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Abstract

Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave de-
tectors now make it possible to learn more about the collisions of compact astrophysical bodies. To
be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the
connection between the dynamics of pairs of black holes and their emitted gravitational waves. The
chapters of this thesis describe three approaches to learn more about the relationship between the
dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries
with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with
post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal
tendexes and frame-drag vortexes.

In Chapters 2-4, my collaborators and I present a method to quantify the flow of momentum in
black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the
formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell’s
theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing
motion of rotating black holes in the superkick configuration—equal mass black holes with their spins
anti-aligned and in the orbital plane—to the flow of momentum in the spacetime, prior to the black-
holes’ merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a
head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling
motion. Before they merge, the black holes move with a large, transverse, velocity, which we can
explain using the post-Newtonian approximation; as the holes merge and form a single black hole,
we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the
final black hole to its absorbing momentum density during the merger.

In Chapters 5-7, we discuss using analytical approximations, such as post-Newtonian and black-
hole-perturbation theories, to gain further understanding into how gravitational waves are generated
by black-hole binaries. Chapter 5 presents a way of combining post-Newtonian and black-hole-
perturbation theories—which we call the hybrid method—for head-on mergers of black holes. It was
able to produce gravitational waveforms and gravitational recoils that agreed well with compara-
ble results from numerical-relativity simulations. Chapter 6 discusses a development of the hybrid

model to include a radiation-reaction force, which is better suited for studying inspiralling black-
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hole binaries. The gravitational waveform from the hybrid method for inspiralling mergers agreed
qualitatively with that from numerical-relativity simulations; when applied to the superkick configu-
ration, it gave a simplified picture of the formation of the large black-hole kick. Chapter 7 describes
an approximate method of calculating the frequencies of the ringdown gravitational waveforms of
rotating black holes (quasinormal modes). The method generalizes a geometric interpretation of
black-hole quasinormal modes and explains a degeneracy in the spectrum of these modes.

In Chapters 8-11, we describe a new way of visualizing spacetime curvature using tools called
tidal tendexes and frame-drag vortexes. This relies upon a time-space split of spacetime, which allows
one to break the vacuum Riemann curvature tensor into electric and magnetic parts (symmetric,
trace-free tensors that have simple physical interpretations). The regions where the eigenvalues
of these tensors are large form the tendexes and vortexes of a spacetime, and the integral curves
of their eigenvectors are its tendex and vortex lines, for the electric and magnetic parts, respec-
tively. Chapter 8 provides an overview of these visualization tools and presents initial results from
numerical-relativity simulations. Chapter 9 uses topological properties of vortex and tendex lines
to classify properties of gravitational waves far from a source. Chapter 10 describes the formalism
in more detail, and discusses the vortexes and tendexes of multipolar spacetimes in linearized grav-
ity about flat space. The chapter helps to explain how near-zone vortexes and tendexes become
gravitational waves far from a weakly gravitating, time-varying source. Chapter 11 is a detailed in-
vestigation of the vortexes and tendexes of stationary and perturbed black holes. It develops insight
into how perturbations of (strongly gravitating) black holes extend from near the horizon to become

gravitational waves.
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Chapter 1

Introduction

To place the chapters of this thesis into context, I will briefly review the history, and the contributions
to the understanding, of the two-body problem in Einstein’s theory of general relativity in Section
1.1. T also discuss using gravitational-wave observations to learn more about space and time around
two nearby, strongly gravitating bodies in that section as well. The next part, Section 1.2, is a more
detailed overview of how the individual chapters of this thesis provide greater intuitive understanding

of the dynamics and the gravitational waves from binaries made of black holes with similar masses.

1.1 The Two-Body Problem in General Relativity and Its
Importance for Gravitational-Wave Measurements

1.1.1 A Brief Overview of the Two-Body Problem

While the two-body problem in Newtonian mechanics—computing the evolution of the centers of
mass of two gravitating objects—can be solved exactly and analytically, the equivalent problem
in Einstein’s theory of general relativity is much more complicated, and it is only within the past
decade that this problem has been solved numerically for strongly gravitating objects like black
holes and neutron stars (see, e.g., [1] for a review of black-hole binary mergers and [2] for a review of
neutron-star binaries and black-hole—neutron-star binaries). A brief comparison of the two theories
can help one argue why the Newtonian problem was considerably simpler than the Einsteinian one.
Newton’s theory relates the acceleration of the center of mass of the two bodies to the central
gravitational force; this relation is a differential equation for the center of mass, and its solutions
are conic sections (see, e.g., [3]). Einstein’s theory, however, replaces the idea of a gravitational
force in favor of treating space and time as a unified manifold called curved spacetime, and test
particles undergo nonuniform motion, because they follow geodesics (paths of minimal distance) in

spacetime (see, e.g., [4]). Moreover, bodies (or more generally, any distribution of stress-energy)



curve spacetime via Einstein’s field equations,
G =811y, (1.1)

the statement that the Einstein curvature tensor G, is proportional to the stress-energy tensor,
T, Although Einstein’s equations are written in a compact form, the simplicity of which is
comparable to Newton’s third law, they are a shorthand for a system of second-order nonlinear
partial differential equations for the metric tensor, g, , which encodes the proper distance between
two spacetime events, by

ds® = g, dz"dz” . (1.2)

In a self-consistent evolution, one would also need to evolve the fields that comprise the bodies in
the curved spacetime simultaneously with Einstein’s equations. Because of the complexity of these
evolution equations, it will not come as a surprise that the initial insights into the two-body problem
came from approximate solutions to these equations (as we describe below).

An important step in the history of the two-body problem in general relativity was made by
Einstein, Infeld, and Hoffman [5], who found equations of motion describing the evolution of any
finite number of point masses in what is now called the post-Newtonian (PN) expansion. After
the early work of Einstein, Infeld, and Hoffman, Chandrasekhar [6] formulated the complete first
post-Newtonian (1PN) expansion of Einstein’s equations for fluid sources, as an expansion in inverse
powers of the speed of light. Chandrasekhar’s work proved to be an important contribution for
developing an astrophysical understanding of the two-body problem. For many astrophysical objects,
this approximation describes the spacetime around these objects very well (although visualizing the
spacetime curvature remains a challenge). There are compact astrophysical bodies, in particular
for black holes (the subject of this thesis), that have sufficiently large spacetime curvature that this
approximation is poor close to the centers of these bodies. Interestingly, the principle of effacement
(see, e.g., [7]) argues that as long as the bodies are sufficiently far apart, their internal structure
does not effect their equations of motion or their spacetime metric far from the bodies; therefore,
the PN approximation holds away from the centers of any types of bodies (compact or not, though
it is only valid close to the bodies for non-compact objects). The post-Newtonian expansion has
been subsequently generalized to higher orders (see, e.g., [8]), and, with these developments, one
could understand strongly gravitating bodies with even smaller separations, and one could delve
even closer to the strongly gravitating bodies.

The post-Newtonian approximation, while useful in a large volume of the spacetime, is not the

optimal expansion when examining the spacetime close to the members of the binary (particularly

IWe follow the conventions of [4] for the metric and curvature quantities in this thesis, and we use geometrized
units in which G = ¢ = 1. We will also use Greek indices to denote spacetime indices, Latin indices to denote spatial
indices, and 0 to denote the time-like index.
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when the masses of the two bodies are comparable) or when the ratio of masses of the smaller and
larger compact bodies is small. For this extreme-mass-ratio binary, in particular, it is more accurate
to start with the spacetime of the larger compact object. Astrophysical observations (see, e.g., [9]
for a review of the observational evidence) suggest that the larger object will be a supermassive non-
rotating Schwarzschild black hole [10] or a rotating Kerr black hole [11]. The spacetime of the binary
can be approximated by perturbations of the larger object by the smaller (see, e.g., [12, 13, 14, 15]
for a Schwarzschild black hole and [16] for a Kerr black hole). One can even calculate the back
reaction of the particle on itself—a problem often referred to as the gravitational self force—which is
well understood theoretically and is beginning to be used in practical calculations (see, e.g., [17] for
a review of the self-force problem). Because this problem is quite well understood, in this thesis we
will focus on binaries with compact objects of comparable masses. One can again use perturbation
theory of the compact objects (Schwarzschild and Kerr black holes in this thesis) to describe the
tidal effects of one object on the other (see, e.g., [18]). As with the PN expansion, this approximation
becomes inaccurate when the compact bodies are separated by too small a distance.

Unlike the instantaneous force of Newtonian gravity, changes in the curvature of spacetime occur
at the speed of light. An interesting phenomenological consequence of this fact is that is that
the curvature of spacetime itself can propagate like a wave and, like all other waves, can carry
energy, momentum, and angular momentum (see, e.g., [4]). Any accelerating massive body will
generate gravitational radiation, and, in a binary, the two bodies will gravitationally attract one
another implying (in the absence of other overwhelming forces) that the two bodies must accelerate,
and, therefore, radiate. Unlike in Newtonian gravity, which allows two bodies to stay on eternal
elliptical orbits or perfect hyperbolae, even in an equivalently idealized two-body problem in general
relativity, the orbits of these bodies must change. Furthermore, for gravitationally bound bodies,
emitted radiation tends to drive the binary into circular orbits (originally shown by Peters and
Matthews [19, 20]), and the separation of the circular orbits will decrease at an ever increasing rate
as the members of the binary draw closer. The emitted gravitational radiation is important for
inferring information about astrophysical compact binaries, as I will discuss later.

For bound, compact objects, there are no physical processes expected to oppose this dissipation
from emitted gravitational waves, and eventually the members of a compact binary will reach a
separation where no approximation that has been developed to date describes the spacetime very
precisely. Not long after, the binary’s bodies will themselves collide at some point, often called the
merger. For black holes, Hawking [21] showed that their areas must always increase; therefore, the
product of a merger of black holes must itself be a black hole. Furthermore, the no-hair theorem [22,
23, 24, 25, 26, 27] suggests that the product of this merger must itself settle into, generically, a Kerr-
Newman black hole. Recently, numerical solutions of Einstein’s equations by several independent

computer codes (see, e.g., [1] for a review) confirmed this intuitive argument when they discovered
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that there is a brief stage during which the compact objects orbit close to one another, followed by
the two black holes relaxing to a Kerr black hole [28, 29].

Again, unlike in Newtonian mechanics, the two-body problem for gravitationally bound bodies in
general relativity will ultimately result in a one-body problem after the two objects merge (though
for non-compact objects, this may be an exceedingly slow process). Focusing again on black-hole
binaries, after the short phase around the merger of the holes, one can then use perturbation theory of
Kerr black holes to describe the spacetime after merger quite accurately. A summary of the different
approximations one can use at different times in the evolution of a comparable-mass, black-hole
binary is shown as a schematic in Fig. 1.1.

The comparable-mass binary in Fig. 1.1 highlights the fact that much of the spacetime can be
reasonably approximated by some combination of series expansions, though there is a spacetime
region around the black holes near the time of merger that is only accessible to numerical solutions
of Einstein’s equations (called numerical relativity). At the same time, however, it is often difficult
to connect the different analytical approximations in the different spacetime regions, so as to make
a cohesive picture of the two-body problem for compact objects. Numerical-relativity simulations,
however, give this coherent description of the spacetime, but they are still computationally expensive,
and they can be challenging to interpret. Thus, one can envision (at least) two ways to gain
insight into numerical-relativity simulations of compact binaries: (i) one can find or invent simpler
quantities that capture the essential elements of the dynamics of the simulation; these quantities can
be compared to similar ones from (approximate) analytical spacetimes to aid their interpretation,
or (ii) one can make simplified analytical models with fewer features and regions than those shown
in Fig. 1.1, but whose dynamics can be checked against those of numerical-relativity simulations; in
turn, if the simplified analytical model works sufficiently well, then the analytical model can serve
as an effective description for the exact numerical-relativity dynamics (to the accuracy to which the
comparison holds). Ideally, the two approaches would influence one another (e.g., the simplified
quantities used to explore numerical simulations could inspire simpler analytical models directly).

There have been several other methods proposed of both the former and the latter types that
aim to understand properties of numerical-relativity simulations. A few methods that follow the
former principle are the correlated screens of Rezzolla et al. [30, 31, 32|, the theory of dynamical
horizons (see, e.g., [33] for a review) and other quasilocal spacetime objects (see, e.g., [34] for a
review); methods that follow the latter idea include the close-limit approximation (see, e.g., [35, 36])
and the effective-one-body method (see [37, 38] for its initial formulation). Nevertheless, there is no
definitive way to perform one or the other ways of interpreting the simulations. Chapters 2—4 and
8-11, therefore, present new proposals for understanding collisions of compact binaries that follow
the first approach, labeled (i) above, and Chapters 5-6 describe a new method to approach (ii).
Before discussing the details of these chapters in Section 1.2, I will briefly describe why the merger
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Figure 1.1: A schematic of when and where one can use different approximation techniques to de-
scribe the spacetime of a comparable-mass, black-hole binary (not drawn to scale). Top-left panel: A
widely-separated binary, early in its evolution. Post-Newtonian (PN) theory is a good approximation
for most of the spacetime, except near the black holes, where the spacetime is approximated better
by black-hole-perturbation (BHP) theory of a tidally perturbed black hole. The two approximations
are both valid in the vicinity of the dashed, blue circles surrounding the black holes. Top-right panel:
The members of the binary move closer at later times, and there begins to be a region where neither
PN nor BHP theories work well (between the larger oval and the circles around the black holes)
that only numerical-relativity (NR) simulations can accurately describe. Post-Newtonian theory re-
mains valid outside the red, dotted oval, and black-hole-perturbation theory is a good approximation
within the circles. Bottom-left panel: The two black holes are now so close to merging that there no
longer is a region where black-hole-perturbation theory is valid close to the holes. Far enough away
(outside the oval) spacetime can again be approximated by post-Newtonian theory or, arguably,
black-hole-perturbation theory (see Chapters 5 and 6). Bottom-right panel: The black-hole-binary
problem ends in a state that can be described by black-hole-perturbation theory everywhere and,
ultimately, a stationary black hole.
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of two compact objects is an important source of gravitational waves, and what one might learn

from this signal.

1.1.2 Gravitational-Wave Measurements from Compact Binary Sources

Because a binary made of compact objects will radiate gravitational waves, there is the possibility
to detect these waves, and thereby learn information about the binary and its spacetime dynamics.
The detectors leading the search are the ground-based, gravitational-wave observatories, LIGO and
VIRGO, whose basic principle of operation is detecting tiny (as small as 10718 m) differences in the
arm lengths of the two orthogonal arms of the kilometer-scale Michelson interferometers (see, e.g.,
the review [39]). Their peak sensitivity is at several-hundred Hertz, which is ideal for measuring the
gravitational waves from the late stages of two neutron stars inspiraling prior to their merger, or for
finding the waves from the last orbits, the merger, and the ringdown of two black holes with masses
approximately ten to one-hundred times the mass of the sun (see, e.g., the review [40] for a more
complete description of sources of gravitational waves). Because the displacements are so small,
one must use careful data-analysis techniques to extract the signal from the noise—specifically, one
can use matched filtering, which requires a precise knowledge of the gravitational waveform (the
review [41], e.g., contains a more complete description of data analysis techniques). The number of
waveforms needed to search through the data to find gravitational waves is quite large; it is greater
than the number of numerical-relativity simulations that can run in time for the advanced LIGO
experiment. At the same time, however, the gravitational waves come from a time in the binary’s
evolution that only numerical-relativity can accurately study.

Putting the several premises above together, one can now see why developing a simplified, but
accurate, analytical understanding of the two-body problem is a pressing issue: to be able to generate
a sufficient number of gravitational waveforms to use to detect gravitational waves in current experi-
ments, one will need to use simplified analytical models that capture the necessary nonlinear aspects
of general relativity that are carried in the gravitational waveform. Deeper analytical understanding
of the two-body problem (for compact binaries) is an important aspect of the search for gravitational
waves. As a result, there has been some important work in this direction, including, for example, the
analytical methods discussed in Section 1.1, the effective-one-body method fit to numerical-relativity
simulation (see, e.g., [42, 43, 44, 45]), and the phenomenological frequency-based methods [46, 47].
Nevertheless, there is plenty of room to continue to develop new and simpler models that help one
understand the two-body problem in general relativity.

It is also of interest to see the degree to which gravitational-wave observations can reveal prop-
erties of the spacetime. For compact binaries where one object is significantly more massive than
the other, Ryan [48] showed that one can, in principle, extract the spacetime geometry of the larger

object from measurements of the gravitational waves (this result was also generalized by Li and
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Lovelace [49]). There is no equivalent procedure for comparable-mass, black-hole binaries, but it is
possible to infer the masses, spins, distance, and location in the sky from gravitational-wave mea-
surements for these binaries. Thus, one will need to use a combination of numerical and analytical
methods to understand the dynamics of the binary corresponding to objects of those masses and
spins. As I describe in the next section, this thesis presents three ways that one might realize this

idea.

1.2 Methods to Understand the Dynamics of Compact Bi-

naries in This Thesis

The next ten chapters of this thesis describe three approaches to understanding the dynamics and
spacetime of black-hole binaries. The first method uses the Landau-Lifshitz formalism to explain the
gravitational-wave recoil of certain black-hole binaries. The next set of approaches are analytical: the
one aims to show that much of the dynamics and waveform of black-hole binaries can be understood
using only post-Newtonian and black-hole-perturbation theories; the other shows that the oscillations
of a black-hole spacetime after merger has a simple description in terms of motion around the
unperturbed black hole. The third method describes a way to visualize the spacetime curvature
with constructions that are analogous to the field lines of electromagnetism, though they have a

very different, yet simple, physical interpretation.

1.2.1 Understanding Momentum Flow in Black-Hole Binaries

This section introduces a formalism for quantifying the flow of momentum in black-hole binaries. The
four parts of this section describe the inspiration for investigating this problem, a description of the
challenges with using such a method, and the results of applying this method in the post-Newtonian

approximation and in numerical-relativity simulations.
1.2.1.1 Black-Hole Kicks as the Motivating Factor for Studying Momentum Flow

The method for understanding black-hole dynamics described in Part I (Chapters 2-4) of this the-
sis had, as its origin, the goal of explaining the large gravitational-wave recoils that arise during
the merger and ringdown of black-hole binaries. The idea of a gravitational-wave recoil was first
discussed in general terms by Peres [50], and was later considered in gravitational collapse by Beken-
stein [51] and in binaries by Fitchett [52]. The recoil (often called the kick) occurs when a binary
asymmetrically emits gravitational waves at the time of merger. The gravitational waves carry en-
ergy, momentum, and angular momentum away from the final merged black hole, and, consequently,
when the emission is asymmetric, the final black hole will move with a velocity equal to the negative
of the gravitational wave’s momentum divided by the black hole’s mass. In numerical-relativity

simulations, black-hole kicks were first explored from the collision of unequal-mass black holes, and



8

the largest kicks were found to be only at most a thousandth of the speed of light (first explored in
detail by [53, 54, 55] for non-spinning black holes). Interestingly, much larger kicks—approximately
one hundredth of the speed of light—were found for rotating black holes, whose axes of rotation were
anti-aligned, and which pointed in the plane of orbit [56, 57]. The configuration of the binary that
led to this large recoil was often called the superkick merger (see Figs. 3.1 and 3.2). Subsequently,
even larger kicks were found if the black holes’ spins were somewhat aligned with the orbital angular
momentum [58]; these large kicks could have testable astrophysical consequences [59].

In Part I, my collaborators and I were interested in understanding the dynamics of the superkick
configuration and similar black-hole mergers. Specifically, there were two features of the merger that
we aimed to understand: (i) prior to the collision of the black holes, the two holes (and hence the
orbital plane) bobbed along and opposite the direction of the angular momentum sinusoidally and
simultaneously during each orbit, and (ii) during merger, the two black holes combine to form a
single black hole, and this hole gets kicked along the axis of angular momentum, and the magnitude
(and direction) depends sinusoidally on the angle between the separation of the black holes and
their spin axes near the time of merger. We were interested, in particular, in understanding how
the bobbing motion related to the kick of the merged black hole. Although Pretorius [60] offered an
explanation for how the kick is produced, his proposal did not describe the nature of the transition
from the bobbing to the kick at the level of detail that we were hoping to find. We were more
interested in how the momentum contained in the gravitational field extended from near the black
holes to near infinity (where it is carried by the gravitational waves). As a result, we proposed a
way to connect the momentum of the gravitational field to those of the holes. There is a subtlety in

doing this, however, that we discuss in the next part.
1.2.1.2 The Challenge of Studying Momentum Flow

While there is a well-defined notion that the gravitational field contributes to the momentum density
of a system, as was famously noted in the textbook on relativity, Gravitation, “Anybody who looks
for a magic formula for ‘local gravitational energy-momentum’ is looking for the right answer to
the wrong question” [4]. The intuitive reason that gravitational momentum density cannot be
localized is that, by the equivalence principle (see, e.g., [61]), one can find a reference frame in which
locally, there is no gravitational field and no gravitational momentum density. As a result, any
way of describing a local energy-momentum of the gravitational field must rely upon some auxiliary
structure with respect to which the energy-momentum must be measured. A common way to do
this is to introduce an auxiliary flat metric, and to define a stress-energy pseudotensor from the full
spacetime metric with respect to the flat metric. This does not uniquely define a pseudotensor, but
there is a common choice, called the Landau-Lifshitz pseudotensor [62, 4], that is quadratic in the

Christoffel symbols, and that produces a well-defined energy and momentum in the asymptotically



flat part of any spacetime [4].

The Landau-Lifshitz pseudotensor, ] is defined from the superpotential,
H'Y 5 = (g9 — g"g"") ap = 167(—g)(T" + t17) (1.3)

where (—g) is the determinant of the covariant components of the metric, g** = \/—gg"" is the metric
density, a comma denotes a derivative with respect to the Cartesian coordinates of the auxiliary flat
metric, and T#” is the stress-energy tensor of the matter sources in the spacetime (which vanishes
for a black-hole binary). In an asymptotically flat spacetime, the surface integral of the divergence
of the superpotential defines a momentum in the asymptotically flat region of the spacetime through

the expression

1 20
pﬁot = 16—7T f; H" OJ,adzj ) (14)

where S is a sphere of a very large radius in a slice of constant time. For a spacetime without
black holes, one can use Gauss’s law to show that the above expression is equivalent to a volume
integral of the momentum density throughout the spatial slice. To define a black-hole momentum,
we will promote the equation above to a quasilocal quantity (see, e.g., [34]) by defining a black-hole
momentum to be an equivalent surface integral on the event horizon (or the apparent horizon) at a
given time,

1 )
by =—— ¢ H'Y ,d%; 1.5
PBu 167 ‘é_‘ ) 7 ( )

where H is the event horizon surface at a fixed time. If we define the field momentum as an integral

over the region outside the horizons and within the large sphere S (denoted by V) by

0
Phield = /V(—g)t’ﬁp (1.6)

then by Gauss’s law one has momentum conservation,

Plot = PBu + Phicld - (1.7)

As a result, the Landau-Lifshitz pseudotensor does have some desirable features: it defines the
momentum of the system in the asymptotically flat portion of the spacetime, and it allows one
to define quasilocal black-hole momenta and field momenta that satisfy a conservation law. The
possible flaw of this approach is that the Landau-Lifshitz formalism relies upon an arbitrary mapping
between the physical metric and the auxiliary flat metric, which could introduce a great amount of
arbitrariness to the results. To explore the degree of this ambiguity, we compute the pseudotensor
in the first post-Newtonian approximation, and we found that it has useful intuitive power there,

because it resembles the Poynting vector of electromagnetism. When applied to the early stages of the
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superkick configuration, the Landau-Lifshitz formalism could explain the bobbing. We then turned
to numerical-relativity simulations using different coordinate conditions, and we found qualitatively
similar behavior in the different cases. We will describe these results in greater detail in the next

two parts of this section.
1.2.1.3 Momentum Flow in the Post-Newtonian Approximation

It has been known for many years that the post-Newtonian approximation to Einstein’s field equa-
tions of general relativity could be written in a way that closely resembles Maxwell’s equations of
electromagnetism. This was done first by Forward [63] in the linearized, slow-motion approxima-
tion, and by Damour, Soffel, and Xu (DSX) [64, 65, 66, 67] for the complete 1PN approximation
for arbitrary bodies). Less well known, however, was the fact that the Landau-Lifshitz pseudotensor
can be written in a way that closely resembles the stress-energy tensor for the electromagnetic field
(though, it can, in principle, be extracted from the results of DSX or Pati and Will [68]).

One purpose of Chapter 2 of this thesis (work performed in collaboration with Jeffrey D. Kaplan
and Kip S. Thorne and published in Physical Review D [69]) is to review and specialize the results of
DSX, so as to make their complex formalism more accessible. In particular, we restricted our results
to perfect-fluid sources and to compact bodies characterized by only their masses and spins. The
other is to compute the Landau-Lifshitz pseudotensor in the first post-Newtonian approximation.

We found that the momentum density and the stress tensor can be written as

, 1 3 .
0
(—g)tire; = _Eg x H + EUNg , (1.8)
(o)t = (00— $0ongn) + (i, — L0y HHy) — 0%, (19)
LL 4TI 97 167 7o 87 70

(Egs. (2.16a) and (2.16b) of Chapter 2), where g is the gravitoelectric field (gradient of the 1PN
generalization of the Newtonian potential), H is the gravitomagnetic field (curl of the gravitomag-
netic potential), and Uy is the Newtonian potential. Aside from two terms involving the time
derivative of the Newtonian potential, and the coefficients of proportionality, the momentum den-
sity is identical to the Poynting vector, and the stress tensor is analogous to Maxwell’s stress tensor
in electromagnetism. Thus, although there still exists some arbitrariness in the map between the
coordinates of the first-post-Newtonian approximation and those of the auxiliary flat space, the
Landau-Lifshitz tensor, nevertheless, takes a form that has great intuitive power, because of its
strong similarity to the stress-energy tensor in electromagnetism. We were encouraged, therefore,
to use the Landau-Lifshitz formalism to study the superkick merger.

Before discussing this, however, I will briefly comment on my specific contributions to that
chapter. I checked many of the 1PN calculations, and ensured that the results were written in

a consistent notation throughout the paper. I also derived the Landau-Lifshitz tensor, checked
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the statement of energy conservation in the approximation, and computed the geodesic equation. I
contributed to the writing, editing, and the review of the paper when it was accepted for publication.

In Chapter 3 of this thesis (research done in collaboration with Yanbei Chen, Drew G. Keppel, and
Kip S. Thorne and published in Physical Review D [70]) we applied the Landau-Lifshitz formalism
of Chapter 2 to study the superkick configuration. We showed that when the holes are far apart,
as they orbit each other their Landau-Lifshitz momenta will simultaneously bob perpendicularly
to the orbital plane. During each cycle the Landau-Lifshitz momentum density redistributes itself
in such a way that the total Landau-Lifshitz field momentum is exactly balanced the black-holes’
momenta. Interestingly, we also found that the definitions of the momentum in the harmonic-gauge
post-Newtonian equations and of the Landau-Lifshitz momentum differ, but the difference amounts
to only an overall factor of two-thirds.

Because we used the post-Newtonian approximation, we could not understand the dynamics of
the binary around the time of merger; consequently, we could not compute how the momentum
near the black holes related to the momentum carried by the gravitational waves. At the same
time, however, we saw that the Landau-Lifshitz formalism was quite useful for gaining intuitive
understanding of the dynamics of the superkick configuration prior to merger, and we noted that
it gave semi-quantitative agreement in terms of the amplitude and velocity of the bobbing motion.
We, therefore, decided to apply the technique to numerical-relativity simulations of colliding black
holes, which would allow us to make a connection between the momentum near the black holes and
the gravitational-wave kick. These numerical-relativity simulations are the subject of Chapter 4.

Before discussing them, however, I will again note my specific contributions to Chapter 3. My
most direct contribution was that I performed the calculations in the three appendices and I wrote
those three sections. I also computed the Landau-Lifshitz momenta in the text, made the figure of
the Landau-Lifshitz momentum density, and checked over the more formal calculations in the latter
half of the paper. I did some writing and editing throughout the paper, and I again reviewed the
paper before it was published.

1.2.1.4 Momentum Flow in Numerical-Relativity Simulations

The culmination of our work involving the Landau-Lifshitz formalism is in Chapter 4 of this thesis,
which describes research completed in collaboration with Yanbei Chen, Michael I. Cohen, Jeffrey
D. Kaplan, Drew G. Keppel, Geoffrey Lovelace, Keith D. Matthews, Mark A. Scheel, and Ulrich
Sperhake (and which was published in Physical Review D [71]). In this chapter, we performed
a numerical-relativity simulation, not of the superkick merger, but of a simpler, though similar,
configuration of black holes: an equal-mass, head-on collision of two black holes with spins that
are transverse to the head-on motion but anti-aligned (see Fig. 4.1). This configuration of black

holes gets a kick that is significantly smaller than the superkick, but is dynamically similar to the
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superkick (i.e., it comes from an asymmetry in the gravitational waves that is induced by the spin
of the black holes, and it is in a direction that is perpendicular to the separation and the spins of
the holes). Consequently, this head-on collision is a simpler test-bed to explore the mechanisms that
generate these non-planar kicks than the longer and more complex superkick configuration.

The dynamics of the Landau-Lifshitz momenta of the black holes were quite rich. As the two
holes fell toward each other, they also dragged each other in the direction perpendicular to the plane
defined by their spins and separation. The post-Newtonian approximation predicted this behavior,
and for the simulations that started at large separations, the agreement of the numerical-relativity
and post-Newtonian momenta were quite good. Only around the time of the merger, when the
transverse speed of the black holes neared one-hundredth of the speed of light, did they begin to
disagree. At merger and during the subsequent ringing of the black hole as it settled down, the
numerical-relativity simulations showed that the (now merged) black hole reversed its direction and
settled to a small speed in the opposite direction of its motion during infall; moreover, the hole’s
final velocity agreed with the kick that one computes from the emitted gravitational waves. We
interpreted the change in direction of the black hole to be a result of the hole engulfing momentum
density in the surrounding region space as its horizon expanded and oscillated during and after
merger. We performed simulations using the two major classes of coordinate conditions commonly
used by numerical-relativity codes, and the results agreed quite well; we therefore argued that the
formalism should be useful for building qualitative understanding of the dynamics of binaries.

My contribution to Chapter 4 came primarily in comparing the post-Newtonian trajectories and
momentum density to the equivalent quantities from the numerical-relativity simulations, and in
writing in that section. I also wrote the review of the Landau-Lifshitz formalism in that chapter.
While I did not run the simulations that are published in the paper, I did run some additional
simulations that were not included. As with the other papers, I contributed to the writing and

editing in various other parts, and I helped to review the paper during the proofing stage.

1.2.2 Approximating the Inspiral, Merger, and Ringdown in Black-Hole

Binaries

This part describes the chapters in this thesis that use analytical methods to make simplified and
more intuitive descriptions of more complicated phenomena in general relativity. It begins with a
review of the standard approximation techniques used in general relativity and of several variations
on these well-known techniques. Then, the next part (a summary of Chapter 5) describes a method
that uses just post-Newtonian and black-hole-perturbation theories to capture much of the dynamics
and the waveform of head-on collisions of black-hole binaries. The portion afterward, summarizing
Chapter 6, describes a generalization of this method to treat inspiralling black-hole binaries. Finally,

the last part, relating to Chapter 7, sets forth a geometric description of high-frequency black-hole
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quasinormal modes in terms of geodesic motion near the region of unstable spherical null geodesics.
1.2.2.1 Approximation Methods in General Relativity

Although Section 1.1 introduced the approximation techniques commonly used to describe the space-
time of a black-hole binary, it will be useful to discuss these methods—post-Newtonian and black-
hole-perturbation theories, in particular—in more detail. This will help to explain how these approx-
imations are typically used, and how they have been generalized and modified to better approximate
the waveform and dynamics of binaries; in turn, this will help to put the methods of this thesis in the
context of other analytical approaches. Most importantly, it will point out that with a few exceptions
(see, e.g., [72, 73, 74]) each approximation is typically used individually at a given time, because
it can be difficult to match the spacetime description of different approximation methods. This
gives a compelling reason to develop simplified analytical models of the dynamics and waveforms of

binaries.

The Post-Newtonian Approximation The post-Newtonian approximation is a series expansion
for the metric (about flat space) for bodies that move with small velocities. The series has currently
been computed to include seventh-order powers of the velocity, usually denoted by 3.5PN order
(see, e.g., the review by Blanchet [8]). Computing the metric for a given distribution of stress
energy can be difficult in practice, but the outline of the procedure (usually called the nonlinear, or
post-Minkowskian expansion) can be summarized in a few steps: (i) choose harmonic coordinates

W, = (g" =) =0, (1.10)

)

where n*¥ is a flat, Lorentz metric, (ii) write the Einstein field equations as
O = =167 (—g) (T + t57) + (W gh"? o, —h* 45h*P) (1.11)

where [ is the flat-space D’Alembertian (wave) operator, (iii) solve the equation iteratively by
inverting the wave operator for the next-order piece in terms of the lower-order nonlinear terms on
the right-hand side. Even for the simplest sources (point particles) solving for the metric in this
expansion is computationally quite difficult (see the review [8] for the details about inverting these
operators). Because the metric has been computed to 3.5PN order for point particles, the explicit
expressions for the spacetime metric can be used for a variety of calculations (e.g., computing the
waveform for LIGO data analysis [41]). When applied to binary systems, the post-Newtonian metric
perturbation is usually used both to compute the trajectories of the bodies and the gravitational
waves that they produce. The post-Newtonian approximation is used throughout the entire space
up until a time when bodies are sufficiently close and moving sufficiently rapidly that the series

becomes inaccurate; at this point, other approximation methods are used instead.
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Black-Hole-Perturbation Theory One can, in principle, solve for the metric of a perturbed
black hole using a procedure analogous to that of post-Newtonian theory (i.e., by solving a wave
equation for the metric perturbations in a harmonic gauge); in practice, this can be a challenging
computational task, and it is often simpler to use other methods. There are two methods to compute
perturbations of Schwarzschild black holes: the first involves solving for the metric perturbations
directly through a procedure developed by Regge and Wheeler [12] and Zerilli [13], and the second
calculates curvature perturbations using the Newman-Penrose formalism [75] (based on work by
Bardeen and Press [14]). The Newman-Penrose formalism is the simplest way to study perturbations
of a Kerr black hole (originally studied by Teukolsky [16]); from these curvature perturbations, one
can then construct metric perturbations based on the research of Chrzanowski [76], Kegeles and
Cohen [77], Wald [78], and Stewart [79]). An important class of solutions in black-hole perturbation
theory are the quasinormal modes of a black hole (see the reviews [80, 81, 82, 83]). These modes
appear after the merger of a black-hole binary, when the final black hole settles into a quiescent
state [84, 85]. Consequently, black-hole-perturbation theory is usually used to describe the entire
spatial region after the nonlinear dynamics during merger give way to small oscillations of the final

black hole.

Regge-Wheeler-Zerilli Metric Perturbations Regge and Wheeler [12] and Zerilli [13]
found a way to compute two scalar functions from the metric perturbations of a Schwarzschild
black hole that have definite parities and that satisfy the two simple wave equations. It is common
to decompose the solutions to the wave equation into spherical harmonics, so that the radial- and

time-dependent parts of the solutions satisfy the two simple one-dimensional wave equations below:
07 =07 + Vi (r)]\lfl(;j;) =0. (1.12)

The radial coordinate is defined by 7. = r 4+ 2M log[r/(2M) — 1], and the potentials V(lc,o) (r) are

View) (1) = <1 - %> <i - %Ufc@(r)) : (1.13)

r rz 3
where we defined A =1(l+1) and A= (I —1)(I{+2)/2 = A/2 — 1 and where

AA+2)r* +3M(r— M)
(Ar+3M)?

Uly(r) =1, Uly(r) = (1.14)

Their procedure was generalized by Moncrief [15], who showed that there are modified versions of
their quantities (which are labeled in the same way by \Ill(e";)) that are invariant under small changes
of coordinates. Moreover, these quantities are physically interesting, because they are proportional
to the two polarizations of a gravitational wave, at large radii. It was shown by Price [86] for the

odd-parity and Aksteiner and Andersson [87] for both parities that the Regge-Wheeler and Zerilli
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equations are actually proportional to perturbations of the Newman-Penrose curvature scalar ¥q
[75]; it happens that Uy has a simple relationship with the metric perturbations. Although this was
not known when the curvature perturbations described next were found, it lends credence to the

idea that curvature perturbations could satisfy simpler wave equations than metric perturbations

do.

Curvature-Scalar Perturbations and Their Metric Perturbations Bardeen and Press
[14] showed that one could also write a separable wave equation for the perturbations of the Newman-
Penrose scalars Uy and ¥y in the Schwarzschild spacetime. These perturbations are gauge invariant,
and easy to understand physically: Uy is related to the ingoing gravitational waves at the horizon,
and ¥, corresponds to the outgoing gravitational waves at infinity [75]. Their work was also im-
portant, because Teukolsky generalized their result to find separable wave equations for the same
Newman-Penrose scalars in the Kerr spacetime (the explicit expression for the partial differential
equation is somewhat lengthy, and it will not be shown here). With Teukolsky’s equation, one could
now easily compute perturbations of any astrophysically relevant black hole. For some computa-
tions, it is convenient to have a metric perturbation, and Chrzanowski [76] (whose work was clarified
and generalized by Kegeles and Cohen [77], Wald [78], and Stewart [79] and revisited more recently
by Lousto and Whiting [88], Ori [89], and Keidl et al. [90, 91, 92]) was able to find two gauges in
which to construct metric perturbations (ingoing- and outgoing-radiation gauges). As a result, there
are several relatively convenient ways in which to compute metric and curvature perturbations of

astrophysical black holes.

Black-Hole Quasinormal Modes An important tool for understanding black-hole pertur-
bations are their quasinormal modes (see the reviews [80, 81, 82, 83]). These are the characteristic
modes of black holes subject to an ingoing boundary condition at the horizon, and an outgoing
condition at infinity. The frequencies of these modes can be found by solving the boundary-value
problem for the, as yet, undetermined frequency. While there are a wide range of methods to do this,
the most commonly used is due to Leaver [93]. Leaver found that there are a large number (possibly
infinite) of modes for each multipolar index (called the overtone number of the mode); the frequency
of this mode is a complex number (i.e., it oscillates at a frequency given by its real part and decays
at a rate proportional to its imaginary part). For high-frequency modes of Schwarzschild and slowly
rotating Kerr black holes, their frequencies are simply related to the frequency of unstable spherical
geodesic orbits of massless particles (see, e.g., the paper by Ferrari and Mashhoon [94]). These
modes have also been found to be excited significantly during the merger of a black-hole binary (see,
e.g., [84, 85]). When applying black-hole perturbation theory to study the dynamics of a binary,
therefore, we reiterate that it is only after the time of merger that black-hole-perturbation theory is

used to approximate the spacetime geometry for the entire spatial volume of that spacetime region.
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Combinations and Extensions of the Approximation Techniques There is a gap around the
time of merger of a black-hole binary during which neither the post-Newtonian approximation nor
black-hole-perturbation theory accurately describes the entirety of the spatial region of a comparable-
mass binary. To develop an analytical approximations of the spacetime during the merger, three
types of approaches have been taken: (i) extending post-Newtonian theory to hold later into the
merger, (ii) pushing black-hole-perturbation theory back to earlier times in the merger, and (iii)
replacing the black-hole binary merger with an simpler problem that has analogous dynamics. The
effective-one-body approach [37, 38] follows method (i), because it maps the dynamics of the binary’s
reduced mass in the post-Newtonian approximation to the dynamics of a point particle around an
effective, deformed black hole. The effective-one-body method agrees with the post-Newtonian
expansion during the inspiral and produces accurate dynamics during the merger, but it cannot
be extended past the merger of the black holes; as a result, when computing the waveform from
this method, one must directly add quasinormal modes to the end of the waveform (see, e.g., [45]).
The close-limit approximation (see, e.g., [35, 36]) and the Lazarus project [95, 96] use approach (ii)
to describe binary dynamics. They extend the validity of black-hole-perturbation theory to earlier
times by using initial data that approximates a binary near merger and evolving it as a perturbation
to the single, merged black hole. To connect the waveform and the dynamics to those prior to the
merger, they must match to post-Newtonian quantities at earlier times. Thus, neither methods
(i) nor (ii) provide a full description of the spacetime at all times, but they require meshing two
descriptions at some point (which they can do reasonably well). Finally, method (iii) uses analytical
spacetimes to approximate binary dynamics (for example, with Robinson-Trautman spacetimes by
Rezzolla et al. [30, 31]). These have intuitive appeal, but it is not always clear how closely the model
problem relates to an actual merger of black holes. From the discussion of the different methods
above, one can see that while these approaches have achieved some success, there is still room to

make improved analytical models of the merger.
1.2.2.2 The Hybrid Method for Head-on Black-Hole Mergers

Chapter 5 of this thesis (in collaboration with Yanbei Chen and published in Physical Review D
[97]) presents a new way of combining post-Newtonian and black-hole-perturbation theories to make
an approximate model of head-on, black-hole-binary mergers, which we call the hybrid method.
Instead of matching the two approximation methods at a single fixed time, we assume that post-
Newtonian theory holds within a time-like world tube defined by the centers of the black holes,
and that black-hole-perturbation theory (of a Schwarzschild black hole) is valid on the exterior.
Furthermore, we suppose that the dynamics of the binary follow a radially plunging geodesic in the
background Schwarzschild spacetime, so that the range where post-Newtonian theory is valid falls

inside the horizon around the time of the merger and ringdown of the black holes. We then match
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the metrics of the two approximation techniques on the world tube. From the perspective of the
black-hole-perturbation theory on the exterior, this prescription defines a boundary-value problem
for the Regge-Wheeler and Zerilli functions based on a post-Newtonian estimate for their values.

To test this method, we compared our leading-order model of the black-hole-binary merger
described in Chapter 4 with the actual numerical-relativity simulation of that chapter. The quantities
that were most amenable to comparison were different multipolar components of the gravitational
waveform at infinity, and the gravitational-wave kick predicted by the two methods. We found
remarkably good agreement between the | = 2, m = 1 components of the waveform and strong
agreement between the [ = 2, m = 2 parts. Because the gravitational-wave kick arises from the
interaction of these two multipoles in the waveform, the gravitational-wave kick agreed quite well.
In addition to its accuracy, the hybrid method allowed us to interpret parts of the waveform in terms
of where the position of the world tube was at the corresponding retarded time. When it was far
outside the black-hole effective potential, this was the infall phase; when it entered the potential,
this corresponded to the merger phase; and when the world tube was well within the potential, this
was the ringdown.

The material in this chapter is mostly my own work, though I greatly benefitted from Yanbei
Chen’s checks of my calculations and suggestions about the presentation of the ideas in the text.
More specifically, I wrote the code to numerically evolve the boundary-value problem for the Zerilli
function, and I generated all the figures in the text except the first. I did nearly all the writing in
the paper, and I was responsible for editing and reviewing the paper when it was under review at

the journal.
1.2.2.3 The Hybrid Method for Inspiralling Black-Hole Mergers

In Chapter 6 of this thesis (again research done in collaboration with Yanbei Chen and published in
Physical Review D [98]) we generalized the hybrid method for head-on mergers of black holes to treat
inspiralling black-hole binaries. The main obstacle preventing us from directly applying the hybrid
method above to a quasicircular binary is the absence of a good way to prescribe a trajectory that
the black holes should follow (i.e., to determine the location at which we should place the boundary
data for the evolution of the Zerilli function in the exterior perturbed Schwarzschild spacetime). Our
solution was instead to choose that the world tube, where we match the two metrics, should evolve
via the equations of point-particle motion in the background Schwarzschild spacetime. We would
then modify the conservative dynamics of this point particle by subjecting it to a radiation-reaction
force determined from the outgoing radiation in the exterior, black-hole spacetime. When we made

this assumption, and matched the two metrics as we had done for the hybrid approach for head-on
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mergers, we arrived at the following set of evolution equations:
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The last equation is the Zerilli equation written in terms of the light-cone coordinates v = t —r, and
v =t + 14, the first lines are three of the Hamiltonian equations for the reduced-mass motion of the
binary (H is the point-particle Hamiltonian of the background Schwarzschild black hole), the second
line is the last of Hamilton’s equations (with the radiation-reaction force producing dissipation in the
system), and the third line is an evolution equation for the post-Newtonian-inspired perturbation
on the boundary (Q(¢) is the quadrupole moment). From a mathematical perspective, the system
of equations above defines a boundary-value problem for a partial differential equation with a time-
like boundary, where the boundary value, and the location of the boundary itself, is determined at
each time by a system of Hamiltonian equations with dissipation coming from the field satisfying
the partial differential equation. This somewhat complicated problem, nevertheless, gives physically
reasonable results.

We checked the hybrid method against numerical-relativity simulations in two cases: an equal-
mass, non-spinning, quasicircular, black-hole merger, and the superkick merger. For the first merger,
we compared the [ = 2, m = 2 multipolar mode of the gravitational waveform produced by the two
methods, and we found that the phase of the waveforms agreed well during the inspiral, but the
amplitude agreed less well. During the merger and ringdown, the two began to differ, because we
continued to model the post-merger black hole as non-spinning, although, in fact, the numerical-
relativity simulation predicts that the black hole is rotating rapidly. We next investigated the
superkick merger with the hybrid method, paying particular attention to the momentum flux. We
found that when we allowed the spins to precess geodetically around the final black hole, this
increased the momentum flux and gave it a time-dependence qualitatively like that seen in numerical-
relativity simulations. The kick also depended sinusoidally upon the angle between the black hole’s
separations and spins, but the magnitude was somewhat larger than that of numerical-relativity
simulations. Modeling the final black hole as non-spinning was largely responsible for this difference,

because it led to more energy being radiated during the merger and ringdown phases.
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As with the head-on hybrid paper, the majority of the work in this paper was my own. Again,
Yanbei Chen developed an independent code to check my results, and he provided invaluable advice
about the organization and presentation of the manuscript. Nevertheless, the code used to generate
all the figures and the results in this chapter was my own, as was most of the writing throughout
the chapter. Again, I was involved in the editing and review of the paper when the manuscript was

under the peer-review process.
1.2.2.4 A Geometric Approximation for the Ringdown of Black Holes

Chapter 7 (in collaboration with Yanbei Chen, Huan Yang, Fan Zhang, and Aaron Zimmerman
and based on a paper in preparation) describes a method of approximating the quasinormal-mode
frequencies of Kerr black holes, in the eikonal limit (when the frequency is large and the wavelength
is short). Because there is already an efficient and precise method of finding the modes’ frequencies
based on a continued-fraction method by Leaver [93], the main power of this approximation is the
intuitive description it gives of a mode’s frequency. Our work is inspired by an insight originally by
Ferrari and Mashhoon [94], who found that for a quasinormal mode with multipolar indices [ and
m (with { 2 m > 1) of a slowly rotating Kerr black hole, the real part of the mode’s frequency is
given by

WR = lworb + MWprec 5 (119)

where wqr, is the Keplerian frequency of the unstable null geodesic at the velocity-of-light circle
(often called a spherical photon orbit) and wpyec is the Lense-Thirring precession frequency (see,
e.g., [4]) at the radius of this orbit.

In this chapter, we showed that there exists a formula of the same form as the equation above,
for the quasinormal modes of Kerr black holes of any astrophysical spins. We were able to show this
through a geometric-optics argument (see, e.g., [4]) and a WKB analysis (see, e.g., [99, 100] for a
WKB analysis relating to quasinormal modes of black holes). The interesting geometric difference
between the slowly rotating and rapidly rotating Kerr results is the location of the corresponding
spherical photon orbit. For slowly rotating Kerr black holes, all the orbits still reside on the same
spherical photon orbit of a Schwarzschild black hole, and the dependence of the frequencies on m
comes only from the precessional frequency. For rapidly rotating Kerr black holes, on the other
hand, the spherical photon orbits for a given I and m occur at different radii and have different
orbital and precessional frequencies; this makes the frequency of the mode quite different, and gives
good agreement (less than a percent) with exact calculations of the mode’s frequency. The equation
above also can be used to show that there is a degeneracy in the quasinormal-mode spectrum of
Kerr black holes, when the orbital and precessional frequencies are rationally related. Interestingly,
but not surprisingly, at these values, the corresponding spherical photon orbits are closed.

Most of my work on this chapter was on the final part, regarding the connection between the
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degeneracy in the quasinormal-mode spectrum, and the corresponding closed, spherical photon or-
bits. I reviewed and checked the calculations in the other parts of the paper, and I assisted in the

writing and editing throughout the paper.

1.2.3 Visualizing Spacetime Curvature with Vortex and Tendex Lines

The final four chapters of this thesis, Chapters 8-11 introduce a method to visualize all aspects of
the spacetime curvature in vacuum, and present visualizations of several analytical spacetimes that
are often used to describe gravitational-wave generation. The first part of this section describes the

motivation for and an overview of our method; the next part discusses the results in more detail.
1.2.3.1 The Challenges of Spacetime Visualization and the Method of This Thesis

Most methods to visualize spacetime curvature use isometric embedding diagrams of certain in-
teresting two-dimensional spacetime surfaces into three-dimensional flat Euclidean space (see, e.g.,
[101, 102, 103, 104]). These diagrams usually introduce a fictitious height so that the Euclidean
arclength between two points on the diagram better represents the proper distance between two
points on the surface in the curved spacetime. Embedding diagrams are somewhat limited in scope,
because (i) they can only represent two-dimensional surfaces, which may not capture much of the
spacetime structure in the absence of spacetime symmetries, and (ii) it is not always possible to
make an embedding diagram (e.g., the horizon of Kerr black holes of high spins cannot be embedded
into a Euclidean flat space [101]). Note that it is always possible to locally embed a surface, but
when one tries to form a global embedding one can run into problems [101, 102]. Visualizing certain
components of the metric tensor (the lapse and shift [4], for example) is a different method, but it
is also highly coordinate dependent.

Another obstacle in building intuition about the dynamics of black-hole binaries is the fact that
the most interesting physical quantity, the Weyl curvature tensor (identical to the Riemann curvature
tensor in vacuum) is a rank-four tensor, commonly denoted by Cuap (see, e.g., [4]). One might
worry that the Weyl tensor has an intractable number of components (because each index runs over
the four spacetime indices), but the symmetries of the tensor require that it only has ten independent
components (see, e.g., [4]). Nevertheless, without a way of reducing the four-dimensional, spacetime
quantities to three-dimensional objects that are easier to understand physically, it will be difficult
to visualize or gain intuition from the Weyl tensor.

Our idea is to make use of a well-known time-space split of the Weyl curvature tensor into two
symmetric and trace-free tensors, which are called its electric and magnetic parts (because of an
analogy to the time-space split of the field strength tensor of electromagnetism into electric and
magnetic fields; see, e.g., [105] and references therein). Specifically, for a set of observers with four-

velocities u# that are hypersurface forming (and where v#¥ = g*¥ + uHu” is the spatial metric in
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the spatial hypersurface), these tensors are defined by

Eap = Y 187 Coporvut'u” ie., &= Ci@jﬁ’ (1.20)
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where *C,5, is the dual of the Weyl tensor. These tensors together contain the full ten degrees of
freedom of the Weyl tensor, and they have been known for quite some time to encode information
about the effects of the curvature on nearby inertial frames. Specifically, two nearby events separated
by a spatial vector & will feel a differential acceleration Aa’ and, if there are inertial guidance

gyroscopes at these events, they will differentially precess at a rate AQ?, which is given by
Ad' = —£¢7 and AQ' = B¢, (1.22)

respectively (see [106]). We will describe the electric part as the tidal field and the magnetic part
as the frame-drag field, to emphasize the physical effects of these fields on inertial observers.

Even though the tidal and frame-drag fields are rank-two spatial tensors, it is still somewhat
inconvenient to visualize them directly. Because these tensors are symmetric (and trace-free), they
always have three orthogonal eigenvectors (and their eigenvalues sum to zero); therefore, we found
it more convenient to compute their generalized eigenvalues, A, and eigenvectors, v/, by solving the
following equation:

Eijv? = Myijv” . (1.23)

We could then plot the streamlines of the eigenvectors and the eigenvalues themselves as a way to
conveniently visualize the complete information about the Weyl curvature tensor. To emphasize the
physical meanings of these lines and scalar functions, we gave them names that reflect these facts:
for the tidal field, we call the eigenvalues the tendicities, the streamlines the tendez lines, and the
regions of large eigenvalue tendezes (all based on the Latin verb tendere, meaning to stretch); for
the frame-drag field, the equivalent quantities are vorticities, vortex lines, and vortezes (from the

Latin vertere, meaning to turn).
1.2.3.2 Overview of Spacetimes Visualized with this Method

Our chief interest is to visualize numerical-relativity simulations of merging black holes and to use
these tools as a way of understanding the features of the spacetime curvature involved in generating
gravitational waves. Because these tools are a new way of describing the spacetime curvature, we
found it useful to visualize well-known analytical spacetimes with the vortex and tendex quantities, to
build intuition in these simpler spacetimes, before using the same tools to understand gravitational-

wave generation in numerical-relativity simulations. Chapters 8-11 of this thesis review the results
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we have found thus far. More specifically, Chapter 8 is an introduction to the topic with a few
results from numerical-relativity simulations, Chapter 9 focuses on the gravitational waves at infinity,
Chapter 10 describes the generation of waves by systems that are linear perturbations of flat space,
and Chapter 11 focuses on wave generation from perturbations of rotating and non-rotating black

holes.

An Overview of Applications of Tendexes and Vortexes Chapter 8 (in collaboration with
Jeandrew Brink, Yanbei Chen, Jeffrey D. Kaplan, Geoffrey Lovelace, Keith D. Matthews, Robert
Owen, Mark A. Scheel, Kip S. Thorne, Fan Zhang, and Aaron Zimmerman and published in Phys-
ical Review Letters [107]) introduces vortexes and tendexes. It touches upon horizon vortexes and
tendexes—the components of the frame-drag and tidal fields, respectively, with both indices normal
to the horizon—which relate simply to other geometric quantities on the horizon. It briefly describes
the vortexes of stationary Kerr black holes, the tendex lines of a static Schwarzschild black hole,
and the vortexes of an odd-parity, quadrupolar perturbation of a Schwarzschild black hole in the
plane of reflection symmetry of the perturbation. It concludes by investigating the dynamics of
several black-hole binary mergers. For the same head-on merger of black holes in Chapter 4, we
found that the gravitational waves were generated during the ringdown by vortexes (which were
originally pinned to two regions of horizon vorticity from the spins of the black hole prior to merger)
detaching from the horizon and becoming deformed tori of large vorticity that become one part of
the gravitational waves at infinity. This chapter also describes a simulation of a superkick merger
and a merger of black holes with spins anti-aligned with the orbital angular momentum. For these
last two simulations, we only looked at the dynamics of the horizon vorticity, which, after merger,
contains contributions from the orbital angular momentum and the spins of the black holes. As the
black holes settle down, the different regions of horizon vorticity appear to diffuse into one another
as the black hole relaxes to a stationary Kerr hole.

I contributed to this paper in several ways. I worked mostly on explaining the connection between
the horizon quantities and other geometrical variables on the horizon. I did most of the writing in
that section, I helped with the editing in other sections, and I contributed to the review of the paper

when it was in its editorial review with the journal.

Tendexes and Vortexes of Gravitational Waves In Chapter 9 (work in collaboration with
Fan Zhang and Aaron Zimmerman that was published in Physical Review D [108]) we explored
the vortex and tendex lines of gravitational waves near future null infinity. Because vortex and
tendex lines near infinity form a non-directional field of lines on a surface of spherical topology, one
can apply a version of the Poincaré-Hopf theorem [109] to show that there must be at least one
critical point in the field of lines. Interestingly, for eigenvector fields of a symmetric tensor (and

the corresponding field of their streamlines), one can show that there are critical points only where
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the eigenvalues are equal [109]. For gravitational radiation at infinity, we demonstrated that this
only occurs when the tendicity and vorticity vanish; hence there must be isolated points at infinity
where the gravitational radiation vanishes. We then illustrated this fact with several examples of
multipolar radiation in linearized theory: quadrupolar radiation, beamed quadrupolar radiation in
a model of the superkick merger, and higher multipoles and their superposition. For quadrupolar
radiation, there are four zeros, and for higher multipoles, the number increased. We also argued
that when the radiation is most strongly beamed, this corresponds to when the critical points all
collect in a single point at one of the poles.

My main contribution was to the last part of this paper: the visualization of multipolar radiation
at infinity. I produced the seven figures in this section, did the calculation necessary to make them,
and did the majority of the writing. I assisted with the writing and editing of the other parts of
this paper, and I checked the calculations elsewhere. Finally, I helped with the review of this paper

when it was being published in the journal.

Tendexes and Vortexes of Linearized Perturbations about Flat Space Chapter 10 (work
done with Jeandrew Brink, Yanbei Chen, Jeffrey D. Kaplan, Geoffrey Lovelace, Keith D. Matthews,
Robert Owen, Mark A. Scheel, Kip S. Thorne, Fan Zhang, and Aaron Zimmerman and published
in Physical Review D [110]) serves two main purposes. On the one hand, it is a more systematic
overview of the properties of the vortex and tendex quantities, and on the other, it is an exploration
of the vortexes and tendexes of static and dynamic sources in linearized theory about flat space. We
pay particular attention to how the dynamical sources generate gravitational waves in this chapter.
We show that, like a Kerr black hole, a spinning particle in linearized theory has a positive and
negative vortex sticking out of each pole, and the vortex lines head out from one vortex, loop
around, and return to it. When two spinning particles have their spins anti-aligned and are placed
side-by-side, most of the vortex lines connect from one particle to the other, which is very similar to
the tendex lines of a static current quadrupole. We then look at the vortex lines from a rotating and
an oscillating current quadrupole in linearized theory. A rotating current quadrupole has two positive
and two negative vortexes that spiral out from the equator and become the two polar vortexes of
gravitational waves; an oscillating current quadrupole emits two positive and negative equatorial
vortex bulges that, at large radii, collect into the two alternating polar vortexes of gravitational
waves. The tendexes of a mass quadrupole can be shown to be identical to the vortexes of a current
quadrupole; hence one can apply the results for current quadrupoles to mass quadrupoles when the
vortexes and tendexes are switched. We conclude by looking at the tendex lines of a linearized-
theory model of a binary, and we find that near the binary, the tendexes look like those of two static
particles, and far from the source, they look like those of quadrupolar gravitational waves.

Most of my work was in the final section of the paper on gravitational waves and their generation.

I performed many of the calculations there (and checked those that I did not originally do) and made
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seven of the figures. I did a significant fraction of the writing in that section as well. In the rest of
the paper, I checked over the calculations, and did some editing and writing. I was also in charge of

reviewing the paper when it was in press at the journal.

Tendexes and Vortexes of Stationary and Perturbed Black Holes The last chapter in
this part (Chapter 11, based on research performed with Jeandrew Brink, Yanbei Chen, Jeffrey D.
Kaplan, Geoffrey Lovelace, Keith D. Matthews, Robert Owen, Mark A. Scheel, Kip S. Thorne, Fan
Zhang, and Aaron Zimmerman, a draft of which is in preparation) investigates the vortexes and ten-
dexes of static and perturbed black holes. In particular, it is aimed at addressing how perturbations
near the black holes extend out towards infinity and become gravitational waves. Even for static
black holes, there were several interesting results. As long as the observers had a four-velocity that
passed smoothly through the horizon, the vortexes and tendexes were qualitatively similar for these
different observers. For perturbed black holes, the tendexes and vortexes of the perturbations were
not very different from those of linear perturbations of flat space; however, in the near zone, the black
hole horizon and its tendicity and vorticity replaced the near-zone multipoles of the linearized-theory
perturbations. As a result, we found that an electric-parity perturbation had two positive and two
negative perturbative tendexes that spiraled out from the horizon tendexes; only at larger radii did
these tendexes collect into the polar tendexes of gravitational waves. Accompanying these tendexes
were four positive and four negative equatorial vortexes in the near zone, which at larger radii col-
lected into the polar vortexes of gravitational waves. Thus, we described the near-zone tendexes
as inducing near-zone vortexes that together become the gravitational waves, asymptotically. The
qualitative details of the perturbative vortexes and tendexes did not depend strongly upon the spin
of the black hole (although they had the appearance of being dragged by the spin of the background
black hole for rapidly rotating Kerr black holes). We also looked at the vortexes and tendexes of
magnetic-parity perturbations of these black holes, and their description of gravitational waves was
nearly dual to that of electric-parity perturbations (dual in the sense that vortexes and tendexes
played the opposite role). Unlike in linearized theory, the duality is no longer exact.

I made several contributions to this chapter, mostly dealing with the tendexes and vortexes
of perturbed Schwarzschild and Kerr black holes in an ingoing-radiation gauge. I performed the
calculations in this section and in seven of the accompanying appendices that were needed to generate
the fourteen figures relating to these perturbations. I did most of the writing in that section and
those appendices. In doing this, I checked over many of the calculations for static black holes earlier
in the paper. I also contributed significantly to the section on the horizon tendicity and vorticity,
including the writing. I have checked many of the calculations in the Regge-Wheeler section and

appendices. Where I did not significantly write, I also contributed to the editing.
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1.3 Summarizing the Introductory Remarks

The two-body problem in general relativity is still an active area of research for binaries made of
compact objects like black holes and neutron stars. Gravitational-wave observations from mergers
of compact binaries provide a unique way to study these highly relativistic systems and further
understand the two-body problem in relativity. The ability to directly learn about the strong and
dynamical spacetime curvature around these objects from gravitational-wave observations is not
yet possible; instead we must use numerical-relativity simulations and analytical approximations to
infer the spacetime dynamics from information about the masses and spins of the objects. Analytical
approximations are simple and easy to understand, but they cannot accurately describe the complete
dynamics of a black-hole binary. Numerical-relativity simulations can model binary dynamics well,
but they are difficult to interpret and still take a long time to run; therefore, analytical and numerical
methods are well suited to work together to better understand binary dynamics.

The chapters of this thesis explore three different methods that use both analytical and numerical
techniques to understand black-hole binaries. The next three chapters introduce a way to quantify
the momentum carried by the gravitational field, and they use it to connect the momentum of
black holes in a binary to the momentum carried away by gravitational waves. The three following
chapters describe ways to use approximate methods in different ways to reduce binary dynamics to
simpler analytical descriptions. The four chapters afterward introduce a method of visualizing the
spacetime curvature, and they apply the method to help understand the generation of gravitational

waves by binary systems.
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Chapter 2

Post-Newtonian Approximation in Maxwell-

Like Form

The equations of the linearized first post-Newtonian approximation to general relativ-
ity are often written in a “gravitoelectromagnetic” Maxwell-like form, because it fa-
cilitates physical intuition. Relying heavily on work of Damour, Soffel, and Xu, this
paper expresses the first post-Newtonian approximation, including all nonlinearities, in
a Maxwell-like form, focusing especially on the gravitational momentum and its con-
servation as expressed in terms of the Landau-Lifshitz pseudotensor. The authors and
their colleagues are finding this formalism useful in developing physical intuition into

numerical-relativity simulations of compact binaries with spin.

Originally published as J. D. Kaplan, D. A. Nichols, and K. S. Thorne, Phys. Rev. D 80
124014 (2009).

2.1 Introduction

In 1961, Robert L. Forward [1] (building on earlier work of Einstein [2, 3] and especially Thirring
[4, 5, 6]; see [7] for an English translation of the last two papers) wrote the linearized, slow-motion
approximation to general relativity in a form that closely resembles Maxwell’s equations; and he
displayed this formulation’s great intuitive and computational power. In the half century since
then, this Maxwell-like formulation and variants of it have been widely explored and used; see, e.g.,
[8,9, 10, 11, 12, 13, 14, 15] and references therein.

In 1965-1969 S. Chandrasekhar [16, 17] formulated the first post-Newtonian (weak-gravity, slow-
motion) approximation to general relativity in a manner that has been widely used for astrophysical
calculations during the subsequent 40 years. When linearized, this first post-Newtonian (1PN)

approximation can be (and often is) recast in Maxwell-like form.
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In 1991, T. Damour, M. Soffel, and C. Xu (DSX) [18] extended this Maxwell-like 1PN formalism
to include all 1PN nonlinearities. They did so as a tool in developing a general formalism for the
celestial mechanics of bodies, each of which has an arbitrary internal structure and an external
gravitational field characterized by an infinite number of multipole moments. (For more recent work
in this direction, see [19].)

In recent months, we and our colleagues have been exploring the gravitational field momentum
and momentum flow in numerical-relativity simulations of compact, spinning binaries [20]. During
its inspiral phase, a binary’s motion and precession can be described by the 1PN approximation;
and we have found a variant of the DSX Maxwell-like formalism to be useful in understanding the
binary’s dynamics.

In this paper, we present our variant of the DSX, Maxwell-like formalism.! It is simultaneously
a specialization of DSX and an extension. The specialization arises (i) from our choice to fix the
coordinates (gauge) as fully harmonic instead of maintaining partial gauge invariance, and (ii) from
the fact that for compact bodies (black holes and neutron stars), the only multipole moments that
influence the binary’s dynamics at first post-Newtonian order are each body’s mass and its spin
angular momentum; thus, we ignore all other moments. The generalization arises from our desire
to understand, in depth, the distribution and flow of linear momentum inside the binary. For this
purpose we use the Landau-Lifshitz energy-momentum pseudotensor, expressed in a DSX, Maxwell-
like form—a tool that we have added to the DSX formalism.

The DSX papers [18, 21, 22, 23] are so long and complex that it is not easy to extract the bare
essentials that go into simpler 1PN analyses. For researchers who want those bare essentials and
want to see how they are related to more conventional approaches to 1PN theory, our paper may
prove useful. To serve that purpose (and in order to make clear contact with DSX), we present our
variant of the DSX formalism for the case of a perfect fluid as well as for a system of compact bodies
described by their masses and spins.

This paper is organized as follows: In Section 2.2 we present the basic DSX equations for 1PN
theory in a Maxwell-like form. In Section 2.3 we specialize the DSX formalism to a perfect fluid
and make contact with the conventional 1PN notation. In Section 2.4 we derive the density and
flux of gravitational momentum in terms of the DSX gravitoelectric and gravitomagnetic fields and
we write down the laws of momentum conservation and the Maxwell-like gravitational force density
acting on the fluid. In Section 2.5 we discuss energy conservation. In Section 2.6 we specialize to
the vacuum in the near zone of a system made from compact bodies. Finally, in Section 2.7, we

summarize our formalism both for a self-gravitating fluid and for a system of compact bodies.

1When we carried out our analysis and wrote it up in the original version of this paper, we were unaware of the
Maxwell-like formalism in DSX [18]; see our preprint at http://arxiv.org/abs/0808.2510v1l. When we learned of DSX
from Luc Blanchet, we used it to improve our own formalism (by replacing our definition for the gravitoelectric field
with that of DSX) and we rewrote this paper to highlight the connection to DSX.
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Throughout this paper we set G = ¢ = 1, Greek letters run from 0 to 3 (spacetime) and Latin
from 1 to 3 (space), and we use the notation of field theory in flat space in a 341 split, so spatial
indices are placed up or down equivalently and repeated spatial indices are summed whether up
or down or mixed. We use boldface characters to represent spatial vectors, i.e., w is the boldface

version of w;.

2.2 The DSX Maxwell-Like Formulation of 1PN Theory

Damour, Soffel, and Xu (DSX) [18] express the 1PN metric in terms of two gravitational potentials,

a scalar w and a vector w;:

goo = —e 2 =—1+2w—2uw?+0Us),
goi = —dw+ O 21)
95 = 5ij82w = 5ij(1 + 2’LU) + O(U?V)

(Egs. (3.3) of DSX). The Newtonian limit of w is Uy = (Newtonian gravitational potential), and w;
is of order UJ%,/Q:

w=Un+0U3%), w =0U?. (2.2)

The harmonic gauge condition implies that
wi+wjj =0 (2.3)

(Eq. (3.17a) of DSX); here and throughout commas denote partial derivatives. Using this gauge
condition (which DSX do not impose), the 1PN Einstein field equations take the following remarkably

simple form:

Viw - = —4n(T+T%)+0Uy¥/L?), (2.4a)

Viw, = —4xT% +0UY?/L?) (2.4b)

(Egs. (3.11) of DSX). Here TF is the stress-energy tensor of the source (which we presume, below,
to be a perfect fluid), V? is the flat-space Laplacian (i.e., V2w = w j;), repeated indices are summed,
dots denote time derivatives (i.e., @ = w ), and L is the length scale on which w varies.

Following DSX, we introduce the 1PN gravitoelectric field g (denoted e or E by DSX | depending
on the context) and gravitomagnetic field H (denoted b or B by DSX):

Vw + 4 +OUy /L), (2.5a)

Q
|

H = —4Vxw+0UY?/L). (2.5b)
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(Egs. (3.21) of DSX). The Einstein equations (2.4) and these definitions imply the following 1PN
Maxwell-like equations for g and H:

V-g = —A4n(T% +79) - 30+ O(gUZ /L), (2.6a)
Vxg = —H+0(U%/L), (2.6b)
V-H = 0+O(HUN/L), (2.6¢)

VxH = —161T%; +4g+ O(HUy/L) (2.6d)

(Egs. (3.22) in Damour, Soffel, and Xu [18]). Here e; is the unit vector in the 4 direction.
In terms of g and H, the geodesic equation for a particle with ordinary velocity v = dx/dt takes
the following form:

d 1
pr K1+3UN+ 5'02> v} = (1 —Un + gv2> g+vxH+O0(UZ) . (2.7)

Note that the spatial part of the particle’s 4-momentum is mu = m(1 + Uy + %vz)v at 1PN order.
This accounts for the coefficient 1+ Uy + 202 on the left-hand side of Eq. (2.7). The remaining factor
2U is related to the difference between physical lengths and times, and proper lengths and times.
In the linearized, very low velocity approximation, this geodesic equation takes the “Lorentz-force”
form dv/dt = g + v x H, first deduced (so far as we know) in 1918 by Thirring [4], motivated
by Einstein’s 1913 [2] insights about similarities between electromagnetic theory and his not-yet-
perfected general relativity theory. The 1PN deviations of the geodesic equation, Eq. (2.7), from
the usual Lorentz-force form might make one wonder about the efficacy of the DSX definition of g.
That efficacy will show up most strongly when we explore the gravitational momentum density in

Section 2.4 below.

2.3 Specialization to a Perfect Fluid

We now specialize our source to a perfect fluid and make contact with a set of 1PN gravitational
potentials that are widely used. We pay special attention to connections with a paper by Pati
and Will [24], because that paper will be our foundation, in Section 2.4, for computing the density
and flux of gravitational field momentum. We describe our perfect fluid in the following standard
notation: p, = (density of rest mass), IT = (internal energy per unit rest mass, i.e., specific internal
energy), P = (pressure), all as measured in the fluid’s local rest frame; v; = da’/dt = (fluid’s
coordinate velocity).

Following Blanchet and Damour [25], and subsequently Pati and Will (Egs. (4.3) and (4.13) of

[24]), we introduce a post-Newtonian variant U of the Newtonian potential, which is sourced by
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T 4 793
V32U = —4n (T 4+ T97) . (2.8)

Accurate to 1PN order, the source is, Eq. (2.19d)
T + T = po(1 + 1 + 2v* + 2Uy + 3P/p,) , (2.9)

where Uy is the Newtonian limit of U

!/
Un(z,t) = Md%’ . (2.10a)

|z — |

Correspondingly, U can be written as

3z’ (2.10b)

U— / po(1+ 1L+ 2v% +2UN + 3P/po)

- [z — ']
Here and below the fluid variables and gravitational potentials in the integrand are functions of
(z',t) as in Eq. (2.10a). In Eq. (2.10a) for Uy, p, can be replaced by any quantity that agrees
with p, in the Newtonian limit, e.g., by the post-Newtonian “conserved mass density” p. of Eq.

(2.14b) below. We also introduce Chandrasekhar’s Post-Newtonian scalar gravitational potential x

q. o} , which is sourced by 2Uy, V°x = —2UxN or equivalently
Eq. (44) of [16 hich i d by 2Uy, V? 2U ivalentl

X = - /p0|w —a'|d® . (2.11)

Pati and Will use the notation —X for x (Eqgs. (4.14), (4.12a), and (4.3) of [24]).
It is straightforward to show that the 1PN solution to the wave equation, Eq. (2.4a), for the DSX

scalar potential w is

1
w=U— §X ; (2.12)

and the 1PN solution to the Laplace equation, Eq. (2.4b), for the DSX vector potential w; is

oy —/lpoivjdgzzr/. (2.13)

The fluid’s evolution is governed by rest-mass conservation, momentum conservation, and energy

conservation. The 1PN version of rest-mass conservation takes the following form:
pet+ V- (pw) =0, (2.14a)

where

1
i = poti®/—g = po (1 + 51;2 + 3U> (2.14b)
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(Egs. (117) and (118) of Chandrasekhar [16]). Here u° is the time component of the fluid’s 4-velocity
and ¢ is the determinant of the covariant components of the metric. We shall discuss momentum
conservation and energy conservation in the next two sections.

We note in passing that Chandrasekhar and many other researchers write their 1PN spacetime
metric in a different gauge from our harmonic one. The two gauges are related by a change of time
coordinate

1.
tc =ty — X (2.15a)

and correspondingly the metric components in the two gauges are related by

. 1
goo =900 T X 95y = 905 + 5% (2.15b)

Here C refers to the Chandrasekhar gauge and H to our harmonic gauge.

2.4 Momentum Density, Flux, and Conservation

Chandrasekhar [17], Pati and Will [24], and others have found the Landau-Lifshitz pseudotensor to be
a convenient tool for formulating the conservation of momentum in post-Newtonian approximations.
We shall adopt it as well.

From Pati and Will’s 2PN harmonic-gauge Egs. (2.6), (4.4b), and (4.4c) for the pseudotensor,
we have deduced the following 1PN expressions for the relevant components of the Landau-Lifshitz
pseudotensor (the gravitational momentum density and momentum flux) in terms of the DSX grav-

itoelectric and gravitomagnetic fields g and H:

0i 1 3 .
(-9)tire; = —-9xH+~Ung, (2.16a)
(O = —(gigy — 20igkon) + —— (HLH; — 26, HyHy) — —-U38,; . (2.16b)
LL 4 I 27 167 D R 8 /

Each equation is accurate up to corrections of order Uy times the smallest term on the right side
(2PN corrections). For comparison, in flat spacetime the electromagnetic momentum density is
ﬁE x B and the momentum flux is ﬁ(EiEj - %(L-J-EkEk) + ﬁ(BZ—Bj - %&-J-BkBk). Aside from a
sign in Eq. (2.16a) and the two terms involving Uy, the gravitational momentum flux and density,
Egs. (2.16), are identical to the electromagnetic ones with E — g and B — H. This makes the
gravitoelectric and gravitomagnetic fields g and H powerful tools for building up physical intuition
about the distribution and flow of momentum in our studies of compact binaries [20].

Here we describe how we found Egs. (2.16) from those of Pati and Will [24] (henceforth PW):
(i) Show that the last two terms in Eq. (2.6) of PW are of 2PN order for {a, 5} = {0j} or {ij},
so that at 1PN order 167r(—g)tﬁ€ = A®P. (i) Show that our notation is related to that of PW by

X = —X, U the same, w = U — 3¥ = (N 4 B) — (N + B)? (for the last of these, sce Egs. (5.2),
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(5.4a), and (5.4¢c) of PW), and at Newtonian order Uy = 1N. (iii) In PW Egs. (4.4b) and (4.4c)
for A“%, keep only the Newtonian and 1PN terms: the first curly bracket in Eq. (4.4b) and first and
second curly brackets in Eq. (4.4c). Rearrange those terms so they involve only K, N + B and the
Newtonian-order N, use the above translation of notation, and use the definitions (2.5) of g and H.
Thereby, bring PW Egs. (4.4b) and (4.4c) into the form of Eq. (2.16).

In the Landau-Lifshitz formalism, the local law of 4-momentum conservation T7/,, = 0 takes

the form

[(=g)(T" + t)]u =0 (2.17)

(Egs. (20.23a) and (20.19) of [26], or (100.8) of [27]). Here (as usual), commas denote partial
derivatives, and semicolons denote covariant derivatives. Using Eqgs. (2.16) and (—g) = 1+ 4Uy at
leading order (from Eq. (2.2) with w = Uy at leading order), and using the field equations, Egs.
(2.6), for g and H, this takes the simple Lorentz-force-like form

[(1 4+ 4UN)TO) ;s + [(1 + 4UN)T9] ; = (T + T97) g; 4 €154 T% Hy, . (2.18)

Here, the Levi-Civita tensor €;;; produces a cross product of the momentum density with the
gravitomagnetic field. For comparison, in flat spacetime, the momentum conservation law for a
charged medium interacting with electric and magnetic fields E; and B; has the form T , +T% ; =
peE; + €;jkJ; By, where p, is the charge density and J; the charge flux (current density). The right-
hand side of Eq. (2.18) (the gravitational force density) is identical to that in the electromagnetic
case, with p. — (T% +T9), J; - T% E — g, and B — H. Again, this makes g and H powerful
foundations for gravitational intuition.

For our perfect fluid, the components of the 1PN stress-energy tensor, which appear in the

momentum conservation law, Eq. (2.18), are (Egs. (20) of Chandrasekhar [16])

T = p,(1+11+v°+2Uy), (2.19a)
T = p,(1+1I1+v?+2Ux + P/po)v; , (2.19b)
TY = po(1+11+v* +2Un + P/po)viv; + P(1 —2UN)d;; (2.19¢)
T + T3 = p(1+T+ 20>+ 2Un + 3P/p,) . (2.19d)

2.5 Energy Conservation

For a perfect fluid, the exact (not just 1PN) law of energy conservation, when combined with mass
conservation and momentum conservation, reduces to the first law of thermodynamics dII/dt =

—Pd(1/p,)/dt; whenever one needs to invoke energy conservation, therefore, the first law is the
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simplest way to do so. For this reason, and because deriving the explicit form of 1PN energy
conservation [(—g)(T% 4 7%)] . = 0 is a very complex and delicate task (see Section VI of [28]), we
shall not write it down here.

However, we do write down the Newtonian law of energy conservation in harmonic gauge, because
we will occasionally need it in our future papers. Chandrasekhar calculated (—g)(T% + %) in [17];
his Egs. (48) and (57) are the time-time and time-space components, respectively. When one writes
the expressions in terms of the “conserved rest-mass density” p., Eq. (2.14b), and in our Maxwell-like
form, Newtonian conservation of energy states that

1, 7
[p*(l—l—H—i-Ev +3Un) — 399

t

P 1 3 . 1
+V.- [p*v(1+H+—+—v2+3UN)+—UNg——gXH =0. (2.20)
p 2 4am 47

While this equation is perfectly correct, it expresses Newtonian energy conservation in terms of the
post-Newtonian gravitomagnetic field H. It is possible to rewrite the H-dependent term using the
relationship,

V- [-1/(4m)(g x H)] =V - [-4UNT%e; + (1/m)Ung] , (2.21)

which is accurate to terms of order g - H. This relationship can be found by applying Eq. (2.6b)
once and (2.6d) twice, in combination with elementary vector-calculus identities. The statement of
Newtonian energy conservation then depends only upon the Newtonian potential and its gradient

and time derivative:

1 7 P 1 3 - 1 .
pe(1+ 1+ =v* +3Ux) — —g-g| +V-|pv(1+T+ —+ =0 —Uy)+ —Ung+ =Ung| =0 .
2 8T " p 2 4dr T
(2.22)
Notice that moving from Eq. (2.20) to Eq. (2.22) involves adding a divergence-free piece to the
energy flux; it, therefore, entails changing how the energy flux is localized—a change that, strictly
speaking, takes the energy flux out of harmonic gauge.
If the coefficients of the gravitational terms in Eq. (2.22) look unfamiliar, it is because even at
Newtonian order, the density and flux of gravitational energy are gauge-dependent. In some other

gauge, they will be different; see Box 12.3 of [29)].



40

2.6 Gravitational Potentials in the Vacuum of a System of

Compact, Spinning Bodies

For a system of compact, spinning bodies (neutron stars or black holes?), the gravitational potentials

Un, U, w;, and x in the vacuum between the bodies take the following forms:

M
Uy = =4 (2.23a)
A A
M M ” iSj k
v o= S A 1+gv?4— e [ P L (2.23b)
A AT TAB " rA
X = —Y Mara, (2.23¢)
A
1.
W= U—§x, (2.23d)
o MA’UQ 1 eiiji‘ni
w; = ZA: Ay 2%: T (2.23¢)

Here the notation is that of Section IV of Thorne and Hartle [31]: the sum is over the compact
bodies labeled by capital Latin letters A, B; M4, S‘Z‘ and ’U‘i‘ are the mass, spin angular momentum,
and coordinate velocity of body A; r4 is the coordinate distance from the field point to the center
of mass of body A; rap is the coordinate distance between the centers of mass of bodies A and B;
nf; is the unit vector pointing from the center of mass of body A to the field point; and €;;;, is the
Levi-Civita tensor.

Equations (2.23) for the potentials can be deduced by comparing our 1PN spacetime metric
coefficients, Egs. (2.2) and (2.12), with those in Egs. (4.4) of [31]. An alternative derivation is given

in the appendix.

2.7 Conclusion

In our Maxwell-like formulation of the 1PN approximation to general relativity, the evolution of the
fluid and gravitational fields is governed by: (i) the law of momentum conservation, Eqgs. (2.18) and
(2.19) (which can be thought of as evolving the fluid velocity v;); (ii) the law of mass conservation,
Eq. (2.14) (which can be thought of as evolving the mass density p,); (iii) the equation of state P(p,)
and first law of thermodynamics dII = —Pd(1/p,) (which determine P and IT once p, is known);
Egs. (2.10), (2.13), and (2.11) for the gravitational potentials U, x, and w;; and Egs. (2.5) or (2.6)
for the gravitoelectric and gravitomagnetic fields g, H.

When specialized to a system of compact bodies, e.g., a binary made of black holes or neutron

2These expressions, though usually derived for fluid bodies such as neutron stars (see Appendix 2.A), are also valid
for black holes by virtue of “effacement”; see Section 6.4 of [30].
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stars, the system is governed by: (i) 1PN equations of motion and precession for the binary (not
given in this paper; see, e.g., Egs. (4.10), (4.11), and (4.14) of [31]); (ii) momentum flow within the
binary as described by the Landau-Lifshitz pseudotensor, Egs. (2.16), and its conservation law, Eq.
(2.17), in which the gravitoelectric and gravitomagnetic fields are expressed as sums over the bodies
via Eqs. (2.23) and (2.5); and (iii) other tools developed by Landau and Lifshitz (Section 100 of

[27]). We are finding this formalism powerful in gaining insight about compact binaries [20].

2.A Appendix: Derivation of the 1PN Gravitational Poten-

tials

For completeness, we sketch here a derivation of the 1PN gravitational potentials, Egs. (2.23), in
the vacuum of a system made of several compact bodies. Our derivation is based on Eqs. (2.10)—
(2.11) for the potentials in the perfect-fluid 1PN formalism and on a fluid model for the systems’
bodies. In this derivation, one must split the fluid velocity v inside body A into the sum of the
body’s center of mass velocity v4 and its internal fluid velocity v’ relative to its center of mass,
v =va+v". The two terms in w;, Eq. (2.23e), arise from v4 and v’, respectively. In U, Eq. (2.23b),
the angular momentum term arises from the cross term 4v4 - v in the v? of Eq. (2.10b); and the
terms proportional to M4 can be deduced from Eq. (2.10b) and Eq. (2.25), below, for M4, which
we derive as follows: (i) Split the total Newtonian gravitational potential Uy into an external piece
Une = ZB#A Mpg/rap due to all the other bodies, and a piece Uy due to the fluid of body A itself.
(ii) Then M4 is the integral, over the body’s rest-frame proper volume, of the body’s own rest-mass
density plus densities of internal kinetic energy, internal compressional and thermal energy and self

gravitational energy?:

1 1 1
My = /Apo (1 v - §U5v) 143 Une +UN] |1+ 5 (0a +0) | dPz. (2.24)

Here the 14 3(Une + Ul) converts from coordinate volume d3x to proper volume in the coordinate
frame, and 1 + %(v 4 + v')? converts from coordinate-frame proper volume to fluid-frame proper
volume (Lorentz contraction effect). (iii) Expand the product of the square-bracketed expressions
and ignore terms of order U? ~ (v?)?2, which are negligible; drop the v4 - v’ term which gives zero
contribution because the body’s linear momentum in its own rest frame ( i) A pov’d3:1:) vanishes; and
add on the expression [, (pov’? — $p,U’n + 3P) d*z, which vanishes by the virial theorem (e.g.,

Eq. (39.21b) of MTW [26]). The result is

1
My = / Do (1 + 10+ 3P/p, + 20 + §v§, +2U'y + 3UN€) 3z . (2.25)
A

30ne can deduce this from the role of the gravitationally measured mass, M 4, in the global conservation law for
the body’s mass-energy (Box 19.1 of MTW [26]).
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Chapter 3

Momentum Flow in Black Hole Binaries:
I. Post-Newtonian Analysis of the Inspiral

and Spin-Induced Bobbing

A brief overview is presented of a new Caltech-Cornell research program that is exploring
the nonlinear dynamics of curved spacetime in binary-black-hole collisions and mergers,
and of an initial project in this program aimed at elucidating the flow of linear mo-
mentum in black-hole binaries (BBHs). The “gauge-dependence” (arbitrariness) in the
localization of linear momentum in BBHs is discussed, along with the hope that the qual-
itative behavior of linear momentum will be gauge-independent. Harmonic coordinates
are suggested as a possibly preferred foundation for fixing the gauge associated with
linear momentum. For a BBH or other compact binary, the Landau-Lifshitz formalism
is used to define the momenta of the binary’s individual bodies in terms of integrals
over the bodies’ surfaces or interiors, and define the momentum of the gravitational field
(spacetime curvature) outside the bodies as a volume integral over the field’s momentum
density. These definitions will be used in subsequent papers that explore the internal
nonlinear dynamics of BBHs via numerical relativity. This formalism is then used, in
the 1.5PN approximation, to explore momentum flow between a binary’s bodies and
its gravitational field during the binary’s orbital inspiral. Special attention is paid to
momentum flow and conservation associated with synchronous spin-induced bobbing of
the black holes, in the so-called “extreme-kick configuration” (where two identical black

holes have their spins lying in their orbital plane and antialigned).

Originally published as D. G. Keppel, D. A. Nichols, Y. Chen, and K. S. Thorne, Phys.
Rev. D 80 124015 (2009).
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3.1 Introduction: Motivation and Overview

3.1.1 Motivation

Since the spectacular breakthrough by Pretorius [1] in the spring of 2005, numerical relativists have
been successfully simulating the inspiral, merger, and ringdown of binary black holes (BBHs). Much
effort is now going into extracting physical and astrophysical information from these simulations.
Almost all of this effort takes an “S-matrix” viewpoint: for chosen initial conditions (the two holes’
initial masses, vectorial spins, and orbital elements), what is the final emitted gravitational waveform
and what is the final hole’s mass, vectorial spin, and kick velocity? Equally interesting, it seems to
us, are the things these simulations can teach us about the nonlinear dynamics of curved spacetime.
This paper is the first in a new research program by the Caltech-Cornell relativity and numerical-

relativity research groups, aimed at exploring nonlinear spacetime dynamics in BBHs.

3.1.2 Momentum Flow in Black-Hole Binaries

Several sets of analytical tools already exist for exploring fully nonlinear space-time dynamics, for
example dynamical horizons [2] and quasilocal energy-momentum and angular momentum [3]. One
of our goals is to develop additional analytical and quasi-analytical tools and use them to extract
physical insights from numerical simulations. Our initial focus in this direction is on the distribution
and flow of linear momentum in strongly nonlinearly curved spacetimes—with linear momentum
defined via pseudotensors that arise from viewing general relativity as a nonlinear field theory in a
flat auxiliary spacetime.! This paper is the first in a series that will deal with this subject.

An instructive example is the extreme-kick configuration, in which two identical, spinning black
holes are initially in a quasi-circular orbit, with oppositely directed spins lying in the orbital plane
(Fig. 3.1). As Campanelli, Lousto, Zlochower, and Merritt [5, 6] (henceforth CLZM) discovered
and Gonzalez et al. [7] helped flesh out, of all initial configurations, this one may have the largest
kick speed for the final black hole?, and it also exhibits intriguing orbital motions: During the pre-
merger inspiral, as the holes circle each other, they bob up and down (in the z direction of Fig. 3.1),
sinusoidally and synchronously. After merger the combined hole gets kicked up or down with a final
speed that depends on the orbital phase at merger (relative to the spin directions). This bobbing
and then the kick, as deduced by CLZM from numerical simulations, is graphed quantitatively in
Fig. 3.2.

Momentum conservation dictates that, when the holes are moving upward together with momen-
tum p% + p%, there must be some equal and opposite downward momentum in their gravitational

field (in the curved spacetime surrounding them), and when the holes are moving downward, there

1Chen, Nester, and Tung have shown that various formulations of pseudotensors can also be motivated by quasi-
local points of view [4].
2For binaries in non-circular orbits, larger kick velocities have been observed by Healy et al. [8].



46

X Y Sg

m

Figure 3.1: Extreme-kick configuration for a black-hole binary. Two identical holes A and B, with
masses m = M /2, move in a circular orbit with their spin angular momenta S, and Sp antialigned
and lying in the orbital plane.

z/M

0 100 200 300
t/M

Figure 3.2: Bobbing and kick of binary black holes in the extreme-kick configuration of Fig. 3.1,
as simulated by Campanelli, Lousto, Zlochower, and Merritt (CLZM) [5]. Plotted vertically (as a
function of time horizontally) is the identical height, z, of the two black holes; then, transitioning
through merger (presumably at t/M ~ 170), the height of the merged hole, above the initial orbital
plane. This height versus time is shown for six different initial configurations, each leading to
a different orbital phase at merger. In all six configurations, the initial holes’ spins are half the
maximum allowed, a/m = 0.5. The height z and time ¢ are those of the “punctures” that represent
the holes’ centers in the CLZM computations, as defined in their computational coordinate system,
which becomes Lorentzian at large radii. These z and ¢ are measured in units of the system’s total
(ADM) mass M ~ 2m.
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must be an equal and opposite upward field momentum. How is this field momentum distributed,
and what are the details of the momentum flow between the field and holes? To what extent is the
final kick of the merged hole (e.g., in configuration SP2 of Fig. 3.2) an inertial continuation of the
holes’ immediate pre-merger bobbing? Correspondingly, to what extent is the burst of downward
gravitational-wave momentum that accompanies the kick caused by near-zone, bobbing field momen-
tum continuing “inertially” downward after merger? And, to what extent are other momentum-flow
processes responsible for the motion shown in Fig. 3.27 These are the kinds of questions we would

like to answer by an in-depth study of momentum flow in BBHs.

3.1.3 Gauge-Dependence of Momentum Flow and the Landau-Lifshitz

Formalism

The momentum distribution and flow in a relativistic binary are delicate concepts, because mo-
mentum conservation arises from, and requires, translation invariance of a spacetime. Spacetime
is translation invariant when flat, but not, in general, when curved. Two key exceptions are: (i)
Spacetime is locally translation invariant in the vicinity of any event, and this leads to the local
law of 4-momentum conservation 7.5 = 0 (where TP is the total stress-energy tensor of all non-
gravitational particles and fields). (ii) Around any isolated system (e.g., a BBH) spacetime can be
idealized as asymptotically translation invariant, and this leads to the definition and conservation
law for the system’s total momentum (e.g., the binary’s final kick momentum is equal and opposite
to the momentum carried off by gravitational waves). However, inside the binary the curvature
of spacetime prevents one from defining a globally conserved momentum density and flux in any
generally covariant way.

Nevertheless, we are quite hopeful that momentum flow can be developed into a powerful tool for
building physical intuition into BBHs and into the nonlinear dynamical behavior of curved spacetime
that is generated by collisions of spinning black holes. To do so, however, will require living with
the fact that the momentum distribution and momentum flux inside a binary cannot be generally
covariant—i.e., they must be, in some sense, gauge-dependent.

There, in fact, is a long and successful history of physicists building up physical intuition with the
aid of gauge-dependent concepts; it is that history that gives us hope. For example, in Maxwell’s flat-
spacetime electrodynamics, the vector potential satisfies the wave equation only if one first imposes
Lorenz gauge. Our physical intuition about electromagnetic waves relies, to a considerable extent,
on Lorenz-gauge considerations. Similarly, in developing post-Newtonian ephemerides for the solar
system, celestial mechanicians have chosen a specific gauge in which to work, and their intuition
about relativistic effects in the solar system relies to a great extent on that gauge’s gauge-dependent
constructs. The choice of gauge was, to some extent, arbitrary; but, once the choice was made,

intuition could start being built. As a third example, in black-hole perturbation theory relativists
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have built up physical intuition based on the Regge-Wheeler gauge, and based on the Teukolsky
equation, each of which are gauge-dependent constructs.

The density, flux, and conservation of linear momentum, in the curved spacetime of a black-hole
binary, must rely explicitly or implicitly on a mapping of the binary’s curved spacetime onto an aux-
iliary, translation-invariant flat spacetime. This reliance is spelled out explicitly in a reformulation
of general relativity as a nonlinear field theory in flat spacetime presented in Landau and Lifshitz’s
Classical Theory of Fields [9]. (See also Chapter 20 of MTW [10] and a more elegant, covariant
formulation of the formalism developed by Babak and Grishchuk [11].) In the original Landau-
Lifshitz formulation, one chooses any asymptotically Lorentzian coordinates that one wishes, one
maps onto an auxiliary flat spacetime by asserting that these chosen (“preferred”) coordinates are
globally Lorentzian in the auxiliary spacetime (so in them the auxiliary metric has components
diag[—1,1,1,1]), and one then reformulates the Einstein equations as a nonlinear field theory in the

space of that flat, auxiliary metric. The result is a total stress-energy tensor
7 = (—g)(T*7 + 7)) (3.1)

where g is the determinant of the covariant components of the physical metric, 7%? is the non-
gravitational stress-energy tensor, and tﬁg is the Landau-Lifshitz pseudotensor. By virtue of the
translation invariance of the auxiliary spacetime, this 7%° has vanishing coordinate divergence
roB B3 = 0 in the chosen “preferred” coordinates. Equivalently, this 728 has vanishing covariant
divergence 7'0‘5| s = 0 with respect to the auxiliary flat metric. The components 779 and 7% then
represent the density and the flux of a conserved linear momentum, respectively.

We envision each numerical relativity group choosing the coordinates used in its simulations to
be the preferred coordinates of this mapping to flat spacetime, resulting in each group’s adopting
a different gauge. If we are lucky, this will lead to momentum distributions and flows in different
groups’ simulations that are qualitatively and semi-quantitatively similar. If that is not the case,
then we advocate that the community adopt, as a communally agreed-upon preferred coordinate
system (and thence gauge), harmonic coordinates—though even then it might be necessary to face
up to the fact that harmonic coordinates are not uniquely defined until one gives appropriate initial
conditions. We envision joint numerical and quasi-analytical explorations, over the coming months,
that lead simultaneously to a choice or choices of preferred coordinates for the mapping to flat
spacetime and to physical insights into the flow of momentum in BBHs.

This paper represents a first small step in this direction. To ensure that we understand quite
clearly what is going on, we shall focus in this paper on a binary’s pre-merger bobbing, and we shall
study it and its momentum flow using the post-Newtonian approximation to general relativity in

harmonic coordinates. Subsequent papers in this series will use the Landau-Lifshitz formalism to
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explore momentum flow in black-hole mergers.

3.1.4 Overview of This Paper

We begin our post-Newtonian analysis in Section 3.2 by presenting our main ideas and results
in the simplest interesting context: the extreme-kick configuration. We then, in the remainder
of the paper, present a detailed post-Newtonian analysis of spin-induced momentum flow in the
inspiral phase of generic compact binaries (BBHs, neutron-star binaries, or neutron-star—black-hole
binaries). This detailed analysis begins in Section 3.3 with a very brief summary of the Landau-
Lifshitz formalism, followed in Section 3.4 by a use of the formalism to give a general treatment of
4-momentum conservation for a fully relativistic system of compact bodies. We express the binary’s
total 4-momentum (as measured gravitationally by distant observers) as the sum of the 4-momenta
of its two bodies (expressed as integrals over their surfaces or, for stars, volume integrals over their
interiors) and the 4-momentum of their external gravitational field (expressed as a volume integral
over the exterior). We also derive expressions for the rate of change of the 4-momentum of each
body as a surface integral of the flux of 4-momentum being exchanged between the body and the
external field.

In Section 3.5, we specialize to the inspiral of a generic compact binary, as analyzed in harmonic
coordinates, at leading nontrivial post-Newtonian order (1.5PN for the effects of spin); and we focus
on the distribution and flow of linear momentum (the spatial part of 4-momentum) induced by the
bodies’ spins. We begin in Section 3.5.1 by computing the spin-induced perturbation of the field
momentum §7°%7 in terms of the binary’s masses, vectorial spins, and geometry; and we then integrate
this density over the exterior of the bodies to obtain the total field-momentum perturbation dpgelq
in terms of the bodies’ masses, spins, and vectorial separation. In Section 3.5.2, we discuss the
definition of a body’s center of mass @y, and corresponding velocity v = dxem/dt, and we write
down the influence of the bodies’ spins Mddwv/dt on their equations of motion. In Section 3.5.3 and
Appendix 3.B, we use our definition of center of mass to deduce an expression for the spin-induced
perturbation of a body’s momentum dp in terms of its mass times velocity perturbation Mdv, and
cross products of the bodies’ spins with their separation vector. Finally, in Section 3.5.4, we verify
momentum conservation; i.e., we verify that, as the binary evolves and momentum is fed back and
forth between the bodies and the field, the bodies’ equations of motion ensure that the spin-induced

perturbation of the total momentum (bodies plus field) is conserved.

3.2 Bobbing and Momentum Flow in the Extreme-Kick Con-

figuration

In this section, we shall present an overview of our momentum-flow ideas and results in the context

of the extreme-kick configuration (Figs. 3.1 and 3.2).
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Figure 3.3: Pretorius’ physical explanation for the holes’ bobbing in the extreme-kick configuration

Pretorius [12] has offered a lovely physical explanation for the holes’ bobbing (Fig. 3.2) in this
configuration. In Fig. 3.3, taken from his paper, we see snapshots of the holes at four phases in
their orbital motion. In each snapshot, each hole’s spin drags space into motion (drags inertial
frames) in the direction depicted by gray, semi-circular arrows. In phase B, hole 1 drags space and
thence hole 2 into the sheet of paper (or computer screen); and hole 2 drags space and thence hole
1 also inward.? In phase D each hole drags the other outward. This picture agrees in phasing and
semi-quantitatively in amplitude with the bobbing observed in the simulations (Fig. 3.2).

The agreement is semi-quantitative but not quantitative. In addition to frame dragging, there is a
second influence of the holes’ spins on their motions, at the same 1.5 post-Newtonian (1.5PN) order:
a force on each body due to the coupling of its own spin to the Riemann curvature tensor produced
by the other body. For the extreme-kick configuration (Fig. 3.1), in harmonic coordinates, the mass
times the coordinate acceleration produced by frame dragging (expressed as a weak perturbation,
“§”, to the motion of a nonspinning binary) is (d?6xa/dt*)pp = (4/r55)SE X vap, and that
produced by spin-curvature coupling is (d25z4/dt?)sc = (3/7%5)Sa X vap (first and second lines
of Eq. (4.11c) of [14]). Here r4p is the separation between the two holes, vap = vy —vp = 2v4 is
the coordinate velocity of hole A relative to hole B, and S, and Sp are the spin angular momenta

of holes A and B as defined in post-Newtonian theory (e.g., in the binary’s PN metric, Eq. (4.2)

of [14]). Since Sp = —S4, the sum of the frame-dragging acceleration and spin-curvature-coupling
acceleration is
d*6x 2
( d2A> :3—SA><'UA- (3.2)
t spin effects "AB

We get the acceleration of hole B by replacing all subscript Bs by subscript As. The two holes’
accelerations are identical (synchronous bobbing) because S = —S4, vg = —v4.
We can easily integrate this equation in time by noting that the spin precesses much more slowly

than the orbital motion (so that S4 can be approximated as constant) and by noting that v4 rotates

with angular velocity Q = \/M/r3 5 = \/2m/r3 5, where M is the total mass and m is the mass of

3This is very similar to the way that two fluid vortices (e.g., an aerofoil’s starting and stopping vortex pair) drive
each other into motion; see, e.g., [13].
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each hole as defined in post-Newtonian theory. The result, after one integration, can be written as

mévAzmévB:—gsAanB. (3.3)
TAB

Here dv4 and dvp are the holes’ velocity perturbations (bobbing) produced by their spins, and
nap = (x4 — xp)/rap is the unit vector that points from hole B toward hole A. (As with the
convention for propagators, we regard things as “moving” from right to left; the vector n4p points
from B to A.) One might think that Eq. (3.3) represents the holes’ bobbing momentum, but as we
shall see in Section 3.2.2 it does not—for subtle but physically understandable reasons. The bobbing
momentum of each hole is actually 2/3 times Eq. (3.3); see Eq. (3.19) below.

We can integrate Eq. (3.3) once more to obtain each hole’s bobbing displacement (change of
location) in harmonic coordinates. We write the result in a form that is easily compared with Fig.
3.2:

ox A Sa

Ay x 22 4
— VA X 3 (3.4)

Because S4 remains approximately constant while v4 rotates uniformly in time (if we ignore
radiation-reaction-induced inspiral), and because S4 and v4 both lie in the orbital plane, Eq.
(3.4) represents an approximately sinusoidal bobbing orthogonal to the orbital plane (z direction),
with (peak-to-peak) amplitude §z/M = vaSa/m? = %’UA, where we have used the spin magnitude
Sa/m? = a/m = 0.5 of the CLZM simulations. (The 1.5PN bobbing acceleration, velocity, and
momentum, Eqgs. (3.2)—(3.4), depend only on the Newtonian limits of the PN masses m and spins
S, = —8Sp, and the CLZM simulations use a puncture mass and a spin that have this same New-
tonian limit. Therefore, when comparing the simulations with our PN analysis, we can identify the
simulations’ masses and spins with PN-theory’s masses and spins.)

The CLZM simulations cover only the last two orbits before inspiral, when the post-Newtonian
approximation is failing badly and the inspiral is rapid. Nevertheless, we can hope for rough quanti-
tative agreement. The simulation shows a maximum bobbing amplitude §z/M ~ 0.4, which agrees
with our 1.5PN amplitude dz/M = %’UA if v4 is near the speed of light, as it should be just be-
fore merger. Half an orbit earlier the simulation’s bobbing amplitude is smaller by about a factor
1/1.7 ~ 1/4/2.5, which is what our 1.5PN formula predicts if the orbital radius is 2.5 times larger
than at maximum amplitude—and this agrees fairly well with Fig. 2 of CLZM [5].

3.2.1 Field Momentum in the Extreme-Kick Configuration

In harmonic gauge at leading post-Newtonian order, the Landau-Lifshitz formalism gives for the

density of field momentum
0, _ 9% H
€ 4

T

(3.5)
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(Eq. (4.1a) of [15]). Here, to the accuracy we need, g is the Newtonian gravitational acceleration field
(the gravitoelectric field), H is the gravitational analog of the magnetic field (the gravitomagnetic
field), and e; is the basis vector in the j direction of the flat-spacetime field theory that we are
using. (As we shall see, and as is discussed in Ref. [15] and references cited therein, the analogy with
electrodynamics can be very powerful in building up insight into gravitational momentum density
and flux.)

Before applying Eq. (3.5) to the extreme-kick configuration, let us build up a bit of physical
insight into it. Just as the ratio of the momentum and the mass-energy defines a velocity for a
particle, we can also regard the ratio of the momentum density to the mass-energy density in the

relativistic gravitational field, 7% /7%, as a field velocity

i T
Yfield = 00 - (3.6)

One can show that in harmonic coordinates the vacuum field momentum density 7°° is negative; in
fact, it is

7
W=—_"_g.g (3.7)
81

at leading PN order.? Correspondingly, the gravitational field’s velocity (as “seen” in our auxiliary
flat spacetime) points in the direction of +g x H and has a magnitude of order |H|/|g|. The direction
of this field velocity is the same as the direction of motion of an inertial point mass (relative to our
harmonic coordinates) that is induced by a brief joint action of g followed by H. The geodesic

equation, in harmonic coordinates, and for low particle velocities v, takes the Lorentz-force form

d
d—:::g—l-'va (3.8)

(Eq. (2.7) of [15]) at leading order. In a very short time interval ¢, the field g acting on a particle
initially at rest produces a velocity v = gt, and then H acts on this velocity to produce dv =
%(g x H)t>—which points in the direction of the field velocity.

Now, let us study the field momentum for the extreme-kick black-hole binary. For the moment
we are only interested in that portion of the field momentum which is induced by the holes’ spins,
since this is the portion that must flow back and forth between the field and the bobbing holes
in order to conserve total momentum. This portion arises from one hole’s gravitoelectric field g

coupling to the spin-induced part of the the other hole’s gravitomagnetic field

spin spin
_gAxHB _ngHA

st%e. =
Tl 47 47

(3.9)

4This is 790 in harmonic coordinates (gauge) in vacuum, at leading (Newtonian) order; see, e.g., the first term in
Eq. (4.4a) of [16]. This Newtonian gravitational energy density is gauge dependent; see, e.g., the discussion in Box
12.3 of [17].
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The leading-order expressions for g4 and H 4 are

m
ga = ——3Mna, (3.10a)
TA
3ny- S - S
H, = _ol3ma fg"A 4 (3.10b)
A

(Egs. (2.5) and (6.1) of [15]), where m 4 is the unit radial vector pointing from the center of hole A to
the field point, and r 4 is the distance from the center of hole A to the field point. The gravitoelectric
field (actually the Newtonian gravitational acceleration), Eq. (3.10a), has identically the same form
as the Coulomb electric field of a point charge, with the charge replaced by the hole’s mass m4
and the sign reversed. Similarly, the gravitomagnetic field, Eq. (3.10b), is identical to the dipolar
magnetic field of a point magnetic dipole, with the magnetic moment replaced by the opposite of
twice the hole’s spin, i.e., —254. The fields for hole B are the same as Egs. (3.10), but with each
subscript A replaced by a B.

Combining Egs. (3.9) and (3.10) we obtain for the binary’s density of field momentum (that

portion which must flow during bobbing®)

m

5Toj6j= 5 [3(SA-7”LA)(TLA xnp)—(Sa XnB)]+(A<—>B), (3.11)

23
and integrating this over the space outside the holes, we obtain for the total field momentum that

flows during bobbing (the part of the field momentum that depends on the holes’ spins)®

4 m
—2—SA X MAB - (3.12)

SPfield =
Pfield 313,

This is equal and opposite to the sum of the holes’ bobbing momenta dp4 + dpp, as we shall see in
Section 3.2.3 below.

Figure 3.4 shows the z component (perpendicular to the orbital plane) of the field-momentum
density 7Y%, as measured in the orbital plane at four different moments in the binary’s orbital
evolution. Only that part of the momentum which flows during bobbing, Eq. (3.11), is pictured.
Red depicts momentum density flowing out of the paper (+z direction), and blue, into the paper. The
yellow arrows show the holes’ vectorial spins S, and the circle with two arrows is the binary’s orbital
trajectory. In the top-left and bottom-right frames, the black holes are momentarily stationary at
the top and bottom of their bobbing; see Egs. (3.3) and (3.4). Nevertheless, the momentum density
has a non-trivial distribution. In the top-right and bottom-left frames, the black holes are moving

downward and upward, respectively, with maximum speed. In both cases, the field-momentum

5There are portions of the momentum density that do not flow during bobbing, which will be important for our
comparisons with numerical relativity. The full expression, therefore, is listed in Appendix 3.A.

6Equations (3.11) and (3.12) are special cases of Egs. (3.35) and (3.38) below, where the details of the integration
are carried out.
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Figure 3.4: The four pictures show the z component of field-momentum density 67°% in the orbital
plane at four different times, a quarter orbit apart. Red represents positive momentum density
(coming out of the paper), and blue, negative (going into the paper). Only the piece of momentum
density §7%% that flows during bobbing, Eq. (3.11), is depicted. The yellow arrows are the black
holes’ vectorial spins; the large, black circle with arrows shows the orbital path of the two holes. In
the top-left picture, one sees the density of momentum when the black holes are at the top of their
bob (maximum z) and momentarily stationary; see Eqs. (3.3) and (3.4). The gravitational-field
momentum is zero, but the momentum density itself shows rich structure. A quarter orbit later, in
the top right, the holes are moving downward (into the paper) at top speed. The momentum between
the black holes (blue region) flows into the paper with them, while the surrounding momentum (red
region) flows out of the paper (42 direction). A half orbit after the first picture, in the lower left,
the holes are momentarily at rest at the bottom of their bob (minimum z), the net field momentum
is zero, and the momentum distribution is opposite that in the first picture (as one would expect
during sinusoidal bobbing). Similarly, three quarters of the way through the orbit, in the lower right,
the holes have reached their maximum upward speed, and the momentum distribution is identical
to the second figure, but with the opposite sign.
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density between the two holes flows in the same direction as the bobbing, whereas the momentum
surrounding the binary is in the opposite direction and larger. This leads to a net momentum
conservation for the binary, as discussed in Section 3.5.4.

It is worth noting that the four figures, going counterclockwise from the top-left, are taken a
quarter period apart in orbital phase. The first and third differ by half an orbital period (as do the
second and fourth); consequently, the momentum patterns of each pair are identical, but signs are
reversed (red exchanged with blue, as dictated by the symmetry of the configuration). This feature
is responsible for the sinusoidal bobbing.

It is instructive, in building up physical intuition, to draw pictures of hole A’s gravitoelectric field
lines (radial field lines parallel to g4), hole B’s gravitomagnetic field lines (dipolar field lines parallel
to Hp), and, with them, the direction of —g4 x Hp at various points in Fig. 3.4 (and similarly for
gs, Ha and —gp x Hy4). This and Eq. (3.9) help one understand the momentum distribution (red
and blue coloring) in Fig. 3.4.

3.2.2 The Holes’ Momenta

In this section, we shall use a roundabout route to explain, physically, why the momentum p, of
black hole A is not mw 4 and to derive an expression for it.

Begin by considering, for pedagogical purposes, a rigidly and slowly rotating body in flat space-
time with rotational velocity vyo (). Let p be the mass-energy density of the body’s material in the
local rest frame of a bit of material. Then in an inertial frame where the body is at rest except for

its rotation (the body’s “momentary inertial frame”), its mass-energy density is 7°° = p(1 + v2,),

2
rot

2

¢ from Lorentz contraction. We define the body’s

where %v comes from kinetic energy and %v

center-of-mass location @, by
Mxem = /Toowd3x in body’s momentary rest frame, (3.13)

where M = [ T%3% is the body’s mass. If the body is weakly gravitating, this location will be the
center of the monopolar part of its gravitational field.

Now let this rotating body move with a linear velocity v that is small compared to its rotational
velocity, so that its mass-energy density is 7% = p[1 + (v + Vyot)?] = p[1 + vZ; + 20r01 - v]. If we use
this 7% to compute fTOOwd?’:v, we will not get the xcy, of Eq. (3.13) because the term 2pv,o1 - v
will weight & more heavily on the side of the body where vot - v > 0 and less heavily on the side
where v,o - v < 0. If we want to compute the correct @, by an integral performed in a frame where
the body is moving, we must correct for this effect. The correction factor is well known ([18] and
Section 3.5.2 below):

Mz ey, = /Toomd% —vx8, (3.14)
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where S is the body’s angular momentum. Other definitions of the center of mass are sometimes
used, but they all differ from the locations one would identify, in the body’s rest frame, as the
mass-energy-weighted location, Eq. (3.13), and the center of weak monopolar gravity—i.e., they are
physically motivated less well than this one is.

Equation (3.14), when extended into general relativity in the obvious manner,
Mxey, = /Toomdgzzr —vx S (3.15)

(where 7% Eq. (3.1), is the total stress-energy tensor), is called the physical spin supplementary
condition (SSC) [18]; see Eq. (3.42) below, where a formal derivation is presented. In general
relativity, this condition guarantees that in the body’s local rest frame, ., is at the center of the
monopolar part of the body’s (possibly strong) gravitational field, or more precisely the center of
the monopolar part of the time-time component of the metric density g°° = \/=gg°°, which plays a
major role in the Landau-Lifshitz field-theory-in-flat-spacetime formalism.

The black-hole velocities v4 and vp used in this paper and in the standard harmonic-coordinate,
post-Newtonian equations of motion, are the (coordinate) time derivatives of the holes’ centers of
mass:

VA =dxacm/dt. (3.16)

By specializing Eq. (3.15) to body A, differentiating with respect to time, using the conservation
law 799 o + 7% ; = 0, and integrating the volume integral by parts, we obtain (Eq. (3.47) below and

its derivation)

pi& = mvi1 +(as x Sy +/ (27 — IzmA)(TOk — 79%8)dx,, (3.17)
—~—~ ——— 0A
kinetic SSC
surface
where
Py = / B (3.18)
A

is the total 4-momentum of body A. Here a4 is the acceleration of body A produced by the gravity
of body B and m is the mass of body A. For a black hole, the linear momentum must be defined
via a surface integral rather than the volume integral [, 7%d3z (Eq. (3.30b) below), but Eq. (3.17)
still turns out to be true; see the paragraph following Eq. (3.47) below.

Equation (3.17) has a physical interpretation that is closely related to the one for the center-
of-mass equation, Eq. (3.15), that underlies it. Rearranged, this equation says mvf;1 = pi‘ —(aa %
Sa)y — [yl =l ) (7% — 790K )d%,. The left side is the time derivative of the center-of-mass

location, weighted by the body’s mass (or the kinetic momentum). The first term on the right side

is the body’s total momentum, i.e., the volume integral of 7%/. The second (SSC) term corrects
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Kinetic
Body Frame-Dragging Spin-Curvature SSC Surface Total
pPa —4ap x S 3a4 X Sy as XSy —%anSA —%anSA
PB —4day x Sa 3ap X Sp ap X Sp —%aBXSB —%anSB
Pheld 2(aa x Sa+ap x Sgp)

Table 3.1: Spin-dependent, time-varying pieces of the bodies’ and field’s momenta at 1.5PN order,
for the extreme-kick binary (circular orbit with spins antialigned and in the orbital plane). The
bodies” momenta are broken down into kinetic, SSC, and surface terms and are expressed in terms
of the bodies’ spins S4 p and Newtonian-order gravitational accelerations a4, p = —mna g/ 7’?4 B
See Egs. (3.43) and (3.49) for a similar decomposition in a generic binary.

for the fact that for a spinning body 7% weights the center of mass too heavily on the side of the
body where the rotational velocity and linear velocity are coaligned (v rot - va > 0) and too lightly
on the side where they are antialigned. The third (surface) term corrects for a contribution to the
momentum arising from mass flowing into and out of the body (mass flux 7% — 79%¢%) at different

locations on the body’s face.

3.2.3 Momentum Conservation for the Extreme-Kick Configuration

We now specialize Eq. (3.17) for the momentum of a body in a generic binary to the extreme-kick
configuration and focus on the spin-dependent piece of the momentum that is exchanged between the
bodies and the field. By inserting the expressions 67%e; = —gp x Ha/4m and as = gp(€ = T4 cm)

into Eq. (3.17), with g and H given by Egs. (3.10), and performing the integrals, we obtain

6pA=—§%SAXnAB. (3.19)
This spin-induced perturbation of the linear momentum of body A, when added to an equal amount
for body B gives — % (m/r% 5)SaXnap, which is equal and opposite to the spin-induced perturbation
of the field momentum, Eq. (3.12). Therefore, as the holes circle each other, momentum flows
sinusoidally back and forth between the holes and the field, with no change in the total momentum;
the total momentum is conserved during the bobbing.
Let us examine in detail how momentum conservation is achieved for the bodies’ bobbing. Our
detailed analysis (above) breaks each object’s momentum perturbation dpa p into three terms, the
kinetic momentum mdv4 g, a term due to the SSC, and a surface-integral term (see Table 3.2.3).

The total kinetic momentum
m6UA+m6vB=—(aA><SA—|—aB><SB)7éO (320)

is not conserved because the frame-dragging and spin-curvature-coupling terms do not cancel. The

total body momentum 0pa + dpp is not conserved either; it sums up to 2/3 of the total kinetic
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momentum:

2
5pA+5pB:—§(aA><SA+aB><SB)7EO. (3.21)

To achieve momentum conservation, there is a non-zero spin-dependent total field momentum dis-

tributed outside of the bodies, given by
2
OPfield = g(aA x Sa+ap x Sp). (3.22)

Note that this total external field momentum is only —2/3 of the spin-dependent total kinetic
momentum (instead of the —1 that one might have expected).
It is important to notice that for each body, a canonical momentum can be formed by adding

the SSC term to the kinetic momentum
PA canonical = MU A +aa X SA . (323)

The total canonical momentum p4 + pp is conserved, because the sum of the contribution from
the surface terms of the bodies’ momenta and the external field momentum are equal and opposite.
(This holds for any generic binary, not just the extreme-kick configuration; see Section 3.5 below).
This canonical momentum can be motivated simply from special-relativistic kinetics—without the
need for any knowledge of field momentum—and it is used in the Hamiltonian approach to post-
Newtonian dynamics [19, 18]. Although the canonical momentum explains momentum conservation
for the two-body dynamics, it does not provide information about the distribution of field momentum
nor the role of field momentum in momentum conservation. Our analysis reveals substantial spin-
dependent field momentum outside of the bodies, with the same order of magnitude as the total
spin-dependent kinetic momentum.

One might wonder about the usefulness of distinguishing between the bodies’ (localized) momenta
and the (distributed) field momenta, because a different choice of gauge might move momentum
between these two components or move all the field momentum into the interiors of the objects.
We argue that our choice of harmonic gauge, the analogue of Lorenz gauge in electrodynamics, is
a promising tool for analyzing compact binaries, because its metric perturbations (both physical
and gauge) propagate at the speed of light; this will make gauge effects behave causally just as
do physical effects. For this reason, and because of the physical intuition that the above analysis
brings, we advocate using harmonic gauge and its nonzero field momentum in analyzing compact,

inspiraling binaries.
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3.3 The Landau-Lifshitz Formalism in Brief

We turn, now, to a detailed analysis of momentum flow in generic compact binary systems. We
begin in this section with a very brief review of the Landau-Lifshitz (LL) formulation of general
relativity as a nonlinear field theory in flat spacetime [9)].

This formulation starts (as discussed in Section 3.2 above) by introducing an (arbitrary) coor-
dinate system in which the auxiliary flat metric takes the Minkowski form 7,, = diag[-1,1,1,1].

Gravity is described, in this formulation, by the physical metric density

g = —g9"" . (3.24)

Here g is the determinant of the covariant components of the physical metric, and g*” are the

contravariant components of the physical metric. In terms of the superpotential
HPovB = ghvgaB _ guagul (3.25)
the Einstein field equations take the field-theory-in-flat-spacetime form
HFvB 5 = 1677 . (3.26)

Here 777 = (—g)(T" + t[']) is the total effective stress-energy tensor introduced in Eq. (3.1),
indices after the comma denote partial derivatives (covariant derivatives with respect to the flat
auxiliary metric), and the Landau-Lifshitz pseudotensor ¢{'] (actually a real tensor in the auxiliary
flat spacetime) is given by Eq. (100.7) of LL [9] or, equivalently, Eq. (20.22) of MTW [10]. By virtue
of the symmetries of the superpotential (which are the same as those of the Riemann tensor), the

field equations in the form of Eq. (3.26) imply the differential conservation law for 4-momentum
™, =0, (3.27)

which is equivalent to T#”., = 0 (where the semicolon denotes a covariant derivative with respect
to the physical metric).
It is shown in LL and in MTW that the total 4-momentum of any isolated system (as measured

gravitationally in the asymptotically flat region far from the system) is

1 .
o— S & L ) 3 3.28
DPtot 167 Js , Jo ( )

where d¥; is the surface-area element (defined, of course, using the flat auxiliary metric), and the

integral is over an arbitrarily large closed surface, S, surrounding the system. This total 4-momentum
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Figure 3.5: The regions of space around and inside a compact binary system

satisfies the standard conservation law

dpl" ‘
Prot _ —]f s, . (3.29)
dt g

The proof of this given in LL and MTW relies on an assumption that the interior of S be simply
connected, i.e., that it not contain any black holes. As we show here, however, that assumption is not
necessary. First, differentiate Eq. (3.28) with respect to ¢, then use H**% o = HtWI  — HHOKT 4o
The first term is —1677# by virtue of the the field equations (3.26) and the antisymmetry of the
superpotential on its last two indices; and its surface integral gives the right side of Eq. (3.29). That
same antisymmetry on the second term — H#ki .ok Dermits us to write it as the curl of a 3-vector

field, whose surface integral vanishes by virtue of Stokes’ theorem. The result is Eq. (3.29).

3.4 Four-Momentum Conservation for Fully Nonlinear Com-

pact Binaries

We now apply this LL formalism to a binary system made of black holes and (or) neutron stars; see
Fig. 3.5. We denote the binary’s two bodies, and the regions of space inside them, by the letters A
and B, and we label their surfaces by A and dB. For a black hole, A could be the hole’s absolute
event horizon or its apparent horizon, whichever one wishes. For a neutron star, A will be the
star’s physical surface. We denote by & the region outside both bodies, but inside the arbitrarily
large surface S where the system’s total momentum is computed. (In later papers in this series, S

will sometimes be the outer boundary of a numerical-relativity computational grid.)
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By applying Gauss’s theorem to Eq. (3.28) for the binary’s total 4-momentum and using the
Einstein field equations in Eq. (3.26), we obtain an expression for the binary’s total 4-momentum
as a sum over contributions from each of the bodies and from the gravitational field in the region &£

outside them:

Phot = Pli + Pl + Pheid - (3.30a)

Here
1 )
— H#0F  d¥ 3.30b
167T 94 5 J ( )

on

is the 4-momentum of body A and similarly for body B, and

Plield = /gTO#ng- (3.30c)

is the gravitational field’s 4-momentum in the surrounding space. If either of the bodies has a
simply connected interior (is a star rather than a black hole), then we can use Gauss’s theorem and
the Einstein field equations, Eq. (3.26), to convert the surface integral, Eq. (3.30b), for the body’s

4-momentum into a volume integral over the body’s interior:

Pl = / @3y (3.30d)
A

By an obvious extension of the argument we used to derive Eq. (3.29) for the rate of change of
the binary’s total 4-momentum, we can deduce from Eq. (3.30b) the corresponding equation for the

rate of change of the 4-momentum of body A:

dpi pk n0, k
W = — 6A(T — T ’UA)dEk . (331)

Here the second term arises from the motion of the boundary of body A with coordinate velocity
vk = dak . /dt. Equation (3.31) describes the flow of the gravitational field’s 4-momentum into
and out of body A. We shall use Egs. (3.30), (3.29), and (3.31), specialized to linear momentum
(index p made spatial) as foundations for our study of momentum flow in compact binaries.

The actual values of the body’s and the field’s 4-momenta, computed in the above ways, will
depend on the arbitrary coordinate system that we chose in which to make the auxiliary metric be
diag[—1, 1,1, 1] and in which to perform the above computations. This is the gauge dependence that
we discussed above. In the remainder of this paper, we shall choose harmonic coordinates, in which

the gravitational field satisfies the harmonic-gauge condition

g’ 5=0. (3.32)
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We shall also specialize the above equations to the 1.5 post-Newtonian approximation and use them
to study momentum flow during the inspiral phase of generic compact binaries. In future papers, we
shall use the above equations, combined with numerical-relativity simulations, to study momentum

flow during the collision, merger, and ringdown phases of compact binaries.

3.5 Post-Newtonian Momentum Flow in Generic Compact

Binaries

3.5.1 Field Momentum Outside the Bodies

In general, the portion of the field momentum that is induced by the bodies’ spins and that flows
back and forth between the field and the bodies, as the bodies move, has the same form as that of

the extreme-kick configuration at 1.5PN order,

spin spin
0j. _ gaxHpg g x Hy ™
T Ej = — —

)
47 47 ’

(3.33)

see Eq. (3.9). We find it convenient to rewrite the bodies’ gravitoelectric and gravitomagnetic fields,

Egs. (3.10), as
1

: : 1

de=mie () o omh=-2si () (3:34)
K/ TK/ ij

where K is A or B and where, as before, rx is the (flat-space) distance of the field point from the

center of mass of body K. Inserting Egs. (3.34) into Eq. (3.33) and manipulating the derivatives,

we obtain the following expression for the field momentum density:

stms () (L
A TA .4 B 1 v

Here (A < B) means the same expression with labels A and B interchanged. Notice that this

+ (A< B). (3.35)

. 1
67% = _%Ejpl

expression for the momentum density is the curl of a vector field, or, equally well, it can be viewed
as the divergence of a tensor field.

The total spin-induced, flowing field momentum is the integral of Eq. (3.35) over the exterior
region & (see Fig. 3.5). Using Gauss’s law, that volume integral can be converted into the following

integral over the boundary of £

; 1 1 1
Pt = —%ejplSZlmB /ag (—) (—> d¥,+ (A~ B). (3.36)
»q il

TA B

The boundary of £ has three components: the surface S far from the binary on which we compute
the binary’s total momentum, and the surfaces A and dB of bodies A and B. The integral over

S vanishes because the integrand is proportional to 1/r* and the surface area is proportional to 72,
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and S is arbitrarily far from the binary (r — oo). When integrating over the bodies’ surfaces, we
shall flip the direction of the vectorial surface element so it points out of the bodies (into &), thereby

picking up a minus sign and bringing Eq. (3.36) into the form

. 1 1 1 1 1
rhaa = gremsionn | [ (2) (5) 0 [, (55) (55),
Pheld o CIPLP A B[QA ra) s/, P o5 \ra) \15) p

We presume (as is required by the PN approximation) that the bodies’ separation is large compared

+ (A< B). (3.37)

to their radii. Then on A, we can write (1/74),, = —n%/r% and (1/rg); = nlyz/r4g, where
ny4 is the unit vector pointing away from the center of mass of body A, nf4 p is the unit vector
pointing from the center of mass of body B toward the center of mass of body A, and r4p is the
(flat-spacetime) distance between the two bodies’ centers of mass. The first integral in Eq. (3.37)
then becomes nap/rg [,, 1% /r3d%,. For simplicity, we take the surface of integration to be a
sphere immediately above the physical surface of body A and ignore the tiny contribution from the
region between that sphere and the physical surface. On this sphere, we write dX, = rjnidQ A,
where df) 4 is the solid-angle element, and we then carry out the angular integral using the relation
JoanhndQa = (47/3)d4p. Thereby, we obtain for the first integral in Eq. (3.37) (47/3)dgpnan /%
independent of the radius, r4, of the sphere of integration. (If the body is not spherical, the
contribution from the tiny volume between our spherical integration surface and the physical surface
will be negligible.) Evaluating the second integral in Eq. (3.37) in the same way, and carrying out
straightforward manipulations, we obtain for the external field momentum

OPficld = (mpSa —maSp) X nap . (3.38)

3rig
For the extreme-kick configuration, which has m4 = mp = m and Sp = —S 4, this field momentum
becomes Eq. (3.12).

3.5.2 Centers of Mass and Equation of Motion for the Binary’s Compact
Bodies

We restrict our discussion, temporarily, to a body that is a star rather than a black hole, and
temporarily omit the subscript K that identifies which body. Then, following the standard procedure

in special relativity (e.g., Box 5.6 of MTW [10]), we define the star’s center-of-mass world line to be

that set of events x¥  satisfying the covariant field-theory-in-flat-spacetime relationship

S§Pps =0. (3.39)
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Here p? = J 79%d32 is the body’s 4-momentum and
98 = /[(xo‘ — ZC?m)TﬁO — (xﬁ — xfm)TO‘O]dB:v (3.40)

is the body’s tensorial angular momentum. Here the integrals extend over the star’s interior, and
because the star’s momentum is changing, we take the time component of x¥  to be the same as
the time at which the integral is performed, 20 = 2°. (If the momentum were not changing, this
restriction would be unnecessary; see Box 5.6 of MTW.)

In a reference frame where the body moves with ordinary velocity v/ = p’ /p°, Eq. (3.39) says
S0 = S%y;. We wish to rewrite this in a more illuminating form, accurate to first order in the

velocity v. At that accuracy, we can evaluate S¥ in the body’s rest frame, obtaining S% = €% Sy,

where S, is the body’s spin angular momentum
Sk = /eklm(fﬂl — .’L‘ém)TmOdgx . (3.41)

Using definition of S% in Eq. (3.40), with 22 = 2°, our definition of the center of mass in Eq. (3.39)
then takes the concrete form

MTem = /wTOOde —vxS. (3.42)

Here on the left side we have replaced p® = [ 7%°d3x by its value in the body’s rest frame, which is
the mass m (the two differ by amounts quadratic in v).

Notice that, when computed in the body’s rest frame in which v = 0, the center of mass is
MTem = [ @7°0d?z, but when computed in any frame moving slowly with respect to the rest frame,
this expression must be corrected by the term —v x S that we discussed physically in Section 3.2.2,
Eq. (3.14). We asserted and used Eq. (3.42), the physical SSC, in our analysis of the extreme-kick
configuration; see Eq. (3.15).

In our harmonic-coordinate system, and at the 1.5PN order of our analysis, the dominant, time—
time component of the Einstein field equations, Eq. (3.26), reduces to n””goo)w = 1677%. The
type of analysis carried out in Section 19.1 of MTW [10] then reveals that in the star’s rest frame,
the monopolar part of its g°° is centered on the location .n; or, equivalently, when one expands
the star’s g% around x., in its own rest frame, there is no dipolar 1/r? term (no mass-dipole
moment). This well-known result (see, e.g., [20, 14]) can be used as an alternative definition of
T.m—a definition that works for black holes as well as for stars.

Using this monopolar-field-centered definition of ®¢n, Thorne and Hartle [14] have employed
matched asymptotic expansions (valid for black holes) to derive the equations of motion for a system

of compact bodies, e.g., a compact binary; see their Egs. (4.10) and (4.11). For a compact binary, the

spin-induced contributions to these equations of motion at 1.5PN order are (Eq. (4.11c) of Thorne
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and Hartle)

dov m
ma th = Tg,—A {6nap [(Sp X nap)-vap]+4Sp X vap —6(Sp X nap)(vap - naB)]
AB
m
—i—T3—B {6m4B[(Sa X nap) -vap]+ 384 X vap —3(Sa x nap)(vap-nap)| -
AB
(3.43)
Here
_d®ema - dOT e A -
VA= 51},4—7, VAB = VA — UB (3.44)

are the velocity of (the center of mass of) body A, the spin-induced perturbation of that velocity,
and the relative velocity of bodies A and B. The first two lines of Eq. (3.43) are due to frame
dragging by the other body (body B); the last two lines are a force due to the coupling of body A’s

spin to B’s spacetime curvature.

3.5.3 The Momenta of the Binary’s Bodies

As in the previous subsection, we initially restrict ourselves to a body that is a star; then we shall
generalize to a black hole. We initially omit the star’s label A or B for ease of notation.

For a star, we can derive an expression for the momentum p’ = f 79 d3x (with the integral over
the star’s interior) in terms of the star’s velocity v/ = dzJ,, /dt by differentiating the expression for

the center of mass, Eq. (3.42), with respect to time. To allow for the possibility that the mass might

change with time, we set m = [ 7%°d3x before doing the differentiation; i.e., we differentiate
xﬁm/ 0@ = / 7Py — (v x §)7 . (3.45)
A A
Using 7%y = —7% ; and Gauss’s theorem, we bring the left side into the form v7 [, Toodz —

wl [oa (7% — 79%7)dS;. The last term arises from the motion of the surface of the star through
space with velocity v. Manipulating the time derivative of the integral on the right side of Eq. (3.45)

in this same way, we bring it into the form

/ @3y —/ 23 (7O — 700k dy, = pf —/ 2 (1% — 790k dxy, (3.46)
A 0A 0A

where p’ is the star’s momentum. Inserting these expressions for the left-side and the right-side
integral into Eq. (3.45), noting that the star’s spin angular momentum evolves (due to precession) far
more slowly than its velocity, denoting the time derivative of its velocity by dv/dt = a (acceleration),

solving for p?, and restoring subscript As, we obtain

pi‘ = mA”ix —l—/ (xj — xzmA)(TOk — Toovi)dzk + (aA X SA)j .
0A
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Although we have derived this equation for a star, it must be true also for a black hole. The
reason is that all the quantities that appear in it are definable without any need for integrating over
the body’s interior, and all are expressible in terms of the binary’s masses and spins and its bodies’
vectorial separation, in manners that are insensitive to whether the bodies are stars or holes. To
illustrate this statement, in Appendices 3.B and 3.C we deduce Eq. (3.47) for a black hole, restricting
ourselves to the spin-induced portion of the momentum that is being exchanged with the field, 5pr4.

It is this (Spf4 that interests us. Because the spin has no influence on 7% at the relevant order
(which is 07%% ~ gH and 07°° ~ g%, where g and H are the gravitoelectric and gravitomagnetic

fields), Eq. (3.47) implies that

5pf4 = mAévf;1 +/ (z7 — xzmA)éTOdek +(aq x S4) . (3.47)
OA

The acceleration a4 of body A is, at the order needed, just the gravitoelectric field of body B at
the location of A, ay = —(mp/r%5)nap. Performing the surface integral on a sphere just above
the body’s physical surface we can write 27 — :Cgm A= ni‘r 4 and dX = r4dQ4. Inserting these into

Eq. (3.47), we obtain

Sply = madvl, +/ r367%nd ki dQa + 52 (Sa X nap)’ . (3.48)
—— A "AB
kinetic term
surface term SSC term

Here “SSC term” refers to the “spin supplementary condition” required to get the correct, physical
center of mass; see text following Eq. (3.15). In the surface term, the field momentum density §7°%
is given by Eq. (3.35). The second term (A < B) is smaller than the first by M/rap and thus

is negligible. Inserting the first term into the integral, using (1/r4).qp = (3n%nf — d,4p)/r% and

(1/rg)s = —nk/ry, and [n)nkdQ, = 22651, we bring Eq. (3.48) into the form
2 mp mpg
dpa =  madva — -—5—8SaxXnap+ 584 xXnap
— 3T4B T"'AB
kinetic term
surface term SSC term
1 mp
= mA6UA+—2—SA><nAB. (3.49)

3155

As an illustration of the power of the Maxwell-like formulation of the post-Newtonian approx-
imation, we rederive this equation in Appendix 3.C using a straightforward surface integral of the

Maxwell-like expression for the gravitational stress tensor.
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3.5.4 Momentum Conservation

The total spin-induced momentum perturbation, épiot = 0pa +IP5 + dpsicd, Egs. (3.49) and (3.38),
is

1
5ptot:mA(S'UA‘FmB(S'UB"'Tg—(mBSA_mASB) X NaApB . (3.50)
AB

Momentum conservation requires that the time derivative of this dpiot vanish. The time derivative
of the kinetic terms can be read off the equation of motion, Eq. (3.43):
dév dév 1

A B

i mp dt Z—T—g(mBSA—mASB) X [’UAB—?)(’I’LAB-’UAB)’I’LAB] . (3.51)

ma

By inserting nap = (em A — Tem B)/7Ap into the second term of Eq. (3.50) and differentiating with

respect to time, we obtain the negative of Eq. (3.51). Therefore,

i.e., as the binary’s evolution drives spin-induced momentum back and forth between the bodies and
the field, the total momentum remains conserved, as it must. Interestingly, during the summation
of momentum terms, one finds that the surface terms in dp4 + dpp have exactly cancelled the field
momentum 0pgelq, leaving the total momentum as the sum of the bodies’ kinetic term and their
SSC term—i.e., leaving it equal to the bodies’ total canonical momentum (see the discussion at the

end of Section 3.2.3).

3.6 Conclusion

In this paper, we have explored the flow of momentum between a compact binary’s bodies and
their external gravitational field (spacetime curvature), at 1.5PN order, during the binary’s orbital
inspiral. In subsequent papers, we shall explore momentum flow in numerical-relativity simulations
of a binary’s collision, merger, and ringdown. We expect these studies to give useful intuitive insights

into the internal dynamics of binary black holes and the nonlinear dynamics of curved spacetime.

3.A Appendix: The Total PN Momentum Density

In Section 3.2.1, Egs. (3.9) and (3.11) show the portion of the field momentum that generates
bobbing. There are, however, additional pieces of field momentum at the same PN order that do
not contribute to the bobbing, and these expressions become important for comparisons of the post-
Newtonian analysis with numerical-relativity results (to be presented in future papers). There are

three extra sources of terms. First, the gravitomagnetic field has a part HY®' that depends upon
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the body’s velocity. Using Egs. (2.5) and (6.1) of [15], one can see that

4mA(nA X 'UA)

HY"° = + (A< B). (3.53)

Second, there are terms from the coupling of the gravitomagnetic field of body A with its own
gravitoelectric field 7%e; = —(ga x Ha)/(4w), and similarly for body B, for both the spin and
velocity pieces of H. Finally, there is a part due to (3Uxg)/(47), where Uy is the Newtonian
potential and the dot denotes differentiation with respect to time (see Eq. (4.1) of [15]). When one

accounts for these additional expressions, the full field momentum density is written most concisely

as
205 ngin +7 (3.54a)
where ngin and T‘?leo are the terms that depend upon the spins and the velocities, respectively. These

terms are given by

0i mp 1 mgy
ngine_j = m [3(SA . ’I'LA)(’I'LA X 'I’LB) — (SA X ’I'LB)] — %E(SA X nA) + (A ~ B) s (354b)
and
50 _ ma [mpldnp-va)nas —4(na-np)va] 3mp(na-va)np
Teelo®i = 2 2 - 2
4dmry rg rg
. —4
+malma v;)""‘ val } + (A B). (3.54c)
A

In the body of this paper, we have confined attention to the first group of terms in Eq. (3.54b) and
the terms with (A < B); they are the part of the field momentum that gets exchanged with the
bodies during bobbing.

3.B Appendix: Momentum of a Black Hole Computed via a

Surface Integral of Superpotential

In the text, we derived Eq. (3.47) for the momentum of a body in a binary assuming the body was a
star, so that we could perform volume integrals. We then asserted that this expression is also valid
for black holes. The spin-induced portion of this expression that gets exchanged with the field as the
body moves is given by Eq. (3.47), which reduces to Eq. (3.49). In this appendix, we shall sketch
a derivation of Eq. (3.49) directly from the surface-integral definition, Eq. (3.30b), of a black hole’s

momentum,
1

— [ SHIOF 4%, . (3.55)
167T A ’

oply =



69

Evaluating this surface integral up to the desired 1.5PN-order accuracy turns out to require some
2.5PN-order fields. Qualitatively, this can be anticipated, because the superpotential we use in the
surface integral is sourced by the spin-orbit piece of field momentum and, therefore, is necessarily a
non-leading PN term. One can see this more clearly by expanding d H jao’“@ in terms of the metric
density and using the symmetries of the superpotential H (which are the same as the Riemann
tensor). In general, the momentum is given by

0Ph = —1o- aA(gj’“g“" —gg") adZy . (3.56)
In harmonic gauge, however, g*? 5 = 0, and the spatial metric is flat until 2PN order, while the
time-space components are of 1.5PN order. As a result, the terms at lowest and next-to-lowest PN

order are contained within two terms,

‘ 1 _ _
op’, = o (0 1, + g% 0)dSy - (3.57)
DA

In this expression, the momentum arises from linear terms involving the metric density, instead of
quadratic ones. As a result, one must keep pieces of the metric perturbation that are of higher PN
accuracy. (If we evaluate the time derivative of dp4 using the surface integral in Eq. (3.31), we
do not face such a delicacy; the integrand there is quadratic and requires only 1.5PN fields for its
evaluation; see Appendix 3.C.)

To find the momentum in terms of the standard post-Newtonian potentials, we use a standard
way that the metric perturbations are written in recent post-Newtonian literature (e.g., by Blanchet,

Faye, and Ponsot [21]):

goo = —1+2V—2V2 48X, (3.58a)
gio = —4Vi-8R;, (3.58b)
gi; = 0i(142V +2V2) +4W,; , (3.58¢)
V=g = 142V +4V242Wp . (3.58d)

For spinning systems, we adopt the notation of Tagoshi, Ohashi, and Owen [22], where O(m,n)
means to order ¢~ for non-spinning terms and xc~" for terms involving a single spin x. (Here
X = |S]/m? is the body’s dimensionless spin.) In this notation, the terms we need for our calculation
are of the order O(3,6), while the above post-Newtonian potentials have been obtained up to the

following orders [22, 23]:

V=025, Vi=0(3,4), Wir=04,5), R;j=0(5,6). (3.59)
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In terms of these post-Newtonian potentials, V', V;, Ri, X , and Wij, the perturbed metric density is

0 = —1-av -2 (W +4V2) + 0(6,7), (3.60a)
" = V-8 (R +VV) +06,7), (3.60b)
g7 = ;4 (Wij - %&jwkk) +0(6,7) . (3.60c)

As a consequence, Eq. (3.57) is given by

1

1 R R R
{ [—4Vj -8 (Rj<s> + V(M)‘G(S)ﬂ L {ij(S) - gajkwii(S)} 0} d¥, (3.61)

5pj = —
A 167 A

where a subscript (S) means keep only the parts of those potentials proportional to the spins of
the bodies, and a subscript (M) involves pieces of the potential without spins (proportional to the
masses of the bodies). Terms without a subscript have both pieces.

Tagoshi, Ohashi, and Owen express the potentials Vi, Vj, Rj(s), and ij(s) in terms of the
bodies’ masses, vectorial velocities, vectorial spins, and vectorial separations, and distance to the
field-point location; see their Egs. (Ala), (Ald), (Alf), and (Alg). While the full equations are quite
lengthy, the portions that generate momentum flow—those involving the coupling of the mass of one
body to the spin of the other—are somewhat simpler. For convenience, we give these portions of the

equations below, rewritten in our notation, with the typos noted by G. Faye et al. [23] corrected.

Vi) = T—: + (A< B), (3.62a)
J
MmAvy ko 3mp mp(na-nap) . 3mp
J A T kLS A {nA [ 2rirap 4rar? g thas AraraB
+(A — B) , (3.62b)
. 1 , ni
Wiks) = [5 (Q’le,qu,]Z + eiszlAvﬁ) - 5jk€ilm'Uf4SXL:| T‘_2A + (A« B), (3.62c)
A
3 G ol |k k mp | 2mp ;. Lk MB
Rjs) = €Sy [nA(nAB +np) (TA? ?) - 2nABnBS—3:|
i ol i kMB i ik mp 2mp
+1y peikiSa {—Q”A”b 3 + (na +nB)nap <—m - 5—3”

mp mp mp mpg mp
+eju19% [nlA <— —— + 2> +nkypg (— St + 2>
2rjTAB  TABS 2rarap  2raprB TAS

mp mp
+nly (r,? + TABSQ)} + (A< B). (3.62d)

Here, as before, ma, va, and S are the mass, velocity, and spin angular-momentum of object
A; 14 is the separation of body A from a point in space, and rap is the separation of the two
objects; and n 4 and nsp are unit vectors pointing along r4 and r4 g, respectively. A new quantity,

$ = 1A+ 1B + raB, has been introduced, in addition. Inserting these expressions into Eq. (3.61)
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gives us §H7*%% ,and the momentum of body A is then found by performing a surface integral over
A’s surface. The surface integrals are computed under the same assumptions as in Section 3.5.1:
namely, the separation of the bodies is much larger than their radii, and each surface of integration
is a sphere immediately above a body’s surface. When they are computed, one finds the same result
as Eq. (3.49),

1
5pA:mA5’UA—|——¥SAXnAB . (3.63)
31458

By tracing backward the logic from Eq. (3.49) to Eq. (3.47), we obtain the spin-dependent part
of Eq. (3.47), without any recourse anywhere to (invalid) integrals over the hole’s interior—as was
claimed in the text. One can find the momentum for body B by exchanging A and B in Eq. (3.63).
As a consistency check, we can evaluate the system’s total momentum by doing a surface integral

at infinity:
opl., = 16% 7‘{9 SHIOk d%, . (3.64)

The quantity §H7*%% , is exactly the same as above, from which one can find

mp (SA X 'n,AB)j

0ploy = madvy + . + (A B). (3.65)
TAB
This, combined with the fact that
0ptot = 0pa + 0pB + OPfield , (3.66)

as well as Eq. (3.63), gives

2mB (SA X 'n,AB)j

6pizield = 3,,,1243 + (A - B) ) (367)

as found in Section 3.5.1.

3.C Appendix: Momentum of a Black Hole Computed via a

Surface Integral of the Gravitational Stress Tensor

As an illustration of the power of the Maxwell-like formulation of post-Newtonian theory, in this

appendix, we shall compute the spin-induced contribution dp4 to the momentum of black hole A

using an integral of the Maxwell-like stress tensor. This is a far more straightforward approach than
the superpotential surface integral of Appendix 3.B.

Our starting point is Eq. (3.31) specialized to the spin-induced part of the body’s linear momen-

tum: _

dop’y

dt

_ 1{? (O =5 ES; (3.68)
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Here the gravitational stress tensor 7% and momentum density 7% have the standard Maxwell-like

forms when expressed in terms of the gravitoelectric field g and gravitomagnetic field H

by 1 1 1

. 1
%e; = ——gxH (3.69b)
4n

(Egs. (4.1) of [15]), and 7% and 7% are the portions that are linear in the bodies’ spins. In Egs.
(3.69) we have dropped two terms that involve the time derivative of the Newtonian gravitational
potential because (at the post-Newtonian order to which we are working) they are independent of
the bodies’ spins.

We shall evaluate the momentum-density integral, the second term of Eq. (3.68), first, and then
the stress-tensor integral. For our black-hole binary, the spin-induced part of the momentum density

in Eq. (3.69b) is Eq. (3.11), which we rewrite in index notation as

. m
5700 — 5 A [Bejignlsn? (SEnk) — €j155n%] + (A < B) . (3.70)
AT

By (i) inserting this into Eq. (3.68), (ii) taking the holes’ separation r4p to be large compared to
the radius r4 of the surface A of hole A where the integral is performed, (iii) expanding rp and
np = xp/rp (evaluated on the surface of hole A) in powers of 74 /rap, (iv) keeping only the terms
in the expansion that give the leading-order nonzero contribution to the integral, and (v) performing

the integral, we obtain

2mB

ei ¢ OV d%S; = o [~5(Sa X v4) +6(Sa X nap) (Nap - va)
04 15rap
-9 ('UA X ’I’I,AB) (SA ~’I’I,AB)]
2m
~55 (85 % va) +3(va X nap) (Sp - nap)] - (3.71)
T"AB

For the stress-tensor term in Eq. (3.68), the gravitoelectric and gravitomagnetic fields to the

accuracies needed are

_man’y N 2eriqv Sy (0% — 3niynY) N 2€iS% [3 (nhv?) nky — ok ]

4 3 3
Y (A< B), (3.72a)
, 4m aeivlynk 254 — 6 (S(’Zn’j&) nly
H = 2 + 3 + (A< B) (3.72Db)
A A

(Egs. (6.1) and (2.5) of [15]). The first term in Eq. (3.72a) is the Newtonian gravitational accel-
eration; the other two terms are the spin-induced post-Newtonian contributions. The two terms

in Eq. (3.72b) are the gravitomagnetic fields produced by the linear momentum of body A and by
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its spin. By inserting these into the Maxwell-like expression, Eq. (3.69a), for the stress tensor and
keeping the leading-order terms that are linear in the spins, then inserting into the first term of Eq.
(3.68) and performing the surface integral in the same manner, using steps (i) through (v), as for

the momentum density term, we obtain (straightforwardly, but tediously)

—€; 67‘ijd25j = — 277;,4 {6 (SB X ’UB) — 9(53 X ’I’LAB) (’UB "I’LAB)
DA 3rup

+9 [’UB . (SB X ’I’LAB)] naAp +2(SB X ’UA) +6(’UA X ’I’LAB) (SB . ’I’LAB)}

2m
B £21(S4 xv4) —27(Sa X nap) (VA 1ap)

+

1513 5
+[(36va — 15vp) - (Sa X nap)|nap

+5(Sa xvp)+30(ve Xnap)(Sa-nap)} . (3.73)
By adding Egs. (3.71) and (3.73) to obtain Eq. (3.68) and then using the vector identity
(vxn)(S n)=—w- (Sxn)n+(Sxn)(v-n)—Sxv (3.74)

to eliminate all terms of the form (v x ) (S - n), and setting v4 —vp = vap, we obtain the following

expression for the rate of change of the momentum of body A:

dd m 10
dpA = 32 {—SA X vap —4(Saxnap)(vap-nap) +6[vap- (Sa x nap)] nAB}
t g L3
m
+T3A {4Sp xvap — 6 (S X NaB) (Vap -nap)+6vap - (Sp X nap)|nap} .
AB
(3.75)
By combining with the equation of motion for body A, Eq. (3.43), we obtain
d5pA d(S'UA mp 1
il =MmMAa dat % ESAX'UAB—(SAX'”AB) (vAB-nAB) . (3.76)

By integrating this in time, we obtain the text’s final expression for the momentum of black
hole A, the second line of Eq. (3.49). And by tracing backward the logic from Eq. (3.49) to Eq.
(3.47), we obtain the spin-dependent part of Eq. (3.47), without any recourse anywhere to (invalid)
integrals over the hole’s interior—as was claimed in the text and shown by a higher-PN argument

in Appendix 3.B.
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Chapter 4

Momentum Flow in Black-Hole Binaries:
II. Numerical Simulations of Equal-Mass,

Head-on Mergers with Antiparallel Spins

Research on extracting science from binary-black-hole (BBH) simulations has often adopted
a “scattering matrix” perspective: given the binary’s initial parameters, what are the
final hole’s parameters and the emitted gravitational waveform? In contrast, we are us-
ing BBH simulations to explore the nonlinear dynamics of curved spacetime. Focusing
on the head-on plunge, merger, and ringdown of a BBH with transverse, antiparallel
spins, we explore numerically the momentum flow between the holes and the surround-
ing spacetime. We use the Landau-Lifshitz field-theory-in-flat-spacetime formulation of
general relativity to define and compute the density of field energy and field momentum
outside horizons and the energy and momentum contained within horizons, and we de-
fine the effective velocity of each apparent and event horizon as the ratio of its enclosed
momentum to its enclosed mass-energy. We find surprisingly good agreement between
the horizons’ effective and coordinate velocities. During the plunge, the holes experience
a frame-dragging-induced acceleration orthogonal to the plane of their spins and their
infall (“downward”), and they reach downward speeds of order 1000 km/s. When the
common apparent horizon forms (and when the event horizons merge and their merged
neck expands), the horizon swallows upward field momentum that resided between the
holes, causing the merged hole to accelerate in the opposite (“upward”) direction. As
the merged hole and the field energy and momentum settle down, a pulse of gravita-
tional waves is emitted, and the merged hole has a final effective velocity of about 20
km/s upward, which agrees with the recoil velocity obtained by measuring the linear

momentum carried to infinity by the emitted gravitational radiation. To investigate the
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gauge dependence of our results, we compare generalized-harmonic and BSSN-moving-
puncture evolutions of physically similar initial data; although the generalized-harmonic
and BSSN-moving-puncture simulations use different gauge conditions, we find remark-
ably good agreement between our results in these two cases. We also compare our

simulations with the post-Newtonian trajectories and near-field energy-momentum.

Originally published as G. Lovelace, Y. Chen, M. Cohen, J. D. Kaplan, D. Keppel, K.
D. Matthews, D. A. Nichols, M. A. Scheel, and U. Sperhake, Phys. Rev. D 82 064031
(2010).

4.1 Introduction

4.1.1 Motivation

Following Pretorius’s 2005 breakthrough [1], several research groups have developed codes to solve
Einstein’s equations numerically for the inspiral, merger, and ringdown of colliding binary black
holes (BBHs). Most simulations of BBH mergers to date use the moving-puncture method [2, 3],
but BBH mergers have also been successfully simulated by spectral methods [4].

A major goal of current research is to successfully extract the physical content of these sim-
ulations. Typically, efforts toward this goal adopt a “scattering matrix” approach. Information
obtained from numerical simulations on a finite set of islands in the seven-dimensional' parameter
space is being extrapolated, by various research groups, to design complicated functions that give
the final parameters of the merged hole and the emitted gravitational waveforms as functions of the
binary’s initial parameters.

In this paper, however, we take a different perspective: we focus our attention on the nonlinear
dynamics of curved spacetime during the holes’ merger and ringdown. Following [5] (paper I in this
series), our goal is to develop physical insight into the behavior of highly dynamical spacetimes,
such as the strong-field region near the black-hole horizons in a merging binary. As in Paper I, we
focus this study on the distribution and flow of linear momentum in BBH spacetimes. In contrast
to Paper I's description of the pre-merger motion of the holes in the post-Newtonian approximation,
in this paper, we study the momentum flow during the plunge, merger, and ringdown of merging

black holes in fully relativistic simulations.
4.1.2 Linear Momentum Flow in Binary Black Holes and Gauge Depen-
dence

Typically, numerical simulations calculate only the total linear momentum of a BBH system and

ignore the (gauge-dependent) linear momenta of the individual black holes. However, linear mo-

1One parameter for the mass ratio and six for the individual spins; additional parameters might arise from eccentric
orbits and the apparent dependence, in some configurations, of the recoil on the initial phase of the binary.
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mentum has been considered by Krishnan, Lousto, and Zlochower [6]. Inspired by the usefulness of
quasilocal angular momentum (see, e.g., [7] for a review) as a tool for measuring the spin of an in-
dividual black hole, Krishnan and colleagues proposed an analogous (but gauge-dependent) formula
for the quasilocal linear momentum, and they calculate this quasilocal linear momentum for, e.g.,
the highly-spinning, unequal-mass BBH simulations in [8]. This quasilocal linear momentum is also
used to define an orbital angular momentum in [9].

In this paper, we adopt a different, complementary method for measuring the holes’ linear mo-
menta: for the first time, we apply the Landau-Lifshitz momentum-flow formalism (described in
Paper I and summarized in Section 4.2) to numerical simulations of merging black holes. In this
formalism, a mapping between the curved spacetime and an auxiliary flat spacetime (AFS) is chosen,
and general relativity is reinterpreted as a field theory defined on this flat spacetime. The AFS has a
set of translational Killing vectors, which we use to define a localized, conserved linear momentum.
In particular, we calculate (i) a momentum density, (ii) the momentum enclosed by horizons, and
(iil) the momentum enclosed by distant coordinate spheres. In the asymptotically flat region around
a source, there is a preferred way to choose the mapping between the curved spacetime and the AFS;
consequently, in this limit item (iii) is gauge-invariant. In general, though, the choice of mapping is
arbitrary, and it follows that items (i) and (ii) are necessarily gauge-dependent.

By examining the linear momentum flow in a dynamical spacetime—and living with the inevitable
gauge dependence—we hope to develop strong intuition into the behavior of BBHs. As discussed
in Section I C of Paper I, we envision different numerical-relativity groups choosing “preferred”
gauges based on the coordinates of their numerical simulations. While there is no reason, a priori,
why simulations in different gauges should agree, one of our hopes from Paper I is realized for
the cases we consider: namely, in this paper, we calculate the horizon-enclosed momentum using
generalized-harmonic and BSSN-moving-puncture evolutions of similar initial data, and we do find
surprisingly good agreement between the two (see Figs. 4.7 and 4.14), even though the simulations
use manifestly different gauge conditions (Eqgs. (4.14) for the generalized-harmonic simulations and
Egs. (4.53)—(4.54) for the BSSN-moving-puncture simulations). These are two of the most commonly
used gauge conditions in numerical relativity.

Therefore, we continue to hope that in general—for the gauges commonly used in numerical
simulations—the momentum distributions for evolutions of physically similar initial data will turn
out to be at least qualitatively similar. If further investigation reveals this to be the case, then
different research groups can simply use the coordinates used in the their simulations as the “pre-
ferred coordinates” for constructing the mapping to the AFS. Otherwise, we would advocate (as in
Section I C of Paper I) that different numerical-relativity groups construct the mapping to the AFS
by first agreeing on a choice of preferred coordinates (e.g., a particular harmonic gauge) and then

transforming the results of their simulations to those coordinates.
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4.1.3 Binary-Black-Hole Mergers with Kicks

An important application of this approach is exploring the momentum flow in BBH mergers with
gravitational recoil, or black-hole kicks. Kicks arising from a BBH coalescence can have direct
observational signatures [10, 11, 12] and can have influence on the structure of galaxies [13, 14, 15],
the reionization history of the Universe [16], and the assembly of supermassive black holes [17,
18, 19, 20, 21]. For a long time, estimates of the recoil magnitude were based on approximations
[22, 23, 24, 25]; accurate calculations of fully nonlinear general relativity have only become possible
after the breakthroughs in the field of numerical relativity [1, 2, 3].

Several groups have used numerical simulations to study the kick resulting from the merger of
non-spinning and spinning binaries (see, e.g., [26, 27, 28, 29, 30, 31]). Remarkably, recoil velocities
of several thousand km/s have been found for quasicircular binaries with equal and opposite spins
in the orbital plane [30, 32, 33] (the extreme-kick, or superkick, configuration), and velocities of
order 10* km/s have been produced from similar binaries in hyperbolic orbits [34]. Given the
potential astrophysical repercussions of such large recoil velocities, the community is now using
various approaches to obtain a better understanding of the kick as a function of the initial BBH
parameters [35, 36, 37, 38, 39, 40] and making phenomenological fitting formulas; see [41, 9, 38, 42,
43, 8], and references therein.

On the other hand, our understanding of the local dynamics in these extraordinarily violent
events is still rather limited. Some insight into the origin of the holes’ kick velocity has been
obtained by examining the individual multipole moments of the emitted gravitational waves [44, 45]
and by approximating the recoil analytically using post-Newtonian [24, 46], effective-one-body [25],
and black-hole-perturbation theory [47]. Pretorius presented an intuitive picture which describes
aspects of the extreme-kick configuration in terms of the frame-dragging effect (see Fig. 5 of [48]).
Recently, Rezzolla, Macedo, and Jaramillo explained the deceleration of the common horizon in a
recoiling BBH merger in terms of the anisotropic distribution of the common horizon’s curvature
[49].

Investigating the momentum distribution and flow in recoiling BBH mergers could help to build
further intuition into the nonlinear dynamics of the spacetime and their influence on the forma-
tion of kicks. Paper I explored the former issue, but it could not address the latter. Specifically,
Paper I examined the distribution and the flow of linear momentum in BBH spacetimes using the
Landau-Lifshitz formalism in the post-Newtonian approximation; it then specialized this approach
to the extreme-kick configuration. During inspiral, the two black holes bob simultaneously and
sinusoidally along the axis defined by the orbital angular momentum. Paper I explained the bob-
bing as arising from the exchange of momentum between the near-zone gravitational field and the

black holes; it also gave a detailed description of the black holes” momenta in terms of frame drag-
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Figure 4.1: Initial configuration of the head-on BBH considered in this chapter. The holes move
primarily along the x axis, but they also accelerate in the —y (downward) direction because of frame
dragging. See Table 4.1 for the value of d = 2xg.

ging, spin-curvature coupling, asymmetric energy flux through the horizons, and the physical spin
supplementary condition.

Because Paper I analyzed the system using the post-Newtonian approximation, its analysis could
not be extended to and after merger. Consequently, it was not possible to address how the nonlinear
dynamics in the near zone prior to the merger develops into the final behavior of the merged black
hole. This paper (Paper II) uses full numerical-relativity simulations of BBHs to understand how

the momentum flow behaves during the plunge, merger, and ringdown of BBHs.

4.1.4 Overview and Summary

As a first investigation of the momentum flow in numerical-relativity simulations of BBHs, in this
paper, we apply the Landau-Lifshitz momentum-flow formalism to a head-on plunge, merger, and
ringdown of an equal-mass binary. The holes initially have antiparallel spins of equal magnitude
that are transverse to the holes’ head-on motion (Fig. 4.1). They primarily fall toward each other
in the +z direction, but each hole’s spin drags the space around itself, causing the other hole to
accelerate in the downward, —y direction. After the holes merge, the final black hole is kicked
upward by the emitted gravitational waves, in the +y direction. It is natural to wonder how the
initial motion downward from frame dragging relates to the final, upward kick velocity of the merged
hole. To address this issue, we compute the 4-momentum p* inside each apparent horizon using the
Landau-Lifshitz formalism; we then define an effective velocity as

i P’
ULL = _0 . (4.1)

hS!
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Figure 4.2: The effective velocity vf; for the individual (red dotted line) and common (green dashed
line) apparent horizons and for the event horizon (black solid line). The inset shows the velocity of
the common apparent horizon at late times.

In Section 4.4, we find that this effective velocity behaves similarly to the apparent horizons’ coor-
dinate velocities.?

The effective y velocity for the generalized-harmonic simulation described in Section 4.3.1.2 is
shown in Fig. 4.2. Before the merger, the individual apparent horizons accelerate in the —y (down-
ward) direction, eventually reaching velocities of order 103 km/s. When the common apparent
horizon forms, the horizon pulsates. During the first half-pulsation, the horizon expands and accel-
erates to ~ 103 km/s in the +y (upward) direction. This happens because as the common horizon
forms and expands, it swallows not only the downward linear momentum inside each individual
horizon but also a large amount of upward momentum in the gravitational field between the holes
(see Fig. 4.3). During the next half-pulsation, as the horizon shape changes from oblate to prolate
(see Fig. 4.10), the horizon swallows more downward momentum, thereby losing most of its upward
velocity. Eventually, after strong damping of the pulsations, the common horizon settles to a very
small velocity of about 23 km/s in the +y direction (see the inset of Fig. 4.2), which is consistent
with the kick velocity inferred from the emitted gravitational radiation (see Section 4.4).

The flow of momentum between field and holes is also described quite simply in terms of the holes’
event horizon. Unlike apparent horizons, the event horizon evolves and expands continuously in time,
rather than discontinuously. As the event horizon expands, it continuously swallows surrounding
field momentum, and that swallowing produces a continuous evolution of the event horizon’s velocity,

an evolution that is nearly the same as for the apparent-horizon velocity. Figure 4.2 shows how the

2By coordinate velocity, we mean the velocity of the center of the apparent horizon, as measured in our asymptot-
ically inertial coordinates.
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Figure 4.3: A contour plot of the y component of the momentum density at the moment when
the common apparent horizon forms. The common horizon encloses the momentum inside the
individual horizons and also the momentum in the gravitational field. The grey-shaded region and
solid, red contours indicate positive momentum density, while the white-shaded region and blue,
dashed contours indicate negative momentum density. The individual apparent horizons are shaded
black, and the common apparent horizon is shown as a thick black line.

effective velocity of the event horizon smoothly transitions from matching the individual apparent
horizons’ velocities to matching the common apparent horizon’s velocity. For further details, see
Section 4.4.1.2 and especially Figs. 4.12 and 4.13.

In the remainder of this paper, we discuss our results and the simulations that are used to obtain
them. In Section 4.2, we briefly review the Landau-Lifshitz formalism and momentum conservation.
The simulations themselves are presented in Section 4.3. We analyze the simulations’ momentum
flow in Section 4.4 and conclude in Section 4.5. In the appendices, we describe in greater depth the

numerical methods used for the simulations presented in this paper.

4.2 Four-Momentum Conservation for the Landau-Lifshitz

Formalism

In this section, we briefly review the Landau-Lifshitz formulation of general relativity and the state-
ment of 4-momentum conservation within this theory. Landau and Lifshitz, in their Classical Theory
of Fields (hereafter referred to as LL), formulated general relativity as a nonlinear field theory in
flat spacetime [50]. (Chapter 20 of MTW [51] and a paper by Babak and Grishchuk [52] are also
helpful sources that describe the formalism.) Landau and Lifshitz develop their formalism by first

laying down arbitrary asymptotically Lorentz coordinates on a given curved (but asymptotically-
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flat) spacetime. They use these coordinates to map the curved (i.e., physical) spacetime onto an
auxiliary flat spacetime (AFS) by enforcing that the coordinates on the AFS are globally Lorentz.
The auxiliary flat metric takes the Minkowski form, 7, = diag(—1,1,1,1).

In this formulation, gravity is described by the metric density
g = /—g9"", (4.2)

where g is the determinant of the covariant components of the physical metric, and g"” are the

contravariant components of the physical metric. When one defines the superpotential
HpovP = g gl — gregh? (4.3)
the Einstein field equations take the field-theory-in-flat-spacetime form
HFvB 5 = 1677 . (4.4)

Here 7 := (—g)(T"" + t}7]) is the total effective stress-energy tensor, indices after the comma
denote partial derivatives (or, equivalently, covariant derivatives with respect to the flat auxiliary
metric), and the Landau-Lifshitz pseudotensor ¢{'] (a real tensor in the auxiliary flat spacetime) is

given by Eq. (100.7) of LL [50] (or, equivalently, Eq. (20.22) of MTW [51]):

1
6m(—g)tp = 07 ag™ =0 a0™ s+ 597 0™ o™
- go&\gwjgﬁu’pgup)\ - gﬁ)\guugay,pgup,)\ + g)\ugupgak)ygﬁu)p
1 1%
+ 3 (29°* " — g*P ™M) (290 pGor — GpoGur) 8T A7 40 - (4.5)

Because of the symmetries of the superpotential—they are the same as those of the Riemann tensor—

the field equations, Eq. (4.4), imply the differential conservation law for 4-momentum

™, =0. (4.6)

)

Equation (4.6) is equivalent to T, = 0, where the semicolon denotes a covariant derivative with
respect to the physical spacetime metric.
In both LL and MTW, it is shown that the total 4-momentum of any isolated system (measured

in the asymptotically flat region far from the system) is

1 004
pﬁot = 16—71' %S H" Oj,adzj ) (47)

where d¥; is the surface-area element of the flat auxiliary metric, and S is an arbitrarily large surface



83

surrounding the system. This total 4-momentum satisfies the usual conservation law

hor _ —]f T dY; . (4.8)
dt S
See the end of Section III of [5] for a brief proof of why this holds for black holes.

Because this paper focuses on BBHs, we will make a few further definitions that will be used
frequently in our study. First, we label the two® black holes in the binary (and the regions of space
within their horizons) by A and B, and denote their surfaces (sometimes the hole’s event horizon
and other times the apparent horizon) by A and 0B, as shown in Fig. 3.5. We let £ stand for
the region outside both bodies but inside the arbitrarily large surface S where the system’s total
momentum is computed (in our case, this is taken to be a fixed coordinate sphere inside the outer
boundary of the numerical-relativity computational grid).

With the aid of Gauss’s theorem and the Einstein field equations, Eq. (4.4), one can reexpress
Eq. (4.7) for the binary’s total 4-momentum as a sum over contributions from each of the bodies

and from the gravitational field in the region £ outside them:

Dhot = P4 + D' + Dhela - (4.9a)
Here
1 .
poo— H#e0F gy, 4.9b
Py 167 oA , J ( )

is the 4-momentum of body A (an equivalent expression holds for body B), and

Dholq i= /To“d?’x (4.9¢)
£

is the gravitational field’s 4-momentum in the exterior of the black holes. We define an effective

velocity of black hole A (with similar expressions holding for hole B) by
vl =4 (4.10)

In analogy to Eq. (4.8) for the rate of change of the binary’s total 4-momentum, one can write

the corresponding equation for the rate of change of the 4-momentum of body A:

dpi pk n0, k
W = — 6A(T — T UA)dEk . (411)

Equation (4.11) describes the flow of field 4-momentum into and out of body A (the second term

3 After the holes merge, there is only one horizon, which we label C. Equations (4.8)—(4.10) hold after removing
terms with subscript B and then substituting A — C'.



84

comes from the motion of the boundary of body A with local coordinate velocity v¥).*

We will use Eqs. (4.8)—(4.10) as the basis for our study of momentum flow in black-hole binaries.
The actual values of the body and field 4-momenta, computed in the above ways, will depend on
the arbitrary mapping between the physical spacetime and the AFS; this is the gauge dependence
that will be discussed in Section 4.4.2.

4.3 Simulations of Head-on Binary-Black-Hole Collisions with
Anti-Aligned Spins

In order to investigate the gauge dependence of our results, we compare simulations of the same
physical system using two separate methods that employ different choices of coordinates. One
method is a pseudospectral, excision scheme based on generalized-harmonic coordinates; the other
is a finite-difference, moving-puncture scheme that uses the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) [53, 54] formulation, 1+log slicing, and a gamma-driver shift condition (henceforth referred
to as “BSSN-moving-puncture gauge;” for details, see Appendix 4.B.2). The coordinates used in
the two methods differ both for the initial data and during the evolution. In this section, we
summarize the construction of the initial data and the evolution systems for both methods, and we
present convergence tests and estimate numerical uncertainties. Further details about our numerical

methods are given in Appendices 4.A and 4.B.
4.3.1 Generalized-Harmonic Simulations

4.3.1.1 Quasiequilibrium Excision Data

The evolutions described in Section 4.3.1.2 begin with quasiequilibrium excision data constructed
using the method in [55]. This procedure requires an arbitrary choice of a conformal three-metric;
we choose this metric to be flat almost everywhere, but curved (such that the metric is nearly that
of a single Kerr-Schild hole) near the horizons.

Our initial-data method also requires us to choose an outer-boundary condition on a shift vector

3¢ for a general binary that is orbiting and inspiraling, we use®

B = (Q x1) +agr’ + Vi, r— oo, (4.12)

where (Qj is the angular velocity, aor’ is the initial radial velocity, and V{ is a translational velocity.

Note that Eq. (4.12) corresponds to a different choice of the shift than that in [55]. In this paper,

4When the body’s event horizon is stationary (e.g., sufficiently far from merger), the velocity, vff‘ = d:cﬁ\ om/dt,
is the center-of-mass velocity of body A. If the body’s event horizon is dynamical (e.g., during the merger phase),
however, then vff‘ is the local coordinate velocity of the event-horizon surface, vffx = dng/dt. See Section 4.4.1.2 for
a discussion of the dynamics of the event horizon.

5The shift vector 8% used here and in Appendix 4.A for the construction of initial data is not the same as the shift
vector used during our evolutions. Except for Section 4.3.1.1 and Appendix 4.A, we always use 3° to refer to the shift
during the evolution.
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Set  xo/Mapm  Miw/Mapm Mene/Mapm S2 /Mgy,

S1 3.902 0.4986 0.5162 £0.5000
P1 4.211 0.4970 0.5146 £0.5000
P2 8.368 0.4802 0.5072 +0.5091
H1 14.864 0.4870 0.5042 £0.5000

Table 4.1: Parameters of the initial data configurations studied in this work. Model S1 (see Section
4.3.1.1) gives the parameters used to construct a set of superposed-Kerr-Schild quasiequilibrium,
excision initial data. Model H1 (see Appendix 4.A.2) gives the parameters for the larger-separation,
superposed-harmonic-Kerr initial-data set. Both S1 and H1 were used in generalized-harmonic,
pseudospectral evolutions. P1 and P2 provide the Bowen-York parameters for the two systems
evolved with the BSSN-moving-puncture method. The holes are initially separated by a coordinate
distance d = 2xo and are located at coordinates (x,y,z) = (£w0,0,0). For clarity, only four
significant figures are shown.

we focus on head-on collisions, which have Qg = ao = 0. However, V must be nonzero to make the
total linear momentum of the initial data vanish.

Table 4.1 summarizes the initial data used in this paper. It contains information about three dif-
ferent measures of the binary’s mass, the Arnowitt-Deser-Misner (ADM) mass Mapm (Eq. (11.2.14)
in [56]; see also [57, 58]), the irreducible mass Mj,,, and the Christodoulou mass Mcy, of one of the
holes. The Christodoulou, Mqy,, is related to M, and the spin of the hole S, by

52
4M?2 -

irr

‘Z\4C21hr:]\42 +

irr

(4.13)

Table 4.1 also shows the dimensionless spin S, /M%hr; by definition, this measure of the spin lies in
the interval —1 < SZ/M%hr <1.

For set S1 listed in Table 4.1, V{ is adjusted so that the initial effective velocity of the entire
spacetime vl = pi.. /P, is smaller than 0.1 km/s, which is approximately the size of our numerical
truncation error (see Fig. 4.8): ([vZ,],|viL|, [vi:]) = (4 x 1074, 5x 1072,2 x 1073) km/s at the time

t = 0. The construction of initial data is described in more detail in Appendix 4.A.
4.3.1.2 Generalized-Harmonic Evolutions

We evolve the quasiequilibrium excision data described in Section 4.3.1.1 pseudospectrally, using a

generalized-harmonic gauge [59, 60, 61, 62], in which the coordinates z* satisfy the gauge condition
9w VPV izt = H, (2, gor) , (4.14)

where H), is a function of the coordinates and the spacetime metric. In this subsection, we summarize
the computational grid used for our generalized-harmonic evolutions, and we briefly discuss our
numerical accuracy. Details of our pseudospectral evolution methods are given in Appendix 4.B.1.

Our computational grid covers only the exterior regions of the black holes (black-hole excision);
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there is an artificial inner boundary just inside each apparent horizon. No boundary conditions are
needed at these boundaries because the formulation of Einstein’s equations we use [62] admits only
causal characteristic speeds, even for gauge modes and constraint-violating modes. The grid extends
to a large radius rmax/Mapm ~ 400. A set of overlapping subdomains of different shapes (spherical
shells near each hole and far away, cylinders elsewhere) covers the entire space between the excision
boundaries and r = ryax.

Because different subdomains have different shapes and the grid points are not distributed uni-
formly, we describe the resolution of our grid in terms of the total number of grid points summed over
all subdomains. We label our resolutions NO, N1, and N2, corresponding to approximately 553, 673,
and 792 grid points, respectively. After merger, we regrid onto a new computational domain that has
only a single excised region (just inside the newly-formed apparent horizon that encompasses both
holes). This new grid has a different resolution (and a different decomposition into subdomains)
from the old grid. We label the resolution of the post-merger grid by A, B, and C, corresponding
to approximately 633, 753, and 873 grid points, respectively. We label the entire run using the
notation “Nz.y”, where the characters before and after the decimal point denote the pre-merger
and post-merger resolution for that run. For example, “N2.B” denotes a run with approximately
672 grid points before merger, and 753 grid points afterward. On the outermost portion of the grid
(r/Mapwm 2 200), we use a coarser numerical resolution than we do elsewhere. (We only measure
the gravitational-wave flux and linear momentum at radii of r/Mapm < 160.)

To demonstrate the convergence of our evolutions, we plot the constraint violation in Fig. 4.4
for several resolutions. The quantity plotted is the L2 norm of all the constraints of the generalized-
harmonic system, normalized by the L? norm of the spatial gradients of all the dynamical fields,
as defined by Eq. (71) of [62]. The left portion of the plot depicts the constraint violation during
the plunge, the right third of the plot shows the constraint violation during the ringdown, and the
middle panel shows the constraints shortly before and after the common apparent horizon forms.
Throughout the evolution, we generally observe exponential convergence, although the convergence
rate is smaller near merger. After merger, there are two sources of constraint violations: those
generated by numerical truncation error after merger (these depend on the resolution of the post-
merger grid) and those generated by numerical-truncation error before merger and are still present
in the solution (these depend on the resolution of the pre-merger grid). We see from Fig. 4.4
that the constraint violations after merger are dominated by the former source. Also, at about
t/Mapm = 200, the constraint violation increases noticeably (but is still convergent); at this time,
the outgoing gravitational waves have reached the coarser, outermost region of the grid.

Finally, in Fig. 4.5, we demonstrate the accuracy of the recoil velocity vgiex = 22 km/s, in-

ferred from the gravitational-wave signal U4. The Weyl scalar ¥y, is asymptotically related to the
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Figure 4.4: Constraint violation at different numerical resolutions for the generalized-harmonic
evolutions S1. The common apparent horizon forms at time ¢t/Mapm = 34.73. Labels of the form
Nz.y indicate the grid resolution, where the pre-merger resolution is labeled (from coarse to fine)
by z =0, 1,2 and the post-merger resolution is labeled (similarly) by y = A, B, C. The constraints
decrease exponentially with higher resolution; the convergence rate is smaller near merger.
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Figure 4.5: Recoil velocity for the initial-data set S1, inferred from the gravitational-wave signal ¥,
extracted at Textr/Mapm = 160 at the highest resolution (upper panel). Differences between several
coarser resolutions and the highest resolution are plotted in the lower panel.
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gravitational-wave amplitudes hy and hx by

d? d?

Vo=@l —igs

hix. (4.15)

We extract the spin-weighted spherical-harmonic coefficients of W4(t) from the simulation as de-
scribed in [4], and we integrate these coefficients over time to obtain h¢"™(t), which are the spin-
weighted spherical-harmonic coefficients of h = h+ — ihy. For each (¢,m), the integration constant
is chosen so that the average value of hfm(t) is zero. The hfm(t) are then used to compute the
4-momentum flux of the gravitational waves from Eqs. (3.14)-(3.19) of [63]. Integrating this flux
over time yields the total radiated energy-momentum, p’ ;. The recoil velocity can then be com-
puted from energy-momentum conservation: vf(ick = —piad/Mﬁnal, where Mgna := Mapym — Frad
and F.q is the energy radiated to infinity. For set S1, we obtain a radiated energy of Eyoq/Mapm =
(5.6840 + 0.0008) x 10~%, where the quoted error includes truncation error and uncertainty from
extrapolation to infinite radius (as discussed below). The top panel of Fig. 4.5 shows the recoil
velocity as a function of time for our highest-resolution simulation, while the lower panel shows
differences between the highest resolution (N2.C') and lower resolutions. From these differences, we
estimate a numerical uncertainty for the final recoil velocity of 5 x 1073 km/s for N1.B and 2 x 107°
km/s for N2.B.

This numerical uncertainty includes only the effects of numerical-truncation error; there are,
however, other potential sources of uncertainty in the simulations that must also be considered. The
first is the spurious “junk” gravitational radiation that arises because the initial data do not describe
a binary in perfect equilibrium. This radiation is not astrophysically realistic, but by carrying a small
amount of energy-momentum that contributes to the measured p , at large distances, the spurious
radiation does affect how accurately we can determine the final recoil velocity. In our investigation
of momentum flow (Section 4.4), we do not correct for the initial data’s failure to be in equilibrium;
here, we estimate the contribution of the junk radiation to the final recoil velocity. First, we note
that for head-on collisions, the physical gravitational waves are emitted predominantly after merger.
Therefore, we estimate the influence of the spurious radiation by examining the accumulated recoil
velocity at time t = At + r, where r is the radius of the extraction surface and At is a cutoff time.
Because the holes merge so quickly (because they begin at a small initial separation), the spurious and
physical contributions to the recoil are not clearly distinguishable in Fig. 4.5. Varying At/Mapwm
between 31.1 and 38.3 (the event and common apparent horizons form at ¢/Mapy = 31.1 and
t/Mapm = 34.7, respectively), we estimate that the spurious radiation contributes approximately 1
km/s (about 5%) to the recoil velocity—a much larger uncertainty than the truncation error. The
same variation of At implies that the spurious radiation contributes about 10% of the total radiated

energy Fraq.)
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Another potential source of uncertainty in v{,, arises from location on the computation grid at
which we measure the gravitational radiation. In particular, the quantity ¥4 in Eq. (4.15) should
ideally be measured at future null infinity. Instead, we measure ¥4 on a set of coordinate spheres
at fixed radii, compute v{,, on each of these spheres, and extrapolate the final equilibrium value
of v, , to infinite radius (see Fig. 4.11). We estimate our uncertainty in the extrapolated value
by comparing polynomial extrapolation of linear, quadratic, and cubic orders in 1/r; we find an
uncertainty of 3 x 1073 km/s for the quadratic fit. Note that if we had not extrapolated to infinity,
but had instead simply used the value of v}, , at our largest extraction sphere (r/Mapm = 160), we
would have made an error of 0.85 km/s, which is much larger than the uncertainty from numerical
truncation error. Finally, we mention that our computation of ¥, is not strictly gauge-invariant
unless Uy is evaluated at future null infinity. As long as gauge effects in ¥, fall off faster than 1/r

as expected, extrapolation of v}, , to infinity should eliminate this source of uncertainty.

4.3.2 BSSN-Moving-Puncture Simulations

4.3.2.1 Bowen-York Puncture Initial Data

In order to address the degree of gauge dependence in our calculations using the Landau-Lifshitz
formalism, we also simulate BBH mergers using the so-called moving-puncture method, which em-
ploys the covariant form of “I+log” slicing [2, 64] for the lapse function, «, and a “Gamma-driver”
condition (based on the original “Gamma-freezing” condition introduced in [65]) for the shift vector.
The precise evolution equations for the gauge variables as well as further technical details of our
puncture simulations are given in Appendix 4.B.2.

Our simulations start with puncture initial data [66] provided, in our case, by the spectral solver
of [67]. The initial data are fully specified in terms of the initial spin §1,2, linear momentum ﬁlg,
and initial coordinate position ¥ 2, as well as the bare mass parameters m; o of either hole [68]. In
order to assess the impact of the initial binary separation, we evolve the two models labeled by P1
and P2 in Table 4.1. There we also list the individual black-hole masses, Mcy,, and normalize all
quantities using the total ADM mass Mapy. The main difference between the two configurations
is the initial separation of the holes. The lapse and shift are initially set to a = v~%/6 and g° = 0,

respectively, where 7 is the determinant of the physical three-metric.
4.3.2.2 BSSN-Moving-Puncture Evolutions

The evolution of the puncture initial data is performed using sixth-order spatial discretization of the
BSSN equations and a fourth-order Runge-Kutta time-integration method. We use Berger-Oliger
[69] mesh refinement, which is implemented as part of Schnetter’s CARPET package [70, 71]. The
prolongation operator is of fifth order in space and quadratic in time. Outgoing-radiation boundary

conditions are implemented using second-order accurate advection derivatives (see, for example,
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Section VT in [72]).
Using the notation of Section II E of [73], the grid setup, in units of Mapwm, for these evolutions

is given by (rounded to three significant digits)

{(202,101, 58.8,25.2,12.6) x (3.15,1.58,0.788), h},

{(201,100, 58.5,25.1) x (6.27,3.13,1.57,0.784), h},

for the P1 and P2 evolutions, respectively. Here, h denotes the resolution on the innermost refinement
level. For model P1, we perform a convergence analysis by setting h to he = Mapm/49.5, hy =
Mapm/57.1, and hy = Mapm/64.7, for the coarse, medium, and fine resolutions, respectively. Model
P2 is evolved using h = Mapm/49.8. Before we discuss the physical results from the BSSN-moving-
puncture simulations, we estimate the numerical errors from discretization, a finite extraction radius,
and the presence of unphysical gravitational radiation in the initial data.

In order to study the dependence of the results on resolution, we evolved model P1 of Table 4.1
using different resolutions h¢, hy, and hg on the finest level and correspondingly larger grid spacings
by a factor of two on each consecutive level. Numerical simulations based on finite-difference tech-
niques have numerical errors that depend polynomially on the grid resolution h (because derivatives
in the differential equations are approximated by solving a Taylor expansion to a fixed polynomial
order). A numerical result, fp,, will, therefore, differ from the continuum limit f by a discretization
error e(h) := fr — f = const x h™ + ..., where n is the order of convergence and the dots denote
higher-order terms. In our case, the lowest-order ingredient in the code comes from the temporal
prolongation operator, which is only second-order accurate. The consistency of the code can then

be tested by calculating the order of convergence of a quantity

Jrhe = frm

= Ton — fny

Qn (4.16)

where f(hc), f(hm), and f(hs) denote the numerical solution at coarse, medium, and fine resolution,
respectively. Inserting the above-mentioned error function e(h), and ignoring higher-order terms,
the expected convergence factor for a scheme of n'"-order accuracy is

_he—hn

= , 41
On = =y (4.17)

The kick velocity from the high-resolution simulation, as inferred from the gravitational-radiation
flux at rex/Mapm = 73.5, is shown in the upper panel of Fig. 4.6. The bottom panel shows
the differences between the velocities obtained at the different resolutions, scaled for second-order
convergence using a factor Q2 = 1.49. By using Richardson extrapolation, we estimate the error

in the final kick for the fine-resolution run to be 1 km/s or 5%. We similarly find overall second-
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order convergence for the velocity derived from the components of the Landau-Lifshitz tensor, as
integrated over the apparent horizon. The error in that quantity barely varies throughout the entire
simulation and stays at a level just below Awvry, = 50 km/s and 60 km/s for the fine and coarse
resolutions, respectively.

The gravitational-wave signal is also affected by the finite extraction radius at which it is measure
and by the linear momentum contained in the spurious initial radiation. We estimate the uncertainty
from the use of a finite extraction radius by fitting the final kick velocity obtained for the medium-
resolution simulation of model P1 at radii 7ex/Mapm = 31.5,...,94.5 in steps of 10.5. The resulting
final-kick velocities are well approximated by a polynomial of the form ag + a1/rex + a2/r2,. For
Tex/Mapm = 73.5 we obtain an uncertainty of 0.4 km/s, corresponding to a relative error of 2.2%.

Finally, we take into account contributions from the spurious initial radiation by discarding the
wave signal up to t — rex = At. For model P1, it is not entirely clear where exactly the spurious
wave signal stops and the physical signal starts. By varying At from 30 to 45 Mapwm we obtain an
additional error of about +1 km/s. For model P2, no such problem arises, because of the smaller
amplitude of the spurious radiation, and because the longer time prior to the merger allows the junk
radiation to escape the computational grid before the merger happens. We estimate the resulting
total uncertainty by summing the squares of the individual errors and obtain 7.5% and 5.5% for
models P1 and P2, respectively.

Using these uncertainties, the gravitational-waves in the simulation P1 carry away a total radiated
energy, Eraq/Mapm = (0.042+0.008)%, and they generate a recoil velocity viick = (20.3+1.5) km/s.
For model P2, the analogous results are Froq/Mapm = (0.0555 + 0.0023)% and vy = (19.7 +
1.1) km/s.

4.4 Momentum Flow

In this section, we turn to the momentum flow during the evolutions described in Section 4.3. First, in
Section 4.4.1, we measure the momentum of the holes during plunge, merger, and ringdown, during a
generalized-harmonic evolution of the initial-data set S1 (see Table 4.1), focusing on the momentum
density and the inferred Landau-Lifshitz velocity vf; along and opposite to the frame-dragging
direction (which in this paper are chosen to be the Fy direction, respectively). In Section 4.4.2, we
look at the momentum flow in a BSSN-moving-puncture simulation with similar initial data, and,
by comparing the BSSN-moving-puncture and generalized-harmonic simulations, we investigate the
influence of the choice of gauge on our results. Then, in Section 4.4.3, we compare the momentum

density and velocity of the holes with post-Newtonian calculations of the same quantities.
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Figure 4.7: The velocity of the individual and merged black holes. The Landau-Lifshitz velocity
vy = p},/plL, where pi; is the Landau-Lifshitz 4-momentum, is computed on the individual
and common apparent horizons (labeled AH and AHC, respectively) and also on the event horizon

(labeled EH). For comparison, the coordinate velocities v¥ , of the apparent horizons are also

shown. The data shown are from the high-resolution evolution N2.C'

4.4.1 Generalized-Harmonic Results

Throughout the generalized-harmonic evolutions summarized in Section 4.3.1.2, we measure the 4-
momentum density by explicitly computing the Landau-Lifshitz pseudotensor, Eq. (4.5). Because
our evolution variables are, in essence, the spacetime metric g,, and its first derivative g, ,, we
are able to compute the momentum density without taking any additional numerical derivatives. In
addition to calculating the momentum density, we also compute the 4-momentum p’; of Eq. (4.9b)
enclosed by (i) the apparent horizons, (ii) the event horizon, and (iii) several spheres of large radius.

From the enclosed momentum, we evaluate the effective velocity viL, Eq. (4.10).
4.4.1.1 Apparent Horizons

The effective velocities of the apparent horizons are shown in Fig. 4.7 (dashed curves). To demon-
strate convergence, Fig. 4.8 shows the differences between apparent-horizon effective velocities com-
puted at different resolutions. During the plunge, the difference between the medium and fine
resolutions is less than 0.1 km/s until shortly before merger, when it reaches a few tenths of a
km/s. Shortly after merger, the difference between the highest and medium continuation resolutions
between N2.B and N2.C falls from about 1 km/s to about 0.1 km/s.

For comparison, Fig. 4.7 also shows the apparent horizons’ coordinate velocities (dotted curves);

the coordinate and effective velocities agree qualitatively during the plunge and quantitatively during
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Figure 4.8: Convergence of v with resolution. Specifically, differences between v{; at the highest
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the post-merger resolution is labeled by y = A, B, C. The difference between the second-highest and
highest resolution is below 0.1km/s except near the time of the merger, when it grows as large as 1
km/s.
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the merger. There is no reason to expect this observed agreement a priors; this is one sense in which
our gauge choice appears to be reasonable. Also, Fig. 4.7 shows that the effective velocities of the
individual apparent horizons and the event horizon agree well until shortly before merger, when the
event horizon’s velocity smoothly transitions to agree with the common apparent horizon’s velocity
(see Section 4.4.1.2 below).

Because of frame dragging during the plunge, the individual apparent horizons accelerate in the
downward (—y) direction, eventually reaching velocities of thousands of km/s. When the common
apparent horizon appears, however, its velocity is much closer to zero, and it quickly changes sign,
eventually reaching speeds of about 1000 km/s in the +y direction (i.e., in the direction opposite
the frame-dragging direction). Then, as the common horizon rings down, the velocity relaxes to the
final kick velocity of about 20 km/s in the +y direction.

It is of considerable interest to understand why the horizon velocities suddenly reversed directions
around the time of merger, going from thousands of km/s in the frame-dragging direction to over a
thousand km/s in the opposite direction. Figure 4.9 helps to address this issue by showing contours
of constant values of the y component of the momentum density, at several times. At ¢ = 0, the
momentum density has an irregular shape, because the initial data are initially not in equilibrium;
by the time ¢t/Mapym = 26.92, the momentum density has relaxed. When the common apparent
horizon forms (at time t/Mapym = 34.73), it encloses not only the momentum of the individual
apparent horizons but also the momentum in the gravitational field between the holes.

It turns out that the net momentum outside the individual horizons but inside the common
horizon points in the +y direction; as the common horizon expands, it absorbs more and more of
this upward momentum. Figure 4.10 compares the common apparent horizon’s effective velocity to
its area and shape; the latter is indicated by the pointwise maximum and minimum of the horizon’s
intrinsic scalar curvature. During the first half-period of oscillation (to the left of the left-most
dashed vertical line), the common horizon expands (as seen by its increasing area). As it expands,
the upward-pointing linear momentum it encloses causes v{;, to increase. After the first half-period,
the horizon shape is maximally oblate (see panel B on the right side of Fig. 4.10), and v{; is at its
maximum value of about 1000 km/s.

After another half-period of oscillation, the apparent horizon becomes prolate and encloses
enough downward-pointing momentum that v{; has decreased to only about +200 km/s. After
one additional full period, the effective velocity has fallen to nearly zero. As the horizon is ringing
down, the momentum density in the surrounding gravitational field also oscillates: the final four
panels in Fig. 4.9 show how the momentum density relaxes to a final state as the horizon relaxes to
that of a boosted Schwarzschild black hole.

Also as the horizon rings down, gravitational waves are emitted, and these waves carry away

a small amount of linear momentum. The net radiated momentum is only a small fraction of the
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Figure 4.9: Contour plots of the y (up-down) component of the momentum density (the y direction
points along or opposite to the holes’ motion from frame dragging). Adjacent contours correspond
to a factor of 10 difference in the magnitude of the momentum density. Contours of positive y-
momentum density are shown as solid red lines, while contours of negative y-momentum density
are shown as dashed blue lines. The region containing positive y-momentum density is shaded grey.
The regions inside the apparent horizons are shaded black, except for the upper-right panel, where
the region inside the individual horizons is shaded black, while the common apparent horizon is
indicated by a thick black line. The data shown are from the high-resolution evolution N2.C.
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shows the pointwise minimum and maximum of the horizon’s dimensionless intrinsic scalar curva-
ture; both M@, min(R) and M@, max(R) relax to the Schwarzschild value of 1/2 as the horizon
rings down. (The first four local minima of Mg, min(R) are indicated by vertical dashed lines.)
The bottom panel shows the area A of the common apparent horizon normalized by the total area
of the individual horizons at t = 0. The data shown are from the high-resolution evolution N2.C'.
Bottom:  The dimensionless intrinsic scalar curvature M@, R of the common apparent horizon
at the times labeled A—F in the left panel. The horizon begins peanut-shaped, then rings down,
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Figure 4.11: A comparison of various measures of the final velocity of the merged black hole in simula-
tion S1. The measures shown are the following: the kick velocity inferred from the gravitational-wave
flux (thin dashed lines) and the Landau-Lifshitz effective velocities v (thin solid lines), measured
on spheres of radius 7/Mapy = 100, 120, 140, and 160; the value of the kick velocity at the final
time extrapolated to r = oo (black x); the effective velocity measured on the common apparent
horizon (thick solid line); and the coordinate velocity (thick dashed line). All data shown are taken

from the high-resolution evolution N2.C'

momenta of the individual holes at the time of merger: the final effective velocity of the merged hole
is about 20 km/s in the upward-pointing direction, or about 1% of the individual holes’ downward

velocity just before merger.

Several measures of the final velocity of the merged hole are shown in Fig. 4.11. The kick
velocity vy, , which is inferred from the outgoing gravitational waves, is measured on four coordinate
spheres (with radii »/Mapym = 100, 120, 140, and 160); the effective velocity is measured on the
same coordinate spheres. At late times, we find that the effective velocity v{; has no significant
dependence on the radius of the extraction surface; it simply approaches the coordinate velocity
0¥, ;q Of the common apparent horizon. The dependence of v}, , on the extraction radius is expected,
because our method of extracting Uy at finite radius has gauge-dependent contributions that vanish

as r — co. When v, is extrapolated to infinite radius®, however, it does agree well (within 0.2

km/s) with v{; . Also, the effective velocity v{; calculated on the horizon also agrees fairly well

(within about 0.5 km/s) with v{; measured on distant spheres.

6To extrapolate, we fit the velocities Ulgick at the final time to a function of radius r of the form ag + a1 /7 + a2 /7“2.
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Figure 4.12: The effective velocity vf; calculated on the event horizon surface, with the specified
snapshots in Fig. 4.13 of the event horizon surface marked. The points a and b occur at t/Mapm =
277, c at t/MADM = 30.8, d at t/MADM =31.6 e at t/MADM = 35.5, and f at t/MADM = 40.8.

4.4.1.2 Event Horizon

We would like to compare our quantitative results of the effective velocity vf; calculated using the
event horizon surface (Fig. 4.12) with qualitative observations of the event horizon’s dynamics (Fig.
4.13). We find that the greatest variation in both the event horizon geometry and the value of
vY} occurs over a period of about At/Mapy = 13 from ¢/Mapm = 28 to t/Mapm = 41. At time
t/Mapm = 27.7, the cusps of the event horizon just begin to become noticeable (Figs. 4.13a and b).
One can see in Fig. 4.12 that this is the time at which v{| changes from decreasing to increasing.
Shortly after”, at ¢t/Mapwm = 31.1, the two separate event horizons coalesce into a common event
horizon, and the common event horizon rapidly expands to form a convex shape by t/Mapm = 35.5
(Figs. 4.13d and e). At this time, we note that v{; is rapidly increasing (Fig. 4.12, arrow e); this
rapid increase corresponds to the quickly expanding event horizon surface.

We interpret this process as the merging black holes swallowing the gravitational field momentum
between the holes. The resulting change in v{; can be divided into two distinct portions: (i) one
that comes from the changing event horizon surface in space, i.e., the field momentum swallowed
by the black holes (in Eq. (4.11), the second term) and (ii) a second that comes from the change

of field momentum at the black holes’ surface, i.e., the field momentum flowing into the black holes

"Note that at t/Mapy = 31.1, we (smoothly) modify our gauge condition (Eq. (4.45) and the surrounding
discussion). The separate event horizons coalesce at time t/Mapy = 31.1 as well; this is a coincidence.
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Figure 4.13: Snapshots of the event horizons at the times indicated in Fig. 4.12: a,b, t/Mapm = 27.7;
¢, t/Mapm = 30.8; d, t/Mapm = 31.6; e, t/Mapm = 35.5; £, t/Mapm = 40.8. All snapshots are
looking down the z axis to the -y plane, except for shot a, which is slightly skewed (slightly rotated
about the y axis) to better see the geodesic structure. In shot a, the future generators of the horizon
are visible as small blue dots. Note how the future generators map out a surface that meets the
event horizon at the event horizon’s cusps; this is where the future generators join the horizon. The
data shown are from the high-resolution evolution N2.C'.
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(in Eq. (4.11), the first term). While this distinction is clearly coordinate dependent, it could,
after further investigation, provide an intriguing and intuitive picture of the near-zone dynamics of

merging black-hole binaries.

4.4.2 BSSN-Moving-Puncture Results and Gauge Dependence

As described in Section 4.2, the Landau-Lifshitz formalism that we applied to our numerical simu-
lations relies upon a mapping between the curved spacetime of the simulation and an auxiliary flat
spacetime. In the asymptotically flat region far from the holes, there is a preferred way to construct
this mapping. Consequently, when the surface of integration is a sphere approaching infinite radius,
Eq. (4.9b) gives a gauge-invariant measure of the system’s total 4-momentum (see, e.g., Section
20.3 of [51]). However, when the surface of integration is in the strong-field region of the spacetime
(e.g., when the surface is a horizon), the 4-momentum enclosed is gauge-dependent. The momentum
density, a pseudotensor, is always gauge-dependent.

The gauge dependence of the effective velocity can be investigated at late times—when the
spacetime has relaxed to its final, stationary configuration—by comparing the velocity obtained on
the horizon with gauge-invariant measures of the kick velocity (Fig. 4.11). At the final time in our
generalized-harmonic simulation, the effective velocities of the apparent and event horizons agree
within tenths of a km/s with the (extrapolated) kick velocity inferred from the gravitational-wave
flux; at late times, the horizon effective velocities also agree with the effective velocity measured
on coordinate spheres of large radius. At least at late times, then, the effective velocity v{; is not
significantly affected by our choice of gauge.

To investigate how strongly the influence of the choice of gauge affects our results in the highly
dynamical portion of the evolution—when we have no gauge-invariant measure of momentum or
velocity—we have evolved initial data that are physically similar using two manifestly different
gauge conditions: (i) the generalized-harmonic condition used in our spectral evolutions, and (ii)
the 1+log slicing and Gamma-driver shift conditions used in our BSSN-moving-puncture evolutions.
Figures 4.14 and 4.15 display the velocity obtained from the horizon integral of the components of
the Landau-Lifshitz tensor in the BSSN-moving-puncture evolutions described in Section 4.3.2.2.
For comparison, we also plot the velocity obtained for model S1 in the left panel (dashed curve).
The most remarkable feature in these plots is a large temporary acceleration of the black holes in
the frame-dragging direction. The magnitude of the velocity reaches about 4500 km/s, which is of
the order of the superkicks first reported in [32, 30]. In contrast to those inspiraling configurations,
however, the black-hole motion reverses during the merger and settles down to a small value of
—30 £ 50 km/s.

In order to understand to what extent this behavior is dependent on specific properties of the

puncture evolution (such as the particular form of the spurious radiation, which differs in our
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Figure 4.15: The same component of the effective velocity as that in Fig. 4.14, with the error
represented identically. This figure shows the effective velocity for the evolution P2 of Table 4.1,
however.
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generalized-harmonic and BSSN-moving-puncture evolutions), we have performed the following ad-
ditional simulations: First, we have changed the gauge parameter n in Eq. (4.54) to 0.75 and 1.25.
We do not observe a significant change in the behavior of the effective velocity for this modification.
Second, in order to gain further insight into the dependence of the effective velocity on the initial
separation of the black holes, we have increased the initial separation of the holes to allow for a
longer pre-merger interaction phase.

The parameters summarizing the second model are those labeled by P2 in Table 4.1. This
simulation was performed with the LEAN code as summarized in Section 4.3.2.1, using a resolu-
tion h. = Mapm/49.8. The resulting velocity is shown in Fig. 4.15, and it represents numerical
uncertainties as the gray shading around the solid line. The remarkable similarity between this
figure and its counterpart Fig. 4.14 for model P1 demonstrates that the numerical results are largely
independent of the initial separation.

Comparing the effective velocities for simulations S1 and P1 in Fig. 4.14, the qualitative behavior
of the apparent horizons’ effective velocities agrees across the two gauges. In both the generalized-
harmonic and BSSN-moving-puncture simulations we see the following similarities: (i) during the
plunge, the individual apparent horizons accelerate to speeds larger than 1000 km/s in the frame-
dragging direction; (ii) when the common horizon forms, its velocity is much smaller in magnitude,
because the common horizon has enclosed momentum pointing opposite the frame-dragging direc-
tion; and (iii) the velocity relaxes to a value of only tens of km/s that (within numerical uncertainty)
agrees with the kick velocity measured using the gravitational-wave flux. The generalized-harmonic
and BSSN-moving-puncture effective velocities do exhibit significant quantitative differences, how-
ever; e.g., the slopes of the initial acceleration in the frame-dragging direction are quite different in
the two cases. These differences are expected given the different choices of gauge and the gauge-
dependent nature of the effective velocity in the strong-field region.

Still, we find these results encouraging; two popular gauge choices used in the numerical-relativity
community do give remarkable qualitative agreement. This qualitative agreement certainly does not
constitute a proof of a gauge independence of our findings; however, we feel encouraged in our hope
that the gauge dependence in practice is not too severe, at least for the set of gauges actually used in
numerical simulations. Most importantly from a practical point of view, these results suggest that
it is possible that such local descriptions can be derived from the current generation of BBH codes
without the different numerical-relativity groups having to agree upon one and the same gauge choice
for (at least qualitative) comparisons of their momentum densities and effective velocities. Future
investigations using a wider class of coordinate conditions should further clarify the significance of

gauge choices in this context.
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4.4.3 Comparison with Post-Newtonian Predictions

In this section, we compare our results to post-Newtonian predictions. For each comparison, first
the S1 data set (Table 4.1) is presented along with post-Newtonian predictions of a corresponding
initial configuration, then the H1 data set (Table 4.1) is presented along with its post-Newtonian
predictions. The post-Newtonian trajectories for spinning point particles were generated by evolving
the post-Newtonian equations of motion [74, 75]. The difference between the two data sets are (i) set
H1 begins with a larger initial separation than set S1, and (ii) set H1 is evolved in a nearly harmonic
gauge.® Comparing evolutions of data sets S1 and H1 illustrates how these two effects improve the
comparisons one can make with post-Newtonian predictions. The top panels of Figs. 4.16—4.18 are
a comparison between the highest-resolution evolution (N2.C') of the initial data set S1 and several
orders of post-Newtonian predictions; the right panels of Figs. 4.16-4.18 are analogous comparisons
between post-Newtonian results and those from a numerical-relativity evolution beginning from the
initial data set H1.

Figure 4.16 shows that the bulk, longitudinal motions (i.e., motion in the z direction) agree both
qualitatively and quantitatively with post-Newtonian predictions through most of the plunge (i.e.,
up until a few Mapy before the formation of the common apparent horizon) for both data sets. In
the top panel of Fig. 4.16, we have added another 2.5 PN curve that is offset vertically such that the
2.5 PN coordinate velocity agrees exactly with the numerical effective velocity at ¢/Mapm ~ 18.34;
this is done in order to account for the period of initial relaxation in the S1 data set. Quantitative
agreement is then found between 2.5 PN predictions and both the effective and coordinate velocities
from t/Mapm = 5 through t/Mapm &~ 20. The bottom panel of Fig. 4.16, which has less of an
initial relaxation because of the increased separation, shows excellent agreement between both the
effective and coordinate velocities and the 2.0 PN and 2.5 PN predictions.

For the smaller (though more interesting) transverse motion (i.e., the motion along the y di-
rection), we find only qualitative agreement between the numerical data and post-Newtonian pre-
dictions. Spin-orbit coupling (more specifically, frame-dragging plus spin-curvature coupling, see
Eq. (5.11) of paper I and the discussion thereafter) causes the holes to move in the —y direction
during the plunge, reaching speeds of order 1000 km/s before the holes merge. The post-Newtonian
expansion in our calculations (see paper I and [74, 75]) uses a harmonic gauge and a physical spin
supplementary condition (SSC), S*?ug = 0, where S is the spin angular momentum tensor of the
black hole and u” its four-velocity (see e.g., Section I B of Paper I).

Specifically, in Paper I, the authors found that for an equal-mass binary with anti-aligned spins

at leading 1.5 PN order, the black holes’ effective velocity v{; is not equal to the post-Newtonian

8Note that even if simulation H1 were exactly (instead of only approximately) harmonic, there would be no
guarantee that H1 would evolve in the same harmonic gauge as that gauge in which we compute the PN trajectories.
This is because of the residual gauge freedom within the set of harmonic coordinates (see, e.g., [76]).
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Figure 4.16: A comparison of numerical and post-Newtonian longitudinal velocities (i.e., v*/c)
versus time. The predicted coordinate velocities at several post-Newtonian orders are shown as
broken curves. Top: A comparison of S1 numerical data and post-Newtonian predictions. The
numerical and post-Newtonian curves agree qualitatively. When the 2.5 PN curve is offset by a
certain amount, it agrees quantitatively with the coordinate velocity vZ ., and the effective velocity
vi,. Bottom: A comparison of HI numerical data and PN predictions. The effective velocity v{y,
(thick black line) closely tracks the coordinate velocity vZ  ,; both numerical curves also agree well
with the 2.0 PN and 2.5 PN curves.
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Figure 4.17: A comparison of numerical and post-Newtonian transverse velocities (i.e., v¥ in km/s)
versus time. The top panel shows numerical results from simulation S1, while the bottom panel shows
numerical results from simulation H1. The predicted coordinate velocity at several post-Newtonian
orders are shown as broken curves. The effective velocity is shown in black; it has been rescaled
by a factor of 3/2 in order to aid comparison with the post-Newtonian point-particle velocities, as
discussed in Section 4.4.3. The turn in the 2.5 PN curves is due to a 2.5 PN-order, spin-orbit term
becoming quite large at a separation of roughly r/Mapym =~ 2. This is related to the post-Newtonian
approximation breaking down at this small separation.
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Figure 4.18: A comparison of numerical and post-Newtonian velocities. In the figure, v¥ in km/s
is plotted against v*/c. The effective velocity v{; of the highest-resolution (N2.C) evolution of
initial data S1 (Table 4.1), on the top, and of the evolution of initial data H1 (Table 4.1), on the
bottom, are shown as a thick black line. The predicted coordinate velocity at several post-Newtonian
orders are shown as broken curves. The transverse effective velocities only agree qualitatively with
post-Newtonian predictions; however, the coordinate velocity agrees very well with post-Newtonian
predictions. In the top panel, the coordinate velocity has been artificially truncated shortly before
merger, because at that point we do not have a good measure of the coordinate velocity. The
effective velocity has been rescaled by a factor of 3/2 to aid comparison with the post-Newtonian
point-particle velocities, as discussed in Section 4.4.3.
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coordinate velocity of a point particle; rather, the coordinate velocity is 3/2 times the effective
velocity. Roughly speaking, this difference arises from the fact that in the Landau-Lifshitz description
one defines the velocity in terms of a surface integral over a body of finite size divided by its mass-
energy, which is different from the velocity defined by the derivative of the center-of-mass world line
of the particle. This introduces effects due to the field momentum within the body that are not
present in the strictly center-of-mass description. Paper I's Sections II B, IT C, and V C, as well
as its Table I explain this fact in greater detail. Because the majority of the comparison between
post-Newtonian and numerical-relativity results takes place at separations and speeds during which
the leading, 1.5 PN-order terms contribute most strongly, we continue to use the factor of 3/2 to
convert between coordinate and effective velocities for higher post-Newtonian terms.

In Figs. 4.17 and 4.18, we compare the post-Newtonian, point-particle y velocity with the nu-
merical y-coordinate velocity and 3/2 of the numerical effective y velocity, v{; . For the comparison
to the S1 data set, we find qualitative agreement with both the effective and coordinate velocities
and the post-Newtonian predictions. We think this agreement is not better because of the large
initial relaxations present in the S1 data set related to small initial separation. The small separa-
tion of the black holes also poses problems for the post-Newtonian approximation. As one can see,
in Fig. 4.17 the 2.5 PN curve decelerates and the velocity changes sign. This happens because a
next-to-leading-order, spin-orbit term becomes significantly larger at this point (a post-Newtonian
separation of roughly r/Mapum & 2). This suggests that the post-Newtonian approximation is mov-
ing out of its domain of convergence. However, in the H1 comparison, we find excellent agreement
between the coordinate velocity and the 2.5 PN prediction, but only qualitative agreement between
the effective velocity and post-Newtonian predictions. In these figures, offsets of —433 km/s (for S1
data) and —38 km/s (for H1 data) have been used to make 2.5 PN coordinate velocity agree better
with numerical results. These offsets are well motivated, because the numerical initial data were
chosen so that the initial total momentum of the entire spacetime vanishes. In the post-Newtonian
approximation, one would expect that there would be and initial nonvanishing initial y velocity of

(see Table I of Paper I)
y X

v =—"
coord 4(TO/MADM)2

(4.18)

where x is the spin parameter of each black hole, and ry is the hole’s initial separation. This
corresponds to —616 km/s for the S1 data, and —42 km/s for H1 data. Again, the agreement is
qualitative for S1 data, and quantitative for H1 data.

One final comparison we make between the H1 data set and post-Newtonian predictions is the
near-field momentum density, shown in Fig. 4.19. The numerical data (left column) come from
the harmonic evolution H1, while the 1.5 PN momentum density (right column) is computed from

Eqgs. (A2a)—(A2c) in Paper I using the numerical-relativity, black-hole trajectories. The top panels,
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Figure 4.19: Comparison of numerical (left column) and post-Newtonian (right column) y-
momentum density. The numerical data comes from the harmonic evolution, H1, described in
Appendix 4.A.2. The 1.5 PN momentum density is computed from Eqs. (A2a)—(A2c) in Paper I,
using the numerical-relativity, black-hole trajectories. As in Fig. 4.9, contours represent powers of
10 in y-momentum density. The positive y-momentum-density contours are shown in red, and the
negative ones are shown in blue. The region of positive y-momentum density is shaded grey. In the
numerical plots, the apparent horizons are shown in black.
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comparing the momentum densities of the H1 initial-data set to the post-Newtonian results, show
differences that presumably come from the fact that the numerical-relativity initial data is out of
equilibrium at the start of the evolution. The center panels show the momentum densities agree
very well once enough time has elapsed for the spacetime to relax and for the spurious radiation
to be emitted (but before the holes have fallen too close together). The bottom panels make a
final comparison just before the holes get close enough to merge, and it shows differences appearing
between the numerical data and the post-Newtonian predictions very near the holes—which could
be an indication of the breakdown of the post-Newtonian approximation.

These comparisons with post-Newtonian predictions have yielded several interesting results.
The primary result of these comparisons is the surprisingly good agreement found between post-
Newtonian predictions and the coordinate velocities, especially from the harmonic-gauge evolution.
Also, the longitudinal effective and coordinate velocities track each other closely; consequently, the
longitudinal effective velocity agrees with post-Newtonian predictions. The transverse effective ve-
locities agree qualitatively with the post-Newtonian predictions, in the sense that they both indicate
that the holes accelerate in the expected frame-dragging direction to speeds of order 1000 km/s.
Finally, we have also found the qualitative agreement between the harmonic-gauge numerical data
and the post-Newtonian approximation also holds for the near-zone momentum density after the

initial data relaxes but before the proper separation of the holes is too small.

4.5 Conclusion

With the goal of building up greater physical intuition, we have used the Landau-Lifshitz formalism
to explore the nonlinear dynamics of fully relativistic simulations of a head-on BBH plunge, merger,
and ringdown. We have defined and computed an effective velocity of the black holes in terms of the
momentum and mass-energy enclosed by their horizons, and we have interpreted the holes’ transverse
motion—which reaches speeds of order 1000 km/s—as a result of momentum flow between the holes
and the gravitational field of the surrounding spacetime. We have found that the merged hole’s final
effective velocity—about 20 km/s—agrees with the recoil velocity implied by the momentum carried
off by the emitted gravitational waves.

Our measures of linear momentum and effective velocity are gauge-dependent. Nevertheless,
after comparing simulations of comparable initial data in generalized-harmonic and BSSN-moving-
puncture gauges, we observed weak gauge dependence for the generalized-harmonic and BSSN-
moving-puncture evolutions of this paper. Additionally, we have found surprisingly good agreement
between the holes’ effective and coordinate velocities, and, at late times, the holes’ final effective
velocities and gauge-invariant measures of the kick velocity agree.

These results bode well for future explorations of momentum flow in fully relativistic, numerical

simulations of more astrophysically realistic binaries. We are particularly eager to investigate sim-
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ulations of superkick BBH mergers (the inspiral of a superkick configuration was considered using
the post-Newtonian approximation in Paper I). Other future work includes studies of the linear and
angular momentum flow in inspiraling (rather than head-on) mergers, as well as mergers with larger

spins.

4.A Appendix: Excision Initial Data

4.A.1 Superposed-Kerr-Schild (SKS) Initial Data

The initial data for the generalized-harmonic simulations presented in this paper were constructed
using the methods described in [55]. In this appendix, we describe in more detail these initial data
(which we summarized in Section 4.3.1.1).

A 3+1 (space-time) decomposition splits the spacetime metric g,,, into a spatial metric v;;, lapse

a, and shift 3, i.e.,
ds? = g datda” = —a?dt* + ~;;(da’ + B'dt)(da? + p7dt) . (4.19)

On the initial spatial slice (at time ¢ = 0), the initial data must specify the spatial metric ~;; and

the extrinsic curvature K;;, which is related to the time derivative of the spatial metric by
6,5%» = —2aK;; + 2V(iﬁj) . (4.20)
We use the quasiequilibrium formalism [77, 78, 79, 80, 81|, in which ~;; and K;; are expanded as

vi; = V', (4.21)
1
Kij = Ay+3vK. (4.22)

The conformal metric 7;;, the trace of the extrinsic curvature K, and their time derivatives can be

chosen freely. We adopt the quasiequilibrium choices

U5 =0y = 0, (4.23)
oK = 0. (4.24)

The remaining free data are based on a weighted superposition of two boosted, spinning Kerr-Schild
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black holes (Egs. (45)—(46) of [55]):

2
Yij = fij + Ze—ri/wi (”YZ - fz]) ; (4.25)
a=1
2 2 2
K = ) e /K, (4.26)
a=1

Here f;; is the metric of flat space, r, is the Euclidean distance from the center of the apparent
horizon of hole a, and ~f; and K, are the spatial metric and mean curvature of a boosted (with
velocity 9), spinning (with spin S/M?) Kerr-Schild black hole centered at the initial position of hole
a. In this paper, we choose 9 = 0 (since we seek data describing holes falling head-on from rest),
M/MADM = 0.39, and 5'/]\Zf2 = 0.5. The Gaussian weighting parameter is chosen to be w, = d/3,
where d is the initial coordinate separation between the two holes; note that this choice causes the
conformal metric to be flat everywhere except near each hole. The holes are located at coordinates
(z,y,2) = (xzog = £d/2,0,0).

These free data are then inserted into the extended conformal thin sandwich (XCTS) equations
(e.g., Egs. (13)—(15) of [78])?, which are then solved for the conformal factor 1, the lapse a, and
the shift 5°. The XCTS equations are solved using a spectral elliptic solver [82] on a computational
domain with (i) a very large outer boundary (which is chosen to be a coordinate sphere with radius
T/M = 10%), and (ii) with the region inside the holes’ apparent horizons excised. The excision

surfaces S are surfaces of constant Kerr radius rgerr, where

CC2 + y2 22

52 ,.~ 2 2
2
TKerr + Sa /Ma TKerr

=1. (4.27)

The excision surfaces are the apparent horizons of the holes; this is enforced by the boundary
condition given by Eq. (48) of [78]. On the apparent horizon, the lapse satisfies the boundary

condition

2
a) =1+ Z e Talva (g —1)on S, (4.28)

a=1

where a, is the lapse of the Kerr-Schild metric corresponding to hole a. The shift satisfies
fr=as"— Q. onS. (4.29)

The first term in Eq. (4.29) implies that the holes are initially at rest, and the second term determines
the spin of the hole. To make the spin point in the +z direction with magnitude S/M(%hr =0.5
(measured using the method described in Appendix A of [55]), we choose MapmQr = F0.244146

9The XCTS equations are also given by Egs. (37a)—(37d) of [55], aside from the following typographical error: the
second term in square brackets on the right-hand side of Eq. (37c) should read (5/12)K24¢* (not (5/12) K4p%).
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and & = 9,4, where 9, is the rotation vector on the apparent horizon corresponding to rotation

about the +z axis. On the outer boundary B, the spacetime metric is flat:

(G
ap = lonB. (4.31)

lonB, (4.30)

Our initial data, Eq. (4.29), are constructed in a frame comoving with the black holes. Thus, an
asymptotic rotation, expansion, and translation in the comoving shift 3 cause the holes to initially
have radial, angular, or translational velocity in the inertial frame. This corresponds to the boundary
condition

B = (Q xr) +aer’ + Vi onB. (4.32)

We choose ag = 0 and ¢ = 0. To make the total momentum of the initial data vanish, we choose
V¥ = —0.001444 and V* = V* = 0. This choice gives the holes an initial coordinate velocity of
0.001444 (433 km/s in physical units) in the —y direction (see Fig. 4.7). Note that the initial data are
evolved in inertial, not comoving, coordinates, so that the shift during the evolution is different from
the comoving shift, 37, obtained from the XCTS equations. The former asymptotically approaches

zero, not a constant vector Vj.

4.A.2 Superposed-Harmonic-Kerr (SHK) Initial Data

We also present a simulation, H1 in Table 4.1, that is similar to S1, but which starts at a larger initial
separation between the holes and which evolves in a gauge that is nearly harmonic. The construction
of this superposed-harmonic-Kerr initial data for this run follows that of the superposed-Kerr-Schild
(S1) initial data described in Appendix 4.A.1. The differences are as follows:
The first difference is our choice of coordinates. In Appendix 4.A, the quantities v}, K., and
o, that appear in Eqs. (4.25), (4.26), and (4.28) refer to the three-metric, the trace of the extrinsic
curvature, and the lapse function of the Kerr metric in Kerr-Schild coordinates. Here we still use
Egs. (4.25), (4.26), and (4.28), but vf;, K, and o, now refer to the three-metric, the trace of the
extrinsic curvature, and the lapse function of the Kerr metric in fully harmonic coordinates, Egs.
(22)—(31), (41), and (43) of [83]. Furthermore, the computational domain is excised on surfaces of
constant Boyer-Lindquist radius, rgy,, where
22 + 42 22

+
~ 2 ~ 2, ~ 2 ~ 2
(TBL — Ma) + 5, /Ma (TBL — Ma)

=1. (4.33)

The initial coordinate separation was chosen to be d/Mapym = 29.73 and the Gaussian weighting
parameter that appears in Egs. (4.25), (4.26), and (4.28) is w, = d/9. To obtain S/Mg,, =
{0,0,40.5} we choose Mapm§, = F0.261332 in Eq. (4.29), and to make the total momentum
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vanish we choose Vy = —0.0000582185 in Eq. (4.32).

Solving the XCTS equations results in initial data that is approximately harmonic. Harmonic
coordinates satisfy VeV, z® = 0, or equivalently, 'y := T';;? = 0. We can evaluate the degree to
which the harmonic-gauge condition is satisfied in our initial data by examining the normalized

magnitude of I'y:
1/2

DI
= —2r . 4.34
f i S Irw!l’ -
a b
The denominator consists of the sum of squares of terms that must cancel to produce I', = 0, so that
f = 1 corresponds to complete violation of the harmonic coordinate condition. On the apparent
horizons f < 0.049, while in the asymptotically flat region far from the holes f < 0.0083. In the
regions where the Gaussians in Egs. (4.25), (4.26), and (4.28) transition the XCTS free data from
harmonic Kerr to conformally flat we cannot expect the data to be strongly harmonic, and we find
that f < 0.12.

The techniques employed in the spectral evolution from this SHK initial data follow those used
for the SKS initial data as described in Appendix 4.B.1. In particular, the generalized-harmonic-
gauge source function, H,, Eq. (4.14), is constructed by demanding that H, remains frozen to its
value in the initial data. The evolution proceeds in nearly harmonic gauge because of the way the
initial data are constructed.

Three of these H1 evolutions were performed at resolutions of approximately 612, 673, and 723
grid points. The constraints were found to be convergent. The data presented in this paper is taken
from the highest-resolution run. These simulations are specifically constructed to provide data for
comparison with PN approximations, which restricts our choice of gauge to remain approximately
harmonic. Currently this gauge choice prevents us from continuing our H1 evolutions beyond the

plunge phase, and we have not observed the formation of a common horizon.

4.B Appendix: Numerical Methods for Evolutions

4.B.1 Generalized-Harmonic Evolutions

We evolve the initial data summarized in Section 4.3.1.1 using the Caltech-Cornell pseudospectral
code SPEC. This code and the methods it employs are described in detail in [84, 85, 4]. Some
of these methods have been simplified for the head-on problem discussed here, and others have
been modified to account for a nonzero center-of-mass velocity; consequently, we will describe the
important differences here.

We evolve a first-order representation [62] of the generalized-harmonic system [59, 60, 61]. We

handle the singularities by excising the black-hole interiors from the computational domain. Our
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outer boundary conditions [62, 86, 87] are designed to prevent the influx of unphysical constraint
violations [88, 89, 90, 91, 92, 93, 94] and undesired incoming gravitational radiation [95, 96], while
allowing outgoing gravitational radiation to pass freely through the boundary. We find the event
horizon using the techniques of [97], except that for calculating derivatives of quantities on the event
horizon surface, we use a sixth-order, finite-differencing stencil, which is an improvement on the
second-order stencil used in [97]. (The formation of cusps on the event horizon prevents us from
taking spectral derivatives there.)

We employ the dual-frame method described in [84]: we solve the equations in an “inertial frame”
that is asymptotically Minkowski, but our domain decomposition is fixed in a “comoving frame”
that is allowed to shrink, translate, and distort relative to the inertial frame. The positions of the
centers of the black holes are fixed in the comoving frame; we account for the motion of the holes
by dynamically adjusting the coordinate mapping between the two frames. Note that the comoving
frame is referenced only internally in the code as a means of treating moving holes with a fixed
domain. Therefore, all coordinate quantities (e.g., black-hole trajectories) mentioned in this paper
are inertial-frame values unless explicitly stated otherwise.

The mapping from comoving to inertial coordinates is changed several times during the run.
During the plunge phase, we denote the mapping by M, (x?, 2*), where primed coordinates denote
the comoving frame and unprimed coordinates denote the inertial frame. Explicitly, M, (z¢, 2') is

the mapping

x = F(r',t)sinf cos¢’, (4.35)
y = F(/ t)sin@sing +e " /"Y(t) (4.36)
z = F(r',t)cosf cos¢, (4.37)
where
2
F(r't) = 1 {a(t) +[1—a(t)] R_{)Q} . (4.38)

Here a(t) and Y (t) are functions of time, (r’',6’, ¢’) are spherical polar coordinates in the comoving
frame centered at the origin, and R{, and r/. are constants. For the choice R{ = oo and r} = oo,

the mapping is simply an overall contraction by a(t) < 1 plus a translation Y (¢) in the y direction.

/
max?

/

Choosing R, equal to the outer-boundary radius, R, Thax

and choosing 7. ~ R; .. /6 causes the map to
approach the identity near the outer boundary; this prevents the outer boundary from falling close
to the strong-field region during merger, and makes it easier to keep the outer-boundary motion
smooth through the merger/ringdown transition. The functions a(t) and Y (¢) are determined by

dynamical control systems as described in [84]. These control systems adjust a(t) and Y (¢) so that
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the centers of the apparent horizons remain stationary in the comoving frame. For the evolutions
presented here, we use Rj/Mapm = 532.2 = 1.1R] .. /Mapwm and 77 /Mapm = 31.21 = 4dy/Mapw,
where dj is the initial separation of the holes.

The gauge freedom in the generalized-harmonic system is fixed via a freely specifiable, gauge

source function, H,, that satisfies the constraint
0=C,: =Ty +H,, (4.39)

where I'*;. are the spacetime Christoffel symbols. To choose this gauge source function, we define
a new quantity H, that transforms like a tensor and agrees with H, in inertial coordinates (i.e.,
H, = H,). Then, we choose H, so that the constraint, Eq. (4.39) is satisfied initially, and we
demand that H, is constant in the moving frame.

Shortly before merger (at time ¢, /Mapy = 31.1), we make two modifications to our algorithm to
reduce numerical errors and gauge dynamics during merger. First, we begin controlling the size of
the individual apparent horizons so that they remain constant in the comoving frame, and, therefore,
they remain close to their respective excision boundaries. This is accomplished by changing the map
between comoving and inertial coordinates as follows. We define the map Mg, (Z¢,2"%) for black

hole 1 as

I = g, +7sinbd cosd’, (4.40)
§ = Ypu, +7sind sing’, (4.41)
Z = Zpy, +Tcost, (4.42)
Fom o — e (TN (), (4.43)

where (17,0, ¢’) are spherical polar coordinates centered at the (fixed) comoving-coordinate location
of black hole 1, which we denote as (zyy,, Yan,, 2an,)- The constant Ry is the desired average
radius (in comoving coordinates) of black hole 1. Similarly, we define the map Map, (%, 2"") for
black hole 2. Then, the full map from the comoving coordinates z’* to the inertial coordinates x* is
given by

M (2%, 2") := M, (2", T )Y Map, (T°, 3 ) Man, (3, 2 . (4.44)

The constants are chosen to be o1 /Mapm = 0.780, o2/Mapm = 0.780, and 7(,/Mapm = 1.01. The
functions A;(¢) and A2(t) are determined by dynamical control systems that drive the comoving-
coordinate radius of the apparent horizons towards their desired values RAHl /Mapm = RAHZ /Mapm =
1.56. Note that in comoving coordinates, the shape of the horizons is not necessarily spherical; only
the average radius of the horizons is controlled.

The second change we make at time t;/Mapm = 31.1 is to smoothly roll the gauge source
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function H, to zero by adjusting Hy/ (t) according to

a’tZNa/tleiizza .
H H (t—t)"/7 4.45

where 7/Mapy = 0.5853. This choice makes it easier for us to continue the evolution after the
common horizon has formed, and it also reduces gauge dynamics that otherwise cause oscillations
in the observed Landau-Lifshitz velocity, v{; , during the ringdown.

When the two black holes are sufficiently close to each other, a new apparent horizon suddenly
appears, encompassing both black holes. At time t¢,,/Mapm = 34.73 (which is shortly after the
common horizon forms), we interpolate all variables onto a new computational domain that con-
tains only a single excised region, and we choose a new comoving coordinate system so that the
merged (distorted, pulsating) apparent horizon remains spherical in the new comoving frame. This
is accomplished in the same way as described in Section II D of [4], except that here the map from
the new comoving coordinates to the inertial coordinates contains an additional translation in the y
direction that handles the nonzero velocity of the merged black hole. In [4] a third change, namely, a
change of gauge, was necessary to continue the simulation after merger. In the simulations discussed
here, however, Eq. (4.45) has caused H,, to fall to zero by the time of merger, and we find it suffices
to simply allow H, to remain zero after merger.

For completeness, we now explicitly describe the map from the new comoving coordinates ="’ to

the inertial coordinates z*. This map is given by

r = rsing’cos¢”, (4.46)
y = rsin®’sing’ +e " Y (1), (4.47)
z = rcosf”, (4.48)
s 2R) (AT 41— A0 )
r = 7 |14+sin*(77/2R ) (At =41 = A(t ¢—1>} , (4.49
Riax Ry o R
b ¢
Fo= " —q(")Y Y A ()Y (07,9") (4.50)
=0 m=—¢

(r", 8", ¢") are spherical polar coordinates in the new comoving coordinate system, R} is the value
of " at the outer boundary, and r./Mapwm is a constant chosen to be 31.21. The function ¢(r") is
given by

q(r'") = e~ Fan) ey (4.51)

where R/;; is the desired radius of the common apparent horizon in comoving coordinates. The
function A(t) is
A(t) = Ag + [A1 + Ag(t — ty,)]e”Etm)/ma (4.52)
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where the constants Ay, A, and Az are chosen so that A(t) matches smoothly onto a(t) from Eq.
(4.38): A(tm) = altm), A(tm) = a(ty,), and A(ty,) = d(t,). The constant 74 /Mapy is chosen to
be on the order of 5. The functions Y (t) and Agp,(t) are determined by dynamical control systems
that keep the apparent horizon spherical and centered at the origin in comoving coordinates; see [4]

for details.

4.B.2 BSSN-Moving-Puncture Evolutions

In addition to the generalized-harmonic evolutions, we performed a second set of simulations using
the so-called moving-puncture technique [3, 2] using the LEAN code [73, 98]. This code is based on
the CACTUS computational toolkit [99] and uses mesh refinement provided by the CARPET package
[70, 71]. Initial data are provided in the form of the TWOPUNCTURES thorn by Ansorg’s spectral
solver [67] and apparent horizons are calculated with Thornburg’s AHFINDERDIRECT [100, 101].
The most important ingredient in this method for the present discussion is the choice of coordinate
conditions. A detailed study of alternative gauge conditions for moving-puncture-type, black-hole
evolutions is given in [102]. In particular, they demonstrate how the common choice of a second-
order, time-evolution equation for the shift vector, 3%, can be integrated in time analytically and,
thus, reduced to a first-order equation. Various test simulations performed with the LEAN code
confirm their Eq. (26) as the most efficient method to evolve the shift vector. In contrast to the
shift, moving-puncture codes show little variation in the evolution of the lapse function. Here, we

follow the most common choice, so that our gauge conditions are given by

da = [Oa—2aK , (4.53)

0,3 B0 5" + gfi —np. (4.54)

Above, I is the contracted Christoffel symbol of the conformal 3-metric, K the trace of the extrinsic
curvature (see, for example, Eq. (1) of [73]) and 7 is a free parameter set to 1, unless otherwise
specified. For further details about the moving-puncture method and the specific implementation
in the LEAN code, we refer to Section II of [73]. Except for the use of sixth- instead of fourth-order
spatial discretization [103], we did not find it necessary to apply any modifications relative to the
simulations presented in that work.

We calculate the 4-momentum in the LEAN code in the same way as it is described in Section
4.2. The only difference is that in a BSSN code the four metric and its derivatives are not directly
available but need to be expressed in terms of the 3-metric ;;, the extrinsic curvature Kj;;, as well

as the lapse a and shift 3°. The key quantity for the calculation of the 4-momentum is the integrand
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in Eq. (4.7). A straightforward calculation gives it in terms of the canonical ADM variables

| 1 (3, ;
OuHY = 5 | 207" Omx + 7" Oiynn | (4.55)
01" = 5 [2(K = IK) +770,0" 1" 81]  FOLH0, (450)

where K := K*; and y := dety~'/3 have been used for convenience because they are fundamental

variables in our BSSN implementation.
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Chapter 5

A Hybrid Method for Understanding Black-
Hole Mergers: 1. Head-on Mergers

Black-hole-binary coalescence is often divided into three stages: inspiral, merger, and
ringdown. The post-Newtonian (PN) approximation treats the inspiral phase, black-
hole perturbation (BHP) theory describes the ringdown, and the nonlinear dynamics of
spacetime characterize the merger. In this paper, we introduce a hybrid method that
incorporates elements of PN and BHP theories, and we apply it to the head-on colli-
sion of black holes with transverse, anti-parallel spins. We compare our approximation
technique with a full numerical-relativity simulation, and we find good agreement be-
tween the gravitational waveforms and the radiated energy and momentum. Our results
suggest that PN and BHP theories may suffice to explain the main features of outgo-
ing gravitational radiation for head-on mergers. This would further imply that linear
perturbations to exact black-hole solutions can capture the nonlinear aspects of head-on

binary-black-hole mergers accessible to observers far from the collision.

Originally published as D. A. Nichols and Y. Chen, Phys. Rev. D 82, 104020 (2010).

5.1 Introduction

Even prior to the complete numerical-relativity simulations of black-hole-binary mergers [1, 2, 3, 4],
black-hole collisions were thought to take place in three stages: inspiral (or infall), merger, and
ringdown. During inspiral, the speed of the holes is sufficiently low and the separation of the bodies
is large enough that the system behaves like two separate particles that follow the post-Newtonian
(PN) equations of motion. Eventually, the black holes become sufficiently close that the dynamics
given by the PN expansion significantly differ from those of full relativity. This stage is the merger,
during which the two black holes become a single, highly distorted, black hole. The merger phase
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is brief; the strong deformations lose their energy to gravitational radiation, and the system settles
down to a weakly perturbed, single black hole. The ringdown phase describes these last small
oscillations of the black hole.

Of the three stages of binary-black-hole coalescence, the merger remains the most inaccessible
to analytical tools. Nevertheless, full numerical relativity is not the only technique to have success
investigating the merger. Historically, most analytical investigations of the merger phase arise from
trying to extend the validity of perturbative techniques, particularly black-hole-perturbation (BHP)
and PN theories. Those researchers working from a BHP approach try to push the approximation
to hold at earlier times, whereas those employing a PN method attempt to stretch the technique
to hold later into merger. Alternatively, one can see if there are exact, nonlinear analytical models
whose dynamics can represent various aspects of black-hole-binary mergers. Rezzolla, Macedo,
and Jaramillo [5] recently took this latter approach in their study of anti-kicks from black-hole
mergers. In their work, they showed that they could relate the curvature anisotropy on the past
apparent horizon of a Robinson-Trautman spacetime to the kick velocity (computed from the Bondi
momentum). Through appropriate tuning of the initial data, they could recover kick velocities
found in numerical-relativity simulations of unequal-mass, inspiraling black holes. While this type of
approach is interesting and has proved successful, our work focuses on using perturbative approaches
(and we will, therefore, take a more comprehensive look at the prior use of perturbative methods to
understand mergers).

From the BHP side, Price and Pullin [6], initially, and many collaborators, subsequently, (see,
e.g., [7]) developed the “close-limit approximation” (CLA). This technique begins with initial data
containing two black holes that satisfy the vacuum Einstein equations and splits it into a piece
representing the final, merged black hole and perturbations upon that black hole. The exact form of
the initial data varies in the CLA, but for head-on collisions of black holes, it typically involves some
variation of Misner [8], Lindquist [9], or Brill-Lindquist [10] time-symmetric, analytic, wormhole-like
solutions. To investigate the late stages of an inspiral, the CLA usually begins from non-time-
symmetric, but conformally flat, multiple black-hole initial data set forth by Bowen and York [11].
Independent of the initial data, however, the CLA translates the original problem of the merger
into a calculation involving BHP theory. The CLA does not allow for a very large separation of
the black holes; as a result, only the very end of the merger is captured in this process. Moreover,
“junk radiation” appears in the waveform because the initial data do not describe the binary black-
hole-merger spacetime in both the wave zone and the near zone. Unlike in full numerical-relativity
simulations where the junk radiation leaves the grid during the well-understood inspiral phase, in the
CLA the junk radiation appears during the merger stage. This radiation (both from the absence of
waves in the initial data and from errors in the near-zone physics), therefore, is difficult to disentangle

from the physical waveform.
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The Lazarus Project (see, e.g., [12]) followed roughly the same approach as the CLA, but it used
even more realistic black-hole-binary initial data for its CLA calculation; namely, its initial data
came from a numerical-relativity simulation just prior to the merger. At the same time, however,
because the initial data is now numerical, one loses the analytical understanding of the properties
of spacetime near the merger. More recently, Sopuerta, Yunes, and Laguna [13] applied the CLA in
combination with PN flux formulas to obtain an estimate of the gravitational recoil from unequal-
mass binaries (including binaries with small eccentricity [14]). They proposed using more realistic
initial data in the CLA, which Le Tiec and Blanchet [15] ultimately carried out. Le Tiec and Blanchet
chose to use the 2PN metric (keeping only the first post-Minkowski terms) as initial data for the
CLA, and they applied it with considerable success to inspirals of unequal-mass black-hole binaries
in a paper with Will [16]. Despite the improved initial data, this approach does not eliminate the
problem of junk radiation discussed above. It would be of interest to see if even more realistic initial
data, such as that of Johnson-McDaniel, Yunes, Tichy, and Owen [17] would lead to improved results
within the CLA.

From the PN side, Buonanno et al., in [18], as well as Damour and Nagar [19] take a different
approach to understanding the physics of the merger. Using the effective-one-body (EOB) method
[20], they study the dynamics of the system until roughly the beginning of the merger phase. To
obtain a complete waveform, they attach a ringdown waveform by smoothly fitting quasinormal
modes to the EOB inspiral and plunge waveform. When they calibrate the two free parameters of
this model to numerical-relativity waveforms, the EOB results match numerical-relativity waveforms
precisely. In this method, they fit the PN dynamics and the ringdown at the light ring of the EOB
particle motion; it is not immediately apparent, however, what this feature tells about the nature
of the merger.

As aresult, there remains a need to develop simple analytical models that help reveal the behavior
of spacetime during the merger. Toward this end, it is helpful to delve deeper into the question of
what exactly is the merger. First, the inspiral-merger-ringdown classification is based on the validity
of the PN expansion and that of BHP. The inspiral, in other words, is just the set of times for which
the PN expansion holds on the whole spatial domain (to a given level of accuracy). Correspondingly,
the ringdown is the times for which BHP works everywhere throughout space. The merger, in this
picture, is just the gap between those times during which PN and BHP theories give accurate results.

In this paper, we propose that we can push each approximation technique beyond its current
range of use, as long as we do not apply it to all of space at a given time. We observe that at any
time, there is a region outside a certain radius from the center of mass in which BHP applies. While
this seemingly runs contrary to the common notion that PN theory is the natural description of the
weak-field region of a black-hole-binary spacetime, a black-hole metric in the limit of radii much

larger than the mass and binary separation is identical to that of PN in the same region. If the PN
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expansion applies to the remaining portion of the spacetime (within the region where BHP holds),
then BHP and PN theories could cover the entire physics of black-hole-binary coalescence. While
it is somewhat unreasonable to suppose that PN theory truly applies to the strong-field region of
a binary-black-hole spacetime, revisiting Price’s treatment of non-spherical stellar collapse suggests
that this may not be essential.

In Price’s 1972 paper [21], he addresses, among other issues, why aspherical portions of stellar
collapse quickly disappear when, in fact, one could plausibly argue the contrary. Namely, if any non-
spherical perturbations asymptote to the horizon (from the perspective of an observer far away),
they would remain visible to this observer indefinitely. Price realizes, however, that the exterior
of a collapsing star is just the Schwarzschild solution (because of Birkhoff’s theorem, up to small
perturbations), and perturbations on the Schwarzschild spacetime evolve via a radial wave equation
in an effective potential. Moreover, he notes that when the surface of the star passes through the
curvature effective potential of the Schwarzschild spacetime, the gravitational perturbations induced
by the star redshift. Finally, because the effective potential reflects low-frequency perturbations,
the spacetime distortions produced by the stellar interior become less important, and observers
outside the star ultimately see it settle into a spherical black hole in a finite amount of time. Most
importantly, this argument does not depend strongly upon the physics of the stellar interior; as long
as there is gravitational collapse to a black hole, this idea holds.

In this paper, we adopt this idea, but we replace the stellar physics of the interior with a PN,
black-hole-binary spacetime (see Fig. 5.1). While in Price’s case, the division of spacetime into two
regions comes naturally from tracking the regions of space containing the star and vacuum, in our
case the split is somewhat more arbitrary; one simply needs to find a region in which both PN and
BHP theories hold, to some level of accuracy. How we choose the boundary between the two regions
and the quantities that we evolve are topics that will be discussed in greater detail in Section 5.2.

To test the above idea in this paper, we study a head-on collision of two black holes with
transverse, anti-aligned spins and compare the waveforms and energy-momentum flux obtained
from our approximation method with the equivalent quantities from full numerical simulations.
Specifically, we organize this paper as follows. In Section 5.2, we give a more detailed motivation
for our model, and we then present the mathematical procedure we use in our method, for an equal-
mass, head-on collision of black holes. In Section 5.3, we present an explicit calculation for the
head-on collision of two black holes with transverse, anti-aligned spins, and we compare waveforms,
radiated energy, and radiated linear momentum from our model with the equivalent quantities from
a full numerical-relativity simulation. In Section 5.4 we discuss how our method can help interpret
the waveform during merger, and finally, in Section 5.5, we conclude. We will use geometrical units

(G = ¢ =1) and the Einstein summation convention throughout this paper.
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Figure 5.1: A spacetime diagram of a black-hole collision, modeled after Price’s description of stellar
collapse. We choose the trajectory of the two holes as a way to separate the spacetime into an
interior and an exterior region. The exterior region is a perturbed, black-hole spacetime, whereas
the interior is that of a post-Newtonian (PN) black-hole-binary system, shaded in yellow (light gray).
The red (dark gray) region of the diagram shows the place at which the effective potential of the
black hole is significantly greater than zero. This formalism allows us to divide the waveform into
three sections: inspiral (or infall), which extends from the beginning of the binary’s evolution until
the [ = 2 effective potential of the exterior BHP spacetime starts to be exposed; merger, which
extends from the end of inspiral to when the majority of the exterior potential is revealed; and
ringdown, which represents the remainder. We overlay the even-parity, (I = 2,m = 0) mode of the
waveform.
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5.2 A Detailed Description of the Method

5.2.1 Further Motivation

Before going into the details of our procedure, it is worth spending some time discussing why our
specific implementation of PN and BHP theories will help avoid some of the difficulties that arose
in other methods in the Introduction and noting the limitations and assumptions that underlie our
approach.

It is certainly hard to argue that existing orders of PN (up to v% in the metric, for near-zone
dynamics [22]) and BHP (up to second order for Schwarzschild, see [23] for a gauge-invariant for-
mulation) theories are accurate in the whole space, simultaneously. Nevertheless, it is plausible to
argue that these approximation techniques cover different spatial regions at different times in a way
such that each theory is either valid to a reasonable level of accuracy or occupying a portion of
spacetime that will not influence physical observables where it fails. Using an approach of this type,
we aim to get the most out of the approximation methods.

Specifically, we find that the following procedure gives good agreement with the waveform of
a numerical-relativity simulation presented in Section 5.3. First, we have the reduced mass of the
binary follow a plunging geodesic in the Schwarzschild spacetime. Then, we divide this trajectory in
half to make a coordinate radius (and thus a coordinate sphere) that passes through the centers of
the black holes; the set of all the coordinate spheres defines a time-like surface in spacetime. Finally,
we apply PN theory within this time-like surface and BHP on the exterior. The two theories must
agree on this time-like surface, which we will subsequently call the shell.

Matching PN and BHP theories on this shell has certain advantages. Because BHP theory relies
upon a multipole expansion, this makes it necessary to treat the PN interior in terms of multipoles
of the potentials. For one, this is useful, because physical observables like the radiated energy
and momentum very often do not need many multipoles to find accurate results. (In fact, in our
example in Section 5.3, we see that the quadrupole perturbations alone suffice.) Second, a multipole
expansion may also be helpful for the convergence of the approach. For two point particles, for
example, each multipole component of the Newtonian potential U](\P at the location of the particles
satisfies U ](\ﬁ) < M/R, where M is the mass of the binary and R is the distance from the center of
mass. This is small for much of the infall, when R > M, and even when the binary reaches what
will be the peak of the effective potential of the merged black hole, U J(\P ~ 1/3.

Because the effective potential of the final black hole tends to mask perturbations within (as
they are redshifted and cannot escape), our hope (supported by the example in Section 5.3) is that
PN theory is still reasonably accurate at the peak of the potential. Then, in our approach, the
PN error will be hidden by this potential and, along with BHP in the exterior, it will suffice to

explain the physics outside the black hole (in particular the gravitational waveform and the energy
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and momentum flux). Of course whether such a mechanism exists is not easily deduced analytically
from first principles; only by comparing our results with those from full numerical relativity will we
test this premise (which we do in Section 5.3.2).

If this holds, our procedure has several advantages. For one, the matching works well at larger
separations (which diminishes the influence of junk radiation). More importantly, though, as the
matching shell moves from large separations at early times to the vicinity of the horizon at late
times, the spacetime smoothly transitions from predominantly PN to essentially BHP. One can see
this most clearly in the way that the effective potential is revealed in Fig. 5.1. This leads to a
waveform that smoothly transitions between an inspiral at early times to a ringdown at late times.
Whether we correctly capture the merger phase is most easily confirmed by comparing with results
from numerical relativity. Finally, our method can give a way to interpret the waveform during
the different stages of a binary-black-hole coalescence by relating parts of the waveform with the
retarded position of the matching shell at that point (for further detail, see Section 5.4).

There is also reason to suspect that the domain of BHP may extend to relatively early times in
the merger, outside the binary. A paper by Racine, Buonanno and Kidder [24] gives evidence in favor
of this idea. In particular, they find, when studying the “superkick” configuration (an equal-mass,
quasicircular binary of black holes with transverse, antiparallel spins), that the higher-order spin-
orbit contributions to linear-momentum flux dominate over the leading-order terms. These terms
include both direct higher PN terms and tail terms, where the tail refers to gravitational radiation
that is scattered off of spacetime curvature and propagates within the light cone (as opposed to the
direct piece that propagates on the light cone). This suggests that even early on, the background
curvature plays an important role in generating the kick. Whether a Schwarzschild black hole
properly represents this curvature is another idea that is difficult to argue for directly, but can be
confirmed by comparison with the results of numerical relativity.

In its current implementation, the feature of our approach that is most arbitrary is setting
the boundary between the PN interior and the BHP exterior. Nevertheless, our procedure works
for head-on collisions, and in future work, we will develop a more systematic way of treating the

boundary.

5.2.2 Details of the Implementation

The procedure that we follow can be broken down, more or less, into five steps: (i) we describe
relevant physics in the PN interior; (ii) we match the metric of the PN interior to the BHP metric
through a boundary; (iii) we explicitly construct the boundary between the PN and BHP spacetimes;
(iv) we evolve the metric perturbations in the exterior Schwarzschild spacetime; (v) we extract the
waveforms and compute the radiated energy and momentum. We shall devote a subsection to each

of these topics below.
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A(t) 2R (t) = 2(r (t)-M) = a(t) - 2M

PN

- -
- -
L . --
N N

Matching Shell BHP r=R+M

-

Figure 5.2: At a given moment in time, the Schwarzschild and PN radial coordinates, the binary
separation, and the position of the shell where we match the two theories

Before we do so, however, it will be helpful to clarify our notation regarding the different coor-
dinates we use for the two metrics and the matching shell. In the PN coordinate system, we use
Minkowski coordinates (T, X,Y, Z) and spherical-polar coordinates (R, O, ®) within spatial slices.
We will consider linear perturbations to Minkowski space only in a PN harmonic gauge. For our BHP,
we employ Schwarzschild coordinates (¢, r, 0, ), and similarly, we only examine linear perturbations
to the Schwarzschild spacetime. As we will show in Section 5.2.2.3, we can match these descriptions
when R,r > M. This procedure is accurate up to terms of order (M/R)? in the monopole part of
the metric and M/R in the higher-multipole portions, assuming that we relate the two coordinate
systems by

T=t,0=0,d=¢p,R=r—M. (5.1)

The identification above allows us to label every point in spacetime by two sets of coordinates,
(t,r,0,¢) and (¢, R,0, ), where R = r — M. Because our program relies upon applying PN theory
in an interior region and BHP on the exterior, it is therefore natural to talk about a coordinate shell
at which we switch between PN and BHP descriptions of the space-time. On this shell, we can use
either the Minkowski or Schwarzschild coordinates.

In keeping with the notation above, we shall denote the separation of the binary by A(t) = 2R(¢)
in PN coordinates and a(t) = 2r(¢) in Schwarzschild coordinates. Finally, we will denote the radial
coordinate on the boundary by adding a subscript s to the PN or Schwarzschild coordinate radii
(e.g., Rs(t) = A(t)/2 or r4(t) = a(t)/2). We summarize the two coordinate systems, and how they
match, in Table 5.1 and Fig. 5.2.
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While we introduce a new method of matching PN and BHP theories, the idea of combining PN
and BHP approximations is not new. In fact, it is at the core of the effective-one-body formalism
of Buonanno and Damour [20]. In the EOB description, however, they match the point-particle
Hamiltonians of PN and BHP theories, rather than joining the spacetime geometry. It would be
interesting, as a future study, to see whether one can combine our procedure with that of the EOB
to produce a geometrical EOB approach. Le Tiec and Blanchet [15], on the other hand performed
a more accurate matching between PN and BHP in their close-limit calculation with 2PN initial
data, but their matching only takes place on a single spatial slice of initial data. It would also be

interesting to extend their higher-order approach to our procedure as well.
5.2.2.1 The PN Interior Solution

For our method, we will need to describe the metric of the PN spacetime in the interior, which we

do at leading Newtonian order:
dstn = —(1 — 2UN)dt? — Sw;dtd X" + (1 + 2UpN)8;;dX dX7 . (5.2)

Here Uy is the Newtonian potential and w; is the gravitomagnetic potential, and the index i runs
over X, Y, and Z. Our notation follows [25] (the above takes the results of Eq. (2.1) of that paper).
We then expand the Newtonian potential, Uy, into multipoles, keeping only the lowest multipoles
necessary to complete the calculation. In this paper the monopole and quadrupole pieces suffice (the

dipole piece can always be made to vanish),
Un~UQ +UQ. (5.3)

The quadrupole piece can be expressed as a term without angular dependence times a spherical
harmonic, as is done below,

UJ(V2) = Uj2v,m}/27m(9’ (,0) : (54)

We will follow the same procedure with the gravitomagnetic potential, although here we will, tem-
porarily, keep the dipole term,
w; ~ w + w§2) . (5.5)

%

We will be able to remove the dipole term through a gauge transformation, but this discussion is
much simpler on a case-by-case basis. When we write the gravitomagnetic potential, w, in spherical-
polar coordinates, we will be able to remove the radial component through a gauge transformation.
We will, therefore, consider just the 6 and ¢ components of w, and when writing it in index notation,
we will denote them with Latin letters from the beginning of the alphabet, (e.g., a,b = 6,¢). We

can then expand the components w,(f) in terms of two vector spherical harmonics,
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W = Wi "VaYo,m (0, 0) + Wi e Vo Yo,m (0, 0) - (5.6)

Here V, is the covariant derivative on a 2-sphere, and ¢,° is the Levi-Civita tensor (with nonzero
components €% = 1/sinf and €,’ = —sinf). A convenient abbreviation for the two spherical
harmonics above is

2 2,my, 2.m 2,m v2,m
w? = wiy Yo +wg X (5.7)

The two terms are denoted by (e) and (o) as a short hand for even and odd, because they transform
as (—1)! and (—=1)"*! under parity transformations, respectively. The odd- and even-parity vector

spherical harmonics are given explicitly by

1 gylm aytm
Xpm = —— xXL™ = sing :
0 sinf 9p e T MU Thg (58)
and
aylm 6ylm
Yy = yim = 5.9
0 09 ¥ dp (5.9)

respectively. These are the only parts of the PN metric that will be necessary for our approach.
5.2.2.2 Matching to a Perturbed Schwarzschild Black Hole

We then note that the Schwarzschild metric takes the form
2M oM\ !
ds® = — (1 - —) dt? + (1 - —) dr® 4+ r2d*Q, (5.10)
r r

where the last piece is the metric of a 2-sphere. We will use r without any subscript to denote the

Schwarzschild radial coordinate. When M < r the Schwarzschild metric takes the form
2M 2M
ds® ~ — (1 - —) dt? + (1 + —) dr? 4+ r?d*Q. (5.11)
r r

By making the coordinate transformation R = r — M, and identifying M /R with the monopole piece
of the Newtonian potential, U](\? ), then one can find that the Schwarzschild metric takes the form of

the Newtonian metric in spherical coordinates,
ds® ~ —(1 =20 dt? + (1 + 200 (dR? + R2d*Q). (5.12)

This similarity between the PN and Schwarzschild metrics suggests a way to match the two at
the boundary. We will assume that the monopole piece of the Newtonian potential becomes the
M /r term in the Schwarzschild metric. For the remaining pieces of the Newtonian metric (namely

U](\,2 ) and wl@)) we will translate them directly into the Schwarzschild metric after performing any
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needed gauge transformations to make such a direct match reasonable.

The original works on perturbations of the Schwarzschild spacetime are those of Regge and
Wheeler [26] for the odd-parity perturbations and Zerilli [27] for the even-parity perturbations.
Moncrief [28] then used a variational principle to show that one can derive quantities from the
metric perturbations of Regge, Wheeler, and Zerilli that satisfy a well-posed, initial-value problem
in any coordinates that deviate from Schwarzschild at linear order in perturbation theory. These
quantities are related to the gravitational waves at infinity, and they satisfy a one-dimensional wave
equation in a potential. We follow Moncrief’s approach in computing these so-called gauge-invariant,
metric-perturbation functions, but for our notation, we use that of a recent review article by Ruiz
et al. [29].

Both the even-parity (transform as (—1)! under parity) and odd-parity (transform as (—1)'*!
under parity) perturbations are not very difficult to find. By writing the PN metric in spherical-polar

coordinates,
ds? = —(1 =20 —20dt? + (1 + 20 + 20P)(dR? + R*d*Q) — 8w P dtda®,  (5.13)

where dz® = df, dyp, one can see that the even-parity perturbations are nearly diagonal in the metric.
In fact, at leading Newtonian order, it is exactly diagonal, because the non-diagonal term coming
from w?e;n arises at a higher PN order. We will show this explicitly in Section 5.3. For this reason,
we only consider the diagonal metric components in the discussion below.

The even-parity metric perturbations in Schwarzschild are often denoted

(hi)™) ey = Hy"Y"™, (hh) ey = HETYE™ (5.14)

(hge") () = r2KPmYbm (WL o) = 1P sin® Oy
a specialization of Egs. (57)—(59) of Ruiz et al. Thus, by matching the two metrics, one can see that
Hy™ = HE™ = K™ = 205" (5.15)

The odd-parity term is somewhat simpler, because the only metric perturbation of the Schwarzschild

spacetime to which we must match, at leading order, is
l,m l,m yl,m l,m l,m ,m
(hte )(0) =hy" Xy, (htap )(0) = hy Xalp ) (5.16)
Eq. (61) of Ruiz et al. From this, one can find that

e = =l (5.17)

o
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The matching procedure thus gives a way to produce perturbations in the Schwarzschild spacetime.
5.2.2.3 The Boundary Shell

We now must find a boundary region where one can match a PN metric expanded in multipoles
with a perturbed Schwarzschild metric. For head-on collisions, we find that the boundary can be
a spherical shell whose radius varies in time as the binary evolves. We can motivate where this
boundary should be with a few simple arguments, but the true test of the matching idea will come
from comparisons with exact waveforms from numerical relativity.

We know that at early times and for larger separations of the black holes, the PN spacetime
is valid around the two holes; thus it is not unreasonable to suppose that the shell should have a
radius equal to half the binary separation. Later in the evolution, BHP will be valid everywhere, so
the shell should asymptote to the horizon of the merged hole (as seen by outside observers). The
trajectory of the shell should be smooth throughout the entire process as well. Finally, the boundary
should mimic the reduced-mass motion of the system, which physically generates the gravitational
waves.

A simple way to achieve this quantitatively is instead of having the motion of the reduced mass
follow the PN equations of motion, we impose that it undergoes plunging geodesic motion in the
Schwarzschild spacetime. Given that the exterior spacetime is a perturbed Schwarzschild, and that
we are matching the two approximations on a shell that passes through the centers of the two black
holes, it is just as reasonable to use a trajectory in the Schwarzschild spacetime. Moreover, at
large separations, the motion of the reduced mass of the system in both Schwarzschild and PN are
quite similar; we primarily choose the geodesic in Schwarzschild for its behavior at late times. For
completeness, we write down the differential equation we use to find the motion of a radial geodesic
in Schwarzschild. Because we think of the black holes as point particles residing in the PN coordinate

system, we write the evolution of the binary separation A(t), measured in the PN coordinates,

dz;lit) = —/B2—[1-2MJA(t)],
it oM\ !
“ (1 ) M) | (5.18)

where B is a positive constant (B =1 —2M/A(0) for a head-on plunge from rest). This expression
can be found in many sources; see, for example, [30]. The coordinate radius of the shell in the PN

spacetime is just half the distance A(t),
1
Rs(t) = §A(t). (5.19)

Because the PN and Schwarzschild radii are related by R = r — M, one can find that in the
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Schwarzschild coordinates, the position of the shell is given by
1
rs(t) = §A(t) + M. (5.20)

In Schwarzschild coordinates, because A(t) goes to 2M at late times, the radius of the shell asymp-
totes to the horizon. More specifically, let us first define dr,(t) = rs(t) — 2M and then note that at
late times, the trajectory approaches the speed of light as it falls toward the horizon. In terms of
the tortoise coordinate, r. = r 4+ 2M log[r/(2M) — 1], this occurs when v = t + r, = const. Writing
this with respect to the variable or,(t), we find

Lo, (57’5(0) (5.21)

T2M T 2M 2M
We neglected the constant value of v because doing so has no effect on finding the scaling of r4(t) at
late times ¢. The equation above has a solution in terms of the Lambert W function, W(z), given
by
Srs(t) ~ W (e /M)y (5.22)

Because we are interested in the behavior at large ¢, e */(*M) is small, and we can use the leading-

order term in the Taylor series for the Lambert W function, W (z) ~ z + O(2?). We find that
5rg(t) ~ et/ (M) (5.23)

Thus, matching the spacetimes at half the PN separation of the binary and having the separation
of the binary evolve via a Schwarzschild geodesic in the PN coordinate system makes the shell track
the PN reduced-mass motion at early times, but still head to the horizon at late times. We illustrate
these different behaviors by plotting the full trajectory of the shell r4(t), the trajectory of a shell that
follows a plunging Newtonian orbit (which we denote by r, ) (t) and which represents the behavior
of the shell at early times), and e~*/(?M) (the late-time behavior of the shell) in Fig. 5.3. We choose
the initial values of the trajectory to conform with those of the numerical simulation with which we
compare in Section 5.3.2. The upper and lower insets show how the shell’s trajectory converges to
the Newtonian behavior at early times and the expected exponential decay at late times.

While choosing the trajectory of the shell might have a slightly ad hoc feel, in future work we will
develop a framework that determines the shell motion through a self-consistent radiation-reaction

force.
5.2.2.4 Black-Hole Perturbations

One can then take the odd- and even-parity metric perturbations from the second subsection and

transform them into two quantities, the Regge-Wheeler and Zerilli functions, respectively, that each
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Figure 5.3: The trajectory of the boundary shell as the solid blue (dark) curve labeled by r,(¢). The
other two curves show the early- and late-time behavior of the shell. The red (gray) dashed curve
labeled by 7 (n)(t) shows the trajectory of a shell that follows the Newtonian equations of motion
for a plunge from rest. The green (light gray) dashed and dotted curve (denoted by e~*/(*)) shows
the exponential convergence to the horizon at the rate expected in a Schwarzschild spacetime. The
upper inset shows how the shell agrees with a Newtonian plunge from rest at early times, and the
lower inset shows how the shell converges exponentially to the horizon at the expected rate.
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satisfy a simple wave equation. We first treat the even-parity perturbations. Equations (63)—(65)
of Ruiz et al. show how to take metric perturbations and transform them into the even-parity,
gauge-invariant Zerilli function. Substituting our Eq. (5.15) into those three of Ruiz, we find

m 2r m . r—2M 2M m m
v = 3 {vav + 5 3l [(1 - T) U™ =10, Ux H : (5.24)

where 0, is just the radial derivative with respect to the Schwarzschild radial variable. The odd-
parity perturbations come directly from applying our Eq. (5.17) to Eq. (67) of Ruiz et al. This gives
that

2m 2,m 2 2,m
oy =2r <8Tw(o) s ) . (5.25)

The odd- and even-parity perturbations then evolve according to the Regge-Wheeler and Zerilli
equations respectively,

07— 02, + Vo ()W =0, (5.26)

where r, = r+2M log[r/(2M) — 1] is the tortoise coordinate. The potentials can be expressed most

concisely via the expression

Vo = (1-28) (5 - Slot,m) 521

r r2 r3
where A =[(l + 1) and

AAN+2)r? +3M(r— M)
(Ar+3M)?

Uly(r) =1, Uly(r) = (5.28)
Here A = (I —1)(I 4+ 2)/2 = A/2 — 1. These expressions follow Egs. (5.3)—(5.6) of [15].

In our procedure, we find it easiest to evolve the Regge-Wheeler-Zerilli equations using a char-
acteristic method. To do so, we define u =t —r, and v = t + r, and see that the evolution equation
becomes

R O

(e,0) (e,0) ~ (e,0)
Oudv 4 0 (5.29)

We will now discuss how we evolve our Regge-Wheeler-Zerilli functions with the aid of Fig. 5.1.
We must provide data in two places, the matching shell (in Fig. 5.1 it is the lower-left curve labeled
by AD) and the initial outgoing characteristic (the line labeled by AB on the lower right). Once
we do this, however, we can determine the Regge-Wheeler-Zerilli functions within the quadrilateral
(with the one curved side) ABCD. We already discussed how we determine the shell in Section
5.2.2.3, and the data we provide along that curve are just the Regge-Wheeler, Eq. (5.25), or Zerilli,
Eq. (5.24), functions restricted to that curve. The data we must provide along AB are less well

determined. If our computational grid extended to past null infinity, then we could impose a no-
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ingoing-wave boundary condition. At finite times, we can still impose this boundary condition, but
it leads to a small spurious pulse of gravitational radiation at the beginning of our evolution. To
limit the effects of this, we keep the shell at rest until the junk radiation dissipates, and then we
begin our evolution. At this point, the data along the line AB more closely represent those of a
binary about to begin its plunge.

With these data, we can then evolve the Regge-Wheeler-Zerilli equations numerically, using the
second-order-accurate, characteristic method described by Gundlach et al. in [31]. The essence of
this method is that one can use the data at a point plus those at one step ahead in w and v,
respectively, to get the next data point advanced by a step ahead in both w and v. Explicitly, if one
defines

Uy = \I/l(cnz)(u + Au, v+ Av), Uy = \Ill(cnz))(u + Au,v),

Up = \I/l(c"::)(u, v+ Av), Ug = \IJI(C“Z))(% v), (5.30)
then one has that
AulAv_, 9 9
Uy =Vgp+ Uy — Vg — 3 ‘/(c,o)(TC)(\I/E + \Ifw) + O(Au A’U, AulAv ) s (531)

where r. is the value of r at the center of the discretized grid. Because our boundary data do not
always lie on one of the grid points in the u-v plane, we must interpolate the bottom point \Ill(cnz)) (u,v")
to fall at the same value of v as the next boundary point at ‘l/l(e"?))(u + Au,v). As long as we do
this interpolation with a polynomial of at least a quadratic degree, it does not seem to influence the

second-order convergence of the method. Finally, we can extract the Regge-Wheeler-Zerilli functions

from the line BC' in Fig. 5.1 as they propagate toward future null infinity.
5.2.2.5 Waveforms and Radiated Energy-Momentum

As we mentioned at the end of the previous section, it is easy to find the Regge-Wheeler-Zerilli
functions from the exterior of our computational grid; this is useful, because these functions are
directly related to the gravitational waveform h, asymptotically. For radii much larger than the

reduced gravitational wavelength, r > Agw/(27), one has that

. 1 [G+2) fim o
hy —ihy = le = {xy(c) i oY (5.32)

where _5Y},, is a spin-weighted spherical harmonic. The above comes from Eq. (84) of Ruiz et al.,

which also contains a discussion about the spin-weighted harmonics in an appendix. One can then

substitute this into the usual expressions for the energy and momentum radiated by gravitational
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waves,

dE o
dP; ) r2 . A
dt = rli{go 16—7T f’flz|h+ — th| dQ, (534)

(where n; is a unit vector, a dot represents a time derivative, and df? is the volume element on a

2-sphere). A lengthy, but straightforward calculation done by Ruiz et al. shows that

dE 1 <~ (42 [ cimia s imio
o oan v L 5.35
dt 647TZ(Z—2)! (' @+ <o>|) (5.35)

L.m

(Eq. (91) of Ruiz et al.). For the components of the momentum we are interested in (in the a-yplane)
combining their Eqs. (86)—(88) and (93) and using their definition Py = P, + iP, gives
dP, 1 —(+2)

T S gy W (\i}lﬂnlil-l-l,m-i-l \i]l,m\ijl-i-l,m-i-l)}' 5 36
dt 167 — (i1 —2)! [ml’ + bi41,m41 + ( )

(e) (o) (e) “(e) (0) = (o)

The bar denotes complex conjugation. The coefficients a; ., and by, are given by their Eqgs. (41)

and (42), which we reproduce here

am = \/(l_;?l)ii;mﬂ) (5.37)

2 2I—)@+1) (5:38)

With the framework now in place, we are prepared to make a comparison with numerical relativity.

5.3 Head-on Collision of Spinning Black Holes with Trans-

verse, Antiparallel Spins

In this section, we discuss the specific example of a head-on collision of equal-mass black holes with
transverse, antiparallel spins. We will specialize the general framework presented in Section 5.2
to the current configuration in the first subsection and then make the comparison with numerical

relativity in the second.

5.3.1 The Hybrid Model for the Head-on Collision

We will mimic the configuration used in the numerical-relativity simulation for ease of comparison.
We thus choose our two black holes, labeled by A and B, to have masses M4y = Mp = M/2, to
start with initial separation X4 = A(0)/2 = —Xp (A(0) = 7.8M in the numerical simulations and

Ya =Yg =24 =Zp =0) and to have their spins along +7 axis, respectively (so that S% = 0.5M%
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and SZ = —0.5M3 and all other components of the spins are zero). Though they initially fall from

rest, as in the numerical simulation, we will denote their speeds by V4 and Vp.
5.3.1.1 Even-Parity Perturbations

As we argued in Section 5.2, the even-parity perturbation will only rely upon the Newtonian poten-

tial, which has the familiar form,
My, My

Uy = .
N"Ri " Ry

(5.39)

Here R4 and Rp denote the distance from the centers of black holes A and B in the PN coordinates.
We then expand the Newtonian potential, Uy, into multipoles, keeping only the monopole and

quadrupole pieces (the dipole piece vanishes),

Uy =U9 +U (5.40)
M A0 fiE N

_ Y o — Zv. Y-
i + 1R 0 | 122 3 2,0 T Y22

Y) mm are the usual scalar spherical harmonics. One can then see that the nonzero coeflicients of the

371' MA(t)2 \/g 2.0
Uit? = [ = —4/2U3°. 5.41
N 10 4R3 2 N (5-41)

spherical harmonics are

After applying the transformation of the PN and Schwarzschild radial coordinates, R = r — M, (and
similarly A(t) = a(t) — 2M) one finds that

242 3w Mla(t) —2MJ* \/§ 2,0
U =\ e e = Vs (5.42)

One can then substitute this into Eq. (5.24) to find the Zerilli function,

37 Maft)? ™ \/§ >
g2E2 _  [°7 122 — /2920 5.43
(e) 10 272 ( 61 ) 9 " (e) ( )

We have only kept terms to linear order in M /r in this calculation, because we only use Newtonian

physics to calculate the gravitational potential. At the boundary of r4(t) = a(t)/2, the perturbation

is constant at leading order, and varying only at higher orders.

2,42 6m ™
’ = —M(1——— 5.44
() Ishen 5 3a(t) )’ (5:44)
4 M
p0 = —/=M(1- . 5.45
(©) |shen 5 ( 3a(t)> (5.45)
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5.3.1.2 Odd-Parity Perturbations
The calculation with the gravitomagnetic potential is slightly more difficult, because it involves an
additional gauge transformation. The gravitomagnetic potential is given by

_ SN} n MaV} " €ijiSTNE n MgV}

.= 5.46
v ) AR, 2R, ARp (5.46)

These results appear, for example, in Eq. (6.1d) of [25]. The new symbols N% and NE represent
unit vectors pointing from the centers of the two black holes in the PN coordinates, and V} and V},
are the velocities of the two black holes. Expanding the gravitomagnetic potential to leading order

in A(t) and simplifying the trigonometric portions of the equations below, we see that

MV A(t)sinfcosg  3A(t)S sin? fsin 2¢

r = y 4

v 2R? 4R (547)
A(t)S(1 4 3 cos 26 — 6sin? § cos 2¢)

wy = — SR ) (5.48)

w, = 0. (5.49)

The variables S and V are just the magnitudes of the spin and velocity of each black hole, respectively.
For this equal-mass collision, the spins have the same magnitude, and the velocities of the holes do

as well. We must then convert the gravitomagnetic potential into spherical-polar coordinates,

MV A(t)sin®fcos®> ¢ A(t)S sinfsin

wp = o e (5.50)
MV A(t)sin20cos® o A(t)S cosfsin o
wy = ) — 512 , (5.51)
MV A(t)sin? 0sin2p  A(t)S cos (5 sin 6 — 3sin 36)
w, = — e + P . (5.52)

There is a dipole term in the component wg of the gravitomagnetic potential, and this term will
not evolve according to the Regge-Wheeler-Zerilli equation. One can remove it via the small gauge

transformation to the metric,

hap = hap = &ajg = &pja s (5.53)

where the bar refers to a covariant derivative with respect to the background metric (in this case
flat space). Recall that the metric components, hy;, are related to the gravitomagnetic potential,

wi, by hy; = —4w;. If we make a gauge transformation where the only nonzero component of £, is

_ 2MA(t)V sin® 0 cos® ¢ _ A(t)Ssinfsing
B R R? ’

& (5.54)
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this has several important effects. For one, it eliminates thT, and it introduces a term,

_§t\t = -

4M sin” 6 cos? MA(t
sin” 6 cos® ¢ (V2 B ( )) 7 (5.55)

R 2R?

into hs. This term, however, is of 1PN order, and, because we are considering only the leading
Newtonian physics, we will drop it. Then, it turns the remaining perturbation into the sum of odd-

and even-parity quadrupole perturbations. Letting b = 6, ¢, one has that

7 A(t)S 6m 2,1 2,—1 27T4MA(t)V 2,2 2 2,0 2,—2
htb:—T\/E(Xb - X, ), — T R Y, — ng +Y, . (5.56)

If one were to include the even-parity, vector-harmonic term in the Zerilli function, one would need
to take its time derivative. This means it enters as a next-to-leading-order effect, and we can ignore

that term in our leading-order treatment. Thus, the relevant perturbation of the gravitomagnetic

21 6w A(t)S _ 2,—1
wy = \/? 1R Wiy - (5.57)

Finally, we make the transformation to the Schwarzschild radial coordinate, R = r— M (and similarly

for A(t) = a(t) — 2M), to find that

potential is

- 6m (alt) — 2M)S = ¥l (5.58)

2,1
°) 5 4(r— M)?2 (©)

bl
We can then find the Regge-Wheeler function from Eq. (5.25) which is

2,1 6 2a(t)S 2,—1
Vi =\ =V (5.59)

As before, we keep only terms linear in M/r. At the boundary, the odd-parity perturbation is

85 67 2.1
= —— _— = —\I] ’
shell at)V 5 (©)

5.3.1.3 Energy and Momentum Fluxes

2,1

o) (5.60)

shell

Finally, because we have only quadrupole perturbations, the expressions for the energy and momen-
tum fluxes greatly simplify. The energy flux, for the [ = 2 modes (taking into account that the

m = £1 are equal and the m = £2 modes are equal, as well) becomes

Bl [g (#22) 42 (@3;;)1 | (5.61)
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Figure 5.4: The blue (dark gray) dashed curve is ¥2%2  from our hybrid method, whereas the black
solid curve is the same quantity in full numerical relativity. The red (light gray) dashed vertical line
corresponds to the retarded time at which the shell in the hybrid method reaches the light ring of
the final black hole, r/M = 3. We shift the numerical-relativity waveform so that the peaks of the

numerical and hybrid W22  waveforms align.

and the momentum flux is given by

. 1

P, = =022y (5.62)

7YY ©

We have also used the fact that \I/?e()) =/2/ 3\11?52 in this head-on collision.

5.3.2 Comparison with Numerical-Relativity Results

In this section, we compare the results of our head-on collision of spinning black holes (with trans-
verse, anti-parallel spins) with the equivalent results from a numerical-relativity simulation (see the
paper by Lovelace et al. [32] for a complete description of the simulation). Although the paper by
Lovelace et al. dealt mostly with using the Landau-Lifshitz pseudotensor to define a gauge-dependent
4-momentum and an effective velocity to help develop intuitive understanding of black-hole collisions,
they also investigated the gauge-invariant gravitational waveforms and radiated energy-momentum
(calculated from the gravitational waves at large radii). We will not attempt to study any of these
Landau-Lifshitz quantities in this work, and, instead, we will just look into the gauge-invariant,
radiated quantities. Specifically, for our comparison, we focus on the waveforms (the I = 2 modes
of the gravitational waves) and the radiated energy and momentum.

In Figs. 5.4 and 5.5, we compare, respectively, the even-parity perturbation w&%ﬁ? and the odd-



148

0.03

- Numerical Relativity
= =+ Hybrid Method

0.025

T

0.02
0.015
0.01
0.005

odd

(2,1)

-0.005
-0.01
-0.015

-0.02

40 60 80
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the final black hole, /M = 3. We shift the numerical-relativity waveform so that the peaks of the
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parity perturbation \Il((ji’;) from our method with the equivalent quantities from the numerical sim-
ulation S1 featured in Lovelace et al. (Because the | = 2, m = —2,—1,0 components are related
by constant multiples to the above perturbations, we do not show them.) In these figures, we also
include a vertical, dashed red line that indicates the retarded time at which the shell crossed the light
ring of the final black hole /M = 3, in the hybrid method. This is the peak of the effective potential,
and because of the low-frequency opacity of this potential, much of the influence of the boundary
data is hidden within the potential after this time (and the waveform is primarily composed of the
quasinormal modes of the final black hole). Before this time the match is not exact (as a result of
junk radiation in the numerical simulation and the difference between the time coordinates), but the
Newtonian-order perturbations do quite a good job of exciting quasinormal modes of a reasonable
amplitude.

The even- and odd-parity waveforms in the hybrid method are the pieces of \Ilg,fn) and \I/((fd’dl)
restricted to the outer boundary of the characteristic grid, labeled by BC in Fig. 5.1. We found
these perturbations through the procedure described in Section 5.2.2, applied to the specific binary
parameters described in Section 5.3.1. For the numerical-relativity waveforms, we chose to present

them in terms of the even- and odd-parity perturbation functions \Ilg,fn) and \I/((fd’dl) as well. To find
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these perturbation functions from the numerical simulations, we first integrated the Weyl scalar
U, with respect to time twice, to calculate the waveforms hy and hy (because —U, = }i+ — iﬁx,
at large radii, where a dot denotes a time derivative). One can relate them to the gravitational
waveforms hy and hyx by Eq. (5.32), at large r. In the case of the [ = 2 perturbations shown
here, rhf’m = \/6\14333 and rh(f’l) = \/6\11(%’3). We compared the hy and hy found directly from
the numerical simulation through extraction of the Regge-Wheeler and Zerilli functions from metric
coefficients in the numerical code [33], and the two procedures gave essentially identical results.

In order to make the comparison between our hybrid method and the full numerical-relativity
waveforms, we must shift the numerical waveforms by a constant. Specifically, we choose this
constant so that the peaks of the exact and approximate waveforms of \I/‘(j,ezn) match (at a time that
we set to be t = 0). We add this constant shift in time, because there is no clear relationship between
the coordinate time at which the waveform in our code begins and the same coordinate time in the
numerical-relativity simulation. Trying to find a relationship between these times is complicated by
the fact that the hybrid method evolves on a characteristic grid, whereas the numerical-relativity
simulation solves an initial-value problem in a gauge that changes as the black holes move together.
Nevertheless, because both the numerical and the hybrid method use asymptotically flat coordinates,
at large radii, the time coordinates move at the same rate. This, in turn, means that it is only
necessary to shift the time coordinates rather than rescaling them. As an interesting aside, Owen [34]
found that this agreement between the time coordinates in the numerical simulation and perturbation
theory appears to extend even into the near zone, when he observed that multipole moments of the
horizon oscillate at the quasinormal mode frequencies of the black hole. See the end of Section III
of that paper for a discussion of why that might be the case.

We also compute the momentum flux, and we show the accumulation of the velocity of the final
black hole in Fig. 5.6, for both our method and the full numerical-relativity simulation. For our
hybrid method, we use just the [ = 2 modes of the waveform to compute the momentum flux, Py,

our Eq. (5.62). We then find the velocity of the final black hole as a function of time by computing

vy (t) = —% /t "Bt (5.63)

where we introduce an extra minus sign to account for the fact that the black-hole’s velocity is
opposite that of the momentum carried by the gravitational waves. For the numerical waveform, we
show the equivalent velocity computed from the full Weyl scalar, ¥4. For the numerical simulations,

one typically computes

2

, 2 t
P, = lim % 7{ sinesinqs' / Uadt'| dQ, (5.64)
7T —00
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Figure 5.6: The blue (dark gray) dashed curve is the velocity of the final black hole as a function of
time (inferred from the gravitational radiation) from our hybrid method, using only the I = 2 modes
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where W, is the Weyl scalar extrapolated to infinity, and df2 is the surface-area element on a unit
sphere. This expression appears in a variety of sources (see, for example, Eq. (29) of the paper by
Ruiz et al.). We then can compute the velocity of the final black hole in the numerical simulations
through Eq. (5.63), as we did for the hybrid method. Again, we perform the same time-shifting
procedure as we did with the waveforms. The kick we find is remarkably close; 22 km/s for the
numerical simulation and 25 km/s for our hybrid method.

The radiated energy does not agree quite as well, because the even-parity perturbation is some-
what larger than the equivalent numerical quantity (and it is the dominant contribution to the
energy flux). Nevertheless, the results agree within a factor of two; the numerical simulation shows
that roughly 0.057% of the initial mass is radiated, whereas our hybrid method predicts approxi-
mately 0.096% of the initial mass escapes in gravitational waves. This is an improvement over some
of the earlier, first-order, close-limit calculations at larger separations (see, for example, Fig. 1 of
[35], where more than 1% of the initial mass is radiated for equivalent initial separations of the black

holes).
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We are not aware of any equivalent calculations of radiated energy for head-on collisions within
the EOB formalism. While there have been recent 3PN calculations of the energy flux for a head-on
plunge of black holes by Mishra and Iyer [36], in PN-based calculations such as the EOB approach,
one must always stop the calculation at some radial separation of the binary. For example, in Fig. 2
of Mishra and Iyer’s work, they stop the calculation at a point at which only roughly a tenth of the
total energy that will be radiated in the head-on collision has escaped. This poses a small problem
for EOB approaches, because as described in the Introduction to this paper (Section 5.1), one must
choose a point at which to stop the EOB inspiral-and-plunge waveform and match it to a set of
quasinormal modes to obtain a full waveform. For inspiraling black holes, there is a natural point
to do this: when the frequency of the inspiral-plunge dynamics approaches the quasinormal mode
frequencies of the final black hole that will be formed. For a head-on collision, however, there is no
analogous frequency at which one can match. We will, therefore, reserve any comparisons between
our method and that of EOB for future work, when we extend our method to inspiraling, black-hole

binaries.

5.4 The Three Stages of Black-Hole Mergers

In addition to producing reasonably accurate full waveforms, our approach also provides an inter-
pretation of the infall, merger and ringdown stages of a binary-black-hole merger. As shown in Fig.
5.1, before the shell reaches point e and enters the strong-field region (the red (dark gray) area,
in which the [ = 2, even-parity, effective potential exceeds 1/3 of its peak value), the majority of
the retarded waveform propagates along the light cone (the so-called direct part). The direct part
overwhelms the waves that scatter off the background curvature, because, far away from the source,
the curvature is small. This part of the waveform corresponds to the inspiral or infall phase.

In the strong-field region, however, there is strong curvature (the black-hole effective potential
in our model). While some fraction of the waves will pass directly through, as the shell enters
this region at point e, waves that scatter off the effective potential (and thereby propagate within
the light cone) become more significant. These waves often are called tail waves. Although PN
waveforms do include the tail part, the fact that the higher-order PN terms that contain the tail
dominate over the lower-order terms [24] does not bode well for the ability of the PN series to easily
capture this effect. Nevertheless, we are able to associate this mixture of direct and tail portions in
the waveform to the merger. In our model, this stretch of the waveform is related to the retarded
times when the shell is passing through the strong-field region of spacetime (points e, f, and ¢ in the
diagram).

Finally, after the shell passes through the potential, the details of the perturbation no longer
become important, as was found by Price in his stellar collapse model. Because waves do not

efficiently propagate through the barrier, the gravitational waveform associated with points ¢g through
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D should arise from before and while the shell passes through the effective potential (not after). This
last piece is that of ringdown.

There is one subtlety to note about our interpretation of ringdown that might arise if the final
black hole is a Kerr black hole. Mino and Brink [37] and Zimmerman and Chen [38] showed that
mergers that lead to a Kerr black hole can emit waves at integer multiples of the horizon frequency
that decay at a rate proportional to the surface gravity. These modes come from a calculation in
the near-horizon limit of a Kerr black hole, and from the vantage point of observers far away, these
waves would appear to be coming from the horizon. These modes have a sufficiently high frequency
that they could penetrate the effective potential of a Kerr black hole and contribute to the ringdown
portion of the gravitational wave. Nevertheless, if we expand our description of the ringdown phase

to include these horizon modes, our interpretation holds more or less as described above.

5.5 Conclusion

In this paper, we show, by examining the head-on collisions of spinning black holes, that a combi-
nation of PN and BHP theories gives a gravitational waveform that matches well with that of full
numerical-relativity simulations. We were able to do this not by applying the approximation meth-
ods to distinct times in the evolution of the system, but by choosing regions of space in which the two
methods work and finding that the waveform from black-hole-binary collisions can be protected from
lack of convergence in these approximations. Specifically, our method lumps all monopole pieces of
a PN black-hole-binary spacetime into the Schwarzschild metric and treats the higher multipoles as
perturbations of that Schwarzschild that evolve via a wave equation. Moreover, because PN and
BHP theories describe the waveform, this suggests that much of the nonlinear dynamics appearing
in the gravitational waves of a head-on black-hole-binary merger can be well approximated by linear
perturbations of the Schwarzschild solution.

Our approach certainly cannot replace full numerical simulations. For one, we must test its
validity for different kinds of coalescence by comparison with fully nonlinear numerical results.
Nevertheless, we are hopeful that our method maybe be useful for gaining further understanding of
the spacetime of black-hole-binary mergers and for producing templates of gravitational waveforms
for data analysis. To move towards these goals, we would need to make several modifications to our
method (whose implementation we leave for future work). Most of these changes revolve around
finding a way to treat inspirals of black-holes binaries within our method. The most necessary
addition would be finding a way to consistently introduce a radiation-reaction force within the
formalism. This feature is essential for capturing the correct inspiral and plunge dynamics. Also
important for describing realistic physics of the ringdown would be to analyze the problem in a Kerr

background. Each of these problems requires significant work, and we leave them for future studies.
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Chapter 6

A Hybrid Method for Understanding Black-
Hole Mergers: II. Inspiralling Mergers

We adapt a method of matching post-Newtonian and black-hole-perturbation theories on
a timelike surface (which proved useful for understanding head-on black-hole-binary colli-
sions) to treat equal-mass, inspiralling black-hole binaries. We first introduce a radiation-
reaction potential into this method, and we show that it leads to a self-consistent set of
equations that describe the simultaneous evolution of the waveform and of the timelike
matching surface. This allows us to produce a full inspiral-merger-ringdown waveform
of the I = 2, m = £2 modes of the gravitational waveform of an equal-mass black-
hole-binary inspiral. These modes match those of numerical-relativity simulations well
in phase, though less well in amplitude for the inspiral. As a second application of this
method, we study a merger of black holes with spins antialigned in the orbital plane
(the superkick configuration). During the ringdown of the superkick, the phases of the
mass- and current-quadrupole radiation become locked together, because they evolve at
the same quasinormal-mode frequencies. We argue that this locking begins during the
merger, and we show that if the spins of the black holes evolve via geodetic precession
in the perturbed black-hole spacetime of our model, then the spins precess at the or-
bital frequency during the merger. In turn, this gives rise to the correct behavior of the

radiation, and produces a kick similar to that observed in numerical simulations.

Originally published as D. A. Nichols and Y. Chen, Phys. Rev. D 85, 044035 (2012).

6.1 Introduction

Black-hole-binary mergers are both key sources of gravitational waves [1] and two-body systems in

general relativity of considerable theoretical interest. It is common to describe the dynamics and
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the waveform of a quasicircular black-hole binary as passing through three different stages: inspiral,
merger, and ringdown (see, e.g., [2]). For comparable-mass black holes, the three stages correspond
to the times one can use different approximation schemes. During the first stage, the inspiral, the two
black holes can be modeled by the post-Newtonian (PN) approximation as two point particles (see,
e.g., [3] for a review of PN theory). As the speeds of the two holes increase while their separation
shrinks, the PN expansion becomes less accurate (particularly as the two objects begin to merge to
form a single body). In this stage, the merger, gravity becomes strongly nonlinear (and therefore
less accessible to approximation techniques). After the merger, there is the ringdown, during which
the spacetime closely resembles a stationary black hole with small perturbations (and one can treat
the problem using black-hole perturbation (BHP) theory; see, e.g., [4] for a review of BHP theory).

Because the merger phase of comparable-mass black holes has been so challenging to understand
analytically, there have been many attempts to study it with a variety of analytical tools. One
approach has been to develop PN and BHP theories to high orders in the different approximations.
Since neither approximation can yet describe the complete merger of black-hole binaries, several
groups worked on developing methods that aim to get the most out of a given approximation
technique. The close-limit approximation (see, e.g., [5, 6, 7, 8] for early work and [9, 10, 11, 12] for
more recent work) and the Lazarus project (see, e.g., [13, 14]) both try to push the validity of BHP
to early times; the effective-one-body (EOB) approach (see, e.g., [15, 16] for the formative work,
and [17, 18, 19, 20] for further developments that allow the method to replicate numerical-relativity
waveforms) aims to extend the validity of the PN approximation to later times.

There also have been several methods that do not easily fit into the characterization of extensions
of PN or BHP theories. For example, the “particle-membrane” approach of Anninos et al. [21, 22]
computes the waveform from head-on collisions by extrapolating results from the point-particle limit
to the comparable-mass case (and taking into account changes to the horizons computed within the
membrane paradigm [23]). More recently, white-hole fission was used in approximate models of
black-hole mergers [24, 25, 26], and quite recently, Jaramillo and collaborators [27, 28, 29, 30] used
Robinson-Trautman spacetimes as an approximate analytical model of binary mergers (as part of
a larger project correlating geometrical quantities on black-hole horizons with similar quantities at
future null infinity).

Analytical approximations are not limited to comparable-mass black-hole binaries, and recently
there has been a large body of work on developing techniques to study intermediate- and extreme-
mass-ratio inspirals (IMRIs and EMRIs, respectively). Most of these methods aim to produce
gravitational waves in ways that are less computationally expensive than computing the exact nu-
merical solution or computing the leading-order gravitational self-force are (see, e.g., [31] for a recent
review of the self-force problem). The majority of the approaches rely heavily on BHP techniques

combined with some prescription for taking radiative effects into account, though not all approx-
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imate methods fall into this classification (Barack and Cutler [32], for example, model EMRIs by
instantaneously Newtonian orbits whose orbital parameters vary slowly over the orbital time scale
because of higher-order PN effects). A well-known example is that of Hughes [33], Glampedakis
[34], Drasco [35], Sundararajan [36], and their collaborators whose semi-analytical approaches are
often called Teukolsky-based models. These methods describe the small black hole as moving along
a sequence of geodesics whose energy, angular momentum, and Carter constant change from the
influence of emitted gravitational waves. They usually involve some additional prescription to treat
the transition from the inspiral to the plunge, when the motion is no longer adiabatic. The EOB
formalism in the EMRI limit, however, does not require an assumption of adiabatic motion (see, e.g.,
[37, 38, 39, 40, 41, 42]). By choosing the dynamics of the EMRI to follow the EOB Hamiltonian and
a resummed multipolar PN radiation-reaction force [43], these authors can calculate an approximate
waveform without any assumption on relative time scales of orbital and radiative effects. One can
also make an adiabatic approximation with EOB methods, as Yunes et al. [44, 45] recently did in
their calibration of the EOB method to a set of Teukolsky-based waveforms. Lousto and collabo-
rators [46, 47, 48] took a different approach to the EMRI problem in their recent work. They used
trajectories from numerical-relativity simulations of IMRIs as a way to calibrate PN expressions for
the motion of the small black hole. They then performed approximate calculations of the gravi-
tational waves using the PN trajectories in a black-hole perturbation calculation, and found good
agreement with their numerical results.

In a previous article [49] (hereafter referred to as Paper I), we showed that for head-on collisions,
one can match PN and BHP theories on a timelike world tube that passes through the centers of
the PN theory’s point particles. The positions of the point particles as a function of time (and,
consequently, the world tube) were chosen before evolving the waveform. Moreover, they were
selected in such a way that both PN and BHP theories were sufficiently accurate descriptions of
the spacetime on the world tube or the errors in the theories did not enter into the waveform.
(A plunging geodesic in the Schwarzschild spacetime worked in Paper I.) This allowed us compute
a complete waveform for all three phases of black-hole-binary coalescence and gave us a way to
interpret the different portions of the waveform. Moreover, when we compared the waveform from
the hybrid method with that of a full numerical simulation of plunging equal-mass black holes with
transverse, antialigned spins, we found very good agreement between the two.

There is no reason, a priori, why the same procedure of Paper I (namely, specifying the position
of the point particles as a function of time and matching the metrics on a surface passing through
their positions) should not work for inspiralling black holes as well. The principal difficulty arises
from trying to find a way of specifying the positions of the particles for inspiralling black holes (and
thus a location at which to match the PN and BHP metrics) that does not introduce errors into

any of the three stages of the inspiral, merger, or ringdown portions of the waveform. The most



158

important development that we introduce in this paper, therefore, is a way of achieving this goal
by including a radiation-reaction force into the formalism. In the hybrid method, we compute a
radiation-reaction force by using the outgoing waves in the exterior BHP spacetime to modify the
PN dynamics in the interior through a radiation-reaction potential [50]. We show, in this formalism,
that introducing a radiation-reaction potential is equivalent to solving a self-consistent set of coupled
equations that describe the evolution of the point particles’ reduced-mass motion and the outgoing
gravitational radiation, where the particles generate the metric perturbations of the gravitational
waves and the waves carry away energy and angular momentum from the particles (thereby changing
their motion).

Our principal goal in the paper is to explore this coupled set of evolution equations and show,
numerically, that it gives rise to convergent and reasonable results. We will use these results to
make a refinement of our interpretation of the waveform from Paper I, and we will also compare
the waveform generated by the hybrid method to that from a numerical-relativity simulation of an
equal-mass, nonspinning inspiral of black holes. The two waveforms agree well during the inspiral
phase, but less well during merger and ringdown. The discrepancy at late times is well understood:
we continue to model the final black hole produced from the merger as nonspinning, although, in
fact, numerical simulations have shown the final hole to be spinning relatively rapidly (see, e.g.,
[51]). Adapting the hybrid approach to treat the final black hole as rotating is beyond the scope of
this work, but is something that we will investigate in the future.

As an application of the hybrid method for inspirals, we explore the large kicks produced from
black-hole binaries with antialigned spins in the orbital plane (the superkick configuration [52, 53]).
As noted by Schnittman et al. [54] and emphasized to us by Thorne [55], the spins must precess at
the orbital frequency during the final stage of the merger. While Briigmann et al. [56] were able to
replicate this effect using a combination of PN and numerical-relativity results, we will need to take
a different approach, by using geodetic precession in the exterior Schwarzschild BHP spacetime, to
have the spins lock to the orbital motion at the merger. When we include the geodetic effect, we are
able to recover the correct qualitative profile of the kick, although the magnitude does not match
precisely.

We organize the paper as follows: We review the results of Paper I in Section 6.2, and we describe
the procedure for calculating the radiation-reaction force and the resulting set of evolution equations
in Section 6.3. In Section 6.4, we show the convergence of our waveform, we compare with numerical
relativity, and we discuss using the hybrid method to interpret the waveform. Next, we discuss
the behavior of spinning black holes and describe spin precession as a mechanism for generating
large black-hole kicks in Section 6.5. We conclude in Section 6.6. Throughout this paper, we set

G = ¢ =1, and we use the Einstein summation convention (unless otherwise noted).
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6.2 A Brief Review of Paper I

In this section, we will review the essentials of the formalism from Paper I. In the hybrid method,
we divide the spacetime of an equal-mass, black-hole-binary merger into two regions: a PN region
within a spherical shell through the centers of the PN theory’s point particles, and a perturbed
Schwarzschild spacetime outside that shell. Figure 5.2 shows this at a given moment in time (with
one spatial dimension suppressed). For the hybrid procedure to work, there must be either a spherical
shell on which both BHP and PN theories are simultaneously valid (to a given level of accuracy) or
a way to prevent the errors in the approximations from affecting observables, such as the waveform.
By finding good agreement between the hybrid waveform and that of numerical relativity in Paper
I, we found evidence that matching the theories on a spherical shell that passes through the PN
theory’s point particles works throughout all three stages of a head-on black-hole-binary merger:
infall, merger, and ringdown.

To mesh the two descriptions of spacetime, we match the PN metric to that of the perturbed
Schwarzschild black hole, which involves relating the two coordinate systems of PN and BHP theories.
In the PN coordinate system, we will use uppercase variables, and we will use a harmonic gauge. For
example, we will employ (T, X,Y, Z) when describing the Cartesian coordinates of the background
Minkowski space and (T, R, ©, ®) when discussing its spherical-polar coordinates. In the perturbed
Schwarzschild spacetime, we will use (¢,7,0,¢), primarily, though sometimes we will also use the

light-cone coordinates, (u,v, 8, p), where
u=t—7ry, V=t+7r,, (6.1)

and

r. =r+2Mlog [ﬁ -1]. (6.2)

One can match the two coordinate systems, accurate to linear order in M/R by identifying
, ©=60, ®=¢, R=r—M. (6.3)

For the equal-mass binaries that we study, we will denote the separation by A(t) = 2R(t) in PN
coordinates and a(t) = 2r(t) in Schwarzschild coordinates. Moreover, because we match the two
metrics on a shell passing through the centers of the point particles, we will indicate the position
of the shell by adding a subscript “s” to the coordinate radius. For example, we will write R4(t) =
A(t)/2 or r5(t) = a(t)/2 to denote this. For clarity, we include a table that reviews the essentials of
our notation in Table 5.1.

Because we are investigating only the lowest-order effects in our study of radiation reaction and
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large black-hole kicks, we shall only need the lowest-order terms in the PN metric that appeared in

Paper I to describe the interior of the shell,
5% = —(1—2M/R —2U{=?)dt* — 8w\"=? dtdz’ + (1 + 2M /R + 20" (dR? + R2d*Q). (6.4)

In the above equation, M is the total mass of the binary, d2() is the area element on the unit
sphere, dz® = df, dyp, and the additional variables U ](\5:2) and wl()l:2) are the quadrupole parts of the
spherical harmonic expansion of the binary’s Newtonian potential and gravitomagnetic potential,

respectively,

2

Uy = Y UN™Yam(6.0)., (6.5)
m=—2
2
=2 m ,m
wl() ) = Z U}(QC;) XZ? (9,90) (66)
m=—2

We denote the scalar spherical harmonics by Y2, (0, ¢), and the coefficients U]2V’m and w(QO;n are
functions of R and t. The functions X 172 (0, ) are odd-parity vector spherical harmonics, whose 6

and ¢ coefficients are given by

q?i
E
I

—(csc0)9, Y™ (0, ¢), (6.7)
Xfp’m = (sin®)9pY"™(8, ). (6.8)

A more general description is put forth in Paper I, but here we only take the essential components
needed for the calculations in the paper.

Outside of the shell, we write down a perturbed Schwarzschild metric,
ds®> = —(1 —2M/r)dt* + (1 — 2M /r) " (dr? + r*d*Q) + h,, da"dz”, (6.9)

where the nonzero components of the perturbed metric h,, that we shall need in this paper are the
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(1=2)

quadrupole pieces, h;, ', and they take the form,

2
l: m m
(his Ny = Y HY"Y?™(0,¢), (6.10)
m=—2
2
(hng:Q))(c) = Z HTZ%mYZm(e’(p), (6'11)
m=—2
2
=2 m m
(hig Ny = 12 > KPTYE™0, ), (6.12)
m=—2
2
(h{sP) e = rPsin®6 Y K"Y2™(6,¢), (6.13)
m=—2
and
2
=2 m ,m
(hig o) = > RETXE™0, ), (6.14)
m=—2
l 2
=2 m m
(hiy Dy = D BETXET(0, ). (6.15)
m=—2

The subscripts (e) and (o) refer to the parity of the perturbations (even and odd, respectively),
where we call perturbations that transform as (—1)! even and as (—1)'*! odd.
The interior PN metric must match the perturbed Schwarzschild metric on a spherical shell

between the two regions. To make this identification, we note that because R = r — M, then the

(1 — %yl = (1 + %) +O[(M/R)?]. (6.16)

r

term

We, therefore, identify the monopole piece of the PN metric with the unperturbed Schwarzschild
metric. Moreover, at leading order in M /R, we note that the perturbations of the two metrics match
exactly,

Hy™ = HZ™=K>"=2U3", (6.17)

hett = —dwg (6.18)

There is then a straightforward procedure that lets one express the metric perturbations in terms of
the gauge-invariant perturbation functions of the Schwarzschild spacetime [57] (though in this paper
we use the notation of [58]), which are typically called the Zerilli function and the Regge-Wheeler

function for the even- and odd-parity perturbations, respectively. We reproduce the expressions
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below:
P —2M 2M
v = ?T{U?V’m*m Kl_T) Uﬁm‘ramm”’ (019
m m 2 m
v = 2r (&wi’) —~ ;wi’) ) : (6.20)

In Paper I, we matched the two metrics on a timelike tube that we specified before evolving the
Regge-Wheeler and Zerilli functions. We assumed that this tube would be spherically symmetric,
and we found its radius by first assuming the reduced-mass motion of the system followed a radial
geodesic of a plunging test mass in the background Schwarzschild spacetime and then setting the
radius of the world tube to be half this distance at each time. This allowed us to use the PN data
in the form of the Regge-Wheeler and Zerilli functions, Eqgs. (6.20), and (6.19), respectively] on this
tube to provide a boundary-value problem for the evolution of the Regge-Wheeler [59] or Zerilli [60]
equations,

g2glm V(lw)\l/l,m

(e,o0) (e,0)
s 2 —o. (6.21)

The potentials for the Regge-Wheeler (odd-parity) or Zerilli (even-parity) equations are given by

View) (1) = (1 - %> (% - %Ufc,@(r)) , (6.22)

T r r3
where A = [(I + 1) and

AA+2)r* +3M(r— M)
(Ar +3M)? ’

Uly(r) =1, Uly(r) = (6.23)

where A = (I — 1)(I +2)/2 = A\/2 — 1. After numerically solving the Regge-Wheeler or Zerilli
equations above, we computed the gravitational waveforms and the radiated energy and momentum,
all of which we found to be in good agreement with the exact quantities computed from numerical-
relativity simulations.

In this paper, while much of the procedure we use for matching the metrics is identical to that
set forth above, there are several important differences that we will discuss in Section 6.3. The most
important difference between the first paper and the current one arises in how we find the trajectory
of the system’s reduced mass (and then the timelike tube on which we match the metrics). Before, we
chose a region, prior to evolving the Regge-Wheeler and Zerilli equations, that would not introduce
spurious effects into the results; here we determine the position of timelike world tube through
evolving the position of the reduced mass of the binary subject to a radiation-reaction force. We

will discuss the details of this procedure in the next section.
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6.3 Radiation-Reaction Potential and Evolution Equations

In this section, we introduce a radiation-reaction potential into the hybrid method, and we show that
it leads to a set of evolution equations that simultaneously evolve both the outgoing radiation and
dynamics of the reduced mass of the system. This, in turn, allows us to produce a full inspiral-merger-
ringdown waveform. We first qualitatively discuss how our method works and how it compares to
other analytical methods. We then discuss the hybrid method in further detail, and we close this
section by showing, analytically, that the procedure recovers the correct Burke-Thorne radiation-

reaction potential [50] in the weak-field limit.

6.3.1 Qualitative Description

It is easiest to discuss our method with the aid of the spacetime diagram in Fig. 6.1. We describe the
region within the solid black timelike curve with the near-zone PN metric, and outside this curve, we
use a perturbed Schwarzschild region. The black line, which passes through the PN point particles,
is where we match the two metrics. We suppress both angular coordinates, so that each point on the
curve represents the matching shell that we discuss in Section 6.2. The shaded regions represent the
black-hole potential: the yellow (light gray) shade depicts the strong-field portion of the black-hole
potential (the strong-field near zone), and the green (gray) shade shows the region where centrifugal
potential is significant (the weak-field near zone). There is a wave zone near the horizon (large u),
and, consequently, the region where there is a large black-hole potential is confined to a small space
in this diagram.

To have Fig. 6.1 be an effective description of the spacetime of a black-hole binary, both PN and
BHP theories both must be sufficiently accurate at the PN point particles (the black line where we
match the metrics), or the PN approximation could break down if the point particles are well-hidden
within the black-hole effective potential. For the errors to stay within the potential, the particles
must rapidly fall to the horizon; thus one can see in Fig. 6.1 that the black curve approaches an
ingoing null ray asymptotically. (Recall that u and v are the light-cone coordinates of the BHP
spacetime.) Following this trajectory, the perturbations induced by the PN spacetime will become
strongly redshifted, and they will not escape the black-hole potential (as Price had found in his
description of stellar collapse [61]), because the potential reflects low frequency perturbations.

As in Paper I, we will again be able to interpret different portions of the waveform by connecting
a region of the waveform with the position of the PN binary’s point particles in the near zone (via
constant values of the light-cone coordinate, u). In the figure, these are the thick red (gray) dashed
lines of constant u. The inspiral part of the waveform, which propagates directly along the light
cone, comes from the part of the trajectory within the weak-field near zone. Once the trajectory
reaches within the strong-field near zone, the waves scatter off of the potential and propagate within

the light cone (often referred to as the PN tail part of the wave) in addition to propagating out
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Figure 6.1: A spacetime diagram of our method. The solid black timelike curve depicts the region
where we match PN and BHP spacetimes (passing through the centers of the PN theory’s point
particles). Inside this curve, the spacetime can be reasonably approximated by PN theory, whereas
outside, the spacetime is better described by BHP theory. The yellow (light gray) shade shows
the strong-field region, whereas the green (gray) shade represents where the black-hole potential is
weaker, but the centrifugal barrier of flat space still is important. The dark blue (dark gray) shaded
region, surrounded by the blue (dark gray) dashed lines, shows how the value of the perturbations
in the exterior (along with the no-ingoing-wave condition) determines the value of the radiation-
reaction potential at the next matching point. The horizontal dashed lines represent the region of
spacetime where the close-limit approximation or Lazarus approach would begin. The red (gray)
dashed lines show how one can connect the near-zone behavior to the wave (through lines of constant
u), and thereby tie the motion of the matching region through the black-hole effective potential to
portions of the waveform. This gives an interpretation of inspiral, merger, and ringdown phases in
terms of the direct and scattered parts of the waves. Further discussion of this figure is given in the
text of Section 6.3.
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directly. We view this mixed wave as characteristic of the merger phase. Finally, as the trajectory
falls within the effective potential, for a Schwarzschild black hole the direct part vanishes and only
the scattered waves emerge; this part is the quasinormal ringing of the final black hole and should
be associated with the ringdown phase. We distinguish between Schwarzschild and Kerr black holes
for the ringdown phase, because Mino and Brink [62] and, subsequently, Zimmerman and Chen [63]
found that for Kerr black holes, frame dragging generates a part of the waveform at the horizon
frequency (that decays at a rate proportional to the horizon’s surface gravity). This piece of the
waveform looks like a source, and, thus, only when the final black hole is not spinning do we consider
the spacetime to appear to be source free. For this reason (and since the matching surface asymptotes
to a line of constant v), we call the values of v greater than this limiting value the homogeneous
region, and the values of v less than this the source region.

An important development in this paper is that we no longer prescribe the evolution of the
reduced mass of the system (and thereby a matching region) before evolving the Regge-Wheeler or
Zerilli equations; rather, we specify a set of evolution equations for the conservative dynamics of the
binary, and let the outgoing waves provide back reaction onto the dynamics. This, in turn, leads to
a self-consistent system of equations including radiation reaction. More concretely, we continue to
match the PN and perturbed Schwarzschild metrics at the centers of the PN theory’s point particles.
Moreover, we will again let the reduced-mass motion of the binary system follow that of a point
particle in a Schwarzschild background; in this paper, however, we will use the fact that there are
no ingoing waves to specify a radiation-reaction potential that acts as a dissipative force on the
Hamiltonian dynamics of the reduced mass. This follows the spirit of the Burke-Thorne radiation-
reaction potential, but the radiation propagates within a BHP spacetime, and, therefore, also takes
the effects of the background curvature into account.

Furthermore, adding a radiation-reaction force to the hybrid method leads to a set of equations
that simultaneously evolve the Zerilli equation (the waveform) and the reduced-mass motion of the
binary. In Fig. 6.1 we represent schematically how this occurs. We start at a given v (a dark blue
(dark gray) dashed line given in Fig. 6.1) and assume that there is a no-ingoing-wave boundary
condition along the line v = 0. In addition, we suppose that we have determined the black-hole-
perturbation functions for all smaller values of v, up to the timelike matching surface. By evolving
the Zerilli equation, Eq. (6.21), one can find the Zerilli function at v + dv up to the time us(v)
(within the dark blue (dark gray) shaded region). The no-ingoing-wave condition combined with
the boundary condition on the matching surface, however, fixes how the Zerilli function will evolve
to larger values of u. When solved simultaneously with the Hamiltonian dynamics describing the
binary’s motion, this lets one find the position of the reduced mass of the binary at v + dv, denoted
by us(v + dv) in the figure, and the new value of the Zerilli function there. One can evolve the

system for all v in such a manner.
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Including a radiation-reaction force does not greatly change the hybrid method as reviewed in
Section 6.2. The matching procedure works the same; one modification that comes about is that we
must include both the Newtonian potential and the radiation-reaction potential in the PN metric
(and, therefore, gain an additional term in the Zerilli function). The evolution system is now quite
different, because it is a coupled system of Hamiltonian ordinary differential equations and a one-
dimensional partial differential equation. We will discuss the system of evolution equations in greater

detail after we compare our method with other analytical methods in the next subsection.

6.3.2 Descriptive Comparison with Other Analytical and Semi-Analytical
Models

In this section, we will compare the similarities and differences between the hybrid method described
above and the most closely related methods mentioned in the Introduction: the close-limit approxi-
mation, the Lazarus program, the comparable-mass EOB methods, the Teukolsky-based approach,
the EOB description of EMRIs, and the IMRI calculation calibrated to numerical-relativity data.
The comparison between the hybrid method and the other methods will be descriptive, but we will
compare the waveform from the hybrid method with a numerical-relativity waveform in Section 6.4

To compare with the Lazarus project or the close-limit approximation, we again refer to Fig.
6.1, where we show two spacelike hypersurfaces (the horizontal dashed lines labeled by ¥; and X).
In the close-limit and Lazarus methods, initial data is posed on these surfaces at a time near the
merger of the black holes. While these approaches have been successful, posing initial data at late
times makes it more difficult to smoothly connect the initial inspiral of the binary to the merger
and ringdown later. Moreover, because the initial data extends inside the black-hole potential, if it
contains high-frequency perturbations, these could escape the potential barrier and enter into the
waveform. The hybrid approach escapes this problem by setting boundary data on a timelike world
tube rather than on a spacelike hypersurface. This also lets the method connect the inspiral, merger,
and ringdown portions of the dynamics and waveform more directly.

The EOB approach, for comparable-mass ratio binaries, only describes times prior to the merger
(the hypersurfaces ¥; and X9 in Fig. 6.1). To create a full inspiral-merger-ringdown waveform, the
EOB method must fit a sequence of quasinormal modes to the end of the inspiral-plunge waveform.
This procedure makes a very accurate waveform, but it makes connecting the behavior of the space-
time before and after the merger more difficult. The hybrid method, with its interior PN region
that falls toward the horizon at late times, allows one to make a more clear connection between
the dynamics of the spacetime during inspiral and merger to that during ringdown. In its current
implementation, however, it does not produce a waveform nearly as accurate as that of the EOB.

Although the hybrid method is designed for describing comparable-mass black-hole binaries, it

shares a few similarities and has several significant differences from various approximate techniques
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used to model EMRIs. It is possible to draw a few general comparisons between the hybrid method
and the procedures for studying EMRIs, before moving to more specific comparisons. While the
hybrid method evolves perturbations on a black-hole background (as most EMRI methods do),
EMRI methods assume a source term as the generator of the perturbations in the background. The
hybrid approach, however, does not have a source term; rather, the perturbations of the background
come from boundary data that correspond to the multipolar structure of a comparable-mass PN
binary. Because the hybrid approach is a boundary-value problem, the details of the implementation
will be different from those methods that use a point mass as a source term.

Moving to specific EMRI models, we first compare the hybrid approach with the Teukolsky-based
methods of Sundararajan and collaborators [36] (for example). The hybrid approach is similar to
that of [36], in that both use time domain codes and are capable of producing smooth inspiral-
merger-ringdown waveforms. An important difference is that the hybrid method calculates the
waveform simultaneously with the evolution of the matching region, whereas the EMRI method of
Sundararajan computes the trajectory before the evolution (using an adiabatic frequency-domain
code during inspiral, and a prescription for the plunge and merger) and then finds the waveform
from this trajectory. Moreover, we compute the radiation-reaction force in the hybrid method by
matching the near-zone PN solution to an outgoing solution in the exterior BHP spacetime, whereas
the Teukolsky-based methods include radiative effects by evolving the orbital parameters of geodesics
from averaged fluxes at infinity.

The EOB model of Yunes et al. [45], is a calibration of the EOB method to Teukolsky-based
waveforms for EMRISs; it, therefore, shares the same similarities and differences as the EOB and the
Teukolsky-based methods discussed above. Han and Cao [42] develop an EOB model that uses the a
Teukolsky-based energy flux (in the frequency domain) to treat radiative effects. In comparing with
the hybrid model, therefore, it also falls somewhere between an EOB model and a Teukolsky-based
method. The recent EOB work of Bernuzzi and collaborators [39, 40, 41] shares more similarity with
the hybrid method, because they evolve the Regge-Wheeler-Zerilli equations in the time domain.
The most notable specific difference (as opposed to the general differences between the hybrid-
method and all analytical approaches to EMRIs noted above) is in the radiation-reaction force. The
EOB model uses a high-PN-order, resummed energy flux, whereas (as also noted above) the hybrid
method determines radiative effects from directly matching a near-zone PN solution to an outgoing
BHP solution.

We conclude this section by comparing the hybrid method with the recent analytical work of
Lousto et al. [46, 47, 48]. They take two approaches to calculating waveforms for IMRIs pertur-
batively. In their initial work, they transform the trajectory of the small black hole from their
numerical-relativity simulations into the Schwarzschild gauge, and they compute the waveform us-

ing this numerical trajectory in a BHP calculation. To be able to study a wider range of mass
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ratios, they use PN expressions for the change in frequency and the radial trajectory, but use the
numerical-relativity values of the frequency to calibrate the PN functions. The hybrid method differs
from this, because it calculates the matching region simultaneously with the waveform, and it does
not use numerical-relativity data to calibrate results. Consequently, the hybrid method does not
agree as well with exact results as well as the other methods discussed here, but it does present a

distinct way of calculating the approximate spacetime and gravitational waveform.

6.3.3 Radiation Reaction and Evolution Equations

In this section, we will discuss the details of radiation reaction in the hybrid method. The end result
will be the set of evolution equations described in Egs. (6.46)—(6.49), and the majority of this section
will be devoted to deriving this system of equations.

We begin, as in Paper I, with the PN metric at Newtonian order,
dS?* = —(1 — 2Uy)dt* + (1 4+ 2Un)(dR? + R?d*Q), (6.24)

the same as Eq. (6.4) of Section 6.2, though without the gravitomagnetic terms. Here, however, we

write the Newtonian potential (expanded to quadrupole order) as

Uv = UF” Ul

2
Qm 2 2v2
M Lny2m 4 R, R 6.25
. +m—22(R3 - (6.25)

The first term is the monopole piece (M is the total mass of the binary) and the first term in
the sum is the quadrupole part (and Q,, are the quadrupole moments of the binary). These two
terms above are identical to those of Paper I, but the second term in the sum (the polynomial in R
with coefficients F,,) is different. One can include the terms proportional to F,,, because like the
Newtonian potential, they are solutions to Poisson’s equation. These terms diverge at infinity (which
restricts their use to the near zone), but they cannot be determined from the near-zone dynamics
alone, however. Burke showed [50], using the technique of matched asymptotic expansions, that the
terms with coefficients F},, could represent the reaction of the binary in the near-zone to radiation
losses to infinity. The portion of the potential corresponding to the moments F,,, therefore, is called
the Burke-Thorne radiation-reaction potential.

In the hybrid method, we will find a similar quantity in the interior PN spacetime by matching
the PN near-zone solution to a solution in the Schwarzschild exterior with no ingoing waves. Namely,
when we assume that there are no ingoing waves from past null infinity in the exterior BHP spacetime,
this determines a radiation-reaction potential within the interior PN spacetime. This allows us to

incorporate the effects of wave propagation in the background black-hole spacetime into the dynamics
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of the binary. While the Schwarzschild background does not capture every detail of the curvature of
a binary at small separation, we see that it does capture some of the important qualitative effects.
Proceeding with the calculation, we assume we have an equal-mass, nonspinning binary in the

z-y plane, located at

Xa(t) = —-Xp(t) = %A(t)(cosoe(t), sin a(t), 0), (6.26)

where A and B are labels for the two members of the binary. Each black hole has mass M /2, and

a straightforward calculation shows that

3w MA(t)? o~ 2ia(t)

Q) = (75— ; (6.27)
2 o

Qo(t) = —w\/;, (6.28)

Q-2(t) = @s(1), (6.29)

where the overline stands for complex conjugate, and where, by symmetry, the m = £1 components
must be zero for this equal-mass binary. Throughout this paper, we focus just on the m = 42
multipoles, because as one can see from the expressions above, the m = 0 moment only evolves
because of the radiation-reaction force (for circular orbits), and, therefore, is less significant than
the m = +2 multipoles, which change on the orbital time scale. Moreover, the m = —2 quantity is
the complex conjugate of the corresponding m = 2 quantity; consequently, when we write Q(¢) (or
any other variable that might be indexed by m), we refer to the m = 2 variable (and similarly, for
Q(t), we mean the m = —2 element). This way, the notation can be simplified by dropping the m
label on multipole coefficients. Thus, we can write the quadrupole perturbation as
Q)

Uyl =Up 2 = =+ F(t)R?, (6.30)

where
MA#)?
3 ( ) 6712a(t)

Q) = [ T e, (6:31)

and F'(t), an undetermined function of time, is the radiation-reaction potential.

One can substitute Eq. (6.30) into Eq. (6.19) and use the fact that r = R — M to find the Zerilli
function. Calculating the Zerilli function introduces many factors of M/R into the final result, but
because our calculation is only accurate to Newtonian order, we will keep only the leading-order
terms in R and its inverse. We find that

2Q(t) F@)R3
R2 3

Ve = (6.32)

We will also shortly need expressions for the derivative of the Zerilli function with respect to the
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tortoise coordinate 7., Eq. (6.2), which we compute here as well. Again, we will keep the leading-

order expression in R, but we will also retain the factor of

dr oM\  (R— M)
dr. <1 - 7) (R+ M)’ (6.33)

because although W) may be constant on the horizon, 0¥ ()/dr. should vanish there [61]. The

result of this calculation is that

e (1) (142 oe).

The Zerilli function satisfies the simple wave equation in a potential, Eq. (6.21). As before, the
value of the Zerilli function at the matching surface, R;(t) = A(t)/2, provides a boundary condition
for the Zerilli equation on the matching surface, but now there is an additional boundary condition on

the Zerilli function’s derivative with respect to the tortoise coordinate. The two boundary conditions

state that
3
vt = S+ TOA0 (6.35)
MVey(t)  [Alt)—2M 32Q(t)  F(t)A(t)?
or. <A(t)+2M> <_ A T 1 ) (6.36)

By eliminating the unknown function F'(¢) from the above equations, one can impose a mixed (Robin)

boundary condition at the matching surface between the PN and BHP spacetimes,

OV ey(t)  [A(t)—2M 6 $00(t)
or. (A(t)+2M> <A(t)‘1’<e>(t) VIGE > : (6.37)

This specifies a boundary condition at a given moment in time, but it does not yet describe how
to evolve the matching surface (through evolving the reduced-mass motion of the system) and the
value of the Zerilli function on this surface.

One can determine the value of the Zerilli function at later times through the boundary condition
above, and the following additional constraint. By integrating the Zerilli equation with respect to

u, one finds that

8\I/(e) (t) 1 us(®) (1=2) / ’ 8\11(‘3) (O’ ’U)
T = —ZA ‘/(C) (T)\I/(e) (u ,v)du + T 5

where we have written r implicitly as a function of v and v, and us(t) denotes the value of u at the

matching surface for a given time ¢. Having no ingoing waves forces the second term to be zero, and

OV () (t) 1 [u® s
—y = _Z/O Vi) (1) ¥ ey (v, v)du” . (6.38)
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Because both 0¥ (t)/0v and 0¥ )(t)/dr. are constrained at the point of the matching surface,
this determines the evolution of W) (t) on the matching surface. It is easiest to express the Zerilli

function on the matching surface as a function of time via W (f,7.(t)). Then, taking the total

derivative,
d‘I’(c)(t) . 6\If(c) dry (9\1/(0)
—— =V () = .
dt @0 =5+ o, (6.39)
using the facts that
ot v or. (6.40)
and .
dr, 2M N\ dr
— (122 - A1
dt < T > dt’ (6.41)
along with the relationship a(t) = 2r(t), one can write
. 8\IJ(e)(t> 1 A(t) +2M\ . 8\11(‘3) (t)
Uy(t)=2————>—[1—= | —%—— | At)| ————. 42
@) v [ 2 (A(t) — 2M> ( )} or. (6.42)

In the above equation, OV ((t)/0v is given by the integral of the Zerilli function up to that time,
Eq. (6.38), and 0¥ )(t)/dr. is given by the boundary condition, Eq. (6.37), at that instant. As a
result, the only term in Eq. (6.42) that is not yet fixed is the expression for A(t)

The term A(t) specifies the time evolution of the reduced mass of the binary, which, because
it is twice the radius of the matching surface between the Schwarzschild and PN metrics, could
conceivably evolve via either the PN equations of motion or those of a particle in the Schwarzschild
spacetime. We will choose the latter, for the same reason as described in Paper I: the Schwarzschild
Hamiltonian has the advantage that a particle falling toward the horizon approaches it exponentially
in time, in the limit that the particle is near the horizon. Because we are using this motion to
approximate the region inside of which PN theory holds, we want this space to quickly fall toward the
horizon as the theory begins to converge slowly. Moreover, the motion should move smoothly toward
the horizon (so as not to introduce high-frequency modes that could escape the black-hole effective
potential). The PN equations of motion do not have these desirable features; we consequently favor
the point-particle evolution equations in the Schwarzschild spacetime.

We write the evolution equations for the reduced mass of the system in their Hamiltonian form.
As in Paper I, we will describe the dynamics of the reduced mass in PN coordinates, because at
late times, this causes the point particles in the PN metric to approach the horizon in the external
Schwarzschild spacetime as the reduced mass of the system does the same. The equations of motion
for the reduced mass, u, are

0H . 0H ) OH .
= 6]?,4(15) ) a(t> = ) pA(t) = _—t pa(t) = fa(t)a

A(t)
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where the Hamiltonian of a point particle in the Schwarzschild spacetime is given by

HAW), pa®),pa(t) 20 200N pa(1?  pall)?
m ‘\/ <1‘M) [”(“A(t)) T wAe | (6.43)

The radiation-reaction force is given by the derivative of the radiation-reaction potential with respect
to ¢, and it should be evaluated at the location of the matching region,
15

= — A1)\ [ - SIF(1)e* V], (6.44)

Falt)  10U2T
% po O

where U ]%22)"F represents the quadrupole part of the radiation-reaction potential. By solving Eq.
(6.35) for F(t) in terms of W(.)(t) (and because Q(t), Eq. (6.31), is proportional to a real amplitude

times e~2*()) one can write

= —\/ = =S [W ) ()2 D], (6.45)

With the above relationship between the radiation-reaction force and the Zerilli function, there
is now a complete set of evolution equations for the reduced-mass motion of the system, the Zerilli
function on the matching surface, and the Zerilli function in the exterior spacetime. This system of

equations is given by

Aty = (?Zit)’ 0"“):%, pA(t)=—£4—Ié), (6.46)
Palt) = _”@%3[W<c>(f)e2m(”]7 (6.47)
Vo) = —% /0 " VT2 ()W o (', v)du!

| Gia) 2] (i~ ) 9
6;:5;) - _‘/(Cl)_Q)(T)f (e)(u,v), (6.49)

where the Hamiltonian is given by Eq. (6.43), the potential by Eq. (6.22), and the quadrupole by
Eq. (6.31). By including a radiation-reaction force, we arrived at a set of evolution equations that
simultaneously evolve the reduced-mass motion of the binary and the gravitational waves emitted,

taking into account the back action of the emitted radiation on the reduced-mass motion.

6.3.4 Weak-Field Analytical Solution

First, we will confirm that our procedure recovers the correct Burke-Thorne radiation-reaction poten-

tial in the weak-field limit. If we have an equal-mass binary in a circular orbit at a large separation,
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r« = 1~ R > M, then the leading-order behavior of the Zerilli equation, Eq. (6.21) is just a wave

equation in flat space, ) )
2 R + E\IJ(Q) =0. (6.50)

If one assumes a product solution V) = et)(R), then for the radial motion, one must solve the
ordinary differential equation
d?e

_+w2¢:

T (6.51)

o
R2
The solutions for ¢/R are spherical Hankel functions ¢¥/R = ha(wA/2) = ja2(wA/2) + ina(wA/2),
assuming there are no ingoing waves. Here w corresponds to the gravitational-wave frequency. We
must match this wave-zone solution to the PN near-zone expression for the Zerilli function given by
Eq. (6.35); additionally, we must also match the derivative of the Hankel function with the radial
derivative of the PN Zerilli function given in Eq. (6.36).

We will write these conditions in the frequency domain, where

8Q(w) F(w)A3

B)Am(wAfy) = S TOA (6.52)
B(w)Ahy(wA/2) = —32§§”)+F (‘Z)A, (6.53)

and we must solve for the unknown amplitude B(w) and the radiation-reaction potential F(w) in
terms of the quadrupole moment Q(w) and the spherical Hankel function he(wA/2). Since the
matching takes place at very large radii, and, by Kepler’s law Aw ~ A~1/2 for circular orbits, one
can expand the Hankel function in Aw/2. This allows one to solve for F' as a series in 1/A, whose

three lowest terms are given by

16

8
F=sme@+ o

2
W@+ 57

wiQ+ i%wf’Q +0(A7Y). (6.54)
The third term is the familiar Burke-Thorne radiation-reaction potential (written in the time domain,
this is proportional to five derivatives of the quadrupole moment). The first two terms resemble 1PN
and 2PN corrections to the Newtonian potential in the near zone; however, these terms represent
the effects of time retardation that are needed to match the near-zone solution to an outgoing wave
solution in the wave zone. As a result, our method recovers, asymptotically, the expected result.
Consequently, the evolution system, Eqs. (6.46)—(6.49), will also give rise to the correct dynamics in

the weak-field limit.

6.4 Numerical Method and Results

We begin this section by describing the numerical method that we use to solve the system of evolution

equations, Eqgs. (6.46)—(6.49). We then show that the evolution equations give rise to reasonable
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Figure 6.2: A diagram of how we discretize and evolve the Zerilli function. The dots represent the
Zerilli function evaluated at the grid points (the points of intersection of the dashed lines), and the
solid black line is the matching surface. For all points except those adjacent to the solid line, one
can use Eq. (6.56) directly to numerically evolve the Zerilli function. Near the solid line, one can use
the same procedure as described in Eq. (6.56), except that one must interpolate the Zerilli function
to the point Vg, to use the same procedure. Further detail is given in the text of this section.

and convergent results. With this established, we compare our waveform with one from a numerical-

relativity simulation, and we close this section by interpreting the spacetime of the hybrid method.

6.4.1 Numerical Methods and Consistency Checks of the Evolution Equa-

tions

Because the set of evolution equations Eqgs. (6.46)—(6.49) has a somewhat unusual form, we describe
our numerical method in detail, and we present a few basic checks of the waveform and its conver-
gence. To find the field outside the matching surface, we use the same method as that described
in Paper I, a second-order accurate, characteristic method. If we define the following points on the
discretized grid (see the portion on the right, away from the solid line, in Fig. 6.2):
Uy = \I/l(g;l(u—i-Au,v—i-Av), Uy :\IJZ(’CT(U—I—AU,U),

Vg = \Ifl(g;l(u, v+ Av), Vg = \I!l(e’;l(u, v), (6.55)

then discretizing Eq. (6.49), one can solve for ¥y in terms of the other three discretized points and

the potential:

AulAv_,

Uy =Vgp+ ¥y — Vg — 3 Vi (re)(Ye + ¥w) + O(Au?Av, AuAv?). (6.56)

Here 7, is the value of r at the center of the discretized grid, (u + Au/2,v + Av/2).
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We must evolve this partial differential equation simultaneously with the five ordinary differential
equations describing the Zerilli function on the matching surface and the surface’s position, because
all these equations are coupled together. We solve the ordinary differential equations using a second-
order-accurate, Runge-Kutta method. As in Paper I, the Zerilli function along the matching surface
does not always lie on the uniform grid in the u-v plane, and we must be careful when finding the
Zerilli function at grid points adjacent to the matching surface. For example, at a given value of u

along the discretized grid, it is rare that the Zerilli function on the matching surface, denoted by

\I]W,s(t) = \I](C) (us(t)v Vs (t)) . (657)

will actually fall along a grid point (see the left side of Fig. 6.2 near the solid line). Similarly, when
evolving the discretized version of Eqs. (6.46)—(6.49), it is again unlikely that the Zerilli function

along the matching surface at the next value of u (advanced by one unit of Au),
Wy (t+ At) = W) (us(t) + Au,vs(t + At)), (6.58)

will fall at a grid point or even at the same value of v as the previous earlier value of the Zerilli
function, Wy 4(1).

To be able to use Eq. (6.56) to find the Zerilli function at u = us(t) + Au for the next grid point
in v (which we denote by ¥y ), we must interpolate the Zerilli function at fixed u = us(t) to the

same value of v = v,(t) as Uy 4(t + At). We will label this point by
Vs o = We)(us(t), vs(t + At)). (6.59)

As in Paper I, this interpolation does not influence the convergence of the algorithm when done with
cubic interpolating polynomials. With the value of the Zerilli function at u = u4(t) and the nearest
grid point in v (which we will call ¥ ), one can then find the point ¥y s using Eq. (6.56), where
Vg, Uy, and Ug are replaced by Vg 5, ws(t + At), and Ug g, respectively.

As a final note on the numerical methods, we point out that in the evolution equation for the
Zerilli function on the matching surface, Eq. (6.42), the term OV (t)/0v involves an integral of
the Zerilli function times the potential, Eq. (6.38). Explicitly evaluating this integral adds to the
computational expense significantly. We, therefore, compared the value of 9V (t)/0v obtained
through performing the integral with the value found from evaluating OV ) (t)/0v numerically using
a fourth-order finite-difference approximation of the derivative, calculated from the Zerilli function
in the adjacent exterior BHP spacetime. Because the two agreed to within the numerical accuracy of
our solution, we used the finite-difference approximation of OV c(t)/0v in our numerical evolutions.

We now examine a few consistency checks of the numerical solutions to the system of evolution
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Figure 6.3: In black, the trajectory of the reduced-mass motion of the binary, in the PN coordinate
system. The blue (dark) dotted and dashed circle shows the Schwarzschild ISCO, and the red
(light) dashed circle depicts the light ring of the Schwarzschild spacetime. The large filled black
circle represents the horizon. One can see that the binary plunges soon after it reaches the ISCO of
the exterior Schwarzschild spacetime.

equations, Egs. (6.46)—(6.49). In Fig. 6.3, we show, in black, the trajectory of the reduced mass of
the binary in the PN coordinates. On this same figure, we have depicted the Schwarzschild black
hole by a filled black circle, the light ring of this black hole by a red (light) dashed circle, and the
innermost stable circular orbit (ISCO) by a blue (dark) dashed and dotted circle. One can see that
the radiation-reaction force causes the matching region to adiabatically inspiral, until it approaches
the ISCO. Once at the ISCO, it begins plunging more rapidly toward the light ring, and then falls
past the light ring and asymptotes to the horizon of the final black hole.

The initial conditions of this evolution correspond to a binary with a PN separation of A(0) = 14
in a circular orbit, with no ingoing gravitational waves from past-null infinity, and with the radiation-
reaction force initially set to zero. We do not let the radiation-reaction force enter into the dynamics
(thereby holding the binary at a fixed separation) until we have a stable estimate of the force. At
this point, we include the radiation-reaction force (thereby letting the binary begin its inspiral). To
minimize eccentricity, we introduce a small change in the radial momentum p4(0) that corresponds
to the radial velocity of a PN binary at that separation. Explicitly, we find this value of p4(0) by
solving
OH 16 M3

== (6.60)

R0 | R T
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Figure 6.4: The L? norm of the Zerilli function at a given resolution, Av/M, minus the Zerilli
function at the highest resolution, (Av)/M = 1/64, which we denote by |V (o) (av)/mr — ¥ (e),1/64] /M.
We also include a power law proportional to [(Av)/M]? to indicate the second-order convergence of
our result.

(see, e.g. [3]), while assuming that p,(0) continues to have the value for circular orbits

MA(0)

PO = A=

This is necessary to make the orbit as circular as possible once the binary begins to inspiral. We do

(6.61)

not show the initial few orbits before we include the radiation-reaction force, and we denote the zero
of our time to be the moment when we let the radiation-reaction force begin acting on the binary.
We also calculate the Zerilli function corresponding to these initial conditions, as a function of
increasing numerical resolution. In Fig. 6.4, we show that the Zerilli function at large constant v,
does converge in a way that is consistent with the second-order-accurate code we are using. We
show the L? norm of the difference between the Zerilli function at a given resolution, which we
denote W () (av)/n and the highest resolution, (Av)/M = 1/64, which we denote by W(e) 1/64. The
L? norm, therefore, we write as |\If(c)1(Av)/M — \11(0)71/64|, and we normalize this by the number of
data points in the evolution, and the mass. We also include a power law, proportional to [(Av)/M]?,

which indicates the roughly second-order convergence of the waveform.
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Figure 6.5: The top panel shows the real part of the Zerilli function throughout the entire evolution,
extracted at large constant v. The bottom-left panel displays the early part of the same Zerilli
function, and the bottom-right zooms in to the merger and ringdown portions of the function.
Because only a factor of V6 differentiates the Zerilli function from r times the waveform, this can
be thought of as the waveform as well.

We then plot the real part of the Zerilli function extracted at large constant v, for the highest
resolution (Av)/M = 1/64, in Fig. 6.5. The top panel depicts the Zerilli function throughout the full
evolution. Because it is difficult to see the slow increase of the amplitude and frequency during early
times and the smooth transition from inspiral to merger and ringdown at late times, we highlight
the early stages of the inspiral in the lower-left panel, and we depict the merger and ringdown in
the lower-right panel. Because \/(_)'\I/(e) = r(hy — ihyx), for the I = 2 modes at large r (see Eq.
(6.97) below), the Zerilli function is essentially identical to the gravitational waveform. From this
one can see the hybrid method produces a smooth inspiral-merger-ringdown waveform. Because the
hybrid waveform has the correct qualitative features of a full inspiral-merger-ringdown waveform, it
is natural to ask how well it could match a numerical-relativity waveform. We, therefore, turn to

this question in the next section.
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6.4.2 Comparison with Numerical-Relativity Results

In this section, we will first discuss how well the waveform compares with a similar waveform from
numerical-relativity simulations. The first part of the section is devoted to showing how we can make
small modifications to the hybrid procedure to make the phase agree well with that of a numerical-
relativity waveform during the inspiral (though the comparison of the amplitudes is less favorable).
The second part of this section describes why the hybrid method, in its current implementation,
does not agree well with numerical-relativity simulations during the merger and ringdown phases.
The reason for the discrepancy during the late stages of the waveform is well understood (the
background spacetime of the hybrid method is Schwarzschild, whereas the final spacetime of the

numerical simulation is Kerr) and could be improved by modifications to the hybrid method.
6.4.2.1 Agreement of the Waveforms During Inspiral

We will briefly describe a small change to the hybrid method that leads to a waveform whose
phase agrees well with a numerical-relativity waveform during the inspiral part. We will continue
to find the Zerilli function through the procedure described in Section 6.3.3 using the leading-order
expression for the Newtonian potential (and thus also the leading-order radiation reaction force).
We note, however, that when we took the derivative of the Zerilli function on the matching surface
with respect to r., Eq. (6.36), we kept the factor of (1 — 2M/r). This is reasonable, physically,
because, although the Zerilli function itself may approach a constant on the horizon, its derivative
with respect to r, should vanish. Conversely, if the derivative of the Zerilli function did not vanish,
then that could correspond with a perturbation that diverges on the horizon. Nevertheless, because
the boundary condition only takes into account the leading Newtonian expressions, the overall factor
of (1 —2M/r) is a higher PN correction, from the point of view of the interior PN spacetime. We,
therefore, are justified in dropping this term in our leading Newtonian treatment, and we find the
agreement between numerical relativity and the hybrid method is helped by this. It is likely that
further adjustments will lead to even better results, though a systematic study of this is beyond the
scope of this initial exposition.
The modification above results in only a small change to Eq. (6.36),
MWe(t)  32Q(t)  F(t)A(®)?

and it also alters the boundary condition, Eq. (6.37) of Section 6.3.3,

OV () (t) 6 80Q(t)

“or. A @Y A

(6.63)

With the exception of these two equations and the fact that we begin the evolution from a larger

initial radius, A(0) = 15.4, we evolve the new system of equations in exactly the same way as that
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described in detail in Section 6.4.1.

For our comparison with a numerical-relativity waveform, we use the [ = 2, m = 2, mode of the
waveform from an equal-mass, nonspinning, black-hole binary described in the paper by Buonanno
et al. [18]. In this simulation, the black holes undergo 16 orbits before they merge, and the final
black hole rings down. We plot the numerical-relativity waveform in black in Fig. 6.6, and we show
the equivalent waveform from our approximate method in red (gray). Recall that the I = 2 modes

of the Zerilli function are related to the waveform by
V6V (o) = r(hs —ihy) (6.64)

(see Eq. (6.97) below). Although the amplitudes of the waveforms do not agree exactly, the fact that
the phases match so well throughout the entire inspiral is noteworthy. The approximate waveform
completes one more orbit than the numerical-relativity one, and the ringdown portions differ as
well. This is not too surprising, however, because the final black hole in the numerical-relativity
simulation is a Kerr black hole with dimensionless spin x & 0.7 (see, e.g., Scheel et al. [51]), whereas

our ringdown takes place around a Schwarzschild (nonspinning) black hole.
6.4.2.2 Differences in the Instantaneous Frequency During Merger and Ringdown

The discrepancy between the two waveforms at late times in Fig. 6.6 is most evident in the instan-

taneous frequency, often defined as

Ve
Mw=i—2 6.65

where () is the Zerilli function measured at large r. We calculate this frequency for both the
hybrid and the numerical-relativity waveforms, and we show the real and the imaginary parts (the
oscillatory and damping portions, respectively) in Fig. 6.7. The numerical-relativity waveform was
offset from zero at late times by a small constant of order 10~%. We subtracted this constant from
the waveform to find the instantaneous frequency; otherwise, when the amplitude of the waveform
becomes comparable to this constant, there are spurious oscillations in the frequency as it becomes
dominated by this constant offset. The hybrid waveform needed no modification.

Solid curves depict the instantaneous frequency of the numerical-relativity waveform in Fig. 6.7;
the real (oscillatory) part is the black curve and the imaginary (decaying) part is the red (gray)
curve. Similarly, the black dashed curve is the real part of the instantaneous frequency of the hybrid
method, and the red (gray) dashed curve is its imaginary part. The hybrid and the numerical-
relativity frequencies are in very good agreement for the inspiral up until the late stages highlighted
here. The numerical-relativity waveform quickly transitions after the plunge and merger to the
least-damped [ = 2, m = 2 quasinormal-mode frequency and decay rate for a Kerr black hole of final

dimensionless spin equal to roughly x = 0.7 (see, e.g., [64]). The frequency of the hybrid waveform,
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Figure 6.6: In black is the real part of the [ = 2, m = 2 mode of a numerical-relativity wave-
form, whereas in red (gray) is the equivalent quantity from the approximate method of this paper.
The agreement of the waveforms’ phases is quite good throughout the entire inspiral, although the
amplitudes differ. The approximate and numerical-relativity waveforms differ during ringdown, be-
cause the approximate method uses a black-hole with zero spin, whereas the final black hole in the
numerical-relativity simulation has considerable spin.
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however, undergoes a similar qualitative transition, but it approaches the least-damped | = 2,
m = 2 ringdown frequency of a non-spinning black hole (the background of the hybrid method).
The hybrid method, however, oscillates around this value with a frequency that is proportional to
twice the frequency of this least-damped, [ = 2, m = 2 quasinormal mode.

The origin of this oscillation is simple and, in fact, was explained by Damour and Nagar [38].
For each [ and m, there are quasinormal modes with both positive and negative real parts, which
both have a negative decay rate. For a Schwarzschild black hole, the decay rates are the same
and the real frequencies are identical, but have the opposite sign. For a Kerr black hole, however,
the positive-frequency modes have a lower decay rate than the negative-frequency modes (and the
positive frequency is larger in absolute value than the negative frequency is). While a counter-
clockwise orbit will tend to excite predominantly the mode with a positive real part, it can also
generate the negative real-frequency mode as well. In the hybrid waveform, because the background
is Schwarzschild, the positive- and negative-frequency modes decay at the same rate, and they can
interfere to make the oscillations at twice the positive real frequency. In the numerical-relativity

waveform, however, the difference of the frequencies and decay rates prevents this from happening.

6.4.3 Interpreting the Hybrid Waveform and Spacetime

Because the phase during inspiral agrees so well, and because the transition from inspiral to merger
and ringdown is qualitatively similar, this leads one to wonder to what extent the hybrid approach
may also be a useful tool for generating gravitational-wave templates for gravitational-wave searches.
To capture the correct ringdown behavior, the hybrid method would need to be extended to a Kerr
background; however, it is likely that calibrated approaches using the effective-one-body method
(see, e.g., [18]) or phenomenological frequency-based templates (see, e.g., [65]) will be more efficient
for these purposes. The hybrid approach, as described here, will likely be more helpful as a model of
how the near-zone motion of the binary connects to different portions of the gravitational waveform.

As an example of this, we show the real part of the gravitational waveform at large v, the black
solid curve, and the corresponding value of the Zerilli function on the matching surface, the red
(gray) dashed curve in Fig. 6.8. Interestingly, the Zerilli function on the matching surface and that
extracted at large constant v are roughly out-of-phase with one another during the inspiral; namely,
along a ray of constant u, the Zerilli function undergoes nearly one half cycle as it propagates out to
infinity. This feature is also visible in Fig. 6.9, but it is harder to discern there. This behavior holds
through inspiral up to the beginning of the merger. During the merger, however, the two transition
away from the out-of-phase relationship, before the Zerilli function on the matching surface becomes
a constant during the ringdown (when the reduced mass of the binary falls toward the horizon along
a line of constant v).

This change in phasing between the Zerilli function on the matching surface and that at large
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Figure 6.7: The solid curves are the instantaneous frequency, Eq. (6.65), of the numerical-relativity
waveform; the black curve is the real, oscillatory part and the red (gray) curve is the imaginary,
decaying part. The black, dashed curve and the red (gray) dashed curve are the real and imaginary
parts, respectively, of the frequency for the hybrid method. The frequencies agree quite well during
the inspiral, but at late times they begin to differ. The qualitative transition from inspiral to merger
and ringdown is similar, but the final quasinormal-mode frequencies that the waveforms approach
differ, because the numerical-relativity simulation results in a Kerr black hole of dimensionless spin
x = 0.7, whereas the hybrid waveform is generated on a Schwarzschild background. The oscillations
in the hybrid waveform arise from the interference of positive- and negative-frequency modes that
can arise in a Schwarzschild background, as explained in the text of this section.
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Figure 6.8: The real part of the Zerilli function on the matching surface, the red (gray) dashed curve,
and the real part of the gravitational waveform, proportional to the real part of the Zerilli function
at large v, (the black solid curve). The two functions are nearly out-of-phase for the inspiral, and
the wave propagates more or less directly out. During the merger, they begin to lose this phase
relationship, and during ringdown the Zerilli function on the matching surface becomes constant.
This implies that the ringdown waveform is due just to the waves scattered from the potential, as
also illustrated in Fig. 6.9.
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Figure 6.9: A contour-density plot of the real part of the Zerilli function for the evolution discussed in
this section. We only show the last few orbits of the inspiral, followed by the merger and ringdown.
In this spacetime diagram, time runs up, r. increases to the right, and the coordinates u and v
run at 45 degree angles to the two. The line that starts at nearly constant ¢ and evolves to a line
of constant v is the matching surface, and to the left of this line, the solid green (gray) region
is the interior PN region (where we do not show any metric perturbations). The exterior is the
BHP region, where we show the Zerilli function. During inspiral, the Zerilli function propagates out
almost directly, and it oscillates between positive, yellow (light gray) colors and negative, light blue
(darker gray). Black, dashed contour curves are used to highlight this oscillation. As the reduced
mass of the binary plunges into the potential during merger, the amplitude and frequency of the
radiation increases, but it promptly rings down to emit little radiation in the upper green (gray)
diamond of the diagram. There are black, dashed contours here as well to indicate that there is still
oscillation, even though it is exponentially decaying (and hard to see in the color scale).
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v (along a line of constant u) allows one to give an interpretation to the different parts of the
waveform. The inspiral occurs when the waveform propagates out directly, but nearly out-of-phase
with the matching surface. The merger is the smooth, but brief, transition during which the phase
relationship between the matching surface and the waveform evolves, and the ringdown is the last
set of waves that are disconnected from the behavior on the surface (they are the scattered waves
from the potential barrier).

We also show in Fig. 6.9 a contour-density plot of the real part of the Zerilli function in the u-v
plane during the last few orbits of the inspiral, merger, and ringdown (for the evolution discussed in
this section). This figure is a spacetime diagram, where time runs up, and the radial coordinate, .
increases to the right. The matching surface is the dark timelike curve running up that turns to a line
of constant v at the end. The region to the left of the surface, the solid green (gray) is the interior
PN region, but we do not show the metric perturbation in this region. On its right is the BHP
region, where we show the Zerilli function colored so that blue colors (dark gray) are negative and
red colors (light gray) are positive. Away from the matching surface, the Zerilli function oscillates
between yellow (light gray) and light blue (darker gray) for several orbits before inspiral. Each
oscillation is bounded between a black, dashed contour curve. As the reduced mass of the binary
plunges toward the horizon, the outgoing waves increase in frequency and amplitude, which is how
we describe the transition from the inspiral to the merger phase. The merger phase is short, and
the black hole rings down (leading to very little gravitational-wave emission in the top corner of the
diagram). As the reduced mass of the system approaches the horizon, there is a small wavepacket
of ingoing radiation that accompanies it.

We close this section with one last observation. If we were to plot the equivalent quantities to
those in Figs. 6.8 and 6.9 for the evolution in Section 6.3, then one would see that the Zerilli function
on the matching surface increases during ringdown instead of approaching a constant. This does
not have any effect on the waveform, because it is a low frequency change that occurs within the
potential barrier, and is hidden from the region of space outside the potential. In some sense, it
is a strong confirmation of Price’s idea that the details of the collapse will be hidden within the
potential barrier. At the same time, however, this behavior arises from the fact that the derivative
of the Zerilli function with respect to r, vanishes on the matching surface. When this condition was
neglected in this section, it led to a more regular behavior there. This suggests that it may be worth
while to do a more careful analysis of how the Zerilli function and its derivatives near the horizon

should scale in the presence of radiation reaction.
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6.5 Spinning Black Holes, Spin Precession, and the Super-
kick Merger

In this section, we will incorporate the effects of black-hole spins into our method, with the aim
of understanding the large kick that arises from the merger of equal-mass black holes with spins
antialigned and in the orbital plane (the superkick configuration). To do this, we will first discuss
adding odd-parity metric perturbations to the results in the previous section. We will then indicate
why spin precession is important in producing large kicks and discuss two ways of implementing spin
precession: the PN equations of precession and geodetic precession in the Schwarzschild spacetime.
In our method, we will use the geodetic-precession approach, and we will present numerical results

for the kick that uses this equation of spin precession.

6.5.1 Odd-Parity Metric Perturbations of Spinning Black Holes

To incorporate the effects of spin into our model, we will add the lowest-order metric perturbations
arising from using spinning bodies in the PN metric, as we did in Paper I. This comes from the

metric coefficients ) .
J ok J ok
. 2eiijAnA o 2eiijBnB

hoi =
’ R R

(6.66)

Here we use the notation of Paper I, where we label the two bodies by A and B. The new variables
Sf;‘ represent the spin angular momentum of the body, R4 is the distance from body A and nk is a
unit vector pointing from body A. The variables for body B are labeled equivalently. Because we
will focus on the extreme kick configuration, we will assume that the black holes lie in the x-y plane,
at positions X 4(¢t) and X p(¢) (identical to Eq. (6.26) of Section 6.3.3), and that the spins are given
by

Sa(t) =—Sg(t) = S(cos B(t),sin 5(t),0), (6.67)

where S = y(M/2)? is the magnitude of the spin, and y is the dimensionless spin, ranging from zero

to one.

Under these assumptions, one can show that the Cartesian components of the metric coefficients

above are
hox = -— 35};43@) sin 260 sin B(t) cos(a(t) — ), (6.68)
hoy = 35;13@) sin 26 cos 3(t) cos(a(t) — ), (6.69)
hoy = 25;(” sinfa(t) — B(1)] + ﬁigg@ sin® B cos(a(t) — ¢)sin(B(t) — ). (6.70)
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One can then convert the Cartesian components into spherical-polar coordinates to find that

hor = %Ag(t) sinfa(t) — B(t)] cos b , (6.71)
hop = — 251::@) sinfa(t) — B(t)] cos 6 — 65}?2(1%) sin 6 cos(a(t) — ) sin(B(t) —¢), (6.72)
hop = GSé(t) sin? § cos 0 cos(au(t) — ) cos(B(t) — @) . (6.73)

As written above, the metric perturbations do not take the form of an odd-parity vector harmonic,
because there is a dipole-like piece in two of the components. This can be eliminated by making a

gauge transformation,
SA(t)

& = B Th cos O sin[a(t) — B(t)] . (6.74)

A small gauge transformation produces a change in the metric via

il,uu = h,uu - g,u.,v - é.,u,u y (675)

which in this case sets EOR = 0. The remaining terms in the metric can then be expressed in terms

of the odd-parity, vector spherical harmonics,

X2t2 (Xg"ﬂ, Xi,ﬂ) (6.76)
1 /1 ;
= 35\ / 2—5 sin fe*2° (i, sin A cos 0)
T
3 /5
X200 — (XGQ’O, X%O) = —5\/ - sin? @ cos0(0,1) . (6.77)

A short calculation shows that

S4(1) %e—i[a@wtﬂxﬂ _ 85410 \/g cosla(t) = BHIX*. (6.78)

(hoa, hoy) = 2R

r2 r2

As with the even-parity, mass-quadrupole perturbations discussed in the previous section, we
will only be interested in evolving the m = 2 perturbation (though in this case it is an odd-
parity, current-quadrupole moment). The reason for this is subtle, and will be clarified in the
next section. Nevertheless, we will mention here that during the merger and ringdown (when the
kick is generated), the spins precess at the orbital frequency, i.e., &(t) = 3(t). As a result, the m = 0
part of the perturbations which depend on «(t) — 5(t) become constant, and the only changes in the
perturbations come from changes in A(t). We mentioned in Section 6.3.3 that we would also neglect
the m = 0 part of the even-parity perturbations, because it also evolved from time variations in A(t),

which occur on the time scale of the radiation-reaction force (2.5 PN orders below the leading-order

orbital motion). Consequently, because we are interested in the behavior of the binary during the
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merger and ringdown, we can neglect the m = 0 parts of the odd-parity metric perturbations for
this same reason. In addition, because we are treating just the m = +2 perturbations (and the
m = —2 term is the complex conjugate of the m = 2 moment), we will again drop the label m on
the perturbations.

Thus, the relevant piece of the gravitomagnetic potential for our calculation will be

_ _SAW) [O7 sa s (6.79)

W) = — 4R2 5

and one can then use Eq. (6.20) and the fact that R = r— M to find that the Regge-Wheeler function

25A(t) j6m _jp,
V) = R2() /?e [a()+8()] (6.80)

This means that on the matching surface,

8S 6w _,
O = B35 6T ijams)] 81
(o) A(f) 5 € (6 8 )

We can then evolve the Regge-Wheeler equation, Eq. (6.21), (with the odd-parity I = 2 potential)

is (at leading order in ),

using Eq. (6.81) as the boundary condition along the matching surface. We will not take any
radiation-reaction effects from the current-quadrupole perturbations into account (since they are
1.5 PN orders below the leading-order Newtonian radiation reaction of Section 6.3.3); as a result,
we will evolve the Regge-Wheeler function using the matching surface generated by the even-parity,

mass-quadrupole perturbations alone.

6.5.2 Spin Precession

Before we discuss the evolution of the Regge-Wheeler and Zerilli functions, we will mention an
effect that is important for our recovering the correct qualitative behavior of the kick in superkick
simulations. This effect was observed by Schnittman et al. in [54] and clarified to us by Thorne [55].
In Schnittman et al.’s discussion of the superkick configuration, the authors observe that the spins
precess in the orbital plane very rapidly during the merger, approaching the orbital frequency just
before the ringdown. We will give a heuristic argument of why this effect should occur before we
explore two models that produce spin precession (one based on the PN equations of motion and the
other based on geodetic precession in the Schwarzschild spacetime). We will ultimately favor the

latter.
6.5.2.1 Motivation for Spin Precession

One can see the need for spin precession from the following simple argument. Just as the even-
parity perturbations gave rise to a waveform that increased from twice the orbital frequency to the

quasinormal-mode frequency during the merger phase (see Fig. 6.7), so too must the odd-parity
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perturbations of the previous section give rise to a part of the waveform that transitions from the
orbital frequency to the same quasinormal-mode frequency as the even-parity perturbations. The
quasinormal-mode frequencies are the same, because both the Regge-Wheeler and Zerilli functions
are generated by | = 2, m = 42 perturbations. Because the Zerilli function is generated by a

—#2a(t) and the Regge-Wheeler function produced by a boundary

boundary condition proportional to e
condition that changes as e *(")+8®] for the two perturbations to evolve in the same way, both
a(t), the orbital evolution, and (3(t), the spin precession, should evolve in identical ways at the end
of merger. Stated more physically, at the end of merger, the spins should precess at the orbital
frequency.

This rapid precession of the spins was observed by Briigmann et al. [56] in their study of black-
hole superkicks. Using a combination of PN spin precession and numerical-relativity data, they were
able to match the precession of the spin in their numerical simulations. We will explain in the next

section why this worked so well for their simulation, but why it will not work as well in the hybrid

method.
6.5.2.2 Post-Newtonian Spin Precession

Briigmann et al. begin from the well-known spin precession for a binary (see, e.g., [66]),

Sa(t) = —— <2 + %) L () x Sa(t) (6.82)

where we just write the leading-order effect from the Newtonian angular momentum,
L () = p{[Xa(t) = Xp(t)] x Xa(t) - Xp(0)]} (6.83)

The vector n is a unit vector from the center of mass. There is an equivalent equation for the
precession of Sp(t), identical to the equation above, under the interchange of A and B. Given the
form of the equation above, the magnitude of the spin does not change, and the spin precesses about
the Newtonian angular momentum Ly (¢). Moreover, Briigmann et al. found that for the superkick
configuration, where the spins lie in the plane, precession of the spins does not produce a large
component out of the plane (the z component in this case).

For simplicity, therefore, we will just consider the components of the spin in the orbital plane,
which, at leading-order, will precess as a result of coupling to the Newtonian orbital angular mo-

mentum. The Newtonian angular momentum is
Ly (t) = pA(t)*a(t)z, (6.84)

where &(t) is the orbital frequency. With the assumption that S4 = S% = 0, the spins precess via
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the equation

sAu>-3§§%§lﬁ><sA<w1, (6.85)

where we have also used the fact that this is an equal-mass binary, (M4 = Mp = M/2 and
w = M/4). Taking the time derivative of Eq. (6.67), we obtain the expression for the left-hand side

of the equation above,

Sa(t) = B0z x Sa(t)]. (6.86)
Relating the two expressions, we arrive at the equation of spin precession,

B(t) = ;A—Aé)a(t). (6.87)
For the hybrid method, this expression will not lead to the spin-precession frequency approaching
the orbital frequency, because A(t) > 2M for the entire evolution (and hence, the spin-precession
frequency will not even be half the orbital frequency at its maximum). In the next section, we will
put forward an equation of spin precession based on geodetic precession in the external Schwarzschild
spacetime, which will have the desired spin-precession behavior.

Before turning to the next section, we address the question of why PN spin precession worked
so successfully for Briigmann et al. Their initial data begins in a gauge that is identical to the
2PN ADMTT gauge, and they assume that it continues to stay in that gauge throughout their
evolution. As a result, they use the puncture trajectories as the positions of the black holes, and
the 2PN ADMTT gauge expressions to relate the momenta of the black holes to their velocities.
Although the PN equations of spin precession are written in harmonic gauge, they use the puncture
results to calculate these expressions. This is reasonable, because the harmonic and ADMTT gauge
positions do not differ much until separations of roughly A(t) ~ 2M. Their puncture separations
do reach small values of A(t) < M prior to merger, and they continue to use the harmonic-gauge
spin-precession formula in this regime (even as the PN approximation starts becoming less accurate).
This works remarkably well, nevertheless, and, as one can see from Eq. (6.87), when A(t) ~ 7M/8,
the spins will precess at the orbital frequency. Thus, the work of Briigmann et al. helps to confirm

that the locking of the orbital and spin-precession frequencies is important in the superkick merger,

but to replicate this effect in the hybrid method will require a different approach, described below.
6.5.2.3 Geodetic Precession in the Schwarzschild Spacetime

Our approach to spin precession relies on geodetic precession in the Schwarzschild spacetime, which
we review below. The problem of geodetic precession of a spin on a circular orbit in the Schwarzschild
spacetime is well understood; its derivation appears in the introductory text by Hartle [67], for
example. We will reproduce some of the important elements of the derivation here, using our

notation, however. One typically starts with the spin 4-vector S* (whose spatial components lie in
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the orbital plane) that travels along a circular geodesic parametrized by a 4-velocity u*. As usual
utu, = —1, and one also imposes the spin supplementary condition, S#u, = 0. The components of
these two vectors are S = (S*, S, 0,5%), and @ = u’(1,0,0, &(t)). Because of the spin supplementary
condition and the normalization of the four velocity, the components S* and u are not independent
variables. Thus, when one writes the equation of geodetic precession of the spin [Eq. (14.6) of
Hartle],

ds*

d—T + r# p,,SpuU = 0, (6.88)

for circular equatorial orbits, it reduces to two coupled equations for the independent variables S™(t)

and S¥(t) (Egs. (14.3a) and (14.3b) of Hartle),

ST(t) — [rs(t) — 3M]a(t)S¥(t) = 0, (6.89)

~ a(t)
S (t) + S"(t) = 0. 6.90
0+ S0 (6.90)
The dot still refers to derivatives with respect to coordinate time ¢ (not proper time 7). If we assume
that &(t) does not change much over an orbit (which is true during most of the evolution of the
binary, as it only changes from the radiation-reaction force), and we continue to denote the angle
of the spin in the orbital plane by §(¢), then one can write the solution to these equations (Egs.

(14.16a) and (14.16b) of Hartle) as,

ST(t) = Sy/1- f—](\f) cosla(t) — B(t)], (6.91)
ey~ S f_2M_ew

where the spin is normalized S*S,, = S?, and where (Eq. (14.15) of Hartle)

. . 3M .
alt) = Ale) = 1= 5. (6.93)

Because we only describe the spins with leading-order physics, we will only keep the leading-order

behavior of the spins. Thus, we will describe the spatial components of the spins by

S"(t) = Scosla(t) — B(t)], SP(t) = sinfa(t) — B(t)], (6.94)

S
7s(t)
and we will expand the equation for the evolution of () in a Taylor series up to linear order in

M/rs(t),

alt) — B(t) = (1 — 2‘2‘&) alt). (6.95)



193

We ultimately arrive at the expression that we will use to describe spin precession in our formalism,

() = Ssale). (6.96)

because at leading order A(t) = a(t).

Although Eq. (6.96) looks quite similar to the leading-order PN spin precession, Eq. (6.87), the
former equation produces a much stronger spin precession than the latter does. Not even the next-
order PN spin-precession terms will produce such strong precession (see, e.g., [68]). The equation
of spin precession based on geodetic motion takes on more of the strong-gravity character of the
Schwarzschild spacetime. It states that when a spinning particle orbits near the light ring, its spin
will lock to the its orbital motion. An effect quite similar to this happens during the merger phase
in the superkick simulation, as was shown in the work of Briigmann et al., and which we discussed
in the previous section. In the next section, we will show how this contributes to the large kick of

the superkick simulations.

6.5.3 Numerical Results and Kick

In the first part of this section, we describe how we numerically solve the Regge-Wheeler equation
(we continue to solve the Zerilli equation in the same way as described in Section 6.4), and we
show a representative waveform obtained from the Regge-Wheeler function. We next describe how
we calculate the linear-momentum flux and the kick from the waveforms. Finally, we close this
section by studying the dependence of the kick on the initial angle between the spins and the linear
momentum of the PN point particles. We recover results that are qualitatively similar to those seen

in full numerical-relativity simulations.
6.5.3.1 Numerical Methods and Waveforms

To calculate the Regge-Wheeler function, and thus the radiated energy-momentum in the gravita-
tional waves, we first make the following observation. Because the odd-parity perturbation of the
spins of the black holes is a 1.5 PN effect, the corresponding radiation-reaction force will also enter at
1.5 PN beyond the leading-order radiation-reaction force discussed in Section 6.3.3. Consequently,
we do not take it into account in the leading-order treatment of the radiation-reaction force. More-
over, we note that the spin-precession angle, 5(t), does not enter into the evolution equations for the
reduced mass or for the Zerilli function. As a result, the evolution of 3(t) and ¥ () can be performed
after the evolution of the binary without spin. In fact, the evolution of ¥(,) is carried out in the same
manner as that described in Paper I, because the matching surface is driven by radiation-reaction
from the even-parity Zerilli function alone. Were we to include the radiation reaction arising from
the spins, however, we would need to evolve the equations for 3(t) and ¥ () simultaneously, and in

a manner identical to that described in Section 6.3.3.
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Figure 6.10: The top panel shows the real part of the Regge-Wheeler function throughout the entire
evolution. The bottom-left panel just focuses on the early times of inspiral, where the Regge-Wheeler
function slowly increases in frequency and amplitude because of the binary’s inspiral and the slow
spin precession. In the bottom-right panel, one sees that as the spins begin to precess near the
orbital frequency, the Regge-Wheeler function dramatically increases in amplitude and frequency.

Our initial conditions are identical to those described in Section 6.4.1, but we will set the di-
mensionless spin y = 1, and let 5(0) vary over several values from 0 to 27, to study the influence of
the initial angle on the kick. We first show the real part of the Regge-Wheeler function extracted
at large constant v, in Fig. 6.10. The top panel is the full Regge-Wheeler function, whereas the
bottom-left panel features the early part from the inspiral (so that one can see the gradual increase
in the amplitude and frequency that comes from the combined effects of the binary inspiral, and
the increased rate of spin precession). In the bottom-right panel, we show the merger and ringdown
phase, which is obscured in the top panel. As the spins start precessing near the orbital frequency
during merger, one can see the rapid growth of the Regge-Wheeler function.

To see how this spin precession leads to a large kick, we plot both the even- and the odd-parity
metric perturbations extracted at large constant v in Fig. 6.11. We show the real part of the Zerilli

function, Wy, in red (gray) and the imaginary part of the Regge-Wheeler function, ¥, in black,
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Figure 6.11: The top panel shows the real part of the Zerilli function, the red (gray) curve, and
the imaginary part of the Regge-Wheeler function, the black curve, throughout the inspiral, merger,
and ringdown. The bottom-left panel shows only the inspiral, where the Regge-Wheeler function is
much smaller than the Zerilli function, and oscillates at approximately half the frequency. In the
bottom-right panel, during the merger and ringdown, as the spins precess near the orbital frequency,
the Regge-Wheeler function increases in amplitude and frequency, and becomes in phase with the
Zerilli function. This leads to a large kick.

for the angle ((0) that gives the maximum kick. As we show below, in Eq. (6.100), it is the relative
phase of the product of these components that is important in producing the kick. During the early
part of the evolution, the Regge-Wheeler function is quite small and oscillates with roughly half the
period of the Zerilli function. This is difficult to see in the upper panel of the full waveforms in
Fig. 6.11, but is more evident in the lower-left panel, showing just the early parts of the evolution.
In the last orbit before the merger and ringdown (shown in the lower-right panel), the spins start
precessing rapidly, and, in the case that produces the maximum kick, the real part of the even-parity
perturbation function, and the imaginary part of the odd-parity function oscillate in phase during
the merger and ringdown. (For the case with zero kick, the two functions are now out-of-phase by

90 degrees.)
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6.5.3.2 Calculation of the Kick

We now discuss, more concretely, how we calculate the kick from the emitted gravitational waves.
At radii much larger than the reduced gravitational wavelength, r > Agw/(27), one can relate

the gravitational-wave polarizations h4 and hyx to the Regge-Wheeler and Zerilli functions via the

. o 1 (l+2)' lm - Tlm
hy —ihy = Z;’/u—m! {‘1’@ + iU ] Vi, (6.97)

where _5Y,, is a spin-weighted spherical harmonic. The linear momentum flux carried by the

expression,

gravitational waves is typically expressed as

. 2 . .
P;(t) = lim T—%nﬂfq —ihy [2dQ, (6.98)
r—oo 167

where n; is a radial unit vector and df2 is the area element on a 2-sphere. A somewhat lengthy

calculation can then show that the momentum flux in the z direction is given by

1 (1+2)!

PZ(t):w_wlmz(z_z)!

. +l,m ., l,m clm T l+1,m 1 l,m T l4+1,m
|[—ieLm OV + dgym (VO] (6.99)

where ¢, = 2m/[I(l + 1)], and d; », is a constant that also depends upon ! and m. The equations
above appear in several sources; these agree with those of Ruiz et al. [58] (see their Eqgs. (84), (11),
(94), and (43), respectively).

In our case, however, we just treat the [ = 2 and m = £2 modes of the Regge-Wheeler and
Zerilli functions, and the momentum flux coming from these modes greatly simplifies. Because the

m = +2 modes are complex conjugates of one another, we find that the momentum flux is

P.(t) = =S¥ (o)) (6.100)

1
T
When we discuss the kick velocity as a function of time, we mean that we take minus the time
integral of the momentum flux, normalized by the total mass, i.e.,
. 1 [t.
Rk = —— [ P.(t)adt . (6.101)
M [y,

We continue to normalize by the total mass M, because numerical-relativity simulations have shown
that it changes only by roughly 4% during a black-hole-binary merger (see, e.g., Campanelli et al.

[52]); as a result, normalizing by the total mass M will not be a large source of error.
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Figure 6.12: The momentum flux, Pz(t), as function of time, for several values of 3 — By, where
Bo =~ 2157/192 is the value that gives nearly zero kick. We also include a straight green (light gray)
dashed line at zero flux to indicate how the momentum flux varies around this point.

6.5.3.3 Numerical Results for the Momentum Flux and Kick

We now show the results of our numerical solutions for the superkick configuration. We first show
in Fig. 6.12 the momentum flux for several different initial angles of the spins, 5. In the plots, we
subtract the value that gives nearly zero kick, which we denote by 8y ~ 2157/192. While the shape
of the pulse of momentum flux has a similar shape to that seen in numerical-relativity simulations
by Briigmann et al. [56], the absolute magnitude is somewhat larger.

The increased overall magnitude of the kick becomes more apparent when we plot viick () in Fig.
6.13, where vyick (t) is defined by Eq. (6.101). As one can see, the largest value of the kick is near 0.08
in dimensionless units, which is roughly a factor of 6 times larger than the estimated maximum from
numerical-relativity simulations at lower dimensionless spin parameters. This is largely because the

even-parity Zerilli function (proportional to the waveform) is also significantly larger in amplitude
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Figure 6.13: The kick as a function of time, for several different initial angles of the spin 8 — Jy.
There is also a straight green (light gray) dashed line at zero velocity to indicate how the kick varies
around this point.

than that of numerical-relativity simulations.
Nevertheless, we then show, in this model, that the kick depends sinusoidally upon the initial
orientation of the spins, as seen in numerical simulations by Campanelli et al. [52]. We plot the

kick

final value of the kick, vkick = v

(t), where ¢ is the last time in the simulation, as a function of
B — By in Fig. 6.14. The sinusoidal dependence in our model is exact up to numerical error. One can
see this must be the case from examining the form of our expression for the momentum flux, Eq.
(6.100). Because the evolution equations are not influenced by the orientation of the spins, then the
Zerilli function will be identical for different initial spin directions. The Regge-Wheeler function,
however, will evolve in the same way, but because the value on the matching surface is proportional
to e (1) Eq. (6.81), the different evolutions will also differ by an overall phase, ¢?®, where 3 is the
initial value of the spin. Thus, when one takes the imaginary part of product of the Regge-Wheeler

and Zerilli functions to get the momentum flux in Eq. (6.100), one will have sinusoidal dependence.
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Figure 6.14: The kick calculated for several initial values of 3, minus the angle that produces nearly
zero kick, By &~ 2157/192. The data points are calculated from the numerical evolutions of this
section, while the solid curve is a sinusoidal fit to the data. The hybrid model produces a sinusoidal
dependence of the kick on the initial angle 5 — Gy very precisely.

(In fact, we could have simply done one evolution and changed the phasing as described above to
find the above results; as a test of our method, however, we in fact performed the multiple evolutions
to confirm this idea.)

We close this section by making the following observation, which may be known, though we have
not seen in numerical-relativity results. Because the dependence on [ of the kick is sinusoidal, then
for each 3, B — 7 gives the same kick and momentum flux pattern, P, (t), just opposite in sign. At
the same time, though, because of the sinusoidal dependence there are two values that give rise to
the same kick in the same direction; however the shape of the momentum flux P, () is not the same
for these two. One can see this in Fig. 6.12, where the black dotted and dashed curve and minus
the red (gray) dotted and dashed curve give rise to the same kick; nevertheless, the pattern of the

momentum flux is very different. A careful study of this would reveal more about how the spins
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precess and would be of some interest.

6.6 Conclusions

In this paper, we extended a hybrid method for head-on mergers to treat inspiralling black-hole
binaries. We introduced a way to include a radiation-reaction force into the hybrid method, and
this led to a self-consistent set of equations that evolve the reduced-mass motion of the binary and
its gravitational waves. Using just PN and linear BHP theories, we were able to produce a full
inspiral-merger-ringdown waveform that agrees well in phase (though less well in amplitude) with
those seen in full numerical-relativity simulations. Even though the dynamics during inspiral follow
the modified dynamics of a point particle in Schwarzschild rather than the exact dynamics of a
black-hole binary, the phasing in the waveform agrees well. Because we assume the background is a
Schwarzschild black hole (rather than a Kerr, the true remnant of black-hole binary inspirals), the
merger and ringdown parts of the hybrid and numerical-relativity waveforms do not match as well.
Nevertheless, the hybrid method does produce a waveform that is quite similar to that of numerical
relativity.

We also studied spinning black holes, particularly the superkick configuration (antialigned spins
in the orbital plane). We discussed a method to incorporate spin precession, based on the geodetic
precession of a spinning point particle in the Schwarzschild spacetime. This caused the spins to
lock to the orbital motion during the merger and ringdown, which, in turn, helped to replicate
the pattern of the momentum flux and the sinusoidal dependence of the merged black hole’s kick
velocity seen in numerical simulations. Again, because the amplitude of the emitted gravitational
waves does not match that of numerical-relativity simulations, the magnitude of the kick does not
completely agree. Nevertheless, because the approximate method was able to capture the pattern
of the momentum flux, it gives credence to the idea the locking of the spin-precession frequency to
the orbital frequency contributes to large black-hole kicks.

It would be of interest to extend this approach to see if it can recover the results of numerical
relativity more precisely. To do this would involve a two-pronged approach: on the one hand, we
would need to include higher PN terms in the metric in the interior while using a more accurate
Hamiltonian to describe the conservative dynamics of the binary (such as the EOB Hamiltonian);
on the other hand, we would need to evolve the perturbations in a Kerr background. It would be
simpler to choose the Kerr background to have the spin of the final, merged black hole, but one
could also envision evolving perturbations in an adiabatically changing Kerr-like background with
a slowly varying mass and angular momentum parameter that change in response to the emitted
gravitational waves. It would be of interest to see if such an approach leads to an estimate of the spin
of the final black hole similar to that proposed by Buonanno, Kidder, and Lehner [69]. Incorporating

the PN corrections and a new Hamiltonian would be the most straightforward improvement, while
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those involving the Kerr background are technically more challenging, and computationally more

expensive.
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Chapter 7

Degeneracy in the Quasinormal-Mode Spec-
trum of Kerr Black Holes and Its Geomet-

ric Interpretation

There is a well-known, intuitive geometric correspondence between high-frequency quasi-
normal modes of Schwarzschild black holes and null geodesics that reside on the light-ring
(often called spherical photon orbits): the real part of the mode’s frequency relates to
the photon’s orbital frequency, and the imaginary part of the frequency corresponds to
the Lyapunov exponent of the orbit. This relation between modal and orbital frequencies
also holds for Kerr black holes for equatorial and polar orbits. For slowly rotating Kerr
black holes, there is a similar relationship between high-frequency modes and spherical
photon orbits: the quasinormal-mode’s real frequency relates to a linear combination of
a photon orbit’s precessional and orbital frequencies, and its imaginary frequency has
the same relationship with the Lyapunov exponent. In this paper, we find a similar
relationship between the quasinormal-mode frequencies of Kerr black holes of arbitrary
(astrophysical) spins and general spherical photon orbits. We do this using several differ-
ent methods—both geometric-optics and WKB analyses—which give comparable results.
We then apply our results to discuss a degeneracy in the quasinormal-mode spectrum of
Kerr black holes, and we show that this degeneracy has a simple geometrical interpreta-
tion in terms of the related spherical photon orbits. Specifically, we show that for any
black-hole spin parameter, a, there are sets of quasinormal modes with the same real

part of their frequencies, and their corresponding spherical photon orbits are closed.

Based on a paper in preparation by H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman,
and Y. Chen.
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7.1 Introduction

Quasinormal modes (QNMs) of black holes are the characteristic modes of linear perturbations of
these spacetimes. To represent the natural, resonant modes of black-hole perturbations, they satisfy
an outgoing boundary condition at infinity and an ingoing boundary condition at the horizon.
These modes oscillate and decay in time; therefore, they are characterized by complex frequencies,
w = wgr — twi. These frequencies are typically indexed by three numbers, n, [, and m. The overtone
number, n, is proportional to the rate of decay of the perturbation, and [ and m are multipolar
indices related to the angular eigenfunctions of the QNMs.

Since their discovery in numerical calculations of the scattering of gravitational waves around
Schwarzschild black holes by Vishveshwara [1], QNMs have been thoroughly studied in a wide range
of spacetimes and have found many applications. There are several reviews [2, 3, 4, 5, 6] that
summarize the many discoveries about QNMs. The earlier reviews by Kokkotas and Schmidt [2]
and Nollert [3] focus on the QNMs of Schwarzschild and Kerr black holes and on compact stars
in four (spacetime) dimensions. They describe how QNMs are defined, the many methods used to
calculate QNMs—e.g., estimating them from time-domain solutions [7], using shooting methods in
frequency-domain calculations [8], approximating them with inverse-potential approaches [9] and
WKB methods [10, 11], and numerically solving for them with continued-fraction techniques [12,
13]—and the ways to quantify the excitation of QNMs (see, e.g., [14, 15]). These first two reviews also
discuss the prospects for detecting QNMs in gravitational waves using interferometric gravitational-
wave detectors (such as LIGO [16] and VIRGO [17]) and for inferring astrophysical information from
them (see, e.g., [18, 19] for finding the mass and spin of black holes using QNMs).

The more recent reviews by Ferrari and Gualtieri [4], Berti et al. [5], and Konoplya and Zhidenko
[6] discuss similar topics, but they focus on more recent developments in the physics of gravitational
waves (such as quantifying the excitation of QNMs in numerical-relativity simulations of comparable-
mass, binary-black-hole mergers [20, 21] and ways to test the no-hair theorem with QNMs [23,
24]). In addition, these three reviews discuss the quasinormal modes of higher-dimensional and
asymptotically anti-de Sitter black holes (the latter in connection with the anti-de Sitter, conformal-
field-theory correspondence [25]). There have also been several other recent applications of QNMs.
For example, Zimmerman and Chen [26] (based on work by Mino and Brink [27]) study extensions to
the usual spectrum of modes generated in generic ringdowns. Dolan and Ottewill use eikonal methods
to approximate the modal wave function, and they use these functions to study the Green’s function

and to understand wave propagation in the Schwarzschild spacetime [28, 29, 30].

7.1.1 A Geometric Description of Quasinormal Modes

Although the discussion above highlights that QNMs are well-understood—and they can be cal-

culated quite precisely—it remains useful to develop intuitive and analytical descriptions of these
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modes. An important calculation in this direction was performed by Ferrari and Mashhoon [9], who
show that for a Schwarzschild black hole, the QNM frequency described by a multipolar index [ and

an overtone index n can be written in the eikonal (also called the geometric-optics) limit, { > 1, as
wr(14+1/2)Q—ix(n+1/2). (7.1)

The quantities Q and \ are the Keplerian frequency of the velocity-of-light circle (often called
a spherical photon orbit) and the Lyapunov exponent of the orbit, respectively. The Lyapunov
exponent A characterizes how quickly a congruence of null geodesics on the circular photon orbit
increases its cross section under infinitesimal radial perturbations [31, 30]. Equation (7.1) hints at
an intriguing physical description of QNMs: for modes whose wavelengths are much shorter than
the background curvature, the mode behaves as if it were sourced by a perturbation that rotates
on and diffuses away from the light ring on the time scale of the Lyapunov exponent. The reason
why the frequency is proportional to ! is somewhat subtle, but we can explain it with a simple
geometric-optics argument in Section 7.4.

Ferrari and Mashhoon [9] also gave an indication that a similar relationship should hold for
rotating black holes when they derived an analogous result to Eq. (7.1) for slowly rotating black

holes. They showed for I 2 m > 1, the real part of the frequency is given by

Q) ~ worp + (7.2)

m
7(‘]1‘67
I+ 1/27P

where we,p, is now the Keplerian orbital frequency for the circular photon orbit and wprec is the
Lense-Thiring-precession frequency of the orbit (which arises because of the slow rotation of the
black hole). The geometric-optics interpretation of a quasinormal modes has only one additional
complication for slowly rotating black holes (a < M), but again we will explain it with a similar
argument in Section 7.4. In fact, our reasoning works independently of the magnitude of the spin of
the black hole, and we find that we can write an expression for the real part of the QNM’s frequency

as a similar superposition of the orbital and precessional frequencies,
wr = Lwery + MWprec » (73)

(where we define L = [+ 1/2). Much of this paper is devoted to deriving and exploring the physical
interpretation of an approximate formula of the form of Eq. (7.3). We summarize the methods we

use to find this relationship in the next part of the Introduction, below.
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Figure 7.1: Low-overtone and low-multipolar-index QNM spectrum of Kerr black holes of three
spins with degenerate modes, computed using Leaver’s continued-fraction method [12]. Each panel
of the figure corresponds to a fixed spin, and two sets of modes are shown in each panel that have
pairs that are nearly degenerate with each other: those with a fixed positive m (for several | and
n) and those of a fixed negative m (again for several [ and n). In all three panels, we show only
the three lowest-overtone frequencies, n = 0, 1, and 2 (modes with larger n have larger values of
wy) and several values of [ (modes with larger [ have larger values of wr). In the left panel, we
plot QNM frequencies for a spin a/M = 0.69 and for two sets of modes, (I,m) = (k,2) (the black
symbols) and (I';m’) = (k+ 1, —2) (the blue symbols) for k = 3,...,9; in the middle panel, the spin
is a/M = 0.47, and we show modes with (I,m) = (k,3) (magenta symbols) and (I’,m’) = (k+1,-3)
(cyan symbols) for k = 3,...,9; finally, the right panel uses a spin a/M = 0.35 and depicts modes
with (I, m) = (k,4) (red symbols) and (I’,m’) = (k + 1, —4) (purple symbols) for k =5, ..., 10.

7.1.2 The Methods and Results of This Article

Equation (7.3) implies a geometric-optics interpretation of QNMs of Kerr black holes of arbitrary
astrophysical spins that, to the best of our knowledge, is not in the existing literature. To understand
why this may be true, we will describe the mechanics of computing QNMs in more detail.

For Schwarzschild and Kerr black holes, QNMs can be found by (i) separating the Teukolsky
equation [38] (a linear partial differential equation that describes the evolution of scalar, vector, and
gravitational perturbations of Schwarzschild and Kerr black holes) into linear ordinary differential
equations and (ii) finding the separation constants describing the QNM’s frequency, w, and the
angular separation constant, A;,,, by solving the eigenvalue problem subject to appropriate bound-
ary conditions on the ordinary differential equations. For a Schwarzschild black hole, the angular
separation constant is fixed by the spin of the perturbing field and the spherical symmetry of the
background to be A, =1(l+1)—s(s+1), and the radial differential equation (called the Teukolsky
radial equation) serves as the eigenvalue problem that determines the frequency of the QNM. Be-
cause the modal function is subject to an ingoing boundary condition at the horizon and an outgoing
boundary condition far from the black hole, the problem can be solved using WKB methods [10, 11].
For a Kerr black hole, one must now solve for the angular separation constant and the frequency of
the QNM simultaneously by solving the joint eigenvalue problem of the Teukolsky radial function
and the Teukolsky angular function (the solution of the ordinary differential equation describing the
polar-angle dependence of the perturbation). Because the radial and angular Teukolsky equations
both depend on the frequency and angular separation constant, directly applying WKB methods is

not as straightforward.
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This is not to say that there has been no work toward finding approximate eigenvalues and
developing a geometric-optics interpretation of QNMs of the Kerr spacetime. In addition to Ferrari
and Mashhoon’s [9] result for slowly rotating black holes, Kokkotas [32] and Iyer and Seidel [33] also
used WKB methods to compute the frequency of a QNM. Specifically, they performed an expansion
of the separation constants of the angular Teukolsky equation, Aj,, for small, dimensionless spin
parameters, a/M, and they inserted the expression into the radial Teukolsky equation to solve for
the frequency. In a different approach, Dolan developed a matched-expansion formalism for Kerr
black-holes of arbitrary spins, that can be applied to compute the frequency of QNMs, but only for
modes with [ = |m| and m = 0 [29].

In this article, we circumvent some of the difficulties in solving the joint eigenvalue problem of the
radial and angular Teukolsky equations by applying a change of variables to the angular equation
(which turns it into an equation that resembles a bound-state problem in quantum mechanics).
When written in this form, we can relate the angular separation constant to the multipolar indices
of a QNM through a Bohr-Sommerfeld condition that we call the angular WKB method. When
we combine this condition with the WKB method of [11] for the radial equation, we can then solve
for the frequency of a QNM and its angular separation constant in the eikonal limit (accurate to
terms of order 1/1). There is not a simple algebraic expression for the frequencies when we use the
full Bohr-Sommerfeld condition, however. We can find a simpler expression when we expand the
Bohr-Sommerfeld condition (in a Taylor series in terms of the numerically small parameter, aw/1)
to obtain an algebraic expression for the mode’s frequency. The frequency calculated through this
approximation can be written in the form of Eq. (7.3), and this approximate result agrees well with
the frequency computed using the method that includes all powers of aw/I. We also use a geometric-
optics correspondence to relate the conserved quantities of spherical photon orbits to the parameters
of a QNM (which, in turn, gives us a second way of computing the frequencies of a QNM).

The expression for the frequency of a QNM, Eq. (7.3), and the geometric-optics correspondence
with spherical photon orbits also allows us to develop better intuitive understanding of how the fre-
quency of the QNM behaves as a function of the black-hole’s spin parameter a/M. For Schwarzschild
black holes, the mode’s real frequency is independent of [, because the background is spherically
symmetric, and because all spherical photon orbits reside on the same surface (the velocity-of-light
circle at /M = 3). Ferrari and Mashhoon’s calculation showed that for slowly rotating black holes,
the mode’s real frequency depends upon the index m, because, for nearly equatorial orbits, the orbits
of different inclination angles are influenced by the dragging of inertial frames to slightly different
degrees; the orbital frequency of the photon orbit, however, does not differ from its value for a
Schwarzschild black hole at leading (zeroth) order in the spin parameter. From our calculations
for Kerr black holes of arbitrary spins, we see there are two contributions to the m dependence of

a QNM. There still is the frame-dragging effect for slowly rotating black holes, but there is also
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the fact that for rapidly rotating black holes, the spherical photon orbits for different inclination
angles no longer reside at the same radius. For highly spinning black holes, the orbital frequencies
of the spherical photon orbits at various radii can differ significantly, and they form an important
contribution to how the QNM’s frequency depends upon the index m.

We also use Eq. (7.3) to explain a degeneracy in the QNM spectrum of Kerr black holes of
specific spin parameters, in the eikonal limit. This degeneracy extends to small values of [ as well
(which we show in Fig. 7.1 for three spin parameters), though we are not aware of discussion of
this in the existing literature. The degeneracy occurs when the orbital and precession frequencies,
Worb and wpree are rationally related (i.e., Worb/wprec = p/q for integers p and ¢) at a specific spin
parameter. Then, by substituting this result into Eq. (7.3) one can easily see that modes with
multipolar indices [ and m become degenerate with those of indices I’ = [ + jq and m' = m — jp
for any non-negative integer j, in the eikonal limit. (Note that in Fig. 7.1, we show an approximate
degeneracy for j = 1 and for three spin parameters, such that p/q = 1/4, 1/6, and 1/8, respectively.)
For the corresponding geodesics, when their orbital and precession frequencies are rationally related,
the photon orbits are closed—a fact that we confirm by numerically comparing the frequencies of
closed photon orbits with those of the modes in the eikonal limit. This relationship between closed
orbits and degenerate modes evokes the more familiar example of degeneracy in the energy levels
of the hydrogen-atom in quantum mechanics and its relationship to the closed classical orbits of
the Coulomb potential [34]; as we argue in the concluding remarks, however, it origin is likely quite
different.

The remainder of this paper is organized as follows: In Section 7.2, we review wave propaga-
tion in the Kerr spacetime in the geometric-optics limit and the Teukolsky formalism for general,
small perturbations of Kerr black holes. By relating the two in the eikonal limit, we construct the
geometric-optics correspondence that we will use to associate conserved quantities of a geodesic to
the frequency and angular separation constant of a solution to the Teukolsky equation. In Sec-
tion 7.3, we relate the angular separation constant to the QNM frequency and multipolar indices [
and m through a Bohr-Sommerfeld quantization condition; when we combine this constraint with
the geometric-optics correspondence of Section 7.2 and either the WKB approximation or the as-
sumption of that the geodesics are spherical photon orbits, we have two ways of computing QNM
frequencies in the eikonal limit for any spin parameter a and azimuthal index m. We compare our
approximate frequencies computed from the different methods with one another and with the exact
frequencies computed numerically with Leaver’s continued-fraction method [12]. The methods agree
to within the errors of the calculation (that scale as 1/1). In Section 7.4, we discuss our approximate
formula for the frequency of the modes, its relation to closed photon orbits, and the relationship
between degeneracy in the QNM spectrum and closed photon orbits. Finally, in Section 7.5, we

conclude and discuss our results. We use geometrized units in which G = ¢ = 1 and the Einstein
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Mode Parameters Geodesic Quantities Physical Interpretation
R(w) & Energy
-S(w) A Lyapunov exponent
m L, Angular momentum about z-axis
R(Aim) Q+ L2~ 12 Total angular momentum (a = 0)
S(Am) nonzero because S(w) #0  See Section 7.2.2 for further discussion.

Table 7.1: The geometric-optics correspondence between the conserved quantities along geodesics
(&, L., and Q) and the parameters of a quasinormal mode (wr, wi, Aim, I, and m)

summation convention throughout this paper.

7.2 Geometric Optics and Teukolsky’s Equations

This section is primarily a review of wave-propagation around Kerr black holes. In the geometric
optics limit, perturbations of the Kerr spacetime obey the Hamilton-Jacobi equations for massless
particles near rotating black holes. Their orbits are characterized by the three conserved quantities
of geodesics in the Kerr spacetime, the specific energy £, the specific angular momentum about the
polar axis L., and the Carter constant Q. As noted in the Introduction, general perturbations of the
Kerr spacetime obey the Teukolsky equation, which, through separation of variables, can be reduced
into a joint eigenvalue problem consisting of the radial and angular Teukolsky equations, and the
unknown eigenvalues, the complex frequency w = wgr — iw; and the separation constant Ay,. In
the geometric optics limit, where [ > 1, we can relate the conserved quantities £, L,, and Q with
the eigenvalues w, and A, (and the multipolar indices I and m). We call the relationship between
geodesic and QNM parameters a geometric-optics correspondence, and it allows us to associate
a spherical photon orbit with a QNM. Much of this geometric-optics correspondence was well-
understood for Schwarzschild and slowly rotating black holes—& corresponds to wr and m relates
to L,—but we also show that for Kerr black holes that Carter’s constant Q is connected to the sum
of the angular separation constant A;,, and m2. In Table 7.1, we summarize the geometric-optics
correspondence for the quasinormal modes in the Kerr spacetime that we discuss in detail in the

remainder of this section.

7.2.1 Geometric Optics and the Hamilton-Jacobi Equations

In the first portion of this section, we review how localized waves propagate around a Kerr black
hole in the geometric-optics limit. An interesting feature of their wave propagation is that in the
limit in which the wavelength, A, is much smaller than the length scale associated with the radius

of curvature of the spacetime, R, the wave should obey the covariant wave equation,

ViV, u=0 (7.4)
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(V# is the covariant-derivative operator of the background Kerr black hole), independent of the spin
of the wave. Therefore, the function u can, in principle, be a scalar or tensor of any rank, though
we focus scalar functions of a fixed spin weight s. When we draw connections with Teukolsky’s
equation in the next part, u will represent the Weyl scalars ¥y or ¥, of the Newman-Penrose

formalism [35, 36]. A well-known way to simplify Eq. (7.4) is to write the wave function as
ult,0,¢,1) = Ae"SH00m) (7.5)

and to expand Eq. (7.4) in a series in the small variable A/R < 1. In performing this expansion, one
finds that terms proportional to 0,5 are larger than those that go as 0,0,S or those that involve

the background connection coefficients; consequently at leading order, the wave equation is
9""0,50,5 = 0. (7.6)

Thus, at leading order in A\/R < 1, S(t,0, ¢,r) satisfies the Hamilton-Jacobi equation for a
massless particle in curved spacetime, and S(t,0, ¢, r), therefore, is the Hamilton-Jacobi principal
function (see, e.g., [37]). Following an exercise in [37], one can prove that the principal function

S(t,0,¢,r) can be separated,
S(t,0,6,17) =Sy + Lo+ S, — &, (7.7)
where the functions Sy and S, are given by
s, :/A_l\/7_€dr, Sp :/V@dm (7.8)
and where R and © are given by

R = [E(r*+a?) — L.a]®> — A[(L. —a&)* + 9], (7.9)

O = Q—cos?O(L?/sin®0 —a’E?). (7.10)

Here £ denotes the particle’s specific energy, L, represents the particle’s specific angular momentum
along the z axis, and the quantity Q is used for labeling Carter’s constant; we also define A =
r2 —2Mr + a?.

By substituting the separated principal function into Eq. (7.5), one finds that the wave’s complete
function is given by

u(t,0,¢,r) = AetL=0=E1) 180 oiSr (7.11)

Any physical wave packet will contain a narrow range of energies, angular momenta, and Carter’s
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constants, given by an integral
u(t,0,¢,7) = / A€, Q, L,)e!F=0=E0 iS50 ciSr e q Q1L . (7.12)

Because the wavelength is so short, the phase is oscillating extremely quickly, and the integral will be
maximized in the vicinity of the coordinate values where the phase is nearly stationary (the extrema
of the phase with respect to the conserved quantities). The exercise in [37] shows that this occurs

precisely when the localized wave follows the trajectory of a massless particle (a null geodesic)

PQZ_E _ EQ—QMA(M"(LZ/S)7 (7.13)
22

pg% _ 2Mar + (p? —2MAT)(LZ/5)(1/s1n 9)7 (7.14)

dr VR ,d0 VO

fu = e P e (7.15)

with the orbital parameters given by £, L., and Q (and where ( is an affine parameter along null
rays and ¥2 = (72 + a?)? — a®Asin?0).

Teukolsky’s equations represent the propagation of gravitational perturbations on a rotating-
black-hole background; therefore, in the eikonal limit the dynamics of a localized, gravitational wave
packet should also satisfy the Hamilton-Jacobi equations. To make this correspondence, however,
we will need to relate the conserved quantities of the Hamilton-Jacobi function (€, L., and Q) to
the parameters of the Teukolsky equation (w, Ay, I, and m) in the eikonal limit. We, therefore,

review Teukolsky’s equations in the next section, and build the relationship between the two as well.

7.2.2 The Teukolsky Equations

Teukolsky showed in [38] that the master equation for perturbations of the Kerr spacetime can be
separated—i.e., one can write the full master function, which for the purposes of comparing to the

previous section we will also call u(t, 6, ¢,r), as
u = Ae wte™mPygu, . (7.16)

Here up and wu, are functions of only 6 and r, respectively. By comparing Eq. (7.11) and Eq.
(7.16), one must have that L, = m and £ = R(w) = wg, so that we can relate the Teukolsky and
Hamilton-Jacobi equations. The imaginary part of quasinormal-mode frequency cannot be obtained
from comparing the Teukolsky function to the Hamilton-Jacobi function, but it has been argued by,
e.g., [39, 29|, that the imaginary part of the frequency corresponds to the Lyapunov exponent A of
a bundle of light rays near the spherical photon orbits. To relate Carter’s constant, Q, to the other
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parameters of a QNM, we will need to look at the angular Teukolsky equation below:

1 d . dug 2 2 2 2 2
0 do (sm@w) + (a“w” cos” 0 — m=csc” 0 + Ay )ug
2mscost 5 o
- 2awscos€+.729+s cot°—s)upg = 0. (7.17)
sin

To bring this into a form that resembles the equation satisfied by the angular Hamilton-Jacobi

principal function, we define a variable

x = log (2 tan g) , (7.18)

(with dx = df/ sin 6), whose domain is —oo to oo (rather than 0 to 7 for 6).

To understand the angular Teukolsky equation in the eikonal limit (large 1), we will discuss the
scaling of the terms in Eq. (7.17) with {. Specifically, the angular separation constants, A;,,, behave
at leading order as I(I + 1) and the frequency wg is proportional to . Because m can take values
between —! and [, we will treat m as if it scales as [. The spin weight of the field, s is always small
compared to [ in the eikonal limit. As a result, the first set of terms multiplying up in Eq. (7.17)
scale as [2, and the second set of terms on the second line scale as [ or s, and are negligible in our
leading-order approximation. Expressing the equation in terms of x and taking the leading-order

expression in [, the angular Teukolsky equation becomes,

d2’lL9 0
where the potential is defined by
V? = a?w? cos® Osin? 0 — m? + Ay, sin 6. (7.20)

The potential V? is negative when x goes to +oo (or # goes to 0,7), and it is subject to the

mx —mx

boundary condition ug — €™* when x goes to —oo and ug — e when z goes to oo; these
boundary conditions ensure that the solution remains finite in these limits. The potential also
becomes positive for § around 7/2, which implies that Eq. (7.19) is mathematically equivalent to
a one-dimensional, bound-state problem in quantum mechanics. One can then solve this equation

approximately using a WKB procedure [11], in which, at leading order, the function uy is written as
up = €5 (@ (7.21)

where

Séo) () = / \/a2w2 cos? @sin? 0 — m?2 + Ay, sin? Odx . (7.22)
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By substituting de = df/sinf and using elementary trigonometric identities, we find that Séo) is
identical to the Hamilton-Jacobi principal function, Sy in Eq. (7.8), if we relate Carter’s constant

and the angular separation constant as shown below:
Apm = Q+m?. (7.23)

To ensure this is a consistent identification, we also compare the radial Teukolsky equation with
the radial Hamilton-Jacobi principal function. The Teukolsky radial equation can be written in a
compact form, using the tortoise coordinate, defined by dr./dr = (r? + a?)/A, as was originally
shown by Teukolsky [40]. Again, we keep only the leading-order terms in , in the eikonal limit, in
which the radial Teukolsky equation is given by

Pu, K2 — AN,

=0, 7.24

dr? (r2 + a?)? “ (7:24)
where

K = —w?+ad*)+am, (7.25)

N = Ay +a?w? — 2amw. (7.26)

One can again solve for u, using the WKB approximation at leading order by writing the radial
Teukolsky function as

uy = €5 (7.27)

where the function Sﬁo) satisfies

ﬂm&%i/AAMK?—A&%M. (7.28)

When we compare 59 with the radial Hamilton-Jacobi function, S, of Eq. (7.8) (where Eq. (7.9)
lists the explicit form of the function, R), we confirm the relation between Carter’s constant and
the angular separation constant in Eq. (7.23).

This equation allows us to make a geometric-optics interpretation of the angular eigenvalue,
Ajm: it is the Carter constant Q plus L2. For a Schwarzschild black hole (a/M = 0), the angular
eigenvalue is Ay, = (I + 1) — s(s + 1), and, consequently, in the eikonal limit, A;,, is the total
angular momentum; consequently, we can interpret the Carter constant as the square of the planar
part of the angular momentum.

For Kerr black holes, the angular separation constant for a QNM contains a small imaginary

part, and, consequently, it would be more precise to write the geometric-optics correspondence for
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Mwgr Mwy R(Apn)  S(Ain)
[=10,m =10 3.13816 0.080057 101.411 0.088654
l=10,m =5 252741 0.083521 101.753 0.12343
[=10,m=0 2.09746 0.089044 102.690 0.11126

Table 7.2: Numerical values of A, and w for a/M = 0.8, computed using Leaver’s continued-fraction
method. These values allow one to see that numerically S(A;,,) ~ alwrwr.

the real part only (i.e., R(A;n) = Q + m?). This naturally begs the question whether there is a
geometric interpretation of its imaginary part, (A, ), that cannot be obtained through Hamilton-
Jacobi theory (in analogy to wy being related the the Lyapunov exponent of a bundle of rays near the
spherical photon orbit). Although we do not have a definitive interpretation of (A, ), we briefly
comment on a few of its features. First, we note (see, e.g., [5]) that a nonvanishing 3(A;,,) happens
only when (w) # 0; and second, when we compute numerical values of w and Ay, (see those listed
in Table 7.2), we find that 3(Ay,) is close to the magnitude of a?wrwr. This may suggest that a
nonzero (Ap,) can be viewed as arising from a combined effect of frame dragging of individual
spherical photon orbits and dispersion of a bundle of these neighboring orbits (the time scale of
which is set by the Lyapunov exponent).

Despite the ambiguity in the geometric interpretation of the imaginary part of the angular
separation constant, the remaining conditions summarized in Table 7.1 are sufficient to allow us to
compute the frequency of a QNM and find its corresponding spherical photon orbits in the next

section.

7.3 Two Methods to Compute Quasinormal-Mode Frequen-

cies in the Eikonal Limit

In this section, we use the geometric-optics correspondence for large-I QNMs of the previous section
to find approximate expressions for wgr, wr, and Ay, and to relate them to the conserved quan-
tities of spherical photon orbits and the orbits themselves. We have two ways of computing the
frequencies, which use two different types of approximations that produce comparable results in the
eikonal limit. The first method assumes that the conserved quantities of the geodesics are those of
spherical photon orbits, and we call this method the geometric correspondence. Assuming a QNM
corresponds to a spherical photon orbit is not sufficient to determine the conserved quantities of the
orbit that correspond to a given set of QNM indices [ and m; one needs one additional condition.
A natural condition is a Bohr-Sommerfeld (BS) quantization condition, which we call the angular
WKB analysis, and which we describe in detail below. This condition completely determines all
three conserved quantities for the spherical photon orbit, and we can then use the geometric-optics

correspondence to find the QNM parameters wr, wi, and Ayy,.
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Our second method takes a completely different approach. For this approach, we use the leading-
order WKB approximation to the radial Teukolsky equation. Once again, to solve for the QNM
frequency and angular separation constant, we will need to use the additional angular WKB condi-
tion, which relates the angular eigenvalue A;,, to a QNM with particular wg and multipolar indices
I and m. There is no simple analytical expression for the frequency and separation constant from
the BS condition (written in all powers of aw/l), but when we Taylor expand the result to leading
(quadratic) order in aw/l, we find an expression that is nearly as accurate as the full BS condition,
but which can be written in an algebraic expression like Eq. (7.3). One can now use the geometric-
optics correspondence of the previous section in the other direction to find the three conserved
quantities for the spherical photon orbit corresponding to that QNM. We close the section by com-
paring the results of our methods to each other and to exact, numerical computations of the QNM
frequencies performed using Leaver’s continued-fraction method. We find the results are consistent
to the accuracy of the calculations; in turn, this confirms the different assumptions made in the two

methods.

7.3.1 Orbital Equations and the Geometric Correspondence

In the first of our two sets of methods, we will assume that the orbits that correspond to QNMs
continue to be spherical photon orbits of Kerr black holes (just as they related to the equivalent
spherical photon orbits for Schwarzschild and slowly rotating Kerr black holes). For Kerr black

holes, these orbits are parameterized by the two ratios of the conserved geodesic quantities,

r3(r® — 6Mr? +9M?r — 4a®M)

2 _
Q/E* = - 2(r = M)? , (7.29)
3 —3Mr? +a?r +a*M
L./ = - ol =) , (7.30)

which are completely determined by the fixed radius, r, of the spherical photon orbit, for a black
hole of a fixed mass and spin (see, e.g., [36]). If we were to try to use these two equations to find
the conserved geodesic quantities that correspond to a QNM of multipolar indices [ and m, then
even after using the geometric-optics correspondence L, = m, we have a system of two equations in
three unknowns, @, £, and r. To solve for these three unknowns, we need one additional equation

constraining these three variables. We now discuss the method for finding this third equation.
7.3.1.1 The WKB Method and the Angular Teukolsky Equation

The most direct way to obtain this additional constraint among r, £, and Q, is to note that the
angular part of the Hamilton-Jacobi principal function, Eq. (7.9) must fit approximately an integral
number of half-wavelengths in the region of # where the integrand in the square root is positive. This
condition is equivalent to the well-known Bohr-Sommerfeld quantization condition [32] for the one-

dimensional, bound-state problem satisfied by the angular part of the wave equation (or equivalently,
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the angular Teukolsky equation).! Specifically, when [ > 1, the BS quantization condition requires

that an orbit with multipolar indices [ and m satisfy

9+ ) 2 1
/’ \/Q— cos? 6(L2/ sin 9_¢ﬁgad9_.<z_|n4+-§>w. (7.31)

Here 6, and 0_ are the two classical turning points in the orbit, and they can be computed by

finding the points at which the integrand of Eq. (7.31) vanishes,
Q —cos? 04 (L?/sin? 0y — a’E?) = 0. (7.32)

By solving Eqgs. (7.29)—(7.30) and Eq. (7.31), we can find the orbital parameters £, Q, and r in
terms of the multipolar indices [ and m. We can then use the geometric-optics correspondence of
Table 7.1 to find wg and R(A;,,). We did not find a simple analytical expression for these variables,
and we present only numerical results in Section 7.3.1.3 and Section 7.4. To help us compute
semianalytical expressions for the frequency of a QNM, we will introduce a different condition
among the unknown orbital parameters £, Q, and r that can replace the more complicated angular

WKB expression, Eq. (7.31).
7.3.1.2 The Taylor-Expanded Bohr-Sommerfeld Condition

The Bohr-Sommerfeld constraint, Eq. (7.31), gives us a way to evaluate Q in terms of I, m, and
£, which is accurate to terms of order 1/I. Because the BS condition is an integral equation, it
is not particularly convenient to solve, and it would be beneficial to have an approximate, but
algebraic expression for the frequency of a QNM. With the benefit of hindsight, one can confirm
through numerical calculations of exact QNM frequencies performed using Leaver’s method that the
parameter aw/! is numerically a small number for all black hole spins. We can then expand Carter’s
constant in a series in aw/![ as

Q=0"4+0oW, (7.33)

where Q0 satisfies the equation
09 1
/ VOO —m2cot?f =r (l — |m| + 5) ; (7.34)
0%

and at leading order, 69,60% = +arcsinm/(l + 1/2 — |m/)]. One can verify that the solution to this
equation is the angular eigenvalue of a Schwarzschild black hole minus m?, Q) = (I +1/2)% — m?

(note that we are assuming ! > 1). Now we will compute the lowest-order perturbation in aw/I,

More details about Bohr-Sommerfeld quantization can be found in [41, 42, 43, 34]. This quantization condition
gives the exact result when [ approaches infinity in the classical limit.
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which turns out to be quadratic in this parameter below:

oW + q20w2 cos? 0

/9“ VU +1/2)2 —m?/sin® 6

d9=0. (7.35)

The integration limits 6, 6_ also can be expanded in a series in aw/l, and the lowest-order terms
of this series are given by 69,6°. The perturbation in 6,0_ would result in quartic corrections
in aw/l when we evaluate the integrals of Eqgs. (7.35) and (7.34), because the integrand is of order
(aw/1)? and the width of the correction in 6,0_ are also of order (aw/l)?. As a result, we will
not need it here. Evaluating the integral in Eq. (7.35) is straightforward, and we find that Carter’s

constant at first order can be written as

a’w? m?
=1(l+1)—m?*— 1- . 7.36
Q=+ —m == { l(l+1)] (7.36)
Interestingly, when one uses the geometric-optics correspondence A;,, = Q + m?2, the above

expression is consistent with the expansion of Ay, for small aw given in [22], even in the eikonal
limit, where aw is large. The reason for this fortuitous agreement is that for QNMs of Kerr black
hole of any spin, in the eikonal limit, aw/l can be verified to be small numerically, and the expansion
only involves even powers of this parameter, (aw/l)?. Because the coefficients in the expansion of

aw scale as 1/1¥ for even powers of (aw)* and 1/1**! for odd powers of (aw)*

, in the limit of large
l, the two series actually are equivalent in this eikonal limit. In principle, one can also expand and
solve Eq. (7.9) to higher orders in the parameter aw/l and compare with the expansion in aw in [22];
we expect that the two series should agree. This would be useful, because it would effectively let

one use the small aw expansion in the eikonal limit, where the series would, ostensibly, not be valid.
7.3.1.3 The Lyapunov Exponent and the Imaginary Part of the Frequency

The method described in the previous parts allows us to find & = wr and A;, = m? + Q for a
QNM of a fixed | and m. The imaginary part of w, however, is related to the (averaged) Lyapunov
exponent through the expression,

wr=An+1/2), (7.37)

and it can only be calculated after the spherical photon orbit is found with one of the two methods
approximate methods above. To compute the Lyapunov exponent (and then wy), we use the method
noted in [29] for calculating the Lyapunov exponent of polar orbits, and we apply it for modes with
arbitrary [ and m, in the eikonal limit, as we describe below. The Lyapunov exponent, A\, can be

defined by
A=/ =, (7.38)
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where, V. is defined as in [36, 29):

(/¢ -

S

V= ptE%(r —ry)? |:T‘2 + 2rrg —

We use rs to denote the spherical-photon-orbit radius, which can be determined by solving Eqs.
(7.29)—(7.30) and Eq. (7.31) or (7.36). For non-equatorial orbits, the averaged Lyapunov exponent
is defined by the average

+ .

oo g

A== AL 7.40
T/Z, Phad (7.40)

where the explicit integral is given by

5 2ri—a’(Q/E)'? / dz (7.41)
Trs = V(Q/E)(1 —22) — 2[L2/€2 —a?(1 - 22)] '
where z = cosf and T is the period for the given orbit,
2t t
T:2/ —dz. (7.42)
— 2

We have now described how to compute both the real part and the imaginary part of the
quasinormal-mode’s frequency in the eikonal limit, for any multipolar indices [ and m. We leave a
comparison of numerical results from this approximate methods and from Leaver’s continued-fraction

method [12] to Section 7.3.3.
7.3.1.4 Numerical Methods for Computing the Frequencies

For all values of m except when m = 0, we compute the frequency by using the Bohr-Sommerfeld
condition to relate Carter’s constant to the energy, which, through Eqs. (7.29) and (7.30), determines
the radius of the spherical photon orbit. Then, one can directly solve for the energy from Eq. (7.30),
using the geometric-optics correspondence that L, = m. This gives the real part of the frequency
from the geometric-optics relationship £ = wg, and one can then compute the imaginary part from
the real part. This procedure does not work when m = 0, because a polar orbit is completely
constrained to be at a specific radius given by a root of the numerator of Eq. (7.30). Consequently,
the radius of the photon orbit is already determined, and Eq. (7.29) is already a constraint between
Carter’s constant and the energy. If one combines this with the Taylor-expanded Bohr-Sommerfeld
condition, then the system of equations can be solved for the real part of the frequency,
(1+1)



221

where we are using F'(r) to denote the right-hand side of Eq. (7.29) evaluated at the correct spherical-
photon-orbit radius by solving for the correct root of the numerator in Eq. (7.30). This small
difference in computing the frequency does not have a large effect on the numerical results, for

m = 0.

7.3.2 The Radial WKB Method

In the last section, we discussed a method to derive the frequency of a QNM in the eikonal limit,
assuming that a QNM corresponded to a spherical photon orbit and using the geometric-optics
correspondence in Table 7.1. We presented two variations on this method, which differed only in
how they constrained the energy and Carter constant to the multipolar indices [ and m of the QNM
(to all orders in aw/l or to leading order). This gave us two systems of equations, Egs. (7.29)—(7.30)
and either Eq. (7.31) or Eq. (7.36) that we could solve to find 7, £, and Q as a function of I and
m (which we could then relate to the frequency and separation constant of the mode). We found
the imaginary part of the frequency by solving for the the Lyapunov exponent, Eq. (7.40), after we
made the correspondence. Although both approximations can produce numerical solutions for w for
a fixed [ and m, neither yielded simple analytical expressions for the modes’ frequencies.

In this section, we no longer assume that the corresponding geodesics to a QNM are spherical
photon orbits, but we directly evaluate the frequency and separation constant using the radial WKB
method with either the full or the Taylor-expanded angular WKB constraints. We can then use the
geometric-optics correspondence to confirm that the parameters of the corresponding geodesic are
those of a spherical photon orbit (and, in fact, are approximately those found from the two methods
of the previous section). When we combine the radial WKB approximation with the Taylor-expanded
Bohr-Sommerfeld condition, we obtain a pair of algebraic equations, which can be solved to give the
quasinormal mode’s frequency in terms of [ and m in the eikonal limit. We show that the expression
for wr has the simple form of Eq. (7.3) in Section 7.4, where we also discuss the degeneracy in the

QNM spectrum.
7.3.2.1 A WKB Analysis in Both the Angular and Radial Directions

In this part, we will approximate the joint eigenvalue problem defined by the angular and radial
Teukolsky equations, Egs. (7.19) and (7.24) by using the WKB approximation, in the eikonal limit.
The Teukolsky equations for the functions that depend upon 6 and r are

T2 + V(N w,0uy = 0, (7.44)
d*u, -
s +V'"(Nw,r)u, = 0. (7.45)

These equations look somewhat similar, but they are subject to different boundary conditions. At

the extents of the domain of the angular equation, z = 400, the potential is negative (V¢ < 0)
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and at those for the radial equation, r, = £o0, the potential is positive (V™ > 0). As a result, the
radial Teukolsky equation is analogous to a scattering problem, and the angular Teukolsky equation
is similar to a bound-state problem.

In [11], Iyer and Will performed a detailed WKB analysis on an arbitrary potential-barrier
scattering problem of the form of the radial equation, and they found an interesting result between

the curvature of the potential and the overtone number of the mode:

VOT

Here, we let n; denote the overtone number, V" be the value of the potential at its maximum, and

1

— Ar(nl) — Qr(nl) =ni + % . (746)

Vg" stand for the second derivative of the potential with respect to 7*, evaluated at the potential’s
maximum. The additional terms A" (n1) and €27 (n1) are two functions of nq and of derivatives of V"
(evaluated at the maximum of the potential) that are of a higher order in the WKB expansion than
the leading-order analysis of this paper. We will not need these terms in this paper, but interested
readers can find the explicit expressions in the first section of [11].

The WKB analysis in [11] cannot be used with the angular Teukolsky equation written in this
paper (a bound-state problem), because Eq. (7.46) is derived by expanding the potential around
its peak and matching two scattering solutions across this peak. Unlike the radial solution, where
the corresponding photon orbit is spherical and stays at the constant value of r at the peak of the
potential, for the angular solution, the spherical photon orbits travel over a wide range of 6 and are
not confined near the minimum of the potential, V¢, at 6y = m/2. Consequently, we cannot find an
expression analogous to Eq. (7.46), but we can use a Bohr-Sommerfeld quantization condition, Eq.

(7.31), for given values of | and m,

O+ m? 1
Al — —5— +a*w?cos?0df =7 (1 —|m|+ 5 |, (7.47)
_ sin” 0 2

to constrain the angular eigenvalue. The limits of the integration are the values of § where the

integrand vanishes,

2
sin29i=% 1+£1}"§—\/<1+£2’;> —32—7322 . (7.48)
One can easily verify that Eq. (7.47) holds for a Schwarzschild black hole. Making the substitution
z = cosf and directly evaluating the integral when a = 0, we find the equation above gives the
condition 7(y/Apn —|m|) & w(l—|m|+1/2), which is consistent with the angular separation constant
for a perturbation of a Schwarzschild black hole, A;,, =1(I 4+ 1) — s(s+ 1), in the eikonal limit.
Equations (7.46) and (7.47) define a joint eigenvalue problem for w and A, in the lowest order
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of the WKB approximation (the accuracy to which we work in this paper). The approach described
above could be straightforwardly generalized to arbitrary orders in the WKB approximation if one
were to keep the terms in the potentials of Egs. (7.19) and (7.24) that we dropped in our leading-order
calculation; this would let one get more accurate results for QNMs of smaller [.

To compute w = wr — iwy, we must solve the radial WKB formula at first order in the expansion.
Note that the radial formula has real and imaginary parts, while the angular formula, and its solution
for the angular separation constant A;,, is real. This occurs because the imaginary part of the radial
equation is of next-to-leading order in [ > 1, and we can neglect it when we solve for wg at leading
order. The maximum of the potential V" occurs at the real root of

r3 <1 + 2‘;%) — 3M72 + a?r <1 + M) +a*M =0, (7.49)

0
lm )\lm

which we denote by rg, and the WKB analysis further constrains this to be a zero of the potential,
Vo (wr) =0; (7.50)

combining these two conditions, we find that
[wr(r2 + a%) — am]® = A(ro) (Aim + a®w} — 2amuwnr) . (7.51)

Note that r is a function of wg at leading order, and Egs. (7.47), (7.49), and (7.51) must be solved
jointly given some [ and m, to find the frequency, wgr. The solution does not have a simple algebraic
expression, because it comes from a system of integral equations, but we can find an algebraic
expression for the frequency if we expand the Bohr-Sommerfeld condition to quadratic order in the
numerically small parameter aw/l. In the next part of this section, we do precisely this to derive
an expression of the form of Eq. (7.3) which, although approximate, agrees well with the full BS

condition for Kerr black holes of any spin parameter a.

7.3.2.2 The Radial WKB Method and the Taylor-Expanded Bohr-Sommerfeld Con-
dition

In this section, we will expand the BS condition in a Taylor series in aw/l; when we solve the

eigenvalue problem of the Taylor-expanded BS condition and the radial WKB equation, we derive

an approximate algebraic formula for the mode’s frequency. We begin by rewriting Eq. (7.36), the

expression that relates the angular separation constant to the multipolar indices I and m of the

QNM and its frequency (to quadratic order in aw/1):

A =104 1) - <1 _ zaan) . (7.52)
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Although this expression is strictly valid only for the real part, in the eikonal limit, the imaginary
part of both the frequency and the angular separation constant are small compared to their real part;
consequently, we can use this expression with the radial WKB equations, Eq. (7.24) and Eq. (7.25),
and keep only the leading-order result. One can then show that the radial separation constant is

given by

2,2 2
N =L+ a2w <1 + %) - 2amw , (7.53)

where L = /(I +1). At lowest order in the WKB approximation, the radial Teukolsky equation
states that
iVy /A/2VE" =n1+1/2, (7.54)

and, because wg is larger than wy in the eikonal limit, we can first solve for the real part wg by again
requiring Eq. (7.50) to hold. When we use the expression for Vj in Eq. (7.24), and we note that at
lowest order Eq. (7.50) reduces to K2 = A)!

lm>

we find that

2maMr + \/4m2a2M27°2 + (L2A = m2a?) [(r? + a?)? — a_;(l + T_j)]

WR = 7.55
7+ P - S0+ ) e

This quasinormal-mode frequency must be evaluated at the radius at which the potential, V", reaches
its maximum (denoted by r(), which itself depends upon wg; see Eq. (7.49). We note, therefore,
that we have an algebraic system of equations for ry and wg, defined by Egs. (7.49) and (7.55). To
compute the frequencies explicitly, we find it is most convenient to solve the systems of equations
numerically (which we do in Section 7.3.3). Note, also, that the frequency can be written in the

form

wp=Lf (T) , (7.56)
L
a fact that we will return to in the next section.

7.3.2.3 Decay Rate from the WKB Approximation

Finally, we describe how to compute the imaginary part of the frequency wy in terms of the quantities
Aym, 10, and wg, for which we have already solved. This can be computed directly from the imaginary

part of the radial WKB equation, Eq. (7.46), which gives

N (ovey ' oo
wr = (nl + §> ( au? wR> 2VOT (wR). (757)

We now have described how to solve for complex frequency, w, and the real part of the angular

separation constant. We will compare our solutions in the next section.
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Figure 7.2: Lowest-overtone, quasinormal-mode frequencies from the two methods discussed in Sec-
tions 7.3.1 and 7.3.2 using the Taylor-expanded Bohr-Sommerfeld condition, and the frequency
computed using Leaver’s method. We choose a/M = 0.8, we let I = 5 or [ = 10, and we show
values of m that range from -l to [ for both values of I (m increases from left to right). The group
of symbols on the left all correspond to [ = 5 and those on the right are those for [ = 10. The
black dots are the frequency calculated using the geometric correspondence, and the blue squares
are those computed using the radial WKB method. The red diamonds are the exact frequencies
found Leaver’s continued-fraction method. The relative accuracy (compared to Leaver’s method)
for I = 10 is within 1%. The [ = 10 calculations are more accurate than those for [ = 5, which one
would expect from approximations in the eikonal limit.

7.3.3 Numerical Results and Comparisons

In this part, we will describe the numerical calculations done with the two methods described in
Sections 7.3.1 and 7.3.2. We show the results in Fig. 7.2, in which we plot the lowest-overtone,
QNM frequencies for | = 5 and [ = 10 and for all valid values of m from —I to [ (m is increasing
from left to right in the figure). In the figure, the black circles are the results for the geometric
correspondence of Section 7.3.1, while the blue (lighter) diamonds are those for the radial WKB
(Section 7.3.2); both methods use the Taylor-expanded BS condition of Eq. (7.36). We do not show
the results for the full (non-expanded) BS condition, because they are indistinguishable from the
points shown in Fig. 7.2. We also include the numerical mode frequencies generated by Leaver’s
method [12] for comparison. Interestingly, both methods generate good estimates for the modes’
frequencies for [ = 10, even though [ is not very large.

Finally, we show in Fig. 7.3 the frequencies calculated using the radial WKB method with the
Taylor-expanded BS condition and those from Leaver’s method, as a function of [. Specifically, we
compare the m = 0 and m = +[ for [ = 4 to | = 15, and we find that the differences between the
radial WKB method of this paper and Leaver’s method scale as 1/I, which is consistent with the
errors for our calculation in the eikonal limit. We have also numerically investigated the convergence

for other values of [, and this statement seems to be quite general.
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Figure 7.3: A plot comparing the frequencies computed using the radial WKB method and Leaver’s
method for [ from 4 to 15. We focus here on frequencies with m = 4l and m = 0. The black
dots are the frequencies calculated numerically using Leaver’s method, and the blue squares are the
frequencies computed using the radial WKB method of this paper.

7.4 Degenerate Quasinormal Modes and Closed, Spherical
Photon Orbits

Our chief purpose in this section is to explore the approximate frequency formula, Eq. (7.55) in
greater detail. Specifically, we will show that an equation of the form of Eq. (7.3) can be derived
from Eq. (7.55) and that this equation has the same physical interpretation (i.e., the two frequencies
are approximately the orbital and precessional frequencies of the corresponding spherical photon
orbits). Next, we describe a natural consequence of the frequency formula that was discussed in
the introductory section. When the precessional and orbital frequencies are rationally related, then
there will be a countable sequence of modes whose frequencies are equivalent (i.e., degenerate);

furthermore, the spherical photon orbits corresponding to these modes must be closed.

7.4.1 An Expansion of the Mode’s Frequency

Because the expression for wg in Eq. (7.55) can be written as L f(m/L), we can define two frequen-

cies, 21 and 3, by defining

= () e () oo
Q = %"—mR:f/(%), (7.59)

where a prime denotes a derivative with respect to m/L. We cannot find a simple analytical expres-
sion for these frequencies, because the function f (m/L) contains the radius of the potential barrier’s

extrema, ro(m/L), for which we do not have an analytical expression; however it is easy to compute
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Q7 and Qs numerically. Regardless, a straightforward computation shows that wgr can be written as

a linear combination of the two frequencies €2; and 2s:

WR — LQl + mQQ . (760)

We can understand the physical meaning of ©; and Q2 by computing their leading-order ex-

pressions in a, so that we can interpret their meaning when a/M < 1. A short calculation shows

that
1 M
0 ==, 7.61
! V2TM = (7.61)
2a 25
D ~ — =2 7.62
2 2TM? 3 (7.62)

where rg is the circular photon orbit radius for a Schwarzschild black hole, ro/M = 3 and S/M = a.
The expression for 5 is the Keplerian frequency of the spherical photon orbit, and 2.5/7§ is the well-
known Lense-Thirring precessional frequency; thus, our formula recovers Ferrari and Mashhoon’s
result [9] in the slow rotation limit.

We briefly note that there are terms linear in a/M in the expansion for ; (that we neglected
at leading order), which come from expanding Eq. (7.58) and from the fact that the corresponding
spherical-photon-orbit radii change linearly in a/M (see Fig. 7.4). One can also understand this

latter fact, because the prograde and retrograde equatorial, circular orbits have radii, r; and rs,

M {1 + cos @ arccos (_%ﬂ } , (7.63)

= i s ()] ] -

which when expanded depends linearly on a/M. Thus, we see that the black holes’s spin has two

respectively, given by

1

effects on the mode’s frequency: it changes it from precessional effects and from the change in the
orbital frequency of the spherical-photon orbits at different radii.

It seems natural to guess, therefore, that €2 is still the orbital frequency of the corresponding
photon orbit and €25 is the precession frequency of that orbit—even for black holes with dimensionless
spins close to unity. Being more precise, we will call the orbital frequency, worp, the angular frequency

corresponding to one period of the motion along the # direction,

2
Worb = T (7.65)

where T is given in Eq. (7.42). The precession frequency, wprec, we will define by the change in
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Figure 7.4: The range of spherical-photon-orbit radii as a function of the spin parameter, a/M. The
lower curve represents the radii of corotating orbits (the corresponding modes have m = [), and
the upper curve shows the radii of counterrotating orbits (the corresponding modes have m = —I).
Between the two lines are the remaining orbits, and the corresponding modes have monotonically
decreasing m as one moves to greater radii (for a fixed spin a).

azimuthal angle minus 27, A¢, divided by the orbital period T', which can be conveniently written
as
A¢

Wprec = Eworb . (766)

Interestingly, E. Teo obtained a compact expression for A¢ in [44] in terms of elliptic integrals:

B 4 2Mr —alL,/E Zt L, 1 Z4 Zt
A¢_./z+—z, A K( z+—z>+5a1—z+n( 1—z2y " Vg —2- )]
(7.67)

Here we call z = cosf, and z; and z_ are cosf; and cosf_, where 61 were written below Eq.

(7.31); the functions K (x) and II(v, x) are the complete elliptic integrals of the first and third kinds,
respectively. Although we cannot definitively show that the frequencies 2; and €5 correspond to
orbital and precessional frequencies for black holes of arbitrary spins, we will argue for its plausibility
below, and we will show in the next part that for certain arbitrary values and orbits that the
correspondence is quite precise.

Thus, we now give a heuristic argument that 2; is the orbital frequency and €25 is the precession
frequency using reasoning based on geometric optics. The Hamilton-Jacobi principal function (i.e.,
the phase of the mode), L.¢(t) — Et + Sy + S, should be stationary; however, after one period of
motion in the 6 direction, T, Eq. (7.31) requires that phase now be given by

mA¢ — (L + mQe)T + 27(L — |m|) = 2nm, (7.68)
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where n is an integer, and where we have also substituted Eq. (7.60) for wg. For this to be stationary,

the coefficients of the L and m terms must be a multiple of 27, and one finds that

U = wo = (7.69)

27
T’
Ag¢

- (7.70)

Q2 = Wprec =

in the eikonal limit. We, therefore, argue that the real part of the quasinormal-mode frequency given

by Eq. (7.60) is equivalent to Eq. (7.3); i.e.,
wr = L +mQa = Lwerh, + Mwprec - (7.71)

We will confirm this heuristic argument in the next part.

7.4.2 Numerical Comparison of Precessional and Orbital Frequencies

To test the idea that the frequencies €27 and 25 correspond to the orbital and precessional frequen-
cies of the unstable photon orbits (worh, and wpree, respectively), we numerically solve the geodesic
equation to find werh, and wprec from the geodesics (the geodesics are plotted in the next section).
We solve the second-order geodesic equation,

d?xt dz® dzP

dCQ +I‘Maﬁd—<d—czo, (772)

(¢ is an affine parameter along the null rays, 2* are the Boyer-Lindquist coordinates {¢,r,6, ¢},
and T'#,3 are Christoffel symbols) rather than the first-order system Egs. (7.13)—(7.15), because
the 6 component of the geodesic’s tangent vector, df/d¢, goes to zero at 61 (the maximum and
minimum values of 6 for non-polar, non-equatorial orbits). For the first-order system, the numerical
solution stalls around these points, but when using the second-order system, however, the differential
equations take into account the  part of the geodesic’s curvature, d?6/d¢?, and the numerical
solution proceeds smoothly.

To find photon orbits for a given value of m/L and a, we use the Taylor-expanded Bohr-
Sommerfeld condition, Eq. (7.36), in addition to the conserved quantities of the geodesic, Egs.
(7.29) and (7.30), to compute the radius of the orbit; we can then directly compute the parame-
ters of the spherical photon orbit. Similarly, from this radius, we can use Egs. (7.58) and (7.59)
to find the frequencies €27 and 9. For concrete examples, we choose the spin parameters to be
a/M = 0.502, 0.612, and 0.768 (the reason for these values will be explained in the next section),
for which the unstable photon radii are r/M = 2.592, 2.459, and 2.222, respectively. We can then
choose the remaining initial values of the coordinates at { = 0 to be t =0, § = 0, and ¢ = 7/2

and use Egs. (7.13)—(7.15) to find the initial tangents to the geodesics (where we must also use Egs.
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a/M ro/M m/L MO MQ, Mwat  Mwprec
0.502 2592 0.5 0.19358 0.04849 0.19354 0.04837
0.612 2459 0.5 0.19390 0.06520 0.19379 0.06465
0.768 2.222 0.5 0.19355 0.09974 0.19330 0.09666

Table 7.3: For photon orbits at r/M = 2.221, 2.459, and 2.592 with m/L = 0.5 and for black holes
with spins a/M = 0.767, 0.611, 0.502, respectively, we show that the expansion of the real part of
the quasinormal-mode frequencies, wg = L1 + mfls, do lend themselves to the interpretation that
Q, is the #-orbital frequency, worn,, and {2 is the precessional frequency, wprec. The frequencies agree
to within one percent.

(7.29) and (7.30) to find the values of Q/£2? and L, /£).

Because the null geodesics are unstable spherical orbits, even though the initial conditions specify
solutions that should reside exactly on this sphere, numerical error causes the solutions to eventually
move away from the photon spheres. When the time scale of this error is larger than the period T,
we can compute the periods accurately despite this potential issue. We also compare these periods
with the periods found by holding the radii at precisely the photon spheres (to avoid the issue of
numerical error discussed above). The two methods agree well. We compute the orbital frequencies
as the inverse of the Boyer-Lindquist time, ¢, it takes for the geodesics to pass through the equatorial
plane in the direction of decreasing . We similarly keep track of the angles in ¢ that the geodesics
traverse during this time.

We summarize the results of these calculations in Table 7.3. We find that for the spins shown
here, the values of {2, agree with the orbital frequencies of the geodesics, woh, to within fractions
of a percent. The agreement of values of (> to the precession frequencies wprec are comparable.

Consequently, we have further evidence that Eq. (7.71) holds true.

7.4.3 Degeneracy in the Spectrum of Kerr Black Holes

With the decomposition of the real part of the quasinormal-mode frequency in Eq. (7.71), we are able
to connect the #-orbital frequencies and the ¢-precession frequencies of unstable photon orbits to the
corresponding decomposition of the quasinormal-mode frequencies. This relationship is particularly
interesting when, for specific values of m/L and spin parameters, a, the frequencies have a ratio
Worb/Wprec = P/ ¢ for integers p and ¢. In terms of the unstable null geodesics, the orbits must close,
because after every p cycles of latitudinal motion the particle also completes exactly g cycles of
azimuthal motion. In terms of the algebraic expression for the modes, Eq. (7.3), the real part of
the mode frequency for a given [ and m becomes degenerate with the real part of a mode frequency
with I’ =4 kq and m’ = m — kp for any non-negative integer k. Thus, one can relate degeneracies
in the spectrum of quasinormal modes of a Kerr black hole with closed photon orbits.

First we discuss how, given a quasinormal mode with multipolar indices, [ and m, and a rational

number, p/q, we can find the black-hole spin parameter, a, at which the ratio of the orbital and
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Figure 7.5: A diagram showing the spin parameters, a, and the ratios of the multipolar indices,
m/L, at which the orbital and precessional frequencies have a ratio of p/q. Although we only show
the points at which we performed our numerical calculations, in the eikonal limit, each set of points
for a given ratio of p/q approaches a continuous curve.

precessional frequencies of the quasinormal mode are p/q. We do this by solving the relationship

qth (a, %,To) = pfl2 (a, %, 7”0) (7.73)

(i.e., the statement that A¢p = 2¢w/p) for a, once we constrain the radius of the spherical photon
orbit, rg, to correspond to that of a mode with with multipolar indices I and m. Thus, we use
the Taylor-expanded Bohr-Sommerfeld condition, Eq. (7.36), and the conserved quantities of the
geodesic, Eqgs. (7.29) and (7.30) to calculate the radius of the orbit as a function of the unknown
parameter a. We can solve this system of equations numerically, which we do for a range of multipolar
indices m and ! (in the eikonal limit, where m/L approaches a continuum rather than discrete
values), and for several values of p/q. We plot the results of this calculation in what we call the
mode-degeneracy diagram in Fig. 7.5.

To understand the physical content of Fig. 7.5, it is helpful to describe the physics in terms of
the corresponding closed spherical photon orbits and to keep in mind the position of the radius
of the photon orbit in Fig. 7.4. When the black hole is not spinning, a = 0, there should be no
precession, and the ratio of the precessional to orbital frequencies is ¢/p = 0; moreover, orbits with
any value of m/L are closed, because they all form great circles of different inclinations on the light
ring /M = 3. For a fixed non-zero ratio of ¢/p, orbits with negative m/L (retrograde orbits) are
closed at larger spins than prograde orbits (positive m/L). This, too, is reasonable, because the
radius of the orbit is monotonically decreasing from negative to positive m/L, and, based on the

intuition from the small spin limit in Eq. (7.62), the ratio of the orbital to precessional frequencies
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Figure 7.6: For black holes with spins a/M = 0.768, 0.612, and 0.502, we show an unstable null
geodesic with wor, = 2wprec On the left, wor, = 3wprec in the center, and worh = 4wWprec On the right,
respectively. These orbits correspond with quasinormal modes in the eikonal limit with m/L = 0.5.
The top figures show the photon orbit (the red, solid curve) on its photon sphere (represented by a
transparent sphere). The dashed black line is the equatorial § = 7/2 plane, which was inserted for
reference. The bottom figures are the same photon orbits, but plotted in the ¢-6 plane, instead.

is an increasing function of radius and inversely proportional to spin; hence, to have the same ratio
for decreasing m/L, one must have an increasing black-hole spin. Thus, it is reasonable that the
curves of fixed p/q form monotonically decreasing curves when plotted in the (m/L)-a plane.

We close this section by showing closed photon orbits with m/L = 0.5 for black holes of spins
a/M = 0.768, 0.612, and 0.502 in Fig. 7.6 (going from left to right). The top panels show the
trajectories of the geodesics on their photon spheres (with the equatorial plane highlighted by a
dashed circle), and the bottom panels depict the same trajectories in the ¢-6 plane. We calculate
these geodesics as described in Section 7.4.1. The spins predicted from Fig. 7.5, a/M = 0.758, 0.609,

and 0.501, agree with the spins that give closed orbits quoted above to about one percent.

7.5 Conclusions and Discussion

This paper describes the correspondence between the motion of massless scalar particles in the Kerr
spacetime and the quasinormal modes of this black hole in the eikonal limit (I >> 1). The massless,
scalar particles obey the Hamilton-Jacobi equations, which, are very similar to the Teukolsky equa-
tions when [ > 1. By identifying terms in the Hamilton-Jacobi equations and Teukolsky equations,
we can relate the conserved quantities of the Hamilton-Jacobi equations to the eigenvalues of the
separated Teukolsky equations in a geometric-optics correspondence. Specifically, we found that the
real part of the angular eigenvalue is related to the sum of Carter’s constant and the square of the
angular momentum along the symmetry axis, and we confirmed that the energy corresponds to the
real part of the mode’s frequency and the Lyapunov exponent of the orbit relates to the imaginary-

part of the frequency. We found that the imaginary part of the angular eigenvalue is very small and
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non-zero because the imaginary part of the frequency is nonzero; the geometric interpretation of the
imaginary part of the angular constant remains an open question, however.

Combining the geometric-optics correspondence and a WKB analysis, we developed several ways
to calculate the quasinormal mode’s frequency in the eikonal limit. We obtained a semianalytical
formula for the frequency, which is a good approximation as long as [ > 1, but for any Kerr spin
parameter, a. With this formula, we showed that the modes’ frequencies in the eikonal limit are a
linear combination of the orbital and precession frequencies of the corresponding spherical photon
orbits. We found that when the orbital and precessional frequencies are rationally related—i.e.,
when the spherical photon orbits are closed—then the corresponding quasinormal mode frequencies
are also degenerate.

We hope that the approximate expressions for the quasinormal modes’ frequencies in this paper
will prove helpful for understanding wave propagation in the Kerr spacetime. The is not unreason-
able to suppose, because Dolan, Ottewill, and Wardell have shown in [30, 28, 45] that to analytically
calculate the Green’s function in the Schwarzschild spacetime, one needs to know analytical ex-
pressions for the frequency of the quasinormal modes (specifically, this comes from the fact that the
frequencies of the quasinormal mode enter as poles of the Green’s function in the frequency domain).
We, therefore, think that our approximate formulas could assist with the calculation of the Green’s
function in the Kerr spacetime, in future work.

Finally, we close this paper by discussing the relationship between degenerate modes and closed
orbits in greater detail. This relationship brings to mind the more well-known relationship between
closed classical orbits of a particle in a Coulomb potential and the degenerate quantum energy lev-
els of the hydrogen atom. In a more mathematical language, the degeneracy could be understood
from the fact that the hydrogen atom has an O(4) symmetry group, because there is an additional
vector (the quantum analog of the classical Laplace-Runge-Lenz vector) that commutes with the
Hamiltonian (see, e.g., the review [46] or more recent work in [47]). Aside from the obvious dif-
ferences between the classical perturbations of the Kerr spacetime and the quantum mechanics of
the hydrogen atom—the quasinormal modes are decaying oscillations in time, but the energy levels
of a hydrogen atom are time-independent eigenstates—there are some intriguing similarities: both
have nontrivial symmetries corresponding to conserved quantities for test-particle orbits (from a
Noetherian perspective, the O(4) symmetry gives rise to a conserved Laplace-Runge-Lenz vector for
the hydrogen atom, and a Killing tensor generates Carter’s constant for the Kerr spacetime), both
involve second-order eigenvalue problems, and both have degeneracies in their spectra.

Nevertheless, there is a somewhat different fundamental character about the degeneracy in the
quasinormal-mode spectrum of black holes and that of the hydrogen atom. In the absence of fine
structure, the energy levels of hydrogen depend upon only a single quantum number n, which is

one greater than the number of nodes in the wavefunction, and each level has a degeneracy of
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(I+1)2. The fact that it is enhanced over the (2/ + 1)-fold degeneracy that one would expect of a
spherically symmetric system with a multipolar index [ is precisely related to the existence of the
additional quantity that commutes with the Hamiltonian (i.e., the Laplace-Runge-Lenz vector in
the classical problem). For a Schwarzschild black hole, there is an exact (21 + 1)-fold degeneracy in
the quasinormal-mode spectrum for all [ (from the spherical symmetry of the background); there
are no additional symmetries that enhance the degeneracy, however. For a Kerr black hole, one
would naively expect that there is no degeneracy (because the spacetime is axisymmetric), but we
showed that in the eikonal limit, [ > 1, for a Kerr black hole of a given spin, there are a countable
number of distinct sequences of modes that are degenerate (each sequence corresponding to when the
orbital and precessional frequencies form a different ratio). Because the degeneracy is only precise
in the eikonal limit, it seems less likely that it is related to a symmetry of the Kerr spacetime (e.g.,
the Killing tensor and Carter’s constant), and more likely related to the properties of the spherical
photon orbits in Kerr (i.e., there are a continuum of photon orbits with precessional and orbital
frequencies that take on a real-valued, compact range of frequencies; there will be a dense subset of
frequencies where the orbital and precessional frequencies are rationally related and the orbits are
closed). While the outlook for finding whether there exists a deeper connection between the QNM
degeneracy and the closed orbits of Kerr black holes looks somewhat pessimistic, this, nevertheless,

remains an open question.
Bibliography
[1] C. V. Vishveshwara, Nature 227, 936 (1970).
[2] K. D. Kokkotas and B. Schmidt, Living Rev. Relativity 2, 2 (1999).
[3] H.-P. Nollert, Classical Quantum Gravity 16, R159, (1999).
[4] V. Ferrari and L. Gualtieri, Gen. Relativ. Gravit. 40, 945 (2008).
[5] E. Berti, V. Cardoso, A. O. Starinets, Classical Quantum Gravity 26, 163001 (2009).
[6] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011).
[7] M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. Lett. 27, 1466 (1971).
[8] S. Chandrasekhar and S. Detweiler, Proc. R. Soc. Lond. A 344, 441 (1975).
[9] V. Ferrari and B. Mashhoon, Phys. Rev. D 30, 295 (1984).
[10] B. F. Schutz and C. M. Will, Astrophys. J. 291, L33 (1985).
[11] S. Iyer and C. M. Will, Phys. Rev. D 35, 3621 (1987).

[12] E. W. Leaver, Proc. R. Soc. Lond. A 402, 285 (1985).



235

[13] H.-P. Nollert, Phys. Rev. D 47, 5253 (1993).

[14] E. W. Leaver, Phys. Rev. D 34, 384 (1986).

[15] Y. Sun and R. H. Price, Phys. Rev. D 38 1040 (1988).

[16] http://www.ligo.caltech.edu/

[17] http://www.ego-gw.it/public/virgo/virgo.aspx

[18] F. Echeverria, Phys. Rev. D 40, 3194 (1989).

[19] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4566 (1998).

[20] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D 75, 124018 (2007).

[21] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Briigmann,
Phys. Rev. D 76, 064034 (2007).

[22] E. Berti, V. Cardoso, and M. Casals, Phys. Rev. D 73,024013, (2006).

[23] O. Dreyer, B. Kelly, B. Krishnan, L. S. Finn, D. Garrison, and R. Lopez-Aleman, Classical
Quantum Gravity 21, 787 (2004).

[24] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73, 064030 (2006).

[25] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

[26] A. Zimmerman and Y. Chen, Phys. Rev. D 84, 084012 (2011).

[27] Y. Mino and J. Brink, Phys. Rev. D 78, 124015 (2008).

[28] S. R. Dolan and A. C. Ottewill, Classical Quantum Gravity 26, 225003 (2009).
29] S. R. Dolan, Phys. Rev. D 82, 104003 (2010).

[30] S. R. Dolan and A. C. Ottewill, Phys. Rev. D 84, 104002 (2011).

[31] V. Cardoso, A. S. Miransa, E. Berti, H. Witek, and V. T. Zanchin, Phys. Rev. D 79, 064016
(2009).

[32] K. D. Kokkotas, Classical Quantum Gravity 8, 2217 (1991).
[33] E. Seidel and S. Iyer, Phys. Rev. D 41, 374 (1990).
[34] R. Shankar Principals of Quantum Mechanics, (Plenum Press, New York, 1980).

[35] E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).



236

[36] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford,
1983).

[37] C. W. Misner, K. S. Thorne and J. A. Wheeler Gravitation, (W. H. Freeman, New York, 1973).
[38] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).

[39] B. Mashhoon, Phys. Rev. D 31, 290 (1985).

[40] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).

[41] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers
(McGraw Hill, New York, 1978).

[42] J. L. Dunheim, Phys. Rev. 41, 713 (1932).

[43] J. W. Guinn, C. M. Will; Y. Kojima, and B. F. Schutz, Classical Quantum Gravity 7, L47
(1990).

[44] E. Teo, Gen. Relativ. and Gravit. 35, 1909 (2003).
[45] B. Wardell, arXiv:0812.3853, (2008).
[46] M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966).

[47] Z.-B. Wu and J.-Y. Zeng, Phys. Rev. A 62, 032509 (2000).



237

Part 111

Visualizing Spacetime Curvature

with Frame-Drag Vortexes and

Tidal Tendexes
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Chapter 8

Frame-Dragging Vortexes and Tidal Ten-
dexes Attached to Colliding Black Holes:

Visualizing the Curvature of Spacetime

When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor)
gets split into an “electric” part £;;, that describes tidal gravity and a “magnetic” part Bj
that describes differential dragging of inertial frames. We introduce tools for visualizing
Bji (frame-drag vortex lines, their vorticity, and vortexes) and &j;, (tidal tendex lines,
their tendicity, and tendexes), and also visualizations of a black-hole horizon’s (scalar)
vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of curved

spacetime in merging black-hole binaries.

Originally published as R. Owen, J. Brink, Y. Chen, J. D. Kaplan, G. Lovelace, K. D.
Matthews, D. A. Nichols, M. A. Scheel, F. Zhang, A. Zimmerman, and K. S. Thorne,
Phys. Rev. Lett. 106, 151101 (2011).

8.1 Introduction

When one foliates spacetime with spacelike hypersurfaces, the Weyl curvature tensor Cy g5 (same
as the Riemann tensor in vacuum) splits into “electric” and “magnetic” parts £ = Oéjék and
Bir = %equcqué (see e.g., [1] and references therein); both £, and Bji are spatial, symmetric,
and trace-free. Here the indices are in the reference frame of “orthogonal observers” who move
orthogonal to the space slices; 0 is their time component, €;pq 15 their spatial Levi-Civita tensor, and
throughout we use units with ¢ = G = 1.

Because two orthogonal observers separated by a tiny spatial vector £ experience a relative tidal

acceleration Aa; = —&;EF, € is called the tidal field. And because a gyroscope at the tip of £
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(a) (b)

Figure 8.1: Vortexes (with positive vorticity blue, negative vorticity red) on the 2D event horizons
of spinning, colliding black holes, just before and just after merger. (A description of the simulation
can be found in [4].)

precesses due to frame dragging with an angular velocity AQ; = B;£" relative to inertial frames at

the tail of &, we call B, the frame-drag field.

8.2 Vortexes and Tendexes in Black-Hole Horizons

For a binary black hole, our space slices intersect the 3-dimensional (3D) event horizon in a 2D
horizon with inward unit normal N; By, therefore, is the rate the frame-drag angular velocity
around N increases as one moves inward through the horizon. Because of the connection between
rotation and vorticity, we call By n the horizon’s frame-drag vorticity, or simply its vorticity. Because
Bnn is boost-invariant along N [2], the horizon’s vorticity is independent of how fast the orthogonal
observers fall through the horizon, and is even unchanged if the observers hover immediately above
the horizon (the FIDOs of the “black-hole membrane paradigm” [3]).

Figure 8.1 shows snapshots of the horizon for two identical black holes with transverse, oppositely
directed spins S, colliding head on. Before the collision, each horizon has a negative-vorticity region
(red) centered on S, and a positive-vorticity region (blue) on the other side. We call these regions of
concentrated vorticity horizon vortexes. Our numerical simulation [4] shows the four vortexes being
transferred to the merged horizon (Fig. 8.1b), then retaining their identities, but sloshing between
positive and negative vorticity and gradually dying, as the hole settles into its final Schwarzschild
state; see the movie in [5].

Because £y n measures the strength of the tidal-stretching acceleration felt by orthogonal ob-
servers as they fall through (or hover above) the horizon, we call it the horizon’s tendicity (a word
coined by David Nichols from the Latin tendere, “to stretch”). On the two ends of the merged
horizon in Fig. 8.1b there are regions of strongly enhanced tendicity, called tendexes; see Fig. 8.5
below.

An orthogonal observer falling through the horizon carries an orthonormal tetrad consisting of
her 4-velocity U, the horizon’s inward normal N, and transverse vectors ez and eg. In the null tetrad
1= (U~-N)/v/2 (tangent to horizon generators), n = (U+N)/v/2, m = (ez+ies)/v/2, and m*, the

Newman-Penrose Weyl scalar Wy [6] is o = (Enn + iByn)/2. Here we use sign conventions of [7],
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appropriate for our (- +++) signature. Penrose and Rindler [8] define a complex scalar curvature
K =R/4+1iX /4 of the 2D horizon, with R its intrinsic (Ricci) scalar curvature (which characterizes
the horizon’s shape) and X proportional to the 2D curl of its Hajicek field [9] (the space-time part
of the 3D horizon’s extrinsic curvature). Penrose and Rindler show that K = —Ws + up — Ao, where
p, 0, i, and A are spin coeflicients related to the expansion and shear of the null vectors 1 and n,
respectively. In the limit of a shear- and expansion-free horizon (e.g., a quiescent black hole; Fig.
8.2a, b, and ¢), up — Ao vanishes, and K = —Uy (and, therefore, R = —2Eyy and X = —2Byny).

As the dimensionless spin parameter a/M of a quiescent (Kerr) black hole is increased, the scalar
curvature R = —2&Eyy at its poles decreases, becoming negative for a/M > v/3/2; see the blue spots
on the poles in Fig. 8.2b compared to solid red for the nonrotating hole in Fig. 8.2a. In our binary-
black-hole simulations, the contributions of the spin coefficients to K on the apparent horizons are
small (L2-norm < 1%); therefore, we find that R ~ —2Eyy and X ~ —2Byy, except for a time
interval ~ 5M;, near merger. Here M,y is the binary’s total mass. On the event horizon, the
duration of spin-coefficient contributions > 1% is somewhat longer, but we do not yet have a good
measure of it.

Because X is the 2D curl of a 2D vector, its integral over the 2D horizon vanishes. Therefore,
positive-vorticity regions must be balanced by negative-vorticity regions; it seems impossible to
have a horizon with just one vortex. By contrast, the Gauss-Bonnet theorem says the integral of
R over the 2D horizon is 87 (assuming Sy topology), which implies the horizon tendicity Enn is
predominantly negative (because Eyny ~ —R/2 and R is predominantly positive). Many black holes
have negative horizon tendicity everywhere (an exception is Fig. 8.2b); consequently, their horizon

tendexes must be distinguished by deviations of £y from a horizon-averaged value.

8.3 Three-Dimensional Vortex and Tendex Lines

The frame-drag field Bj;, is symmetric and trace free and, therefore, is fully characterized by its three
orthonormal eigenvectors e; and their eigenvalues Byj, Bss, and Bsz. We call the integral curves
along e; vortex lines, and their eigenvalue 833 those lines’ vorticity; we call a concentration of vortex
lines with large vorticity a vortexr. For the tidal field £;;, the analogous quantities are tendez lines,
tendicity and tendexes. For a nonrotating (Schwarzschild) black hole, we show a few tendex lines
in Fig. 8.2a; and for a rapidly-spinning black hole (Kerr metric with a/M = 0.95) we show tendex
lines in Fig. 8.2b and vortex lines in Fig. 8.2c.

If a person’s body (with length ¢) is oriented along a positive-tendicity tendex line (blue in Fig.
8.2a), she feels a head-to-foot compressional acceleration Aa = [tendicity|¢; for negative tendicity
(red) it is a stretch. If her body is oriented along a positive-vorticity vortex line (blue in Fig. 8.2c),
her head sees a gyroscope at her feet precess clockwise with angular speed AQ = |vorticity|¢, and

her feet see a gyroscope at her head also precess clockwise at the same rate. For negative vorticity
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(red), the precessions are counterclockwise.

For a nonrotating black hole, the stretching tendex lines are radial, and the squeezing ones lie
on spheres (Fig. 8.2a). When the hole is spun up to a/M = 0.95 (Fig. 8.2b), its toroidal tendex
lines acquire a spiral, and its poloidal tendex lines, when emerging from one polar region, return
to the other polar region. For any spinning Kerr hole (e.g., Fig. 8.2c), the vortex lines from each
polar region reach around the hole and return to the same region. The red vortex lines from the red
north polar region constitute a counterclockwise vortex; the blue ones from the south polar region
constitute a clockwise vortex.

As a dynamical example, consider a Schwarzschild black hole’s fundamental odd-parity | =
m = 2 quasinormal mode of pulsation, which is governed by Regge-Wheeler perturbation the-
ory [11] and has angular eigenfrequency 2Mw = (0.74734 — 0.17792i), with M being the hole’s
mass. From the perturbation equations, we have deduced the mode’s horizon vorticity: Byy =
R{9sin? 0/ (2iwM?) exp|2i¢ — iw(t + 2M)]}. (Here  is the ingoing Eddington-Finkelstein time co-
ordinate, and the mode’s Regge-Wheeler radial eigenfunction Q(r) is normalized to unity near the
horizon.) At time ¢ = 0, this By exhibits four horizon vortexes (red and blue in Fig. 8.2d), cen-
tered on the equator at (0,¢) = (7/2,1.159 + kx/2) (k = 0,1,2,3), and with central vorticities
Byn = —(—1)¥39.22/(2M)2. From analytic formulas for B;; and a numerical Q(r), we have de-
duced the equatorial-plane red vortex lines and vorticities shown in Fig. 8.2d. As time f passes,
the vortexes rotate counterclockwise, so they resemble water splayed out from a turning sprinkler.
The transition from near zone to wave zone is at /M ~ 4 (near the outermost part of the second
contour line). As one moves into the wave zone, each of the red vortexes is smoothly transformed
into a gravitational-wave trough and the 3D vortexes that emerge from the blue horizon vortexes

(concentrated in the dark region of this figure) are transformed into gravitational-wave crests.

8.4 Vortex and Tendex Evolutions in Binary Black Holes
(BBHs)

We have explored the evolution of frame-drag vortexes and tidal tendexes in numerical simulations
of three BBHs that differ greatly from one another.

Our first simulation (documented in [4] with movies in [5]) is the head-on, transverse-spin merger
depicted in Fig. 8.1 above, with spin magnitudes a/M = 0.5. As the holes approach each other then
merge, their 3D vortex lines, which originally link a horizon vortex to itself on a single hole (Fig.
8.2c), reconnect so that on the merged hole, they link one horizon vortex to the other of the same
polarity (Fig. 8.3a). After merger, the near-zone 3D vortexes slosh (their vorticity oscillates between
positive and negative), generating vortex loops (Fig. 8.3b) that travel outward as gravitational waves.

Our second simulation (documented in [12] with movies in [13]) is the inspiral and merger of two



242

Figure 8.2: Four different black holes, with horizons colored by their tendicity (upper two panels) or
vorticity (lower two panels), ranging from most negative (red) to most positive (blue), and with a
Kerr-Schild, horizon-penetrating foliation (Exercise 33.8 of Ref. [10]). (a) A nonrotating black hole
and its tendex lines; negative-tendicity lines are red and positive blue. (b) A rapidly rotating (Kerr)
black hole, with spin a/M = 0.95, and its tendex lines. (c) The same Kerr black hole and its vortex
lines. (d) Equatorial plane of a nonrotating black hole that is oscillating in an odd-parity I = m = 2
quasinormal mode, with negative-vorticity vortex lines emerging from red horizon vortexes. The
lines’ vorticities are indicated by contours and colors; the contour lines, in units (2M)~2 and going
outward from the hole, are -10, -8, -6, -4, -2.
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Figure 8.3: Head-on, transverse-spin simulation: (a) Shortly after merger, vortex lines link horizon
vortexes of same polarity (red to red; blue to blue). Lines are color coded by vorticity with a different
scale from that used to color the horizon. (b) Sloshing of near-zone vortexes modify vortex loops
traveling outward as gravitational waves; thick and thin lines are orthogonal vortex lines.
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Figure 8.4: Insets: snapshots of the common apparent horizon for the a/M = 0.95 anti-aligned
simulation, color coded by the horizon vorticity Byy. Graphs: Byy as a function of polar angle 6
at the azimuthal angle ¢ that bisects the four vortexes (along the black curves in snapshots)
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identical, fast-spinning holes (a/M = 0.95) with spins anti-aligned to the orbital angular momentum.
Figure 8.4 shows the evolution of the vorticity By on the common apparent horizon beginning
just after merger (at time t/Myoy = 3483), as seen in a frame that co-rotates with the small horizon
vortexes. In that frame, the small vortexes (which arise from the initial holes’ spins) appear to diffuse
into the two large central vortexes (which arise from the initial holes’ orbital angular momentum),
annihilating some of their vorticity. (This is similar to the diffusion and annihilation of magnetic field
lines with opposite polarity threading a horizon [3].) Making this heuristic description quantitative,
or disproving it, is an important challenge.

Our third simulation (with movies in [14]) is a variant of the “extreme-kick” merger studied by
Campanelli et al. [15] and others [16, 17]: two identical holes, merging from an initially circular orbit,
with oppositely directed spins a/M = 0.5 lying in the orbital (z,y) plane. In this case, the vortexes
and tendexes in the merged hole’s (z,y) plane rotate as shown in Fig. 8.2d. We have tuned the
initial conditions to make the final hole’s kick (nearly) maximal, in the +z direction. The following
considerations explain the origin of this maximized kick: In a plane gravitational wave, all the vortex
and tendex lines with nonzero eigenvalues lie in the wave fronts and make angles of 45 degrees to
each other (bottom inset of Fig. 8.5.) For vectors E (parallel to solid, positive-tendicity tendex
line) and B (parallel to dashed, positive-vorticity vortex line), E x B is in the wave’s propagation
direction.

Now, during and after merger, the black hole’s near-zone rotating tendex lines (top left inset in
Fig. 8.5) acquire accompanying vortex lines as they travel outward into the wave zone and become
gravitational waves; and the rotating near-zone vortex lines acquire accompanying tendex lines.
Because of the evolution-equation duality between &;; and B;;, the details of this wave formation
are essentially the same for the rotating tendex and vortex lines. Now, in the near zone, the vectors
E and B along the tendex and vortex lines (Fig. 8.5) make the same angle with respect to each
other as in a gravitational wave (45 degrees) and have E x B in the —z direction. This means that
the gravitational waves produced by the rotating near-zone tendex lines and those produced by the
rotating near-zone vortex lines will superpose constructively in the —z direction and destructively
in the +z direction, leading to a maximized gravitational-wave momentum flow in the —z direction
and maximized black-hole kick in the +z direction. An extension of this reasoning shows that the
black-hole kick velocity is sinusoidal in twice the angle between the merged hole’s near-zone rotating

vortexes and tendexes, in accord with simulations.

8.5 Conclusions

In our BBH simulations, the nonlinear dynamics of curved spacetime appears to be dominated by (i)
the transfer of spin-induced frame-drag vortexes from the initial holes to the final merged hole, (ii)

the creation of two large vortexes on the merged hole associated with the orbital angular momentum,
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Figure 8.5: Bottom inset: tendex and vortex lines for a plane gravitational wave; E x B is in
the propagation direction. Upper two insets: for the “extreme-kick simulation”, as seen looking
down the merged hole’s rotation axis (—z direction), the apparent horizon is color coded by the
horizon tendicity (left inset) and vorticity (right inset), and with 3D vortex lines and tendex lines
emerging from the horizon. The tendexes with the most positive tendicity (colored blue and labeled
by E) lead the positive-vorticity vortexes (also blue but labeled byB) by about 45° as they rotate
counterclockwise. This 45° lead is verified in the oscillating curves, which show the rotating By n
and Eyn projected onto a nonrotating ¢ = 2, m = 2 spherical harmonic.
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(iil) the subsequent sloshing, diffusion, and/or rotational motion of the spin-induced vortexes, (iv)
the formation of strong negative £y poloidal tendexes on the merged horizon at the locations of
the original two holes, associated with the horizon’s elongation, and a positive Exn tendex at the
neck where merger occurs, and (v) the oscillation, diffusion, and (or) circulatory motion of these
tendexes.

We conjecture that there is no other important dynamics in the merger and ringdown of BBHs. If
so, there are important consequences: (i) This could account for the surprising simplicity of the BBH
gravitational waveforms predicted by simulations. (ii) A systematic study of frame-drag vortexes
and tidal tendexes in BBH simulations may produce improved understanding of BBHs, including
their waveforms and kicks. The new waveform insights may lead to improved functional forms for
waveforms that are tuned via simulations to serve as templates in LIGO/VIRGO data analysis.
(iii) Approximation techniques that aim to smoothly cover the full spacetime of BBH mergers (e.g.,
the combined post-Newtonian and black-hole-perturbation theory method [18]) might be made to
capture accurately the structure and dynamics of frame-drag vortexes and tidal tendexes. If so,

these approximations may become powerful and accurate tools for generating BBH waveforms.
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Chapter 9

Classifying the Isolated Zeros of Asymp-
totic Gravitational Radiation with Tendex

and Vortex Lines

A new method to visualize the curvature of spacetime was recently proposed. This
method finds the eigenvectors of the electric and magnetic components of the Weyl tensor
and, in analogy to the field lines of electromagnetism, uses the eigenvectors’ integral
curves to illustrate the spacetime curvature. Here we use this approach, along with
well-known topological properties of fields on closed surfaces, to show that an arbitrary,
radiating, asymptotically flat spacetime must have points near null infinity where the
gravitational radiation vanishes. At the zeros of the gravitational radiation, the field of
integral curves develops singular features analogous to the critical points of a vector field.
We can, therefore, apply the topological classification of singular points of unoriented
lines as a method to describe the radiation field. We provide examples of the structure
of these points using linearized gravity and discuss an application to the extreme-kick

black-hole-binary merger.

Originally published as A. Zimmerman, D. A. Nichols, and F. Zhang, Phys. Rev. D 84,
044037 (2011).

9.1 Introduction

A recent study [1] proposed a method for visualizing spacetime curvature that is well-suited for
studying spacetimes evolved from initial data using numerical-relativity codes. The method first
projects the Riemann curvature tensor R,, s, into a spatial slice, thereby splitting it into two sym-

metric, trace-free spatial tensors, £ and B (see, e.g., [2] and the references therein). These tensors
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are the spacetime-curvature analogs of the electric and magnetic fields in Maxwell’s theory. The
electric tensor £ is familiar; it is the tidal field in the Newtonian limit. The frame-drag field B
(the magnetic curvature tensor) describes the differential precession of nearby inertial gyroscopes.
The eigenvectors of the tidal field provide the preferred directions of strain at a point in spacetime,
and its eigenvalues give the magnitude of the strain along those axes. Similarly, the eigenvectors
of the frame-drag field give preferred directions of differential precession of gyroscopes, and their
eigenvalues give the magnitude of this precession [1, 3, 4].

The study [1] then proposed using the integral curves of these eigenvectors as a way to visualize
the curvature of spacetime. Three orthogonal curves associated with £, called tendex lines, pass
through each point in spacetime. Along each tendex line there is a corresponding eigenvalue, which
is called the tendicity of the line. For the tensor B, there is a second set of three orthogonal
curves, the vortex lines, and their corresponding eigenvalues, the vorticities. These six curves are
analogous to the field lines of electromagnetism, and the six eigenvalues to the electric and magnetic
field strengths. The tendex and vortex lines, with their corresponding vorticities and tendicities,
represent very different physical phenomena from field lines of electromagnetism; they allow one to
visualize the aspects of spacetime curvature associated with tidal stretching and differential frame-
dragging. In addition, each set of curves satisfies the constraint that its eigenvalues sum to zero at
every point, because £ and B are trace-free.

Wherever the eigenvector fields are well-behaved, the tendex and vortex lines form extended,
continuous fields of lines in a spatial slice. At points where two (or more) eigenvectors have the same
eigenvalue, the eigenvectors are said to be degenerate. Any linear combination of the degenerate
eigenvectors at these points is still an eigenvector with the same eigenvalue; therefore, the span of
these eigenvectors forms a degenerate subspace. Singular features can appear at points of degeneracy,
where many lines intersect, terminate, or turn discontinuously. The topology of unoriented fields
of lines and their singular points has been studied both in the context of general relativity and
elsewhere. For example, Delmarcelle and Hesselink [5] investigated the theory of these systems and
applied them to real, symmetric two-dimensional tensors. In the context of relativity, Penrose and
Rindler [6] examined the topology of unoriented lines, or ridge systems, to characterize the principal
null directions about single points in spacetime. Finally, Penrose [7] also used ridge systems to
analyze human handprint and fingerprint patterns.

In this paper, we focus on the vortex and tendex lines and their singular points far from an
isolated, radiating source. In Section 9.2, we show that two of the vortex and tendex lines lie on
a sphere (the third, therefore, is normal to the sphere), and that the vortex and tendex lines have
the same eigenvalues. Moreover, the two eigenvalues on the sphere have opposite sign, and the
eigenvalue normal to the sphere has zero eigenvalue. This implies that the only singular points in

the lines occur where all eigenvalues vanish (i.e., when the curvature is exactly zero at the point,
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and all three eigenvectors are degenerate).

In Section 9.3 we employ a version of the Poincaré-Hopf theorem for fields of integral curves to
argue that there must be singular points where the curvature vanishes. Penrose, in a 1965 paper
[8], made a similar observation. There, he notes in passing that gravitational radiation must vanish
for topological reasons, although he does not discuss the point any further. Here we show that
the topological classification of singular points of ridge systems can be applied to the tendex and
vortex lines of gravitational radiation (which serves as a topological classification of the zeros of the
radiation field).

In Section 9.4, we visualize the tendex and vortex lines of radiating systems in linearized gravity.
We begin with radiation from a rotating mass-quadrupole moment, the dominant mode in most
astrophysical gravitational radiation. We then move to an idealized model of the “extreme-kick”
configuration (an equal-mass binary-black-hole merger with spins antialigned in the orbital plane [9]).
As we vary the magnitude of the spins in the extreme-kick configuration, we can relate the positions
of the singular points of the tendex and vortex patterns to the degree of beaming of gravitational
waves. We also visualize the radiation fields of individual higher-order multipole moments, which
serve, primarily, as examples of patterns with a large number of singularities. Astrophysically,
these higher multipoles would always be accompanied by a dominant quadrupole moment; we also,
therefore, look at a superposition of multipoles. Because the tendex lines depend nonlinearly upon
the multipoles, it is not apparent, a priori, how greatly small higher multipoles will change the
leading-order quadrupole pattern. Nevertheless, we see that for an equal-mass black-hole binary,
higher multipoles make only small changes to the tendex-line patterns. Finally, we discuss our results
in Section 9.5.

Throughout this paper we use Greek letters for spacetime coordinates in a coordinate basis and
Latin letters from the beginning of the alphabet for spatial indices in an orthonormal basis. We use
a spacetime signature (— + ++) and a corresponding normalization condition for our tetrad. We
will use geometric units, in which G = ¢ = 1.

We will also specialize to vacuum spacetimes, where the Riemann tensor is equal to the Weyl
tensor Cp0. To specify our slicing and to compute £ and B, we use a hypersurface-orthogonal,
timelike unit vector, ep, which we choose to be part of an orthonormal tetrad, (eo,eq,es,es).
We then perform a 3 + 1 split of the Weyl tensor by projecting it and its Hodge dual *C,,, 0 =

%ewo‘ﬁCaﬁ‘,p into this basis,

Eab - Ca,ubue()#e()y ) (91)

Bab = —* a#byeo“eo'/. (92)

Here our convention for the alternating tensor is that €y123 = +1 in an orthonormal basis. Note
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that, while the sign convention on B is not standard (see e.g., [10]), it has the advantage that €
and B obey constraints and evolution equations under the 3 + 1 split of spacetime that are directly
analogous to Maxwell’s equations of electromagnetism [2, 4]. After the projection, we will solve the

eigenvalue problem for the tensors £ and B in the orthonormal basis,
Eap?? = \vg (9.3)

and we will then find their streamlines in a coordinate basis via the differential equation relating a

curve to its tangent vector,
dxt

E = ’[}aea'u' . (94)

Here s is a parameter along the streamlines.

9.2 Gravitational Waves Near Null Infinity

Consider a vacuum, asymptotically flat spacetime that contains gravitational radiation from an
isolated source. We are specifically interested in the transverse modes of radiation on a large sphere,
S, near future null infinity. To describe these gravitational waves, we use an orthonormal tetrad
(eo,e1,e9,e3), with ey timelike and e9, es tangent to the sphere, and we associate with this tetrad
a corresponding complex null tetrad,

l= (eo +e1), n=—(ey—e1),

1
V2
1

m = —(es +te3), m=—=(ey —ies). 9.5

5(e2 +ies) \/5( 2 —ies) (9.5)

Here, 1 is tangent to outgoing null rays that pass through S and intersect a sphere at null infinity.
We enforce that the null tetrad is parallelly propagated along these rays, and that it is normalized
such that [,n* = —m,m" = —1 (all other inner products of the null tetrad vanish). With these
rays, we can associate Bondi-type coordinates (see, e.g., [11, 12]) on a sphere at future null infinity
with those on S. The timelike vector eg specifies our spatial slicing in this asymptotic region. When
the orthonormal and null tetrads are chosen as in Eq. (9.5), £ and B are related to the complex

Weyl scalars [13]. With the Newman-Penrose conventions appropriate to our metric signature (see,

e.g., [10]), and our conventions in Eqgs. (9.1) and (9.2), one can show that when written in a matrix

form,
20, Uy — 0y i(Uq + U3)
Eap+iBap=| x (o4 Ty)— Ty LWy — W) , (9.6)
* * —3(Wo + Uy) — Uy

where * indicates that the entries can be inferred from the symmetry of £ and B.

In an asymptotically flat spacetime, the peeling theorem [13] ensures that ¥, ~ r~! (with r
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an affine parameter along the rays), and that the remaining Weyl scalars fall off with progressively

5

higher powers of r, W3 ~ r72 Wy ~ r=3 U, ~ =4 and ¥y ~ r~°. Asymptotically, only U,

contributes to £ and B, and

Lfo 0o o
Eap+iBap=75 |0 Wa iV, | (9.7)
0 iU, -0y

¢

We see immediately that one eigenvector of both € and B is the “radial” basis vector e;, with
vanishing eigenvalue. The remaining 2 x 2 block is transverse and traceless, and the eigenvectors in
this subspace have a simple analytical solution. The eigenvalues are Ay = 4|¥4|/2 for both tensors,

and the eigenvectors of £ have the explicit form

—&azeg + (€22 — Ai)es

v+ = 5
\/523 + (E22 — Ax)?
ImVY,es + (RG\I’4 F |‘I’4|)€3 (9 8)
VImW,)% + (Re@y F [W4])
though the expression gives degenerate eigenvectors when £o3 = —ImW¥, = 0 (i.e., when es and e

are the eigenvectors).

The eigenvectors of B are locally rotated by +m/4 radians with respect to those of £ [4]. As
a result, although the global geometric pattern of vortex and tendex lines may differ, their local
pattern and their topological properties on S will be identical. Moreover, when the eigenvalues of
& (the tendicity of the corresponding tendex line) vanish, so must those of B (the vorticity of the
vortex lines). In arguing that the radiation must vanish, we can, therefore, focus on the tendex lines
on S without loss of generality. Physically, however, both the vortex and the tendex lines are of
interest. Similarly, because the two sets of tendex lines on S have equal and opposite eigenvalue and
are orthogonal, we need only consider the properties of a single field of unoriented lines on .S in order
to describe the topological properties of all four tendex and vortex lines on the sphere. Note that,
thus far, we leave the coordinates (z2,23) on S unspecified. We will assume that these coordinates
are everywhere nonsingular, for instance by being constructed from two smooth, overlapping charts

on S.

9.3 The Topology of Tendex Patterns Near Null Infinity

Before investigating the properties of the tendex lines on S, we first recall a few related properties
of vector fields on a 2-sphere. A well-known result regarding vector fields on a sphere is the “hairy-
ball” theorem. This result states, colloquially, that if a sphere is covered with hairs at each point,
the hair cannot be combed down everywhere without producing cowlicks or bald spots. The hairy-

ball theorem is a specific illustration of the Poincaré-Hopf theorem, applied to a 2-sphere. On a
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2-sphere, this theorem states that the sum of the indices of the zeros of a vector field must equal
the Euler characteristic, y, of the sphere, specifically y = 2. The index of a zero of a vector field
(also called a singular point) can be found intuitively by drawing a small circle around the point
and traveling once around the circle counterclockwise. The number of times the local vector field
rotates counterclockwise through an angle of 27 during this transit is the index. More precisely, we
can form a map from the points near a zero of the vector field to the unit circle. To do this consider
a closed, oriented curve in a neighborhood of the zero, and map each point on the curve to the unit
circle by associating the direction of the vector field at that point with a particular point on the
unit circle. The index is the degree of the map (the number of times the map covers the circle in a
positive sense). Around the zero of a vector field, the index is a positive or negative integer, because
the field must return to its original configuration as one completes a transit along the closed curve
surrounding the field’s zero point.

The concept of an index and the formal statement of the Poincaré-Hopf theorem generalizes
naturally to ridge systems (fields of unoriented lines, such as the tendex lines on S). For ridge
systems on the sphere, the index of a singular point can be a half-integer [5], because, intuitively,
fields of lines do not have an orientation (i.e., as one traverses counterclockwise about a small
circle around a singular point, the local pattern of lines can rotate through an angle of only +m
during the transit and still maintain a consistent pattern). We illustrate the two fundamental types
of singularities in Fig. 9.1, which, following [6], we call loops for index ¢ = 1/2 and triradii for
it = —1/2. One can argue that the Poincaré-Hopf Theorem holds for ridge systems, by noting that
we can create a singular point with integer index by bringing two half-index singularities together
(see Fig. 9.2 for a schematic of the creation of a singularity of index ¢ = 1 from two loop singularities).
Ridge patterns near singularities with integer index ¢ = 1 can be assigned orientations consistently;
they must, therefore, have the same topological properties as streamlines of vector fields (which, in
turn, have the same properties as the underlying vector fields themselves). By arguing that one can
always deform a ridge system so that its singular points have integer index, one can see that the sum
of the indices of a ridge system on a sphere must equal the Euler characteristic of the surface, x = 2
(see [5] and the references therein for a more formal statement and proof of this theorem). In Fig.
9.3 we show several other ridge singularities with integer index for completeness. In the top row,
we show three patterns with index ¢ = 1, and in the bottom left, we sketch a saddle-like singularity
with index ¢ = —1. All of these patterns can be consistently assigned an orientation and, thus, have
the same topological properties as vector-field singularities.

Having arrived at the result that the tendex lines on S must have singular points in a general,
asymptotically flat, vacuum spacetime, we now recall the fact that the singular points appear where
there is a degenerate eigenvalue of the tidal tensor. From the result of Section 9.2, the only de-

generacies occur where the curvature vanishes completely, and it follows, therefore, that there must
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Figure 9.1: Illustrations of the two types of half-index singularities for ridge systems on a two-
dimensional space. On the left is a loop singularity with index ¢ = 1/2, and on the right is a
triradius with ¢ = —1/2.

be points of vanishing curvature on S. In general, we would expect the radiation to vanish at a
minimum of four points, as Penrose [8] had previously noted. In this case, there would be four loop
singularities with index ¢ = 1/2, whose index sums to y = 2. As we highlight in Section 9.4, where
we show several examples of multipolar radiation in linearized theory, the number of singular points,
the types of singularities, and the pattern of the tendex lines contain additional information.
Additional symmetry, however, can modify the structure of the singular points, as we see in the
simple example of an axisymmetric, head-on collision of two nonspinning black holes. Axisymmetry
guarantees that the Weyl scalar Uy is purely real when we construct our tetrad, Eq. (9.5), by
choosing e; and e3 to be the orthonormal basis vectors of spherical polar coordinates on S, ey and
ey [14]. Using the relation Wy = —h, + ihy, we see that the waves are purely + polarized. By
substituting this relationship into Eq. (9.7), we also see that eg and ey are the eigenvectors whose
integral curves are the tendex lines. The tendex lines, therefore, are the lines of constant latitude
and longitude, and the singular points reside on the northern and southern poles of S. Their index
must be 7 = 1, and the local pattern at the singularity will resemble the pattern at the top left of
Fig. 9.3, for one set of lines, and the image on the top right of Fig. 9.3, for the other set (see also
[4]). In this special situation, axisymmetry demands that there be two singular points on the axis,
rather than four (or more). Moreover, these singular points are each generated from the coincidence
of two loop singularities, with one singular point at each end of the axis of symmetry. Similarly, if
U, were purely imaginary, then the radiation would only contain the x polarization. The rotations
of the unit spherical vectors by and angle of 7/4 would then be the eigenvectors of the tidal field,
and the two singularities at the poles would resemble that illustrated at the top middle of Fig. 9.3.
It is even conceivable that four loops could merge into one singular point. This singularity would
have the dipole-like pattern illustrated at the bottom right of Fig. 9.3, and it would have index
i = 2. Though this situation seems very special, we show in the next section how a finely tuned

linear combination of mass and current multipoles can give rise to this pattern. Because there is
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Figure 9.2: An illustration of the formation of a singularity with index ¢ = 1 from two loop singular-
ities with index ¢ = 1/2. The local structure of the two loops is shown in the top left, and the arrow
represents, schematically, how they might join together into the extended pattern at the top right.
Finally, the two loop singularities can be brought together until they coincide (which we represent
by an arrow pointing to the image at the bottom). This resulting local pattern can be assigned an
orientation and is equivalent to the singular point of a vector field.

only one zero, the radiation is beamed in the direction opposite the zero, resulting in a net flux of
momentum opposite the lone singular point.

Before concluding this section, we address two possible concerns. The scalar Uy = C,,,, pon*m”nm?
depends both on the curvature and on the chosen tetrad. We first emphasize that the singular points
we have discussed have nothing to do with tetrad considerations, in particular with the behavior of
the vectors tangent to the sphere, m, and m. Though these vectors will also become singular at
points on the sphere, we are free to use a different tetrad on S in these regions, just as we can cover
the sphere everywhere with smooth coordinates using overlapping charts. Secondly, the vanishing
of radiation does not occur because the null vector n coincides with a principal null direction of the
spacetime. We note that, if ¥, vanishes at a point on S, then a change of basis cannot make ¥,
(or any of the other curvature scalars) nonvanishing. For example, a rotation about ! by a complex

parameter a induces a transformation on the other basis vectors,

U = 1,
m = m+al,
m = m+al,

:\
[

n + am + am + aal . (9.9)
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Figure 9.3: Top row: Diagrams of three orientable ridge patterns, which can be made from a
combination of two loops, all with index ¢ = 1. Bottom row: On the left is an orientable ridge pattern
with index ¢ = —1 (which is identical to a saddle point of a vector field). It can be constructed by

joining two triradius singularities. The figure on the right shows a dipole-like pattern with index
1 = 2, which can come from the coincidence of four loops.

Under this rotation, ¥4 transforms as
V) = Uy +4a¥3 + 6a° Ty + 4330, + a' Uy, (9.10)

which vanishes when the Weyl scalars are zero in the original basis. The remaining scalars transform
analogously, and the other independent tetrad transformations are also homogeneous in the Weyl

scalars (see, e.g., [10]).

9.4 Examples from Linearized Gravity

We now give several examples of the tendex and vortex lines on S from weak-field, multipolar sources.
We first investigate quadrupolar radiation, produced by a time-varying quadrupole moment. For
many astrophysical sources, such as the inspiral of comparable-mass compact objects, the gravita-
tional radiation is predominantly quadrupolar. As a result, our calculations will capture features of
the radiation coming from these astrophysical systems. We will then study a combination of rotating
mass- and current-quadrupole moments that are locked in phase. The locking of these moments was
observed by Schnittman et al. [15] in their analysis of black-hole kicks using a multipolar decom-
position of the gravitational waveform (including that of the superkick merger). We conclude this
section by discussing isolated higher multipoles. Although it is unlikely that astrophysical sources

will contain only higher multipoles, it is still of interest to understand the tendex lines of these mul-
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tipoles. More importantly, while the tidal tensor is a linear combination of multipoles, the tendex
lines will depend nonlinearly on the different moments. Actual astrophysical sources will contain a
superposition of multipoles, and it is important to see how superpositions of multipoles change the
leading-order quadrupole pattern.

We perform our calculations in linearized theory about flat space, and we use spherical polar
coordinates and their corresponding unit vectors for our basis. One can compute from the multipolar
metric in [16] that for a symmetric, trace-free (STF) quadrupole moment Z,;, the leading-order

contributions to € and B on S are

_ 1 TT
g((lf)—Q) = __T |:(4)Iab(t - T) + Eac(4)ch(t - T)Edb} ) (911)
= 1 TT
Bl(li D= - {Ec(a(4)zb)c(t -r) (9.12)

Here, the superscript () indicates four time derivatives, T'T means to take the transverse-traceless
projection of the expression, and ¢, is the antisymmetric tensor on a sphere. In this expression,
and in what follows, the Latin indices run only over the basis vectors eg and e4, and repeated Latin

indices are summed over even when they are both lowered.

9.4.1 Rotating Mass Quadrupole

As our first example, we calculate the STF quadrupole moment of two equal point masses (with
mass M /2) separated by a distance, a, in the equatorial plane, and rotating at an orbital frequency

Q). We find that

(4)199 (t — 7")
W Tpg(t — 1)

Wyt = 1)

= Ma*Q*(1 + cos?0) cos{2[p — Qt —7)]},
= —2Mda*Q* cosfOsin{2[¢p — Q(t —7)]},

= —(4)I99 (t — T) . (913)

By substituting these expressions into Eqgs. (9.11) and (9.8), we find the eigenvectors of the tidal
field. We can then calculate the tendex lines on the sphere by solving Eq. (9.4) with a convenient

normalization of the parameter along the curves,

de 1

- = ~® Ty, (9.14)
s T

d¢ 1 (1)

ds Tsin9( Too = A+)- (9.15)

Here, A} is the positive eigenvalue. The differential equation for the vortex lines, found from the
corresponding frame-drag field of Eq. (9.12), has the same form as those of the tendex lines above;

however, one must replace (Y Zy4 in the first equation by (VZpe and 1 Zyg by —(D Ty, in the second
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equation.

We show the tendex and vortex lines corresponding to the positive eigenvalues in Figs. 9.4 and
9.5, respectively, at a retarded time t — r = 0. We also plot the magnitude of the eigenvalue on
the sphere, using a color scheme in which purple (darker) regions at the poles correspond to large
eigenvalues and yellow (lighter) colors near the equator are closer to zero. Both the tendex and
vortex lines have four equally spaced loop singularities on the equator at the points where the field
is zero (the two on the back side of the sphere are not shown). Because the vortex and tendex lines
must cross each other at an angle of w/4, the global geometric patterns are quite different.

We note here that these two figures also provide a visualization for the transverse-traceless,
“pure-spin” tensor spherical harmonics [16]. For example, we can see that the mass-quadrupole
tendex lines are the integral curves of the eigenvectors of the real part of the £ = 2, m = 2 electric-
type transverse-traceless tensor harmonic. First, the tendex lines correspond to the electric-type
harmonic, because the tidal tensor is even under parity. Second, the radiation pattern will not
contain an £ = 2, m = 0 harmonic, because the overall magnitude of the quadrupole moment of the
source is not changing in time; also, the £ = 2, m = 41 harmonics are absent, because the source is
an equal-mass binary and is symmetric under a rotation of 7 radians. Finally, the { =2, m = —2
moment is equal in magnitude to the m = 2 harmonic, because the tidal tensor is real. By similar
considerations, we can identify the vortex lines of the mass quadrupole as a visualization of the real
parts of the £ = 2, m = 2 magnetic-type tensor harmonics.

In addition, the eigenvalue (the identical color patterns of Figs. 9.4 and 9.5) is given by the

magnitude of the sum of spin-weighted spherical harmonics,

A < |—2Yas + _2Y2_ 9. (9.16)

One can see this most easily by using the symmetries described above, the expression for the eigen-
value A1 = |Uy|/2, and the spin-weighted spherical harmonic decomposition of ¥,4. It is also possible
to verify this expression using the tensor harmonics above and the standard relations between tensor
spherical harmonics and spin-weighted spherical harmonics (see, e.g., [16]). Radiation from numer-
ical spacetimes is usually decomposed into spin-weighted spherical harmonics, and, as a result, the
pattern of the eigenvalue is familiar. The tendex lines, however, also show the polarization pattern of
the waves on S (a feature that numerical simulations rarely explicitly highlight). Figure 9.4 (and the
accompanying negative-tendicity lines not shown) gives the directions of preferred strain on S, and,
hence, the wave’s polarization that can be inferred from gravitational-wave-interferometer networks
such as LIGO/VIRGO. Thus, visualizations such as Fig. 9.4 give complete information about the

gravitational waves passing through S.
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Figure 9.4: The positive tendex lines on S generated by a rotating quadrupole moment in linearized
gravity. The sphere is colored by the magnitude of the eigenvalue; purple (darker) areas at the
poles corresponding to a large eigenvalue, and yellow (lighter) areas near the equator indicate a
value closer to zero. Four loop singularities appear equally spaced on the equator at the points of
vanishing tendicity.

Figure 9.5: As in Fig. 9.4, we show the positive vortex lines and their magnitude of the eigenvalue
on S (using the same coloring as in that figure). The loop singularities lie at the same locations as
they do for the tendex lines, but they are locally rotated by /4 radians.
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9.4.2 Rotating Mass and Current Quadrupoles in Phase

As our second example, we will consider a source that also has a time-varying current-quadrupole
moment, Sgp. In linearized theory, one can show that the tidal tensor and frame-drag field of a current
quadrupole are related simply to those of a mass quadrupole. In fact, B, of the current quadrupole
has exactly the same form as £ of a mass quadrupole, Eq. (9.11), when one replaces T, by
4/ 3)(4)Sab. Similarly, £, of the current quadrupole is identical to By of a mass quadrupole, Eq.
(9.12), when T, is replaced by —(4/3)*Sy.

We impose that the source’s mass- and current-quadrupole moments rotate in phase, with fre-
quency 2, and with the current quadrupole lagging in phase by 7/2 radians. This arrangement
of multipoles models the lowest multipoles during the merger and ringdown of the extreme-kick
configuration (a collision of equal-mass black holes in a quasicircular orbit that have spins of equal
magnitude lying in the orbital plane, but pointing in opposite directions), when the mass- and
current-quadrupole moments rotate in phase [15]. The relative amplitude of the mass- and current-
multipoles depends upon, among other variables, the amplitude of the black-holes’ spin. We, there-
fore, include a free parameter C' in the strength of the current quadrupole which represents the effect
of changing the spin. An order-of-magnitude estimate based on two fast-spinning holes orbiting near
the end of their inspiral indicates that their amplitudes could be nearly equal, C = O(1). To de-
termine the exact relative amplitude of the mass- and current-quadrupole moments of the radiation
would require comparison with numerical-relativity results.

We calculate the current-quadrupole moment by scaling the mass quadrupole by the appropriate
factor of C' and letting the term 2[¢p—Q(t—r)] in the equations for Z,;(t—r) become 2[¢p—Q(t—71)]—7/2
in the corresponding expressions for Sy (t — 7). In linearized theory, the tidal tensor and frame-drag
fields of the different multipoles add directly. As a result, the equations for the tendex lines have
the same form as Eqgs. (9.14) and (9.15), but one must now replace the mass quadrupole (4)Ig¢ by
DTpy — (4/3) DSy in the first expression and MZgg by D Zpg + (4/3)HSp, in the second.

First, we allow the current quadrupole to be half as large as the mass quadrupole, C = 1/2.
We show the positive tendex lines and positive eigenvalue in Fig. 9.6. Because of the relative phase
and amplitude of the two moments, the tensors add constructively in the northern hemisphere and
destructively in the southern hemisphere on S. This is evident in the eigenvalue on the sphere in

Fig. 9.6, which, one can argue, is now given by an unequal superposition of
A X |_2ng + b_2Y'2_2| , (9.17)

with b < 1. As in previous figures, dark colors (black and purple) represent where the eigenvalue is
large, and light colors (white and yellow) show where it is nearly zero. Although the singular points

are still equally spaced on a line of constant latitude, they no longer reside on the equator; they now
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Figure 9.6: The positive tendex lines on S generated by the superposition of rotating mass- and
current-quadrupole moments, 7/2 radians out of phase, in linearized gravity. The sphere is colored
by the tendicity as in Fig. 9.4. Interference between the moments leads to beaming of the radiation
toward the northern pole. Similarly, the singular points of the tendex lines now fall on a line of
constant latitude in the southern hemisphere.

fall in the southern hemisphere. This is a direct consequence of the beaming of radiation toward the
northern pole.

The case shown above has strong beaming, but it is possible to make the beaming more pro-
nounced. To get the greatest interference of the multipoles, the mass and current quadrupoles must
have equal amplitude in the tidal field. Because the tidal field of the current quadrupole is 4/3 as
large as the tidal field of the mass quadrupole, setting C' = 3/4 gives the strongest constructive
interference in the tidal fields. In this case, the eigenvalue vanishes at just one point, the southern
pole, and the eigenvalue can be shown to be proportional to just a single spin-weighted spherical
harmonic,

>\+ X |_2}/22| . (918)

As a result, the four equally spaced singular points of the tendex lines must coincide at one singular
point whose index must be ¢ = 2. This is precisely the dipole-like pattern depicted in Fig. 9.3. We
show the tendex lines around the south pole in Fig. 9.7. The vortex lines are identical to the tendex
lines, but they are globally rotated by 7 /4 radians in this specific case.

We see that the beaming can be maximized by carefully tuning the phase and amplitude of
the mass- and current-quadrupole moments. Interestingly, the maximally beamed configuration
corresponds with the coincidence of all singular points at the south pole in the radiation zone.

Whether this degree of beaming could occur from astrophysical sources is an open question.



Figure 9.7: Southern polar region of the tendex-line pattern of a gravitational wave generated by
rotating mass- and current-quadrupole moments. The amplitude and phase of the moments are
chosen so that the radiation vanishes only at the southern pole. The purple (darker) areas indicate
a positive eigenvalue, while yellow (lighter) areas are values closer to zero. The singularity at the
pole has index i = 2.

9.4.3 Higher Multipoles of Rotating Point Masses

We also investigate the effect of including higher multipoles on the tendex lines on S. For the orbiting,
nonspinning, point masses of the first example, the next two lowest multipoles arise from the current
octopole (the £ = 3 STF moment [16]) and the mass hexadecapole (the £ = 4 STF moment). From

the multipolar metric in [16], one can show that the tidal field for these two moments are

1 TT

(=3 5

& = -5 [ec(a( ) Spyen (t — r)} , (9.19)
_ 1 TT

gﬁb_4 = _% [(G)Iabrr (t - 7") + eacedb(4)chrr(t - 7"):| ) (920)

where the index r indicates contraction with the radial basis vector e,, and repeated r indices
are not being summed over. The STF current-octopole moment, can be expressed compactly as
Sijk = (Lé\,xixg)STF, where LY is the Newtonian angular momentum and ;qu is the position of one
of the point masses. The superscript STF indicates that all indices should be symmetrized, and all
traces removed. In Cartesian coordinates, the vectors have the simple forms Ly = (0,0, Mav/4)
and x4 = (a/2)(cos[Q2t], sin[Qt], 0), where 2 is the Keplerian frequency and v is the relative velocity.
Similarly, one can write the STF mass-hexadecapole moment as Z;ji = M (xféxxile%x%)STF, for the

same vector a7, as above. Because these tensors have many components, we shall only list those

that are relevant for finding the tendex lines. We will also define ao = ¢ — Q(t — r) for convenience.
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For the current octopole the relevant components are

Ma3vQP

©)Spor(t —1) = BT (5 cosf + 3 cos 30) sin 2a,
Ma3vQ®
OV Sppr(t —7) = —% cos 26 cos 2a,
Oyt —1) = =O1Spg,(t —1), (9.21)

and for the mass hexadecapole, they are

©) Ma'Q® e >
Toorr(t — 1) = [(cos® 6 + cos 40) cos 2ac — 128 sin” §(1 + cos” 0) cos 4a ,
Ma*Qb
O Tyt —1) = — a4 [cos 30 sin 2a — 128 sin” @ cos ' sin 4a] , (9.22)
(6)I¢¢7‘r (t - ’f‘) - _(G)IOOTT (t - T) . (923)

The tendex lines of the current octopole can be found by solving the system of differential equations
in Egs. (9.14) and (9.15) by substituting (VZps by (*)Sgg,./2 and D Zgy by —)Spy,./2 Similarly,
for the mass hexadecapole, one must make the substitutions of M Zyg by Zp,,../12 and Ty by
(S)Iggrr/12 in the same equations.

In Fig. 9.8 we show the tendex lines for the current octopole, and in Fig. 9.9 we show the
lines for the mass hexadecapole. Together with the mass quadrupole, Fig. 9.4, these are the three
lowest multipole moments for the equal-mass circular binary. For the current octopole, there are
eight triradius singular points and 12 loop singularities (and thus the net index is two). Four of
the loop singularities remain equally spaced on the equator, at the same position of those of the
quadrupole, but the remaining singularities appear at different points on S. The mass hexadecapole
has eight loop singularities equally spaced on the equator, and there are integer-index, saddle-point-
like singularities at each pole.

Gravitational radiation from astrophysical sources will likely not be dominated by these higher
multipoles. Nevertheless, these figures are of interest as examples of tendex lines with many singular
points and as visualizations of tensor harmonics. By analyzing the symmetries in a way analogous
to that discussed in Section 9.4.1, we can identify the current-octopole tendex lines with the integral
curves of { = 3, m = 2 magnetic-type harmonics, and we can associate the mass-hexadecapole lines
with those of the ¢ = 4, m = 4 electric-type harmonics. In the case of the mass hexadecapole,
the m = 2 moment is not ruled out by symmetry, but it is suppressed relative to the m = 4
moment. This occurs because the m = 4 moment oscillates at twice the frequency of the m = 2
moment, and the tidal tensor for this higher-order moment is given by taking six time derivatives
of the STF moment, Eq. (9.23). This enhances the m = 4 radiation by a factor of 26 over the

m = 2 contribution. Similarly, we can relate the eigenvalue to the magnitude of the corresponding
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Figure 9.8: The tendex lines of a current-octopole moment of an equal-mass, circular binary of point
masses. The colors on the sphere represent the tendicity, with the same scale described in Fig. 9.4.
The current octopole also has four loop singularities on the equator (at the same position of those
of the rotating quadrupole), but it has eight additional loops and eight triradius singularities away
from the equator. Only half of the singular points are visible on the sphere; the other half appear
on the back side.

sum of s = —2 spin-weighted spherical harmonics, and the tendex-line patterns to the polarization
directions that could be inferred from networks of gravitational-wave interferometers.

Finally, we show the tendex lines generated from the linear combination of the three lowest
multipole moments in Fig. 9.10. Any astrophysical source will contain several multipoles, with the
quadrupole being the largest. The tendex lines depend nonlinearly on the multipoles, and it is
important, therefore, to see to what extent higher multipoles change the overall pattern. We find
the total tidal tensor by linearly combining the tidal tensor of each individual moment, and we
then find the eigenvectors and tendex lines of the total tidal tensor. The pattern formed from the
combination of multipoles depends upon the parameters of the binary; in making this figure we

—3/2
)

assumed (in units in which M = 1) a separation of a = 15, an orbital frequency €2 = a and

a velocity v = aQ) = a~1/2

. When these higher moments are combined with the mass quadrupole,
the tendex-line structure resembles that of the mass quadrupole. The pattern is deformed slightly,
however, by the presence of the higher multipoles. The loop singularities on the equator are no
longer evenly spaced; rather, the pair illustrated (and the corresponding pair which is not visible)

are pushed slightly closer together.

9.5 Conclusions

Tendex and vortex lines provide a new tool with which to visualize and study the curvature of

spacetime. They allow for the visualization of the Riemann tensor, through its decomposition into



Figure 9.9: The tendex lines on S of the mass hexadecapole of an equal-mass, circular binary of
point masses, with the sphere colored by the tendicity as in Fig. 9.4. The hexadecapole has eight
loop singularities equally spaced on the equator and two saddle-point-like singularities (from the
coincidence of two triradius singularities at a point) at the poles. Again, only half are visible in the
figure. Four of the singular points on the equator coincide with those of the quadrupole, but the
remaining four appear at different locations.

Figure 9.10: The tendex lines of a superposition of mass-quadrupole, current-octopole, and mass-
hexadecapole moments of an equal-mass circular binary. It assumes a total mass M = 1, a separation
a = 15, an orbital frequency Q = a=%/2, and a velocity v = aQ) = a~ /2. The sphere is colored by
the tendicity in an identical way to that of Fig. 9.4. When the tidal tensors of the three multipoles
are combined, the net pattern is dominated by the quadrupole and contains only the four loops.
The loop singularities are no longer equally spaced on the equator; the two pairs are pushed closer
together because of the influence of the higher multipoles.
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two simpler, trace-free and symmetric spatial tensors. These tensors, £ and B, can be completely
characterized by their eigenvectors and corresponding eigenvalues. The integral curves of these
eigenvector fields are easily visualized, and their meaning is well understood; physically, the lines
can be interpreted in terms of local tidal strains and differential frame dragging. Here, the simple
nature of these lines allows us to apply well-known topological theorems to study the radiation
passing through a sphere near null infinity.

Tendex-line patterns must develop singularities (and thus have vanishing tendicity) on a closed
surface. When we applied this fact to the tendex lines of gravitational radiation near null infinity
from arbitrary physical systems, we could easily show that the gravitational radiation must vanish
in isolated directions. Although this result is somewhat obvious in retrospect and has been noted
before [8], the result does not appear to be well-known. We also began exploring the manner in
which these singular points can provide a sort of fingerprint for radiating spacetimes. The essential
elements of this fingerprint consist of the zeros of the curvature on the sphere, together with the
index and the tendex-line pattern around these zeros. We studied these patterns for a few specific
examples, such as the four equally spaced loops of a rotating mass quadrupole. A more interesting
case is that of a radiating spacetime composed of locked, rotating mass and current quadrupoles,
which can be thought of as a simplified model of the late stages of the extreme-kick black-hole-
binary merger. Here, the shifted positions of the singular points of the tendex pattern provide a
direct illustration of gravitational beaming for this system. By seeking the most extreme topological
arrangement of singular points, we also described a maximally beaming configuration of this system.

The radiation generated by higher-order STF multipole moments gives more complex examples
of tendex and vortex patterns, with many singular points of varied types. Additionally, we argued
that their tendex and vortex patterns provide a visualization of the tensor spherical harmonics on
the sphere; the eigenvalue illustrates the magnitude of these harmonics, and the lines show the
tensor’s polarization in an intuitive manner. The sum of the three multipoles illustrated in Fig. 9.10
shows how including higher-order multipoles slightly deforms the pattern of quadrupole radiation
to make a more accurate total radiation pattern of the equal-mass binary. Similar illustrations
of complete radiation patterns could be readily produced from numerical spacetimes, when Wy is
extracted asymptotically using a tetrad with appropriate peeling properties. Such visualizations,
and their evolution in time, could provide a useful method for visualizing the gravitational emission
from these systems.

This study of the tendex and vortex lines (and their singular points) of asymptotic radiation
fields is one of several [4] exploring and developing this new perspective on spacetime visualization.
Naturally, it would be of interest to extend the two-dimensional case here to a larger study of
the singular points in the full, three-dimensional tendex and vortex fields. Methods to find and

visualize the singular points (and singular lines) of 3D tensors have been discussed preliminarily in
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though there is still room for further work. We suspect that singular points will be important

in visualizing and studying the properties of numerical spacetimes with these methods. Further,

we expect that there is still much to be learned from the study of the vortexes and tendexes of

dynamical spacetimes.
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Chapter 10

Visualizing Spacetime Curvature via Frame-
Drag Vortexes and Tidal Tendexes: I. Gen-
eral Theory and Weak-Gravity Applications

When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum
Riemann tensor) gets split into two spatial, symmetric, and trace-free (STF) tensors:
(i) the Weyl tensor’s so-called “electric” part or tidal field &;i, which raises tides on
the Earth’s oceans and drives geodesic deviation (the relative acceleration of two freely
falling test particles separated by a spatial vector £* is Aa; = —&;€); and (ii) the Weyl
tensor’s so-called “magnetic” part or (as we call it) frame-drag field Bjj, which drives
differential frame dragging (the precessional angular velocity of a gyroscope at the tip of

¢F as measured using a local inertial frame at the tail of £*, is AQ; = Bj&").

Being STF, &, and B,; each have three orthogonal eigenvector fields which can be
depicted by their integral curves. We call the integral curves of £;’s eigenvectors tidal
tendex lines or simply tendex lines, we call each tendex line’s eigenvalue its tendicity,
and we give the name tendex to a collection of tendex lines with large tendicity. The
analogous quantities for B, are frame-drag vortex lines or simply vortex lines, their

vorticities, and vortexes.

These concepts are powerful tools for visualizing spacetime curvature. We build up
physical intuition into them by applying them to a variety of weak-gravity phenomena:
a spinning, gravitating point particle, two such particles side-by-side, a plane gravita-
tional wave, a point particle with a dynamical current-quadrupole moment or dynam-
ical mass-quadrupole moment, and a slow-motion binary system made of nonspinning

point particles. We show that a rotating current quadrupole has four rotating vor-
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texes that sweep outward and backward like water streams from a rotating sprinkler.
As they sweep, the vortexes acquire accompanying tendexes and thereby become out-
going current-quadrupole gravitational waves. We show similarly that a rotating mass
quadrupole has four rotating, outward-and-backward sweeping tendexes that acquire
accompanying vortexes as they sweep, and become outgoing mass-quadrupole gravita-
tional waves. We show, further, that an oscillating current quadrupole ejects sequences of
vortex loops that acquire accompanying tendex loops as they travel, and become current-
quadrupole gravitational waves; and similarly for an oscillating mass quadrupole. And
we show how a binary’s tendex lines transition, as one moves radially, from those of two
static point particles in the deep near zone, to those of a single spherical body in the
outer part of the near zone and inner part of the wave zone (where the binary’s mass
monopole moment dominates), to those of a rotating quadrupole in the far wave zone

(where the quadrupolar gravitational waves dominate).

In Paper IT we will use these vortex and tendex concepts to gain insight into the quasi-
normal modes of black holes, and in subsequent papers, by combining these concepts
with numerical simulations, we will explore the nonlinear dynamics of curved spacetime
around colliding black holes. We have published a brief overview of these applications
in Physical Review Letters [1]. We expect these vortex and tendex concepts to become

powerful tools for general-relativity research in a variety of topics.

Originally published as D. A. Nichols, R. Owen, F. Zhang, A. Zimmerman, J. Brink,
Y. Chen, J. D. Kaplan, G. Lovelace, K. D. Matthews, M. A. Scheel, and K. S. Thorne,
Phys. Rev. D 84 124014 (2011).

10.1 Motivation and Overview

In the 1950s, John Archibald Wheeler coined the phrase geometrodynamics to epitomize his intu-
ition that curved spacetime must have a rich range of nonlinear dynamical behaviors—behaviors
that are important in our Universe and are worthy of probing deeply by both theoretical and ob-
servational means (see [2] and earlier papers by Wheeler reprinted therein and also [3]). It was
obvious to Wheeler that analytical tools by themselves would not be sufficient to reveal the richness
of geometrodynamics; he, therefore, encouraged his colleagues and students to begin developing nu-
merical tools [4, 5, 6], and he encouraged Joseph Weber to develop technology for gravitational-wave
observations [7].

Today, a half century later, numerical relativity has finally reached sufficient maturity (for a
review, see [8] and the references therein) that, hand in hand with analytical relativity, it can be

used to explore nonlinear geometrodynamics in generic situations; and gravitational-wave detectors
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are sufficiently mature [9, 10, 11, 12, 13] that they may soon observe nonlinear geometrodynamics
in black-hole collisions.

Unfortunately, there is a serious obstacle to extracting geometrodynamical insights from numerical-
relativity simulations: a paucity of good tools for visualizing the dynamics of curved spacetime. We
are reasonably sure that buried in the billions of numbers produced by numerical-relativity simula-
tions there are major discoveries to be made, but extracting those discoveries is exceedingly difficult
and perhaps impossible with the tools we have had thus far.

Until now, curved spacetime has been visualized primarily via (isometric) embedding diagrams
(Section 23.8 of [14]): choosing spacelike two-dimensional surfaces in spacetime, and embedding
them in flat 3-dimensional Fuclidean space or 2+1-dimensional Minkowski spacetime in a manner
that preserves the surfaces’ intrinsic geometry. (For some examples of embedding diagrams applied
to black-hole spacetimes, see, e.g., [15, 16, 17]). Unfortunately, such embedding diagrams are of very
limited value. They capture only two dimensions of spacetime, and the 2-surfaces of greatest interest
often cannot be embedded globally in flat Euclidean 3-space or flat Minkowski 2+1-dimensional
spacetime [15, 18, 19, 20]. Mixed Euclidean/Minkowski embeddings are often required (e.g., Fig. 4
of [15]), and such embeddings have not proved to be easily comprehended. Moreover, although it
is always possible to perform a local embedding in a flat 3-space (in the vicinity of any point on
the two-surface), when one tries to extend the embedding to cover the entire two-surface, one often
encounters discontinuities analogous to shocks in fluid mechanics [18, 20].

A systematic approach to understanding the connection between nonlinear near-field dynamics in
general relativity and emitted gravitational waves is being developed by Rezzolla, Jaramillo, Macedo,
and Moesta [21, 22, 23, 24]. This approach focuses on correlations between data on a surface at
large radius (ideally null infinity) and data on world tubes in the source region (such as black-hole
horizons). The purpose is to use such correlations to infer the dynamics of a black hole (e.g., the
kick) directly from data on its horizon. While we find this approach exciting and attractive, in
our own work we seek a more direct set of tools: tools that can probe the dynamics of spacetime
curvature that cause such correlations in the first place, and that can be more readily and intuitively
applied to a wider range of other geometrodynamic phenomena. It is our hope that eventually our
tools and those of Rezzolla et al. [21, 22, 23] will provide complementary pictures for understanding
spacetime dynamics, and particularly black-hole kicks.

We have introduced our new set of tools in a recent paper in Physical Review Letters [1]. They
are tools for visualizing spacetime curvature, called tidal tendex lines, tendicities, and tendezxes; and
frame-drag vortex lines, vorticities and vortexes. These tools capture the full details of the Weyl
curvature tensor (vacuum Riemann tensor), which embodies spacetime curvature. They do so in

three-dimensional, dynamically evolving pictures, of which snapshots can be printed in a paper such
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as this one, and movies can be made available online.! Specifically, as of this writing two movies
can be seen at [26, 27]; one shows the vortex lines from a rotating current quadrupole, the other,
vortex lines from two particles that collide head-on with transverse, antiparallel spins.

We have found these tools to be an extremely powerful way to visualize the output of numerical
simulations. We have also used them to obtain deep new insights into old analytical spacetimes.
We have applied them, thus far, to pedagogical linear-gravity problems (this paper and [28]), to
stationary and perturbed black holes (Paper II in this series), and to simulations of the inspiral
and mergers of spinning black holes ([1] and Paper IIT). We plan to apply them in the future in
a variety of other geometrodynamical venues, such as black holes ripping apart neutron stars and
curved spacetime near various types of singularities.

This is the first of a series of papers in which we will (i) present these tools, (ii) show how to use
them, (iii) build up physical intuition into them, and (iv) employ them to extract geometrodynamical
insights from numerical-relativity simulations.

Specifically, in this paper (Paper I), we introduce these vortex and tendex tools, and we then
apply them to weak-gravity situations (linearized general relativity) with special focus on the roles
of vortexes and tendexes in gravitational-wave generation. In a closely related paper [28], three of us
have applied these tools to visualize asymptotic gravitational radiation and explore the topology of
its vortex and tendex lines, and also to explore a linearized-gravity model of an extreme-kick merger.
In Paper II we shall apply our new tools to quiescent black holes and quasinormal modes of black
holes, with special focus once again on the roles of vortexes and tendexes in generating gravitational
waves. In Paper III and subsequent papers we shall apply our tools to numerical simulations of
binary black holes, focusing on nonlinear geometrodynamics in the holes’ near zone and how the
near-zone vortexes and tendexes generate gravitational waves.

The remainder of this paper is organized as follows: In Section 10.2.1 we review the well-known
split of the Weyl curvature tensor into its electric and magnetic parts, &;; and B;;, and in Section
10.2.2 we review the Maxwell-like evolution equations for &;; and B;; and discuss the mathematical
duality between these fields. Then, in Section 10.3, we review the well-known physical interpretation
of &;; as the tidal field that drives geodesic deviation and the not so well-known interpretation of Bj;
[29, 30] as the frame-drag field that drives differential frame dragging, and we derive the equation
of differential frame dragging.

In Section 10.4 we introduce our new set of tools for visualizing spacetime curvature. Specifically,
in Section 10.4.1 we introduce tendex lines and their tendicities, and we quantify them by their

stretching or compressional force on a person; and we also introduce vortex lines and their vorticities

1Just as there is no unique method to evolve field lines in electromagnetism, so too is there no unique way to
match tendex or vortex lines at one time with others at a later time. Nevertheless, animations of field lines are useful
for pedagogical purposes and for building intuition [25]. While some of the authors and colleagues are investigating
how to evolve tendex and vortex lines in generic situations, the animations of the lines posted online all have special
symmetries that provide a natural way to connect lines at one time with lines at the next.
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and quantify them by their twisting (precessional) force on gyroscopes attached to the head and feet
of a person. Then in Section 10.4.2 we introduce vortezes and tendexes (bundles of vortex and
tendex lines that have large vorticity and tendicity) and give examples. In the remainder of this
paper we illustrate these new concepts by applying them to some well-known, weak-gravity, analytic
examples of spacetime curvature. In Section 10.5 we focus on the spacetime curvature of stationary
systems, and in Section 10.6 we focus on dynamical systems and develop physical pictures of how
they generate gravitational waves.

More specifically, in Section 10.5.1, we compute &;; and B;; for a static, gravitating, spinning
point particle; we explain the relationship of B;; to the particle’s dipolar “gravitomagnetic field,”
we draw the particle’s tendex lines and vortex lines, and we identify two vortexes that emerge from
the particle, a counterclockwise vortex in its northern polar region and a clockwise vortex in its
southern polar region. In Section 10.5.2, we draw the vortex lines for two spinning point particles
that sit side-by-side with their spins in opposite directions, and we identify their four vortexes. Far
from these particles, they look like a single point particle with a current-quadrupole moment. In
Section 10.5.3, we draw the vortex lines for such a current-quadrupole particle and identify their
vortexes. Then, in Section 10.5.4, we show that the tendex lines of a mass-quadrupole particle have
precisely the same form as the vortex lines of the current-quadrupole particle, and we identify the
mass quadrupole’s four tendexes.

Turning to dynamical situations, in Section 10.6.1 we compute &;; and B;; for a plane gravita-
tional wave, we express them in terms of the Weyl scalar Wy, and we draw their vortex and tendex
lines. In Section 10.6.2 we explore the quadrupolar (I = 2, m = 0) angular pattern of gravitational
waves from the head-on collision of two black holes, and we draw their vortex lines and tendex
lines, intensity-coded by vorticity and tendicity, on a sphere in the wave zone. In Section 10.6.3
we compute &;; and B;; for a general, time-varying current-quadrupolar particle, and then in Sec-
tions 10.6.4 and 10.6.5 we specialize to a rotating current quadrupole and an oscillating current
quadrupole, and draw their vortex and tendex lines. Our drawings and the mathematics reveal that
the particle’s outgoing gravitational waves are generated by its near-zone vortexes. The rotating
current quadrupole has four vortexes that spiral outward and backward like four water streams from
a rotating sprinkler. As it bends backward, each vortex acquires an accompanying tendex, and
the vortexes and tendexes together become a gravitational-wave crest or gravitational-wave trough.
The oscillating current quadrupole, by contrast, ejects vortex loops that travel outward, acquiring
accompanying tendex loops with strong tendicity on the transverse segment of each loop and weak
on the radial segment—thereby becoming outgoing gravitational waves.

In Section 10.6.6, we show that a time-varying mass quadrupole produces the same phenomena
as a time-varying current quadrupole, but with vortexes and tendexes interchanged. In Section

10.6.7, we study the vortexes and tendexes of a slow-motion binary made of nonspinning point
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particles. In the near zone, the tendex lines transition, as one moves radially outward, from those
of two individual particles (radial and circular lines centered on each particle) toward those of a
single spherical body (radial and circular lines centered on the binary and produced by the binary’s
mass monopole moment). In the transition zone and inner wave zone, the mass monopole continues
to dominate. Then at radii r ~ a®/M (where a is the particles’ separation and M is the binary’s
mass), the radiative quadrupole moment begins to take over and the tendex lines gradually transition
into the outward-and-backward spiraling lines of a rotating quadrupole. We make some concluding
remarks in Section 10.7.

Throughout this paper we use geometrized units with ¢ = G = 1, and we use the sign conventions
of MTW [14] for the metric signature, the Weyl curvature, and the Levi-Civita tensor. We use Greek
letters for spacetime indices (0-3) and Latin letters for spatial indices (1-3), and we use arrows over
4-vectors and bold-face font for spatial 3-vectors and for tensors. We place a caret over indices that

refer to components in an orthonormal basis.

10.2 The Tidal Field &;; and the Frame-Drag Field 5;;

10.2.1 341 Split of the Weyl Curvature Tensor into &;; and B;;

For a given spacetime, the Weyl curvature tensor can be calculated from the Riemann tensor by
subtracting Riemann’s trace from itself; i.e., by subtracting from Riemann the following combinations

of the Ricci curvature tensor R*,, and Ricci curvature scalar R (Eq. (13.50) of MTW [14)):

wo _ puv b oprl Lo
= R, =20V BT + 28 8" R (10.1)

Here 0%, is the Kronecker delta, and the square brackets represent antisymmetrization. Note that
in vacuum, C* ”pg = RH ”pg, and thus, in vacuum, the Weyl tensor contains all information about the
spacetime curvature.

Let us pick a foliation of spacetime into a family of spacelike hypersurfaces. We shall denote
by u* the 4-velocity of observers who move orthogonal to the foliation’s space slices, and by v, =
Guv + uyu, the induced spatial three-metric on these slices, so that 7,/ is the projection operator
onto the slices. As is well known (e.g., [31]), using this projection operator, one can split the Weyl

tensor covariantly into two irreducible parts, which are symmetric, trace-free (STF) tensors that lie

in the foliation’s hypersurfaces (i.e., that are orthogonal to u*). These pieces are

Eap =7 787 Coporut'u” , ie., &j= C-Ojo , (10.2a)
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v

o and

an even-parity field called the “electric” part of C*

1
Bap = =787 *Couovutu” |,  ie., Bij = €psCP7 (10.2b)

2 30’
an odd-parity field known as the “magnetic” part of C* Vpg. Here the symbol * represents the (left)
Hodge dual, *Cluor = %ep#nAC’”)‘W, and for each field the second expression is written in 3+1
notation: the Latin (spatial) indices are components in the foliation’s hypersurface, and the 0is a
component on the foliation’s unit, time basis vector, &, = . Our normalization for the Levi-Civita
tensor is that of MTW: in a right-handed orthonormal frame, €755 = +1, and the spatial Levi-

Civita tensor is defined by €;,q = with €355 = 1 in a right-handed orthonormal basis. Note

€bipg>
that Egs. (10.2) are a direct and intentional analogy to the decomposition of the Maxwell tensor of

electromagnetism F),, into the familiar electric and magnetic fields E; and B; [31]):

N 1
Ei = Fi@ ) Bi = — ,FZ-A = §€iqupq- (103)
Note that our sign conventions differ from [31], where €3755 = —1; therefore, our Eq. (10.2b) has an
additional minus sign in order to maintain a strict analogy with the magnetic field B; of electro-
magnetism. This results in a B;; defined with a different sign convention from that in [32, 33] (for

example).

10.2.2 Evolution of &;; and B;;

The propagation equations for the Weyl tensor and its gravito-electromagnetic representation are the
Bianchi identities. We shall write them down and discuss them in three contexts: a general foliation
and coordinate system, the local-Lorentz frame of a freely falling observer, and the weak-gravity,

nearly Minkowski spacetimes of the current paper (Paper I in this series).

10.2.2.1 General Foliation and Coordinate System in the Language of Numerical Rel-
ativity

Because this paper is a foundation for using &;; and B;; to interpret the results of numerical-relativity
simulations, we shall write their evolution equations (the Bianchi identities) in a general coordinate
system of the type used in numerical relativity, and we shall discuss these equations’ mathematical
structure in the language of numerical relativity.

We denote by t a time coordinate that is constant on the foliation’s hypersurfaces, and by o and
5 the foliation’s lapse and shift functions; one can then write the orthogonal observers’ 4-velocity as
U= a‘l((i — E) The 3+1 split divides the Bianchi identities into evolution equations that govern

the time evolution of the spatial fields, and constraint equations that are obeyed by the fields on
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each time slice. The evolution equations are [34, 35]

6t£ij = [’Bgij + Oé[DkBl(iEjl)d - 35k(in)k + Kkkgij - Eiklgkaméjmn + 2ak81(i6j];l] , (10.4)

61581']‘ = [,gBij + a[—Dkgl(iejI)d — 3Bk(in)k + KkkBij - Eilekamejmn - 2akgl(i€j])gl] .(10.5)

Here the extrinsic curvature, Lie derivative on a second rank tensor, and acceleration of the slicing

are, respectively, defined by

1
Kij = —%(@%‘j = DifBj — D;B), (10.6)
L€y = BDiEij + EnDiB* + ExjDiB" (10.7)
ar = Diylna. (10.8)

The derivative D; is the covariant derivative associated with the induced metric v;; on the slices.
The evolution system, Eqgs. (10.4) and (10.5) is closed by an additional evolution equation for the 3-
metric, which is Eq. (10.6), and evolution equations for the extrinsic curvature and the 3-dimensional

connection coefficients, I‘fj, which are

WKy = LsKij—a[op T}, —TETL, + 0:0;q + 0; e d; Ina — T0kq — 2Ei; + K" p K5, (10.9)

Oy, = LgTl —aD* Ky + KijD"a — 2K*;Djya + 2ae™ :B)y, (10.10)
where we have defined

¢ = In(ay™V?), (10.11)

LTy = B'Ory; + 20,0, 6 — 08" + 0,0;8" . (10.12)

The above equations are symmetric hyperbolic if ¢ and 3¢ are specified functions of time and space.

The constraint equations on each slice are the definitions of &;; and B;;,

& = WRy+ KKy — KMKy, (10.13)

Bij = ¢"DpKu, (10.14)

from which the Einstein constraints follow from the condition that &; and B;; are symmetric and

k

trace-free, and the definition of I'},

1
T3y = 57" (03¢ + Ojvie = 0evig) - (10.15)
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The Bianchi identities imply derivative constraints on &;; and B;;:

D'€; = BuK"e®;, (10.16)

DiBij = - ikKilEklj. (1017)

These last equations are automatically satisfied if Egs. (10.13) and (10.14) are satisfied. Equations
(10.16) and (10.17) are nonlinear, but otherwise they have the same structure as the constraints in
simple electromagnetism.

Note also that the equations governing £ and B, Eqs. (10.4)—(10.5) and (10.16)—(10.17) share an-
other similarity with the field equations of electromagnetism: namely, just as the Maxwell equations

are invariant under the duality transformation
E—-B, B—-FE, (10.18)
i.e., under a rotation in the complexified notation
E—iB —¢"/*(E-iB), (10.19)

so the exact Maxwell-like Bianchi identities (10.4) are also invariant under the same duality trans-
formation

E—B, B--E. (10.20)

This duality in the structure of Eqgs. (10.4)—(10.5) and also (10.16)—(10.17) does not in general
enable one to construct one metric solution of Einstein’s equations from another, known solution.
However, as we shall see, we can utilize this duality in weakly gravitating systems to find the &
and B generated by one set of source moments, given the expressions for £ and B for a dual set of

moments.
10.2.2.2 Local-Lorentz Frame of a Freely Falling Observer

When one introduces the local-Lorentz frame of a freely falling observer in curved spacetime, one
necessarily specializes one’s foliation: (i) The local-Lorentz foliation’s space slices are flat at first
order in the distance from the observer’s world line, so its extrinsic curvature K;; vanishes along the
observer’s world line. (ii) Because the observer is freely falling, her acceleration ay vanishes, which
means that successive hypersurfaces in the foliation are parallel to each other along the observer’s
world line.

These specializations, plus the vanishing shift 3; = 0 and unit lapse function @ = 1 of a local-

Lorentz frame, bring the constraint and evolution equations, Eqgs. (10.16)—(10.17) and (10.4)—(10.5),
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into the following Maxwell-like form:

V-E =0, V-B=0, (10.21)
OE s 0B s
5~ (VxB)® = 0. ==+ (Vx€T=0.

Here the superscript S means “take the symmetric part” and the remaining notation is the same as

in the flat-spacetime Maxwell equations (including changing from D to V for the spatial gradient).
10.2.2.3 Weak-Gravity, Nearly Minkowski Spacetimes

In this paper’s applications (Sections 10.5 and 10.6), we shall specialize to spacetimes and coordinate
systems that are weakly perturbed from Minkowski, and we shall linearize in the perturbations. In
this case, the Bianchi identities, Egs. (10.4) and (10.5), take on precisely the same Maxwell-like form
as in a local-Lorentz frame in strongly curved spacetime, Eqs. (10.21). To see that this is so, note
that Bk, Kjk, ak, i, and Bjj, are all first-order perturbations and that « is one plus a first-order
perturbation; the, linearize Eqgs. (10.4) and (10.5) in these first-order quantities.

When the weak-gravity spacetime is also characterized by slow motion, so that its source regions
are small compared to the wavelengths of its gravitational waves, the evolution equations control how
the near-zone &, and B, get transformed into gravitational-wave fields. For insight into this, we
specialize to harmonic gauge, in which the trace-reversed metric perturbation 71#1, is divergence-free,
OFhyy,, = 0.

Then, in the near zone, &, and B, (which by Eqgs. (10.21) are divergence-free and curl-free,

respectively) are expressible in terms of the metric perturbation itself as
1 1
8ij = —§8i8jh00, Bij = 561’ 8q8jhp0. (1022)

Because hqo, at leading order in r/A (ratio of radius to reduced wavelength), contains only mass
multipole moments (Eq. (8.13a) of [36]), so also &;; contains only mass-multipole moments. And
because hyo at leading order in r/X contains only current-multipole moments, so also B, contains
only current-multipole moments.

In the wave zone, by contrast, Egs. (10.21) show that the locally planar waves are sustained by
mutual induction between € and B, just like for electromagnetic waves, which means that these two
wave-zone fields must contain the same information. This is confirmed by the wave-zone expressions

for £, and Bjj in terms of the metric perturbation,
1,4 1 pg a2
Eij = —gaohij, Bij = —561» npﬁohqj . (1023)

Both fields are expressed in terms of the same quantity, h;;. In addition, in the wave zone, £ and
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B are related to each other through a local rotation of 7/4 radians of their polarization tensors
(see Section 10.6.1 below). Correspondingly, we will see in Section 10.6 that, if a time-varying mass
moment produces + polarized radiation in the wave zone, then the current moment that is dual to
it produces x polarized radiation of the same magnitude.

In the transition zone, the inductive coupling between € and B, embodied in Egs. (10.4) and
(10.5), enables these equations to act like a blender, mixing up the multipolar information that in
the near zone is stored separately in these two fields. After an infinite amount of inductive blending,
we arrive at future null infinity, Z*, where the mixing has been so thorough that £ and B contain
precisely the same information, though it is distributed differently among their tensor components,
Eqgs. (10.23).

The details of this transition-zone mixing, as embodied in Eqgs. (10.21), are in some sense the
essence of gravitational-wave generation. We shall explore those details visually in Section 10.6 by
tracking the tendex and vortex lines (introduced in Section 10.4) that extend from the near zone,
through the transition zone, and into the wave zone.

Finally, note that the duality of £ and B becomes especially convenient for slow-motion systems,
where we can relate £ and B to source multipole moments that appear in the weak-field near zone.
In particular, to obtain the £ and B generated by a specific current moment Sy, we can simply apply
the duality transformation in Eq. (10.20) to the € and B for its dual moment, which is the mass
moment Z,, but with one caveat: the differing normalizations used for mass moments and current

moments [36] enforce the duality relation

20 +1

T —_— -7 10.24
e—>€+151z, Sy — ¢, (10.24)

when making this duality transformation; note that both transformations, Eqgs. (10.20) and (10.24),

must be made at once to arrive at the correct expressions; see Section 10.6.

10.3 Physical Interpretations of &;; and B;;

It is rather well-known that in vacuum? the electric part of the Weyl tensor, &;;, describes tidal
gravitational accelerations: the relative acceleration of two freely falling particles with separation
vector ¥ is Aa’ = —&%;¢7. For this reason &; is often called the tidal field, a name that we shall
adopt.

Not so well-known is the role of the magnetic part of the Weyl tensor, B;, as governing differential

frame dragging (i.e., the differential precession of inertial reference frames): in vacuum? a gyroscope

2 In a non-vacuum region of spacetime, the local stress-energy tensor also contributes to tidal accelerations via its
algebraic relation to the Ricci tensor, which, in turn, contributes to the Riemann tensor. In this case, &;; describes
that portion of the tidal acceleration due to the “free gravitational field” (i.e., the portion that is sourced away from
the location where the tidal acceleration is measured); a similar caveat holds for Bj;, and differential frame dragging.
In this paper, we shall ignore this subtle point and focus on tidal forces and differential frame dragging in vacuum.
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at the tip of the separation vector £*, as observed in the local-Lorentz frame of an observer at the
tail of £¥, precesses with angular velocity AQJ = B7,.£*. For this reason, we call Bj, the frame-drag
field.

We deduced this frame-drag role of Bjj; during our research and then searched in vain for any
reference to it in the literature, while writing our paper published in Physical Review Letters on
vortexes and tendexes [1]. More recently, we have learned that this role of B, was known to Frank
Estabrook and Hugo Wahlquist [29] 46 years ago and was rediscovered two years ago by Christoph
Schmidt [30] (who states it without proof). For completeness, in this section we shall give a precise
statement and proof of the frame-drag role of B;;, and a corresponding precise statement of the

tidal-acceleration role of &j.

10.3.1 Physical Setup

Consider an event P in spacetime and an observer labeled A whose world line passes through P
and has 4-velocity  there; see Fig. 10.1. Introduce an infinitesimally short 4-vector E at P, that is
orthogonal to @ and, thus, is seen as spatial by observer A. Denote by P’ the event at the tip of
5. Introduce a second observer B, whose world line passes through P’ and is parallel there to the
world line of observer A, such that if we denote B’s 4-velocity by the same symbol « as that of A
and imagine a vector field « that varies smoothly between the two world lines, then Vgﬁ =0at P.
Let { be transported by observer A in such a way that it continues to reach from world line A to

world line B. Then the vectors « and { satisfy the following three relations at P:
£a@=0, [0,§=0, Va=0. (10.25)

The first says that the separation vector is purely spatial at P in the reference frame of observer A;
the second says that 5 continues to reach between world lines A and B, so the quadrilateral formed
by @ and { in Fig. 10.1 is closed; the third says that the two observers’ world lines are parallel to

each other at P—i.e., these observers regard themselves as at rest with respect to each other.

10.3.2 Interpretation of &;; as the Tidal Field

Let the two observers A and B fall freely, i.e., move on geodesics. Then for this physical setup, the

equation of geodesic deviation states that (see, e.g., Eq. (11.10) of MTW [14])

-

VaVal = —R(_,4,€,d) (10.26)

where R is the Riemann tensor. In physical language, the left side is the acceleration Ad of observer
B at P’, as measured in the local-Lorentz frame of observer A at P. This relative acceleration

is purely spatial as seen by observer A, and the right side of Eq. (10.26) tells us that in spatial,
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Figure 10.1: Spacetime diagram used for computing the precession of a gyroscope at one location
P’ relative to gyroscopic standards at a nearby location P. The points and vectors are explained
in the text.

3-dimensional vector and tensor notation (and in vacuum so Ragys = Cagys), it is given by
Aa? = —Rig &8 = —&9¢h e, Aa=-E(,E). (10.27)

Since (as is well-known) this relative acceleration produces the Earth’s tides when ;i is caused by
the moon and sun, & is called the tidal field, and Eq. (10.27) is known as the tidal-acceleration

equation.

10.3.3 Interpretation of B;; as the Frame-Drag Field

Next let the two observers A and B in Fig. 10.1 be accelerated if they wish (with the same 4-

acceleration @ up to differences proportional to £), and give each of them a spatial unit vector & that

is tied to an inertial-guidance gyroscope, so that the following relations are satisfied:

Vaii - (10.28)

G-i=0, G-6=1, Vgod=@ da, a

The first of these says that & is purely spatial as seen in the observer’s reference frame, the second
says that & has unit length, and the third is the Fermi-Walker transport law for an inertial-guidance
gyroscope.

The local-frame-dragging-induced rate of change of & at P’ as measured using inertial-direction
standards at P, is Vﬁvgﬁ. We can write this as

VﬁVg& = V*Vﬁ&‘F[Vﬁ,V*]E

= VViG+R(,,1,6), (10.29)
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where R is the Riemann tensor, and we have used the fact that [@, ] = 0; see Egs. (11.8) and (11.9)
of MTW [14].

Evaluating the first term, ngﬁc?, using the Fermi-Walker transport law, the third of Egs.
(10.28), and the fact that the observers are momentarily at rest with respect to each other (the third
of Egs. (10.25) as well), we bring Eq. (10.29) into the form

—

ViVl =R(_,5,1,6) + aVgd 7). (10.30)

We are only interested in the spatial part of this rate of change, and, therefore, we can ignore the
second term on the right side of the equation. We switch to the 3-dimensional viewpoint of the

observer at P (where our calculation is being done) and we denote the spatial part of Vng&' by o

&= [vﬁvgﬁ} (10.31)

project orthogonal to @

Equation (10.30) tells us that this rate of change is not only orthogonal to @ (spatial) but also

orthogonal to o; it, therefore, can be written as a rotation
oc=A0 xo (10.32)

Here AQ is the frame-dragging angular velocity at P’ as measured using inertial standards at P. We

can solve for this angular velocity AQ by crossing o into Eq. (10.32) and using o - o = 1:
AQ=0x0. (10.33)
Inserting Eq. (10.30) for ¢ and switching to index notation, we obtain
A = €jp0? RY 5,07¢ . (10.34)

Rewriting the Riemann tensor component in terms of the magnetic part of the Weyl tensor (in
vacuum), Rkpf)q = —ekpsBsq, performing some tensor manipulations, and noticing that because A2

is crossed into o when computing the precession any piece of AQ along o is irrelevant, we obtain
AQ; = B¢, e AQ=B(_,§). (10.35)

In words, the equation gives the following physical interpretation: in vacuum, the frame-dragging
angular velocity at P’ as measured using inertial directions at the adjacent event P, is obtained by
inserting the vector € (which reaches from P to P’) into one slot of the gravitomagnetic part of the

Weyl tensor. Because of the role of B;; in this equation of differential frame dragging, we call B;;
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the frame-drag field.

10.4 Owur New Tools: Tendex and Vortex Lines, Their Ten-
dicities and Vorticities, Tendexes and Vortexes

10.4.1 Tendex Lines and Their Tendicities; Vortex Lines and Their Vor-
ticities

As symmetric, trace-free tensors, the tidal field £ and frame-drag field B can each be characterized
completely by its three principal axes (eigendirections) and its three associated eigenvalues. If p
is a (smoothly changing) unit eigenvector of the tidal field £ (or of the frame-drag field B), then
the integral curves of p can be regarded as field lines associated with € (or B). For £ we call
these integral curves tidal tendex lines, or simply tendex lines®, because £ tidally stretches objects
it encounters, and tendere means “to stretch” in Latin. For B we call the integral curves frame-drag
vortex lines, or simply vortex lines, because B rotates gyroscopes, and vertere means “to rotate” in
Latin. At each point P in space, there are three orthogonal eigendirections of € (and three of B);
therefore, through each point there pass three orthogonal tendex lines and three orthogonal vortex
lines.

Outside a spherically symmetric gravitating body with mass M, such as the Earth or even a

Schwarzschild black hole, the tidal field, in a spherical-polar orthonormal basis, has components

2M M

Erp =
(e.g., Section 1.6 and Eq. (31.4) of [14]). The tidal-acceleration equation Aa’ = —&7,&F tells us
that this tidal field stretches objects radially and squeezes them equally strongly in all tangential
directions (see the people in Fig. 10.2). Correspondingly, one eigenvector of &€ is radial, and the
other two are tangential with degenerate eigenvalues. This means that one set of tendex lines is
radial (the red tendex lines in Fig. 10.2), and any curve lying on a sphere around the body is a
tendex line. If we break the tangential degeneracy by picking our tangential unit eigenvectors to be
the basis vectors e; and e $ of a spherical-polar-coordinate system, then the tangential tendex lines
are those vectors’ integral curves—the blue curves in Fig. 10.2.

When the spherical body is weakly gravitating and is set rotating slowly, then it acquires a
nonzero frame-drag field given by Eqs. (10.47) below. The corresponding vortex lines are shown in
Fig. 10.3. (See Section 10.5.1 below for details.)

To any tendex (or vortex) line, with unit eigenvector p, there is associated an eigenvalue, &,, =

Ejxp’p”, which is called the line’s tendicity (or By, = Bjxp’p*, which is called the line’s vorticity).

3The word tendex was coined by David Nichols.
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Figure 10.2: Tendex lines outside a spherically symmetric, gravitating body. The lines are colored
by the sign of their tendicity: red lines have negative tendicity (they stretch a person oriented along
them); blue lines have positive tendicity (they squeeze).

Figure 10.3: Vortex lines outside a slowly spinning, spherically symmetric, gravitating body with
spin angular momentum S. The lines are colored by the sign of their vorticity: red lines have
negative vorticity (they produce a counterclockwise differential precession of gyroscopes); blue lines
have positive vorticity (clockwise differential precession).
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The physical meaning of this tendicity (or vorticity) can be read from the tidal-acceleration equation,
Eq. (10.27), or the equation of differential frame dragging, Eq. (10.35). Specifically, if a person’s body
(with length ¢) is oriented along a tidal tendex line (Fig. 10.2), she feels a head-to-foot stretching
acceleration given by Aa = —&,,0. If the line’s tendicity &, is negative (red tendex line), her body
gets stretched; if the tendicity is positive (blue tendex line), she gets compressed.

If her body is oriented along a vortex line (Fig. 10.3), then a gyroscope at her feet precesses around
the vortex line with an angular speed, relative to inertial frames at her head, given by AQ = B,,¢. If
the line’s vorticity is negative (red vortex lines in Fig. 10.3), then the gyroscope at her feet precesses
counterclockwise relative to inertial frames at her head, and (because B, is unchanged when one
reverses the direction p), a gyroscope at her head precesses counterclockwise relative to inertial
frames at her feet. Correspondingly, we call the (red) vortex line a counterclockwise vortex line. If
the line’s vorticity is positive (blue vortex lines in Fig. 10.3), the precessions are clockwise and the
vortex line is said to be clockwise.

For any spacetime, the tendex lines color coded by their tendicities (e.g., Fig. 10.2) and the
vortex lines color coded by their vorticities (e.g., Fig. 10.3) depict visually all details of the Weyl
curvature tensor.

Because £ and B are trace-free, at any point in space the sum of the three tendex lines’ tendicities
vanishes, and the sum of the three vorticities vanishes. Because £ and B are also symmetric, each
is characterized by five numbers at any point in space. The direction of one tendex line fixes two
numbers and its tendicity fixes a third, leaving only two numbers to be specified. The direction
of a second tendex line, in the plane orthogonal to the first, fixes a fourth number and the second
line’s tendicity fixes the fifth and final number—leaving the last line’s direction and tendicity fully

determined. Similarly, this is the case for vortex lines and their vorticities.

10.4.2 Vortexes and Tendexes

We give the name frame-drag vortez, or simply vortez, to a bundle of vortex lines with large vorticity.
In Fig. 10.3, the red vortex lines near the northern polar axis, which are enclosed by blue circles,
constitute a negative-vorticity (counterclockwise) vortex; the blue vortex lines near the southern
polar axis, which are enclosed by red circles, constitute a positive-vorticity (clockwise) vortex. These
two vortexes emerge from the northern and southern poles of the spinning point particle. Similarly,
we give the name tidal tendezx, or simply tendez, to a strong concentration of tendex lines. We shall

meet our first example at the end of Section 10.5.4 below.



285

10.5 Weak-Gravity, Stationary Systems

10.5.1 One Stationary, Weakly Gravitating, Spinning Body

When gravity is weak and slowly changing (e.g., outside a slowly precessing, spinning, weakly grav-

itating body such as the Earth), one can write the spacetime metric in the form
ds? = —a?dt?® + 6;3,(da? + B dt)(dz® + Fdt) (10.37a)

(e.g., Section 23.9.3 of [37]; or Chapter 10 of MTW [14] with the spatial coordinates changed slightly).

Here

a2:(1——> , ﬁz—r—an, (10.37b)

are the squared lapse function and the shift function, M is the body’s mass, S is its spin angular

momentum, and
r=+z24+y?2+22, n=e; (10.37¢)

2 2%} = {x,y, z}. In spherical polar coordinates

are radius and the unit radial vector, with {x!,
(associated with the Cartesian coordinates {z,y, z} in the usual way), the metric, Eq. (10.37a),

becomes

ds* = —a?dt* +dr? +r?do* + r? sin® 0(d¢ — wdt)? |

w = 28/r. (10.37d)

It is conventional to rewrite general relativity, in this weak-field, slow-motion situation, as a field
theory in flat spacetime. In this language, the geodesic equation for a test particle takes the form
d’*x

which resembles the Lorentz force law in electromagnetic theory; see, e.g., [38] and references therein,

especially [39]. Here v = da/dt is the particle’s velocity and

1_, M
g = —EVQ :—T—2n,
H = ngzg[w} (10.39)
T

are the body’s gravitoelectric field (same as Newtonian gravitational acceleration) and its gravito-
magnetic field. Note that these fields have the same monopole and dipole structures as the electric

and magnetic fields of a spinning, charged particle.
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In this paper, we shall adopt an alternative to this “gravito-electromagnetic” viewpoint. For the
gravitational influence of the mass M, we shall return to the Newtonian viewpoint of a gravitational
acceleration g and its gradient, the tidal gravitational field (the electric part of the Weyl tensor)

Ly

E = —Vg y i.e., gij = —Gi; = (I)J'j = §a g - (1040)

Here the comma denotes a partial derivative (actually, the gradient in our Cartesian coordinate
system) and & is the Newtonian gravitational potential, which is related to the lapse function by
a? = 1+ 2® in the Newtonian limit. The components of this tidal field in the spherical coordinates’
orthonormal basis e; = 0/9r, e; = (1/r)0/90, e; = (1/rsin0)0/0¢ are easily seen to be

2M M
S5 G ==t

Eip = — (10.41)
(Egs. (10.36) above), which are symmetric and trace-free as expected. The field lines associated
with this tidal field are easily seen to be those depicted in Fig. 10.2 above.

For the effects of the spin angular momentum, we shall think of the spinning body as “dragging
space into motion” with a velocity and angular velocity (relative to our Cartesian coordinates) given
by

dZspace 28 dPspace 25

gt = Ve = A=y xmi, —om s w= g

(10.42)

see the 0,1 (dz? + 37dt)(dz* + B¥dt) term in the metric of Eq. (10.37a) and the (d¢ — wdt)? term in
the metric of Eq. (10.37d). Just as the vorticity V x v of a nonrelativistic fluid with velocity field
v(x) is twice the angular velocity €2 of rotation of a fluid element relative to an inertial reference
frame, so the vorticity associated with the “space motion,” V X v¥gpace, turns out to be twice the
vectorial angular velocity of an inertial-guidance gyroscope relative to inertial reference frames far
from the body (“at infinity” )—or equivalently, relative to our spatial Cartesian coordinates {x,y, 2},
which are locked to inertial frames at infinity. In formulas, let o be a unit vector along the spin
angular momentum vector of an inertial-guidance gyroscope. Viewed as a vector in our Cartesian

basis, it precesses
do

E = Qfd X o, (1043)

with a frame-dragging vectorial angular velocity equal to half the vorticity of space viewed as a fluid:

1 1 1
Qfd = gvxvspa00:_§VXIBZ—§H
S—3(S -n)n
- [T] ; (10.44)

see, e.g., Eq. (25.14) of [37], or Eq. (40.37) of [14]. This dipolar frame-dragging angular velocity is
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Figure 10.4: For a weakly gravitating, slowly rotating body with spin angular momentum S, the
dipolar frame-dragging angular velocity relative to inertial frames at infinity, 4. The arrows are
all drawn with the same length rather than proportional to the magnitude of €2¢q.

shown in Fig. 10.4.

For dynamical black holes and other strong-gravity, dynamical situations, it is not possible
to measure gyroscopic precession with respect to inertial frames at infinity, because there is no
unambiguous way to compare vectors at widely separated events.* On the other hand, we can, in
general, measure the precession of inertial-guidance gyroscopes at one event, with respect to inertial
frames at a neighboring event—i.e., we can measure differential frame dragging as embodied in the
frame-drag field (magnetic part of the Weyl tensor) B;;. In our weak-gravity, slow-motion situation,

this frame-drag field is equal to the gradient of Qg (Eq. (5.45b) of [42]):
B = Vﬂfd y i.e., Bjk = Qfdj)k . (10.45)

For our weakly gravitating, spinning body, € has the dipolar form, Eq. (10.44), and, therefore,
the frame-drag field is
3
Bjr = vy [ZS(jnk) +(S- ’I’L)((sjk. — 5njnk)] . (10.46)

4There is an exception: one can introduce additional geometric structure, e.g., an auxiliary flat spacetime, that
provides a way of carrying a reference frame inward from infinity to all other locations and thereby compare vectors
at different events. Some of us have used this approach to localize linear momentum in the gravitational field around
black holes [40, 41]. However, the auxiliary structure has great arbitrariness, and for the vortex and tendex concepts
of this paper there is no need for such auxiliary structure, and we eschew it.
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Here the parentheses on the subscripts indicate symmetrization. In spherical polar coordinates, the

components of this frame-drag field are

6.5 cos
Birf\ - —2Béé - —230&5 - —T 5
3Ssinf
Big = Bg=-——75—" (10.47)

For this (and any other axially symmetric) frame-drag field, one of the three sets of vortex lines is
along the ¢ direction (i.e., the S x x direction)—i.e., it is axial—and the other two are poloidal. By
computing the eigenvectors of the tensor in Eq. (10.46) and then drawing the curves to which they
are tangent, one can show that the body’s vortex lines have the forms shown in Fig. 10.3.

Notice that the poloidal, negative-vorticity vortex lines (the poloidal red curves in Fig. 10.3) all
emerge from the northern polar region of the spinning body, encircle the body, and return back to
the northern polar region. One can understand why these lines have negative rather than positive
vorticity by choosing the eigendirection p at the body’s northern pole to point away from the body.
Then, the body drags inertial frames in a right-handed manner (counterclockwise as seen looking
down on the northern pole), and the frame dragging is stronger at the tail of p (nearer the body)
than at the tip. Because the the frame-dragging angular velocity decreases from tail to tip, this
means it is more left-handed (clockwise) at the tip than the tail (i.e., it has negative vorticity).
The poloidal, positive-vorticity vortex lines (the poloidal blue curves in Fig. 10.3) all emerge from
the body’s southern polar region, swing around the body, and return to the southern polar region.
The azimuthal vortex lines have negative vorticity above the hole’s equatorial plane (blue azimuthal

circles) and positive vorticity below the hole’s equatorial plane (red azimuthal circles).

10.5.2 Two Stationary, Weakly Gravitating, Spinning Point Particles with
Opposite Spins

Consider, next, two weakly gravitating, spinning point particles with opposite spins, sitting side-

by-side. Place the particles (named A and B) on the z axis, at locations {z4,ya, 24} = {+a,0,0},

{zB,yB,28} = {—a,0,0} and give them vectorial spins S4 = Se,, Sgp = —Se.. Then the frame-

drag angular velocity relative to inertial frames at infinity is

SA — 3(SA -nA)nA _ SB — 3(53 -nB)nA

Qfd:— 3 3 9

(10.48)

ra B

where r4 = |& — x 4| and rp = |x — x| are the distances to the particles and ny = (x — x4)/ra
and np = (x —xp)/rp are unit vectors pointing from the particles’ locations to the field point; see
Eq. (10.44). This vector field is plotted in Fig. 10.5a. It has just the form one might expect from
the one-spin field of Fig. 10.4.
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Figure 10.5: For two stationary point particles sitting side-by-side with their spins in opposite
directions (thick black arrows), two types of streamlines in the plane of reflection symmetry formed
by the particles’ spins and their separation vector. (a) The frame-dragging angular velocity Qg
and its streamlines, with the arrows all drawn at the same length rather than proportional to the
magnitude of Q¢. (b) The two sets of vortex lines of the frame-drag field B. The negative-vorticity
vortex lines are solid and colored red, and the positive-vorticity ones are dashed and blue. In this
figure, as in preceding figures, the colors are not weighted by the lines’ vorticities, but only by the
signs of the vorticities.
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For these two spinning particles, the frame-drag field, which is given by the gradient of Eq.
(10.48), is

Bji = “% 25Unk) + (84 - ma) (67 — 5nf4ng)] + %’4 [2S§gn’g +(Sp-np) 7 - 5n;n’fg)]
(10.49)
(Eq. (10.46) repeated once for each particle), where we have moved the vector and tensor indices
up for simplicity of notation. (In our Cartesian basis, there is no difference between up and down
indices.)

The best two-dimensional surface on which to visualize vortex lines of this B is the x-z plane (the
plane formed by the particles’ spins and their separation vector). The system is reflection symmetric
through this plane. On this plane, one of the principal directions of B is orthogonal to it (in the y
direction); the other two lie in the plane and are tangent to the in-plane vortex lines. By computing
the eigendirections of B in Eq. (10.49), mapping out their tangent vortex lines, and checking the
sign of By, along their tangent directions p, we obtain Fig. 10.5.

Note that, as for a single spinning particle (Fig. 10.3), so also here for two spins, the negative-
vorticity vortex lines (solid red curves) emerge from the tips of the spins and the positive-vorticity
vortex lines (dashed blue curves) emerge from their tails. For a single spin, the negative-vorticity
vortex lines emerge from the tip, travel around the body, and return to the same tip. Here, the lines
close to each spinning body leave and enter the same body’s tip, but the majority emerge from one
body’s tip, travel around that body and enter the other body’s tip. Similarly the positive-vorticity
vortex lines (dashed and blue) emerge from one body’s tail, travel around that body, and enter the
other body’s tail (aside from the lines near each body that exit and return to the same body’s tail).
The collection of solid red vortex lines near each arrow tip in Fig. 10.5b constitutes a negative-
vorticity frame-drag vortex, and the collection of dashed blue vortex lines near each arrow tail is a

positive-vorticity vortex.

10.5.3 The Two Spinning Particles Viewed from Far Away: Stationary,
Quadrupolar Frame-Drag Field

When viewed from afar, the two spinning bodies produce a current-quadrupole gravitational field

with quadrupole moment (e.g., Eq. (5.28b) of [36])

SP q

(/jpqu:’)x) STF = [Spaq + (=S,)(—ag))*™

2
= Spaq+ Sqap — g(S - @)0pg - (10.50)

Here j, = Spd(x — a) — Spd(x + a) is the angular-momentum density. Because the only nonzero

components of S and a are S, = S and a, = a, the only nonzero components of the current-
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Figure 10.6: Current-quadrupolar streamlines associated with the two stationary spinning particles
of Fig. 10.5, for which the current-quadrupole moment has nonzero components S,, = S., = Sa.
(a) The frame-dragging angular velocity €2¢q and its streamlines, and (b) the two sets of vortex lines,
in the z-z plane. Figure (b) also describes the tendex lines for a static mass-quadrupolar particle
whose only nonzero quadrupole-moment components are Z,, = Z,,.
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quadrupole moment are

Spz = S0 = Sa. (10.51)

The frame-drag-induced velocity of space (negative of the shift function) for this current quadrupole,

and the frame-drag angular velocity and frame-drag tensor field are

inx8-n
Uspace — _6 = T )
1
Q= §V X Uspace B= V Qi (1052)

(e.g., Eq. (10.6b) of [36]; also Egs. (10.44) and (10.45) above). Inserting Eq. (10.51) for the
quadrupole moment into Egs. (10.52), and plotting £¢q and the vortex lines of B in the z-z plane,
we obtain the graphs shown in Fig. 10.6.

Notice that the current-quadrupolar frame-drag angular velocity in Fig. 10.6a is, indeed, the
same as that for two oppositely directed spins (Fig. 10.5a) in the limit that the spins’ separation
goes to zero—i.e., as seen from afar—and the current-quadrupolar vortex lines of the frame-drag
tensor field (Fig. 10.6b) is the vanishing-separation limit of that for the two oppositely directed spins
(Fig. 10.5D).

Here, as for finitely separated spinning particles, there are two red frame-drag vortexes, one
emerging from the origin in the upper-right direction, the other in the lower-left direction; and
similarly, there are two blue frame-drag vortexes, one emerging in the upper-left direction and the

other in the lower-right direction.

10.5.4 Static, Quadrupolar Tidal Field and Its Tendex Lines and Ten-

dexes

For an idealized static particle with time-independent mass-quadrupole moment Z,, and all other
moments (including the mass) vanishing, the squared lapse function is o = 14 2% =1 — (Z,,/7) pq
[36], where ® is the Newtonian gravitational potential. Therefore, the particle’s tidal field £;x = ® ;i

is given by
1 /7
Eik = —5 (ﬂ> . (10.53)
"/ paik

For comparison, for a particle with time-independent current-quadrupole moment S,4, the shift

function is 3; = (—4/3)€ipq(Spk/7) kg, which implies that the frame-drag field is

Bjk; = —g (%> . (10.54)
,pqjk

r

Notice that, once the differing normalization conventions in Eq. (10.24) are accounted for, Egs.

(10.53) and (10.54) are the same, as required by the duality relations, Egs. (10.20) and (10.24).
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This means that, for a static current quadrupole whose only nonzero components are Z,, = Z,,., the
tendex lines will have precisely the same forms as the vortex lines of the static current quadrupole in
Eq. (10.51); i.e., they will have the forms shown in Fig. 10.6b. In this case, there are two negative-
tendicity (solid red) tidal tendexes, one emerging from the origin in the upper-right direction, and
the other in the lower-left direction; and there are two positive-tendicity (dashed blue) tidal tendexes,

one emerging in the upper-left direction and the other in the lower-right direction.

10.6 Gravitational Waves and Their Generation

We turn now to dynamical situations, which we describe using linearized gravity. We first discuss
the tendexes and vortexes of planar gravitational waves. We then examine wave generation by time-

varying multipolar fields, and the accompanying tendex and vortex structures of these systems.

10.6.1 Planar Gravitational Waves

In this section, we will describe the features of £ and B for locally planar gravitational waves, and
we will connect our results to those of linearized-gravity theory and the Newman-Penrose (NP)
formalism. In Appendix 10.A, we review the Newman-Penrose formalism and its connection to the
spatial tensors € and B.

Consider gravitational-wave propagation in an asymptotically flat spacetime, in a transverse-
traceless (TT) gauge. Near future null infinity, Z+, we can linearize around a Minkowski background

to find the following expressions for £ and B:
1, 1 pg a2
8ij = —anhij y Bij = —561- npaohqj . (1055)

It is convenient to expand these expressions in terms of the two gravitational-wave polarization

+

tensors, e;- and e

j ijs as

1 . .
€j = —glhyef+hxe]), (10.56)

1 . .
Bij = —§(h+e§j — hxel), (10.57)

where e?;- and efj are symmetric, trace-free, and orthogonal to the waves’ propagation direction.
Letting the unit-norm vector e; denote the direction of propagation of the gravitational wave, then
one can expand the polarization tensors in terms of the remaining two vectors of an orthonormal

triad, e; and es, as

e = e;0e;—ez;Re;, (10.58)

ex = e;Qeztesze;. (10.59)
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For a + polarized wave, Eq. (10.56) states that

1

82—5

. 1 . .
h+e+ = 5[(—h+)6Q ® eﬁ + h+63 (9 63] N (1060)
and we conclude that Th. /2 are the two eigenvalues of £ (the two tendicities), and e5; and ey are

the two corresponding eigenvectors. Now, define a second basis locally rotated at each point by an

angle m/4 = 45°,
€\ [ cosi sing e (10.61)
é; |\ —sin T cosk e;] '

Then, a simple calculation shows that
ex =€ €5 — €5 ® &5, (10.62)
and one can immediately see that B is diagonal in this new basis

B= —%mex = —%[Léé ® &5 —hiés®és). (10.63)
The eigenvalues of B (the vorticities), like those of € (the tendicities), are Thy /2, but B’s eigenvec-
tors, €, and €3, are locally rotated by 7/4 radians compared to those of £ (and the vortex lines of
hy must be locally rotated by /4 with respect to the tendex lines as well).

This relationship between the tendex and vortex lines is most transparent for a planar gravita-
tional wave. In Fig. 10.7, we show the tendex and vortex lines of a gravitational wave propagating
out of the page (i.e., e; = e; is the propagation direction). Because the eigenvectors of £ are e; = e;
and e; = ey, the tendex lines are the lines of constant = and y, illustrated by red (solid) lines and
blue (dashed) lines, respectively, on the left of Fig. 10.7. Similarly, the vortex lines are lines of
constant x & y, again drawn as blue (dashed) lines and red (solid) lines, respectively. The tendicity
(vorticity) has constant magnitude along the lines, but the two sets of tendex (vortex) lines have
opposite sign; consequently, the tidal (frame-drag) field produces a stretching (counterclockwise dif-
ferential precession) along the solid red direction and a squeezing (clockwise differential precession)
of the same magnitude along the dashed blue direction.

More generally, gravitational waves will contain both + and x polarizations, and to study their

vortex and tendex lines, it will be useful to express the electric and magnetic tensors in the spatial
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Figure 10.7: The tendex lines (left) and vortex lines (right) of a planar gravitational wave propagating
in the z direction (out of the picture). The tendex lines are lines of constant = and y, and the vortex
lines are rotated by m/4 radians (lines of constant x + y). The blue (dashed) curves correspond
to positive tendicity and vorticity (squeezing and clockwise differential precessing, respectively)
and the red (solid) curves denote negative tendicity and vorticity (stretching and counterclockwise
precessing). The tendicity (vorticity) is constant along a tendex line (vortex line), and the tendicity
(vorticity) of a red line is equal in magnitude but opposite in sign to that of a blue (dashed) line.

orthonormal basis (e, es, e3). They can be written conveniently as matrices:

(0v 0

Eb = 5| 0 —he —he |, (10.64a)
0 —hx hy
(00 Y

Bip = 5| 0 hx —hs |- (10.64b)
0 —hy —hy

It is useful to introduce an associated Newman-Penrose null tetrad consisting of two real null vectors,

-

I (along the waves’ propagation direction) and 7, and a conjugate pair of complex null vectors i

and m* given by

- 1 L 1,
l:—2(eo+ i) ”:ﬁ(eo—el),
S r . . r .
m = —2( 5+ i€y), m* = —ﬁ(eﬁ — i€3) (10.65)

(Egs. (10.80) of Appendix 10.A). For plane waves on a Minkowski background, the NP curvature

scalar that characterizes the radiation is

Uy = Cpupontm™nPm* = —hy +ihy ; (10.66)
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we can compactly rewrite Egs. (10.64), therefore, as

. 1 0 0 '0
gdi) + ZB&B = 5 0 \114 2\114 . (1067)
0 0y Uy

This expression holds for any gravitational wave propagating in the é€; direction.

For any outgoing gravitational wave in an asymptotically flat space, as one approaches asymptotic
null infinity the general expression for £,; 4 iB,; (Eq. (10.82) of Appendix 10.A) reduces to Eq.
(10.67), because all the curvature scalars except W, vanish near future null infinity (because of
the peeling property of the Weyl scalars). Further discussion of the tidal and frame-drag fields of
radiation near null infinity and their tendex and vortex lines is given in [28].

It is helpful to draw some simple analogies between gravitational and electromagnetic plane
waves. For a generic mixture of + and x polarizations, the magnitudes of the nonvanishing eigen-

values of both £ and B are simply

1 /= " 1
SV A+ = S|l (10.68)

This mirrors plane waves in electromagnetism, where |E| = |B| is equal to the sum in quadrature
of the magnitudes of the two polarizations. The absence of longitudinal components in an electro-
magnetic plane wave corresponds to the vanishing of the eigenvalues for the eigenvectors of £ and
B along the propagation direction. Finally, the orthogonality of the vectorial electromagnetic field
strengths E1Bis analogous to the relative angle of /4 between the two grids formed by the two

vortex lines and the two tendex lines in Fig. 10.7), respectively.

10.6.2 Gravitational Waves from a Head-on Collision of Two Black Holes

As an application of our results for gravitational waves, we calculate the tendex and vortex lines at
large radii for gravitational waves emitted by the head-on collision of two equal-mass nonspinning
black holes. If the holes move along the z axis, we use as our spatial triad the unit vectors of
spherical polar coordinates [(ej,e;,e3) = (e;,e;,e;) = (Or, 7710y, (rsinf)~1,)], and we choose
our null tetrad as shown in Eq. (10.65), then we can apply the results described by Fiske et al. [43]:
namely, that R[¥,] is axisymmetric (and, when decomposed into spin-weighted spherical harmonics,

is dominated by _2Y2,0(0,¢), an I = 2, m = 0 harmonic) and that I[¥4] = 0. Then the electric and
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Figure 10.8: Tendex lines (left) and vortex lines (right) for the gravitational waves that would arise
from the merger of equal-mass black holes falling together along the z axis. The positive tendicity
and vorticity lines are shown in blue (dashed) and the negative lines are depicted in red (solid).
Each line’s intensity is proportional to its tendicity (or vorticity), which varies over the sphere as
the dominant spin-weighted spherical harmonic, _2Y3o(f, ¢)  sin?#. Dark red and blue near the
equator correspond to large-magnitude tendicity and vorticity, and light, nearly white, colors at the
poles indicate that the tendicity and vorticity are small there.

magnetic parts of the Weyl tensor are given by

[0 o 0
b = 3| 0 RW) 0 : (10.69)
0 0  —R(Wy)
[0 o 0
By = 5[0 0 Rw) | (10.70)
0 R(Wy) 0

and the eigenvalues of both £ and B are +3(¥4)/2. The eigenvectors of £ are the unit vectors e;
and e i3 and those of B are e; e o T hus, the radiation is purely + polarized in this basis. The
tendex lines are the lines of constant € and ¢ on a sphere, and the vortex lines are rotated relative
to the tendex lines by an angle of 7/4 = 45°.

We show these lines in Fig. 10.8: the tendex lines on the left, and the vortex lines on the right.
As in Fig. 10.7, the red (solid) lines correspond to negative tendicity and vorticity, and the blue
(dashed) lines denote positive values. The intensity of each line is proportional to the magnitude
of its tendicity (or vorticity), which varies over the sphere as _9Y5 (6, ¢) o< sin?# (the dominant
spherical harmonic). Correspondingly, the dark blue and red regions near the equator represent
strong tendicity and vorticity, whereas the light, off-white colors near the poles indicate that the
tendicity and vorticity are small there.

We remark in passing that the duality of £ and B implies that, if there were a source of gravita-

tional waves which had a purely imaginary ¥, that was equal to ¢R[¥,] for our colliding black holes,



298

then those waves’ vortex lines would be the same as the tendex lines of Fig. 10.8, and the tendex
lines would be the same as the vortex lines of the same figure (but with the sign of the lines’ vorticity
flipped). One can see this because (i) Eq. (10.66) shows we would have a pure X polarized wave,
and (ii) when we apply the rotation of the basis in Eq. (10.61) to Eq. (10.67) under the condition
that (¥4) = 0, we get once again the matrices (10.69), but with (€, €;) as basis vectors and with
all instances of R(¥4) replaced by $(¥4). This duality does not address, however, how to construct

a source with a purely imaginary Wy.

10.6.3 Wave Generation by a Time-Varying Current Quadrupole

A dynamical current-quadrupole moment S,4(t) generates a metric perturbation described by the
Spq(t — r)/r terms in Eqs. (8.13) of [36]. It is straightforward to show that the corresponding

frame-drag field is

2 S, @S,m A8, DS,
By=|-(* + €ipg | —2 G +2 [ —2C ) (=22 . 0.71)
3 r . r r T
Pqij an p

Here Sy is to be regarded as a function of retarded time, ¢ — 7, and the prefixes ) and ) mean

two and four time derivatives, respectively. This equation shows explicitly how B;; in the near zone
transitions into B;; in the wave zone—or equivalently, how rotating (or otherwise time-changing)
frame-drag vortexes in the near zone generate gravitational waves.

This transition from the near zone to the far zone can also be described by the linear approxima-
tion to the Maxwell-like equations for the frame-drag field, B, and the tidal field, €, Eqgs. (10.21).
These equations govern the manner by which the current-quadrupole, near-zone frame-drag field, Eq.
(10.54), acquires an accompanying tidal field as it reaches outward into and through the transition
zone, to the wave zone. That accompanying tidal field is most easily deduced from the S, (t — )/

terms in the metric perturbation, Egs. (8.13) of [36]. The result is

4 s @S,
Eij = 3Cpai |~ ( pk) N — . (10.72)
" J)ka " q

)

In the near zone, the current quadrupole’s tidal field (in Eq. (10.72), the first term) behaves
differently from its frame-drag field (in Eq. (10.71), the first term): it has one additional time
derivative and one fewer spatial derivative. As a result, the tidal field is smaller than the frame-
drag field in the near zone by a factor of r/X, where X is the reduced wavelength of the emitted
gravitational waves. As one moves outward through the near zone to the transition zone, where
r ~ X, the tidal field increases in magnitude to become roughly the same strength as the frame-drag
field. The frame-drag and tidal fields behave this way, because it is the near-zone vortexes that

generate the gravitational waves, as discussed above.
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In the wave zone, the general current-quadrupole (outgoing-wave) frame-drag field, Eq. (10.71),

reduces to

4
By = |98t - )

TT
b~ 3 }

(10.73)
Here the indices are confined to transverse directions (the surface of a sphere of constant r) in the
orthonormal basis e, e & and “TT” means to take the transverse, traceless part. From the third of
the Maxwell-like equations in Eq. (10.21), or equally well from the general current-quadrupole tidal
field, Eq. (10.72), we infer the wave-zone tidal field:

4 TT
Eap =3, |cea DSyt = r)} : (10.74)
where ¢€,; is the 2-dimensional Levi-Civita tensor on the sphere. Because 5&5 = Ra()BO = —%(2)h:§g ,

where h;fi,T is the transverse, traceless gravitational-wave field, our wave-zone tidal distortion, Eq.
(10.74), agrees with the standard result for the wave-zone current-quadrupole gravitational-wave

field (Eq. (4.8) of [36]).
10.6.4 Rotating Current Quadrupole

In this section, we will discuss the vortex and tendex lines of a rotating current quadrupole. A large
rotating-current-quadrupole moment arises during the merger and ringdown of the extreme-kick
configuration of a binary black hole (a quasicircular binary made of identical black holes, whose
spins are antialigned and lie in the orbital plane). During the merger, the four vortexes associated
with the initial holes’ spins get deposited onto the merged horizon’s equator, and they then rotate
around the final Kerr hole’s spin axis at the same rate as their separation vector rotates, generating
a large, rotating-current-quadrupole moment (Paper III in this series).

As a simple linearized-gravity model of this late time behavior, imagine that at an initial time
t = 0, the two vortex-generating spins, of magnitude S, are separated by a distance a along the
x axis and are pointing in the £y direction—i.e., they have the same configuration as the static
current quadrupole discussed in Section 10.5.3 above. Then at ¢t = 0, the spins’ current-quadrupole
moment has as its nonzero components Sy = Sy = Sa (Eq. (10.51) with the spin axes changed
from z to y). As time passes, the spins’ separation vector and the spins’ directions rotate at the
same angular velocity w so that the configuration rotates rigidly. Then it is not hard to show that

the current-quadrupole moment evolves as

Spy = Syz = Sacos(2wt),

Spz = —Syy = —Sasin(2wt). (10.75)

It is straightforward to calculate the frame-drag field produced by this quadrupole moment using
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Eq. (10.71), and to then compute the vortex lines and their vorticities. The explicit expressions for
these lines are somewhat lengthy, and not particularly instructive, but the shapes of the vortex lines

and the values of their vorticities are quite interesting.
10.6.4.1 Vortex and Tendex Lines in the Plane of Reflection Symmetry

There are two sets of vortex lines that lie in the x-y plane (the plane of reflection symmetry) and
one set that passes orthogonally through this plane. We show the in-plane vortex lines in Figs. 10.9
and 10.10. The two figures depict the negative-vorticity vortex lines by red (solid) curves and the
positive-vorticity lines by blue (dashed) curves. The darkness of the lines is proportional to the
vorticity; dark red (blue) indicates strong negative (positive) vorticity, and light red (blue) indicates
weaker vorticity. To remove the effects of the radial dependence in the coloring, we have scaled the
vorticity by (kr)®/[1+ (kr)*], where k = 1/X = 2w is the wave number of the radiation. Figure 10.9
shows the region of the near zone that is difficult to see in Fig. 10.10, an equivalent figure that spans
a larger region of the z-y plane. As one can see from the figures, the two sets of lines have the same
pattern, but are rotated with respect to each other by 7/2 = 90°.

In the near zone (inner region of Fig. 10.9), the vortex-line pattern is the same as for the static
current quadrupole of Fig. 10.6b. At the transition to the wave zone, the vortex lines fail to curve
back into the central region and instead bend outward, joining a wave-zone spiral pattern. That
spiral pattern consists of four vortexes (regions of concentrated vorticity) that spiral outward and
backward as the quadrupole rotates. These four regions of alternating positive and negative vorticity
are bounded by tight clusters of vortex lines, just outside of which the sign of the dominant vorticity
changes. This same rotating vortex structure occurs in the case of an I = 2, m = 2, odd-parity
(current-quadrupolar) perturbation of a Schwarzschild black hole (Paper II in this series). There
the horizon vorticity takes the place of the current quadrupole in the near zone.

In Fig. 10.11 we indicate the structure of the tendex lines on the equatorial plane. Because
the symmetry properties of the system imply different constraints on the tendex field than on the
vortex field, some explanation is needed. The plane in which this and the previous two figures are
drawn is a plane of reflection symmetry for the problem. However, because the source is a pure
current quadrupole, it must be antisymmetric under reflection across this plane (as such a reflection
is a parity inversion). The vorticity, which itself has an odd-parity relationship with its source, is
symmetric under this reflection, constraining the vortex lines to be either tangent or orthogonal to
the plane, as noted above. The tendicity is antisymmetric under this reflection; therefore, one family
of lines can be tangent to the plane, so long as it has zero tendicity, and two other families of lines
must cross the plane at equal and opposite inclinations, with equal and opposite tendicities, such
that they are exchanged under the reflection. The diagram in Fig. 10.11 shows the single family

of tendex lines tangent to the symmetry plane. As these curves have exactly zero tendicity, they
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Figure 10.9: For a rotating current quadrupole in linearized theory, two families of vortex lines
in the plane of reflection symmetry (the z-y plane). The red (solid) curves are lines with negative
vorticity, and the blue (dashed) curves are lines of positive vorticity. The color intensity of the curves
represents the strength of the vorticity, but rescaled by (kr)°/[1 4 (kr)*] (with k the wave number)
to remove the vorticity’s radial decay. We see the quadrupolar near-zone pattern and the transition
into the induction zone. In the induction zone, the pattern carries four “triradius” singular points
[44] in each family of curves; they are necessary for the transition from the static quadrupole pattern
to the spiraling radiation pattern. This same figure also describes the tendex lines of a rotating mass
quadrupole (see the end of Section 10.6.6).
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Figure 10.10: Same as Fig. 10.9 but zoomed out to show the wave zone. In the wave zone, the
lines generically collect into spirals, which form the boundaries of vortexes (regions of concentrated
vorticity).
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Figure 10.11: Tendex lines in the equatorial plane for a rotating current quadrupole in linearized
theory. The curves shown are lines of identically zero tendicity (required by symmetry of the current
quadrupole). The lines are shaded by the absolute value of the tendicity of the other two tendex
lines that cross the lines shown, but are not tangent to the plane, and have equal and opposite
tendicities.
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are physically relevant only in that they denote the orientation of the other two families of tendex
lines, which are not tangent to the plane, but whose projection onto the plane must be orthogonal
to the curves shown (because all three curves are mutually orthogonal). The shading of the lines in
Fig. 10.11 does not represent the tendicity of the lines drawn (which is identically zero), but rather
of the other two tendex lines, which intersect the lines drawn with mutually equal and opposite
tendicity. Again, this shading is rescaled by (kr)®/[1 + (kr)?]. Though it is not apparent to the

4 near the singular point (origin), rather than r®

eye, the strength of the tendicity grows only as r
as for the vorticity. As argued early in Section 10.6.3, this can be interpreted intuitively as meaning
that the vorticity is sourced directly from the current quadrupole, while the tendicity is sourced by
induction from the time-varying vortex field.

For a rotating mass quadrupole (e.g., the quadrupole moment of an equal-mass binary), the

tendex lines in the plane of reflection symmetry will have precisely the same form as the rotating-

current-quadrupole vortex lines of Figs. 10.9 and 10.10; see Section 10.6.6.

10.6.4.2 Vortex Lines Outside the Plane of Reflection Symmetry: Transition from the

Near Zone to the Wave Zone

Outside the plane of reflection symmetry and in the wave zone, the extrema of the vorticity show
a spiraling pattern that is the same at all polar angles. More specifically, at all polar angles 6, the
magnitude of the vorticity, as a function of azimuthal angle ¢, has four maxima, and the locations
of those maxima are the same as in the equator (¢ = 7/2). As in the equator, the maxima at fixed
time t spiral around at an angular rate dgmax/dr = —w as one moves outward in radius, and as in
the equator, vortex lines collect near these spiraling maxima, and those lines too undergo spiraling
behavior.

Figure 10.12 shows the development of this spiraling structure as one moves outward from the
near zone (innermost inset) into the wave zone (outer region of figure). This figure focuses on the
family of vortex lines that pass orthogonally through the xz-y plane of reflection symmetry. After
entering the wave zone, the lines with non-negligible vorticity (the blue and red lines) collect into a
somewhat complicated spiral pattern, tangling among themselves a bit as they spiral. The gray lines
with very low vorticity, by contrast, point radially outward. An animation of this rotating system
can be seen at [26].

It should be noted Fig. 10.12, and the animation at [26], represent somewhat incomplete descrip-
tions of the structure of these field lines. The red and blue helical spirals shown in Fig. 10.12 do not
cross one another. However, at any point in space, there must be three mutually orthogonal vortex
lines, with vorticities summing to zero. Because at all points in the wave zone there is a field line of
nearly zero vorticity directed in a nearly radial direction, through any point along these spirals of

positive or negative vorticity, field lines of opposite vorticity must lie orthogonal to the spiral and to
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Figure 10.12: For the same rotating current quadrupole as in Figs. 10.9 and 10.10, the family of
vortex lines that pass orthogonally through the z-y plane of reflection symmetry, color coded as in
Fig. 10.9. In the wave zone, lines with approximately zero vorticity extend away from the source
nearly radially, while lines with significant vorticity are dragged into tangled spirals by the rotation
of the source. The left inset shows the transition between the near and wave zones. Here, lines
with nearly zero vorticity escape to infinity, as in the wave zone, but those with significant vorticity
are drawn toward the source. The right inset delves down into the near zone, where the lines are
approximately those of a stationary current quadrupole. This same figure also describes the tendex
lines of a rotating mass quadrupole (see the end of Section 10.6.6).



Figure 10.13: Vortex lines of a time-varying current quadrupole at very large r. The lines are colored
by the vorticity scaled by r, to remove the 1/r falloff, but the color coding is the same as in previous
figures. At very large distances from the source, the lines are transverse and live on a sphere. The
third set of vortex lines not shown are radial and has vanishing vorticity.

the approximately radial lines. As shown in the following subsection, these lines form closed loops

in the far-field region.
10.6.4.3 Vortex Lines in the Far Wave Zone

In the far wave zone (strictly speaking at future null infinity), the frame-drag field becomes transverse
and traceless, and takes the simple form in Eq. (10.73). Of its three sets of vortex lines, one is radial
(with vanishing vorticity) and the other two are tangent to a sphere of constant radius r (with
vorticity of equal and opposite sign). The two sets of vortex lines on the sphere have an interesting
angular pattern that is shown in Fig. 10.13. The vortex line that lies in the equator alternates
between positive and negative vorticity, going to zero at four points (one of which is shown at the
front of the sphere). This line is just the limit of the spirals where vortex lines collect in Fig. 10.10
at very large r. (Further discussion of the vortex and tendex lines of radiation at large r is given in
[28], where the dual figure to Fig. 10.13, the tendex lines of a rotating mass quadrupole, is discussed
in detail.)

How the vortex lines transition to the transverse pattern of Fig. 10.13 at very large r, from the
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spiraling pattern of Fig. 10.12 in the inner wave zone, is of considerable interest. We can explore
this by examining the frame-drag field at sufficiently large radii that the 1/r piece dominates over all
other components, and that the 1/r2 part of the frame-drag field may be thought of as a perturbation
to the leading-order 1/r part. In this region, the vortex lines show two kinds of qualitative behavior.
Some of the vortex lines continue to form spirals that meander out and do not close, as in Fig.
10.12. There also are lines that form closed loops similar to the leading-order vortex lines of Fig.
10.13. We show both of these types of lines in Fig. 10.14. The red, solid, spiraling lines continue
to collect on the maximum-vorticity spirals in the far wave zone. These lines begin to resemble the
transverse lines of Fig. 10.13 more than the spiraling lines in the near wave zone of Fig. 10.12 do,
because they rise and fall in polar angle as they wind around the maximum-vorticity spiral. It is
only in the limit of infinite radius that these spirals close to form loops. The blue, dashed, closed
lines, on the other hand, resemble the closed lines at infinity in Fig. 10.13 much more closely. The
lines at finite 7 do have some subtle differences between the corresponding lines at infinity: At finite
radii, each individual line passes from one maximum-vorticity spiral to the other; in doing so the
line must slightly increase in radius and rotate in azimuthal angle. At the large radii shown in Fig.
10.14, this effect is very subtle. We finally note that there are also spiraling, positive-vorticity lines

and closed, negative-vorticity lines that we do not show to avoid visual clutter.

10.6.5 Oscillating Current Quadrupole

The vortex lines of an oscillating current quadrupole (this section) have a very different structure
from those of the rotating current quadrupole (last section). This should not be surprising, because
the two quadrupoles arise from very different physical scenarios (e.g., for the oscillating quadrupole,
the ringdown following a head-on collision of black holes with antialigned spins, and for the rotating
quadrupole, the ringdown following the inspiral and merger of an extreme-kick black-hole binary).
See Papers IT and III of this series.

In linearized theory, one can envision an oscillating current quadrupole as produced by two
particles, separated by a distance a along the x axis, whose spins, antialigned and pointing in the
+y direction, oscillate in magnitude as S coswt. The resulting quadrupole moment is similar to that
in Eq. (10.50)

Syy = Syz = Sacoswt. (10.76)

The frame-drag and tidal fields, and then the vortex and tendex lines, for this current quadrupole
can be computed from Egs. (10.71) and (10.72).

As for the rotating quadrupole, the z-y plane of reflection symmetry contains two families of
vortex lines, and a third family passes orthogonally through that plane. The in-plane vortex lines
are depicted in Figs. 10.15 and 10.16 using the same color conventions as for the rotating quadrupole

(Figs. 10.9 and 10.10). Figure 10.15 shows the region of the near zone that is difficult to see in Fig.
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Figure 10.14: Vortex lines of a rotating current quadrupole at sufficiently large 7 that the 1/r2 part
of the frame-drag field may be thought of as a perturbation to the transverse vortex lines of Fig.
10.13. The lines are colored by the vorticity, as in that figure. We also show a black dotted circle
in the equatorial plane to identify this plane. The red solid lines shown here continue to collect on
the maximum-vorticity spiral, but they oscillate much more in polar angle than do the similar lines
shown in the near wave zone in Fig. 10.12. The blue dashed lines shown here form closed loops that
pass from one positive-vorticity spiral to the next. This family of lines more closely resembles the
transverse lines of Fig. 10.13, though in the limit of infinite radius, the spiraling lines will also close
to form transverse lines on the sphere. There are also spiraling positive-vorticity (blue) lines and
closed-loop, negative-vorticity (red) lines, but to keep the figure from appearing muddled, we do not
show them.
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Figure 10.15: For an oscillating current quadrupole in linearized theory, two families of vortex lines
in the plane of reflection symmetry (the -y plane). The color coding is the same as for the rotating
current quadrupole, Fig. 10.9. The vortex lines begin, near the origin, like the static quadrupole
pattern of Fig. 10.6. The effects of time retardation cause the pattern to stretch, making larger
rectangular loops in the transition zone. As time passes and the quadrupole oscillates, these loops
detach from the origin and propagate out into the wave zone. This same figure also describes the
tendex lines of an oscillating mass quadrupole (see the end of Section 10.6.6).



Figure 10.16: Same as Fig. 10.15, but zoomed out to show the wave zone. Farther from the source,
the loops take on a more regular alternating pattern of gravitational waves. The coloring shows that
the vorticity is strongest at the fronts and backs of the loops, where the vortex lines are transverse
to the direction of propagation. In the regions of the closed loops that extend radially, the field is
weak (as one would expect for a transverse gravitational wave).

10.16, an equivalent figure that spans a larger region of the x-y plane. As one can see from the
figures, the two families of vortex lines, solid red (negative vorticity) and dashed blue (positive
vorticity) have the same pattern, but are rotated by 7/2 = 90°.

The way in which the gravitational waves are generated differs greatly from the rotating current
quadrupole of the previous section. In the near zone, the two sets of vortex lines form a static
quadrupole pattern (identical to the near-zone rotating quadrupole of Fig. 10.9, but rotated by 7 /4
radians because of the orientation of the spins). In the transition zone, the vortex lines form distorted
loops that head away from the origin, along the lines y = £z, in an alternating fashion. As they
extend into the wave zone, the lines form two qualitatively different kinds of loops. The majority of
the loops reside only in one of the four quadrants of the equatorial plane, but there are also loops
that pass through all four quadrants, staying near the regions of maximum vorticity, where lines

collect at the gravitational-wave crests. For both types of loops, they maintain the same wavelength,
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but the wave front becomes wider at larger radii, as they become gravitational waves. The portion
of a loop transverse to the radial direction (the direction of propagation) has strong vorticity, as
one would expect for a gravitational wave; in the radial portion of the loop, the vorticity is weak.
Each cycle of the oscillating quadrupole casts off another set of vortex loops as the near-zone region
passes through zero vorticity, and the loops travel outward towards infinity. This illustrates clearly
the way in which the near-zone vortex pattern generates gravitational waves in the far zone through
its dynamics.

As with the rotating current quadrupole, one can envision the equatorial vortex line of Fig. 10.13
as the limit of the wave fronts of the planar vortex lines in Fig. 10.16 at large distances. It is again
of interest to understand how the vortex lines outside the equatorial plane become the remaining
vortex lines in Fig. 10.13. To do so, we will make reference to Fig. 10.17, which shows the vortex lines
at a distance sufficiently large that the 1/7? portions of the frame-drag field can be thought of as a
small perturbation to the transverse vortex lines of Fig. 10.13. We show only the three-dimensional
analog of the lines that pass through all four quadrants in the equatorial plane, and do not show
the lines that remain in just one octant (analogous to the loops that remain in one quadrant in the
equatorial plane) to keep the figure as simple as possible.

Near the poles, these vortex lines have nearly the same structure as the purely transverse lines
of Fig. 10.13; it is only near the equator that the lines begin to differ. As the lines approach the
equator, they also increase in radius, because of the 1/r? parts of the frame-drag field. In doing
so, they pass from one gravitational-wave crest to the next, and the lines sharply turn during their
passage between successive crests. The portion of the line on this next crest runs nearly parallel to
the equator, until it begins moving slightly inward (again because of the 1/r2 parts of the frame-drag
field). As it then sharply turns again, it returns to the original crest and begins heading back toward
the poles. This sharp turning happens on both sides of the sphere, which causes the lines to form
the closed loops that reside in either the northern or the southern hemisphere in Fig. 10.17. Only
in the limit that r goes to infinity do the radial perturbations vanish, and the loops in the northern

and southern hemisphere connect to form the transverse pattern in Fig. 10.13.

10.6.6 Wave Generation by a Time-Varying Mass Quadrupole

A time-varying mass-quadrupole moment Z,,(t) gives rise to metric perturbations of flat space given
by the terms proportional to Z,,(t—r)/r and its derivatives in Eqgs. (8.13) of [36]. It is straightforward

to calculate that the frame-drag field for these metric perturbations is

W7z B 7.
Bij = €pq(i ( pk) - (—”p : (10.77)
" 9)kaq " q
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Figure 10.17: Vortex lines of an oscillating current quadrupole at sufficiently large r that the 1/r?
part of the frame-drag field may be thought of as a perturbation to the transverse vortex lines of
Fig. 10.13. The lines are colored in the same way as in that figure, and the pattern of the lines
around the poles is nearly identical to the transverse lines of Fig. 10.13. Near the equator, the 1/r2
perturbation causes the lines to bend and form closed loops that reside in either the northern or the
southern hemisphere. The blue horizontal lines in the blow-up inset should be compared with dense
blue (dashed) bundles in Fig. 10.16, and red lines with the red bundles immediately outside of the
blue ones.
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Notice that this mass-quadrupolar frame-drag field is the same as the current-quadrupolar tidal field
in Eq. (10.72), with the current-quadrupole moment S, replaced by —%qu; see the duality relations
in Egs. (10.20) and (10.24). Correspondingly, the vortex lines of this mass quadrupole will be the
same as the tendex lines of the equivalent current quadrupole.

The mass quadrupole’s tidal field can be deduced from its frame-drag field in Eq. (10.77) by
using the third of the Maxwell-like equations in Eq. (10.21). The result is

1 T @, AT ., Oy
L N te P eomm +2 [ —20 — (== . (10.78)
J 2 T . pa T J r r
\Pqi] an 1P

)

Alternatively, this mass-quadrupolar tidal field can be deduced from the current-quadrupolar frame-
drag field in Eq. (10.71) by using the duality relation Spqy — +37,4 of Egs. (10.20) and (10.24). As
a result, the tendex lines of this mass quadrupole will be the same as the vortex lines of the current
quadrupole, Figs. 10.9-10.10 and 10.12-10.16, with the red (solid) lines describing tidal stretching,
and the blue (dashed) lines, tidal squeezing.

10.6.7 Slow-Motion Binary System Made of Identical, Nonspinning Point

Particles

As a final example of a weakly gravitating system, we investigate the tendex lines of a Newtonian,
equal-mass binary made of nonspinning point particles in a circular orbit. We assume a separation, a,
between particles that is large compared to their mass, M, so that the orbital velocity v = %\/M—/a
is small compared to the speed of light (a slow-motion binary).

Close to the binary, where retardation effects are negligible, the tidal field is given by the New-

tonian expression £, = P i, Eq. (10.40), with @ the binary’s Newtonian gravitational potential

My Mp

d=— — )
e —xa| |x—xp|

(10.79)

Here My = Mp = M/2 are the particles’ masses, with M the total mass, and 4 and xp are the
locations of particles, which we take to be on the = axis, separated by the distance, a.

In Fig. 10.18, we show the near-zone tendex lines associated with this potential’s tidal field,
color coded in the usual way (see the figure’s caption). Close to each particle, the tendex lines
resemble those of a static, spherically symmetric object. Moving farther from the particle, one can
see the effects of the particle’s companion, bending and compressing the lines. At radii r 2 a, the
Newtonian potential and tidal field can be expanded in multipole moments with the monopole and
quadrupole dominating. At r > a, the monopole dominates and the tendex lines become those of a
single spherical body.

The binary’s orbital angular velocity is w = y/M/a3 (Kepler’s formula), and the binary emits
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Figure 10.18: For a weak-gravity binary made of identical nonspinning point particles, in the near
zone where retardation is negligible, two families of tendex lines lying in a plane that passes through
the two particles (e.g., the orbital plane). The red (solid) curves are lines with negative tendicity,
and the blue (dashed) curves have positive tendicity. The color intensity of the curves represents
the magnitude of the tendicity, rescaled by r3r% /[M3(r% 4+ 1%)], where 74 and rp are the distances
from the particles, to remove the tendicity’s radial die out. Near each particle, the tendex lines
resemble those of an isolated spherical body; as one moves closer to the particle’s companion, the
lines bend in response to its presence. At radii large compared to the particles’ separation a, the
binary’s monopole moment comes to dominate, and the tendex lines nearly resemble those of a single
isolated spherical body.
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Figure 10.19: Tendex lines in the orbital plane of the same binary as Fig. 10.18, with separation
a/M = 20 (where M is the total mass), focusing on the transition and wave zones around r >
A = 2.24a. The solid black circle has radius A. The colors are fixed by the tendicity weighted by
wr, so as to scale out the 1/r falloff in the wave zone (with dark blue strongly positive, dark red
strongly negative, and light green near zero). Inside the dotted black curve (r = $a*/M = 10a),
the binary’s (nonradiative) monopole moment dominates, & ~ M/r® | and the red (stretching)
tendex lines are nearly radial. Outside the dotted black curve, the (radiative) quadrupole moment
dominates, & ~ 4M?3 /a*r, and the tendex lines are strong (significant tendicity) only where they are
approximately transverse to the radial direction.

gravitational waves with angular frequency 2w, reduced wavelength A\ = 1/(2w) = 1./a3/M, and
wavelength A = 27X, As a concrete example, we choose the particles’ separation to be a/M = 20;
then A = v/5a ~ 2.24a, and \ = 27v/5a ~ 14a.

Figure 10.19 shows tendex lines in this binary’s orbital plane, focusing on the transition and wave
zones r 2 A = 2.24a (outside the solid black circle). The shapes and colors of the tendex lines in this
figure can be understood in terms of the binary’s multipole moments: In the transition zone and wave
zone, r > X, the tidal field is the sum of a nonradiative monopolar piece with magnitude £y ~ M /73,
and a quadrupolar piece with magnitude (1/r)9*Z/0t* ~ (2w)*(+Ma?)/r ~ 4M3 /a*r; higher order
moments are negligible. The two moments contribute about equally at radius r = %a2 /M = 10a

(dotted black circle in the figure). The (nonradiative) monopole moment, with its red radial and blue
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Figure 10.20: Tendex lines outside the (central, horizontal) orbital plane, for the same binary and
parameters as Fig. 10.19. In the inner region, the binary’s monopole moment dominates, & ~ M/r?,
and the red (stretching) tendex lines are nearly radial and the blue (squeezing) tendex lines are
nearly circular. At larger radii, the (radiative) quadrupole moment begins to be significant and then
dominate, and the tendex lines begin to spiral outward, as for the rotating quadrupole of Fig. 10.12.

circular tendex lines, dominates inside this circle. The (radiative) quadrupole moment dominates
outside the circle, where the tendicity is significant (strong red and blue) only when the tendex
lines are transverse; strong red alternates, radially, with strong blue as the waves propagate radially.
Ultimately, at very large radii (far outside the domain of Fig. 10.19), the quadrupole moment will
totally dominate, and the tendex-line pattern will become that of a rotating quadrupole, depicted
in Fig. 10.10.

Figure 10.20 shows the tendex lines for this same binary, with the same parameters, in three
dimensions, i.e., above and below the equatorial plane. In the inner region, the monopole moment
dominates where the red (stretching) tendex lines are nearly radial, and the blue (squeezing) tendex
lines are nearly circular, centered on the binary. As one moves outward, the radiative quadrupole
moment begins to distort these radial and circular tendex lines, and then at large radii, the now-
dominant quadrupole moment drives them into the same spiraling pattern as we have seen in Fig.

10.12 for the tendex lines of a rotating, pure mass quadrupole.
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10.7 Conclusions

In this paper, we have focused on the electric and magnetic parts of the Weyl curvature tensor,
&i; and B;;, and have given them the names tidal field and frame-drag field, based on their roles
in producing tidal gravitational accelerations and differential frame dragging. Being parts of the
Riemann tensor, these fields are well defined (though slicing dependent) in strong-gravity situations
such as the near zone of colliding black holes. For this reason, and because they embody the full
vacuum Riemann tensor and are easily visualized, &;; and B;; are powerful tools for exploring the
nonlinear dynamics of spacetime curvature (geometrodynamics).

As tools for visualizing &;; and B;;, we have introduced tendex and vortex lines (the integral
curves of the eigenvectors of &;; and B;;), along with their tendicities and vorticities (the eigenvectors’
eigenvalues). The tendex and vortex lines are gravitational analogs of electric and magnetic field
lines. Moreover, just as the electromagnetic field tensor is fully determined by its electric and
magnetic field lines, together with their field-line densities (which encode the lengths of the electric
and magnetic vectors), so the vacuum Riemann curvature tensor is fully determined by its tendex
and vortex lines, together with their colors (which encode the tendicities and vorticities as in Fig.
10.19).

In terms of their transformation properties, the (£;;, B;;) pair is strictly analogous to the pair
of electric and magnetic 3-vector fields; they are components of a 4-tensor, divided into two groups
in a slicing-dependent manner. We are confident that this mild and transparent form of frame
dependence will not prevent our tendex and vortex concepts from becoming useful tools for studying
geometrodynamics, any more than the frame dependence of electric and magnetic fields and field
lines have been impeded these fields from being useful tools for studying electromagnetism in flat or
curved spacetime.

Using various examples from linearized gravity, for which analytical formulas are available, we
have plotted color-coded tendex and vortex lines, and thereby we have gained insight into the
behaviors of the tidal and frame-drag fields. This intuition from weak-gravity examples will be
of great value when studying strongly gravitating systems in asymptotically flat spacetimes, e.g.,
binary black holes. This is because, in the weak-gravity region of spacetime outside such strong-
gravity systems, linearized gravity is a good approximation. More specifically, for stationary, strongly
gravitating systems (e.g., stationary black holes and neutron stars), the tendex and vortex lines in
their asymptotic, weak-gravity regions will be well approximated by our linearized-theory results in
Section 10.5 (and, perhaps in some cases, extensions to higher multipoles).

For oscillatory, strongly gravitating systems (e.g., binary black holes and oscillating neutron
stars), the wave zones’ tendex and vortex lines will be well approximated by those of our examples

in Section 10.6, and their extensions. Whether the system has strong gravity or weak gravity, its
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wave-zone field lines are controlled by radiative multipole moments that are tied to the system’s
near-zone dynamics. As one moves inward through the weak-gravity wave zone into the near zone
and the region of strong gravity, the details of the field lines and the system’s dynamics may be
quite different for strong-gravity systems than for our weak-gravity examples. Nevertheless it seems
likely that in all cases, the gravitational waves will be generated by dynamical motions of near-
zone tendexes and vortexes (regions of strong tendicity and vorticity). By exploring that near-zone
tendex/vortex dynamics, we can gain deep physical insight into nonlinear spacetime curvature. This
will be a central theme of Papers II and III in this series.

Whatever may be a source’s strong-field dynamics, it will be useful to focus on the imprints
that the strong-field dynamics leaves on the tendex and vortex structures in the strong-to-weak-
gravity transition region. Those transition-region, tendex-vortex imprints will govern spacetime
curvature throughout the asymptotic, weak-gravity region, and in particular will govern the radiative
multipole moments that control the emitted gravitational waves. Moreover, the imprinted structures
in the strong-to-weak-gravity-transition region may turn out to have some sort of effective dynamics
that can be captured by simple analytical models and can become a powerful tool for generating

approximate gravitational waveforms, e.g., for use in gravitational-wave data analysis.

10.A Appendix: The Newman-Penrose Formalism

In this appendix, we give the connection between the electric and magnetic parts of the Weyl tensor £
and B, and the five Newman-Penrose (NP) curvature scalars [45]. The NP formalism [45] is especially
useful for expressing the gravitational-wave content of a dynamical spacetime at asymptotic null
infinity. The NP formalism is used in numerical simulations to extract the gravitational waves at
large radii, at which the waves are propagating on a nearly flat background. It is also a crucial
foundation for the study of black-hole perturbations and for the Petrov classification of vacuum
spacetimes, both of which we will eventually analyze using our vortex and tendex tools. Because we
use the opposite metric signature to that of the original Newman-Penrose paper [45] and the widely
used Penrose-Rindler book [32], our sign conventions for the NP quantities and for Eqgs. (10.82) and
(10.87) below differ from theirs. Ours are the same as in [33].

To begin, we define an orthonormal tetrad, €5 = (€, €}, €5, €3), with a time basis vector &; =

i orthogonal to our chosen foliation’s spacelike hypersurfaces, and with the spatial basis vectors

1!

—

i, €5, €5 lying in those hypersurfaces. We use this tetrad to build a complex null tetrad that is used

('B

in the NP formalism:

o . . . 1 . .

l:—2(o+ i) n:ﬁ(eo— i)

— 1 — — — % 1 = =g

m:—2(2+13), i :E(Q—Zg)- (10.80)
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By projecting the Weyl tensor onto this null basis, we construct the complex Weyl scalars,

Vg = Cupsl"m”1’m?, (10.81a)
Uy = Cupl"n”lPm?, (10.81b)
Uy = Cupel'm"m*n?, (10.81c)
Vs = Cupel'n"m™n?, (10.81d)
Uy = Cupentm™n’m* . (10.81e)

Using the null tetrad in Eq. (10.80) built from the orthonormal tetrad, we can express the spatial,
tetrad components of the electric and magnetic parts of the Weyl tensor (written as a matrix) in

terms of the Weyl scalars as follows:

2y —(Uy — T3) i(W1 + )
EaptiBy =1 * $(Wo+Wy) =Wy  —5(¥o—Vy) : (10.82)
* * —3(¥o+Ty) — 0y

(see Eq (3.65) of [33], where the differences are due to our differing conventions for both B and our
null tetrad). In Eq. (10.82), the rows and columns are ordered by 1,2,3 and the entries indicated
by * can be inferred from the symmetry of the matrix.

The entries in Eq. (10.82) can be derived in a straightforward manner from the definitions of €
and B, Egs. (10.2a) and (10.2b), and the definitions of the Weyl scalars, Egs. (10.81a)—(10.81e). For
example, we have
1
5 (Bitit + 2Ritin + Rinin)

1
= Z(Rnlnl - 2Rnlln + Rlnln) = Rlnln P (1083)

&1 = Ripio =

where we have used the symmetry properties of the Riemann tensor to eliminate and combine many

terms. This result is not obviously equal to any of the Weyl scalars, but note that

! *
Rlnln - _Rnnln - Rnnnl - _(R nll + Rmnml + R™ nm*l)
- _Rm*nml - Rmnm*l = lem*n + le*mn

= Uy 4 U3, (10.84)

where we have used the fact that in the null tetrad basis {l_; i, m, m*}, indices are raised and lowered



with a metric given by

0 -1 0 0
-1 0 0 O
g — 10.85
Jop =9 o o o 1| ( )
0 0O 1 0

and the fact that the Ricci tensor vanishes in vacuum spacetimes. Similar calculations show that

1 4 .
Bii = 56" Ryg10 = Rszio = —iRmemin
= i(Rimnm* + Rim=mn) = i(—=V2 + ¥3), (10.86)

from which we conclude that £;; + iB;j; = 2¥,. Similar computations can be used to fill out the
remaining components in the matrix in Eq. (10.82).

In future papers, we will discuss quantities that we call the horizon tendicity and horizon vorticity
in more detail. These are the values of £ and B at the horizon for the component that is projected
along the normal to the 2-dimensional event horizon of a black hole, for both indices of the tidal
and frame-drag fields. When we denote the inward normal to the horizon by N, and we choose the
vector e such that it coincides with —IV at the horizon, then we immediately have the useful result
that
(Eij +iBij)N'N7 . (10.87)

N =

1 .
Uy = 5(5]\[}\] +’LBNN) =

We will use this results when we apply our vortex and tendex tools to analytical and numerical

black-hole spacetimes (Papers II and III in this series).
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Chapter 11

Visualizing Spacetime Curvature via Frame-
Drag Vortexes and Tidal Tendexes: II. Sta-
tionary and Perturbed Black Holes

In a recent series of papers, we introduced a method of visualizing all ten degrees of
freedom of the Weyl tensor using tools that we called tidal tendexes and frame-drag
vortexes. The visualizations begin from a time-space split of the Weyl tensor into two
symmetric trace-free tensors, the tidal field (the tensor’s electric part), &;;, and the frame-
drag field (the tensor’s magnetic part), B;;. The tensors can always be diagonalized, and
their eigenvalues (the tendicity and vorticity, respectively) as well as the integral curves
of their eigenvectors (the tendex and vortex lines, respectively) are simple functions that,
together, capture all the independent components of the Weyl tensor. These quantities
also have simple physical interpretations: the tendex lines show the preferred directions
of tidal forces and the tendicity indicates the forces’ strengths; similarly, the vortex lines
show the preferred directions of differential precession of gyroscopes and the vorticities
indicate the rates of the precession. In addition, the tendexes and vortexes (regions
of large tendicity and vorticity in magnitude) are important structures that guide the

visualization and interpretation of a spacetime’s dynamics.

In this paper, we analyze the tendexes and vortexes of stationary and perturbed black
holes, as a test-bed for understanding these tools in spacetime regions of strong curvature
and strong, but linearly dynamical, curvature; we aim to build intuition from these results
that we will then apply to the strong, dynamical, and nonlinear spacetime curvature
of black-hole binary simulations, in future papers. In particular, we find that for a
Schwarzschild black hole, the tendexes are uniform and spherically symmetric and the

vortexes vanish. For a stationary Kerr black hole, however, there is a positive and a
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negative vortex that extends out from the horizon of each hole, respectively, and that is
concentrated about the axis of rotation. The tendexes of a Kerr black hole look similar
to a Schwarzschild black hole far away, but for a rapidly spinning hole, near the horizon,
there are two positive tendexes near the poles, and a band-shaped negative tendex around
the equator. For [ = 2, m = 2, odd-parity perturbations of Schwarzschild and Kerr black
holes, there are two positive and two negative equatorial vortexes that stretch out from
the horizon and which, at larger radii, collect into the polar vortexes of gravitational
waves. The vortexes induce accompanying perturbative tendexes that extend from near
the equatorial plane (close to the horizon) to the poles (at larger radii). For electric-parity
perturbations, the perturbative tendexes play the role of the magnetic-parity vortexes,

and the vortexes are quite similar to the magnetic-parity tendexes.

In regions of strong curvature the choice of slicing and spatial gauge can have a signifi-
cant effect on the mathematical expressions for the metric and curvature; we, therefore,
investigate the effects of these changes on the vortexes and tendexes of a spacetime. For
stationary black holes, we look at the effect of changes in the time and spatial coordi-
nates, separately. We find that for several well-known coordinate choices, neither has a
large influence on the vortexes and tendexes at large radii. Furthermore, when we restrict
to time coordinates that smoothly pass through the horizon, the qualitative behavior of
the vortexes and tendexes are, in essence, identical. For perturbed black holes, we inves-
tigate the effect of changes of coordinates by comparing perturbations of Schwarzschild
black holes in two well-known gauges: Regge-Wheeler gauge and ingoing-radiation gauge.
We find that the vortexes are very similar, qualitatively. We, therefore, are cautiously
optimistic that vortexes and tendexes will be a helpful and reasonably gauge-invariant
method of gaining insight from strong, nonlinear, and dynamical spacetime curvature

around black-hole binaries.

Based on a paper in preparation by D. A. Nichols, R. Owen, F. Zhang, A. Zimmerman,
J. Brink, Y. Chen, J. D. Kaplan, G. Lovelace, K. D. Matthews, M. A. Scheel, and K. S.
Thorne.

11.1 Motivation and Overview

Numerical simulations of compact-binary mergers and stellar collapse have provided a rich set of
solutions of Einstein’s field equations in the highly nonlinear and dynamical regime [1]. These
computations offer accurate gravitational waveforms, which are key to the success of gravitational-
wave detection programs (see, e.g., [2]). Another, less well-defined opportunity provided by such

simulations would be to further appreciate how spacetime evolves dynamically in such dramatic
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scenarios of high curvature. A way to test our understanding is to try to build physically-motivated
semianalytical models that approximately describe such spacetimes. These models may eventually
help the gravitational-wave-detection effort in building high-precision wave templates that are much
faster to compute than those generated by numerical-relativity simulations; they may also guide
us towards appreciating the physical meaning of various components of the outgoing gravitational
waves, and the dependence of the waveform on the parameters of the system.

Powerful visualization techniques are required in order to glimpse into the strong-field region of
a numerical-relativity spacetime. In the past, several ways have been used to visualize the entire
numerical spacetime. The Newman-Penrose scalar, ¥4, [3] has been used, but it is of a limited
usefulness, because it only has a straightforward meaning in the wave zone for outgoing radiation,
and it is only a small part of the full spacetime curvature. The lapse and shift are a second set of
quantities used to visualize the spacetime curvature particularly in numerical-relativity simulations.
These quantities do label where the black holes are and how deep the gravitational potential is,
but they are also highly coordinate dependent. Isometric embedding in three-dimensional Euclidean
space (see, e.g., [4]) have been used for horizons; they do not cover the entire spacetime, however,
and for spinning Kerr black hole with a/M > 1/3/2 [5], the event horizon cannot be embedded
anymore.

Recently, in [6, 7], we proposed visualizing curved spacetimes using the eigenvectors and eigen-
values of the tidal and frame-drag tensors—two three-dimensional tensor fields, &;; and B;;, defined
on the spatial (three-dimensional) slice in a space-time (3+1) decomposition of a spacetime—which
together describe the ten independent components of the Weyl curvature tensor, Cogys. The tidal
and frame-drag fields, therefore, completely determine the curvature of the vacuum region of a space-
time. The way C splits into € and B depends only on the local direction of time used for the 3+1
split, analogous to the way the Maxwell field-strength tensor splits into electric and magnetic fields.
In fact, visualizing curvature using the eigendirections of &;; and B;; is much like visualizing an
electromagnetic field using electric and magnetic field lines. For the vortex and tendex quantities,
however, the most interesting physics is contained within the tendexes (regions of large tendicity in
magnitude) and vortexes (regions or large vorticity), rather than along individual field lines.

Our strategy is to first visualize “analytically understood” spacetimes using our tools, in order
gain intuition into the relation between the visual picture and the analytics, and then to visual-
ize numerical-relativity spacetimes (looking for features we have already found and retrieve their
analytical origin). In [7] (henceforth Paper I), using examples of nearly flat spacetimes, we have
shown that integral curves of the eigenvectors, tendex lines (for the tidal tensor) and vortex lines (for
the frame-drag tensor), can already illustrate very well the spacetime around oscillating multipole
sources, and we have been able to connect features of the field lines to physical understanding: in

the near zone, the field lines are attached to the source; in the transition zone, retardation effects
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cause the field lines to change character in understandable ways; and in the wave zone, the field
lines approach those of freely propagating plane waves. In a supplementary study [8], tendex and
vortex lines of asymptotically flat spacetimes at future null infinity (a 2-sphere) have been classified
according to their topological features.

In this paper, henceforth Paper II, we will visualize static and perturbed black-hole space-
times. We are motivated by the fact that black holes are important components of the numerical-
relativity simulations that we would like to learn about; the tools available to us are from black-hole-
perturbation theory. We are especially interested in the tendexes and vortexes of black holes under-
going quasinormal-mode oscillations, because these modes will mirror the appearance of numerical-
relativity simulations of black-hole mergers at late times, where the nonlinear dynamics has given
way to the simple evolution of weak perturbations of the final black hole. We will visualize numerical
spacetimes in a forthcoming paper, henceforth Paper I1II, in which we will apply the understandings
gained in Papers I and II. The remainder of this paper is organized as follows:

In Section 11.2, we briefly review the detailed conventions we use for tidal field, &;;, and it
tendexes, and the frame-drag field, B;;, and its vortexes (which are contained in [6, 7]). Next, in
Section 11.3, we discuss the tendexes and vortexes on black-hole horizons, and we relate them to
other well-known horizon quantities. Section 11.4 shows the tendex lines of a static Schwarzschild
black hole, and Section 11.5 shows the vortexes and tendexes of a slowly rotating black hole. We
compute the tendexes and vortexes of a (rapidly rotating) Kerr black hole, in Section 11.6, which we
show in several different time slicings and coordinate systems. In the time slices that smoothly pass
through the horizon, the qualitative features of the vortex and tendex quantities do not strongly
depend, qualitatively speaking, on the specific time slicing or the spatial coordinates.

In Section 11.7, we show the vortex lines of a perturbed Schwarzschild black hole, for odd-parity
[ = 2 quasinormal-mode perturbations (in this part we use Regge-Wheeler gauge [9, 10]). We find
that for a mode with m = 2, the vortexes in the equatorial plane emerge normal to the horizon
and collect into spirals that asymptotically become the gravitational waves. For a superposition of
m = 2 modes, the vortexes in the equatorial plane still emerge normal to the horizon, but they
form oscillating bands that are the gravitational waves at large radii.

Section 11.8 is devoted to computing the three-dimensional perturbative tendexes and vortexes
of even-parity [ = 2, m = 2 perturbations of both Schwarzschild and Kerr black holes in an ingoing-
radiation gauge (see, [11, 12, 13, 14] for the formative work on this gauge and [15, 16, 17, 18, 19, 20]
for more recent work). In the three-dimensional plots, we see that there are two positive and
negative perturbative tendexes that emerge from the horizon near the equator, and, at larger radii,
they collect into the tendexes of gravitational waves near the poles. They induce vortexes near the
equator in the near zone, that also coalesce around the poles at larger radii. The dynamics of wave

generation is not largely different for Schwarzschild or Kerr black holes. We compare the vortex lines



327

of a quasinormal-mode perturbation to a Kerr black hole (in an ingoing-radiation gauge) to those of
a weakly perturbed Kerr black hole formed after the merger of two rapidly spinning black holes in
a numerical-relativity simulation by Lovelace and collaborators [21], at the end of this section; we
find remarkably good agreement between the two. Finally, in Section 11.9 we summarize our results
and discuss directions for future research.

Many details about our calculations and some of our results are included in several appendices.
Appendix 11.A gives explicit expressions the tidal and frame-drag fields, and their tendex and
vortex lines. It also contains figures of vortex and tendex lines using a time coordinate that does not
smoothly pass through the horizon and a discussion of these figures. Appendix 11.B is a review of the
Regge-Wheeler-Zerilli formalism for black-hole perturbations, and it contains some computations of
the frame-drag field for quasinormal-mode perturbations of these black holes. In Appendix 11.C,
we review elements of Teukolsky’s formalism for computing perturbations to the Weyl scalars [22],
which are needed to compute the perturbed metric in an ingoing-radiation gauge. In Appendix
11.D, we review the procedure for calculating metric perturbations in the ingoing-radiation gauge
for general perturbations, and we also specialize the procedure to compute the metric corresponding
to modes of definite parities. Appendix 11.E presents analytical expressions for definite-parity metric
perturbations of Schwarzschild black holes, and it contains analytical expressions for the tidal and
frame-drag fields. In Appendix 11.F, we show that the frame-drag fields in Regge-Wheeler and the
ingoing-radiation gauges are, in fact, equal; the tidal fields are not, however. Next, Appendix 11.G
describes the numerical and analytical methods we use to compute the vortex and tendex lines in
greater detail.

The final two appendices present a few additional results. Appendix 11.H shows odd-parity [ = 2,
m = 2 perturbations of Schwarzschild black holes in an ingoing-radiation gauge. First, it shows that
there is a near duality between electric- and magnetic-parity perturbations of Schwarzschild black
holes (i.e., the vortexes of a magnetic-parity perturbation are almost identical to the tendexes of
an electric-parity perturbation, and vice versa). Second, because the equatorial vortexes are so
similar to those of a Regge-Wheeler-gauge perturbation of the Schwarzschild spacetime, we have an
additional piece of evidence that the vortexes and tendexes may not be too strongly gauge dependent
(in time slices that smoothly pass through the event horizon). The appendix also shows odd-parity
I =2, m = 2 perturbations of a Kerr black hole, and there is a similar (though weaker) duality with
the electric-parity perturbations of a Kerr black hole. Appendix 11.I shows three-dimensional vortex
and tendex lines of the background plus the perturbative fields, which we suspect will be useful for
comparisons with numerical-relativity simulations in the future.

Throughout this paper we use geometrized units, in which G = ¢ = 1. Greek indices will be used
for 4D spacetime quantities, and will run from 0 to 3, while Latin indices are reserved for spatial

quantities (which run from 1 to 3); indices with carets above them will indicate a projection onto an



328

orthonormal basis, and capital Latin indices from the start of the alphabet are reserved for angular
quantities defined on spheres of some constant radius (that run over angular coordinates 6, ¢ or the
last two spatial indices, 2 to 3). We use a signature (— + ++) for the spacetime metric, and our

Newman-Penrose quantities are defined appropriately for this signature, as in [23].

11.2 Tendex and Vortex Lines

In this section, we review the 3 + 1 split of the Weyl curvature tensor and the definitions of the
vortex and tendex quantities (see Paper I for a more detailed overview). The split of spacetime
begins with a unit timelike vector field @ that is orthogonal to a spacelike hypersurface of a constant
time function, t; this vector field is the four-velocity of a family of observers who observe these
time slices as moments of simultaneity. We treat only vacuum spacetimes in this paper, where the
Riemann tensor, R, s, is the same as the Weyl tensor, C,, 0. The Weyl tensor has ten independent
degrees of freedom, and in a 3+1 split, they are represented by two symmetric, trace-free spatial
tensors &;; and B;;, which we call the tidal and frame-drag fields, respectively, and which are defined

below:

Eaﬁ = ”Yap'}/ﬁacp,ucwuuuu 5 i'e'v 51 = O’LO]O ’ (111)
. 1
Bag = —7a"5" *Coporti’u” ie., Bij = §€ipqcqu0 ) (11.2)

The quantity *Cl.,s is the Hodge dual of the Weyl tensor, and v,* is the projection operator
into a spatial slice (which is equivalent to raising one index of the spatial metric). We use the
conventions for the antisymmetric tensors which, when expressed in an orthonormal basis, require
that €g555 = +1 and €555 = +1.

Because &;; and B;; are symmetric, trace-free tensors, they can always be diagonalized by finding

their three eigenvalues and eigenvectors (shown below for the tidal field):
vt =\t (11.3)

We call the streamlines of these eigenvector fields tendex lines for the tidal field and vortex lines for
the frame-drag field, and the eigenvalue along these lines the tendicity and vorticity, respectively. A
region of large tendicity (in magnitude) we will call a tendex, and that of large vorticity we will call
a vortex.

Vortex and tendex lines (and their corresponding vorticity and tendicity) also have a simple
physical interpretation. In Paper I, we rederived the facts that the tidal field describes the local
tidal forces between nearby points in the spacetime and the frame-drag field determines the relative

precession of nearby gyroscopes. Specifically, in the local Lorentz frame of two freely falling observers,
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separated by a spatial vector &7, the differential acceleration experienced by the observers is
Ad' = —E';¢7 (11.4)

and, if these same observers carry inertial guidance gyroscopes, each will measure the gyroscope of

the other to precess (relative to her own) with the same vectorial angular velocity,
AQ" = B¢ (11.5)

The physical interpretation of the tendex and vortex lines (and their corresponding tendicities and
vorticities) is now clear: if two observers have a small separation along a tendex line, they experience
an acceleration along that line with a magnitude given by the tendicity of that line (pushed together
if positive and pulled apart if negative); similarly, two observers separated along a vortex line will
have their gyroscopes differentially precess with a magnitude given by the vorticity along the line

(clockwise if positive and counterclockwise if negative).

11.3 Black-Hole Horizons; The Horizon Tendicity £yy and

VOI‘tiCity BNN

In many problems of physical interest, such as black hole perturbations and numerical-relativity
simulations using excision (as in the SpEC code [24]), the interior of a black hole is not included in
the domain of the solution. This does not effect the evolution of the exterior of the spacetime, because
the event horizon prevents information from the black hole’s interior from escaping to the outside
world. We, however, are interested in structures defined on spacelike surfaces that pass through
the horizon, and we would like to have an indicator on the horizon of the spacetime dynamics
surrounding the horizon. To do this, we define quasilocal quantities (see, e.g., [25]), which we call
the horizon tendicity and vorticity.

We define the horizon tendicity and vorticity as follows: For a hypersurface-normal observer with
4-velocity 4, passing through a world tube such as an event horizon or a dynamical horizon, the
world tube has an inward pointing normal, N , orthogonal to u, and two orthonormal vectors tangent
to its surface, €3 and €3. It is useful to choose these four vectors to make an orthonormal tetrad.
The horizon tendicity is defined as Exny = &£;; N N7 and the horizon vorticity is Bny = Bij N'NY.
Physically, they represent the amplitude of the differential acceleration and precession of gyroscopes,
respectively, measured by an observers separated along the normal of the horizon.

The horizon tendicity and vorticity have several interesting connections with other geometric
quantities of 2-surfaces; in particular, they are well adapted to Newman-Penrose (NP) formalism

[3]. Rather than using tetrad of time- and space-like vectors (, N, & and €3), the NP approach
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uses a null tetrad, with two null vectors [ and 71, together with a complex spatial vector m and its

complex conjugate m*. It is convenient to adapt this tetrad to the 2-surface so that it is given by

- 1

l=—(W—-N), ii=—(W+N), m=—( +ie3). 11.6
( ) ( ) \/5( >+ i€3) (11.6)

On an event horizon, lis tangent to the generators of the horizon and 7 is the ingoing null normal.

It is not difficult to show that in this tetrad the complex Weyl scalar W5 is given by
Uy = Cimmen = (EnN +iBNN)/2, (11.7)

where Cipm+n 18 the Weyl tensor contracted into the four different null vectors of the tetrad in the
order of the indices.

Penrose and Rindler [26] relate the NP quantities to the curvature scalars of a spacelike 2-surface
in spacetime; in turn, we can then connect their results to the horizon tendicity and vorticity. More

specifically, Penrose and Rindler define a complex curvature of a two-surface by
1 .
IC:Z(R+ZX) . (11.8)

Here R is the intrinsic Ricci curvature scalar of a the 2D horizon and X is a scalar extrinsic curvature
(a curvature of the bundle of vector spaces normal to the two-surface in spacetime). This extrinsic
curvature X is related to the Héjicek field [27] Q4 = n#Val, (where V4 denotes the covariant
derivative projected into the 2D horizon) by X = 4BV 4Qp, where ¢4? is the antisymmetric tensor
of the 2D horizon. In the language of differential forms, X is the dual of the exterior derivative of
the Héjicek 1-form.

Penrose and Rindler [26] show that

K=-Us+4 up— Ao, (11.9)

where p, o, i, and A are spin coefficients related to the expansion and shear of the null vectors I

and i, respectively; this implies that the horizon tendicity and vorticity are given by

ENN = —R/2+2R[up — Na], (11.10)
BNN = —X/2+2%[up—/\0]. (1111)
For a stationary black hole, p and o vanish, Eyy = —R/2 and Byy = —X/2, and the two-

dimensional horizon of a stationary black hole must have a spherical topology. By the Gauss-Bonnet

theorem (which requires that the integral of the scalar curvature R over such surfaces is 87) the
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integral of the horizon tendicity Enn over the horizon is —4r; similarly, Stokes’ theorem (the integral
of an exact form vanishes on a surface without a boundary) requires that the integral of the horizon

vorticity vanishes; i.e., they satisfy

%5NNdA:—47T, %BNNCZAZO (1112)

for the horizon of a stationary black hole.

For weakly perturbed Schwarzschild black holes, one can choose a tetrad, the Hartle-Hawking
tetrad [28], in which —W5 is the same as the complex curvature of the horizon to linear order in
perturbation theory. For a weakly perturbed Kerr black hole, Hartle showed that —W¥4 is the same

as the complex curvature at zeroth order, and, in the Hartle-Hawking tetrad,
KO = —pl) — A0 0 (11.13)

on the horizon [29]. Here, and throughout this paper, the superscripts, (i), indicate orders in the
perturbation; similarly we will sometimes use subscripts, (7).

We briefly digress to note that in the calculations performed in this paper, even though we do
not generically work in the Hartle-Hawking tetrad, Eqgs. (11.12) still seem to hold even for perturbed
black holes to a very good approximation. Intuitively, this is likely the case, because we focus on
perturbations of definite parities, and we do not see asymmetries that would lead this equality to
no longer hold. Interestingly, in preliminary numerical-relativity simulations, we do not see very
large deviations from the relationships given in Egs. (11.12) either; whether this is an indication of
a deeper relationship is still an open question.

The horizon tendicity and vorticity are only markers of the surrounding spacetime dynamics,
and they do not directly affect the spacetime outside, because the event horizon is defined by the
condition that its generators do not escape from the surface and reach future null infinity. In 1974,
Hartle [29] captured this effect clearly, when he showed that perturbations to the complex horizon
curvature of a Kerr black hole are driven by ingoing gravitational radiation (represented by the Weyl
scalar Wp). This point is emphasized in a recent series of papers by Jaramillo, Macedo, Moesta,
and Rezzola [30, 31], in which correlations between quantities on the horizon and infinity reveal
properties of the spacetime dynamics between the two.

It is worth noting a few other examples in the literature where the complex-curvature quantities
have been used. The most common use of horizon vorticity (in a disguised form) is to compute the
spin angular momentum associated with a quasilocal black-hole horizon. Following [32, 33, 34], it

has become common to compute black-hole angular momenta using the following integral over the
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horizon:

1 o
8

where K;; is the extrinsic curvature of the spatial slice embedded in spacetime, N is the inward-
pointing unit normal vector to the horizon in the spatial slice, and ¢ is a rotation-generating vector
field tangent to the two-dimensional horizon surface. If ¢ is a Killing vector, then one can show
that J is conserved. In Ref. [35], this was applied to binary-black-hole simulations with & given
by a certain kind of approximate Killing vector that can be computed on a deformed two-surface.
In [36], and independently in [37, 38|, this idea was refined. The quantity J can be shown to be
boost-invariant (independent of boosts of the spatial slice in the direction of N ) if & is divergence-
free. Hence, in [36, 37, 38], 7 is restricted to have the form o4 = eABV (¢, where ( is some scalar
quantity on the two-surface (eventually fixed by a minimization problem for other components of
the Killing equation). Once this substitution has been made, an integration by parts allows J to be

written as

1
= fxgdA. (11.15)

The quantity ¢ is fixed by a certain eigenvalue problem on the horizon’s two-dimensional surface.
On a round 2-sphere, the operator in this eigenvalue problem reduces to the conventional Laplacian,
and ¢ can be shown to reduce to an ¢ = 1 spherical harmonic. Therefore, the quasilocal black hole
spin defined in [36, 37, 38] can be thought of as the dipole part of the horizon vorticity.

In [39], it was shown that higher spherical-harmonic components of these horizon quantities
provide natural definitions of source multipoles on axisymmetric isolated horizons. In [40] and [41],
this formalism was extended to less symmetric cases (so that it could be used within numerical-
relativity simulations) introducing as little gauge ambiguity as possible; similar applications of this

formalism can be found in [42, 43].

11.4 Schwarzschild Black Hole

In this section, we examine the vortex and tendex lines of a nonrotating black hole with mass M,
Even for a spherically symmetric black hole, our choice of time slicing will affect the appearance
of these lines. As in the numerical-relativity simulations that are the focus of Paper III, so also
here, we shall use a slicing that penetrates smoothly through the black hole’s horizon. The slices of
constant Schwarzschild time, ¢, for the hole’s Schwarzschild metric

ds® = — (1 - ¥> dt* + (1 - ¥>1 dr? + r2df* + r* sin® 0dg? (11.16)

do not penetrate the horizon smoothly; rather, they become singular as they approach the horizon.

The simplest horizon-penetrating slices are those of constant ingoing Eddington-Finkelstein (EF)



333
time
f:t+2M10g|r/2M—1| . (11.17)

The Schwarzschild metric (11.16), rewritten using EF coordinates {t, 7,0, ¢}, takes the form

2M 4M - 2M
ds* = — (1 - —)dzﬁf2 + —dtdr + (1 + —) dr® 4 r2d6* + 1% sin” 9dp? . (11.18)
r r r

The observers who measure the tidal and frame-drag fields that lie in a slice of constant ¢ have
4-velocities @@ = —aEpﬁf, where agrp = 1/4/1 4 2M/r is the normalizing lapse function. These

observers can be regarded as carrying the following orthonormal tetrad for use in their measurements:

. 1 {(1+2M>8 2M8] . 1 P . 18 . 1 P
U= — — 0 — —0,|, € =——m—=0,, €;=-09, €;=— .
1+ 2M]r r )t 1+ 2M]r 6737 6T rsing
(11.19)
The nonzero components of the tidal field that they measure using this tetrad are
2M M
Eii=—"3 &a=&4= "5 (11.20)

and the frame-drag field B,; vanishes.

Note that the black hole’s tidal field Eq. (11.20) has the same form as the Newtonian tidal
tensor outside of a spherical source. Because this tidal field is diagonal, we conclude that the spatial
triad in Eq. (11.20) are the tendex directions and the diagonal components of the tidal field are the

corresponding tendicities, as we show below:

- 2M

- M - M
‘/;nzngAT:——, gzé'é<—>)\9:—, V¢:é:;g<—>)\¢=—. (1121)

3

Because the two transverse eigenvalues A\g and Ay are degenerate, any vector in the transverse vector
space spanned by €; and € 3 is a solution to the eigenvalue problem, and correspondingly, any curve
that lies in a sphere of constant r can be regarded as a tendex line. However (as we shall see in the
next section), when the black hole is given an arbitrarily small rotation about its polar axis 6 = 0,
the degeneracy is broken, the nondegenerate transverse eigenvectors become nearly €; and €, & and
the transverse tendex lines become circles of constant latitude and longitude.

In Fig. 11.1, we plot a few of these transverse tendex lines (giving them a blue color corresponding
to positive tendicity, Ag > 0 and Ay > 0), and also a few of the radial tendex lines (colored red
for negative tendicity, A\, < 0). Also shown are two human observers, one is oriented along a blue
tendex line and, therefore, is being squeezed by the tidal field; the other is oriented along a red

tendex line and is, therefore, being stretched.
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S

Figure 11.1: Tendex lines for a nonrotating (Schwarzschild) black hole. These lines are identical to
those generated by a spherically symmetric mass distribution in the Newtonian limit. Also shown
are observers who experience the tidal stretches and compressions associated with the tendex lines.

11.5 Slowly Rotating Black Hole

11.5.1 Slicing and Coordinates

When the black hole is given a slow rotation with angular momentum per unit mass a, its metric,

Eq. (11.16), in Schwarzschild coordinates acquires an off-diagonal g, term:
2M oM\ 4aM
ds? = — (1 - —) dt? + (1 - —) dr? + 2d0% + 12 sin? 0dg? — —— sin? 0dtdy  (11.22)
r r r

(the Kerr metric in Boyer-Lindquist coordinates, Eq. (11.31) below, linearized in a). The slices of
constant EF time £ = t 4+ 2M log |r/2M — 1] are still smoothly horizon penetrating, but the dragging
of inertial frames (the off-diagonal g, term in the metric) causes the Schwarzschild ¢ coordinate to

become singular at the horizon. To fix this, we must unwrap ¢, e.g., by switching to the coordinate
¢ =+ (a/2M)log|1 —2M /7|, (11.23)
thereby bringing the slowly rotating Kerr metric, Eq. (11.22), into the form

oM AM - oM _
ds® = -— (1 — —) dt? + —dtdr + (1 + —) dr? +r2d6? + r? sin 0dp?
T T T

daM - oM _
©% sin2 0didg — 2ay/1 + =— sin? drdg (11.24)
T T
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Figure 11.2: Left are tendex lines and right are vortex lines for a slowly rotating black hole. For the
visualization here, we choose a/M = 0.1. The horizon is color coded by its tendicity Exn (left) and
vorticity By (right), and the field lines are color coded by the sign of their tendicity or vorticity.
The semi-transparent cone-like surfaces emerging from the horizon’s north and south polar regions
are the edges of the hole’s frame-drag vortexes (defined as the regions where the emerging vortex
lines have vorticity greater that 0.9 of the maximum vorticity at the poles).

(Eq. (11.53) below, linearized in a), which is well-behaved at and through the horizon. The observers
who move orthogonally to the slices of constant ¢ have four-velocity @ and an orthonormal basis the

same as for a nonrotating black hole, Eq. (11.19), except that é; is changed to

ER S [ar + 7%(1 +2M/r)d; (11.25)

V1+2M/r
(Eq. (11.54) below, linearized in a).

11.5.2 Frame-Drag Field and Deformed Tendex Lines

The slow rotation gives rise to a frame-drag field

—6aM cosf —3aM sin 6 3aM cos 6
Bir = a74cos . By =B = ey By =By = % (11.26)
r r4/1+2M/r r

that lives in the slices of constant EF time #. This field’s vortex lines, shown in the right panel
of Fig. 11.2, are poloidal and closely resemble those of a spinning point mass in the linearized
approximation to general relativity (Fig. 3 of Paper I [7]). At radii » > M, the field asymptotes to
that of a linearized current dipole.

The rotating hole’s horizon vorticity is Byy = Brs = —6(aM/r?) cosf, which is negative in

the northern polar regions and positive in the southern polar regions. Correspondingly, there is a
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counterclockwise frame-drag vortex sticking out of the hole’s northern pole, and a clockwise one
sticking out if its southern pole. We arbitrarily identify the edge of each vortex, at radius r, as the
location where the vorticities of the vortex lines, that emerge from the hole at the base of the vortex,
fall (as a function of 8 at fixed r) to 90 percent of the on-pole vorticity. The vortex edges are shown,
in Fig. 11.2, as semi-transparent surfaces.

The hole’s (small) spin not only generates a frame-drag field B;;; it also modifies, slightly, the
hole’s tidal field &;; and its tendex lines. However, the spin does not change the field’s tendicities,
which (to first order in a/M) remain A2 = —2M/r3, \j = XJ = M/r®, as in Eq. (11.21). The

modified unit tangent vectors to the tendex lines are

‘78257:— 2Masin @ o VE n 2Masin @ g ‘—/»(;5:

' r%/l—i—% ¢’ ¢ ¢ r%/l—i—% '

Correspondingly, there is a slight (though hardly noticeable) bending of the radial tendex lines near

s . (11.27)

the black hole, and, more importantly, the azimuthal tendex lines (the ones tangent to Vf ) no longer
close. Instead, the azimuthal tendex lines spiral outward along cones of fixed 6, as shown in the left

panel of Fig. 11.2.

11.5.3 Robustness of the Frame-Drag Field and Tendex-Line Spiral

The two new features induced by the hole’s small spin (the frame-drag field, and the spiraling of the
azimuthal tendex lines) are, in fact, robust under changes of slicing. We elucidate the robustness of
the frame-drag field and its vortex lines and vorticities through the following argument:

Suppose that we change the time function ¢, which defines our time slices, by a small fractional

amount of order a/M; i.e., we introduce a new time function
t'=t+&(r,0), (11.28)

where ¢ is EF time and ¢ has been chosen axisymmetric and time-independent, so it respects the
symmetries of the black hole’s spacetime. Then observers who move orthogonal to slices of constant
" will be seen by the EF observers (who move orthogonal to slices of constant ) to have small
spatial-velocities that are poloidal, v = v"e; + véeé. The Lorentz transformation from the EF
reference frame to the primed reference frame at some event in spacetime induces a change of the
frame-drag field given by

B =-2(vx&?*, (11.29)

where the S means symmetrize. Inserting the EF tidal field in Eq. (11.20) and the poloidal compo-
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nents of v, we obtain as the only nonzero components of §3
0B, ; = 0B;, = —(3M/r3)’ . (11.30)

This axisymmetric, slicing-induced change of the frame-drag field causes the vortex lines, which
are originally purely poloidal, to acquire a small toroidal component (breaking the field’s symmetry).
Correspondingly, no small, axisymmetric change of slicing can alter the frame-drag field of a slowly
rotating black hole in such a way as to preserve the poloidal nature of its vortex lines. In this sense,

the frame-drag field is robust under slicing changes.

11.6 Rapidly Rotating (Kerr) Black Hole

We shall now explore a rapidly rotating black hole described by the exact Kerr metric.

11.6.1 Kerr Black Holes in Boyer-Lindquist Coordinates

The Kerr metric is usually written in Boyer-Lindquist (BL) coordinates {t,r,0, ¢}, where it takes

the form
2Mr ) sin” # 4Marsin® 0
ds? =—(1- dt? + —dr* + Xdf? + —— Ad¢® — ———— " dtd 11.31
s < = > + X+ +—5—Adg S b, (11.31)
where
Y=r2+a’cos?0, A=r-2Mr+a*, A= (r?+a*?-a*Asin?h. (11.32)

Because the slices of constant ¢ are singular at the horizon and, therefore, not of much interest to
us, we relegate to Appendix 11.A.1 the details of their tidal and frame-drag fields, and their vortex

and tendex lines.

11.6.2 Horizon-Penetrating Slices

In our study of Kerr black holes, we shall employ two different slicings that penetrate the horizon
smoothly: surfaces of constant Kerr-Schild time coordinate £, and surfaces of constant Cook-Scheel
time coordinate . By comparing these two slicings’ tendex lines with each other, and also their
vortex lines with each other, we shall gain insight into the lines’ slicing-dependence.
The Kerr-Schild time coordinate (see, e.g., [44] also sometimes called ingoing-Kerr time) is defined
by
dr. 1r?+a?

t=t+4+r,—7r, wh = . 11.33
+7r.—1r, where o A ( )
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Figure 11.3: Slices of constant Boyer-Lindquist time ¢, Kerr-Schild time #, and Cook-Scheel time £,
drawn in a Kerr-Schild spacetime diagram. The dashed vertical line is the event horizon, r, and
the black hole has spin a/M = 0.95.

The Cook-Scheel [45] time coordinate is

2 2
7°+—|—a

T+ —T—

t=t+ ks

log , (11.34)

T—Tr_

where 7 is the value of the Boyer-Lindquist radial coordinate r at the event horizon, and r_ is its

value at the (inner) Cauchy horizon:

ry =M+ /M2 —a?. (11.35)

Figure 11.3 shows the relationship between these slicings. In this figure, horizontal lines are
surfaces of constant Kerr-Schild time #. Because t, #, and ¢ differ solely by functions of 7, the
surfaces of constant Cook-Scheel time t are all parallel to the # = 0 surface shown in the figure, and
the surfaces of constant Boyer-Lindquist time ¢ are all parallel to the t = 0 surface. The Kerr-Schild
and Cook-Scheel surfaces penetrate the horizon smoothly; by contrast, the Boyer-Lindquist surfaces
all asymptote to the horizon in the deep physical past, never crossing it (i.e., they become physically

singular at the horizon).

11.6.3 Horizon-Penetrating Coordinate Systems

Not only is the Boyer-Lindquist time coordinate ¢ singular at the event horizon; the Boyer-Lindquist
azimuthal angular coordinate ¢ is singular as well. It winds around an infinite number of times

as it asymptotes to the horizon. We shall use two different ways to unwind it, associated with
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Figure 11.4: Curves of constant Boyer-Lindquist angle ¢, Kerr-Schild angle ¢, and ingoing-Kerr
angle ¢ (same as Cook-Scheel angle ¢). The dashed vertical line gain represents the event horizon,
r4, and the black hole again has spin a/M = 0.95.

two different horizon-penetrating angular coordinates: the Cook-Scheel (also called ingoing-Kerr)

coordinate
~ a

o=0¢+ log

T —T—

r—=r4
T—Tr_—

=¢+/ %m, (11.36)

and the Kerr-Schild coordinate
o =¢—tan"*(a/r) . (11.37)

Figure 11.4 shows the relationship of these three angular coordinates. Notice that (i) all three
angular coordinates become asymptotically the same as r — oo; (ii) the two horizon-penetrating
coordinates, Cook-Scheel (5 and Kerr-Schild ¢, differ by less than a radian as one moves inward to the
horizon; and (iii) the Boyer-Lindquist coordinate ¢ plunges to —oo (relative to horizon-penetrating
coordinates) as one approaches the horizon, which means it wraps around the horizon an infinite
number of times.

In the literature on Kerr black holes, there are several sets of spacetime coordinates that are
built from the coordinates r and 6, in addition to one of the three time coordinates ¢, ¢, and ¢ and
one of the angular coordinates ¢, é, and ¢. We review these coordinates below.

The most common choice are the Boyer-Lindquist coordinates, {t,r, 8, ¢}, but these coordinates
are singular at the horizon. Of horizon-penetrating coordinates, a well-known example are ingoing-
Kerr coordinates, {E, 7‘,9,(;3}, or a variant in which ¢ is replaced by a null coordinate (one whose
gradient is null), v = £ + 7. There are also two types of quasi-Cartesian coordinates that are

commonly used, both of which are regular at the horizon. We discuss these coordinates next.
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The first are Kerr-Schild coordinates, {f,z,y, 2}, and their cylindrical variant, {f,w, z, p}. Here
:v—i—iy:(r—i-ia)eiq;sinG, z=rcosb, (11.38)

and

w=V22+12=Vr2+a?, ¢=arctan(y/z) = ¢+ arctan(r/a) . (11.39)

The Kerr-Schild spatial coordinates {z,y, z} resemble the coordinates typically used in numerical-
relativity simulations of binary black holes at late times, when the merged hole is settling down into
its final, Kerr state. These coordinate systems resemble each other in the senses that (i) both are
quasi-Cartesian, and (ii) for a fast-spinning hole, the event horizon in both cases, when plotted in
the coordinates being used, looks moderately oblate. For this reason, in our study of Kerr black
holes, we shall focus our greatest attention on Kerr-Schild coordinates. The Kerr metric, written in

Kerr-Schild coordinates, has the form

QM3

2 v . Tr+ay ry—ar z
ds® = (7’]”1, + mkuky> dx*dx R kﬂ = (1, 2 T 2 2 T a2’ ;) s (1140)
where r is the Boyer-Lindquist radial coordinate, and is the larger root of
52
a¥+f+z%ﬂﬂ+f(1—3>. (11.41)
r

The other set of coordinates are Cook-Scheel harmonic coordinates [45], {t, 7,0, g?)}, where

r:V“_Mﬁ+ﬁ“_MP, (11.42)

a?cos? 0+ (r — M)?

and the quasi-Cartesian coordinates constructed from them, {¢,z, ¥, z}, where
9’c+igj=(r—M+ia)ei‘£sin9, Z=(r—M)cosf . (11.43)

These coordinates are harmonic in the sense that the scalar wave operator acting on the quasi-
Cartesian coordinates vanishes, Oz* = 9, (v/—gg"?0,2"*) = 0. In these coordinates, the event
horizon of a spinning black hole is more oblate than in Kerr-Schild coordinates—much more oblate

for large a/M. The Kerr ring singularity, inside the inner Cauchy horizon, is located at ¥ = a.

11.6.4 Computation of Tendex and Vortex Quantities

Below we shall show images of tendex and vortex lines, color coded with their tendicities and vor-
ticities, for our two horizon-penetrating slicings and using the three sets of spatial coordinates that

are regular at the horizon. In all cases, we have computed the field lines and their eigenvalues
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numerically, beginning with analytical formulae for the tidal and frame-drag fields in ingoing-Kerr
spacetime coordinates, which we give in Appendix 11.A.2. Specifically, whenever the slicing is
Kerr-Schild, from our analytic formulas for £;; and B;;, we compute analytic formulas for the eigen-
vectors and eigenvalues in ingoing-Kerr spatial coordinates (Appendix 11.A.2), from the eigenvectors
we compute tendex and vortex lines numerically in ingoing-Kerr spatial coordinates, and we then
transform the lines to whatever other spatial coordinate system we may be using. When the slicing is
Cook-Scheel (or anything else), we express the ingoing-Kerr Riemann tensor in terms of our analytic
expressions for &;; and B;;, then transform that Riemann tensor to the new slicing and coordinate
system, then read off the new tidal and frame-drag fields, then numerically compute from them the
new eigenvectors and eigenvalues, and then from the eigenvectors compute numerically the tendex

and vortex lines.

11.6.5 Kerr-Schild Slicing: Tendex and Vortex Lines in Various Spatial

Coordinate Systems

Once the slicing is chosen, the tidal and frame-drag fields, and also the tendex and vortex lines and
their tendicities and vorticities, are all fixed as geometric, coordinate-independent entities that live
in a slice. If we could draw an embedding diagram showing the three-dimensional slice isometrically
embedded in a higher-dimensional flat space, then we could visualize the tendex and vortex lines
without the aid of a coordinate system. There is no simple way to draw embedding diagrams in
such high-dimensional spaces, however, and we are forced to draw the tendex and vortex lines in
some coordinate system for the slice, in a manner that makes the coordinate system look like it is
one for flat space.

Such a coordinate-diagram plot of the lines makes them look coordinate dependent—i.e., their
shapes depend on the coordinate system used. Nevertheless, we expect that the qualitative and
semi-quantitative features of the lines will be the same in all reasonable coordinate systems.

Figure 11.5 is an important example. It shows the tendex lines (left column of plots) and vortex
lines (right column of plots) for a fast-spinning Kerr black hole, with a/M = 0.95. In all cases the
slicing is Kerr-Schild; i.e., the lines lie in a slice of constant £. The three rows of figures are drawn in
three different spatial coordinate systems: Kerr-Schild, ingoing-Kerr, and Cook-Scheel. We describe
the important features of this figure in the next five paragraphs below.

As expected, the qualitative and semi-quantitative features of the tendex and vortex lines are
independent of the spatial coordinates, as expected. The only noticeable differences from one coor-
dinate system to another are a flattening of the strong-gravity region near the hole as one goes from
ingoing-Kerr coordinates (upper row of panels) to Kerr-Schild coordinates (center row of panels)
and then a further flattening for Cook-Scheel coordinates (bottom row of panels).

The azimuthal (toroidal) tendex and vortex lines (those that point predominantly in the €
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Figure 11.5: Tendex lines and vortex lines for a Kerr black hole with a/M = 0.95 in Kerr-Schild
slicing, drawn in three different spatial coordinate systems. The left and center columns of drawings
show tendex lines; the right column of drawings show vortex lines. The three rows, from top
downward, use ingoing-Kerr spatial coordinates {r,0, ¢Z}, Kerr-Schild spatial coordinates {r, 6, ¢},
and Cook-Scheel spatial coordinates {7, 8, ¢}. In all cases, the lines with positive tendicity or vorticity
are colored blue; those with negative tendicity or vorticity are colored red, and the horizon is shown
with its horizon tendicity (left column of drawings) and horizon vorticity (right column) color coded
from dark blue for strongly positive to dark red for strongly negative.
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direction) spiral outward from the horizon along cones of constant 6, as for the tendex lines of a
slowly spinning black hole; see the form of 17(5 in Egs. (11.61). As we shall discuss in Appendix
11.A.3, this is an unavoidable, slicing-independent consequence of the black hole’s spin. All the
poloidal tendex and vortex lines have small azimuthal (¢Z) components, which do not show up in this
figure; see the 85 components of the eigenvectors \_/;5, V}f, V5 and Vf in Egs. (11.61) and (11.62).

For this rapidly spinning black hole, the horizon tendicity (in the left column of images) is positive
(blue) in the northern and southern polar regions, and negative (red) in the equatorial region, by
contrast with a slowly spinning hole, where the horizon tendicity is everywhere negative (Fig. 11.2).
Correspondingly, a radially oriented person falling into a polar region of a fast-spinning hole gets
squeezed from head to foot, rather than stretched, as conventional wisdom might suggest. The
relationship Exyn = —R/2 between the horizon’s tendicity and its scalar curvature tells us that this
peculiar polar feature results from the well-known fact that, when the spin exceeds a/M = v/3/2 =
0.8660, the scalar curvature goes negative near the poles, at angles 6 satisfying 2(a/M)? cos? 0 >
1+ W . This negative scalar curvature is also responsible for the impossibility to embed
the horizon’s 2-geometry in a 3-dimensional Euclidean space [5].

Again, in the left column of images, the blue (positive tendicity) tendex lines that emerge from
the northern polar region sweep around the hole, just above the horizon, and descend into the
southern polar region. In order to stay orthogonal to these blue (squeezing) tendex lines, the red
(stretching) lines descending from radial infinity get deflected away from the horizon’s polar region
until they reach a location with negative tendicity (positive scalar curvature), where they can attach
to the horizon; see the central panels, which are enlargements of the northern polar region for the
left panels.

The vortex-line structure (the right column of images) for this fast-spinning black hole is very
similar to that for the slow-spinning hole of Fig. 11.2, and similar to that for a spinning point mass
in the linear approximation to general relativity (see Fig. 3 of Paper I [7]). The principal, obvious
change is that the azimuthal vortex lines are not closed; instead, they spiral away from the black
hole, like the azimuthal tendex lines. Most importantly, as for a slow-spinning black hole, there are
two vortexes (regions of strong vorticity): as a counterclockwise vortex emerging from the north
polar region and a clockwise vortex emerging from the south polar region. As we shall see in Paper
IIT, when certain configurations of two spinning black holes collide and merge, these vortexes sweep

around, emitting gravitational waves.

11.6.6 Slicing-Dependence of Tendex and Vortex Lines

To explore how a Kerr black hole’s vortex and tendex lines depend on the choice of slicing, we focus
on a black hole with a/M = 0.875, viewed in a slice of constant Kerr-Schild time, t =constant, and

in a slice of constant Cook-Scheel harmonic time, ¢ =constant (Fig. 11.6). In the two slices, we use
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Figure 11.6: Tendex lines and vortex lines for a Kerr black hole with a/M = 0.875 in Kerr-Schild
coordinates, for two different slicings: Kerr-Schild ¢ =constant, and Cook-Scheel £ =constant. The
left and center columns of drawings show tendex lines; the right column of drawings show vortex
lines. The top row of drawings is for Kerr-Schild slicing; the bottom row is for Cook-Scheel slicing.
Because the slicings are different, it is not possible to focus on the same sets of field lines in the
Kerr-Schild (upper panels) and Cook-Scheel (lower panels). However, we have attempted to identify

similar field lines by ensuring they pass through the same Kerr-Schild spatial coordinate locations
on selected surfaces.

the same spatial coordinates (Kerr-Schild). We choose a/M = 0.875, rather than the 0.95 that we
used for exploring slicing dependence, because our numerical techniques had difficulty dealing with
higher spins in the Cook-Scheel case.

The most striking aspect of Fig. 11.6 is the close similarity of the tendex lines (left column of
drawings) in the two slicings (upper and lower drawings), and also the close similarity of the vortex
lines (right column of drawings) in the two slicings (upper and lower). There appears to be very
little slicing dependence when we restrict ourselves to horizon-penetrating slicings.

By contrast, if we switch from a horizon-penetrating to a horizon-avoiding slice, there are big
changes in the field lines near the black hole: compare the top row of Fig. 11.5 (a/M = 0.95 for
a Kerr-Schild, horizon-penetrating slice) with Fig. 11.17 (the same hole, a/M = 0.95, for a Boyer-

Lindquist, horizon-avoiding slice). The most striking differences are (i) the radial tendex lines’
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horizon avoidance for horizon-avoiding slices, contrasted with their plunging through the horizon
for horizon-penetrating slices, and (ii) the closed-circle azimuthal tendex and vortex lines for Boyer-
Lindquist horizon-avoiding slices, contrasted with the outward-spiraling azimuthal lines for horizon-
penetrating slices. In Appendix 11.A.3, we argue that this outward spiral is common to all horizon-
penetrating slices.

Based on our comparison of Kerr-Schild and Cook-Scheel slicings (Fig. 11.6), and our analysis
of the ubiquity of azimuthal spiraling lines in horizon-penetrating slices (Appendix 11.A.3), we
conjecture that horizon-penetrating slicings of any black-hole spacetime will all lead to the same
qualitative and semi-quantitative structure for tendex and vortex lines. This conjecture is of key
importance for our use of tendex and vortex lines to extract intuition into the dynamical processes
observed in numerical-relativity simulations.

More specifically, numerical-relativity spacetimes have dynamically chosen slicings, and the pri-
mary commonality from simulation to simulation is that the time slicing must be horizon penetrating,
to prevent coordinate singularities from arising on the numerical grid near the horizon. Our con-
jecture implies that, regardless of the precise slicing used in a simulation, we expect the tendex and
vortex lines to faithfully reveal the underlying physical processes. We will build more support for
this conjecture in Section 11.8.3, by comparing the final stages of a numerical black-hole merger
with a perturbed Kerr black hole, using very different slicing prescriptions.

We conclude this section with a digression from its slicing-dependence focus. When we compare
the a/M = 0.875 black hole of Fig. 11.6 with the a/M = 0.95 hole of Fig. 11.5, the most striking
difference is in the tendex lines very near the horizon. The value a/M = 0.875 is only slightly
above the critical spin a/M = \/§/ 2 = 0.8660 at which the horizon’s poles acquire negative scalar
curvature. Correspondingly, for a/M = 0.875, the blue tendex lines that connect the two poles
emerge from a smaller region at the poles than for a/M = 0.95, and they hug the horizon more
tightly as they travel from one pole to the other; and the red, radial tendex lines near the poles

suffer much smaller deflections than for a/M = 0.95 as they descend into the horizon (see the insets).

11.7 Vortexes of a Perturbed Schwarzschild Black Hole in

Regge-Wheeler Gauge

In this section and the next, we explore the tendexes and vortexes of linearized, quadrupolar metric
perturbations of black holes. Here, we focus on the simplest example, the vortex lines of a perturbed
Schwarzschild black hole in Regge-Wheeler gauge (see, e.g., [9, 46, 47, 48, 49, 50]) in a slice of
constant Eddington-Finkelstein time. One can directly see the vortexes of the perturbations in this
slicing, because the background frame-drag field vanishes (this will not be the case for the tendexes

of a perturbed Schwarzschild black hole, or for both the tendexes and vortexes for Kerr black holes).



346

Specifically, we will visualize the vortexes of quasinormal-mode oscillations of Schwarzschild black
holes. The quasinormal modes of a Schwarzschild black hole are characterized by their complex
eigenfrequencies wyy,, where n is an overtone number, and ! and m are the multipolar indices
of spherical harmonics (the value of the frequency is independent of m). We will only visualize
the least-damped modes n = 0 and quadrupolar perturbations (focusing particularly on m = 2
and a superposition of m = +2 modes). The frequency of this mode, to five digits of accuracy is
Mw = 0.37367 — i0.08896, which we obtained through [51] (in connection with the review [52]).

We will relegate the details of our calculations involving Regge-Wheeler gauge to Appendix 11.B,
where we also review the Regge-Wheeler formalism. We also discuss more explicit details about how
we perform the calculation in Appendix 11.G. We briefly digress to describe the language we use to
describe the parity of the perturbations, because there are several different conventions. The Zerilli
perturbations transform as (—1)! under parity, and are often called either electric or even parity;
Regge-Wheeler perturbations transform as (—1)"*!, and are described as magnetic or odd parity.
We will use the electric-magnetic convention for our perturbations here (which also relates nicely to
the properties of the corresponding tidal and frame-drag fields), and we will reserve even and odd for
quantities that either change sign or not, respectively, under a parity transformation. For example,
the vortexes of a magnetic-parity, [ = 2 perturbations are even under parity, and the tendexes are
odd.

We find several important results in this section. First, we show that the horizon vorticity is
nonzero for a magnetic-parity perturbation, whereas the perturbative horizon tendicity vanishes. In
addition, we see that an [ = 2, m = 2 perturbation has two positive and two negative vortexes in
the equatorial plane that collect into spirals that will become the gravitational waves. Finally, we
find that a superposition of [ = 2, m = +2 perturbations have two positive and negative vortexes

that pass out from the horizon and form oscillating regions further from the black hole.

11.7.1 Horizon Vorticity

We first discuss the horizon vorticity of a perturbed black hole, Byy = Bi#, at the horizon (r/M =
2). Because Byy is boost invariant, it is also equal to the radial-radial component of B as seen
by Schwarzschild observers who hover immediately above the horizon, Bss, which is even easier to
compute than the equivalent quantity in the perturbed EF basis. A straightforward computation in

Schwarzschild coordinates yields for the magnetic-parity perturbations,
W+Hlid+1)—2 ;
B;; _ ( + )[ ( + ) ]iQefzwtylm , (1144)

2wr3

where @ is the Regge-Wheeler function (see Eq. (11.71) below), and the functions Y™ are scalar

spherical harmonics. Near the horizon, the Regge-Wheeler function @ has the asymptotic behavior
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Figure 11.7: The horizon vorticities, By, of quadrupolar, [ = 2, magnetic-parity perturbations for
m =0, 1, and 2, on the left, in the middle, and on the right, respectively. In all three figures, blue
(darker shading) indicates posivite vorticity, and red (lighter shading) indicates negative vorticity,
while white regions have nearly zero vorticity. The arrow points along the polar axis (the axis of
rotation symmetry for m = 0 modes).

Q ~ e~ ™7 which implies that

Qe ™" ~ exp[—iw(ry 4 )] ~ exp[—iw(r + 1)] (11.45)

(namely, that the Regge-Wheeler function is finite at the horizon in a slice of constant EF time).

Correspondingly, the horizon vorticity is

D0+ =2] . oMt yim
BNN = 16w M3 e Y (9,¢) . (11.46)

(We also note that the electric-parity modes have vanishing horizon vorticity.) At a fixed time,
therefore, the horizon vorticity is proportional to the real part of the scalar spherical harmonics
Y™ We plot the horizon vorticity in Fig. 11.7 for quadrupolar perturbations | = 2, for m = 0, 1,
and 2.

As we noted in Section 11.3, the horizon vorticity reflects the normal parts of the vortexes that
pass through the horizon. We, therefore, can use it to interpret the behavior of the vortexes near
the horizon. For the m = 0 quadrupolar perturbation in the left panel of Fig. 11.7, the northern
and southern polar regions have positive vorticity and the equatorial region has negative vorticity.
Outside the horizon, one would expect that the positive vortexes emerge in a band shape from the
equator, and the negative vortexes head out from the poles. The perturbation would also oscillate
sinusoidally in time with a frequency given by the real part of w, the vortexes would change signs
after each half period, and the perturbation’s amplitude will also decay at a rate proportional to w’s
imaginary part.

For the m = 1 perturbations, there are two vortexes in the northern hemisphere, one positive and
one negative, and similarly two in the southern hemisphere. These vortexes rotate around the polar
axis with a frequency, R[w], as they decay in time. For equal superpositions of m =1 and m = —1

modes, the vortexes oscillate like the m = 0 mode does. Finally, for the m = 2 perturbations,



Figure 11.8: Positive and negative vortex lines, colored by their vorticities, in the equatorial plane,
for the fundamental [ = 2, m = 2 mode. The blue, solid lines are the positive-vorticity vortex lines,
and the red, dashed lines are the negative-vorticity vortex lines. The strength of the lines’ vorticities
are indicated by shading intensity; lighter lines have smaller vorticity in magnitude. The panel on
the left is a zoom-in of the panel on the right.

there are four vortexes of alternating sign, but they are centered around the equator. They will also
rotate, but with an angular velocity of R[w/2]. Again, an equal superposition of m = 2 and m = —2

modes oscillates and decays in time.

11.7.2 Magnetic-Parity Equatorial Vortex Lines

We discuss the computation of the frame-drag field in Appendix 11.B, and we give an analytic
expression there in terms of the Regge-Wheeler function ). Here, we focus on the vortexes in the
plane of reflection symmetry of a fundamental quadrupolar mode with [ = 2 and m = 2 and the
superposition of two modes, | = 2, m = +2. Two of the vortex lines for these perturbations lie
exactly in the plane of reflection symmetry, and the third line is everywhere orthogonal to this

plane.
11.7.2.1 Magnetic-Parity [ = 2, m = 2 Mode: Rotating Vortexes

In Fig. 11.8 we show the positive (clockwise) and negative (counterclockwise) vortex lines in the
equatorial plane (the plane of reflection symmetry). We color the lines by their vorticity (blue,
solid lines for positive vorticity, red, dashed lines for negative vorticity), and we shade the lines by
the magnitude of their vorticity, where darker shading on the lines indicates a larger magnitude of
vorticity, and lighter shading indicates smaller magnitude. Note that the negative vortex lines form
the same pattern as the positive, after a rotation of 7/2 radians about the origin.

The positive vortex lines emerge from the blue, clockwise horizon vortexes and spiral outward;

the negative vortex lines similarly extend from the regions of negative horizon vorticity. The lines
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collect into four spirals that extend outward to become part of the gravitational waves. In doing
so, they must also acquire accompanying perturbative tendex lines, analogously to how a rotating
current-quadrupolar source in linearized gravity generated gravitational waves (see Paper I, Section
VI D, Fig. 9).

We estimate that the near zone begins transitioning into the wave zone very close to the horizon,
at r/M ~ 1/R[Mw] ~ 2.7. The size of the transition zone is also small (we estimate its range to
be r/M ~ w/R[Mw] ~ 8, extending to near the outer edge of Fig. 11.8, which is at r/M ~ 15
for the left panel). At around this radius, the wave zone begins. Here, as for the rotating current-
quadrupolar source in linearized theory, we interpret the near-zone vortexes, attached to the horizon,

as generating the gravitational waves through their rotation.
11.7.2.2 Superposed Magnetic-Parity | =2, m = +2 Modes: Ejected Vortex Tubes

Next, we illustrate the vortex lines for a superposition of two quadrupolar modes (I = 2 and m = +2),
in Fig. 11.9. Unlike the m = 2 perturbation, both sets of vortex lines can have both negative and
positive signs of vorticity, although one set is predominantly positive, and the other is mostly negative
(as usual, red is negative and blue is positive in the figure). The lines with mostly positive vorticities
are drawn with solid lines, while mostly-negative-vorticity lines are dashed. The lines are shaded
to show the strength of the vorticity in the same way: darker lines indicate a larger magnitude of
vorticity, and lighter is a smaller magnitude. The two families of lines are identical, after rotating
one by 90° about the polar axis and reversing the sign.

The dynamics of the black hole’s vortexes are closer to those of the oscillating current-quadrupole
in linearized gravity (Paper I, Section VI E, Fig. 15): each time the horizon vorticity By vanishes,
the black hole ejects two bundles of vortex lines, which propagate outward, acquiring an accompany-
ing bundle of tendex lines as they become the gravitational waves. The horizon vorticity reflects the
vortexes near the horizon; hence, it is only when the horizon vorticity vanishes that the near-zone
vortexes are mostly transverse around the horizon. When the vorticity is large, there are radial
portions of the vortexes pushing these transverse vortexes to larger radii, to become the outgoing

gravitational radiation.

11.8 Tendexes and Vortexes of Perturbed Schwarzschild and

Kerr Black Holes in an Ingoing-Radiation Gauge

Unlike the Regge-Wheeler [9] or Zerilli [48] formalism for Schwarzschild black holes, there is no
procedure for computing separable metric perturbations of Kerr black holes. Nevertheless, there
is a way to use Teukolsky’s separable wave equation for perturbations of the Weyl scalars ¥, and
U, [53] to compute the perturbed metric of a Kerr black hole. The procedure arose from work by

Chrzanowski [11], Kegeles and Cohen [12], Stewart [13], and Wald [14]. Collectively, they showed
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Figure 11.9: The two sets of vortex lines in the equatorial plane, shaded by their vorticities, for a
superposition of the fundamental [ = 2, m = £2 modes. The vortex lines are colored and shaded
in the same way as in Fig. 11.8. Both sets of vortex lines have lines with positive and negative
vorticity; the solid lines correspond to the set that has predominantly positive vorticity, while the
dashed lines have predominantly negative vorticity. The left panel is a zoom-in of the right panel.

that one can use a mathematical construction known as a Hertz potential, which is related to
perturbations of the Weyl scalars, to construct the metric perturbations of algebraically special
spacetimes. When specialized to Schwarzschild and Kerr black holes, the procedure allows one to
compute metric perturbations in two gauges, known as ingoing- and outgoing-radiation gauges (IRG
and ORG, respectively).

The IRG metric perturbation is regular on the future horizon of a perturbed Schwarzschild or
Kerr black hole; consequently, we will perform all our calculations in this gauge. As in previous
sections, we will also choose our time slicing to be regular on the horizon. For perturbations of
Schwarzschild black holes, we will use values of constant Eddington-Finkelstein time, and for Kerr
black holes, we choose constant values of Kerr-Schild time.

We relegate the details describing how to compute the metric perturbations, the tidal and frame-
drag fields, and the tendexes and vortexes to several appendices. Because the procedure relies upon
the formalism of curvature perturbations, we review this topic in Appendix 11.C. In Appendix
11.D, we describe the formalism for computing the metric perturbation of Chrzanowski, Cohen, and
Kegeles (often called the CCK procedure). Immediately following, in Appendix 11.E, we specialize
the CCK procedure to the Schwarzschild spacetime and confirm analytical results for the metric
originally found by Chrzanowski [11]. We then present analytical expressions for the tidal and
frame-drag fields corresponding to this metric perturbation. In Appendix 11.F, we show that the
frame-drag field in the ingoing-radiation gauge is the same as that in Regge-Wheeler gauge (but

the tidal fields differ). Finally, in Appendix 11.G, we explain in detail our numerical procedure for
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computing the tendex and vortex quantities of this section.

In the two parts of this section, we visualize how the vortexes and tendexes qualitatively generate
gravitational waves for [ = 2, m = 2 quasinormal-mode perturbations of Schwarzschild and Kerr
black holes of electric (even) parity, respectively. Because a Schwarzschild black hole has a non-
perturbative tidal field, and a Kerr black hole has both non-perturbative tidal and frame-drag fields,
the quasinormal-mode perturbations, which carry the gravitational waves, are largely hidden by the
background fields.! As a result, in this section, we will focus only on how the perturbative tendexes
and vortexes in the near zone extend away from the horizon and become gravitational waves, as we
describe below.

The tendexes of an electric-parity perturbation in the near zone are tied to regions of large
horizon tendicity, which is predominantly centered around the plane of reflection symmetry. The
vortexes, in the near zone, reside close to the equatorial plane, but they are not tied to the horizon;
rather they are induced by the motion of the near-zone tendexes. Both the tendexes and vortexes
move out of the equatorial plane at larger radii, and at even larger distances from the horizon, they
collect into two identical conical regions as they become gravitational waves.

Finally, we recall that in Paper I, there was a duality in linearized gravity about flat space
between the tidal field of a mass-multipolar perturbation and the frame-drag field of a current-
multipolar perturbation (and similarly between the frame-drag field and tidal field of the respective
perturbations). Naturally, one might wonder if there is a similar duality between electric- and
magnetic-parity perturbations of Schwarzschild or Kerr black holes (of the same multipolar indices
I and m). We show explicit analytical expressions for Schwarzschild black holes, and we find that
there is a near duality (see Appendix 11.E). We do not present any analytical results for Kerr black
holes, but we show the magnetic-parity tendexes and vortexes of both Schwarzschild and Kerr black
holes in Appendix 11.H. By comparing the figures there with those in this section, one can see that
there is a near duality for the perturbative fields of Schwarzschild black holes, which becomes less

strong for Kerr holes with large spin parameters.

11.8.1 Tendexes and Vortexes of Perturbations to a Schwarzschild Black

Hole

We begin this section by plotting the horizon tendicity and vorticity in Fig. 11.10. The perturbative
tendicity, at a fixed moment in time, is proportional to the scalar spherical harmonic Y3 2(0, ¢),
whereas the horizon vorticity vanishes exactly. This is a first indication that the tendexes will play
the dominant role in generating gravitational waves for an electric-parity perturbation.

Next, we show the perturbative tendicity and tendex lines in the plane of reflection symmetry

(0 = 7/2) in Fig. 11.11. The plane is colored by the tendicity, and to remove the radial fall-off in the

1See Appendix 11.1 for examples of tendex and vortex lines with the background fields included.
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Figure 11.10: Perturbative horizon tendicity (left) and vorticity (right) of an electric-parity I = 2,
m = 2 quasinormal-mode perturbation of a Schwarzschild black hole. The tendicity is proportional
to a scalar spherical harmonic, Y3 2(6, ¢), and the vorticity vanishes.

tendicity (to better highlight the angular dependence of the tendicity), we compute the maximum
tendicity at each radius, and we normalize the tendicity at each radius by this maximum. The solid,
black lines are the tendex lines in the plane of reflection symmetry corresponding to the tendicity
shown, and the dashed, black lines are the orthogonal set of tendex lines from the other tendicity
not shown (but that is identical to that shown, when one rotates it by 90° and changes its sign).
The region in the center of the figure encircled by a white line is the event horizon colored by the
horizon tendicity.

The figure clearly shows there are two tendexes that emerge from the horizon tendexes and
spiral out from the horizons. A concentration of tendex lines emerges from these tendexes, but they
ultimately collect on the outer edge of the tendexes as they wind out. Why they do this becomes
more clear from the tendexes outside of the plane of reflection symmetry, in the left-panel of Fig.
11.12. The inner sphere in the left panel is the horizon colored by its tendicity. The large shaded
volumes represent the regions of large and small tendicity in the spacetime. Specifically, the blue
region shows where the tendicity is at least 85% of the maximum value at that radius, and the
off-white regions show where it is at most 35% of the maximum value at that radius. The black
lines are tendex lines corresponding to the tendicity shown. The right panel shows the vortexes
and vortex lines, which are drawn in the same way as the left panel, except the blue (dark) region
indicates where the vorticity is 90% of the radial maximum.

The tendexes and vortexes of Fig. 11.12 illustrate how gravitational waves are generated around a
Schwarzschild black hole. The tendicity and vorticity at large radii correspond to those of the positive
eigenvalues of a gravitational wave, which have the largest value at the poles and four zeros on the
equator (see, e.g., [8]). The other tendicities and vorticities not shown are those that asymptotically
become radial and have vanishing strength, and those that correspond to the negative eigenvalue of

the gravitational waves at large radii, which are identical to those shown, but are rotated by 90°. At
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Figure 11.11: Tendex lines and tendicity in the plane of reflection symmetry for an electric-parity,
l = 2, m = 2 quasinormal-mode perturbation of a Schwarzschild black hole. The tendicity is
normalized by the maximum value at a given radius to remove the radial fall off. The solid, black
lines are the tendex lines corresponding the tendicity shown and the dashed, black lines are the
orthogonal set. The horizon, enclosed by a white circle, is colored by the horizon tendicity as in
previous figures.
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Figure 11.12: Left: Three-dimensional tendex lines and tendexes of the same perturbation as that
shown in Fig. 11.11. The black solid lines are the tendex lines, and the inner sphere is the horizon,
colored by its tendicity. The blue region represents where the tendicity is at least 85% of the
maximum value at that radius; the four nearly white regions show where the tendicity is at most
35% of the maximum value at that radius. Right: Three-dimensional vortex lines and vortexes. The
horizon is left uncolored, because the horizon vorticity vanishes for this perturbation. The regions
are similar to the tendexes, but the blue (dark) region indicates where the vorticity is 90% of the
maximum value at that radius.

the largest radii in Fig. 11.12, the tendexes and vortexes are not significantly different from those of
gravitational waves; they are largest near the poles, and the zeros are concentrated near the equator.
Closer to the event horizon, however, the vortexes and tendexes transition toward the equatorial
plane as well, and the tendexes and vortexes now begin to differ qualitatively. This transition occurs
at radii close to where the tendex lines in the plane of reflection symmetry move out of the tendexes.
The three-dimensional tendexes then form two symmetric tubes about the equatorial plane that
connect with the horizon tendexes, whereas the vortexes are two wedges above the equatorial plane
and two below the equatorial plane (this is required by the parity of the metric perturbation).
Unlike at large radii, there is not as simple a physical interpretation of the near-zone tendexes
and vortexes. Close to the horizon, the tidal and frame-drag fields contain radial, longitudinal, and
transverse pieces that become mixed together when one finds the tendexes and vortexes from these
fields. Nevertheless, very close to the horizon, the tendexes appear to be predominantly radial, and
the vortexes are more transverse (this is closely connected to the fact that the horizon tendicity
is non-zero, but the horizon vorticity vanishes exactly). We, therefore, describe the tendexes that
stick radially out from the horizon as generating the gravitational waves as they rotate by inducing
near-zone vortexes. Then, these near-zone structures around the equatorial plane extend to the

poles and become the outgoing gravitational waves.
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Figure 11.13: Perturbative horizon tendicity (left) and vorticity (right) of an electric-parity [ = 2,
m = 2 perturbation of a Kerr black hole of spin a/M = 0.945. The perturbative tendicity is
concentrated more closely around the plane of reflection symmetry and varies with polar angle 6;
the perturbative vorticity is dominated by an [ = 3, m = 2 spherical harmonic, and it also shows
similar variation with the polar angle 6.

11.8.2 Tendexes and Vortexes of Perturbations to a Kerr Black Hole

To visualize the influence of the black-hole’s spin on the perturbative tendexes and vortexes, we will
show results for an electric-parity [ = 2, m = 2 quasinormal-mode perturbation of a Kerr black hole
with spin a/M = 0.945, computed in an ingoing-radiation gauge. All the figures produced in this
section are chosen assuming a foliation of spacetime into slices of constant Kerr-Schild time, and
they are plotted in ingoing-Kerr coordinates.

We begin again by showing the perturbative horizon tendicity (left) and vorticity (right) in
Fig. 11.13. Comparing with Fig. 11.10 of the horizon quantities for a similar perturbation of a
Schwarzschild black hole, two large differences stand out. The tendicity of the Kerr horizon is
concentrated closer to the plane of reflection symmetry, and it is dragged more strongly at the
equator than at the poles, which gives it the appearance of being twisted. The difference between
the perturbative vorticity of a Schwarzschild and a Kerr black hole is even more pronounced, because
the Kerr black hole’s vorticity no longer vanishes. If one were to decompose the horizon vorticity into
spherical harmonics, the perturbative vorticity is predominantly an [ = 3, m = 2 scalar spherical
harmonic; like the horizon tendicity, the vorticity also is differentially dragged at different polar
angles, 6. Because the vorticity has a higher [ than the tendicity, it will again be the tendexes that
play the primary role in the generation of gravitational waves.

We next show the tendexes and tendex lines in the plane of reflection symmetry, in Fig. 11.14.
The figure is the analogous figure to Fig. 11.11 for a Schwarzschild black hole, and comparing the
two will allow one to develop intuition about the effects of the background black hole’s spin on
the dynamics of the perturbative tendexes. For this reason, we color the horizon tendicity and the

spacetime vorticity in the same way as in Fig. 11.11, and we plot tendex lines similarly.
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Figure 11.14: Perturbative tendex lines and tendicity in the plane of reflection symmetry for the
same perturbation as in Fig. 11.13. The horizon tendicity is shown in the center of the diagram,
surrounded by a white circle. The coloring of the perturbative tendicity and the plotting of the lines
is the same as that in Fig. 11.11.
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There are several interesting similarities and differences between Figs. 11.11 and 11.14, that can
be attributed, in part, to the spin of the background black hole. The two tendexes both emerge
from regions of large horizon tendicity and they spiral out; the tendexes of the perturbed Kerr black
hole look as if they are dragged by the spin of the black hole, which make them appear narrower
and more twisted. The distance between successive spirals is a shorter coordinate length, because
the Kerr black hole has a higher frequency of oscillation. The solid tendex lines (corresponding to
the tendicity shown) also emerge from regions of large horizon tendicity, but unlike the perturbation
of the Schwarzschild black hole, the lines loop back and connect to the horizon. This leads us to
suspect that the tendexes, rather than the tendex lines, will be the more invariant markers of the
structures that generate gravitational waves.

In Fig. 11.15, we show the tendexes (left) and vortexes (right) outside of the plane of reflection
symmetry. We color the horizon in the same way and the regions of large tendicity and vorticity
in the same way as in Fig. 11.12, and we show a few similar vortex lines. The regions of small
vorticity have different values (at most 17.5% of the radial maximum for the tendicity and 20% for
the vorticity), so that they hide less of the horizon. We again show the quantities associated with
the tendicity and vorticity that correspond to the positive tendicity and vorticity of a gravitational
wave, asymptotically; we do not show the negative tendicity or vorticity quantities that are rotated
by 90° with respect to the positive one, or the final set which is asymptotically radial and has
vanishing tendicity or vorticity.

Comparing Fig. 11.15 with the equivalent figure for a non-rotating black hole (Fig. 11.12), one can
again notice several similarities and differences between perturbations of rotating and non-rotating
black holes. All the qualitative features of the tendexes and vortexes are the same: both have four
regions of small tendicity or vorticity that extend out from the horizon around the equatorial plane;
two tendexes extend out from regions of large horizon tendicity and extend symmetrically into the
volumes around the poles, where, asymptotically, the gravitational waves are strongest; and there
are four wedge-shaped vortexes near the horizon that also extend toward the poles and that will
eventually become the vortexes of gravitational waves. The detailed differences are similar to those
mentioned in the discussion surrounding Fig. 11.14. The tendexes and vortexes are significantly
narrower and they appear to be dragged by the spin of the black hole. In addition, the individual
tendex and vortex lines of Fig. 11.15 are qualitatively different from those of Fig. 11.12. The tendex
lines for the perturbation of a rotating hole again loop around and connect back to the horizon; the
vortex lines no longer cross the equatorial plane, but they stay either above or below it, close to the
black hole.

For the Schwarzschild-black-hole perturbation, we interpreted the generation of gravitational
waves as near-zone tendexes as inducing near-zone vortexes that propagate out and become the

gravitational waves. We reached this conclusion because the horizon tendicity is non-vanishing,
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Figure 11.15: Left: Three-dimensional perturbative tendexes and tendex lines of the same perturba-
tion as in Fig. 11.14. The horizon, the colored volumes, and the lines are drawn in the same way as
in the left panel of Fig. 11.12, but the off-white regions show where the tendicity is at most 17.5%
of the maximum value at that radius. Right: Three-dimensional perturbative vortexes and vortex
lines of this perturbation. The quantities shown are depicted in the same way as those in the right
panel of Fig. 11.12, but the off-white regions again correspond to at most a smaller fraction (20%)
of the radial maximum.

while the horizon vorticity is zero, and, this made the tendexes more radial whereas the vortexes
were more transverse. For the Kerr-black-hole perturbation, however, the spin of the black hole drags
both the tendexes and vortexes (making them appear more transverse) and the horizon vorticity
is no longer vanishes, but its pattern is dominated by a higher multipole index [. Thus, for Kerr
black holes, we can say that it is primarily the near-zone tendexes that induce near-zone vortexes,
which become gravitational waves, but there are also small corrections to this picture from higher-
order near-zone vortexes inducing tendexes, which make small contributions to the gravitational
waves. Roughly speaking, though, the picture that near-zone tendexes induce near-zone vortexes

that become gravitational waves holds empirically.

11.8.3 Comparing Vortex Lines of a Perturbed-Kerr Black Hole and a
Binary-Black-Hole-Merger Remnant

As a conclusion to this section and a prelude to future work, in Fig. 11.16 we compare the vortex
lines found using our analytic methods to those found in a numerical ringdown of a fast-spinning
Kerr black hole. Here we compare an electric-parity, [ = 2, m = 2 quasinormal-mode perturbation
of a Kerr black hole with dimensionless spin, a/M = 0.945, that was computed using the CCK
procedure to a perturbed black hole of the same spin formed in a numerical simulation of the merger

of two black holes with spins of magnitude a/M = 0.97 [21]. For the analytical calculation, we



359

" Horizon vorticity
204..9...04
[ oy

-0.8 0.8

Figure 11.16: Left: Vortex lines of a Kerr black hole perturbed by an electric-parity I = 2, m = 2
quasinormal-mode, computed in an ingoing-radiation gauge. The dimensionless spin magnitude is
a/M = 0.945, as in previous figures. Right: Vortex lines from a perturbed black hole with spin
magnitude a/M = 0.945 obtained from a numerical simulation of two merging black holes with
equal masses and equal, aligned spins of magnitude 0.97 [21].

continue to use Kerr-Schild slicing, but we now use Kerr-Schild spatial coordinates as well, which
make the horizon and the lines appear oblately deformed. The vortex lines and horizon vorticity
in the numerical simulation were computed at a suitably late time (so that the common horizon
is essentially a single, perturbed black hole) using the methods summarized in [6]. Although the
vortex lines from these similar physical situations were computed using very different methods and

gauge conditions, the results are remarkably similar (see Fig. 11.16).

11.9 Conclusion

This paper took an important first step toward visualizing and understanding the nonlinear dynamics
of curved spacetime. Specifically, we used vortex and tendex lines to show the statics and dynamics
of the curvature of stationary and linearly perturbed rotating and nonrotating black holes. We aim
to build from the results described above to understand the spacetime curvature around numerical-
relativity simulations of black-hole binaries.

An important indicator of the spacetime dynamics is the horizon vorticity and tendicity. They
are related to the complex scalar curvature of the horizon, and they are connected to several other
well-studied quantities used in analytical and numerical relativity. Because they are quantities on
the horizon (a surface detached from the spacetime outside), the horizon vorticity and tendicity
serve as indicators of the nearby spacetime curvature, rather than a source of dynamics. One can
use them, however, to understand the behavior of the vortexes and tendexes that stick out away

from the horizon.
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For stationary black holes, we found that the tendexes and vortexes of a Schwarzschild black hole
are quite simple: the vortexes vanish, and the tendexes are spherically symmetric. A stationary Kerr
black hole, however, has more interesting vortexes and tendexes. There are two vortexes around the
poles that stick out from regions of large horizon vorticity; two positive tendexes emerge from the
poles, and one large axisymmetric tendex near the equator. We studied these quantities and the
tendex and vortex lines in several time slicings and in several spatial coordinates. As long as we used
a time coordinate that passed smoothly through the horizon (the type of time coordinate used by
numerical-relativity simulations) the tendex and vortex lines (and their tendicities and vorticities)
were qualitatively the same, throughout the entire spatial region.

Turning to perturbations of black holes, we found interesting similarities between quadrupolar
magnetic-parity perturbations of Schwarzschild black holes and perturbations sourced by current
quadrupoles in linearized gravity (about flat space from Paper I). Rotating quadrupoles and [ = 2,
m = 2 perturbations of the Schwarzschild spacetime both had two pairs of positive and negative
equatorial vortexes that spiraled away from the near zone and became gravitational waves. For
the black hole, the horizon vorticity reflected the near zone structures that generate the waves, as
opposed to the current-quadrupole moment in linearized theory, whose dynamics directly source
gravitational waves. (There was a similar parallel between an oscillating current quadrupole, and
a superposition of [ = 2, m = +2 quasinormal-mode perturbations of a Schwarzschild black hole.)
We performed the calculation of the [ = 2, m = 2 perturbation in both Regge-Wheeler and ingoing-
radiation gauges, and we found the results were remarkably similar between the two, because the
frame-drag fields are equal in the two gauges (see Appendix 11.F). This was yet another indication
that vortexes and tendexes can be robust across different gauges and slicings.

We also studied electric-parity perturbations of Schwarzschild and Kerr black holes to understand
how the perturbations varied with spins. We found that the qualitative features of the generation
of gravitational waves did not depend strongly on the spin of the black hole, although there were
some indications that the perturbation was being dragged for rapidly rotating Kerr black holes. The
dynamics of the wave generation was remarkably similar to the dual description of a rotating current
quadrupole in linearized theory, a rotating mass-quadrupole moment. When we visualized [ = 2,
m = 2, perturbations of Schwarzschild and Kerr black holes, we saw that equatorial tendexes that
connect to the horizon tendexes quickly transition into the polar tendexes of gravitational waves
in roughly one reduced wavelength of the gravitational waves. In addition, the tendexes induced
vortexes in the process of becoming the outgoing radiation.

From the | = 2, m = 2, electric-parity perturbation of the Kerr spacetime, we were able to
compute its vortex lines and compare it to those from the end stages of a black-hole-binary merger,
when the black hole has nearly reached its stationary state. The comparison between the two was

remarkably strong. Because the coordinates of the numerical-relativity simulation of the merger
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could, in principal, be quite different from those of the perturbation-theory calculation, this was
yet another indication for the robustness of tendexes and vortexes, under changes of coordinates
that ensure the time coordinate smoothly passes through the horizon. With these initial positive
results, we are optimistic about the prospects of using these tools to understand the nonlinear and

dynamical spacetime curvature around the time of merger in a black-hole binary.

11.A Appendix: Analytical Expressions for the Vortex and
Tendex Quantities of Kerr Black Holes

This appendix presents results for the eigenvectors and eigenvalues of the frame-drag and tidal
fields in Boyer-Lindquist slicing and coordinates, and in ingoing Kerr coordinates (with Kerr-Schild

slicing).
11.A.1 Kerr Black Hole in Boyer-Lindquist Slicing and Coordinates

For a rapidly rotating Kerr black hole in Boyer-Lindquist (BL) coordinates, {¢,r, 0, ¢}, the metric is
given by Eq. (11.31) above. An observer, who moves orthogonally to the slices of constant BL time

t, has a 4-velocity 4 and orthonormal tetrad given by

. [ A 2Mar I AN L1 L /¥ 1
u = ﬂ<3t—73¢>, €Ep = Ea,,«, ee—ﬁﬁg, 8¢— Zma¢ (1147)

In this orthonormal basis, the tidal and frame-drag fields are given by

P 142
b * QL o0 |- (11.48)
. £ Qe

By, = * Qm¥2% 0 | (11.49)
* * Qm

with entries denoted by * fixed by the symmetry of the tensors, and where

Mr(r? — 3a® cos? 0)

Qe = =3 : (11.50)
Macos0(3r? — a® cos® 0)
Qm = = , (11.51)
and
~ Aa®sin® ¢ ~ 3aVA(r? + a?)sin 6

§= (R R K ) (11.52)



Figure 11.17: Left: Tendex lines for a Kerr black hole with a/M = 0.95 on a slice of constant Boyer-
Lindquist time ¢, plotted in spatial Boyer-Lindquist coordinates. The lines with positive tendicity
are colored blue and negative tendicity are colored red. The inset in the middle shows the lines
near the horizon. Right: Vortex lines for this same black hole, slicing, and coordinates, with lines of
positive vorticity colored blue and negative vorticity colored red. The vortex lines are remarkably
similar to those of a spinning point particle in linearized theory.

The functions Q. and @Q,, are related to the real and imaginary parts of the complex Weyl scalar ¥o
calculated using the Kinnersley null tetrad (see Eq. (11.64) in Appendix 11.A.3), by ¥5 = —Qo+iQm.
Note that there is a duality between the electric and magnetic curvature tensors: namely letting
Qe — Qm and @y, — —Qe, turns the tidal field become the frame-drag field, £,; — B;.

Because £,; and B,; are block diagonal, one can immediately see that one of the eigenvectors for
both tensors will be €y; therefore, the corresponding tendex and vortex lines are azimuthal closed
circles. The other two sets of lines for each tensor are poloidal; i.e., they lie in slices of constant ¢.
Because they are two-dimensional, they can be computed analytically, but their explicit expressions
do not give great insight, and we do not show them here.

The tendex and vortex lines in Fig. 11.17 are those of a Kerr black hole with spin a/M =
0.95. The lines with positive eigenvalues (tendicity or vorticity) are colored blue, and those with
negative eigenvalues are colored red. Far from the black hole, the tendex lines resemble those of a
Schwarzschild black hole, and the vortex lines resemble those of a slowly spinning Kerr black hole
(the same as those of spinning point particle in linearized gravity about flat space). Near the horizon,
however, the behavior is quite different: the nearly radial tendex lines in the inset of Fig. 11.17 bend
sharply as they near the horizon, eventually becoming tangential to the horizon and piling up there.
This must happen, because the observers associated with BL coordinates do not pass through the
horizon. In a time coordinate that smoothly passes through the horizon, such as Kerr-Schild time,

the tendex and vortex lines thread through the horizon.
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11.A.2 Kerr Black Hole in Kerr-Schild Slicing and Ingoing-Kerr Coordi-
nates

In ingoing-Kerr coordinates {, 7,6, ¢} (see Eqgs. (11.33) and (11.36) above), the Kerr metric takes
the form (see, e.g., [44])

oM AMr . 4Marsin?6 . -
ds? = — (1 - TT) 2 + Trdrdt _ 2RI Y i+ H2dr? + $d6°
- AsinZ6 -
—2aH sin® §drdp + o 7 4?2 (11.53)

where H? =1+ %, and where ¥ and A are defined in Eq. (11.31). The 4-velocities of ingoing-Kerr
observers, who move orthogonally to slices of constant ¢, and the orthonormal tetrads they carry,

are given by

2Mr VA aH 1 ¥ 1
A:HN_ - ”’f‘:_r —=0;, HA:— R H:: — 0. 114
U 0y — —=9, € Hza + \/Z% €5 \/Eae € \/ A51n98¢ (11.54)

The components of the tidal field in this orthonormal basis are

. 24+€ 3a(r®+a?)sin @ 6aMr(r®4a®)sin 6
Qelff Qm HVAS Qe HAVYS
2 .2 2 .2
& = " Q. (1 + %) _Qm% , (11.55)
22
. . QuEE - Q. (1+25550)

where Q¢, Qm, and £ are defined in Egs. (11.50) and (11.51). Just as in Boyer-Lindquist slicing and
coordinates (Appendix 11.A.1), so also here, the components, B.;, of the frame-drag field can be

ab’

deduced from &,; by the duality relation

By = EjlQc—Qum, Qu——q. - (11.56)

The eigenvalues of the tidal field (11.55), i.e., the tendicities, are

3¢ Qe 3¢ Qe
A= — _ xe & _ _ xe X =Q. 11.57
r 2H22 2 9 ] 2H22 2 ) ¢ Q 9 ( )
where we defined
2Masin 0)2F
¢ = ey + PMaSmOTE ot a2, (11.58)

33 ’
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and their corresponding eigenvectors are

. 1 VA
e _ L 2, e , VA 2520 Az 7.
Ve = o (H\/E(r +a%)er + 50,0500 [QE(F—i—a sin” 6) Q] € 2Ma7°sm6‘e¢> ,(11.59)
pe - L HVE(r? + a?)é: + VA [Qe(F + a®sin®0) + (] €; — 2Marsin e | ,(11.60)
0 vy " 2Q,,asing tTC 0 ¢’
- 1
V; = U_g, (2Mar sin 0¢; + HVE(r? + az)%) . (11.61)

Here the quantities v,, vg, and v 5 are the norms of the vectors in large parentheses; they give the
eigenvectors V€ unit norms. The labels (r, 8, @) for the eigenvectors and eigenvalues are such that
as a — 0, they limit to the corresponding Schwarzschild quantities in Eddington-Finkelstein slicing.

As for Boyer-Lindquist slicing, so also here, the eigenvectors and eigenvalues (vorticities) for B,;

can be derived from those for £,; using the Kerr duality relations:

(VB VEVEY = {VEVE VE oo m an——a. (11.62)
PEATAZY = 0000 e~ 0n Qn——a. - (11.63)

This is not surprising, because the frame-drag field can be deduced from the tidal field using the
same transformations. As in the case of Boyer-Lindquist slicing, so also for Kerr-Schild slicing, the
transverse (nonradial) eigenvectors are degenerate on the polar axis. This can be seen, for example,
from the form of £;; in Eq. (11.55), or from the corresponding eigenvalues in Eqs. (11.57): as
sin @ — 0, the matrix becomes diagonal with two equal eigenvalues, Ag and Ay. This is an inevitable

consequence of axisymmetry.

11.A.3 Ubiquity of Spiraling Axial Vortex and Tendex Lines for Kerr

Black Holes in Horizon-Penetrating Slices

In Figures 11.17, 11.5, and 11.6, we saw that the azimuthal tendex and vortex lines of a Kerr black
hole in horizon-avoiding Boyer-Lindquist slices are closed circles, while those in horizon-penetrating
Kerr-Schild and Cook-Scheel slices are outward spirals. In this section, we argue that outward spirals
are ubiquitous for (i.e., common to all) horizon-penetrating slices.

We begin by considering the Kinnersley tetrad (KT), a null tetrad which is integral to the theory
of black hole perturbations. The tetrad is given by

1
" = Z(’I’Q—FCLQ,A,O,CL),
1
nt = i(rz—l—aQ,—A,O,a), (11.64)
1
mt = ——— (iasiné,0,1,icsch),

V2(r +iacos )
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where A and ¥ are defined in Eq. (11.31), and the vector index runs over the Boyer-Lindquist
coordinates (t,7,6,¢). We can associate a slicing and an orthonormal tetrad with this null tetrad
through Eq. (11.6). Because the Kerr (and by extension Schwarzschild) spacetime is Type D, and
the KT is the principal null tetrad of this spacetime, only the Weyl scalar W5 is non-vanishing in
this spacetime. It can be shown (see, e.g., Appendix A of [7]) that &£,; (and B,;) are diagonal and

their eigenvalues are analogous to those of a non-rotating black hole in Schwarzschild coordinates,

Eyy = diag[—2R(V2), R(T2), R(V2)], (11.65)
Bdi) = dlag[—ZE‘y(\Ilg), C\\f(\IJQ), S\IIQ] . (1166)

In particular, the two transverse eigenvalues are degenerate. The time-like vector field associated
with the Kinnersley tetrad, however, has a nonzero twist; i.e., it is not hypersurface orthogonal and
does not serve as a normal to any slicing. Because the spin parameter, a, appears in the 9, direction
of the slicing vector associated with the KT, this produces a twist, which makes the slicing differ
from BL slicing. We describe what happens to the simple tidal and frame-drag tensors in the KT-
based orthonormal tetrad, when we transform into a slicing that is, first, hypersurface-orthogonal
and, second, horizon-penetrating.

When we transform the tetrad associated with the KT into the hypersurface-orthogonal BL
coordinate tetrad, there is a coupling between r and 6 components in the tetrad vectors and in the
tidal and frame-drag tensors that breaks the degeneracy of the transverse directions. The tensors
&,; and B,; pick up off-diagonal components, as a result. This transformation does not influence
the azimuthal direction, and the fields in BL slicing still have purely axial tendex and vortex lines
(closed circles). Transforming into a horizon-penetrating slicing, such as the Kerr-Schild time, the
transformation mixes the ¢t and r components of the orthonormal basis vectors, which, because the
metric has a nonzero shift, g;4, will introduce off-diagonal terms with r and ¢ indices into £,; and

B,;. In turn, this causes the axial lines to form the open spirals in Figs. 11.5 and 11.6.

11.B Appendix: Quasinormal Modes of Schwarzschild Black

Holes in Regge-Wheeler Gauge

In this section, we review the Regge-Wheeler formalism for perturbations of Schwarzschild black
holes, and we present analytical expressions for the frame-drag field used in the calculations in
Section 11.7. We focus on the least-damped quasinormal mode, and discuss magnetic-parity and
electric-parity quadrupolar perturbations. These calculations are also helpful for comparing with

the results of Appendix 11.E to understand the differences between the gauges.
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11.B.1 Regge-Wheeler-Zerilli Formalism

Here we review the equations governing magnetic-parity quasinormal modes for a nonrotating black
hole in the Regge-Wheeler gauge [9].2 We write the metric in Schwarzschild coordinates with a small
perturbation h,,,,
057 = —a2dt> + U 4 12 (4P 4 sin? 0d6?) + . dede”
s°=—a t—i-?—i-r( + sin® 0d¢?) + hy, datdz” (11.67)
where a? = 1 — 2M/r. The metric perturbations can further be divided into two sets of modes
of definite parities. We first treat the magnetic-parity perturbations of the black hole, whose com-

ponents change sign as (—1)"*! under a parity operation. In the Regge-Wheeler gauge, the only

nonzero components of the metric perturbation are
hia = ho(r)e ™ X5M(0,¢) ,  hea = hi(r)e ™ X5"(0, ) . (11.68)

Here w is the mode’s complex quasinormal-mode eigenfrequency, and X'™ is a magnetic-parity vector

spherical harmonic on the unit two-sphere,
X = —cschy'™ Xé’” =sinfY'™ 4, (11.69)

and Y™ (0, ) is a scalar spherical harmonic. Regge and Wheeler [9, 47] showed that the radial
parts of the metric perturbation, ho(r) and hi(r) can be expressed in terms of a single scalar radial
function Q(r) as

2 TQ

«
ho = ——(rQ),, hi=—%. 11.
0 iw(T ), 1 ( 70)

The radial function Q(r) satisfies the equation

(l+1 6M
Qs + Q=Y. Vo) =a? (N2 - B | (11.71)
where 7, is the tortoise coordinate
dr
dry, = pel re =1+ 2Mlogr/(2M) — 1], (11.72)

which goes to +oo far from the hole and —oco at the hole’s horizon. To find quasinormal-mode
solutions, this equation must be solved subject to the boundary conditions of outgoing waves at
infinity, Q@ ~ €™ as r, — 400, and ingoing waves at the horizon, Q ~ e’ as r, — —o0.

The electric-parity modes, meanwhile, change sign as (—1)! under a parity operation, and their

2There are many errors in the original paper of Regge and Wheeler [9], some of which were corrected by Edelstein
and Vishveshwara [47]. We use the corrected equations without further comment.
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metric perturbations can be written in Regge-Wheeler gauge as [48]

htt _ QQHO(T)eflwtylm , hrr _ O(QT) e*lwtylm ,
(6%
her = Hi(r)e ™'Y'"™ | hap = r*QapK(r)e ™Y, (11.73)

Here Q45 denotes the metric on the unit 2-sphere. We can write the metric perturbation functions

in terms of the Zerilli function Z(r) as®

A+ 1)r? + 3AMr + 6M?
K = Z ZT I
| r2(Ar +3M) tas,
Ar? — 3\Mr — 3M?
H = —i Z —iwrZ, 11.74
! " (r—2M)(/\r+3M)] e, (11.74)
oo - [Ar(r —2M) — w?rt + M(r — 3M) A+ 1)M — w?r3 I
o - (r — 2M)(Ar + 3M) iwr(\r +3M) |t
Here we have used Zerilli’s notation
1
/\25(1—1)(1—1-2). (11.75)
The Zerilli function satisfies the equation
Zyor, + W22 =V,(r)Z , (11.76)
where
2X2(X + 1)1 + 6A2 M2 + 18AM?r + 18 M3
V(r) = a2 | ZAF D+ r T . (11.77)

r3(Ar + 3M)?

When we compute the frame-drag field of these perturbations, we will use slices of constant
Eddington-Finkelstein time, £ = ¢ + 2M log(r/2M — 1), and the EF tetrad in Schwarzschild coor-
dinates, Eq. (11.19). As discussed in Section 11.G, the time slicing vector of this tetrad has been
corrected so that we continue to slice the perturbed spacetime into slices of constant EF time, #;
see Eq. (11.145). With the corrected slicing vector, basis, we can calculate the frame-drag field B,;,

which we do for an [ = 2, m = 2 mode in the next part.

11.B.2 The Fundamental, Magnetic-Parity, | = 2, m = 2 Quasinormal
Mode of a Schwarzschild Black Hole
In this part, we describe how we calculate the frame-drag field for a magnetic-parity [ = 2, m = 2

quasinormal-mode perturbation, and then its vortex lines and vorticities. We compute the perturbed

Riemann tensor, perturbed basis, and frame-drag field in Schwarzschild coordinates, and we express

3In H; we have corrected a term in the numerator of the fraction: the last term, —3M?2, was incorrectly written
as —3M by Zerilli—an error that should be obvious on dimensional grounds.
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the metric functions in terms of @ and use the Regge-Wheeler equation, Eq. (11.71), in order to
simplify B,; further. As discussed more fully in Section 11.8.1, the resulting frame-drag field can be
expressed in terms of electric-parity scalar, vector, and tensor harmonics. It can be written most

concisely as

—iw —iw 1 —iw
B;«f« = Bl(m)e tY22 N BfA = Bg(m)e tY§2 N BAB = (_§Bl(m)5Aéy22 + B3(m)Y,§J2§> e ¢ 5

(11.78)

where the radial functions are defined by

12Q 4iMw@ + 2a°rQ’
Bim)y=——%, Bom)=-— : 11.79
1(m) iwr3 2m) iwrda?\/1+2M/r ( )
and by
1 2 2 2 : 2 3 2.2 2

+ra® [(r —3M)(r* + 4M?) + 4iMwr®] Q'} (11.80)

where a prime denotes a derivative with respect to 7, Y™ and Y42 are given by Eq. (11.114), and
0 15 is the Kronecker delta function.

We solved the Regge-Wheeler equation, Eq. (11.71), numerically for the lowest-damped, quadrupo-
lar quasinormal mode. When the numerical solution is inserted into the above expressions for
B,;, numerical errors cause problems with delicate cancellations in the transverse-transverse and
transverse-radial components near the horizon. To deal with this, we have derived the following

asymptotic formula for Q(r) near the horizon, r./M < —1:

| 3y 9iwy2 3i(1 + 12iw + 40w%)Y?
=y — o
@ i) T At — 2w 20— )1 = 2iw) 3 — diw)er T )
(11.81)

where Y = e™/2M | Inserting this into Eq. (11.78), we find that all components of B,; are finite at
the horizon.

Using Eq. (11.78) for the frame-drag field, our analytic formula, Eq. (11.81) for Q(r) near the
horizon, and our numerical solution for Q(r) at larger radii, we compute the vortex lines and their

vorticities for the fundamental [ = 2, m = 2 quasinormal mode. We illustrate them in Fig. 11.8.

11.B.3 The Fundamental, Electric-Parity, [ = 2, m = 2 Quasinormal Mode
of a Schwarzschild Black Hole
We now discuss an electric-parity, fundamental [ = 2, m = 2 perturbation of the Schwarzschild

spacetime. As with the magnetic-parity perturbation, we compute the Riemann tensor using the

perturbative metric components, Eq. (11.73), we express the tensor in terms of the Zerilli function
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Z using Eq. (11.75) (to relate the metric functions to Z), and we use the Zerilli differential equation,
Eq. (11.76) to make additional simplifications. Finally, we use the tetrad in Egs. (11.145) and
(11.146) to ensure that we are using EF slicing. The resulting frame-drag field can be expressed in
terms of the magnetic-parity vector and tensor spherical harmonics, as noted in Section 11.8.1. we
specialize to | = 2, m = 2 for the frame-drag field below,

Biz =0, B,j=DBiee “'X3, Biy=DByee X%, (11.82)

where we have defined

[6M2a? — iwr?(2r +3M)| Z — 2Mra?(2r 4+ 3M)Z’

B = 11.
1) 2r4a2(r +2M) ’ (11.83)
1 2 2 2 21 o
Bye) Sriai (2 T 30 (r 1 20) {ra® [AM B — iwr®(2r + 3M)(r* + 4M?)] Z
[12Ma®(1 + 4rBy) — iw(r? + 4M?) By + AMw?r®(2r + 3M)] Z} (11.84)

where a prime denotes a derivative with respect to r, and X Z" and ng% are given by Eq. (11.129).

We have defined the functions

r? + Mr + M? 9 9
61 = W, 62 = (27’ —6Mr —3M ), (1185)

to simplify the expressions above. We note that the horizon vorticity, By, vanishes for an electric-
parity perturbation. From this frame-drag field, we can compute its eigenvectors and eigenvalues
for the perturbed spacetime, and from them compute the vortex lines.

Once again we expand Z in terms of Y = e™/2M up to O(Y3) near the horizon, in order to ensure
our numerical solution of the Zerilli equation satisfies the correct, ingoing boundary conditions.
Because the Zerilli potential, V., is more complicated than the Regge-Wheeler potential, Vg, the
coefficients of the expansion of Z in powers of Y are sufficiently long that we do not write them

here; they can be computed using algebraic software such as Mathematica, however.

11.C Appendix: Teukolsky’s Equation and Black-Hole Per-

turbations in the Newman-Penrose Formalism

The results in this appendix appear in many places in the literature (see, for example, Teukolsky’s
paper [22]), but we summarize them here for completeness. Teukolsky’s equation relies upon the
Newman-Penrose formalism using Kinnersley’s tetrad, Eq. (11.64), (note that when a is taken to
zero, we recover the Kinnersley tetrad for a Schwarzschild black hole). It also requires the spin
coefficients, certain contractions of covariant derivatives of the tetrad above given by Eq. (4.1a) of

[3] (though with the opposite sign because of differing metric-signature conventions). The nonzero
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spin coefficients in this tetrad are

1 10 o 1
p T iacosf "o ygf sl B oal ol a=m B,
PEA r—M ia
= = _— —_ — 0, 11-86
w 2y Yy=p+ oy T oD sin ( )

The Weyl scalar W, is defined as ¥y = C\ppontm*n’m*?, and it vanishes in the background when
using the Kinnersley tetrad; hence it is gauge-invariant at leading-order in perturbation theory
[22]. Tts perturbative part satisfies a decoupled, linear second-order partial-differential equation,
Teukolsky’s equation (see Teukolsky [22] for the explicit expression). When we define the quantity
_o = p~ 4y, we find that Teukolsky’s equation for ¥_, is separable and satisfies an equation similar
to that of the Weyl scalar . Namely, assuming a solution ¢! = ,Qlew(r),QSlmw(G)ei(m‘i’_“’t),

the radial function _s Ry, satisfies an ordinary differential equation (in vacuum),

+ diswr + 2amw — a?w? — A | sRime =0,

(11.87)

s d s11 9 sRimew K? —2is(r — M)K
A dr (A dr )+< A

where K = (72 +a?)w — am, A, is a separation constant that is a function of aw (i.e., s Ajm(aw) =
sAim), and s is the spin-weight of the field (s = —2 for a perturbation of ¥4). The radial function sat-
isfies the symmetries sRymy = (—1)™ s Ri—m—w+. Similarly, the angular function, _2Sim.(0), (called

the spin-weighted spheroidal harmonics) satisfies an ordinary differential equation (in vacuum),

d (. dsSime 2 2 2 2 .2
cscﬁﬁ <s1n97) + (a“w* cos” @ — m~ csc” 0 — 2aws cos

—2mscotfcsch — s cot? 0 + s+ s Aim)sSimw = 0. (11.88)

The angular functions satisfy the symmetries sSpmn,(m — 0) = (—1)(’”“),5817,%)(9) and S}, (0) =
(—1)™+s _ S| m—w=(6), where we are using a phase convention such that the angular functions agree
with the usual convention for spin-weighted spherical harmonics in the limit that spin parameter, a,
goes to zero.

We also use the angular separation constants of Chandrasekhar [44], denoted X (we generally
follow his convention of suppressing the indices s, [, m on these quantities). They are related to the
angular separation constants used above by ;X = sAm + s + |s| — 2amw + a’w?. The separation

constants, X, are the same for both positive and negative spin weights, +s, unlike the constants

sAlm'
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11.D Appendix: The Chrzanowski-Cohen-Kegeles Procedure
and the Ingoing-Radiation-Gauge Metric

In this appendix, we will review the formalism used for computing the ingoing-radiation-gauge
(IRG) metric, using what is known as the Chrzanowski-Cohen-Kegeles (CCK) procedure. We will
also connect the CCK procedure to Chrzanowski’s original calculation of definite-parity harmonics,
which we find useful for our calculations.

Although Chrzanowski conjectured that “the conceptual benefits of having found the perturbed
Kerr metric potentials surpass the usefulness of these potentials for doing future computations” [11],
the procedure he helped to formulate has found several applications in the past few years. Lousto and
Whiting [15] revisited Chrzanowski’s construction and found explicit expressions for computing the
Hertz potential corresponding to specific perturbations of the Weyl curvature scalars, ¥y and ¥y, in
the Schwarzschild spacetime. Ori then derived a similar result for Kerr black holes, using a frequency-
domain calculation [16]. Yunes and Gonzalez were the first to explicitly compute the metric of a
perturbed Kerr black hole from the Hertz potential [17], and Keidl, Friedman, and Wiseman were
the first to use the procedure to calculate the metric perturbation from a static point particle in the
Schwarzschild spacetime [18]. More recently, Keidl, Shah, and their collaborators [19] articulated a
formalism for computing the gravitational self-force of a point particle in the Schwarzschild or Kerr
spacetimes using the metric constructed from a Hertz potential. They were then able to compute
the conservative piece of the self-force from this metric perturbation in the Schwarzschild spacetime
[20]. In the first article [19], they gave a concise summary of constructing metric perturbations from
a Hertz potential, and they called this process the Chrzanowski-Cohen-Kegeles (CCK) procedure or
formalism (names we will also adopt).

In the first part of this section, we will review the CCK formalism in a similar way to how Keidl
summarized it in [19]. While the metric we ultimately compute, in this paper, is nearly identical
to that described by Chrzanowski [11], we find it helpful to put Chrzanowski’s original calculation
into the context of the more recent work on the CCK procedure. Furthermore, we review the
CCK procedure here, rather than simply referring the interested reader to [19], because there are
several differences between our calculation and that set forth in [19]: we use a metric of the opposite
signature, we calculate the metric corresponding to quasinormal modes with complex frequencies, we
construct the metric in a different radiation gauge, and (like Chrzanowski’s original calculation) we
are interested in metric perturbations of definite parities. Because the CCK formalism relies heavily
upon the Newman-Penrose formalism and Teukolsky’s equation for perturbations of Weyl curvature
scalars, we review these in Appendix 11.C. In the second part of this section, we will describe
how to use the CCK procedure to compute definite-parity metric perturbations corresponding to

quasinormal modes.
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11.D.1 The CCK Procedure

The purpose of the CCK procedure is to construct a metric perturbation, h,,, from a given solution
to Teukolsky’s equation, either ¥y or p~*Wy (see Appendix 11.C for a summary of the Teukolsky
formalism). For ease of notation, we will denote the quantities that satisfy Teukolsky’s equation by
o = Uy and Y_o = p~ 4, below. The CCK procedure can construct a metric in either ingoing-

radiation gauge (IRG),

hut” =0, hm,gé‘ol; =0, (11.89)
or outgoing-radiation gauge
hun” =0, hm,gé‘ol; =0, (11.90)

for Schwarzschild and Kerr black holes. Here [¥ and n” are two vectors of a Newman-Penrose null
tetrad (for our calculations, we will use the Kinnersley tetrad, Eq. (11.64) above), and gfbol; is the
background Schwarzschild or Kerr metric. Because our goal is to compute vacuum perturbations of
Kerr that are regular on the future event horizon, we will construct the metric perturbation in IRG,
and we will be able to compute it by algebraically inverting a differential relationship between the
harmonics of the Hertz potential and those of _s.

The Hertz potential is tensor with the same symmetries as the Riemann tensor whose double
coordinate divergence is a harmonic-coordinate metric. Stewart [13] showed that in Type D space-
times, there is sufficient gauge freedom that one can represent the independent degrees of freedom of
the perturbative part of the Hertz potential as a single complex scalar; furthermore, if one applies a
coordinate transformation from harmonic gauge into IRG, the Hertz potential, which we will denote
by ¥, is a solution of the vacuum Teukolsky equation for scalars of spin weight s = —2 (the same
as ¥_s). One can then construct a metric perturbation from the Hertz potential by applying several

differential operators to ¥y,

hw = {lgmyy(D+p —p+e +3e)(8+48+37)+ (6 +38—a* —7* —7)(D + 3p + 4e)]
(0 +a” +38—1)(0+48+37) —mum,(D —p+3e—€)(D+3p+4€)} ¥y +c.c.
(11.91)

The differential operators are defined by D = [V, and 6 = m*V,, and for the calculations
involving Schwarzschild and Kerr black holes in this paper, we will use the Kinnersley tetrad and its
spin coefficients (see Appendix 11.C). The last term in Eq. (11.91), c.c., means to take the complex
conjugate of the expression before it on the right-hand side, so that the metric perturbation is real.

When computing perturbations of black holes, it is helpful to be able to relate a given Hertz
potential Uy to a specific perturbation of the Weyl scalar ¥4. One can do this by computing the



373

components of the perturbative Riemann tensor from the metric perturbations, Eq. (11.91), that
correspond to the Weyl scalar

Uy = Coppn®m™Pnrm™ . (11.92)

The result can be expressed compactly as

(L3, — 12M8, T y) ; (11.93)

ool —

Yoo =
see, e.g., the paper by Keidl [19]. We have used the shorthand that £ = ELEELJ{L; where
LI = — (99 + scot§ —icschIy) + iasin O, . (11.94)

In general, solving for the Hertz potential, Wy, that corresponds to a perturbed Weyl scalar ¥y
involves inverting the fourth-order partial differential equations, Eq. (11.93); however, when Uy
and ¥_o are expanded in harmonics in the frequency domain, it is possible to perform the inversion
algebraically.

One can expand ©_o in harmonics as

Voa =3 Y = 3 R (r) —2Simu(0)e Y, (11.95)

Ilmw Imw
where the ordinary differential equations satisfied by _oRimew(r) and _2Spm,(0) (the radial and
angular Teukolsky equations, respectively) are given in Appendix 11.C. In the IRG, the Hertz
potential is a solution to the Teukolsky equation with spin s = —2; consequently, we can also

expand ¥z in the same harmonics

1 (md—
U =3 U™ =3 )Xo (r) —2Simu (0)el ™97 (11.96)
Ilmw Imw
The radial function of the Hertz potential’s harmonics _o X, () also satisfies the vacuum Teukolsky
radial equation, but because it is not the same radial function as in the harmonics of 1)_5, we denote
it with a different function. One can relate the radial functions of the harmonics of ¥y and 1_5 by

substituting Eqgs. (11.95) and (11.96) into Eq. (11.93) and using the Teukolsky-Starobinsky identity
£T428lmw = D*QSlmw (1197)
(note that our £ is equivalent to —L in the commonly used book by Chandrasekhar [44]), and the

identity
~280mw = (1) 281w . (11.98)
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Then, one can equate the full radial function for a given angular and time harmonic of the Hertz po-
tential to the radial functions _o Ry, of ¥_o. Inverting this relationship, one can find the individual

radial harmonics of the Hertz potential,

(=1)"D* oR; . —12iMw _5Rjm.,

o X = 8 : 11.99
2o D*2 1 144M %02 (11.99)
The constant D* = D} = Di_;,_~ is defined by

D? = X2(A +2)% — 8A(BA + 6)(a’w? — amw) + 96Xa*w? + 144(a*w? — amw)?, (11.100)

where A is the separation constant used by Chandrasekhar [44] (a choice of the separation constant
that gives the same constant for both the angular and the radial equations). Although the Teukolsky-
Starobinsky identities are usually derived assuming real frequencies, they have been shown to hold
for complex frequencies as well (for a recent derivation, see [54]).

The general description of the CCK formalism is now complete; for a vacuum perturbation of
U,, we can now find the Hertz potential, ¥y, that corresponds to this perturbation by expanding
the potential in harmonics, relating their radial functions through Eq. (11.99) and computing their
metric perturbations from Eq. (11.91). In the next section, we will describe how we specialize the
CCK formalism above to compute the metric perturbations corresponding to a single even- or odd-
parity quasinormal mode, and how we compute the vortex and tendex lines corresponding to these

metric perturbations.

11.D.2 Definite-Parity Harmonics and Chrzanowski’s Calculation

Before we connect the CCK procedure above with Chrzanowski’s original calculation of metric
perturbations of definite parities, we will briefly discuss the terminology we use to describe black-hole
perturbations of definite parities. First, it is reasonable to discuss the parity of the perturbation,
because the background Schwarzschild and Kerr spacetimes have definite parities: the former is

invariant under a parity transformation,

0—>mr—0 and ¢—d+m, (11.101)

because the spacetime is spherically symmetric; the latter is invariant under parity, because it is
reflection symmetric about the equatorial plane (@ = 7/2) and it is rotationally invariant about the

polar axis (§ = 0, 7). Consequently, we will call a metric perturbation that transforms as

huypdatdz? — hydatdz” (11.102)
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under a parity transformation as even, and we will call a perturbation that transforms as
hydatdx” — —hy,,dat dz” (11.103)

under parity as odd. For a Schwarzschild black hole, it is common to call any metric perturbations
constructed from scalar, vector, and tensor electric-parity spherical harmonics of any [ as even,
despite the fact that the electric-parity harmonics transform as (—1)! (and are even only for even [);
similarly, those perturbations made from vector and tensor magnetic-parity spherical harmonics are
often called odd, although they are only odd under parity for even ! (the magnetic-parity harmonics
transform as (—1)"*! under parity). As a result, we will describe the two types of Schwarzschild
metric perturbations as being either of electric or magnetic parities, and we will use the words “even”
and “odd” only to refer to the parity of a specific harmonic of order [, in the sense of Eqgs. (11.102)
and (11.103).

This electric and magnetic naming convention fits the perturbation to the Weyl tensor of a
Schwarzschild black hole well, because an electric-parity perturbation will generate a perturbative
correction to the horizon tendicity and not the horizon vorticity, and a magnetic-parity perturbation
will produce a perturbation to the horizon vorticity and not the tendicity. Although the structure
of the perturbed metric is somewhat more complicated in Kerr, describing the metric perturbations
as of either electric or magnetic parity again is natural. An electric-parity perturbation of order
l produces a perturbation to the horizon tendicity that appears like a spherical harmonic of order
I, whereas the perturbation to the horizon vorticity looks like a spherical harmonic of order [ 4 1;
similarly, a magnetic-parity perturbation of order [ induces a change in the horizon vorticity of the
same order [ and in the horizon tendicity of order [ + 1.

We find that if the perturbations have a electric or magnetic parity, then the Hertz poten-
tial must itself transform as ¥y — :l:(—l)l\I!Z, under parity (the plus and minus correspond to
electric- and magnetic-parity perturbations, respectively), and its radial harmonics must satisfy

o X

Fomwr = £(—1)"_2Xjme. In turn, this implies that the radial harmonics of 1_o must satisfy

the same relationship _oR; . . = £(—1)"_2Rimw. The electric- and magnetic-parity pertur-
bations correspond to the appropriate real and imaginary parts of the metric perturbation in Eq.
(11.91).

To see why the radial functions of ¥_s must satisfy the relationship above, we discuss the parity
of the terms that appear in Eq. (11.91). The Newman-Penrose tetrad and spin coefficients of the
background spacetime transform in several different ways under parity: l_: 7, are even under parity,
and 7 does not have a definite parity, m — —m*. Similarly, the differential operator D = I*V,
is even under parity, and § = m#V, again does not have a definite parity, 6 — —d&*. Three of

the nonzero spin coefficients map to their complex conjugates under parity (p — p*, p — p*, and



376

v — ~*), and the remaining four spin coefficients become minus their complex conjugates under
parity (¢ — —a*, 8 — —0*, 7 — —7*, and 7 — —7*). These relationships hold true for both
Schwarzschild and Kerr, although in the former case, the spin coefficients are real and, therefore,
have definite parity.

When applying a parity transformation to the perturbative metric tensor, h,, dx*dz", where h,,
is given by Eq. (11.91), we can show that the tensor differential operator in Eq. (11.91) becomes
its complex conjugate by using the parity transformations for the spin coefficients, NP tetrad, and
differential operators above. As a result, the metric perturbation will have either electric or magnetic

parity when the Hertz potential transforms as
Uy — +(-1)'0% (11.104)

under parity. The plus sign corresponds to an electric-parity perturbation, and the minus sign
describes a magnetic-parity perturbation. The condition this implies on the harmonics is also quite
simple, which one can determine by applying a parity transformation to the Hertz potential expanded
in harmonics, Eq. (11.96), and equating it to its complex conjugate. Then using the properties of

the Teukolsky angular functions

Stme(m—0) = (=)™ _ S,.(0) (11.105)

Stnw(@) = (1) Sim—w (0) (11.106)

(see Appendix 11.C) and equating the radial function of each time and angular harmonic, one obtains

the following condition on its radial functions,
*2Xl*7mfw* = i(_l)m72lew . (11107)

Similarly by substituting Eq. (11.99) into the expression above, one finds an analogous relationship

for the radial function of the Weyl scalar ¢ _s,
2R} = £(=1)" 2 Rime - (11.108)

For these definite-parity perturbations, the relationship between the radial functions of the Hertz

potential and ¥_o, Eq. (11.99) also simplifies,
o Ximw = £8(D* £ 12iMw) ™ 9 Ry ; (11.109)

namely, for definite-parity perturbations, the radial functions of ¢_5 and ¥ g differ by only a complex
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constant.

Because the background spacetime is even under parity transformations, the background metric
and curvature will have even parity. The tidal field takes on the same parity as the Weyl tensor, and
the frame-drag field has the opposite parity; consequently, for the unperturbed black holes the tidal
field (and its tendex lines) will have even parity, and the frame-drag field (and its vortex lines) will
have odd parity. Moreover, because the background has even parity, this implies that perturbative
Weyl tensor computed from the electric- or magnetic-parity metric perturbations will also take on
the same parity as the metric perturbation. Similarly, the perturbative tidal field and tendex lines
will have the same parity as the metric perturbation, and the equivalent frame-drag field and vortex
lines will have the opposite.

In our calculations of the least-damped [ = 2, m = 2 quasinormal modes of Schwarzschild and
Kerr black holes, we will always compute a metric perturbation that corresponds to Hertz potential

of the form
Uy = 9Rimwe ™79 58, + (=1)™ oR,, 0e MO o5 (11.110)
From Eq. (11.109), the corresponding perturbation of ¥_s is

1 )
a— ig(D*i12iMw),2lewel<m¢*wt>,QSIW

1 , .
+2 (D™D F 12iMw*) _oR}, e 1mo="D .85, .. (11.111)

We choose the coefficients of the modes of ¥_» so as to make the Hertz potential (and, therefore,
the metric) as simple as possible. Furthermore, this choice gives the same definite-parity metric as

that of Chrzanowski (when one takes the real part of his expressions).

11.E Appendix: Definite-Parity Metric Perturbations in an
Ingoing-Radiation Gauge for Schwarzschild Black Holes

In this appendix, we will calculate the metric perturbations corresponding to electric (even) and mag-
netic (odd) parity quasinormal-mode perturbations of Schwarzschild in IRG. Because Chrzanowski
performed this calculation in Table IIT of [11], and our results agree with his, we do not go into
great detail describing the calculation; instead, we aim show the results here so as to be able to com-
pare with the Regge-Wheeler-Zerilli (RWZ) gauge calculations in Appendix 11.B. We will focus, in

addition, on the tidal and frame-drag fields corresponding to these metric perturbations.
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11.E.1 Electric-Parity Metric Perturbations

We begin this part by comparing the metric produced by the CCK procedure to that of the RWZ
formalism. We will write the RWZ metric using the gauge-invariant and covariant notation described

by Martel and Poisson [50]. Martel and Poisson write the electric-type perturbations as

Pab =Y BV pap = YR, pap =17 (K"MQapY'"™ +G"MYAE),  (11.112)
Im Im Im

where the lower-case indices run over the radial and time coordinates (e.g., a,b = t, ), and upper-

case indices run over the angular coordinates, A, B = 6, ¢. The angular functions Y are scalar

spherical harmonics, Yém are the electric-type Regge-Wheeler harmonics, and Yxf‘“é are trace-free

electric tensor harmonics; the term 2 4 g is the metric on a 2-sphere. The vector and tensor harmonics
are defined by

Y™ =Duyim vim = DADB—i—%Z(l—i—l)QAB y'im, (11.113)

where D4 is the covariant derivative on a 2-sphere.

Because the Schwarzschild spacetime is spherically symmetric, one can see, intuitively, that the
CCK metric, Eq. (11.91), corresponding to an electric-parity quasinormal-mode perturbation (Eq.
(11.110) taking the plus sign) will have a relatively simple form. The angular operators acting
on the Hertz potential in Eq. (11.91) become the spin-weight raising and lowering operators, and
the angular functions become the spin-weighted spherical harmonics; furthermore, when the spin-
weighted harmonics are combined with the appropriate factors of 1 and m* the angular functions
become proportional to the scalar, vector, and tensor harmonics described above. When performing
the calculation, one will need to use the following identities, which can be found, for example, by

adapting the results in the review by Thorne [55] to the notation used here,

0+1)
2

lm \/B

(71}/lmmA - 1}/lmmf4) 5 YAB = 7(72}/meAmB + QKmmZmE) . (11114>

Im __
YA -

The Teukolsky-Starobinsky constant for spin-weighted spherical harmonics is D = (I + 2)!/(I — 2)!.

One can then find that the scalar metric coefficients are given by

2/ D

pu == fpir = a'py = —=73 R[_2Rime” Y], (11.115)

where o? = (1 — 2M/r). Similarly, one can compute the electric-parity vector-harmonic metric

perturbations, and one can find that

vD d 2a2 .
— _ 2 _ i Im ,—iwt
PtA = —Q'Pra 2[([ i 1)7”2012% { |:d7’* 2R ( w + _T > —2le:| YA € } . (11116)
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Finally, one can show that the electric-parity tensor-harmonic metric perturbation is given by

pAB = ﬁ% { [(mﬂ — M)

d
dr.

oRim — [20% —iw(=3r + TM) — r?w?| oRyy | Yime it

(11.117)
In the equation above, we used the radial Teukolsky equation to eliminate the second-derivative
term for the radial function.

There are a few noteworthy differences between the IRG electric-parity perturbations, and the
electric-parity RWZ-gauge metric. The CCK metric has a strictly angular part of the perturbation
which is proportional to the transverse, trace-free harmonics, and the trace portion of the angular
part vanishes; conversely, the angular part of the RWZ metric perturbation has a trace, but no
transverse trace-free perturbation. The py. part of the metric perturbation also has a simpler
relationship to the py; and p,,. components in the IRG metric than in the RWZ metric; one reason
for this is that the IRG metric has electric-parity vector perturbations, whereas the RWZ metric
sets these to zero. Finally, the IRG gauge metric is finite on the future event horizon for ingoing
radiation. One can see this by noting that both _3R;,, and d_s Ry, /dr, scale as ate ™™ near the
horizon, which will cancel any negative powers of a? in the expressions for the metric coefficients.
The same is not as manifest for the RWZ perturbations (see Appendix 11.B for more details on the
RWZ formalism).

We next calculate the electric and magnetic tensors from the IRG metric following the procedure
described in Section 11.G. Because the background is spherically symmetric and the perturbation
has electric parity, the components of the tidal field are proportional to electric-parity spherical
harmonics of a single [, and the components of the frame-drag field are proportional to magnetic-

parity harmonics of the same [. Namely, one can write the tidal field as

£ = 2B ()Y'e ), €Y = MR[Bye) ()Y e, (11.118)
1 m m —iw
5,%% = 2%{(—5El<c>(r)5143yl +E3(C>(T)ij)e t]. (11.119)

The symbol 6 ;5 is the Kronecker delta function, and the trace-free property of £ requires that the
radial function in front of the Kronecker delta must be minus one-half that of 87571); namely, it must be
—(1/2)Ey(e)(r). Although the triad components of the tidal and frame-drag fields correspond to the
perturbed triad of Eq. (11.146), the functional form of the spherical harmonics with hatted indices
is identical to the projections of the spherical harmonics into the background angular components
of the triad (i.e., the unit vectors on a sphere of radius r).

The radial dependence of the three complex radial functions above is not particularly simple, but

they can be summarized in a few lines, which we do below for an | = 2, m = 2 mode. This allows
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us to compare with the RWZ results in Appendix 11.B.

26

Eio(r) = ~ 6o {[—57°2 +16M7r — 12M? — iwr?(4r — OM) + 7*w?| 2Ry
2 N
+re(r — 3M + iwr )dr _gle} (11.120)
Eoey(r) = ! r3[—6r + 3Ma? — 2iwr(r — 3M) + 2r3w?] d _oRym
(© r6,/67r(r +2M)a* dr
+[6(=r3 + TMr? — 4M?r + 4M3) — iwr®(16r* — 35Mr + 30M?)
+2w27°4(47° —9M) + 2ir6w3]_2le} , (11.121)
Bse)(r) = 1 PPuw(—2r% + 3Mr 4 3M2 4 riw?) LRy,
¢ 75 (r 4+ 2M)a*/6 dr

+[6(r* 4+ 4M?) +dw(4r® — 11Mr? + 12M?r + 12M?)

—w?r?(4r® —AMR — 9M?) — 3iw3r®a? + 7”6w4]—2R1m} ) (11.122)

To remove higher-order radial derivatives from the above equation, we used the radial Teukolsky
equation. As with the metric, one can see that the tidal field is well-behaved on the horizon, because,
as noted above, _o Ry, and d_g Ry, /dr, scale as ate =™ near the horizon; consequently, they will
cancel the corresponding powers of o in the denominator.

Next, we will present similar expressions for the frame-drag field. It can be written as

B =0, BUY =2R[Byoy(nXre™™!,  BYL = 2R[By(e(r) X', (11.123)

where we define the magnetic-parity harmonics in Eqs. (11.127) and (11.128). Because B;; vanishes
everywhere, the horizon vorticity for an electric-parity mode will be zero. The complex radial

functions, for an [ = 2, m = 2 mode are given by

V2 2 : 3 21 4
Bio(r) = RN T {r [OM —iwr(r —3M) 4+ r°w ]d—*,lem (11.124)
+[—24Mra® 4 iwr(12M? — 25 M1 4 5r2) + w?r3 (4r — M) — ir5w3]_2le} ,
By (1) = L iwr(—2r% + 3Mr + 3M? + r%ﬁ)i 2R, (11.125)
2(e) rd(r +2M)a*V6 dr, =" .

+[—24M + 2iwr(2r — TM) 4 w?r(—4r? + 4Mr + 9M?) — 3iw’rta® + r5w4]2le} .

One can now see that the frame-drag field is also regular on the horizon.

11.E.2 Magnetic-Parity Metric Perturbations

To begin this part, we will also draw connections between the IRG metric from the CCK procedure

and the RWZ metric. The magnetic-type perturbations, in Martel and Poisson’s notation, are given
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by
Pab =0, pap=» h"XE, pap=1"Y hXE, (11.126)

lm lm

where the magnetic-parity harmonics are defined by

X§r = —ea®DpY'™, (11.127)
1
Xip = —5(€a“Dp+eg“Da)DoY"™, (11.128)

and €4 p is the Levi-Civita tensor on a unit 2-sphere. As in the previous part, we can compute the
CCK metric, Eq. (11.91), which is relatively simple for a Schwarzschild black hole. The reason for the
simplification is the same, but we will need the following two identities that relate the spin-weighted

spherical harmonics to magnetic-parity vector and tensor harmonics

I0+1)
2

1 .
(71}/lmmA - 1}/lmmf4) s XA% = _27(72}/ImmAmB + 2}/lmm2m*3) .

(11.129)

These relationships can also be found in [55]. The magnetic-parity vector-harmonic metric pertur-
bations have the same radial and time dependence as the electric-parity perturbations, which one

can see by comparing Eq. (11.116) with the expression below:

VD d . 202 S
—DtA = 042prA = m% { |:d_’r*2le <—Zu) + T) 2le:| Xi‘ & t} . (11130)

Unlike the electric-parity perturbation, the harmonic now has magnetic-parity, and the physical
metric perturbation corresponds to minus the imaginary part. There is a similar relationship be-
tween the magnetic-parity tensor-harmonic metric perturbations and the equivalent electric-parity

expression, which can be found from examining Eq. (11.117) and the expression below:

2 d .
pap = _ms { [(mﬂ - M)d_r*_Qle — [20® —iw(=3r +7M) — r2w2]_2le} Xffge“’t}

(11.131)

Because the magnetic-parity metric perturbations have the same radial dependence as the electric-
parity metric, they will be well-behaved on the future event horizon as well.

We will compute the tidal field of the perturbation in the same way that we computed the

electric-parity perturbation. Because the perturbation has magnetic-parity, now the tidal field will

now have magnetic parity, and it can be expanded in terms of magnetic-parity harmonics as

£ =0, &Y = 2By (N XY™, 0L = 2R By (r) X e, (11.132)
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where, for an [ = 2, m = 2 mode, the complex radial functions can be written as

M3+ 2M) [

d
. .
Eim)(r) = —iBye)(r) + P Won (a —l—zwr)_gle—i—rd—“_gle , (11.133)
. V3(r +2M
Eym)(r) = —iBye)(r) — V3l + 2M) )(Mw)—szm. (11.134)

rSady/2

Interestingly, there is a near duality between the tidal field of an magnetic-parity perturbation and
the frame-drag field of an electric-parity perturbation. A similar relationship exists between the
frame-drag field of a magnetic-parity perturbation and the tidal field of an electric-parity perturba-
tion. The frame-drag field of the magnetic perturbation can be expanded in terms of electric-parity

harmonics as

B = 2R[Bigu(r)Y"me ™, Bg = 2R[Bom) (r)Y {1, (11.135)
1 m m —iw
BS; = 2R [(—531(m)(r)5ABYl + B3(m) (T)Yflié) e t} , (11.136)

where again the trace-free property of B,; requires that the radial function of the strictly angular
part of the frame-drag field proportional to the identity be minus one half the radial function of the

strictly radial component. The expression for the radial functions is given by

Biam)(r) = iEye)(r) (11.137)
o M \/3(r + 2]M) . d
BZ(I‘H) (T) — 'LEQ(e) (T) - 'LW —(Oé + ZL()T)—Qle + Td—/r*szlm ) (11138)
. V3(r +2M
Bsmy(r) = iEs0)(r) = ( ) (Mw) 2R (11.139)

roat/2

One can see from the above expression that there is the same near-duality of the frame-drag field
of a magnetic-parity perturbation and the tidal field of an electric-parity perturbation. There is an
exact duality of the radial-radial components, which, in turn, implies that the horizon vorticity of a

magnetic-parity perturbation is the same as the horizon tendicity of an electric-parity perturbation.

11.F Appendix: Equality of Frame-Drag Fields in Regge-
Wheeler and Ingoing-Radiation Gauges

In this appendix, we show that the frame-drag field for an [ = 2, m = 2, magnetic-parity, quasinormal-
mode perturbation of a Schwarzschild black hole is the same in Regge-Wheeler and ingoing-radiation
gauges; the tidal fields, however, have small perturbative differences.

The calculation that shows this is straightforward. Use the relationship between the Regge-
Wheeler function and the radial function of the radial Teukolsky equation (see, e.g., Eq. (319) of
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Chapter 4 of [44]*) to show that for an [ = 2, m = 2, mode

o;
Q = _—T;; {[—57«2 + 16Mr — 12M° — iwr®(4r — 9IM) + r*w?] o Ry,
2 22 d
+7°(r — 3M +iwr )d—_gle . (11.140)
T

Substituting this expression into Eqgs. (11.78)—(11.80), one finds that it is identical to the frame-drag
field of Egs. (11.135)—(11.139); i.e., one has that

Birc = Brw - (11.141)

Although we do not give an explicit expression for the perturbative tidal field of the Regge-Wheeler-
gauge metric perturbation in this paper, a quick calculation shows that the tidal fields differ. We
briefly discuss why this might be the case, below.

Regge-Wheeler and ingoing-radiation gauges are related by a coordinate transformation of the
form

Thw = Tire + & (11.142)

For the magnetic-parity perturbations, the transformation vector has the form
€mag = S[F(r)e (0,0, X1.m(0, 9))], (11.143)

where X, (0, ¢) is a magnetic-parity, vector spherical harmonic, and where f(r) is minus one-half
times the radial function that appears in the expression for pap in Eq. (11.131). One can see that
the time and radial coordinates, ¢t and r, are identical in the two gauges, therefore. Because we use a
slice of constant Eddington-Finkelstein time (a function of only ¢ and r) to set the slicings for both
gauges, the slicing, and the one-form associated with this slicing are the same in both coordinates.
Note that this does not mean that the vector associated with the observers’ four-velocities that are
normal to the slice will have the same coordinate components; see Eq. (11.145).

Because there is no background frame-drag field (i.e., it is a strictly perturbative quantity), and
because the slicings are the same, it is not surprising that the frame-drag fields are identical in these
two gauges. The perturbative differences in the coordinates produce changes in the frame-drag field
that are of second-order in the perturbative expansion, as would second-order differences in the
slicing.

The tidal field, however, has a background piece, and the first-order differences in the coordinates

will produce first-order differences in the tidal fields. There are additional differences between the

4Note that the magnetic-parity function used by Chandrasekhar, Z(~) | is related to the Regge-Wheeler function by
Q = iwZ(~), and his radial function for the Teukolsky equation, Y_ is related to that of this paper by _a R, = r3Y_s.
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tidal fields, however, beyond these simple distinctions. The extrinsic curvature of the slices will differ
in the two gauges, and because these terms couple to the background tidal field in the Maxwell-like
evolution equations for the tidal field (see Eq. (2.4) of Paper I), this requires that the perturbative
tidal field must differ in the two gauges.

11.G Appendix: Analytical and Numerical Methods for Com-

puting Tendex and Vortex Quantities

In this section, we discuss the details of how we compute the vortex and tendex lines. The pro-
cedure for calculating tendex and vortex lines is identical for Schwarzschild and Kerr black holes;
however, because the analytical expressions for the Newman-Penrose quantities, the Teukolsky an-
gular function, and the metric derived from these mathematical objects is significantly simpler for
Schwarzschild black holes, the amount of work we can perform analytically differs for rotating and
non-rotating black holes. Even for Schwarzschild black holes, however, we will not be able to com-
pute all aspects of the metric perturbation analytically. We calculate the least-damped | = 2,
m = 2 quasinormal mode frequencies for both Schwarzschild and Kerr black holes using the Math-
ematica notebook associated with [52], an implementation of Leaver’s method [56]. Similarly, we
compute the radial Teukolsky functions _o Ry, corresponding to a quasinormal-mode solution for
both Schwarzschild and Kerr black holes numerically. We compute it in two ways, which give com-
parable results: we solve the boundary-value problem for a quasinormal mode solution to the radial
Teukolsky equation, Eq. (11.87), using a shooting method, and we compare the result with a se-
ries solution given by Leaver [56] (as is also done in the notebook of [52]). For Kerr black holes,
the numerical solution requires the angular eigenvalue, 5A;,, associated with the quasinormal mode
frequency, which we again compute from the implementation of Leaver’s method in [52].

The most significant difference between the calculations of quasinormal modes of Schwarzschild
and Kerr black holes arises from differences in the Teukolsky angular function, and the angular
operators used in computing the metric of Eq. (11.91). First, the spin-weighted spheroidal harmonics
in the expression for the Hertz potential, Eq. (11.110), reduce to spin-weighted spherical harmonics
for Schwarzschild black holes. Second, the angular operators in Eq. (11.91) reduce to spin-weight
lowering operators, in the non-spinning limit. As a result, the metric perturbation can be expressed,
analytically, in terms of electric- or magnetic-parity scalar, vector, and tensor spherical harmonics
of a single [, for Schwarzschild black holes. For perturbations of Kerr black holes, there are not
these additional simplifications. First, we must calculate the spin-weighted spheroidal harmonics
numerically, which we do using a series solution put forward by Leaver [56] (the same method
as that implemented in [52]). Second, the angular operators are no longer the spin-weight lowering

operators. The metric perturbation computed from these functions, therefore, is not nearly as simple
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as that of the Schwarzschild limit. In fact, for our calculations with spinning black holes, we find it
easier to work with a numerical fit to the analytical expression for the metric.

Once we calculate the metric perturbation, we construct the perturbation to the Weyl tensor in
the same way for both rotating and non-rotating black holes; namely, we compute the perturbative
connection coefficients and take the appropriate combination of them and their derivatives to find
the first-order perturbation to the vacuum curvature tensor. We can then calculate the tetrad com-

ponents of the tidal field, £,;, and frame drag-field, B,

a

;» through Egs. (11.1) and (11.2), respectively.
The orthonormal tetrad into which we decompose our tidal and frame-drag fields deserves a brief
discussion.

For computing and visualizing the vortex and tendex lines, it is convenient to specify a slicing
that is a simple analytical function of the perturbative Schwarzschild or Kerr coordinates; as a
result, we continue to foliate the spacetime by surfaces of constant ¢ (Eddington-Finkelstein time
for Schwarzschild and Kerr-Schild time for Kerr). The components of the normal one-form to the
slicing will still be proportional to the gradient of the appropriate time coordinate (i.e., u, Vuf).
We now aim to construct a vector, @, and a triad in the spatial slice, €; such that together, 4 and

€; form an orthonormal tetrad with respect to the background metric plus the perturbed metric,

Guv + Py We will write this full orthonormal tetrad, schematically, as
i=a®+aW, &=¢&94+el (11.144)

where the zeroth-order (unperturbed) tetrad is given by Eq. (11.19) for Schwarzschild and Eq.
(11.54) for Kerr. It is then convenient to expand the perturbative piece of the tetrad in terms of the

unperturbed tetrad. A quick calculation shows that

1

— v, (0
ul(‘l) = _§h60u?0) — v u(®) (11.145)
(1 1
i = Lhghy. (11.146)
where hgy = huyuﬁo)ul(’o) and h,; = hweéo)”elgo)y are the projections of the covariant components

of the perturbed metric into the unperturbed tetrad. Consequently, our tidal and frame-drag fields

will contain both background and perturbative pieces; namely
_ ¢(0) 1) _ 0 (1)
g{zl; - g&[) + g&[) ) B@B - B&B + B&B 5 (11147)

and the perturbative pieces, 5(%) and Bl%) will contain terms from both the perturbative Weyl tensor
contracted appropriately into the unperturbed tetrad, and the same contractions of the background
Weyl tensor into the perturbed tetrad.

One can then solve the eigenvalue problem, Eq. (11.3), to find the eigenvectors and the tendicity
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and vorticity of the tidal and frame-drag fields, respectively. Because we computed the tidal and
frame-drag fields through first order in perturbation theory, it would seem natural to calculate
their eigenvectors (as well as the vorticity and the tendicity) through first order in perturbation
theory, too. There is good reason, however, to calculate the exact eigenvectors and the exact
vorticity and tendicity instead of the perturbative values. Computing perturbative eigenvectors
uses two different procedures depending upon whether the unperturbed eigenvalues are equal or
not (they are formally identical to non-degenerate and degenerate time-independent perturbation
theory in quantum mechanics): in non-degenerate regions, one takes appropriate linear combinations
of the background eigenvectors; in degenerate regions, one computes the exact eigenvectors of the
perturbative tidal and frame-drag fields in the subspace spanned by the eigenvectors corresponding
to the degenerate eigenvalues. One must use a different procedure in degenerate regions, because
when the magnitude of the perturbative eigenvalues becomes comparable to the difference of the
nearly degenerate eigenvalues, the scale of the first-order correction no longer becomes perturbative
in the degenerate subspace.

The Kerr spacetime, for example, has large spatial regions near the axis of rotation where the
unperturbed tendicity and vorticity corresponding to the angular tendex and vortex directions are
nearly degenerate, and regions near the plane of reflection symmetry where they are not. Were we
to use perturbation theory, then we would need to find an ad hoc prescription for deciding when
to consider a perturbation degenerate and for connecting different degenerate and non-degenerate
methods in different spatial regions as smoothly as possible. The simpler and more transparent
approach, therefore, is to compute the exact eigenvectors everywhere. While the nonlinear process
of computing eigenvectors and eigenvalues introduces terms that are formally of higher order than
the accuracy of the calculation of the tidal and frame-drag fields, in our numerical calculations, we
keep the magnitude of the perturbation sufficiently small that these higher-order terms are very
small numerically.

From the exact eigenvectors of the tidal and frame-drag fields, we can compute the vortex and

tendex lines through the differential equation

dxt i
— =% . 11.148
ds e ( )
In the above equation, z* are Schwarzschild or Boyer-Lindquist coordinates, s is an affine parameter
along the vortex and tendex lines, v® are the exact eigenvectors found from solving Eq. (11.3), and el
are the spatial triad (background plus the perturbative corrections). In the next two appendices, we
will show a few additional results for the tendex and vortex quantities from explicit calculations using

the CCK procedure for Schwarzschild and Kerr black holes. We will focus on quasinormal modes of

magnetic parity, first; then, to help with future comparisons with numerical-relativity simulations,
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we will compute the vortexes and tendexes of [ = 2, m = 2, quasinormal-mode perturbations of
both parities for Schwarzschild and Kerr black holes, when we include the background tidal and

frame-drag fields in addition to the perturbative fields.

11.H Appendix: Magnetic-Parity, [ = 2, m = 2, Quasinormal-
Mode Perturbations of Schwarzschild and Kerr Black

Holes in an Ingoing-Radiation Gauge

To understand the extent to which there is a duality between electric- and magnetic-parity per-
turbations, we plot the vortexes and tendexes of magnetic-parity perturbations in this appendix.
The analytical expressions for Schwarzschild-black-hole perturbation in Appendix 11.E showed that
there is a near duality, and it is of interest to see visually what these small differences do to the
tendexes and vortexes. For Kerr black holes, we neither found nor presented explicit analytical ex-
pressions like those in Appendix 11.E for the tidal and frame-drag fields of Schwarzschild black holes.
As a result, the exploration of duality for Kerr black holes is more qualitative. This comparison
will give some insight into how the background tidal and frame-drag fields affect the generation of

gravitational waves, because in their absence there is an exact duality.

11.H.1 Perturbations of Schwarzschild Black Holes

Unlike the sections on electric-parity modes, it is not necessary to begin by showing the horizon
vorticity and tendicity, because, from the computations in Appendix 11.E, the horizon vorticity of
a magnetic-parity mode is exactly the horizon tendicity of an electric-parity mode (and vice versa).
Therefore, Fig. 11.10 describes the horizon quantities, with vorticity and tendicity reversed.

We, therefore, begin by showing the vortex lines and the vorticity in the plane of reflection sym-
metry in Fig. 11.18. We plot the vortex quantities there identically to the tendex quantities in Fig.
11.11. The two figures are nearly identical, but by carefully scrutinizing both figures, one can ob-
serve small differences in curvature of the vortex lines in the regions of small vorticity. Nevertheless,
the essential qualitative features are the same: there are two vortexes that emerge from the horizon
vortexes and spiral out, and the vortex lines emerge from the horizon and collect into spirals that
reside on the outer edge of the vortexes.

In three dimensions, the magnetic-parity vortexes and tendexes are nearly dual to their electric-
parity counterparts in Fig. 11.12, but the small differences are somewhat more pronounced. The
magnetic-parity quantities are shown in Fig. 11.19, with the vortexes on the left and the tendexes
on the right. The manner in which the vortex and tendex results are depicted is identical to that
of the nearly dual quantities in Fig. 11.12, except now the blue (dark) volume showing the vortexes

represents the region where the vorticity is at least 80% of the maximum vorticity, and the equivalent
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Figure 11.18: The vorticity and vortex lines in the plane of reflection symmetry for a magnetic-parity
perturbation (the approximate dual of Fig. 11.11). The coloring of the vorticity and the plotting of
the lines is equivalent to that in Fig. 11.11 for the tendicity and tendex lines.
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Figure 11.19: Left: Three-dimensional vortex lines and vortexes of the same perturbation as that
shown in Fig. 11.18 (and the approximate dual to Fig. 11.12). The vortex quantities are plotted in
the same way as the tendex quantities in the left panel of Fig. 11.12, except the blue (dark) volume
corresponds to where vorticity is at least 80% of the radial maximum. Right: Three-dimensional
perturbative tendexes and tendex lines for the perturbation. Similarly, the tendex results shown are
identical to the dual vortex images in the right panel of Fig. 11.12, except the blue (dark) volume
corresponds to where tendicity is at least 85% of the radial maximum.

one for the perturbative tendexes is 85% of the radial maximum. Both the lines and the eigenvalues
are nearly dual; one can only see a few small differences in the precise shape of the vortexes and
tendexes. As a result, the way we will describe the generation of gravitational waves will be dual
to that of the electric-parity mode: there are two positive near-zone vortexes that induce near-zone
perturbative tendexes around the equatorial plane; as they extend out in radius, they collect around

the poles and will, asymptotically, become the gravitational radiation.

11.H.2 Perturbations of Kerr Black Holes

One can now ask whether the horizon vorticity and tendicity of a magnetic-parity [ = 2, m = 2
perturbation of a Kerr black hole with spin a/M = 0.945 will be the dual to the comparable electric-
parity perturbation shown in Fig. 11.13. Although we do not explicitly perform this calculation in
this paper, we can make this comparison by investigating the differences between the horizon quan-
tities of the electric-parity perturbation in Fig. 11.13, and those of the magnetic-parity perturbation
in Fig. 11.20, shown here. We show the horizon vorticity on the left, and the tendicity on the right,
in Fig. 11.20. By comparing the two figures, one can see that the duality appears to be exact. It
will be of interest to confirm this with future calculations.

Next, we will show the vortexes and vortex lines in the plane of reflection symmetry in Fig.
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Figure 11.20: Perturbative horizon vorticity (left) and tendicity (right) of a magnetic-parity, [ = 2,
m = 2 quasinormal-mode perturbation of a Kerr black hole of spin a/M = 0.945. The horizon
vorticity and tendicity appears dual to that of the equivalent electric-parity perturbation in Fig.
11.13.

Figure 11.21: Perturbative vortex lines and vorticity in the plane of reflection symmetry for a
magnetic-parity, I = 2, m = 2 quasinormal-mode perturbation of a Kerr black hole of spin a/M =
0.945. The coloring of the perturbative vorticity and the plotting of the lines is identical to that in
Fig. 11.18.
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Figure 11.22: Left: Three-dimensional perturbative vortexes and vortex lines of the same pertur-
bation as in Fig. 11.21. The horizon, the colored volumes, and the lines are depicted in the same
way as the tendex quantities in Fig. 11.15, except the off-white regions show where the perturbative
tendicity is at most 25% of the maximum value at each radius, and the blue (dark) regions show
where it is at least 67.5% of the radial maximum. Right: Three-dimensional perturbative tendexes
and tendex lines of this perturbation. The blue volume represents where the perturbative tendicity
is at least 82.5% of the maximum value at that radius, and the off-white volume shows where it is
at most 30% of this maximum value.

11.21. We color the vortex quantities in this figure similarly to the tendex quantities in Fig. 11.14,
so that we can explore the duality. By comparing Figs. 11.21 and 11.14, we see that there is a strong
duality between the perturbative vorticity and tendicity of these opposite-parity modes; the major
difference is in the perturbative vortex and tendex lines. The vortex lines head out from the regions
of large perturbative horizon vorticity, and they collect on the outside of the vortexes as they spiral
out. In fact, the vortex lines look much more like a frame-dragged version of the magnetic-parity
vortex lines of a perturbation of Schwarzschild (Fig. 11.18).

Finally, we look at the three-dimensional vortexes and tendexes in Fig. 11.22. The coloring of
the perturbative vortex results are equivalent to those of the opposite-parity results in Fig. 11.15
except for the exact percentages of the volumes shown. For the blue (dark) vortexes correspond to
regions of at least 67.5% of the radial maximum, and accompanying off-white regions are where it
is at most 25% of that maximum. Similarly, for the tendexes, the off-white regions are now at most
30% of their radial maximum and the (dark) blue regions are at least 82.5% of the maximum. As
one can see by comparing the Figs. 11.22 and 11.15, the duality looks to be much weaker for highly
spinning black holes. The vortex lines for the magnetic-parity perturbation do not connect back to
the horizon (as the electric-parity tendex lines did), and the perturbation’s tendex lines do cross the
equatorial plane. In addition, even the shapes of the tendexes and vortexes are somewhat different

for the opposite-parity modes.
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Focusing only on the general, qualitative features of the magnetic-parity vortexes and tendexes,
one sees that wave generation does occur in the dual way to the electric-parity mode of a perturbed
Kerr black hole. There are two equatorial perturbative vortexes that connect to the horizon vortexes
that primarily induce the near-zone perturbative tendexes. These vortexes and tendexes transition
out of the equatorial plane towards the poles to become the gravitational waves far from the black
hole. In this sense, there is a consistent description of wave generation by magnetic-parity modes of

black holes of any spins.

11.I Appendix: Vortex and Tendex Lines of [ = 2, m = 2
Perturbations of Schwarzschild and Kerr Black Holes
with the Background Frame-Drag and Tidal Fields

In this appendix, we show the tendex lines of the perturbed Schwarzschild black holes of Section
11.8.1, when we also include the background tidal field of an unperturbed Schwarzschild black
holes. Similarly, we will also describe the tendex and vortex lines of the perturbed Kerr black
holes of Section 11.8.2 when we do not subtract away the background tidal and frame-drag fields
of the unperturbed Kerr black hole. We find these images useful for comparing with the results of
numerical-relativity simulations, for which it is more difficult to separate the background spacetime

from its perturbations.

11.I.1 Tendex Lines of Electric- and Magnetic-Parity Quasinormal-Mode
Perturbations of Schwarzschild Black Holes

Following the procedure in Appendix 11.G, we can compute the tendex and vortex lines of electric-
and magnetic-parity [ = 2, m = 2, quasinormal-mode perturbations of Schwarzschild black holes,
for the complete (background plus perturbation) tidal field. The results are shown in Fig. 11.23,
where the electric-parity perturbation is on the left and the magnetic-parity perturbation is on the
right.

In both panels of Fig. 11.23, we scale the tendex lines by 3, so that we can remove the radial
fall-off in the tendicity. We make the perturbation sufficiently small that one cannot see the effect of
the perturbation in either the horizon tendicity, or the red (light) radial tendex lines; consequently, it
is the tendex lines in the angular directions that carry the information about the quasinormal-mode
perturbation. In Section 11.4, we noted that because an unperturbed Schwarzschild black hole is
spherically symmetric, the tendicity on a sphere of constant radius is constant, and, therefore, any
direction tangent to the sphere is a valid tendex line. For a weakly perturbed Schwarzschild black
hole, although the perturbation may be small, the perturbation restricted to a sphere of constant r

completely determines the variation in the tendicity, and, furthermore, it will determine the pattern
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Figure 11.23: Left: Tendex lines of an electric-parity, [ = 2, m = 2 quasinormal-mode perturbation
of a Schwarzschild black hole. The lines are colored by tendicity scaled by 3, but the coloring is
otherwise the same as in previous figures. The transparent sphere is used to clarify the perspective of
the tendex lines and to highlight the fact that the angular tendex lines lie nearly on a sphere. Right:
Tendex lines of a magnetic-parity, [ = 2, m = 2 quasinormal-mode perturbation of a Schwarzschild
black hole. The figure is otherwise the same as that on the left.

of the tendex lines. This is analogous to degenerate perturbation theory in quantum mechanics,
in which the eigenstates of the perturbing Hamiltonian restricted to the subspace spanned by the
degenerate eigenstates are treated as the unperturbed states within the degenerate subspace.

One can now use these facts about degeneracy to understand the pattern of the tendex lines in
the angular direction. The tidal field in the strictly angular directions, Eq. (11.119) will determine
the structure of the tendex lines on the sphere. The angular dependence is determined by the
transverse-traceless, electric-parity tensor harmonic (for the left panel), because the trace term in
Eq. (11.119) is proportional to the identity and will not lift the degeneracy of the tendex lines.
One would expect, therefore, that the tendex lines in the angular direction would resemble those
of transverse-traceless, [ = 2, m = 2, gravitational waves generated by a time-dependent mass
quadrupole. These were shown in [8, 7], and the pattern of the lines is nearly identical. We also
include a transparent sphere to emphasize the fact that the lines stay nearly on a sphere; this sphere
also helps to add depth to the figure. The tendicity along the lines is quite different from those of
a gravitational wave, because for the perturbed Schwarzschild black hole, the tendicity is primarily
determined by the constant unperturbed value on the sphere. Nevertheless, the tendex lines on the
sphere show a striking similarity to those of gravitational waves at infinity.

For the magnetic-parity perturbation (on the right), the pattern is now set by an I = 2, m = 2,
magnetic-parity tensor harmonic; consequently, one would expect that the lines would resemble

those of transverse-traceless gravitational waves at infinity, produced by a time-dependent, current-
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quadrupole source. Those lines were shown in [8], and they appear identical. Once more, though,
the value of the tendicity along the lines is set by the background Schwarzschild black hole for the
lines in Fig. 11.23, and, therefore, the tendicity of these lines differs from those studied in [8].

11.I.2 Tendex and Vortex Lines of Quasinormal-Mode Perturbations of

Electric and Magnetic Parities of Kerr Black Holes

Using the procedure in Section 11.G, we compute here the tendex and vortex lines of an electric- and
magnetic-parity, [ = 2, m = 2, quasinormal-mode perturbation of a rapidly rotating Kerr black hole
of dimensionless spin, a/M = 0.945, for the full tidal and frame-drag fields (the background and the
perturbative pieces, combined). Because the images here will be useful for comparing to the results
of numerical-relativity simulations, we choose our slicing and our spatial coordinates to be similar
to those of the simulations. We again choose a horizon-penetrating slicing (values of constant Kerr-
Schild time), and oblately deformed spatial coordinates (Kerr-Schild coordinates). We summarize
our result in the four panels of Fig. 11.24, and we explain these panels below.

As in the previous part of this section, we must choose a magnitude for the perturbations. We
choose it to be sufficiently small that we do not see its effects in the radial tendex lines; consequently,
the information about the perturbation will be carried in the predominantly angular tendex lines.
We also impose an additional constraint on the magnitude of the perturbation. Near the event
horizon, the tendicity of the two non-radial tendex lines are distinct near the equatorial plane (they
are always nearly equal at the poles); at larger values of r, the tendicities becomes nearly equal
even in the equatorial plane. For our perturbations, we will choose the perturbation to be smaller
than the difference of the angular tendicities in the equatorial plane, where we begin the lines. With
this choice, the angular tendex lines will retain some features of the unperturbed lines before they
become more distorted by the perturbation in the regions near the poles.

Our prescription for choosing the magnitude of the perturbation helps to explain the tendex and
vortex lines depicted in Fig. 11.24. For both the tendex and vortex lines, when the lines are near the
equatorial plane (6 = w/2) they resemble the unperturbed lines, but as they head toward the poles,
they begin to become perturbed. The reason for this is similar to that described in the section
on Schwarzschild black holes above: when the perturbation is small compared to the difference
in the eigenvalues, the perturbations have little effect on the tendex or vortex lines; when the
perturbation is large compared to the difference of the eigenvalues, then the perturbation restricted
to the degenerate subspace completely determines the pattern of the lines.

In the vicinity of the poles, the degenerate subspace is a plane parallel to the equatorial plane,
and the perturbative tendex lines must form a regular grid around these points. When one combines
this observation with the parity of the perturbation, one can then argue why the lines at the opposite

poles must be either parallel or orthogonal. Thus, these few simple constraints combine to explain
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Figure 11.24: Top left: Tendex lines of an electric-parity, [ = 2, m = 2, quasinormal-mode perturba-
tion of a rapidly rotating Kerr black hole of dimensionless spin a/M = 0.945, plotted in Kerr-Schild
coordinates. The lines are colored by tendicity scaled by 73, and the transparent sphere is used
(here and in the other panels) to improve the perspective of the three-dimensional lines. Top right:
Vortex lines of the same perturbation as the top-left panel. The lines are colored by vorticity scaled
by 74, but are otherwise colored in the same way as previous figures. Bottom left: Tendex lines of a
magnetic-parity, [ = 2, m = 2, quasinormal-mode perturbation of a Kerr black hole of dimensionless
spin a/M = 0.945. The coloring of the lines is the same as in the top-left panel. Bottom right:
Vortex lines of the same quasinormal-mode perturbation of a Kerr black hole as in the bottom-left
panel; the coloring of the lines is the same as in the top-right panel.
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the relatively simple pattern of the vortex and tendex lines of the perturbation plus the background

frame-drag and tidal fields.
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Epilogue

This thesis had the ultimate goal of gaining greater insight into the dynamics of and the gravitational
waveform from black-hole binaries. Chapter 1 described the challenges associated with this problem,
and it described three types of methods that could help produce a better understanding of these
binaries. Part I (Chapters 2-4) described a way of quantifying the linear momentum of black
holes and the momentum in the gravitational field, and used this approach to study how black
holes radiate gravitational waves asymmetrically and recoil from the emission. Part II (Chapters
5-7) used analytical approximations to make simpler modes of black-hole waveforms. The first two
chapters of this part introduced a new way of combining well-known approximation techniques to
make gravitational waveforms that cover all three stages of the binary’s dynamics: the inspiral,
the merger, and the ringdown. The third chapter in this part related the ringdown of a binary to
properties of geodesics near the black hole’s horizon. Finally, Part IIT (Chapters 8-11) introduced a
new way of visualizing spacetime curvature and developed intuition into these new tools by applying
them to well-known analytical spacetimes; then it began exploring nonlinear numerical simulations.

These three different methods together helped to explain the simplicity of the dynamics and
waveform from full numerical simulations of black-hole binaries. Part I showed that some of the
most nonlinear dynamics occur very close to the time of merger and very near the black holes;
furthermore, much of the nonlinearity is engulfed by the formation of a larger final black hole
after the two merge. This point was affirmed by the hybrid model in the first two chapters of
Part II. There, the nonlinear part of the spacetime was neglected and replaced by an analytical
approximation to the exact dynamics; nevertheless, the waveform produced by this model agreed
very well with exact results. In Part III, the simplicity of the spacetime curvature near the black
holes was visualized clearly. By comparing visualizations of exact numerical spacetimes with those
of simpler analytical models of black holes, we found remarkable similarity between the two, and
we developed better intuition about the dynamics of spacetime curvature during these dramatic
astrophysical events.

The simple behavior of the binary’s dynamics and waveforms suggests that there should be an
effective description of the problem in terms of simpler variables than those of the full, nonlinear,

Einstein field equations. The methods and tools of this thesis were three proposals for these simpler



400

effective descriptions. Because they are still under active research, it is not clear which of these
models will ultimately become the most useful for understanding black-hole binaries; nevertheless, we
are optimistic that these methods, and their variations, will continue to extract geometrodynamical

insights into the physics of black holes in the future.



