated graphs. The other necessary feature, namely that
different prints from the same finger will be identified as such, is
demonstrated by the results of the next section, where S values in the
20, 30 and above range are regularly encountered when comparing

prints from the same finger.
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6.10. Results of Processing Actual Fingerprint Data

In order to produce a realistic assessment of the performance of the
fingerprint processing and comparison algorithms that make up the
majority of this work, it is of course necessary to make use of actual
fingerprint data, taken from different individuals. Over the course of this
research, more than thirty such images have been digitized and progessed.
Presented here is the result of doing all of the cross-comparisons fox1 a set
of five fingerprint images, shown in Figures 6.23 through 6.27. The prints
are from the right forefinger of three individuals, here identified as MYL,
MCN, and STV. For each of MYL and MCN the print was taken from the
finger on two separate occasions, resulting in the complete set of prints:

MYL1, MYL2, MCN1, MCN2, and STV.

(1) The five fingerprints were first processed through the entire sequence
of steps previously described, resulting in a list of the coordinates of
the significant features in each. The ten inter-print comparisons
necessary were then done by the program "NEWSUB", which derives the
minutia graphs fo;r each, and then finds the maximal common
subgraphs of those minutia graphs. The process of deriving the minutia
graphs and finding their maximal common subgraphs of course
requires specifying the values for the three parameters Dy (local
region size), Dpy (feature coordinate match), and Dy (inter-feature
distance match). The values used (D;p=30, Dps=R5, and D;z=5) were
chosen based upon experience with a wide range of print comparisons,
and are not overly critical. The values chosen are a compromise
between the conflicting goals of producing an algorithm that is both

tolerant of distortions and rotations in the input images, yet is also
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reasonably time efficient.

The maximal common subgraphs found are then analyzed for the size
of their connected components, with components of trivial size (less
than five nodes) being ignored. The result is a value for S for each
comparison which represents the degree of similarity of the input
fingerprints. The matrix of these S values for the five ﬁngegprints
under consideration is shown in Figure 6.22. The S values pre;ented
are the averages over the first twenty maximal common subgraphs
found for each comparison, the averaging being done after elimination

of trivial components.

In examining the result of Figure 6.22, one should note the quite small
values for S obtained when prints from different fingers are compared
(e.g. the entry for MYL1 vs. MCN1). That such small values are
consistently obtained is necessary, in order to guarantee that the
matching procedure used will not falsely indicate that a pair of prints
are from the same finger when in fact they are not. On the other side,
when prints from the same finger are being compared we observe that
quite large values for S are obtained (e.g. MYL1 vs. MYL2). This must
be true if we are to be able to reliably determine that two different
fingerprint images were taken from the same finger. The comparisons
of STV with MYL2 and MCN1 each resulted in an S value of 11, which
indicates some match between those prints. Though this situation was
in fact the worst case encountered amongst many such matches, it
does indicate that the parameter values used are probably not ideal,
and could be adjusted so as to prevent such correlations. Examination

of the matching sets of features showed that the match was the result
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of random coincidence in the feature locations - an event extremely
unlikely to occur for groups of features of size equal to or greater than

the suggested threshold range of 15 to 20.

The data in Figure 6.22 make no direct claim as to whether any given
pair of prints being compared are from the same finger. Rather it
presents the computed value of the similarity function S for eaci:h pair,
which considered from a Fuzzy Set Theory point of view is sim;gly the
degree of membership of the graph representation of one print in the
set of graphs "isomorphic"” to the graph representation of the second
print. As was mentioned above, in order to produce a decision as to
whether two prints are indeed from the same finger, we must choose a
threshold value T, such that if S > T then we say the prints match, and
if S < T we say that they do not match. Fortunately, choice of a
threshold is quite easy, and values anywhere in the range of 15 to 20
would work quite well, and would correctly determine that MYL1 and
MYL2 are from the same finger, as are MCN1 and MCNR2.
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Figure 6.23: MYLT






Figure 6.25: MCN1
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Figure 6.26: MCN2
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Chapter 7

Summary and Conclusions

This thesis deals with two different problem domains. The fi;‘st is
concerned with performing various ﬁseful transformations on digitized
images, in a manner that lends itself to real-time implementation on special
purpose VLSI processors. Chapter 3 described both the architecture
proposed for such processors and the methods used to implement a wide

range of image processing operations within that architecture.

The VLSI image processing modules described and simulated are a
blend of several approaches to high speed computation. The image is
assumed to be available in serialized form, and the operations make use of
this format by accessing only rather small "windows"” into the image at any
one time. The ability to randomly access the image information is never
required. The serial approach wused allows pipelining of successive
computational stages, resulting in a major increase in system throughput.

Simply making use of a pipeline of serial image processing engines
would not provide sufficient computational ability for the operations
needed, and thus in each stage of the pipeline an array of communicating
pfocessors is used, each mapped onto one pixel of the window in use. This
is quite a powerful structure, and allows implementation of communication

intensive operations, such as the adaptive thresholding technique described.
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The image processing operations described in Chapter 3 transform the
input images to a form such that we can extract certain key information
from them, in order to reduce the initial million or so bits of information
down to a more manageable size. In the case of the fingerprint images
studied here, the final result of the transformation and processing steps is
the thinned fingerprint image. Two different approaches were presenFed for

proceeding beyond the thinned image.

In Chapter 4 a window processor algorithm is described which produces
as an output representation of the fingerprint what we have called an
"adjacency graph”. This is a graph structure where each node in the graph
corresponds to a ridge of the input fingerprint. Two nodes in the graph are
linked if and only if they are somewhere "adjacent” in the fingerprint image.
More than one definition was discussed for adjacency, but they all roughly
correspond to the intuitive notion that two ridges are adjacent if at some
point they are next to each other in the print. This encoding of the
structure of the fingerprint is certainly compact, and was demonstrated to

have excellent immunity to geometric distortions of the fingerprint image.

Chapter 5 presented another window processor algorithm and resultant
graph structure representation for a fingerprint image. This
representation, called a "minutia graph”, is based not upon the ridges
themselves, but upon the so-called "minutiae” or features of the fingerprint
- the ridge ends and ridge forks that are present in great quantity in all
fingerprints. Here each node in the graph corresponds to one such feature,
and links between nodes are determined based upon rough measures of the
distances between the features. Specifically, a "local region” is defined

surrounding each feature, and two features are linked if and only if they are
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in the same such region. The link between two nodes is labeled with the
inter-node distance, while the nodes themselves are labeled with their xy

coordinates within the fingerprint image.

The minutia graphs contain somewhat more information about the
structure of the original fingerprint than do the adjacency graphs, and thus
they were chosen as the representation to be pursued in the second sliaction
of this work, the comparison of non-identical but similar-graphs. This .'is the
second problem domain mentioned above. Though the algorithm used to do
that comparison was optimized and specialized for fingerprint minutia
graphs, the general method should find application in any of the many areas

- where graphs are used to represent the structure of an object or problem.

Much research attention has been givén to algorithms to determine
whether or not two given graphs are isomorphic. Unfortunately, the
definition of isomorphism is such that none of these algorithms is suitable
for producing a metric related to the similarity of two graphs which, though
perhaps almost identical, are not isomorphic. Chapter 6 described in detail

a method for the determination of such a metric.

The general approach used is to find the maximal common subgraphs
of the two minutia graphs being compared. The size of the largest
connected component of the largest such subgraph found provides the basis
for a good measure of the similarity of the original two graphs. Derivation
of the maximal common subgraphs must be done by use of a carefully
designed algorithm, in order to minimize the time necessary for the

computation.

The method used makes use of the label information present in the

minutia graphs to effectively prune the search tree, and reduce the amount
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of computation. Nevertheless, it is still important that the underlying
algorithm be efficient. Since the maximal common subgraph derivation is
based upon finding cliques in a new, higher level graph that is constructed
in the early stages of the comparison process, it is essential that the cliques
can be found quickly and efficiently. A specially constructed recursive
clique derivation algorithm was presented, and used as part of the

comparison process.

Though the research presented in this thesis was primarily in the areas
of image processing and graph algorithms, the application being considered
throughout was that of the comparison of images taken from fingerprint
ridge patterns. This is a problem that has been the subject of a massive
amount of attention both historically and recently. Though most work in
the field has been oriented toward comparison by humans, there have been
some less than successful attempts at automating the process, as a system
able to reliably compare single-finger prints in real time would be of
considerable use in a wide variety of applications, ranging from criminal
identification to sophisticated access control systems. Chapter 6 presented
some results gained from application of the algorithms described in this
thesis to actual fingerprint data. Though the system currently exists only
as a simulation, production of a hardware implementation should be

straightforward.

At this point it is appropriate to discuss exactly what could be
improved about the system as described, in order to optimize its
performance and speed. Of course the most important improvement will
come about from the actual construction of VLSI versions of the window

processors. As designed they make extensive use of parallel computation,
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due to the presence of multiple pipeline stages, and because of the many
processors included in each stage. The simulation on the DECSYSTEM-20

makes use of only one processor, and is as a result extremely slow.

At the other end of the processing sequence, the various parameters
described in Chapter 8 for the graph comparison process have a significant
effect both on the time taken for results to be obtained, and én the
sensitivity of the system to factors such as relative rotation of the? input
prints and distortions of the image. Though the values used for this work
produced very good results, more attention would have tc be given to their
selection in a production situation. It may in fact be that an adaptive
approach would be appropriate, with the exact parameter values being

adjusted based upon properties of the input data.

While the approach used to implement the image processing operations
makes massive use of parallel computation, the graph comparison
algorithms were designed for execution on a single machine, This is
acceptable, as the amount of computation necessary is much less. It may
become true however that the image processing pipeline can be made fast
enough that the graph comparison process will become the slowest step.
The solution to this is to also make use of computational parallelism in the
graph algorithms, by the construction of special purpose units to do the
maximal common subgraph determination. These could be bésed upon a
computational model such as that in [BrowningB0], where a simple clique-

finding algorithm is implemented on a tree-structured processor array.

The advent of VL3I technology has made possible novel approaches to a
wide range of computational problems. The algorithms and structures

presented in this thesis would likely never have been considered if it were
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not practical to construct large arrays of small, low-cost communicating
processors. The application of this technology to the important problem of
fingerprint recognition and processing will likely have major impact both in

areas such as criminology and security, and in others yet to be considered.
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Appendix 1

Input Hardware Configuration

The hardware used to input and digitize the fingerprint imagés used
throughout this work consists of three functional sections which will be

described individually:

1) INPUT SECTION - The input section of the hardware consists of a
special-purpose optical assembly, plus a black and white television camera,
The finger from which the print is to be taken is placed upon the diagonal
face of a right-angle prism, as is shown in Figure A.1. A light source is
directed into one of the short faces of the prism, while the lens of the
television camera looks into the other short face. The principle involved in
obtaining a high-contrast image of the fingerprint ridge structure is that of
"frustrated internal reﬂéction“. Specifically, as can be seen in Figure A.1,
the light from the source shown would, if no finger were present, be
internally reflected off of the diagonal face of the prism directly into the
camera lens. This reflection takes place due to the difference in index in
refraction between the glass of the prism and the surrounding air. At the
points where the raised and usually oily ridges of the finger contact the
prism surface however, this great difference in refraction indices does not
exist, and the light is not reflected. As a result, the image seen by the TV
camera is that of a uniformly illuminated (white) field of view, with dark

black ridges forming the fingerprint structure. This system works
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extremely well, and indeed makes visible even the small pores contained

within the ridges.

The systemn just described is unfortunately idealized in one important
aspect. As can be seen in Figure A.1, the 45 degree angle of the face of the
prism on which the finger is placed results in the TV camera system being
called upon to bring into focus an image that is contained in a plane that is
not parallel to the front surface of the lens. Conventional television cémera
close-up lenses are far from having adequate depth-of-field for such an
application. As a result, a custom lens mount was constructed for the
television camera, which holds the lens at an appropriate angle with respect
to the front surface of the camera's internal vidicon tube. The correct
choice of this angle results in the image being brought properly into focus,

and is determined as per the equations shown in Figure A.1.

2) DIGITIZATION AND INTERFACE- The output of the television camera is
an NTSC standard, 1 volt peak-to-peak video signal. The specially
constructed digitization and interface hardware consists of approximately
40 integrated circuit packages, and is responsible for several functions.
First, the synchronization signals used to control the beam scanning in the
television camera must be generated. These signals are generated here
rather than in the camera itself, in order to guarantee synchronization
between the beam scanning and the digitization processes. A second
section of the hardware consists of the counter and comparator circuitry
necessary to allow digitization to occur in an adjustable "window" in the
center of the television frame. This is necessary to make best use of the
available resolution, as the lens system is designed so that even the largest

of fingerprint images will not quite completely fill the image frame. The
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desired section of the image (determined by DIP switch settings) is digitized
to a resolution of 400x400 pixels, with B bits of grey level information per
pixel. The actual analog-to-digital conversion is performed by a TRW LSI 8-
bit "flash converter". Though the converter is fast enough that the entire
digitization process could occur within one one-thirtieth of a second TV
frame, the resulting stream of sample bytes would appear at a rate far
greater than could be handled by the Hewlett-Packard 9845B comi)uter
used to temporarily store the results. As a result, the final section is a full
handshaking interface to a parallel 1/0 port on the 9B845B system. As
sample bytes are passed to the 9845B, hardware counters in the interface
keep track of the location on the screen of the next pixel to be sampled. As
implemented, digitization and transfer to the 9845B of a full 400x400 image
(160,000 bytes of data) occurs in approximately 4 seconds. The subject
finger must be kept motionless on the surface of the prism for this period
of time, but this has proven not to be a problem, as the adhesion of the skin

surface to the prism eliminates any effects of small finger motions.

3) STORAGE AND FILE TRANSFER - As the bytes are transferred from
the digitizatioﬁ and interface hardware to the Hewlett Packard 9845B
desktop computer, they are stored in main memory. When the input
operation is complete, the image data are transferred to floppy disk for
short term storage. Since the 9845B is not the system on which any of the
processing operations described in this work were done, the next step is to
upload the image information contained on a floppy disk to the
DECSYSTEM-20 over a serial terminal line. The information then resides on
the DECSYSTEM-20’'s mass storage devices, and the processing operations

can proceed.
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In fact each time a fingerprint image is input, a corresponding
“background” image is also taken, with no finger on the prism. This
additional image serves as a reference, and is used to compensate for any
variations in illumination or vidicon sensitivity across the image field. This
is done as the first processing step on the DECSYSTEM-20, and is
implemented by dividing (on a pixel by pixel basis) the grey level values in

the fingerprint image by the corresponding values in the background imag e.
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Appendix 2

Selected SIMUIA Listings

Following are listings of some of the SIMULA programs used in this
work, included in order to present details of algorithms discussed in the
text.
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| "DEPORE 'y

IThis program removes 'pores” from input l-bit per pixel non-thinned image;
IR pore is defined as a region of white (background) pixels that (uithin
lthe chosen window) are surrounded completely by black (ridge) pixels.
IFor purposes of this program, ridge pixels are considered connected

lif they are 8-connected (diagonal ok), while for background we use
l4-connectedness. The method used to determine which pixels are ‘'pore"
Ipixels is as follous: We recursively call a routine which examines

lthe four non-diagonal neighbors of a pixel. If the pixel is black,
Inothing is done. If it is white, it is marked as connected to the
lcenter pixel of the window, and we recurse. If it is one of the window
ledge pixels (and white), then all the connacted pixels are not in a pore
l1(at least for the current window position), If we never reach a white
ledge-of-uindow pixel, then we are on a pore pixel, and we turn all of the
| "connacted” pixels black (fill in the pore);

BEGIN
EXTERNAL CLRSS i028,pictl,pict8;
EXTERNAL PROCEDURE enterdebug;
EXTERNAL BOGLEAN PROCEDURE jsys,skipin;
EXTERNAL INTEGER PROCEDURE xwud,right,left,land,lor,!not, taddr,aaddr;
EXTERNRL INTEGER PROCEDURE Ishift, Ixor;
EXTERNRL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNAL CHARACTER PROCEDURE findtrigger;
EXTERNAL PROCEDURE halt;

REF(pictl) picin,picout,picconn;

TEXT line, infilename,outfilenams;

INTEGER leftedge, rightedge, topedge, bottomedge,rr,cc,row,col;
INTEGER windowsize,halfrindow,uplim;

BOOLERAN PROCEDURE porepixel(r,c); INTEGER r,c;
IThis procedure checks if the pixel at (r,c) is a porepixel,
las described above;
BEGIN
IF picin.pixel(r,c)=1 or picconn.pixel(r,c)=1
THEN porepixel:=TRUE ELSE
lif ua’ve run into a ridge pixel then We dont yet knou that ws
ldidnt start at a porepixel. Same is true if run into an
lalredy traversed pixel;
BEGIN '
IF c=leftedge OR c=rightedge OR r=topadge OR r=bottomedge
lif we are at the edge of the windou;
THEN porepixel:=FALSE
lif we hit a window edge then all
~ lthe pixels traversed so far are not in a pore;
ELSE !we are on a background pixel, not at window edge;
BEGIN
picconn.putpixel(r,c,1); !set the bit saying this pixel
lis connected to center pixel;
IF porepixel(r-1,c) THEN
BEGIN
IF porepixel{r+l,c) THEN
BEGIN
IF porepixel{r,c-1) THEN
BEGIN
IF porepixel{r,c+1) THEN porepixel:=TRUE;
END;
END;
END;
lif all the neighbors are porepixels then so are ue;
END;
END;
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END of porepixel;

|ine:-sysin. image; linput buffer for TTY;
outtext('Name (XXX-YYY) of file (XXX-YYY.BIM) from which to remove pores: ');
breakoutimage;
inimage;
infilename:-copy(line.strip); !get rid of trailing blanks;

outtext (Name (MMW-XXX) of file (WUM-XXX.BIM) for output image: ');
breakoutimage;

inimage;

outfilename:-copyl(line.strip); lget rid of trailing blanks;

picin:-NEW pictl;
picconn:-NEW pictl;

picin.load(infilename); !load the input data;

windowsize:=15; !must be odd;
halfuwindou:=(windousize-1)/2;
uplim:=488-hal{fwindou;

FOR row:=l+halfuindow STEP 1 UNTIL uplim DO
BEGIN
outtext('.'); breakoutimage;
FOR col:=1+halfuwindow STEP 1 UNTIL uplim DO
Imove the window over the whole image, without running the Window
loff the edges;
BEGIN
IF picin.pixel{rou,col)=8 THEN 1if center pixel is background;
BEGIN
leftedge:=col-halfuindon;
rightedge:=col+hal fuindow;
topedge:=row-halfrindou;
bottomedge:=rou+halfuindow; !compute the
lcoords of window edges;

IF porepixel(rou,col) THEN
BEGIN ’
FOR rr:=topedge STEP 1 UNTIL bottomedge DO
FOR cc:=leftedge STEP 1 UNTIL rightedge DO
IF picconn.pixel(rr,cel=1 THEN
picin.putpixel (rr,cc,1);
Iset all pore pixels to black (fill pore);
END;
FOR rr:=topedge STEP 1 UNTIL bottomedge DO
FOR cec:=leftedge STEP 1 UNTIL rightedge DO
picconn.putpixel(rr,cc,B); l!clear flag bits;
END;
END;
END;

picin.store(outfilename); !urite out the image;

END of depore;
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] "DESPUR";

IThis program removes "spurs’ from a thinned fingerprint image.

1A "spur' is defined as a sequence of pixels bounded on one end by

la "ridge-end” pixel (one neighbor), and on the other end by a "fork' pixel
I(def’n complicated, see "FORK.SIN'), of less than a pre-defined length.
IThey are removed as follows: We search for a ridge-end pixel. From there, wWe
ltraverse the string of 2-neighbor pixels, until re run into one With

Imore than two neighbors, or Wwe have gone too far. If the >2 nbr pixal is
Inot a fork pixel, it is marked for deietion along with the rest of the

Ispur. If it isnt a fork pixel, it is kept. The actual deletion is done in
la sepsrate pass, so that no side-effects occur (both branches of a short
Y at the end of a ridge will be removed;

!Then a pass of the thinner is inveked to clean up any extra pixels;

BEGIN
EXTERNAL CLASS i028,pictl,pict8;
EXTERNAL PROCEDURE enterdebug;
EXTERNAL BOOLERAN PROCEDURE jsys,skiping
EXTERNAL INTEGER PROCEDURE xwd,right,left,land,lor,not,taddr,aaddr; i
EXTERNAL INTEGER PROCEDURE Ishift, Ixor;
EXTERNAL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNAL CHARACTER PROCEDURE findtrigger;
EXTERNAL PROCEDURE hal t;

REF(pictl) picin,encountered,delete,picout;

REF(pict8) pictemp;

TEXT line, infilename,outfilename;

INTEGER maxspur, minridge, row, col, pixels, newroWw, neuccl, i;
INTEGER ARRAY rowcoords[1:188], colcoords[1:188];

PROCEDURE processpixel (r,c); INTEGER r,c;

!This procedure, which is invoked recursively, does all the work;
BEGIN

BOOLEAN foundnbr;

PROCEDURE markfordelete(howmany); INTEGER houmany;
Imarks the first "howmany" of the so far encountered pixels
lfor deletion;
BEGIN
INTEGER i;
FOR i:=1 STEP 1 UNTIL houmany DO
delete.putpixel (roucoordslil,colcoordslil,1);
Imark pixels for deletion;
END of markfordelete;

PROCEDURE ecleanup;

lresets all the 'encountered’ bits, and the pointer into the
Istack of encountered pixels;
BEGIN

INTEGER i;

FOR i:=1 STEP 1 UNTIL pixels DO
encountered.putpixsl (rowcoordslil,colcoords(il,®);
lzero the "encountered’ flags;

pixels:=8; lreset the stack pointer;
END of cleanup;

BOOLERAN PROCEDURE forkpixel(rr,cc); INTEGER rr,cc;
Ireturns true if (rr,ce) is a fork pixel;
BEGIN

INTEGER nbrs,changes;
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INTEGER PROCEDURE nnbrs(picture,rou,col);

INTEGER row,col;

REF(pictl)picture;

!This procedure returns as its value the number (8-8) of neighbors

lof the current pixe! which are 'on’ (value=1);

BEGIN

INTEGER num, i,nvalue;

num:=8; linit number of numbered nesighbors;
FOR i:=1 STEP 1 UNTIL 8 DO lfor each neighbor;
BEGIN

nvaluet=picture.pixnbr (row,col,i); Ivalue of neighbor pixel;
IF nvalue>8 THEN
BEGIN
num:=num+1; lincrement neighbor count;
END of IF;
END of FOR;
nnbrs:=num;
END of nnbrs;

INTEGER PROCEDURE nbrchanges(picture,rou,col);

INTEGER row,col;

REF(pictl)picture;
!This procedure returns as its value the number of ?changss’ from
lon to off or vice versa in the neighborhood of the specified pixel;

BEGIN
INTEGER num, i;
num:=8; linit number of changes;
FOR i:=1 STEP 1 UNTIL 8 DO ! for each neighbor;
BEGIN
IF picture.pixnbr(rou,col,i)\spicture.pixnbr(rou,col,i-1)
THEN num:=num+1; lcount changes;
Inote that nbr 8 is same as nbr 8;
END of FOR;
nbrchanges:=num;
END of nbrchanges;

nbrs:=nnbrs(picin,rr,ce); Inumber of neighbors of this pixel;
changes:=nbrchanges(picin,rr,ce); !# changes in nbrhd;
IF nbrs>=3 AND nbrs <=5 AND changes>=6 THEN
forkpixel:=TRUE ELSE forkpixel:=FALSE;
END of forkpixel;

INTEGER PROCEDURE getrow(r,c,nbr); INTEGER r,c,nbr;
!This procedure returns as its value the row coordinate of the neighbor
Ipixel of (r,c) specified by ’nbr’;

BEGIN
INTEGER newrow;
neuroW:=r; 1if nbr=4 or nbr=8;
IF nbr=1 OR nbr=2 OR nbr=3 THEN neurow:=r-1;
IF nbr=7 OR nbr=6 OR nbr=5 THEN newrow:=r+l; Ithe rouw values;

getrow:=newrou;
END of getrou;

INTEGER PROCEDURE getcol(r,c,nbr); INTEGER r,c,nbr;
|This procedure returns as its value the column coordinate of the
Ineighbor pixel of (r,c) specified ny ’nbr’;
BEGIN
INTEGER nemcol;
newcol:=c; 'if nbr=2 or nbr=6;
IF nbr=1 OR nbr=8 OR nbr=8 DR nbr=7 THEN newcol:=c-1;
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IF nbr=3 OR nbr=4 OR nbr=5 THEN neucol:=c+l;
getcol:=neucol;
END of getcol;

encountered.putpixel(r,c,1); !mark pixel as encountered;
pixels:=pixels+l; lincrement count of encountered pixels;
rouwcoordslpixelsl:=r; land save row and col infoj;
colcoordslpixelsl:=c;
IF picin.pixnbrnum(r,c)=8 THEN lare on an isolated pixel;
BEGIN

markfordelete(pixels); ldelete it;

cleanup;
END ELSE

IF picin.pixnbrnum(r,c)=1 AND pixels > 1 THEN
lif we hit another ridge end (not the original one);

BEGIN
IF pixals < minridge THEN lif ridge is too short;
BEGIN
mark fordelete(pixels); Imark ridge pixels for deletion and;
cleanup fcleanup;
END ELSE
cleanup; lelse just clean-up (no deletions);
END ELSE

IF picin.pixnbrnum(r,c)=2 OR (picin.pixnbrnum(r,e)=1 RAND
pixels=1) THEN lue are still going along a ridge;
lor are at first pixel of ridge;

BEGIN
foundnbr:=FALSE; thavent found next pixel to go toj
IF pixels >= maxspur THEN | "spur’ is too long;
cleanup ELSE lclean-up (no deletions);
BEGIN lfind new neighbor and recurse;
FOR i:= 1 STEP 1 UNTIL 8 DO lfor each neighbor;
BEGIN
IF picin.pixnbr(r,c,i)=1 RND
" encountered.pixel (getrow(r,c,i),getcol{r,c, i))=8 THEN
lif neighbor is '"on", and hasn’t been used;
BEGIN
neurow:=getrowlr,c,il;
neuco!::getcoi(r,c,i); Irow and column for neighbor;
foundnbr:=TRUE; I found whers to goj
END;
END of FOR;

IF foundnbr THEN

processpixel (newrow,newcol) ELSE

BEGIN

outtext ("Horrible error...didnt find a neighbor, we should have');
outimage;

lrecurse, pointing at our un-encountered neighbor;
END;
END;
END ELSE

IF picin.pixnbrnum(r,c) > 2 THEN lalmost done;

BEGIN
IF forkpixel(r,c) THEN lif on a fork;
BEGIN
mark fordelete(pixels-1); ldelete all but the fork pixely
cleanup;
END ELSE !not a fork pixel;

BEGIN
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mark fordelete (pixels); ldelete all;
cleanup;
END of IF;
END of IF;

END of processpixel;

.

PROCEDURE DoAPass;

BEGIN

pixels:=9; linit count of ''sncountered” pixels;

FOR row:= 1 STEP 1 UNTIL 488 DO
BEGIN
IF mod(row,5)=8 THEN BEGIN outtext(".'); breakoutimage; END;
FOR col:= 1 STEP 1 UNTIL 488 DD lfor each pixel in input image;
IF picin.pixel (row,col)=1 THEN | if pixel is "on';
BEGIN
IF picin.pixnbrnum(ron,col)=1 OR picin.pixnbrnum{rou,col)=8 THEN
lif is a ridge end (or isolated pixel);
processpixel (row,col); lall the work happens here;
END of FOR;
END of FOR;

FOR row:= 1 STEP 1 UNTIL 488 DO
FOR col:= 1 STEP 1 UNTIL 488 DO ! for each pixel;
IF delete.pixel {row,coi}=1 THEN picin.putpixel(row,col,8);
lif pixel is marked for deletion, do it;

END of DoRPass;

PROCEDURE copypictlto8(pl,p8); REF(pictl) pl; REF(pict8d) p8&;
!This procedure copies a single-bit (binary) picture into an 8-bit;
| (gray level) picture. 0ff (8) bits become pixels with value 8, while;
lon (1) bits become pixels with value 1;
BEGIN
INTEGER rom,col;
FOR row:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 4g@& DO lfor each pixel in the image;
IF pl.pixel({row,col)=1 THEN p8.putpixel (rou,col,1)
ELSE p8.putpixelf{rou,col,8); Itransfer the values;
END of copypictlted;

PROCEDURE copypict8tol (p8,pl); REF(pict8) p8; REF(pictl) pl;
IThis procedure copies an 8-bit (grey-level) picture into a 1-bit;
I (binary) image. Pixels with value 8 become off(8) pixels, and;
Ilpixals Wwith value >=1 become on(l) pixels.;
BEGIN
~ INTEGER rom,col;
FOR row:=1 STEP 1 UNTIL 48@ DO

FOR col:=1 STEP 1 UNTIL 488 DO l§or each pixel in the image;
IF p8.pixel(rou,col)=8 THEN pl.putpixel{rou,col,B)
ELSE pl.putpixel (rouw,col,l); ldo the transfer;

END of copypict8tolj

PROCEDURE usetemplate(pict,tl,t2,t3,t4,t5,t6,t7,t8,18,neuval,rots);
INTEGER newval,rots,tl,t2,t3,t4,t5,1t6,1t7,t8,t3; REF(pict8) pict;

|This procedure operates on an 8-bit (grey-level) picture (*pict?).;
IThe template array is used as the pattern which the neighbor cells;
lof sach cell in the picture (and the cell itself) must match in order;
| for the value of that cell to be changed to ’newval?;

IThe cell numbering scheme is:

!

123
! 8 94
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! 765
!
IThe possible values for the entries in the template array are 8-2585
! (Which correspond to the possible vaiues of a pixel), and -1, wWhich
limplies that that spot in the template is a ’dont care’ (i.e. it matches
lany pixel, no matter what its value).
1The parameter ’rots’ is used to specify if rotations of the template are
lto be used for matching as well. Rot=8 ==> use no rotations.
IRot=4 ==> use all 4 b-rotations. Rot=8 ==> use all 8-rotations.;
BEGIN

INTEGER row,col,i,nbrptr;

INTEGER ARRAY nhood[1:81,t[1:81;

outtext(”:"); breakoutimage;

tI1l:=t1; t[21:=t2; t[31:=t3; tl[4l:=t4; tI[51:=t5; tIBl:=16;

t[71:=t7; t[81:=t8; t[9]1:=t9; Imove the template into its array;

FOR row:=1 STEP 1 UNTIL 488 DO

FOR col:=1 STEP 1 UNTIL 488 DO BEGIN !for each pixel in the image;
IF ((t[91=-1) OR (t[8l=pict.pixel(row,col))) THEN

BEGIN lif center cell of template is a dont care, or it matches
!the current cell in the picture, then go on;
FOR i:=1 STEP 1 UNTIL 8 DO
nhoodlil:=pict.pixnbr(ron,col,i); lget the neighborhood data;

IF rots=8 THEN BEGIN
IF templatematch(t,nhood,1l) THEN BEGIN
pict.putpixel (row,col,neuval)l;
END;
Icheck for template match...do not rotate template (start at 1);
END
ELSE IF rots=4 THEN BEGIN
FOR nbrptr:=1 STEP 2 UNTIL 7 DO !do all 4 4-rotations;
IF templatematch(t,nhood,nbrptr) THEN BEGIN
pict.putpixel (row,col,nauvall
land check for a template match;
END; END
ELSE IF rots=8 THEN BEGIN
FOR nbrptr:=1 STEP 1 UNTIL 8 D0 !do all 8 8-rotations;
IF templatematch(t,nhood,nbrptr) THEN BEGIN
pict.putpixel (row,col,neuvall;
land check for template matches;
_END; END
ELSE BEGIN
outtext(" Illegal rotation spec. in call to ’usetemplate’'’;
outimage; halt; END;
END of IF;
END of FOR;
END of usetemplate;

BOOLEAN PROCEDURE templatematch(t,nhood,nbrptr);
INTEGER RRRAY t,nhood; INTEGER nbrptr;
IThis routine checks to see if the template in array ’t’ matches
lthe pixels in the array ’nhood’. The template is rotated as specified
Iby *nbrptr’ (nbrptr is the template cell which ends up in the ’1°
lcell position after template rotation;
BEGIN
BOOLERN okays;
INTEGER cell,modcell;

okay:=TRUE; linitialize our flag;
-IF ((t[91\e-1) AND (tI[8]1\enhood[81)) THEN
templatematch:=FALSE !if we definitely dont have a match;

ELSE BEGIN FOR cell:=1 STEP 1 UNTIL 8 DO
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lfor sach call in the neighborhood;
BEGIN
mwodcel 1 :=M0D (nbrptr+cel 1-2,8)+1; lrotate our template;
IF (tImodcell]l\=-1) THEN BEGIN 1}if this spot in template not
ta dont care;
IF tlwodcell]l \enhood[cel!ll THEN ckay:=FALSE; !didnt match;
END of if;
END of FOR;
tempiatematch:=okay;
END of IF;
END of tempiatematch;

line:-sysin.image;

outtext ("Name (XXX) of thinned image (XXX.BIM) to despur: ';
breakoutimage;

inimage;

infilename:-copy(line.strip); lget rid of trailing blanks;

cuttext ("Name (YYY) of fils (YYY.BIN) for output: ';
breakoutimage;

inimage;

outfllename:-copyl(line.strip); ~ !the output fjlenams;
picin:=KEN pictl; linput Image;

picout:-NEN pictl; lsutput image;

encountered:-NEK pictl; Ibits saying we traversed this pixel;
cdelete: -REW pictl; lbits saying which pixels must goj;
pictemp:-NEH pictB; f{emp buffer;

maxspur:=18; lanything longer (in pixels) stays;
minridge:=7; lany shorter complete ridge goes;
picin.load(infilename); 'ioad the numbered image;

DoRPass; frun through three times;

DoRPass;

DoRPass;

picin.store(outfilenamel; !save the image;

delete.store{copy("DESPUR-DELETIONS'™); lsee what was removed;

END of DESPUR;
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I "FERTUR":
IThis program processes an .BIN file which is a thinned
|fingerprint image. It finds all forks and ridge-ends. R fork is

ldefined

as any pixel that has 3,4 or 5 neighbors, and 6 or more

1"changes" in the pixel’s neighborhood (a change is a sWitch from on to
loff or vice versa as Wwe go around the pixels in order (say 1 to 8);
IAny pixel with B, 7 or 8 neighbors represents an error (We are assuming
!the input image was thinned to one pixel). The output is a list

I{in a file) of for each feature: 1) its sequence number,

land 2) the row and column of the critical pixel;

|Also output is an .BIM file with pixels on only Where each feature is;
IAlso, features are deleted if thay are at (or very near to) the edge
lof the actual area of the print (see notebook for details). Basically
Ithe method used is to look for empty (no pixels) areas in a window
Isurrounding tha feature under considerationg

BEGIN
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

CLASS io028,pictl,pict8;

PROCEDURE enterdebug;

BOOLERN PROCEDURE jsys,skipin;

INTEGER PROCEDURE xwd,right,left,land,lor,lnot, taddr,aaddr;
INTEGER PROCEDURE Ishift, Ixor;

TEXT PROCEDURE conc,checkextension,rest, frontstrip;
CHARACTER PROCEDURE findtrigger;

PROCEDURE hal t;

REF(pictl) picing
REF(pictl) picout;

REF (io28)

listfile;

TEXT line, infilename,outfiiename,listfilename;
INTEGER row,col,nbrs,changes, features,StriplL,Striph;
INTEGER ARRAY ulrll1:81, ulcll1:81, Irrl1:81, ircll:81;

BOOLERN PROCEDURE NoctRtEdge(r,c); INTEGER r,c;

IReturns
BEGIN

TRUE if pixel (r,c) is not toc close to image edge;

INTEGER strip, emptyustrips;

BOOLEARN PROCEDURE StripEmpty(ulrow,ulcol, lrrou, Ilrcol);

INTEGER ulrow,ulcol, Irrow, Ircol;

ISearches the strip uhose'upper—laft and lower-right bounds

lare defined by the parameters. Returns TRUE if there are no 'on’
Ilpixels in the strip;

BEGIN

INTEGER rr,cc;
StripEmpty:=TRUE; !default result;

FOR rr:=ulrow STEP 1 UNTIL Irrow DO
FOR cc:=ulcol STEP 1 UNTIL Ircol DO
IF picin.pixel (rr,cc)=1 THEN StripEmpty:=FRALSE;
Iwe got one;

END of StripEmpty;

emptystrips:=8; init counter;
FOR strip:=1 STEP 1 UNTIL 8 DO lfor all 8 strips;
BEGIN

IF StripEmpty(r+ulrlstripl,c+ulclstripl,r+lrristripl,c+lrcistripl)
|the parameters are the coords of the upperleft and lowarright
lcorners of the strip;
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THEN emptystrips:=emptystrips+l; lincrement counter;
END of FOR;

IF emptystrips >= 2 THEN NotRtEdge:=FRLSE ELSE NotAtEdge:=TRUE;
lif get at least 2 empty strips we are at edge;

END of NotAtEdge;

PROCEDURE InitStrips;

linitializes the offsets from the center pixel of the upper-left

land louwer right corner of each of the eight strips (see notebook pg. 71);
BEGIN

ulrlll:=ulrl2] :=uirl3]l:=ulrl8]:=-1%5tripl;
ulrl4l:=ulrl7]:=1;

ulrISl:=ulr[Bl:=StripL-StripH+l;

ulclll:=ulc[Bl:=ulcl7]:=ulcl8]:=-12StriplL;
ulcl2]l:=ulelbl:=1;
ulcl3l:=ulcl4]l :=StripL-Striph+l;

Irr[ll:=lrr[2] :=-125tripl+Stripl-1;
Irri3]l:=Irr[8):=-1;
lrrl4l:=1rr[8):=lrrlBl:=1rr[7]:=Stripl;

Irelll:=lrcIB]l:=-1;
Ilrcl2l:=1rc3l:=irclé4l:=1rc[B8l:=5triplL;
lrel7]:=1rc{8]:=-12StripL+Stripl-1;

END of InitStrips;

INTEGER PROCEDURE nnbrs{picture,row,col);
INTEGER romu,col;
REF(pictl)picture;
IThis procedure returns as its value the number (8-8) of neighbors
lof the current pixel which are on;

BEGIN
INTEGER num,i,nvalue;
num:=8; linit number of numbered neighbors;
FOR i:=1 STEP 1 UNTIL 8 DO I for each neighbor;
BEGIN
nvalue:=picture.piknbr (row,col,i); !value of neighbor pixel;
IF nvalue>@ THEN
BEGIN
num:=num+l; lincrement neighbor count;
END of IF;

END of FOR;
nnbrs:=num;
END of nnbrs;

INTEGER PROCEDURE nbrchanges(picture,row,col);
INTEGER row,col;
REF(pictl)picture;
!This procedure returns as its value the number of ’changes’ from
lon to off or vica versa in the neighborhood of the specifiad pixal;

BEGIN
INTEGER num,i;
num:=8; linit number of changes;
FOR i:=1 STEP 1 UNTIL 8 DO ! for each neighbor;
BEGIN
IF picture.pixnbr{rou,col,i)\epicture.pixnbr(row,col,i-1)
THEN num:=num+l; lcount changes;
Inote that nbr 8 is same as nbr §;
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END of FOR;
nbrchanges:=num;
END of nbrchanges;

line:-sysin. image;

outtext('Name (XXX) of thinned image (XXX.BIM) to find features in: ');
breakoutimage;

inimage;

infilename:-copy(line.strip); lget rid of trailing blanks;

outtext("Name (YYY) of file (YYY.BIM) for feature dot output: '0;
breakoutimage;

inimage;

outfilename:-copy(line.strip); !the output filename;

outtext ("Name (Z22) of file (222.DRT) for feature coordinate output: ';
breakoutimage;

inimage;

listfilename:-copylline.stripl; lget rid of trailing blanks;
listfile:-NEH io28(conc(listfilename, ".DAT');
listfile.write.ascii.open(blanks(88));

StripL:=16; lwidth of search strip for removing features near edge;
StripH:=18; !same, but width;
InitStrips; !init the corner offsets of the strips;

picin:-NEH pictl;
picout:-NEW pictl;

picin.lcad(infilename); lload the numbered image;
features:=8; linitially We’ve found none;
FOR row:=1 STEP 1 UNTIL 468 DO

BEGIN outtext(’.'); breakoutimage;
FOR col:=1 STEP 1 UNTIL 4&8 DO

IF picin.pixel{rou,coi)=1 THEN lif we are on a pixel;
BEGIN
nbrs:=nnbrs(picin,rou,col); Inumber of nbrs of this pixel;

changes:=nbrchanges (picin,rou,col); !how many changes in nbrhd;
IF (nbrs>=3 AND nbrs <5 AND picin.pixel (row,col)>8 AND changes>=86)

OR (nbrs=1)
THEN 'we have a feature pixeal;
BEGIN IF NotRtEdge(row,col) THEN
BEGIN
features:=features+l; !increment features count;
picout.putpixel (row,col, 1)} !write out a pixel here;
listfile.outint(features,5); Isequence number of feature;
listfile.outint (row,5);
listfile.outint{cecl,5); land row and col to list file;

listfile.outimage;
END ELSE picout.putpixel (row,col,B); lurite B pixel;
END ELSE picout.putpixel(rou,col,8); lurite a zsro pixel;

IF nbrs>=6 THEN

BEGIN
cuttext('pixel at rou=";
cutint (row,3); outtext(', col=""yj outint(col,3);
outtext(" has'); outint(nbrs,2); outtext(" neighbors.’);
outimage; 'this is an error (improper thinning);

END;

END of IF;
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END of FOR;
outimage;

outint(features,5); outtext(' features aencountared’);outimage;
picout.storeloutfilename);

!save the overlay file;
listfile.close; !close the listfile;
listfile.releass;

land release the jfn;
END of FEATUR;
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I '"FILTER"

IThis program uses as input a picture digitized to 8-bits,
land outputs a filtered version of the same picture.

!The filter function used is 6db down

lat about .25 cycles/pixel-distance;

BEGIN

EXTERNAL CLASS io28,pictl,pict8;

EXTERNAL PROCEDURE enterdebug;

EXTERNAL BOOLERN PROCEDURE jsys,skipinj

EXTERNAL INTEGER PROCEDURE xud,right, left,land, lor,Inot, taddr,aaddr;
EXTERNAL INTEGER PROCEDURE Ishift, Ixor;

EXTERNAL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNAL CHARACTER PROCEDURE findtrigger;

EXTERNAL PROCEDURE halt;

REF(pict8) picin,picout;
TEXT line, infilename,outfilename;

PROCEDURE filterit;
BEGIN

INTEGER r,c;

REAL newpixval;

FOR r:=1 STEP 1 UNTIL 428 DO lfor each row;
FOR c:=1 STEP 1 UNTIL 488 DO | for each column;
BEGIN

!npixnbr used rather than pixnbr so pixels off the edge come back
Iwith the value of the '‘center" pixel, rather than 255, which would
!screw up the Width of the histogram;

newpixval:=picin.npixnbrir,c,1)+2%picin.npixnbr(r,c,2)+picin.npixnbrir,c,3);
newpixval:=neupixval+2zpicin.npixnbrir,c,4)+picin.npixnbrir,ec,5);
newpixvali=newpixval+2%picin.npixnbr(r,c,B)+picin.npixnbrir,c,7);
newpixval:=newpixval+2zpicin.npixnbr(r,c,8)+4xpicin.pixel (r,c);
picout.putpixel(r,c,ENTIER(8.5+nenpixvali/16)); !the new value;
END; '
END of filterit;

line:-sysin. image;

outtext("Name (XXX) of file (XXX.INMG) to filter: ";

breakoutimaga; :

inimage;

infilename:-copy(line.strip); !file name for input w/oc trailing blanks;

outtext("Name (YYY) of file (YYY.ING) for output file: ';
breakoutimage;

inimage;

outfilename: —copyf(line.strip); !filename for ocutput file;
picin: -NEH pict8; !the input picture;

picout:-NEW pict8; ! the output picture;

picin. load(infilename); !load the input image;

filterit; !like the name says...;

picout.store(outfilename); l!and write out the results;

END of filte
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1 "GRAPH";

IThis program takes as input the output produced by the 'RIGNUH" program,;
Iuhich is a thinned and ri&genumbarad tingerprint image (PICT8). In this;
limage, pixels with value 8 are background (off) pixels, while the value;

lof any pixels not equal to B is the name of the ridge to which they beliong.;
IThis program is responsible for producing as output a graph structure (as;
lan ascii file) representing the adjacency relationships of the ridges in;
lthe input image. This is produced during 4 scans through the input image,;
lin the four possible up-down and left-right combinations. Rs the input image;
lis scanned, vectors are 'groun’ from the endpoints of the ridges, until;
lthey intersect another ridge, at which point an entry is made in the;
ladjacency graph. Four scans are necessary, since for a given scan, vectors;
lcan only be grouwn over a 98 degree range of angles.;

IVectors are grown in directions perpindicular to the local slope at the;
lend of the ridge in question, using a DDA algorithm;

1"Vector” pixels have the high-order bit set (value>255) to differentiate;
tthem from simple "ridge” pixels;

BEGIN

EXTERNAL CLRSS io28,pictl,pict8,pict3;

EXTERNAL PROCEDURE enterdebug;

EXTERNAL BOOLEAN PROCEDURE jsys,skipin;

EXTERNAL INTEGER PROCEDURE xwd,right, left,land,lor,lnot, taddr,aaddr;
EXTERNAL INTEGER PROCEDURE Ishift, Ixor;

EXTERNAL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNAL CHARACTER PROCEDURE findtrigger;

EXTERNAL PROCEDURE halt;

pict9 CLASS vect9;
IThis is where live the routines to help in accessing the
Ivarious bit fields in the nine bits, used to store vector
lparameters. The fields are: (bit @ = LSB, bit 8 = HSB);
! bit 8 : Is X or Y the direction of greater movement
! (and ther=fore the direction always stepped by one
! pixel in the DDA algorithm)? 1=2X, B8=3¥.
I bit 1 : Should the variable of greater movement (i.e. the
! one being stepped by one) be incremented or decremented
| each time? l=>incremented, 8=>decremented.
| bits 2-4: Slope (dy/dx, or dx/dy where the denom. variable is
! _ always the "move by 1" variable. Range is 888 to
| 188 (a fraction between 8 and 1, in steps of .25).
! bit 5 : Sign of the slope (i.e., do We increment or decremsnt
! by that amount)? 8=> + (increment), l=> - (decrement).
I bits B-7 : Fractional part of the slowly (i.e., noy by 1 each
1 time) variable. Range is 88-11 (i.e, 8 to .75 in
| steps of 8.25).
| bit 8 : Reserved for future use (sounds official, huh?).;
| see Neumann and Sproull (lst ed. page 43) for DDA algorithm;

BEGIN
REF(pict8) vpict;

REAL PROCEDURE gets!ope(row,col); INTEGER rouw,col;
Ireturns slope, inciuding sign, as real value.;

BEGIN
INTEGER allbits,slopebits,signbit;
allbits:=vpict.pixel (row,col); lget the value;
slopebits:=LSHIFT(LAND(allbits,28),-2); lkill all but bits 2-4
land justifys
signbit:=LSHIFT(LAND(alibits,32),-5); !same for sign bit -
18==2x%;

IF slopebits > 4 THEN
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BEGIN
outtext("illegal slope value in *getslope’’); outimage;
END; .

IF signbit=8 THEN getslope:=slopebits/4.8 !8<=slope<l.8;
ELSE getslope:=-1.8%slopebits/4.8; 1-1.8<slopa<=8.8;
END of getslope;

PROCEDURE setsliopef{rou,col,slope); INTEGER row,col; REAL slope;
Iset slope bits at (row,col) (including sign). -1<slope<:l.;
BEGIN
INTEGER oldbits,neubits,slopebits,signbit;
IF ABS(sliope) > 1 THEN
BEGIN ’
outtext("illegal slope in ’setslope’’; outimage;
END;

oldbits:=vpict.pixel{rown,col); !get current value;
siopebits:=LSHIFT(ENTIER(B.5+4.8xABS(slope)),2); !the slope field,
lin place;

signbit:=IF slope>® THEN @ ELSE 32; land the sign bit;
nexkbits:=LOR(slopebits,signbit); !both fields;
newbits:=LOR(LAND(oldbits,256+128+64+2+1) ,neubits);

lkill off old sign and slope field, and OR in new;
vpict.putpixel(row,col,nenbits); land write it in;

END of setslope;

BOOLEAN PROCEDURE xgreater (roW,col); INTEGER rouw,colj
lansuers the question: 'Is X the direction of greater movement
Ifor the vector growth process?”. If not, then Y is.;
BEGIN
INTEGER allbits,greaterbit;
allbits:=vpict.pixel(row,col); lall the fields;
greaterbit:=LAND(allbits,1); lthe "x greater’ bit;
xgreater:=IF greaterbit=1 THEN TRUE ELSE FARLSE;
lour returned ansuer;
END of xgreater;

PROCEDURE setxgreater(row,col,itis); INTEGER rouw,col; BOOLERN itis;
Isets the bit saying that the change in x is greater if called
luith TRUE, else clears the bit;
BEGIN
INTEGER oldbits,neuwbits;
oldbits:=vpict.pixel(row,col);
newbits:=IF itis THEN 1 ELSE 8; new bit;
neuwbits:=LOR(LAND(oldbits,511-1),neubits);
Ikill old low order bit, and OR in new one;
vpict.putpixel (rou,col,neubits);
land store it away;
END of setxgreater;

BOOLEAN PROCEDURE incgreater(row,col); INTEGER row,col;
lanswers the question 'do we increment (vs. decrement) the variable;
!that changes fastest (i.e., the one being changed by 1 each time)?';
BEGIN
INTEGER ailbits,incbit;
allbits:=vpict.pixel(row,col); lall the fields;
incbit:=LAND(al lbits, 2); Ithe bit in gquestion;
incgreater:=IF incbit=2 THEN TRUE ELSE FALSE;
Ithe ansuer;
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END of incgreater;

PROCEDURE setincgreater (row,col,yes); INTEGER row,col; BOOLEAN yes;
IIf called with TRUE, sets bit to indicate that tha variable With;
!greater movement is to be incremented (else sets to decremented);

BEGIN
INTEGER oldbits,neubits;
oldbits:=vpict.pixe!l (row,col);

newbits:=IF yes THEN 2 ELSE 8; Ithe bit;
newbits:=LOR (LAND(oldbits,511-2),newbits);
'kill old bit 1 and OR in new one;

vpict.putpixel (row,col,neubits);
land store result;
END of setincgreater;

REARL PROCEDURE getfrac(row,col); INTEGER row,col;
lreturns the fractional part of the slowly varying variable;
BEGIN
INTEGER allbits, fracbits;
allbits:=vpict.pixel{rou,col);
fracbits:=LSHIFT(LAND(al Ibits, 192),-86);
lkill all but bits 6 and 7, and justify;
getfrac:=frachits/4.8; lthe fractional part;
END of getfrac;

PROCEDURE setfrac(row,col, fracpart); INTEGER row,col; REAL fracpart;

lsets the fractional part of the slouly varying variable;
linput value must be B<fracpart<.75;
BEGIN
INTEGER oldbits,newbits, frachits;
IF fracpart<B OR fracpart>. 75 THEN
BEGIN

outtext("illega! fractional part in call to ’setfrac’’™;

outimage;
END;

oldbits:=vpict.pixel (rouw,col);
fracbits:=LSHIFT(ENTIER(8.5+4.8=ABS (fracpart)),B);
Imove the field into place;

nenbits:=LOR (LAND{oidbits,256+32+16+8+442+1), frachits);

Iclear proper bits, and OR in new ones;
vpict.putpixel(row,col,nenbits); land write it in;
END of setfrac;

!Initialization code;
vpict:-NEW pictS; lcreate the pict8 to hold things;

END of CLASS vects;

SIMSET
BEGIN
head CLASS graph;
BEGIN
BOOLEAN looking;
REF (node) PROCEDURE getnode(n); INTEGER n;
IThis procedure runs doun the chain of nodes until one whose
!rignum equals n is found. Returns NONE if node doesnt exist;
BEGIN
REF (node) x; INTEGER i;
IF NOT THIS graph.empty THEN [if there is at. least one node

already;
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BEGIN
x:-=first QUA node; !first nods in the graph;
looking:=TRUE; 'havent found right node yet;
WHILE looking AND x =/= NONE DO luntil we find right one;
BEGIN ’
IF x.rignum = n THEN looking:=FALSE ELSE !found it;
Xi=X.SUc; Inext node;
END;
getnede:-x;
END ELSE getnode:-NONE; l'if graph empty return NONE;
END of getnode; lreturns NONE if no such node;

END of CLASS graph;

fink CLASS node{rignum); INTEGER rignum;

BEGIN
REF (path_list) pathist; tlist of paths (links} to other nodes;
pathlst:-NEW path_list; linit the list;

END of CLASS node;

head CLRASS path_list;
BEGIN
flist of paths to other nodes;
BOOLEAN looking;
REF (path) PROCEDURE getpath(n); INTEGER n;
IThis procedure runs down the chain of paths until! one whose
Inodenum equals n is found. Returns NONE if path doesnt exist;
BEGIN
REF (path) x; INTEGER i;
IF NOT THIS path_list.empty THEN
lif there is at least one node alresady;

BEGIN
x:-first QUA path; !first path from this node;
look ing:=TRUE; lhavent found right path yet;
WHILE looking AND x =/= NONE DO luntil we find right one;
BEGIN
- IF x.nodenum = n THEN looking:=FRLSE ELSE Ifound it;

Xi-X.sUc} Inext path;

END;
getpath:-x;

END ELSE getpath:-NONE; 'if node had no paths, return NONE;

END of getpath; Ireturns NONE if no such path;

END of CLRSS path_list;

link CLRSS path(nodenum); INTEGER nodenum;
BEGIN
END of CLASS path;

REF(pict8) picin;

REF(pict9) picin;

REF (vect8) vectim;

REF(graph) ad jacencygraph;

REF(io28) outfile;

TEXT line, infilename,outfilename;
INTEGER pass,endpixels,ron,col,roudot;
REAL deltax,deltay;

PROCEDURE processend;

IThis procedure is called when We have found ourselves a ridge-end, It is
!responsible for deciding whether on the current pass we can begin growing
!a vector from this end (answer should be yes for 2 of the 4 passes), based
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lupon the slope of the end of the ridge (i.s., upon the previousty
lcalculated deltax and deltay values). If we can grow ons, We place the
tfirst vector point in the proper neighbor pixsl of the ridge end. Note
{that this placement involves operations in two data structures:
!1) naming the pixel (What ridge it belongs te) in picinS, and
12) setting up its growth data in vectim.;
lnote that npixnbr is used in test for free neighbors, rather than
lpixnbr, so that pixels off the screen show as available. Later on
Ine test for being off the screen, so we dont try and put any vector
lpixels there;
BEGIN

INTEGER newrow,nswcol,neighber,nr,nc;

BODLERN xg;

neuroW:=rown;
neucol:=col; luill beccme the address of the first pixel of vector;

IF (S5IGN(deltax)=SIGN(dsltay)>=8 RND (pass=2 OR pass=3)) OR
(SIGN(de ltax)&SIGN(deltay) <=8 RND (pass=1 OR pass=4)) THEN l
inote that SIGN(x)=-1 if x negative, +1 if x positive, %
fand B if x=8. So, we do the rest of the code if the sign i
lof deltax and deltay are the same (for passes 2 and 3),
lor i¥ they are different (for passes 1 and 4).;
BEGIN
ltime to decide where toc put the vector point;
IF pass=1 THEN neighbor:=5; !which neighbor of the endpoint;
IF pass=2 THEN neighbor:=7:; Ipixe! isc the best first guess for;
IF pass=3 THEN neighbor:=3; lour first vector pixeli;
IF pass=4 THEN neighbor:=1;

IF picinS.npixnbr(row,col,neighbor) = & THEN
lif the first guess isnt empty;
BEGIN
IF picinS.npixnbr(ron,col,M0D(neighbor+1,8)) s 8 THEN
1if the next pixel around the neighborhood is full too;
BEGIN
IF picinS.npixnbr(row,col,N0D(neighbor-1,8)) e & THER
land if the next ocne the cther way is {full;
BEGIN
cuttext('no place for start of vector!l!'D;
outimage;
outtext('row= '); breakoutimage; outint(row,d);
outimage;
outtext('cei= "); breakoutimage; outint(col,d);
out image;
hatt;
END ELSE neighbor:=M0D(neighbor-1,8);
lelse this is the one to use;
END ELSE neighber:=N0D(neighbor+l,8);
ler this is the correct one;
END;
lat this peint we can assume that ’neighbor’ points to the
lcorrect piace toc put the first vector pixel;

newrow:=getrou(row,cel,nsighbor); lset up the row and col;
nesco!:=getco! (rox,col,neighbor); lfor the vector point;

IF newrowd=l RAND nenrow<4BB AND newcoi>=1 AND neucecl <488 THEN
'if we are not off the screen;
BEGIN 3
picinS.putpixe! (nenrou,nencol,256+picinS.pixel(rou,coll);
llabel the vector point with the name of the ridge it came
ltrom, ac well as turn on the hhigh Bit to indicate that
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lit is a vector point, not a pixel;

lnow time to set up the data in "vectim' to go with the
lvector point;

IF RABS(deltax) > RABS(deltay) THEN
BEGIN
xg:=FALSE;
vectim.setxgreater (newrow,newcol, FALSE) END ELSE
BEGIN
xg:=TRUE;
vectim.setxgreater (newrow,newcol, TRUE);
END;
Ibased upon the x and y deltas for the ridgeend, decide
Ilwhether x or y is to be the direction of greater movement
lduring vector growth, and therefore the variable which
lis always incremented or decremented by 1. Note that
Ithe apparent reversal in the above statement is due
Ito the fact that the direction of growth is perpindicular
lto the direction of the ridgeend;

nr:=newron;
nc:=neucol; ljust to get shorter names;

IF pass=1 THEN BEGIN
IF xg THEN vectim.setincgreater (nr,ne,TRUE)
ELSE vectim.setincgreater (nr,nc,TRUE);
IF xg THEN vectim.setslopel(nr,nc,RBS(del tax/deltay)) ELSE
vectim.setslope(nr,nc,ABS (del tay/deltax));
END;

IF pass=2 THEN BEGIN
IF xg THEN vectim.setincgreater (nr,nc,FALSE)
ELSE vectim.setincgreater (nr,nc,TRUE);
IF xg THEN vectim.setslope(nr,nc,ABS(del tax/deltay)) ELSE
vectim.setslope(nr,nc,-1xABS(del tay/deltax));
END;

IF pass=3 THEN BEGIN
IF xg THEN vectim.setincgreater (nr,nc, TRUE)
ELSE vectim.setincgreater (nr,nc,FALSE);
IF xg THEWN vectim.setsliopelnr,nc,-1%ABS(del tax/deltay)) ELSE
vectim.setslopel(nr,nc,RBS (del tay/deltax));
END;

IF pass=4 THEN BEGIN
IF xg THEN vectim.setincgreater {nr,nc,FALSE)
ELSE vectim.setincgreater (nr,nc,FRALSE);
IF xg THEN vectim.setslope(nr,nc,-1%ABS(deltax/deltay)) ELSE
vectim.setslopelnr,nc,-12ABS (del tay/deltax));
END;

lweve now set up whether to increment or decrement the faster-
fchanging variable, and also the slope (complete with sign);

veciim. setfrac(newrsu,neucol,B8);
linit the fractional part of the slouly changing variable to 8;

END of IF;
END of IF;
END of processend;

PROCEDURE processvector;
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!This procedure is called when uWe encounter a pixel which is a vector pixel
!We then must calculate where the next pixel in the vector is to be, and
lif that new location is fres, move the vector pixel with its data thera,
land erase the old vector pixel. Heouwever, if the new location already has
!a vector pixel, then We have a conflict (may have code to deal with this
llater). For now though, We try using the tuo closest neighbors instead,;
!before giving up. If the new location is a ridge pixel
!{or if we cross a ridge
| (possible dus to the allowed diagonal connectivity of ridges)) then ue
lhave found a ridge adjacency, and make the appropriate entry in our graph;
Inote that row and y are synonomous, as are col and x;
BEGIN

INTEGER greaterinc,newrow,neucecl,nbr,orignesrou,orignencol,orignbr;

REAL sum,newfrac;

BOOLERN xg;

BOOLEAN PROCEDURE empty(nr,nc); INTEGER nr,nc;
IThis procedurs checks whether the pixel at (nr,nc) is
1’on the screen’, and if so, is its value 87?;
BEGIN
empty:=TRUE; !a good start;
IF nr<1 OR nr>488 OR nc<l OR nc>488 THEN empty:=FALSE ELSE
lif off screen, say its not empty;
IF picin9.pixel{nr,nc) = 8 THEN empty:=FALSE;
Inot equal 8 ==> not empty;
END of empty;

BOOLERN PROCEDURE movevector(nr,nc,nnbr); INTEGER nr,nc,nnbr;

IThis procedure actually does the moving of the vector
Ipixel to its new (and usualiy empty) home;
Inr and nc are the row and column to move the pixel to,
land nnbr is the neighbornumber of that pixal relative to
Ithe old vector pixel (row,col);

BEGIN

IF (nnbr=1 OR nnbr=3 OR nnbr=5 OR nnbr=7) AND

picin3.pixnbr(row,col,H0D(nnbr-1,8)) > 8 AKND

picin9.pixnbr{rou,col,M0D(nnbr-1,8)) < 256 AND

picind.pixnbr(rou,col ,M0D(nnbr+1,8)) > 8 AND

picinS.pixnbr(row,col,N0D(nnbr+1,8)) < 256 THEN
Ithough the neu pixel location is free, it has
la ridge pixel on both sides of it, so we would
lactually be crossing a ridge if we went on ==
Ilue found an adjacency;

BEGIN
setadjacency(picinS.pixe!l (row,col)-256,
picin9.pixnbr(row,col ,H0D(nnbr+1,8)));
Iset up the adjacency...use of nnbr+l is
larbitrary, since it is unlikely that the
Ineighbors at nnbr-l1 and nnbr+l belong to
Idifferent ridges;
picin3.putpixel (row,col,8);
vectim.putpixel (rou,col,®); lclean up the vector point;
END ELSE

!else the new location is empty, and we havent gone
through & ridge, so we move the vector point to its new
llocation, and delets the old one;
BEGIN
picin9.putpixel (nr,ne,picind.pixel (rou,col));
Imove the vector name, and vector flag bit;

IF xg THEN vectim.setxgreater{nr,nc,TRUE) ELSE
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vectim.setxgreater(nr,nc,FALSE);
Imove the xgreater flag;

IF vectim. incgreater (rou,col) THEN
vectim.setincgreater {nr,nc, TRUE)
ELSE vectim.setincgreater (nr,nc,FALSE);
Imove the incgreater flag;

vectim.setslope(nr,nc,vectim.getslope {row,col))};
!move the slope info;

vectim.setfrac(nr,nc,neufrac);
land the new fractional part;

picinS.putpixel (reu,col,8);
vectim.putpixel(row,col,8); lelean up old vector point;
END;
END of movevector;

BOOLERN PROCEDURE ridgepixe!(nr,nc); INTEGER nr,nc;
!This procedure check whether the pixel at (nr,nc) has
lvalue between 1 and 255 (i.e. is a ridge pixel);
BEGIN
ridgepixel:=FALSE;
IF nr>=1 AND nr<=488 AND nc>=1 AND nc<=488 THEN
BEGIN
IF picinS.pixel(nr,nc)>=1 AND picinS.pixel (nr,nc) <=255 THEN
ridgepixel:=TRUE; !return FALSE if (nr,nec) is off the
Iscreen;
END;
END of ridgepixel;

PROCEDURE gotadjacency;
IThis procedure is called when we run into a ridge pixel;
!I1ts sets up the data in the adjacency graph, and clears
Ithe vector pixel that did the ’running-in-to’;
BEGIN
setadjacency (MOD{(picinS.pixel (row,col),256),
MOB{picinS.pixe!l (neurow,neucol),256));
lthe ridge our vector belonged to is adjacent to
lthe ridge we just encountered, so update the graph to
lindicate so;

picinS.putpixel (row,col,8);
vectim.putpixel (row,col,8); Iclean up vector;
END of gotadjacency;

xg:=vectim.xgreater(rou,col); !set flag telling us if x (col) is
!the variable of greater change;

greaterinc:=IF vectim.incgreater (row,col) THEN 1 ELSE -1;
Iset up the amount to be added to the greater variable;

IF xg THEN lif x (col) is the faster variable;
BEGIN
newceol:=col+greatering; leol is faster variable;
sum:=(row+vectim.getfrac(row,col))+vectim.getslope(rou,coll;
lthe exact new value for row;

newrow:=ENTIER (sum); !the new integer row value;
neuwfrac:=sum-newrou; lthe new fractional part of row;
END ELSE lif y (row) is the faster variable;

BEGIN
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newrow:=roW+greaterinc; ldo the faster one;
sum:=(col+vectim.getfrac(rou,col))+vectim.getslopelron,col);
lexact new value for colj

newcol:=ENTIER (sum); !the nem integer col valus;
newfraci=sum-neuco!; {the nex fractional part of colj
END;
orignewroW: =NeWrou; orignedcol:=neucol;

Isave the optimum new location for vector pixel;

nbr:=calcneighbor (row,col,naurou,newcol);
lreturns the neighbor number of (meuwrow,neucol) with
lrespect to (row,col);

orignbri=nbr; Isave this too; \

IF empty(newrow,newcol) THEN !if (newrow,newcol) is on-screen and its
lvalue is zero;
movevector (newrow,newcol,nbr) ELSE !grow our vector there, else;

IF ridgepixe! (newrow,newcol) THEN !if its a ridgepixel;

gotadjacency ELSE !set adjacency in graph,clear vector pixel,
lelse its a vector pixel, and we dont wWant to
loverwrite it unless necessary, so try other
Ineighbors of (row,col) that are in more or less
lthe same direction as {(newrow,neucol);
BEGIN

neurou:=getrou (row,col,N0D(nbr-1,8));

newcol:=getcol (row,col, 00 (nbr-1,8));

neufrac:=8; Ino fractional part;

| the previous neighbor around;

IF empty(newrow,nencol) THEN !if not off-screen and value=8;
movevector (neurou,neucol,nbr-1) ELSE
IF ridgepixel (newrou,newcol) THEN
gotadjacency ELSE lelse that too was a vector pixel,
land we must try the next neighbor
laround the other way;
BEGIN
newrow:=getroulrou,col ,MO0B(nbr+1,8));
newcol:=getco! {row,col,N0D(nbr+1,8));
neufrac:=0;
Inext neighbor back the other way;

IF empty(newrouw,neucol) THEN
movevector (newrow, newce! ,nbr+l) ELSE
IF ridgepixel (neurow,neucol) THEN
gotadjacency ELSE 'else neither of the alternate
lpossible places to grow was free,
Iso we will grow into the original
Ichoice, overwriting what was thers
land yelling; 4
BEGIN
IF orignewrow>=1 AND origneuronw<=488 RND
origneuwcol>=1 AND orignewcol <488 THEN
lif new location is on screen;
loverurite what was there;
land clear vector pixel;
BEGIN )
outtext('vector conflict at: ROU= ");
outint{origneurou,4);
outtext (' COL= ';
outint(orignewcol,4); outimags;
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outtext (" vector from ridge '0;
outint(picinS.pixel (orignewron,orignenco|}-256,4);
outtext(" being overwritten by vector from ridge ‘9;
outint(picin9.pixel (row,col)-256,4); outimage; outimage;
movevec tor {or ignewrow,origneucol,orignbr);
END ELSE
BEGIN
picin9.putpixel(row,col,8);
vactim.putpixel (row,col,8);
iclear the vector, since we hit the screen
ledge;
END;
END;
END;
END;
END of processvector;

PROCEDURE checkpixel;
lthis procedure is invoked 488x4B88xfour tiwes, for each pixel
lfor each of the passes
lthru the image. The value (1-4) of ’pass’ is used to keep track
lof which pass ue arq‘in (and therefore what the direction of
Iscan is).;

BEGIN
IF itsanend THEN lif the current pixel is the
lendpixe!l for a ridge. Returns
lthe mean dx and dy for the
llast ’endpixels® othar pixels;
processend Icheck if we can grow vector

lon this pass, and if so,
Istart it.;

ELSE !'1f not a ridge end pixel!;
BEGIN
IF picinS.pixel (rou,col) >= 258 THEN
I1f current pixel is a point of a;
lvector, then let us grow the vector,
land see if it has hit a ridge, etec.;
processvector;

END;

END of checkpixel;

BOCLEAN procedure itsanend;
IThis procedure returns TRUE if the current pixel (i.e.,
lthe one at (rou,col)) is the end pixel of a ridge, and
IFALSE if not. If TRUE case, the mean of the delta x and
idelta y dispiacements of pixels near the end pixel are
lreturned as deltax and deltay. In addition to the end pixel,
I’endpixels’ next to it are used for this mean calculation.;
BEGIN
INTEGER numnbrs,i,nbrval;
Itsanend: =FALSE;
IF picinS.pixel{row,col) < 256 AND picinS.pixel (row,col) > & THEN
11+ the current pixel is NOT a vector point, and it IS a
Iridge point.,;
BEGIN
numnbrs:=8;
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FOR i:=1 STEP 1 UNTIL 8 DO
BEGIN
nbrval:=picin9.pixnbr (rou,col, i); {the value of the nbr;
IF nbrval <256 AND nbrval > 8 THEN numnbrs:=numnbrs+l;
!'If nbr is a ridge pixel, increment the count;

END of FOR;
IF numnbrs=1 THEN 11 nbr.=> ridge endpoint;
BEGIN
i tsanend:=TRUE; lue do have an end;
calcdeltas; lcalculate deltax and deltauy;
END;
END;

END of itsanend;

PROCEDURE calcdeltas;
IThis procedure calculates the means of the x and y deltas from the
Iridge endpoint pixel to each of the next ’endpixels’ pixels along
I'the ridge in guestion. These deltas (deltax, deltay) will be later used
Ito determine the proper direction for vector growth. Note that
Ithe full number (’endpixels®) of adjacent pixels are used in the
lealculation onily so long as no forks are encountered. If a fork
I (or ridge end) is encountered, the calculation of the dx and dy
lis terminated (and does not include the fork or new end pixel).
IRIso note that this routine is the only part of the entire adjacenbg—
ldetermination algorithm which requires greater than a 3x3 window
linto the image. In fact, a window of (2zendpixels) x (2xendpixels)
lis nominally required;
BEGIN
INTEGER xsum,ysum,pixelsused,r,c,nbr,neurow,neucol ,ocldrow,oldcol;
INTEGER nbrvalue;
BOOLERN stilllooking;

xsum: =ysum: =8; !init. sum of del tas;
pixelsused:=8; linit. # nbr. pixels used;
r:=row; c:=col; lue start at the end: (row,col);
oldrowi=row; oldcol:=col; las good values as any;
IF ridgenbrs(r,c) ¢ 1 THEN lerror if we dont have exactly 1 nbr;
BEGIN ]
outtext('’calcdeltas’ called when pixel not a ridgeend’;
outimage;

END ELSE WHILE pixelsused < endpixels AND (pixelsused =8 OR
ridgenbrs(r,c)=2) DO
lkeep going as long as we have used less than
|’endpixels’, and as long as the current pixel
lhas exactly two neighbors (unless its the originai
Iridgeend pixel). These conditions cause the
laveraging process to stop if another end, or
fa fork is encountered;

BEGIN
stilllooking:=TRUE; !we havent found a valid neighbor yet;
FOR nbr:= 1 STEP 1 UNTIL 8 DO IF stilllooking THEN
BEGIN

nbrvalue:=picin3.pixnbr{r,c,nbr); lvalue of neighbor;
IF nbrvalue < 256 AND nbrvalue > 8 THEN
I1f the nbr. is a ridge point;
BEGIN
newroni=getrow(r,c,nbr); !returns the row value for nbr;
neuwcol:=getcol (r,c,nbr); lsame for column value;
IF neurouzoldrow OR newcol\soldecol THEN
lif we arent going back the wrong way along ridge;
BEGIN
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oldrow:=r; oldcol:=c; lupdate stuff;
r:=newrow; ci:=neHcol; lupdate r and cj
stilllooking:=FALSE; lue found it;
END of IF;
END of IF;

END of FOR;

¥sum: =xsum+c-col

ysum: =ysum+r-rou; lupdate xsum and ysum;

pixelsused:=pixelsused+l; lupdate pixel used count;

END of WHILE;
deltax:=xsum/pixelsused;
deltay:=ysum/pixelsused; {{inally, the results;

END ot calcdsltas;

PROCEDURE setadjacency(ridgel,ridge2); INTEGER ridgel,ridge2;

IThis procedure is called when we have found an two ridges to be adjacent;
11t checks to make sure that each of those ridges have nodes in our
ladjacency graph, and if not, it creates the nodes. It then puts in

la bi-directional |ink between the nodes, indicating the adjacency
lrelationship —— but only if that link doesnt already exist;
BEGIN

IF adjacencygraph.getnode(ridgel) == NONE THEN
NEW node(ridgel). into(adjacencygraph);
1if no node for ridgel, make one;

IF adjacencygraph.getnode(ridge2) == NONE THEN
NEW node{ridge2). intof{adjacencygraph);
lif no node for ridge2, make one;

IF adjacencygraph.getnode(ridge2).pathist.getpath(ridgel) == NONE THEN
NEH path(ridgel).into(adjacencygraph.getnode(ridge2).pathist);

IF adjacencygraph.getnode(ridgel).pathlst.getpath(ridge2) == NONE THEN
NEW path(ridge2).into(adjacencygraph.getnode(ridgel).pathist);
lput in the links (in-both directions) if not already thers;

END of setadjacency;

INTEGER PROCEDURE ridgenbrs(r,c); INTEGER r,c;
IThis procedure returns as its value the number of neighbor pixeis;
lof (r,c) which are ridge pixels;
BEGIN
INTEGER num,i;

nut:=8; linit number of neighbors;

FOR i:=1 STEP 1 UNTIL 8 DO !for sach neighbor;

IF picind.pixnbr(r,c,i) <256 AND picing.pixnbr(r,c,i) > 8@
THEN num:=num+l;

ridgenbrs:=num;

END of ridgennbrs;

INTEGER PROCEDURE getrow(r,c,nbr); INTEGER r,c,nbr;

IThis procedure returns as its value the rouw coordinate of the neighbor
lpixel of (r,c) specified by ’nbr’;

BEGIN

INTEGER newrow;

NeHroW:=r; lif nbr=4 or nbr=8;
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IF nbr=1 OR nbr=2 OR nbr=3 THEN newrow:=r-1;

IF nbr=7 OR nbr=6 OR nbr=5 THEN newrow:=r+l; lthe row values;
getrow: =newrox; g
END of getrow;

INTEGER PROCEDURE getcoi(r,c,nbr); INTEGER r,c,nbr;
!This procedure returns as its value the column coordinate of the
Ineighbor pixel of (r,c) specified ny ’nbr’;
BEGIN
INTEGER neucol;
neuwcol:=c; 1if nbr=2 or nbr=6;
IF nbr=1 OR nbr=8 OR nbr=8 OR nbr=7 THEN newcol:=c-1;
IF nbr=3 OR nbr=4 OR nbr=5 THEN neuwcoli=c+l;
getcol:=neucol;
END of getcol;

INTEGER PROCEDURE calcneighbor(rou,col,neuron,naucoll;

INTEGER row,col,neurou,newcol;
!This procedure returns an integer which is the “neighbor number”
lof the pixel (neuwrow,neuwcol) as viewed from pixel at (row,col),

lusing the standard neighbor numbering scheme;
1

! 123
! 8 X 4
! 7865
1 H
BEGIN
INTEGER nbr;
BOOLEAN foundit;
foundit:=FALSE; lflag to test if was a valid neighbor;
FOR nbr:=1 STEP 1 UNTIL 8 DO

BEGIN
IF getrou(rou,col,nbr)=neurou AND getcol(row,col,nbr)=neucc! THEN
Itest if this is the right neighbor;
BEGIN
calcneighbor:=nbr; l!heres the value to return;
foundit:=TRUE; !found the right neighbor;
END;
END;

IF NOT foundit THEN

BEGIN
outtext('calcneighbor called With non-neighbor’);
outimage; lif (newrou,neucol)} is not a neighbor;
outtext ("row,col="); outint{row,5); outint(col,5); outimage;
outtext ("newrow,nencol="); outint(newrow,5);
outint{newcol,5); outimage;
halt;

END;

END of calcneighbor;

PROCEDURE writeoutgraph;
IThis procedure processes the adjacencygraph generated by the rest of
!the program, and writes the result out in asciij
INote that it is assumed that the ridge numbers used are contiguous, and
Ibegin with 2;
BEGIN

INTEGER n;

REF(path) pth;

n: =23 lfirst possible ridgenumber;
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WHILE adjacencygraph.getnode(n) =/= NONE DO | for each ridge;
BEGIN
outint(n,4); outtext(': '"); breakoutimage;
outfile.outint(n,4); outfile.outtext(”: ’'D; outfile.breakoutimage;
pth:-adjacencygraph.getnode (n) .pathist. first QUR path;
lthe first link to this nods;
HHILE pth =/= NONE DO lfor each link from this node;
BEGIN
ocutint(pth.nodenum,4); lurite out ridge path goes to;
outfile.outint{pth.nodenum,4); !urite to file the ridge
lthis path goes to;
breakoutimage;
outfile.breakoutimage;

pth:—pth.suc; lget the next path;
END;
outimage;
outfile.outimage;
ni=n+l; Inext node;
END;
END of writeoutgraph;

PROCEBURE clearvectors;
IThis procedurse is invoked between the four passes through the imags;
|to make sure that no vector pixels remain, as would happen for example;
luhen a vector encounters the edge of the image rather than a ridge;
BEGIN
INTEGER rouw,col;
FOR row:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 4882 DO lfor the entire image;
BEGIN
IF picin8.pixel (row,col) >= 256 THEN picin3.putpixel(row,col,B);
114 pixel is a vector (non-ridge) pixel, zero it;
vectim.putpixel (row,col,8);
land clear all the slope etc. information;
END;
END of clearvectors;

PROCEDURE copypict8to8(p8,p8); REF(pict8) p8; REF(pict8) p3;
!This procedure copies an 8-bit (gray-level) image into a 9-bit one;
IPixels are copied with their value intact, and therefore the high-order;
lbit is always set to 8;
BEGIN
INTEGER row,col;
FOR row:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 488 DO tfor each pixel in the image;
pS.putpixel(row,col,p8.pixel (row,col));
lcopy values as is;
END of copypict8to9;

line:-sysin. image;

outtext ("Name (XXX) of file (XXX.ING) containing ridge-numbered image: '0;
breakoutimage; inimage;

infilename:-copy(line.strip); !get rid of trailing blanks;

outtext (Name (YYY) for output graph file (YYY.DRT): ™);
breakoutimage; inimage;
outfilename:-copy(line.strip); !filename for ocutput;
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outfila:-NEN io28(conc(outfilename,'.DAT'N); !the output file;
outfile.urite.ascii.openl{blanks(88));

picin:-NEW pict8; i Iridge-numbered input image;
picin9:-NEW pict9; I18-bit copy goes here;
picin.load(infilename); lget the input image;
copypict8to8(picin,picing); Imake @ 9-bit copy of the input image,;
Inith the high bit always zero;
thigh-bit will be used to indicate points;
Iwhich are on vectors(rather than ridges);
picin:-NONE; lkill off the 8-bit version to save spacs;
endpixels:=5; 'how many pixels to use at the end of a

Iridge in slope calculations (not
lincluding the actual end pixel);

rouwdot:=18; loutput a dot every this many rous
lprocessed;

vectim:-NEW vect8; luhere We store the vector groumth stuff;
adjacancygraph:-NEW graph; lour results goc here;
pass:=1; ‘1 top-to-bottom, left-to-right pass;

outtext ("PASS 1'); outimage;
FOR row:=1 STEP 1 UNTIL 488 DO
BEGIN
IF MOD(row,roudot}=8 THEN BEGIN outtext('.'); breakoutimage; END;
FOR col:=1 STEP 1 UNTIL 488 DO
checkpixel; lfind all adjacencies, and enter them in graph;
END;

passi=2; | top-to-bottom, right-to-left pass;
outimage;
outtext ("PASS 2'); outimage;
clearvectors; !remove any remaining vector pixels;
FOR row:=1 STEP 1 UNTIL 488 DO
BEGIN
IF MOD (row,roudot)=B THEN BEGIN outtext(".'); breakoutimage; END;
FOR col:=488 STEP -1 UNTIL 1 DO
checkpixel;
END;

pass:=3; lbottom-to-top, left-to-right pass;
outimage;
outtext ("PASS 3'); outimage;
clearvectors;
FOR row:=488 STEP -1 UNTIL 1 DO
BEGIN
IF MOD(row,roudot)=8 THEN BEGIN outtext(™.’); breakoutimage; END;
FOR col:=1 STEP 1 UNTIL 488 DO
checkpixelj
END;

pass:=é; lbottom-to-top, right-to-left pass;
outimage;
outtext {('"PASS 4'); outimage;
clearvectors;
FOR row:=488 STEP -1 UNTIL 1 DO
BEGIN
IF MOD(row,roudot)=8 THEN BEGIN outtext('.'); breakoutimage; END;
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FOR col:=488 STEF -1 UNTIL 1 DO
checkpixel;
END;

vectim: -NONE; . :
picinS: -NOKRE; f{res up some core;

fand now all thats left is to write out the graph structure into the
loutput file;

outimage;
writsoutgraph; lurite graph to file (and maybe terminal);

outfile.close;
outtile.release;

END of SIMSET biock;
END of graph;
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given two ascii files which are the lists of the "fsatures’ in
nt images (kith pixel coordinates for each featurs), output by
nd computes the relevant distance graphs Gl and G2, and

the maxima! common subgraphs of Gl and G2. The method used
tualily at least) use the Boclean matrix representations of the
to produce & large 'compatibility matrix’, which represents
mappings of pairs of nodes in Gl onto pairs of nodes in G2.
n this matrix specify whether the mapping in guestion is
aphs 61 and G2 have the property that two nodes are connected
f the distance between them is fess than a fixed amount.
nection (link) is labeled with the distance. R mapping betuesn
es in G1 and a pair in G2 ieg valid if l)node pair not linked

linked in G2 or 2)linked in Gl and linked in G2 and

Is are "close enocugh'.

trix, one need only find the ciigques (maximal! complete

the graph that this matrix represents, and We have our .
n subgraphs of Gl and G2.

t optionally, the actual x,y pixel coords of the
be used (coarsely) to prune the search tres.

matrix is never created (due to its size), but rather
re calculated as needed.
nding algorithm used is & modified form of that due to Bron
(RCH algerithm 457).; '

1-R would turn off array bounds checking, but doesn’t help much;

RSS ic28,pictl,pict8,picty;

OCEDURE enterdebug;

OLERAN PROCEDURE jsys,skipin;

TEGER PROCEDURE xwd,right,left,land, lor,lnot, taddr, aaddr;
TEGER PROCEDURE ishift, Ixer;

XT PROCEDURE conc,checkextension,rest, frontstrip;

ARACTER PROCEDURE findtrigger;

OCEDURE halt,exit;

AL PROCEDURE random;

graph;

AN looking;

ods) PROCEDURE getnode(n); INTEGER nj;

procedure runs down the chain of nodes until one whose

urenum sguals n is found. Returns NONE if node doesnt exist;

REF (ncde) x; INTEGER ij
NOT THIS graph.empty THEN [if there is at least one node already;

GIN
x:-first QUR node; = ltirst node in the graph;
looking:=TRUE; lhavent found right node yet;

WHILE loocking RAND x =/= NONE DO luntil we find right one;
BEGIN
IF x.featurenum = n THEN looking:=FRALSE ELSE !found it;

XI-X.SUuC} Inext node;
END;
getnode:-x;
D ELSE getnode:-NONE; 1if graph empty return NONE;
f getnode; Ireturns NONE if no such node;

SS graph;
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link CLRSS node{featurenum); INTEGER featuranum;
BEGIN
INTEGER cnum;
Ithe number of the cluster to which this node belongs;
BOOLERN InClique;
Iwhether this node is in current clique;

REF (path_list) pathlist; llist of paths (links) to other nodes;
cnum:=8; linitially belong to none;

InClique:=FALSE;

pathist:-NEN path_list; linit the list;

END of CLASS nods;

head CLASS path_list;

BEGIN
llist of paths to other nodes;
REF (path) x;

REF (path) PROCEDURE first_path;

lreturns first path from this node;

BEGIN
IF NOT THIS path_list.empty THEN !if there is a path out;
x:—first QUA path
ELSE x:-NONE; lelse raturn NONE;

first_path:-x;
END of first_path;

REF (path) PROCEDURE next_path;
Ireturns next path from this node, or NONE;
BEGIN
X:-X.Suc;
next_path:-x;
END of next_path;

END of CLASS path_list;

link CLASS path(nodenum); INTEGER nodenum;
BEGIN
END of CLASS path;

REF(i028) glfile, g2file,resultfile;

REF (graph) glgraph;

INTEGER glnodes, g2nodes, glgZ2nodes, total,maxc;
INTEGER local_region_size,smallest_subg;

INTEGER pruning_margin,match_margin,CallsToExtend;
BOOLERN pruning_by._coords,RAutcMode,GotFirst;

TEXT line, glfilename, g2filename;

REF(pictl) outpict;

INTEGER PROCEDURE digits(int); INTEGER int;
Ireturns number of digits in decimal expression of the integer param;
BEGIN
digits:=1+ ENTIER(LN(int)/LN(13));
END of digits;

PROCEDURE scanfiles;

!'This procedure asks the user for the input and output file names,

land then scans each input file to find the size of the input graphs.
IVariables glnodes, g2nodes, and glg2nodes are set based on these sizes;
IThe input files are then closed and released;

BEGIN
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TEXT answer;
line:~sysin. image;

outtext ("Name (XXX) of fife (XXX.DRT) containing Gl features: ™
breakoutimage; inimage;

glfilename:-copylline.stripl; Istrip trailing blanks;
glfile:-NEW io28(conc{gliilename, ".DAT'});
glfile.raad.ascii.open(blanks(aﬁ)); lopen it;

outtext(™Nams (YYY) of file (YYY.DRT) containing G2 fsatures: i
breakoutimage; inimage;

g2filename:-copy(line.strip); Istrip trailing blanks;
g2file:-NEW 1028 (conc (g2filename, ".ORT™);
g2file.read.ascii.open(bianks(88)); lopen it;

glfife.inimage; !first line;

KRHILE NOT glfilse.endfile DO

BEGIN
glnodes:=glfile.inint; lcount features;
glfile.inimage; Iread next line;

END;

glfile.close; lcounted festures, done With file for now;

glfile.release;

g2tile.inimage; !first line;
MHILE NOT g2file.endfile DO

BEGIN )
g2nodes:=g2file. inint; lcount features;
g2fite. inimage;

END;

g2flle.close; lcounted features, done With file for nou;

g2file.releass;

outtext('Should I use featurs coordinates to determine node compatibility? ')
breakoutimage; inimage;
answer:-copy(line.strip); lstrip trailing bianks;
IF (answer="y" OR answer='lyes’ OR answer="Y" OR ansuer="YES") THEN
BEGIN Iwe should do pruning based on coords;
pruning_by_coords:=TRUE; ldo pruning;

outtexi ("o within how many pixels must feature coordinates match : s
breakoutimage; inimage;
pruning_margin:=inint; Imatch limit;
END ELSE pruning_by._coords:=FALSE; !no pruning;

puttext("Region (+— number of pixels) defined as lecal: ";

breakoutimage; inimage;

loce!l _region_size:=inint; ldefn of how close together the X and Y
leoords cf two festures must be to be local;

outtext("To within hor many pixels must inter—fsature distances match: '7;
breakoutimage; inimage; '
patch_pargin:=inint;

outtext("Should I automaticaily ignore small maximal common subgraphs? '
breakoutimage; inimage;

answer:-copy(line.strip); l!strip trailing blanks;
IF (answer=''y" OR answer="yes' DR answer="Y" OR answer="YES') THEN
BEGIN

Rutemode:=TRUE;

emal lest_subg:=8; lhave to start somewhere;

END ELSE
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BEGIN
Rutomode : =FRLSE;
outtext("How many nodes in the smallest maximal common subgraph to find: "3
breakoutimage; inimage;
smailest_subg:=inint;
END;

END of scanfiles;

PROCEDURE doit;
IThis procedure contains everything but the declarations of the array
Isizes, and only exists so that the size of the arrays can be declared
fonly as large as needed; :
BEGIN
INTEGER RRRAY glx[l:glnodes],giyll:glnodes]; !the (x,y) pixel coords;
INTEGER RRRAY g2x[l:g2nodesl,g2yll:g2nodes]l; lef the features;
INTEGER counter,ii,jj,xval,yval,Perline, nsummary;

PROCEDURE getgraphs;
IThis procedure reads in the data from the input files, and sets
lup the feature coordinate arrays. Rlso sets up glgraph;

BEGIN
INTEGER feasturenum,gldx,gldy;
TEXT t;
t:-blianks(88); linit the parse buffer;

gliile:-NEW i02B(conc{glfilename,”.DRT™);
glfile.read.ascii.open(blanks(88)); lopen gl;

g2file:-NEW i028(conc(g2filename, ".ORT"));
g2file.read.ascii.open(blanks(88)); -lopen g2;

glfile. inimage; lread in first line;

WHILE NOT glfile.endfile DO

BEGIN
t:=glfile.image; 1§ill perse buffer;
featurenum:=t.getint; Ifirgt column is featurs number;
t:=rest(t); iwhats left in the image;
glx[featurenunl:=t.gatint; Ix coord;
t:=rest(t); . lagain whats left;
glylteaturenuml:=t.getint; ly coord;
glfile.inimage; Inext |ine;

END;

gltile.close;
gltile.release;

g2file. inimage; Iread in first line;

MHILE NOT g2file.endfile DO

BEGIN

:=g2file. image; i1filt parse buffer;

featurenum:=t.getint; lfirst column is feature number;
t:=rest(t); iwhats left; :
g2xifeaturenuml:=t.getint; Ix coord;
t:=rest(t); lagain whats isft;
g2ylfeatursnuml:=t.getint; ly coord;
g2file.inimage; Inext line;

END;

g2iile.cliose;
g2file.relsase;

iand now fime to find the translation table size nesded;
counter:=8; linitially ne slots in translation table are filled;
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FOR ii:=1 STEP 1 UNTIL glnodes DO
FOR jj:=1 STEP 1 UNTIL g2nodes DO !for each possible (i,j);

IF NOT pruning_by_coords THEN !if not using feature coords;
BEGIN
counter:=counter+l; lkeep count of used slots;
END ELSE
BEGIN !do want to check node compatibility using coords;
xval:=abs(glx[iil-g2x[jjl); lerror (in pixels);
yval:=abs(glyliil-g2yl[jjl);

IF (xval < pruning._margin) AND

(yval < pruning_margin) THEN I!close enough;
BEGIN

counter:=counter+l;

END;
END of IF;
glg2nodes:=counter; !how big our table need be;
glgraph:-NEW graph; lereate the graph;

FOR featurenum:=1 STEP 1 UNTIL glnodes DO !for each Gl node;
BEGIN

NEW node(featurenum).into{glgraph);

lereate a node in the graph;

FOR jj:=1 STEP 1 UNTIL glnodes 00
lcompare above node against all but itself;
BEGIN
IF jj ¢ featurenum THEN !dont compare against self;
BEGIN
gldx:=glx (featurenum) -glx(jj);
gldy:=gly (featurenum}-gly(jj}; loffsets;

IF (abs(gldx)<slocal_region_size) RND
(abs(gldy)<=local_region_size) THEN
NEH path(jj).into(glgraph.getnode(featurenum).pathlst);
1if they are local to each other, put link in graph;
END of IF;
END of FOR;
END of FOR;

END of getgraphs;

PROCEDURE maxcomsubgs;

IThis procedure derives the maximal common subgraphs of gl and g2,
land urites the result to a file (prints summary);

BEGIN

INTEGER RRRAY allll:glg2nodes], compsubll:glg2nodes];

INTEGER c, tablesize,i;

INTEGER RRRAY glcoeffll:glg2nodes], g2coeffll:glg2nodes];
|Thess arrays are used to hold the translation table betueen
lthe number of a row or column in the compatibility matrix,
land its correct gl-g2 pair label;

INTEGER RRRAY min[l:PerLinel,avgll:PerLinel ,max[1l:PerLinel;
lthe cumulative values for various thresholds;

PROCEDURE extend(oid,nee,ce); VALUE nee,ce; INTEGER nee,ce;
INTEGER ARRAY old;
BEGIN
INTEGER ARRAY neuwwll:cel;
INTEGER nod, fixp,neune,neuce, i, j,count,pos,p,s,sel,minnod;
INTEGER ai,aj,bi,bj,row,col,qldx,g2dx,qgldy,g2dy, loc;
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BOOLEAN linkedinl, linkedin2;

BOOLERN PROCEDURE connected(row,col);
INTEGER row,col;
lreally should be called 'compatible’. Anyuay,
lit computes ‘on the fly' whether the entry in

Ithe compatibility matrix at (row,col) is TRUE
lor FALSE;

BEGIN

IF row=col THEN connected:=TRUE ELSE
ldiagonal is all ones of course;
BEGIN
ai:=glcoefflroul;
aj:=glcoefflcoll;
bi:=g2coefflroul;
bj:=g2coefflcoll;
lgo from row and column number in compatibility
Imatrix back to the two (gl,g2) node mappings
I(ai,bi) and (aj,bj);
IF ai=aj OR bi=bj THEN connected:=FALSE ELSE
lif we have a nonn-unique mapping between nodes
lin the graph (e.g. gl node 1 mapped to tuwo
'nodes in g2;
BEGIN
gldx:=glx(ai)-glx(aj); lcompute the x and y;
gldy:=glylail-glyfajl; loffsets for feature;
g2dx:=g2x{bi)-g2x(bj); Ipairs in gl and g2;
g2dy:=g2y(bid-g2y(bj);

linkedinl:=IF (abs(gldx)<=local_region_size) RND
(abs{gldy)<=local_region_size)
THEN TRUE ELSE FALSE;

linkedin2:=IF (abs{g2dx)<iocal._region_size) AND
(abs (g2dy) <=local _region_size)
THEN TRUE ELSE FRLSE;
lbocleans indicating whether features in gl
1(g2) are close enough that they have a link
Ibatween them in the graph;

IF ((linkedinl AND NOT linkedin2) OR
(NOT linkedinl RND linkedin2)) THEN
connected: =FALSE ELSE

BEGIN

IF (NOT linkedinl AND NOT linkedin2) THEN
connected: =TRUE ELSE

BEGIN
IF ((abs(gldx-g2dx) <cmatch_margin) AND
(abs (gldy-g2dy) <=match_margin)) THEN
connected:=TRUE ELSE !linked in both;
land lengths match;

connected:=FALSE;
END;
END;
END;
END;
END of connected;
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PROCEDURE ProcessCliqus;
{This procedure is called each time a clique is found.
11t is responsible for deciding the size of each of the
lconnected components of the clique, and ocutputting
lto ’resultfile’ a summary of the number of features that
lwould remain in the clique for various values of a
!"minimum connected component’ threshold (i.e., ignore
lany feature not in a connected cluster of at least certain
!siza., RAfter ’nsummary’ cliques summary of the max, avg, and
Imin number of features for each possible threshold value
lis output, and the program terminates.
!{cumulative to beginning of run);
BEGIN
INTEGER numclusters;
INTEGER ARRAY clustersizell:388];
lsave the size of each cluster here..should never
lget more than 388 clusters (or even close);
INTEGER ARRAY remainingll:PerLinel;
lhow many features remain with varying threshold values;

PROCEDURE LabelGraph;
IFor each node in the graph, we clear the ''label” field;
IThen, for each unlabeled node which is in ths current
lelique, we label it with the
tnumber of its cluster (cluster is set of connected
!nodes), update the size count for that cluster, and
lrecursively call ProcessNode on all unlabeled nodes
Iconnected to the current one Wwhich are in the clique;
BEGIN

INTEGER i;

PROCEDURE ProcessNode{i); INTEGER i;
iThis procedure when called with the number of a
Inode as argument does: 1) IF node already has a
lvalue indicating membership in a cluster, or
Inode is not in current clique, do
lnothing. 2) Else mark current node as being
lin cluster "numclusters’.
!Increment clustersizelclusternuml
lby 1. Now recursiveiy call ourselves on all nodes
lconnected to the current one which are in current
lelique;
BEGIN

REF (path) x;

IF glgraph.getnode (i).cnum=8 AND
glgraph.getnode (i).InClique THEN
lif not in cluster yet, but is in clique;
BEGIN
glgraph.getnode(i).cnum:=numclusters;
Imark node as in current cluster;

clustersizelnumclustersl:=
clustersizelnumeclustersl+l;
'keep count of how big this cluster is;

x:-glgraph.getnode(i).pathlst.first_path;
Ifirst path out of this node. NONE if arent
lany;
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BEGIN !recurse on all connected nodes;

IF glgraph.getnode(x.nodenum).InClique THEN
ProcessNoda (x.ncdenum) ;

1IF path points to a node in the current
fclique, then recurse;
x:-glgraph.getnode(i).pathlst.next _path;

END of WHILE;

END of IF;
END of ProcessNede;

lcode for LabeiGraph;

FOR i:=1 STEP 1 UNTIL glnodes DO
glgraph.getnode(i).cnum:=8;
ilclear the cluster number data in the graph;

FOR i:=1 STEP 1 UNTIL glnodes DO
glgraph.getnode(i).InClique:=FRLSE;
f1turn off all clique membership bits;

FOR loc:=1 STEP 1 UNTIL c DO

lfor each node in the current clique;
glgraph.getnode(glcoetflcompsubllocl]).InClique:=TRUE;

Imark node as in current clique;

FOR loc:=1 STEP 1 UNTIL c DO
lfor each node in the current clique;
IF glgraph.getnode(glcoefflcompsubllocll).cnum=8
11f node is unlabeled in Gl graph (i.e., not
Imarked as in a cluster yet;
THEN
BEGIN
nummclusters:=numc lusters+l;
ProcessNode {glcoefflcompsubliocll);
ljabel node and all connected to it
1 {(dhich are in the current clique) as in
Isame cluster;
END of IF;

END of LabelGraph;

PROCEDURE ProcessClusters;

IFor each cluster (entry in clustersize) based on its
' array. Output
array to file). RAlso update Hin,
IMax and Avg arrays;

n

BEGIN

INTEGER cluster,thresh;
FOR cluster:= 1 STEP 1 UNTIL numclusters DO
FOR thresh:=1 STEP 1 UNTIL PerlLine DO
IF clustersizelcluster] >= thresh THEN
remaininglthreshl :=remaininglthreshl+
clustersizelclusterl;
1if clustersize is above threshold, then
ladd in its size to proper thresh niche;

Inow output data for this clique;

resultfile.outtext(” "

FOR thresh:=1 STEP 1 UNTIL PerlLine DO
resultfile.outint(remaininglthreshl, d);

resul tfile.outimage;

lnow update the cumulative statistics;
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FOR thresh:=1 STEP 1 UNTIL PerlLine DO
BEGIN
IF remaininglthresh]l > max[threshl THEN
max [threshl:=remaininglthreshl;
lupdate maximum;

IF remaininglthreshl < minlthreshl THEN
min[threshl:=remaining[threshl;
lupdate minimum;

avg[threshl:=avglthreshl+remaininglthreshl;
Itotal up for later average calculationg
END of FOR;

END of ProcessClusters;

PROCEDURE OutputSummary;
I0utput summary to file, followed by blank line;
BEGIN

INTEGER i;

resultfile.outimage;

resul tfile.outtext("MIN: ;

FOR i:=1 STEP 1 UNTIL Perline DO
resultfile.outint{minlil,4);

resul tfile.outimage;

resul tfile.outtext("AVG: ");

FOR i:=1 STEP 1 UNTIL PerlLine DO
resultfile.outintlavglil/total,4);

resul tfile.outimage;

resul tfile.outtext C'MAX: ;

FOR i:=1 STEP 1 UNTIL PerlLine DO
resultfile.outint(maxlil,4);

resultfile.outimage;

resul tfile.cutimage;
resul tfile.outimage;

resultfile.close;
resultfile.release;

exit(l); luant the time message, etc.;
END of DutputSummary;

land now for the code for ProcessClique;

IF NOT GotFirst THEN
BEGIN
FOR loc:=1 STEP 1 UNTIL c DO
outpict.putpixel (gix(glcoeff (compsub(loc))),glylgicoaff(compsubllioc))),1);
outpict.store{copy("NEHSUB™);
GotFirst:=TRUE;
END;

numc lusters:=8; !none found yet;

FOR i:=1 STEP 1 UNTIL 388 DO
clustersizelil:=8; Ino clusters yet;



-250-

FOR i:=1 STEP 1 UNTIL PerlLine DO
remaininglil:=8; linit things;

Labe lGraph;
ProcessClusters;

IF total=nsummary THEN OutputSummary;
loutput summary after this many cliques found

! (and then stop);

END of ProcessClique;

land now the code for 'extend’;
CallsToExtend:=CallisToExtend+1;

IF c+(ce-nee) >= smallest_subg THEN
BEGIN !if size of current clique (¢) plus size of set
lot potential candidates for addition to the clique
| (ce-nee) is large enough,
lthen there is still a chance of finding clique of
{at least size smallest sub_g;
minnod:=ce;
iz=8; nod:=8;

| determine each counter value and look for minimum;
FOR i:=i+l HHILE i<sce AND minnod = 8 DO

BEGIN
p:=oldlil; count:=8; j:=nes;

! count disconnactions;
FOR j:=j+1 HHILE j<=ce AND count<minnod DO
BEGIN

IF NOT connected(p,old[jl) THEN
BEGIN
count:=count+l;
| save position of potential candidiate;
posi=j;
END of if;
END of FOR;

| test new minimum;
IF count < minnod THEN
BEGIN
fixp:=p; minnod:=count;
IF i < nee THEN s:= pos
ELSE
BEGIN
s:=i; nodi=l; ! pre-increment;
END;
END of IF;
END of FOR;
| if fixed point initially chosen from ’candidates’ then;

! number of disconnections will be preincreased by one;
| BACKTRACECYCLE;
FOR nod := minnod+nod STEP -1 UNTIL 1 DO

BEGIN

! interchange;
p:=oldisl; oldlsl:=cldlnee+ll;
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sel:=p; oldlnee+ll:=p;

| §ill new set *not’?;
neuns:=8; i:=8;

FOR i:=i+1 WHILE i< nee DO
BEGIN

IF connected(sel,old[il) THEN
BEGIN
newne:=nexkne+l;
newd [newnel :=o0ldlil;
END of IF;
END of FOR;

I fill new set ’cand’;
neWce:=nedne; ii=nee+l;
FOR i:=i+1 WHILE i< ce DO
BEGIN

IF connected(sel,oldlil) THEN
BEGIN
newce:=neuce+l;
newn [newcel :=oldlil;
END of IF;
END of FOR;

! add to *compsub’;

ci= ¢ + 1; compsublcl:=sel;

IF neuwce=8 THEN
BEGIN
IF ¢ >= smal lest_subg THEN !no small cliques;
BEGIN

total:=total+l; lcount them;

IF e>maxc THEN
BEGIN
outint{(c,6);
maxci=c;
IF AutoMode THEN smallest_subg:=c;
Ineednt find smaller;
END ELSE lcollect size of largest;
BEGIN
IF c=maxc THEN
BEGIN
outtext ("1 ';
hreakautimage;

END; lwe got another the size of current max;
END;
ProcessC!ique; !analyze far connected

lcomponents, and output
idata to summary file;

END of IF;
END ELSE
IF newne<hewce THEN extend(newuw,newne,neuce);

| remove from ’compsub’;
c:=c-1;

! add to ’not’;
nee:=nee+l;
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IF nod>l THEN
BEGIN
| select a candidate disconnected;
! to the fixed point;
s: =nsee;

| look for candidate;
look:

g:= 5 + 1;

IF connected(fixp,oldIs]l) THEN GOTO look;

END of IF;
END of FOR;
END of IF;
END of extend;
land now time to fill in the translation table;
counter:=8; Inothing filled in yet;

FOR ii:=1 STEP 1 UNTIL glnodes DD
FOR jj:=1 STEP 1 UNTIL g2nodes DO !for each possible (i, j);
IF NOT pruning_by_coords THEN !if not using feature coords;

BEGIN
counter:=counter+l;
glcoefflcounterl:=ii; !no skipped entries since ali nodes;
g2coefflcounterl:=jj; lare mutually compatible;

END ELSE

BEGIN !do want to check node compatibility using coords;
xval:=abs(glix[iil-g2x[jjl); !lerror (in pixels);
yval:=abs{glyliil-g2yljjl);

IF (xval < pruning._margin) AND

(yval <= pruning._margin) THEN Iclcse enough;

BEGIN
counter:=counter+l;
glcoefflcounterl:=ii; !this mapping OK;
g2coefflcounterl:=jj;

END;

END of IF;

FOR i:=1 STEP 1 UNTIL Perline DO

BEGIN
minlil:=1088888; Ineed large values to start;
max[il:=8;
avglil:=8;

END of FOR;

land now for the code...;

FOR c:=1 STEP 1 UNTIL glg2nodes DO alllel:=c
c:=8;

extend(all,8,glg2nodes);

-

END of maxcomsubgs;

lcode for ‘doit'’

PerLine:=16; !let threshold range from 1 to 16;
nsummary:=28; loutput summary data after this many cliques, then stop;

getgraphs; lread in data;
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resultfile:~-NEN i0o28('hewsub.dat™;
resultfile.urite.ascii.openiblanks(88));

resultfile.outtext('Size of ?’); resultfile.outtext{(glfilename);
resultfile.outtext(’™ is'; resultfile.outint(glnodes,d);
resultfile.outtext (" features.’; resultfile.outimage;

resultfile.outtext('Size of *'); resultfile.outtext(g2filename);
resultfite.outtext (' i=s"™; resultfile.outint(g2nodes,4);
resultfile.outtext (" features.’; resultfile.outimage;

IF pruning_by_coords THEN
BEGIN
resultfile.outtext(
"Using feature coordinates to determine node compatibility.’;
resultfile.outimage;
resultfile.outtext ('Featura coordinates must match to within );
resultfile.outint(pruning_margin,digits{pruning_margin));
resultfile.outtext (" pixels.’; resultfile.outimage;
END ELSE
BEGIN
resultfile.outtext(
"Not using feature coordinates to determine node compatibility.'l;
resultfile.outimage;
END of IF;

resultfile.outtext("Size of local region is +- '
resultfile.outint(local _region_size,digits(local _region_size));
resultfile.outtext (" pixels.”; resultfile.outimage;

resultfile.outtext("Inter-feature distances must match to within ");
resultfile.outint{match_margin,digits(match_margin));
resultfile.outtext (" pixels.'; resultfile.outimage;

IF RAutomode THEN
resultfile.outtext(
"utomatically ignoring small maximal commen subgraphs.’

BEGIN
resultfile.outtext('Smallest maximal common subgraph to find contains ');

END;

resu!tfiIa.outini(smalIes!;subg,digits(smalIest_subg));
resultfile.outtext (" features.';
resultfile.outimage;

resultfile.outimage;
resultfile.outimage;

resultfile.outtext ('Minimum'; resultfile.outimage;
resultfile.outtext(allowed’; resultfile.outimage;
resultfile.outtext("cluster™; resultfile.outimage;
resultfile.outtext('size: ™;

resultfile.outtext(

A ¢ 2 3 3 5 B 7 8 9 18 11 12 13 14 15 1B™;
resultfile.outimage;

resultfile.outtext(

SES N S i s

resultfile.outimage;

total:=8; 'number of max com. subg’s found;

maxcomsubgs; !find and print maximal common subgraphs;
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outimage;
outtext ("total max. com. subg’s found: '); outint(iotal,5); outikage;
g } ’ 1 ge;

END of doit;

Imain program;
scanfiles; luser dialog and find array sizes;

GotFirst:=FALSE;
outpict:-NEW pictl; !for testing;

CallisToExtend:=8;
doit; fall the rest;
outint(CailsToExtend,8); outtext(™ calls to extend’; outimage;

END of SIMSET block;
END of newsub;
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I 'NTHRSH™

IThis program accepts as input a filename (e.g. NAREIN)

lwhich is an 8-bit image. For each pixel in the input image, ths
lfoilowing takes place: R KxN neighborhood arcund the pixel in guestion

! (but not extending outside the &£B8x4BB image) is histogrammed. If the
Ivalus distribution in the histogram is unimedal (one peak), then the pixal
lin question ie & background pixel, and is set to 8 (assuming the window
lis large snough that it cannct be completely filled by a ridge). If the
idistribution is bimodal, the threshhold is set at half the total
idistribution width, and then this threshold

lis used fo cepasrate the image pixels from the background pixels.

IThe image (ridge) pixels are set to 1, while the background pixels are
Iset to 8. '

|The histogram width criterion for deciding if a distribution is unimodal
lor bi-modal is & parameter input from the terminal. Values from 15 to

125 are typical. Ths upper right corner of the image is alWays forced to
Ibackground, as that area is large anc dark due to sobe masking in the
loptics, and therefore violates the "if Its unimodal its light (backgrnd)
fruis.

IThe output 1-bit image is called NRMEOUT.BIN;

BEGIN
EXTERNAL CLRSS io28,pictl,pict8;
EXTERNRL PROCEDURE enterdebug;
EXTERNRL BOOLEAN PROCEDURE jsys,skipin;
EXTERNAL INTEGER PROCEDURE xud,right, left,land, lor,Inot,taddr,aaddr;
EXTERNARL INTEGER PROCEDURE Ishift, Ixor;
EXTERNSL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNARL CHRRACTER PROCEDURE findtrigger;
EXTERNAL PROCEDURE halt;

REF(pict8) picin; -

REF(pictl) picthresh; {the thresheld image;

TEXT line,infilename,threshiiiename;

INTEGER row,col,nhoodsize,halfnhood,point,minval,maxval,oldrow,cidcol;
INTEGER width,minwidth,maxwidth,width_threshold;

INTEGER RRRAY hist[8:255],uidth_bistIB:255];

PROCEDURE histogram(row,col); INTEGER row,col;
IThis procedure fills the array hist[8:255) with the histogram of the
Ipixe! values in the region of size nhoodsize x nhoodsize surrounding
t(row,col). Note that pixels outside the 488 x 488 Image are not
lused. Rlso note that if we have simply moved to the right one column
isince the last call to this routine, the histogram is updated, rather
fthaen being computed from scratch. In all cther cases, it is computed
| $rom scratchy
BEGIN

INTEGER pixe!ve!ue,nrou,ncol,maxrouIim,maxcorlIn,minroulim,min:ollim;

PROCEDURE addright(row,col); INTEGER rou,cel;
IThis procedure adds the pixel-values in-the right-mest colunn of the
Iwindow intoc the histogram; ’
BEGIN
" INTEGER rouwptr,pixval;

FOR rowptr:=minrow!lim STEP 1 UNTIL maxrawlim DD leach row of window;

BEGIN )
pixval:=picin.pixel (rouptr,maxcollin); Iget pixel value;
histipixvall:=histlpixvall+l; ladd it in to histogram;
END;

END of addright;
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PROCEDURE deileft(row,col); INTEGER romw,col;
IThis procedure removes the pixel values in the left-most column of the
lprevious window (i.e., it removes the pixels in the column just to the
lleft of the left-most column in the current window;
BEGIN

INTEGER rouptr,pixvals

FOR rowptr:=minrowlim STEP 1 UNTIL maxrowlim DO !each row;
BEGIN
pixval:=picin.pixel{rouptr,mincollim-1); lget pixel value;
from column that is one to the left of tha left-most
!in the current window;
histlpixvall:=histlpixvall-1; lremove from the histogram;
END;
END of delleft;

maxrouw!lim:= IF rou+hal fnhood < 488 THEN row+halfnhood ELSE 4868;

maxcollim:= IF col+halfnhood <= 488 THEN col+halfnhood ELSE 488;

minrow!im:= IF rou-halfnhood >=1 THEN row-halfnhood ELSE 1;

mincollim:= IF col-hal fnhood >=1 THEN col-halfnhoed ELSE 1;
lelip window to stay within image;

IF row=oldrow AND col=oldcol+1 THEN 1if we ars in the same rou;
las the last histogram we did, and have cnly moved over one col.;

BEGIN
lupdate the histogram;
IF col <& halfnhood+l THEN
lleft edge of window at least contacts left edge
lof image ==> only add right side column into
lhistogram...no deletions at left needed;

BEGIN
addright(row,col);
END
ELSE
BEGIN
IF col >= 488-halfnhood+l THEN
Iright edge of window at least contacts right edge
lot image ==> only delete left-side column from
lhistogram...no additions at right;
BEGIN
delleft(row,col);
END
ELSE luindow is fully inside the image;
BEGIN
addright (row,col);
delleft(row,col); !then need to do both;
END;
END of IF;
END ELSE !if we reached the end of a row, or are doing randem histos;
lthen do the histogram from scratch;
BEGIN
FOR pixelvalue:=8 STEP 1 UNTIL 255 DO
histlpixelvaluel:=8; !init the histogram;

FOR nrow:=minrowlim STEP 1 UNTIL maxrowlim DO
FOR ncol:=mincollim STEP 1 UNTIL maxecollim DO
lfor each pixel in the potential neighborhood;
BEGIN
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pixelvalue:=picin.pixel{nrow,ncol);

lthe value of the pixel at (nrow,ncol);
histlpixelvaluel:=hist[pixelvalual+l;

lue have one more pixel Wwith that value;

END;
END of IF;
oldrow:=rou; oldcol:=col; lfor next time around;

END of histogram;

line:-sysin. image; linput buffer for TTY;

outtext ("Name (XXX-YYY) of file (XXX-YYY.ING) to threshold: ™;
breakoutimage;

inimage;

infilename:-copyf(line.stripl); lget rid of trailing blanks;

cuttext ("Name (UUU-VVV) of file (UUU-VVV.BIM) for thresheld image: ');
breakoutimage;

inimage;

threshfilename:-copy{line.strip); Ithe output filename;

picin:-NEW pict8;
picthresh: -NEW pictl;
picin.load(infilename); Iload the input data;

outtext ("Histogram width threshold (8 to 255): ');

breakoutimage; ! prompt for threshold ;

inimage;

width_threshold:=inint; ! get the threshold value ;

nhoodsize:=15; Ithe size (nhoodsizezs2) of the neighborhood surrounding
lsach pixe! to use for thresholding. Should be odd;

halfnhood:={(nhoodsize-1)/2; !the amount to go + and - on each side of

1{row,col);
oldrow:=99999; oldcol:=98888; linit vars used to do histogram

Idifferantialy. These values guarantee a "from scratch' computation
lthe first time (uniess we ask for histogram(1888688,998388);

FOR row:=1 STEP 1 UNTIL 488 DO
BEGIN
cuttext(".); breakoutimags;
FOR col:=1 STEP 1 UNTIL 488 DO

BEGIN
’ histogram(roun,col); larray hist[8:255] gets histogram of
Ithe nhoodsize x nhoodsize region
Isurrounding (row,col);
point:=8;

WHILE hist[point]l=8 AND point <=255 DO
Igearch through all the 8 entries;
point:=point+l; Inext entry;
Iuhen done, point is pointing at first non-zero entry,
lor is equal to 255 (if all entire zero);
minvals=point; lsave left edge of useful histogram arsa;

point:=255;

WHILE histlpointl=8 AND point >= 8 DO
point:=point-1;

maxval:=point; lsave right edge;



-258-

width:=maxval-minval+l; Ithe width of the histogram;

IF minvalmaxval THEN
lif histogram Was ampty;
BEGIN

cuttext("histogram was empty'h;
midth:=8;
END;

IF picin.pixel(rou,col) < (minval+maxval)/2 THEN
picthresh.putpixe! (row,col,l)

ELSE picthresh.putpixsl (row,col,B); tuse center of histogram;
las thresholid;

IF width < width_threshoid THEN picthresh.putpixel (rox,col,8);
tif histogram is unimodal, must be 2 background pixel;

IF 3522coi-3552rcw >= 188888 THEN picthresh.putpixel(rnu,cnl,?);E
lif we are in upper right corner, force it to background; :
I (115 pixels in from corner in rou and col direction;
‘overall shape is right triangular;

END of FOR;
END of FOR;

picthresh.store(threshfilename); iurite out the result file;

END of NTHRSH;
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OPTIONS (/e);

EXTERNAL CLRSS io28;

EXTERNAL PROCEDURE enterdsbug;

EXTERNAL BOOLEAN PROCEDURE jsuys,skipin; -

EXTERNAL INTEGER PROCEDURE xud,right,left, land, lor,Inot,taddr,aaddr;

EXTERNRL INTEGER PROCEDURE Ishift,Ixer;

EXTERNAL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNRL CHRRACTER PROCEDURE findtrigger;

EXTERNAL PROCEDURE halt;

IThis class is used to deal with 488 x 4B2 8 intensity bits per pixsl
ldigitized images, packed 4 B-bit bytes per word (ieft justified).

|Image requires 1EBB8E bytes = 4B8EE wWords of storage.;

CLRASS pictd;
BEGIN
INTEGER i3
INTEGER RRRAY datasrrayll:48888];
INTEGER RRRRY bytemask [B8:3],bytemaskn[8:3];

PROCEDURE load(filename); TEXT filename;
IThis procedure loads the image data from the disk file
lte the dataarray in memory (still packed).
11t then cleses and releases the disk file.;
BEGIN
INTEGER RRRRY acll:41;
REF (ic28) file;

file:-NEH io2B(conc(filename,".IRG')); lcreate instance of file;

file.read. inagemode.Open{Blanks(88)); lopen it;

aclll:=file. jfn;
acl2]:=xwd (BRBB44BE, aaddr (dataarray)-1); llcad data inte
Imemory as 36-blt bytes, beginning at arraynamelll;

acl[3]:=-48888; Inumber of 36-bit words;

IF NOT jsus(8R52,ac) THEN ISIN;
error ('SIN in 'load’ failed™;

file.Close; lclose the file;
fils.relaase; .. lreiesase Iit;

END of load;

PROCEDURE store(filename); TEXT filename;
|This procedure stores the imags data in the dataarray
Iback into & disk fiie,then closes and release the file.;
BEGIN
INTEGER RRRRY acll:4];
REF(io2B) file;
file:-NEM io2B(conc(fijename,".ING')); lcreate instance of
fll..uriia.lmagamode.ﬂpan(BIants(sa)f; lopen it;

acl{ll:=file. jfn;

acl2]:exud (BREBEL4LBE, saddr (dataarray)-1); lurite data out
tas 36-bit Words;
acl3):=-48888; lnumber of Words;

IF KOT jsys(BRS3,ac) THEN [SDUT;
error ("SCUT in ’storae’ failed');

file.Close; lelose the file;
file.release; lrelease it;

file;
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END of store;

INTEGER PROCEDURE pixel(row,col); INTEGER rou,col;
I1This procedure returns the value of the specified pixel.
IMore exactly, the [(row-1)x488+collth pixel valus is returned.
INote that this will only be the value of the pixel at (row,col) in
lthe image if the image has been corrected for the fact that the
iraw images as scanned in from the harduare have seperated interlace
ltields, and are scanned column-wise rather than row-wise. The
|program *CONVRT’ takes care of this.
!The value returned for the pixel will be B to 255;
11f row and col are not both in range from 1 to 488, value
lreturned is 255;
BEGIN

INTEGER seqnum,word,bytenum;

IF row>8 AND rou<48l RAND col>8 AND co!<&81 THEN

BEGIN

seqnum:=488x (row-1)+col; lwant the seqnum’th pixel;

word:=dataarrayll+(seqnum-1)//41; !the word the byte is in;

bytenum:=M0D (seqnum-1,4); !the byte we want(# at left);

pixel:=LAND(LSHIFT (word, 8xbytenum-28),255) ;

lget the pixel (8-bits);

END ELSE pixel:=255; !if off the image edges;

END of pixel;

PROCEDURE putpixel (row,col,val); INTEGER row,col,val;

IThis procedure sets the value of the specified pixel.

IMore exactly, the [(rou-1)488+collth pixel value is set.

INote that this will only be the pixel at (row,col) in

lthe image if the image has been corrected for the fact that the
'raw images as scanned in from the harduare have seperated interlace
lfields, and are scanned column-wise rather than row-wise. The
Iprogram *CONVRT? takes care of this.

! The value for the pixel should be 8 to 255;

BEGIN
INTEGER seqnum,word,bytenum,pointer,mask;
segnum:=488%(rou-1)+col; lwant the seqnum’th pixel;

pointer:=1+(seqnum-1)//4; lpoint te the byte;
bytenum:=MN0D (seqnum-1,4); !the byte we want(#B at left);
dataarraylpointerl :=LAND (dataarraylpointerl,bytemaskn(bytenum));
lzero the byte;
dataarraylpointer] :=LOR(dataarraylpointer] ,LSHIFT(val,
28-8zbytenum)); !'0R in the proper val;
END of putpixel;

INTEGER PROCEDURE pixnbr(row,col,n); INTEGER rou,col,n;
BEGIN
INTEGER ncol,nrou;
ncoli=col; linit value;
IF n=1 OR n=8 OR n=8 OR n=7 THEN ncol:=col-1;
IF n=3 OR n=4 OR n=5 THEN ncol:=col+l;
NroW:=row;
IF n=1 OR n=2 OR n=3 THEN nrow:=row-1;
IF n=7 OR n=6 OR n=5 THEN nrow:=row+l;
Iset up the row and co! values for the neighbors 1 thru 8 as:

~ o e
M uUN
Ul o W

|(note that neighbor 8 will be equivalent to neighbor 8.)
tuhere P is the pixel under consideration;
IF nrow<l THEN pixnbr:=255 ELSE
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IF nrow>488 THEN pixnbr:=255 ELSE

IF ncol<l THEN pixnbr:=255 ELSE

IF ncol488 THEN pixnbr:=255

ELSE lcant’ have values off edge of image;

pixnbr:=pixel (nrow,ncoil); l!get ths value;
END of pixnbr;

INTEGER PROCEDURE npixnbr{row,col,n); INTEGER rou,col,n;
IThis routine returns a value for a neighbor that is off the screen;
lequal to the value of the '‘center’ pixel, rather than returning 255;
INeeded for neuw threshoiding scheme (looking at histogram widths);
BEGIN
INTEGER ncol,nrou;
ncol:=col; linit value;
IF n=1 OR n=8 OR n=8 OR n=7 THEN ncol:=col-1;
IF n=3 OR n=4 OR n=5 THEN ncol:=col+l;
NroW: =row;
IF n=1 OR n=2 OR n=3 THEN nrouw:=rou-1;
IF n=7 OR n=6 OR n=5 THEN nrouw:=rou+l;
!set up the row and col values for the neighbors 1 thru 8 as:
1
1
!
!
!
I (note that neighbor 8 will be equivalent to neighbor 8.)
luhere P is the pixel under consideration;
IF nrow<l THEN npixnbr:=pixe!(row,col) ELSE
IF nrow>488 THEN npixnbr:=pixel(row,col} ELSE
IF ncol<l THEN npixnbr:=pixel {row,col) ELSE
IF ncol>488 THEN npixnbri:=pixel(rou,col)
ELSE !cant? have values off edge of image;

~N 00
M UN
L I 7Y ]

npixnbr:=pixal (nrou,ncol); l!get the value;
END of npixnbr;

PROCEDURE error (message); VRLUE message; TEXT message;

BEGIN
INTEGER RRRAY acll:41;
Outimage;
Outtext(message);
Outimage;
ac[1] :=xwd(8,8R4880888); lprocess handle...current process;
jsys(8R12,ac); IGETER...get most recent error;
ac [11 :=xud (8,8R777777); ldestination designator...TTY;
lac[2] was setup by GETER;
jsys(8R1l,ac); ltype the error string on the TTY;
jsuys(8R178,ac) ! HALTF - Just give up;

END of error;

IInitialization code;
FOR i:=8 STEP 1 UNTIL 3 DO BEGIN
bytemask [i1:=LSHIFT(255,28-8%i); Imake the byte mask;
bytemasknlil:=LNOT (bytemask[il); land its complement;
END;

END of CLASS pict8;

-e

s
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1"RIGNUN";

IThis program operates on & binary, thinned image, and produces as output;

lan B-bit image, where the value of each pixel is either 8 for background;
1(off in the input image) pixels, or is the "number' of the ridgs the;

lpixel is contained in. The pixels are numbered as they are encountered,;

fin raster scan order, based upon their adjacency to already numbersd pixels.;
IConflicts that arise ares resolved by & renumbering, done after the raster;
Iscan is ccmplete.;

BEGIN

EXTERNAL CLRSS io28,pictl,pictd,pictd;

EXTERNARL PROCEDURE enterdebug;

EXTERNAL BODLEAN PROCEDURE jsys,skipin;

EXTERNAL INTEGER PROCEDURE xwd,right,left,land,lor,Inot,taddr,2addr;
EXTERNRL INTEGER PROCEDURE Ishift, Ixor;

EXTERNRL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNRL CHRRRCTER PROCEDURE findtrigger;

EXTERNRL PROCEDURE hait;

SIMSET

BEGIN -

head CLRSS conflict_list;;
la {ist of pairs of numbers, which are the conflicts that have
Ibeen encountered durling the ridge numbering process;

link CLRSS conflict_pair{ridgel,ridge2); INTEGER ridgel,ridge2;
Iridgel should be < ridge2 (though order doesnt really matter;
lthey should NEVER be equal (else a confiict didnt exist);

BEGIN
IF ridgel>ridge2 THEN
BEGIN
outtext ("Conflict-pair created with ridges in wrong ordsr’);outimage;
END;
IF ridgel=ridge2 THEN
BEGIN
cuttext ('Conflict-pair created with ridge numbers squai’?;outimage;
END;

END of CLASS conflict-pair;

head CLRSS graph;

BEGIN

REF (node) PROCEDURE getnode(n); INTEGER n;

BEGIN
REF (node) x; INTEGER i;
x:-first QUR node; 1first node in the graph;
FOR i:= 2 STEP 1 UNTIL n DO x:-x.suc;
getnode:-x; lfound the n’th node;
IF x.rignum ¢ n THEN
BEGIN

outtext ("incorrsct node chose in ’getnode’’};

END;

END of getnode;
END of CLASS graph;

link CLRSS node(rignum); INTEGER rignum;

BEGIN
REF{path_list) pathlet; llist of paths (links) to other nodes;
BOOLEAN rescived;
IKTEGER transval;

transval:=rignum; 1if node is never touched, want it toj
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ltranslate to its original value;
resolved:=FALSE; linitially none of the nodes are resolved;
pathlst:-NEW path_list; linit the list;
END of CLRSS node;

head CLASS path_list;;
llist of paths to other nodes;

link CLRSS path(nodenum); INTEGER nodenum;

BEGIN
IF nodenum>usedr ignums THEN
BEGIN
outtext('attempt to create path to illegal node';
outimage;
END;

END of CLASS path;
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REF(pict8) pictemp;

REF(pictl) picing

REF(pict8) picout;

REF(conflict_list) clist; lthe list of numbering conflicts;
TEXT line, infilenams,outfilename;

INTEGER minval,usedrignums,arraysize;

INTEGER ARRAY nbrvalis[1:8];

BOOLERN eql;

PROCEDURE numberthem(picture); REF(pict8) picture;
IThis procedure does the initial numbering of the ridges, as;
Ithe pixels are encountered in raster scan order;
11t also creates the list of numbering conflicts which is later;
fused to assign the ridges their final numeric values;
BEGIN
INTEGER rou,col,nextnum,numberednbrs,i;
nextnum:=1; lfirst ridge number to use minus one;
FOR rouw:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 488 DO !for each pixel, raster-scan wise;
BEGIN
IF picture.pixel (rou,col)=1 THEN !if we are on an *on’ pixel;
BEGIN
numberednbrs:=nnbrs(picture,rou,col);
lfind number of numbered neighbors;
land return boolean eql, TRUE if all neighbors equal;
IF numberednbrs=8 THEN !if it has no numbered neighbors, it
lgets its owWn, new number;
BEGIN
nextnum:=nextnum+l; !next avail ridgenumber;
picture.putpixel (row,col,nextnum); lgive it next ridgenum;
END
ELSE IF eql THEN picture.putpixel (row,col,nbrvalsl[l])
lif all nbrs have same value (1 or more nbrs) then give
leurrent pixel the same value;
ELSE
BEGIN
IF numberednbrs> THEN
BEGIN .
outtext(">4 neighbors in ’numberthem’’);
outtext(" row='D; outint(rou,3);
outtext (' col="); outint(col,3);
outimage;
END;
picture.putpixel (rouw,col,minval); !give pixel the
Isame value as the lowest of the neighbors;
FOR i:=1 STEP 1 UNTIL numberednbrs DO
BEGIN
IF minval\snbrvalslil THEN
BEGIN -
NEH conflict_pair(minval,nbrvalslil).into{clist);
ladd to our list of conflict pairs;
END of IF;
END of FOR;
END of IF;
END of IF;
END of FOR ;
usedfignums::nextnum; lvalue of highest ridge number used;
END of numberthem;
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INTEGER PROCEDBURE nnbrs(picture,rou,col);
INTEGER rouw,col;
REF(pict8)picture;
IThis procedure returns as its value the number (8-8) of neighbors
lof the current pixel which have been ’numbered’ (i.e. whose value
lis greater than 1. It also returns an array (nbrvals) containing
Ithe values of all >1 pixels. I changes a global variable (minval)

Iwhich is the minimum value of all the neighbors.;
IAiso returned is a boolean eql”, which is true if all the neighbor
lvalues are equal;
BEGIN
INTEGER num, i,nvalue;
minval:=511; linit minimum neighbor value;
num:=8; linit number of numbered neighbors;
eq!:=TRUE; linit flag for neighbor values equalj;
FOR i:=1 STEP 1 UNTIL 8 DO { for each neighbor;
BEGIN

nvalue:=picture.npixnbr{row,col,i); !value of neighbor pixel;
lreturns B8 if off screen;
IF nvalue>l THEN
BEGIN
num:=num+1; lincrement neighbor count;
nbrvalslnuml :=nvalue; l!enter neighbor value in array;
IF nvalue<minval THEN minval:=nvalue; !update minimum;
IF num>1 THEN
BEGIN
IF nvalueMsnbrvalslnum-11 THEN eql:=FALSE;
1if this neighbor has value different from previous
Ineighbor, then turn off the neighbors equal flag;
END of IF;
END of IF;
END of FOR;
nnbrs: =num;
END of nnbrs;



-266-

PROCEDURE revissnumbers(picture); REF (pict8) picture;
IThis procedure uses the conflict list previously generated
lto create a graph of node intersections, and from that
lgraph calculates the proper renumbering of the pixels.
lthe fina! step insures that only a contiguous set of ridge
Inumbers are used.;

INote that a path must be made both ways between two nodes.;

BEGIN
INTEGER n,minridge,rou,col,address,nvalue,availoutnum,rnum,i;
REF (graph) cgraph; fconflict graphg
REF(conflict_pair) cp;
INTEGER ARRAY translatetbl[8:arraysizel;
BOOLEAN present;

PROCEDURE tracepaths(n); INTEGER n;
IThis procedure is called with the number of a graph node as its;
Ilparameter. Presumably, the node is unresolved. This routine thenj;
Iset the node as 'resolved’, and sets the translation value to;
Ibe the current smallest value (i.e., the smallest ridge number on;
Ithis connected sub-graph). He then loop over all nodes connected;
lto this one via a 'path’, and if any of those are unresolved,;
lue recursively call this routine on that node.;
BEGIN
REF (path) pth;
IF cgraph.getnode(n).resolved THEN !if called on resolved node;
BEGIN
outtext ("TRACEPATHS called on resolved node #7;
outint{n,4);outimage;
END ELSE
cgraph.getnode(n).resolved:=TRUE; lelse set it resolved;
cgraph.getnode(n). transval:=minridge; !set the transiation valj

pth:-cgraph.getnode(n).pathlst.first QUR path;
Ilget the first path (if any) out of this node;

WHILE pth =/= NONE DO
BEGIN

IF NOT cgraph.getnode{pth.nodenum).resolved THEN

tracepaths(pth.nodenum);
lif the node this path points to is unresoclved,;
ltrace it;

pth:-pth.suc; !get the next path from this node (if anyl;

END of WHILE;
END of tracepaths;

cgraph:-NEH graph; lcreate our conflict graph;

FOR n:=1 STEP 1 UNTIL usedrignums DO !for each of the rignums we used;
NEH node(n). into(cgraghji; lereate a node in the graph;

cp:-clist.first QUA conflict_pair; I!first conflict pair;
WHILE cp =/= NONE DO
BEGIN
MEH path(cp.ridgel).into(cgraph.getnodalcp.ridge2).pathist);
linsert the path (link) into the graph from node for;
Iridge 1 to node for ridge2;
NEW path(cp.ridge2).into(cgraph.getnode (cp.ridgel).pathist);
linsert the path in the opposita direction.;
cp:-cp.suc; lget the next conflict pair;
END of WHILE...graph is nou complets;
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FOR n:=1 STEP 1 UNTIL usedrignums DO |for each node in the graph;
| though there should never be any connections to node 1;
BEGIN '
IF. (cgraph.getnode(n).pathist.empty) THEN
cgraph.getnode(n).resclved:=TRUE; !if this node has no paths;
Ito it, it is automatically resolved;

IF NOT cgraph.getnode(n).resolved THEN !if this node nt resolved;

BEGIN
minridge:=n; lthe smallest value on the current;
fconnected sub-graph;
tracepaths(n) lrecursively trace all the paths;
lconnected to ncde n;
END of IF;

IF cgraph.getnode(n).resolved THEN
translatetbl[nl:=cgraph.getnode(n).transval ELSE
lput the translation value in the table;
BEGIN
outtext{'node number';outint(n,4);outtext(” never got
"resolved’ joutimage;
END;
END of FOR;
lall nodes have hopefully now been resolved, and the correct;
ltranstation values are in the arrau;

translatetb| [8]:=8; ltranslate off pixels to off pixels;
translatetbl [11:=1; Isame for 1 pixels (should be ncne);

availoutnum:=2; lfirst output ridge number;
FOR rnum:=2 STEP 1 UNTIL usedrignums DO |!for each possible current r#
BEGIN
present:=FALSE; linit to that ridge # being unused;
FOR i:=2 STEP 1 UNTIL usedrignums DO !search for presence of rnum;
IF translatetbilil=rnum THEN present:=TRUE; !found it;

IF present THEN lif rnum is currently used;
BEGIN
FOR i:=2 STEP 1 UNTIL usedrignums DO
IF translatetbi[il=rnum THEN translatetbll[il:=availoutnum;
ifor each instance of a ridge to be replaced with rnum;
linstead replace it with "availoutnum’;

availoutnum:=avai loutnum+l; lincrement it;
END of IF;
END of FOR;

lue have now 'packed” things, so that no ridge numbers are wasted;

outint(availoutnum-1,4);outtext(” is the highest output ridge number ') ;
outimage;

IF availoutnum>256 THEN

BEGIN
outtext ("">255 ridges are present...too bad.');
outimage;

END;

FOR row:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 488 DO
BEGIN
address:=picture.pixel{rou,col); lcurrent pixel value;
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nvalue:=translatetb! [address]; lnew value;
picture.putpixel(rou,col,nvalue); linstall new value;
END of FOR;
l#==2this is a hack for now, as values will be >255%x2;

END of revisenumbers;
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PROCEDURE error(message);VALUE message; TEXT message;

BEGIN
INTEGER ARRAY acll:4]1;
outimage;
outtext(message);
outimage;
acl[l1]l:=xnd(8,8R488888); !process handle - current process;
jsys(8R12,ac); IGETER...get most recent error;
acl[l):=xud(8,8R777777); ldestination designator...TTY;
lac[2] uwas setup by GETER;
jsys(8R1l,ac); ltype the error string on the TTY;
jsys(8R178,ac); | HALTF - Just give up;

END of error;

PROCEDURE copypictlto8(pl,p8); REF(pictl) pl; REF(pict8) p8;
IThis procedure copies a single-bit (binary) picture into an 8-bit;
| {(gray level) picture. 0ff (8) bits become pixels with value 8, while;
lon (1) bits become pixels Wwith value 1;
BEGIN
INTEGER rou,col;
FOR row:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 488 DO lfor each pixel in the imags;
IF pl.pixel(rou,col)=1 THEN p8.putpixel (ron,col,1)
ELSE p8.putpixel{rou,col,8); !transfer the values;
END of copypictlto8;

PROCEDURE copypict8tol (p&,pl); REF(pict8) p8; REF(pictl) pl;
IThis procedure copies an 8-bit (grey-level) picture into a l-bit;
I (binary) image. Pixels with value 8 become off(8) pixels, and;
lpixels Wwith vaiue >=1 become on(l) pixels.;
BEGIN

INTEGER rou,col;

FOR row:=1 STEP 1 UNTIL 488 DO

FOR col:=1 STEP 1 UNTIL 488 DO lfor each pixel in the image;
IF p8.pixel(rou,col)=8 THEN pl.putpixel (rou,cel,8)
ELSE pl.putpixel(row,col,l); ldo the transfer;

END of copypict8tol;

PROCEDURE copypictlto9(pl,p8); REF(pictl) pl; REF(pictd) p38;
IThis procedure copies a singlé-bit (binary) picture inte an 8-bit;
| (gray-level) picture. Off (B) bits become pixels with value 8,;
Inhile on (1) bits become pixels with value 1;
BEGIN

INTEGER row,col;

FOR row:=1 STEP 1 UNTIL 48e DO

FOR col:=1 STEP i UNTIL 488 DO | for each pixel in the image;
IF pl.pixel(row,col)=1 THEN pS.putpixel(row,col,1)
ELSE pS.putpixel (row,col,8); ltransfer the values;

END of copypictlto8;

PROCEDURE copypict9to8(p3,p8); REF(pictd) p9; REF(pict8) p&;
IThis procedure copies an 9-bit (gray-level) picture into an 8-bit;
I (gray-level) image. Pixels are copied with their value intact,;
lexcept any pixels with values 2255 are copied as 255;
BEGIN
INTEGER row,col}
FOR rou:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 488& DO !for each pixel in the image;
IF p9.pixel(rou,col) 255 THEN p8.putpixel(row,col,255)
ELSE p8.putpixel! (row,col,p8.pixel(row,coll}};
lcopy as is, unless >255, then put in a 255;
END of copypict9to8;
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line:-sysin. image;

outtext ("Name (XXX) of file (XXX.BIM) of thinned image file: ';
breakoutimage; inimage;

infilename:-copy(line.strip); I!get rid of trailing blanks;

outtext("™Name (YYY) for output file (YYY.ING): 9;
breakoutimage; inimage;
outfilename:-copy{line.strip); !filename for output;

picin:-NEW pictl; lthinned input image;
picout:-NEW pict8; lnumbered output image;
pictemp:-NEU pict8; Itemporary intermediate image;

picin.load(infilename); !get the input image;

copypictlto3(picin,pictemp); Imake pictemp an 8-bit copy of the input
Ipicture., 8--28, 1--21;

picin:-NONE; lget rid of the pictl;

arraysize:=28088; Imax imum number of initia! ridge numbers;

clist:-NEW conflict_list; !init our list of conflicts;

numberthem(pictemp); lassign preliminary numbers to each ridge;

lalso create list of numbering conflicts;

outint(usedrignums,4); outtext(" is highest ridge number used');outimage;

outint{clist.cardinal,4); outtext(" conflicts encountered’);outimage;
ltell how many conflicts we got;

IF usedrignums>arraysize THEN

BEGIN
outtext('too many ridge numbers needed...increase array size');
outimage;

END of IF;

IF usedrignums>511 THEN

BEGIN

outtext("more than 511 ridge numbers used...too bad');

outimage;
END of IF; X
revisenumbers (pictemp); Irenumber the ridges based upon the;

lconflicts found;

copypict9to8(pictemp,picout); lcopy from 9 bit image to 8 bit one;
picout.store{outfilename); lput image away;

END of SINSET block;
END of rignum;
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F"THIN"

IThis program operates on a binary (thresholded) image and
Iproduces one with all regions thinned to single pixel skeletens;
| The algoritm used looks only on a 3 x 3 region surrounding and
lincluding the pixel in question.;

BEGIN

EXTERNAL CLASS i028,pictl,pictd;

EXTERNARL PROCEDURE enterdebug;

EXTERNARL BOOLERN PROCEDURE jsys,skiping

EXTERNAL INTEGER PROCEDURE xwd,right,left,land,lor,Inot,taddr,aaddr;
EXTERNAL INTEGER PROCEDURE Ishift, Ixor;

EXTERNAL TEXT PROCEDURE conc,checkextension,rest, frontstrip;
EXTERNAL CHARARCTER PROCEDURE findtrigger;

EXTERNRL PROCEDURE halt;

REF(pictl) picin,picout;
REF(pict8) pictemp;

TEXT line, infilename,outfilename;
INTEGER rouw,col;

BOOLERAN gotsomething;

PROCEDURE copypictlto8(pl,p8); REF(pictl) pl; REF(pict8) p8;
IThis procedure copies a single-bit (binary) picture into an 8-bit;
! {gray level) picture. 0ff (8) bits become pixals With value 8, uhile;
lon (1) bits beccme pixels with value 1;
BEGIN
INTEGER row,col;
FOR row:=1 STEP 1 UNTIL é48& DO
FOR col:=1 STEP 1 UNTIL 488 DO lfor each pixel in the image;
IF pl.pixel(row,col)=1 THEN p8.putpixel {row,col,1)
ELSE p8.putpixe!l(row,col,8); !transfer the values;
END of copypictlto8;

PROCEDURE copypict8tol(p8,pl); REF(pict8) p8; REF (pictl) pl;
!This procedure copies an 8-bit {(grey-level) picture into a l-bit;
!{binary) image. Pixels with value 8 become off(8) pixels, and;
Ipixels with value >=1 become on(l) pixels.;
BEGIN

INTEGER row,col;

FOR row:=1 STEP 1 UNTIL 488 DO

FOR col:=1 STEP 1 UNTIL 4e& DO lfor each pixel in the image;
IF p8.pixel(rou,col)=8 THEN pl.putpixel (row,col,8)
ELSE pl.putpixel {row,col,1l); !do the transfer;

END of copypictdtol;

PROCEDURE usetemplate{pict,t1,t2,t3,t4,t5,16,17,t8,t8,neuval,rots);
INTEGER newval,rots,tl,t2,t3,t4,15,16,17,18,t9; REF(pict8) pict;

IThis procedure operates on an B-bit (grey-level) picture (Ppict’).;
1The template array is used as the pattern wWhich the neighbor cells;
lof each cell in the picture (and the cell itself) must match in order;
lfor the value of that cell to be changed to ’newval?;

IThe cell numbering scheme is:
I

|

|

!

~N 00 =
oM oN
LT )

IThe possible values for the entries in the template array are 8-255

| (uhich correspond to the possible values of a pixel), and -1, which
limplies that that spot in the template is a ’dont care’ (i.e. it matches
lany pixel, no matter what its value).

IThe parameter ’rots’ is used to specify if rotations of the template are
lto be used for matching as well. Rot=8 ==> use no rotations.

'Rot=4 ==>use all 4 4-rotations. Rot=8 ==>use all 8-rotations.;
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BEGIN
INTEGER row,col,i,nbrptr;
INTEGER ARRRY nhood[1:91,t[1:9];
outtext(’:™); breakoutimage;
tl1l:=t1; t[21:=12; t[31:=t3; tl4l:=t4; t[51:=15; t[6l:=t6;
t[71:=t7; t[81:=1t8; t[91:=19; Imove the templiate into its array;
FOR row:=1 STEP 1 UNTIL 488 DO
FOR col:=1 STEP 1 UNTIL 488 DO BEGIN !for sach pixel in the image;
IF ((t[81=-1) OR (t[91=pict.pixel(ron,col))) THEN

BEGIN lif center cell of template is a dont care, or it matches
lthe current cell in the picture, then go on;
FOR i:=1 STEP 1 UNTIL 8 DO
nhoodlil:=pict.pixnbr{rou,col,i}; !get the neighborhood data;

IF rots=8 THEN BEGIN
IF templatematch{t,nhood,1) THEN BEGIN
pict.putpixel (row,col,neuval);

gotsome thing:=TRUE; lflag sent upstairs...we got one;
END;
lcheck for template match...do not rotate template (start at 1);
END

ELSE IF rots=4 THEN BEGIN
FOR nbrptr:=1 STEP 2 UNTIL 7 DO !do all 4 4-rotations;
IF templatematch(t,nhood,nbrptr) THEN BEGIN
pict.putpixel (row,col,neuval)l;
gotsomething:=TRUE;
land check for a template match;
END; END
ELSE IF rots=8 THEN BEGIN
FOR nbrptr:=1 STEP 1 UNTIL 8 DO !do all 8 B-rotations;
IF templatematch(t,nhood,nbrptr) THEN BEGIN
pict.putpixel{rou,col,neuvall;
gotsomething:=TRUE;
land check for template matches;
END; END
ELSE BEGIN
outtext(" Illegal rotation spec. in call to 'usetemplate®’);
outimage; halt; END;
END of IF;
END of FOR;
END of usetemplate;

BOOLERN PROCEDURE templatematch(t,nhood,nbrptr);
INTEGER ARRAY t,nhood; INTEGER nbrptr;
IThis routine checks to see if the template in array ’t’ matches
lthe pixels in the array ’nhood?. The template is rotated as specified
Iby "nbrptr’ (nbrptr is the template cell which ends up in the ’1’
lcel!l position after template rotation;
BEGIN
BOOLEAN okay;
INTEGER cell,modcell;
okay: =TRUE; linitialize our flag;
IF ((t[81%\e-1) AND (tI8]1“snhood[91)) THEN
templatematch:=FALSE !if we definitely dont have a match;
ELSE BEGIN FOR ceil:=1 STEP 1 UNTIL & DO
| for each cell in the neighborhood;
BEGIN
modcel1:=H0D(nbrptr+cel1-2,8)+1l; !rotate our template;
IF (tImodceli]lNz=1) THEN BEGIN !if this spot in template not
!a dont care;
IF tImodcel 11 \enhood [cel1]l THEN okay:=FALSE; !didnt match;
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END of if;
END of FOR;
templatematch:=okay;
END of IF;
END of templatematch;

line:-sysin. image;

outtext ('Name (XXX-YYY) of file (XXX-YYY.BIM) to thin: ");
breakoutimage;

inimage;

infilename:-copy(line.strip); Iget rid of trailing blanks;

outtext (“Name (UUU-VVV) of file (UUU-VVV.BIM) for result: ';
breakoutimage;

inimage;

outfilename:-copyl(line.strip); lfilename for output;
picin:=NEW pictl; lour image;

pictemp:-NEW pict8; ltemporary 8-bit picturs;
picout:-NEH pictl; loutput image;

picin.load(infilename); Iget the image;

copypictlto8(picin,pictemp); Iimake pictemp an 8-bit copy of picing;
18--2>8, 1-->1;

gotsomething:=TRUE; lso we go thru the loop at least once;

WHILE gotsomething EQV TRUE DO !loop until nothing is changing;

BEGIN

gotsomething:=FALSE; tnothing has changed yet;
usetemplate(pictemp,8,-1,1,1,1,-1,8,8,1,2,8); luse the template and

lall of its 8-rotations;

usetemplate(pictemp,8,-1,-1,1,-1,-1,8,8,2,8,8); lagain..neu templiate;
END of WHILE;

usetemplate(pictemp,-1,-1,-1,-1,-1,-1,-1,-1,2,1,8); !change 2’s to 1’s;

Ithin 2-pixe! skeleton;

usetemplate(pictemp, &, 8,-1, i,-l, 1,-1, 8, 1, 8, 8); !to l-pixel cone;
usetemplate(pictemp, &, 6, 8,-1,-1, 1, 1,-1, 1, 8, 8); 1C2;
usetemplate(pictemp,-1, 6, 8, 8,-1, 1,-1, 1, 1, 8, 8); 1C3;
usetemplate(pictemp, 1,-1, 8, 8, 68,-1,-1, 1, 1, 8, 8); 1C4;
usetemplate(pictemp,-1, 1,-1, 8, 8, 8,-1, 1, 1, 8, 8); 1C5;
usetemplate(pictemp,-1, 1, 1,-1, 8, 8, 8,-1, 1, 8, 8); 1CB;
usetemplate(pictemp,-1, 1,-1, 1,-1, 8, 8, 8, 1, 8, 8); 1C7;
usetemplate(pictemp, 8,-1,-1, 1, 1,-1, B, 8, 1, 8, 8); 1C8;
'now for the reflections;
usetemplate(pictemp,-1, 8, 8, 8,-1, 1,-1, 1, 1, 8, 8); IC1;
usetemplate(pictemp, 6, 8, 8,-1, 1, 1,-1,-1, 1, 8, 8); IC2;
usetemplate(pictemp, 6, 8,-1, 1,-1, 1,-1, 8, 1, 8, 8); 1C3;
usetemplate(pictemp, 0,-1, 1, 1,-1,-1, 8, 8, 1, 8, 8); 1C4;
usetemplate(pictemp,-1, 1,-1, 1,-1, @, 8, 8, 1, 8, 8); 1C5;
usetemplatel{pictemp, 1, 1,-1,-1, 8, 8, B,-1, 1, 8, 8); 1CB;
usetemplatelpictemp,-1, 1,-1, 8, B, B,-1, 1, 1, 8, 8); IC7;
usetemplate(pictemp,-1,-1, 8, 8, 8,-1, 1, 1, 1, 8, 8); 1C8;
copypict8tol(pictemp,picout); Imake picout a l-bit version of pictemp;
18--28 (>=1)-->1;
picout.stere(outfilename); lput image away;

END of thin;
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