CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

Structure, Placement And Modelling

Technical Report # 4029

by

Richard Seqal

Submitted in Partial Fullilment of the Requirements for the Degree of
Master of Science

February 1, 1981

Copyright, California Institute of Technology, 1981

Abstract

The nature of hierarchical design tools for VLSI implementation is explored in
terms of the "Caltech Structured Design Philosophy" as interpreted by Rowson in his
doctoral thesis [Rowson]. One obvious implication of this thesis is the desirability
of tools for leaf and composition cell design. This thesis describes one such tool
targeted at the composition cell design problem. It is intended to be used in the
architectial phases of a design and allows structural (interface specification),
physical (floor planing), and behavioral (simulation modelling) descriptions to be
. written .down, integrated, and tested. One biproduct of this process is the

generation of a comprehensive design document from which workbooks can be
generated automatically.

The later sections describe a hierarchical simulator and how it fits into the
step-wise refinement process of design. The most important considerations in the
design of this simulator were ease of expression and the provision of enough
Eenerality to allow the specification of any VLSI structure. Simulation takes place
in a time axis/delay environment and uses a system in which nodes may take one of
four values or states, This allows a high level simulation in which physical devices
are replaced by register transfer type operations. Data is altered and moved around
using flow control mechanisms, logical and mathematical operations, and various
means of specifying delay. Though not necessary or typical it is possible to model
actual devices as ideal switches using these technigues, It is a multi-model
simulation because simulation can occur at any level of design abstraction. Several

examples are given including the modelling of the GR2 stack data microprocessor
which was recently fabricated in NMOS.

Table of Contents

1) Structured VLSI Design
1.1) Communication is the Key
1.2) Regularity and Interconnection
1.3) Verification
2) SPAM
3) Creating Structural Descriptions
3.1) The Hierarchy of Representations
3.2) Composition Rules
3.3) Interface Specification and Floor Plan
3.4) Automatic Documentation
4) Behavioral Modelling
4.1) Operations
4.1.1) DBata Storage
4.1.2) Data Transfer
4.1.3) Node Specification
4.1.4) Logical/Hathematica!l Functions
4.1.5) Suppliementary Features
4,2) Scheduling and Communication
4,2.1) Simulation Hierarchy
4.2.1.1) Connections
4.2.1.2) UHires and Included Buses
4.2.2) Simulating Combinatarial Logic
4.2.3) The Sequential Behavior of an Instruction Processor
5) Softuare Organization
6) Conclusions

Appendix A} The SPAM Notation
Appendix B) SPAM User Guide
B.1) Cell Specification
B.2) Behavioral Descriptions
B.3) Compiling Input
B.4)IRunning a Simutation (MAPS)
Appendix C} Examples
C.1) A Miniature ON Chip
C.2) .The GR2
C.2.1) A Sequential Description
C.2.2) A Bigger Picture

'1) Structured VLSI Design

As VLSI devices grow smaller and smaller, designs in VLSI can grow more and more
complex. A iheoretically possible 10 million transistor chip presents an.enormous
challenge to the designer. The so called "Caltech Structured Design Philosophy” has
yielded an approach to this problem which seems to make large designs more
feasible and understandable. This master's thesis is a description of a design system

which attempts to follow this philosophy and to provide a means for verification of
large designs. '

1.1) Communication is the Key

It has been established [Mead and Conway, Rdwson] that the primary factor
influencing the size and speed of VLSI implementations is communication. Putting
functionality and transistors into chips is easier, less critical, and more well

understood then the usually random wiring that goes in between all the
components.

1,2) Regularity and Interconnection

Random wiring can be reduced by designing modules which when placed side by
side connect to one another exactly as they should. This technique increases
regularity in designs. These so called "butting blocks" result in the production of
many rectangular cells which fit together in a | design with no other
interconnection. The communication problem has not disappeared however, it has
Jjust become easier. Every design needs some sort of random wiring. In a "butting
blocks" world random wires are put into cells of their own, making them easier to
define and to modify. A design which is made completely of butting blocks must be

‘planar and can be submitted to automatic stretching and placement algorithms.

1.3) Verification

To be sure that a large chip will function as it is supposed to it is important to have
some tools for the verification of designs on the structural, physical, and behavioral
domains of description. Structural integrity of a design which is made of only

rectangular cells is equivalent to checking that all connections between all cells can

be made and that they are all of legal types (eg. input to output etc.). Physical
integrity applies primarily to "leaf” cells which, when a design is complete, have
physical descriptions (eg. shapes on silicon) and must be placed side by side on the
chip. Elements of physical verification include placements and stretchings of leaf
cells and design rule checking. Behavioral verification usually implies some sort of
simulation of designs. Simulators have been designed in many different ways. One
of the primary tasks of this study has been the building of a hierarchical simulator
in which the logical function of more abstract descriptions can be compared with
that of more concrete cells as a chip design progresses. This technique should be
understood in the light of a discussion of the nature of the design'hierarchy;

therefore the complete subject of simulation is left for later sections.

2) SPAM

SPAM is the result of a synthesis of two spheres of thought. Gray and Buchanan
worked together on the topic of leaf cell verification in an attempt to help unify
the structural and physical domains of description in chip design [Buchanan and
Gray]. One result of this work was the invention of the coordinode. The coordinode
is an object which can be used in the description of a chip to refer to a physical or
stru;:tural position. The value of this object is to allow for the production of
structural and physical descriptions using one set of constructs. This keeps the
descriptions isomorphic and; as in SPAM itself, allows physical characteristics to be
implied from what appears to be purely structural description. The final result of
this work was the production of the ICSYS program. ICSYS is a design tool which
allows embedded definitions to be translated to a structure that can be used for

performing design rule checking, circuit level simulation, and providing
fabrication output.

The second influence was the Caltech hierarchical design philosophy. Given that a
"leaf cell” system had been implemented, there was now room to create a program
that allowed designers to produce structural and behavioral descriptions of their
design hierarchies. The hope was that such a program could be made to output chip
assembler code thus producing a system capable of providing all three levels of
verification. Thus, SPAM, which stands for Structure, Placement, and Modelling,
was born as a composition cell. description, floor planing, and simulation tool. It
was the task of the CAD course at Caltech to define the structural description
language for SPAM. The author joined this group eﬁentually under the guise of
designing the behavioral language and simulator. All programs were written in the
SIMULA language on the Caltech DEC-system 20. Here belong thanks to the CAD
class which consisted of teacher Dr. John Gray and students Mike Sprietzer, Telle
Whitney, and Ricky Mosteller.

3) Creating Structural Descriptions

The central thesis of the VLSI structured design philosophy has been that by
combining the approach described in section 1 with a top-down design process
generating a hierarchy of representations for any given chip a complex VLSI
structure can be efficiently produced. . This approach tends to produce highly
regular or ordered placements of modules on chips and tends to decrease the wiring
problem., SPAM is a system for describing the design hierarchy. No actual physical
implementation of cells is assumed. Since the hierarchy is "separated'; from the
actual physical domain allowing the use of any actual leaf cells, (eg. NMOS, CMOS
or graphics) Rowson's term "separated hierarchy" is reasonable to describe the
purely structural function of SPAM.

3.1) The Hierarchy of Representations

At the "bottom" of a design hierarchy are the so-called "leaf cells.” To keep with
the structure and placement algorithms previously designed [Rowson, Kingsley]
physical descriptions of leaf cells are contained in a rectangular bounding box. At
the "top" of such a hierarchy is the single definition describing the entire chip. In
between those two representations are the so-called "composition cells." That is, all
non-leaf cells are just somsa sort of "composition" of "lower" leaf and composition

cells. Naturally, composition cells also possess rectangular shapes.

Whether a design is thought of as "bottom-up" or "top-down" the designer will deal
with an abstraction of the units of his/her system in order to build the next larger
system rather then the complete description of each of the components [Rowson].
Once an abstraction is decided upon it is possible to build the individual units or
subsystems of one's design. It is in thish process of abstraction and refinement that
design decisions become fixed. It is for this reason that it seemed wise to attempt to
provide whatever verification we could, be it structural, physical, or behavioral at
that stage in the process between levels of abstraction. This is in contrast to a
system which perhaps produces a simulation by looking only at the leaf cells of the
completed design. It is hoped that this will allow for the detection of more
mistakes at a time closer to when they were originally produced.

3.2) Composition Rules

In order to provide any real tools to a designer the "composition rules" which
describe how ‘low level cells are combined to make new composition cells must be
discovered., The task is to provide the user with some way of producing a cell
definition which is to be considered as the sum of several parts. The designer has
already prodﬁced some cells, S/he has completely designed a leaf cell which s/he
would like to use with some specific combination of the other leaf cells also already
designed. In other words, the definition which is to be expanded was a leaf cell
with no components. New leaf cells will be added to this definition to make up the
components of the new composition cell. In the following section this process is

more completely examined as leaf cells, composition cells, and the rules that relate
them are precisely defined.

3.3) Interface Specification and Floor Plan

The primary ingredients in a circuit layout are wires. Wires pass from module to
module as described earlier by abutting blocks. Therefore, any cell definition must

have some connections to the outside world. From here on these connections will
be called "pins."

The components of a composition cell can be said to be instances of the definitions of
those components. Each of those definitions must have had pins too. In a complete
design there will be an arbitrary number of composition cells in an arbitrarily deep
hierarchy. If we are to be able to identify individual nodes in the circuit there
must be some way to connect all these components into some sort of real data
structure which looks like a real hierarchy. For example, a pin on the outside of
the top level cell must somehow connect to some real component which was
defined at a later date. So, the description of cells must contain enough information
to compose the entire hierarchy and all connections between all pins on all
instances of all definitions. The result is called a "fully instantiated" hierarchy.

-9-

Figure 3.1

l4hen user defines Z, E would connect to F but O is not connected to E untif
X is defined and G is not connected to F until Y is defined., If we are
interested in how X and Y's components communicate it must be Knoun that O
connects to G.

~10-

Every cell definition starts out as a leaf cell and is then expanded to a composition
cell. So let us first consider leaf cells. Fifst off, every cell needs a name. Now, if a
leaf cell is to be used as a component for another cell we must at least know what
pins it has. We need a naming convention and a method for pin declaration.
Another useful piece of information is the pin type. The value of "typing" is to
allow a more complete structural verification. When the hierarchy is instantiated
every connection of two pins can be checked for legality. SPAM provides the six
types: input, eutput, io, power, ground and clock to provide a sufficient set of types
to éatch most illegal connections. This makes the task of describing circuit
"behavior" somewhat easier and improves design documentation through

annotation. Since connections contain just two wires, a simple set of legal
connections can be produced:

Input <-> OQutput

10 <-> (Anything)
Clock <-> Clock
Pouer <-> Pouer

Ground <-> Ground

Since individual physical devices are not important in SPAM the task of designing
the structure of a design is primarily the task of "interface specification." That is,
we are searching for the organization of communication between modules. The
three items: cell name, pin declaration, and pin typing are all the parameters

necessary to completely describe the structure of one individual leaf cell,

The next step is to use that specification and produce a complete layout. For this it
is necessary to produce a "floor plan." A floor plan is a description of the physical
positioning of instances of cells in relation to one another. This is the descriptive
task which ties the composition cell together.

To begin with, each composition cell needs to include a list of all components. This
list will show the correspondence between "real” cell definitions and the insjcance
names they are given for use as components of this cell. A cell may have any

number of repetitions of any component. Therefore, it is useful to allow the user to

-11-

specify the inclusion of arrays of components. That is, we need to be able to specify
something like this: “I have an 8x8 array of ADDER cells called ADD{1,1] to
ADD[8,8]." Once the complete list of components is declared the only remaining
task (besides modelling - see section 4) is to describe the abutment of those
components. Cells abut only along horizontal and vertical edges. A description of
the floor plan of a composition cell can now be created by simply listing the
abutments of sets of components edges against each other and against the sides of
the composition cell itself, Notice, no pins are ever mentioned in abutment
declarations. Only edges are referenced. For example, "the left of X abuts the right
of Y" tells us that all the pins on the left of X connect to all the pins on the right of
Y. Notice too that since actual leaf cells are unknown and may require stretching
and placement before they can actually be hooked up, we have created a technique
in which a purely structural description is given and from which a physical
positioning can be implied.

-12-

SAMPLE.TXT by Richard Segal 1980-10-14

Floor Plan of 'SAMPLE":

| TYPEAI TYPEAI MINEY!I
I | [|
! EENY | MEANY | |
{ { | |
i] |]
------- MINEY |
f TYPEB! LARRY| TYPEBI |
| I | { !
CURLY	LARRY	Mo
I		
1	1	
Figure 3.2

Sample SPAM floor plan output to demonstrate that
pin names not explicitly specified in abutment list

This description will be complete as long as there are an equal number of pins along
each set of edges which abut. Howsever, since it is occasionally desired that some
i:ins ‘e left unconnected this condition may not always hold. For this reason an
“omit" clause must be added to abutment declarations. For example, we must be able
to say "the left of X OMIT PINP abuts the right of Y" where the left of X was

declared to have one more pin the we could have actually connected to the right of
Y.

-13-

These are the elements of a structural/physical design in SPAM. Every composition
cell has a name, a set of pins and types, and a set of components and abutments.
Given this, the notion is that a SPAM compilation can now perform design checking
and structural verification tasks. One primary task is to go through all the
abutment statements and attempt to produce a data structure representing all the
connections which are implicit.in them. There is only one correct connection of the
components in a cell. Equivalent to the task of checking to see if such a legal set of
interconnections exists for each cell is the determination that the graph of the
connections is "planar.” That is, all connections can be made without cross@ng
wires. This is a relatively simple task and a SPAM coﬁpilation will report any
structural errors at this point. It will also check that any connections that are made
are of one of the legal types outlined above.

If a cell is planar and all connections are of legal types, then one's trust in the
structitral integrity of the cell can be increased greatly. As the design progresses
and each level of definition is checked, more potential errors should have been
removed. By the time the design is complete, assuming the leaf cells are correctly
represented, one can feel confident that all the nodes in one's design are connected
in legal ways to one another. Since most errors made in VLSI design involve wiring

and structural integrity, it is hoped that much can be gained from the use of this
type of design system.

-14-

3.4) Automatic Documentation

Included in the SPAM compiler is the generation of the following information:

1) Hierarchy Composition
2) Interface Specification

3} Floor Plan Organization

Since all three of these pieces of information are of vital importance to the
description of a circuit, any documentation provided by the SPAM system will be of
great value to the designers, managers, and future users or modifiers of the
specified circuit, Therefore, once a éircuit description has been compiled, the user
may request that such automatic documentation be produced. The result is the
production of a hierarchical map for the entire circuit, an interface specification
diagram for each cell definition, and a floor plan diagram for each composition cell
in the descripton. Examples of all three of these appear in appendix C.

-15-

4) Behavioral Simulation

Until it is possible to "compile” function into designs in a general way it will be
necessary to use simulation to assist in the verification of behavioral integrity.
Simulation has taken many forms. They include detailed low level circuit element
simulation, switch level transistor network simulation, as well as several flavors of
logic or register transfer simulation,

Detailed circuit element simulation is of very limited value' in VLSI
implementation. Even though these simulators often involve very complex
mechanisms they still rely on the specification of all the process parameters of
individual fabrications, These are rarely known with preéision. The result is the
expending of much effort for little practical gain. If precise delay estimation of
cifcuit behavior is required it is usually easier and just as valuable to do paper and
pencil tabulations. Such techniques are fully explained in text books [Mead and
Conway]. Furthermore, VLSI circuits are much too large to even attempt to perform

detailed simulations of entire chip designs even with the largest modern computers.

Switch level simulation has been used extensively in LSI design. It has the
advantage of requiring a relatively small amount of storage and the ability to
produce quick results, Unfortunately these simulators do not aliow combléx
testing in time. The primary value of simple switch simulators is the verification
of the logical function of small circuit elements whose correct behavior is well
defined. No attempt is made to model complex communication enviornments or to
relate circuit behavior to high level logical function.

The final category is the high level, time delay or register transfer level of
simulation. Generally these are simulators which require the users to describe
their circuits in a specially designed input language. These languages allow the
user to specify function of modules in terms of "nodes,” "pins,” "registers" or
whatever blocks the particular system is built of, The siinulator reads these
descriptions and simulates the network of modules as a connected 'design. Since
structural descriptions are new, this is generally accomplished by specific
reference to neighboring modules in the behavioral description. [Ko, Cory et al]
The primary advantage of this level of simulation is the ability to simulate

complex structures in a simple, compact way. That is, objects such as registers.

-16f

‘adders, and gates are usually included in the semantics of the simulaior. The result

should be the ability to describe entire circuits with a minimum of effort.

The SPAM simulator is of the last type. The task of this thesis is to discover what it
takes to build a good high level simulator. To begin with we have been given the
framework of SPAM. That is, a hierarchical description of a chip exists and we
desire to add the ability to describe the behavior of cells.

This framework indicates that simulations will be described and performed in a
top-down manner. That is, an initial chip description will be produced and
simu'lated. Once the results are correct, the design is broken up into components
and each module is given a behavior. The resulting network is simulated and the
results are compared to the original test. If the same results are produced then this

refinement has been successful. The process continues until the "leaf cells" have
been described.

Some of the features required by the SPAM behavioral description language are:

1) Anpility to reference "pins" of the SPAN description.

2} Ability to simulate to an arbitrary depth in the SPANM hierarchy.
3) Compact descriptions

4) General descriptions

There are two parts to this exploration: 1) What circuit operations should be
simulated, and 2) How i{s communication between moduies and module activation
(scheduling) accomplished? The result is that SPAM includes all the features

described in "Operations" and both scheduling mechanisms described in "Scheduling
and Communication."

4.1) Operations

The desiderata of both compact descriptions and generality can often produce
conflict. If a description language is too general it may require the specification of
a lot of detail. On the other hand if a language is too simple serious limitations may
be placed on the types of operations which can be easily simulated. In order to
decide what the behavioral language should look like let us start by considering

what operations do actually take place on chips. It should be noted that what is

-17-

being presented is a description of what is necessary. The actual formats chosen
appear in the appendices of this report.

4.1.1) Data Storage

Data must be communicated between cells through pins. Naturally, it must be
possible to reference data residing at the pins. The most common operation in
integrated circuits is data storage. To allow for this additional type of node, the
"internal storage" node is defined. Since their real counterparts usilally come in

sets, like registers and arrays, it must be possible to declare arbitrary arrays of
internal storage.

4.1.2) Data Transfer

Operations on data can now take place. First of all some facility must be provided to
transfer data from one set of nodes (pins or internal storage) to another. Since data
transfers really take place on wires or through networks all of which have real
delays, this mechanism must have the ability to specify the delay to be modelled in

each such transfer. Since the operation here is to "“set" the "value"” of nodes it is
called a "setval” statement.

41.1.3) Node Specification

Setval statements are the place at which operations are most easily specified. For
example, we will want to say something like, "register A bits 1 thru 4 get the result
of an AND operation on registers B and C."” Clearly the setval operation looks like an
assignment statement where the left side specifies the destination and thé right side
specifies the sources, operations, and delay to be used. Here is a place to make a
choice. Is it better to allow very general node specification in this assignment -
statement risking some complexity in the parser and in the BNF for ‘the language or
should only simple register transfer operations be allowed? One example which
indicates the need for a very general referencing scheme is the interiaced bus of the
OM chip [Mead and Conway]. This is a set of 16 wires (which will look like "pins"
in SPAM) which are to be used as two buses. A creative wiring strategy interlaces
the buses. That is, all the even numbered wires are called the A bus while all the
odd numbered wires are called the B bus. If only straight sets of 'nodes could be

referenced in the setval statement it would probably be necessary to include 16

-18-

‘di_f-ferent such statements for each operation required. Another exafnple is an adder
in which the overflow bit is to be gated to a special error flag register. This
indicates the need to allow both multiple destinations and multiple sources in the
setval statemgnt. Quite clearly this is one situation where more generality will
mean less confusion. The reason is the variety of structures that can be built on a
chip. It is concluded then that setval statements should include arbitrary
references into sets or arrays of nodes and should allow the concatenation of sources

and destinations in any given operation.
4.1.4) Logical and Mathematical Functions

The setval statement generally represents the transfer of data between nodes. To
completely specify the function of such a transfer we need both logical Dbit
functions such as AND, OR, and NOT as well as mathematical functions to allow
modelling of arithmetic components like adders or multipliers. Bit operations act on
binary words and we generally think of arithmetic in terms of decimal numbers.
Since the binary nodes may be referenced in an arbitrary manner there must be
some facility to allow sets of nodes to be used as either logical or arithmetic values.
Consider the following example: "register X gets (NOT register A plus register B)
divided by 19." This demonstrates the type of activity that must be allowed. We
must be able to invert the bits of register A; add the value of the result to the value
contained in register B and divide that result by the decimal value 19. The final
result must be placed in register X which may be of an arbitrary length requiring
pading with zer;:s or truncation. Notice that arithmetic must always be decimal
arithmetic, Nevertheless, we could simulate a 2's complement subtraction of '‘A-B'
by 'A + ((NOT B) + 1).! All mathematical operations available in SIMULA have been

included in SPAM, and all SIMULA logical functions are implemented as operations
on SPAM node sets.

4.1.6) Supplementary Features

Since chips can perform any logical function it is necessary to provide a few
programming constructs as flow control mechanisms. In SPAM, the SIMULA FOR,
WHILE, and IF-THEN-ELSE constructs are provided. The additional word 'EF' as an
abbreviation for 'ELSE IF' is added. Generally, SIMULA arithmetic expressions are
replaced by SPAM arithmetic expressions as described in the context of setval

statements (section 4.1.4). Boolean expressions for use in IF and WHILE statements

-18-

different such statements for each operation required. Another example is an adder
in which the overflow bit is to be gated to a special error flag register. This
indicates the need to allow both multiple destinations and multiple sources in the
setval statement. Quite clearly this is one situation where more generality will
mean less confusion. The reason is the variety of structures that can be built on a
chip. It is concluded then that setval statements should include arbitrary

references into sets or arrays of nodes and should allow the concatenation of sources

and destinations in any given operation.
4.1.4) Logical and Mathematical Functions

The setval statement generally represents the transfer of data between nodes. To
completely specify the function of such a transfer we need both logical bit
functions such as AND, OR, and NOT as well as mathematical functions to allow
modelling of arithmetic components like adders or multipliers. Bit operations act on
binary words and we generally think of arithmetic in terms of decimal numbers.
Since the binary nodes may be referenced in an arbitrary manner there must be
some facility to allow sets of nodes to be used as either logical or arithmetic values.
Consider the following example: "register X gets (NOT register A plus register B}
divided by 19.” This demonstrates the type of activity that must be allowed. We
must be able to invert the bits of register A; add the value of the result to the value
contained in register B and divide that result by the decimal value 19. The final
result must be placed in register X which may be of an arbitrary length requiring
pading with zerbs or truncation. Netice that arithmetic must always be decimal
arithmetic. Nevertheless, we could simulate a 2's complement subtraction of 'A-B'
by 'A + ((NOT B) + 1).! All mathematical operations available in SIMULA have been

included in SPAM, and all SIMULA logical functions are implemented as operations
on SPAM node sets.

4.1.5) Supplementary Features

Since chips can perform any logical function it is necessary to provide a few
programming constructs as flow control mechanisms. In SPAM, the SIMULA FOR,
WHILE, and IF-THEN-ELSE constructs are provided. The additional word 'EF' as an
abbreviation for 'ELSE IF' is added. Generally, SIMULA arithmetic expressions are
replaced by SPAM arithmetic expressions as described in the context of setval

statements (section 4.1.4). Boolean expressions for use in IF and WHILE statements

-19-

may include any legal logical combinations of boolean variables and conditions
where a condition is a pair of SPAM arithmetic expressions separated by any
SIMULA boolean operator (eg, =, €, \=).

The "NEXT" statement also influences flow of control. It is used to assist in the

simulating of microprocessors ar other instruction processors and will be explained
in that context in section 4.2.3.

-20-

4.2) Scheduling and Communication

Once SPAM has parsed the behavioral descriptions of a circuit the output code (in

SIMULA) is produced. This resulting program contains a brand new data structure
and mechanisms needed to actually simulate the circuit.

4.2.1) Simulation Hierarchy

The SPAM design hierarchy no longer exists in the actual simulation. The designer
has specified that certain cells should be treated as leaf cells for this particular
simulation. Therefore, only those cells are used to produce the simulation of
interest. The result is a new data structure which can be thought of as one
complete tiling of the chip (or component) being simulated. For example, the
designer may have specified that the left half of the circuit be simulated by a single
cell definition which is described near the top of the hierarchy, while the right

half is to be simulated by a dozen lower level cells which were described at a
different time.

4.2.1.1) Connections

Type checking and planarity do not require a fully instantiated hierarchy. That is,
if all local connections are legal then all global connections will be legal. However,
to turn one specific set of cells into a connected communicating network requires
that all paths of communication between them be discovered.

-21-

Figure 4 (=

Umrirmstamtiated Hiehchohy

i

S <>

J

]

Figure 4 b2

Simulatiorm OData Stbuctqbe

-22-

In diagram 4 an example hierarchy is shown with several connections. Figure 4(a)
represents the SPAM data structure and all known connections are shown.
Assuming the lowest level cells shown are to be simulated the resulting simulation
data structure is shown in figure 4(b).

Strictly speaking this is not a completely instantiated hierarchy because it contains
only the information required to run a simulation. That is, no table is actually
created which keeps track of all nodes which are electrically equivalent, The fact
that one node is connected to another is found instead by following pointers and
searching for the correct pin in the appropriate enclosing or abutting cell. The
simulation data structure (with its limited information) appears in the output code
of the compiler, The result is, that though a _fully instantiated hierarchy is
required, it need not ever actually exist. (See section 5 for an explanation of the
functional organization of SPAM software.)

Because circuit behavior is in terms of data movement and operations on data with
delay, at their borders, each individual definition will look like a finite state
machine or some combinational network with delay. That is, changes in inputs
will produce changes in outputs in time, In order to turn a combination of these
cells into one single circuit we need to provide some mechanism to transfer data
across the connections. As far as the data structure is concerned this implies only
that each pin in the data structure of cells be given a single state value (0, 1, X, U)
and a single pointer to the pin with which it is to be communicating. Every time
some of the external data on some cell is to be changed a global “Wake-Up"
procedure will be called. This procedure will be responsible for actually changing
the data and waking up the neighboring cell.

4.2.1.2) Wires and Included Buses

One common practice in designing cells to be placed on integrated circuits is to
include a wire which has no function other then to provide a signal to this cell or to
cells on either side of this cell. The most common form of this structure are power
and ground buses which pass through mahy cells uninterrupted. Another example
is the bus of a microprocessor which carries data back and forth between many
components of the device. In terms of SPAM simulation cells this introduces a

slight complication. Usually when a cell puts new data on its external pins this

23

data will be transmitted (through the "Wake-Up" procedure) to the pin it is
connected to. When the receiving cell gets this data it can decide what changes it
then needs to make, In the case of wires however, no behavior has been provided
specifying that the signal should be propagated to the other side of the cell. One
simple solution to this problem is to notice when a cell has more then one pin with
the same name. Then, all such pins can be considered as a single node. The
Wake~Up procedure can then transmit the new data to a list of successor pins in
addition to the single connection already known. That is, while most pins will
have just one pointer to one other pin, pins which are on wires will point to as
many pins as there are ends to the wire in that cell. In thi_s way a single change on
one pin can directly cause changes to many cells by being propagated through the
wires of those cells., Notice that the Wake-Up procedure must be smart enocugh not
to propagate the signal to pins which already have the same value as that being

propagated. This avoids circular and backwards propagations as well as eliminating
redundant signal changes.

-24-

4.2,2) Simulating Combinatorial Logic

Once the above data structure is in place it is a relatively simple matter to actually
run a simulation. However, before an_ything can happen a few runtime facilities
are needed, These facilities include a decimal to binary and binary to decimal
converter; logical operations for lists of nodes (random words) such as AND, NOT,
and EQV; SIMULA class definitions for cells and nodes; connection mechanisms; a
facility to allow the user to set and query node values, to set break points, and to
clock nodes at regular intervals; as well as the Wake-Up procedure alluded to
earlier. Once these are in place the user can set initial conditions in the circuit (the
undefined condition 'U’ {s assumed for all uninitialized nodes) and start the
simulation. From then on simulation proceeds as follows. A cell wishes to produce
some changes on some of its nodes after a specified delay. This is accomplished by
scheduling a "Wake-Up" procedure to become active after that specified delay
period. The parameters to the Wake-Up are simply a list of nodes to be changed and
values to place there. When the delay period is up SIMULA will automaticaly
schedule the Wake-Up. Then for each node in the list which actually needs
changing, the Wake-Up will place the new value in each of the nodes to which the
input nodes are connected, It will then schedule the cells of all those nodes to
become active immediately. Finally, it will schedule a new Wake-Up procedure for
all nodes connected to each destination node via wires. These last nodes may be
scheduled with some delay to simulate wire delay. This process simply continues
with break points interspersed as specified by the user, The result is a data
structure which acts like a combinatorial network. That is, all the individual cells,
specified to act like combinatorial 5ystems, now communicate with one another in a
delay / time axis enviornment to produce a larger network of behavior in such a
way as to simulate a combinatorial system.

4.2.3) The Sequential Behavior of an Instruction Processor

The preceeding description of the normal operation of the SPAM simulator is
satisfactory to describe any combinatorial system. It is interesting however, that
not all systems are easily thought of as combinatorial. An example of this is the
microprocessor, While combinatorial systems can be said to be "data driven"
microprocessors are usually thought of as being "clock driven." That is, depending

on the current state of the system, including the value of the instruction register

-25-

and other state information, different activities will take place on the chip each
clock cycle. Many instructions will take more then one clock cycle and cannot be
easily described in terms of the purely combinatorial nature of the system. At the
least, it would take some very difficult rethinking of one's circuit and probably a
great deal of repetition to accomplish that descriptive task. On the other hand,
there is usually a very complete description of the behavior of the processor
residing in the microcoded instructions which actually organize the behavior of the
combinatorial components to begin with.

It is desirable to provide some alternative simulation technique to allow modelling
of the process of instruction fetch, execution, and locop which takes place in any
instruction processing machine. It would be nice if there was some way of
transforming one's microcode directly into SPAM behavioral descriptions. To
accomplish this the usual scheduling mechanism must first be eliminated. The
Wake-Up procedure is now responsible for changing the data on the inputs of the
cell, but not for activating the module. Cells which are to be modelled as sequential
processes rather then combinatorial systems still exhibit the external behavior of

inputs and outputs. Therefore, there is no problem in interfacing these cells with
other cells in one's circuit.

A Microprogram is a sequential program each step of which is activated by a system
clock. Conceivably this activation signal could be any external signal. All that is
neccesary to allow microcode-like simulation to take place then, is that an
instruction be added to the SPAM repetoire which halts simulation of this cell until
somne specified signal makes the appropriate transition (positive or negative). In
SPAM this instruction is called the "NEXT" instruction meaning wait for the "next"
occurrence of the specified signal. In this way bne can describe the behavior of a
cell as an infinite loop which simply decodes the instruction register and
conditionally executes the appropriate instruction code. Each instrgction segment
is made up of register transfers or operations or whatever and may take an arbitrary
number of cycles. Since microcode refers to actual elements of one's circuit and the
tranfers and operations which are actually available in the pi'ocessor. translation
between microcode and SPAM behavioral syntax should be relatively simple. This
technique greatly simplifies the task of writing behavioral descriptions for
instruction processing systems. Notice, the SPAM "next" statement differs from the

ISP notation [Bell and Newell] in that this "next" requires a specific signal to
trigger the following section of code.

-26-

Delays will still be modelled in the same way. That is, a Wake-Up procedure will
be scheduled aftér a specified time interval causing the data to be changed.
Ordinarily, any cell modelled as "sequential” rather then normal will not be
activated by the Wake-Up. However, if any of the signals being altered are control
signals specified in "NEXT" statements and. the transitions are in the right directions
then each such occurrence must cause the appropriate cell to be activated.
Simulation continues just like before and the user can set whatever break points
one requires allowing questions such as, "Did all operations complete before the
finish of the cilock éycle?" or "Was the correct instruction executed?” Other cells
connected to the sequential cell will be activated in the usual combinatorial way

since the Wake~Up procedure can easily check to see if a cell is one type or the
other,

i 4

8) Software Organization

Figure 5.1 below shows the processes involved in using SPAM. The original SPAM
description is fed to the SPAM compiler. On request, the compiler produces two
different sets of output. One of these is the documentation file as described in
section 3.4. The other is a SIMULA file which is then compiled to produce a
simulation of the described circuit, Once the simulation file has been compiled into

executable form it may be invoked by the user directly (the SPAM compiler is nét
needed to run simulations).

SPAN

Source Fiile

(::—;PAH Compiler

4

)
S——

Simulation

Documentation

Source

GHULA Compiler)

Figure 5.1 N

Executabvt e
: Simutation

-28=

'fh‘e SPAM program itself is divided into four major parts. They are diagramed in
figure .5.2. The parser is responible for recognizing input forms and activating
routines in the compiler to keep track of actual data. The compiler contains the
actual hiefaréhical data structure and all the routines for modification of that

structure. The parser continues to read data and communicate with the compiler
until a complete set of input is read,

At that time the user may request that an output file be produced. This will cause
simulation code to be written into a text file. The code includes the simulation data
structure, ini‘tialization routines and the "maps" described in previous sections.
SIMULA compilation of this file results in an executable program (phase 2)
containing all the features of a simnulation as described. The simulation will be of
the circuit described in the original input file,

The final element of phase | is the automatic documentation production system.
The user may request that an output file be produced for the input design. This file
contains a structure map, cell specifications for every cell definition, and floor plan
diagrams for all composition cells (see section 3.4). The input text file name, date,
and designer name is included on each page of this document to provide some

organizaton and to avoid confusion between successive iterations of designs.

Complete specifications of the input language for structure, behavior, and
simulation execution are given in the appendices. Examples of all these as well as
of the automatic documentation feature are also included.

-29-

Phase 1:

SPAM

1

|

1

Cell Definiton (text file input)

| A\ \ \

| ' \ \ \

| \ \ \

Parser Compiler Code Production Automatic Documentation

Phase 2:

Output Code + MAPS = Simulation Code

Figure 5.2

-30-

6) Conclusions

The reasons. for designing a chip using SPAM should include the following: SPAM
forces the designer to clearly define chip components including their external
interfaces, exact behavior, and wiring strategy. By checking connectivity, SPAM
increases the designer's faith in the integrity of interface specifications. By
providing simulation, the step-wise refinements of one's chip can be checked for
logical integrity exposing errors very early in the design process. The design
process itself can beéome more flexible and open to change. The system can create
some meaningful documentation for user's cells which might otherwise not have
been produced, The value of this is the automatic production of workbooks or
project reports., The notation is compact. SPAM descriptions are easy to produce
since they are made in parallel with the design process. The existence of a separated
hierarchy allows easy switching between leaf cell implementations. The job of
designing leaf cells might be made easier by using floor planning information in
SFAM to perform automatic cell stretching. Future versions of SPAM might include
silicon compiling or interfaces to other low level chip assembly tools such as ICSYS
{Buchanan and Gray] or Bristle Blocks [Johannsen].

To determine which of these goals are successfully realized in the SPAM system

they are reviewed one by one. Possible directions for future development are
discussed.

It is true that SPAM forces formalization of one's circuit to some extent. The value
of this is that by bringing details of the designer's cell specification to paper, errors
are more likely to be detected faster. By forcing the specification of a wiring
strategy on designers of high level components, better integrated circuit layouts are
likely to be developed. Planarity and connectivity checking is certainly
worthwhile since it keeps the designer in touch with the layout as it progresses by
noticing when errors in interface specifications are made.

Providing a simulation tool along with the design process will be valuable as long as
it is easy, requires only a relatively small amount of extra effort, and produces
reasonable verification of circuits. The SPAM simulator has been tested in several
of its capacities. One discovery was that it is very easy to produce top level

microprocessor descriptions once a microprogram exists using the idea of sequential

-31-

simulation described in section 4,2.3. (See appendix C.2 for the example.) The only
chip actually completely designed and debugged in SPAM was a miniturized data
path chip described in appendix C.1. The behavior could be described in a matter of
hours, and bugs in those descriptions' were quite obvious when simulation was
attempted., No attempt has been made to exhaustively test the chip but it is clear
that even just a small amount of simulation could reveal a great deal about the
nature of the circuit described. A complete answer to this question can only come
when several real chips are put through the complete design process using SPAM
with a wider community of users. The general idea that the presence of a
hierarchical simulator should make errors more accessible and 6pen to change is
subject also to the fact that it is still up to individual designers to provide test
patterns which will sufficiently test their chips. Designing for test is an important
concept if testing is to be made feasible. This problem is left as the responsibility of
the designer. Finally, there is a trade-off between the difficulty of using a
simulator and the value of the resulting simulations. If descriptions are easy and

compact enough then the small amount of extra time regquired may be very
worthwhile,

Appropriately, the next point is that descriptions should 'be easy to produce and
compact both in the size of the actual description as well as in the size of the
resulting data base., Great care was taken first in the CAD project class in the
development of the structural notation, and later by the author to develop
behavioral notation, to keep the language simple and general. The structural
descriptions require a minimum of information (see section 3), One possible
addition to this, however, is a graphical ffont end which generates the
structural/physical definitions of cells. It would provide a mechanism for
producing component declarations and abutment lists, The combination of graphic

floor planning and the compact pin naming conventions already defined will really
make the structural description process simple.

The behavioral descriptions allow any register transfer, mathematical/logical, and
flow control mechanism one could desire. The main feature which keeps
behavioral descriptions short is the general way in which nodes can be referenced.
Examples in section 4.1.3 show that much simplification can be gained by using the
full power of this syntax. |

-32 -

'Pb .have the resulting data structure as compact as possible is oﬁe goal not yet
completely realized. The largest circuit description yet compiled contained 41
instance elements ‘(number of actual instances including repititions). Some of these
cells were very large so, that this took only half of our DEC-20's 400 pages of (low
segment) memory is promising. Nevertheless, the structural description parser and
data base were not designed with the intention of minimizing space or time
considerations. The goal was to produce a working model, an existence proof, to
show that something like SPAM was really possible. The test case with 41 elements
is the completely expanded version of the GRZ stack oriented microprocessor shown
in appendix G.2, Ahyway, to really turn SPAM into an efficient large scale tool
several modifications will be desirable. These include eliminating the restriction
that vectors be numbered from top to bottom and left to right as well as improving
the efficiency of space utilization. This all implies the need for a second iteration
of SPAM. The behavioral parser requires almost no space above the structural data

structure since all output data is temporarily placed in disk files.

The simulator part of SPAM is somewhat more careful with memory usage. Two
reasons are that 1) Space was a known premium in the design simulation output
code and 2) As described in section 4,2.1 simulation does not require the presence of
the entire hierarchy. The biggest actual simulation tried so far had 28 (leaf cell)

instances. The runtime structure of this example fitted easily within the core
limits of the machine,

Several layers of modifications are now present in the SPAM system. Though most
of these appear in the appendices, they are not all completely described in this
thesis. That is because of the time span in which this report was written. That is,
the original SPAM specification spurred the writing of this thesis and since its
implementation many desirable simplifications and improvements have been made
in SPAM. (The formats appearing in the appendices reflect most of these
improvements.) One feature mentioned nowhere else is the interface with a
graphical floor planning tool as a front end for SPAM. Anyway, now that so much
has been changed and improved in SPAM the code is just that much more in need of

reiteration. In any case examples of what has been accomplished appear throughout
the appendices, '

The idea that SPAM should provide some meaningful extra documentation has been

fuifilled. Upon request, SPAM will produce a hierarchical map, interface

-33-

specification diagrams for all cells, and floor plans for all composition cells,

The final categories of reasons for using SPAM all come under the heading "Future
uses of SPAM.” Since SPAM knows the floorl plans of the designs it is given it would
seem quite appropriate for SPAM to be interfaced with some tool for stretching and
placement of cells. As the STICKS standard [Trimberger] comes into use there will
undoubtedly be some program available to take a set of cell specifications from leaf
cell design tools together with floor planning information from composition cell
tools like SPAM and create a complete and implementable design. Silicon compilers
will be a breed of design tools_ which produce as much of the design of chips as
possible in an automatic fashion. The clear separation of the design process into two
parts: leaf cell design and composition cell design, may be a very important step in

reaching towards a world full of silicon compilation.

To finally sumarize SPAM is to do an in justice to the future. The author encourages
all readers of this document to design their own integrated circuits using SPAM and
draw their own conclusions. It is the thesis of this report that "Structure,
Placement, and Modelling" implies a hierarchical approach to design and simulation.
Through clean interface specification and wiring strategy a structural description
can be developed. Through multi-model simulation behavioral integrity can be
scrutinized and the behaviors of each abstraction of one's design can be compared.

The author recomends the SPAM program to all designers willing to risk a try.

Appendix A) The SPAM Notation

The following is a BNF description of the SPAM structural, physical, and
behavioral notations. An explanatory approach to the language can be
found in appendix B which is the SPAM User's Guide.

BNF symbols: == | { } * + []
All other symbols are terminals in the grammar.

Cali| Specification

<description> t1w <cell header> {<58P part>} <behave part> <cell end>
<Cal! header> :t= CELLOEF <name> (<cell con spec»); <t spec list>
<S8P part> 1:= <cel! declarations> <cel!l hady>

<cell declarations> ::= <declaration> +

<declaration>

COMPONENT <component list>

<cel |l body>

.
.
]

<cell statement> +

<cel{ statement>

<con expss

<cel!l end> 1= ENDDEF ;

Cell Interface Specification
<cel! con spec> 11= <aide spec> ¥

<gide spec> ::m <gidae> <con list>

<gide>

<con

<con list eiement>

<one

Tupe Spacification

list>

dimension>

<t spec list>

<tupe agpec>

<type>

<Ccon

<con

<con

<Ccon

Internal Components

<component |ist>

<com list element>

nams liat>»

namsa>

name |ist>

name>

<orientation>

[y

.
.
)

-

:

-35-

TOP | BOTTOM | LEFT | RIGHT

<con list element>

I { <con list element> , <con tist> |}
<name> [(<con list>) | <one dimension>]

"[" <integer> "1"

<type spec> s

<type> <con nams {ist> 3

POUER | GROUND | CLOCK | INPUT | OUTPUT 1| 10
<con nams> {, <con nams>}y

{ <side>(<con nam§ list>) } | <con name>
<con name> | { <con name> , <con name ligt> }

<name> {{(<con name iist>)]

t1mccom list element> {, <com list element>lw

s 1=m<ccomponent> {.<orientations>}

+=MIRRORX | MIRRORY | ROTATES® | ROTATEL88 ! ROTATEZ78

~36~

<component> t:= <name> [<two dimension>] [{<inst name>)]

<inst name>

<name>

<two dimension>

*{" <integer> , <integer> "}"

Abutment
<con exp> 1t= <gidelist> <operator> <sidelist>
<operator> HH

= ABUTS | <=>

<gide list>

‘<gide reference> {, <side refersnce>ly
<side reference> t1:1= <gide> <name> [OMIT <omission>w]

<omission>

.
.
[}

(<tuo dimension>.] <pin name>

<pin name>

<name> [(<pin name>)]

~37-

BEHAVIORAL SPECIFICATIONS

<behave part>

<busy header>

<busy declarations> ::=

<gim declarations>
<internal declares>
<start>

<busy boduy>

<storage list>
<store>
<vector store>
<store name>

<simvar>

BEHAVIOR STATEMENTS

<husy stmt>
<busy exp>

<busy exp list>

<for stmt>

<uhile stmt>
<if stmt>

<if part>
<setval stmt>
<delay>

<assignment stmt>
<next stmt>

.
=

<busy header> <busy declarations> <start> <busy body>

BEHAVE NOW | BEHAVE LATER

{<comment>} {<sim declarations>! {<comments>}
{<internal declaress>!}

{REAL | INTEGER) <simvars;

INTERNAL <storage list>;

START | SEQUENCE

<comment> <busy body> | <busy stmt> <busy body>
l<comment> | <busy stmt>

<store> | <store><storage list>

<store name> |<vector store>

<store name> [<integer>, <integer>]

<name>

<name>

<busy exp>;

t:= <for stmt> lcunile stmt> l<if stmt> l<setval stmt>
l<assignment stmt> | <next stmt> | BEGIN <busy exp list> END

tt= <hbusy stmt> <busy exp list> | <busy stmt>

FOR <simvars>:= <arithmetic exp> STEP

<arithmetic exp> UNTIL <arithmetic exp> 00 <busy exp>
UHILE <boolean exp> 00 <busy exp>

IF <i¢ part>

<boolean exp> THEN <busy exp> {ELSE <busy exp>}
l<bootean exp> THEN <busy exp> EF<if part>

<valued var list> := <match value list>

{AFTER <delay>}

<arithmetic exp>

<simvar> 1= <arithmetic exp>

NEXT INOT! <connector name>

VALUED EXPRESSIONS

<arithmetic exp>

<bin op>
<dec op>

<boolean exp>

<boo! op>

<match value list>
<match value>
<nocde value>
<non-number>
<valued var list>
<valued vars»

<store set>

<index range>

<connector set>

<vector connector>

ve
.
]

se es sa e s
e as we a3 e
L} 4 [} L} [}

-38~

<match value list> | <simvar>

1 (INOT} <arithmetic exp> <bin op> <arithmetic exp>)
| <arithmetic exp> <dec op> <arithmetic exp>

I (<arithmetic exp>)

AND | OR | EQV | IMP

+ 1 -1 %l /

<arithmetic exp>» <bool op> <arithmetic exp>

| {<booclean exp>) | NOT <bcoolean exp> |

I {ALL} <non-number> IN <match value list>

= | >« | <= | > | <«

<match value><match value list> | <match value>
<valued var> | <node value>

0111 <non-number>

X1 u

<valued vars<valued var list> | <valued var>

<connector set> | <store set>

<store name>»

| <store name> {[<index range>, <index range>l!}
<arithmetic exp>

l<arithmetic exp>i<arithmetic exp> {earithmetic exp!
l<arithmetic exp> & <index range> ‘
<connector name> | <vector connector>

<connector name> {[<index range>]i

Appendix B) SPAM User Guide

This user's guide is divided into four sections. The first two sections describe the
way in which cell desrciptions are formulated. The third part instructs the user
on running the SPAM compiier and producing output. The final section is really a

MAPS user guide. It describes the language and nature of the simulation user
interface.

B.1) Cell Specification

A SPAM leaf cell structural description contains a cell header and pin typing
declarations. A composition cell structural description contains those two parts

plus a list of components and a list of the abutments of those components,

A sample cell header follows:
CELLDEF sam(TOP phil,phi2 LEFT op(2],vdd RIGHT result,vdd BOTTONM earth);

This cell header declares a new cell named "sam.” It has 8 pins. Names are always
listed from top to bottom and left to right. The same holds true for sets of pins
like "op" above. Op's pin 1 is to the left of its pin 2. Notice that the name vdd is
used on both the left and right sides of the cell. This implies that there is a

wire connected between those two positions. The following example is a cell with
a lot of wires inside,

CELLDEF mix(LEFT one, tuo, tue RIGHT two,one, tue, four TOP for,one BOTTOM four)

The following diagrams represent the cells that would result from these two
examples:

.

X H~N———

O 2W e———

or[2])~=--

-=esTWO

ONE-=~~

=-=-==RESULT

-===VDD

SAM

VDD---~

--==ONE

TWO-=~-

~===TWE

TWE==~~

~===FOUR

—— -l O DX

oo

A — ————

Pin Diagrams Generated by SPAM

-41-

Following the cell header all pins must be "typed". This is accomplished with the
use of the key words: INPUT, OUTPUT, 10, CLOCK, POWER, GROUND. The "SAM" cell
above might be typed this way:

CELLDEF sam(TOP phil,phi2 LEFT op{2),vdd RIGHT result,vdd BOTTOM earth);
INPUT ops

OUTPUT RESULT:

CLOCK phil,phi2;

POUER vdd;

GROUND earths

This is the complete interface specification and thus completely describes a leaf cell.
The next step is to turn a leaf cell into a composition cell. We must have already
defined some other cells (which may themselves already be composition cells).
Once that is completed those other cells can be referenced for use as components
in this cell. Vectors or matrices of cells may be declared. The components

declarations immediately follow the pin typing declarations. Here are some

example uses of components:
COMPONENT chico(MARX), harpo (MARX), KARL, shoes(1,2] (SHOE}), toes(2,5]1(TDE};

The cell in which this declaration exists will contain 18 instance elements. Chico
and Harpo are instances of the cell definition MARX. KARL is an instance of the
cell KARL. (Generic name not required when the same as the instance name.) Shoes
is an array of two instances of SHOE just as toes is an array of 10 instances of TOE.

Numbering of instances is always from top to bottom and left to right. Numbers in
brackets are [rows, columns].

To complete the definition of a composition cell the ﬁser must specify the
abutments of the components in the cell. Abutments are always given in terms
of sides of components. Pin names are only referenced when they are to be

omitted from an abutment. Abutments follow the component declarations.
Examples follow:

wd Z-

1} LEFT chico <=> RIGHT harpo;

2) BOTTOM kari, BOTTOM shoes <=> TOP toes;
3} RIGHT chico <=> LEFT toes(2,1]:

4) LEFT kar! ABUTS RICHT harpo ONMIT hats

Notes:
1) Left of chigo has same number of pins as right of harpo.

2) Indices are not specified when abutment is for entire matrix. The bottom
of two components are abuting the top of one. Lists are always top to
bottom and left toright.

3) Right of chico abuts the single instance element toes{2,1] rather then
the entire matrix of toes,

4) Right of harpo has one more pin then left of karl but they abut. The pin
which is omitted was specified to be "hat." The word "ABUTS” may be
substituted for the symbol "<=>."

Always remember to abut the outside of a cell to the outer-most components
whenever pins are to be connected. For example, if a cell called "big" has a
component on the left side called "little” the declaration "LEFT little <=> LEFT b‘ig,"

must be included if there are pins there to be connected.

The combination of interface specification (names, pins, and types) with
components and abutments completely defines the structural description of a
composition cell. From this a layout can be inferred, connectivity can be checked

and a data structure can be built allowing simulation and automatic
documentation.

-43-

If no behavior is to be included in a cell, composition cells defined as above can be
compiled be adding these two lines:

BEHAVE LATER
ENDOEF;

"LATER" will change to "NOW" when the behavior is defined.

For complete examples of cell definitions and layouts see appendix C.

-44-

B.2) Behavioral Descriptions

Using programming constructs the chip designer produces a behavioral description
of circuit elements. The result is a set of components which act like finite-state
machines or combinatorial networks where delay can be specified. A simple

non-error detécting description of an NAND gate might look like this:

BEHAVE NOU
START

result s= (NOT (a3 AND b)) delay 15;
ENDDEF ;

"BEHAVE NOW" is the header used when a behavioral description is to be
included in the cell definition ("BEHAVE LATER" otherwise}. Following that go
any integer, real or "internal storage" declarations required by the user. Since
none are used here this section is empty and the key word “"START" indicates
the beginning of the behavior. In the example above the pins “result”, "a" and "b"
must have been declared in the cell header. When this cell becomes part of a chip,
changes on either of its two input pins will cause activation of the behavior, The
system then propagates the results of the behavior (in this case just the single
pin "result”) to whatever pins the changed nodes are structurally connected. In
other words if "result" was on the right of this cell and an OR gate was abutting
there, the OR gate will be activated in 15 periods. Periods are generally
nanoseconds but may be assumed {o be any period appropriate to the

simulation. If no "after" clause appears the delay is assumed to be zero.

This is the basic operation of the simulator. Changes on inputs cause activation
of the behavior described for that cell. Behavior may include various
programming constructs but the activity which causes other cells to fire is the
activity specif ied by the SETV or “setval" statement. In the NAND gate example
above if the result pin was fed back to one of the inputs of the gate (with a
wiring cell) and the other input was tied high (to value 1) then the result pin
will oscillate between 1 and O every 15 periods. Notice, if the NAND gate was the
anly cell in the design (ie. itis simulated just like a top level cell description)
then it will take specific action on the part of the user to activate the cell. That
is, cells only become active when changes occur on their boundries. When

simulating top level cells those changes are initiated by the user when running

-45-

the simulator (MAPS - appendix B.4).

Declarations of user variables was mentioned earlier. Declarations are placed in
between the "BEIHAVE" statement and the "START" statement. Three types of
declarations are possible:

INTEGER i, j,count;
REAL rok,rols
INTERNAL regl8) arr{l6,1B6];

INTEGER and REAL declarations are used to specify variables for use in designing
FOR and WIHILE loops, storing values of node sets which need to referenced
repratedly (for example of this, see "ctl" in appendix C.1.) or whatever purpose the
user would like, Internal declarations are used to declare bits of internal
storage for use in simulation. The internal statement above declares a register of
eight bits called reg and a matrix of 16 by 16 bits called arr. Other names for
these "bits" of "internal storage" are "storage nodes," "memory cells,” and "latches."
In other words, the INTERNAL declaration provides the user with a new set of nodes
(0, 1, X, U) which can be accessed and changed just like pins. When writing
simulation code these "internal” nodes and the external “pin" nodes can be treated
identically. Any place that a pin name is permitted, an internal storage name is
permitted, Internal storage nodes need not be used in any correspondence with real
registers or latches. They are simply for use as temporary storage of values across
time. Of course the most common use of these nodes will be for storing values that
will eventually be stored in real latches of some sort. Notice this does not affect
the way in which a latch is simulated. The internal node simply stores a value
{(something like a capacitance). The control logic surrounding the device can be
arbitrarily designed. At the lowest levels of design it is of course possible to build
flip-flops or some real latches to store values,

The important difference between integers or reals and internal nodes is that
when integers or reals are changed no cell activation takes place and the new
values can be referenced immediately. Internal nodes always cause activation of
the cell after a delay period. Even if the delay is zero the change does not take
place in this particular activation of the cell and will not be noticed until it is
immendiately reactivated. The reason is that achange in the value of a node may
infer that some activity elsewhere in the cell is to fire. Any change to a node

(internal or external) must cause activation of the entire cell so as to insure

-46-

that all possible activities are investigated.

In future paragraphs node "séts" or "lists" are often mentioned. What is being
refered to is aset of nodes described in the behavioral notation. Various sytactic
structures are used to allow general referencing of nodes. A colon is used to
indicate a range of indices into a vector or matrix of nodes. The at sign (@) means
"counting by"' and allows referencing of every Nth node of the range of nodes
specified by the previous colon. A comma separates dimensions in a matrix of
nodes. A single node list is either a node name or a node name followed by square
bracketls in which indices is specified, Indices may be one individual value, a
vector or matrix of values, or several sets of indices separated by a space. A mnode
list is then defined to be either a single node list or a concatenation of node lists.
Examples follow in the context of the SETV statement:

1Y bus(l:S] := {uheeis[l:5] AND childs[21:25]};

2 outll:topl := 2:

3} all:s] =1 8 X U

4) resultll:4] := ps dr cs ty AFTER 5;

%) res{l:8] := inpll:15e2] ~ 5 + 22;

t) all 5 7:18 12) := bll:7] AFTER 18;

7) a 1= matll:3 , 18:3Bel0):

8) big_one t=sis brofZ 5] pop(l:13e3,5] X X X mom({l:7e@2,7:1e-2];

Notes:

1) Boolean operation on node lists must be surrounded by parentheses.

2) Right side will be made of equal length to left side by padding with zeros
or truncatjon. Values in square brackets may be any integer aritmetic exp.

3) 0,1, X, and U can appear on right side of SETV only.

4) Concatenation of sereral signals to make up a node set.

5) Atsignindicates counting by 2
or “from vector 'inp' use nodes 1 to 15 by 2's."
Also notice use of arithmetic on node lists.

6) Use of several individual indices.

7) Use of matrix indices returns a list of nine nodes. On the left hand side,
‘a’' implies af 1:n] where n is the length of the vector a as declared.

8) Use of negative index step on last element on right. Big'one's length>26.

-47-

Now all the elements needed to write behavior exist. The actual simulation is
designed by the SPAM user and should include whatever error checking deemed-
needed. For example, if an undefined signal 'U' is found on a node which was
supposed to have a value, it is a good idea to propagate that 'U' rather then to
produce a good (O or 1) value. Some conditions may demand that the result of an
operation is in an undefined or error state. It is recommended that-the 'X'signal
be propagated in this situation. Finally, an 'X' on an input should probably cause an
output 'X' somewhere. The ideais, that when the user runs a simulation, s/he
will be able to determine whether the error came from an internally generated
condition or from the use of nodes which had not yet been defined. This

will assist in discovering bugs in the logical design of the chip.

All Ybehavioral statements end with a semicolon. Examples of the remaining

constructs available to the behavioral designer follow:

IF phil = 1 THEN
BEGIN ... END ELSE ...

This is the form of the IF-THEN-ELSE statement. The boolean expression may
include any arithmetic comparison of any nodes, Comparisons can be prefixed with
NOT or linked together with AND, OR, IMP, or EQV all of which are functions
defined in SIMULA. The statement following the THEN can be asingle statement
or a block of statements surrounded by BEGIN END;. The term "EF" can be
substituted for the words "ELSE IF" when possible. The above example is
intended to demonstrate the way a section of code can be partitioned so as to execute
on a clock signal. The BEGIN-END block shown will be executed whenever the
clock signal phil is high. (Sequential "clock driven” simulation is different - see
discussion of "SEQUENCE.")

FOR i:=l step 1 until j DO <statement>;
WHILE i <= nodyll:3e2] DO <statement>;

These two constructs are similar to the SIMULA FOR and WHILE loops and should be

easy to understand. The term <{statement> means a single SPAM statement or a
BEGIN-END block.

-48~

n:=3 + nodylS 101;

This is the final construct in the standard SPAM notation. It is a simple numerical
assignment statement. The left side must be a single INTEGER or REAL variable,
The right side may contain any combination of node lists, operations or variables

desired. No delay may be specified.

Comments may interspersed with SPAM code by use of the exclamation mark (!).

'This is a comment;

-49-

The above descriptions apply to the standard SPAM simulation technique. The -
"sequence" type of simulation as described in the thesis section 4.2.3 requires
one additional construct. The basic idea behind sequential simulation is
"clock-driven" activation of the cell. The purpose of this technique is to
produce a microcode-like simulation of instruction processors. The most
common instruction processor is the microprocessor. The idea is that the
information which is of most _interest in the top-level simulation of a
microprocessor is information regarding longest delay paths and behavior and
timing of individual instructions. Each instruction may take a different number of
clock cycles to complete and each clock cycle is uniquely determined by
microcode rather then simply by hardware. In order to allow simulation of this
type of enviornment and to make it simple to transiate between microcode and
SPAM notation, the "sequence” domain was invented. The difference is that in a
sequential simulation, a cell is activated only by the occurence of a specified

signal. In a microprocessor that signal will be a clock signal though any signal is
permitted,

In order to indicate that a cell is to be simulated in this manner replace "START"
with “"SEQUENCE." The format of the statement which causes the process to

wait for the next occurence of the specified signal is demonstrated
demonstrated in the following examples:

NEXT phil;
NEXT NOT sig;

The inclusion of "NOT" means that simulation of the cell should continue when the
specified node makes a negative transition (1 to 0). Without the "NOT" it is the

positive transition (0 to 1) which triggers reactivation of the cell.

Further examples of both types of simulations can be found in appendix C.

-50-

B.3) Compiling Input

The following example shows how to run SPAM:

@spam

From uhere? {TTY:} mini.om

Do you want to make a simuiation file?yes

Name for output files (up to 5 chars.}limini

Choose top ltevel cell name from the following:
CTL, ALU, POhTZ, LATCH, PORTL1, PROCESSOR
ADD, MENMCELL

processor

Do you want automatic documentation?yes

Name for output file:rhier.pic

Choose top level cell name from the follouwing:
CTL, ALU, PORTZ, LATCH, PORT1, PROCESSOR
ADO, NEMCELL

processor

Enter designer name:

Richard Segal

End of SPANM execution.

{This is the SPAM source filel

fActually creates tuo files.
minis.sim and minic.siml
{Name of circuit actually being
simulated. Leaf cells chosen
by BEHAVE NOW/LATER statementst

fFile will contain all pictures

of all cells and the hierarchy

specified by the top level celll

{Used in header in doc filel

-51-

The result of all this is to create three output files. The two simulation files

contain SIMULA code which can then be compiled and simulated as follows:
@simula {Invoking the simula compiler!

wminis {This file contain cell definitions

and initializationl

NO ERRORS DETECTED

yminic {This file connects up the data
structure of pine and wires and

starts up MAPS}
NO ERRORS DETECTED

wtZ iControl-Z exits from SIMULAI
EXTT
eload minic, libsim/lib {Loading the simulator!

LINK: Loading

EXIT

@save ISaving the executable simulator filet
HINIC.EXE. 1 Saved

eminic {Starting the simulation!

MAPS>end: {Ready to run simutation. See MAPS user guidel

End of SPANMAPS execution.

The third output file of the SPAM compilation is the automatic documentation.
This includes a hierarchical map of the circuit, pin diagrams of all cells, and floor
plans with generic and instance names for all composition cells. Examples are
shown in appendix C.

Special late note: Upon request, SPAM will now perform the above compilation
automatically.

=52~

B.4) Running a Simulation - MAPS User's Guide

MAPS is the program which allows the user to communicate with an ongoing
simulation. The prompt for a user command is "MAPS>", At that point the user
can enter any MAPS command. Commands can be abbreviated to any number of
letters. Since each command begins with a unique letter, one letter abbreviations
will suffice. For example, "OUTPUT" can be abbreviated by "O" and the phrase
"BREAK AT" (for setting break points) can be abbreviated to just "B".

Since a component can be uniquely specified only by its embeddedness in the
hierarchy there is a problem with long names, For example we might have an
instance (component) of an adder cell which could be called
PROCESSOR/ALU/ARITH__PART/INT[1,2]/ADDER[2,2]. Since there might be several
groups of adders in the chip possibly even with the same names, that long list
might be the only way of refering to that particular instance if names are to be
used. Since instances need to specified for most commands this could be very
unwieldy. In order to eliminate this problem completely each unique instance is
given a number. There is a table of instances and corresponding instance numbers
which is listed with the use of the TABLE command.

INPUT, OUTPUT, and BREAK commands may be scheduled repeatedly with the use of
an EVERY clause (see specific command). Whenever such a "timed device” is
specified with one of those commands it is placed in a list of timed devices., The

list can be looked at with the LIST command and cancelled with the REMOVE
command.,

The commands are all summarized below. Commands may be longer then one
input line, but all commands must be terminated with a semicolon. Example
simulations are shown in appendices C.1 and C.2,1. Optional phrases are
surrounded by {}'s. The terms inside of <>'s should be replaced with the actual

parameters of the specified type when using the command.

-53-

PROCEED

-Continue simulation.

START <instance>

-This command is used to start the execution of a SEQUENCE simulation. It is
needed because no NEXT command has been executed (the only regular way of
activating a SEQUENCE) until it is started the first time. This command
should be issued once and only once.

TABLE {file name}
-Display table of instance names and corresponding numbers

{Place table in specified file name}.

LIST

-List active timed devices,

REMOVE <{device number>

-Remove timed device specified by the integer {device number>.

HELP
-Dlisplay this text.

USE <file name>

-Read commands from <file name>.

BREAK AT <time> {EVERY <interval)>}
-Stop simulation and return to "MAPS>" at time = {integer>

{repeating every <interval>}. {time> and <interval> must be integers.

INPUT <instance> , {node list> := {node value list>

{AT <time> {EVERY <interval> {FOR <duration>}}}
~-Set nodes in <node list> to the values (0,1,X,U) or nodes in {node value list>
{at integer <time> {repeating every integer <interval>
{for length integer <duration>}}}. The FOR clause assists in specifying clock
inputs, For example INPUT 2,clk:=1 AT 1 EVERY 20 FOR 5; makes a clock signal
with a period of 20 and a high time of 5. (Duty cycle = 5/20)

-54-

OUTPUT <{instance> , <node list> {AT <time> {EVERY <intervald>}}
-Display value (0, 1, X, or U) of all nodes in <{node list> of {instance>

{at integer {time> {repeating every integer <interval>}}

LEND

-Enid simulation

Special late note: INPUT and OUTPUT now also work with files allowing

specification of sequences of vectors and easier comparisons between
different simulations.

Appendix C) Examples

This section contains examples of cell design, interface sbecification, automatic
documentation, and MAPS simulation. Two machines are described. The first is
described at a fairly low level of abstraction with several composition cells. The
second is first described at the highest possible level using "sequentiél" simulation.
It is then is broken up into five composition cells and many leaf cells to demonstrate
the approximate capacity of the structural compiler.

C.1) A Miniture OM Chip

The following example is a simplified version of the OM data path chip [Mead
and Conway]. The basic structure can be gathered from the floor plan diagrams
produced by SPAM. There isa 16 wire bus which runs across all eight registers, the
ALU, and the ports on either side. The even numbered wires on this set of 16 are
called the A bus and the odd are called the B bus, The ALU, adder, latch and register
cells should be straightfoward. The controller is a bit more complex. Its function is
to decode the sixteen bit control word which comes in from the bottom and produce
the correct signals on the registers, ALU, or ports to read or write. The control word
is made up of four fields of four bits each. The first two fields are the A and B
sources and the second two are the A ar_ui B destinations respectively. The four bit

codes which can be placed in these fields are summarized as follows:

=56~

Four Bit Code

—— o o ',

Associated Uevice

No op
Register
Register

Register

Register
Register

~ O NN

Register

Register 8

W o NN WN - &

ALU (Source Only - Latch ALUAYS (atches)
Port 1
Port 2

—
[\

i
-
|
|
1
|

I Register
|

|

t
1
|

{

I

—
—

Registers and ports are accessed on the phil clock cycle and the ALU is

accessed on phi2. All lines go to 0 in between clock phases,

-57-

CELLDEF processor {(LEFT al8] RIGHT b(8] BOTTOM control {16],phil,phi2)
10 a,by
INPUT control,phil,phi2;
COMPONENT portl (8,11, port2(8,11,
ALU, scratchll,) (MEMCELL),CTL;

LEFT CTL,LEFT portl <=> LEFT processor:
RIGHT CTL,RICGHT port2 <=> RIGHT processor;
BOTTOM CTL <=> 80TTOM processor;
BOTTOM portl,BOTTOM scratch,
BOTTOM ALU,BOTTOM portZ <=> TOP CTL;
RIGHT portl <=> LEFT scratch;
RIGHT scratch <=> LEFT ALU;
RIGHT ALU <=> LEFT port2;
BEHAVE LATER
ENDOEF

CELLDEF memcel! (LEFT bigbus(16] RIGHT bigbus[16] BOTTOM |fa, i fb,uwta,wtb);
! lfa/b -> load from bus A/B - wta/b -> write to bus A/B
10 higbus, lfa, lfh,uta,utb;
BEHAVE NOLI
INTERNAL nl(8];
START
IF 1¢ta | fb=X THEN n:=X AFTER 5
EF 1fa 1fb=U THEN n:=U AFTER 5
EF Ifa=1l THEN n:=bigbus[2:16e2) AFTER S
EF 1fb=1 THEN n:=bigbus{l:15e2] AFTER 5;
IF uta=X THEN bigbusi2:16e2]:=X AFTER S
EF wta=U THEN higbus(2:16eZ2]:=U AFTER 5
EF wta=1 THEN bigbus{2:16@2]:=n AFTER 5;:
[F uth=X THEN bigbus{l:15e2}:=X AFTER 5
EF wtb=l THEN bigbus(l:15e2]:=U AFTER &
EF wuth=1 THEN highus{l:15e2]l:=n AFTER 5;
ENDDEF ; '

.
*

CELLDEF portl (LEFT pad RIGHT b,a BOTTOM la, Ilb,da,db,dp,rp

TOP la,lb,da,db,dp.rpl;s

! {a=load a, lb=load b, da=drive a, db=drive b, dp=drive pad, rp=read pad
10 pad,a,b, la,lb,da,db,dp,rp;

BEHAVE

NOL

INTERNAL ng

START

IF 1a=1 THEN n:=a

EF
EF
EF
EF
EF
ENDDEF ;

CELLDEF port2 {(RIGHT pad LEFT b,a BOTTOM rp,dp.db,da, b, la
TOP rp,dp,db,da, Ib, la);
Mirroring not impliemented, so port2 is reflection of portl:
10 pad,a.b}Ia.lb.da.db.dp.rp;

BEHAVE

lbh=1

THEN n:=b

da=1 THEN a:=n

db=1
dp=1
rp=1

NOU

INTERMAL n;

START

THEN b:=n
THEN pad:=n
THEN n:=pad:

[F la=1 THEN n:=a

EF
EF
EF
EF
EF
ENDDEF s

Ih=1
da=1
db=1
dp=1
rp=1

THEN n:=h
THEN a:=n
THEN b:=n
THEN pad:=n
THEN n:=pad;

-58-

-59-

CELLDEF cti (BOTTOM cinll8],phil,phi2 TOP aiBl,ci(32).,alua,alub,.hiBl):
! BOTTOM signals are Control word (cin) and Clocks (phil, phiZ2}:
1 TOP signals are for portl, register controil, ALU write to A&B, and port2;
INPUT cin,phil,phi2;
OUTPUT a,c,atua,alub,b;
BEHAVE NOU
INTEGER ARRAY REG(1:41};
INTEGER I
START
FOR [:=1 STEP 1 UNTIL 4 DO
REG{I)l:=cinll«4-3:1x4];
IF PHI1=1 THEN
BEGIN 10n phase 1;:
FOR T:=1 STEP 1 UNTIL 2 DO ISOURCES;
IF REGII1<9 AND REG(1)>8 THEN
c [REG (1) wb4+1-2]:=1 AFTER 15
EF REG(I)=18 THEN all+21:=1 AFTER 15
EF REG(I)=11 THEN bi5-11:=1 AFTER 18S:
FOR 1:=3 STEP 1 UNTIL 4 DO IDESTINATIONS;
IF REG(])<«3 AND REG(I}>8 THEN
c [{REG{I)-1)x4+]1-2):=]l AFTER 15
EF REG(1)=18 THEN ali-2]:=1 AFTER 15
EF REG(I)=11 THEN b{9-11:=1 AFTER 15;
END
EF PHI2=1 THEN
BEGIN
IF REG[1]1=3 THEN alua:=l; I0n phase 2:
IF REG{2]1=3 THEN alub:=1;
END
ELSE cl1:32) all:8] bll:6] alua alub := @ AFTER 18;
ENDODEF ¢

-60-

CELLDEF atu (LEFT. inp (18] RIGHT outl1B] BOTTOM wta,utb);
INPUT inp,uta,utb;
OUTPUT outy
COMPONENT add, atch;
LEFT add <=> LEFT alu:
RIGHT lateh <=> RIGHT alu;
RIGHT add <=> LEFT latch;
BOTTOM add,BOTTOM latch <=> BOTTOM aiu;
BEHAVE LATER
ENDDEF :

CELLDEF latch (LEFT bus(16},num{8) RIGHT bus{l6] BOTTOM wta,wtb);
INPUT num,uta,utbs
10 bus:
BEHAVE NOLI
INTERNAL result(8];
START
resut t:=num AFTER 5;
IF wta=l OR wta=X THEN bus(2:16eZ]:=U AFTER 1@
EF uta=1 THEN bus(2:16eZ]:=result AFTER 18;
[F wth=U OR wtb=X THEN bus{l:15e2]:=U AFTER 18

EF utb=l THEN bus(l:15e2]l:=result AFTER 18;
ENDDEF; '

CELLDEF acd (LEFT bus({16] RIGHT bus{igl, outldl);
10 bus;

QUTPUT out;

BEHAVE NOUW

START

out:=bus(l:15e2] +bus [2:16@2) AFTER 25;
ENDDEF; '

The following pages contain the documentation file from the above

design.,

-61-

MINI.OM by Richard Segal 1988-10-31

Structure Map:

PROCESSOR

IPORTL (8,11
!

IPORT21(8,11

|

[ALU

|
[ADD
i
ILATCH

|

| SCRATCH (1,81 (MEMCELL)
|
IcTL
|

-62-

MINI.OM by Richard Segal 1988-18-31

Cell Specitication of 'ADQ':

BUS (18] -- ----BUS{16]
I I
| f
| ~-—=0UT 8]
|

o o

-683-

MINI.OM by Richard Segal 1938-18-31

Cell Specification of 'MEMCELL':

BIGBUS (163 -~ ~---BIGBUS [16]

-54-

MINI.OM by Riéhard Segal 1988-18-31

Cel) Specification of "LATCH':

-

BUS[16] -~ -~--BUS{16]
| |
| !

NUR (8] --~ I

|

- ——

-65-

1388-10-31

MINI.OM by Richard Segal

Cell Specification of 'PORTL':

S

PAD----

A

-66-

MINI.OM by Richard Segal 1988-18-31

Celtl Specification of 'PROCESSOR':

- ——— i o -

Al8]l -~ ----B (8]

- —— o —— T - ——

o :n -2 00 —

-B87-

MINI.OM by Richard Segal 1380-18-31

Floor Plan of 'PROCESSOR’:

o o~ 1> i e 2 M o i e U B ., o S . o T S - T ——— T TR 70 4 . = s S e

i PORT1 1 MEMCEL ALUI PORT21
| S ! ! f
| PORT1 | SCRATC | ALU | PORT2 i
| 8,11 I f1,8] I I (8,11 !
| | i] |
__ I

CTuL

|
1
1 CTL
|
i

- - —— - " o o e T oy P T L VD R R Ve e S i a8 e A -

-68-~

>

MINI.OM by Richard Segal

1988-18-31

Cet! Specification of "PORT2':

T - > o o = —_ " -

-—=-PAD

Bemee

Amm e

v P " - ——— - - — - - -

~-69-

MINI.OM by Richard Segal 1988-18-31

Cell Specification of "ALU":

——— -

INP[1B] -~ ~----0UT {161

-70-

MINI.OM by Richard Segal 1988-18-31

Floor Plan of 'ALU":

e " o o D o i Y e S M o T e

-71-

MINI.OM by Richard Segal 1988-18-31

Cell Specification of ’CTL’:

- ———— - ———————— - o - -

-T2

NAPS simulation of above chip:

eminic
MAPS>tahles fList instance tabiel
1 PROCESSOR
2 - PROCESSOR/CTL{1,1]
3 PROCESSOR/SCRATCHIL, 11
4 - PROCESSOR/SCRATCH (1, 2]

5 PROCESSOR/SCRATCH (1, 3]
6 PROCESSOR/SCRATCHIL, 4]
7 PROCESSOR/SCRATCH (L, 5]
'8 PROCESSOR/SCRATCH (1,61
3 PROCESSOR/SCRATCHIL, 7]

1a PROCESSOR/SCRATCHIL, 8)

11 PROCESSOR/ALU (1,11 /LATCHIL, 1]

12 PROCESSOR/ALUIL,11/AD0DI(L1,11

13 PROCESSOR/PORT2I1. 1]

14 PROCESSOR/PORT21(2,1)

15 PROCESSOR/PORT21(3,11

16 PROCESSOR/PORTZ (4, 1]

17 PROCESSOR/PORTZ (5,11

18 PROCESSOR/PORTZ (6,11

13 PROCESSOR/PORTZ (7,11

2 PROCESSCR/PORTZ (38,11

21 PROCESSOR/PORTL (1,11

22 PROCESSOR/PORT1 [2,1]

23 PROCESSCR/PORT1 (3,1]

24 PROCESSOR/PORTL (4,11

25 PROCESSOR/PORTL (5,1]

26 PROCESSOR/PORTL (8,1]

- 27 PROCESSGR/PORTL (7,11

28 ‘ PROCESSOR/PORT] (8, 1]
HAPS>input l,control:=8; {Set control word to no op!
MAPS>inp 1,phils=1 at 5@ every 128 for 58 {Set up tuo-phase clockst
MAPS>inp 1,phi2:=1 at 118 every 128 for 58:
MAPS>break at 108 every 58; {Set urong break pointl
fMAPS>1ist; {So list timed devices!

Timed device 1:
INP 1,PHI1:=1 AT SB EVERY 128 FOR 50;

—— . e = - —— . o P S S T S Y e S - o Y L S S 1 U A o ol T T S D R 0 s S T A W

-73-

Timed device 2:

INP 1,PHI2:=1 AT 118 EVERY 120 FOR 58;
Timed device 3:

BREAK AT 188 EVERY 58;

1MAPS>remove 33 {And remove of fender}
MAPS>break at 45 every 1208; [Break before each phase 1}
HAPS>11g;

Timed device 1:

INP 1,PHI1:=1 AT SB EVERY 128 FOR 58;
Timed device 23

INP 1,PHIZ: =]l AT 118 EVERY 120 FOR 58;
Timed device 3:

BREAK AT 45 EVERY 120;
HAPS>0 3,bigbus(l:16];

0 3,BIGBUSI[1:1R] at time = @:

vuyuuyguvuuyuuvuuyuuvuvuuy {Both busses undefined!

HAPS>p; {Proceed!

Break at time = 45 {Still before first clock pulsel
HAPS >p; {Proceed to test na op}

Break at tima = 1B5
HAPS>0 3.bigbuss
0 3,BIGBUS at time = 165:
vuvuvuyuvuvuvyuwuvuuuuuu {Still nothing on busesl!

MAPS>0 4,n; - {Nothing in register 2}
g 4,N at time = 165: '
vuyuvuuuu

MAPS>i 4,n:=5; {Put vaiue 5 into reg 2!}
[IAPS>i B,n:=7: {fPut B into reg 4}

MAPS>i 1,control[1:4]:=2; {Set A Bus source to.reg 2}
MAPS>i 1,control [5:8]:=4; {B bus source to reg 4}
HAPS>p; {GOt 1]

Break at time = 285
MAPS>0o 3,bighus(2:16e2];
0 3,BIGBUSI[2:16e2) at time = 235:

BeaB21081
- x
MAPS>0 3.bigbusll:15e2];
0 3,BIGBUS(1:15e2]
BBeBEBALIL1I1

at time

HMAPS>0 11,resul t;
0 11,RESULT at time = 285:
pesalliaean

NAPS>i1 1,control:=8;
HAPS>i 1,control[1:4]:=9;
IAPS>i 1,control [3:12):=18;
[1APS>p:
Break at time = 4@5
MAPS>0 3,bighus{2: 16e2];

0 3.BIGBUS{2:16e2]
saateall

at time

[tAPS>0 3.bighus(l:15e2];
0 3,BIGBUS[1:152]
geBsesll1l

at time

NAPG
MAPS>p;
Break at time = 525
APS>0 3,bigbusi{2:16e2];
0 3,BIGBUS(2:16e2]
28081080811

1,control [(5:8):1a7;

at time

MAPS>o 3,bighus{l:15e2];
0 3.BIGBUS(1:15e2]
byusuuuuyuy

at time

MAPS>0 1, control;
0 1,CONTROL at time = 525:
18818111161 0086028

MAPS>1 1,control:=8;
MAPS>i 1,control [9:12]:=8;
MAPS>i 1,control{l:4) ¢=2;

NAPS>p;

= 285:

= 485;

= 485

52S:

= 52G:

[« T

{A bus has correct valuel

{B bus tool

{LATCH has sum since ADD
aluays adds}

{Reset control wordl

{Use ALU (latch) as A sourcel
{And portl as A destinationt

{New sum of 12 (old sum! and
7 (still on B bus}) = 13t

{B bus had a 7}

{Load an empty register onto

B bus to stop the mad addert

{Sum on A bus still

191

{Contents of register 7 on

B bus now!

" {Current state of control uwordt

{Reset it to zero}
{New destination is register 8}

{Source is register 2}

Break at time = 645
IAFS»0 18,n;

0 18,N at time = B45:
BB88B8B8101

MAPS>i 1l,controlll:4]:=18;
APS>p:
Break at time = 765
[1APS>0 108,n;

018,N at time = 7B5:
g8pAalBBll

NAPS>encl;
End of SPANAPS execution

75«

{Successful transfer}

{Keeping same destination try

getting saved sum from portlt

{131

-76-

C.2) The GR2

The GR2 is a stack data processor [Efland and Mosteller]. This appendix presents
twa views of the chip. The first is a behavioral description of the highest level of
abstraction of the chip using "sequehtial" behavior to simulate its microcode
enviornment. The second part is a structural description only, including several

layers of abstraction. Some of the documentation produced by SPAM is shown.

C.2.1) A Sequential Description

! n:-----a---------------’nu--n-snn'-----.------n---------------u:-g
! 3

! G R 2 SPANM DESCRIPTION
i August 13988

.
L]

»
’

CELLDEF GR2{
TOP reset,rdy,phl,ph2,sl,s2,din
RIGHT GND,VOD A

BqTTON ds, cd, ru, as,dout, ad [8]
)

INPUT reset,rdy,sl,s2,dins
QUTPUT ds,cd,ru,as,dout;

10 ads
CLOCK phl,ph2:
POWER VDD

GROUND GND;

-77-

BEHAVE NOU

INTERNAL a_reg(8] b_regl8] top_reg(8] base_reg(8] program_counter [8]
irl4] eal8] ni8] offli8];

SEQUENCE
IF reset=1 THEN BEGIN
i Clear the output pins |like a good machine;
ds cd ru as dout :=0;
! Initialize the internal state;
program_counter: =8; base_reg: =8;
top_reg: =8;
NEXT phil;
END;
LIHILE TRUE DO BEGIN
adll:8) :=program_counter; ! Instruction fetch;
as ds cd ru := 1 B8 1 1;
NEXT phl;
as ds cd ru := 8 8 8 B;

program_counter:=program_counter+l;

NEXT phl;
as ds cd ru := 81 8 0
ir=ad(5:8];
NEXT phl;
IF ir=8 8 8 1 THEN BEGIN | ADD;
b_reg:=b_reg+a_reg:;
NEXT phl;
NEXT phl;

END ELSE [F ir«@ B 1 8 THEN BEGIN ! SUB;
b_reg:=b_reg-a_reg:;
NEXT phl;
NEXT phl;
END ELSE IF ir«B @ 1 1 THEN BEGIN | AND;
b_reg:={b_reg AND a_reg):
NEXT phl;
END ELSE IF ir=8 1 8 @ THEN BEGIN ! OR;
b_reg:={b_reg OR a_reg):
NEXT phl;
END ELSE IF ir=B 1 B8 1 THEN BEGIN ! NOT;
a_reg:=(NOT a_reg};

-78~

NEXT phl;

"END:ELSE IF ir=8 1 1 @ THEN BEGIN ! LIT;

END

ad:-program_counter:
as ds cd ru = 1 B 1 1;
NEXT phl;
as ds cd ru := 8 8 8 8;
program_counter: =program_counter+l;
NEXT phl;
as ds cd ru 1= 81 8 8;
a_reg:=ad;
NEXT phi;
ELSE IF ir=8 1 1 1 THEN BEGIN ! LOO;
ad: =program_counter; | get <dif> field;
as ds cd ru 1= 1 B 1 13
NEXT phls
as ds cd ru := 8 8 8 B;
ea: =base_reg;
program_counter:eprogram_counter+ls
NEXT phl:
as ds cd ru t= B8 1 @ 3;
n: =ad;
NEXT phil;
WHILE n>8 DO BEGIN ! Follow up pointer chain;
ad{1l:8] i =ea;
as ds cd ru := 1 B B 1;
NEXT phl;
as ds cd ru 1= 8 8 @ B3
nten-1;
NEXT phl;
as ds cd ruw := 8 1 @ 8;
ear=adll:8];
NEXT phl;
END;
adt=program_counter; ! get <off> field:
as da cd rit 3= 1 B 1 1;
NEXT phis
as ds cd ru := 8 0 9 O;
program_counter:sprogram_counter+ls
NEXT phi;
as ds cd ru := B 1 8 0;
of f:=ad;
NEXT phl;

~-79-

adll:8l:=ea: | get the data;
as ds cd ruw :=1 8 8 13

NEXT ‘phi;
as ds cd ru := 8 B 8 8;

NEXT phl;
as ds cd ru := 81 B 8;
a_reg: =ad;

NEXT phl;

END ELSE IF ir=1 8 6 8 THEN BEGIN ! STO;
ad: =program_counter; | gest <dif> field;
as dg cd ru = 1 81 1;

NEXT phl;
as ds cd rd := B8 0 8 8;
ea: =base_reg;
program_counter: =program_counter+l:;
NEXT pnl:
as ds cd ru := 8 1 8 8:
ne =ads
NEXT phl;
UWHILE n>B DO BEGIN ! Follow up pointer chaing
ad: =ea;
as de cd ru := 1 8@ 1;
NEXT phl;
as ds cd ru := 3 8 8 0;
n:an-1;
NEXT phl;
as dgs cd ru :« 819 08;
8a: =ad;
NEXT phl;
END;
ad: =program_counter; | get <off> field;
as ds cd riu 1= 1 B 1 1;
NEXT phl;
as ds cd r1 := B8 B B B;
program_counter:=program_counter+l;
NEXT phl;
as ds cd ru := 8 1 0 B;
of f:=ad;
NEXT phl;
ad:=ea; ! Save the datas
as ds cd ru := 1 B8 8 @;
NEXT phl;

-80-

as ds cd ru := B B 8 8;
NEXT phl;
as ds cd ru 1= @ 1 8 8;
ad: =a_regs;
NEXT phl;
END ELSE IF ir=1 @ @ 1 THEN BEGIN ! CALL;
b_req: =base_reqg;
NEXT phl;
a_reg: =program_counter;
MEXT phl;
hase_reg:=top_reg:;
NEXT phl:
ad:=eas ! Get jump address;
as ds cd ru =1 81 1; -
NEXT pnls
as ds cd ru := 8 @8 B 8;
NEXT phl;
as ds cd ru := B8 1 B 8;
program_counter: =3ad;
NEXT pbhl;
END ELSE IF ir=1 @ 1 8 THEN BEGIN | EXIT;
base_reg:=hase_reg-1;
NEXT phl;
top_reg:=hbase_req:
NEXT phl:
base_reg:=b_reg:;
NEXT phl;
program_counter:=a_reg;
NEXT phl;

END ELSE IF ir=1 8 1 1 THEN BEGIN ! EQ:
IF a_reg=b_reg THEN b_reg:=l
ELSE b_reg:=8;

NEXT phl;
NEXT phl;
NEXT phls
IF b_reg=1 THEN NEXT phl;

END ELSE IF ir=1 1 B @ THEN BEGIN ! JCT;
ad:=program_counter; | Get jump address;
as ds cd rw :=1 81 1;

NEXT phl; .
as ds cd ru := B 8 8 B;

program_counter: =program_counter+l;

-81-

NEXT phl;
as ds cd ru := 8 1 8 8;
IF a_regl8l=1 THEN program_counter:=ad;
NEXT phl;
NEXT phi;
NEXT phl:
IF a_regi8l=1 THEN NEXT phl;
END ELSE IF ir=1 1 8 1 THEN BEGIN ! PUSH;
top_reg:=top_reg+l;
NEXT phl;
ad:=top_reg; ! save b register in stack:
as ds cd ru := 1 9 B @;

NEXT phl;
as ds cd ru @
NEXT pnls

ad:=b_reg;

228 9;

as ds cd ru :
NEXT phl;
b_reg:=a_reg;
NEXT phls _
END ELSE IF ir=l 1 1 B THEN BEGIN ! POP;
a_reqg:=b_reg:

818ae;

NEXT phl;
ad:=top_reg: ! Get b register from stack;
as ds cd ru := 1 8 8 1;
NEXT phl;
as ds cd ru := B 8 @ @;
NEXT phl;
as ds cd ru :t= 81 @ B;
b_reg:=ads
NEXT phl;
top_reg:=top_reg-1l:
NEXT phl; '
END;
END;

ENDDEF;

-82-

Simulating the GR2:

agric

MAPS>tabtles {Oniy one instance being simulated - GR2)
1 GR2

MAPS>gtart 1; {Start up needed since its a SEQUENCE!}

MAPS>input 1,phl:=1 at 5 every 5 for 2; {Set up clack, period=S}

MAPS>output 1,program_counter{1:8] at 4 every 5; (Some signals we need to seel

MAPS>out 1,ir§1:41 at 4 every 5; {Instruction registert

MAPS>out l,as de cd ru at 4 every 5; {Status bits}

MAPS>break at & every 5;

HAPS>ps {Start up and initializel

QUTPUT 1,PROGRAM_COUNTER(1:8) at time = 4:
vuuuvuuvuuyu

OuT 1,IRI1:4] at time = 4:
vuyu

QUT 1,AS DS CORUH at time = &:
1811

Break at time = &4 {Ready for first clock cyclel
MAPS>tist;

Timed device 1:
INPUT 1,PH1:=1 AT 5 EVERY 5 FOR 2;

Timed device 2:
OUTPUT 1,PROGRAM_COUNTER(1:8] AT 4 EVERY 5:

Timed device 3:
OUT 1,1R[1:4) AT 4 EVERY 5;

Timed device 4:
OUT 1,AS DS CD RU AT 4 EVERY 5;

Timed device 5:,
BREAK AT 4 EVERY 5;

MAPS>p; Go!!}
OUTPUT 1,PROCGRAM_COUNTER({1:8] at time = 3:

g 8808080601

ouT 1,1R(1:4]
uuuyu

at time = 3t

OUT 1,AS DS CD RU
egoeao

Break at time = 3
MAPS>i 1,ad(1:8):=8 1 1 B8;
MAPS>p:

QUTPUT 1,PROGRAM_COUNTER[1:8]
808088881

ouT 1,iR(1:4]
g1144

at time = 143

OuT 1,AS DS CO RU
8188

Break at time = 14
MAPS>p;

OUTPUT 1,PROGRAM_COUNTER{1:8]
88adgggaal

OuT 1,IR({1:4])
8118

0ouT 1,AS 0S CD RU
1811

Break at time = 19
MAPS>o 1,ad {118}

g0 1,AD{1:3] at time = 13:
pgaoesBl

MAPS>i 1,ad{l:8]:=8;
MAPS>p;

QUTPUT 1,PROGRAM_COUNTER[1:8]

gooBoB10

at time = J:

at time = l4:

at time = 19:

-83~

{Ready for first instruction}

C"LIT" instruction given!

at time = 14

(IR nouw contains instructiont
{It is a "fiteral" instruction
which means, put value on

AD bus into A register}

at time = 19:

at time = 13:

{Bus was given value on PCl

{Put on new value to "LIT"}

at time = 24:
{Second cuyclel

-84-

OuT 1,1R11:4] at time = 24:
2
gl118

OUT 1,AS DS COD RU at time = 24:
60860

Break at time = 24
MAPS>o 1,a_regll:8);
0 1,A_REGI(1:8] at time = 24:
Juuuuuuvu Haiting for LIT to

MAPS>p;
OUTPUT 1,PROGRAM_COUNTER [1:8] at time = 23:
7 I - - I I

OuT 1,IR{1:4] at time = 23:
B118

OUT 1,AS DS CORW at time = 232
giea

Break at time = 23
MAPS>0 1,a_regl(l:8];:
0 1,A_REGI[1:3) at time = 29:

. Bp0B10B0 {OONE. A register got the

finishl

81

MAPS>ps {Proceed through loopl

OUTPUT 1,PROGRAM_COUNTER[1:8] at time = 34:
pooBBBlO

ouT 1,1R(1:4] at time = 34
gl11e

QUT 1,AS DS CORU at time = 34
letrl

Break at time = 34
HAPS>ps

OUTPUT 1,PROGRAM_CDUNTER{1:3] at time = 33:
I I I I T I R

-85=-

ouT 1,IRI1:4] at time = 39:
g112

OuT 1,AS DS CDRU at time = 39:
gega {Ready for next instruction}

Break at time = 39

MAPS>i 1,ad[1:8]:«13; {13 is PUSH instruction}
MAPS>0 1,b_reg{l:8] at 43 every 5; {Since this means "push" A reg
MAPS>p: into B reg, we will want to

0 1,B_REGI[1:8] at time = 43: watch the B register!

Uuuyuuuuuy

QUTPUT 1,PROGRAM_COUNTER{1:8]1 at time = 44:
pBeYdBBBL11

ouT 1,IR(1:4] at time = 44:
1181

OUT 1,AS OS CO RU at time = 44:
8108

Break at time = 44
MAPS>p;
0 1,B_REG(1:8] at time = 48:

vuuyuuouuy {It takes a bunch of clock cyclest}

OUTPUT 1,PROGRAM_COUNTER(1:8] at time = 43:
geeogoll

ouT 1.IR[1=6] at time = 43:
1181

"OUT 1,AS DS CORU at time « 43:
8198

Break at time = 49
MAPS>ps

0 1,B_REG(1:81 at time = 53:
yuuuuuuyu

-86-

'OUTPUT 1,PROGRAM_COUNTERI[1:8]1 at*time = 54:
808888811

OuT 1,IR({1:4] at time = B4:
1181

QUT 1,AS DS CD RU at time = 54:
128848

Break at time = S4
MAPS>p;

0 1,B_REGI(1:8] at time = 53:
gyuudvuuyuy

OUTPUT 1,PROGRAM_COUNTER[1:8]1 at time = S3:
egB8BB811

ouT 1,IR(1:4] at time = 53:
1181

OUT 1,AS DS CO R at time = 53:
22809

Break at time = 53
MAPS>p3

0 1,B_REGI(1:8] at time = 83:
vuuuuuuy

QUTPUT 1,PROGRAM_COUNTERI[1:8] at time = G4:
geBBBB11

OUT 1,IR{1:4] at time = B4:
1181 '

QUT 1,AS DS CORU at time = B4:
618289

Break at time = B4
MAPS>p:
0 1,B_REGI[1:8] at time = 68:
gpoeB10880 {DONE! 8 uas

PUSHed}

-87-

DUTPUT 1,PROGRAM_COUNTER[1:8] at time = 89:
poeesgaalil

ouT 1,IR[1:4] at time = 63:
1181

OUT 1,AS OS CO RH at time = B3:
8188

Break at time = 63
MAPS>ps

0 1,B_REGI1:8] at time = 73:
pPpBB10BAO

OUTPUT 1,PROGRAM_CDUNTER[1:8] at time « 74:
e8B8BBB11

OUT 1,IR(1:4] at time = 74:
1181

OUT 1,AS DS CDORU at time = 74:
1811

Break at time « 74
MAPS>ps

0 1,B_REGI(1:8] at time = 78:
ppepBl1BBB

CUTPUT 1,PROGRAM_COUNTERI(1:8] at time = 79:
a2oB0l668

ouT 1,IRI1:4] at time = 79:
1181

OuT 1,ASODS CORU at time = 79:
pBeoao {Ready for next

Break at time = 79
MAPS>i 1,ad(1:8]:=6; iLIT
MAPS>p;
0 1,B_REG[1:8] at time = 83:
gBep0108080

instruction}

~-88-

OUTPUT 1,PROCRAM_COUNTER[1:8] at time = 84:
828BB1B0O -

QUT 1,IRT1:4) at time = 84:
1168

OUT 1,AS D5 CO RU at time = 84:
810988 '

Break at time = 84
MAPS>p3

0 1,B_REG([1:8] at time = 83:
oGO0 10288

OUTPUT 1,PROGRAM_COUNTERI1:8] at time = 83:
@gagoi1aas

- OUT 1,IR{1:4) at time = 33:
gl118

OUT 1,AS OS CO R at time = 33:
19811

Break at time = 83

MAPS>i 1,ad{1:8):=7; ILIT value is 7 this timel
MAPS>p;

D 1,B_REGI1:8) at time = 93:
2880810888

OUTPUT 1,PROGRAM_COUNTERI[1:8] at time = S4:
Bp@8BB1A1

OUT 1,IR[1:4] at time = J4:
2110

OUT 1,AS DS CO RU at time = S4:
Bo0ga

Break at time = 94
MAPS>ps
0 1,B_ REG{1:8] at time = 38:

-89-

peoolana

OUTPUT 1,PROGRAM_COUNTER({1:8] at time = 33:
8888081081

OuUT 1,IR(1:4] at time = 939:
g118

OUT 1,AS DS CODRU at time = 93:
g108

Break at time = 393
MAPS>0 1,a_reg{l:8];
0 1,A_REGI1:8] at time = 39:
BeegpBlll {Success}

MAPS>p;
0 1,8 _REGI1:3] at time = 163:
pogepieon

OUTPUT 1,PROGRAM_COUNTERI1:3] at time = 184:
gesaglael

QUT 1,1IRI1:4] at time = 104:
8118

OUT 1,AS DS CD R at time = 184:
1811

Break at time = 104
MAPS>p;

0 1,B_REG(1:8] at time = 188:
gpobogleeasn

DUTPUf 1,PROGRAM_COUNTER{1:8]1 at time = 183:
gpogoaiL1a0

ouT 1,IR(1:4] at time = 189:
8118

QUT L,LASOS CORU at time = 1@3:
a288 {Ready for next

instructioni

Break at time = 189
MAPS>1 1,ac{1:8):=l
MAPS>ps

0 1,B_REG[1:8]
geeripBde

-90-

3 {ADD instruction to add A and B}

at time = 113:
{Result uitl end up in B}

QUTPUT 1,PROGRAN_COUNTER{1:81 at time = 11l4:

eepgBB118

OUT 1,IR[1:4] a
2881

OuUT 1,AS DS CO RU

81088

Break at time = 114
MAPS>p;

0 1,B_REGT1:8]
ggo81111

t time = 1l4:

at time = 114:

at time = 118:
{OONE! 8+7=15}

OUTPUT 1,PROGRAM_COUNTER(1:8]1 at time = 113:

esgsgaolle

ouT 1,IR[1:4) a
Begl

OUT 1,AS DS CD RU

8108

Break at time = 119
MAPS>end;
End of SPAMAPS exec

t time = 113:

at time = 113:

{End of demonstration of GR2}
ution

-91-

The following simulation is just to show how assignment statements work both in

SPAM and in MAPS.

agric
MAPS>break at 1 every 1
MAPS>inp 1,n(1:8]1:=@;
MAPS>p;
Break at time = 1
MAPS>0 1,n{1:8];

0 1,NI[1:8] at time =
ppgoBoBEe

MAPS>inp 1,n{1:8):=1;
MAPS>p3;
Break at time = 2
MAPS>0 1,nl1:8);

0 1,NI1:8] at time
epeBoo01

MAPS>inp 1,nl1:8]:=Us
MAPS>p;
Break at time = 3
MAPSso 1,n{1:8]);

O 1,NI1:8] at time =
yuuuuuuyu

MAPS>inp 1,n{1:8):=X;
MAPS>p; _
Break at time = 4
" MAPS>0 1,nll:8];

0 1,N[1:8] at time =
XXX XXAXXX

MAPS>inp 1,nf{1:8):=1 8 X
MAPS>p;
Break at time = 5
MAPS>0 1,n(1:8];

0 1,NI[1:8] at time =
pBoERlLBXU

3:

S:

{Lt the right hand side is a single "B"]

{The result is all zerosi

{A single "1"}

{Results in a one padded uwith zeros}

{A singlie "U"}

{ls extended to left side of the uordl

{So is a single "X"}

{Any other vailuel

{Is padded uith zeros}

-92-

MAPS>inp 1,n[1:81:=8 X; IANY other value}
MAPS>p;

Break at time = €
MAPS>o0 1,n{l:8];
0 1,N[1:8] at time = B3

googagex {11
MAPS>inp 1,nl1:8]:=72; {A decimal number works tool
MAPS>p3

Break at time = 7
MAPS>0 1,n(1:81;

0 1,N[1:8] at time = 7:
819910808

MAPS>end;

-93-

C.2.2) A Bigger Picture

The description on the following pages contains no behavior. It is simply
multi~level description of the GR2 chip. Since the documentation produced for this
chip was rather long, only the hierarchical map, the composition cell floor plans,
and the GRZ pin diagram are included in this report.

-94-

| ramsens s oA Es S EE SRS EIEeEeS S AR RCATS NN A RARARRRREESS
!

' G R 2 SPAM DESCRIPTION

! August 1988

! --=ss----n=-.--aan-----n--u-u-------u------u-.----------n-----naa:

CELLDEF GR2(
TOP . reset,rdu, phl,ph2,sl,s2,din
RIGHT GND, VDD

80TTOM ds,cd,ru, as, dout, ad (8]
)

INPUT reset,rdy,sl,s2,din:
QUTPUT ds, cd, ru,as, dout;

10 ad;
CLOCK phl, ph2;
POWER VODO:

GROUND GND:

COMPONENT controlier,data_path, bus_pads, lower_control_pads,
upper _cantraol_padss

RIGHT controller ABUTS LEFT upper_control_pads,
LEFT data_path;

TOP data_path ABUTS BOTTOM upper_control_pads;

TOP louer_control_pads ABUTS BOTTOM controller;

RIGHT lower_control_pads ABUTS LEFT bus_pads;

TOP bus_pads ABUTS BOTTON data_path:

BEHAVE LATER
ENDDEF ;

-95-

CELLDEF controller(
BOTTOM VvDD,GNO, ds,cd,rw,as, phl,ph2, portenin,portenout, dout
RIGHT VDOD,GND, reset,ph2,phl,nal4l,rdy,phl,ph2,s2,.5l.din,
sl,din, ircntl [31, flags (41, aluouten,aluop 9], acntt {31,
benti {3],basecnt! [3], topentl [3]1,pcent ! (3], tmpent i (3],
portent! (3], portenin, portenout, s2,dout, ph2,GND

INPUT reset,na,rdy,s2.sl,din, flags;

QUTPUT ds,cd, ru, as,portenin, portenout,dout, ircntl,alucuten, aluop,
acnti,bcnti,basecntl, topent!, pcenti, tmpenti,portenti;

CLOCK phl,ph2;

POUER VDO:

GROUND GNDs

COMPONENT rom, input_latch,output_latch,microsubroutine_latch,
wiringl:

RIGHT rom ABUTS LEFT input_tatch,

LEFT output_iatchs
LEFT microsubroutine_latch, LEFT wiringl ABUTS
RIGHT input_latch, RIGHT output_latch;

BEHAVE LATER
ENDDEF ;

-96-

CELLDEF data_patht
LEFT sl,din, irent! (31, fiags{4],aluouten,alucp (3], acnt! (31,
benti [31, basecnt! [3], topent! [3],pcent! {31, tmpenti {31,
portent| {3], portenin, portenout, 52, dout, ph2, GND
TOP phl, ir(4],VD0,GND
‘BOTTOM port [8],GND
)3

INPUT sl,din, ircnt!,aluouten,aluop,acntl,becnt!, basecntli, topcntli,
’ pcentl, tmpent!,portent!,portenin, portenout, s2i

OUTPUT flags,dout, ir; '

10 ports

CLOCK phl,ph:

POUER VYOD;

GROUND GND:

COMPONENT control_drivers, instr_reg,alu,storel8,1] (REGISTER),
port_req;

BOTTOM instr_reg <=> TOP alu;

BOTTOM alu <=> TOP store:

BOTTON store <=> TOP port_reg:

RIGHT controi_drivers <=> LEFT instr_reg,
LEFT atlu,
LEFT stare,
LEFT port_reg;

BEHAVE LATER
ENDDEF s

-97-

CELLDEF |ower_controi_pads{
TOP VDOD,GND,dsin,cdin,ruin,asin,phl,ph2, portenini,portenouti,
doutin
RIGHT portenin,portenout,GNO, V0D
BOTTOM ds,cd, rwu, as,dout
}s

INPUT dsin,cdin,ruin,asin,portenini,portenouti,douting
QUTPUT ds, cd, ru, as, dout, portenin, portenout;

CLOCK phls

POLER VOD;

GROUND GNO:

COMPONENT wiring2,ds(ieft_padout),opadsil,4] (PADOUT);

BOTTOM wiring2 <=> TOP ds,TOP opadss
RIGHT ds <=> LEFT opads;

BEHAVE LATER
ENDOEF :

-98-

CELLDEF bus_pads(
LEFT portenin,portenout,GNO, VDO
oP port (3] ,GND
BOTTOM ad (8}
)

INPUT - portenin, portenout;
I0 port,ad;

POLER VDD;

GROUND GND:

COMPONENT wiring3,ad(l,7) {pad_tristate) ,right_pad_tristate;

BOTTOM wiring3 ABUTS TOP ad, TOP right_pad_tristate;
RIGHT ad ABUTS LEFT right_pad_tristate;

BEHAVE LATER
ENDDEF;

«JQ0~

CELLDEF upper_control_pads(
LEFT VDD,GND,reset,ph2,phl,nal4l ,rdy,phl,ph2,s2,sl,din
TOP resetin,rdyin,phl,ph2,slin,s2in,dinin
RIGHT GND, VDD
BOTTOM phi, ir{43,vD0D,GND
}s

INPUT resetin,rdyin,slin,s2in,dinin;
OUTPUT reset,na,rdy,s2,sl,din,ir;
CLOCK phl,ph2;

POWER VvOO;

GROUND GND;

COMPONENT control_pads, pouer_pads,Wwirings, connect_box,buffer;

BOTTOM control_pads ABUTS TOP wiring4,
TOP power_pads;
BOTTOM wiring4d ABUTS TOP connect_box;
RIGHT connect_box ABUTS LEFT buffer;
RIGHT buffer ABUTS LEFT pouer_pads:

BEHAVE LATER
ENDDEF;

-100~-

The following pages contain sbme of the documentation produced by SPAM:

GRBIG.TXT by SEGAL 1981-01-21

Structure fap:

GR2
ICONTROLLER
1
IROM
[
{ INPUT_LATCH
[
|OUTPUT_LATCH
|
IM]CROSUBROUTINE_LATCH
|
IUIRING1
|
IDATA_PATH
[
ICONTROL_DRIVERS
|
| INSTR_REG
|
1ALU
1
ISTORE {6, 11 (REGISTER)
|
IPORT_REG -
Vo

~-101=-

IBUS_PADS
!
IHIRING3
l
IAD (1,71 (PAD_TRISTATE}
i
IRIGHT _PAD_TRISTATE
{
ILOUER_CONTROL _PADS
|
IITIRING2Z
i
1DS (LEFT_PADGCUT)
|
IOPADS [1, 41 (PADOUT)
|
IUPPER_CONTROL _PADS
I
ICONTROL _PADS
|
IPOUER_PADS
|
ILIIRINGS
|
{CONNECT _BOX
|
IBUFFER
I

-102~

1981-081-21

GRBIG.TXT by » SEGAL

Cell Specification of 'GR2':

w

1~ —— T —— " — -

----GND
----VQ0

—— - 1 1 " o T e e g s

-103~

GRBIG.TXT by SEGAL 1881-81-21

Floor Plan of 'GR2":

- s e o " —— e Y T " " — "

! CONTRO! UPPER_I
| } |
1 | UPPER_ |
| | |
| | |
| CONTRO | e]
! | DATA_PI
| | |
I | DATA_P i
| | |
! { |
__________________________ i
LOLIER I BUS_PAI

|

BUS_PA

!

I i
! LOLER_ |
| |
{ |

-104-

GRBIG.TXT- by. SEGAL 1981-81-21

Fioor Plan of 'CONTROLLER’:

ot o o T B e o - —

| ROM| INPUT_I MICROSI
1 | i |
| | INPUT_ | |
| | | |
! | ! I
L e I HMICROS |
| | OUTPUTI |
1 | | i
| RaOM | |]
| { | {
1 [| |
| | DUTPUT —-emememmee - I
| | WIRING!
I |

| !

| !

! |

|
|
1 UWIRING
|
I

- — — - P " o P T . ot A o T o 4 Y o ot

-1056-

GRBIG.TXT by SEGAL 1981-81-21

Floor Plan of 'LOWER_CONTROL_PADS’:

| WIRING!
1 |
i HIRING !
| |
i !
__________________________ i
LEFT_PI PADOUT

| |

OPADS

|
|
| DS i |
| 1 {1,4] |
L | |

-106~

GRBIG.TXT . by , SEGAL 1981-81-21

Floor Plan of ’BUS_PADS’:

- ——— 4 e S ot o S " > S - ——

! WIRING!
{ |
! WIRING |
I {
i |
__________________________ |
PAD_TRI RIGHT_I

l !

RIGHT

———— ——— - ——— > — - — -

-107-

GRBIG.TXT by SEGAL 1981-81-21

Floor Plan of 'UPPER_EDNTHOL_FADS':

——— ——— Y 4 o o A4 S VT S o T o o R Y VSt s o Sy A P il

| CONTROI
| |
[CONTRO |
! |
t |
_______________________________________ |
| LIRINGI BUFFERI POUER_I
| !

! LHIRING !

1 !

| !

------------- | BUFFER POWER_

]

|

|

{

]

CONNEC! |
[|
i

i

|

|
|
| CONNEC
|
|

. ——— TS O . o s R o W S W S O

-108~-

GRBIG.TXT - by , SEGAL 1981-81-21

Fioor Plan of 'DATA_PATH':

e > o S - - > -

| REGISTI
1 {
! STORE |
|
|

[

|

!

|

|

!

I

i

|

I

i

| CONTROD —mcmmemm—meee |
|

I

|

| (6,13 |
!
{
I
!
!
{
I

——— - - o O - T - 0 T - -

References
C. Gordon Bell and Allen Newell, "Computer Structures: Readings and Examples,"
McGraw Hill, 1971

Irene Buchanan and John Gray, "Models For Structured IC Design," Caltech SSP File
#3230, 1979

W.E.Cory, J.R.Duley, W.M.vanCleemput, "An Introduction to the DDL-P Language,"
Stanford Computer Systems Laboratory Technical Report no. 163, 1979

Greg Efland and Richard Mosteller, "Stack Data Engine," Caltech SSP File #3364,
1979

Dave Johannsen, "BRISTLE BLOCKS: A Silicon Compiler," Caltech SSP File #2587,
1979

Danny C. Ko, "BUILD User's Manual," Burroughs Corporation - Mission Viejo, 1979

Carver Mead and Lynn Conway, "Introduction to VLSI Systems," Addison Waesley,
1980

Jim Rowson, "Understanding Hierarchical Design," Phd. Thesis, Caltech § File
#3210, 1980

Steve Trimberger, "Proposed Sticks Standard,” Caltech SSP Display File #38 1980

