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Abstract

Elastomeric photopolymers are a new class of materials originally developed at Caltech for use as
intraocular lenses. These materials consist of a host network swollen with short—chain, photoreactive
“macromers.” Using a light source for selective photopolymerization, gradients in free macromer
molecules are created, driving diffusion—induced shape change. Although models exist for external
flow of solvent into a swelling gel or for gel deswelling caused by externally imposed forces, no
known model exists to account for reaction—induced diffusion—deformation for a force—free material
in which solvent can neither enter nor leave. To predict this unique reaction—diffusion-induced shape
change, we propose a simple “two-component” model which treats macromer as converting directly
into network strands. This model is first shown to be in good agreement with experimental data on
the equilibrium swelling of elastomeric photopolymers [1]. We then use mixture theory to develop
constitutive laws for the system stress and the flux of macromer by ensuring that the second law
of thermodynamics holds. Finally, we implement the theory to a variety of problems—including a
finite—element model of the light—adjustable lens—in each case systematically detailing the relative
importance of the material parameters on the magnitude and rate of shape change. We determined
that the shape change depends upon the rate of consumption of macromer (specified by the initial
extent of reaction profile and the initial volume fraction of macromer) and is independent of the
network modulus or the macromer molar mass. In addition, we found that the macromer molar
mass serves only to determine the rate at which the deformation proceeds, whereas the network

modulus serves to determine the magnitude of the internal forces experienced in the photopolymer.
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Chapter 1

Elastomeric Photopolymers

1.1 Development of Elastomeric Photopolymers: The Light—
Adjustable Lens

A cataract is a clouding of the intraocular lens in the eye due to changes in protein structure [2].
Cataracts are very common: over 1.5 million cataract surgeries are performed yearly in the United
States alone and over 60% of people over the age of 60 have cataracts [2]. In tandem with the
population progressively living to older age, cataract surgery has developed from the primative
method of couching—a procedure in which the cloudy lens was dislocated into the vitreous cavaity
of the eye by being struck with a blunt object—to modern surgical methods [3]. Current surgical
methods make use of a two-step procedure. First, the cloudy lens is removed via phacoemulsification,
a procedure in which the cloudy lens is shattered with ultrasound and the pieces removed through a
small incision. Using the same incision, a foldable intraocular lens is surgically implanted to replace
the old lens.

By carefully selecting the implanted lens prior to surgery, modern surgeons strive to achieve
postoperative emmetropia—perfect vision—for each patient. However, complications such as those
due to wound healing, displacement, and rotation of the lens in the lens cavity, and posterior capsule
opacification cause fewer than 50% of patients who had emmetropia before surgery to retain it after
surgery [4]. In addition, many patients have other preexisting ocular defects—myopia, hyperopia,
and astigmatism—which further deter surgeons from correcting vision perfectly. Although patients
can be fit for corrective spectacles after the operation, several alternative methods have been de-
veloped [4]. One notable solution is to use a multifocal lens containing concentric zones of differing
lens power allowing a patient to focus both at near and far distance [5]. Another solution uses a
three—piece intraocular lens with an inflatible diaphragm; the lens is adjusted by injection or removal
of a fluid [6]. The second method is postoperatively invasive while the first requires knowledge of

the wound healing process before implantation. An ideal intraocular lens would be non—invasively



adjustable after operation.

Because of the position of the lens in the eye post—operation, a reasonable non—-invasive adjust-
ment would involve light. For example, an entire branch of research has centered around light-
activated polymers |7]. One class of materials developed are liquid crystal elastomers (LCE) which
can undergo deformation due to isomerization in the presence of light. Theory has been developed
to predict that LCE beams will curve when exposed to Beer’s law decaying light profiles through
the depth [8H12]; bending an initially flat beam creates an optical element. Because such shape
changes are non—invasive and reversible, these materials show particular promise for applications in
microfluidics |13]: examples include light—driven micropumps [14], micro cantilevers [15], and opti-
cally driven nanoscale actuators [16]. However, because the shape changes in LCEs are reversible
and imprecise and the materials themselves tend to be relatively opaque, these materials would not
produce a reasonable intraocular implant. A more translucent material is necessary and the shape
changes need to be stable and reproducable with a fine degree of precision.

A second type of material that meets these qualifications is a photopolymer [17]. A photopolymer
consists of a glassy polymer backbone filled with small monomor particles. Irradiation with light
causes monomer particles trapped inside the polymer backbone to photopolymerize, causing local
volume changes as well as local changes in refractive index and modulus. Because the photopoly-
merization is permanent and a large degree of control can be exerted on the light—source, submicron
features which are permanent and precise can be written into a photopolymer and stored; for this
reason, a main application of photopolymers is in holographic storage devices [18,/19]. However,
these materials have several limitations. First, the polymers used are glassy, inhibiting their use in
intraocular lenses that must be folded and inserted through a small incision during surgery. More
importantly, the glassy nature of the polymer makes diffusion occur exceedingly slowly and write
times are only reasonable for changes on the order of microns. Although this is appropriate for holo-
graphic storage, the write time would be prohibitively long for adjustments to an object of the length
scale of millimeters, such as an intraocular lens. Lastly, the materials used for these photopolymers
are toxic: monomer can leach out of the polymer backbone and into the eye.

Observing the constraints inherent in photopolymers, Schwartz, Grubbs, and Kornfield designed
an elastomeric photopolymer using an elastomeric matrix backbone as opposed to the rigid, glassy
one [20]. This material allows changes in shape to proceed due to reaction—diffusion rather than local
volume changes. The elastomeric photopolymer consists of an elastic host network (Fig. ) which
is swollen with short—chain molecules—called macromer—and photoinitiator (Fig. ) The short—
chain molecules are designed to be chemically identical to the host network chains except for photo—
reactive end—caps which allow for cross-linking of the free chains by irradiation with light. When
a region of the photopolymer is exposed to the frequency of light that activates the photoinitiator,

the macromer molecules in that region polymerize into an interpentrating network (IPN) within the
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original host network (Fig. ) The depletion of free macromer by the polymerization reaction
creates chemical potential gradients in the polymer gel: the chemical potential is higher in zones that
were not irradiated since they have more macromer. These gradients drive diffusion of the free chains
from the non—irradiated regions into the irradiated regions. Since the elastomeric photopolymer is
an incompressible gel, the transfer of mass between regions results in local volume changes as the
macromer chains diffuse. The regions that were irradiated swell as there is a net influx of mass,
whereas the regions that were not irradiated shrink as they lose mass to the irradiated regions. This
causes a net global shape change (Fig. ) To maintain the desired shape of the photopolymer
for long—term use, the material can be uniformly irradiated to cross—link any left-over free molecules
once the desired shape has been obtained (Fig. [L.1g). This “locks in” the shape of the material and
prevents possible leaching of the free chains or photoinitiator into the surrounding medium. A lens
crafted of elastomeric photopolymer can then be non—invasively adjusted after operation by selective
irradiation [20].

Clinically, the light—adjustable lens is implanted in the patient and wound healing is allowed
to occur. Once the lens has stabilized, a clinician can use a Fitzeau interferometer to determine
the precise correction needed by that patient to achieve emmetropia [21]. Clinically, the irradia-
tive “adjustment” proceeds for a minute or two and the material is designed so that the resulting
diffusion—deformation process is complete within 12-18 hours [4]. The clinician then examines the
patient and determines whether subsequent corrections are necessary; because only small amounts
of macromer need to be consumed to achieve necessary corrections [4], plenty of free macromer
remains available for subsequent correction. Once all corrections have been made, the final shape of
the lens is “locked in” by reacting the remaining macromer using a stronger irradiation than that
used during the treatment. This guarantees that any created change in lens shape will be stable
and eliminates the possibility of reactive molecules transferring from the lens to the body in future
years.

The light—adjustable lens has achieved clinical success in postoperatively adjusting hyperopia [22],
myopia [23], and astigmatism [24,25]. However, the developed irradiation profiles to achieve a desired
correction—known in the industry as nomograms—are complicated and determined experimentally
through trial and error [21]. Some nonograms have been elusive to attain in the clinic: for example, a
patient needing both a spherical (myopic or hyperopic) correction and an astigmatic correction must
receive each day-long treatment separately because no known nomogram has been found to make
both corrections at the same time. Another specific example of the limitations of experimentation-
based determination of nomograms is found during the lock—in process. Because of the intensity of
the irradiation field used during lock—in, a significant amount of scattering agent must be put in the
matrix to protect the patient’s retina [26]. However, the addition of even a small amount of UV

blocker causes a change in lens shape for a simple, uniform irradiation profile. Rather than attempt
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Figure 1.1:  An elastomeric photopolymer is a gel made of a supporting elastic matrix (a) into
which a solvent of short—chain molecules with reactive end—caps and photoinitiator is swollen (b).
When the photopolymer is selectively irradiated with light, the free chains in the irradiated regions
photopolymerize to form an interpenetrating network (c). This creates gradients in the chemical
potential of the free chains and results in diffusion of the chains from non-irradiated regions to
irradiated regions (d). Due to the incompressibility of the gel, the net effect of transfer of the free
chains is that the irradiated regions swell, whereas the non—irradiated regions shrink. Once the
desired shape for the photopolymer is obtained, it can be “locked—in” by uniformly irradiating the
material to remove any remaining free chains (e).
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to examine the underlying physics which would provide a tool-kit for nomogram design, the clinic
continues to operate through experimental trial and error.

In earlier work, Pandolfi and Ortiz made a first attempt to explain the underlying physics of the
light-adjustable lens [27]. Although the model developed therein successfully predicted final lens
power changes, the simulations developed were unable to predict the kinetics of shape change. To
clinicians, the rate at which the adjustment occurs is of as much importance as the magnitude of
the adjustment itself. In addition, the model made no connection to material design parameters,
despite the availability of experimental data [|1] and the nomograms presented are parameter fit
from nomograms already established through experimental trial and error. In this sense, the model
developed is more reactive than predictive. Given the limitations of this preliminary theoretical
work, we set out to propose a model based upon first principles which could be used to predict both
the rate and the magnitude of shape changes experienced in elastomeric photopolymer lenses.

One of the primary goals of this work is to connect theory with experiment. The data presented
in Pape’s Ph.D. thesis [1] provides a starting ground for modeling from first principles. This work
considers all the material design parameters necessary in creating an elastomeric photopolymer:
initial network creation, extent of equilibrium swelling with macromer as well as rates of diffusion,
and reaction rates for the photopolymerization process. Because the materials used therein consist
of a PDMS network with PDMS bis—methacrylate end—capped macromers (§B.1]), we also draw
upon experiments and theory performed by Cohen and co—workers [28-31]. In this manner, we seek
to develop a theoretical tool-kit founded on experimentally adjustable material parameters which
predicts the effects of those parameters on the magnitude and rate of shape change.

There are many features of elastomeric photopolymers which makes modeling them unique. Elas-
tomeric photopolymers are self-contained: material neither enters nor leaves because the macromer
chains are designed to have a stronger affinity for the network than the surroundings. As such, all
reaction and diffusion, occurs internally. Furthermore, there are no external forces acting on the
system; in the light—adjustable lens, for example, the only force experienced on the lens is on a small
area attached to the thin haptics that keep the lens from rotating and shifting. For this reason,
all shape change experienced is due solely to the motion of macromer molecules: it is the spatial
conversion of material which provides the driving force for all shape change. In this way, there is an
intimate coupling of reaction, diffusion and deformation which requires a multidisciplinary approach

to the problem.
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1.2 Existing Theories on Solvent—Driven Deformation of Poly-

mer Gels

We begin by discussing existing theoretical work on diffusion—deformation behavior in polymer gels.
The pioneering work on the swelling of polymer gels is attributed to Flory and Rehner [32H35].
Using statistical mechanics, the network chains are modeled as random walks. Under the action of a
solvent, the network chains stretch and they experience a net decrease in entropic configurations. The
solvent, on the other hand, experiences a net entropic gain by mixing with the network. Equilibrium
is established when these two entropic forces are in balance: the amount of macromer that can swell
into a given gel is determined by thermodynamics. The choice of material parameters, then, sets
limits on the amount of initial material available for reaction—diffusion in elastomeric photopolymers.
We extend the work of Flory and Rehner in Ch. 2 to elastomeric photopolymers.

The first proposed model of the kinetics of diffusion in polymeric gels is due to Tanaka, Hocker,
and Benedek [36], later modified by Tanaka and Fillmore [37]. The original model was successful
at predicting the kinetics of swelling spherical gels but failed for general anisotropic swelling [38].
Only recently has a body of work been developed which can successfully capture general anisotropic
swelling behavior: the stress—diffusion coupling model (SDCM) [3941]. This theory couples polymer
diffusion to deformation by using an equivalent of Darcy’s law, treating the gel as a porous solid.
Although the authors have successfully applied this model to several anisotropic problems [40-44],
their work is based on external pressure gradients driving flow into the gel. As such, they are able
to treat the volume fraction inside the gel as constant in time, implying that the gel is always in
chemical equilibrium with the solvent bath. In our applications, the material is self contained: there
are no external pressures driving flow into the gel. Furthermore, it is the spatially varying nature
of the volume fraction field coupled to local concentration of volume that causes shape change. For
this reason, the use of the SDCM equivalent of Darcy’s law would be inappropriate for elastomeric
photopolymers.

Because of the inability to use the kinetic constitutive relation of the SDCM, we turn to another
body of work: mixture theory [45H48]. At its basis, mixture theory is essentially just an extension of
the continuum model from one continuum to multiple, overlapping continua |49]. Each point in space
is assumed to be occupied by all constituents of the material; that is, each constituent is assumed
to satisfy the continuum approximation. In this way, each component has associated with it unique
material properties such as density, velocity, and internal energy. One of the distinct advantages
of mixture theory is its inheritance from general continuum mechanics of a systematic method for
developing constitutive relations which implicitly satisfy the second law of thermodynamics [50]. An
example of the importance of a developed constitutive law intrinsically obeying the second law is

seen in work modeling growth in tissue |[51]. These authors question the theoretically similar work
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performed in [52] solely because the developed constitutive relations do not take the second law into
account. Because mixture theory allows the direct incorporation of thermodynamic knowledge into
the constitutive equations, we can systematically develop constitutive laws predicting the stress and
kinetics in elastomeric photopolymers from first principles.

Since its inception in the 1960s, mixture theory has provided a rigorous framework for treating
previously intractable problems in a variety of fields. Early successes in mixture theory included
modeling the flow of a Newtonian fluid through an elastic solid [53], propagation of waves through
a solid-liquid mixture [54], and deformation of a mixture of two non-linear elastic solids [54]. More
recently, applications have blossomed to include modeling of phase transitions and particulate mix-
tures (see [55] for sources and more examples). Mixture theory has also been used to model growth
processes in biology for use in fields such as cartilage engineering [51}/56,/57], muscle and tendon
engineering [52], and in modeling the aorta [58].

Rajagopal, Wineman and coworkers have used mixture theory to model the transient swelling
of a polymer network due to solvent [59]. Using a free energy for swelling given from general
polymer physics [60], the authors derive constitutive relations for the partial stress tensors of both the
solvent and the polymer that implicitly satisfy the second law of thermodynamics. After neglecting
inertial effects and body forces, the authors solve a steady, one-dimensional problem in which a
fluid is moving through a polymeric solid in a variety of geometries [59,/61H63]. Although the
only experimental data with which the authors could compare results was in the case of pressure-
driven flow through a flat plate [64], the non-linear diffusive behavior observed in experiment was
successfully predicted [59].

Although we will follow the ideas of Rajagopal and Wineman, in deriving a relationship for the
flux of macromer in terms of a driving force in Ch. 3, we note that there is an inherent complication
in solving the mixture theory equations directly: the inability to indepedently apply boundary
conditions for each component [65H67|. There are several ways around this: for example, a few
authors have avoided this complexity by translating the differential equations of mixture theory
into a variational problem [68./69]. Using non—equilibrium thermodynamic principles [70,71], these
authors developed a variational model of the time-dependent behavior of a swelling gel in which
the boundary conditions were forced to hold implicitly; this model was shown to be equivalent to
the mixture-theory model developed by Rajagopal and Wineman. The model developed requires
two specified functionals: 1) the free energy which is minimized in time and 2) a dissipative energy
functional used to determine the constitutive law for the flux of solvent. Although exisiting theory
can be used for the free energy functional of a polymeric gel (Flory and Rehner), Baek and Srinivasa
had to chose a relation for the dissipative energy functional such that it returned the constitutive
laws of mixture theory. In general—such as in the case of including reaction—specification of the

dissipative energy functional is non—trivial.
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Around the same time, simultaneous approaches not requiring a dissipative functional were
developed by a number of authors [72H76]. Like mixture theory, these authors make use of the
second law of thermodynamics to postulate a constitutive law for the flux of solvent into a swelling
gel. The differences between each of these models is minor and all authors solve one or two types
of problems: force and deformation of a gel caused by an externally imposed flux of macromer, or
the flux of macromer caused by an externally imposed mechanical force. None of these developed
theories provide a framework for a force-free, self-contained elastomeric photopolymer in which
deformation is caused by reaction due to a light source.

This thesis expands the works of the above authors by including the effects of reaction spe-
cific to elastomeric photopolymers. In the photopolymer, many components are present and have
particularly complex time dependence during and shortly after irradiation: photoinitiator, radical
fragments of the photoinitiator, propagating radicals, unreacted macromer, original host network,
and interpenetrating network (IPN) formed by polymerization of macromer. In addition, passive dye
molecules may be included to attenuate light with depth in the sample. As a preliminary model, we
make several simplifying approximations. Based on clinical experiments in which the photopolymer
is only exposed for a short amount of time (< 5 min) relative to the time it takes for diffusion (= 1
day), we first treat reaction as instantaneous. In addition, we furthermore treat the initial extent of
reaction as a one—to—one mapping with the irradiation field, rather than specifying the complexities
of ray tracing and other optical effects. Finally, experimental characterization of photoelastomers
has revealed that the effective crosslink density of the network is only weakly modified by forma-
tion of the IPN: the elastic modulus increases by less than a factor of two |1]. We will show that,
to good approximation, this allows the created IPN to be modeled as additional network strands
supplementing the original network; that is, a specified extent of reaction profile will be assumed
to convert macromer directly into network. Although it is not a priori obvious that this “two-
component model” is a good approximation, we will show that the model can successfully capture

the qualitative behavior of elastomeric photopolymers.

1.3 Summary of Chapters

The remainder of this thesis proceeds as follows:

e Chapter 2 begins with a review of the thermodynamic analysis done by Flory and Rehner
to introduce nomenclature and methodology used throughout this thesis. After reviewing
classical equilibrium gel swelling via the Flory—Rehner equation, we present the details of the
“two-component model” in which macromer is modelled to convert directly and instantaneously
into network strands. The physical consequences of this model are discussed and compared to

experimental work done by [1]. The parameter space in which the two-component model is a
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good approximation is discussed and a small adjustment to this model (the “three-component”
model) is proposed for regions in which the two-component model fails. Finally, a methodology
is proposed in which the equilibrium shape of an elastomeric photopolymer can be found from

the initial extent of reaction profile by minimization of the free energy functional developed.

Chapter 3 presents the framework for solution of general transient problems in terms of mixture
theory. The governing differential equations are shown to be the same as those obtained from
the variational approach derived in Ch. 2. In addition, the second law of thermodynamics is
used to postulate a constitutive relationship between the flux of macromer and a driving force.

The resulting kinetic law is examined and compared to the work of other authors.

Chapter 4 takes the theory developed in Ch. 2 and 3 and applies it to a simple case of two
small elements in thermodynamic contact. To illustrate the importance of the various material
parameters, two systems are studied: one in which chain stretching is completely ignored (the
“slip” case) and the other in which chain stretching is included (the “conforming” case). These
studies examine simplifications that can be made to the model based upon the appropriate

clinical parameter space.

Chapter 5 applies the theory of Ch. 2 to a beam constrained to a solid surface. This expands
the two-cell model to a system with one—dimensional gradients due to the extent of reaction
profile. The stresses and strains generated are predicted and connected to material parameters
and reaction profile parameters. In addition, the developed stresses and strains are used to
determine the deformation the beam would attain were it released and allowed to attain a

constant curvature.

Chapter 6 finishes the thesis with an examination of light—-induced deformations of a fully
three-dimensional, transient, light—adjustable lens. A novel finite element model is used to
apply the model equations of Ch. 2 and 3 to predict shape changes in time. Using axisymmetric
profiles, the lens-power changes are shown to be due to diffusion, and the magntiude of the
power changes are examined in terms of material and light parameters. We also provide a
preliminary examination of the effects of changing the light profile on the observed power

change.
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Chapter 2

Equilibrium Analysis from
Thermodynamics

2.1 Introduction

We begin our study on predicting the reaction—-induced deformation of elastomeric photopolymers by
first considering their thermodynamics. It is the balance between stretching of network chains and
mixing free energies which gives our materials, their unique properties. We must therefore develop
a free-energy based upon this balance; minimization of this free energy will drive the deformation of
the material in time. The free energy developed must be consistent with first principles and have a
connection to experimentally determined material parameters. It must be able to correctly predict
the swelling and mechanical properties of these materials as well as provide a connection between
reaction—diffusion—deformation. The conclusion to this chapter presents an energy minimization
method which determines the final equilibrium shape for a system; we will show in Ch. 3 how the
same free energy can also be used to solve transient problems with mixture theory.

In pursuit of developing a free energy functional, we begin by first considering the stretching
of the dry network ( Reviewing the classical derivation of the expression for the energy of
stretching network chains in an affinely deformed network will allow us to introduce the notation
and physical principles that are used throughout this thesis. We then consider the free energy of
swelling such a network with small-chain macromers ( Following Flory [35], we assume ad-
ditivity of stretching and mixing energies and discuss how it is the competition between mixing and
stretching which gives our material its unique properties ( In we include the effects
of reaction through two different models: 1) the “two-component” model, which treats photopoly-
merized macromer as additional host network strands, and 2) the “three-component” model, which
allows the macromer to become a separate species of dispersed nodules. In both cases, we ignore the
heat of reaction, assuming that the major energy contribution is due to the swelling and stretching

of network chains. Comparison to experimental data illustrates that the two-component model is
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sufficient to predict both the increase in material modulus experienced upon photocuring and the
equilibrium swelling behavior of photocured samples. The three-component model is shown to be
a plausible correction to the two-component model in the case where the nodular nature of the
macromer upon reaction becomes more important. We finish this chapter by illustrating the energy
minimization principle that will be used throughout the rest of this work. This energy minimization
is shown to lead to the same relations as those obtained through classical continuum mechanics

(discussed in Ch. 3).

2.2 Thermodynamics of Network Swollen with Macromer

before Reaction

Consider a host of precursor chains having an average molar mass M,, and some known polydisper-
sity index. We first consider the pure host network formed from these precursor chains, through
some cross—linking process. The character of the network is measured in terms of M., the average
molecular weight of a network strand between cross—link junctions. In general, this value will be
different from M, because of the possibility of loops, dangling chains and other structural defects
depending upon reaction conditions and the functionality of the cross-linker [28]. In addition, there
is also discussion in the field as to whether entanglements act as crosslinks or restrict the motion of
crosslinks [30]. For the purposes of our discussion here, we will take the character of the network
to be defined by the shear modulus after the sample has been cured and any solvent has been ex-
tracted (denoted Gdry)' In practice, the value of M, is deduced from the modulus and represents
an estimate on the length between network strands, hiding the details of network defects (dangling
chains, loops, entanglements, etc.). Theoretical results will be compared to the results of Pape who
carefully chose reaction conditions to minimize the number of defects inherent in the network [1].
We now examine deformations of this host network; this will be useful in modeling how chains
are stretched upon swelling with solvent. Since the crosslinked network has not yet been swollen,
we call this material the “dry network.” To denote variables related to this stage, we use d as a
superscript. For example, we label the region of space that the crosslinked network occupies as Q¢
(Fig. 2-1). We take this initial, dry network as the reference configuration for this section (§2.2).
The position of each material point in Q¢ is marked by a vector X 4 relative to some coordinate
system. When the dry network is put in a bath of solvent, it swells. Let the swollen configuration
of the object be g; this is the spatial configuration for this section ( note that it becomes the
reference configuration in . Each spatial point is given a different label X . We use Einstein
and Berkeley notation throughout: the subscript that indicates the vector component is upper case
for the reference configuration (X}l being equivalent to X d) and lowercase for the spatial component

(X; being equivalent to X). There is a one-to—one mapping, x;, between each point in the reference
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Treatment of Dry-to-Swollen (§2.2)

Dry State Uniformly Swollen State
& 1)
X('] ) ,
REFERENCE SPATIAL

N e

Figure 2.1: The kinematics of deformation in A dry host network (occupying Q9) absorbs
small-molecule macromer chains to occupy the region €2y. Note that the superscript “d” is used
throughout this thesis to indicate the “dry state” and is not an exponent.

configuration and each spatial point

X; = vi(X?). (2.2.1)
The gradient of this mapping .,
Ixi(X)

F (X4 = 2222 2 2.2.2

x = 255 (22.)

is the deformation gradient. For example, the determinant of F;; measures local volume changes

av

det BJ = W

(2.2.3)

Here dV'¢ is the infinitesmal volume of the material point located at X ¢ in the reference configuration

and dV is the volume of that point after it is swollen and located at X;.

2.2.1 Thermodynamics of Stretching the Dry Network

Having defined our system kinematics, let us review the thermodynamics associated with stretching
the dry network. Assuming that our network deforms affinely (i.e., any macroscopically imposed
deformation is uniformly distributed at a microscopic level across the chains) and that the network

chains obey Gaussian statistics, the entropy loss from an initially unstressed state due to stretching
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the material along three directions in an orthonomal basis is [35]:

kv,

AS = —
S 2

(2 + ai + a2 — 3 —In(azaya)]. (2.2.4)

Here, k is the Boltzmann constant, v, is the number of effective elastic chains and «; is the principle
stretch in the ith orthonormal direction. To be more general, we rewrite this expression in terms of

a lab reference frame using the deformation gradient Fj:

kve
AS = — 2” (u« FiyF;; —3 — Indet FJ) (2.2.5)

Note that only the invariants of F;; can contribute to the free energy since the system energy has to
be independent of any solid body rotation of the sample. The first term, tr F;;F;; — 3, represents
the decrease in configurational entropy of the Gaussian chains as caused by the externally imposed
deformation. It will be positive in swelling deformations, since swelling will stretch the network
chains and decrease the entropy of the system. The second term, In det F; 7, does not appear in most
works on polymeric elastomer deformation because, to good approximation, it is incompressible
(det F;; = 1). In the case of a swelling deformation, however, the final volume through which the
chains are distributed increases. This increased volume yields more available configurations to the
network cross—links and therefore acts to increase the entropy of the system, in sharp contrast to

linear chain stretching effects [77].

2.2.2 Initially Swollen Network

When a dry network is placed in contact with a reservoir of small chain macromer molecules, entropic
contributions drive the diffusion of the chains into the network, causing it to swell. There are now
three contributions to the system energy: 1) the energy of stretching the host network chains as
macromer is imbibed; 2) the entropy gained through the mixing of host network and macromer
chains, and 3) the enthalpy cost due to solvent—solute interactions. We now introduce the subscripts
m to refer to the free macromer species and N to refer to the network. Here, we are concerned
with deformations induced by the osmotic pressure of the bulk solvent. The corresponding stress
(illustrated below, O(10° Pa)) is much less than the stress required to fully extend network strands.
Therefore, the bond lengths and angles are not perturbed and, consequently, the internal energy is
unchanged (AU = 0). The change in system free energy is then purely entropic (AF = —TAS).

Per unit of spatial volume, V', the change in elastic stretching free energy due to swelling is

AF AS 1
= T3> = 5Carydn (tr FusFyy = 3= Indet Fy ). (2.2.6)
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Note that the prefactor in (2.2.6)) has been rewritten in terms of G,.,, the original, dry network
dry

shear modulus:

kTve myoRT  pnoRT
Gdry = Vd = Mcvd = MC s (2.2.7)

where mpyq is the mass of the network, pyg is the pure network density, and R is the universal
gas constant; the factor of ¢y = V¢/V, the volume fraction of network, takes into account that
only network chains are stretched in a swollen gel. Because the system is swelling, the local volume

changes
av 1

dethL'J: m = ¢7N

(2.2.8)

are non—zero: ¢n < 1 so det F;; > 1 as the material swells.

Aside from an energetic penalty due to solvent—solute interactions, we assume ideal mixing of
our two components. If the pure component densities of macromer and network are the same,
there will be no change in volume upon mixing; experimental measurements confirm this to good
approximation |1]. Following 35|, the mixing entropy gain for bringing two pure-component polymer
species together is

ASpiz = —k (N Ingy, + nylnoy), (2.2.9)

where n,, is the number of molecules of species a and ¢, is the volume fraction of species a. As
noted by Flory, ny = 1 <« n,, for a system in which component N is a single molecule (i.e, a
cross—linked network). Therefore, the network contribution to mixing entropy is negligible. This

gives an effective entropy of mixing of
ASmiz = —knp Indy,. (2.2.10)

Although it is generally less than the entropy of mixing, there can also be an enthalpy change upon
mixing chemically dissimlar components. The simplest approximation for this is a linear variation

with the number of N—m contacts:
AH,iw = kT xnmonN, (2.2.11)

where x is a binary interaction parameter measuring the energy penalty per repeat unit of macromer.

When Yy is positive, the network—macromer contact is unfavorable and mixing is penalized. The free-

energy change of mixing macromer into a dry network is a combination of (2.2.10) and (2.2.11)):*

IThis is only true in the absence of external work. In general, AG = AH — TAS = AF + W where W is the work
done on the system.
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In stating these relations, we have made the same assumptions as Flory, including ignoring volume
change on mixing and packing effects due to differences in macromer and network volume. Depar-
tures from these assumptions can be corrected by making the x parameter dependent upon other
parameters (such as temperature) but we do not do so here.

Noting that n,, is related to the pure component density of macromer p,,o by

meVm
- 2.2.13
" A, VA ( )

(Vin being the volume of macromer, M, the macromer molar mass, and N4 Avogadro’s number ),

and with the definition of macromer volume fraction ¢,, = V,,/V, (2.2.12)) can be written as

Vv M, Om (106 +x6n). (2.2.14)

We define the prefactor for the mixing term as Gog, the osmotic modulus:

Pmo RT

Gos =
0S Mm

(2.2.15)

Since we assume no volume change upon mixing, V =V, + Vx and ¢,,, + &5 = 1 (see |7§]) so that
the free energy of mixing depends only upon ¢,,.
Combining the contributions of mixing (2.2.14)) and stretching (2.2.6]), the total free energy per

unit volume is

AF 1
S = Gary 50N (trFiJFjJ ~ 3 Indet FU) + Gosbm (1n b+ xdw)- (2.2.16)

From this expression, we see that there are two characteristic energy scales: one energy density is
the osmotic modulus Gog generated by the mixing of macromer and the other the shear modulus
Gdry due to the stresses borne by the network. As has been seen, both are entropic in origin. For
the case in which the pure component density of macromer and network are the same (pmo0 = pno),

the two are not independent: their ratio depends upon the single parameter:

_CGay M,

N G’OS Mc '

(2.2.17)

This parameter is small due to the significant difference in size between macromer and network
chains. For the sample materials we will consider here (PDMS networks and PDMS macromer,
Appendix B), 0.01 < € < 0.33. The smallness of € implies that the osmotic modulus is significantly

larger than the shear modulus. Therefore, the osmotic modulus is taken as the characteristic energy
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scale with which we define the dimensionless free energy per unit volume, A:

AF 1
A(Fig, om, dn) = GosV Gm IN Gy + XPmON + §€¢N (trFiJFjJ — 3 —Indet FiJ)- (2.2.18)

The first term represents ideal mixing, whereas the other two terms can be considered corrections
due to (1) enthalpy of mixing effects (which scale with x) and (2) chain stretching (which scale with
€). The smaller the size of macromer chains relative to network chains, the less chain stretching

affects the system energy.

2.2.3 Swelling Equilibrium

When a dry network sample is placed in a bath of macromer, it swells until it reaches a point at which
the decrease in free energy due to the entropy of mixing macromer into the network becomes equal
to the free energy cost of elastic stretching of network strands. This state of swelling equilibrium is

closely related to osmotic equilibrium, as aptly stated by Flory:

“A close analogy exists between swelling equilibrium and osmotic equilibrium. The
elastic reaction of the network structure may be interpreted as a pressure acting on the
solution, or swollen gel. In the equilibrium state this pressure is sufficient to increase
the chemical potential of the solvent in the solution so that it equals that of the excess
solvent surrounding the swollen gel. Thus the network structure performs the multiple

role of solute, osmotic membrane, and pressure generating device.” [35]

In this section, we review swelling equilibrium to convey the physical significance of our expression

for the free energy [35]. For a system swollen with macromer, the difference between the chemical

potential of macromer inside the gel u,, and the chemical potential of the pure macromer fi,g is?

OAF
_ = [ == . 2.2.1
Hm — Mmoo ( anm )T’nN ( 9)

At equilibrium, g, = pmo for a network swollen in an infinite bath of macromer. For isotropic
swelling,® F = ¢;V1/SI, where I is the identity matrix, so that detF = 1/¢y . Under this
isotropic deformation, reduces to A(¢m, o). Replacing the number of macromer molecules
with their volume fraction using , the chemical potential difference can be written in terms
of A, ¢y and ¢y :

(2.2.20)

i — im0 _ 9A 04
T —A+¢N( .

0w Oon

2Recall that, in the absence of external work, G = F. For this derivative, pressure is also kept constant, but to
avoid confusion with further expressions we do not include it explicitly here.

3There is a body of work that indicates that the time-dependent swelling of gels depends on the boundary condi-
tions, and need not be isotropic [3873|; these authors agree, however, that the final equilibrium state is isotropically
swollen for a system with force-free boundaries.
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Evaluating the derivatives, we arrive at

m — Hm 1
% - (¢m+¢N)ln¢m+¢N+x¢?v+e< A 2¢N>. (2.2.21)
This can be written solely as a function of ¢, (since ¢y =1 — ¢y,):
m — Hm 1
p= % =1+ 1= G+ x(1— ) +e [(1 — 6u)'? = 51~ qu)} . (2222

We define i as the dimensionless chemical potential difference between macromer within the gel
and free macromer; we will refer to p throughout the rest of this thesis simply as the chemical
potential. The first three terms represent the chemical potential due to mixing, whereas the last
bracketed term represents an addition to the chemical potential from the elastic stretching. It is
this additional contribution which prevents infinite swelling.

The equilibrium volume fraction of macromer ¢, ¢q(€, x) is given by the transcendental equation

obtained by setting pt =0 (ftm, = pmo), called the Flory—Rehner equation:

- |:hl (bm,eq + 1- ¢m,eq + X(]- - ¢m,eq>2:| =€ |:(]- - (bm,eq)l/3 - %(1 - ¢m,eq) . (2223)

The maximum amount of swelling allowed for a particular e and x pairing is ¢max = Gm.eq(€, X)
(Figure 2.2). At a given x and network strand length, the smaller the macromer (smaller €), the
greater the equilibrium swelling (larger ¢max). For a given macromer size, the more unfavorable
the interactions (increasing ), the less the network swells (smaller ¢max).

A standard experimental procedure allows the use of the Flory—Rehner equation to determine
x for a given macromer/network pair [1]. The shear modulus Gdry of a network is measured by
rheometry. The same network is then swollen to equilibrium in a bath of macromer with osmotic
modulus Gog . Once the equilibrium swelling ratio (Q¢, is experimentally determined, the
equilibrium volume fraction can be found from Q¢q = 1/(1 — @ eq)- Calculating e from the modulus
[2-2.17), is used to determine the y value for that host matrix/macromer pair. Experimental
values obtained by Pape are included in Appendix

It is convenient to define the left—hand side of as the osmotic pressure II generated in

the network due to the imbibition of macromer ¢,,:*°

— () =g +1 = P + x(1 = D). (2.2.24)

4Note, with our osmotic energy scale, that the osmotic pressure is O(1), as we would expect.
5This is the same expression given in Rubenstein and Colby |79] except written in terms of the volume fraction of
macromer rather than network.
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At equilibrium, this osmotic pressure is balanced by an elastic reaction which scales as O(e): the
right-hand side of (2.2.23). For most applications, the network is not saturated completely (not
swollen to full capacity) with macromer until it reaches equilibrium. In such cases, the osmotic
pressure is larger than the stretching forces (the system would imbibe more macromer than it has
if it could) and dominates the free-energy contribution in . Even though the stretching
contribution is small like € in these cases, it is still essential in determining the system shape, as we

shall see.
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Figure 2.2:  The maximum allowable volume fraction of macromer, ¢max, decreases 1) as the
molecular weight of macromer increases relative to the molecular weight between cross-links (e =
M,,/M.), and 2) with unfavorable macromer—matrix interations (x > 0).

2.3 Elastomeric Photopolymer after Reaction

The preceeding sections recapitulate the established thermodynamics of networks and gels in the
context of photoelastomers. In this section, we treat the new problem presented by allowing reaction
of macromer molecules to create chemical potential gradients in the elastomer so that diffusion—
induced deformation occurs.

Consider a system of host network initially swollen in a macromer bath until it reaches a de-
sired volume fraction of macromer ¢y < ¢max. This initially-swollen network is then subjected to
a photopolymerization process which causes some of the macromer to photopolymerize. For the
purpose of analyzing the change in shape of an implant initially swollen to ¢q, it is more convenient

to redefine the reference coordinates to be those of the swollen system prior to irradiation (Fig. [2.3)).
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Treatment of Reaction-Diffusion-Deformation (§2.3 onward)

Uniformly Swollen After Reaction After Diffusion

X; &7
s Q)
REFERENCE SPATTAL

Figure 2.3: The kinematics of deformation in (in constrast to Fig. [2.1)): a swollen host network
(occupying €2p) is taken as the reference configuration; each material volume dVj is labeled X ;. This
initially swollen elastomer is then exposed selectively to light, causing a spatially resolved depletion
of macromer. At any point in time during the reaction—diffusion—deformation process, each material
point moves to a point z; in the spatial configuration 2(t) and occupies a volume dV.

Let the domain of the initially-swollen system be ¢, with each material point in the system be
labeled with X (X7) relative to this new reference coordinate system. Each point also has a volume
associated with it: dVj;. We selectively irradiate this initially-swollen system with light and model
the reaction—diffusion—deformation of the body in time. At any point in time ¢ , we define the spatial
configuration Q(t) to be the collection of all material points mapped from the reference configuration
to the current time; the initial condition for Q(t) is ©(0) = . In the spatial configuration, each
material point occupies a position z; and a volume dV'.

From the above analysis of an initially swollen network (§2.2.2), we know that

Vo 1

i =T = (2.3.1)

We have defined Qg as the initial swelling ratio of the system. The subsequent deformation from the
initial swollen reference is denoted F*; relative to the dry network (before macromer was introduced),

the total deformation gradient is then a combination of F* and the initial isotropic expansion Fy =
1/37.
o It

F =F*-F, = Q) F". (2.3.2)

In terms of F*, the dimensionless free energy ([2.2.18]) is

1 * * *
A( i*Ja O, ¢N) = ¢m In ¢y, + X¢m¢N + §€¢N< (2]/3131' FiJ §J 3—InQo —Indet iJ) . (2'3'3)



20

Since det F* > 1 indicates that locally the material has expanded relative to the initial swelling
and det F* < 1 that the material has contracted, det F* will be an important parameter to measure
deformations in the system.

We now consider the polymerization process. In his thesis, Pape found that the modulus change
due to photopolymerization of methacrylate end—capped PDMS macromer in PDMS network de-
pended on volume fraction [1]. At low volume fraction (¢ < 0.1), the effect of reaction on the
modulus is better modeled by formation of nodules. This, he argued, was due to radicals first
crosslinking all of the macromers in its vicinity and then capturing macromers that diffuse to it.
At high volume fraction (¢o > 0.2), the effect of photopolymerization of macromer on modulus was
stronger, suggesting formation of a bicontinous, interpenetrating network. He was, however, un-
able to prove this last hypothesis due to the paucity of models successfully predicting the modulus
increase of interpenetrating PDMS networks.

Within the same year, Yoo and co—workers characterized the mechanical and swelling properties
of PDMS interpenetrating networks [31]. Although their cross-linking of the short—chain macromer
proceeded through heating rather than light, they used macromers of similar length (0.8-5.7 kg/mol)
and networks with similar modulus (0.7-0.21 MPa) as those used in Pape’s thesis. In order to char-
acterize the materials, they measured the shear modulus of their created IPNs and compared them
to theoretical work by Okumura [80]. Okumura considered two extreme models for an IPN: an equal-
strain model and an equal-stress model. While the equal-strain model was found to significantly
overpredict the modulus of the IPNs in Yoo et al., the equal-stress model gave relatively good accord
(i.e., slightly underpredicted modulus). This, coupled with the discovery that the interpenetrating
networks have a similar power—law behavior (G ~ Q~1%8) as unimodal networks (G ~ Q~191), lead
the authors to conclude that there is effective load transfer between the two networks. Thus, they
concluded that the photopolymerized PDMS short—chains behaved as a bicontinuous IPN in host
PDMS.

Because of the conclusions of Yoo and co—workers, we would expect that the resulting photopoly-
merized macromer chains are uniformly entangled with the host network and supplement it as if they
were a uniform, secondary network. Because the macromer chains have a smaller molecular weight
than the network chains, the resulting interpenetrating network should have a smaller molecular
weight between crosslinks, but is otherwise chemically similar to the host network. Since the sec-
ondary network is more tightly linked than the host network, it should resist further swelling more
strongly than the original network. Rather than include the details of this IPN using the equal-
stress model, we make a simplification in which macromer chains are assumed to react directly into
network chains. We will refer to this model as the “two-component model:” the two components
being free, unreacted macromer and network (the original network augemented with extra chains).

Although it is not a priori obvious that this is a good assumption, requiring macromer to become
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network forces the macromer—turned—network chains to retain all the original network properties
before reaction, including a state of stretch present due to initial swelling with macromer. As we
shall see, this theoretical artifice actually captures the mechanical behavior of the material at small
volume fractions and will be shown to yield qualitatively similar results to the equal-stress model
used by Yoo et al.

Although we will show that this “two-component” model is sufficient in every way to qualitatively
capture experimental data (, we initially recognize that the different cross—linking chemistry
of our small molecules from those of Yoo et al—specifically the molecular repulsion due to the
methacrylate end—groups—could result in dispersed nodules, especially for lower molar masses of
macromer. For this reason, we also consider an alternate model in which the macromer chains
photopolymerize into discrete nodules. Following Pape’s determination that phase separation does
not occur for these systems [1], we assume these nodules act as a continuous filler. We will call
this second model the “three-component model” since we will consider separately free macromer,
original host network, and polymerized macromer nodules. Although there are many models that
can be used to represent the modulus increase due to fillers [81], we choose the Kerner equation [82].

Analgous to the equal strain and equal-stress limits proposed by Okumura, we will further-
more show that the “two-component” and “three-component” models provide bounds for the cured
material modulus: the two-component model underpredicts the modulus increase due to photopoly-
merization, whereas the three-component model overpredicts it. As such, we assume that the actual
situation is intermediate between two limiting cases: conversion of macromer into network strands
and conversion of macromer into filler. We furthermore show that this model captures both the
experimentally determined modulus of the PDMS materials studied by Pape and the equilibrium-

swelling behavior of these materials after reaction.

2.3.1 Two-Component Model

When an initially swollen sample is subjected to a profile of light intensity I(X,t), we assume that
initial macromer is locally converted into host network in a spatially resolved pattern. We futher
assume that there is no volume change upon reaction. Since one material is converting to another, the
only way this can hold is if both materials have the same density, and formation of new bonds (which
increase density) has negligible effect. In general, photopolymerization using monomers produces
an increase in density. Here, macromer are used and the volume contraction due to covalent bond
formation is negligible: PDMS macromer and network systems, for example, have experimentally
been determined to shrink less than 1% at complete cure [1]; volume changes due to reaction can
be safely neglected. Since photopolymerized macromer chains in this model are indistinguishable
from network chains, the polymerized macromer chains attain all the characteristics inherent in the

network chains. As previously noted, these reacted chains are prestretched.
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Because there are only two components at any point in time, we note that ¢ can be eliminated
by ¢n = 1 —¢y,. For brevity, from here on we drop the subscript m and let ¢ be the volume fraction
of macromer. The ratio of an element’s volume in the spatial configuration at time ¢ to the initially
dry network (§2.2)) is

av

QX.t) = - (2.3.4)

This volumetric ratio Q(X,t) now differs from the familiar swelling ratio dV/dVy. The two are
equal to each other in the initial spatial configuration (Q(X,0) = Qo) because no reaction has
occurred (dVx = dV9). Subsequent conversion of macromer into network results in creation of new
host network so that dVy > dV%. Consequently, QQ can be viewed as the product of the swelling

ratio (dV/dVy) and the ratio of the current amount of network to that inherited from the initial

network (dVy /dV%):
dv dv  dVy

@=gya = dVy dvd

(2.3.5)

By the definition of the volume fraction of macromer, dV/dVx = 1/(1— ¢). The ratio of the current
amount of network to that inherited from the initial network, (X, t), can be found by integrating

the instantaneous rate of creation of network r,, in dV up to time ¢:

av; (Xt
00X = S =1 +/0 p(mO)Q(X,t)dt. (2.3.6)

The rate of reaction depends on the light flux reaching dV', the photoinitiator concentration, and
the local concentration of macromer. We call the parameter 6 the conversion parameter since its

value completely characterizes the local, transient conversion of macromer into network. With the

definition of ¢ and 6, (2.3.5)) becomes:

(X, 1)

AT T

(2.3.7)

Note that shows the interrelationship among the deformation (Q = detF), the chemical
reaction (6), and the diffusion of the macromer (which governs the transient volume fraction ¢(X,t)).

In light—adjustable lens applications, the irradiation time is short (order of min) compared to the
time for re—equilibration (order of days). Reaction occurs significantly only during irradiation,
decaying to zero within ~ 5 min once the light source is turned off [1]. Since the time scale
for diffusion is much greater than that for reaction, we can simplify our problem by decoupling
the reaction from the diffusion—deformation process. This can be done by assuming instantaneous

reaction at ¢t = 0:
Tm(Xﬂ t)

Pmo

= ¢o&(X)4(2), (2.3.8)

with £(X) the extent of reaction of macromer and §(¢) being the delta function. We can model &
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based upon plausible irradiation profiles in order to connect ([2.3.8]) to experiment. In the limit of

instantaneous reaction ([2.3.8]), the conversion parameter (2.3.6)) is fully specified by the extent of

reaction (X)) and the initial swelling ratio:

bo

oX) =1+

€(X). (2.3.9)

The conversion parameter is a measure of how much total macromer has reacted. Physically, 8( X)) is
the ratio of the local volume fraction of network immediately after the reaction to that inherited from
the original network (1 —¢q). This increases linearly with the product of the extent of reaction, £(x),
and the volume fraction of macromer present when the reaction occurred, ¢g. With 0 < ¢g < 0.3
(the usual operating range for these swollen gels), 1 < 6 < 1.4.

Since we wish to rewrite all of these expressions relative to the initially swollen configuration (as

opposed to the dry network), the expression for @ (2.3.7)) is simply normalized by Qq:

Q 0

=detF* = — = , 2.3.10
Q Q0 1 9 ( )
where the asterisk denotes “with respect to the initially swollen state” and
. 0
0 =—=1—(1-¢&)o. (2.3.11)
Qo

When the current volume fraction of macromer in a material element is greater than that present
after reaction (¢(X,t) > (1 —£)¢o), det F* > 1: macromer has diffused into the element and caused
it to swell. Likewise, an element will contract (det F* < 1) if the current volume fraction is less than
that present after reaction (¢(X,t) < (1 —&)¢o)-

Since we only have two components, the system free energy is taken directly from (2.3.3):
* 1 * * *
A(Fiy,9) = 9o+ x0(1 = 9) + 3¢ (1 - 6) (O *tr FyFfy =3 -l Qo — Indet Fy ). (2.3.12)

that is, we assume that the reaction does not change the system free energy other than through

depletion and creation of components. Since the set of variables F}; and ¢ are not independent (see

(2.3.10)), the free energy (2.3.12)) can be rewritten as solely a function of F};. This is the energy we

minimize in §2:4] in order to solve global problems.

2.3.2 Region of Validity of the Two-Component Approximation

We now examine the validity of the two-component approximation by comparing the results predicted
by the model to experimental data on cured PDMS macromer in PDMS host network [1]. We begin

by showing that the increase of shear modulus upon curing is captured by the model. Using the
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predicted shear modulus, we then illustrate that the equilibrium swelling predicted by the two-
component model is also in agreement with experiment.

To determine the theoretically predicted value of G the effective modulus of the network

cured>
now augmented with macromer—turned—network chains, assume a sample is irradiated such that
it experiences a uniform extent of reaction . Although the experiments in [1] are performed at
complete cure (£ = 1), for now we consider £ arbitrary to determine a general expression. Because
macromer is converted uniformly, no chemical potential gradients are created and the material will
not deform due to the diffusion of free macromer. With no volume change upon reaction, the volume
of the material also remains unchanged (i.e., Qo = dVy/dV? unchanged). Recall that the volume
ratio of network after reaction to the dry network is the conversion parameter § = dVy /dV¢ .

Extracting any left-over macromer from the system results in a net deswelling of the material by

the volume ratio

*

dVn %)
= — = —. 2.3.13
avo Qo ( )

For the example of complete cure, dVy = dV; and the system does not deswell at all (6* = 1);
arbitrary extents of reaction will then have #* < 1. Assume this deswelling occurs isotropically so
that the deformation due to extraction is FEXUaCt — g«1/35,; (5, the identity tensor). We then

subject this cured and dried network to a shear deformation

F, (2.3.14)

I
S o =
o = o
— o o

where ¢ is a small shear strain. The total deformation due to extraction and shearing is F* = o1/ 3Fs.

The free energy of the cured and dried (¢ = 0) network under this shear becomes (2.3.12)
1
A(6) = e <92/3 (6>+3)—3-In 9) . (2.3.15)

The derivative of the free energy with respect to the shear strain is the shear stress. In dimensionless

form,
_(OAN _ o
T= (86) = €07/°). (2.3.16)

The prefactor of § is the dimensionless shear modulus

692/3
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predicted for a cured and dried elastomeric photopolymer. In dimensional terms, this equates to:
_ 2/3
Geured = Gary0™”. (2.3.17)

At complete cure (£ = 1), § = Qo and theory predicts that the relative modulus of the
network increases by a factor Qg/ % due to the augmentation of macromer chains becoming network
chains. Note that this simplistic model predicts that the modulus increase depends only upon
conversion parameter, independent of the length of macromer chains: the identity of the macromer
chains is lost due to the assumption that reaction converts macromer chains into network chains.
Although this gross assumption cannot be justified a priori, comparison with experimental data will
demonstrate the efficacy of this approach.

Experimental data also shows an increase in modulus upon cure: Figure[2.4]shows experimentally
determined chred/Gdry at complete reaction (¢ = 1) [1]. Alongside this data we present the
corresponding modulus increase predicted by the two-component model . As can be seen,
the two-component model (lower solid curve) provides a lower bound on the modulus, essentially
equivalent to the equal-stress model of Yoo and co—workers (lower dotted curve). For ¢g < 0.2, the
two-component model is in good agreement with the data and predicts that the modulus increases
less than 50% for all macromer molar masses. For this reason, provides a good approximation
to the cured modulus for ¢ < 0.2. For longer macromer chains (M,,, = 3000 — 5000 g/mol), the two-
component approximation holds to larger ¢q: this is expected because the longer macromer chains are
more like network chains. For shorter chains at larger volume fractions, however, the two-component
model significantly underpredicts the experimentally determined moduli. In these cases, we assume
that the cured macromer molecules behave more like isolated nodules than interpenetrating networks;
this will be corroborated through the predictions of the three-component model ( which treats
macromer as reacting into isolated nodules.

Using these predictions for the increase in relative modulus upon cure, we proceed to compare the
equilibrium swelling for a cured system predicted by the two-component model to experiment. The
two-component predictions for equilibrium swelling after cure are determined through a method
analogous to First, we must determine the chemical potential of penetrant for the cured
and reswollen gel using the free energy developed for the two-component model. Consider a network
swollen in a bath of macromer to ()¢ and uniformly cured to an arbitrary extent of reaction £. Excess
macromer is then extracted, deswelling the system to the volume Vy, representing a deformation
of FEXtract _ g«1/35, , (see the beginning of this section). This cured and dried network is then
reswollen in a bath of the same macromer. As the gel swells with macromer to volume fraction ¢, the
network chains undergo isotropic expansion by the ratio dV/dVy = 1/(1 — ¢). The net deformation
from the initially swollen state is then F* = (6*/(1 — ¢))1/3 6iy = Q*Y/368;, . Placing this
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Figure 2.4: The relative modulus increase in PDMS elastomers due to complete reaction (§ = 1) of
bismethacrylate endcapped PDMS short—chain macromer as a function of the initial swelling volume
fraction ¢g. Symbols show experimental data for four different macromer chain lengths presented
in the Ph.D. thesis of Eric Pape [1]. Curves show model predictions. The solid curve below the
data is the prediction of the “two-component model” ( which provides a lower bound for the
increase in material modulus upon polymerization. The two-component model is in keeping with
the equal-stress model used by Yoo and co—workers [31] (the dotted line: 23 k molecular weight
host network cured with 2.3 k short chains; other short chain lengths produce nearly the same
curve). The two-component model provides a good approximation in the case of relatively high
macromer molecular weight where the fully photopolymerized material most closely resembles an
interpenetrating network. The “three-component model” (§2.3.3)) treats the reacted macromer as
hard-bodied nodules that act as filler through the Kerner equation [82]. This can be seen as
an upper bound on the material modulus (dashed line). The three-component model better captures
the short chain, nodular effects of reaction at large volume fractions.
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deformation into (2.3.12)), the chemical potential (2.2.19)) predicted by the two-component model is:

p=ot1 -0+ x(1-0) +e|0P(1-6)5 — (1 - )| (2:3.18)

The system reaches equilibrium when g = 0. Call the equilibrium swelling volume fraction for the
cured and reswollen system ¢ = ¢, (different from the value for the original network ¢.,). It is

related to the equilibrium swelling ratio after cure, Qéq, by:

dv 1
/ _ —_—
Q= e =T (2.3.19)

€q

The two-component model prediction of gbfeq proceeds by solving p = 0 (2.3.18)):

1

- [ln Grg T 1=y +x (1 <z>;q)2] = 21— g)'° = el gr,), (2.3.20)

as a function of €, 0, and x. This equation can be thought of as the Flory—Rehner equation for
the two-component model: it predicts the equilibrium swelling of cured systems under the two-
component approximation in the same way that the Flory—Rehner equation predicts the equilibrium
swelling of the original system ( Note that the two-component Flory-Rehner equation
reduces to the Flory—Rehner equation when there is no reaction (£ =0, 6 =1).

Because the y values used to predict equilibrium swelling are not known a priori, they must be
found through experiment. One method of doing this revolves around measuring equilibrium swelling
for a system and then fitting x with the Flory—Rehner equation [83|. Using equilibrium swelling
data obtained for methacrylate end—capped PDMS macromer swollen into PDMS network [1], we
determined the y values for network—macromer pairings using the Flory—Rehner equation .
These can be considered to be the “original” x values before the system has been cured. The open
circles in Fig. illustrate these original x values. The values of x are found to depend strongly on
the choice of macromer molar mass: M,, = 500 g/mol having 0.7 < x < 0.85, M,, = 1000 g/mol
having 0.4 < x < 0.55 g/mol, and M,, = 3000 g/mol having 0.1 < x < 0.3. These correspond
to poor, near-theta, and good solvents, respectively: as the number of silicone repeat units in
the macromer backbone increases, the solvent becomes more like the network and experiences less
repulsion. Compared to the effect of changing macromer chain length, the y parameter is relatively
insensitive to the network chain length, represented by Gdry' Pape gives the reason for the observed
slight increase in x as the network gets tighter (Gdry increasing, M. decreasing) as molecular sieving
of the polydisperse macromer sample. A regression fit for the x values as a function of Gdry is
performed in §B.2] and the results are shown as the straight lines in Fig.

For the two-component model to be self-consistent, x should not change upon cure: macromer

chains become network chains and inherit all network characteristics, including their interaction with
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Figure 2.5: Fit x values using equilibrium swelling data for methacrylate end—capped PDMS in
PDMS network as a function of G y,.\,; Mm, and ¢q [1]. The original network y values are obtained by

using the Flory—Rehner equation (2.2.23)) and the least-squares regression parameters on the original
data as a function of Gdry are given in (Table . The cured x values (obtained at complete

cured, £ = 1) are calculated using the Flory—Rehner equation modified for the two-component model

£-3-20).

macromer molecules. To test for self-consistency, we calculate the x values for a cured system using
equilibrium swelling obtained for fully cured gels (£ = 1) which were reswollen with the same molar
mass of macromer. To determine the y value predicted by the two-component model, the original
network modulus Gdry and the initial volume fraction of macromer ¢y were used to calculate the
cured modulus from theory . These were then used, along with equilibrium swelling ratios
in , to fit x. The obtained x values for the cured systems are shown in Figure At small
volume fraction (¢ < 0.2), the x value at a given molar mass does not change significantly upon
curing macromer into the matrix; the model is self—consistent. In practical terms, this means that,
for ¢ < 0.2, x can be approximated as having a particular value dictated by the macromer size
and end-group structure, but independent of cure of macromer into the network. It should also be
noted that the more significant deviations at larger volume fraction are due to underprediction of
the cured modulus (Fig. [2.4).

We illustrate the effectiveness of using these original y values by comparing the theoretical

equilibrium swelling results obtained from ([2.3.20) with raw experimental data. To do so, we first
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Figure 2.6:  The modulus of model PDMS networks fully cured with Af,, = 1000 g/mol bis-
methacrylate endcapped macromer is plotted as a function of the equilibrium swelling ratio after
cure. The solid symbols represent the experimental data from [1] and the open symbols represent
the two-component model prediction for each data point. The circles group sets of similar G g,

(line) 0.28 > Gdry > 0.25 MPa (except the up pip point which has 0.213 MPa), (dash) Gdry ~ 0.21
MPa, (dot) Gdry ~ 0.16 MPa, and (dash—dot) Gdry ~ 0.11 MPa. Except for the three points with
pips—all at ¢¢9 = 0.3—the theoretical results lie near the experimental results.

use a pair of real material parameters (Gdry’ M,,) to calculate the theoretical model parameters
x and e for use in . This is done in Appendix B, Table Using these determined
parameters, Fig. shows experimentally obtained results for the modulus of fully cured materials
as a function of their equilibrium swelling ratio after cure (filled triangles). The open triangles are the
corresponding theoretical points obtained from the two-component model. Only three points—the
ones with the pips—are significantly removed from their theoretical predictions. These are the only
points where ¢y ~ 0.3 and the deviation is due to the modulus being significantly underpredicted
(Fig. [2.4).

Inspired by the ability to predict the experimental swelling data pointwise, we turn to the power-

[e%

law scaling behavior of the cured modulus with equilibrium swelling. The literature models G ~ Qg,,

the value of o determined by the type of solvent [79]. Specifically, « = —8/3 (i.e., -2.67) for a theta
solvent (x = 0.5) and o = —7/4 (i.e., 1.75) for an athermal solvent (x = 0). Although there is no

scaling theory for poor solvents, the general trend expects « to continually decrease as the solvent
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Figure 2.7: Log-log plot of the two-component predicted equilibrium swelling (2.3.20) for M,, =
1000 g/mol. Data points are obtained by varying Gdry and calculating G ;peq for a specific value

of ¢g through . The theoretical line shows only the case of ¢g = 0.2: the results for ¢y = 0.1
and ¢g = 0.3 are not shown, as they overlay the ¢¢9 = 0.2 line with nearly the same slope. The x
values used to calculate these curves are evaluated from a linear regression to real data (Table [B.1]).
Also shown is the experimental data, and a power law fit to that data using least—squares regression.
The slope of the theory is essentially the same as that of the experimental data although the theory
predicts a slightly higher degree of equilibrium swelling than seen experimentally.

quality gets progressively more poor. From Fig. we see that the increasing molar masses of
macromer span the range of poor, to near-theta, to good solvent in host network, respectively: the
repulsive effect of the methacrylate endgroups is mediated by including more repeat units with the
same chemistry as the network backbone. Figure demonstrates the scaling behavior predicted
by the two-component model for the theta solvent case (M,, = 1000 g/mol). Although the two-
component model slightly overpredicts the experimentally determined values (triangles), the scaling
behavior (¢« = —2.42) is nearly the same as that obtained by performing regression on the data
(o = —2.45); it is also near the literature value of a = —2.67. The power law exponents behavior for
the other macromer molar masses are shown in Table 2.1} The scaling exponent depends upon the
molar mass of macromer—and therefore the macromer solvent quality—but is nearly independent
of ¢g. The scaling exponents for all cases are nearly the same as those determined directly from
experimental data and also show agreement with literature [79).

Using experimental data for materials appropriate in light-adjustable implants, we have illus-

trated that the assumption inherent in the two-component model can successfully capture experi-
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M,,, Solvent Scaling a*

g/mol Quality Theory [79] @0 =0.1] ¢pg=0.2 | ¢g=0.3 | Data**
500 Poor a < —2.67 -6.05 -5.97 -5.88 -5.07
1000 Near Theta a=—2.67 -2.38 -2.41 -2.46 -2.45
3000 Good —267T<a< -1.75 -2.29 -2.32 -2.38 -2.33

* Geyred ~ Qg
** Obtained through regression of experimental data obtained from [1].

Table 2.1: Scaling exponents obtained from the modified Flory-Rehner equation ([2.3.20) as a function
of ¢g and M,,, obtained by variation of Gdry' The power-law fit to each theory produced r? > 0.99;

the experiment data had r? of 0.94 for M,, = 500 and 3000 g/mol and 0.82 for 1000 g/mol. The
scaling exponent depends only upon the macromer molar mass and not the volume fraction of
macromer. They are also in agreement with the values obtained experimentally |1] and cited in the
literature [79].

mental observations. For small amounts of initial swelling (¢g < 0.2), we were successfully able to
predict the relative modulus increase upon cure. We also showed that the model is self-consistent:
using the x value before cure, we found the theoretical predictions for equilibrium swelling of cured
systems to be in keeping both with experimental data and with literature scaling behavior for
¢ < 0.2. At larger values of the volume fraction, the modulus was significantly underpredicted, par-
ticularly for smaller molar masses of macromer (Fig. , leading to more significant discrepancies
in the equilibrium swelling behavior. This discrepancy can be corrected by creating an alternate
“three-component model” which allows for the creation of a third, nodule species from macromer
upon reaction. This third species acts as an inert particulate filler and will be shown to enhance the
relative material modulus beyond that observed in the two-component model.

Before we finish with the two-component model and move on to the three-component model,
however, we briefly determine the two-component expression for the shear modulus after curing
and reswelling to any general volume fraction ¢; this will be useful in the following chapters where
we make extensive use of the two-component model. First, the system is reacted and deswollen,
attaining a modulus G ;.eq (2-3.17). We then reswell this cured material isotropically to a volume
fraction ¢; this corresponds to F}; = (6* ;eswell)l/ 36:7, Qroswel] = 1/(1 = @) , the swelling ratio
relative to the cured and dried network . Upon submitting this to the shear deformation ,

we use the same method as before to obtain the shear modulus:

Gshcar(¢§ 9) = chrod(g)(l - ¢)1/3 = Gdry92/3(1 - ¢)1/3- (2.3.21)

The scaling behavior (1 — ¢)1/ 3 with solvent volume fraction ¢ has been shown to be typical of

swollen gels [79]. Because making appropriate choices for 6 and ¢ reduce G to either G

shear cured

is the most general expression for the shear modulus. Due to the dimensionless

or Gqrys Gshear

nature of solution throughout the rest of this work, it is more convenient to define the dimensionless
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shear modulus

G
G = % = e0?/3(1 — ¢)'/3. (2.3.22)

Here, we use G without subscript to denote the dimensionless shear modulus after curing and

reswelling to a volume fraction ¢.

2.3.3 Three-Component Model

We now turn to the three-component model which can be used at larger volume fractions to more
accurately predict the modulus of a material, specifically at smaller molar masses of macromer.
In particular, smaller molar masses of macromer are unable to form long-range, interpenetrating
networks; instead, the macromer molecules diffuse to a radical initiation point (which cannot diffuse)
and form nodules. In this section, macromer is assumed to react into dispersed nodules; this third
species will be referred to via subscript n. We assume that these created nodules are large enough
that they cannot diffuse, but rather enhance the material modulus as filler. Fig. 2.4 illustrates that
the modulus predicted with this model provides an upper bound to the experimentally determined
data Fig.

Using the same simplification of instantaneous reaction that produces a conversion profile £(X)
at ¢ = 0, the volume of macromer remaining in a small volume immediately after reaction will be
AV, = dVio(1 = &), with dV,,,0 being the volume of macromer in that volume before reaction. Since
all reacted macromer is converted to nodules and no nodules exist before reaction, the volume of
nodules after reaction will be dV;, = dV,,,0€pmo/pro, Pro , the pure component density of the nodules.
The volume of network after reaction is the same as that before reaction dVy = dVyg. The ratio of

total volume right after reaction dVg to total volume right before reaction is

AV dVep +dVy +dV,

Pmo
i =1 ——1). 2.3.23
Vo~ dVio + dVo + 0ot ( oo ) (2.3.23)

Qr

The usual increase in density when monomers are polymerized [17] is negligible when macromer are
polymerized (i.e., the nodule density is approximately the same as the macromer density, pmo & pno):
Qr = 1 and there is no change in volume upon reaction. The volume of fixed-species (both network
and nodules) is

dVy = dVy + dV, = dVo(1 — ¢o) + dVodoé. (2.3.24)

The volume of fixed species remains constant at each point after reaction since these species cannot
diffuse; it is also completely specified by the extent of reaction profile and material parameters. The

fixed species volume fraction, ¢, however, will change due to diffusion of macromer: ¢, +¢n+¢, =
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1 so that ¢ = ¢n + ¢, = 1 — ¢,. The conversion parameter 0 is designated as

dVy _dVy dVo _ 1—(1—=&)do
dVy — dVodVy  1—¢¢

0= (2.3.25)

which has a similar meaning to the conversion parameter in of the previous section: it is
the ratio of the fixed-species volume after reaction—mow with contributions from the host network
and reacted macromer considered separately—to the initial network volume. It also completely
characterizes the extent of reaction. Note that the expression for is the same as 6 in the
previous section ; this is because we have assumed pno = pmo. Since ¢y = dV;/dV, the

volume fractions of network and nodules are

_dVNn  dVy 1
ox = G = qor = 51— om) (2.3.26)
and
av, dv, 0—1
= — — 1—om), 2.3.2
b= G = qtr = g (1= 0m) (23.27)
respectively.

The volume ratio @@ = det F;; for the three-component system is

o_ W v 1
S dve dVy N 1=

(2.3.28)

Recall that superscript d denotes the “dry” network (prior to swelling with macromer). Note that
this is also the same expression as that for the two-component case , with # now having the
more general meaning discussed above. In this way, the definition of 6* and Q*
given above are also the same: the distinction between 6* for the two different models is one of
interpretation and not mathematics.

We now examine the form of the free energy for this three-component model. Consider the
three contributions to the free energy: entropy of mixing , enthalpy of mixing , and
chain stretching . We treat our nodules as having approximately infinite molecular weight
and zero diffusivity: there is negligible free energy gain upon mixing nodules and so the entropy of
mixing remains unchanged. The enthalpy of mixing, however, now has three pairwise interactions:
macromer—network, nodules—network, and macromer—nodules. The first is important and is the
same as (2.2.11)). The experimental data discussed above (Fig. illustrated that the x value of a
given system did not change significantly upon reaction and was independent of the macromer used.
This motivates the assumption that the created nodules repel the macromer to the same extent that
the original network strands do. In light of this similar repulsive behavior, we further conclude that

any interaction between the nodules and the network would be negligible in comparison. With these
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assumptions, the enthalpy of mixing is given solely by:
AHpmiz = KTXNm (N + ¢n). (2.3.29)

The energy due to chain stretching has to be modified to bolster the material modulus appropriate
to a particulate filler. Although there are many such models available [81], we chose one of the
more versatile relations: the Kerner equation [82]. The Kerner equation has been shown to replicate
experimental data at small volume fractions of filler; at larger filler-volume fractions, however, the
Kerner equation tends to significantly underpredict the material modulus [81]. Because our currently
designed systems for intraocular lenses operate at initial macromer volume fractions of less than 0.3—
yielding nodule volume fractions lower than that—we take the model as a good approximation. As
we will see, the Kerner equation is also especially illustrative because it allows a transition between
the “two-component” and “three-component” models.

We choose to use the simplified form of the Kerner equation—which assumes that the filler species
is infinitely stiff—since the nodules are assumed to be significantly stiffer than the host matrix; this
is particularly true for small M,,, where the approximation of nodules is more appropriate. The dry

composite modulus G, of filler in a matrix with original modulus Gdry is then given by

Ge=Gapy (1 + 5:;/\) . (2.3.30)

The parameter A is a function of the matrix Poisson ratio, vy,

_ 15(1 — Z/N).
A= & Tomy)’ (2.3.31)

A = 2.5 when the network is incompressible (vy = 0.5). Using (2.3.30)), we modify the free energy
of stretching from (2.2.6) to
AF, 1 On

4 = Gy (1 + (bN/\) b (trFUFjJ — 3 — Indet FJ) (2.3.32)

¢ appearing since the network and nodules together are the species that contribute to the free
energy of stretching. Placing the relationships for network and nodule volume fractions (2.3.26)) and
(2.3.27)) into (2.3.32)), combining the three energetic contributions above and non—dimensionalizing

by the osmotic modulus as before, the free energy for the three-component model is

A(Fy7, by O3 bn) = b 10 b + Xbmods + %e <1 + ;f;/\> b (trFiJFjJ —3—Indet FJ) (2.3.33)

The expression for the network and nodule volume fractions (2.3.26)—(2.3.27) can be used to simplify
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(2.3.33) by using ¢ (dropping the subscript m) to denote the volume fraction of macromer —the only
independent volume fraction. Also changing the reference to the initially swollen network, (2.3.33)

becomes
A}, 6) = pInd + xd(1 — ¢) + %e’(l - ¢>)( 234 By Fly — 3 — InQo — Indet J) (2.3.34)
Here, we have modified € by including the extra term bolstering the network modulus by nodules:
¢ = e<1 (- 1))\) (2.3.35)

with A = 2.5. The only change in the free energy between the two and three-component models is
in this ¢’ term. If X is set to zero, ¢ — € and we recover the two-component model.

Following the thought experiment presented in §2.3.2) to determine the cured modulus for the
two-component model, we uniformly irradiate a sample to extent of reaction &, deswell the material
isotropically by the volume ratio 6*, and then subject it to a shear deformation . Under
the same arguments as the previous section, the shear modulus for the three-component composite

relative to the host network is

GGCzl‘ed - (1 +(0— 1)/\>02/3. (2.3.36)
ry

This equation is plotted at full reaction against ¢g (A = 2.5) in Figure alongside the two-
component model. Notice that the modulus increase for the three-component model is greater than
that predicted by the two-component model by the prefactor 1 + (§ — 1)A. In fact, the three-
component model provides an upper bound on the material modulus: the experimental data falls
neatly between the two-component and three-component model. In general, the three-component
model lies closer to the actual material modulus for smaller molar masses of macromer. This is
because smaller chains are less capable of forming a persistent, secondary network than the longer
chains and so tend to form locally dense nodules.

Choosing an appropriate value of A between 0 and 2.5 and using € instead of € allows corrections
to the two-component model. For the remainder of this thesis, we choose to solely make use of
the two-component model. It should be noted, however, that this model tends to underpredict the
modulus at larger values of ¢y when the macromer molar mass is large, and the results can be

corrected by the three-component model.
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Figure 2.8: A solid elastomeric photopolymer occupies a region of space €y at time ¢ = 0; the
initial swelling ratio is Q. The gel is attached to a supporting solid along a portion of its boundary,
0. Along the remainder of its boundary, 0€)s, the photopolymer is in contact with an inert fluid
and can deform freely.

2.4 Variational Form and Differential Equivalence

We have illustrated the success of the two-component model in predicting the equilibrium swelling
behavior of PDMS elastomers photoreacted with PDMS short chains. We now wish to apply the
free energy developed above to solve a variety of problems. Consider a general problem in which a
lump of elastomeric photopolymer is uniformly swollen by Qg to occupy the reference region
Qo (Fig. . Let us assume that this solid is attached to a fixed substrate along a portion of its
boundary, 0€2;. The remainder of its boundary, 92s, is exposed to an inert fluid that provides
negligible attraction to macromer; the material is allowed to deform freely but no material inside
the photopolymer is allowed to leave. Irradiating this material will cause gradients in macromer
concentration, driving diffusion of the free macromer species. The body g is deformed by this
diffusion into the configuration Q(¢). We wish to determine the configuration Q(t).

We now apply the developed free energy to determine the equilibrium (long—time) deformation
of an elastomeric photopolymer given an initial conversion parameter €. Since the system is closed
to macromer transport, the gel will reach equilibrium at long times: this equilibrium corresponds to
a minimization of the free energy of the gel. Using the dimensionless free energy per unit volume A

we derived above (2.3.12)), the system free-energy change at equilibrium is

AF 1
= A(F, ¢)dV, 2.4.1
GOS‘/eq Veq Qeq ( iJ ¢) ( )

F=

with Ve, being the volume of Q., = Q(t — o0), and the osmotic modulus (2.2.15)) being taken as

constant over the photopolymer sample.® In writing this expression, we have omitted the usual work

6The macromer molar mass and density, as well as the system temperature, tend to remain constant in space for
applications of photoelastomers ([2.2.15)).
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term [68] because we take the boundary 995 to be force free.”

Since material neither leaves nor enters the system through the boundary, conservation of mass

places a global constraint on the energy minimization, namely conservation of total volume
Veg = Vo (2.4.2)
Here, 1} is the total volume the system occupies before deformation

Vb:/ dVy. (2.4.3)
Qo

With

Vo = / av = | Q*avp, (2.4.4)
Qeq Qo

Q* defined in ([2.3.10)), the constrained energy Fis given by:

F=F=pVi =) = - | 14Q" =p(@ = 1))V (245)

The Lagrange multiplier p cannot depend upon position inside the gel since the constraint is global.
We also note that the role of p is to act as a sort of pressure which constrains the gel from attaining
configurations that do not conserve volume.

Since gives a relationship for Q* and ¢ in terms of the deformation gradient and the
reaction parameter, F can be considered to be a function solely a function of F* and the parameter

0*. For a specified reaction parameter field, minimization of F yields

Q" 0Q*

oF;, ~VoFy,

1 {{5‘A(F*,¢) OA(F*, ¢) 99 0Q

ﬁ = = —
0 0 Vo Jay oF} 0¢p  0Q* OF},

] Q"+ A } OF;dVy. (2.4.6)
Using the expressions for Q* (2.3.10), the energy density A (2.3.12)), and the osmotic pressure II(¢)

(2.2.24)), and recalling the relation a‘é‘iﬁf* = det F*F*~ 7, |D becomes

/ P j0FdVo =0 (2.4.7)
Qo
with first Piola—Kirchhoff stress tensor
., 0A . —
Piy=Q 5r — (@) +p]Q"F; (24.8)
i

"In principle, there will be a force exerted by the inert fluid on the surface due to an external constant pressure.
This can be easily eliminated, however, by measuring all stress relative to this standard pressure. Note that no forces
can be applied along 021 because we have already specified that the gel is attached to these surfaces. To allow for
more general cases in which forces are applied at the boundaries, the external work term that should be added is
given by W= — fBQ oijnj(xz; — X1)dS, where oy; is the Cauchy stress tensor for the system and n; is the unit normal
to dS.
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With x; the mapping from 2y to 2—analogous to (2.2.1)—we can use integration by parts to write

(2.4.7) as
—/ Py y0x;dVo =0, (2.4.9)
Qo

the boundary terms disappearing since 92 is stress free and dx; = 0 on 0€;. For this relation to
hold for arbitrary variations in x},

Piy;=0 (2.4.10)

must hold pointwise inside the material. We can write this in terms of the Cauchy stress using the
Piola transform
Q*Uij = Pi(]F;J (2411)

so that
0A

oij = —pdi; — I(¢)di; + aFy,

F7). (2.4.12)

The Piola transform can also be used on (2.4.10|) to yield the spatial equation of conservation of
momentum

Oij,5 = 0. (2413)

We will see in the next chapter that the relations (2.4.12)) and (2.4.13) written from energy mini-
mization correspond to the conservation principles and constitutive laws derived using a traditional

continuum mechanics approach for a system in which inertial and gravitational forces are negligible.

2.5 Supplemental Material

2.5.1 Equilibrium Swelling Data for M,, = 500 and 3000 g/mol

In Figure we show the theoretical prediction for equilibrium swelling alongside the
experimentally determined data |1] for macromer molar masses of (a) 500 and (b) 3000 g/mol,
respectively. For M,, = 500 g/mol (Fig. ), the pipped data points are the furthest removed
from their theoretical counterparts for the same reasoning as the M,, = 1000 g/mol: they are
at ¢g = 0.3 and the modulus is significantly undepredicted. The worst prediction occurs at the
particularly low value of Gdry = 0.054 MPa (the right pip point), similar to that seen for the right
pip point in Fig. For M,, = 3000 g/mol (Fig. ), there is not as much discrepancy for the
points at ¢y = 0.3 because the modulus is not as significantly underpredicted at this molar mass.
However, the discrepancy between the right pip point is again due to the particularly small value
of Gdry = 0.054 MPa. Both of these results—along with those obtained for M,, = 1000 g/mol—
indicate that two-component swelling theory gives a better prediction of the actual behavior for

¢o < 0.3 and Gdl“y > 0.1 MPa.
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Figure 2.9: The analog of Figure (§2:3.2) for (a) M,, =500 g/mol and (b) M,, = 3000 g/mol.
For most of the data, the theoretical predictions (open triangles) lie near the experimental data
(solid triangles). The circles group sets of similar Gdry: (line) 0.28 > Gdry > 0.25 MPa, (dash)
Gdry ~ 0.21 MPa (except the closed left pip point in (a) which has Gdry = 0.118 MPa), (dot)
Gdry ~ 0.16 MPa, and (dash—dot) Gdry ~ 0.11 MPa (except the right pip points in both figures
which have Gdry = 0.54 MPa). (a) The points with pips are significantly removed from their
corresponding theoretical prediction. These discrepancies are for the same reason as the data for
M,,, = 1000: they are at the high value of ¢y = 0.3 and the modulus is underpredicted. The worst
fit point (right pip) occurs for the softest network Gdry = 0.054 MPa. (b) The points with ¢y = 0.3

are a better fit at M,, = 3000 g/mol than for the other two molar masses due to the fact that the
modulus is not significantly underpredicted at this molar mass (Fig. [2.4). As with the other two
molar masses, we note that the model poorly fits the smallest value of Gdry = 0.054 MPa (right pip

point).
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Chapter 3

Differential Formulation from
Mixture Theory

3.1 Introduction

The previous chapter centered on modeling the equilibrium deformation of elastomeric photopoly-
mers by developing a free-energy functional consistent with experimentally observed data. This was
done by using a statistical mechanical model originally developed by Flory [35] which considered
contributions to the motion of individual atoms and molecules. Consideration of the thermodynamic
behavior of individual molecules allowed us to imbed important material design parameters directly
into the model. The key focus of that chapter was the development of a simple “two-component”
free-energy functional in which macromer chains react directly into network chains. This simpli-
fication to the system was shown to capture the qualitative and quantitative equilibrium swelling
behavior of elastomeric photopolymers throughout most of the clinically relevant parameter space.

An equilibrium treatment, however, is insufficient to predict the dynamics of an elastomeric
photopolymer: the time-dependent process of how the system approaches equilibrium. For many
applications, the dynamics are just as important. For example, physicians using a light—adjustable
lens need to know how long it takes the lens to attain its equilibrium shape so that they know when
it is appropriate to “lock in” that shape. As can be expected, minimization of an energy functional
does not allow one to capture transient behavior: the energy achieves the smallest possible value
without consideration of kinetics. In general, it is necessary to write governing differential equations
which can track the reaction—diffusion—deformation behavior in time. On this, we focus this chapter.

Although we focus on a differential formulation for modeling transient behavior, it should be
noted that there is a developing body of work which considers a variational form for transient
processes. In a way similar to energy minimization, Ziegler proposed maximization of a dissipation
functional will yield the same governing equations as transient conservation laws [71]. Baek and

co—workers have applied this idea to the development of swelling in a gel [68,69]. This new body of
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work poses promise in connecting transient conservation laws with thermodynamic principles. As
previously mentioned (Ch. 1), however, it is non—trivial to write the necessary dissipation functionals
required to include reaction. Although we have considered using this theory, we will not discuss it
here.

Instead, we choose to write a differential formulation for modeling the light—-induced shape change
of an elastomeric photopolymer. Motivated by A. Wineman and co—workers, who modelled the
steady—state swelling behavior of a variety of geometrically different gels [594/62}/63], we use a mix-
ture theory model. This model uses conservation principles to write system differential equations
accounting for the movement of mass, momentum, and energy for each species within the system, in
keeping with Newton’s laws and the laws of thermodynamics. The development of the equations of
mixture theory can be found in many different sources (e.g. [47149]). Unfortunately, discrepancies
between the different formulations have resulted in some confusion in the field [46]. This uncer-
tainty stems from the way overall system parameters are defined based on individual constituent
parameters. Barring slight changes in notation, we tend to follow the formulation given in Atkin
and Craine [46]; this is because it has been most widely cited in the literature and shows how the
results obtained connect to those of other authors. We briefly present a derivation of the governing
equations of mixture theory from first principles in Appendix A.

In order to close the system of equations, constitutive equations need to be developed. In
traditional continuum mechanics applications, an appeal is always made to the second law of ther-
modynamics in order to determine permissible constitutive relations. Mixture theory inherits from
traditional continuum mechanics the merits of the second law through the Clausius—Duhem inequal-
ity [49/50]. With this thermodynamic knowledge being incorporated into the constitutive equations,
we can close the underspecified system of equations developed from conservation principles and solve
a variety of problems. In determining the governing equations, it is our goal to be explicit regard-
ing any assumptions made in order to ensure model robustness. We also employ scaling analysis
to make rational choices for approximations. Lastly, we strive to connect the meaning behind the
mathematics to experimentally measurable quantities in order to enable experimentalists to validate
the model and use it for future research. Based on the success of the “two-component” model in
capturing equilibrium swelling behavior seen in the last chapter, we present the governing differential
equations here for this model only, leaving an extension for the “three-component” model to future

work.

3.2 Kinematics

Because mixture theory tracks the important scalar and vector fields for each individual component,

the model now requires a separate reference configuration for each component (Fig. . We take
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Reference Configurations

Spatial Configuration
(swollen gel)

pure macromer bath X

Figure 3.1: The reference states of the network and macromer are defined as the pure component
species. A volume element located at point X y in the network reference configuration 2 is mapped
to a volume element located at « in the spatial configuration ©(¢). This spatial volume element also
contains a volume element of macromer located at X ,, mapped from the macromer reference 2,,.

reference states for the macromer, m, and the network, IV, to be the pure component states of both
prior to mixing. Call the reference state of macromer 2, labeled with points X,, and that for the
network Qy labelled with points X y . Although there are separate reference configurations for each
species, there is only one spatial configuration which all species share. That is, at every point in
time, a differential volume of pure macromer that was at X,, in the macromer reference is then at
x in the spatial configuration (t); likewise, a differential volume of pure network at X y is located

at that same point (Figure [3.1). This gives rise to the mappings:
x; = X7 (X m, t) (3.2.1)

and

;= xN (X, t) (3.2.2)

(the same indexing scheme is used as in Ch. 2: upper—case letters remind us of the reference
configuration, lower—case letters the spatial configuration). It should be mentioned at this point that
because the macromer is a liquid, its reference state is not well defined: the macromer liquid does
not have a definite shape, and any random deformation will produce a new but equivalent reference

state. It should also be noted that such deformations do not change the energy of the macromer.
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For this reason, the mapping x7"* is not particularly useful. In fact, the system deformation can be
described solely in terms of the network deformation gradient:

oY

Fi]e\]](XNvt) - OXN
J

(XN, t). (3.2.3)

Since the macromer deformation gradient is of no particular use, we call the network deformation
gradient the deformation gradient Fj;;; this is in line with the definition of the deformation gradient
used in Chapter 2 (§2.2)).

Although the actual mapping x!" is not particularily useful because it measures deformations of
the liquid, the velocity of the liquid is of importance. The time derivatives of each mapping
and are the species velocity fields. Although both spatial and reference velocity fields can be
defined (§A.2), this work focuses on the spatial quantities: v (x,t) and v} (z,t) defined over Q(t).
It should be noted that the variables v)¥ and F;; are not independent, because they are related
through : knowledge of the time—dependent deformation of network determines the velocity
of the network.

We define the pure component density fields p,,0 and pyng uniform over each reference config-

uration. The corresponding spatial density fields p,,(x,t) and px(x,t) are allowed to vary with

position. We choose to work in terms of the spatial volume fractions of each species (A.2.5):

_ pm (T, 1)

and
on(a,t) = W. (3.2.5)

For two species, the definition of volume fraction requires ¢,,, + ¢ = 1. For this reason, we again
define ¢ = ¢,,, and let oy =1 — ¢, as in Ch. 2.
Using (3.2.4) and (3.2.5)), the spatial density field (A.2.4]) can be written in terms of macromer

volume fraction:

p(x,t) = pm(z,t) + pn (T, ) = (Pmo — pNo)P(T, 1) + po. (3.2.6)

When the two pure component species have different densities, the spatial density field will vary
spatially with macromer volume fraction. In order to enforce incompressibility, we require p =
PNO = Pmo be uniform and constant. As previously mentioned in this has been observed to
good approximation. The barycentric velocity v(x,t) is then the volume fraction weighted

average of the species component velocities:

v(z,t) = ¢p(x, t) v (2, t) + (1 — ¢(x, t)) vy (x, t). (3.2.7)
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Rather than use the component velocities, we instead define the flux of macromer J/™:
T = o (07" =) = p(1— 8) (1" — o) (3:2.8)
and the flux of network J¥
IV = pn (0 —v;) = —pp(1 — @) (V)" —v]). (3.2.9)

The second equality for both equations comes by placing in the expression for v; (3.2.7)) in terms of
component velocities; the reason we write the second equality in (3.2.8]) will become clear when we

determine constitutive laws below. Note that J™ = —JN for a two-component system.

3.3 Conservation Principles

3.3.1 Conservation of Mass
The mass conservation equations for each species are (A.3.8))

Opm 0
ot " om

(pm0i™) =T, (3.3.1)

and

dpN 9 Ny _
ot "+ og PN =T (3:3:2)

with r, the rate of creation of species o through reaction. For macromer converting into network
chains, ry = —rp,. Writing (3.3.1)) in terms of the total derivative D/Dt (A.5.10) and the diffusive
flux of macromer J"(x,t) = p,, (v —v;), we arrive at the equation of conservation of mass in terms

of macromer concentration:
Dp,, ~0J™ .
Dt 8$1 S

(3.3.3)

This relation will be used to solve transient problems in Ch. 6. Although can be solved for
an evolving volume fraction profile ¢ during reaction by including a reaction rate as a function of
volume fraction, we instead choose to focus on cases in which reaction occurs much more rapidly
than diffusion (discussed in . We then specify an extent-of-reaction profile which serves to set
an initial condition for the volume fraction profile.

To compare to the equilibrium solution (Ch. 2), we write mass conservation over the reference

configuration (A.3.7) in terms of network concentration:

det Fy (X n,t) = On(Xn (X nt),t)

(3.3.4)
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With ¢ = 1 — ¢, det F;; = Q relative to the pure network reference (which is dry network) and
6 = O, this equation is the same as that in Ch. 2 (2.3.7). With this equation, the details of the
volume fraction development through time are not specified via a differential equation, making this
equation particularly useful for the equilibrium solutions. In particular, specifying the conversion
parameter 6 at the initial time allows a simple relationship between the volume fraction and
the deformation. This removes a degree of freedom in the energy minimization principle discussed
in

The second independent conservation of mass equation used for both equilibrium and transient
analysis is the incompressibility constraint. This is obtained by summing (3.3.1]) and (3.3.2) together
and introducing the definitions of total spatial density and barycentric velocity :

dp 0 B
T oz, (pv;) = 0. (3.3.5)

Simplified to the incompressible case (p = constant),

8'Ui -
il (3.3.6)

The equation of incompressibility is a constraint on the velocity field. With the definition of v above

(3.2.7), this equation is the same as that used in the stress—diffusion coupling model of Doi [40].

3.3.2 Conservation of Linear Momentum

Under the assumption that reaction has completed before diffusion begins, the equations of conser-

vation of linear momentum for the two species are (A.3.22):

E,U;,(n m,.m m
Pm=5¢ ot + pmV 07 = 035 5+ pmgi = bi (3.37)
and
dv; N, N N
pN—t + NV U =045+ PNG T+ b;. (3.3.8)

Here, of; is the partial stress on species « (such that the total stress o;; = o + Ug), g; is the
acceleration due to gravity and b; is the internal body force per unit volume exerted by the macromer
on the network. In writing these equations, we have required b = —b" = b; to satisfy Newton’s
third law and have assumed that the only external body force is due to gravity.

Using appropriate material parameters for PDMS elastomeric photopolymers, we perform a
scaling analysis on these conservation equations ( As would be expected for a system in

which species slowly diffuse, the inertial terms on the left-hand sides of the equation are O(10719)

relative to the stresses and internal forces in the system. The gravitational forces are also small
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(O(107?)), leaving the following simplified relations:

o —b; =0 (3.3.9)
and
on i+ bi =0, (3.3.10)

i.e., the internal forces acting on each species are balanced by the divergence of each partial stress.

These relations sum to a force free system
Oij,5 = 0 (3311)

as would be expected for a system with no external forces. The reader may then question: how
does the object deform without any application of external forces? It does so through b;. As the
macromer diffuses through the network, it exerts an internal force on the network, causing chains
to deform in a non—uniform pattern. This results in a net warping of the material although no net
force is observed on the system. We now turn to developing expressions for the partial stresses and

diffusive body force in terms of volume fraction, system deformation, and material parameters.

3.4 Constitutive Equations for the Light—Adjustable Lens

We now have a system of differential equations to solve: two scalar mass conservation equations,
(3-3.3) and (3.3.4)), and two vector equations for conservation of linear momentum, (3.3.9)—(3.3.10).

The variable fields that we would like to solve for are

m N m N
Pm, V5 Uy aFiJanj»Uijabi

as functions of position z; and time. Notice that among the list of variables, py is not included
because p,, + pn = p, a specified constant. It should also be noted that v)¥ and F;; are not
indepedent: they are both derivatives of the same mapping x¥ 1) so that F); = o) Fjy (the
overdot represents a time derivative). Even with these simplifications, there are still more variables
than equations, and so we pursue the usual route of specifying constitutive relations. For reasons that
will shortly become apparent, all our constitutive relations will be written in terms of derivatives
of the Helmholtz free energy per unit volume A: the appropriate thermodynamic functional for
incompressible, isothermal systems.

In continuum mechanics—and therefore the subset of mixture theory—the Clausius—Duhem in-
equality is used to postulate constitutive relations that are in keeping with the second law of thermo-

dynamics. For the incompressible, isothermal two-component system of macromer instantaneously
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reacting to network (r,, = 0), the Clausius—Duhem inequality (A.4.6) becomes:

_— = b; (v{"’—va)—i—@—i—z/wiigo, (341)
Dt ’
O given in (A.4.8). The term vuv;; represents the incompressibility constraint on the velocity field

(3.3.6): ® is a Lagrange multiplier as yet to be determined. The relative velocity v — v¥ is

the important dynamic variable that can be related to the flux of macromer J/™ through (3.2.8]).

Although we will introduce J/™ shortly, making use of the relative velocity v]* — va allows the

following development to proceed more symmetrically.

Following a method taking advantage of the two—component nature of the system, and introduced

m N
ij> Oijs

affecting the governing equations (3.3.9) and (3.3.10). With this simplification and writing v; in
terms of the species velocities (3.2.7)), (3.4.1) becomes

by Green and Naghdi [45], © can be incorporated into the definitions of o and b; without

DA

E - (O'ZL - ’L/)d)(szj)i):; — (O’i}l — (1 — (25)5”) U{Yj — (bz — 1/)¢7Z) (U;n — UZN) S 0. (342)

The free energy of the system only depends upon the thermodynamic system variables: namely, ¢

(or p;,) and F;;.! Placing a free energy of the functional form
A= Ao, Fyy) (3.4.3)

into (3.4.2)), we can expand out the material derivative in terms of ¢ and F;; multiplied by the
corresponding partial derivatives of A. However, it is more illustrative to expand out the total

derivative DA/Dt using the definition of the barycentric velocity (3.2.7)):

DA 9A C9A m Ny DA N
ﬁ = a + UlA,z = E + v; Aﬂ + (ZSA,z (Ui —; ) - Dt + ¢A,1 (Ui - ) (344)
where
DA 94
Dt ot oA, (3:4.5)

can be seen as the rate of change of the free energy following along a particular network strand.

Placing this relationship and the variable dependence of the free energy (3.4.3) allows us to write

(3:4.4) as:
DA 9ADWN¢  9A DNF,

D (pm — N
bt o6 br ‘o, pr T4 -l (3.4.6)

7 K2

1For a non-isothermal case, temperature would need to be included in this list as well.



48
The system kinematics (3.2.1)) yields:

DWFE,;

—5 = = G = v Fy . (3.4.7)

We can define the partial total derivative with respect to macromer as

D¢ 9 m
Dr — g TU O (3.4.8)

the two partial total derivatives are related by DN)¢/Dt = D™ ¢ /Dt — ¢ (v — v)N). Using

7 7

conservation of mass of macromer (3.3.3) and the kinematics (3.4.7)) expands (3.4.6)):

DA 0A

A .
Dt~ 99 Fygvly + oA (v —olY). (3.4.9)

[ ¢ - (;571(111- U, )] + OF,,

This is placed back into the Clausius-Duhem inequality (3.4.2)):

0A
( wd)éw +¢8¢ Zj> (ij—ﬂi(l—@% _%FjJ> 1)2;.
0A

<b¢¢¢l oA+ 5

¢>(vaN) < 0. (3.4.10)

3.4.1 Static and Dynamic Contributions

Following the derivation in Rajagopal and Wineman [59}/84], we expect each of the stress tensors
and the internal body force to consist of two parts: a “dynamic” part and a “static” part. The static
part of each partial stress tensor is an equilibrium stress due only to the current deformation and
can be represented in terms of the the Helmholtz free-energy functional. The dynamic portion of a
stress tensor exists due to the deformation rate and is identically zero at equilibrium. We denote

the static variables with “~” and the dynamic variables with “~7:

o5 =05+, (3.4.11)
and
b = b; + b;. (3.4.12)

Once these relations are placed into (3.4.10)), the constitutive laws for the equilibrium variables can be
found by noting that the equilibrium stresses and force should not contribute to entropy generation
for any arbitrary deformation rates. The resulting expressions for the equilibrium stresses are the

same as those obtained in the work of Rajagopal and Wineman [59]:

0A

G = Yy — ¢%5ij (3.4.13)
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and

. 0A
0{? =P(1— )i + oF.,

Fjr. (3.4.14)
The expression for the equilibrium internal body force can also be written in the same form as that
done by Rajagopal and Wineman by expanding out the free-energy gradient. It is more illustrative,

however, to leave it in a slightly different form congruent with what we have done above:

. 0A
by = Yo+ pA; — %Qh (3.4.15)

Inserting ((3.4.13)—(3.4.15)) into (3.4.10)), the entropy inequality now only has contributions due to

the dynamic portions:

g + e ol, +b; (o — o) > 0. (3.4.16)

Each of these terms represents a work done which acts only to increase system entropy. For purely
reversible processes, the dynamic terms would all be equivalently zero; for an irreversible process, the
entropy must increase. Following Hong et al. [72], we assume that the network can instantaneously
relax to its equilibrium configuration at every moment of diffusion; this is essentially ignoring any
viscoelastic effect in the network chains. As such, there should be no dynamic contribution to the
network stress: Ef}( = 0. The macromer chains, on the other hand, may contribute work as they
diffuse by network chains. We consider two contributions: one due to the internal viscosity of the
macromer chains themselves (accounted for in 7}) and the other due to the friction of macromer
chains on network strands as they diffuse (accounted for in EZ) Both of these processes must be
chosen such that system entropy increases .

To begin specifying constitutive relationships for these two variables, material frame indifference
dictates that &f}[ (¢, Fyy) can only be a function of the symmetric tensor F; ;Fj; this forces
the free-energy functional A to depend only upon the invariants of F; ;. In addition, 65}7 itself must be
symmetric because it is a function of a symmetric tensor. Since there are no dynamic contributions
to the network stress, af}[ is then itself symmetric. Conservation of angular momentum for a two—
component system [46]

Om—0L =0k —on =0 (3.4.17)

then dictates that o; also be a symmetric tensor.

In order to satisfy material objectivity, the constitutive equations for the dynamic variables 5{;’

and E can only depend upon objective quantities. By taking our system as isotropic and using linear

Onsager relationships, we can write expressions for the dynamic macromer stress as
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Here, D} = v} is the symmetric rate of deformation tensor and  and y are constitutive parameters
describing the dissipative nature of the macromer fluid. To satisfy the Clausius—-Duhem inequality
for any general deformation, -y, u > 0. In essence, we have modeled the dissipative character
of the macromer as a Newtonian fluid. From several shear experiments on pure macromer (,
this holds true at small shear rates appropriate to those experienced in application.

We specify a constitutive law for the dynamic internal stress that is linearly proportional to the

relative velocity as macromer moves by network:
T 1 m N
b; = Eqb(l — ) (v — ;). (3.4.19)

The proportionality constant is the inverse of the diffusivity of a macromer molecule in network,

D, by the Stokes—Einstein relation. We include the prefactor ¢(1 — ¢) for reasons that will become
apparent below. Choosing (3.4.19)) implies

bi(vf* — oY) = %(b(l — @) (W™ — M) (v — o). (3.4.20)

This insures positive entropy production as long as D > 0 (3.4.16[). Besides the fact that we assume

our stresses are symmetric, the chosen dynamic constitutive equations (3.4.18]) and (3.4.19)) are the

same as those of [59], aside from the factor ¢(1 — ¢) in (3.4.19).

A scaling analysis indicates that we may ignore the dynamic macromer stress terms relative
to the equilibrium terms (§B.5.2)). This is essentially because of the small viscosity of macromer
(O(1072)) and small deformation rate: the viscous terms scale as O(107!2) times smaller than the

elastic stretching terms. This produces final constitutive relations for the partial stresses:

0A
oij = Y00 = 0550 (3.4.21)
0A
ol = (1 - ¢)di; + @Fjw (3.4.22)

A scaling analysis of the internal body force indicates that the equilibrium and dynamic portion

scale similarily; we therefore find a constitutive law for the internal body force of

0A 1
b =Y+ oA — b +

5 Jrm. (3.4.23)

pD"

Here, we have replaced the relative velocity in the dynamic internal body force (3.4.19) with the
flux of macromer ([3.2.8]). Placing the constitutive laws (3.4.21) and (3.4.23) into conservation of
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momentum of macromer (3.3.9)) imparts meaning to the Lagrange multiplier :
0A 1
—A—-—| =—=J" 3.4.24
olo-a-5] ~ 7 (3424
As with the other variables, we break 1 into a dynamic and a static part:

Y=+ (3.4.25)
Placing this relation into (3.4.27) and allowing

p=A+ 5 (3.4.26)

yields an effective constitutive relationship for the flux of macromer
J = pD ;. (3.4.27)

The static part of ¢ does not contribute to the flux by definition; the dynamic part provides a
potential for the flux exactly like the chemical potential in Fick’s law. Here, however, 1} is not a
specified functional but rather a Lagrange multiplier that has to be determined through solution of
the system of equations and the incompressibility constraint. At equilibrium, the material should
not deform: J/™ = 0 and 1Z must be independent of position by . This is in keeping with
the derivation performed in Ch. 2 (§2.4)): at equilibrium, there is a position-independent Lagrange
multiplier —p (not to be confused with pressure) which insures the final and initial system volumes
are equivalent. To distinguish between the equilibrium and transient cases through the rest of this
work, we use —p to represent the Lagrange multipler corresponding to keeping the total volume fixed
at equilibrium (Ch. 2 (2.4.2))) and ¥ to denote the transient, position-dependent Lagrange multiplier

associated with the differential expression of incompressibility: a divergence-free velocity field (Ch. 3

(3-3.6)).

3.4.2 Analysis of Constitutive Relations

Placing the expressions for ¢ (3.4.25)—(3.4.26]) into the equation for the partial stresses (3.4.21))—
(13.4.22)) and summing them together yields a relationship for the total stress:

0A

045 = {/;5” — H(Sij + WJ

F;. (3.4.28)
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Here, we have defined the osmotic pressure

(¢) = — [A + (1 — ¢)gﬂ =—[lno+1-9¢+x(1-9¢)%, (3.4.29)

the second equality arising by using the free-energy developed in Ch. 2 , and yielding the
same expression for the osmotic pressure derived there . Note the stress obtained by this
differential method is equivalent to the result for energy minimization presented in Ch. 2
at equilibrium: the Lagrange multiplier 1; reduces to —p.

From our stress balance and using the chosen constitutive law (3.4.27)) to eliminate the
unknown @Z provides physical insight:

Dicéjim =1II,; — (&FN> } . (3.4.30)

As discussed in Ch. 2, we can consider our system to have two opposing forces per unit volume: an
osmotic force driving macromer to mix with network strands and an elastic force as those network
strands stretch opposing further mixing of macromer. Both are experienced internally at every
point and respectively represent the two terms on the right—hand side of . At equilibrium,
thermodynamics tells us that these two terms exactly balance each other (§2.2.2)). In this case,
JI" = 0 and there is no diffusion of macromer. If the osmotic driving force is greater than the
elastic force, macromer will diffuse in (J™ > 0): there is more drive for macromer to enter the
network than the stretching resistance. Analogously, if the elastic force is greater than the osmotic
force, macromer will diffuse out (J/™ < 0): the chains are stretched beyond equilibrium and so will
spontaneously expel macromer. The difference between these two driving forces at any point in time
gives complete information about the diffusion of macromer at that point in time. In this way, we
can capture the transient behavior of our system even after scaling dynamic stress terms out.

We now expand out the elastic term in in order to further eludicate the significance of
the expressions developed. Written in terms of F}; = Qg 1 3FZ'J, the deformation gradient relative

to the initially swollen system, the stretching contribution to the stress is given as:

0A
OF;;

1 *
FiyFy =5

FjJ = 6(1 - ¢)1/392/3 Q*Q/g %

The prefactor to the first term is the dimensionless shear modulus of the material, obtained from

Ch. 2 (2-3.22):

G(4:0) = W = 0?/3(1 — ¢)V/3. (3.4.32)

We may view (3.4.31)) in a different light by breaking the deformation gradient into two parts: a

purely isotropic part due to changes in volume, and a conforming part, F; , so that F5; = Q*l/ 3Fif].
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We furthermore define

efj = F,L-CJ jCJ — 51‘] (3433)

as the conforming (non—volumetric) strain tensor (not to be confused with traditional notation for

the Eulerian strain tensor). The stretching contribution (3.4.31)) can be written compactly as:

0A

. 1
o, Fis = G(é0)ef; + P (1= ) 20i; — Se(1 - ¢)dij, (3.4.34)

that is, the stretching contribution has been broken into an isotropic part and a conforming part.

Placing this relation in the stress (3.4.28)):
~ 1 .
o = Wi + (—H + 0?31 — ¢)V/3 — el - ¢)> bij + 0%;, (3.4.35)
with of; = G(qﬁ;@)efj representing the linear relationship between the anisotropic stress and the
conforming strain. We can use the expression for the chemical potential of an isotropically swollen

sample after cure (2.3.18]) to simplify the above expression to:
Oij = J&j + uéij + O'icj. (3436)

Another way this expression can be understood is by using the constitutive law developed for the

flux (3.4.27)) along with the stress balance (3.3.11)) to eliminate 7:2;:
Ji" = —pDop,i — pDooy; ;. (3.4.37)

When a deformation is isotropic, ef; = 0 (3.4.33) and of; = 0. For this case, the flux of macromer
becomes directly proportional to the negative chemical potential gradient: Fick’s law. For a general
deformation, however, our constitutive model indicates that there is an effect of anisotropic stress
oj; on the flux of macromer. This is to be expected since the chain stretching effects energetically
repel macromer.

Other relationships aside from Fick’s law have also been used in modeling diffusions in gels.
For example, Doi and co—workers use Darcy’s law in their stress—diffusion coupling model [40].
Interestingly, if the parameter {/)v is the hydrostatic pressure, such as in a case in which imposed
pressure dominates the flow, we recover Darcy’s law. In our system, however, there is no imposed
external pressure: the flow is all driven through internal chemical potential gradients. For this
reason, we use the developed constitutive law for the remainder of this thesis. Values of
D are obtained by modifying data in [1] using . The details of this calculation are done
in Appendix §B-4} the values of diffusivity as a function of molar mass of macromer are given in

Table
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3.5 Conclusion

The stress-balance equation ({3.4.30)) and the mass-balance equation ([3.3.3]), together with the consti-

tutive laws (3.4.28) and (3.4.37)), can now be solved to determine the transient diffusion-deformation

behavior of an elastomeric photopolymer. We will illustrate the use of these equations to solve sam-
ple problems in Ch. 4 and 6. Specifically in Ch. 4, we further examine the connection between the
equations developed here and those developed by the equilibrium approach of Ch. 2. In addition, we
illustrate that a simplification is possible to the flux constitutive law for clinically relevant

material parameters.
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Chapter 4

Two-Cell Models

4.1 Introduction

The previous two chapters have developed a theory from first principles to predict the reaction—
diffusion—deformation behavior of elastomeric photopolymers. Although we have also shown that
this theory correctly predicts macroscopic swelling behavior (Ch. 2), we wish to determine the
relative importance of the material parameters introduced in those sections. In this chapter, we set
out to illustrate the salient features—both equilibrium and transient—of our model. We do this by
considering a “toy problem”. With eventual three—dimensional, finite—element implementation in
mind, we consider the transfer between two small-volume elements over which material properties
can be assumed constant. The equilibrium analysis of this case (§4.2)) allows us to determine a
relevant parameter space, as well as a basic understanding of how material parameters affect the
solution. The transient analysis of the “two-cell model” ( provides insight into the constitutive
law developed for the flux in Ch. 3 (3.4.37)). We will show that the full form developed in Ch. 3
can be well approximated by a gradient in chemical potential, therefore neglecting anisotropic stress
contributions. This will simplify the governing equations necessary to solve a fully three-dimensional
problem (Ch. 6).

In these studies, we consider two small-volume elements, say two adjacent elements taken at
random from a three-dimensional mesh. Each of these “cells” is subjected to a different amount of
irradiation and therefore experiences a different extent of reaction. Material then diffuses into the
cell that has the larger extent of reaction—and therefore less macromer after reaction—until the two
cells are at equilibrium. For the purposes of determining important material parameters, we consider
the most extreme case: one cell experiences extent of reaction £ while the other cell is completely
unreacted. We will use the “two-component model” developed in Ch. 2 to model the reaction as
instantaneous, with macromer molecules transforming directly into network. We consider first the

equilibrium case and then move on to the transient case.
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4.2 Equilibrium

In Ch. 2, we developed a free-energy functional which consisted of an ideal mixing term
and two corrections due to non—idealities: 1) x, representing repulsive forces between macromer
and network, and 2) ¢, the elastic stretching of network chains. In order to determine the relative
importance of these material parameters on the final solution, we compare the result of energy
minimization for the two cells to the ideal mixing solution, which can be specified a priori. We
discussed in Ch. 2 that the osmotic forces will be larger than the elastic stretching forces for materials
swollen to a volume fraction ¢¢ < ¢max (§2.2.3). We are now in a position to quantify this statement.
For this reason, we present two equilibrium models: one in which elastic stretching effects are ignored
by allowing the cells to move past each other (the “slip” case) and one which includes the elastic

coupling between cells (the “conforming” case).

4.2.1 The Slip Case

Consider first the “slip” case (Fig. . Let the cells be chemically identical and initally swollen to
the same swelling ratio Qo with macromer. We assume that the cells are in contact with each other
so that macromer can diffuse across the interface between them freely (Fig. ), but there is no
mechanical coupling between them (the interface is stress free). This simplifies our starting analysis
and allows the cells to freely expand or contract isotropically and independently of each other (slip
case). We subject Cell 1 to a light source which uniformly converts a fraction £ of the macromer
inside the cell into network. The volume fraction of macromer in this cell immediately after reaction
is:

P1(t = 0) = do(1 —¢). (4.2.1)

The volume fraction in Cell 2 remains unchanged (¢2(t = 0) = ¢g). Since the chemical potential
(2.3.18)) is greater in Cell 2, there is a net flux of macromer from Cell 2 into Cell 1. This causes Cell
2 to shrink and Cell 1 to expand (Fig. [£.1pb).

There are two fully equivalent ways to describe the equilibrium state of the system. Thermo-
dynamically, the chemical potential of macromer is the same in Cells 1 and 2 at equilibrium (this
constraint is obtained by energy minimization ( under the system constraints). Mechanically,
there is no gradient in the stress at equilibrium (Ch. 3). The equivalence of these two perspectives
is relatively easy to see in this simple example because the deformation and stress are isotropic
(Fy = Q*l/séiJ) in the slip case. From in Ch. 3, we see that the stress can be written as
04 = ({/; + p)dij because of; = 0 for an isotropic deformation. Additionally, {/; must be constant at
equilibrium so that there is no flux of material, J/ = 0 (see Ch. 3, (3.4.37)). The requirement that
0ij,; =0 then leads to

p1 = pa, (4.2.2)
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Figure 4.1: Consider the case of an elastomeric photopolymer slab cut into two cells (a). These
cells are in contact so that they are allowed to exchange macromer but not required to conform to
each other (that is, they can slip past each other on the adjoining edge). The first cell is irradiated
with light so that the material inside reacts uniformly with extent of reaction £ whereas the second
cell is left unreacted. Since the chemical potential in Cell 1 is smaller than that of Cell 2 due to the
reaction, material diffuses from Cell 2 into Cell 1, causing Cell 1 to swell and Cell 2 to shrink (b).
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e, being the chemical potential in cell o. This is, of course, the thermodynamic statement of the
problem. Using the expression for the chemical potential derived from the two-component model
, we can solve for the equilibrium distribution, Q1 (t — o0) and Q2(t — o0), subject
to the constraint of conversation of total system volume.

Consider the ideal mixing solution as a first approximation: the equilibrium volume fraction of
macromer is taken to be the same in both cells. This is expected to be a good approximation for
small € and small x because the free energy for those cases approaches the ideal mixing free
energy. The final value of volume fraction in both cells will then be an average of the amounts in
each cell right after reaction: ¢ = 1(¢1(t = 0) + ¢2(t = 0)) = ¢o(1 — 2£). Using this relation in
, we can write the fractional change in volume ¢ = (Q — Qo)/Qo = @* — 1 as a function of

extent of reaction &:

. Q- Qo %1?205
%q(&) = 00 ] PR (4.2.3)

The plus sign in the above equation corresponds to Cell 1, which will experience an increase in
swelling, whereas the minus sign corresponds to Cell 2, which will deswell by the same amount in
order to obey the system conservation of mass.

The actual, energy—minimizing solution will provide a fractional change in volume ¢(&), which is
less than ¢;q. This is because of non-idealities included in the free-energy expression : the
stretching of network chains (scaled as €) and the enthalpy of mixing (scaled as x). We define the

percent difference between the actual and ideal fractional change in volume by

GG} e

4id, max
with gjq max = ®o /(2 — ¢p) being the maximum fractional volume change for the ideal case (the
maximum fractional volume change always occurs at & = 1 (see (4.2.3)). We expect that § will
increase as the non—ideal contributions to the free energy become more important (that is as x and
€ increase). Fig. shows the deviation from ideal behavior, §(¢), as a function of experimentally
measurable parameters in Table The bold lines can be used to compare between figures and
represent the data set M, = 1000 g/mol, Gdry = 0.18 MPa, and ¢y = 0.2. As Gdry increases
(e increases), the stretching contribution to the free energy becomes larger and the deviation from
ideal mixing behavior becomes larger (Fig. 4.2h). Increasing the macromer molar mass is shown to
also increase the deviation (Fig. ) Note that M, influences both x and € non-idealities in the
stretching free energy: increasing the repeat units in the macromer decreases the repulsion with the
network (decreases x) but also decreases the osmotic modulus (increases €). The non-idealities re-
sulting from increasing € are seen to be more important than those of x through increasing deviations

with increasing M,,. This implies that we cannot decrease non—idealities from mixing by simply
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increasing macromer chain length. Finally, increasing ¢¢ means that there is more material available
for redistribution, allowing for larger deformations and therefore larger deviations (Fig. [4.2c). In
fact, the initial amount of swelling will be shown below to solely determine the degree of shape
change possible in elastomeric photopolymers.

Because deviations increase for increasing Gdryv M,,, and ¢g, we can identify a particular set of
experimental parameters as yielding the maximum possible deviation. For the parameter sets shown
in Table this parameter set is Gdry = 0.28 MPa, M,,, = 3000 g/mol, and ¢g = 0.3. We refer to
this parameter set as the “high extreme”. Likewise, the minimum deviations will be at the lowest
possible choices of these parameters: Gdry = 0.10 MPa, M,, = 500 g/mol, and ¢g = 0.1, the “low
extreme”. In Fig. we show these two extreme parameter sets alongside the “average” parameter
set Gdry = 0.18 MPa, M,, = 1000 g/mol, and ¢y = 0.2, the same bold curve shown in each pane of
Fig. We note that all deviations fall below about 6% for the slip case (Fig.[4.3h), indicating that
an ideal mixing approximation is good for all relevant parameter choices. As a point of illustration,
however, we include the results for the conforming case alongside the slip case (Fig. , details of
calculations shown below). The errors are nearly a factor of three times larger than in the slip case,
indicating that the coupling between cells is important in determining the final equilibrium shape.
The slip case, however, has provided an illustration of the capability of reaction to induce shape

change, as well as illustrated the effects of non—idealities on the final shape change.

4.2.2 The Conforming Case

We now consider the case in which the two small volume cells are forced to deform together because
they share a conforming boundary (conforming case). In keeping with our use of tetrahedra for
meshing in Ch. 5, we choose the two cells to be two regular tetrahedra (side length a) attached
along the XY plane (Figure . As above, we assume the cells are chemically identical and
initally swollen to the same swelling ratio QJo; we take the initially swollen system as the reference
configuration (Fig. [4.4h). Because of symmetry, it is more convenient to work in terms of polar
coordinates: R, ®, and Z in the reference configuration, and r, ¢, and z in the spatial configuration.

For this problem, the deformation is axisymmetric (Fig. ): diffusion can occur only along
the Z—axis so that Cell 1 lengthens by a factor A\;(t) along the Z—axis and Cell 2 shrinks a factor
A2(t) along the Z—axis. Because the two tetrahedra are attached, however, they must also stretch
(or contract) together in the plane. We call the stretch factor associated with the coupling between
cells B(t): this is the key factor differentiating the “conforming” case from the “slip” case. The
spatial location of points in Cell a as a function of the reference positions can written in cylindrical

coordinates as (see Figure [1.4p):
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Figure 4.2: Deviations from ideal mixing results for the two-cell slip case. The deviations are shown
as a function of the extent of reaction in the first cell { and as functions of material parameters: (a)
Gary (at fixed M,, and ¢g); (b) M,, (at fixed Gry and ¢0), and (c) ¢o (at fixed M,, and Gdry)'
For comparison, the bold curve is the same in all three figures. (a) As the host network becomes
more stiff (Gdry—nonfdimensionally, e—increasing), non-idealities due to chain stretching become
more significant. (b) Increasing the macromer chain length has two opposing effects (Table [B.2)):
1) a decrease in x as the macromer has more repeat units causes an increase in solubility and
2) an increase in € due to a corresponding decrease in the osmotic modulus . Observing
that the non—idealities are larger as M, increases indictates that the latter contribution dominates:
increasing M,, increases the non—idealities. (c) As the amount of material available to redistribute
increases (¢g increasing), there are also larger deviations from ideal mixing. Note that for the
material parameter choices shown, no deviation is greater than 2%.
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Figure 4.3: Deviations from ideal mixing for the two cells studies as functions of the extent of
reaction, &, in Cell 1 (Cell 2 unreacted) for both (a) the slip case and (b) the conforming case. The
parameter sets are chosen to show the extreme possible deviations: “high extreme” refers to the
parameter set Gdry = 0.28 MPa, M,, = 3000 g/mol, and ¢y = 0.3 while “low extreme” refers to
the parameter set Gdry = 0.1 MPa, M, = 500 g/mol, and ¢y = 0.1. Also shown is the “average”
parameter set G ., = 0.18 MPa, M, = 1000 g/mol, and ¢y = 0.2, the same bold curve as in

r
Fig. and Fig. Although the errors in the slip case are less than 6%, forcing the cells to
deform together increases the error by nearly a factor of three.

2(t) = A Z. (4.2.5)

At 0 0
F,=| 0 Bt 0 . (4.2.6)
0 0 X2)

The determinant of the deformation gradient is related to the volume swelling ratio @7, and volume

fraction ¢, by (see (2.3.4)):

0*
detF’;:52AazQ;=1 a¢ :
- Yo

We now proceed to determine the equilibrium deformation (t — oo) through energy minimization.

The free-energy density in Cell o can be expressed as (2.3.12)):

(4.2.7)

Aa((baa)\ouﬁ) = ¢o¢ 1n¢a +X¢a(1 - ¢a)
%6(1 —0u) QP N 8- Qo -] (428)

The energy to minimize is the sum of free energies of the two cells modified by a Lagrange multiplier
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Figure 4.4: Now the two cells, chosen to be regular tetrahedra, are required to conform along
their common boundary in the XY plane (a). We take the reference configuration to be the system
initially swollen to swelling ratio Qp. Due to symmetry about the Z axis, polar coordinates are
used. As in the slip case, Cell 1 is assumed to react to extent of reaction £ whereas Cell 2 remains
unreacted. We therefore expect Cell 1 to expand and Cell 2 to contract (b). We measure the
lengthening of Cell 1 along the Z—axis with the factor A\;(¢), and the corresponding shrinkage in
Cell 2 with the factor Az(t). Because the cells are coupled together, the deformation cannot occur
isotropically: we assume that the cells expand (or contract) axisymmetrically by a factor 8(¢) on
the adjoining plane.
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p to enforce conservation of volume (2.4.5)):

F = Ai(¢1,M1,08)Q7 + Aa(d2, X2, B)Q5 — p(QF + Q5 — 2). (4.2.9)

We take the independent variables for the minimization to be Q7, @3, 8: ¢, and A, can be written
as functions of @} and f through conservation of mass (4.2.7). Minimization of (4.2.9) in terms of

its independent variables yields:

- J0AL 061 0A 0N ] 0A 08y 0A Ny ]
oF = |+ @10+ 0155 gy | i+ [ 350G+ 5 ko

L [0AL 0N 0A . [0A3 0N 0A, B
+ |:Q1 <(r“))\166 + 85) + Q2 <(9>\285 + (35>:| 5,8 =0. (4.2.10)

The equations that must be satisfied for arbitrary variations are then

«0A1 091 LO0A1 O\
A @G aar TN g
0Ay 0o 0Ag 0o

A * *
2900, 005 " P on, 00

—p=0 (4.2.11)

L (0A 0N O0A
@i (%85 * Gﬂ)

L (0A20N  9A2\
+Q; (8&66 + 86) = 0. (4.2.12)

Using the free energy expression (4.2.8]) and conservation of mass (4.2.7)), the derivatives can be

evaluated and the governing equations can be written succinctly as:

conf __  conf

H1 Ha
T1+1=0 (4.2.13)

(the actual expressions for ¢°"/ and 7, obtained through the minimization are given below). The
first equation parallels equilibrium with respect to macromer transport, as seen in the slip case
above. However, the expression for the effective chemical potential here, o™/, differs from the
isotropic result, , due to the anisotropic deformation within the cells. We use u°"f to

denote the effective chemical potential in the conforming case:

,U/g;mf(¢om Aoc) = ,uoc((ba) + GO&(¢6¥) (A§/3 - 1) : (4214)

Here, we use the definition of the dimensionless shear modulus G developed in Ch. 3 (3.4.32) and

define A, = A,/B as the ratio of each element’s axial stretch to its radial stretch. The second
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governing equation (4.2.13) represents a balance of internal tensile stresses acting at r = fa/V/3.
Since there are no external forces, the force one cell exerts has to be equal and opposite the force

exerted by the second cell through Newton’s 3rd Law. The expression for this tensile stress is:
Ta = G(¢a) A (B2 = A2). (4.2.15)

Note that the tensile stress is in the positive r—direction when there is more radial stretch than axial
stretch (8 > A,) and that the tensile stress is negative when there is more axial stretch than radial
stretch (8 < Ao). Based on the assumed deformation (Fig. [4.4), we expect the tensile strain from
the first cell, 71, to be negative and that from the second cell, 75, to be positive.

Before we solve these equations, we show equality of derivation using the differential approach.

Under the differential approach of Ch. 3, the conforming portion of the deformation gradient is:

A0 0
c 1 £ —
: 0 A
The conforming stress tensor is then (3.4)):
Go (A= 1) 0 0
o = 0 G (A;2/3 - 1) 0 . (4.2.17)
0 0 Ga (Aﬁ/ - 1)

In this case, of; # 0 because the deformation occurs anisotropically. Using the expression for the

stress (3.4.36)), we note that:

0% = 0y = —p+ o + G (A - 1)

0% = —p+ o + Ga (A§/3 - 1) (4.2.18)

and that there is no shear stress in cylindrical coordinates. Because there are no external stresses

along the axis, 02, = 0 for both cells. This leads to:
11+ G (A;*/?’ . 1) — D= s+ G (A;*/3 - 1) , (4.2.19)

the second equality arising because p is independent of position (§3.4). Noting the definition of
the effective chemical potential (4.2.14]), we arrive at the first of our governing equations (4.2.13)):
equality of chemical potential.

To derive the second governing equation, we consider the radial stresses op.. Although we know
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that there is no external radial force, there are internal radial forces generated as the two cells deform
together. For each cell, these forces act radially at r = Ba/+/3 and must be equal and opposite in

order for there to be no net force. In terms of the stresses o2, each force will be ¢%.A, where A,

Tr?
represents the surface area on which the stress acts, proportional to SA,. The internal force balance

then becomes:

oL MB o2 NB=0. (4.2.20)

Using the expression for conforming chemical potential (4.2.14) and the radial stress (4.2.18)), this

becomes:
[—p + st 4 G (A;2/3 - Ai‘“ﬂ AB+ [—p + s 4 Gy (A;2/3 —AY 3)} Ao =0. (4.2.21)

With ([#.2.19):
GIAY? (ATY = AL) B+ Gahy® (A7 — Az) A8 =0 (4.2.22)

reduces to 71 + 7 = 0 using the definition of 7, . Having shown the equivalence of the energy
minimization and continuum mechanics approach generally as well as for these two toy examples,
we will proceed in the rest of this thesis to use both methods interchangably.

We again take the ideal mixing solution as a first approximation to the solution of .
Defining §(€) in the same way as , we can compare the errors in this approximation between
the slip and conforming cases. Fig. [f.5]illustrates the errors generated for the conforming case using
the same parameter sets as the slip case (Fig. . We obtain the same qualitative behavior as
the slip case: deviations from ideal mixing increase with increasing (a) Gdry7 (b) M,,, and (c)
¢o. However, the magnitude of the deviations is roughly three times larger for all parameter sets,
indicating that there is a significant quantitative difference when the cells exert a force on each other.
For example, Fig. indicates that the largest magnitude of the deviations for the “high extreme”
parameter set is about 15%, whereas it is about 6% for the slip case. Even so, most parameter sets
for the conforming case still produce less than 5% deviation (Fig. 4.5). Data for the axial stretch 3
is not presented, as all choices of parameter sets in Table result in 8 &~ 1 with variations of less
than 2%. This indicates that the cells preferentially deform solely along the principle axis with the
radial aspect remaining fixed in order to avoid creation of in—plane stresses. In Ch. 5, we will see
how the forced generation of in—plane stresses in a constrained beam will cause the beam to bend
to relieve the stresses.

Because certain parameter choices for real systems predict significant departures from ideal mix-
ing , it becomes important to determine when an ideal mixing result, which is more easily
obtained, can be used in place of the full detailed model. For example, consider a system that is

held fixed at constant ¢g, say ¢o = 0.3. At this particular value of ¢g, we explore the parameter
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Figure 4.5: Deviations from ideal mixing results for the two-cell conforming case. The deviations
are shown as a function of the extent of reaction in the first cell £ and as functions of material
parameters: (a) Gdry (at fixed M, and ¢y); (b) M, (at fixed Gqry and ¢0); and (c) ¢g (at fixed
M,, and Gdry)' Just as in the slip case, the deviations from ideal mixing increase with increasing
Gdry’ M,,, and ¢y. Comparison with Fig. illustrates that the errors are roughly three times
larger when the cells deform together.
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space of € and x values, examining the deviations from ideal mixing for each pair (Fig. ) There
are three regions in the parameter space: two are separated by a contour line drawn for ¢g = 0.3
and the last is the shaded region. At smaller values of ¢ and yx, the deviations from ideal mixing
are small: Region I represents the region of possible choices of x and € for ¢y = 0.3 in which the
deviations from ideal mixing will be small (taken as § < 5%). Recall from Ch. 2 that there are also
limits of parameter pairs (e, ) that will yield thermodynamically stable initially-swollen systems
(Fig. . These inaccessible parameter pairs are represented by the shaded region (Region III)
to the right of the contour line and above the physical limit line in Fig. [f.6h. To the right of the
contour line and below the physical limit line (Region II), larger values of € and x are physically
admissable but yield deviations from ideal mixing larger than 5%. Thus, any choice of parameters
in Region I (to the left of the contour line) can be modelled by an ideal mixing approximation with
minimal error for ¢g = 0.3.

We now expand the ideas above to include other choices of ¢ (Fig. ) At any given contour-
line value of ¢, we can imagine a plot similar to (Fig. ): there is a region below and to the left
of the contour line in which ideal mixing will yield deviations of less than 5% (smaller values of x
and €). The shading to the right of each contour line and above the physical limit line represents
a region in which the parameters are not physically admissiable for that particular value of ¢g. To
the right and below the shaded region, the choices of x and e are admissable but yield deviations
from ideal mixing larger than 5%. Also included in the figure are three dotted lines, each one at a
particular value of M, with points associated with values of 0.1 MPa < Gdry < 0.28 MPa. The
dashed line represents M, = 500 g/mol, the dotted line M,, = 1000 g/mol, and the dash-dot line
M., = 3000 g/mol. These lines allow ease of comparison of Fig. with PDMS systems.

Because we are examining an extreme case in which two nearby elements experience large gradi-
ents in concentration, the actual deviations from ideal mixing for any real system can be guaranteed
to be smaller than the deviations predicted by this conforming two-cell model. Therefore, Fig.
can be used to determine whether an ideal mixing model is appropriate to model a given system
based upon the material parameters. As we shall see in the next section and subsequent chapters,
ideal mixing allows for simplifications in the governing equations for the transient model in addition
to the equilibrium simplification already discussed. Based on Fig. then, ideal mixing will be a
good approximation for ¢y < 0.3 for smaller molar mass of macromer (M, = 500 or 1000 g/mol);
most light—adjustable lenses operate in this parameter range. When dealing with systems at larger
molar mass (M, = 3000 g/mol), the deviations from ideal mixing are significantly larger, especially

for ¢g = 0.3.
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Figure 4.6: Parameter space illustrating where the deviations from an ideal mixing approximation
are negligible (taken as & < 5%) for the conforming case. (a) At any given choice of ¢y (here
specifically illustrated with ¢y = 0.3), there are three regions. For smaller choices of ¢ and x
(Region I, below the contour line), deviations from ideal mixing are less than 5%: ideal mixing is
a good approximation. The shaded region to the right of the contour line and above the physical
limit line (Region III) represents inaccessible values of y and € due to the thermodynamics of the
initially swollen system (recall Fig. from Ch. 2). To the right of the contour line and below the
physical limit line (Region II), the values of € and x are accessible but the deviations from ideal
mixing are greater than 5%. We therefore look below and to the right of a contour line at any value
of ¢p (b) in order to determine what parameter sets yield good approximations for ideal mixing.
For purposes of comparison to experimental data |1], dashed lines show parameter sets for PDMS
systems at constant values of M,,, Gdry varying from 0.1 to 0.28 MPa (dashed: M,, = 500 g/mol;
dotted: M, = 1000 g/mol; dash-dot: M,,, = 3000 g/mol). It can be seen that small macromer molar
masses (500 g/mol and 1000 g/mol) will yield good approximations to ideal mixing for ¢y < 0.3
while deviations are more significant for M,, = 3000 g/mol.
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4.3 Transient

We now perform a transient analysis on both of the two-cell systems described above. Recall from

Ch. 3 the expression for the flux derived by eliminating the Lagrange multiplier:
Ji" = —pDop;i — pDooy; ;. (4.3.23)

The flux has two contributions: the first is due to the isotropic expansion caused by transfer of
material (represented by a chemical potential gradient) and the second is caused by the divergence
of an anisotropic conforming stress. In the slip case, the system deforms isotropically and so the
anisotropic term is zero:

J™S = — D, (4.3.24)

7

diffusion is driven solely by gradients in chemical potential. The conforming case, on the other hand,
must include the conforming stress . Comparison between the slip and conforming cases then
allows an estimate as to the magnitude of the contribution of the conforming stress of; ; to the flux.
We also compare both slip and conforming solutions to an ideal mixing approximation for the flux:
Jim,id = —pD(1 - ¢)o... (4.3.25)
The factor of 1 — ¢ distinguishes the difference between a small molecule diffusing into a gel and the
traditional relation for counter—diffusion of two small molecules (see the discussion in Appendix.
In this section, we wish to compare between these three flux constitutive laws f.
The ideal result assumes the ideal mixing assumption in which the flux is taken as a gradient
in volume fraction; this neglects both anisotropic and isotropic deformation. The conforming case,
on the other hand, includes both isotropic and anisotropic deformations (4.3.23)). The slip case
represents a condition somewhere in between these two, in which isotropic deformations are included
but anisotropic deformations are neglected . We will show in this section that anisotropic
deformations contribute negligibly to the flux for even the most extreme clinical parameter sets. We
will therefore argue that it is sufficient in the applications of elastomeric photopolymers to use the
gradient in chemical potential rather than the full form of the flux (4.3.23).
We begin by considering the slip case. Because the only chemical potential gradient is in the z

direction, we define

JI'H o
Js =2 = —0p— 4.3.26
pD 0z ( )
as the dimensionless flux in the z—direction for the slip case (recall of; ; = 0). Here, we take H as
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the distance separating the two cells (Az = H) and we have non—dimensionalized z by H,

Wl
Il

(4.3.27)

3l

so that (4.3.26)) is discretized simply:
Js = —¢ (1 — p2) (4.3.28)

Here, ¢ = % (¢1 + ¢2) is the average volume fraction between cells and p, is the chemical potential
in cell .

In dimensional terms, a quantity of macromer J*A is transferred from Cell 2 to Cell 1 in time
At, A being the characteristic cross—sectional area between Cell 1 and 2. Conservation of mass for
Cell 1 then states:

pVa(t + At) = pVi(t) + JTAAL (4.3.29)

with V; being the volume of Cell 1 (note that no network is transferred between cells). Dividing

through by p and Vj, the initial volume of the cell, we may non—dimensionalize the equation,

AH

Qi(T +87)=Qi(7) + T J(T)AT, (4.3.30)

with .7 being the dimensionless time (non-dimensionalized by H?/D). Since the cross—sectional area
for the slip case is not well defined, we take A = Vy/H to simplify the equation.? With conservation

of total volume, the net system of equations is then:

QT +AT) =Q1(I)+ J(T)AT, (4.3.31)
(7 +A7) = Q3(7) = J(T)AT.

The initial conditions for the equations are specified through the original extent of reaction :
recall that Q* and ¢ are related via . The solution proceeds by first evaluating the chemical
potential in each cell , then the flux , and finally updating the new volumes in each
cell using the governing equations . Note that each cell deforms isotropically at each point
in time: there are no stresses from either the environment or the cells on each other. As such, the
only coupling between cells is conservation of total system volume.

We next consider the conforming case. In this case, we need to use the full form for the constitu-

tive law for the flux (4.3.23) by including the additional term of; .. From (4.2.17), we can evaluate

15,3

1Based upon our choice of H, AZ = 1.
2An alternative choice for A only affects the time scale to the problem; since we are considering a “toy case” where
there are no real length scales and we cannot report real diffusion times, the choice is therefore unimportant.
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JJ', the only non-zero component of the flux:

6uconf
9z

Jm = —pD(ﬁ% (u + G(AY? — 1)) = —pD¢ (4.3.32)

the last equality makes use of the conforming chemical potential that we defined in §4.2.2| (4.2.14)).

This equation can be non—dimensionalized and discretized in the same way as the slip case:
J. = -6 (Mgfmf _ uS"”f) , (4.3.33)

J. being the flux for the conforming case. Non-dimensional conservation of mass will also be the
same : although there is now a well-defined area of contact, we again choose A = V/H
in order to compare the dimensionless-time solutions of the conforming case to the slip case.? For
this reason, we can make use of the same governing equations for the slip case using the
conforming definition of the flux (4.3.33). In the conforming case, however, these two equations
are not sufficient to solve the problem: we also need to determine 3(.7), the in—place stretch as
it develops in time. As at equilibrium, we must solve for 8 at each point in time using the stress
balance: 71 + 7 = 0. This is equivalent to assuming that our system can relax instantly after each
diffusion step and is the same assumption made by Hong et al. in their model of the swelling of
elastomeric strands with solvent [72]. The system of equations governing the transient conforming

problem are then:

QI(T +AT) = Qi(T) + J()AT,
Q3(T +AT) = Q5(T) — J(H)AT, (4.3.34)
(7)) +7(T) = 0. (4.3.35)

At each dimensionless time step, we solve the stress balance to determine the value of 3, then use
that value along with the volume fraction to find J,. from . This updates the volume fraction
to compute the next time step.

We compare the ideal mixing solution to both the slip and conforming solution. The

equivalent dimensionless and discretized ideal flux

Jid = —(1 = 0)(¢1 — ¢2) (4.3.36)

does not depend upon the deformation of the cells. As such, placing the ideal flux approximation
follows the same equations as the slip model (4.3.31)): the stress balance has no effect on the ideal

solution.

3 As before, this only changes the time scale of the problem and is irrelevant to the dimensionless solution.
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As before, we report ¢(7) = Q*(7) — 1 as the percent change in volume from the initially
swollen state with g¢;q being the ideal result (using J;q), gs the slip result, and g. the conforming
result. We compare the conforming (“full”) solution g. to both the ideal mixing solution ¢;q and

the slip solution gs. As before, we define the deviation from ideal mixing with

_ 4d(7) ~ 4(7)

4d,max

5T) , (4.3.37)
%id,max 28ain given by ¢g /(2 — ¢o) to scale the deviation (see ) This is a positive quantity

(¢iq > gc)- We also define:
4(7) —4.(7)

4d,max

k(T) = (4.3.38)

as the deviation of the slip solution relative to the full solution. Again positive (g5 > g¢.), this
deviation is obtained through the use of gradients in the chemical potential in place of the
full flux. Both the ideal solution and the slip solution require the evaluation of scalar fields only and
would be preferred for a finite element approach.

Figure shows ¢;q, ¢s and g, for the parameter set M,, = 3000 g/mol, Gdry = 0.28 MPa,
o = 0.3, and & = 0.75* (&, = 0); the “high extreme” parameter set was chosen because the
difference between the three solutions should be the largest based upon equilibrium results. All
solutions illustrate linear scaling at small time, a transition around .7 = 1, and an eventual tapering
off to an equilibrium value at large 7. The long-time solution for each curve is found to be in
agreement qualitatively and quantitatively with the equilibrium value obtained above: the ideal
case predicts the maximum final swelling, followed by the slip case, followed by the conforming case.
Fig. [£77p replots these curves by rescaling each by their long—time, equilibrium value. The slip and
the ideal result are self-similar, while the conforming curve illustrates a slight negative deviation
near 7 = 1, indicating that anisotropic deformation causes a small deviation in diffusion rates
from ideal. Experimental results show similar deviations from ideal mixing for the mass uptake of
irradiated photoelastomeric disks when submersed in baths of macromer [1].

Fig. illustrates the relative magnitudes of deviations of the ideal (4) and slip (k) approxi-
mation to the full solution for the parameter set ¢ = 0.1, x = 0.5, and ¢g = 0.2, with & = 0.75
and & = 0. This parameter set was chosen because it lies near the line indicating that deviations
from ideal mixing are about 5% (see Fig. and represents typical clinical conditions. Notice that
deviations from ideal mixing are near 5% at long time but that the deviations can be significantly

larger for intermediate times: here they are as large as 7%. The deviation from the slip approxi-

4Tt should be noted that larger values of & can yield aphysical results at small 7 for these simple models.
Specifically, evaluation of a flux with the form —¢Vu should tend to zero as ¢ — 0 even as p — oo logarithmically.
Evaulating ¢ with ¢ in the discretization above, however, allows the logarithmic terms in the chemical potential to
dominate, resulting in an artificially larger flux than would be realistically observed. It is for this reason that &; is
not chosen to be near 1.
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Figure 4.7: Two-cell transient solution results for the parameter set M,,, = 3000 g/mol, Gdry =0.28

MPa, ¢g = 0.3, & = 0.75, and & = 0. (a) The final equilibrium swelling is greatest for the ideal
case, then the slip case, then the conforming case, but (b) the solutions are nearly self-similar.
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Figure 4.8: A comparison of the deviations from the full solution for both the ideal approximation
(top curve) and the slip approximation (bottom curve). The material parameters chosen are ¢ = 0.1,
x = 0.5, and ¢¢ = 0.2, with the extents of reaction in each cell chosen as &5 = 0.75 and £, = 0. The
ideal approximation yields about twice as much deviation as the slip approximation, indicating that
specifying the flux as a gradient in chemical potential is a better approximation than a gradient in
volume fraction.

mation, however, rise to about half this maximum deviation, with the largest deviation occuring at
equilibrium. Running several different choices of parameters yields the same general trends: devia-
tions from ideal mixing rise at intermediate times and then decrease to the equilibrium deviation,
while deviations from the slip approximation rise monotonically to the equilibrium deviation. This
indicates that using Fig. to determine whether the ideal mixing approximation is appropriate at
equilibrium does not guarantee that the approximation is good for all time. The slip approximation,
on the other hand, will always yield smaller deviations than the ideal approximation for all time.
For this reason, we choose to use the slip approximation for the flux (gradient in chemical potential
(4.3.24))) when solving transient problems throughout the rest of this thesis. This does not mean that
we will ignore the stress coupling between cells: indeed we will still need to solve a stress balance
at each point in time. However, we will not include the anisotropic correction to the flux of; ; when

updating conservation of mass.
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4.4 Conclusion

The twotcell model developed in this chapter provides insight into approximations that can be made
throughout the rest of this thesis. We first illustrated that irradiating one cell while leaving a nearby
cell unirradiated will result in material transfering from the unirradiated cell to the irradiated one,
i.e., the irradiated cell expands while the unirradiated cell contracts. The magnitude of transfer is
determined by thermodynamics: the chemical potential of macromer must be the same between the
two cells at equilibrium. When the cells are required to deform together, there is also an internal
stress balance that must be considered. It was determined that parameter sets at small values of €
and x (differing depending upon the value of ¢q) yield very small deviations from an ideal mixing
approximation at equilibrium; however, deviations can be more significant as the system develops in
time. We therefore proposed a simplification to the model, in which anisotropic stress contributions
to the flux are neglected but isotropic stress contributions are not.

In addition to this approximation, we discovered that larger gradients in extent of reaction cause
more dramatic shifts in local volume. Also, more macromer initially present in the system, ¢,
provides a larger amount of free macromer that can be transferred, and therefore larger possible
redistribution. In the next chapter, we will further explore the effects of initial macromer concen-
tration and reaction profile on the magnitude of deformations experienced in a beam of elastomeric

photopolymer forced to bend due to irradiation.
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Chapter 5

Constant-Curvature Beam

5.1 Introduction

In the previous chapter, we examined a “toy problem” of two cells of elastomeric photopolymer
experiencing reaction—diffusion-induced deformation. This illustrated the basic characteristics of
the theory developed in Ch. 2 and Ch. 3 and began an examination of the relative importance of
the material design parameters introduced in those chapters. In particular, we determined that
equilibrium solution results do not deviate significantly from ideal mixing for the clinical parameter
sets used in light—adjustable lens applications.

In this chapter, we begin to consider spatially resolved reaction profiles. For clinical use as light—
adjustable lenses, elastomeric photopolymers always contain a passive scattering agent swollen into

)

the initial matrix along with the macromer and photoinitatior. This “UV-blocker” ensures that the
irradiation intensity decays considerably through the lens so that UV irradiation present in ambient
sunlight and during the treatment will not damage the retina. Before we consider the complex
reaction profiles and global deformation present in a fully three-dimensional light—adjustable lens,
we first examine shape change resulting from this one—-dimensional attenuation of light.

For our one-dimensional example, we consider the case of a finitely thick beam (Fig. [5.1p). We
assume the beam is sufficiently long enough to ignore variations in the X—direction and that the
height, H, and width, W, are roughly the same order of magnitude, with W > H. From here
on, all coordinates are made dimensionless with H. We wish to determine how this beam deforms
when subjected to an irradiation pattern which is uniform in the Y—direction but which varies in
the Z—direction. In order to guarantee that all deformation also occurs along the Z-direction, the
beam is first constrained to a non-deformable surface at Z = 0 and irradiated.

Since the light profile decays with depth into the sample, reaction occurs to a greater extent at
the top of the beam where the light profile is more intense and more photoinitiator can be activated
than at the bottom of the beam. We characterize the decay in the light profile using an analog

of Beer’s law and assume there is a one—to—one correspondence between irradiation intensity and
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extent of reaction, &, specified as the initial condition. The extent of reaction profile exponentially

decays according to

§2) =g (5 (1-2)). (5.1)

with; the maximum extent of reaction at the top surface (Z = 1), and the subscript I denoting
that this parameter is a function of the initial light intensity. The extinction length ) is conceptually
connected to the optical information, including the molar absorptivity and concentration of both
the UV-blocker and the photoinitiator; we define A as the dimensionless distance from the top of
the beam at which £(Y") has decayed from &; to £y exp(—1). In this manner, A can be varied from
zero (the light profile is extinguished as soon as it enters the sample) to one (the light profile is
extinguished at the back of the beam) and beyond (the light profile is extinguished beyond the
beam).

Due to the gradients in macromer concentration created by this initial extent of reaction profile,
portions of the material which are more highly reacted, say at points Z > «, will absorb macromer
from portions in which less reaction occurs (Z < «). The more intensely reacted zones will swell
under the transfer of material whereas the less reacted zones will shrink. Because the sample is
cemented to a non—deformable surface, however, local elements cannot deform isotropically. For
example, elements at Z < « can only contract along the Z—axis and, as such, are under a state of
tension: the elements would like to contract in the X and Y directions as well but are constrained
from doing so (Fig. [5.1p). This constraint is experienced at every level of depth: for example,
elements at Z > a may expand along the Z—axis but are under a state of compression as they
would like to expand along the X and Y directions. Only points at the neutral axis, Z = «, are
stress free. We will derive expressions for the stresses and strains experienced in this beam after
material has transferred to equilibrium (§5.2). The equilibrium stresses and strains will then be
relieved by allowing the beam to bend to a constant curvature (Figure ) in §5.3] The choice
to use a bending beam as a sample one-dimensional problem was motivated by the work done by
Warner and co—workers on beam bending of liquid—crystal elastomers upon irradiation with a specific
frequency of light [8]. These authors observed that there was a maximum degree of curvature at
an intermediate extinction length which was around one third of depth into the sample. We will
show that elastomeric photopolymers modelled through the two-component theory of Ch. 2 exhibit
a similar response. Furthermore, we examine this experienced curvature as a function of the extent

of reaction profile (characterized by &; and \) and the material parameters G gy, My, and ¢o.

5.2 Beam Constrained to a Solid Surface

Consider a beam of elastomeric photopolymer uniformly swollen to volume ratio Q)¢ and constrained

at Z = 0. This is the reference configuration (Figure ) and the surface at Z =1 is considered to
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Figure 5.1: (a) A beam of elastomeric photopolymer constrained to a surface is irradiated with light.
We consider the beam to be long relative to the cross—section dimensions so we can ignore variations
in the X-direction. The irradiation profile is assumed to be uniform in the Y-direction and to
decay in the Z—direction due to the scattering nature of the material: more macromer is converted
to network near the top surface than at the bottom. This causes diffusion of free macromer from
the bottom of the beam to the top. (b) Elements near the bottom would like to shrink but can only
do so in the Z direction due to the constraint; these elements experience a local in—plane tensile
stress. Likewise, elements near the top can only expand upward and so are in a state of in—plane
compression. Elements at the neutral plane, o H, maintain their volume and are stress free. (c) If
the constraint is removed, the beam will bend to radius of curvature R to relieve these in—plane
stresses.
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Figure 5.2: The (a) reference and (b) spatial configurations for the constrained beam (§5.2)). The
reference is taken as a dry network initially swollen to swelling ratio Qg. When the reference is
exposed to the extent of reaction profile (5.1.1)), an element at reference coordinate Z will change
volume due to redistribution of macromer: Q*(Z) < 1 if the element contracts and Q*(Z) > 1 if it
expands. This causes the element to move to spatial coordinate z. The irradiated surface is exposed
to an inert fluid and so remains stress—free during this process.
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be exposed to an inert fluid so that the surface is stress free (o;;n; = 0). At this stress-free surface,
the beam is irradiated with a light source so that the extent of reaction profile decays through the
depth by ; the profile is uniform in X and Y. A material element at Z in the reference
configuration will deform as macromer diffuses from the back to the front. Under the imposed
geometrical constraint, material elements can only deform in the Z direction, attaining a volume
ratio Q*(Z) relative to the reference configuration (Figure[5.2b). Material elements near the front of
the beam experience a net gain in macromer and expand (Q* > 1), whereas the cells near the back
of the beam will experience a net loss of macromer and contract (Q* < 1). We wish to determine the
strain field Q*(Z) at long-time (the spatial configuration will be taken as the long—time solution in
this section). The deformation gradient from the initially-swollen system to the spatial configuration

is

10 0
F*'=101 0 . (5.2.1)
00Q*(2)

Using this deformation gradient, we write the system free energy under the two-component assump-

tion (taken from Ch. 2 (2.3.12)):
AQ*) = dIng+ xp(1 — ¢) + %e (1—¢) ( Q7 +2)—3-InQo — an*). (5.2.2)

Recall that the macromer volume fraction, ¢, and the volume ratio, @*, are connected by the

conversion parameter 6* (2.3.11]) according to conservation of mass (2.3.10)):

Q" = : (5.2.3)

We can determine the long—time redistribution of macromer in one of two equivalent ways. One
method involves solving the governing equations derived by minimization of the total system energy
(given in with respect to @Q*, the other by solving the differential equations presented in
Ch. 3. Because the two are completely equivalent, we use the differential form here, since it is more

illustrative. The general form for the stress at equilibrium (long—time) (3.4.36) is:
0ij = —pdij + pdij + 05 (5.2.4)

Recall that —p emphasizes that only a uniform Lagrange multiplier is needed to capture equilibrium
behavior, rather than the spatially dependent zz necessary for transient problems. Under the defor-

mation in this section (5.2.1)), there are two stresses in the system: the stress along the z—axis, o..,
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and the in—plane stress 0., = 0yy:

O-ZZ

—p+u+G(Q*4/3—1)

Cps =0y = —p+p+G (Q*_2/3 - 1) . (5.2.5)

Because of the absence of shear stresses, the stress balance in the z—direction yields o, independent
of z (0,,,, = 0). This, coupled with the stress-free boundary condition, indicates that o,, = 0 for
all Z and there is no stress along the axis; this is because the beam can deform along the axis freely.
Due to the constraint, however, it may not deform freely in the x and y directions and in—plane

stresses develop:

T = Ogp = 0y = GQ* 2/ (1 _ Q*2> . (5.2.6)

When Q* > 1, 7 < 0 and the material elements are under a local state of compression as they wish
to expand but cannot. Likewise, elements with Q* < 1 experience a tensile stress 7 > 0 keeping
them from contracting. The neutral plane, Y = «, is determined by the condition of no stress or
strain: @* =1 and 7 =0.

Solution of Q*(Z) proceeds point—by—point using o,, = 0. This requires determination of the
spatially independent Lagrange multiplier p. The closing constraint used to determine p is global

conservation of volume, written for the constrained beam as:

1 1
1% :/ Q*dzZ :/ Az = Vy. (5.2.7)
0 0

Consideration of the governing equation o,, = 0 as a statement of chemical equilibria allows an
alternative method to determine p. We define the effective chemical potential for the constrained

beam as:!

ftooms = 1+ G (Q*4/3 - 1) —p, (5.2.8)

the second equality following from o,, = 0 and . As in Ch. 4 with the conforming cells, this
effective chemical potential includes both isotropic (in ) and anisotropic deformation. Analgous to
Ch. 2, where isotropically swollen systems were in equilibrium with pure macromer (¢ = 0), each
material element in the beam can be considered to be in equilibrium with a material element with
chemical potential p: picons(Z) = p. This analogy allows us to make an educated initial guess for a
value of p that will satisfy conservation of volume . First, the macromer left in the beam after

reaction is conserved so that the average volume fraction at equilibrium can then be determined:

I Vm VN !
= —=1—-——=1- 0*dZ. 5.2.9
b= & / (5.2.9)

INote the similarity between jicons for the constrained beam and uff"f for the conforming cells in Ch. 4.
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The final equality follows from V = V) = 1 and the definition of 6* = dVx/dV, (2.3.11). Second,
reaction causes a spatial variation in the modulus of the material G (2.3.22) and we define the

average modulus:

1
G=e(1- q3)1/3/ 6*/3dz (5.2.10)
0

(recall that 6 and 6* are related by 6* = 6/Qy). Because of the self-contained nature of the beam,
we initially guess that the uniform modified chemical potential after reaction p will correspond to
the average chemical potential (obtained by evaluating peons at the average volume fraction
¢ and average material modulus G). In practice, this turns out to be nearly exact: for many choices
of reaction profiles and material parmeters, the volume conservation constraint is satisfied
within 0.1%. Furthermore, these computations have shown that a material element always exists
at which ¢ = ¢ and G = G: the element at the neutral plane (Z = «). Therefore, all elements in

the beam can be considered to be in chemical equilibrium with the element that does not deform

(Q*(Z=a)=1).

5.2.1 Stress and Strain Depend Strongly upon the Reaction Profile

We now determine the stress and strain profiles in the constrained beam as a function of the reaction
profile parameters £; and A. Recall that £; is directly related to the intensity of the incident light:
the stronger the light, the larger the extent of reaction at the top surface. Stronger light intensity—
represented by increasing {;—at fixed exinction length results in steeper gradients in the extent of
reaction profile: see the £(Z) profiles in Figure Steeper gradients in extent of reaction create
steeper initial chemical potential gradients and therefore larger magnitudes of macromer transfer
across the beam. We therefore expect steeper extent of reaction profiles to generate larger strains
and stresses across the beam. This behavior is observed in Figure The steepness of the initial
extent of reaction profile increases monotonically with &; at fixed \: the larger the magnitudes of
consumption (& increasing, light intensity increasing), the larger the stresses and strains experienced
in the beam. The same is not true of the extinction length. For small extinction lengths (A small),
the light does not penetrate deep into the beam. This yields sharp gradients near the light source,
while the majority of the system has significantly smaller gradients (Figure A = 0.1). Thus,
macromer is significantly transferred only in a thin layer near the surface of the beam. We expect
the stresses and strains in this case to be inherently asymmetric: large stresses and strains at the
front of the beam with hardly any experienced at the back. This is captured by the theory: large
compressive stresses are experienced by elements at the front of the beam while the back of the beam
experiences significantly reduced tensile stresses. Increasing A evens out the sharp gradient at the
front across the entire sample (compare A = 0.5 to A = 0.1), yielding a larger net macromer transfer

across the entire beam. In this case, the magnitude of the stresses are approximately the same in
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Figure 5.3: The strain (Q*) and in—plane stress (7) fields that develop in the constrained beam
depend upon the extent of reaction profile & . Increasing the extent of reaction magnitude
(&r) causes both the stress and strain to increase systematically across the entire beam. Increasing
the extinction length A\ displays non-monotonic behavior. When the light decays in a thin region
near the surface (A = 0.1), there are large stresses and strains in the thin region but the majority
of the beam is unaffected. When the light penetrates more deeply (A = 0.5), the entire beam
experiences stress and strain. As A continues to increase (A = 1.0), the initial extent of reaction
profile becomes flatter and the magnitude of the stress and strain diminish. Material parameters:
¢o = 0.2, M,,, = 1000 g/mol, Gdry =0.18 MPa.

both the back and the front. As A continues to increase, however, the gradients become more and
more shallow (compare A = 0.5 to A = 1.0) so that less macromer is transferred at larger extinction
lengths. This results in the magnitude of the stress diminishing. In the limit of A — oo, the extent
of reaction profile becomes uniform throughout the depth for any choice of £;. In this case, there
are no gradients in chemical potential and no diffusion—deformation occurs.

Because &; only serves to determine the magnitude of deformation, the location of the neutral
plane (defined by @* = 1) is only a function of the extinction length A. For small A, diffusion—
deformation only occurs significantly within a small region near the surface of the lens and the
neutral plane is located there (o > 0.5). As A continues to increase, the neutral plane moves more
towards the back of the beam (Figure . At the limit A — oo, the extent of reaction profiles

approach straight lines and the theoretical value of o approaches the midplane (o = 0.5).
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Figure 5.4: The location of the neutral plane («) as a function of extinction length (). In the limit
of short extinction length (A — 0), the light does not penetrate far into the beam and the neutral
plane is located near the top surface (o — 1). In the limit of deep penetration (A — o0), the neutral
plane is located at the midplane (¢ = 0.5). Reaction profile: & = 0.95. Material parameters:
¢o = 0.2, M, = 1000 g/mol, Gdry = 0.18 MPa.
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5.2.2 Effect of Material Parameters

We now examine the effect of the material parameters M,,, Gdry’ and ¢ on the developed stresses
and strains in the constrained beam. In Ch. 4, we determined that for clinically relevant parameter
choices of M, and Gdry7 the solution to the governing equations could be taken as ideal because
the deviations from ideal were found to be small, regardless of the parameter choice. A different
way to state the same conclusion is to say that varying M, and Gdry has little effect on the final
form of the solution.

With this in mind, we examine changes of parameters under a set reaction profile in Figure [5.5
As expected, stresses and strains are the same regardless of the value of macromer molar mass M,,.
The only role that the molar mass plays in the solution is in determining the appropriate time scale
for the diffusion—deformation process: the diffusivity of macromer in network is determined solely
by the macromer molar mass ( We will demonstrate this using real-time scales in Ch. 6 when
we consider a system with real physical dimensions: the light—adjustable lens. Likewise, there are
negligible variations in the strain, @*, with network modulus Gdry' However, Gdry does become
important in determining the stress generated inside the beam: the dimensional stresses scale as

G which is directly proportional to Gdry (2.3.21)). This makes sense: a stiffer network under

shear
the same strain as a softer network must be under a larger stress. Choices of Gdry can then be
made based upon application: a larger shear modulus could be chosen, for example, for applications
where the deformation induced by diffusion is used to do work.

Despite the great utility available in specifying M,, and Gdry independently, however, the two
cannot be varied arbitrarily. Recall from that the allowable initial volume fraction ¢q is
limited by thermodynamics, as determined from the Flory—Rehner equation. Thus, M,, and Gdry
must still be judiciously chosen to allow a desired choice of ¢¢. Unlike the macromer molar mass
and network modulus, the choice of ¢y has a significant effect on the solution (Figure . Just
like the surface extent of reaction &7, ¢y determines the initial magnitude of the generated chemical
potential gradients. Thus, ¢ can be thought of as parameter which tunes the osmotic pressure: the
larger ¢, the more magnitude of material available for redistribution and therefore the larger the

experienced strains and stresses.

5.3 Beam Released to a Constant Curvature

The in—plane stresses developed in the constrained beam are compressive above the neutral plane
(Z > «) and tensile below the neutral plane (Z < «). We may think of these stresses as forcing the
beam to maintain deformation in keeping with the boundary condition. If the constraint at Z = 0
is removed, then we expect the beam to deform so that the in—plane stresses are relieved.

Because of the existence of a neutral plane, a first-order approximation for the deformation of the
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Figure 5.5: The stresses and strains experienced in the constrained beam as a function of material
parameters. The solid curve is the same between all three boxes and represents the default parameter
set ¢ = 0.2, M, = 1000 g/mol, and Gdry = 0.18 MPa. The first column shows variations in the
stress and strain with ¢g; M,, and Gdry are held at the fixed defaults. The middle column shows
variations with M,, (¢¢ and Gary at default), while the last column shows variations with Gary (¢o
and M,, at default). Reaction profile: &5 = 0.95, A = 0.5.
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(a) Reference Configuration: Initially Swollen
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(b)  Spatial Configuration: Constrained Sample
Snaps to Constant Curvature .27
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Figure 5.6: §5.3| The (a) reference and (b) spatial configuration for a beam initially constrained
while it is irradiated (Fig. but now released from the constraint to attain a curvature 52 (§5.3).
The neutral plane (Z = «) is defined as the plane that does not experience any strain upon reaction
( and is assumed to also remain undeformed by the bending process.
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beam is for it to bend. Because one dimension is significantly longer than the other two, we assume
the beam will attain a constant cylindrical curvature, 5, to be determined (Fig.[5.6p). In this case,
planes at a fixed Z deform to a constant value of r in the spatial configuration, independent of Y.
Likewise, planes at a fixed value of Y are allowed to rotate an angle ¢ to account for deformation
but must remain as straight lines.? Due to the nature of the assumed deformation, each plane at a
given value of X does not deform, and the in—plane stress in the z direction will remain the same

as that experienced while constrained. Under this assumed deformation, we write:

r = r(Z) only,
» = (Y only, and

= X. (5.3.11)

Noting that z = rcosp and y = rsing, we may write the deformation gradient relative to the

initially-swollen system in Cartesian coordinates as:

1 0 0
F*'=10 r(2)cosp(Y)'(Y) r'(Z)sinp(Y) | - (5.3.12)
0 —r(Z)sinp(Y)'(Y) 7' (Z) cos p(Y)

Here, we use ’ to denote differentiation with respect to the appropriate independent variable. With

(5.3.12)), local volume changes are given by:
Q" =detF* =r(2)r'(Z2)¢'(Y). (5.3.13)

Experiments performed by Pape indicate that the beam will bend to a constant curvature signifi-
cantly faster than the time it takes macromer to diffuse. We therefore use the constrained solution,
Q*(Z), as an approximation in determining the initial curvature experienced by the beam. The
assumed dependence of Q* on only Z forces ¢'(Y) to be a constant . This constant is the
curvature of the beam, 7, determined as follows. Consider a line segment along the neutral plane
(Z = «a) which initially had length 2! before deformation (Fig. [5.6h). Because this line is on the
neutral plane, @* = 1 and the line will maintain its length at 21 upon bending (Fig. [5.6b). Defining
the angle subtended by this length to be 23,

¢(l) = B and
p(=1) = —B. (5.3.14)

2This assumed deformation ignores edge effects, which are small for large W relative to H.
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With ¢'(Y') constant, p(Y) = fY/I. We call R the radius of curvature measured as the distance
from the center of curvature to the neutral plane; it is also the inverse of the curvature 5. From

geometry:
1 l

A B

R (5.3.15)

and ¢'(Y) = 5. Using this expression, we may rewrite (5.3.13) in terms of a single scalar field

q(2):
q(2)

Q"(2) = #r(2y(2) = T2,

(5.3.16)

defining
o 2) = H%2(Z) (5.3.17)

as the anisotropic beam deformation field. A physical interpretation of ¢ can be made by placing
the deformation gradient (5.3.12)) into the free energy expression (2.3.12)) to obtain the expression

for the free-energy of the bent beam:?

AQ 1, ) = ¢ln¢—|—x¢(1—¢)+%e (1-6) [Q5 (14227 + (7)) ~3-InQo~In Q"] (5.3.18)

It is illustrative to replace r with the variable ¢ (5.3.17]):

*2
Qq )—3—1nQ0—1nQ*] (5.3.19)

MQﬁ@:¢m¢+Xﬂ1_@+;dl_@[gm<1+q+

Compared to the free energy in the constrained case (5.2.2), only the first stretching term has
changed from

Q*2+2

to
*2

+qg+1

Note that the change is due solely to the field ¢. To understand the significance of this change in
energy, we write the Cartesian deformation gradient ([5.3.12)) in cylindrical coordinates:

1 0 0 10 0
F*=10r22#% 0 |=]|0q O (5.3.20)
0 0 ()2 00 <

q

For each material element labelled Z, an element that was constrained to deform only in one direction

(2) can now deform in two directions (r and ). This allows for the alleviation of the in—plane stresses

3The functional dependence of the free energy on ¢ is not stated explicit b ly since ¢ is related to @* by conservation

of mass (2.3.10).
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(5.2.6) that developed when the beam was constrained. Using the deformation gradient in cylindrical
coordinates (|5.3.20]), the principle stresses in cylindrical coordinates are ([3.4.36|):

Opz = —p+u+G(Q*72/3—1)

Opp = ptp+G (QQ*#/B - 1)

UT"I'

—p+p+G (;@*4/3 - 1) (5.3.21)

(note that there are no shear stresses in cylindrical coordinates). We can eliminate p and p from

the expressions with o,, = 0 (condition of the constrained case used to determine Q*(2)):

Opg =T = GQ*_2/3 (1 _ Q*Q)
Opp = GQ*2/3 (q _ Q*z)

o = GQ*/3 <1 - 1> . (5.3.22)
q

Comparing with the constrained stresses , we note that the axial stress in the z—direction
(0z2) remains the same regardless of ¢ because no deformation is allowed in that direction: even
after the curvature, it maintains the same deformation as the constrained state. The angular stress
and radial stresses have changed, however, due to the deformation field q. Consider an element at
the front of the beam that has expanded @Q* > 1. Recall that the in—plane stress for this element
oyy < 0in the constrained state: the element is locally under compression and would like to expand
in the y—direction. According to , then, we expect ¢ > 1 at the front so that the in—plane
compressive stresses are alleviated; in the extreme case where ¢ = Q*2, the angular stresses vanish.
However, alleviation of the in—plane stresses near the top (¢ > 1) generates stress along the radial
direction o, (recall that there is initially no stress in this direction, 0,,(Z) = 0). For ¢ > 1, these
stresses are compressive and become larger as ¢ increases. Because there is a competition between
the radial and angular stresses, there is a particular value of ¢ for which the net stress will be small.

Naively, we assume this will be when o, = 0, or 7, = 0, with
To = Opp — 0 = GQ* /3¢ (q2 - Q*z) . (5.3.23)

Using similar logic, we can deduce that at the back of the beam (Q* < 1), the elements originally
under in-plane tension (o,, > 0) will be relieved of this tension when ¢ < 1. This is done at the
expense of a generated tensile stress in the radial direction. Again, provides an appropriate
measure of the relative magnitudes of these stresses. At each point in the beam, the relative stress
(5.3.23) will be zero if ¢ = Q*. This is not possible for a general Q*(Z) field, however, because of
conservation of volume . Rather, given a Q*(Z) profile obtained for the constrained case, we
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must solve the ODE for the deformation field ¢ under a curvature .7#°. The actual value of
the curvature that the beam attains will be one in which the system free energy is minimized. For
a general Q* profile, we will see that the relative stress is not pointwise zero, but attains a
balance across the beam so that the stresses are as small as possible.

We now consider solution of ¢(Z) from Q*(Z) using the differential equation ([5.3.16). Solution
requires a boundary condition: we assume that the final thickness of the bent beam is the same as
the original thickness,

r(1)—r(0)=1 (5.3.24)

in dimensionless terms. Although conservation of volume has already been satisfied for the Q*(2)

profile, we make use of it to rewrite this boundary condition in a more useful form:

e, [d@D] a) —q(0)
V—/O de_[z%ph_ s =L (5.3.25)

The second equality follows from ([5.3.16|) and the fundamental theorem of calculus, where the final
one follows from conservation of volume. Recalling that ¢(Z) = r?(Z), we may rewrite the boundary

condition ([5.3.24)) by eliminating r(1) using conservation of volume (5.3.25):
AN 1.,
q(0) = 1—7 :1—%4—&% . (5.3.26)
The second equation that results,

2
1
q(1) = (1 + j;) =1+ + 1%2, (5.3.27)

can not be made to hold exactly: it will only hold to the accuracy with which volume was conserved
in the original Q*(Z) profile (5.3.25). We preferentially choose the first equation as the
boundary condition over the second because it provides a condition at Z = 0. This simplifies
solution of the ODE by allowing use of a forward-stepping method.

Upon specifying a @Q* profile, the g profile depends only on the curvature J#: once in the bound-
ary condition and a second time in the differential equation . For the constrained
beam before curvature is allowed, 5 = 0. For this case, the differential equation and
boundary condition solve to ¢(Z) =1 for all Z: when the beam is constrained, the angular
stress oy reduces to the in-plane constrained stress o, (5.2.5)), as expected. We can thus
consider ¢(Z) = 1 to be the initial solution before the beam is allowed to bend. As J# increases from
zero, the boundary condition indicates that ¢(0) < 1 (4 < 4). As previously discussed,
this represents a decrease in the tensile in—plane stress for the element at the back of the beam

at the expense of generating a tensile radial stress. Also, (5.3.27)) tells us that the opposite case
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occurs at the front of the beam: ¢(1) > 1 and the compressive angular stresses decrease, creating a

compressive radial stress.

The actual curvature 2 the beam will attain is determined by minimizing the system free energy:
1

P = [ aunQ @iz, (5.325)
0

the conservation of volume constraint omitted because the Q*(Z) profile is specified and already
obeys conservation of volume. The free energy per volume A(57) is given by ; based upon
the above discussion, we treat ¢ as solely a function of JZ. For a given value of JZ, we determine
q from and use this to determine the system free energy . The derivative of F' with
respect to S is then approximated:

OF _F(H +0)—F (A —5)
o SH ’

(5.3.29)

the value 5.7 = 107 is used to estimate the derivative. The value of .# is then varied using the
secant method until this derivative is zero.

To illustrate the effect of curvature on the stresses in the system, we consider a beam of elas-
tomeric photopolymer with M, = 1000 g/mol, Gdry = 0.18 MPa, and ¢y = 0.2. This beam is
submitted to an exponentially decaying extent of reaction profile ; we take & = 0.95 and
A = 0.5. The constrained solution for @*(Z) under these conditions was shown in (Fig. ;
we illustrate the corresponding ¢ profile obtained by solving the ODE for several different
values of 77 in Fig. . As can be seen, each of the ¢(Z) profiles is essentially linear, despite the
non-linearity in the @Q*(Z) profile; this is due to the small magnitude of 5. As expected, ¢ < 1 near
the back of the beam, so as to relieve the initial in—plane tensile stress experienced there, and g > 1
near the front so as to relieve the compressive in—plane stress; the in—plane stresses after bending
(0pp) are shown in Fig. . Although the bending relieves the in—plane stresses, it generates a
corresponding radial stress, compressive at the front and tensile at the back (Fig. ) The relative
stress o, — Opp is shown in Fig. [5.7d. The relative stress difference is large for J# = 0
and corresponds to the initial in—plane stress 7 experienced when the beam is a constrained case
(Fig.[5.3). As the curvature increases, the relative stresses decrease in magnitude at both the front
and the back of the beam, illustrating the balance between radial and angular stress. Note that no
choice of J yields a state in which the radial and angular stresses are equal at all points (7,(Z) = 0).
In fact, the closest possible state is at the energy minimizing curvature, 57 = 0.0862. At this point,
the magnitude of the relative stresses are the smallest and the two stresses are as nearly balanced
as possible; increasing the curvature beyond this causes larger stress differences (Fig. |5.7k). Thus,
the energy-minimizing curvature is the one in which the two stresses are approximately equal.

The reason the two stresses cannot be uniformly equal is due to the location of the neutral plane
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Figure 5.7: The strain and stress fields experienced inside the reacted constrained beam upon
release and bending as a function of the curvature 2. (a) The deformation field, ¢; (b) the angular
stress, o,,; (c) the radial stress, oy, and (d) the relative stress, 7, = 04, — 0. The curvature
€ = 0.0862 represents the energy-minimizing curvature. Reaction parameters: £ = 0.95, A = 0.5.
Material parameters: ¢g = 0.2, M, = 1000 g/mol, and Gdry = 0.18 MPa.
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in the constrained state. For the small curvatures attained by these beams, the radial stress profiles
are approximately linear (Fig. ) and the radial stress vanishes at a single point, Z = 0.5. Above
this point, the radial stresses are compressive and below they are tensile; they are also equal and
opposite in magnitude to either side of the midplane. The angular stresses, on the other hand, vanish
further towards the front of the beam, Z > 0.5. Furthermore, they are not symmetric about the zero
stress point: elements at the front experience significantly larger compressive angular stress than the
tensile angular stress experienced by elements at the back. This asymmetry in the angular stresses
results directly from the asymmetry in the initial constrained stress profile, 7 (J# = 0). Because
general light decay profiles experience the neutral plane at Z > 0.5, the radial and angular stresses
cannot be generally equal at all points; the best the system can attain is a compromise between the
stresses which are experienced at the energy minimizing curvature.

Before examining the effect of profile and material parameters on the magnitude of the curvature
attained, we are now in a position to re-evaluate our assumption that macromer does not diffuse

across the beam as it curves. Using the energy-minimizing %, we evaluate the chemical potential

in the bent state (2.2.19))
N
- (Q)
q

Here, ficons is the chemical potential in the constrained state (5.2.8) and ¢'(Z) = d¢/dZ.* For the

(1-9¢)
¢'(2)

1
fibent = Heons + GQ*/? (q - 1) +GQH P (5.3.30)

case just discussed, the chemical potential is nearly uniform across the beam after bending (dotted
curve) compared to the initial gradients created by reaction (dashed curve) (Fig. . Only in a
thin region near the back (Z = 0) is there a significant chemical potential gradient after bending.
Thus, a small amount of material will transfer from the elements at the back towards the middle at
long times after bending (recall the diffusive time scale is slower than the deformation scale). This
causes elements in the back to further deswell, slightly increasing the tensile stresses experienced
at the back. These slightly stronger tensile stresses at the back will cause a slight increase in the
curvature to relieve the stresses. We can therefore view the results presented here as the minimum

initial curvature attained by the beam after it is released from the constraint.

5.3.1 Curvature Depends Strongly upon Initial Chemical Potential Gra-

dients

We are now in a position to determine the curvature attained by the beam under the stresses dis-

cussed in §5.2.1] We first discuss the effect of the reaction profile on the developed curvature. Based

4The derivative of ¢ appears from:

6‘17@%71 /' o * 7 4/
9= g g =0/ =2Q
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Figure 5.8: The chemical potential field inside the beam: 1) after the initially constrained beam is
reacted but before macromer is allowed to diffuse (dashed); 2) after macromer diffusion is completed
while the beam is still constrained (solid); and 3) after the beam is bent to the energy minimizing
curvature s = 0.0862 (dotted). Reaction parameters: £ = 0.95, A = 0.5. Material parameters:
¢o = 0.2, M,,, = 1000 g/mol, Gdry = 0.18 MPa.
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upon the stresses that develop when the beam is constrained (Fig. , we expect the curvature will
increase with the surface extent of reaction £; at a fixed value of A. As we vary A, however, we know
that the stress varies non—uniformly and so we expect the curvature to vary non—uniformly as well.
These two results are illustrated in Fig. At any given extinction length, the curvature experi-
enced by the beam increases with increasing surface extent of reaction £;. For the largest extent of
reaction, &5 = 0.95, and the material parameters chosen, the maximum curvature attained is small:
€ =~ 0.09. However, we will see in Ch. 6 that even such tiny changes in surface curvature of a lens
can result in significant lens-power corrections. For the beam, the curvature does not vary uniformly
with extinction length: at small extinction lengths, the extent of reaction profile is essentially ex-
tinguished throughout most of the beam depth and macromer is only converted in a thin boundary
layer near the top surface. As macromer redistributes, then, the constrained beam only experiences
significant in—plane stresses at the top while the majority of the beam remains essentially stress free
(see A = 0.1, Fig.|5.3). The beam will only bend slightly to relieve these compressive stresses in the
top since more bending induces stresses in the remainder of the stress—free beam. As the extinction
length increases, however, the gradient in macromer extends deeper into the beam and more elements
towards the back experience tensile stresses due to the redistribution. Bending therefore benefits
elements at both the back and the front and the beam attains a maximum curvature at a particular
value of the extinction length, A = 0.34; this is near the value attained by Warner for liquid—crystal
elastomers [8]. As the extinction length continues to increase, the extent of reaction profile becomes
nearly uniform and gradients in macromer concentration become smaller and smaller. Thus, the
generated stresses are smaller across the beam and a smaller curvature suffices to relieve them. In
the limit of A — oo, the beam is uniformly irradiated, there is no redistribution of macromer, and
I — 0.

The behavior demonstrated in Fig. illustrates a key concept: larger gradients in macromer
volume fraction result in more redistribution, larger stresses, and therefore larger deformation. So
far, we have discussed increasing gradients uniformly by increasing the magnitude of the extent of
reaction (through the parameter £;) or increasing gradients by allowing light to penetrate in such
a way that the gradients are distributed (adjusting the parameter \). From we know that
there is another way to increase the initial gradients: increasing the initial amount of macromer,
¢o. Increasing ¢g has a significant effect on the curvature magnitude (Fig. [5.10). Therefore, we
may create a desired curvature either by changing the reaction profile (magnitude £; and extinction
length A\) or by changing the initial amount of material, ¢y. The other two adjustable material
parameters, M,, and Gdryv do not have a significant effect on the magnitude of the deformation
experienced by the beam (Fig. . As previously discussed, the macromer molar mass then only
serves to determine the time scale for diffusion—induced—deformation, whereas the material modulus

serves to determine the magnitude of the internal forces experienced during the deformation.



97

0.100 —

o
5 ——£=0095
© 0.025
0.000
0.01 0.1 1 10

Extinction Length

Figure 5.9: A beam of elastomeric photopolymer is exposed to a light source, causing an expo-
nentially decaying extent of reaction profile through the beam. After material has redistributed,
the developed stresses in the constrained beam are relieved by releasing the beam. The curvature
attained by the beam as it relaxes is determined from the initial extent of reaction profile, character-
ized by the extent of reaction at the top surface nearest the light source ({;) and extinction length.
Because stronger amount of consumption (larger ;) causes larger stresses in the system (Fig. ,
the attained curvature is larger £;. Material parameters: ¢¢ = 0.2, M, = 1000 g/mol, G4, = 0.18
MPa.
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Figure 5.10: Curvature attained by the beam as a function of material parameters. The solid curve
is the same between the three boxes and represents the default parameter set ¢y = 0.2, M,,, = 1000
g/mol, and Gdry = 0.18 MPa. The first box illustrates variations due to ¢¢ with M,, and Gdry held

at the default values. The second box illustrates variations due to M, (¢o and Gdry at default), while
the third represents variations due to Gdry (¢o and M, at default). Reaction profile: &; = 0.95,
A =0.5.
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5.4 Conclusion

In this chapter, we considered the stresses and strains experienced in a beam of elastomeric pho-
topolymer exposed to a spatially decaying extent of reaction profile. To make the problem one—
dimensional, we initially constrained the beam to a substrate; this allowed us to theoretically deter-
mine the stresses and strains experienced locally due to redistribution of macromer. For an expo-
nentially decaying extent of reaction profile—corresponding to the decay of a light profile through a
scattering medium—we determined that the side of the beam exposed to the light source (the front)
gained macromer volume from the back and therefore experienced compressive stresses due to the
constraint. Likewise, the back lost macromer volume to the front and therefore experienced tensile
stresses.

These stresses were then relieved by allowing the beam to bend to a curvature 5. We determined
that the beam curvature depended strongly upon the magnitude of the initial chemical potential
gradients through the beam. Three key parameters were found to contribute to the chemical potential
gradients: the extent of reaction near the light source, the extinction length, and the initial volume
fraction of macromer. Increasing the extent of reaction near the light source uniformly increases all
gradients in the beam, resulting in increased curvature. A similar effect was found by changing the
initial volume fraction of macromer, and the amount of macromer available can be considered to
be the lever arm for the diffusion—deformation process. Both of these results were found to be in
keeping with those seen in Ch. 4: the more material reacted, the larger the deformation.

In this chapter, the introduction of the extinction length allowed determination of the effects
of reaction profile shape on deformation. For small extinction lengths, reaction only occurs in a
thin region near the light source, developing significant stresses only in the top region. Because the
majority of the beam does not experience any stress, the beam does not significantly curve. Allowing
the light to penetrate deeper, however, provides a stronger driving force for the beam to curve. We
determined that the maximum curvature experienced by the beam was for A ~ 0.34, indicating
that the extent of reaction profile decayed to ~ 37% about a third of the way into the beam.
As the extinction length increases beyond this point, the macromer profiles after reaction become
more and more uniform, less macromer is transferred, and the curvature decreases. Qualitatively
similar behavior was observed in a theoretical model on the photo—-induced beam bending of nematic
elastomers developed by Warner and co—workers [8]: the curvature of the nematic elastomer beam
was predicted to be small when the light was not allowed to penetrate deep, went through a maximum
curvature at an extinction length of A & 0.37, and then decayed to zero as the extinction length
continued to increase.

Finally, we determined the importance of the other adjustable material parameters: the macromer

chain length and the initial network modulus. Together, these two parameters set a limit on the
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amount of macromer that can initially be swollen into the network through the Flory—Rehner equa-
tion (2.2.23). Other than this limit, however, neither was found to have a significant effect on the
final curvature attained by the beam. However, we determined that the dry network modulus sets
a magnitude for the dimensional stresses experienced by the beam during redistribution: a stiffer
network exposed to the same internal diffusive strain will experience a stronger internal force. The
network modulus can therefore be tuned appropriately for applications in which the deformation is
used to perform work. The macromer molar mass, on the other hand, is the only material parameter
which determines the rate at which the deformation occurs; specifically, the macromer chain length
determines the diffusivity (Ch. 3) which sets the time scale for diffusion-deformation. This will be
demonstrated in the next chapter on a system that has a physical length scale: the light—adjustable
lens. In that chapter, we will also use what we have learned from a one—dimensional extent of

reaction profile to analyze profiles in two or more dimensions.
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Chapter 6

Light—Adjustable Lens

6.1 Introduction

In the last two chapters, we have seen application of the theory developed in Ch. 2 and Ch. 3 to “toy
problems.” These results showed that the magnitude of the initial chemical potential gradients—
specified by the initial amount of macromer and the reaction profile—determines the magnitude of
the final deformation. Other parameters—specifically the network modulus and macromer chain
length—set limits on thermodynamically admissible values of the initial macromer volume fraction,
but do not contribute significantly to the final deformation. Because these two variables do not affect
the final deformation, we observed in Ch. 5 that each can be independently tuned for a secondary
purpose: for example, the dry network modulus, Gdry’ determines the magnitude of the stresses
generated following photopolymerization of macromer. This design parameter (Gdry) could then
be tuned to yield a desired force in applications in which an elastomeric photopolymer is required
to do work. The molar mass of macromer determines the diffusivity of macromer (§B.4), which
governs the time scale for the diffusion—deformation process. We are now in a position to apply the
model to the case of a sample that has specific physical dimensions and for which we can compare
experimental results.

The system we choose to study is the light—adjustable lens mentioned in Ch. 1 as a novel biomed-
ical implant developed for cataract surgery patients. The lens is made of silicone and swollen with
macromer of molar mass M,, to initial volume fraction of macromer ¢y. To protect the retina
from the UV radiation from sunlight and used during treatment, a certain amount of UV-blocker
is included in the lens along with the macromer and photoinitiator [26]. We parameterize the con-
centration of scattering agents through the extinction length A (as in Ch. 5). There are two main
regions for the lens (Fig. [4.)27]: the optical portion of the lens capped on the top and bottom by
spherical surfaces, and a cylindrical “square—edge” region outside of the optical region. The square—

edge design minimizes posterior capsule opacification observed after cataract surgery [85,86];! it

1Posterior capsule opacification is a complication after cataract surgery in which native epithelial cells diffuse
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Parameter Symbol | mm

Total diameter d 6.00

Interior square—edge lens diameter dse 5.42
Anterior radius of curvature R, 9.37
Posterior radius of curvature R, 9.37
Lens thickness hmaz 1.20
Square—edge thickness Romnin 0.40

Parameters taken from [27]

Table 6.1: Geometric parameters for the light—-adjustable lens

is characterized by thickness h,,;, and total diamter d (we will discuss the diameter for the onset
of the square—edge, ds., momentarily). The interior of the lens is characterized by three variables.
Two of these variables are the radii of curvature associated with the spherical caps: the radius of
curvature of the anterior surface is denoted R, and the posterior radius of curvature is denoted R,, .
Although clinical lenses can be created with different values of R, and R, [27], we choose R, = R,
for the initial shape. The final parameter is the internal thickness of the lens, denoted h,,q. . From

geometry, we can determine the value of the interior square—edge lens diameter dg:

dee\ 2 1 2
(;e) + {Ra -3 (hmaz — hmin)| = R2. (6.1.1)

Physical values chosen for these variables are taken from [27] and shown in Table We discuss
meshing of this lens object in an Appendix ( We have meshed the program using MATLAB
such that the mesh is more refined through the depth than in the radial direction. The reason for
this will be discussed in

Because we treat reaction as instantaneous (§2.3)), the effect of the light intensity profile I(X,t)
during irradiation of the lens is incorporated through the extent of reaction profile £(X) in the
model. Sample clinical irradiation profiles taken from [21] are converted directly into extent of
reaction profiles via a one-to—one relationship. Specification of the extent of reaction generates a
volume fraction profile within the lens that serves as the initial condition. Using the equations
of conservation of mass and momentum developed from mixture theory (Ch. 3), we solve for the
transient volume fraction profile and deformation.

For computational purposes, we discretize the governing system of equations in §6.2] in the
spirit of hybrid particle—finite element approaches [87H90] introduced to us by Robin Selinger and
Charles Gartland at Kent State University. Unlike traditional finite element methods, which require
construction of global matrices and subsequent solution of matrix equations, this method solves the

governing equations node-by-node and element—by—element. Although either method would suffice

behind and grow on the back of the lens, creating a cloudy layer behind the now clear lens. This is sometimes referred
to as a “second cataract.”
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Side View

Top View

3D View
(Mesh)

Figure 6.1: The geometry of the light—adjustable lens. Because of the symmetry of the lens in the
XY-plane, we may use cylindrical coordinates in the reference X = (R, ®,Z). The 3D mesh has
1305 nodes and 6016 four-node tetrahedral elements.
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for our problem, the force—free, constraint—free, light—adjustable lens? lends itself better to the second
approach for the following reason: a traditional finite element approach uses the boundary conditions
to maintain the solution translationally and rotationally invariant [91]. This is done by assuring that
external deformation is imposed upon a portion of the boundary, reducing the degrees of freedom
in the matrix equations and allowing solution. The node-by—node approach, on the other hand,
treats each node in a discretized mesh as a particle upon which forces act [87]. The deformation of
the object is then found by moving these nodes through integration of Newton’s law (the velocity
Verlet algorithm) analogous to a molecular dynamics simulation [92]. In this method, the system
obeys Newton’s third law and all forces are equally and oppositely balanced between the nodes.?
Therefore, the total force on the system is simply the sum of the forces on the boundary; a system
that experiences no forces on the boundary, such as the light—adjustable lens, then automatically
experiences no net forces or torques. For this reason, the light—adjustable lens can be made to be
rotationally and translationally invariant through a node-by-node approach without the need to
imply aphysical boundary conditions constraining the movement of nodes, as would be required by
a traditional approach.

Like the present case, Selinger’s work on the deformation of liquid crystal elastomers also involves
the use of a quasi—static assumption [87]. Relaxation of the local director field is assumed to proceed
faster than the time scale for global deformation: the director is in quasi-static equilibrium with
the elastic strain at each point in time. Computationally, this is modeled through two different
time scale processes. In real time, the elastic strain is developed forward using the velocity Verlet
algorithm based upon the evaluated forces at nodes. After each deformation time step, the director
is allowed to instantly relax to the nearest stable energetic state before the next strain step. We may
make good use of a similar approximation when modeling elastomeric photopolymers [72]. Because
relaxation of polymer chains occurs on a much faster time scale than that of diffusion, the diffusion
step is rate limiting. We can then treat the deformation as in quasi-static equilibrium with the
diffusion process. In this way, the strain field is the slave to the diffusion field and chains relax as
fast as molecular diffusion occurs. This same approximation was made by Hong et al. in modeling
the diffusion—deformation of rubbery polymer gels [72].

The solution method then proceeds as follows. Starting from the initial condition (set by the
extent of reaction profile above), the nodal volume fractions and chemical potentials are used to
compute the macromer flux and update the nodal volume fractions (a “diffusion step” in real time).
The resulting forces (voilations of the incompressibility condition) are then allowed to relax by

adjustment of the nodal positions (an instantaneous “deformation step”) without changing the

2In vivo, the lens rests in the lens cavity surrounded by inert, viscous aqueous humor. Although there is a force
experienced by the haptics to maintain the lens in place, this force is small and acts on a small area. In vitro,
experiments can be designed to mimic this by allowing the lens to rest on the surface of a viscous fluid. In this way,
deformation can proceed without the influence of external forces or other boundary effects.

3This only holds true when the system free energy itself is rotationally and translationally invariant.
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volume fraction of macromer. This process is then repeated until equilibrium is achieved. We begin
with a brief description of this methodology in §6.2| (details in Appendix C) and then move on to

solve a couple of illustrative problems.

6.2 Computational Methodology

6.2.1 Meshing

We begin by discretizing our lens into a finite element mesh and specifying the interpolation in
each element. We chose the lowest level of approximation: a mesh of four-noded tetrahedral el-
ements having piecewise constant deformation fields and fluxes. In this chapter, we will consider
only axisymmetric lens adjustments, leaving correction of higher-order abberations for future work.
Keeping in mind the results of the previous chapters, it is the gradient through the depth due to
attenuation of light that causes the steepest gradients in chemical potential for most cases. For these
reasons, the mesh size only needs to be moderately fine in the radial direction of the lens relative to
the depth. Therefore, our mesh is more refined in the depth—direction (see Appendix C, Fig. |C.1)
than that of Pandolfi and Ortiz [27].

6.2.2 Initialization

The solution method proceeds as follows. At ¢ = 0, we specify the extent of reaction profile £(X).
This profile allows calculation of the initial values of the volume fraction of macromer ¢(X,t = 0) =
¢o(1—&(X)), and the conversion parameter, 8*(X) = 1—(1—£&(X))¢o at each nodal point from the
reference position of that node. Specification of these scalar fields allows calculation of (X)) from
(2.3.18)). The imposed profile therefore acts as an initial condition, creating gradients in chemical

potential. These gradients drive the diffusion-based shape change.

6.2.3 Diffusion Step

From Ch. 3, the equation for conservation of mass of macromer is (3.3.3)):

Dpm
= I =0 6.2.1
Dt TV (6:2.1)

4

where p,, is the density of macromer, ¢ is time, and J,;, = py, (v, — v) is the flux of macromer.* In

keeping with the scaling analysis performed in Appendix B, the velocity is negligible for a generic

4As discussed in Ch. 3, we have set the reaction term to zero because reaction occurs significantly faster than
diffusion and we model the reaction as instantaneous at ¢t = 0.
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time step. Placing this simplification into the above equation yields

Opm

o =~V I (6.2.2)

The flux is modeled as a gradient in chemical potential (4.3.24]):
Jm = —pDoViu (6.2.3)

with D being the diffusivity of macromer. For a given macromer, prior research shows D is insensitive
to ¢ over the range from ¢ = 0.1 to 0.3 (Appendix. Therefore, D is treated as a uniform material
parameter, determined from the molar mass of macromer (Table [B.3]). Recall from Ch. 4 that this
definition for the flux ignores anisotropic deformation contributions because these contributions are
small for the deformations experienced in practice. The flux J is piece-wise constant and is calculated
in each tetrahedron through interpolation and the chemical potential at each node. Once all the
fluxes are determined, the code can proceed tetrahedron by tetrahedron, evaluating the change in
volume fraction for each node as well as the volume of that element. The sums are calculated for
node a by adding the contributions from each tetrahedron to which a belongs, information kept
in the connectivity of the mesh. To guarantee computation proceeds correctly, we check the total
change in volume fraction summed over all nodes for a single tetrahedron: this number should be
zero for a single time step, as macromer must be transferred between nodes and cannot be created
or destroyed.

Once the diffusion step has updated the values of the volume fraction, the average volume fraction
is found in each tetrahedron. These volume-averaged values are used in calculating the system energy

and forces which must be relaxed in the second computational step: the deformation step.

6.2.4 Deformation Step

After a small amount of material has been transferred between nearby elements in a diffusion step,
some elements will have more material than they began with and some elements will have less. This
leads to an aphysical situation: since the nodal positions have not yet moved, the incompressible
constraint ([2.3.10)) is not satisfied. These deviations in density are relaxed by displacing the nodes
to reduce a penalty assessed for density deviations. The penalty plays the role of free energy,
leading to a psuedo—force on the nodes. To determine the new shape of the lens, these “forces” can
be relaxed, moving the nodal points in keeping with the forces so that elements that have gained
material increase in volume, whereas elements that have lost shrink. The numerical equivalent of
this involves determination of the forces acting on each node in an element and then summing those

contributions from all elements to which a given node is attached. We then treat the nodes as
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Length Scale Time Real Time, M,, =
(mm) (dim’less) | 500 g/mol | 1000 g/mol | 3000 g/mol
Rimesh 0.1 1.1x1073 1.8 min 3.3 min 13 min
homaz 1.2 0.16 4.3 hr 7.9 hr 31 hr
d/2 3.0 1.0 1.1 days 2.1 days 8.0 days

Table 6.2: The time scales associated with each of the important spatial dimensions for the light—
adjustable lens. The real-time values were obtained from diffusivities in [1] modified according to

B.4

particles in an overdamped molecular dynamic simulation and calculate the displacement of the
nodes under the given forces via a velocity Verlet algorithm. As previously mentioned, for the small,
elastic deformations considered here, the system is assumed to relax instantaneously at each time

step without a corresponding change in the volume fraction.

6.2.5 Separation of Time Scales

The computational procedure at any given time step proceeds by performing a diffusion step followed
by relaxation to ensure the shape is in quasi—static equilibrium with the diffusion at that time. At
small times, the chemical potential gradients are steep in the z—direction due to attenuation of light.
As time progresses, these gradients essentially flatten out on a time scale tj, corresponding to Az,
the maximum thickness of the lens:

th = h2,../D. (6.2.4)

After this time, the remaining chemical potential gradients are mild variations in the r—direction.
These relax on a secondary time scale t4 corresponding to d/2, the lens radius:

d2

by = —_
474D

(6.2.5)

Tableillustrates the dimensionless computational time scales (non—dimensionalized by T based on
d/2, see corresponding to each of the important system length scales along with an approx-
imate real-time scale for each macromer molar mass. We will use .7 to differentiate dimensionless
time from real time ¢ in this chapter. Shorter macromer chains diffuse faster; because deformation is
in quasi-static equilibrium with diffusion, deformation also proceeds faster with shorter macromer
chains.

The two time scales, t;, and t4, split the system behavior into two time regimes. At short time,
the mesh size and the steepness of the initial chemical potential gradients require the diffusion
time step to be sufficiently small to ensure convergence [93]. We have optimized the dimensionless
time step to be A.Z = 4.0 x 10~° through trial and error; this is roughly 25 times smaller than

the time scale associated with the smallest distance between points in the mesh (hesn). Such a



107

Gradients | Time Range AT Mesh Used
In: (dim’less) (dim’less) | Diffusion | Deformation
Short time z 0-0.16 4.0x107° Refined Refined
Long time r 0.16 — 1.0 1.0x1073 Coarse Refined

Table 6.3: A summary of the computational parameters corresponding to the splitting of time
regimes between short and long time

small time step is appropriate to capture the steep-gradient, short-time behavior of the deforming
lens. During the long—time final relaxation of the remaining r gradients, however, this time step is
unnecessary and computationally wasteful. For this reason, we make use of a coarser mesh (Fig.|C.2)
at long time, amalgamating tetrahedra and averaging the volume fractions inside. This allows for
a longer diffusion step at long times: the optimal value was determined through trial and error to
be AJ = 1.0 x 1073. In order to maintain accuracy of the geometry, however, all refined nodal
points are still used during the corresponding relaxation step. Table [6.3] summarizes the differences

between the short and long time computational parameters.

6.3 Characterizing Deformation

At any point in time, the nodal positions will have moved due to diffusion—deformation. These shifts,
however, are exceedingly small and it is difficult to perceive the changes by visualizing the mesh in
time. To illustrate this, consider a lens which is irradiated with light in a central zone of diameter
d; (Fig.[6.2h). Subsequently, the irradiated zone expands as free macromer diffuses into that region,
causing the irradiated surface to bulge outwards and decreasing the radius of curvature within that
zone (exaggerated in Fig. ) Simultaneously, the region outside the irradiated zone loses volume
and the surface flattens slightly. As an illustration of how small the displacements are, we illustrate
the surface mesh points before reaction and at diffusive equilibrium for a large positive adjustment
(2 diopters, Fig. [6.2c). The shifts in nodal positions are nearly indistinguishable from the original
mesh points: the displacements are on the order of several microns. In fact, a Fitzeau interferometer
is needed to measure these micron deviations [21]. For this reason, we use an alternate method to
characterize the lens shape in time: the change in lens power.

The lens power is determined by one material property (the difference in refractive index between
the lens and the aqueous humor that surrounds it, ny, —n4), the radius of curvature of the anterior
surface, the radius of curvature of the posterior surface, and the thickness of the lens (R,, R, and
Nomaz, Tespectively). For simplicity, we consider the case in which the repeat units of the macromer
are the same as those of the matrix chains (a good approximation for the material currently in
clinical use); thus np — na can be treated as a uniform constant. During the diffusion—induced

deformation process, R, (t), Rp(t), and hy,qq(t) are computed from the position of the surface nodes
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Figure 6.2: (a) A light—adjustable lens is exposed to uniform irradiation in a cylindrical zone of
diameter d; in the interior. Depletion of free macromer creates chemical potential gradients that
drive a flux of macromer into the irradiated zone. (b) This causes the surface of the irradiated region
to experience an increase in curvature; the unreacted zone simultaneously experiences a decrease
in curvature. (c¢) Actual point movement from the initial shape (time, 7 = 0) to the final shape
(Z = 1) when the lens is uniformly reacted to an extent of reaction & = 0.25 within the interior
zone d; < 3.0. The displacement of points is on the order of microns yet the lens power change
experienced is &~ +2 diopters.

at time ¢.

Because we are only considering spherical (axisymmetric) corrections here, the radius of curvature
of a desired zone of the lens can be evaluated using least—squares fit of a spherical cap to the surface
nodes in that lens zone. For example, Pandolfi and Ortiz evaluate the least—squares spherical
curvature of the anterior and posterior surfaces using nearly all the surface points (r < 2.0 mm).
However, it is insufficient to report a single curvature for a general lens surface. Even a simple
axisymmetric extent of reaction profile will result in non—uniform spherical curvature: a lens surface
that initially has uniform spherical curvature will experience stronger curvature in the region that
has expanded and weaker curvature in the region that has contracted (Fig. for example). Like
Pandolfi and Ortiz, we measure the curvature over a given radial zone by least—squares fitting a
spherical surface through multiple surface nodes [27]; however, we will evaluate the curvatures over

multiple zones.
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Multifocal Lens Light-Adjustable Lens
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Figure 6.3: (a) The zones for the multifocal lens [5]. (b) The lens power is adjusted differently
across the zones of the lens [94]. (¢) Equivalent zones defined for the light—adjustable lens. (d)
Tllustration of the defined light—adjustable lens zones at cross—section ® = 0

For this reason, we turn to an analogy: multifocal intraocular lenses that are designed to improve
both near and distance vision by varying lens power across the lens in concentric zones (Fig. . For
example, the most central portion of the lens (r < 0.75 mm, Fig. )7 is considered the “distance—
dominant central zone for bright light situations, including day—time driving, when the pupils are
constricted” (Fig. ) The design for the patented multifocal lens, illustrated in Fig. , has
lens power in the “central distance zone” of 21 diopters [94]. Just outside the central zone (0.75 mm
< r < 1.5 mm) is the “add (near) zone” adding an additional 3 diopters of lens power for near vision
(Fig. ); the review article by Lane et al. characterize this region as “providing additional near
vision in a broad range of moderate to low—light conditions” (Fig. ) Outside the “add zone” for
the patented lens lies the peripheral distance zone, where the lens power is returned to the initial
21 diopters (Fig. [6.3p).

By analogy, we consider the central portion of our lens to most appropriately represent distance
vision during bright lighting situations when the pupil is constricted. We denote the central “far”

zone with interior diameter d; = 1.5 mm (Fig. ) We consider the region just outside the central
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Figure 6.4: Anterior surface node positions (& = 0) for the case of uniform irradiation (¢ = 0.25)
inside the zone d; = 3 mm at equilibrium (< = 1). A radius of curvature R4 = 8.83 mm is obtained
from a least—squares fit using all the spherical surface points within dg. (the solid curve). Fitting
only the surface points within d; yields a smaller radius of curvature (R4 = 7.89 mm).

zone (along with the interior central zone) to be the region of the lens primarily used for near vision
and denote the corresponding diameter d,, = 3 mm [94]. Finally, we define the peripheral zone with
d, = 4, the maximum optical radius of the light—adjustable lens [27] (Fig. )

An example of this method is illustrated by fitting the anterior radius of curvature to the equilib-
rium nodal positions in Fig.|6.2 (Figure. Although the points themselves have not moved signif-
icantly, the least—squares fitting radius of curvature depends on whether we use all the points on the
surface (within dse, R4 = 8.83 mm) or only the points within the central zone (df, R4 = 7.89 mm).
As such, we choose to calcuate the surface curvature separately using the points within each of the
three zones defined in (Fig. [6.3d).

For clinical purposes, the lens power is a more useful parameter to report than surface curvature.
This can be estimated from the thick-lens equation [95] by calculating the thickness of the lens at

any point in time, as well as the anterior and posterior radii of curvature:

_np—=na N —=na  Npae(t)np —nang —na
POSR0 TTRO  om R® RO (630

For a lens made of PDMS submersed in a lens cavity filled with aqueous humor, ny = 1.4289 and
na = 1.336 [27]. Using these values and the geometric values in Table the initial lens has
a power of Py = P(0) = 19.75 diopters; we report change in lens power AP(t) = P(t) — Py in
diopters. Using the three curvatures calculated for each surface (anterior and posterior), we report
three corresponding lens-power changes: APy, AP,, and AP,. Figure summarizes these lens

power changes and the zones they represent.
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Lens Power  # Surface Interior Corresponding
Change Nodes Diameter Zone

d = 1.5 mm Central, bright-light
‘ distance vision

AP n dn =3 mm Near distance vision
AP » dp =4 mm Peripheral vision

Figure 6.5: Illustration of the zones over which lens power is measured along with the corresponding
relevance of that zone

6.4 Lens-Power Adjustments Using Radial Diffusion

To illustrate the mechanism for both positive and negative adjustments of lens power, it is useful to
begin with a relatively simple irradiation profile: one that is uniform through the thickness and varies
as a step—function in the radial direction (Fig. . Physically, this corresponds to a transparent lens
that is made without any UV blocker. In addition, the concentration of photoinitiator in the lens
is sufficiently low that very little attenuation occurs as light passes through the lens. Furthermore,
we neglect defraction at the anterior surface because the curvature of the lens is relatively large
and model the extent of reaction profile as one—to—one with an extent of reaction profile. As in the
one-dimensional beam (Ch. 5), uniform irradiation of such a lens would not produce a gradient in
macromer concentration (hence, no deformation). When the irradiation varies as a step—function in
the r—direction (axisymmetric profile acting on an axisymmetric body), however, an axisymmetric
shape change is induced.

An increase of lens power can be achieved under brief exposure to a “top hat profile” that
produces a uniform conversion of macromer &; in the central portion of the lens (R < d;/2) and no
reaction in the extremeties (R > d;/2) (Internal, Fig.[6.6). For a given lens composition, the value
of & is determined by the incident irradiance and the irradiation time [1]. In a lens that is initially
symmetric about Z = 0, the shape retains that symmetry in the absence of UV blocker. As macromer
diffuses inward from r > d;/2, the central zone ultimately bulges outward and both the anterior
and posterior surfaces become more strongly curved (increasing the lens power, see Fig. for an

illustration). Clinically, this represents a positive adjustment that corrects hyperopia. We examine
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Figure 6.6: Uniform irradiation within a central zone (internal, characterized by £; and d;) causes a
net transfer of material into the center and therefore a positive lens-power adjustment. Irradiation
outside of a central zone (external, characterized by £; and d;) causes material to leave the center
and will yield an opposite, negative lens-power adjustment.

in §6.4.1] the transient development of this lens-power correction and show three important features:
1) the transient can be nonmonotonic, 2) the transient response spans from rapid changes when
the concentration gradient is steep to terminal relaxation of gradients that span the entire radius
of the lens, and 3) extremely precise control of deformation is required to achieve lens adjustments.
In §6.4.2] we show that the magnitude of the change in lens power is determined by the amount of
macromer consumed during irradiation (and is not sensitive to macromer molar mass or lens shear
modulus). Finally, we consider he differences in refractive correction as a function of the state of
pupil dilation and how it is affected by the choice of irradiation diameter, d;. All of the features noted
for positive changes are shown in to also hold for negative adjustments (myopic corrections)
produced by irradiating the periphery of the lens to achieve a uniform conversion of macromer xiy

in the extremeties (R > d;/2) and no reaction in the interior (R < d;/2) (External, Fig. [6.6]).

6.4.1 Transient Response after Conversion of Macromer

To illustrate the response to photopolymerization of some of the macromer in the central zone of
the lens, we consider the case of a lens initially containing 20% macromer (¢g = 0.2) distributed
uniformly. We then irradiate the central 3- mm-diameter zone with a dose of light that converts one

fourth of the macromer to network (£§; = 0.25) and examine the lens power relevant to intermediate
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Figure 6.7: The lens power change (AP,, d, = 3 mm) as a function of dimensionless time (log scale)
for the extent of reaction profile with d; = 3.0 mm and £; = 0.25. The icon illustrating an irradiated
cross—section through the lens thickness indicates the extent of reaction profile. The bird’s-eye-view
icon indicates the region of the surface in which the lens power is calculated using a least—squares fit
to the posterior and anterior curvature in that region. Material parameters: ¢g = 0.2, M,, = 1000
g/mol, and Gdry = 0.18 MPa.

pupil diameters (d,, = 3 mm). Ultimately, the lens power increases by 2 diopters (Figure [6.7]).
This is significant: after cataract surgery, 98% of patients have refractive errors of 2 diopters or
less [4]. Thus, this example provides a relatively large correction relative to patient needs. This
relatively large correction is achieved through redistribution of a small fraction of the lens material:
just 5% of the material in the central zone and less than 2% of the entire lens material. Because
time is made dimensionless using the longest diffusion time in the problem (7 = tg4, )7 the
lens power approaches its new equilibrium value at dimensionless time of one. For the macromer
used in this example (M,, = 1000 g/mol with D = 50.4 x 10712 m?/s, §B.4), 7 = 1 corresponds
to approximately 48 hours, in agreement with clinical observations [4]. The transient response can
be viewed in terms of three regimes (Table : 1) a short-time response during which the lens
power reaches a minimum, 2) a strong increase in lens power, and 3) a slow approach to the final
equilibrium value. Clinically, the irradiation time is approximately 100 s ( ~ 5 x 10~ in the
present example); note that very little diffusion occurs in that time, validating the “instantaneous
reaction” approximation. During the major response (0.02 < & < 0.2), the lens power increases as
expected for a reaction profile that depletes macromer in the central zone.

The initial time response is more complicated. Due to the step change in concentration created
by the “top hat” irradiation profile, there are steep gradients in chemical potential between elements

just inside r < d;/2 and those just outside. At short time, there is a diffusive boundary layer near
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Time Regime | Dimensionless Time Real Time*
Initial Response < 0.02 <1hr
Major Response 0.02 - 0.2 1 hr — 10 hrs
Final Equilibrium 1 ~ 2 days

* Obtained for M,,, = 1000 g/mol, with diffusivity D = 50.4 x 10~ 2m?/s

Table 6.4: The real times associated with the characteristic dimensionless time regimes observed in

Fig.[6.7]

r = 1.5 mm whose thickness grows as V.7, causing stresses to build up locally. The increase
in volume of elements immediately inside the boundary layer is mainly accommodated by radial
elongation (Figure right, A and B, red shift inside the second concentric ring), relieving some
of the stress created by the decrease in elemental volume immediately outside the boundary layer
(Figure right, A and B, blue shift in the third concentric ring). During this time, the lens
has not deformed significantly in the axial direction (Figure left, A and B); hence, the initial
flattening of the central zone (decrease in lens power up to .7 = 0.01). At longer time (7 > 0.16,
C and D), the radial displacements stabilize and the axial displacements dominate: the surface
inside the irradiated zone (the first and second concentric rings) bulge upward (red shift) while the
unirradiated zones (third and fourth concentric rings) contract inward (blue shift). This yields a net
positive power change at long time.

The fact that large power changes (2 diopters) correspond to small deformation (20 microns)
obtained by consumption of a small amount of macromer (2%) is one of the defining features of the
light—adjustable lens (Ch. 1). In general, required clinical corrections can be as small as 0.25 diopters
[4], corresponding to deformations on the order of a few microns. This is an extremely precise
correction for a system that is ~ 1 mm thick and several millimeters in diameter. The precise
control required for clinical adjustments can be attained by the construction of an intraocular lens
with elastomeric photopolymers coupled with the theory developed here. The rest of this section
demonstrates the precise degree of control attainable through theory by adjusting the material and

irradiation parameters.

6.4.2 Macromer Consumption Controls Adjustment Magnitude

In accord with the behavior of the one-dimensional beam (Ch. 5), the deformation of the lens
is determined solely by the amount of macromer consumed: the macromer molar mass and initial
network shear modulus had little effect over the range of clinically relevant parameters (Figure ,
illustrating that lens power changes negligibly as a function of both (a) the macromer molar mass
and (b) the network shear modulus for the range of clnically relevant parameters. Although these
two parameters do not affect lens deformation, the macromer molar mass and dry network modulus

do serve to determine thermodynamically admissable limits on the initial amount of macromer that
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Figure 6.8: The axial (left) and radial (right) displacement (in microns) of surface nodes under the
conditions shown in Fig. at four different times: (A) 7 = 0.001, (B) 7 = 0.01, (C) 7 = 0.16,
and (D) & = 1.0. Because of front/back symmetry, the axial displacment presented is the change
in lens thickness and the radial displacement is the same for both the anterior and posterior surface.
The four concentric rings are related to the four lens zones (Fig. [6.5): irradiation occurs within the
first two concentric rings (d; = 3.0 mm). A red shift indicates elements expanding and a blue shift
indicates elements shrinking.
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Figure 6.9: The effect of material parameters of the lens-power change for a sample positive
correction. (a) Lens-power changes as a function of M,,, ¢g = 0.2, and Gdry = 0.18 MPa. (b) Lens-
power changes as a function of Gdry’ ¢o = 0.2, and M,,, = 1000 g/mol. The solid curve is the same
between the two boxes. All results are for a uniform 25% consumption inside the interior diameter
d; = 3.0 mm (annotated in the icon of the cross-section through the lens depth). We show the near
zone lens-power change (AP,) corresponding to least—squares fitting the surface nodes within the
same region (d,, = 3 mm, illustrated in the bird’s-eye-view icon).



117

)

[a—

Power Change (diopters)

ol

1 i |

0.0001 0.01 1 0.0001 0.01 1
Dimensionless Time Dimensionless Time

Figure 6.10: The effect of increasing (a) the initial volume fraction of macromer, ¢q, and (b) the
uniform extent of reaction, £;, on the magnitude of the lens-power change for a sample positive power
change. All results are for uniform reaction (£; consumed) inside the interior diameter d; = 3.0 mm
(annotated in the icon of the cross section through the lens depth). We report the near zone lens-
power change (AP,) corresponding to least—squares fitting the surface nodes within the same region
(d, = 3 mm, illustrated in the bird’s-eye-view icon). Material parameters: M, = 1000 g/mol and
Gdry = 0.18 MPa.

can be swollen into the system (recall and the initial volume fraction does play a significant
role (below). For the remainder of this thesis, we set the macromer molar mass and network modulus
to M,, = 1000 g/mol and Gdry = 0.18 MPa, respectively, which gives ¢max = 0.59 (Fig. and
easily encompasses clinical volume fractions (¢9 < 0.3). The macromer molar mass also serves to
determine the rate at which the diffusion-deformation process proceeds (Table , with smaller
macromer molecules giving faster diffusion.

The magnitude of lens-power changes is determined by the amount of macromer consumed in
the interior, determined by both (a) the initial volume fraction, ¢g, and (b) the extent of reaction
in the irradiated zone, £; (Figure [6.10)). The solid curve is the same on both graphs. For both
the long—time positive response as well as the negative short—time response, increasing either the
initial amount of material present or the amount of material reacted increases the experienced lens
power change. Furthermore, pairs of conditions that have nearly matched total volume of macromer
converted to network, e.g., (¢9 = 0.1, & = 0.25) and (5 = 0.1, ¢p = 0.2) (dotted curves, Fig. [6.10)
and (¢ = 0.3, & = 0.25) and (§; = 0.35, ¢g = 0.2) (dashed curves, Fig. [6.10), produce nearly the
same change in lens power. This phenomenon is more precisely examined using three different total

consumptions of macromer ($o€;) achieved at two different volume fractions by choice of the extent

of reaction (Figure[6.11)).
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Figure 6.11: Positive power adjustment change for three different total consumptions at two different
volume fractions of macromer. In each case, the extent of reaction profile consumes macromer
uniformly (&) inside the interior region d; = 3.0 mm (annotated in the icon of the cross—section
through the lens depth). We report the near-zone lens-power change (AP, ) corresponding to least—
squares fitting the surface nodes within the same region (d,, = 3 mm, illustrated in the bird’s-eye-view
icon). Material parameters: M, = 1000 g/mol, Gdry = 0.18 MPa.

For each total consumption, the difference in the final lens power between the two cases is
smaller than can be detected by the eye (the difference is < 0.25 diopters). This is true throughout
most of the time development except during the initial “ripple effect” described in during the
“ripple”, the system with the larger initial amount of macromer (¢g = 0.2) experiences a discernably
smaller (0.25 — 0.5 diopters greater) minimum in lens power. It is also interesting to note that the
relationship between lens-power change and macromer conversion is non-linear: a 2.5—fold increase
in the amount of macromer converted to network (from 2% to 5%) only increases the final lens-power
change by a factor of 1.6. The relative gain by increasing another 50% (from 5% to 7% macromer
consumption) is barely discernable to a human eye (2.0 diopters to 2.25 diopters). Thus we see that
there are limits on the extent of lens-power changes that can be achieved by changing the macromer
consumption. This is also seen clinically: there are limits to the magnitude of lens-power changes

that can be experienced by increasing irradiation dose [4].

6.4.3 Effective Lens Power Depends on Pupil Dilation

To this point, we have reported the lens power that is relevant to intermediate pupil dilation (corre-
sponding to moderate light intensity, as in indoor environments). As lighting conditions change, the
diameter of the pupil responds, changing the diameter of the lens that is used for vision (Fig. .
Irradiating the central d; = 3 mm of the lens produces a change in shape that tapers smoothly
from increasing the curvature and thickness at the center of the lens to flattening and thinning
the peripheral lens (exaggerated in Fig. ) Consequently, the effective increase in lens power is

greatest near the center, which dominates vision under bright light when the pupil contracts (AP,
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Figure 6.12: Power change as a function of pupil dilation (Fig. ; the bird’s-eye-view icons empha-
size the three different states. Extent of reaction: central profile with d; = 3.0 mm and &; = 0.25.
Material parameters: ¢o = 0.2, M, = 1000 g/mol, and Gdry = 0.18 MPa.

Figure . When the pupil is dilated under dimly lit conditions, most of the lens is used, including
some of the area that is flattened due to the net transfer of macromer from the periphery to the
center; consequently the change in lens power is relatively small (AP,, Figure .

The monotonic trend in effective lens power as a function of pupil diameter holds throughout
the time window in which most of the adjustment occurs (0.02 < 7 < 0.2). Indeed, the trend
AP, < AP; < APy holds for any irradiation profile that has only one maxima or only one minima.
To create a non-monotonic variation in effective lens power, like the multifocal lens design for patients
who have lost accommodation (Figure left), an irradiation profile that has multiple extrema must

be used.

6.4.4 Parallels between Positive and Negative Adjustments of Lens Power

All of the features noted for a “top hat” irradiation profile (uniform intensity exposure of the central
zone) hold for the step—change radial intensity profile that irradiates only the peripheral zone of the
lens. In this case, material diffuses from the inside of the lens to the periphery, causing a decrease
of volume in the interior and flattening of both the anterior and posterior surfaces in the central
zone: a negative correction (decrease in lens power, Figure . As was seen for the “top hat”

profile, the adjustment occurs in three stages: a non-monotonic variation at short time (7 < 0.02);
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Figure 6.13: Power change associated with peripheral consumption of macromer. The extent of
reaction profile is illustrated in the cross section through the lens thickness icon: 25% of macromer
is consumed outside the region d; = 3.0 mm. The bird’s-eye-view icon indicates the region of the
surface in which the lens power is calculated (AP,, d, = 3 mm) using a least—squares fit to the
posterior and anterior curvature in that region. Material parameters: ¢g = 0.2, M,, = 1000 g/mol,
and Gdry = 0.18 MPa.

a strong, monotonic change at intermediate time (0.02 < .7 < 0.2); and a gradual approach to
equilibrium (0.2 < < 1). Because the central and peripheral profiles are complimentary, we
compare the magnitude of the negative power change observed here through peripheral reaction
with our initial central reaction (Fig.[6.7)). Both profiles have d; = 3.0 mm and &; = 0.25; however,
the peripheral volume is larger and more total macromer is consumed in the peripheral reaction (3%)
than in the central reaction (2%). Based upon our arguments in we then expect the final
magnitude of the negative correction to be larger than the corresponding positive correction. This is
observed: the negative correction experienced is stronger for the peripheral reaction (AP, = —2.75)
than the corresponding positive correction for the central reaction (AP, = 2.0). All other behavior
observed for positive lens corrections—specifically the dependence of the magnitude of the correction

on macromer consumption—are also found to hold true for negative corrections.

6.5 Inclusion of UV Blocker Breaks Anterior—Posterior Sym-
metry

In the previous section, we examined power adjustments achieved using transfer of macromer in
the radial direcction. This was done under the assumption that the extent of reaction was uniform
inside the irradiated zone, & = £(R) only. Clinically, intraocular lenses contain a “UV blocker”—a

dye that absorbs near UV light in a manner similar to the natural lens. In the light-adjustable
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lenses, one of the criteria for selecting the photosensitizer is that it appear colorless, consequently,
the photosensitizer also absorbs in the near UV. Therefore, we now consider the case in which the
light of the wavelength used to adjust lens power is attenuated as it propagates through the lens.
Because the resulting extent of reaction profile decays through the depth, macromer is redistributed
in both the axial and radial directions. For axisymmetric irradiation profiles, the general extent of
reaction profile is:

§(R,Z) = f(R)g(R, Z) (6.5.1)

with f(R) capturing the extent of reaction profile in the R direction and g(R,Z) capturing the
R—dependence of the anterior surface and the decay in intensity once the light enters the lens. As
in Ch. 5,

(6.5.2)

9(R,Z) = &rexp <Zh(R)>

A

with A the extinction length (depth at which the extent of reaction decays to exp™! = 0.37%),
&r the extent of reaction on the anterior surface, and h(R) describing the shape of the anterior
surface. Specifically, the shape shown in Fig has a square edge from R = ds./2 to d/2, where
h(R) = humin/2, and a spherical cap from R = 0 to R = ds/2, where the radius of curvature is R,:

1
W(R) = V/R2 = R + Shimas — Ro. (6.5.3)

For comparison with the preceding section, we first consider f(R) for the top hat profile for positive
and corrections and then examine profiles that are used in clinical practice

In the presence of UV blocker, the top hat profile creates a gradient in concentration that depletes
macromer preferentially in the anterior part of the central zone. Transfer of macromer from the back
to the front of the lens tends to cause posterior elements to shrink and anterior elements to expand.
When the central zone is irradiated, this axial transfer reinforces the expansion of anterior segments
due to the inward radial flux of macromer (yielding an increase in curvature of the anterior surface).
On the other hand, the axial flux competes against the expansion of posterior segments. Since the
curvature of both surfaces determine the effective lens power it is no longer obvious that
irradiating the central zone will yield an increase in lens power.

The introduction of UV blocker also adds to the richness of the transient response of the adjust-
ment. Axial gradient involve two length scales: the thickness of the lens, hy,q., and the extinction
length, A. When A\ < A4z, this introduces two additional time scales (Table: the axial redistri-
bution within a characteristic time of .7 = 0.16 and the radial redistrubtion within the characterstic
time & = 1.0. At short times (J < 0.16), then, we expect macromer diffusing away from the
posterior surface to dominate influx of macromer from the periphery, resulting in a net outflux of

macromer and an initially decreasing posterior curvature. At long times, however, the infux of ma-
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terial from the peripheries should gradually reverse this effect, with an end result dependent upon
the relative magnitudes of the two.

To illustrate these key concepts, we first report the change in anterior and posterior curvature
for a central reaction profile that is uniformly irradiated to 10% within d; = 3.0 mm (dash—dot
line, Fig. [6.14). The symmetry of the extent of reaction profile (uniform) ensures that the anterior
and posterior curvatures develop at the same rate. We next introduce a decaying extent of reaction
profile with the same radial component (central, d; = 3.0 mm). From however, we know that
having a different total macromer consumption amount will yield a different deformation simply from
the difference in consumption. Therefore, we choose an extent of reaction at the anterior surface,
&1, for the decay profile such that the total amount of macromer left after reaction is equal to the
total amount left after the uniform irradiation, measured through the average volume fraction ¢.
Note that a much greater incident irradiation or much longer irradiation time is require to produce
&r = 0.22 than & = 0.1. In the presence of UV blocker, the anterior and posterior curvature do not
develop at the same rate (Fig. . As expected, the short-time transfer of material from back to
front causes the posterior surface to initially decrease in curvature. At long time, this is reversed
by the transfer of macromer from the outside to the inside. In this particular case, the transfer of
macromer from the outside to the inside is stronger than the loss of macromer from back to front
and the final posterior curvature change is positive. The anterior curvature change is approximately
the same as for the uniform profile. Because the anterior curvature has not changed, the smaller
increase in posterior curvature yields a net smaller lens-power change (Fig. [6.15)).

This is true for a fixed total amount of macromer consumed: adding UV blocker (i.e., any finite
A) reduces the change in lens power . This is because the posterior curvature will always be
smaller than for the uniform case as macromer transfers from back to front (we ensure that the
same amount of macromer is consumed at all extinction lengths by changing the surface extent of
reaction corresponding to strongly inrcreasing the irradiation dose as A decreases). The magnitude
of the positive correction decreases monotonically with decreasing extinction length. It is interesting
to contrast this with the beam in Ch. 5: the maximum lens power change observed here does not
occur at an intermediate value of extinction length.

Based on these results, we can think of the exponential decay profile through the depth resulting
in an opposing negative adjustment. Although this is undesirable for a positive adjustment, the decay
of the light profile is used to protect the patient’s retina during clinical treatment and, afterward,
the recapitulate the UV protection characteristics of the natural lens [26]. This opposing negative
adjustment must then be taken into account and profiles must be developed which, in a sense,
overadjust to compensate for the transfer of material from front to back. This is particularly true

of the lock—in profile (discussed momentarily §6.5.2)).
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Figure 6.14: Tllustration of the effect of introducing an axial extent of reaction decay on the anterior
and posterior surface curvature (near zone, denoted by the bird’s-eye-view icon). The uniform radial
extent of reaction profile with £&; = 0.10 and d; = 3.0 mm is front/back symmetric and so yields the
same anterior and posterior curvature at any point in time. Introducing exponential decay through
the depth (A = 0.5) causes the anterior and posterior curvatures to develop differently in time. The
extent of reaction at the anterior surface for the decaying profiles is taken as £ = 0.22 so that
the amount of macromer consumed between the two is the same (measured through the average
volume fraction after reaction, = 0.1923). Material parameters: ¢g = 0.2, M,, = 1000 g/mol, and
Gdry = 0.18 MPa.
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Figure 6.15: The lens-power change (AP,, denoted by the bird’s-eye-view icon) experienced for
central reaction profiles (positive corrections) as a function of extinction length due to UV blocker
(A). The extent of reaction profiles (all with d; = 3.0 mm) are chosen so the amount of macromer
consumed is the same regardless of \. This is done by changing the extent of reaction on the anterior
surface (£;) so that the average volume fraction after reaction in each case is the same (¢ = 0.1923).
Material parameters: ¢g = 0.2, M, = 1000 g/mol, and Gdry = 0.18 MPa.
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A B C D
(mm_Q) (mm_4) (mm_6)
Positive Adjustment (PA) | 1.0000 | 0.4957 | -0.1042 | 0.0075
Negative Adjustment (NA) | 0.5000 | -0.0682 0. 0.
Lock-In (LI) 1.0000 | 0.0865 0. 0.

Table 6.5: The coefficients to the even function (6.5.4) for three clinical sample profiles [21},27]
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Figure 6.16: The sample radial extent of reaction profiles, f(R), corresponding to coefficients in
Table [6.5] [21]. Each profile is an even function in the main optical region (r < ds./2). In the
square—edge region, the positive and negative adjustment attain a constant value of zero and one,
respectively, whereas the lock—in profile maintains the same functional form.

6.5.1 Clinically Relevant Profiles: Positive and Negative Adjustment

To conclude our study, we expand our radial irradiation profiles from top hat profiles to spatially
varying profiles taken directly from current clinical application. We focus on spherical corrections
of the form [27]:

f(R)=A— Br* - Cr* — Dr®. (6.5.4)

Coefficients for three sample profiles—“positive adjustment”, “negative adjustment”, and “lock—
in”—are given in Table Fig. illustrates the shape of these profiles [21]. Note that, as before,
the profile that will give positive adjustment preferentially consumes macromer near the center,
whereas the negative correction profile consumes macromer preferentially in the periphery of the
lens. A key feature of these clinical profiles compared to the top hat profiles discussed above is that
the initial gradients are not as steep. For this reason, diffusion at early times occurs throughout
Smoothing out the early

the entire radial direction rather than within a small boundary layer.

gradients in this manner eliminates the early-time “ripple effect” observed for the central top hat
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Figure 6.17: Lens-power change (near zone, denoted by the bird’s-eye-view icon) for both a central
top-hat extent of reaction profile (d; = 3.0 mm) and the positive adjustment profile (PA) of Fig.[6.16
In both cases, there is no UV—blocker and irradiation is assumed to be uniform throughout the depth

with §; = 0.10. The amount of macromer consumed is nearly identical between the two: ¢ = 0.1923
for the top-hat profile and ¢ = 0.1935 for the positive adjustment profile. Material parameters:
¢o = 0.2, M,,, = 1000 g/mol, and Gdry = 0.18 MPa.

profile (§6.4.1] Fig. . In fact, the absence of the initial ripple causes the power correction to
be detectable by the human eye earlier on: the positive adjustment profile attains a correction of
0.25 diopters by .7 = 0.008 whereas the same correction for the top hat profile is not observed until
Z = 0.04. The corresponding real time for the earliest perceptible change is the same as the order
of magnitude of the ripple effect: for this macromer molar mass (M,, = 1000 g/mol), .7 = 0.008
corresponds to ¢ &~ 20 min. Although initial responses for the two profiles are different, the final lens
power change is the same (1.25 diopters). The clinical radial profile, therefore, gives the same overall
lens power change as the top hat profile, but at a faster rate. It is worth noting that developing such
a profile was non—trivial and had to be done through experimental trial and error; studies can now
be performed on why the profile is optimal and new profiles can be designed with the preliminary
work done in this thesis.

We now examine the positive and negative adjustment profiles in the presence of UV blocker.
We expect the same behavior seen for the top hat profiles: the transfer of material from the back
to the front causes the posterior surface to decrease in curvature, yielding a negative adjustment to
the main correction caused by the radial profile. These results are observed: for positive adjustment
(Fig. ) the experienced positive lens-power change decreases with the addition of blocker. This
is because the radial profile tends to cause a positive power change while the axial profile tends to

cause a negative power change. For the negative adjustment profile (Fig. [6.18b) the negative lens-
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Figure 6.18: Lens-power change (near zone, denoted by the bird’s-eye-view icon) for the (a) positive
(PA) and (b) negative adjustment (NA) profiles of Fig. as a function of the extinction length

A. The amount of macromer consumed is the same within each box: (a) ¢ = 0.1935 for the positive
adjustment profile and (b) ¢ = 0.1852 for the negative adjustment profile. Material parameters:
¢o = 0.2, M,;, = 1000 g/mol, and Gdry = 0.18 MPa.

power change becomes stronger with the addition of blocker: the radial and axial reaction profiles
complement each other and magnify the negative correction. In both cases, the steeper the gradient

(smaller \), the stronger the negative correction.

6.5.2 Lock—In: Challenges with UV Blocker

In the above profiles, we have shown that consumption of small amounts of macromer yield clini-
cally significant lens-power changes. In a sense, this makes photoelastomers quite powerful: multiple
corrections can be made by iteratively consuming small amounts of material until a desirable final
shape is attained. On the other hand, a significant amount of macromer remains in the lens after

diffusion—deformation is complete. If this macromer were to remain free in the lens after the appro-
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priate correction is attained, ambient light over time would cause further reaction and shift the lens
power away from that correction. For this reason, it is necessary to expose the lens to a process
called “lock—in” once lens correction is complete. During lock—in, a stronger magnitude of light is
used to fully convert the remaining free macromer in the lens so that none remains and the desired
shape of the lens is permanent (Ch. 1).

This process is non—trivial, however, due to the presence of UV blocker. To illustrate this, take
a simple example in which the lens does not require post—operative adjustment: the base lens itself
yields emmetropic vision for the patient. The clinician is now tasked with completely reacting all
the macromer inside the lens. If there were no UV—blocker in the lens, the corresponding profile is
simple: a uniform profile extending to the extremeties of the lens (Fig. d; = d = 6 mm). For this
case, macromer is reacted uniformly and therefore no gradients in chemical potential are created,
hence no lens-power change (Figure . The presence of UV blocker will cause the light profile to
decay through the depth, decreasing the intensity to a safe value at the back of the lens. However,
we have just learned that causing a decay in the axial profile causes material to transfer from back
to front, resulting in a flattening of the posterior curvature and a net negative power change. In the
case of uniform irradiation through d; = 6 mm, this is especially strong (Fig. : if A =0.33, the
lens power changes by -3.0 diopters! The goal of lock—in is to convert all free macromer into network
without changing the lens power, so a uniform profile can clearly not be used when the system has
UV blocker.

A non—trivial lock—in profile was developed clinically to overcome this difficulty (Fig. [6.16]).
Because the net—effect of light decay is to cause a negative correction, the lock—in profile compensates
by reacting material more strongly in the central zone to create an equal and opposite positive
correction. When a lens with UV blocker is locked—in with this profile, the final lens power change
is not discernably changed (Fig. [6.19)). The initial transient that appears is due to the differing time
scales for diffusion. The steeper initial gradients in the axial direction cause material to initially
be transferred back to front, yielding an observed negative power change at short times. On longer
time scales, sufficient amounts of material diffuse in from the periphery to increase lens power and
mediate the effect of the initial negative power change.

We conclude this work by considering lock—in of the positive and negative adjustments in
Although we have not yet discussed multiple reactions, the derivation for multiple corrections is
rather straight—forward and proceeds in a manner similar to that of Ch. 2. Assume that a system
has reached equilibrium to a volume fraction profile ¢;(x);> here, we use the subscript i to denote the
equilibrium volume fraction achieved after the ith reaction. For example, we have already considered

the case in which a system begins unreacted: ¢ = 0 and ¢; — ¢¢. We define the conversion parameter

5Note that for i # 0, the equilibrium volume fraction can be a function of space (recall Ch. 4 for the simplest
example of this).
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Figure 6.19: Two initially unreacted lenses—one without UV blocker (solid line) and the other with
UV blocker (dashed line, A = 0.33)—are subjected to a lock—in irradiation profile that is uniform
to the lens extremities (d; = 6 mm, {; = 0.95). The lens power (measured here with the near-zone
power AP, shown by the bird’s-eye-view icon) does not change for the lens with no UV blocker but
experiences a significant negative correction for the lens with UV blocker. Also shown is the case of
a clinical lock—in profile (Fig.[6.16] £&; = 0.95, A = 0.3). Material parameters: ¢g = 0.2, M,, = 1000
g/mol, and Gdry = 0.18 MPa.

for the 7 + 1th reaction to be:

91‘4_1 =0, |:1 + <1 fl¢> €i+1:| R (655)

with &11 the extent of reaction for the i + 1th reaction. For ¢ = 0, §p = 1 (the network is the
originally cured network) and the expression for 6 is the case we have already considered (2.3.9).
Note that further reactions change the conversion parameter multiplicatively rather than additively;

this is due to the general coupling equation between reaction, diffusion, and deformation:

0;

Qi:lﬂﬁi

(6.5.6)

with @; the equilibrium volume ratio after the ith reaction. With these changes, the volume fraction
profile ¢; and nodal positions obtained at the equilibrium time for one correction can be used as the
initial condition for the next correction. Because nodal points do not move significantly during a
given correction(Fig. ), we use the reference coordinates when evaluating the extent of reaction
profile for subsequent correction as a first approximation.

To illustrate this method, we have taken the results for a sample positive and negative correction

from Fig.[6.18|and subjected them to the clinical lock—in profile. Regardless of whether the correction
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Figure 6.20: Lock—in profile run on three clinical adjustments: 1) positive adjustment (PA, A = 0.3,
&r = 0.29), 2) negative adjustment (NA, A = 0.3, & = 0.23), and 3) no adjustment. In each case,
the lock—in profile used has £ = 0.95, A = 0.3. The lens-power change reported is the near-zone
power (AP,) shown in the bird’s eye view. Material parameters: ¢o = 0.2, M,,, = 1000 g/mol, and
Gdry = 0.18 MPa.

is positive or negative, the lock—in maintains the correction (Fig. [6.20). Furthermore, the lock—in
lens power changes are approximately self-similar to the case attained when there is no initial
adjustment. This indicates that we can expect nearly the same lens power response to a given
correction regardless of the correction history of the sample. This general principle follows from
the results we have observed throughout this thesis. First, the deviations from ideal mixing are
small for clinical parameter choices (Ch. 4, Fig. ; this ensures that the volume fraction after
reaction will be nearly uniform across the lens. In addition, the displacement of points is negligibly
small (Fig. [6.2c). Both of these things together indicate that application of a new reaction profile
for any system should proceed nearly the same as applying that reaction profile to an initially
unreacted system of slightly lower initial volume fraction profile. Such a powerful general principle
could be used clinically to develop any desired correction by cataloging a set of base corrections
and performing them in sequence. In fact, the larger the initial amount of macromer, the more
corrections can be performed. For many applcations, this could be an asset. The only problem with
this approach in the light—adjustable lens is that the patient would be required to return to the
clinical multiple times; since each correction requires about a week to stabilize, there are obviously

limits to this approach.
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6.6 Conclusion and Future Work

In this chapter, we have applied the theory developed in Ch. 2 and 3 to the case of the light—adjustable
lens. Using a finite element method which solves the system of equations element-by—element, we
have illustrated that power changes observed in light—adjustable lenses are due to diffusion. We have
determined that the rate at which the power change develops is determined by the size of the free
molecules (macromer molar mass) and that the magnitude of the power change is determined by
the total amount of macromer consumed inside the system (initial volume fraction times extent of
reaction). It was determined that the initial modulus of the material plays no role on the deformation
except to specify limits on thermodynamically admissable initial volume fractions. We have also
illustrated the ability to create both simple positive and negative adjustments by consuming material
preferrentially internally and externally, respectively. The inclusion of UV blocker was determined to
cause a net negative power change as material diffuses from the back to the front. We expanded these
principles to clinical positive and negative adjustments and discussed the difficulty of achieving lock—
in due to the presence of UV blocker. Because of the small amounts of macromer consumed during
a given correction, our theory illustrates that corrections can be performed additively: previous
correction history does not strongly affect the outcome of the current correction. However, in
the clinic, there are practical limitations on the number of check—up treatments a patient must
experience. It is therefore desirable to perform multiple corrections at the same time rather than
sequentially. As discussed in Ch. 1, this is a non—trivial task: experimentally determined results
indicate non-linearity when applying two corrections—such as a positive correction and an astigmatic
correction—at the same time. This body of work provides the foundation for exploring the reason
for this non—linearity.

There are several other directions in which this work can be taken. The tool kit begun here allows
understanding of the forward problem—how things deform under a given reaction profile—but can
be used to back postulate profiles that will give desired deformations. To connect this to experiment,
would require expansion of the theory to include a more direct connection between extent of reaction
field and irradiation field, including the advanced optics of ray tracing neglected here.

Additionally, experiments can be performed to test the quantitative accuracy of this theory.
One simple example is the case of a beam bent with light (Ch. 5). Using strips of elastomeric
photopolymer resting on an air—water interace, the curvature of the beams in time can be found by
measuring the focal point of a beam of light passing through. A similar experimental design could
be performed on light—adjustable lenses. It would be particularly powerful to combine theory and
experiment: postulate a profile to give a desired deformation, run a simulation to determine if it
will give that deformation and perform the experiment to determine the actual deformation. There

are also many additional applications that have yet to be examined. For example, a developing
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field of technology uses PDMS—the same material as in light—adjustable lenses—in the formation of
microfluidic devices [96H99]. We can imagine modifying these devices to be light—adjustable. We can
imagine the bending of light—adjustable beams to perform work or fine-adjusting optical elements
sent into space remotely with a laser. The possibilities for elastomeric photopolymers have only just

begun to be examined.
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Appendix A

Governing Equations of Mixture
Theory

A.1 Introduction

This appendix lays out the equations of mixture theory following the works of Atkin and Craine [46],
Green and Naghdi [45], and Haupt [48]. All of these works expand the basic continuum field theory
approach of Truesdell |49] to multiple components. The notation and derivations used by each,
however, are slightly different. Also, the physical meaning behind each of the terms is not always
clear in the original work since each author takes a very structured, mathematical stance. Here, we
provide first principle insight into the derivation of the governing equations, as well as provide a

more consistent notation in keeping with the rest of this body of work.

A.2 Kinematics

Consider a mixture of ¥ components, each labelled by a subscript «. Mixture theory allows a
different reference configuration (£, with point labels X ) for all species but assumes the spatial
configuration (2 with points @) is shared by all species. The system kinematics are then defined by

the v equations

x; = x§ (X a,t). (A.2.1)

Each of these is a mapping from the reference configuration of species « to the spatial configuration
(see Figure [A.1). The species deformation gradient F is the derivative of this mapping?
26

Fij(Xat) = 555 (Xast) (A.2.2)
J

INote that we are following Berkley notation; that is lowercase letters for indices to spatial variables and uppercase
letters for indices of reference variables. Of course, the reference is always taken as that of the specific component.
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Figure A.1: The kinematics of mixture theory. Each species o has a reference configuration €,
(only one shown here). A small volume dV* located at a point X, in €2, is mapped to a volume dv
at point @ in the spatial configuration {2 via mapping x,. The density field of each pure component
species is pao(X o) while the density field of that species in the spatial configuration is denoted as

pal@ ).

and contains all important information regarding deformation. For example, the determinant of each
deformation gradient allows us to relate spatial volumes dv with the reference volume of species «
dviy:

dv = Jo (X o, t)dVy" where J, = det F{}. (A.2.3)

For each component, define a reference density field p,0(X ) and a spatial density field p,(,t).
We define the total spatial density p(x,t) by:

p(a,t) = pal®,t). (A.2.4)

Note that we cannot define a total reference density since each component has a different coordinate
system and possibly different body.

The spatial volume fraction of species «, ¢ (x,t), is defined as:

ot = duia _ palx,t)
Palz,t) = — o @ D) (A.2.5)

where dv,, is the volume of species « in the small volume element dv.

The time derivative of each mapping is called the species velocity field. The reference velocity
field V(X o, t) is defined over each component’s reference configuration (independent variable X, ),
and the spatial velocity field v{*(x,t) is defined over the spatial configuration (independent variable
x):

N oxg
VO (X t) = (?)‘t

(Xast) (A.2.6)

(2
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and

@ 1) = 2 (g 1), 1) (A27)

respectively. The numerical value output by these two fields is identical if the input points to each

equation are related by the mapping (A.2.1)).
The barycentric velocity v(x,t) defined over the spatial configuration is the density weighted

average of the species component velocities:
p(, )v(@,t) =Y pa(@, t)vVa(,t). (A.2.8)
«

See for notation and identities for taking derivatives of spatial and barycentric variables

with respect to time.

A.3 Conservation Principles

A.3.1 Conservation of Mass

Consider mass conservation for species « relative to its reference configuration €2,. Because material
can react in a mixture theory model, we need to take into account the spatial reaction rate r,(x,t).?
The general principle yields

Mao + Mar(t) = ma(t) (A.3.1)

where my, is the original mass of material « at ¢t = 0 (taken as the reference), mq (t) is the final mass
of material at time ¢, and m,,(t) is the total amount of material that has been created or destroyed

at time ¢ through reaction. Writing these in terms of integral expressions of mass densities yields

t
/ paO(Xa)dVE)a +/
Q 0

e

/ Ta(w,r)dvl dr :/ Pa (X, t)dv. (A.3.2)
Q(7) Q(t)

We can rewrite (A.3.2)) over the reference configuration by using identity (A.2.3)):

t
/ {paO(Xa) JF/ ra(Xa(Xa,T), T)Ja(Xa, T)dT — pa(Xa(Xavt)at)Ja(th)} dvg* = 0.
Qo 0
(A.3.3)
With continuous functions over €2,, conservation of mass of species a in terms of its reference

configuration 2, is

Pa0(Xa) +/0 Ta(Xa(Xa,T), T)Ja(Xa, T)AT = pa(Xa(Xayt), 1) Jo(Xa, ). (A.3.4)

2We use the spatial reaction rate defined over Q as opposed to a reference reaction rate since it is more easily
connected to experiment.
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Define
Ta(Xa(Xm t)v t)
paO(Xa)

as the rate of creation of species « in terms of volume of species a created per unit time per unit

Ra(Xa,t) = (A.3.5)

spatial volume (R, J, is the volume of species « created per unit time per unit reference volume).

With this definition, we introduce conversion parameters 6,(X 4, t)

dva
al(Xart) = —1+/R o TV (X s 7Y (A.3.6)
0

as the ratio of the volume of species « in a small element in the spatial configuration to the volume of
the species in the reference configuration. This value is greater than one if species « is being created
and less than one if it is being consumed. This expression combined with and gives
a relation between deformations F% and the volume fraction of each species ¢, modified by the

reaction parameter 6, for that species:

0a(Xq,t)

To(Xat) = o X818

(A.3.7)

Differentiation of (|A.3.7)) with respect to time yields a mass balance in terms of the spatial configu-

ration
0pa

iz O (a0 (@, 1)) = rala, ). (3.8

——(z,t) + oz,

Summation of (A.3.8]) yields the relation for conservation of overall mass in terms of the barycentric

velocity: 5 5
I
;) =0. A.3.
a0 g (i) =0 (A.3.9)

Note that > 7, = 0.

A.3.2 Conservation of Linear Momentum

Conservation of linear momentum of species « is found by applying Newton’s second law to each
species:

d

%p?(t) = G§ (). (A.3.10)
Here p$(t) is the momentum of species « at time ¢, and G$(¢) is the resultant force acting on that

species. For a body undergoing deformation due to external tractions and internal body forces, we

can write this resultant force as

Go(t) = /8 TH(Xout)aS5 /Q par(X 0o (X OFF (X 0057+ [ B2 (X 00005 (A311)
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in the reference configuration. The first term represents the external tractions, the second term the
external body forces (such as gravity or electromagnetic forces)?, and the final term is the internal
force per unit reference volume exerted on species « due to the other constituents (a frictional or

repulsive force between components). In terms of the spatial configuration, this expression is

G§'(t) :/ tf‘(az,t)ds—i—/ pa(:c,t)ff“(:mt)dv—&—/ b (x, t)dv. (A.3.12)
2Q(t) Q(t) Q(t)

Note that f* = F are the same external body forces, just with a different independent variable
(since they are defined per unit mass and not per unit volume), and that B = b¢.J,,. In addition,
we note that the infinitesimal partial surface forces t{'ds = T;*dS§ produce the same values whether
measured with respect to the spatial configuration or the reference configuration. By the Cauchy
tetrahedron argument, we argue in the usual manner that we can define a partial stress tensor for
species a, of%(x,t) such that

(f%—(m,t)nj(m,t) =t (x,t) (A.3.13)

where n;(z,t) is the outward pointing unit normal to the surface 0€2(t). Because ) t(x,t) =
ti(x,t), the total surface traction on the system, we define the total Cauchy stress tensor o;;(x,t)
via

oij(@,1) =Y ol (w,1) (A.3.14)

so that

Note that the definition of the total Cauchy stress in is a straight sum (not barycentric);
in the author’s opinion, this leads to the most straightfoward definition of stress. Other authors—
namely [45] and [48]—choose to include diffusive stresses in the definition of the total stress in order
to make the total conservation of momentum governing equation look like that for a single continua.
As long as the appropriate terms are accounted for, in either the stress itself or the governing
equation, it is simply a matter of preference.

The Piola transform

nids = J,NGdSSFS (A.3.16)

and the equivalence of spatial and reference infinitesimal surface forces allows us to define the partial

first Piola—Kirchhoff stress tensor P (X 4,t) with respect to the reference configuration €,

PYNG =T (A.3.17)

3The factor 0, = dva /dVY appears to map the pure component density pao to a spatial setting since it is that
configuration in which external forces are applied.
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where N§(X,) is the outward pointing unit normal to the surface 9Q,. The relation between
Py (X a,t) and ofs(z,t) is given by:
i Eiy = Ja0iy. (A.3.18)

Having considered the forces acting upon each species, we now look at the rate of change of momen-

tum. The momentum of species « is defined as:

pi(t) = / pa(@, t)of (@, t)dv
Q(t)

= / Pa0(X o )0a(Xa, )V (X o, AV (A.3.19)
Qa

If we take the time derivative of both sides, we get

d D)
St = W) 4 v, b d
0 = [ {5 furt) ot o
= / Pa0 {00 A + Ro J VAV, (A.3.20)
Qa
Here A} = A (X 4, t) = X0 (X, t) is the partial reference acceleration field of species «. To obtain

the first result we make use of the Reynold’s transport theorem for mixtures (A.5.7), and for the

second result the identity

D(a)
Dt

(Ha(Xa, t)) = Ro(Xa,t)Ja(Xa,t) (A.3.21)

(all that the D(®) /Dt term represents is a time derivative taking the reference configuration—and,
therefore, points X ,—as constant; see . With the aid of the divergence theorem and assuming
the fields are continuous, we can combine the time derivative of the momentum with the
forces to write conservation of species a pointwise as either of the two equivalent

0
3¢ (Pavi) + (pavi'vf)j = 03 + pafi’ + 7 (A.3.22)
D)y
Pa— =t rav) =07 5+ pafit + b5 (A.3.23)

In the reference configuration, this expression is
Pa0 [0 AS + Ro J V] = P 5+ paola Y + BYY. (A.3.24)

To find the overall (barycentric) conservation of linear momentum, write (A.3.10) for the system
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with

= / pv;dv (A.3.25)
Q)

so that (A.5.14)

d Dv;
Lot = : W08 (v —v;)] A.3.2
Zpi(t) /Q(t){p D +za:[p o (v vj)]d}dv (A.3.26)
and
Gi(t) = G (t) = / t?ds—l—/ pafiadv—f—/ b dv
v za: v za: { oQ(t) Q(t) Q(t)

:/ tids—l—/ pfidv
oQ(t) Q(t)

Q(t)
Here, we have defined the barycentric external body force f; by
ofi= Y pu? (A3:29
«

and noted that

> =0 (A.3.29)

by Newton’s third law for the system as a whole. Combining (A.3.26)) and (A.3.27) yields the relation

for system momentum conservation

Dz t Z [pavit (v = v))] ;= 0ijj T pfi (A.3.30)
«

p

The additional terms which appear in this expression beyond those normally in the expression for a

single continua are those terms we chose not to include in our definition of stress.

A.3.3 Conservation of Energy

In mixture theory, all material bodies are closed with respect to material flow: the reference con-
figurations because they are closed by definition, and the spatial configuration since it must keep
track of all points from each of the reference configurations. For a closed system, the first law of
thermodynamics states

d

—E) = Q(t) + W(t) (A.3.31)
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where E(t) is the total system energy, Q(t) is the heat flux into the system, and W (t) is the power
input into the system. Each individual species also must obey the first law of thermodynamics for

a closed system
d

S Ea(t) = Qalt) + Wa(t) (A.3.32)

with the subscripts now defining partial energy, heat flux, and work for each species. For general
mechanical deformation, the energy F, for a species is the sum of contributions due to component

kinetic energy and internal energy:
E,(t) = Ko(t) + Un(t). (A.3.33)
In terms of integrals, these are written as:

1
K, (t) :/ —palz, t)vd(x, t)v(x, t)dv
Q) 2

1
- /S §pa0(on)9a(Xavt)via(Xavt)Via(Xavt)dVOQ (A334)

and

Ua(t) = /Q P st D

_ / Po0(X )0 ( X s )Un (X o, )AVE (A.3.35)
Qo

where u,(2,t) is the internal energy per unit mass of species « in the spatial configuration and
Uy (X o, t) is the internal energy per unit mass of species « in the reference configuration. Note that
the definition makes the two numerically equivalent when the point «; corresponds to the
point X ,; the distinction between the two is solely due to which configuration they are defined over.
From here on, we use this nomenclature difference to drop functional dependencies of variables since
it should be clear which configuration the variable is defined over. The heat flux for each species

can be defined as follows:

—/ qf‘(:&t)nids—i—/ paha(w,t)dv—i—/ Yo (x, t)dv
a0(t) Q(t) Q(t)

— [ Q%(=m,t)NPdSS + / PaolaHo(X o, t)dVE + / Vo (X o, t)dV,. (A.3.36)
O Qg Qo

Qalt)

Here, we introduce ¢f*(z, t), the partial Cauchy heat flux vector (leaving species «), and Q¢ (X o, 1),

the Piola—Kirchhoff heat flux vector related to the Cauchy heat flux vector by the Piola transform:

QIF = Jag". (A.3.37)
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In addition hq(x,t) is the generic internal heating rate for species « in the spatial configuration,
and H,(X,,t) is the internal heating rate in the reference configuration; 1, (,t) is a heating rate
due to component interaction (analogous in idea to b%(x,t) for the momentum balance) in the
spatial configuration, and ¥, (X ,,t) is the same rate in the reference configuration. By definition,
U, = Jo®e. The partial Cauchy heat flux vectors are simply a breakdown of the total Cauchy heat

flux vector

gi(@,t) = g (A.3.38)
To define the total system heat flux Q(t), we simply sum (A.3.36)

Q) = %:Qa(t) =- /ag(t) ginids + /Q(t) ph(z,t)dv + > thadv (A.3.39)

Q(t) «

with h(x,t) the barycentric internal heat source

ph =" paha. (A.3.40)

Rewriting the heat flux expressions (A.3.38) and (A.3.39)) using the divergence theorem yields

Qa(t) = / {_qgi+paha+¢a}dv
0

= / {_Q(I)‘,I + paoeaHa + lI/a} d‘/oa (A341)
Qo

and
(4 — —i h E o o dv. A.3.42
Q(t) /Q(t) { Qi + ph+ a P } v ( )

The power input done on the system of species « is due to a combination of external and internal

forces:
W (t) :/ tf‘vf‘dsqL/ pafi"‘vf‘dqu/ b vt du
a9(t) Q(t) Q(t)
= [ weveass s [ pataEeveavs s [ Beveave. (a3as)
% Qa Qa

The first term represents the rate of work done by the external tractions; the second and third terms
represent the rate of work done by the external and internal body forces defined above. Using the

divergence theorem, and the definition of the partial stress tensors (A.3.13) and (A.3.17), (A.3.43)

becomes:

Wa(t) = » {05, + paff + 03] 0 + oL} dv
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= / {[PSIJ + paoba FY* + BY] VI + Pz?é]Fﬁ]} dvg* (A.3.44)
Qo

where L (z,t) = v{;(x,t) is the species spatial velocity gradient and F;; is the material velocity

gradient (superscript dot denotes differentiation with respect to time). This can be simplified by

using conservation of linear momentum—(A.3.22)) and (A.3.24))—to separate out the portion of work

which changes the species kinetic energy ([A.3.34]) from that which is stored in the system:

. d 1
Wa(t) = =K. (t) + /Q( : {O’%L% + 21"@11?115‘} dv
¢

dt
d a o 1 ayra a
= ZKa(t)+ P Ey + SRVEVE 1 Vs, (A.3.45)
Qa

Summing the first of these equations for all species yields the overall power input for the system

W) =3 Walt) = %K(t) + /Q ) {Z Bravgug + agngj} } dv; (A.3.46)

[e3

the total system kinetic energy is simply the sum of the species kinetic energies
K(t) =Y Ka(t). (A.3.47)
Filling in the pieces of (A.3.32)), we see that the component energy balance is
Ua(t) = | {08+ paha + ta} dv+ / L + 0oL b
dt ) b am L2 ijij

Qt

1 .
- /Q {=Q% 1 + pavboHo + Vo } dVE + /Q {QRQWW + Py ;f,} dVy*(A.3.48)

e

Expanding out the time derivative, we can write this expression in terms of the partial internal
energy densities (|A.3.35)). Using the Reynold’s transport theorem and the divergence theorem, we
get the equation of conservation of energy for the spatial configuration

D@y,
Y

1
+Tatla = =i + 05 LG + paha + Yo + iravf‘vf‘ (A.3.49)

and for the reference configuration

. . 1
Pa0balUa + RoUa = —QT 1 + PIE + pactaHo + Vo + 5Ran‘Vf‘. (A.3.50)
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Noting that E(t) = Y, Eq(t), we can rewrite the total system energy balance (A.3.31) using the
expressions for the heat input (A.3.39) and power input (A.3.46):

Du

1
P = i + ph + Z {U%L% + iraviavf“ = [patia (v —vi)] ; + 1/1@} . (A.3.51)

Here we define u(x, t) as the barycentric internal energy per unit mass
pu = Z Palla.- (A.3.52)
[e3

In order to be consistent, species interactions should not have an overall affect on the barycentric

energy of the system. In terms of variables, this constraint is expressed via

Y o +bf0f] =0 (A.3.53)

[0}

with the first term being the energy interaction between species and the second term being the rate

of work done by the internal body forces. Use of (A.3.53)) allows an alternate expression for (A.3.51)):
Du H+Z ore 4 L BV — [patie (v — v;)] (A.3.54)
Pop = i +p o; rav v = b vt = [patta (Vi —vi)] ;¢ - .3.

For a single component, this relation reduces to the well-known equation of a single continua.

A.4 Clasius—Duhem Inequality

In continuum mechanics—and therefore the subset of mixture theory—the Clausius—Duhem inequal-
ity is used to postulate constitutive relations that are in keeping with the second law of thermo-
dynamics. The second law of thermodynamics states that for any body €(¢), there exists a state

function S(¢) such that

ds dSemt
A4.1
dt = dt ( )
where S, () is related to the rate of heat input to the system by
dsext / qi / h
— = —n;ds + p=dv. (A4.2)
dt oow T aw T

Here, we introduce the idea of a thermodynamic absolute temperature T'. If the equality of (A.4.1))

holds, the process is said to be reversible. Otherwise, the process is irreversible. Irreversible processes
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always increase the entropy of the system. S(t) can be written in terms of an entropy density

S(t) = /Q(t) plx, t)s(z, t)dv = /Q(t)Zpa x,t)Sq(x, t)dv (A.4.3)

where s(x,t) is the entropy per unit mass and s, (x,t) is the partial entropy. Using these in (A.4.1)

yields (with (A.5.14))):

it (3) - +Z Pasa (v = v))] ;= 0. (A.4.4)

This relation is the Clausius—Duhem inequality. A more useful form of this inequality can be

rewritten using the system energy balance (A.3.52)) to remove the internal heating term
p(TDt_Dt> +za:{ o Lg; = bi'v; +27“av v+
T [pasa (vi' — UZ)]Z = [patia (v — vl)]l} - %Tﬂ >0 (A.4.5)

and rewriting in terms of the Helmholtz free energy per unit mass f(x,t) = u(x,t) — T(x, t)s(x, t)

Df
_ aro @, _ T > 4.

p(Dt )—l—Z{owL — bjvg +2ravv} 2T,—0>0 (A.4.6)

where

1 (67 «
i= za: [0 + paTsa (VS — v;)] (A.4.7)
and

0= Z [Pafa (Vi — Ui)],i : (A.4.8)

The last two variables introduced are a modified heat flux and a term relating to the change in
Helmholtz free energy due to diffusion, respectively. The main reason for their inclusion is to

simplify the Clasius-Duhem inequality for a two-component system.

A.5 Supplemental Section

We examine the question of differentiation under integral signs. For example, for integrals over a

species reference configuration, we wish to examine:

4 / Yo (X o, 1)V (A5.1)
dt Jo.
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where Y, (X, t) is a generic property defined over the reference configuration of species . Since
the species reference is set with respect to time, we can bring the derivative inside the integral. In

addition, the marked coordinates X, do not depend upon time either. For this reason, we can write:

%‘*(Xa, £)dve. (A5.2)

d
L v (X, )dve =
dt/ﬂa< v = |

We will also need to deal with differentiating integrals containing spatial variables y, (x,t) over the

spatial configuration Q(¢). This looks like:

d

— Yo, t)dv. A5.3
i, a0 (4.5.3)

Now, however, the integral does depend on time. In order to bring the derivative inside, we can

make use of the identity dv = J,dV{* so that:

/ o (@, 1)dv = / Yo () T (X oy 1) AVE. (A5.4)
Q(t) Qa
Now, we can bring the time derivative inside:
()
, Dt Yo (2, t) o0 (X o, t)] AV (A.5.5)

Here, we introduce the notation: “

D «

A5,
i (A.5.6)

as the species material gradient. This is essentially a notational convention to remind ourselves that
we have made use of (A.5.4) in order to bring the derivative inside the integral. Expanding out the

derivative using kinematic definitions, it can be shown that:

4

Dy,
Dt

Yo, t)dv = / + yavgi> dv, (A.5.7)

Q(t)

which is the Reynold’s transport theorem applied to a multicomponent system. From (A.5.2]) we
see that the species material gradient operating on a property Y, (X,t) defined in the reference

configuration is given as
D@y,
Dt

(Xa,t) = %(Xomt) (A.5.8)

since X, does not depend upon time. For spatial variables y,(x,t), on the other hand, * =

“a(X a,t) does depend upon time. The product rule then gives:

D(a)ya
Dt

_ 9 o (g 1) Do
(1) = 5 (2. 1) + 0 (,0) 5 2 (1), (A.5.9)




145

For overall material properties, such as the total density defined in ((A.2.4]) or the barycentric velocity
defined in (A.2.4), it becomes convenient to define the total material time derivative as:

Dy
Dt

(z,1) = ?;t/(cc t) +v (cc,t)gi(:c,t) (A.5.10)

with y(@,t) being a spatial variable field and v; being the barycentric velocity defined in (A.2.8)).
If a property y(a,t) is defined barycentrically, i.e.,:

PY= Pala- (A5.11)

The species material derivative and the barycentric material derivative are related by:

D(®)
LA — )2 (pate A5.12
;Dt(pay) Dtpy+z vi) 5 (Pabia): (A5.12)

Using conservation of mass (A.3.6) and the definition of the partial and total material derivatives,
it can be shown that (6/7/06):

D(a)ya e
Z {Pa i +Taya:| th +Z [Paya (V5 — i)]74. (A.5.13)

(e

Combining (A.5.7)) and (A.5.13) yields the useful identity (6/7/06):

: / /
— ydv = — 4+ paya Y —0 dv. A5.14
dt Q(t) P Q(t) { Z ])} } ( )
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Appendix B

Material Parameters and Scaling
Analysis

B.1 Materials

In this appendix, we include information about the materials used by Pape [1] when used as an
example for our theory. In his work, the elastomeric photopolymer consists of a PDMS network
(Fig. swollen with PDMS macromer with bismethacrylate endcaps (Fig. . The photoini-
tiator used is DMPO (2,2—-dimethoxy-1,2—diphenylethan—1-one), which has a strong absorbance in
the UV spectra (365 nm). The PDMS precursor chains used to create the networks had average
molar masses ranging through 15.2, 22.3, and 41.2 kg/mol, and polydispersity indexes between 1.11
and 1.24. The macromer molecules had average molar masses, M,,, of 500 g/mol, 1000 g/mol, 3000
g/mol, and 5000 g/mol [1].

CH; CH; CH;

| |

CH;— 81— 0 Si—0 )nSi CH;
| |

CH; CHS CHE

Figure B.1: The chemical structure of a polydimethylsiloxane network

‘I:I) f\i'f[e llaie )?'16 ﬁ)
H3C=CI'-CT-O-(CH3)3-?i~O{ .Isi—o-}:%i- (CH:)s-O-C‘—?SCHg
Me Me Me Me Me

Figure B.2: Chemical structure of a macromer molecule
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B.2 Determination of y for Host Networks

Numerous PDMS host networks were prepared by varying the precursor chain length and initial
volume fraction of small molecule diluent [1]. The modulus of the material Gdry was determined
by rheometry once the diluent was removed. These host networks were then swollen in a bath of
macromer of varying molar masses (M, = 500, 1000, and 3000 g/mol) and the equilibrium swelling
ratio was determined. Using the Flory—Rehner equation , the value of the Flory y interaction
parameter was determined for each host network/macromer pairing.

Figure presents the results obtained for x by using data obtained in [1]. The y parameter
is found to decrease as macromer molar mass increases. This is because the repulsive effects of
the methacrylate endgroups are mitigated by increasing the number of repeat backbone segments
chemically similar to the host network. There is also a slight dependence of x on the host network.
This is in keeping with work by other groups that has determined that the interaction parameter can
vary with degree of crosslinking in the system [100]. To make use of this data, we fit a linear equation
to each molar mass data set and record the slope and intercept. The results are shown in Table
Also shown are the 2 value for the linear fit and a characteristic value of y at Gdry = 0.18 MPa.
The molar masses M,, = 500, 1000, and 3000 g/mol span a broad range of solvents from poor, to

near theta, to good, respectively.

. T r T —
0.7

L| & M =500 g/mol )
0.6F o M, =1000 g/mol -
X M =3000 g/mol

03| D/E/%/E.H’D ]
N - - .

04} .
03} .
X
i e
0.2 - X X |
0.1}F .
0.0 0.1 0.2 0.3

G ” (MPa)

Figure B.3: The Flory interaction parameter x for bismethacrylate end-capped PDMS macromers
swollen into model PDMS host networks as a function of G dry and M,,,. Symbols show experimental
results. Dry modulus and equilibrium swelling behavior contained in [1] were used to calculate x
from the Flory—Rehner equation . The interaction parameter depends strongly upon M,,,
solvent quality varying from poor (M, = 500 g/mol), to near theta (M,, = 1000 g/mol), to good
(M, = 3000 g/mol). x also varies with Gdry' Linear regression parameters fit to this variation are
contained in Table [B.1l
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| My, g/mol | a (MPa H)* | ¥ | r? [ Sample x** | Solvent Quality |
500 0.290 0.708 | 0.761 0.760 Poor
1000 0.462 0.391 | 0.793 0.474 Near Theta
3000 0.564 0.113 | 0.743 0.215 Good

* 5
X = aGdry +b
** For Gdry = 0.18 MPa, taken as a representative value

Table B.1: Linear regression parameters obtained for x as a function of Gdry and M,,.

B.3 Experimental Parameters to Theoretical Parameters

Taking experimentally obtained network shear modulus and equilibrium swelling data for these
materials, we translate sets of material parameters Gdry and M, into theory parameters y and
€ (Table . The € parameters are found as a function of the dry network shear modulus Gdry
through , with Gog given by . The corresponding x parameter is found using the
linear interpolation parameters given in Table It can be seen that € is small, particularly for
M,,, = 500 and 1000 g/mol. The x parameter ranges between 0 and 1 and capture good (x < 0.5),
theta (x = 0.5), and poor (x > 0.5) solvent conditions.

] M, | 500 g/mol ][ 1000 g/mol || 3000 g/mol |
Gdryv MPa € X € X € X
0.10 0.020 | 0.737 || 0.039 | 0.437 || 0.117 | 0.169
0.18 0.035 | 0.760 || 0.070 | 0.474 || 0.211 | 0.215
0.28 0.055 | 0.789 || 0.109 | 0.520 || 0.328 | 0.271

Table B.2: The € and x parameters for different molar mass macromer, M,,, in different starting
networks, characterized by dry modulus, Gdry' The x parameters are obtained from a linear fit to

experimental data (Table [B.1)) and the ¢ parameters are calculated from ([2.2.17).

B.4 Determination of Diffusivity from Experimental Data

To determine physically appropriate values of D, we turn to experimental data obtained by Pape [1].

The transient swelling data in Pape’s thesis consisted of swelling a dry network isotropically and

measuring the mass uptake of macromer as a function of time. The diffusivity was then determined

by fitting the initial slope of mass uptake against time data to the solution of
o¢

a9 DPapeV2¢7

= (B.4.1)

the diffusion equation for counter—diffusing small molecules. In this equation, the system flux is
specified as

T = ~DpypeVo. (B.4.2)
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Figure shows the diffusivities obtained by Pape using (taken directly from Table 5.1
of [1]). As expected, the diffusivity decreases with increasing M,,: longer macromer molecules
diffuse more slowly through the same network. Additionally, the diffusivity of macromer in the
network depends strongly upon the network modulus: for example, for M,,, = 1000 g/mol macromer,
increasing the network modulus fivefold (from 0.054 MPa to 0.28 MPa) causes the diffusivity to
increase by a factor of three (from 4.1x107*2 m?/s to 12.8x107'2 m?/s). These counter—intuitive
changes are attributed by Pape to tighter networks selectively sorbing the smaller molecules from a
polydisperse macromer sample.

We renormalize the diffusivity values obtained by Pape according to the constitutive law we
have developed for the flux (3.4.37)). Doing so removes the dependence of the diffusivity on network
modulus, and yields well-defined diffusivity values solely as a function of the macromer molar mass.
For the isotropic swelling (of; = 0) of an uncured (§ = 0, 6§ = 1) elastomeric photopolymer,

can be written in terms of a gradient in volume fraction by expanding Vpu:
1 _ 1
T = oD [(1 )1 - 2v0) — Leb(l - 0) 4 2e¢] Vo (B.43)
To compare to (B.4.2)), we define an apparent diffusivity as
Dup(@5X,6) =D | (1 = 61— 2x0) — 3¢6(1 - 6) > + 5ed) (B.44)

which is a function of the volume fraction of macromer and the material parameters in the system.
Consider the contributions to the apparent diffusivity, beginning with the stretching terms which
scale with €. The second term represents a penalty to diffusion due to isotropic stretching of network
chains and dominates the apparent diffusivity as ¢ becomes larger. In general, it is this term which
establishes equilibrium by decreasing the apparent diffusivity to zero near the equilibrium volume
fraction. Conversely, the third term represents a positive entropic benefit to adding macromer. In
general, this term stems from the configurations available to the network crosslinks; more configura-
tions are available to the network crosslinkswith more volume fraction and larger volume. The first
term in the apparent diffusivity represents solely mixing effects. As would be expected, larger values
of x decrease the diffusivity. Under conditions of ideal mixing (y = 0, ¢ — 0), we do not recover the
equation for counter-diffusion of small molecules (B.4.2), but rather note that D,, — D(1—¢). This
can be explained by recalling the energy contribution of mixing from Ch. 2. Since the network is a
large molecule, it does not diffuse and therefore cannot add to the entropy of the system. As such,
adding a single macromer molecule results in a significant increase in the number of configurations
available to the system. Mixing in more than a single macromer molecule, however, results in net
less configurations because the network itself does not diffuse. In this way, the diffusivity continually

decreases as more and more macromer is added. Since (B.4.2) was developed for counter—diffusing
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Figure B.4: The diffusivity of methacrylate end—capped macromer molecules with molar mass
M, in PDMS networks. The PDMS networks are characterized by their shear modulus Gdry' (a)
Apparent diffusivity measured through mass uptake experiments by Pape [1]. Against our intuition,
these are seen to increase strongly with network modulus. (b) The diffusivities obtained by Pape are
rescaled according . The rescaled diffusivity values depend only upon the macromer chain
length and are essentially independent of network modulus. These near-constant values are given in

Table B3l

M, D
g/mol | 10712 m?/s
500 93.3 £ 9.8
1000 | 50.4 £+ 3.4
3000 13.1 £ 2.0

Table B.3: The average diffusivity of methacrylate end—capped macromer molecules in PDMS
networks depends only on the macromer molar mass M,,. These values are obtained by renormalizing
the diffusivity values reported in [1] through (3.3.3)).

species, we cannot achieve this limit even at near-ideal conditions.
For this reason, we treat all the reported diffusivities, DPapev as apparent diffusivities, Dgp.
The renormalized value of the diffusivity, D, is obtained from DPape using the appropriate x and €

values:
DPape

(1 - ¢eq)(1 - 2X¢eq) - %Eﬁbeq(l - ¢eq)_2/3 + %efbeq )

Here, we use ¢ = ¢¢q, the equilibrium swelling volume fraction obtained from the Flory-Rehner

D =

(B.4.5)

equation (2.2.23)) for the appropriate choice of x and e. This corresponds to the volume fraction
at the contact surface between the bath of macromer and the dry network and drives the initial
diffusion (where Dpape is measured). Figure shows the data from [1] renormalized through
(B.4.5). Renormalized diffusivities still increase as the molecules get smaller (M,, decreases) but

dependence upon G, has been eliminated. In this work, the value of D for a given macromer molar

mass will be taken as the average of the values in Figure (shown in Table [B.3)).
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B.5 Scaling Analyses

B.5.1 Conservation of Linear Momentum

The pure component densities of macromer and network are about the same:

Pm ~ Py PN ~ P,

p = 0.965 g/mL for PDMS. Choose the characteristic length £ so that the characteristic velocity is

U~ =,
3

and D the characteristic diffusivity in the system. We may then scale the conservation equations in

43.3.2) using these scales:

GOS

Vet v ~U vy~ U b~ om~Gos oy~ Gos bNT.

£
U
In the above, we have taken the characteristic value of the partial stresses and the diffusive body
force to be the osmotic modulus Gos and Gog/&, respectively, based upon the constitutive relations
developed for both (§3.4). We also assume that the velocities of macromer and network scale
similarily. Lastly, we have assumed that all important processes have a time scale set by diffusion.
Non—dimensionalizing conservation of linear momentum (7) with these quantities yields

(note that an overbar represents a dimensionless quantity):

1 OV, _ _ 1 _
P =+ VY ) =V - F o+ = PG B.5.1
ol (pm 5 +pmvva) \Y am+FrE1pmg+b (B.5.1)
1 OV, _ _ 1 _
(5, oy 9,V | =V -GN+ —— NG+ b B.5.2
B (,0 57 T PmY VV) Veon+ ggPNgt ( )

The characteristic length scale of a light—adjustable lens is £ ~ O(1 mm). With D ~ O(107!1 m?/s)
(Table|B.3)), this yields U ~ D/& ~ O (1 x 10~%m/s) for the diffusion process. With a characteristic
values for the modulus, Ggpy ~ O(10° Pa) and Gos ~ Gdry/e ~ O(105 Pa) (Table , the

dimensionless groups attain the following scales:

El~ 0 (10")  Fr~0(107").
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M, Viscosities Measured Scaling Behavior
500 g/mol 7.465 x 1073 Pa-s | pm ~ O(1073 Pass)
7.498 x 1073 Pa-s
5000 g/mol 0.07240 Pa-s tm ~ O(1072 Pa-s)
0.07206Pa-s

Table B.4: The viscosity of macromer obtained using cone and plate geometry with a 60 mm,
1° cone on TA instruments Advanced Rheometer 1000. All data obtained at 25°C. These results
present only the Newtonian behavior observed over the majority of shear stress.

With these groups, (B.5.1)) and (B.5.2)) indicate that the inertial contributions to momentum are

negligible when compared to the partial stresses and diffusive body force. This is not surprising
since the diffusive process proceeds very slowly. In addition, the stresses induced by swelling are

large enough to make the only external body forces (due to gravity) negligible.

B.5.2 Dynamic Macromer Stress

We wish to determine the relative importance of the dynamic contribution to the macromer
partial stress relative to the static stress ;7 ~ Gos. To do this, we must scale v and p. Several
experiments were performed in order to obtain a scaling estimate for macromer viscosity. These
rheology tests were performed on a TA Instruments Advanced Rheometer 1000 at 25°C using cone
and plate geometry with a 60 mm, 1° cone. Using a shear stress ramp from 1.768 x 102 Pa to
17.68 Pa, the data in Table were obtained. In these experiments, the macromer exhibited non—
Newtonian behavior only at low torque; a region in which measurements are the most uncertain.
Since the macromer exhibits Netwonian behavior over the majority of shear stresses except in this
small portion where uncertainty is high, we have chosen only to report Newtonian viscosities here.

As can be seen, the macromer viscosity u,, scales as O(1072 Pa-s) at the highest value of

molecular weight. Scaling of D} yields:

m m U —
D} ~ L} ~ i O(107° 1/s) (B.5.3)

where values are taken from §B.5.1] With these, uDj? ~ O(10~" Pa) and this portion of the dynamic
stress ([3.4.18)) is negligible compared to the static contribution (scales as Gos ~ O(10° Pa)). Because
the shear rate of macromer is so small and the osmotic modulus so large, we speculate that the term

involving v is likewise negligible, although we do not have any data to corroborate this.
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Appendix C

Finite Element Solution Method

C.1 Meshing

The entire lens can be created by using symmetry operations on a base subset of points and tetra-
hedra. As such, we specify the points in one sixteenth of the lens, defined in the region R < d/2,
0<®<n7/4, Z > 0. We have also developed a refinement algorithm which divides all the lengths
in a coarse-grain mesh in half and thus divides each tetrahedra into four smaller tetrahedra. This
allows us to specify the points in the coarse mesh only, and a cross section of the points at & = 0
is shown in Fig. [C.Ih; the refined cross—section can be seen in Fig. [C.Ip. Points were chosen to
guarantee nine nodes through the middle thickness upon refinement (five nodes before refinement),
with a slightly larger number of nodes along the radial direction.! The extra concentration of points
in the square—edge is necessary to correctly capture this region. The final coarse and refined lens
mesh are shown in Fig. the coarse mesh consists of 197 nodes among 752 tetrahedral elements,
the fine mesh has 1305 nodes and 6016 tetrahedra; more details on mesh creation are contained in
Appendix C. Each mesh is stored as a structure in a MATLAB file to be read as input for a given
problem.

Along with the positions of each node, the mesh structure also stores the connections between
nodes in a connectivity table. This is used along with surface equations to store the node numbers
belonging to each of the five lens surfaces: the anterior and posterior caps, the cylindrical side of
the square—edge, and the anterior and posterior annular square—edge areas. The positions of these
surface nodes in time are used to determine global deformation measurables at any time step, the
most relevant such parameter being the lens-power change ( In addition, the surface area of
each of the five lens surfaces is also determined by summing area contributions from each triangle
that defines the surface.

One method to determine the efficacy of our mesh is to compare the discretized volume—

1Although this results in several elements with aspect ratios larger in the radial direction than the thickness
direction, the elemental aspect ratios are still smaller than the overall aspect ratio.
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Figure C.1: The cross—section of the light-adjustable lens mesh at ® = 0 illustrating the internal
placement of nodal points. (a) The coarse mesh contains approximately five points throughout the
depth which, upon refinement (b), become nine points. The number of points in the radial direction
is approximately equal to the number of points through the thickness in both cases.
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(a) The coarse lens mesh contains 197 nodes and 752 elements. (b) The refined lens

mesh contains 1305 nodes and 6016 elements. Geometric parameters used are taken from Table

and illustrated in Fig.[6.1] A cross section of the nodes at ® = 0 is shown in Fig.

Figure C.2:
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Coarse Mesh | Refined Mesh | Exact

Initial Volume (mm3) 19.52 20.31 20.60
Anterior Area (me) 22.92 23.39 23.55
Posterior Area (mm?) 22.92 23.39 23.55
Square-Edge Annular Area (mm?) 10.19 10.39 10.46
Square-Edge Side Area (me) 7.49 7.53 7.54

Table C.1: Comparison of the initial volume and surface area to the exact value obtained through
geometry. The refined mesh has less than 2% error in the volume and less than 1% error in the
surface area.

calculated by adding up elemental volumes—with the exact volume calculated from geometry. Ta-
ble shows the results for the lens meshes used here: there is less than 2% error in the refined
mesh volume from the geometric value. We also compare the computational surface area to the
exact surface area to check the surface connectivities, and the errors for the refined mesh are all

found to be significantly less than one percent.

C.2 Procedure for Mesh Creation in MATLAB

1. Determine the smallest subunit of the mesh that cannot be broken down further by symmetry.
This smallest subunit will be called the base subset; the full mesh will be created by using

symmetry operations on this base subset.

2. Determine all the node positions for the base subset of the mesh structure. Although the
number of nodes created needs to be appropriate to the mesh density required, the base subset
can be slightly coarser (about 1/2 times) due to mesh refinement (done in Step 12 below).
For this thesis, all the node positions were determined by developing a discretization by hand
(with computational support to determine the actual values of the nodal points); see §C.2.1]
for details on creation of the lens mesh. More advanced programs can be used to create more

complicated meshes.

3. In MATLAB program “delaunay3.m” will use a simple Delaunay triangulation to determine
the optimal connectivity (formation of tetrahedra) between points. The input to delaunay3.m

are “x”, “y” and “z”, vectors of the X, Y, and Z coordinates of the points, respectively. The

output will be a list of sets of four node numbers that correspond to each tetrahedron.

4. Create two .txt files. The “nodes.txt” file needs to have each node number listed along with
the X, Y, and Z coordinate of that point (Cartesian coordinates), with each column separated
by a tab. The easiest way to do this is to paste the nodal positions into an Excel spreadsheet
and create an extra column with the node number out front. This can then be pasted into a

txt file. The “tetras.txt” file can be created by pasting the output of the delaunay3.m into
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Excel, putting the element number in front and then pasting the composite into the .txt file.
Create a folder for the nodes.txt and tetras.txt file with the name for the mesh.

Run InputMesh.m for this base subset, choosing first the “nodes.txt” file and then the “tetras.txt”
file just created when queried for input. A MATLAB-friendly structure for the mesh will be
created in the new folder called “mesh.mat.” One of the resultant fields for this mesh structure
is the structure “Volume” which has fields containing the volumes of all elements. Check to
make sure that the minimum volume (“Min” field) is not computationally zero. If the mini-
mum volume is too small, some of the tetrahedra created by delaunay3.m are slivers and need
to be removed manually from the tetras.txt file before proceeding; the ones that are slivers

can be found by expanding the “Elements” field of Volume structure.

If symmetry operations need to be run to mirror portions of the mesh, the data for the base
subset needs to be fed into the appropriate mirror function. There are currently four mirror
function programs, each which mirrors about a plane: MirrorXYPlane.m, MirrorXZPlane.m,
MirrorYZPlane.m, and MirrorYEqualsX.m. The output will be a set of the original points
as well as all the newly created points. In addition, the code will mirror the tetrahedral
connectivity and output a new list of all the elements, new and old. When mirroring points,
make sure that all points lie on one side of the mirror plane or else the result will include
tetrahedra within tetrahedra. The output to a single mirror step can be used as the input to

the subsequent mirror step.

Once all mirroring operations have been performed, create the two .txt files with all of the
nodes and tetrahedra included. These can replace the old ones or can be saved with different

names or in a different folder.

Once again, run InputMesh.m, choosing all of the new nodes.txt and tetras.txt files as input.
The mesh.mat structure created will store all the important mesh properties into a MATLAB-
friendly file in the same folder as the original nodes.txt and tetras.txt. The name of the mesh
will be the name of the containing folder. The parameters stored in this structure include the
reference configuration position for each node, the connectivity table, the mesh size and mesh
size statistics, the initial volume of each element, lists of connected pairs (and the distance
between them), a table of the node numbers of the neighbors for each node, the system length

scales, and the inverted M matrices used for the finite element code.

Discretize the mesh surface into a series of surface patches which can be represented by a single
equation. For each surface path you create, you will create a surface structure “S” that has

five fields:
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(a) S.f: the function handle to the “On” function which returns 0 if the node is not on the
surface and 1 if the node is on the surface. The current choices for the On function are:
@OnPlanarSurface.m, @OnSphericalCapSurface.m, @OnSphericalSurface.m, @QOnxyAn-

nularSurface.m, and @OnxyCylindricalSurface.m. In general, any surface can be created.
(b) S.Parameters: a vector of parameters used for evaluating the ”On” function.
(¢) S.Output: the name of the surface area for purposes of output.

(d) S.Eq: the equation to use when determining the midpoint between two points on the

surface. Current options are @SphericalAverage.m and @PolarAverage.m.

(e) S.EqParameters: the parameter list to use with the equation that determines the mid-
points along the surface. Once all the surface structures are created (which can be done
by creating a quick .m file), store all of those structures in “surfaces.mat,” a cell of surface

structures, and save it in the original folder of the mesh.

11. Run “SetSurfaces.m” and choose the mesh.mat file you just created as the input. This takes
the surfaces.mat file you created and appends the information to the mesh.mat file, including
determining the node numbers that are on a particular surface, as well as all the triangles that

fall along a surface (for purposes of calculating surface area).

12. Run “RefineMesh.m” on the mesh.mat that you just created. This creates a “refined mesh.mat”
file that has divided each tetrahedra into eight tetrahedra by adding midpoints along all the
sides. If the “SetSurfaces.m” step has been done correctly, the midpoints created from surface
points will also be stored as being on the surface. This refinement step is necessary for all
current applications: the refined mesh is used at short times to capture steep gradients in
chemical potential whereas a coarser mesh is necessary to guarantee convergence at longer

times.

C.2.1 Building the Full Lens

For images of lens geometry as well as a table of the appropriate parameters, refer to Fig. [6.1] and
Table [6.1] in §6.1]

Because the anterior and posterior radii are the same, our symmetry operations begin by splitting
the lens across the middle (symmetry about the XY -plane). We then divide the top section into
eight pie slices, taking one of the pie slices as the base subset. This corresponds to 1/16 of the actual
mesh. Note that the thickness direction of the lens is taken as the Z—direction and that the R and
© polar coordinates are associated with the XY —plane.

Table shows the base subset of points. All points were chosen keeping in mind that the mesh

would be refined. A cross—section illustrating the location of points at © = 0 (Y = 0, Nodes 1-13)
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X Y Z
1 0 0 0.6
2 | 1.368941 0 | 0.499461
3 | 2.708505 0 0.2
4 1 0.728193 0 | 0.421661
) 1.91327 0 | 0.252584
6 0 0 0.3
7 | 1.185538 0 | 0.224697
8 | 0.419572 0 | 0.140601
9 0 0 0
10 3 0 0.2
11 3 0 0
12 1 0 0
13 2 0 0
14 | 1.888608 | 0.782287 | 0.374293
15 | 0.967988 | 0.967988 | 0.499461
16 | 1.915202 | 1.915202 0.2
17 | 0.51491 | 0.51491 | 0.421661
18 | 1.352886 | 1.352886 | 0.252584
19 | 0.838302 | 0.838302 | 0.224697
20 | 0.296682 | 0.296682 | 0.140601
21 2.12132 | 2.12132 0.2
22 | 212132 | 2.12132 0
23 | 0.707107 | 0.707107 0
24 | 1.414214 | 1.414214 0
25 | 2.771639 1.14805 0.2
26 | 2.771639 | 1.14805 0
27 | 2.502332 1.0365 0.2

Table C.2: The base subset of points used to generate the full-lens mesh. These points were
obtained using the discretization scheme shown in Figure

is shown in Fig. . These points are replicated at © = 7/4 (Nodes 15-24), as demonstrated in
the top view (Fig. ) Three additional points were included at © = /8 to ensure that the lens
is well defined: Nodes 25-27, defining the square edge, and Node 14, which is just inside the surface

of the lens.

1. The first points (1, 2, and 3) define the anterior (and through mirroring, the posterior) surface
of the lens, located at radius of curvature R, from the center of curvature (not shown due
to scale). Node 1 is at the top of the lens, located at (0,0,tnq:/2); Node 3 is located at
(di/2,0,tmin). Node 2 is located on the surface half-way in between these two points, defined
by the spherical angle 5. This azimuthal angle is defined relative to the spherical coordinate

system located at the center of curvature of the lens.
2. The haptics are modelled with three nodes: Node 3 (just discussed) and Nodes 10 and 11.

3. The midplane is divided into four equally spaced points (Nodes 9, 11, 12, and 13).
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Figure C.3: Cross sections of the base subset illustrating the discretization method. (a) A side
view of the XZ plane illustrates that the lens has two main sections: the inner optical volume and
the outer square edge. The thickness of the lens in the middle is denoted hAmax and the thickness of
the square edge is denoted as hj,,. The radius of curvature of the anterior surface is denoted R,.
Three points are created through the thickness and four points along the radius. Points in between
the surfaces are modelled on surface of constant radius from the center of curvature.
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4. In order to capture steep gradients through the cross—section, we discretize three points through
the depth; with refinement, this will yield nine nodes through the depth (five total with the
mirror image, plus four more for refinement). Each of these points through the depth creates
a “shell”: a concentric spherical cap inside of the exterior spherical cap defining the top of the
lens. Label the shells from the top to the midplane with k&, & = 1 being the top shell. The
top shell (k = 1) is already defined, so we turn to the k = 2 shell. Nodes 4 and 5 are located
at spherical angles /4 and 33/4; we do not include a point along the Z—axis since this point
will appear with refinement. For k = 3, the axis point is included (Node 6 at t,,q./4) and
“mid—point” at 8/2 (Node 7). The final shell (k = 4) includes one point (Node 8) at /4.

Running these nodes through delaunay3.m yields the base subset connectivity table given in Ta-
ble (47 tetrahedra); visualization of this base subset is seen in Fig. This base subset is
mirrored across the Y = X plane using MirrorYEqualsX.m to complete 1/8 of the mesh. This 1/8
of mesh is then mirrored three times using MirrorYZPlane.m, MirrorXZPlane.m, and MirrorXY-
Plane.m, respectively, to complete the lens. Alternatively, these steps can all be completed in one
step by running “RunFullLens.m” using the base subset points. This program also initializes the
surfaces for the mesh based upon a lens mesh. Figure illustrates the lens output through these
operations. This is the coarse grain mesh used at long times. Running RefineMesh.mat on this

coarse mesh will generate the refined mesh.

Figure C.4: Visualization of the base subset for the full-lens mesh viewing from the origin

C.2.2 Creating Mesh Visualization in MATLAB
1. alpha( ) sets the transparency of the figure. The argument is between zero and one so that:

e (: transparent

e 1: completely solid.
2. Edit — Colormap — Tools — White will make the mesh black and white for printing.

3. Showaxes(‘hide’) will hide the axes
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14 | 18 | 16 | 24 | 14
15|18 | 15 | 16 | 14
16 | 3 | 27| 25| 26
17 3 | 27|13 | 11
1813 |5 |13 14
19 3 |27 |13 | 14
20 3 | 5 2 |14
21 120 17| 4 1
22 | 7 12| 4 |19
23| 7 |15 4 | 2
24 | 7 |15 4 |19
25| 7 112119 | 14
26 | 7 | 15| 2 |14
27 7 115119 | 14
28| 7 | 5 2 |14
29| 715 | 13| 14
30| 7 12|13 | 14
31| 8 20| 4 1
3216 | 8 20| 9
3316 | 8 20| 1
34123 8 | 12| 9
351231 8 |20] 9
36 | 23| 8 | 20| 17
37123 8 | 12| 4
38123 8 |17 | 4
39 123119 |24 | 14
40 1 23 | 12 | 24 | 14

41 123 |12 | 19 | 14
42 123 |17 4 | 19
43 123 12| 4 | 19
44 | 27 | 25 | 26 | 21
45 127 | 26 | 21 | 22
46 | 3 | 25| 26 | 11
471 3 |10 ] 25 | 11

Table C.3: The connectivity table generated by placing the base subset point locations (Table [C.2)
into the MATLAB delaunay3.m. Figure illustrates the mesh through MATLAB visualization
software.



Figure C.5: Tllustration of the mesh obtained by mirroring the base subset (Fig. [C.4)) about the
Y = X plane, then about the YZ, X7, and XY planes. This coarse-grain mesh is used to solve for
the long-time solution.

C.3 Interpolation

Consider the interpolation over a single, four-noded tetrahedral element within a mesh. We define
four spatial shape functions n,(x) over the tetrahedron (a = 1,2,3,4), each corresponding to one
of the four corner nodes of that tetrahedron, & marking the spatial location of any point within
the tetrahedron. These shape functions linearly interpolate the value of any variable within the
tetrahedron: they have a value of unity at the corresponding node and a value of zero at the other
three nodes: i.e., n,(@p,t) = dap, xp being the position of node b in that tetrahedron.

Finding the value of the shape function 7, at any internal point @ = (z,y, z) in the tetrahedron
is straightforward. Note that we choose to use Cartesian coordinates for the code computations even
though the lens admits itself to cylindrical coordinates. This serves only to simplify the resulting
governing equations, and the results are tranformed back into cylindrical coordinates for ease of

interpretation. Define mq,, mog, M3q, and my, for each shape function a such that
Na(T) = M1q + Maa + M3aY + Maa 2, (C.3.1)

the linear interpolating scheme of 7, being obvious. The interpolating values mg; can be determined

by making use of the orthogonality relationship for the shape functions 7, (@) = d4p. For the shape
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function corresponding to node a = 1, for example:

m(&1) =1 = mi1 +mar1x1 + ma1y1 + marz1
Mm(Z2) = 0 = mi1 + Mma1Z2 + M3a1y2 + Ma122 7 (C.3.2)
N (Z3) = 0 = mi1 + ma1x3 + ma1ys + Mmai 23
N (Z4) = 0 = m1y + ma1xs + M31ys + Ma124

x1 = (T1,y1,21), T2 = (T2,Yya2,22), etc., being the (known) locations of the corner nodes. This is a

system of four equations in four unknowns which can be solved by writing the matrix equation:

Tz =1 miy 1
1 xo y2 20 ma | 0 (C.3.3)
1 x3 y3 23 m3y 0
1wy ys 24 m41 0

There are three similar equations for the other three shape functions @ = 2, a = 3, and a = 4: all

four equations can be written compactly as

1 1 Y1 =1 mi11 ™Mo MM13 M4 1 0 0 O
1 x2 y2 20 Ma1 Mgz M3 Mag | 0100 1 (C.3.4)
1 x3 y3 23 msy M3z M33 M34 0010
1 xg ys 24 Myl Mgz M43 My 0001

I being the identity matrix. It is clear from this equation that the matrix of m values, mgp, is
simply the inverse of the first matrix in the above equation. The first matrix—which only contains
information about the nodal positions—then solely determines the interpolated shape functions m;.

It also provides a simple way to calculate the volume of the tetrahedron:

lzryn 21

1|1 22 y2 22
Vier = & . (C.3.5)

1 xs y3 23

1£E4 Ya 24

We call the matrix myg;, the spatial interpolation matriz .

Gradients in the shape function represent vectors that point directly at the node they are asso-
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ciated with. From ((C.3.1)), the spatial gradient of a shape function is given by

5] o
V’r]a = %L; = msa . (C.3.6)
OMa
87772 Myqa

Note that m1, does not appear in the gradient: interpolation of the gradient of general variables does
not require knowing the first row. We define the spatial gradient interpolation matriz, m},, as the
matrix mgp with the first row removed. As would be expected from the nomenclature, this matrix
interpolates gradients in a general variable, whereas the spatial interpolation matrix interpolates
actual values.

An example of a variable we wish to interpolate over the tetrahedron is the volume fraction of

macromer ¢. Let the value of the volume fraction at node a at a particular point in time be ¢, (¢).

The value of ¢ interpolated at a point x inside that tetrahedron at that time can be found through

4
$(@,1) =Y da(t)a(). (C.3.7)

At any one of the nodes (say b, for example), & = @y, 1,(xp) = dap, and ¢ = ¢;. Locations within
the interior of the tetrahedron have a volume fraction corresponding to a weighted average of the
corner node values depending on the respective shape function. This weighting is found by placing

(C.3.1) in the above equation, yielding an equation of the form

d(,t) = (M1ada(t)) + (M2a@a(t)) T + (M3ada(t)) Y + (Maa@a(t)) 2, (C.3.8)

where we have supressed summations in favor of using Einstein notation. A similar discretization

can be performed for any scalar variable, say the chemical potential p ([2.3.18]):
w@,t) = (Miapa(t)) + (M2apta(t)) T + (M3apa(t)) y + (Maapta(t)) 2. (C.3.9)

The nodal values of the chemical potential u, can be found from the nodal values of the volume
fraction and the conversion parameter, specified during the initial time step. From (C.3.9)), it is easy

to see that gradients in chemical potential can be written as

maqfa

V= | maqpia | (C.3.10)

Myqfla
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which can be written more compactly using the spatial gradient interpolation matrix:
Wi = Mg g (C.3.11)
These gradients in chemical potential drive the diffusion-based shape change.

C.3.1 Initialization

Using the interpolation specified above on a four—node tetrahedral mesh, the two-tiered solution
method proceeds as follows: At ¢ = 0, we specify the extent of reaction profile £(X). This profile
allows calculation of the initial values of the volume fraction of macromer ¢(X,t = 0) = ¢o(1—&(X))
and the conversion parameter §*(X) = 1 — (1 — &(X))¢o at each nodal point from the reference
position of that node. Specification of these scalar fields allows calculation of p(X) from .
The imposed profile therefore acts as an initial condition, creating gradients in chemical potential
throughout the mesh which will be relieved through diffusion. Specific extent of reaction profiles

will be illustrated in the studies below.

C.3.2 Diffusion Step

From Ch. 3, the equation for conservation of mass of macromer is (3.3.3)):

Doy,
—+V:-J,=0 C.3.12
Dt + ( )
where p,, is the density of macromer, ¢ is time, and J,;, = pp, (v, — v) is the flux of macromer.? In

keeping with the scaling analysis performed in Appendix B, the velocity is negligible for a generic

time step. Placing this simplification into the above equation yields

Opm

o =V I (C.3.13)

The flux is modeled as a gradient in chemical potential (4.3.24]):
Jm = —pDodViu (C.3.14)

with D being the diffusivity of macromer, assumed to be a uniform material parameter. Recall from

Ch. 4 that this definition for the flux ignores anisotropic deformation contributions because these

contributions are small for the deformations experienced in practice. Placing ((C.3.14) in (C.3.13)),

the equation is made dimensionless by defining the time scale for diffusion, 7, and the system

2As discussed in Ch. 3, we have set the reaction term to zero because reaction occurs significantly faster than
diffusion and we model the reaction as instantaneous at ¢ = 0.
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length scale, H; we take H as 1 mm for the lenses considered in Ch. 6 (Table . Time is made
dimensionless such that it varies from zero to one by using the time it takes macromer to diffuse
through the largest spatial dimension L: 7 = L?/D ; for the lens, L = d/2 = 3 mm (Table .
Denoting dimensionless variables with an overbar,

9 L

6—‘? =-1?V.J. (C.3.15)
Here we define the dimensionless largest spatial dimension L = L/H, and dimensionless flux J =
—¢Vu . This equation holds pointwise over the entire (dimensionless) domain of the object. From
here on, we drop all overbars and assume that all variables are dimensionless.

The variational form of our differential equation is found through interpolation over a
tetrahedron. This is equivalent to forcing the differential equations to hold from a volume-averaged
perspective rather than pointwise. In particular, consider a single node a with shape function 7,
defined in Multiplying by the shape function and integrating over a tetrahedron T

containing node a, we arrive at

/Gﬁ,madV:—Lg/ V- JnedV. (C.3.16)
T T

We use the subscript ,¢ to denote partial differentiation with respect to time and 7" to denote the

dimensionless domain of the tetrahedron. Integration by parts allows us to rewrite (C.3.16]

/ ¢ nadV = L? {/ J - Vn,dV — Ned - ndS] (C.3.17)
T T oT

with OT representing the surface of the tetrahedron. The surface integrals in will vanish
when we sum over all internal tetrahedra that contain node a: a tetrahedra that has a
contribution (7,J) - 7 on one face will have an equal and opposite contribution (7,J) - —n from the
adjacent tetrahedra which shares that same face.? For elements on the system boundary, however,
this term will depend upon the specific boundary conditions of the problem. The unique property of
our system—that material neither enters nor leaves—allows us to use the simple boundary condition
J-n =0 for all external surfaces. The summation of over all tetrahedra that contain node

a thus proceeds to

Z/ ¢,t77adv = L2 Z/ J- Vﬁad‘ﬂ (0318)
T T T’ T

with )", representing the sum over all tetrahedra that contain node a.

We now use an interpolation scheme to evaluate the above integrals. Using linear interpolation

3We have not yet approximated our solution with a discretization and, as such, the variables J and 1, are continuous
across tetrahedra.
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(§C.3), the integrals are approximated over a tetrahedra via first—order numerical quadrature:

T

Here, f(xp) is the function evaluated at nodal point b and |T| is the volume of the tetrahedron

evaluated from the nodal positions via (C.3.5). This approximation applied to the left—hand-side
integral of ((C.3.18]) yields

/ ¢,t77adv ~ (¢,tna)|.’131 + (¢,tna)|-’132 I (¢,t77a)|1133 + (¢,tna)|$4 |T| _ ¢,t(wa;t) . i|T‘ (0320)
T

To arrive at the second equality, we have again used the orthogonality of the shape functions:
Na(2p) = 0qp. The orthogonality is again used along with the linear interpolation for ¢ (C.3.7)) to
write ¢ (€4, 1) = da(t) (we use a superscript dot to denote time differentation when it is the only
variable). Since this variable is independent of position, it can be brought outside the summation in
(C.3.18)). We finish the discretization by approximating the time derivative with an explicit forward

Euler time step:

tm+1 - tm

Z/ GamadV =3 i(ba(t)|T’| ~ Paltmi) = daltm) iz | (C.3.21)
T’ T T’ T

with ¢,,41 being the current time step and ¢,,, being the past time step. We define At,,, = t,,41—1tm as
the change in the time step at time ¢,,,. The summation in represents an effective “volume”
of node a. This can be seen by conceptually dividing the mass of each tetrahedron evenly among
its four nodes. The mass of any given node, then, is a quarter of the masses of all the surrounding

tetrahedras:

1
ma = > T, (C.3.22)
T/

with p|T”| being the mass of any tetrahedra |T”| to which a belongs. Assuming the density of all
tetrahedra are the same (incompressible), it is easy to see that the sum in represents the
volume of the node. Nodes that are attached to more tetrahedra or larger tetrahedra will have a
greater “volume” than nodes that are attached to fewer or smaller tetrahedra.

We now consider the right—hand side of . In the linear approximation, gradients in the
shape function and chemical potential are constant over any given tetrahedron (see and
above). The dimensionless flux J = —¢$Vu can be made constant in any tetrahedra using the
constant chemical potential gradient and the average value of the volume fraction in the tetrahedron.

This simplification allows the right—-hand side of (C.3.18)) to be expressed as

L? Z/ J-VnedV =12 J(T') - Va(T)|T'| = L* > Jim},|T'], (C.3.23)
T /T

T T
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the last step following from the expression for the gradient of the shape function . The flux
at any point can be calculated easily from the gradient of the chemical potential. The summand
in represents the movement of macromer to or from a point in the tetrahedron T”. As
previously noted, the gradient of shape function a (represented by mj,) is a vector which points
directly at node a. Taking the dot product of the flux with this vector represents the movement of

material to or from the node, determined by the relative orientation of the vectors:
Ay = J;m},. (C.3.24)

The sum represents the net transfer of macromer volume to or from the node due to all nearby
neighboring elements: some depositing macromer and some removing macromer.

Placing both (C.3.21)) and (C.3.23)) into (C.3.18)) yield the implementation for the diffusion time

step, now explicitely written for node a:

ba(tma1) = da(tm) + L2Ath. (C.3.25)

12 T

The computational procedure of is as follows. First, the flux J is calculated in each tetrahe-
dra from the spatial gradient interpolation matrix m;, and the current chemical potential (C.3.11]).
Once all the fluxes are determined, the code can proceed tetrahedron by tetrahedron, evaluating
the change in volume fraction for each node as well as the volume of that element. The sums are
calculated for node a by adding the contributions from each tetrahedron to which a belongs, infor-
mation kept in the connectivity of the mesh. To guarantee computation proceeds correctly, we check
the total change in volume fraction summed over all nodes for a single tetrahedron: this number
should be zero for a single time step, as macromer must be transferred between nodes and cannot
be created or destroyed.

Once the diffusion step has updated the values of the volume fraction, the average volume fraction
is found in each tetrahedron using linear interpolation (§C.3|). These volume-averaged values are

used in calculating the system energy and forces which must be relaxed in the second computational

step: the deformation step.

C.3.3 Deformation Step

After a small amount of material has been transferred between nearby elements in a diffusion steps,
some elements will have more material than they began with and some elements will have less. This
leads to an aphysical situation: since the nodal positions have not yet moved, the incompressible
constraint [2:3.10] is not satisfied. These deviations in density are relaxed by displacing the nodes to

reduce a penalty assessed for density deviations. The penalty plays the role of free energy, leading
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to a psuedo—force on the nodes. To determine the new shape of the lens, these “forces” can be
relaxed, moving the nodal points in keeping with the forces so that elements that have gained
material increase in volume, whereas elements that have lost shrink. The numerical equivalent of
this involves determination of the forces acting on each node in an element and then summing those
contributions from all elements to which a given node is attached (§C.3.3.1). We then treat the
nodes as particles in a molecular dynamic simulation and calculate the displacement of the nodes
under the given forces via a velocity Verlet algorithm ( As previously mentioned, for the
small, elastic deformations considered here, the system is assumed to relax instantaneously at each
time step without a corresponding change in the volume fraction.

We seck to determine the spatial positions of each node in time x(X, t) (recall that each reference
position X is used to label a particular node). Using the linear interpolation scheme described above,

the spatial position of any reference point X = (X,Y, Z) at time t is given by x(t) = (z(t), y(t), 2(t)):

z(t) = k1(t) + k()X + k3(t)Y + k4(t)Z
y(t) = M) + A2 ()X + A3()Y + M\ (8)Z

z2(t) = () + 2 ()X +v3(t)Y + (1) Z. (C.3.26)

The mapping parameters k,(t), A\y(t), and v,(t) are functions of time only: these parameters are
spatially constant over any given tetrahedron in keeping with the linear interpolation scheme. Since
a tetrahedron is defined by four nodes, we can write the above equations four times—one for each

corner node 1, 2, 3, and 4—to yield the matrix equations

T _1 X1 Zl_ K1
T2 | 1 X5 Y Zo Ko
es | |1 XY Zs | | ks
T4 1 X4 Yy Z4 K4
Y1 1Xah 24 A1
y2 | |1 X2 Y2 2y A2
Y3 1 X3Y; Z3 A3
Y4 _1 X4 Yy Z4_ A4
21 1 X1 Y1 44 %1
SRR RN B (C.3.27)
z3 1 X3 Y3 Z3 V3
24 1 X,Y, Zy V4

with 1 = (x1,y1,21) being the spatial position of the corner node defining the tetrahedron labeled
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“1”, X5 = (X2,Y2,7Z2) being the reference position of corner node labeled “2”, etc. Note that
the middle matrices in the above equations are the same and are defined completely by the nodal
locations of the tetrahedron in the reference configuration. In fact, the determinant of this matrix

is related to the reference volume of any given tetrahedron by definition:

11X, Y1 74y
111 Xo Y5 Z

Votet = = 2 (C.3.28)
611 X3 Y3 Zs
1X4 Yy Z4

The inverse of this matrix, My, is reminiscent of the spatial interpolation matrix defined above. We

call M, the reference interpolation matriz which can be used to determine the xs, As, and vs for

any position of the nodes x4; = (%4, Ya, 24) through (C.3.27)
Ko = MayTs, Aa = Mgy, and e = Map2p. (C.3.29)

These parameters represent gradients in spatial points with respect to the reference positions and

therefore determine the deformation gradient ((C.3.26)):

K2 K3 K4
F'= |2 A3 M4 | - (C.3.30)
Vg V3 V4
Using (C.3.29)), this can be written as:

where M7, is M,;, with the first row removed (similar to m}, in the diffusion interpolation) and we use
index notation (repeated indices indicates a sum). This is the reference gradient interpolation matriz,
used to interpolate the deformation gradient. Note that F}; does not depend upon the translation
of the system (contained in k1, A1, or vq, (C.3.26))). This is in keeping with the deformation gradient
being translationally invariant.

At t = 0, the spatial nodes are located in the same position as in the reference, and F* = 1.
Future spatial positions will be determined by calculating the forces on each node and allowing
those forces to relax. The deformation gradient for the tetrahedra is then calculated from
using the current nodal positions x,; and the matrices M,,. The matrices M,,—unique for each
tetrahedron and determined by the reference—will be the same at all time steps and can be stored

upon creation of the mesh.
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C.3.3.1 Pseudo—Force Calculation

We treat the volume fraction of macromer as fixed during the deformation step. Recall, however,

that these two variables are mutually dependent by conservation of mass ([2.3.10)):

0

(C.3.32)
As the nodal points move to relax built up stresses in the deformation step, the volume of any given
element—evaluated from det F;;—will not generally satisfy the determined volume fraction field
(IC.3.32). We must therefore penalize such deformations in order to guarantee local incompressibility

(C.3.32)). Denote changes in tetrahedral volume beyond those due to imcompressibility as @Q;:
det F* = Q* Q- (C.3.33)

Clearly, we wish to force the material to deform in such a way as to enforce @y = 1 in keeping with
(C.3.32)). To capture this physics, we must then introduce a constraint on the energy that will be
minimized in the deformation step: deformations which produce deviations of Qs from one being
severly penalized. We take this penalty to be of the same form as the compressible extension to the

neo—Hookean model, used by other authors to enforce local incompressibility [27,[101]:
1
E(F*,¢) = A(F*, $) + 5Klm2 Qur- (C.3.34)

Here, E denotes the computational free energy per unit spatial volume, distinguished from the ther-
modynamic energy A(F*, ¢) by the constraint that has arisen purely from our computational
methodology. The computational constraint parameter K can be thought of as the (dimensionless)
bulk modulus of the material. The real bulk modulus for an incompressible material is infinite; for
computational purposes, we choose a large, yet finite, value of K. An appropriate value of K is one
which does not cause locking of material elements but also does not produce large changes in the
total system volume in time. For the meshes and materials considered here, an optimal value of
K = 2 x 10* has been determined which yields less than a tenth of a percent decrease in volume
in the final state. Larger values of K tend to lead to locking while smaller values of K yield larger
volume decreases. In order to insure rotation invariance, the computational energy must
also be rotationally invariant. Since our free energy A depends only upon the invariants of
the deformation gradient, this is guaranteed but was verified during programming.

The computational energy per unit volume can be used to calculate the computational
forces acting upon each node in a tetrahedron. These forces are aphysical because they are calculated
from a computational energy but can be thought of as acting upon each node to move it to

a position which will ensure that the energy is minimized at each time step. Each tetrahedron has a
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value of the deformation gradient F}; determined by the locations of its nodal points (C.3.31)); this
deformation gradient is piece—wise constant across tetrahedra. The components of the computational
force on node a associated with the movement of nodal points in a tetrahedron to which a belongs

are:

a(EVQ tet det F*)
Faa: = - .
0z,
F _ a(EV(Lmt det F*)
“ Wa
g, = OF Vovg; det F”) (C.3.35)

with F,, being the x component of the force acting on node a, F,, the y component and F,, the
z component. The factor Vj ;cr det F* = V,.; appears since I is defined per spatial volume. We can
write the equation more concisely by using index notation, subscript 7 again representing the spatial

dimensions x, y and z and subscript a still representing node numbers
(C.3.36)

Tq; being the ith spatial component of node a. As previously discussed, the volume fraction is held
fixed during the deformation step so the computational energy in (C.3.34)) is treated as solely a

function of the deformation gradient F*;. To evaluate the derivative in terms of F};, we use the

interpolation of F*; (C.3.31)):

0 0 aFj*J 9 X
) R (C.3.37)
so that
. O(EdetF*) |
Fai - 7V0,tet T;]MJQ' (0338)

Treating ¢ as constant when evaluating the derivative in (C.3.38]), the computational forces are:

Foi=—Voserdet Fiy [(E+ KInQu)F7 ' + a‘ﬁ] M3, (C.3.39)

i
The calculations of the net computational force on each node in the system proceeds as follows. First,
the nodal positions for each tetrahedron are used to interpolate the deformation gradient in that
element via . The energy and computational forces are then evaluated for
each tetrahedra using this calculated deformation gradient, the material parameters and the average
volume fraction in the element calculated after the diffusion step. Using connectivity tables, the net

computational forces on all nodes are found by summing the contributions to each node from all

elements to which it is attached. Since there are no external forces acting on the system, these are
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the net forces which can be considered to be exerted on each node and are used to determine the

movement of the nodes by the velocity Verlet algorithm.

C.3.3.2 Movement of Nodal Points Under a Force

The velocity Verlet algorithm determines the movement of a set of discrete particles under an imposed
set of computational forces by integrating Newton’s laws of motion in time. We analogously assume
each node in our mesh is a “particle” with an appropriate mass upon which forces are acting. To
determine the nodal positions in time, we can then integrate Newton’s laws of motion. A key
feature of our computation scheme simplifies the velocity Verlet algorithm from the full form used
in molecular dynamics: the instant relaxation of network strands. Computationally, this allows
the system to take as many relaxation steps as necessary before proceeding with another step of
diffusion. In addition, we do not need to specify the physics of relaxation because the resultant time
steps are all purely computational: as long as the computational forces are relaxed to the nearest
energy minima, the path taken to get there can be specified for ease of computation. Thus, there are
only two limitations on the size of this computational time scale. Too large a time scale can cause a
deformation in which tetrahedra have inverted or have otherwise degenerated from simplectic form:
the time scale must be chosen to yield movements which are a sizable factor smaller than the smallest
mesh size. Too small a time scale, on the other hand, will result in unnecessarily slow computation
time.

Because the deformation steps have no corresponding real time scale, we simplify the velocity
Verlet algorithm by specifying our system to be overdamped. This eliminates the possibility of
overshoot in determining the relaxed state at the current time step. The overdamped simplification
yields a linear relationship between the computational velocity of any node and the computational
force exerted on that node:

1
Vai = 5Fai (0340)

7 the overdamped friction factor. We use the term “computational velocity” to denote that v,; does
not represent a real velocity but rather the direction of movement of the node in computational time.
Since an equivalent computational acceleration is negligible for overdamped systems, the updated

nodal positions can be found directly from the nodal computational velocities through:
l‘ai(S + AS[\/[) = xai(s) + Vai ASas. (0341)

Here, s represents the (again aphysical) computational time scale used in the relaxation and Asyy is

the computational time step. The combination of (C.3.40]) and (C.3.41)) yields a single computational
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parameter used for the relaxation e = Asy/n:
AZgi = Xai (8 + ASpr) — Tai(s) = eFy;. (C.3.42)

For the meshes created here (with mesh size A,esn = 0.1), e = 8 x 1076 gives reasonably fast,
guaranteed convergence. To ensure choice of method does not affect the solution, a full velocity
Verlet algorithm was also programmed (treating acceleration proportional to force by the nodal
mass) and the relaxed nodal positions were determined to be the same. As expected, however, the
full form took more computational steps to relax because of overshoot. The overdamped algorithm
is deemed superior for computational use.

Finally, computational limits require a convergence criteria for the relaxation step. We choose to
relax the computational forces until the largest force (magnitude) in the system is below a certain
threshold, F},;. The computational energy E for several sample runs was tracked with deformation
step to determine an optimal value for Fj,. It was determined for a few trial runs that the com-
putational energy for K = 2 x 10* and e = 8 x 1079 continually decreased per deformation step
until a plateau with residual around Fj, = 0.1. Subsequent deformation steps result in negligible
changes in nodal positions, indicating that the system has converged. In addition, a sample reaction
profile was chosen and diffusion—deformation was run as a function of Fj,. The global deformation
output (measured in terms of changes in lens power, discussed below) was compared to Fyy: at
F;,; = 0.1, the global deformation did not vary significantly with Fy,;. We therefore take Fi,; = 0.1

as a convergence criteria for all of the runs illustrated in this thesis.

C.4 Outputs

The inputs to our computer code are a mesh (7 a list of material parameters and an extent of
reaction profile. Initialization involves relaxing the mesh (which can have small initial computational
forces due to mesh construction) and evaluating the volume fraction profile from the extent of
reaction profile ( As the computational diffusion and relaxation occurs, data is output at
logarithmically placed time steps. The data includes detailed information regarding the position
of each node at each output time as well as the nodal volume fraction and chemical potential. In
addition, global deformation parameters are also calculated. The total mesh volume is calculated
by summing the volumes of each tetrahedra (evaluated from the nodal positions using ) and
compared to the original volume determined during mesh construction (Table : the percent
change in volume is reported to determine how well conservation of volume holds. The surface areas
are also reported at each output time step as well as the total system energy, average volume fraction

and run time.
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C.5 Measurment of Local Curvature

For an arbitrary profile and an arbitrary number of surface points, a method has been developed
to measure Gaussian curvature at a node. This consists of summing the internal angles 3; of all
triangles that contain the node and comparing the value to 27 [102,/103|:

32— 5,6

RGauss = Zl Sz (0543)

Here 5; is the area of triangle ¢ and both sums are over all triangles that contain the node. Positive
Gaussian curvature is associated with a puckered configuration whereas negative Gaussian curvature
occurs at saddle points (note that kKgeuss = 0 for a planar surface). This is a particularly powerful
method and can be used to capture fine curvature along a surface [103]. This would be particularly
useful, for example, to measure astimagic and aspheric corrections in lenses under non—axisymmetric
extents of reaction. Current code implements this method although we do not report it for the

axisymmetric cases considered in Ch. 6.
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