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Abstract

Whispering gallery mode (WGM) optical resonator sensors have emerged as promising tools for label-free

detection of biomolecules in solution. These devices have even demonstrated single-molecule limits of de-

tection in complex biological �uids. This extraordinary sensitivity makes them ideal for low-concentration

analytical and diagnostic measurements, but a great deal of work must be done toward understanding and

optimizing their performance before they are capable of reliable quantitative measurents. The present work

explores the physical processes behind this extreme sensitivity and how to best take advantage of them for

practical applications of this technology.

I begin by examining the nature of the interaction between the intense electromagnetic �elds that build

up in the optical biosensor and the biomolecules that bind to its surface. This work addresses the need for a

coherent and thorough physical model that can be used to predict sensor behavior for a range of experimenal

parameters. While this knowledge will prove critical for the development of this technology, it has also shone

a light on nonlinear thermo-optical and optical phenomena that these devices are uniquely suited to probing.

The surprisingly rapid transient response of toroidal WGM biosensors despite sub-femtomolar analyte

concentrations is also addressed. The development of asymmetric boundary layers around these devices

under �ow is revealed to enhance the capture rate of proteins from solution compared to the spherical

sensors used previously. These lessons will guide the design of �ow systems to minimize measurement time

and consumption of precious sample, a key factor in any medically relevant assay.

Finally, experimental results suggesting that WGM biosensors could be used to improve the quantitative

detection of small-molecule biomarkers in exhaled breath condensate demonstrate how their exceptional

sensitivity and transient response can enable the use of this noninvasive method to probe respiratory distress.
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WGM bioensors are unlike any other analytical tool, and the work presented here focuses on answering

engineering questions surrounding their performance and potential.
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