
CALIFORNIA INSTITUTE OF TECHNOLOGY

Cornp~lter Science Department

Structurc. Placcmcnt And Modelling

Technical Report # 4029

Richard Scgal

Submitted in Partial Fulfillment of the Requirements for the Denroc of

Master of Science

February 1, 1 98 1

Copyright, Cal ifornia Ins t i tu te of Technology, 1981

Abstract

The nature of hierarchical design tools for VLSI implementation is explored in

terms of the "Caltech Structured Design Philosophy" as interpreted by Rowson in h is

doctoral thesis [Rowson]. One obvious implication of this thesis is the desirability

of tools for leaf and composition cell design. This thesis describes one such tool

targeted at the composition cell design problem. It is intended to be used i n t he

architectual phases of a design and allows structural (interface specification),

physical (floor planing), and behavioral (simulation modelling) descriptions to be

written 'down, integrated, and tested. One biproduct of this process is the

generation of a comprehensive design document from which workbooks can be

generated automatically.

The later sections describe a hierarchical simulator and how it fits into t h e

step-wise refinement process of design. The most important considerations in t h e

design of this simulator were ease of expression and the provision of enough

generality to allow the specification of any VLSI structure. Simulatiorr takes place

in a time axis/delay environment and uses a system in which nodes may take one of

four values or states. This allows a high level simulation in which physical tlcvices

are replaced by register transfer type operations. Data is altered and moved around

using flow control mechanisms, logical and mathematical operations, and various

means of specifying delay. Though not necessary or typical i t is possible to model

actual devices as ideal switches using these techniques. It is a multi-madel

simulation because simulation can occur at any level of design abstraction. Several

examples are given including the modelling of the GR2 stack data microprocessor

which was recently fabricated in NMOS.

Table of Contents

1) Structured VLSl Design

1.11' Communication i s the Key

1.2) Regularity and Interconnection

1.3) Verification

21 SPAfl '

31 Creating Structural Descriptions

3.1)' The Hierarchy of Representations

3.2) Composition Rules

3.3) Interface Specification and Floor Plan

3.4) Automatic Oocumentation

4) Behavioral Modelling

4.1) Operations

4.1.1) Data Storage

4.1.2) Data Transfer

4.1.3) Node Specification

4.1.4) Logical/nathematical Functions

4.1.5) Supplementary Features

4.2) Scheduling and Communication

4.2.11 Simulation Hierarchy

4.2.1.1) Connections

4.2.1.2) Wires and Included Buses

4 .2 .2) Simulating Combinatorial Logic

4.2.3) The Sequential Behavior of an Instruction Processor

5) So f tuare Organ i za t i on

61 Conclusions

Appendix A) The SPAR Notation

Appendix 8) SPAU User Guide

8.1) el I Specification
8.2) Behavioral Oescriptions

0.3) Compiling Input
8.4) Running a Simulation (tlAPS1

Appendix C) Examples
C.ll A tliniature On Chip

C.2) .The GR2
C.2.1) A Sequential Description

C.2.2) A Bigger Picture

1) ~trnctureh VLSI Design

As VLSI devices grow smaller and smaller, designs in VLSI can grow more and more

complex. A theoretically possible 10 million transistor chip presents an enormous

challenge to the designer. The so called "Caltech Structured Design Philosophy" has

yielded an approach to this problem which seems to make large designs more

feasible and understandable. This master's thesis is a description of a design system

which attempts to follow this philosophy and to provide a means for verification of

large designs.

1.1) Communication is the Key

It has been established [Mead and Conway, Rowson) that the primary factor

influencing the size and speed of VLSI implementations is communication. Putting

functionality and transistors into chips is easier, less critical, and more well

understood then the usually random wiring that goes in between all the

components.

1 , Z) negulari ty and Interconl~ection

Random wiring can be reduced by designing modules which when placed side by

side connect to one another exactly as they should. This technique increases

regularity in designs. These so called "butting blocks" result in the production of

many rectangular cells which fit together in a design with no other

interconnection. The communication problem has not disappeared however. i t has

just become easier. Every design needs some sort of random wiring. In a "butting

blocks" world random wires are put into cells of their own, making them easier to

define and to modify. A design which is made completely of butting blocks must be

planar and can be submitted to automatic stretching and placement algorithms.

1.3) Verification

To be sure that a large chip will function as it is supposed to it is important to have

some tools for the verification of designs on the structural, physical, and behavioral

domains of description. Structural integrity of a design which is made of only

rectairgular cells is equivalent to checking that all connections between all cells can

be made and that they are all of legal types (eg. input to output etc.). Physical

integrity applies primarily to "leaf'' cells which, when a design is complete. have

physical descriptions (eg. shapes on silicon) and must be placed side by side on the

chip. Elements of physical verification include placements and stretchings of leaf

cells and design rule checking. Behavioral verification usually implies some sort of

simulation of designs. Simulators have been designed in many different ways. One

of the primary tasks of this study has been the building of a hierarchical simulator

in which the logical function of more abstract descriptions can be compared with

that of more concrete cells as a chip design progresses. This technique should be

understood in the light of a discussion of the nature of the design hierarchy;

therefore the complete subject of simulation is left for later sections.

2) SPAM

SPAM is the result of a synthesis of two spheres of thought. Gray and Buchanan

worked together on the topic of leaf cell verification in an attempt to help unify

the structural and physical domains of description in chip design [Buchanan and

Gray]. One result of this work was the invention of the coordinode. The coordinode

is an object which can be used in the description of a chip to refer to a physical o r

structural position. The value of this object is to allow for the production of

structural and physical descriptions using one set of constructs. This keeps the

descriptions isomorphic and, as in SPAM itself, allows physical characteristics to be

implied from what appears to be purely structural description. The final result of

this work was the production of the ICSYS program. ICSYS is a design tool which

allows embedded definitions to be translated to a structure that can be used for

performing design rule checking, circuit level simulation, and providing

fabrication output.

The second influence was the Caltech hierarchical design philosophy. Given that a

"leaf cell" system had been implemented, there was now room to create a program

that allowed designers to produce structural and behavioral descriptions of their

design hierarchies. The hope was that such a program could be made to output chip

assembler code thus producing a system capable of providing all three levels of

verification. Thus, SPAM, which stands for Structure, Placement, and Modelling,

was born as a composition cell description, floor planing, and simulation tool. It

was the task of the CAD course at Caltech to define the structural description

language for SPAM. The author joined this group eventually under the guise of

designing the behavioral language and simulator. All programs were written in the

SIMULA language on the Caltech DEC-system 20. Here belong thanks to the CAD

class which consisted of teacher Dr. John Gray and students Mike Sprietzer, Telb

Whitney, and Rlcky Mosteller.

3) Creating Structural Descriptions

The central thesis of the VLSI structured design philosophy has been that by

combining the approach described in section 1 with a top-down design process

generating a hierarchy of representations for any given chip a complex VLSI

structure can be efficiently produced. This approach tends to produce highly

regular or ordered placements of modules on chips and tends to decrease the wiring

problem. SPAM is a system for describing the design hierarchy. No actual physical

irnplelnentation of cells is assumed. Since the hierarchy is "separated" from the

actual physical domain allowiilg the use of any actual leaf cells, (eg. NMOS, CMOS

or graphics) Rowson's term "separated hierarchy" is reasonable to describe the

purely structural function of SPAM.

3.1) The Hierarchy of Representations

At the "bottom" of a design hierarchy are the so-called "leaf cells." To keep wit11

the structure and placement algorithms previously designed [Rowson. Kingsley]

physical descriptions of leaf cells are contained in a rectangular bounding box. At

the "top" of such a hierarchy is the si~igle definition describing the entire chip. In

between those two representations are the so-called "composition cells." That is. all

non-leaf cells are just soma sort of "composition" of "lower" leaf and composition

cells. Naturally, composition cells also possess rectangular shapes.

Whether a design is thought of as "bottom-up" or "top-down" the designer will deal

with an abstraction of the units,of his/her system in order to build the next larger

system rather then the complete description of each of the components [Rowson].

Once an abstraction is decided upon it is possible to build the individual units or

subsystems of one's design. It i s in this process of abstraction and rqfinement that

design decisions become fixed. It is for this reason that i t seemed wise to attempt to

provide whatever verification we could, be it structural, physical, or behavioral at

that stage in the process between levels of abstraction. This is in contrast to a

system which perhaps produces a simulation by 1ook.ing only at the leaf cells of the

completed design. It is hoped that this will allow for the detection of more

mistakes at a time closer to when they were originally produced.

3.2) ComposiWon Rules

In order to provide any real tools to a designer the "composition rules" which

describe how .low level cells are combined to make new composition cells must be

discovered. The task is to provide the user with some way of producing a cell

definition which is to be considered as the sum of several parts. The designer has

already produced some cells. S/he has completely designed a leaf cell which s /he

would like to use with some specific combination of the other leaf cells also already

designed. In other words, the definition which is to be expanded was a leaf cell

with no components. New leaf cells will be added to this definition to make u p the

components of the new composition cell. In the following section this process is

more completely examined as leaf cells, composition cells, and the rules that relate

them are precisely defined.

3.3) Interface Specification and Floor Plan

The primary ingredients in a circuit layout are wires. Wires pass from module to

module as described earlier by abutting blocks. Therefore, any cell definition must

have some connections to the outside world. From here on these connections will

be called "pins."

The components of a composition cell can be said to be instances of the definitions of

those components. Each of those definitions must have had pins too. In a complete

design there will be an arbitrary number of composition cells in an arbitrarily deep

hierarchy. If we are to be able to identify individual nodes in the circuit there

must be some way to connect all these components into some sort of real data

structure which looks like a real hierarchy. For example, a pin on the outside of

the top level cell must somehow connect to some real component which was

defined at a later date. So, the description of cells must contain enough information

to compose the entire hierarchy and all connections between all pins on a l l

instances of all definitions. The result is called a "fully instantiated" hierarchy.

IJhen user defines Z, E uould connect to F but D i s not connected to E u n t i l

X i s defined and G i e not connected to F u n t i l Y i s defined. I f we a re

interested I n hou X and Y's componente communicate i t must be knoun tha t 0

connects to G.

Every cell definition starts out as a leaf cell and is then expanded to a composition

cell. So let. us first consider leaf cells. First off, every cell needs a name. Now, if a

leaf call is to be used as a component for another cell we must at least know what

pins it has. We need a naming convention and a method for pin declaration.

Another useful piece of information is the pin type. The value of "typing" is to

allow a more complete structural verification. When the hierarchy is instantiated

every connection of two pins can be checked for legality. SPAM provides the six

types: input, output, io, power, ground and clock to provide a sufficient set of types

to catch most illegal connections. This makes the task of describing circuit

"behavior" so~llewhat easier and improves design documentation through

annotation. Since connections contain just two wires, a simple set of legal

connections can be produced:

I I l p t ~ t <-> Output

I0 <-> (Any thing)

Clock <-> CLOCK

P o ~ t e r <-z Power

Ground c-> Ground

Since individual physical devices are not important in SPAM the task of designing

the structure of a design is primarily the task of "interface specification." That is,

we are searching for the organization of communication between modules. The

three items: cell name, pin declaration, and pin typing are all the parameters

necessary to completely describe the structure of one individual leaf cell.

The next step is to use that specification and produce a complete layout. For this it

is necessary to produce a "floor plan." A floor plan is a description of the physical

positioning of instances of cells in relation to one another. This is the descriptive

task which ties the composition cell together.

To begin with, each composition cell needs to include a list of all components. This

list will show the correspondence between "real" cell definitions and the instance

names they are given for use as components of this cell. A cell may have any

number of repetitions of any component. Therefore, it is useful to allow the user to

specify the inclusion of arrays of components. That is, we need to be able to specify

something like this: "I have an 8x8 array of ADDER cells called ADD[1.11 to

ADD[8,8]." Once the complete list of components is declared the only remaining

task (besides modelling - see section 4) is to describe the abutment of those

components. Cells abut only along horizontal and vertical edges. A description of

the floor plan of a composition cell can now be created by simply listing the

abutments of sets of components edges against each other and against the sides of

the composition cell itself. Notice, no pins are ever mentioned in abutment

declarations. Only edges are referenced. For example, "the left of X abuts the right

of Y" tells us that all the prns on the left of X connect to all the pins on the right of

Y. Notice too that since actual leaf cells are unknown and may require stretching

and placement hefore they can actually be hooked up, we have created a technique

i n which a purely structural description is given and from which a physical

positioning can be implied.

SAMPLE.TXT by Richard Segal 1980- 10- 14

Floor Plan of 'SAMPLE':

. - - - - - - - - - - - - - -

I TYPEA l TYPEA l

I I I

I EENY 1 MEANY I

I 1 1
1 i 1

I TYPEB I LARRY l TYPEB l

I I I I
I CURLY 1 LARRY I MO I

I I I I

I I I I

MINEY l

I

I

I

I

flINEY I

I

I
I

I
I

Figure 3.2

Sample SPAH floor plan output to demonstrate that

p i n names not exp l i c i t l y specified in abutment l i s t

This description will be complete as long as there are an equal number of pins along

each set of edges which abut. However, since it is occasionally desired that some

pins b left unconnected this condition rnay not always hold. For this reason an

"omit" clause must be added to abutment declarations. For example, we must be able

to say "the left of X OMIT PINP abuts the right of Y" where the left of X was

declared to have one more pin the we could have actually connected to the right of

These are the elements of a structural/physical design in SPAM. Every composition

cell has a name, a set of pins and types, and a set of components and abutments.

Given this, the notion is that a SPAM compilation can now perform design checking

and structural verification tasks. One primary task is to go through all the

abutment statements and attempt to produce a data structure representing all the

connections which are implicit in them. There is only one correct connection of the

components in a cell. Equivalent to the task of checking to see if such a legal set of

interconnections exists for each cell is the determination that the graph of the

connections is "planar." That is, all connections can be made without crossing

wires. This is a relatively simple task and a SPAM compilation will report any

structural errors at this point. It will also check that any connections that are made

are of one of the legal types outlined above.

If a cell is planar and all connections are of legal types, then one's trust in the

structl~ral integrity of the cell can be increased greatly. As the design progresses

and each level of definition is checked, more potential errors should have been

removed. By the time the design is complete, assuming the leaf cells are correctly

represented. one can feel confident that all the nodes in one's design are connected

in legal ways to one another. Since most errors made in VLSI design involve wiring

and structural integrity, it is hoped that much can be gained from the use of this

type of design system.

3.4) Automatlic Documentation

Included in the SPAM compiler is the generation of the following information:

1) Hierarchy Composition

2) Interface Specification

3) Floor Plan Organization

Since all three of these pieces of information are of vital importance to the

description of a circuit, any documentation provided by the SPAM system will be of

great value to the designers, managers, and future users or modifiers of the

specified circuit, Therefore, once a circuit descriptiop has been compiled, the user

may request that such automatic documentation be produced. The result is the

production of a hierarchical map for the entire circuit, an interface specification

diagram for each cell definition, and a floor plan diagram for each composition cell

in the descripton. Examples of all three of these appear in appendix C.

4) Behavioral Simulation

TJntil it is possible to "compile" function into designs in a general way it will be

necessary to use simulation to assist in the verification of behavioral integrity.

Simulation has taken many forms. They include detailed low level circuit element

simulation, switch level transistor network simulation, as well as several flavors of

logic or register transfer simulation.

Detailed circuit element simulation is of very limited value i n VLSI

implementation. Even though these simulators often involve very complex

mechanisms they still rely on the specification of all the process parameters of

individual fabrications. These are rarely known with precision. The result is the

expending of much effort for little practical gain. If precise delay estimation of

circuit behavior is required i t is usually easier and just as valuable to do paper and

pencil tabulations. Such techniques are fully explained in text books [Mead and

Conway]. Furthermore, VLSI circuits are much too large to even attempt to perform

detailed simulations of entire chip designs even with the largest modern computers.

Switch level simulation has been used extensively in LSI design. It has the

advantage of requiring a relatively small amount of storage and the ability to

produce quick results. Unfortunately these simulators do not allow complex

testing in time. The primary value of simple switch simulators is the verification

of the logical function of small circuit elements whose correct behavior is wel l

defined. No attempt is made to model complex communication enviornments or to

relate circuit behavior to high level logical function.

The final category is the high level, time delay or register transfer level of

simulation. Generally these are simulators which require the users to describe

their circuits in a specially designed input language. These languages allow the

user to specify function of nrodules in terms of "nodes," "pins," "registers" or

whatever blocks the particular system is built of. The simulator reads these

descriptions and simulates the network of modules as a connected design. Since

structural descriptions are new, this is generally accomplished by specific

reference to neighboring modules in the behavioral description. [KO, Cory et a l l

The primary advantage of this level of simulation is the ability to simulate

complex structures in a simple, compact way. That is, objects such as registers,

adders, and gategare usually included in the semantics of the simulator. The result

should be the ability to describe entire circuits with a minimum of effort.

The SPAM simtllator is of the last type. The task of this thesis is to discover what i t

takes to build a good high level simulator. To begin with w e have been given t h e

framework of SPAM. That is, a hierarchical description of a chip exists and we

desire to add the ability to describe the behavior of cells.

This framework indicates that simulations will be described and performed in a

top-down manner. That is, an initial chip description will be produced and

simulated. Once the results are correct, the design is broken up into components

and each module is given a behavior. The resulting network is simulated and the

results are compared to the original test. If the same results are produced then th i s

refinement has been successful. The process continues until the "leaf cells" have

been described.

Some of the features required by the SPAM behavioral description language are:

1) A b i l i t y to reference "pins" o f the SPAtl description.

2) Abi l i ty to simulate t o an arbi trary depth in the SPAtl hierarchy.

3) Compact descriptions
4 , General descr i p t i ons

There are two parts to this exploration: 1) What circuit operations should be

simulated, and 2) How is communication between modules and module activation

(scheduling) accomplished? The result is that SPAM includes all the features

described in "Operations" and both scheduling mechanisms described in "Scheduling

and Communication."

4.1) Operations

The desiderata of both compact descriptions and generality can often produce

conflict. If a description language is too general it may require the specification of

a lot of detail. On the other hand if a language is too simple serious limitations may

be placed on the types of operations which can be easily simulated. In order t o

decide what the behavioral language should look like let us start by considering

what operations do actually take place on chips. It should be noted that what is

being presented is a description of what is necessary. The actual formats chosen

appear in the appendices of this report.

4.1.1) Data Storage

Data must be communicated between cells through pins. Naturally, it must be

possible to reference data residing at the pins. The most common operation i n

integrated circuits is data storage. To allow for this additional type of node, the

"internal storage" node is defined. Since their real counterparts usually come i n

sets, like registers and arrays, i t must be possible to declare arbitrary arrays- of

internal storage.

4.1.2) Data Transfer

Operations on data can now take place. First of all some facility must be provided to

transfer data from one set of nodes (pins or internal storage) to another. Since data

transfers really take place on wires or through networks all of which have real

delays, this mechanism must have the ability to specify the delay to be modelled in

each such transfer. Since the operation here is to "set" the "value" of nodes i t is

called a "setval" statement.

4 . 1 3 Node Specification

Setval statements are the place at which operations are most easily specified. For

example, we will want to say something like, "register A bits 1 thru 4 get the result

of an AND operation on registers B and C." Clearly the setval operation looks l ike an

assignment statement where the left side specifies the destination and the right side

specifies the sources, operations, and delay to be used. Here is a place to make a

choice. Is it better to allow very general node specification in this assignment -
statement risking some complexity in the parser and in the BNF for the language or

should only simple register transfer operations be allowed? One example which

indicates the need for a very general referencing scheme is the interlaced bus of the

OM chip [Mead and Conway]. This is a set of 16 wires (which will look like "pins"

i n SPAM) which are to be used as two buses. A creative wiring strategy interlaces

the buses. That is, all the even numbered &ires are called the A bus while all the

odd numbered wires are called the B bus. If only straight sets of nodes could he

referenced in the setval statement i t would probably be necessary to include 16

different such %tatements for each operation required. Another example is an adder

in which the overflow bit is to be gated to a special error flag register. This

indicates the need to allow both multiple destinations and multiple sources in the

setval statement. Quite clearly this is one situation where more generality will

mean less confusion. The reason is the variety of structures that can be built on a

chip. It is concluded then that setval statements should include arbitrary

references into sets or arrays of nodes and should allow the concatenation of sources

and destinations in any given operation.

4.1.4) Logical and Mathematical Functions

The sstval statement generally represents the transfer of data between nodes. To

completely specify the function of such a transfer we need both logical bit

functiolls such as AND, OR, and NOT as well as mathematical functions to allow

modelling of arithmetic components like adders or multipliers. Bit operations act on

binary words and we generally think of arithmetic in terms of decimal numbers.

Since the binary nodes may be referenced in an arbitrary manner there must be

some facility to allow sets of nodes to be used as either logical or arithmetic values.

Consider the following example: "register X gets (NOT register A plus register B)

divided by 19." This demonstrates the type of activity that must be allowed. W e

must be able to invert the bits of register A; add the value of the result to the value

contained in register B and divide that result by the decimal value 19. The final

result must bo placed in register X which may be of an arbitrary length requiring

pading wi th zeros or truncation. Notice that arithmetic must always he decimal

arithmetic. Nevertheless, we could simulate a 2's complement subtraction of 'A-B'

by 'A + ((NOT B) + I) . ' All mathematical operations available in SIMULA have been

included in SFAM, and all SIMULA logical functions are implemented as operations

on SPAM node sets.

4.1.5) Supplementary Features

Since chips can perform any logical function it is necessary to provide a f e w

programming constructs as flow control mechanisms. In SPAM, the SIMULA FOR,

WHILE, and IF-THEN-ELSE constructs are provided. The additional word 'EF' as an

abbreviation for 'ELSE IF' is added. Generally, SIMULA arithmetic expressions are

replaced by SPAM arithmetic expressions as described in the context of setval

statements (section 4.1.4). Boolean expressions for use in IF and WHILE statements

different such %tatements for each operation required. Another example is an adder

i n which the overflow bit is to be gated to a special error flag register. This

indicates the need to allow both multiple destinations and multiple saurces in the

setval statement. Quite clearly this is one situation where more generality will

mean less confusion. The reason is the variety of structures that can be built on a

chip. It is concluded then that setval statements should include arbitrary

references into sets or arrays of nodes and should allow the concatenation of sources

and destinations in any given operation.

4.1.4) Logical and Mathematical Functions

The setval statement generally represents the transfer of data between nodes. To

completely specify the function of such a transfer w e need both logical bit

functions such as AND, OR, and NOT as well as mathematical functions to allow

modelling of arithmetic components like adders or multipliers. Bit operations act on

binary words and we generally think of arithmetic in terms of decimal numbers.

Since the binary nodes may be referenced in an arbitrary manner there must be

some facility to allow sets of nodes to be used as either logical or arithmetic values.

Consider the following example: "register X gets (NOT register A plus register B)

divided by 19." This demonstrates the type of activity that must be allowed. We

must be able to invert the bits of register A; add the value of the result to the value

contained in register B and divide that result by the decimal value 19. The final

result must be placed in register X which may be of an arbitrary length requiring

pading with zeros or truncation. Notice that arithmetic must always he decimal

arithmetic. Nevertheless, w e could simulate a 2's complement subtraction of 'A-33'

by 'A + ((NOT B) + 1).' All mathematical operations available in SIMULA have been

Included in SFAM, and all SIMULA logical functions are implemented as operations

on SPAM node sets.

4.1.5) Supplementary Features

Since chips can perform any logical function it is necessary to provide a few

programming constructs as flow control mechanisms. In SPAM, the SXMULA FOR,

WHILE, and IF-THEN-ELSE constructs are provided. The additional word 'EF' as an

abbreviation for 'ELSE IF' is added. Generally, SIMULA arithmetic expressions are

replaced by SPAM arithmetic expressions as described in the context of setval

statements (section 4.1.4). Boolean expressions for use in IF and WHILE statements

may include any legal logical combinations of boolean variables and conditions

where a condition is a pair of SPAM arithmetic expressions separated by any

SIMULA boolean operator (eg. =, <, \=I.

The "NEXT" statement also influences flow of control. It is used to assist i n the

simulating of microprocessors or other instruction processors and wi l l be explained

in that context in section 4.2.3.

4.2) Scheduling and Communication

Once SPAM has parsed the behavioral descriptions of a circuit the output code (in

SIMULA) is produced. This resulting program contains a brand new data structure

and mechanisms needed to actually simulate the circuit.

4.2.1) Simulation Hierarchy

The SPAM design hierarchy no longer exists in the actual simulation. The designer

has specified that certain cells should be treated as leaf cells for this particular

simnlation. Therefore. only those cells are used to produce the simulation of

interest. The result is a new data structure which can be thought of as one

complete tiling of the chip (or component) being simulated. For esample, t he

designer may have specified that the left half of the circuit be simulated by a single

cell definition which is described near the top of the hierarchy, while the right

half is to be simulated by a dozen lower level cells which were described at a

different time.

4.2.1.1) Coiinections

Type checking and planarity do not require a fully instantiated hierarchy. That is,

if all local connections are legal then all global connections will be legal. However,

to turn one specific set of cells into a connected communicating network requires

that all paths of communication between them be discovered.

Figure 4
nstantiated

Simulation D a t a Structure t

In diagram 4 an example hierarchy is shown with several connections. Figure 4(a)

represents the SPAM data structure and all known connections are shown.

Assuming the lowest level cells shown are to be simulated the resulting simulation

data structure is shown in figure 4(b).

Strictly speaking this is not a completely instantiated hierarchy because i t contains

only the information required to run a simulation. That is, no table is actually

created which keeps track of all nodes which are electrically equivalent. The fact

that one node+is connected to another is found instead by following pointers and

searching for the correct pin in the appropriate enclosing or abutting cell. The

simulation data structure (with its limited information) appears in the output code

of the compiler. The result is, that though a fully instantiated hierarchy is

required, i t need not ever actually exist. (See section 5 for an esplanation of t h e

functional organization of SPAM software.)

Because circuit behavior is in terms of data movement and operations on data with

delay, at their borders, each individual definition will look like a finite state

machine or some combinational network with delay. That is, changes in inputs

will produce changes in outputs in time. In order to turn a combination of these

cells into one single circuit we need to provide some mechanism to transfer data

across the connections. As far as the data structure is concerned this implies only

that each pin in the data structure of cells be given a single state value (0, 1, X, U)

and a single pointer to the pin with which i t is to be communicating. Every time

same of the external data on some cell is to be changed a global "Wake-Up"

procedure will be called. This procedure will be responsible for actually changing

the data and waking up the neighboring cell.

4.2.1.2) Wires and Included Buses

One common practice in designing cells to be placed on integrated circuits is t o

include a wire which has no function other then to provide a signal to this cell or to

cells on either side of this cell. The most common form of this structure are power

and ground buses which pass through many cells uninterrupted. Another example

is the bus of a microprocessor which carries data back and forth between many

components of the device. In terms of SPAM simulation cells this introduces a

slight complication. Usually when a cell puts new data on its external pins this

data will be transmitted (through the "Wake-Up" procedure) to the pin it is

connected to. When the receiving cell gets this data it can decide what changes i t

then needs to make. In the case of wires however, no behavior has been provided

specifying that the signal should be propagated to the other side of the cell. One

simple solution to this problem is to notice when a cell has more then one pin wi th

the same name. Then, all such pins can be considered as a single node. The

Wake-Up procedure can then transmit the new data to a list of successor pins in

addition to the single connection already known. That is, while most pins will

have .just one pointer to one other pin, pins which are on wires will point to as

~ n a n y pins as there are ends to the wire in that cell. In this way a single change on

one pin can directly cause changes to many cells by being propagated through the

wires of those cells. Notice that the Wake-Up procedure must be smart enough not

to propagate the signal to pins which already have the same value as that being

propagated. This avoids circular and backwards propagations as well as eliminating

redundant signal changes.

4.2.2) , Simulating cornbinatorial Logic

Once the above data structure is in place i t is a relatively simple matter to actually

run a simulation. However, before anything can happen a few runtime facilities

are needed. These facilities include a decimal to binary and binary to decimal

converter; logical operations for lists of nodes (random words) such as AND. NOT,

and EQV; SIMULA class definitions for cells and nodes; connection mechanisms; a

facility to allow the user to set and query node values. to set break points, and to

clock nodes qt regular intervals; as well as the Wake-Up procedure alluded to

earlier. Once these are in place the user can set initial conditions in the circuit (the

unciefined condition 'U' is assumed for all uninitialized nodes1 and start t h e

simulation. From then on simulation proceeds as follows. A cell wishes to prod~~ce

some changes on some of its nodes after a specified delay. This is accomplished by

scheduling a "Wake-Up" procedure to become active after that specified delay

period. The parameters to the Wake-Up are simply a list of nodes to be changed and

values to place there. When the delay period is up SIMULA will autoxnaticaly

schedule the Wake-Up. Then for each node in the list which actually needs

changing, the Wake-Up will place the new value in each of the nodes to which t h e

input nodes are connected. It will then schedule the cells of all those nodes to

hecortle active immediately. Finally, i t will schedule a new Wake-Up procedure for

all nodes connected to each destination node via wires. These last nodes may be

scheduled with some delay to simulate wire delay. This process simply continues

w i th break points interspersed as specified by the user. The result is a data

structure which acts like a combinatorial network. That is, all the individual cells,

specified to act like combinatorial systems, now communicate with one another i n a

delay / time axis enviornment to produce a larger network of behavior in such a

way as to simulate a combinatorial system.

4.2.3) The Sequential Behavior of an Instruction Processor

The preceeding description of the normal operation of the SPAM sirnulator is

satisfactory to describe any combinatorial system. It is interesting however, that

not all systems are easily thought of as combinatorial. An example of this is t h e

microprocessor. While combinatorial systems can be said to be "data driven"

microprocessors are usually thought of as being "clock driven." That is, depending

on the current state of the system, including the value of the instruction register

and other state information, different activities will take place on the chip each

clock cycle. Many instructions will take more then one clock cycle and cannot be

easily described in terms of the purely combinatorial nature of the system. At t he

least, it would take some very difficult rethinking of one's circuit and probably a

great deal of repetition to accolnplish that descriptive task. On the other hand,

there is usually a very complete description of the behavior of the processor

residing in the microcoded instructions which actually organize the behavior of t he

combinatorial components to begin with.

I t is desirable to provide some alternative simulation technique to allow modelling

of the process of instruction fetch, execution, and loop which takes place in any

instruction processing machine. It would be nice if there was some w a y of

transforming one's micrococle directly into SPAM behavioral descriptions. To

accomplish this the usual scheduling mechanism must first be eliminated. The

Wake-Up procedure is now responsible for changing the data on the inputs of the

cell. but not for activating the module. Cells which are to be modelled as sequential

processes rather then combinatorial systems still exhibit the external behavior of

inprtts and outputs. Therefore, there is no problem in interfacing these cells w i t h

other cells in one's circuit.

A Microprogram is a sequential program each step of which is activated by a system

clock. Conceivably this activation signal could be any external signal. All that is

necccsary to allow microcode-like simulation to take place then, is that an

instruction be added to the SPAM repetoire which halts simulation of this cell unti l

some specified signal makes the appropriate transition (positive or negative). In

SFAM this instruction is called the "NEXT" instruction meaning wait for the "next"

occilrrence of the specified signal. In this way one can describe the behavior of a

cell as an infinite loop which simply decodes the Instruction register and

conditionally executes the appropriate instruction code. Each instryction segment -
is made up of register transfers or operations or whatever and may take an arbitrary

number of cycles. Since microcode refers to actual elements of one's circuit and the

tranfsrs and operations which are actually available in the processor, translation

between microcode and SPAM behavioral syntax should be relatively simple. This

technique greatly simplifies the task of writing behavioral descriptions for

instruction processing systems. Notice, the SPAM "next" statement differs from the

ISP notation [Bell and Newell] in that this "next" requires a specific signal to

trigger the following section of code.

Delays will still be modelled in the same way. That is, a Wake-Up procedure wil l

be scheduled after a specified time interval causing the data to be changed.

Ordinarily, any cell modelled as "sequential" rather then nor~nal will not be

activated by the Wake-Up. However, if any of the signals being altered are control

signals specified in "NEXT" statements and the transitions are in the right directions

then each such occurrence must cause the appropriate cell to be activated.

Simulation continues just like before and the user can set whatever break points

one requires allowing questions such as, "Did all operations complete before the

finish of the clock cycle?" or "Was the correct instruction executed?" Other cells

connected to the sequential cell will be activated in the usual combinatorial way

since the Wake-Up procedure can easily check to see if a cell is one type or the

other.

6) Software Organization

Figure 5.1 below shows the processes involved in using SPAM. The original SPAM

description is fed to the SPAM compiler. On request, the compiler produces two

different sets of output. One of these is the documentation file as described in

section 3.4. The other is a SIMULA file which is then compiled to produce a

simulation of the described circuit. Once the simulation file has been compiled into

executable form it may be invoked by the user directly (the SPAM compiler is not

needed to run simulations).

Source File Q .
SPAH Compiler c-7

SIllULA Compiler c;)
Documentation

Figure 6.1

Simulation

Executable r--7

Source

Simulation J

The SPAM program itself is divided into four major parts. They are diagramed in

figure 5.2. The parser is responible for recognizing input forms and activating

routines in the compiler to keep track of actual data. The compiler contains the

actual hierarchical data structure and all the routines for modification of that

structure. The parser continues to read data and communicate with the compiler

until a complete set of input is read.

At that time the user may request that an output file be produced. This will cause

simulation code to be written into a text file. The code includes the simulation data

structure, initialization routines and the "maps" described in previous sections.

SIMULA compilation of this file results in an executable program (phase 2)

containing all the features of a simulation as described. The simulation will be of

the circuit described in the original input file.

The final element of phase 1 is the automatic documentation production system.

The user may request that an outptit file be produced for the input design. This file

contains a structure map, cell specifications for every cell definitioxr, and floor plan

diagrams for all composition cells (see section 3.4). The input text file name, date,

and designer name is included on each page of this document to provide some

organizaton and to avoid confusion between successive iterations of designs.

Complete specifications of the input language for structure, behavior, and

simulation execution are given in the appendices. Examples of all these as well as

of the automatic documentation feature are also included.

Phase 1:

SPAfl
I
I
I
Cat l Def ini ton (text f i l e input)

I \ \ \

I \ \ \

I \ \ \

Parser Compiler Code Production Automatic Documentation

Phase 2:

Output Code + HAPS = Simulation Code

Figure 6.2

6 1 Conclusions

The reasons for designing a chip using SPAM should include the following: SPAM

forces the designer to clearly define chip components including their external

interfaces, exact behavior, and wiring strategy. By checking connectivity, SPAM

increases the designer's faith in the integrity of interface specifications. B y

providing simulation, the step-wise refinements of one's chip can be checked for

logical integrity exposing errors very early in the design process. The design

process itself oan become more flexible and open to change. The system can create

some meaningful documentation for user's cells which might otherwise not have

been produced. The value of this is the automatic production of workbooks or

project reports. The notation is compact. SPAM descriptions are easy to produce

since they are made in parallel with the design process. The existence of a separated

hierarchy allows easy switching Between leaf cell implementations. The job of

designing leaf cells might be made easier by using floor planning information i n

SFAM to perform automatic cell stretching. Future versions of SPAM might include

silicon compiling or interfaces to other low level chip assembly tools such as ICSYS

[Buchanan and Gray] or Bristle Blocks [Johannsen].

To determine which of these goals are successfully realized in the SPAM system

they are reviewed one by one. Possible directions for future development a r e

discussed.

It is true that SPAM forces formalization of one's circuit to some extent. The value

of this is that by bringing details of the designer's cell specification to paper, errors

are Inore likely to be detected faster. By forcing the specification of a wiring

strategy on dssi&ners of high level components, better integrated circuit layouts are

likely to be developed. Planarity and connectivity checking is certainly

worthwhile since It keeps the designer in touch with the layout as it progresses by

noticing when errors in interface specifications are made.

Froviding a simulation tool along with the design process will be valuable as long as

i t is easy, requires only a.relatively small amount of extra effort, and produces

reasonable verification of circuits. The SPAM simulator has been tested in several

of its capacities. One discovery was that i t is very easy to produce top level

microprocessor descriptions once a microprogram exists using the idea of sequential

simulation described in section 4.2.3. (See appendix C.2 for the example.) The only

chip actually completely designed and debugged in SPAM was a miniturized data

path chip described in appendix C. 1. The behavior could be described in a matter of

hours, and bugs in those descriptions were quite obvious when simulation was

attempted. No attempt has heen made to exhaustively test the chip but i t is clear

that even just a small amount of simulation could reveal a great deal about t he

nature of the circuit described. A complete answer to this question can only come

when several real chips are put through the complete design process using SPAM

with a wider community of users. The general idea that the presence of a

hierarchical simulator should make errors more accessible and open to change is

subject also to the fact that i t is still up to individual designers to provide test

patterns which will sufficiently test their chips. Designing for test is an important

concept I f testing is to be made feasible. This problem is left as the responsibility of

the designer. Finally, there is a trade-off between the difficulty of using a

simulator and the value of the resulting simulations. If descriptions are easy and

compact enough then the small amount of extra time required may be very

worthwhile.

Appropriately, the next point is that descriptions should 'be easy to produce and

compact both In the size of the actual description as well as in the size of the

resulting data base. Great care was taken first in the CAD project class i n the

development of the structural notation, and later by the author to develop

behavioral notation, to keep the language simple and general. The structural

descriptions require a minimum of information (see section 3). One possible

addition to this, however, is a graphical front end which generates the

structural/physical definitions of cells. It would provide a mechanism for

producing component declarations and abutment lists. The combination of graphic

floor planning and the compact pin naming conventions already defined will really

make the structural description process simple.

The behavioral descriptions allow any register transfer, mathematical/logical, and

f low control mechanism one could desire. The main feature which keeps

behavioral descriptions short is the general way in which nodes can be referenced.

Examples in section 4.1.3 show that much simplification can be gained by using the

full power of this syntax.

To have the re~ul t ing data structure as compact as possible is one goal not yet

completely realized. The largest circuit description yet compiled contained 4 1

instance elements (number of actual instances including repititions). Some of these

cells were very large so, that this took only half of our DEC-20's 400 pages of (low

segment) memory is promising. Nevertheless, the structural description parser and

data base were not designed with the intention of minimizing space or time

considerations. The goal was to produce a working model, an existence proof, t o

show that something like SPAM was really possible. The test case with 4 1 elements

is the completely expanded version of the GR2 stack oriented microprocessor shown

in appendix C.Z. Anyway, to really turn SPAM into an efficient large scale tool

several modifications will be desirable. These include eliminating the restriction

that vectors be numbered from top to bottom and left to right as well as improving

the efficiency of space utilization. This all implies the need for a second iteration

of SPAM. The behavioral parser requires almost no space above the structural data

structure since all output data IS temporarily piaced in disk files.

The simulator part of SPAM is somewhat more careful with memory usage. Two

reasons are that 1) Space was a known premium in the design simulation output

code and 2) As described in section 4.2.1 simulation does not require the presence of

the entire hierarchy. The biggest actual simulation tried so far had 28 (leaf cell)

instances. The runtime structure of this example fitted easily within the core

limits of the machine.

Several layers of modifications are now present in the SPAM system. Though most

of these appear in the appendices, they are not all completely described i n this

thesis. That is because of the time span in which this report was written. That is,

the original SPAM specification spurred the writing of this thesis and since i t s

implementation many desirable simplifications and improvements have been made

in SPAM. (The formats appearing in the appendices reflect most of these

improvements.) One feature mentioned nowhere else is the interface w i t h a

graphical floor planning tool as a front end for SPAM. Anyway, now that so much

has been changed and improved in SPAM the code is just that much more in need of

reiteration. In any case examples of what has been accomplished appear throughout

the appendices.

The idea that SPAM should provide some meaningful extra documentation has been

fulfilled. Upon request, SPAM will produce a hierarchical map, interface

specification diagrams for all cells, and floor plans for all composition cells.

The final categories of reasons for using SPAM all come under the heading "Future

uses of SPAM." Since SPAM knows the floor plans of the designs i t is given i t would

seem quite appropriate for SPAM to be interfaced with some tool for stretching and

placement of cells. As the STICKS standard [Trimberger] comes into use there w i l l

undollbtedly be some program available to take a set of cell specifications from leaf

cell design tools together with f lwr planning information from composition cell

tools like SPAM and create a complete and implementable design. Silicon compilers

will he a breed of design tools which produce as much of the design of chips as

possible i n an automatic fashion. The clear separation of the design process into two

parts: leaf cell design and cornposition cell design, may be a very important step i n

reaching towards a world full of silicon compilation.

To finally sumarize SPAM is to do an injustice to the future. The author encourages

all readers of this document to design their own integrated circuits using SFAM and

draw their own conclusions. It is the thesis of this report that "Structure.

Placement, and Modelling" implies a hierarchical approach to design and simulation.

Through clean interface specification and wiring strategy a structural description

can be developed. Through multi-model simulation behavioral integrity can be

scrutinized and the behaviors of each abstraction of one's design can be compared.

The author recomends the SPAM program to all designers willing to risk a try.

Appendix A) The SPAM Notation

The following is a BNF description of the SPAM structural, physical, and

behavioral notations. An explanatory approach to the language can be

found in appendix B which is the SPAM User's Guide.

BNF symbols: ::= I () * + []
All other symbols are terminals in the grammar.

Cel I Spec! f icat ion

<Ce 1 l header, ::= CELLOEF <name> (ccel l con spec>); ct spec l ist,

<S@ par t > ::I <eel 1 declarations> ccel l body>

cce l 1 end> : r = ENOOEF ;

Cell Interface Specification

<cetl con ape- ~ r - <side spew i c

<side spec> ::I <side> <con list>

::- TOP I BOTTOn I LEFT I RIGHT

::= <con l i s t element>

I ! <con l i s t element> , <con l i s t > 1

<con Liat element> : I= <name> 1 (<con l ist>) 1 <one dimension, I

<one dl mens i on> : a = "IN .<integer> " 3 "

Type Speci f i c a t ion

s t spec I let> : r - <type epee> a

<type epee : : = <type> <can nams l i s t> :

< type> ::= POWER I GROUND I CLOCK I INPUT I OUTPUT I I0

<con nams l i st> : : = <con nams> I , <con nams>l r.r

<con name> ::- (<side>(<con name l i s t >) 1 I <con name>

<con name l i st> ::- <con name> 1 I <con name> , <con name l i s t > 1

<con name* ::I <name> Itccon name l i s t >) l

I n te rna l Components

<component l i s t > ::-<corn l i s t element> I, <corn l i s t element>la

<corn l i s t e l emen t > : z =<component> i . <or i en t a t i on71 ft

<or ien ta t ion> t:=tlIRRORX I MIRRORY I ROTATE90 I ROTATE180 I R O T A T E 2 7 8

<component>

<inet name>

<two d i mens i on*

Abutment

<con exp,

coperator>

<side l i s t >

<eide reference>

<omission>

<pin name,

::a <name> [<two dimension>] [(< inst name>)]

: : = <name>

::= '@[la <integer> , <integer> " I "

r : - csidsl ists <operator> <side\ ist ,

: : - ABUTS I c=>

::- a i d e reference> (, <side referenceklft

: : = <side> <name> [Onf T <om i ss i on>$r]

::= lctuo dimenaian>.l <pin name>

: := <name> [(<pin name>) 1

BEHAVIORAL SPECIFICATIONS

<behave p a r t > r : = <busy header> <busy dec larat ions> < s t a r t > <busy body>

<busy header>

<busy dec I ara t i ens>

<storage l i s t >

<s to re>

<vet t o r s tore>

<a to re name>

<s i

::= BEHAVE NOW I BEHAVE LATER

: : = (<conintent>) (i s i m dec 1 a ra t i ons>l (ccommen t>l
(< in te rna l declares>l

:: 1 [REAL I INTEGER1 csimvar>;

::= INTERNAL cstorage 1 i s t> :

: : = START I SEQUENCE

::= <comment> <busy body> I cbusy s t a t > <busy body>

I<comment> I <busy stint>

::- <store> 1 <store><storage l i s t >

::- <store name, I<vector store>

: : - <store name> [<integer>, <integer>]

: : = <name>

: : - <name>

cbusy stnit> : : a <busy exp>:

<busy exp> ::= < fo r stmt> I<uh i l e stmt> I < i f strnt> I<se t va l s tm tz

I<assignrnent stnlt7 I <next strnt> I BEGIN cbusy exp l i s t r END
<busy exp t i s t > ::= <busy stmtz <busy exp l i s t > I <busy stmt>

< f o r stint> : : - FOR <simvar>: - car i thmet i c exp> STEP

<ar i thmet ic expr UNTIL <ar i thmet ic expz DO cbusy expz

c u h i l e stmt> ::= WHILE <boolean exp> 00 <busy exp,

< i f stmtp ::= I F < i f pa r t>

< i f p a r t > ::= <boolean exp> THEN <busy exp> {ELSE cbusy exp>l

I<boolean exp> THEN <busy exp> EFc i f p a r t >

c s e t v a l stmtz ::= <valued var l i s t > :- <match va lue l i s t 7

(AFTER cde l ay>l

cde l ayz : := c a r i thmetic exp>

<assignment stmt> ::= <simvar> :- <ar i thmet ic exp>

<next stint> : : = NEXT {NOTI qconnec t o r name,

VALUED EXPRESSIONS

< b i n op>

<dec op>

<boolean expr

<boo1 op>

<match value l i s t >

<match va 1 ue>

mocie va 1 ue>

cnon-number>

<valued var l i s t >

<valued v a r r

< s t o r e set>

::I <match value l i s t > I <simvar>

1 (INOTI <ar i thmet ic exp> <b in op> < a r i t h m e t i c expw)

I <ar i thmet ic exp> <dec op> <a r i t hme t i c exp>

I (<ar i thnletic exp>)
..a . AND I OR I EQV I IMP

::= + I - I 32 I /

: : = car i thme t i c exp>, <boo I op> <ar i t h m e t i c exp,
I (<boolean exp>) I NOT <boolean exp> I

I [ALL) <nan-number> I N <match value 1 i s t z

: : = a I >- 1 <= I > I <

::= <match va luexmatch value l i s t > I <match value>

::= <valued var> I cnode value>

::a 0 I 1 I cnon-number>

::= X I U

::= <valued var>cvalued var l i s t > 1 <valued vars

::= cconnector set, I cs to re set>

: : = <store name>

I <store name> {[<index range>, <index range> l l

::= c a r i thnietic exp>

I<ar i thnret ic exp>:<ari thmet ic exp>iear i thmet ic exp)

l <a r i t hme t i c exp> & <index ranges
..I <connector names 1 <vector connec ton

::- cconnector name> I l c index range>l i

Appendix B) SPAM User Guide

This user's guide is divided into four sections. The first two sections describe the

way in which cell desrciptions are formulated. The third part instructs the user

on running the SPAM compiler and producing output. The final section is really a

MAPS user guide. It describes the language and nature of the simulation user

interface.

B, 1) Cell Specification

A SPAM leaf cell structural description contains a cell header and pin typing

declarations. A composition cell structural description contains those two parts

plus a list of components and a list of the abutments of those components.

A sample cell header follows:

CELLOEF sam(T0P phil.phi2 LEFT opl21,vdd RIGHT resul t .vdd BOTTOtl e a r t h) :

This cell header declares a new cell named "sam." It has 8 pins. Names are always

listed from top to bottom and left to right. The same holds true for sets of pins

like "op" above. Op's pin 1 is to the left of its pin 2. Notice that the narne vdd is

used on both the left and right sides of the cell. This implies that there is a

wire connected between those two positions. The following example is a cell with

a lot of wires inside.

CELLOEF mix(LEFT one,tuo,tue RIGHT two,one,twe,four TOP for,one BOTTOM f o u r) ;

The following diagrams represent the cells that would result from these two

examplest

I I
ONE---- .--- TWO I I

OPC2)--- ---- RESULT
I SAM I
I I

VDD--0- ---- VDD
I ---.------ I

Pin Diagrams Generated by SPAN

Following the cell header all pins must be "typed". This is accomplished with the

use of the key words: INPUT, OUTPUT, 10, CLOCK, POWER, GROUND. The "SANE" cell

above might be typed this way:

CELLOEF samtTOP phil ,phi2 LEFT op[21rvdd RIGHT result,vdd BOTTOM ear th) ;

INPUT op;

OUTPUT RESULT:

CLOCK phi1,phiZ:

POWER vdd;

GROUND earth:

This is the complete interface specification and thus completely describes a leaf cell.

The next step is to turn a leaf cell into a composition cell. We must have already

defined some other cells (which may themselves already be composition cells).

Once that is completed those other cells can be referenced for use as components

in this cell. Vectors or matrices of cells may be declared. The components

declarations immediately follow the pin typing declarations. Here are some

example uses of components:

COUPONENT chi co (UARX) , harpo (I IARX), KARL, shoes 11.21 (SHOE), toes C2.51 (TOE) ;

The cell i n which this declaration exists will contain 15 instance elements. Cbko

and Harpo are instances of the cell definition MARX. KARL is an instance of the

cell KARL. (Generic name not required when the same as the instance name.) Shoes

is an array of two instances of SHOE just as toes is an array of 10 instances of TOE.

Numbering of instances is always from top to bottom and left to right. Numbers i n

brackets are [rows, columns].

To complete the definition of a composition cell the user must specify the

abutments of the components in the cell. Abutments are always given i n terms

of sides of components. Pin names are only referenced when they are to be

omitted from an abutment. Abutments follow the component declarations.

Examples follow:

1) LEFT chico <=> R I G H T harpo;

2) BOTTOfl k a r l , BOTTOM shoes <P> TOP toes:

3) RIGHT chico c=> LEFT toesE2.11;
4) LEFT kar \ ABUTS RIGHT harpo OMIT hat;

Notes:

1) Left of chko has same number of pins as right of harpo.

2) Indices are not specified when abutment is for entire matrix. The bottom

of two components are abuting the top of one. Lists are always top to

bottom and left to right.

3) Right of chico abuts the single instance element toes[2,1] rather then

the entire matrix of toes.

4) Right of harpo has one more pin then left of karl but they abut. The pin

which is omitted was specified to be "hat." The word "ABUTS" may be

substituted for the symbol "<=>."

Always remember to abut the outside of a cell to the outer-most coInpollents

whenever pins are to be connected. For example, if a cell called "big" has a

component on the left side called "little" the declaration "LEFT little <=> LEFT big"

must be included if there are pins there to be connected.

The combination of interface specification (names, pins, and types) w i t h

components and abutments completely defines the structural description of a

composition cell. From this a layout can be inferred, connectivity can be checked

and a data structure can be built allowing simulation and automatic

documentation.

If no behavior is to be included in a cell, composition cells defined as above can be

compiled be adding these two lines:

BEHAVE LATER
ENDDEF ;

"LATER" will change to " N O W when the behavior is defined.

For complete examples of cell definitions and layouts see appendix C.

R.2) Behavioral Descriptions

Using prograrnrning constructs the chip designer produces a behavioral description

of circuit elements. The result is a set of components which act like finite-state

machines or combinatorial networks where delay can be specified. A simple

non-error detecting description of an NAND gate might look like this:

BEHAVE NO11
START

r e s u l t : = (NOT { a AN0 b) 1 delay 15;

ENOOEF ;

"BEIJAVE NOW" is the header used when a behavioral description is to be

incl urled in the cell definition ("DEI-IAVE LATER" otherwise). Following that go

a n y integer, real or "internal storage" declarations required by the user. Since

none are used here this section is empty and the key word "START" indicates

t hc baginning of the behavior. In the example above the pins "result". "a" and "b"

must have hecn declared in the cell header. When this cell becomes part of a chip,

changes on either of its two input plns will cause activation of the behavior. The

systeirl then propagates the results of the behavior (in this case just the single

pin "result") to whatever pins the changed nodes are structurally connected. In

other words if "result" was on the right of this cell and an OR gate w a s abutting

there, the OR gate will be activated in 15 periods. Periods are generally

nanoseconds but may be assumed to be any period appropriate to t he

simulation. If no "after" clause appears the delay is assumed to be zero.

This is the basic operation of the simulator. Changes on inputs cause activation

of the behavior described for that cell. Behavior may include various

programming constructs but the activity which causes other cells to fire is the

activity specified by the SETV or "satval" statement. In the NAND gate example

above if the result pin was fed back to one of the inputs of the gate (with a

wiring cell) and the other input was tied high (to value 1) then the result pin

will oscillate between 1 and 0 every 15 periods. Notice, if the NAND gate was the

only cell in the design (ie. it is simulated just like a top level cell description)

then i t will take specific action on the part of the user to activate the cell. That

is, cells only become active when changes occur on their boundries. When

simulating top level cells those changes are initiated by the user when running

the simulator (MAPS - appendix B.4).

Declarations of user variables was mentioned earlier. Declarations are placed in

between the "BEfIAVE" statement and the "START" statement. Three types of

declarations are possible:

1 NTEGER i , j , count ;

REAL r o k , r o l :

l NTERNAL r e g 181 a r r [16,161:

INTEGER and REAL declarat~ons are used to specify variables for use in designing

FOR and WHILE loops, storing values of node sets which need to referenced

~ - ~ p ~ n t ~ r l l y (for example of this, see "ctl" in appendix C. 1.) or whatever purpose the

user would like. Internal declarations are used to declare bits of internal

storago for use in simulation. The internal statement above declares a register of

eight bits called reg and a matrls of 16 by 16 bits called arr. other names for

these "bits" of "internal storage" are "storage nodes," "memory cells." and "latches."

In other wor~is, the INTERNAL declaration provides the user with a new set of nodes

(0. 1 , X. 11) which can be accessed and changed just like pins. When writ ing

r;imlilation code these "internal" nodes and the external "pin" nodes can be treated

identically. Any place that a pin name is permitted, an internal storage name is

prrmit t~d. Internal storage ~'lotlcs need not be used in any correspondence wi th real

registers or latches. They are simply for use as temporary storage of values across

time. Uf course the most common use of these nodes will be for storing values that

will eve~ltually be stored in real latches of some sort. Notice this does not affect

the way in which a latch is simulated. The internal node simply stores a value

(something like a capacitance). The control logic surrounding the device can be

arbitrarily designed. At the lowest levels of design i t is of course possible to build

flip-flops or some real latches to store values.

The important difference between integers or reals and internal nodes is that

when integers or rcals are changed no cell activation takes place and the n e w

values can be referenced im~nediately. Internal nodes always cause activation of

the cell after a delay period. Even if the delay is zero the change does not take

place in this particular activation of the cell and will not be noticed until i t is

immendiately reactivated. The reason is that a change in the value of a node may

infer that some activity elsewhere in the cell is to fire. Any change to a node

(internal or external) must cause activation of the entire cell so as to insure

that all possible activities are investigated.

In f t ~ t u r e paragraphs node "sets" or "lists" are often mentioned. What is being

refereci to is a Set of nodes descrihed in the behavioral notation. Various sytactic

structures are used to allow general referencing of nodes. A colon is used t o

indicate a range of indices into a vector or matrix of nodes. The at sign (PI llzeans

"counting by" and allows referencing of every Nth node of the range of nodes

specified by the previous colon. A comma separates dimensions in a matris of

nodes. A single node list is either a node name or a node name followed by square

brackets in which indices is specified. Indices may be one individual value, a

vector or matrix of values, or several sets of indices separated by a space. A node

list i s then defined to be elther a single node list or a concatenation of node lists.

Examples follow in the context of the SETV statement:

bus [l:51 : = (~rhee l s [l:5l AlJO chi Ids [21:?51 1 ;

0tlt [l: toll] :" 2;

a[l : / t l :I 1 0 X U:

I -esu l t [I :41 : = ps d r c s 1g AFTER 5:

r e s El:81 : = inp[i : 1Se21 ~t 5 5 22;

.7[1 5 7:10 121 : = b[l :71 AFTER 10:
a : = mat [l: 3 . 10:30c.101:
big--one : - s i s b r o [2 51 pop[l : 13ts3.51 X X X mon1[l:7e2,7:1@-21 :

Notes:

I) Boolcan operation on node lists must be surrounded by parentheses.

2) night side will be made of equal length to left side by padding with zeros

or truncation. Values in square brackets may be any integer aritmetic exp.

3) 0, 1, X, and U can appear on right side of SETV only.

4) Concatenation of sereral signals to make up a node set.

5) At sign indicates counting by 2

or "from vector 'inp' use nodes 1 to 15 by 2's."

Also notice use of arithmetic on node lists.

6) Use of several individual indices.

7) Use of matrix indices returns a list of nine nodes. On the left hand side,

'a' implies a[1 :n] where n is the length of the vector a as declared.

8) Use of negative index step on last element on right. Big'one's length>26.

Now all the elements needed to write behavior exist. The actual simulation is

designed by the SPAM user and should include whatever error checking deemed

needed. For example, if an undefined signal 'U' is found on a node which was

supposed to have a value. it is a good idea to propagate that 'U' rather then to

produce a good (0 or 1) value. Some conditions may demand that the result of an

operation is in an undefined or error state. It is recommended that the 'X' signal

be propagated in this situation. Finally, an 'X' on an input should probably cause an

output 'X' somewhere. The idea is, that when the user runs a simulation. s /he

will be able to determine whether the error came from an internally generated

condition or from the use of nodes which had not yet been defined. This

will assist in discovering bugs in the logical design of the chip.

All behavioral statements end with a semicolon. Examples of the remaining

constructs available to the behavioral designer follow:

IF p h i 1 = 1 THEN

BEGIN ... EN0 ELSE ...

This is the form of the IF-TEIEN-ELSE statement. The boolean expression may

include any arithmetic comparison of any nodes. Comparisons can be prefised w i t h

NOT or linked together with AND, OR, IMP, or EQV all of which are functions

defined in SIMULA. The statement following the THEN can be a single L) rt atelnent

or a block of statements surrounded by BEGIN END;. The term "EF" can be

substituted for the words "ELSE IF" when possible. The above esa~nple is

intended to demonstrate the way a section of code can be partitioned so as to execute

on a clock signal. The BEGIN-END block shown will be executed whenever the

clock signal phi1 is high. (Sequential "clock driven" simulation is different - see

discussion of "SEQUENCE.")

FOR i : = l step 1 unt i l j 00 <statement>;

WHILE i c= nodyll:9@21 DO <statement>:

These two constructs are similar to the SIMULA FOR and WHILE loops and should be

easy to understand. The term <statement> means a single SPAM statement or a

BEGIN-END block.

n:=3 + nody 15 B01 :

This is the final construct in the standard SPAM notation. It is a simple numerical

assignment statement. The left side must be a single INTEGER or REAL variable.

The right side may contain any combination of node lists, operations or variables

desired. No delay may be specified.

Comments may interspersed with SPAM code by use of the exclamation mark (!).

!This is a comment;

The above descriptions apply to the standard SPAM simulation technique. The

"sequence" type of simulation as described in the thesis section 4.2.3 requires

one additional construct. The basic idea behind sequential simulation is

"clock-driven" activation of the cell. The purpose of this technique is to

produce a microcode-like simulation of instruction processors. The most

common instruction processor is the microprocessor. The idea is that the

information which is of most interest in the top-level simulation of a

microprocessor is information regarding longest delay paths and behavior and

timing of individual instructions. Each instruction may take a different number of

clock cycles to complete and each clock cycle is uniquely determined by

microcode rather then simply by hardware. In order to allow simulation of this

type of enviornment and to make it simple to translate between microcode and

SPAM notation, the "sequence" domain was invented. The difference is that in a

sequential simulation, a cell is activated only by the occurence of a specified

signal. In a microprocessor that signal will be a clock signal though any signal is

permitted.

In order to indicate that a cell is to be simulated in this manner replace "START"

with "SEQUENCE." The format of the statement which causes the process to

wait for the next occurence of the specified signal is demonstrated

demonstrated in the following examples:

NEXT phi 1:

NEXT NOT sig;

The inclusion of "NOT" means that simulation of the cell should continue when the

specified node makes a negative transition (1 to 0). Without the "NOT" it is the

positive transition (0 to 1) which triggers reactivation of the cell.

Further examples of both types of simulations can be found in appendix C.

B.3) Compiling Input

The following example shows h o w to run SPAM:

espam

From uhere? (TTY: 1 mini .om

Do you uant t o make a s imulat ion f i l e?yes

Name f o r output f i l e s (up t o 5 chars.):mini

Choose top leve l c e l l name from the fo l lou ing :

CTL, ALU. P&TZ, LATCH. PORTI, PROCESSOR

ADO, MEMCELL

processor

Do you want automat ic documentation?yes

Name f o r output f i l e : h i e r . p i c

Choose top leve l c e l l name from the fo l lowing:

CTL, ALU, PORTZ, LATCH. PORT1, PROCESSOR

ADO, llEMCELL

processor

En te r des i gner name:

R ichard Segal

(This i s the SPAN source f i l e t

(Ac tua l l y c rea tes two f i l e s .

ni inis.sim and n i n i c . s i n ~)

(Name o f c i r c u i t a c t u a l l y b e i n g

siniulateci. Leaf c e l I s chosen

by BEHAVE NOW/LATER s t a temen t si

{ F i l e w i l l c on ta i n a l l p i c t u r e s

o f a l l c e l l s and the h i e r a r c h y

s p e c i f i e d by the top l e v e l c e l l l

{Used i n header i n doc f i 1 e l

End o f SPAM execution.

The result of all this is to create three output files. The two simulation files

contain SIMULA code which can then be compiled and simulated as follows:

tes i mu 1 a (Invok ing the s imula conipi l e r l

NO ERRORS DETECTED

i i m i n i c

NO ERRORS DETECTED

st?Z

EX1 T

tr~lrjad n l in ic . I ihs i rn / l i b

LINK: Load ing

{ T h i s f i l e c o n t a i n c e l l d e f i n i t i n n s

and i n i t i a l i z a t i o n l

(Th is f i l e connects up the clats

s t r u c t u r e o f p i n s and w i r e s and

s t a r t s up MAPS1

(Cont ro l -Z e x i t s f r o m SIMULAI

(Loacling the s i m u l s t o r l

EX1 T

casave [Saving the executab le s i n i u l a t o r f i l e t

IIINIC.EXE.1 Saved

can1 i n i c ! S t a r t i n g the s i m u l a t i o n l

IIAFSzencl: (Ready t o run s imu la t i on . See HAPS u s e r g u i r t f l

End o f SPAIIAPS execu t i on.

The third o~l tput file of the SPAM compilation is the automatic documentation.

This includes a hierarchical map of the circuit, pin diagrams of all cells, and floor

plans wi th generic and instance names for all composition cells. Examples are

shown in appendix C.

Special late note: Upon request. SPAM will now perform the above compilation

automatically.

B.4) Running a Simulation - MAPS User's Guide

MAPS is the' program which allows the user to communicate w i t h a n ongoing

simulation. The prompt for a user command is "MAPS)". At that paint the user

can enter any MAPS command. Commands can be abbreviated to any number of

letters. Since each command begins with a unique letter, one letter abbreviations

will suffice. For example, "OUTPUT" can be abbreviated by "0" and t h e phrase

"BREAK AT" (for setting break points) can be abbreviated to just "B".

Since a component can be uniquely specified only by its embeddedness i n t h e

hierarchy there is a problem with long names. For example w e might have an

instance (component) of an adder cell which could he called

PROCESSOR/ALU/ARITH-PART/INT[1,2]/ADDER[2,2]. Since there might be several

groups of adders in the chip possibly even with the same names. that long list

might he the only way of refering to that particular instance if names are to be

used. Since instances need to specified for most commands this could be ve ry

unwieldy. In order to eliminate this problem completely each unique instance is

given a number. There is a table of instances and corresponding instance numbers

which is listed wi th the use of the TABLE command.

INPUT, OUTPUT, and BREAK commands may be scheduled repeatedly w i t h the use of

an EVERY clause (see specific command). Whenever such a "timed device" is

specified w i t h one of those commands it is placed in a list of timed devices. The

list can be looked at wi th the LIST command and cancelled w i t h the REMOVE

command.

The commands are all summarized below. Commands may be longer then one

input line, but all commands must be terminated with a semicolon. Esample

simulations are shown in appendices C. 1 and C.2.1. Optional phrases a re

surrounded by {)'s. The terms inside of <>Is should be replaced w i t h the actual

parameters of the specified type when using the command.

PROCEED

-Continue simulation.

START <instance>

-This command is used to start the execution of a SEQUENCE simulation. It is

needed because no NEXT command has been executed (the only regular way of

activating a SEQUENCE) until it is started the first time. This command

should be issued once and only once.

TABLE {file name)

-Display table of instance names and corresponding numbers

{Place table in specified file name).

LIST

-List active timed devices.

REMOVE <device number)

-Remove timed device specified by the integer <device number).

HELP

-Display this text.

USE <file name>

-Read commands from <file name>.

BREAK AT <time> {EVERY <interval>)

-Stop simulation and return to "MAPS)" at time <integer>

{repeating every <interval>). <time> and <interval> must be integers.

INPUT <instance> , <node list> := <node value list>

{AT <time> {EVERY <interval> {FOR <duration>)))

-Set nodes in <node list> to the values (0 , l ,X,U) or nodes in <node value list>

{at integer <time> {repeating every integer <interval>

{for length integer <duration>}}}. The FOR clause assists in specifying clock

inputs. For example INPUT 2,clk:= 1 AT 1 EVERY 20 FOR 5; makes a clock signal

wi th a period of 20 and a high time of 5. (Duty cycle = 5 / 2 0)

OtJTPUT <in.stance> . <node list > {AT <time> {EVERY <interval>})

-Display value (0, 1, X, or U) of all nodes in <node list> of <instance>

{at integer <time> {repeating every integer <interval>})

END

-Errri simulation

Special late note: INPUT and OUTPUT now also work with files a l l o w i n g

:;pecification of sequences of vectors and easier comparisons between

dif fcrent simulations.

Appendix C) Examples

This section contains examples of cell design, interface specification, automatic

documentation, and MAPS simulation. Two machines are described. The first is

described at a fairly low level of abstraction with several composition cells. The

second is first described at the highest possible level using "sequential" simulation.

It is then is broken up into five composition cells and many leaf cells to demonstrate

the approximate capacity of the structural compiler.

C. 1) A Miniture OM C h i p

The following example is a simplified version of the OM data path chip [Mead

and Conway]. The basic structure can be gathered from the floor plan diagrams

produced by SPAM. There is a 16 wire bus which runs across all eight registers, the

ALU, and the ports on either side. The even numbered wires on this set of 16 are

called the A bus and the odd are called the B bus. The ALU. adder, latch and register

cells should be straightfoward. The controller is a bit more complex. Its function is

to decode the sixteen bit control word which comes in from the bottom and produce

the correct signals on the registers, ALU, or ports to read or write. The control word

is made up of four fields of four bits each. The first two fields are the A and B

sources and the second two are the A and B destinations respectively. The four bit

codes which can be placed in these fields are summarized as follows:

Four B i t Code I Associated Oevi ce
-------------.-----------t------------------------

0 I No op

1 I Register 1
2 I Register 2

3 I Register 3

4 I Register 4

5 I Register 5

6 I Register 6

7 I Register 7

8 I Register 8

3 I ALU (Source Only - Catch ALLIAYS I atchesl

10 I Port 1

11 I Port 2

Registers and ports are accessed on the phi 1 clock cycle and the ALU is

accessed on phi2. All lines go to 0 in between clock phases.

CELLDEF processor (LEFT a[81 RIGHT b[81 BOTTOH c o n t r o l I 1 6 l , p h i l . p h i 2 1 :

I D a,t);

INPIJT c o n t r o l , p h i l , p h i 2 ;

CUIIPONENT por t l [8 ,11 , port2[8,11,

ALIJ, sc ra tch [1,8l (FIEMCELL) . CTL;

LEFT CTL,LEFI por t l <=> LEFT processor:

RIGHT CTL.RIGHT p o r t 2 <=> RIGHT processor;

BOTTOI1 CTL <=> BOTTOM processor:

BOTTOfl port1,BOTTOM scratch,

BOTTOM ALU,BOTTOM p o r t 2 <=> TOP CTL;

RIGHT p o r t 1 c=> LEFT scratch:

RIGHT sc ra tc l i <-> LEFT ALU:

RIGHT ALU <=s LEFT por t2 :

BEHAVE LATER

ENODEF :

rELLDEF nlenrcsl l (LEFT higbirs[l61 RIGHT bigbus [l 61 BOTTOM I fa, i fb.wta,i-rtb) :

! I f a / b - r load from bus A/B - u t a / b -> w r i t e t o bus A/B :

I 0 h i ybus , I fa. I fh,uta,wtb:

DEHAVE Nfl1.I

1 NTERNAL n t81;

START

I F I f a I fl,=X THEN n: =X AFTER 5

EF I f a I fb=U THEN n: =U AFTER 5

EF l f a l l THEN n:=higbus[2: 16eZ1 AFTER 5

EF I f b = l THEN n: =b igbus[l : 15e21 AFTER 5:

I F c~ta=X THEN bigbusi2: 1 6 ~ 2 1 :=X AFTER 5

EF wta=U THEN bighus[2:lGe2l:=U AFTER 5

EF u t a = l THEN bigbus 12: 16e21: =n AFTER 5:

I F r-I t h = X THEN h i gbus (1 : 1 5 ~ 2 1 : =X AFTER 5

EF w t b=U THEN b i ybus [I: 1 5 ~ 2 1 : =U AFTER 5

EF w t h - 1 THEN b i gbus [I: 15e21: =n AFTER 5:

ENDDEF :

CELLOEF p o r t 1 (LEFT pad RIGHT b,a BOTTOM la,lb,da,db.dp,rp
TOP la, lb,da,db,dp.rp) ;

! la - load a, Ib- load b, da=drive a, dbzdrive b, dp=drive pad. rp- read pad :

IO pac1,a.b. la,lb,da,db,dplrp;

BEHAVE NO11

INTERNAL n;

START

I F l a = l THEN n: =a

EF l b = l THEN n:=b

EF d e = l TI-I~N a: =n

EF clb=l THEN b: -n

EF c l p l THEN pad:=n

EF rp -1 THEN n:=pad:

ENDDEF :

CELLDEF p o r t 2 (RIGHT pad LEFT b . a BOTTOn rp,dp.db,da, lb . l a

TOP r p , clp, db, da, I b, l a) :

! ! \ i r ror . ing not inlplemented. so por t2 i s r e f l e c t i o n 0) p o r t l ;

I0 pad,a,b. la, Ib,cla.clb.clp.rp:

BEHAVE NOll

INTERNAL n:

START

I F la-1 THEN n: =a
EF lh-1 THEN n: -b

EF da=l THEN a: -n

EF db-1 THEN b:=n

EF dp=l THEN pad: =n

EF rp=l THEN n: upad:

ENDOEF ;

!On phase 1:

CELLDEF c t I (BOTTOf'l cin1161 . p h i l . p h i Z TOP aE61 ,c[321 ,aIua,aIut~.b[61 I:

! BOTTOll s i gnat s a r e Cont ro l lord (c i n) and Clocks (ph i l , ph i21 :

! TOP s i g n a l s a r e f o r p o r t l , r e g i s t e r c o n t r o l , ALU w r i t e t o A&B, and p o r t 2 ;

INPUT c i n . p h i l . p h i 2 ;

OUTPUT a,c,atua,alub.b:

BEHAVE NO1.l

I NTEGER ARRAY REG (1 : 4 I ;

1 NTEGER I :
START

FOR I:=1 STEP 1 UNTIL 4 DO

NEGIII :=cin[lf14-3: 19~41;

I F PHll=l THEN

BEG I N
FOR 1:=1 STEP 1 UNTIL 2 DO !SOURCES;

I F REG[II<S AN0 REG(I1>0 THEN

c [REG (I 1 c4+I -21 : =l AFTER 15

EF REG (I =10 THEN a[1+21 :=1 AFTER 15

EF REC,(I) - ; l l TIIEN b[5-11:=1 AFTER 15:

FOR 1:=3 STEP 1 UNTIL 4 00 !DESTINATIONS;

I F REG(1)<9 AND REG(II>0 THEN

c [(REG t I) -1 1 <c4+I -21 : 4 AFTER 15

EF REG (I 1 =10 THEN a [I -21 : =l AFTER 15

EF REG(1 1-11 THEN b[9-11: a1 AFTER 15:

END

EF PHI2=1 THEN

BEG I N

I F REG[11=9 THEN alua:=l : !On phase 2:

I F REG 121 =3 THEN a lub: -1;

EN0

ELSE c [l : 321 a [l : 61 b t l : 6 1 a l u a alub := 0 AFTER 10:

ENOOEF ;

CELLDEF a l u (LEFT. inpLl61 RIGHT o u t [l 6 1 BOTTOM u t a , u t b) :

INPUT inp,uta.wtb:

OUTPUT ou t ; , ,

COMPONENT add, la tch ;

LEFT add <=> LEFT a lu :

RIGHT l a t c h <=> RIGHT a lu :

RIGHT add c=> LEFT la tch ;

BOTTOI-I add.BOTTOI1 l a t c h <=> BOTTOII a l u :

BEHAVE LATER

. ENDDEF:

CELLOEF l a t c h (LEFT bus[l67,num[81 RIGHT bus[161 BOTTOM u ta .w tb) :

IPJPUT nun1.u ta,utb;

10 bus :

REHAVE NOLl

INTERNAL resu l t C81:

START

r e s u l t : = n u m AFTER 5:

IF w t a - I J OR w t a = X THEN t1us12:16e2l:=U AFTER 10

EF cr ta= l THEN bus 12: 1 6 ~ 2 1 : =resu l t AFTER 10:

I F i -~ tb=U OR w t b = X THEN busi1:15@21 :=U AFTER 10

EF uth-1 THEN bus E l : 15e21: aresu l t AFTER 18;

ENDDEF :

CELLUEF add (LEFT \)us 1161 RIGHT bus 1161 , ou t C81) :

I 0 bus:

OUTPUT ou t :

REHAVE Nau
START

o u t : =bus [l : 15023 +bus 12: 16e21 AFTER 25;

ENDDEF ;

The f o l l o ~ ~ i n g pages c o n t a i n the documentation f i l e from the above design.

l l lNI.ON by Richard Segal 1980-10-31

Structure Map:

PROCESSOR

IPORT1 t8.11

I

IPORT2 C8.11

I

l ALU

I
l ADO

I

l LATCH

I

I SCRATCH [l -81 (REIICELLI

I

l CTL

I

Cell Specif icat ion of 'AOO*:

I I

BUS [I61 -- ----BUS 1161

I I

I I
1 ----OUT Z81

I I

-63-

MINI.OM by Richard Segal 1980-10-31

C e l l Specification of 'MEHCELL':

....................
I I

B IGBUS C16I -- ----El1 GBUS [I61

I I
....................

I I I I

1 I I I

I I I I

L L W W
F F T T

A B A B

C e l l Specification of 'LATCH':

I I

BUS El61 -- ----BUS 1161
I I

I I

NUM 181 --- I

I I

I I

I I
I I

W W

T T

A B

MINI.OM by Richard Segal 1980-10-31

Cel l Specification of 'PORT1':

L L D D D R

A B A B P P

1 I I I I I

I I I I I t

I I I I I I

..............................
I I I I I I

I I I I I I

I 1 I I I I

L L D D D R

A B A B P P

MINI.Ofl by Richard Segal 1980-1 8-31

Cel l Specification of 'PROCESSOR':

C P P
O H H

MINI.OM by Richard Segal 1380-10-31

F loor P l a n o f 'PROCESSOR':

...
I PORT1 l IIEIICEL I ALU l PORT2 1

I ' I I I I

I PORT1 I SCRATC I ALU I PORT2 I

1 C8.11 1 11.83 I 1 M.11 I

I I I I I
.. I

I CTC l

I I

I CTL I

I I

I I

C e l l S p e c i f i c a t i o n o f 'PORTZ':

R O D D L L
P P B A B A

I I I I I I

I I 1 I I I

I I I I I I

R O O O L L

P P B A B A

-69-

WINI.OM by Richard Segal 1380-10-31

C e l l Specification o f 'ALU':

Floor Plan o f 'ALU':

1 ADO l LATCH I

I ADD 1 LATCH I

I I I

I I I

NINI.OM by Richard Segal 1980-18-31

C e l l Specification of 'CTL':

A A

L L

U U

A C A B B

I I 1 I I

6 32 1 1 6

I I I I I

I I

I I
I I
.........................

I I I

16 1 I
I I I

C P P

I H H

N I I
1 2

I l A P S siniulat ion of above chip:

{ L i s t instance table1

eminic

FIAPS> tab 1 e;

1 PROCESSOR

2 PROCESSOR/CTL [1 , 1 1

3 PROCESSOR/SCRATCH [l . 1 1

4 PROCESSOR/SCRATCH [l - 2 1

5 PROCESSOR/SCRATCH [l ,31

G PROCESSOR/SCRATCH[1,41

7 PROCESSOR/SCRATCH [l . 5 1

a PROCESSOR/SCRATCH 11 .61

3 PROCESSOR/SCRATCH 11.71

10 PROCESSOR/SCRATCH [I. 8 1

11 PROCESSOR/ALU [l .1 I /LATCH [l $ 1 1

12 PROCESSOR/ALU I 1 . 1 1 / A 0 0 I 1 . 1 1

13 PROCESSOR/PORTZ [l ,1 I

14 PROCESSOR/POR T 2 [=,I1
15 PROCESSOR/PORT2 L3.11

16 FRO1 :ESSOR /PORT2 L4.1 I

17 PROCESSOR/PORT2[5,11

18 FROCESSOR/PORT216.11

19 PROCESSOR/PORTZ 17.1 I

20 PROCESSOR/PORT2 [a, 1 I
2 1 PROCESSOR/PORTl [I, 1 1

22 PROCESSOR/PORT112,1 I
23 PROCESSOR/PORT1[3,11

24 PROCESSOR/PORT 1 1 4 . 1 I

25 PROCESSOR /PORT1 [S ,1 I

26 PROCESSOR/POR T 1 [G ,1 I
27 PROCESSOR /PORT 1 t7.1 I

28 PROCESSOR/PORTl [X. 1 I
HAPS> input 1. con t r o 1 : 4: (Set control word to no opl

IIAPS>inp l , ph i l := l a t 50 every 128 for 50; {Set up two-phase c l ocKsi

f l A P S > i n p l ,phi2:=l a t 110 every 128 f o r 50:

i'lAPS>break a t 180 every 50; {Set urong break po i n t l

tIAPS> I i s t ; {So l i s t timed devices\

Timed device 1:
INP l . P H I l : = I AT 50 EVERY 120 FOR 50;

T i mecl cfev i c e 2:

INP 1.PHI2:=1 A T 110 EVERY 120 FOR 50:
___________________----_-_----___---------------------------
Timed dev ice 3:

BREAK A T 109 EVERY 50:
..
!1APS>remove 3: [And reniove o f f ender l

VIAPS>break a t 45 every 120: IBreak b e f o r e each phase 1)

IlAPSz I i s :

Timed dev ice 1:

INP l , P H l l : = l A T 50 EVERY 120 FOR 50:
_-______^__-_--_____-------4--_-----------------------------

T i n~ecl clev i ce 2:

INP l,PH12:=1 A T 110 EVERY 120 FOR 50:
___________-_______--_-__-----------------------------------
T illled d e v i c e 3:

B R E A K A T 45 EVERY 120;
___________________-__-___----------------------------------
IlAPS>o 3.1-~ighus 11: 161 :

0 3.BIGBUSt1:161 a t tinre = 8:

U U U U U U U U U U U U U U U U IBo t h busses uncle f i ned l

tlAPSbp:

Rt-eak a t t i me - 45

tIAPSzl3:

B r ~ a k a t t ime = 165

IIAPS>o 3 . b i gbus:

0 3,BICBUS a t t inle = 165:

U U U U U U U U U U U U U U U U

tIAPli>o 4,n:

U 4 . N a t t ime = 165:

L I U I J U U U U U

IIAPS>i 4,n:=5;

IlAFS> i 6, n: -7:

rIAPS> i 1, con t r o I [I: 41 : -2;

flAPS> i 1, c o n t r o 1 15: 83 : 14;

I'IAPS>p:

Break a t t ime = 285

flAPS>o 3. b i gbus [2: 16e21:

0 3,BIGBUS[2:16e21 a t time = 285:

IProceedl

(S t i l l b e f o r e f i r s t c l o c k p u l s e }

[Proceed to, t e s t no opl

(S t i l l n o t h i n g on buses)

(Noth ing i n r e g i s t e r 21

{Put va lue 5 i n t o r e g 21

(Put 6 i n t o r e g 4)

(Set A Bus source t o , r e g 21

[I3 bus source t o r e g 41

[GO! ! I

(A bus has c o r r e c t value1

rlAPS7o 3. b i gbus [I,: 15@21 :

0 3,BICBUS[1:15~21 a t time = 285:

0 0 0 0 0 1 1 . 1

tlAPS7o 11,resuI t;

0 11,RESULT a t t i m e = 285:

0 6 0 0 1 1 0 0

IIAPS, i 1, con t r o I : =0:

tlAPS>i 1.contFo1 [1:41:=9:

IlAPS> i 1, c o n t r o l [9: 121 : 110:
IIAPS>p:

OreaK a t t ime = 405

I1APSpo 3, t~ igbus 12: 161e21;

03.DICOUS12:16~21 a t t i r nea485 :

R O I . 1 L ~ F I 1 1

ItAPS>o 3. b i gbus 11 : 1 5 ~ 2 1 ;

03,BIGBUSI1:15s21 a t t i m e - 4 0 5 :

B B i 3 B B l l l

IlAPSwi 1 . con t ro l 15:81:=7:

IIAPS>p;

Break a t t ime = 525

IlAPS>o 3 , b i gbus 12: 16e21:

0 3.6IGBUS[2:16~+21 a t time = 525:

0 0 l 3 1 8 8 1 1

tIAPS>o 3, b i gbus E l : 15e21:

03.BIGBUSI1:15@21 a t time = 5 2 S :

U - U U U U U U U

TlAPS>o 1, can t r o I;

O 1,CONTROL a t time = 525:

1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0

IIAPS> i 1, con t r o I : =8:

NAPS> i 1, con t ro 1 [9: 121 : 4:

flAPS> i 1, c o n t r o l l l : 41 : -2:

MAPS>p ;

(0 bus too l

(LATCH has sum s i nce ADO

aluays addsf

(Reset c o n t r o l wordl

(Use ALU (l a t ch) as A source l

{And p o r t 1 as A cles t i nat i on l

{Neu sum o f 12 (o I d sun11 and

7 (s t i 1 1 on B bus) = 191

(B bus had a 71

(Load an empty r e g i s t e r onto

B bus t o s top the maci acfclert

(Sum on A bus s t i l l 191

Con ten t s o f r e g i s t e r 7 on

6 bus now1

(Current s t a t e o f c o n t r o l wordl

{Reset i t t o zero\

{New d e s t i n a t i o n i s r e g i s t e r 81

(Source i s r e g i s t e r 21

Break a t t i me = 645

rlAPS>o 10, n;

O'l0.N at time =645:

0 6 0 0 0 1 0 1

I'lAPS>i 1 ,controI [1:41:=1%;

IlAPS>p:

Break at time 765

tlAPS>o 10.n:

0 10,N a t t i n ~ e = 765:
0 9 0 1 6 0 1 1

IlAPS>encl:

End o f SPAllAPS execu t ion

(Successful t ransfer1

Keep i ng same des t i na t i on t r l ~

getting saved sum from p o r t l l

C.2) The GR2

The G R 2 is ,a stack data processor [Efland and Mosteller]. This appendix presents

two views of the chip. The first is a behavioral description of the highest level of

abstraction of the chip using "sequential" behavior to simulate its microcode

enviornment. The second part is a structural description only, including several

layers of abstraction. Some of the documentation produced by S P A . is shown.

C.2.1) A Sequential Description

G R 2 SPAn DESCRIPTION
August 1980

CELLDEF GR2(

TOP reset , r d y , phl, phZ9 sl , $ 2 9 d i n
\

RIGHT GN0,VOO
B4T Tor1 ds, cd, ru, as. dotit, ad [a]
1 :

INPUT reset, rdy. sl, 82, din;

OUTPUT ds,cd,ru,as,dout;
10 ad:

CLOCK phl , ph2:
POWER VDD;
GRWNO GND;

BEHAVE NOtl

INTERNAL a-reg t81 b-reg 181 top-reg I81 base-reg [8l program-counter 181
i r 141 ea l8l n 181 o f f t81 ;

SEllUENCE

I F r e s e t = l THEN BEGIN

! Clear the output p i n s l i k e a good machine:

ds cd ru as dout : -0;

! I n i t i a l i z e the i n te rna l state;

program-coun ter: 10: base-reg: -0;

top-reg: -0:

NEXT phl :

EN0 :
LIHILE TRUE 00 BEGIN

adCl:81 :=program-counter: ! I n s t r u c t i on fetch:

as ds cd r u :- 1 0 11:

NEXT phl :

as ds cd r w := 0 0 0 8:
program-counter:-program_counter+l:

NEXT phl :

as ds cd r u := 0 1 0 0:

i r -ad t5: 81 :
NEXT phl :

! ADD; IF ire0 0 0 1 THEN BEGIN

b-reg: =b-reg+a-reg;

NEXT phl r

NEXT phl r

EN0 ELSE IF i r - 0 0 1 0 THEN BEGIN ! SUB:
b-reg: -b-reg-a-reg:

NEXT phl ;

NEXT phl ;

END ELSE I F i r - 0 0 1 1 THEN BEGIN ! AND:

b-reg: = (b-reg AND a-reg) ;

NEXT phl ;

EN0 ELSE I F i r = 0 1 0 0 THEN BEGIN ! OR:

b-reg: = (b-reg OR a-reg) :
NEXT phl ;

END ELSE I F i r - 0 1 0 1 THEN BEGIN ! NOT:

a-reg: - (NOT a-reg) ;

NEXT phl;

ENOaELSE IF i r=0 1 1 0 THEN BEGIN ! LIT:
ad:=program-counter:

as ds cd r u :a 1 0 1 1:

NEXT phl;

as ds cd r w := 0 0 0 0:
program~counter:~program~counter+l:

NEXT phl;

as ds cd rw :- 0 1 0 0:

a-reg: mad:

NEXT phl;

EN0 ELSE IF i r = 0 1 1 1 THEN BEGIN ! LOO:

ad: =program-coun te r : ! get <d i f > f i e l d:

as ds cd ru :- 1 8 1 I:

NEXT phl;

as ds cd r w :- 0 0 0 0;
ear =base-reg;

program~counter:=program_counter+l;

NEXT phl:

as ds cd r u :- 0 1 0 0;

n: =ad:

NEXT phl:

UHILE n>0 00 BEGIN ! Fo l lou up po in ter chain;

ad (1: 81 : lea:
as ds cd r u :- 1 0 0 1;

NEXT phl:

as da cd ru := 0 0 0 0:
nr -n-1 :

NEXT phl;

as ds cd ru :- 0 1 0 0;
ea: =ad C1: 81 ;

NEXT phl:

€NO;
ad: -program-counter: ! get <o f f * f i e l d:

as de cd r w := 1 0 1 1 :
NEXT ph l t

as da cd r u :- 0 0 0 0;
program~counter:=program_counter*l;

NEXT phl;

as ds cd r w := 0 1 0 0:
o f f :-ad;

NEXT phl;

adll:8l:=ea: ! get the data:

as ds c d r u := 1 0 0 1;

NEXT ' ~ h l ;

as ds cd r u := 0 0 0 0;

NEXT ph l :

as ds cd ru := 0 1 0 0;

a-reg: =ad:

NEXT phl ;

END ELSE I F i r u l 0 0 B THEN BEGIN ! STO;

ad:-program-counter: ! get e d i f z f i e l d :

as ds cd r u := 1 0 1 1;

NEXT phl ;

as ds cd r u := 0 0 0 0:

ea: =base-reg:

program-coun ter: =program-coun t e r + l :
NEXT phl;

as ds cd r u := 0 1 0 0:

n: =adz

NEXT phl :

UHiLE n>0 00 BEGIN ! Fol low up po in te r chain:

ad: lea;

as ds cd r u :- 1 0 0 1:

NEXT phl:

as ds cd r u := 0 0 0 0:

n: an-1 ;

NEXT phi ;

as ds cd r u :- 0 1 0 0;

ea: -ad:

NEXT phl;

END I

ad: =progranl,coun t er: ! get < o f f > f i e l d:

as ds cd r M :* 1 0 1 1:
NEXT phl :

as ds cd r w :a 0 0 0 0:
program-counter:-program-counter+l;

NEXT phl ;

as ds cd r u := 0 1 0 0;

o f f : =ad;

NEXT phl:

ad:=ea: ! Save the data:

as ds cd ru := 1 0 0 0;

NEXT phl;

as ds cd r u := 0 0 8 0:

NEXT phl;

as ds cd r w := 0 1 0 0;

ad: =a-reg:

NEXT phl ;

END ELSE I F i r = l 0 0 1 THEN BEGIN ! CALL:

b-reg: =base-reg;

NEXT phi ;

a-reg: =program-coun t er;

NEXT phl:

base-reg: =top-reg;

NEXT phl :

ad:=ea: ! Get jump address:

as ds cd r w := 1 0 I 1:

NEXT phl:

as ds cd r w :- 0 0 0 0:

NEXT phi :

ae ds cd r u :I 0 1 0 0:

program-coun ter : sad:

NEXT phi :

END ELSE IF i r = l 0 1 0 THEN BEGIN ! EXIT;

base-reg: -base-reg-l :

NEXT phl ;

top-reg: =base-reg:

NEXT phl :

base-reg: -b-reg;

NEXT phl ;

program-coun ter: -a-reg:

NEXT phl ;

END ELSE IF i r = l 0 1 1 THEN BEGIN ! EQ:

I F a-reg-b-reg THEN b-reg: =l
ELSE b-reg: -0;

NEXT phl;

NEXT phl:

NEXT phl;

IF b r e g - 1 THEN NEXT phl;

EN0 ELSE IF iral 1 0 0 THEN BEGIN ! JCTi

ad: =program-coun ter: ! Get jump address;

as ds cd r w :a 1 0 11:
NEXT p h l :

as ds cd r w := 0 0 0 0:

program-counter:=program-counter+l;

NEXT phl ;

ae ds cd r u := 0 1 0 0;

IF a-reg 181 -1 THEN program-counter: =ad:

NEXT phl ;

NEXT phl ;

NEXT phl:

IF a-reg 181 -1 THEN NEXT p h l ;

EN0 ELSE I F ir=l 1 0 1 THEN BEGIN ! PUSH;

top-reg: = top-reg+l:

NEXT phl :

ad:=top-reg; ! save b r e g i s t e r in stack:

as ds cd r w := 1 0 0 0:

NEXT phl ;

as ds cd r w := 0 0 0 0:

NEXT ghl:

ad: =b-reg:

as ds cd r u := 0 1 0 0:

NEXT phl :

b-reg: =a-reg:

NEXT phl;

END ELSE I F i r -1 1 1 0 THEN BEGIN ! POP;

a-reg: -b-reg:

NEXT phl :

ad: =top-reg: ! Get b r e g i s t e r from stack;

as cis cd r u :a 1 Q 0 1;
NEXT phl :

as ds cd r w :- 0 0 0 0;

NEXT phl ;

as ds cd r w := 0 1 0 0;

b-reg: =adt

NEXT phl :

top-reg: - top-reg-1 ;

NEXT phi :

EN0 i

END ;
ENODEF ;

S imu la t i ng the GR2:

egr2c

HAPS>table: {Only one instance be ing s imulated - GR21
1 GR2

HAPSwstart 1; (S ta r t up needed since i t s a SEQUENCE}

flAPS>input l ,ph l := l a t 5 every 5 f o r 2 ; (Set up clock, pe r i od=5)

HAPS>output 1,program-counter[l:81 a t 4 every 5: (Some signals we need t o see)

flAPS>ou t 1, i r t1:4? a t 4 every 5; I I n s t r u c t i o n r e g i s t e r)

HA?S>out 1 ,as ds cd r w a t 4 every 5 ; I s ta tus b i t s)

MAPSsbreak a t 4 every 5%

flAPS>p: (S ta r t up and i n i t i a l i z e l

OUTPUT 1 , PROGRAM-COUNTER (1 : 81 a t t i me - 4 :

U U U U U U U U

OUT 1,IRt1:41 a t time = 4:

U U U U

OUT 1,AS OS CO RW a t time - 4:

1 0 1 1

Break a t t ime r 4

MAPS>l i s t :

Timed device 1:

INPUT 1 ,PHI: -1 AT 5 EVERY 5 FOR 2;

{Ready f o r f i r s t ciock cycle1

Timed dev ice 2:
OUTPUT 1, PROGRAM-COUNTER I1 : 81 AT 4 EVERY 5:

-----I--

Timed dev ice 3:
OUT l , IR l l :41 AT 4 EVERY 5 ;

..
Timed dev ice 4:

OUT 1,AS DS CO RW AT 4 EVERY 5 :
..
Timed dev ice 5:

BREAK AT 4 EVERY 5 ;
..
flAPS>p; {GO ! ! 1

OUTPUT 1, PROGRAM-COUNTER [I : 83 a t t i me = 3:

(Ready fo r f i r s t i ns truc t i on)

OUT l,IR[1:41 a t t i m e - 9 :

U U U U

OUT 1,AS DS CD RU a t time = 9:

0 0 0 0

BreaK a t time - 9
MAPSzi l , a d t l r 8 l r = 0 1 1 0:

llAPS>p :
OUTPUT 1. PROGRAM-COUNTER [I : 81 a t t i me - 14:

0 0 0 0 0 0 0 1

OUT 1,IRClr41 a t t i m e = 14:

0 1 1 0

OUT 1,AS OS CD RW a t time - 14:

0 1 0 8

BreaK a t time - 14

MAPS>p s
OUTPUT 1, PROGRAtI-COUNTER I1 : 81 a t t i me = 19:

0 0 0 0 0 0 0 L

OUT l,IR[1:41 a t t i m e - 1 9 :

0 1 1 0

OUT 1,AS OS CO RU a t time - 138

1 0 1 1

BreaK a t time - 19

l-!APSzo 1. ad [I a 81 ;

0 I,A0[1:81 a t time = 19:

0 0 0 0 0 0 0 1

['LIT' instruction given)

I I R now contains i n s t r u c t i o n 1

(I t i s a " I i t e r a l " i n s t r u c t i o n

which means, put va lue on

AD bus i n t o A r e g i s t e r)

{Bus uas given value on PC1

NAPS>i l,adt1:83:=8: (Put on neu value t o "LIT")

MAPS>p;

OUTPUT 1, PROGRAll-COUNTER [l : 81 a t t i me = 24 :

0 0 0 0 0 8 1 0 {Second cyc l el

OUT 1,IRClr43 a t t i m e 1 2 4 :
>

0 1 1 0

OUT 1,AS DS CD RW a t time = 24:

0 a 0 0

BreaK a t time 24
MAPS>o 1, a-reg 11 : 81 :

0 l,A_REG[1:81 a t time - 24:

u U U U U U U U

MAPS>p:
OUTPUT ' 1, PROGRAH-COUNTER [I: 81 a t t i me - 29:

0 0 0 0 0 0 1 0

OUT l , IRf1 :41 a t time * 29:

0 1 1 0

Break a t time - 29

MAPSzo 1 , a-reg C l : 81 :
0 l,A_REC11:81 at t i m e - 2 9 :

0 3 0 0 1 0 0 0

IUait ing for LIT to f in ish1

IOONE. A r e g i s t e r got the 81

tlAPS>p; (Proceed through l oopl
OUTPUT 1, PROGRAM-COUNTER I1 : 81 a t t i me - 34:

0 0 8 0 0 0 1 0

OUT 1,IRC1:43 at time * 34:
0 1 1 0

OUT 1,AS OS CO RU at time - 34:
1 0 1 1

Break a t t i me - 34
rtAPS>pt

OUTPUT 1, PROGRAfl-COUNTER I1 : 81 at t i me = 39:

0 0 ~ 0 0 0 1 1

OUT l,IR[1:41 at t i m e - 3 9 :

0 1 1 0

OUT 1,AS OS CO RW a t time = 39:

0 0 0 0 (Ready f o r next i n s t r u c t i o n 1

Break a t t ime - 39
MAPSri l.adE1:81:-13; 113 i s PUSH i n s t r u c t i o n)

MAPS>o 1, b-reg (1: 81 a t 43 every 5; {Since thi e means "push" A reg

MAPS>p: i n t o B reg. we u i l l uan t t o

0 l,B,REGt1:81 a t t i m e - 4 3 : uatch the B r e g i s t e r)

U U U U U U U U

OUTPUT 1,PROGRAfl-COUNTER[1:81 a t time - 44:

0 8 8 0 0 0 1 1

OUT 1,IR[1:41 a t t i m e - 4 4 :

1 1 0 1

OUT 1,AS OS CO RU a t time = 44:

0 1 0 0

BreaK a t t ime = 44

MAPS7p;

0 l,B_REG11:81 a t time - 48:
U U U U U U U U 11 t takes a bunch o f c l ocK cyc l esl

OUTPUT 1, PROGRAil-COUNTER I1 : 81 a t t i me = 49:

0 0 0 0 0 0 1 1

OUT 1,IR[1:43 a t t ime - 49:

1 1 0 1

' OUT 1.AS OS CO RU a t time - 49:

0 1 0 a

BreaK a t time - 49

MAPS>p;

0 1,8-RECt1:81 a t time - 53s
U U U U U U U U

OUT l , IRt l :41 at time = 54:

1 1 0 1

OUT 1 ,AS DS CD RW at time = 54:

1 0 0 0

BreaK at time = 54

MAPS>p:
0 1.8-REGI1:81 at time = 58:

U U U U U U U U

OUTPUT 1, PROGRAll-COUNTER t l : 81 a t t i me = 59:
0 B 0 0 0 0 1 1

OUT 1,IRt1:41 at time = 59:

1 1 0 1

OUT 1,AS DS CD RU at time = 53:

0 0 0 0

Break at time = 59
HAPS>p:

0 l,B_REGt1:81 at time = 63:

U U U U U U U U

OUTPUT 1, PROGRAM-COUNTER E l : 81 a t t i me = 64 t

0 8 0 8 0 0 1 1

OUT l , IRt1:41 at time - 64:
1 1 0 1

OUT 1,AS DS CD RW at time = 64:

8 1 0 0

Break at t i me = 64

DAPS>p:
0 l,B,REGt1:81 at time = 68:

B B 0 0 1 0 0 0 {DONE! 8 uas PUSHed)

OUTPUT 1, PROGRAfl-COUNTER E l : 81 a t t i me a 69:

0 0 0 0 0 0 1 1

OUT 1,IR11:41 a t t imem63:

1 1 0 1

OUT 1,AS OS CO RU a t time = 69:
0 1 0 0

Break a t time = 69

tlAPS>p;

0 1,8,REGE1:81 a t t i m e - 7 3 :

8 0 0 0 1 0 8 0

OUTPUT 1, PROGRAtl-COUNTER E l : 81 a t t i me - 74 :

0 0 0 0 0 8 1 1

OUT 1,IRC1:41 a t time - 7 4 :

1 1 0 1

OUT 1,AS DS CD RW a t time = 74:

1 0 1 1

Break a t time - 74
MAPS>pt

0 1,B,REGt1:81 a t time - 78:

0 0 0 0 1 0 0 0

OUTPUT 1, PAOGRAfl-COUNTER 11 : 81 a t t i me a 79:

0 0 0 0 0 1 0 0

OUT 1,IR11:41 a t time = 79:

1 1 0 1

OUT 1.AS DS CD RW a t time = 79:

0 0 0 0

Break a t time = 79

MAPS> i 1, ad E l : 81 : -6:
MAPS>p;

0 l,B,REGtl:83 a t time - 83:

8 0 0 0 1 0 0 0

{Ready f o r next i ns truc t i on1

{LI TI

OUTPUT 1, PRO~RAM,COUNTER I1 : 81 at t i me = 84:

0 0 0 0 0 1 0 0

OUT l,IRI1:41 a t time = 848

0 1 1 0

OUT 1,ASDS CDRW at time = 84:

0 1 0 0

OUTPUT 1, PROGRAII-COUNTER 11 : 81 at t i me = 89:

0 0 0 0 0 1 0 0

OUT l,IRI1:43 at time = 89:

0 1 1 0

OUT 1,ASQS CDRU at time - 8 9 :

1 0 1 1

Break a t time - 89

MAPS>i l,ad[l:81:-7;
tlAPS>p;

0 1.B-REGC1:81 a t time = 33:
0 0 8 8 1 8 0 0

{LIT value i s 7 this time1

OUTPUT 1, PROGRAM-COUNTER t l : 83 a t t i me - 94 :

0 0 0 0 0 1 0 1

OUT 1,IR11:41 a t time = 94:

0 1 1 0

OUT 1,AS DS CD RW at time - 94:

0 0 0 0

Break a t time = 94

NAPS>p:

0 1,B-REGE1:81 a t time, = 98:

OUTPUT 1, PROGRAtl-COUNTER C l : 81 a t t i me = 99:

0 0 0 0 8 1 0 1

OUT 1,IRll:41 a t time -99:

0 1 1 0

OUT 1,AS OS CD RW a t time = 99:
0 1 0 0

Break a t t ime - 99

llAPS>o 1, a-reg E l : 81 t
0 1.A-REGI1:81 a t time = 39:

0 0 0 0 0 1 1 1

flAPS>p;

0 1.8-REGE1:81 a t time = 103:

8 8 0 0 1 8 0 8

OUTPUT 1, PROGRAtl-COUNTER t1 : 81 a t t i me - 104 :

8 0 0 0 0 1 0 1

OUT l,IR[1:41 a t time - 104:

0 1 1 0

OUT 1,AS DS CD RW a t time = 104:

1 0 1 1

Break a t time = 104

MAPS>p;

0 1.8-REGE1:81 a t time = 108:

0 0 0 0 1 0 8 0

OUTPUT 1, PROGRAfl-COUNTER I1 : 81 a t t i me = 109:

0 0 8 8 0 1 1 0

OUT l,IRC1:41 a t t i m e - 1598

a 1 1 0

OUT 1,AS CIS CO RW a t time = 109:

8 0 0 0 (Ready f o r next i n s t r u c t i o n 1

Break a t time a 109
UAPS>I l,adCl:81:=l: {ADD i net ruc t i on t o add A and B l
flAPS2p:

0 l,B,REG[1.:81 a t time - 113:

0 0 0 0 1 0 0 B V3esult u i t l end up i n 8)

OUTPUT 1, PROGRAH-COUNTER El : 81 a t t i me = 114 t

0 0 0 0 8 1 1 0

OUT 1,IR[lr41 a t time - 114:

8 0 0 1

OUT 1,AS DS CO RW a t time - 114:

8 1 0 0

Break a t time = 114

HAPS>p:
0 1,6_REGC1:81 a t time - 118:

8 8 0 8 1 1 1 1 {OONE ! 8+7=151

OUTPUT 1 ,PROGRAtl-COUNTER Cl:81 a t t ime - 119:

0 0 0 0 0 1 1 0

OUT 1,IRC1:41 a t t ime-119 :

0 0 8 1

OUT 1,ASDS CDRW a t time = 119:

0 1 8 0

Break a t t ime - 119

MAPS>end:

End o f SPAMAPS execution

(End o f demonstration o f GR21

The following simulation is just to show how assignment statements work both in

SPAM and in MAPS.

egrZc

MAPS>break a t 1 every I:

flAPS>inp l,ntl:81:-8:

MAPS>p;

Break a t t ime - 1
flAPS>o l ,nt l :81;

0 l.N[1:81 a t time = 1:

0 0 0 0 0 0 0 0

MAPS>inp l,nClr81:-1:

flAPS>p;

Break a t time = 2
flAPS>o 1, n I1 r 81 ;

0 1,N11:81 a t time = 2:

0 8 8 8 0 8 0 1

flAPS>inp 1,n l l r 8 1 :-Ut

MAPS>p:

Break a t time - 3
MAPS>o 1, n [l : 81 :

0 I,Nt1:81 a t time - 3:

U U U U U U U u

MAPS>inp l ,n i l :81 : -X i

MAPS>p:

Break a t t ime = 4
flAPS>o 1, n I1 r 81 ;

0 1,NE1:81 a t time = 4:

X X X X X X X X

MAPS>inp l,nIl :81;=1 8 X U:
MAPS>p:

Break a t t ime = 5
flAPS>a l ,n t l :81:

0 l . N t l t 8 1 a t time = Sr

0 0 0 0 1 0 X U

(I f the r ight hand side i s a s ing le "8"1

{The resu l t i s a l l zeros)

(A s ing le "1")

(Results i n a one padded w i t h zeros]

{A s ing le "U")

(1s extended to l e f t side of the uordl

ISo i s a s i ng le "X")

{Any other val uei

I 1 s padded u i th zeros)

flAPSrinp l .n [1~81:=0 X;

flAPS>p;
Break at time = 6
RAPS>o 1, n Clf81;

0 1,Nll:83 at time - 6:
0 0 0 0 0 0 0 X

MAPS, i np 1, n 11 : 81 : -72;

Break a t time = 7

0 1,N[1:81 at time = 7:

{ANY other value)

I !)

I A decimal number works tool

C.2.2) A Bigger Picture

The description on the following pages contains no behavior. It is simply

multi-level description of the GR2 chip. Since the documentation produced for this

chip was rather long, only the hierarchical map, the composition cell floor plans,

and the GR2 pin diagram are included in this report.

! 1 ~ ~ ~ 9 ~ * = ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ * * ~ ~ ~ ~ ~ t ~ . ~ ~ ~ ~ L * m ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ 9 ~ ~ ~ ~ ~ ~ ;

!
C R 2 SPAn OESCRIPT ION ! ,

! August 1980

! - I P - P I I 9 I P I I I I I I ~ P 9 I . I I I I I ~ I I P I m I 9 I I I I I I m = I - = 9 I = - - = 9 m ~ = S = ~ - = ~ m - - ~ = :

CELLDEF G R 2 (

TOP rese t , rdy, phl.ph2, sl, s2, d i n

R I G H ~ GND . VDD

BOTTOM ds,cd.ru,as,dout.adl81

1 :

INPUT r e s e t , rdy, s l , 32, din:

OUTPUT ds,cd.rw,as,dout:

10 ad:

CLOCK phl , ph2:

POWER VOOs

GROUND GNO:

COtlPONENT con t r o I I e r , da t a g a t h , busgads, 1 ouer-con t r o I g a d s ,

upper-con t r o l g a d s t

RIGHT control I e r ABUTS LEFT upper-control,pade,

LEFT d a t a g a t h ;

TOP d a t a g a t h ABUTS BOTTOU upper-contro1,padst

TOP lower-controlgads ABUTS BOTTOM cont ro l le r ;

A I GHT 1 ower-con t r o 1 ,pads ABUTS LEFT busgads;

TOP bus-pads ABUTS BOTTOM d a t a j a t h :

BEHAVE LATER
ENOOEF ;

CELLDEF control ler(
BOTTOM VDD,GNO, ds,cd.rw,as, phl.ph2, portenin,Portenout, dout

RIGHT VDO,GNO, reset,phZ.phl,naC41 ,rdy,phl,phZ, 52. sl,din,

sl,din, ircnt 1 C31, flags141 ,aIuouten,aluop19 a c t I 131,

bcn t l 131 , basecn t 1 (31 , topcn t 1 [31 , pccn t 1 (31 , t mpcnt l C31 ,
portcnt l t31 .portenin.portenout, eZ,dout,ph2,GNO

1 :

INPUT reset, na, rdy, s2. sl, di n. f lags;

OUTPUT ds,cd,ru,as,portenin,portenout,dout,ircntl,aluouten,aluop,
acntl,bcntl,basecntl, topcntl,pccntl, tmpcnt I ,portent I:

CLOCK phl,ph2;

POllER VDD:
GROUND GND:

COIIPONENT rom, input~Iatch,output~latch.microsubrout ine-latch,
wiringl:

RIGHT rom ABUTS LEFT input-latch,
LEFT output-I atch:

LEFT microsubroutine-latch, LEFT uiringl ABUTS
RIGHT input-latch, RIGHT output-tatch;

BEHAVE LATER

ENOOEF :

CELLOEF d a t a g a t h (

LEFT sl,din,ircnt1131,f1a~s~41,a1uouten,a1uop~91',a~nt1[31,

bcnt 1 131 , basecnt 1 131 , topcnt 1 t31 , pccnt 1 131, tntpcnt 1 131 ,
portcnt l f3l ,portenin,portenout, s 2 , d o u t , p

TOP ph l , i r [41, VDO, GND

BOTTOM por t C83 ,GNO

1;

INPUT sl,din,ircntl,aluouten,aluop.acnt~,bcnt~,ba~ecnt~~~opcn~~,

pccnt l , tmpcnt l .portcnt l ,portenin,portenaut ,s~:

OUTPUT f lags.dout, ir:

I0 port;

CLOCK ph1,phZ;

POWER VOO:

GROUND GNO:

COVPONENT control-drivers,instr,reg,alu,store[6,11 (REGISTER1,

por t-reg:

BOTTOH i n s t r r e g <=7 TOP alus

BOTTOM a l u <-w TOP store:

BOTTOM store c-7 TOP port-reg:

A 1 GHT control -dr i vers <=> LEFT ins tr-reg,

LEFT a lu ,

LEFT store,

LEFT port-reg;

BEHAVE LATEA

ENDDEF ;

CELLDEF lower-controlgads(

TOP VOO,GND,dsin,cdin.rwin,asin,phl,ph2,portenini ,por tenout i

dou t i n

RIGHT portenin,portenout,GNO,VDD

BOTTOM ds, cd, ru , as, dou t

1 :

INPUT dsin,cdin,ruin,aein.portenini,portenouti,do~tin:

OUTPUT ds,cd,ru,as,dout,portenin,portenout;

CLOCK phl;

POWER VOO:

GROUND GNO:

DOTTOfl u i r i ng2 <=> TOP ds. TOP opada:

RIGHT ds c=> LEFT opa,ds;

BEHAVE LATER

ENOOEF :

CELLOEF busjads(

LEFT portenin.portenout,GNO.VOO

TOP p o r t [81, GND
BOTTOM adt81

f ;

INPUT portenin,portenout;

10 por t , ad:

POWER VUD:
GROUND GND:

BOTTOM uiring3 ABUTS TOP ad, TOP r igh t jad - t r is ta te :

RIGHT ad ABUTS LEFT r ightgad-tr istate:

BEHAVE LATER
ENDOEF :

CELLDEF upper-con t ro l g a d s (

LEFT VDO,GNO,reset.ph2,phl,nal41 , r d y , p h l , p h 2 , ~ 2 , 6 1 , d i n

TOP resetin,rdyin,phl,ph2,slin,s2in,dinin

RIGHT GN0,VDD

BOTTOM ph l , i r t43 , VDD. GND

:

INPUT r e s e t i n , r d y i n , s l in,sZin.dinin;

OUTPUT reset ,na, rdy.s2,s l ,d in , i r ;

CLOCK phl,ph2:

POWER VOO;

GROUNO GND;

COflPONENT contro i g a d s , pouerjacls. u i r i ng4, ~ o n n e c t ~ b o x . b u f f e r ;

BOTTOH c o n t r o l ~ a d s ABUTS TOP u i r ing4 ,

TOP powergads;

BOTTOH wir ing4 ABUTS TOP connect-box:

RIGHT connect-box ABUTS LEFT buffer :

RIGHT b u f f e r ABUTS LEFT pouer jads;

BEHAVE LATER

ENDOEF :

The following pages contain some of the documentation produced by SPAM:

GRBIG. TXT by SEGAL 1981-01-21

Structure Nap:

GA2
tCONTROLLER
1

I ROH

I

I I NPUT-LATCH

1

I OUTPUT-LATCH

I

I H I CROSUBROUT I NE-LATCH

I

I W I R I N G l

I

I DATA-PATH

I

I CONTROL-DR I VERS

I

I INSTR-REG

I

l ALU

1
1 STORE I G , 11 [REG I STER)

t

L PORT-REG

1

I BUS-PADS

I

IlJIRING3

I

I AD [l -71 (PAD-TRI STATE)

I

I R I GHT-PAD-TRI STATE

I
I LOWER-CONTROL-PADS

I

ItlIRING2

I

10s (LEFT-PADOUT 1
I

IDPADS [I. 41 (PADOUT)

I

l UPPER-CONTROL-PADS

I

I CONTROL-PADS

I

I POWER-PADS

I

IWIRING4

I

I CONNECT-BOX

I

I BUFFER
I

GRBIG. TXT by t SEGAL 1981-81-21

Cell Specification o f 'GR2':

R
E

S R P P 0
' E O H H S S I

T Y 1 2 1 2 N
1 f I. I I I I

I I I I I I I

I I I I I I I

...................................
I I I I I I

I I I I 1 8

I I I I I 1

D C R A O A

S D W S O D
U

T

GRBIG.TXT by SEGAL 1981 -01 -21

F l o o r P l a n o f 'GR2' :

...........................
I CONTRO l UPPER-I

I I I

I I UPPER- 1

I I I

I I I
I CONTRO I ------------ I
I I 0ATA-P l

I I I

I I DATA-P I

I I I

I I I
.......................... I

I LOLIER- 1 BUS-PA I

I I I

I LOLIER- I BUS-PA I

I I I

I I I
...........................

CRB I G . TXT by z SEGAL 1981 -01 -21

F l o o r P l a n o f 'CONTROLLER':

..
I RON l I NPUT- I M I CROS l

I I I I

I I INPUT- I I

I I I I

I I I I

I -------------I MICROS I

I I OUTPUT l I

1 I I I

I ROM I I I

I I I I

I I I I

I I OUTPUT I

I I I WIRING1

I I 1 I

I I 1 WIRING I

I I I I

I I I I

- 105-

GR0IG .TXT by SEGAL 1981-01-21

F l oor P 1 an of 'COWER-CONTROL-PADS' :

I WIRINGI
I I

I WIRING I

I I

I I
- I

I LEF T-P I PAOOUT l

I I I

I DS I OPAOS I

I 1 c1.43 I
I I I
...........................

GRBIG.TXT by , SEGAL 1981 -01-21

F l oor P 1 an of ' ' BUS-PADS' :

...........................
I WIRING1
I I
I WIRING I
I I

I I
--------------------------\

I PAD-TR I R I GHT- I

I I I

I AD I RIGHT- I

1 f1.71 I I

I I I

---------------------i--------

- 107-

GRBIG.TXT by SEGAL 1981-01-21

F I oor P I an o f ' UPPER-CONTROL-PADS' :

..
I CONTRO I

I I

I CONTRO I

I I

t I
....................................... I

I LlIRlNGl BUFFER I POLIER-I

I I I I

1 I-IIRING I I I

1 I I I

I t I I
-------------I BUFFER I POWER- I

I CONNEC t I I

I I I I

I CONNEC I I I

I 1 I I

I I I I
..

DRBIG.TXT bg , SEGAL 1981-01-21

F l o o r P l a n of 'DATA-PATH':

...........................
I CONTRO l I NSTR-I

I I I

I I INSTR, I

I - I I

I I I
-------------I

I ALU l
I I

I ALU 1

I 1

I 1
CONTRO - - - - - - - - - - - - - I

I REGIST I
I 1

I STORE I

I t6.11 I

I I
-------------{

I PORT-R I

I . I

I PORT-R I

I I
I I

References

C. Gordon Bell and Allen Newell, "Computer Structures: Readings and Examples,"

McGraw Hill, 197 1

Irene Buchanan and John Gray, "Models For Structured IC Design." Caltech SSP File

#3230,1979

W.E.Cory, J.R.Duley, W.M.vanCleemput, "An Introduction to the DDL-P Language,"

Stanford Computer Systems Laboratory Technical Report no. 163, 1979

Greg Efland and Richard Mosteller, "Stack Data Engine," Caltech SSP File #3364,

1979

Dave Johannsen, "BRISTLE BLOCKS: A Silicon Compiler," Caltech SSP File # 2587.

1979

Danny C. KO, "BUILD User's Manual." Burroughs Corporation - Mission Vie jo. 1979

Carver Mead and Lynn Conway, "Introduction to VLSI Systems," Addison Wesley,

1980

Jim Rowson, "Understanding Hierarchical Design," Phd. Thesis, Caltech ,E File

#3210,1980

Steve Trimberger, "Proposed Sticks Standard," Caltech SSP Display File H38 1980

