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ABSTRACT

An iterative method is developed by which one can
calculate approximately the boundary of a magnetic field
confined by a plasma, This method consists essentially of
varying an assumed surface until the magnetic multipole
moments of the currents, which would flow on that surface
to balance the plasma pressure, cancel the corresponding
moments of the magnetic sources within the surface, The
method is applied fo two problems,

For a dipole source of moment M emu in a plasma of
uniform pressure p dynes/cm2 that does not penetrate the
magnetic field, the approximate equation of the surface

is r=0.82615 M3 p=1/6(1.0.12003902-. 00418057, 00108508

+.000200x 5., 0005970194, 000326042, 00009401%) cm, where «

is the Iat;tudo in radians from the plane normal to M,
The surface formed by a cold plasma of density No and
pair mass M

t

velocity -U,8, eoxtends to infinity downwind, 1In a coor-

moving past a dipole of moment ng with a

dinate system (x, y, z) centered at the dipole, neutral
points, where the surface is parallel to the wind directipn,

occur at the points (0, +R 27Rn), and other points on the

nt**

surface are (0,0.1.02Rn),(0,12Rn,-w) and (11.97Rn,0,-w).

R, = 1,0035 (M/(MtNoUi)%)l/3 is about 9 earth radii for the

solar wind case,.
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1, Introduction.

It has long been believed that there exists a flow of
plasma from the sun which, because of its high conductivity,
compresses the earth's magnetic field, confining it to a
tear-drop shaped cavity, such as illustrated in Figure 1.

Svlar plasma bursts were first suggested by Chapman
and Ferraro (1) as an explanation for magnetic storms--the
sudden arrival of the plasma stream giving rise to the
sudden commencement of the storm, lLater Biermann's (2)
observations of comet tails supported the existance of a
solar plasma flux and indicated that it was probably a
continual phenomenon, Following Unsold and Chapman (3) he
estimated its velocity at 1000 Km/sec and its particle
density at anywhere from 100 particles/cc in quiet times
to 105 particles/cc in active times, He assumed the stream
to have a temperature of 10“ °x.

Parker (4) developed a hydrodynamic theory of the solar
corona which included heating out to about eight sun radii
by hydromagnetic waves, His theory indicated that the
corona should be in a state of constant expansion giving
rise to a "solar wind" with a velocity of 300 Km/sec and
density of 30 protons/cc at the radius of the earth's orbit,
Chamberlain (5) objected that a hydrodynamic approach was
not appropriate and that the loss of matter from the corona
was limited by evaporation of particles from the tail of

the Maxwellian distribution, His theory also indicates a
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Figure 1 Exterior view of the bounding surface
of the earth's dipole field (oriented in the y
direction) for a plasma wind in the -z direction,

NV
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density of about 30 protons/cc but predicts the velocity at‘
the radius of the earth to be only about 20 Km/sec. The
recent results from the Mariner II plasma detector (6)
indicate that the stream probably has a mean velocity of
about 500 Km/sec, a density between 2,5 and 5 ions/cc and a
temperature in excess of 105 °KX. This of course favors
Parker's theory over Chamberlain's,

The qualitative aspects of the transient phenomena
involved when a plasma burst impinges on the earth's mag-
netic field have been studied by consideration of several
idealized problems, Chapman and Ferraro (7) first con-
sider;d the two dimensional axially symmetric problem of
rlasma injected radially into a magnetic field which fell
off radially as r'B, They deduced that a thin sheath,
which would screen the plasma from the field, would form
and move inward until the pressure of the field just inside
it was sufficient to balance the plasma pressure, Later

Ferraro (8) solved the idealized one dimensional problem,

where the field falls off as x'B, in considerable detail

and came to the same general conclusion concerning the
formation of a current sheath and its deceleration to rest,
The question of the transient disturbances involved
when the solar wind changes 1its intensity is not, however,
within the scope of this paper, Certainly befoere any
quantitative work could be done on that for the real three
dimensional problem,one must be able to solve quantitatively

the simpler problem of the steady state interaction of the
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earth's field with a constant intensity plasma stream.
Dungey (9) seems to have been the first one to realize
that the cavity must certainly close on the night side due
to the finite plasma pressure, and that therefore the
earth's field must be entirely confined by the scolar wind,
The topological description of the field within the
cavity is due to Johnson (10) who introduced the idea that
within the cavity those field lines that 1ie near the poles
do not rotate rigidly with the earth as do the field lines
at lower latitudes but instead remain in the tail of the
cavity and counter~rotate as described in section 8,
Zhigulev and Romishevskii (11) seem to have been the
first to have suggested that the wind is supersonic and that
therefore_a detached bow shock should be formed upstream
from the cavity, The plasma itself is essentially colli=
sionless, so,in order to have such a shock,it is necessary
to have magnetic fields in the plasma which can serve to
randomize the particle motions, and the necessary condition
for a shock is that the flow veloclty exceed the Alfven
velocity, Lees (12) has shown that if there is a radial
(from the sun) magnetic field giving rise to such a bow
shock that the plasma which has become subalvenic on passing
through the shock will accelerate again to superalvénic
velocities on flowing around the cavity, and that this con-
verging plasma will therefore form a conical "wake shock"

at the tail of the cavity,
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Once the general principles governing the confinement
of the. earth's field were well understood, numerous investi-
gators set to work to try to obtain a more quantitative
picture of the resulting cavity, It turns out that the
related two dimensional problem of plasma flow past a line
dipole can be done analytically by the technique of a con=-
formal transformation, Thls was done for the stream normal
to the dipole axis by Dungey, whose earlier solution was
not published until 1961 (13), and for arbitrary orientation
by Zhigulev and Romishevskii (11). Later Hurley (14) solved
the same problem but by a slightly different method,

Beard (15) was the first one to attempt a solution of
the three dimensional problem, He simplified the problem
by assuming that at any point jJjust inside the surface the
field is just twice the tangential component of the undis-
turbed dipole field, He justifies this by pointing out that

it would be exact if the surface were an infinite plane,
which of course it is far from being., However, this simpli-

fication enabled him to write down a partial differential
equation for the surface, and the solution of this equation
seoemed to give a reasonable shape for the surface, Beard
only applied his moethod to the non-polar regions on the sun=-
1it side of the earth for normal incidence of the stream;
however, soon papers began to appear applying this approx-
imate boundary condition to the solution of more and more

complex problems, For instance Spreiter and Briggs (16)
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extended the solution to the night side and considered
various orientations of the dipole relative te the stream,
but solved only for the trace of the surface in the meridian
plane containing the earth-sun line, Beard (17) attempted
.to improve hlis approximation by including as part of his
"source field" the field of a current system on the sunlit
portion of his surface, When he carried this out, it
changed his results very little, Spreiter and Alksne (18)
recalculated the meridian and equatorial cross sections for
the case when there is a westward flowing ring ourrent of
about five million amperes at a distance of about ten earth
radii,

In the meantime others who were unsatisfied with
Beard's approximation have attempted to obtain solutions by
more rigorous methods, two of which have been proposed, Both
of these methods essentially involve setting up a trial sure-
face, testing to see if the surface satisfies the complete
boundary conditions, modifying the surface in such a way as
to improve the agreement, and iterating the process of test-
ing and modification until the result converges to the
correct answer, Slutz (19) proposed to solve for the scalar
potential of the field inside the surface, treating it as a
cavity in a diamagnetic medium, and then test the surface by
seeing whether the field had the correct value at each point

just inside the surface, Leverett Davis, Jr, and the

author (20) proposed to solve for the currents (proportional
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to the field just inside) whioch must flow on the surface in
order to balance the pressure and then test the accuracy of
the surface by computing the moments of the field outside,
The two papers Jjust cited apply these methods to the simple
three dimensional problem of a dipole field in a uniform
pressure plasma, which served primarlly to test the conver=-
gence of the methods., In what follows,the moment technique

will be extended to the wind problem,
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2, Model for the Calculations,

Despite the long history of the problem and the large
amount of effort that has been given it, there is still a
great deal about the solar wind interaction with the mag-
netosphere that is either unknown or contested, One of the
few things that is generally agreed upon is that the surface
bounding the magnetosphere is relatively thin,

Ferraro (8) was the first to quantitatively calculate
the thickness of this surface by considering an idealized,
one-dimensional problem, Dungey (21) streamlined his cale
culation and eliminated some ambiguities which it contained,
The same results can be obtained by a different method used
by Davis, List and Schluter (22) in calculating the struc-
ture of hydromagnetic shock waves, Thlis latter method,
which stresses more the individual particle approach and
enables one to obtain the trajectorlies of the particles as
a function of time, is given in Appendix I, There it is
shown that the trajectories of the particles of a cold
plasma, whose pair (ion + electron) mass is M, and pair
density is No' projected normally with velocity U, into
a region of constant field Bo-(16TthNoUi)% are as shown
in Figure 2, In addition it is shown that the magnetic
field falls off in the plasma in direct proportion to the
displacement of the particle trajectory from its asymptote,

Thus it is clear from Figure 2 that for a density of

2.5 protons/cc the field has fallen to 5% of its initial
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Figure 2, Plot of B(x) and the typical trajectory, Ion
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value in a distance of only about five kilometers, and
equation I -22 shows that thereafter it decreases by a|
factor of two every 1,65 Km, These distances are of course
negligible compared to the scale of the surface.

Knowing that the surface is negligibly thin, it 1is
next necossary to decide what pressure is exerted on the
surface by the streaming plasma outside,

For the model assumed in Appendix 1 (specular reflec-
tion of normally directed particles) the pressure is easily

inferred by a momentum balance,.

2
P = 2(M1+M°)NOUO (2.1)

In general the partlicles are incident upon the surface
obliquely rather than normally but this does not change
significantly the results arrived at in Appendix V, A
Lorentz transformation based on a relative velocity parallel
to the interface will reduce the problem to one of normal
incidence, Thus any constant velocity which is parallel to
the surface and small compared to the velocity of light may
be superimposed on the given solution without altering the
scale and structure normal to the surface, The only modi-
fication necessary in squation 2,1 is to replace the total
velocity Uo by its normal component Uo cos% y Where m—¢
is the angle which the wind makes with the normal to the
surface, Using the abbreviation Mt-(Mi+Me) for the total

pair mass, the pressure law for arbitrary angle of incidence



then becomes:

P = 2MtN°U% cos?y (2.2)

If the surface 1s actually curved rather than flat,
then the tension in the magnetic field l1lines 1lying in the
surface will help to balance the pressure of the field just
inside the surface and equation 2,2 is not precisely cor-
rect, However, this correction is clearly very small be-
cause the normal force exerted on the surface by the field
lines in the surface 1s proportional to the ratio of the
effective surface thickness to its radius of curvature,

For the magnetopause this ratlio is about 10'”.

A more serious objection to equation 2,2 arises from
the assumption made throughout the calculations that the
outgoing stream passes unimpeded through the ingolng stream,
From an individual particle viewpoint this assumption would
certainly be quite valid if there were no magnetic fields in
the plasma, for the distance which a single reflected proton
would travel back through the stream before it's cumulative
deflection approached 90° is of the order of 108 A U,(vir-
tually infinite) for a solar wind of 500 Km/sec and 2.5
protons/cc., Also, using the formula given by Spitzer (23,
p.78) for the relaxation time in a plasma (defined as the

average time for a typical particle to be deflected 90°),

one finds that if the wind has a temperature of 107 Ok, its

owvnh internal relaxation time is of the order of 105 saeconds,



Since the length of the magnetosphere cavity is of the order

5 Km, the wind passes it in about 103 seconds or only

of 4x10
one hundredth of its own internal relaxation time,

However, objections do arise from the randomizing
effect of any magnetic flelds contained in the wind and
from the possibility of a collective interaction such as a
two stream instability, Parker (24) worked out the problem
of two interpenetrating cold plasma streams and came to the
conclusion that the solar wind flowing through a stationary
>interp1anetary gas would be unstable and would lead to a
shock front only about 100 meters thick between the two,
Presumably, then, the counterflowing stream of rofiocted
particles might similarly react with the incoming stream
thus providing the dissipative mechanism needed to have a
thin standoff shock, Noerdlinger (25) also treated this
problem in a very general manner, On the other hand a
detailed treatment by Kellogg and Liemohn (26) has shown
that two contra streaming plasmas are not necessarily un-
stable if their intefnal temperatures are high enough com-
pared to their relative kinetic¢c energy, For instance they
show that two equal density plasmas each with internal
temperature T and streaming through each other with
relative velocity Uo are stable if

2

2 (2.3)

KT > O.2MeU

For a 500 Km/sec wind this indicates that there is no
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interaction with the reflected plasma as long as its temp=
erature is greater than about 3,000°K, which is more than
an order of magnitude below present estimates of its femp-
erature,

The deflection and randomization of particles by fields
contained in the wind is the most serious objection to the
hypothesis of interpenetration, It has been shown by space=
craft data (27) that there are fields within the solar wind,
However, it 1s not within the scope of this paper to try to
decide 1if there is or is not a steady state shock envelop-
ing the magnetosphere., We will use the assumption that the
particles are specularly reflected (i,e, do not interact
with the incoming stream) because the pressure law it gives
is as good as any other and it has the further advantage of
simplifying the calculations,

As a final defense of the pressure law derived from the
assumption of specular reflection it is worthwhile to note
that ordinary hypersonic flow past a blunt body results in
just such a pressure distribution (28), The only change
necessary is the substitution of the pressure at the stag-
nation point for the factor (ZMtNOU%). This change alters
only the scale of the solution and not its shape,

Another objection to this simplified model arises from
the fact that for a cold plasma the surface must extend to
infinity on the night side, whereas the real wind has a
temperature of the order of 105 % and therefore would close

of f the cavity at a finite distance due to its thermal



pressure, The maximum radius of the cavity is determined
almost entirely by the momentum flux of the wind, but feor

a given momentum flux the location of this maximum radius

is determined by the thermal pressure which must there balw
ance the pressure of the field just inside, Past that point
the fleld inside falls off so rapidly that the shape is
determined primarily by the rate at which the gas can expand
into vacuum, According to Lees (12) the resulting cavity is
about 60 earth radii in length, This pressure resulting
from the plasma temperature will be ignored, however, simply
because its inclusion would seriocusly complicate the problem,
Therefore the computed surface will have little relation te
the actual magnetosphere on the far night side of the earth,
but it should still give a good approximation to it on the
daylight side,

The question of instabilities in the surface is an
important one, but one about which there is no general
agreement, Parker (29) considered the two dimensional
problem of a tenuous ionized gas incident upon the surface
of an incompressible conducting fluid in which is embedded
a uniform magnetic field, He found it to be unstable and
deduced therefrom that the surface of the magnetosphere is
unstable, Dessler (30) concluded from magnetic data at the
surface of the earth that the surface must be stable, but
Coleman and Sonett (31) took exception with the basis of his
argument, Later Dessler (32) advanced an independent and

very convincing argument for the stability of the surface,
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The present author feels that the instability of Parker's
model proves nothing concerning the real surface, first be-
cause the outer fringes of the magnetosphere are not loaded
with matter like the field in his problem and second because
his problem ignores the stabilizing curvature of the field
lines, Having this demonstrated the moot nature of the
stability problem, we will now ignore it and assume the sure
face is stable in order to calculate its steady state shape,
If later investigations should demonstrate that it is indeed
unstable, the "steady state’ solution will at least provide
a valuable zeré order approiimation to 1it,

In the numerical calculations of this paper, the ring
current described by Sonett, et al (33) will be ignored,

It could be easily included, but it was not felt that it
was advisable at this time to expend the computer time
which would be required to solve the problem for various
ring current strengths and diameters,

In suﬁmary, then, it will be assumed that the solar
wind problem has ; steady state solution in which an infi-
nitely thin current sheath terminates the earth's magnetic
field, assumed to be a simple dipole; and that the pressure
exerted on this surface by the wind is given by equation

2.2,
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3. The Moment Technique,

The moment technique is a general method whiech can, in
principle, be used to determine the shape of the surface of
separation in any problem involving an infinitely conducting
plasma separated from a magnetic field by an infinitesimally
thin current sheath, Of course any such problem involves
two "sub-problems," First, one must be able to compute the
pressure P exerted by the plasma on the surface for any
assumed surface shape, This is a problem in kinetic theory
and in the discussion which follows its solution will be
taken as given, Second, one must be able to solve for the
magnetic field inside any assumed surface shape and ascere
tain whether its pressure balances the plasma pressure, The
boundary conditions on the magnetic field just inside the

surface are as follows:

B, =0 (3.1)

which amounts to saying that the field is excluded from the

plasma, and

2
By

T - P (302)

which is necessary for dynamic equilibrium,
The basic ldea of the moment technique 1s to replace
equations 3,1 and 3,2 by two different but equivalent con=

ditions, First, if the fleld is everywhere zero in the

plasma region as equation 3,1 implies, then the surface
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current at each point of the surface must be Bt/bn', where
B, is the magnetic field just inside that point, Using
this fact, equation 3.2 may be written in terms of the sur-

face current,

J° - p/2m (3.3)

This fixes the magnitude of J at every point on the sur-
face, and then in principle the direction of J 1s deter-
mined (if we know its direction on one 1line of the surface)
by the requirement that J be divergence free, However,
the details of the process for determining the direction of
J will depend entirely upon the particular problem; for
instance, see section 4 for the uniform pressure problem
and section 5 for the plasma wind problem,

Finally equation 3,1 is replaced by the condition that
the magnetlc field vanish everywhere in the plasma region,
This will be true if each of the magnetic multipole moments
of the sources in the field region 1s cancelled by the cor-
responding moment of the surface current, Actually the
field will vanish to a very high order of accuracy if only
the lower moments cancel, and it is this fact that makes
the momént technique useful,

The,$1£§;;3£:é§§n is assumed current free so that
VX B=0, and the magnetic field may be decomposed into mul-
tipole moments either in terms of its scalar or vector
potential,

The scalar potential ¢, defined to be the function
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whose gradient is B, 1s certainly a solution of Laplace's
equation, since v-g-vch-o. Likewise, if we define the
vector potential A to be the function whés® curl 1is B
and choose a gauge in which V-A=0, each of its components
will satisfy Laplace's equation since VX Br UXVUXAw

= V(V'A)-VZA-O. The following functions form a set of
solutions of Laplace's equation in terms of which any solu=
tion which vanishes at infinity, such as ¢ or Ax' may

be expanded,

,  Feose) 0.1,
Dnm - nel Oos(mﬂ-pg) m‘o’l'ooon (3.1‘)
r
p=0,1

If the field region surrounds the plasma region, then solu-
tions vanishing at the origin are needed instead, but this
case will not be considered further, Thus we may write the
following expressions for the potentials,

et n
A =R.J (XP o _+YP e 4+2P o )pP (3.5)
AR, S5 S (B eibe ethe, )0k,

¥ = RyJ, i i i S!I:ngm (3.6)
N=0 M=O p=0

Here Rh has the units of a length and J° the units of
current=-per-unit~width, These factors have been written
explicitly so that the remainder of the right hand side
might be dimensionless. In general,lower case letters will
denote dimensionless variables and capital letters will
denote dimensioned variables (except for the moments and

the functions such as Dﬁm and P: which are obviously



dimensionless), Thus

R = R,r J w3, (3.7)

Since there are three times as many vector moments as
scalar moments and yet either set of moments is adequate to
describe the field, it follows that the vector moments can-
not all be independent quantities, In Appendix III, (2n+3).
relationships are derived which must hold between the vector
moments for each value of n, and it is pointed out that
there are (2n-1) more relationships which will depend on
the gauge of A (since specifying the curl and divergence
of A still leaves one free to add to A the gradient of
any scalar function which satisfies laplace's equation),
Thus there are really only (2n+l) independent vector moments
for each value of n, Jjust as there are (2n+l) scalar
moments, The equations relating the scalar moments to the
vector moments are also derived in Appendix III, The (4n+4)
relationships given by equation III-23 can be summarized as
follows:

.(2p-1)z1’p+é(2- Smo)(n-m)EI-ZP)X%;El-Y§m+J o:;m:sg o1
=V
Sp -(1-2p)an +(;;1§£}) I:(I-ZP)X:mpl-rng 1:] 1<m<n p=0,1

P . 1-p (308)
Yo, = (2p-1)x p=0,1

It is clear from these equations why the scalar moments must



be considered, In order that the magnetic field vanish
outside the surface it is only necessary that its scalar
moments vanish, and this clearly does not imply that its
vector moments vanish, The only reason that the vector
moments are considered at all is that they are consider-
ably easier to calculate directly than the scalar moments
are, and by equation 3,8 the scalar moments can be easily
obtained from them,

In summary, then, the basic outline of the moment
technique is as follows: First calculate the moments of
the scalar potential of the fixed sources within the sur-
face, Then assume a trial shape for the surface and deter=-
mine the resulting fluid forces (it is assumed that this is
possible), Next calculate the surface current which would
satisfy equation 3.3 on that surface, and finally calculate
the scalar moments of this surface current, If these Jjust
cancel the moments of the fixed sources, the problem is
solved; if not, vary the surface appropriately and repeat
the process until an adequately accurate solution is
obtained,

In Section 4 this method will be applied to the test
case of a dipole in a uniform pressure plasma, and in suc-
ceeding sections it will be applied to the mere important

case of a dipole in a plasma wind,



4, Solution for the Uniform Pressure Case,

Consider a magnetic dipole of moment Me, emu sur-
rounded by a stationary plasma of uniform pressure P
dynes/cmz. The solution of this problem is discussed in
a paper written by Leverett Davis, Jr, and the author (20)
but it will be repeated here in terms of the more general
notation of Sectioen 3,

The unit of length Rn will be chosen to be the
radius in the equatorial plane to the point where the mag-
netic pressure of the undisturbed dipole field equals the
gas pressure

Rg = M(8TTP)-% (4.1)

From equation 3,3 it is clear that J has the constant mag-
i
nitude (P/277)° so this will be chosen as the unit current
Jo. Obviously the bounding surface and J must have axial
symmetry so J must be in the @ direction,
The scalar potential of the dipole at the field point
52'Rn£2 is:
Pa uanJocosezrgz - UﬂRnJODgo (b.2)
! !
oy Do E
Obviously, then all scalar moments of the-surface must
vanish except Sgos-hw (see equations 3.4 and 3.6).
If the coordinates of surface polnts are specified by
R=R T, the vector potential of the field due to the surface

currents 1is:

©egdS
A(Ry) = R, J, /'52_’!‘ (L.3)
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Use equation 6,2 to express ’22-3['1 as an infinite series,
each term of which is separable into its r and Iy depend -
ence, The symmetry about the polar axis enables the §

integration to be done easlily with the result:

o0 1
P (cosH,)
AlRy) = Ry ooy > R Eox (4.%)
n=1 r,
where -
I = gl “+1[2 (4r,)2 %pl( 8)sinede (4.5)
n n({n+l r r +\30 ntcoesv/sin .5

o

Set g¢=(cos¢gy-sin¢gx) in equation 4.4 and it becomes clear
by comparison with equation 3.5 that Yglc-le-ln and all
other vector moments are zero, This means (refer to equa-
tion 3,8) that Sgo--nIn and all other scalar moments are
identically zero, Actually even Sgoao for n even, because

1
Pn(cose) is an odd function for n even, Thus the problem

reduces to choosing a function r(6) such that:

Il - L’Tr In-O n‘3.5.?99 s e e (uos)

Since the surface has cusps at the poles and is sym=
metric about the equatorial plane it is better to express
r as a function of the magnetic latitude « rather than the

polar angle O,

N
r o= 0[1- > ¢, o<2’i| (4.7)

sal

To solve for the parameters, set Csl at first and ignore Il‘

Consider the next N non=-trivial I (i.e. those for n=3,5,7,

...2N+1). It is easy to differentiate the I  under the
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integral sign and obtain analytic expressions for the rates
of change of the In with respect to the various Cge Hence
the Generalired Newton's Method was used to determine the

cg which reduced the In to zero, TFinally I1 is made
equal to 4rby adjusting C, which is seen to be the equa-
torial radius, The computation was carried out on a Bure
roughs 220 computer for various values of N up to seven,
For the case N=x7 the numerical results are given in Table

1 and the resulting cross section is plotted in Figure 3,

Table 1, Coefficients in the Equation for the Surface,
C = 1,41395 cy = 0.001085 cg =-0,000326
cq = 0,120039 cy, ==0,000200 07 = 0,000004

c, = 0,004180 = 0,000597

°s
It is true that at the pole the last few terms of equa-
tion 4,7 are of the order of 7% of the first term, but this
does not indicate an error of that order there, The coeffi-
cients in Table 1 are not the first seven terms in the power
series expansion of the true surface, They are the coeffi~-
cients of the polynomial of degree fourteen which most
closely approximates the true surface, There are two rea=
sons for believing that the solution is very accurate even
near the‘pole. First, when the computation was carried out
with only four parameters, the radius of the computed sur=-
face near u-g; where agreement was worst, was only about

one percent greater than the corresponding radius of the
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s
Units of Rn

Figure 3 Cross section (one quadrant) of the surface
bounding a dipole field in a uniform pressure plasma,
The dashed line was calculated by using Beard's condi=
tion; the solid line, by using the moment technique,
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seven parameter surface, Second, when ¢y was changed so
as to decrease the radius to the surface by only 0,1% at the
pole, the residual fields at distances greater than O.3Rn
outside the surface (calculated as described in the test of
the next section) were inocreased by a factor of ten or more,
A major feature of interest in this computation, in addition
to providing a test‘of the moment technique, is that it
indicates that the surface very definitely has cusps at the
poles and that these cusps do not go clear to the origin as
has been suggested, but rather intersect the axis at a
finite distance, The cusps undoubtedly lntersect the axis
tangentially in reality, but such a surface could not be
represented by a polynomial with a finite number of terms
such as was used, However, the greater the number of par-
ameters that were used the steeper the angle of intersection
was, It is easy to see that these are the results that
should be expected, Conslider a cavity in a medium of zero
permeability, If there were a finlte angle bétween the sur=-
face and the axis, the field there would be zero, and if the
cusp were at the dipole the field would be infinite; in
either case the field would not be in equilibrium with the
plasma pressure,

If we define the field just inside the surface to be
Bs-(STrP)%, then it is a simple matter to see that the
change in the field, AB_,, at the origin due to the surface

currents is
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AB_ = BSI cos ot (1+(-t-.%-§-<—)2)% doc (4.8)
[o]

For a sphere the integral is just 77/4, and for any other
surface 1t would be slightly greater, For the computed sur-
face it is 0,76933, Thus a 10Y disturbance in the geomag-
netic field at the earth could arise from a sudden change of
pressure of 2,52 x 10"10 dynes/cm2 on the surface (i.e. a
particle density times temperature of 1,83 x 106 K°/cm3 or
a kinetic energy density of 1.58 x 10° ov/cm>),

For comparison purposes the uniform pressure problem
was also solved by Beard's differential equation technique,
To get the equation for R(X) = r(tx)Rn, set the magnetic
pressure of the tangential component of a field 1/f times

as strong as the earth's field equal to the plasma pressure

(1/87) (7 te, . B(r,«))% = P (4.9)
or in full:

(3« +s8Es ). (cosos. -2 sinoe )y ] - sTrsz[h( ar )2]
2o T Ry 110050 Y o
n
(4.10)

Call r(0)=r_, and note that dr/d« «0 at x=0 by symmetry,
Inserting these values, and the value of Rn from equation

4,1, into equation 4,10 one obtains the relation
f'rz -1 (4.11)

and the differential equation



[cos«-ZsindrgiJz - (;—)6 [1+(;.%-§(—)2} (4,12)
e

When equation 4,12 is solved it gives r(u)/re. Then r,
i1s determined by the condition that II-M. Since equation
4,12 is of second degree there are two such solutions, The
appropriate solution is plotted in Figure 3 and it is seen
that it differs significantly from the moment technique
result near the pole,

There 1s also an interesting sidelight that can be
gleaned from these calculations, There has been some dise
cussion recently as to whether the factor f which Beard
assumes to be % should not be closer to 1/3. From equation

4,11 we see that in this three dimensional case
£ ar’ = (1.39577)72 - 0.36775 (4,.13)

To determine the relative accuracy of the methods, the
field due to the surface was calculated (at various radii
along the polar axis and in the equatorial plane), sub-
tracted from the field of the dipole located at the origin,
and then divided by the dipole field, This gives a number
which would be zero everywhere outside the surface for the
true surface and would be one everywhere for the dipole
field alone, The computations for this test were carried
out on a Burroughs 220 computer, replacing the surface by
ninety-eight current loops. The results of this test for

the two surfaces are given in Table 2, The values on the



polar axis may be incorrect by as much as 5% due to trunca-
tion error, The truncation error was removed from the equa=-
torial valuwes by subtracting the solution for a sphere with

a cosx current variation, which should theoretically be

zero everywhere and which therefore equals the truncation
error in practice, Since the surface approximates a sphere
near the equator and the cosx current approximates a uni-
form current near the equator, the truncation error must be
very nearly the same for both cases near the surface at the
equator, The inherent roundoff error in the calculation was

about .2 x 10-5.

Table 2, Ratio of Net Field to Dipole Field x 10°

Distance from Moment Surface Beard Surface
the surfacoe=-
Fraction of On the In the On the In the
Equatorial Polar BRquatorial Polar Bquatorial
Radius Axis Plane Axis Plane
0.04 -905 -0.4 -61078 7126
0,08 -222 +0.2 -42966 6721
0,16 - 23 0.6 ~27676 5997
0.32 - 2,7 0.5 -15913 L8u4L
0,64 - 0,9 0.5 - 7947 3324
1,28 - 0,2 0,2 - 3378 1817
2,56 - 0,1 0.3 0 1222 773
5,12 - 0.0 0.5 - 386 267
10,24 0.2 0.0 - 110 81
Clearly, the moment technique gives a net field out-

side which 1s about 0,001 of that given by the surface

derived using Beard's boundary condition,
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Slutz (19) has also solved this identical problem by
an iterative procedure which begins with a trial surface,
However, his procedure involved solving for the scalar
potential of the fleld inside the surface, treating it as
a cavity in a diamagnetic medium, and then comparing the
resultant fields just inside the surface with the fields
given by the pressure law to indicate how to change the
surface for the next iteration, The result he obtained is
very close to that given by the moment technique except
near the equator where his cross section is nearly flat
and lies about 3% inside the moment result, When the
fields for Slutz's surface were calculated they were much
larger than those for the moment surface, especially in

the equatorial plane,
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5. Relationship of the Current and Surface for the Wind Case

It is clear from the proceeding that before the moment
technique can be applied to test and improve a surface, the
currents flowing on that surface must be known, Consider an
axially syﬁmetric source of magnetic¢ field located at the
origin and oriented along the y direction and a plasma mov=
ing in the -z direction, A surface z(x,y) such as the one
shown in Figure 1 will be formed, Choosing x and y as the
independent variables enables the surface to be described by
a single valued function, restricts the independent varia-
bles to a finite range and simplifies certain fermulas in the
2z Pz

Z = -— the

derived later, Adopting the notation £ = 31 y 3y,

outward normal to the surface has the following form,
e _=Z_0o_ =~z ©
0 - ey - ey (5.1
1+zx+zy)

Therefore, since ¥y is defined as the angle between the normal

and the earthe«sun direction, it follows that

cosy =n-g, = (1+zi+z§)‘% (5.2)

Define the unit surface current (see equation 3.7) as
1
J°=(MtNoUi/n1?. Then the magnitude of the dimensionless

current is easily obtained from equations 3.3 and 2,2,
j = cosy (5.3)

The problem now is to determine the direction of j,



-31=

~

Of course since j must lie in the surface, it must be

perpendicular to n, the normal to the surface,

;‘,'/jv- 0 (5.“)

The last condition necessary to determine jJ complétely is
that it must be divergence free or in other words the flux
of 1 across any closed curve on the surface must be zero,
If this is true, then there must exist a flux function,

defined by the line integral

(x,y)
£(x,y) = f +n.3 x ds (5.5)

(op) -~

that depends only on x and y and not on the path of inte-
gration chosen on the surface,

The usefulness of this flux function arises from the
fact that if f(x,y) is specified, then the corresponding
3 (whioch is therefore guaranteed to be divergenceless) can

be easily derived from it, using equations 5,5, 5.1, 5.2

and 5.4 in that order,

te- %_i = E.’!X%&;]y ) -l'gx(gx+zxgz)
= =cosY Q-[gy+zygz+zx(zxgy-zygxﬂ (5.6)

-3
2 2 n
= —cosy 2'[9y‘1*‘x+’y’“y 3%37] - 333157

A similar calculation shows that the same result, except

for the minus sign, holds with x and y interchanged,



With jx and jy known, equation 5.4 can now be used

to obtailn jz in terms of derivatives of f and =z,

; J
n J - z -
[;osw}'[;osy] cosy zxfy + zyfx 0 (5.7)

Hence the surface current 1is
3 = cosy [fygx - fxgy + (zxfy - zyfx) g{] (5.8)

Substitution of this value of Q into equation 5,3 trans-
forms it into a partial differential equation relating the

functions z(x,y) and f(x,y).

2
P R U I S L (5.9)
cos“y x y Xy y

It seems most natural, in using the moment techniqgue
to solve any problem, to guess a surface and then compute
the currents that should flow on that surface, In other

words, assume z{(x,y) is known and use equation 5.9 teo
solve for f(x,y).

Unfortunately, this straightforward way is not tractae-
ble, Equation 5.9 as an equation for determining f(x,y)
from z(x,y) 4is non-linear and it appears (from many
trials) to be impossible to devise a stable numerical method
of solving it, Of course analytical methods can be ruled
out from the beginning because of the necessarily compli-
cated functions that must be assumed for z(x,y).

However, there is nothing inherent in the overall
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method which requires one to begin the process by assuming
a surface, If instead a flux function with an appropriate
number of parameters is assumed, then equation 5,9 might be
used to obtailn the surface which satisfies equation 5,3,

In fact if z(x,y) 1s considered to be the unknown function

in equation 5,9 it then becomes a linear equation,

2 2,4
fxzy - fyzx = (1-f] - fy) (5.10)

The sign chosen for the square root is the one which is
appropriate in the first quadrant,

It turns out that even this linear first order equation
seems to be numerically unstable for any straightforward
method of solution involving a regularly spaced grid, Howe
ever, the particular form of the coefficients in this equae
tion make it possible to reduce it to the problem of solving
an ordinary differential equation along certain curves, To

see why this 1s so, rewrite equation 5.10 as follows,

P(x,ylzg + Q(x,y)z, - R(x,y) = 0 (5.11)

Referring to equation 5,1 for n, this is clearly equive

alent to the equation

n-( Pe, +Qe_+Re,) =0 (5.12)

~y

which says that a line with direction numbers (P,Q,R) 1is
perpendicular to the normal to the surface and is therefore

tangent to the surface., Thus an infinitesimal 1line element
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with direction numbers proprotional to these will 1ie in
the solution surface, Clearly then the differential equa-

tions
L. FE-F (5.13)

determine a 1line, called an integral curve, which lies
entirely in the solution surface if any one point of it
lies in the solution surface, Thus we could construct the
surface, if we knew the value of z(x,y) along one line
which is not an integral curve, by following the integral
curves which intersect that line,

The thing which makes this approach feasible in this
case is that the integral curves are fairly easy to obtailn,

Rewriting equation 5,13 explicity,

dx d dz
E = .1“‘)
~Ty Tf (1-f§-f§)§ (5

it is clear that the first equation takes an especially

simple form,

fdx + £.dy = df = 0 (5.15)

This simply says that along any integral curve of the sur-
face f(x,y)=f_, a constant, Thus in principle for any

curve one could write x-x(y,fo) where fo is now just a
constant parameter, Substitution of this into the second

of equations 5.1% gives a simple ordinary differential
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equation for z(y,x(y,fo)).

In practice it 13 much better to use the distance s
(in the =xy plane) along the curve, rather than either =x
or y, as the independent variable in the solution of equa=-

tion 5,14, 1In terms of s, then, equation 5,14 becomes
3
gz . - L.__—_z o -1} (5.16)
+

In obtaining this, 8 has been chosen to increase in
the counter-clockwise direction around the upper neutral
point, |

As pointed out above, determination of the surface
uniquely requires specification not only of the flux func-
tion f(x,y) but also of one line in the surface, Clearly
the best line to use is that part of the intersection of the
surface with the x=0 plane which lies between the sub-
solar point and the upper neutral point, A few of the vare
iable parameters will then be used in specifylng the current
function,

In passing it may be noted that when only the param=~
eters specifying this line are changed (the flux function
remaining unchanged) it is unnecessary to reintegrate equa-
tion 5.16 before calculating the new moments, This fact can
shorten the computer time required for the problem,

Thus we have a direct method of obtaining a surface and

surface current which are conszistent with equation 5,3.
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6, Calculation of the Moments for the Wind Case.

Consider a source of magnetic field located at the
origin and a zero temperature plasma wind moving in the =~z
direction, Assume that a surface z(x,y) and the flux funce
tion f(x,y) for its surface currents are given, In this
section the formulae will be derived for the moments of
those currents,

The proper unit current density Jos(MtNOUi/ﬂ)% was de-~
fined in Section 5, At this time the unit length Rn will be
defined to be the distance from either neutral point to the
z axis, With the convention that f«0 at the subsolar point,
that has the double advantage of making both y=1 and f=1l at
the upper neutral point, because %§=1 on the line joining
the subsolar point and the upper neutral point (see the first
paragraph of Appendix IV),.

Let BZ'RnEZ be the coordinates of a field point and
R=R r be the coordinates of a point on the surface, The

~

integral form for the vector potential is:

;(;)ds

| L2-E|

A(R,) = R J_ (6.1)

To separate this integral into its moments, make use of the

expansion of 1/];2-5], in associated Legendre functions,

IIZ‘EI-JE; Eg;(Z-éno)(:+: l;g:T P:(cosa)Pﬁ(cosez)cosm(¢-¢2)

(6.2)

Upon making this substitution and transferring everything



possible through the integral sign, A becomes:

n Pm(cosez)cos(mﬂz-pﬂ—) .
~27 nZo mzo p_°~nm rg"'l ( )

where

;Em = (2-§no)%%§%}%Jr Q(E)P:(cose)cos(mﬁ-pg)r“ds (6.4)
S

It is clear by comparison of equations 3,5 and 6,3 that
the components of the ;ﬁm are Just the vector potential

moments defined before,

xgm " [Irlzm] x ng = [Igm] y ng - [Igm-] z (6.5)

Before proceeding further the source field will be spe-
cialized to one which mirrors in the yz plane and mirrors
with a change of sign in the xz plane, This is necessary
in order for the surface to be symmetric about these two
planes and topolegically similar to Figure 1, Since the
surface current must be perpendicular to the field just in-
side, it is clearly flowing in the x (or -x) direction as
it crosses either of the planes of symmetry, and Jx is an
even function about either plane, Visualization of the
current flow pattern (with the help of Figure 4) shows that
jy is odd about both planes of symmetry and jz is even about
the xz plane and odd about the yz plane, These symmetries

of the surface and current cause three-fourths of the

vector moments to vanish identically.
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For instance, consider the symmetries about the xz
(f=0) plane, Cos m@ is an even function of §, while jy is
odd, which causes Y:m to vanish, since the rest of the

integrand is even, Sin mf is an odd function of g, while

1

Jx and jz are even, which causes X%m and znm

to vanish,
Likewise consider the symmetries about the yz(¢-g)
plane, About this plane jz and jy are odd, so Z:m vanishes
when m is even (since cos m@ is then even) and Yﬁm vanlishes
when m is odd (since then sin mf is even), Similarly Iy
is even about this plane, which causes X:m to vanlish when
m is odd,
Thus, using the symbol without the superscript to

indicate the non-zero moment for that n and m, the only

non-zero integrals of equation 6.4 are as follows:

Xnm-}q:m m-O,Z,u cees N

Ynm - lelm m = 2.“’ eveee N n-1i2'3 LI
an = Z:m m = 1,3’5 eee N , (606)

Accordingly. when pe0 or m is even in equations 3,8 all the

vector moments vanish, and so the associated scalar moments

must vanish, Thus the only non-zero scalar moments are Sim

(m odd) and these will henceforth be denoted by the symbol

S For a properly symmetric source, then, equations 3,8

nm?*

reduce to:

Snm -Z .. -(n-m)(xnm+1 +Yhm+1) Yon * Xan (6.7)
(1+5m1)
Sam *~Zam +(H:T:E)(Ynm-l - xnm-l) n=1,2,3... m=1,3,5...n
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Any values of the vector moments, then, which will zero
these scalar moments will necessarily zero the field out-
side,

Since (as shown in Section 4) z must be calculated by
\ following a flux 1line on the surface, the integrals of
equation 6.4 are most economically calculated by using f
as one of the integration coordinates, If the integration
were done (for instance) over x and y then every one of the
grid points would lie on a different flux line and either
each of these lines would have to be followed (consuming a
great amount of time) or the points would have to be inter-
. polated from neighboring I;nes (a difficult procedure intro-
ducing its own inaccuracies),

Use as coordinates the flux function f(x,y) and s, the
distance (in the xy plane) along the flux line, measured
from the 1line joining the neutral point and the subsolar
point, First transform equation 6.4 from an integral over
the surface to an integral over the projection of the sur-

face into the xy plane, (i.e, set dS-dxdy/cosy).

sl Y/
“(2 5 )(n-m)! nm
zgm - (n+m)! dy dx Eos Pn(r)°°s(m¢"1’2 (6.8)

The fact that the maximum value of y is 2 follows from the

considerations in the first paragraph of Appendix IV,
In transforming to the new coordinates (f,s) the ele-
mantal area changes from dxdy to dfds/|grad f|. Referring

to equations 5.8, 5.10 and 5,16, one obtains the following
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identities,
3x " . dx
cosy|grad f] (2 . fz)f ds
x y
) -f
y u x N ay (6.9)
coaylgrad r] (f2 s £2)% ds
x y
2 2%
Iy 1-1, -1y . 4z
cosy|grad r] =~ 2, 2 ds
x y

Substituting these identities into equation 6,8, the non-

zero moments, equation 6,6, become

S(f)

Xom = *(2- mO)%ﬁ;— def ds( )U o
S(f)

Ynm " ::: :J.dﬁ[ ds(%%)UnmSm (6.10)
s(f)

z = - ‘n::’/dff ds( )U m

where S(f) is the total length in the first quadrant of the
flux curve f=constant, and the U,S and C are defined as

follows:

U, " r"P':(-f:)(rz-zz)'%m

c, = cosm§ (r2_22)§m (6.11)

1
Sy, - sinmg (rz-zz)fm

In the computer program these functions are easily generated

by the following recursion relations:
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unn.(zn-l)ln Unn_l.(zn-l)ll z

2 2
_ 2(m+1)8Um.4,1'(x +y )Unm+2 (6.,12)

(nem)(n+m+1)

Unm

S S S C S

Cm-1€1-5p-151 mn= m-11*Cm-11

=X 51-y Cm-

From these relations, it 1s clear that the Unmcm and Unmsm
factors of the integrands of equation 6,10 are simply poly-
nomials in x, y and z each term of which is of degree n, The
highest degree of z in any of these terms is n-m. Since x
and y are bounded while 2z —+-0w, it is clear that the larger
the value of m (for a given n), the more accurately the
integral may be evaluated, This leads to the conclusion
that the first of equations6.7 is the better one to use in
calculating the scalar moments, Substitution of equations

6.10 into this equation gives the explicit relation,

5(¢)

Spn= S{o2H tlf as |45y ¢ 17 om Vnme fax s
nm n+m)! ds nm m ds m+1*ds m+
0 0

(n+m+1)

(6.13)

Thus to this point the machinery has been set up for obtaine
ing a surface z(x,y) and calculating all its multipole
moments, Before proceeding further it 1s necessary to spec-

ialize to a particular source field,



7. Specific Solution for a Dipole Source,

This section will begin with a summary of all those
formulae derived in previous sections which are necessary
for programming a computer to obtain a numerical solution,
For the case when the source field mirrors in the yz plane
and mirrors with a change of sign in the xz plane, the

scalar potential of the surface currents is

©O n
1
=RJ > > S.D. (m odd only) | (7.1)
n=1 msl

where Jo'(MtNoUi/n)%’ R 1s the y coordinate (in centi-
meters) of the neutral point and the Snm are obtained from

equation 6,13,
Sif)
)

1
(1-56
Snm'sig::;;]Af ds[%nm gécm'unm+l in+m+1§(§§cm+1+g§8m+lﬂ
0o o

(7.2)
The coordinates (f,s) are the value of the current function

and the distance in the xy plane along the lines f= con-
stant, measured from x=0, S(fo) is the length in the first

quadrant of the 1line f-fo. Bquations 6,9 give the deriv-

atives of the coordinates with respect to s,

f

= Terad T

ofw

212
o

= TE;EE_?T (7.3)

Al
n
'
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And z at any point on a curve f=constant is found by inte-
grating dz/ds along that curve, Finally the functions U,

C and S are given by equation 6,12,

U, =(2n-1)11 U, _y= (2n-1)11 2
2 2
2(m+1)zUnm+1-(x +y )Unm+2
Unln" (?-u)
(nem)(n+m+1)
Cy=x 51y Cu=Cm-1¢1-5,-15, Sp*Sn-11*Cm-151

Consider now a dipole source, The scalar potential of

a dipole of moment ng is

- Msino sinf M 1 (7.5)
R r R

Since the potential of equation 7,1 must be equal and

opposite to.this, it is clear that for the true surface

Snm = 0 n-2,3,u... m-1.3.5.'..n ‘706)

and equating coefficients of the D%l terms gives the scaling

relation

r3 M [—““‘2” ]% (7.7)
n S11 MtNoUo ¢

which will be used‘to determine Rn after the surface has
been made to satisfy equation 7.6 approximately,
The first step in the solution of the problem is the

choice of a function of x, y and some parameters Ai' which
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is sufficiencviy restricted in functional form that for any
reasonable values of the A, the resulting function f(x,y)
has ail tune qualitative features that the current function
must have (as seen from Figure 4). However, at the same
time the parameters must permit en&ugn variability in £ to
bring it sufficiently close to the true function for some
set of values of the ‘1' Actually the choice of a param-
etrized form for this function was one of the most time
consuming aspects of the entire problem, and it is not here
pretended that the best possible function has been devel-
oped, only that a satisfactory one has, If any investigator
should desire in the future to improve on the results pre-
sented in this paper, he could surely do so by working out
a different analytic form for f which has the ability to
come closer to the true f, whatever that is,

Without further apolegy then, the current function used

in this work will be of the following form:

f(F,ﬁ)-a(v)sinﬂeg(u") (1- 4&1-0)?+h(u.v)} (7.8)

where (p.ﬁ) are the usual polar coordinates in the x& plane;
v-ooszﬁg a(v) is half the radius of the surface at f=w oo}
u-p/a(v); and g and h are double power series in u and v,
given by equations IV-39 and IV-54 to IV-56, The motiva-
tions leading to this form for f, as well as the conditions
on g and h and their derivations, are discussed in Appendix

IV and will not be considered here, except to note that
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permitting h(u,v) to contain terms up to u8 and y~ allows
22 freo'parameters among the coefficlents after all the

conditions are applied, These parameters are denoted by
Ai’ 1<1<22, Likewise it is shown in Appendix IV that if

g(u,v) contains only terms up to uu and vu but is.otherwise
as unrestricted as possible (consistent with the conditions
on f) it contains 15 free parameters among its coefficlients,

These are denoted by Ai' 31<i<45, The remaining arbitrary

function in equation 7.8 will be parametrized as follows:

a(v) = 1+A61v+v(1-v) A62+(2v-1)A63+(27-1)256é] (7.9)

As pointed out on page 35 this flux function does not
uniquely specify an associated surface, but the profile of
the surface must also be specified, The profile will be
defined to be that part of the cross section of the surface
in the meridian plane which lies between the subsolar point
and the neutral point, This profile will be parametrized

as follows:

(y) = A=A [?2 Yz(yz-l)(A +A yzﬂ
ey 71772 ¢ 73078y (7.10)

+A72A75[}1-72-1*%y2[}+%yz @*%y2(1+5yziu

The distance from the dipole to the subsolar point of
the surface is given by A71. The z distance from the suba
solar point to the neutral point is given by A72. A75
governs the plateau in the immediate neighborhood of the
neutral point, The remaining terms aid in adjusting the

overall shape properly,
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As already mentioned most of the qualitative restric-
tions which can be placed on f as a consequence of the
physics of the problem have been incorporated automatically
by the restrictions placed on h and g in Appendix IV, How-
ever, there 1s one very important restriction which can not
be so easily fulfilled, This is the condition, obvious

from equation 5,9, that
lvel £1 (7.11)

Clearly every parameter will affect the gradient of f in a
way which will depend non-linearly on every other parameter,
Thus it would be impossible to derive a set of reasonable
restrictions which would guarantee that equation 7.1l is
satisfied, The best that can be done is to test each trial
set os parameters against equation 7.11 and reject those
sets which violate it.significantly, 1In practice it was
found that it was difficult to find a set of parameters
which didn't violate this condition at some point in the

xy plane, even when the shape and moments of the resulting
surface were ignored, Thus it was decided to tolerate
gradients greater than one as long as they occurred over
only a small percentage of the surface; and in these cases
equation 5.16 was kept from becoming imaginary by the simple
expedient of setting the gradient equal to one, This com-
plicated the convergence process in that constant manual

ad justments were needed in the parameters to minimize these

unphysical gradients, but it couldn't be avoided,
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The obvious way to go about reducing the moments is by
the generalized Newton method (used in the uniform pressure
case), As everyone knows who has used the method exten-
sively, however, it is very prone to wandering when the
number of variables exceeds 5 or 6, unless the problem is a
well conditioned one, From what has been said already,
though, 1t should be obvious that this problem is not a
well conditioned one and, indeed, it was found that Newton's
method was virtually useless for as few as five parameters
and moments, One thing which contributes heavily to this
difficuity is that there is no natural ordering of the
parameters as to importance, That is to say: with 46 par-
ameters occurring in four different power series (two of
which are double series); which five parameters should be
chosen to reduce the first five moments? 1In all likelihood
some 15 or so of these parameters should really be varied
in order to reduce the first five moments smoothly to zero,

Therefore since it was unrealistic to work with less
than about 15 parameters at a time, but even more unreale
istic to try to reduce 15 moments at a time by Newton's
method, it was necessary to work out a new method by which
N parameters (Ak) could be used to reduce M quantities(vi).
where M<N, That is, the following equations for the changes
ay in the parameters Ai must be solved:

N
T = At L 2
1%:1 Hy ==V, i=1,2,.,.M (7.12)
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where nki-avk/aAi is assumed to be a constant, Since N>M -
this system of equations does not have a unique solution
unless an additional condition is imposed, The natural

condition is to require that

N

2
B =
g (ay /w,) (7.13)

be a minimum, where w, are approximately chosen weighting
factors for the parameters, There are two advantages to
thus minimizing the length of the a, vector: 1) the assump-
tion of the constancy ef the H,; 1s more valid, and 2) the
conditions such as equation 7,11 which have been manually
optomized will be interfered with as little as possible,

To solve equations 7,12 and 7,13 together, first solve
equation 7.12 for the first M of the ay in terms of the

romaining a .

M N
-1
a = o E H [V + E H a] i-lnzoooM ‘7.1“‘)
! LY Sy K -
where H"1 is the inverse of the square matrix formed from

only the first M columns of H, These expressions can now
be inserted into equation 7,13 to give E in terms of only
the last N=M of the a,. It is then a straightforward matter
to differentiate the resulting E with respect to each of

the a, . Setting these derivatives equal to zero (the con-
dition for a minimum) gives (N-M) linear equations for the

(N-M) desired a,,
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ay N M M
-:2; + nZ-D—T;I 12-1 Pki in a - ave 1¥1 Pkivi k-N'fl'"”N (7015)
where - E: E: Hjn mk 31/" (7.16)

=1 m=l

After these equations are solved for the last N-M of the
8y these values may be substituted into equation 7,14 to
obtain the first M of the a;. While it may appear that M
of the a,; are treated essentially differently than the re-
maining, it 1s clear that the result does not depend on
how the a, are apportioned into the two groups, because the
basic equations 7,12 and 7,13 completely determine the
nature of the solution and they are completely symmetrioc

in the a,.

As expected it was found in practice that this method
was very much more stable than Newton's method, whioh simply
amounts to a special case of equation 7,14 with M=N (whioh
eliminates the second term),

Bven with this improved method of convergence, however,
it was found that it was unadvisable to try to "zero” more
than the first 5 to 8 moments (ne<¥ or 5) by this method.
Bxperience with the uniform pressure problem on the other
hand indicated that it would be necessary to at least reduce
considerably the moments up to about n=7 in order to achieve
much accuracy in the surface, Thus as it finally worked
out the convergence process itself became semi=-manual, That
is between each cyocle, in which the ﬁoments up to nel or 5

were "zeroed" by the above technique, it was necessary to
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study the H13 for the n=6 and ne«7 moments, as well as the
gradients of the current function, in an attempt to vary
the parameters in such a way as to reduce these nonqnts and
the excessive gradients, The process is a laborious and |
difficult one, but with some skill is a convergent one,

All of the numerical calculations were carried out on
an IBM 7090 and the final version of the program for these
calculations is given in Appendix V together with an ex-
rlanation of the program and flow diagrams of the major
subroutines, Therefore, it is unnecessary to go into that
in any detail here except to mention one fact which is
significant in the interpretation of the results, Since
the purpose is to zero all the moments (except the dipole
moment) it would not in principle affect things if all the
moments were multiplied by arbitrary finite factors, How=-
ever, having accopted‘our inability to actually rero all
the moments, and desiring rather to reduce them all to some
common low level, it becomes significant what facters the
moments are multiplied by as this will affect their rel-
ative reduction, The thing which finally governed the
cholce of the proper factor was the accuracy with which the
various moments could be calculated, It was found that if
the factor (2n-1)!1 is dropped from the definition of Unm'
and the factor (n-m)!/(n+m)! in equation 7,2 is replaced by
1/nll, then all the calculated moments will have about the
same number of decimal places of accuracy before truncation

error sets in. Also this change of factor clearly deemph-



asizes the higher moments as rightfully they should be,

The final solution (that is, the solution beyond which
further improvement was Jjudged too difficult to be worth
while) is illustrated pioctorially in Figure 1 and topo-~
graphically in Figure 7, and projections of its current
lines are given in Figures 4, 5 and 6, which likewise give
silhouettes of the surface, Table 3 gives the values of
the various parameters for this surface, and Table 4 gives
the calculated values of the moments up to m=7, The inte-
grations were done using 30 curve# and a basic interval
size of 0,07 (see Appendix V),

It should be noted that the surface plotted in these
figures is not exactly the one calculated, though it differs
from it only slightly, First of all, over about 3,6% of
the projected area of the surface in the xy plane (mostly
near the subsolar point) the gradient of f exceeded one,
These regions then were considered by the computer to be
perpendicular to the wind, but in plotting them I smoothed
them out to conform to the slope of neighboring regions,
The second change consisted of smoothing out the surface in
the region near the dipole-sun meridian plane above the
neutral point, There were local oscillations of the sur-
face there resulting probably from a defective current
function, The extent of these corrections on the cross
sections in the two planes of symmetry is shown in Figure 8,
and an indication of their effect on the surface as a whole

is given in Figure 7,
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TABLE 3., Parameters for the solution surface,

Parameters defining the asymptotic cross section,

Agy==0.0154 Agy= 0.0700 Agg= 0,0200 Ag = 0,0600

Parameters defining the moridian plane profile,

A?b- 0,1970

A75- 0,0300

A,,= 1,0166 A o= 0,7480 A73- 0.3370

71 7

Non-zero parameters in g(u,v),
ABu' 00,3000 A36: 0.7500 Auo--O,IUOO AU5- 0.7200

An.= 0,1000 A38' 0,2000 AbB' 0,0900

35

Non-zero parameters in h(u,v),.

A} = 1.5388 Ay «=0,0737 Ay;= 1.0400 A, =-0,0136
A2 = 0,0277 A7 ==0,7844 A12-0.0720 Al?- 0,0230
A3 »=1,6113 A8 = 0,3817 A13- 0.5470 A18' 1,7700
Ay ==0,2435 A9 ==0,0076 Ayy= 1.1320 A19- 1,3230
A5 ==0,0184 AIO' 0,1060 A15--0.0243 A20- 0,0540
Ayy= 0,0300
TABLE 4, Residual moments for the solution surface,
n m Moment n m Moment n m Moment
2 1 -0,00003 5 1 0,00174% 6 5 0,00389
3 1 «0,00004 5 3 =0,00198 7 1 0,00026
3 3 0,00002 5 5 =0,00097 7 3 0,00009
4 1 -0,00008 6 1 <0,00064 7 5 0,00163
b 3 0.00003 6 3 =0,00026 7 7 =-0,00077
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Figure 4 Front view of surface showing current lines,
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Units of Rn=0,680(MtN°U;) 1/6Re (earth radii), For a

plasma of 2,5 protons/cc & velocity 500 Km/sec Rn=9.16Re.
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Side view of surface showing current lines,
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1 N

1.0 1.5

Figure 7 Contours of constant =z,
Units of R (see Figure 4),

Dots show calculated points, indicating extent
to which surface was modified by smoothing,
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Figure 8 Cross sections (in yz and xz planes) of actual

surface generated by parameters of Table 3 (solid lines)
showing the alterations (dotted lines) made in smoothing,
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8. Results & Conclusions,

The solution of the problem of a magnetic dipole in a
cold field-free plasma wind, as obtained in Section 7, is
illustrated in Figures 1, 4, 5, 6 and 7,

To relate this to the geomagnetic case, take the di-
pole moment M to be ,311 gauss=(earth radii)3 and the
plasma to be ionized hydrogen, Then, using the computed

moment 811=-7.0030, equation 7,7 becomes

2,-1/6
R, = 84.8 (NOUO) earth radti (8.1)

where No is in proton/cc and U0 is in Km/sec., Mariner II
data (6) suggests N°-2.5 and U°-500, which gives'Rn-9.16,
or in other words 9.3 earth radii out to the subsolar
point, This is entirely consistent with the experimental
values (34),

Since the moment technique is the first approximate
method of solution for this problem which also specifies
the surface currents, it 1s the first which can be used to
calculate the magnetic field everywhere, Appendix II
develops the integrals necessary to calculate the field B
in the two planes of symmetry where B, vanishes,

These integrals have been evaluated numerically at
various points, for the surface calculated in Section 7,
and plots have been made of the resulting magnetic fields,
The heavy lines in Figure 9 show some representative mag-

netic field lines in the meridian plane and the lighter



lines in that figure and in TFigure 10, which shows the
equatorial plane, show contours of constant fileld strength,
The dotted lines in each figure give the contours of con-
stant field strength for the unperturbed dipole field, Of
course for the exact solution the field strength outside
the surface should be zero everywhere, s0 the field
strengths which were calculated outside the surface in
these two figures give some idea of the accuracy of the
indicated surface, To translate the relative field
strengths multiply them by the factor Jo-(MtNoui/n)%.
which equals 5,77 ¥ (17-10'5 gauss) for a 500 Km/sec wind
with 2,5 protons/cc,

For field strengths greater than about 64 the contours
do not depart from the original dipole contours sufficlent-
1y to show the difference, The field near the origin

§=J°B(x,y,z)gy is approximately:

B(x,0,0) = 4,30-0.80x>
B(0,y,0) = 4.3042,17y° (8.2)

B(ololz) - u030+3.32z

Thus the compression of the magnetosphere (again using
Mariner II data) increases the earth's field at the equa-
tor by 26,9 Y at noon and 22,8Y at midnight and decreases
it at the pole by 25,0.7,

Before concluding this discussion of the field a few

remarks concerning the topology of the field are in order,



T~ .05 1.08 ~7 .15 \ .17 < 1 N .08
~ o \.16 8
N\
\\ \
i .12 719 X
AR \
' I
\
\ \
.30 .61 . \\\
\ \ \
~ \\ .
Lo
L2k N L67 g o \
/// — “. !
T \ ] ! ‘
P \ | |
\ Lo N
—~> .35 g " \- z | Y
yd - : ! !
/ 7 X \ - N i
/ £ ! : i
/o |
/
- 38 / /

!
{
!
|
A
.5

3
L~

SRR
O

e o o

~.5 -1.0 -1.5

Figure 9 Field lines & magnitude contours in the "meridian" plane, units of (M¢NgUgy/1)2,
Dashed contours are for the dipole alone, The computed field magnitudes and directions at
several points outside the surface are included to indicate the accuracy of the solution,

A>



. 003 . 007 .010 .001 ,020 .003

. 006

.008

.009

.018

. 090

.200
1

!
|
[
|
1

.5 \ 2.0

\
]
1

T
0

i
Figure 10 Field strength contours in the equatorial plane, units of (M_N Uz/ﬂ)a.
Dashed contours are for the dipole alone, The computed field strengths at%several
points outside the surface are included to indicate the accuracy of the solution,



-62=

As pointed out by Johnson (10) the field lines divide

into two essentially different groups: those that co-
rotate with the earth and those that always extend into
the taif'of the cavity, To see why this must be so con-
sider the line which passes through the neutral point N
(see Pigure 9); it fans out at that point over the entire
surface and in particular passes through the subsélar
point S and the antisolar point A at z=-00, This
line intersects the earth at some point E on the noon
meridian, Since the earth is rotating, however, the 1line
which intersects at the particular point E can be the
neutral line for only an instant, and twelve hours later
must intersect the earth at the point labeled E' and
make a simple loop in the tail of the cavity, intersecting
the equatorial plane at S', The family of all such lines
which pass through N at some instant each 24 hours form
an envelope which divides the lines into two groups: 1)
those which intersect the earth at a latitude lower than E
and therefore pass through the region outlined by SNE once
each 24 hours, and 2) those which intersect the earth
nearer the pole than E and therefore can pass through the
meridian plane only in the region outlined by S'E‘'ENA,
Topologlcally the two regions occupied by these two groups
of lines form interlocking tori (donuts). The field lines
of the first group rotate rigidly with the earth, but

the second group is confined to the tail of the cavity and
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therefore rotates instead about its own centerline, This
type of motion is referred to by Dungey (21) as twiddling,
In reality, of course, the earth's axis of rotation does
not coincide with the dipole axis, and neither are perpen-
dicular to the wind direction, as in the present idealisz
case, but this does not qualitatively change the picture,

Since Beard's approximate boundary condition is the
only other method described in the literature for obtain-
ing 5 solution to this problem, it is naturally of interest
to compare the two solutions,

Figure 11 gives half the egquatorial cross section
(below the z axis) as given in the original article by
Beard (15), and half the meridian cross section (above the
z axis) as given in a later treatment by Spreiter and
Briggs (16). The Spreiter and Briggs section was used be-
cause Beard gives only a hand drawn guess of the night
side shape in the meridian plane in his original article,
The dashed lines in Figure 11 represent the corresponding
cross sectlions of the surface calculated by the moment
technique,

Figure 11 is plotted in units of R, so the height of
the neutral point coincides (by definition) for the two
cases, but in order for Beard's solution to correspond to
the same plasma momentum flux density it 1s necessary to
choose an approximate value for f (defined to be the

fraction of the field just inside the surface which is
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Units of R
n

Figure 11 Cross sections of Beard's surface and
the moment surface (dashed) in the equatorial plane
(below line) and the meéridian plane (above line},



contributed by the dipole), The subsolar point for Beard's

surface is at 1,058 R, and the earth's field at that

point is .
N v’ .
(1.058)7R2  (1.058)3 - t¥olo

where equation 7.7 with 811--7.0030 is used to obtain the
center expression, Solving this for f gives fw=0,4714,
For comparison, the corresponding f for the moment solu-
tion (obtained by using 1,0166 rather than 1,058) is
f=0,5303,

In a later article (36) Beard refined his calcula-
tions by taking into account some of the surface current,
He indicates that this makes the cross section between the
subsolar point and the neutral point slightly elliptical,
decreasing the radius to the subsolar point by ,8% and
increasing the height of the neutral point about 3%, This
makes the shape (with proper choice of f) more nearly the
same as the dashed curve in this reglon, but Beard has not
yet extended his second approximation to any other parts
of the surface,

It was not possible to compare filelds outside as a
test of the relative accuracy (as was done for the uniform
pressure case) because the full three dimensional solution
by Beard's technique has not been published, Neither does
Beard's method yield the surface currents, and these are

necessary to calculate the fields,
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It 1s unfortunate that the complications encountered
in this problem made it impossible to achieve the sort of
accuracy obtained in the uniform pressure problem, but
more accuracy in the calculations is probably not justifi-
able anyway considering the inaccuracy in the model, In
addition to all the possible objections mentioned in
Section 2, there is one effect which makes the pressure
law of equation 3,3 inaccurate even 1f the plasma were
truly collisionless, field free, stable and therefore free
of any shock transitions, This is the fact that a particle
which glances off the surface just below the neutral point
will be traveling at such an angle that it may glance off
the surface again just above the neutral point, Thus the
pressure in thils region above the neutral point would
exceed that given by equation 2.2,

in conclusion, the moment technique is in principle a
completely general approach for determination of the sure
face of separation between a perfectly conducting plasma
and a magnetic field, However, in practice it can entail
almost prohibitive difficulty except in cases of consider-
able symmetry, such as the dipole in a uniform pressure
plasma, An example of another problem of like symmetry
for which the moment technique should be useful is that of
a gravitating plasma cloud surrounded by a magnetic»field

which is uniform at infinity,



APPENDIX I Determination of the Surface Thickness

Consider a cold plasma flowing in the X direction
(with velocity U° at Xwm=o) from a field free region into
a region of magnetic field Q-B(x)gy, Since a steady state
solution 1s desired, the electric field must be able to be
expressed as the gradient of a scalar ¢, Further, since
nothing varies in the Y or Z directions, all quantities
are functions only of X, Clearly the trajectories des-
cribed by the particles will be symmetrical with respect
to their ingoing and outgoing sections, so we need consider
explicitly only the ingoing particles., Let the velocity of

these particles be
Y, = U (X)e, + W (X)e, (1-1)

where p=e for the electrons, or p=i for the ions, The
Y component of velocity does not enter the problem and so
may be assumed zero without loss of generality, Further we
will assume normal incidence, 1i,e, wp(-m)-o.

Bue to the absence of thermal motions, all particles
of the same sign must penetrate to the same value of X, and
so the flux of particles must be independent of X for all
X 1less than this maximum X, Our last assumption concerns
ing the boundary conditions on the problem will be that the
velocity of the protons and electrons are equal at -, as

are the densities, Therefore we may write

Ny (X)U  (X) = N (X)0 (X)) = N U, (1-2)
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where No = Ni('”) = Ne(-w)

The equations of motion for the particles are
M d - - -
pd¥p/dT = a,(-V&+V X B) (1-3)

and the Maxwell's equation relating the field and current

becomes

B

%f - BN"%; QN W (I-4)
The extra factor of two has been inserted here because both
the ingoing and outgoing particles contributed equally to
the current in the z direction, but Np will be used to
refer to the particle density of the ingoing stream only,
If we were now to impose the remaining Maxwell's equation,
dzé/dX2-4neoz(Ni—Ne), we would have an exact set of equa=-
tions for the system, However this system of equations
would be too difficult to solve, The system of equations
that results if this condition is replaced by the approx-

imate relation

Ne(x) - Ni(X) = N(x) (I-5)

is very much simpler to solve, This approximation is cer-
tainly a good one, for the ratio of the Debye shielding

length to the gyroradius for electrons, 0,12 B Ne-% (emu),

is small in the cases of interest here, In fact, the solu-

tion of this approximate set of equations is probably more

meaningful physically than the solution of the exact but



idealized (no thermal motions) set of equations,
In order to put the remaining equations in dimension-

U and

less formydefine a set of units in terms of No' o

the ion and electron masses, Let the unit magnetic field

be the field necessary to balance the pressure of the plasma
flux, The natural unit veloclty is Uo' and the unit
length will be chosen as the geometrical mean of the Larmor
radii of an ion and electron each traveling with unit veloc-

ity in unit magnetic field, The dimensionless variables

(Lower case letters) are thus defined as follows:

1 1
X = x(Mj_Me/(IGTTMtNo))z/e M= m(MiMe)z
T t(M,M_ /(167 M, N UZ))%/ V = vU (x-6)
* “1%e THeNoV0 d o
2 1 2 Y '
B = b(167 M. N U_)? b= quO(MiMe)z/e

In terms of these new variables equation I-3 becomes:
mdv _/dt = s (V v b =
L3Y,/ VP X XDB) (1-7)

1
2 -
where m,=(M,/M_)?, mesl/mi, s;=1 and s_=-1, Likewise using

equation I-5, equation I-4 becomes:

g_'(wi"we) ‘I“S)
o

db
2 (mi +m )-d-; =
Combining equations I-2 and I~-5:

ug (x) = u (x) = u(x) = n /n(x) (1-9)

Sum the =z component of equation I-~7 over p and
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integrate over t (using the boundary condition w(- )«0)
to obtain the equation expressing conservation of £z momen-

tum:

mwW, + mwW, =0 (I-10)

Multiply the 2z component of equation I-7 by Wi the x
component by u, add and integrate over t to obtain the

energy equations,

%mp(u2 + wi) + s, 9 = %mp (x-11)

The constant of integration was fixed by the condition that
wp-O and ¢=0 when u=1l, To express ¢ as a function of
u multiply the x component of equation I-7 by spmp. sum

over p, use equation I-~10 to eliminate the terms in b,

write d/dt as ud/dx and integrate with respect to x,
@ = $(m,-m_)(1-u") (I-12)
1 e

Eliminating ¢ between these two equations, one may write

wp as a function of u

v, = spu.uz)é (1-13)

The factor sp givesvthe proper sign to the square root,

To obtain the conservation law for the x momentum
flux, sum the x component of equation I-7 over p, multiply
the right hand side by nu/no(-l by equation I-9), eliminate

(wi-we) by equation I-8 and integrate with respect to ¢,
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1 «u =b (I-14)

The constant of integration is determined by the condition
that b=0 when usl,

Multiply equation I-8 by u, set nu/no-l, differen=-
tiate with respect to t and use equation I-~7 to eliminate

dw_/dt,
wp/
2

228 - ub (1-15)
dt
Using equation I-14 to express u as a function of b,

rewrite this equation as:

db d ,db d 2

T 1 (@) - al-+) (1-16)
Integrate this with respect to b and take the square root,

%% . 3(1-u2)? (1-17)

The constant of integration was determined by the fact that
the derivative of B must vanish at xs=-0c0 where u=1, and
the sign of the square root was determined by thé fact that
b must increase with time on an ingoing orbit, If equation
I-17 is multiplied by 2b, equation I-1l4 may be used to elim-~
inate b,

U (1-u)(1eu)? (1-18)
Adopting the convention that u=0 at t«0, this can be inte-

grated exactly,

Jg -J/1+u 241
26 - ln{}Jﬁ +¢1+u} c® 2.1 . (1-19)



The explicit expression for u 1is easily derived,

E“2
u.2|}'° -1 (1-20)

and integrated exactly to give

y2
x-t-2+2f2‘[3¢—°§;} (1-21)

c+o

where the convention 1s adopted that x=0 at t=0, Of course
these formulae apply only for negative ¢, sihce they were
derived for ingoing particles;

Use equation I-20 in equation I-14 to obtain b,
t

2/2¢ JE

T B

(c+e )

b (1-22)
The simplest way to obtain the trajectories is to note from
equations I-13 and I~17 that db/dt and wp-dzp/dt are propor-

tional, Thus, choosing the convention that z_«=0 at te-oo

P
where b=0, one can write:
28
z_ = =—£b (1-23)
p mp

In plotting these results graphically in Figure 2, an arti-
ficial displacement z, which is the geometric mean of zs and
“Zg» is used because it is identical to 2b, A further
advantage is that the total velocity on this artificial
trajectory is just unity (see equation I—13) so that the

time is equal to the arc length,



APPENDIX II Field Inside the Cavity.

Once the proper surface and its current function have
been determined, it is then a straightforward matter to
calculate the magnetic field at any point in space, Taking
the curl of equation 6,1 and adding to it the gradient of
equation 7.5 one obtains the following expression for the

field anywheres

2
j(xix(r-r) 3y,r, -1, 8
B(R) = J |22 227 _dS + J.S re 2 7Y (1I-1)
B(R, S - 2 0°11
S f!.z-;x: rZ

Equation 7,7 has been used to eliminate the H/Rn3 in the
second term,

For simplicity the fleld will be calculated only in
the equatorial and meridian planes where B; vanishes and
it is necessary to integrate over only half the surface
because of symmetry, The y and z components of equation

II-1 are explicitly;

o . J‘]dz(xgx)-dx(qu) as Josu(Byf-nf)
y o

A= T
(II=-2)
3x (y=y) =3, (x-x) 394511%7,
Bz = JO ,r-rlg ds + r5
~p ~ 2

By the same sort of coordinate transformations and sube
stitutions which led from equation 6.4 to equation 6,10

these equations becomes



2 2 2
2y, =X, =%,

+

X, +Y, +2Z, (1x-3)

(x x)+——(z-z) 3—(x+x)+-(z-z)
+2J af ds
L(x-x) +{y=-y) +(z-z)JZ [(x+x) +(y+y) +(z-2)]

YZ. z?_
Bz = WoSu1T5
Y, +Z, (11-4)
1S dx dz dx d
Ts(r-3) x5 -5 (Y+%) +x3%
+2J° dfjds

[xz-r ( y-ya)2+ ( z-zjz]% * [12‘_ ( y+}é?+ ( z-zz)zj%

The factor of two has been introduced because the integrals
cover only half the surface, The first term in the inte-
grand of equation II-3 covers the first quadrant and the
second term covers the second or fourth quadrant depending
upon whether y=0 or x=0 (i,e, depending upon whether the
field is being calculated in the equatorial or meridian
plane), Bquation II-4 is to be used only for the meridian

plane because Bz vanishes in the equatorial plane,
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APPENDIX IIX Relation of Vector Moments to Scalar Moments

As was polnted out in Section 3, any solution of La-~
place's equation which vanishes at infinity may be expanded

in terms of the functions

p P (cos90)
D, —————I—— cos(mﬁ-p2 (III=-1)

Therefore the vector potential of the localized current

system is

[ n 1
Alr)=R J_ nzw mzo I,Zi‘nmx*ygm’yﬂgm z} R (111-2)

And likewise, for some appropriately defined parameters

sP

nm® the scalar potential for the same current system is

© n 1
)R I > > > shob (I1I-3)

N=o M=o p=o0
Now, if these two potentials are to give the same field,
the following equation must be true,
Ve(r)=VXA(r)=0 (XIX=4)
We will use this equation to derive certain relationships
among the X's, Y's, Z's and S's, The equation

V-A(r)=0 (I1I-5)

will not introduce any additional relationships among the

vector moments, because equation III-2 assumes that §72£-0,



equation III-4 assures that VxVxA=0, V-A(»)«0 and,
V(V-A)= UxVXA + V24 (IT1-6)

However the derivation of the relationships is simpler and
more symmetrical if both equations III-4% and III-5 are used
together,

Clearly the derivative operations will cause mixing
between components of different m but the same n, but
will not mix components with different n, Thus equations
II1-% and III-5 together are really four scalar equations
for sach value of n,

Explicitly these four equations are as follows;:

n 1 pP pP oP

S ZE. 5P 9" nm - zP 2%nm . YP 2 nm - 0
m=o p=o nm 3 X nm 9y nm 2&z
P P P

i i sp Znm _yp Pom , ;p e
m=o p=o nm 2y nm 9% nm 32x

(IXI1-7)

1 pP oP pP

S S sP 2 nm _ YP 9 nm + xP 9 nm _ 0
m=o p=o % rR. nm 9x nm 3y
P P p

}% i xP 2Pnm + YP nm zP nm 0
@=o0 p=o DO 2x nm 2y T “mm ox

In order to solve these equations and be able to express

the Sﬁm in terms of the xP

nm* ng and Zﬁm, we must investe

igate the derivatives of the ng and be able to express

them in terms of linearly independent functions, To make
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the algebra simpler, define the following new function,

P®(cos0)
+ o | n +img
Dom = Dpm + 3P, = n+l ° (111-8)
and the operators:
2 2_ - |2 -
5 - [9: . 1ay] 2 [a;] (111-9)

i

These operators, operating on the coordinates, give the

following relations,

. 1’
. +ig -c0s0 sin0_+if _+iet
;&r sin6e those. e ;&ﬂ =T
2 (111-10)
- . ain'® -
PR cosO 0,058 - 9°¢ 0

and the partials of the DX with respect to the coor-

dinates are as follows:

+ +
9D L =(n+1) D:ﬁ 9Dnm = 4+ im D:ﬁ
or r 2
(IIX-11)
+ o ) m
oD _ =(n+l-m)P , + (n+l)cose P '11m¢
2cos@ sinze rn+1

The derivative with respect to 2z can now be determined by

inspection,

. + (I11-12)
Qonnm (n+l=m) Dn+1 o
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To determine the other derivatives we need two recursion

relations;

(n+1-m)cosopP™ - (n+1+m)P = - sine p®*! (III~13a)
n+l n+l

mel

n+l (IIXI-13b)

m m
cos® P . ~ P, = (n+2-m) sin® P

Combining equations III«11 and III-10 for the first oper-
ator, one obtains in full:
oti(msl) s

aD+ ———-—1r—-x
t (ITI-14)

l.l!
X[E-(nq»l)sinGP: °°'e {(n-'-l-m)Pn 1-(n+l)coseoP } T—]
Introducing equation III-13a reduces this to:

1(melr)g
+ - +1 ot +
;;Dnm Pm +1 ""'—TT" = = Dhii mal (111-15)

The equation corresponding to equation III-14 but with the
+ reversed in the operator is the same as equation III-1l
except that the last term is positive and (m~l) appears in
the exponent, Making these changes and introducing III-13b
reduces the equation to the following form,

] otl(m=-1)§

9-4-_13:'" - l:(n+1-m)(n+2-m)Pm'1 —_;‘-‘-’;r

n+l

(IIXI-16)

= (n+lem)(n+2-m) Dn+1 m-1

Clearly this latter equation is not valid when m=0, but



since D;o - D;O. equation III-15 can be used in this case,
Before proceeding further, it is now necessary to
reconvert to the ordinary cartesian derivatives, This is

easily done; consider for example the x derivative of

o

Dnm

Z(03.) = #(5,+9_) (D} _+D)

(ITI-17)
0 )

= %[(n-l-l-m)(n"'z-m)nn-}l m-l-nn+1 m+l

The results of this conversion in compact notation are as

follows:

—9— p - - - p

aznnm (n+1 m)nn+1.m 0<m<n
53%nm 4 [(n+l-m)(ns+2 m)l‘.\rw1 -1 D1 m+1] 1¢m <n

3Pkm = (1) [(ns1om) (nez-mDd P o+ 7R )] 1emen

240 - n° 20 1
2x°n0 Dn+1,1 §?Dno == Dn+1,1 p=0,1

Q)
(=)
]

(III-18)

These last two equations were obtained using the identity

Dpo = Pno-
These equations express the (6n+3) derivatives of the
ng in terms of (2n+3) 1inearly independent functions, If
these are substituted into equations III-7, then those
eﬁuations will be satisfied if and only if the coefficient

of each of these functions vanishes in each of the equations,



Clearly each of the equations III-7 is of the form

n

2 nP P o P P 2 P . )
> z:U nm 3x°nm * Vnm aynnm + ¥im 52Pnm 0 (I1T-19)
M=0 DP=O

which implies the following relationships among its coeffi-

cients:
2(n+1-m)wp = (1+§m1)[ 1+(1-2p)Vnm é
+(n+1-m)(n-m)[ nm+1+(1-2p)Vnm+i] (1XI-20)
Wl - 3‘(”21*Vr111’ 1=<m=<n+l p=0,1

The four equations of III-7 can now be characterized by
substituting S5, X, Yand Z for U, V and W according to

the following table,

U v Li
1 S -Z Y
2 / =X
3 -Y X S
b X Y Z

To eliminate the redundancies which exist among the rela-
tionships provided by these four equations, rewrite III-20
by writing 1l«p for p and multiplying the equation by

(1-2p).



nmel

] (I1X1-21)

+(n+1-n)(H-N)EI‘ZP)vnm+1- vgm+1

2(1-2p) (n+1-m)WitP = ‘1*5;.1)[ -(1-2p)ug 2P, -vE

Now if we use equation III-20 for egquation 1 and equation
I1X1-21 for equation 2, then first adding and then subtracte

ing the two equations gives the following equivalent but

simpler equations,

(1+5 )[mlul"(l-zp’znm ];]-(n-ol-m)[(l-Zp)X']";p -stjl 1< m<n+l

(I1X1-22a)

l-p | . |(1- 1-p P

(n-—m)[ nm+1'(1'29)znm+1] [‘1 2p) Xom * Yrun] l=m<n
(III-22b)

Do the same for equations 3 and 4 to obtain the simpler

equations corresponding to that pair,

lep _¢p - lsP l-p
(nem ){(I-Zp)xnm+1 Ynm+1:] [Snmd-(l-Zp)Zn 1<m<n

(II11-22¢)

(1+5.,',1’El'21’)xr1mp1”£m 1}- (n+1-m)E5§m-(1-2p)zr1‘;ﬂ 1<m<n+l

(111-224)

Rewrite equations III-22a and III-22d putting (m+1) for m,

(1+ 9 o)[sp +(1-2P)zl—é]' (“‘m)[l‘ZP)xnn - nm+g

(1+§mo)[yp +(1~ 2p)x1‘é]. ‘“‘”’[Snm+1'(1 29"nm+1] (111-23)
o<£m<n p-0.1

It is now obvious that equations III«22b and III-22¢ are



redundant and may be ignored, It is also easy to verify
that the last of equatiens JII-20, which we have thus far
ignored; is also included in equation IIX-23, Thus if and
only if these (4n+4) relationships are satisfied, equations
ITI-7 are satisfied,

These (4n+4) relationships specify the (2n+1) S's in
terms of the vector moments and give (2n+3) identities which
must hold between the vector moments if they are to describe
a curl-free magnetic field, Since there are (6n+3) vector
moments, however, (2n-1) of them remain unspecified, This
is just what one would expect, We can add to A the grad-

ient of any function ¥ for whioch

Vz(,b- 0 (III-24)

without changing either the divergence or curl of A, Since
the Dﬁm are solutions of Laplace's equation the following

form for ¥ will satisfy equation III-24,

o0 n 1
= > S > eb ng (ITI-25)

N=0 M=0 D=0

It is clear from equation III-18 that if VY is added to

A, a linear combination of the Gg_l m will be added to
P 1 P 3
each of the X ., Y . and Z e Since there are just
(2n-1) of the Gg-l n this accounts for the (2n-1) free par=-
*

ameters for each value of n, When the equations are derived

which give in terms of the Gﬁ-l m the quantities which can
14
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be added to the vector moments, they merely state that any-
thing can be added as long as equations III-23 are not
violated,

In practice, of course, every moment is fixed by the
particular integral form of equatlon 6,3, and so there must
be an additional (2n-l) equations which finish specifying
them completely, For instance, for n=1 equations III-23

give the following eight equations,

0 1 0 0 0 1
S10 = X311 = -“T11 S11 = Y10 = ~Z11
(ITI-26)
1 0 0 0 1 0
511 = %11 = “Xy0 X311 = Y11 = Zy9

Study of the integral forms reveals that the last three

moments are not only equal to each other, they are identi-
cally zero., Thus the (2n-l) additional equations for n=1l
is Zgo
obtain these additional equations in general,

= 0; however, there seems to be no simple way to



APPENDIX IV Cholce of the Trial Flux Function

The symmetry of the wind problem dictates that the cur-
rent must be flowing in the x direction as it crosses the
plane x«0, Thus on this planefgg = 0, Likewise the sym-
metry of the surface about this plane requires that % = 0
there, Substituting these values into equation 5,9, it is
clear that on the x«0 plane §§ = +1, Although cartesian
coordinates have been used in the body of the paper, through-
out most of this appendix polar coordinates ( P,ﬂ) will be
used, because the current function is more easily expressed
in terms of them, The condition just derived then becomes
gﬁk p+3)=+l, The front view of the surface in Figure 4 is
in reality just a plot of the contour lines of f(f:,ﬁ).

The current line flowing along the x axis and then divid-
ing to go around the outside edge is the line f(f;,ﬂ)-o.
Then since gg-tl on the y azxls, f((>.%) must increase
linearly from zero at p=0 to one at p=1 and then decrease
linearly té rero again at p=2, It is also clear from
Figure 4 that f(f),ﬁ) must have the same symmetry as sinf,
Defining a(f) as half the asymptotic value of P+ the
simplest function satisfying all these conditions is the

function
f = sinf [a - (a= P) J (IVel)

Note that a(g)-l and that a 1s symmetric about both the

2
x and y axes, Thus a must be a power series in wcos ]
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whose leading term is unity. Also define u-p/a, 0<u<2,
Obviously the f defined by equation IV-1l is too sim-

prle, Among other things the ridge, which must occur at the

neutral point, also occurs at u=1l for all v, To remove

this ridge, except at the neutral point, take

f = a sing [1 - JQl-u)z + hJ (IV=2)

where hsh{(u,v) must have the same symmetry as a(v) and hence
depends on § only through v, Further, h must vanish at
v«0 ‘to preserve the linearity of f on the y axis and be
greater than -(l-u)2 to keep the square root real,

The condition for the current lines to be parallel and

uniformly spaced near the origin is that

§§10,¢) « sing 1—%hu(0,vﬂ [1+h(0,v{} ‘. sing (Iv-3)

This means that h must satisfy the following condition:

h(0,v) = 4%‘“"@'“%‘“’& (IV-l)

A further restriction on h 1s provided by another
condition which is satisfied automatically by equation IV-l
but not necessarily by equation IV=2, Since the magnetic
field just inside the neutral point goes to zero, the surface
there could support no pressure and must be parallel to the
wind, Since zy is very large in that neighborhood, cos /&0,

but zycos¢=1. Reference to equation 5,8 shows, then, that

unless fx-O at the neutral point, jz will be finite there,
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Therefore

Zgta, 3) =0 (Iv-5)

Note that a=l1 for ﬂ-ig. In order to see if this con-
dition is satisfied, it is necessary to take the 1limit of
%—%(a,ﬂ) as ¢+% because %%(a, g) is indeterminate,
Also %%((7,:%) = 0 at every point except (p=a, so the
1imit can not be taken in the P direction, Thus con-

dition IV-5 becomes

L;:E%. (a~ah(1,v)%) = 0 (IV-6)
2

Assuming that the leading term of h(l,v) is v", we know

that n=1 since h(u,0)«0, and it is easy to see that
equation IV-6 will be satisfied if and only 4f n=2,
Before attempting to specify h(u,v) further, it is neces-
sary to consider the asymptotic properties of the surface,
Since the true surface is well represented asymptot-
ically by a circular cylinder of radius 2, consider such a
cylindrical cavity in a diamagnetic medium with a magnetic
dipole located at the origin and oriented along the y axis,
The scalar potential of the magnetic field inside can be
found by straightforward analytic procedures analogous to
those used by Smyth (35, p 177). The thing which’is of
interest is the potential Just inside the surface for nega~

tive z,

P = hrrm'xinﬁ[pbz - o 837 + ”'J (IVv=-7)
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where b=,920597, ¢'=1,228 and d=2,666; b and d are
equal to half the values of the first and second zeros
respectively of the derivative of the Bessel function of
index one, The value of the constant m' will depend on
the dipole strength, If we introduce an image dipole at
z=2, thus effectively putting a diamagnetic plane at zs1,

this formula becomes:
4% = bTm sing {obz - ¢ 9% , ...] (Ive8)

where ¢=,868¢'=21,066 and m=1,158m',

Clearly then in order to use this formula for the
approximate description of the field Jjust inside the true
surface for large negative £ it is only necessary to
change slightly the values of m and ¢, We can write
immediately the currents which will flow on the circular

cylinder at large negative 1z,
. B 1345 bz dz . e -
i, - -—Eg,- g7 5§ ° $m cosﬁ[} -c e + ] (IV-9)
—cde®%, ] (1v-10)

j¢ "%% =~ G479z -~ W sinﬂ[ﬁe

Consider first the equatorial plane for the true sur-

face, In this plane -gg--%% = 0, so equation 4,8 gives -
Jdr of
), = ~ cosy 5x By v (Tv=-11)
where 2f = af. since we are in the equatorial plane,
y ~ pof

Bquation 3,10 simplifies to



-2 2z, [1 - %)2] : (1v-12)
Likewise, since -§§ = 0, equation 5.4 becomes
cosy = [1 + (2—2—)2] -2 (1v-13)
If equation IV-12 is solved for %; one obtains
g

Substituting equations IV=-13 and IV-1l4 into equation IV=-11l
gives the following rigerous expression for the surface

current in terms of the surface,

X oz
JZ = -1—;-2-— where zx - 5% (IV-15)
X

Thus, to the extent that the surface current of the real
problem can be equated to the current on a circular cylinder
(equation IV-9, the surface must satisfy the following equa-
tion in the equatorial plane,

-——-2- 1 %m[abz - codz] , 2{2) = =co (Iv-16)

1+z
Of course we only want a solution of this equation for large
negative 1z, vwhere I, is also large and negative, because

it is only in this region that the equation is approximately

true, Rewriting this last equation in the form

z
b ¢

-l
- -:;[1*—1—5} - im .‘”‘[1 - ce‘d'b"] (IV-17)



and using the fact that both 2z and z . are large and

negative, 1t is clear that a first order approximation to

the solution of this equation is given by the solution of

x
2b
which is bz = 1n -5(2-x) (IV=-19)

Thus to first order we may write

1 ¢ b(2-x) (IV-20)
X

2

x in equation IV-17 gives the

and using this to replace 1/z

second order equation:

fx 1 bzzx")z * %mjz [:sz' B cedz'J as! (1v-21)
2 + -X /.

which has the solution

b(2Zex) = EZL%:ElZ + *°* % %m[}bz - %F ed{} (IV-22)

or explicitly for =z

x
d

—2
e ¥ pribey » 203 L 2o g (] B L rvea)

This equation is exact up to terms of order (2-x), Since
we do not have any knowledge of the proper values for m
or ¢, the last term is of no direct use, However, since
it is only of order (2-x)-'896, it does indicate that the

term of order (2~-x)° vanishes, From equations IV-14% and



Iv-23 we can novw obtain the desired condition on f,

W
e}

= (zxz+1)'% % b(2-x) + ‘7[k2‘x)3] (Iv-2k)

[WY)

y

We will also consider the region for z==occ  but
0 <@, so that f, <10-f¢. From equations 5.8 and 5.10 again

the following relationship holds for the true surface,

3 £ 2]~%
31 - 2 [ (af)] (IV-25)
z g op
When this is equated to the same ratlio of currents for the

cylinder at z==c and solved, the following relationship
is obtained,

i
-2

of 1 2

C2 -[1 . cot2g (IV-26

2p BeZ )
At least for the case when a=xl, equation IV-2L may be

written

~%((9 0) = 2bw+ O(WB) = l[ -[(1-u) + h(u, lﬂ'ﬂ (IVv=27)

where w=(l-%u), Since this must vanish at u=2(w=0), we

can say first of all that

h(2,1) = 0 (IV-28)
Then expanding the right hand side in terms of w

[1+4n (2,1)) w+[[1+%hu(2,1)] (243n,(2,1)] - [1+%huu(2,1)]] w2eo(w3)
(1Iv-29)



and equating coefficients gives the following relations
2
h,(2,1) = 4b-2 h,,(2,1) = 2(4b°+2b-1) (1Iv=30)
Likewise for a=l, equation IV-26 may be written
- -%
g%(Za,ﬂ)-- sin@(l-ev) i -sin¢[1+%hu(2,vﬂ[1+h(2,v)}

where e-l-l/(bbz)-.705013, and this gives rise to the con-

(IV-31)

dition

(1-ev)h (2,v) [1+4n,(2,v)] = n(2,v) + ov  (IV-32)

Next consider what additional restrictions may be
imposed on h by the cross section of the surface in the
equatorial plane near F-O. Since we desire that z(F)
be symmetric in P e it 1is reasonable to ask that %%
contain no even powers of degree lower than four, Equation
IV~12 shows that for this to be true ﬁ%%( P,O) must have

a leading term of one and no odd powers lower than five,

However, referring to equation IV-2,

?gi( P'°) < 1 [1 - J&l-u)z + h(u,l)] (1v-33)

u

Thus the square root must have the following functional form

for small P

[(1.u)2 + h(u,l)]f - 1-u+%A1u3+%A2u5+(9(u6) (IV-3%)

Which on squaring both sides gives the equation
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h(u,1) = Aju’(1-u) + A + 6(uf) (1v-35)

In order to see the quantitative relationship between Al
and A, and the surface shape, insert equations IV~34 and
IV=33 into equation IV-12 to obtain

*)

A
2z .A’;‘u(m(ri- + g4 )u?) + Slu (17-36)

op
If we define r. as the radius of curvature of the equato=-
rial cross section at p =0 then it follows immediately

that Aln(%—)z and equation IV-36 may be written as:
c

3

2 r L

28 L. L1 P)-F"A——-n-‘ Iv-
aF rc( * Zri ZaE ( 2 hrc ) - ( 37)

Part of the PB term has been combined with the P term
because the combination represents a truly circular cross
section up to terms of order P5. The remaining FB term
then represents the lowest order deviation of the cross
section from a circle, If we postulate that this is zero,
that fixes the value of A, for any given r,, and con=-

dition IV-35 becomes

h{u,1) = AluB-A uu+éAi u’ 4 0(u6) Alu(a/rc)2

b §
(1v-38)
We will now assume that h{u,v) can be written as a

double power series in u and v, The following unusual

form for the series was chosen to simplify the application
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of the previous conditions, and to make the higher num-

bered parameters have a lesser effect on the surface,

2 2
h'Ho+uH1+u H2+u (2-11 )H3+ (IV-39)

+u2(2-u)2[?u+(u-1)H5+(u-1)2H6+(u-1)3ﬂ7+(u-1)uH4

where Hi-vh11+v(1-v)[ﬁ12+(2v-1)h13+(2v-1)2hiu+(2v-1)3hié}

There are no v° terms in this series because h{(u,0)=0,
and the remaining conditions on this series are obtained

from equations IV-4,6 IV-32, IV=38, IV-6 and 1IV-30,

1) b(o,v)= =h (0,v)( 1-%h (0,v) )
2) n(2,v)= (1-ev)h (2,v)( 1+¢n (2,v) ) -ov
_ 2
3) h(u,1)= A1u3'A1uu+glp5+ Hu®)
4) h_(1,0)=0
(Iv-ko)
5) h(2,1)=0
6) h (2,1)=4b-2

2
7) h,,(2,1)=8b" +4b=2

Equation 2) is partially redundant with 5) and 6) but is
completely consistent with them,

Consider first equations 3), 5), 6) and 7)., Since
Hi'hil when v=1, these equations affect only the hil‘
If we wish to have Al (which determines the radius of
curvature at the origin) as a free parameter, then these

equations put nine conditiens on the hil' and 1 must go

up to at least 8 as it does in equation IV-39, It 1s an
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easy matter then to show that these nine conditions are

satisflied if and only if the h11 are as follows:

hg,=h; =hy, =0 h31=%-b

2
hul-(-12.5(1—2b)+A1(A1+6)+2b )/32

h51-(-(1-2b)+2A1(A1+1)+8b2)/32

2 (Iv-41)
hg,=(10(1-2b)-6A, +12b")/32

h71.(9(1-2b)-2A1(A1+1)+8b2)/32

h81-(2.5(1-2b)-Ai+2b2)/32

Consider now condition 1), Since h(0,v) contains no powers
of v higher than v5, hu(o,v) can contain no powers
higher than vz. Thus, using h01-h11-0, we have that

hu(O,v)-v(l-v)hlz, and condition 1) becomes explicitly;

2 3
h02+sh03+s hoy+s h05 - -hlz(l-%v(l—v)hlz) (IVv-42)

where s=(2v-=l1) for brevity, At this point we will set
h12'A2- since it will be convenient to use it as one of
the variable parameters, Equating coefficients of the

various powers of v and solving gives:

(IV-43)

The last three equations just state explicity the conclusion



reached prior to equation IV-4%2, Define now the quantities
- 2 - - :

FJ h°j+ hlj+bh23 and DJ hlj+1+h2j bij in terms of which

the quantities appearing in condition 2) may be written

explicitly (note that s=2v-l),

h(2,v)=vF1+v(1-v)(F2+3F3+52F“+33F5)

(IV-ll)

hu(z,v)-vD1+v(1-v)(D2+sD3+szDu+53n5)

Set v=1 and compare with equations 5) and 6) to see
that F,=0 and Dlshb-Z. Further by the same sort of argu=-
ment used in conjunction with condition 1), it is clear

that D3=Du-D5-0, and condition 2) becomes explicitly:

(1-v)(F2+sF3+52Fb+s3F5) = (l-ev4?1+D2-VD4[}+%V(D1+D2-vnzﬂ -0
(IV-ls5)

Equating coefficients of the powers of v gives the

relationships:

Fz-(z-e)(D2+2D1)(D2+2D1+16)/32-29
F3-D2(-eDz+8D1(1-e)-16e)/32 + eDi/S
Fb-DZ(Dz(e-Z)-UeDl)/Bz (IV-46)
F5-OD§/32

DB'DU'Dj'O
The last three equations, inferred earlier, are given for

completeness, As a result of the redundancy of 2), 5) and
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6) only four new relations were needed to guarantee that the
coefficients of all five different powers of v 1in equation
IV-45 vanish, If we add to these seven equations the equa-
tion D,=Ag (i,e, make it one of the arbitrary parameters),
the resultant eight equations can easily be used to obtain

more coefficients in terms of A2 and A3,

hyp=(2-0) (A548b-4) (A34+8b+12)/128-A,(16+4A,)/6k-te
h32-h22¢(A2"~AB )/’4—
hyj=hpy=Ay(-6A3+32b(1-e)-16)/128+}e(b=3)> (IV-47)

hyy=hpy=A5(A;(e=2)-8e(2b-1))/128+43 /64

2
h35-h25-eA3/128
Finally, consider condition %), Since h(1l,v) -HO+H1+H2+H3+
+Hb' this condition becomes:
L
~ h,(1,0)= Eg% (h11+h12-h13+h1u-h15) =0 (1Iv-48)

The unknowns in this equation are h,,, hy3, hyy and hy s,
one of which may be taken as determined by the equation in

terms of the other three. We will choose to determine hy,,

By p==hy ) #hy g=hy +hy +2(=hy, +hy 5-hy) +hy o) + (AB-AZ)/b+b-%
(IV=49)

Now all the equations IV-40 are satisfied and 23 of

the original 45 parameters hij are fixed by the equations
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IV-l1, IV-43, IV-47? and IV-49 and the remaining 22 free

parameters are Al' A,, A3 and h (i=4,5,6,7,.8 and j=2,3,

i3
4,5 omitting hy,).

Despite the care taken to keep h as general as
possible, it appeared when convergence was attempted that
there was still not sufficient flexibility in f to approach
the true f very closely, In order to provide additional
flexibility equation IV-2 was multiplied by e raised to

the power of an arbitrary function,

f = a sing e8(u.v) (. JQl-u)2+h(u.v) ) (Iv-50)

This new factor is non-negative, as it must be, but of
course some conditions must be placed on g(u,v) so that

f will still satisfy the oconditions for which we so labo-
riously adjusted h(u,v)., A review of these cond;tions
shows that none will be violated if g(u,v) obeys the fol=-

lowing simple restrictions:

g({u,0)=0 g(0,v)=0 g(2,v)=0

(IV-51)
g(U.l)-(l-%)zuz[go(1+u) + glu2 + ..J

In a sense the condition described in equations IV-37 and
IV-38 is still "tampered with" in that if g,40 then r,
(the radius of curvature at the subsolar point) is altered,

If rc(go-O)-rco, then

J-%
!‘c = rco [:1-280(1'00/3){] (Iv‘52)
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Also the postulated condlition that the cross section is
circular to terms of order u5 will be violated unless
the following relation is satisfied,
g1= 8olAy+ B = &) (Iv-53)
With these considerations in mind we will choose g to be

of the form:

glu,v) = vuz(l-%u)z[éo @+u+(A1+% -go)ué] +g2u2+g3u%]+

3 2 i3 (IV-54)
+ v(l=v)u(l=du) > E:_giju v
i=o0 J=0
The gij are related to the Ai as follows:
8o=A31 82=A32  B3=A33  843=A3y.4,34 (Iv-55)

The h13 in equation IV~39 which are not given by equations
IV-41, IV-U43, IV-47 or IV-49 are related to the A, accord-

ing to the following scheme:

3 i 4 5 6 7 8

2 Ay | Ay Agpl Agg

3 | Ay Ag | Ag | Ay3) A, (IV-56)
b Ag | B30 A11] Ay A2y

5 | Ays| A6l A1y A8 A2z

Note that the A, in equations IV-40 to IV~54 is not equal to
the parameter Al but rather to 1 over the parameter squared,
This was done so that the parameter Al might équal the

radius of curvature in the xz plane at the subsolar point,
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APPENDIX V Program for Numerical Calculations,

This problem is one for which the numerical calculations
are quite involved and lengthy.. Therefore considerable
effort was expended in attempting to optimize the method of
calculation, There are two baslic time consuming operations:
1) tracing the curves feconstant and storing the coordinates
and their derivatives at the polints to be used in the inte-
grations, and 2) performing the double integration over these
points to obtain the moments, To give some idea of the time
required, it was found that when the first 16 moments were
calculated simultaneously, each of the two operations took
roughly 25 seconds (of 7090 time) when about 1200 points
were used in the integrands, Thus it takes about 18 minutes
to calculate the Hij (partial derivatives of the moments
with respect to the parameters) for 20 different parameters,

Clearly then it 1s important to determine the most
efficient way to obtain a given accuracy in the moments of
equation 7.2, TFirst of all, consider the integration over
f. This has a well defined range (0 to 1) and the integrand
(the inner integral over s) can be just as easily calculated
at any value of f as at any other, Therefore some sort of
Gaussian quadrature is obviously called for, However, it
was found that even Gaussian quadrature, which tends to con-
centrate points near the ends of the range, did not concen-
trate enough points near the f=0 end of the range, because
this region contains the current lines which go far back into

the tail and contribute heavily to many of the moments, To
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improve the situation the following transformation of varie-

ables was made:

e - (852, ar - (B) ax (v-1)

Now the integral (as a function of k) runs from -1 to 1 and

also has the factor #(k+l) in its integrand, The integrand

already vanished at kal (f=1) but now it vanishes at k=x=-1 as
well, Thus a further advantage can be gained by integra-
ting over k by means of Radau quadrature (a type of Gaussian
quadrature which includes the end points of the range). The
formula for Radau quadrature, when F(+1)=0, is as follows:

1

N
jF(k)dk e > er(kj) (v-2)
_1 j=1

2
where Hj = (N+1YTN+2)TPN+1(kJ) )2

PN(k) 1s the Nth order lLegendre polynomial, #nd kJ are the

roots of dPN+1(k)/dk. The formula becomes exact when F(k)

is a polynomial of degree less than or equal to (2N+1),.
Restate the above formula in terms of f, and absorb

the factor %(k+1) into the weights to obtain:

1 N
Jr(r)dr = }; wjr(fj) (v=3)
(o} j 1
where ky+1 k. .+1
Yy = TR TG T2, 1oy

and kj are the roots of dPN+1(k)/dk.

At the beginning of the program a subroutine called

START computes and stores for later use the fj and WJ which



are appropriate for the specified number of curves (N).

The integrals over S (along the curves), however, can
not be done by a Gaussian guadrature, because the points of
the integrand must be set up as the curve is traced and the
length of the curve is not known before it has been traced,
A1l things considered, it seemed best to do this integration
by Simpson's method, varying the interval size over each
successive pair of intervals, Starting from some initial
interval size, the interval was halved (if it was greater
than some minimum) whenever the curve was turning too rapid-
1y to be followed accurately enough or z was changing too
rapidly to be calculated ﬁccurately enough, Likewise it was
doubled (if it was less than the initial interval) whenever
the curve was flat enough and =z was changing slowly enough,
The exact criterlia for these changes are best understood by
reference to the flow diagram for the TRACE subroutine on
page 104, These criteria‘were determined quantitatively by
trial and error, It was further found, by analysis of the
integrals along individual curves, that the same initial
interval size gave different accuracy for different curves,
so alformula was developed (again by trial and error) which
glves the optimum initial interval for each curve as a funce
tion of a basic interval size (called DSI in the program),

In performing the integrations over the curves, elther
for the moments or the magnetic fields, the integral over
the last partial interval can be done with the same accuracy

as the rest of the curve by fitting a parabola to it, since
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it 1s known that the rate of change of the integrand with
respect to s 1s zero at the ends of the curves,

The entire program uses about 12,000 storage locations,
so this leaves about 20,000 locations for storage of TRACE
results, VWhen 30 curves are traced it is appropriate to use
a basic interval of 0,07 and this requires about 2750 points
in the integrand or 19.250 locations for storage, Thus the
program was written for a maximum of 30 curves, When this
maximum is used the moments are probably accurate to four
decimal places, During most of the convergence process it
is more economical to use 20 curves and DSI=0,11, as this
requires only 1200 points in the integrands and takes a pro-
portionately shorter time to run, The resulting accuracy is
still slightly more than three decimal places,

The next four pages contain flow diagrams of the three
programs used and all the subroutines with any significant
logical structure, and the four pages after that contain a

reproduction of the final form of the Fortran program used,



=103~

FLOW DIAGRAM OF CONTROL PROGRAM

Read control data and Ai = Ai +dA mam
input parameters, i
Set up for integrations,. [Necessary to retrace?]
Read input moments, lYBS
‘ NO TRACE curves{J
Are moments | o Are they {
included? needed? Are moments needed?
YES . NO LYES NO yYES
Read K-~1 input Trace curves Calc, MOMENTs
equations and Calc, MOMENTs Store Hij
write them out PLOT surface i Write & punch
i Print and Lout results,
LES K=212J punch moments {
NO Interpolate z coord,
Read 1list Have curves [YES |at ends of curves to
of param, - been traced? ] 11 equally spaced pts,
y NO and store in Z_;
BS|Is it ITRACE curves —— m=1,2,.....11
empty? 1
NO
KO Zng=4mg=im21 [ J=217
Read ] DA *YES
welights, Ai = Ai ?dA » Punch out ZmJ
Set J=21 m=1,11
Y
Write out Z_ YES !5.209
m=1,11 h=K,J ™ NO
{ J=217% YES"J:K-l
Is ALTER NO ¥ !
to be used? J=J+1
YESY NO i=no, eof next
ALTERI param, in 1list
YES 41 NO

BXIT

i

07
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FLOW DIAGRAM FOR TRACE

Enter: DSI=basic interval
NF=number of curves

set n=0

n=n+l, set i=-1

Lt Set up variables for
curve,

start of nth

i=1+2, set m=0, Store (x,y) etc, in (xo,yo) etc,

1

m=m+1, Extrapolate (x,y)

, YES
{Calc, z at last

2 pts,(Simpson's

rule) and store,

/

a distance DS along the
tangent & call new (x,y)

P, Compute storage index

Index too large

‘ IYES

16DSI |4y |DS=.5DS, m=0 for memory? | YEQ TEXTT)
>z'dz? (x,y):(xo,yo) INO NO
YES | L x<o?}_Y__ES,_{m NO, n=NF 7|
Printout requested? NO YESV ﬁES
NO ;YES Calc. z at last IReturn'
JPrint results ] point and store
y
| BRR < ,06 DSI? | Calc. CURrent fn, and its
NO YES derivatives at new (x,y).
NO hs initial DS?J Move (x,y) L to tangent to
YES get back on curve, ERR=
NO z°dz< 4DSI? (Dist . meved since P)Z/DS2
IYES ‘
[ DS=2DS ;] [first correction since P?
; [YES [NO
e ST LT ] DS >.00037 | [Adjust (x,y) |
IYES 'YES to make arc
BXIT ERR > ,2DSI?| |[length=DS, Get

new tangent,

Store results,
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FLOW DIAGRAM OF MOMENT

FLOW DIAGRAM OF ALTER

Bnter: LM=highest order mom,
NM=No, order < LN

szmoments,NFa No, of curves

moments of

NInnNo. pts., on nth
k=1,2,,.NM throughout
Gk-O

curve,

n=0

1]

n=n+l, i=-1, T =0
Calc, initial z for this curve

L

Jei1 1=142, =1
Set up indexy /T ™3

for data at JBS 14+43=37
NO

-

point i4+j=3

Take data from storage
Calc,. Cm. Sm' Qnm by
recur, relations (6,14)

Calc, integrands (6.,15)

and store in Dki
i éNIn?
YES
=37
YES

NQ

Add to Tk the
integral over

NO

the remaining
interval and

partial inter

NO

>
Poo

1=17
YES

Dklinkﬂ*

NO

Ty =Ty +DS* (Dy

+u0k2+Dk3)/3

\

1==Ni3 G, =Gy +T, "Wt
jyes 1} y No

A

Add to Tk the inte~ n=NF?

gral over remaining {YBS

partial interval, Return

NP=No,

Giamoments

Enter: NM=No,
of parameters

i, j=1,2,,.NM
k,n=1,2,, ,NP-NM

of moments

Set up Is no, of
for inte- NO curves uri«
grations, changed?

) YESy

-1
HIijs(Hij)

HJin=

=
3 HI;jHjn+M

> , 2
HK,, = i(ﬁJikHJin+5kéVU

]
dAiu 3

-2 HI

13%;

Y

Z "1 t 2
V2k=n'i(HK)anJindAi/Ui

i

dA .=dA'=
J J

dA

k+M=V2

K

HJ

i HI 5 V2y

)

Increase parameters by
dAm, TRACE curves and
calculate MOMENTSs,
Print out changes in
moments and parameters

and PLOT new surface,

——XEE{Repeatf}Eg{ggturn.]
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FLOW DIAGRAM OF FIELD

Read in NF, DS,

NT,DST & input

param,, & write them out,
NF > 0720
YES
Set up for NF curves, TRACE

FLOW DIAGRAM OF SAMPLE

Read 1list of param, to
be varied & input param,

Set up grid of points,
Angle subscript i=1,11
Radial subscript n=1,20

except that BYk & sz Kok,
MZ replace Tk & integrand
taken from (I-3) & (I-4)

rather than (6.14%) &(6,15)

f

curves & calc, dipole MOMENT Set k=0, j=0, Glinzo
Read next card, first digit=
IT, next 14 numbers=T, . F,,=f at each point
Gyn=100(1Vv f] -G14,)
17[ NO \
~52107 YES
xi+j“T1 e J=j+ll NO
Note: y-xz,zisxi+2’i=1,1b Print out F,
i { YES | Gy p=.01Gy
L9> MZfT G1;n=Cyn
YES X,,10,Read 4
Eigiill}<~———next card, Print out Gy
NO Aj=Aj-,01
MZ=0 H—MZ=MZ+14‘ ZMZ+1=O? kK=k+1
NO  |YES j=no. of k'® param,
Calc., field comp, of surf, Achj +,01
Logic of this block ident- !
ical to MOMENT subroutine, NO 1y.09 FYBS o gxIT

i IT=17

{ YE

For each of the MZ field points:

TRACE NT equally

Calc,

mag,

& dir,
& total fields and print out results,

of dipole,

surface

spaced curves, &
print at each pt,
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CONTROL PROGRAM LATA CARDS FDR CONTROL PRGIRAM

COMMON W A TA,P NLNFoFRyWRyGoHsUeVeNToIK,Q NE. DF
DIMENSIUN WE10G),A(80),1A120),P190)4FRI30)MR{301 46130} 4HL20,20) CARDS COLUMNS

NUMsER OF  ALTER CYCLES DESIRLC.

NUMBER OF PARAMETERS (NP) VARIED BY ALTER
HUMGER UF MOKENTS CONSIDERED BY ALTER  (515)
NRLER OF HIGHEST mMAMENTS CNPPUTEC  (51G1
NUMBER UF CURYFS TRACED Y (CONTRGL tE33)
HASIC {NTE2VAL ON THLSE CURVES (Fo.1101

QEAD INPUT TAPE 541eNhyNH, NM NSyNF DS DA,NF2,0524NL £29)
FORMAT(S513,2F5.3,13,F5.3,106)
nC 3 I=1,53

QEAD INPUT TAPE 5,2,1J4,41
FOMAT(L2,FB.5)

TFETJ) 3,4,3 Para ER INCRIMENTS USEN YU CALCULATE kikeJ}  1F0.030)
AtfJ}=Al NMUYSER OF CURVES TRACES Ry ALTER (233
CaLL STaT BASIC INTERVAL 0N THESE CURVES  (F5.11u)
CALL PSET HIGHEST LOCATINN OF PROGRAM IN STURAGE  (F11900)
READ INPUT TAPE S5,6,18,0UM, (V(I),[=1,1%) 4 TNE CARD FI'& ZACH ANN-2£22 PARAMETER.  COLUMNS 1-2 CONTAIN ITS
FORMATLI2,F5.3,F11.5,6F3,5/8F9.5) WUMBER AND 3-10 CONTALG 1TSS VALUE. ({FCR¥AT 00.€300C).
IFUIRY 16,7,12 1 BLANK CAQD,
CALL TRACE(DS,~1) I COLUMNS 1-7 UF Tl FIAST CA0 CONTALN Ik A%D A SET OF RMCMENTS
CALL MOMENTINS) FOLLCW. [F 18> 1 THe PRus28m allL USE THESE MOFENTS, IF {B=0
03 8 I=1,415 ITwILL CALCULATE ITS OmNy AMD IF IB8< G [T wWILL ONLY FEGURE
vEily=Gtl) CRNSS SECTIONS. NEwW CAX3S GF THIS AND THE FULLOWING TYPE ARE
12=949 PUNCHED AY THE PROLRAM WrESNEVER CALCULATEC.
ARITE QUTPUT TAPE 7,6418,004,4vil),1=1,15) 2N ONT PAIR OF CARDS FUR EZACH PARAMITER (FUP wHICH THE H{I,J) ARE
TALL PLUT KNOWN) TO EL USED ©Y ALTER, THE FIPST CARD CONTAENS THE
w2 ITE OUTPUT TAPE 6,94G(30)4tViI),1=1,15} PARAMETER NUMBEFP (K) T CLLUMGS 1-2 AND ONL MInUS THE PARAMETER
FHRMAT{ISHODIPOLE MOMENT=F9,.6,51H AND MOMENTS 21 31 33 4] 43 51 53 WEIGHT IN 23-7 (FORMAT C.C0G}.  THE HUTI.K) FULLOA.

55 51 63 65 71 73 TS T7 ARE JIHGF12.5,7F9.5,7F8.5) 2 BLANK CARDS,

TF{NS=8) 12,1C, 10 1 LIST OF PARAMETERS (2 COLUMNS EACH) FOK wHICH Now HUI,4) ARE
215448 (NS/2) 58 INS/LO4NS/I) TO BE CALCULATED. ©ONLY THZ FIRST {25-N) wlLL BE DONEs AND
ATTE GUTPUT TAPS 6411406110 ,1=16,NW) MNLY THE FIRST (NP-N} will A& USED BY ALTER,
FUIMAT({AHNHIGRER MOMINTS= 4F9.5,10F8,5) 1 RESPECTIVE WELIGHTS (ACTUALLY O%C MINUS #EIGHTS) TO BE USED
aPITE QUTPUT TAPE 641341V([),1=1,15) AITh ABOVE PARAMETERS (FORWAT .57 0).

FUOIMATE21HICORQKECTION EQUATINONS //1HOF12.5,7F9.5, TF8.5/3H01A)
M15 K3l 20

READ INPUT TAPE 5,6, [8IK),UIK)  {H{T,K),F=1,15)
Ulk)2l.-UiK])

[FCIA(KY) 17,17,15

NRITE CUTPUT TAPE €515y TAIK) (UHIT, K} 1=1,15)
FURMATIIHDI2,F10.5,7F9.5,7F8.51}

G0 T 46

2EAD INPUT TAPE S418.01A(1),1=K,20}
FOrMAT(2912)

TFLEA(K)) 46,45,19

Km=1B+28(K/3)/11+1K=-31/3)

REAL INPUT TAPE 5,20, (U1, 12K,K™)

FURMAT [ 15F4,1) TLR =~ CUMPGTES CUPKENT FUNCTIUN A6LD ITS LEIRPVATIVES AT A PLINT
3 21 1=K,20

Uti)=l.-utl) SUSRLUTINE CuURING SRy SeCaF FR4FY,FS)

1=21 COMMCN Wa A, D10,P

1FtIa) 22,34,22 CIMINSION wllm0), 8088, 1AT120)},2090),G111),H(E2)

CALL TRACFIUS,-1) =2

U T0 3u

NELEY 1

J=ivl

JI=TA(J)

TFUA1) 44,46,29
AtJid=atdi)ena

TF(ITI-7C) 26,26427 T=2(62)+ e {Al02)4NeA(64)

CALL PSET wHslatvelAls1)+(l.-y)eT}

CALL TRACEINS,-1} Frlal6bLl)-Cald2 ave(l,-VIn(A(63)+028A164))) /A0
HASSS! dy2d4 28 1=A020 0wt la/atl)eele T =4 (31))¢A(32}

CALL MOMENT(T7) nT 2 K=l 3

o2y +15 UK =A{K+33)eve(AIKIIL)eynalNe35)
rliydd=0301}-ViI))/us 2 GIxel)=aiRedulsVIoplre35)

Le=l.-uty) Tu 3 K=l.8l,

ARIEC QUTPUT TAPE 6,1b,1800),(H{1,4),1=1,15%) T=P(K+1)+0e(PRe )4 (P (M e ]+8P (K4} )

WRETe DUTPUT TAPe 7,4 14100, UP, (HIT,J1,1=1,15) PLR) =P )+ l1.=v)eT

MUK Pl EHEK b eV { [ La-v)el o (P (K+2)4020(PIK+31+03ePkea))) =T
IF{L) b4bhed
GEUILE

Nl 31 Nal,NF
NJ=NEeleN
InTEX=IK{ el )-8

¢

ZINI)=0LINDEX I+ 028U L INDEX-2) #C (DT X+ 1) u-1.

YOI =1le=FRUN} Le-U

=" [S PRS- IR

39 m=1,11 S2:84 31 euniatsl)euetllevaa(33g))

X=£+,723333333 S3=GU1 Ul SLa+UnIGLT s L17))

T 3 N3y NE JezEe{telze{l.-VINn3)

TFIYal=X) 32,236,233 GrEAPFivasa}

LT IRYL AVEDAAVET Rl (L =V R (GI2)4Un(GI5)+UIGIRI+USGIL1I})I-63)
TFtN=2) 26,415,334 SU=velce( A131)42 00 tGlel 5008 {33)))~2,0TG2)

PPt F) Se 27,37 1 #01l.-Vie (Cla)Z2 a0et{T7)0l.SeusGI10)1)-T8G3))

IFLY i) =x=X4Y{N=1]) 36,30,37 TI=HI4L)4Ta(RIS1I4T{HISTIoTo(H{TLI*ToH{a1}))])
3 T2=H(42)+TalH 521+ T ({62 e Toir{T2)4TaH{62))))
My e L) e iH{LIL)sUus i1 ) +Ba{r(31)+ReT1)) )]
HV = FU2Yeust{12)¢Ue HI22) e (HI3214Re12]11})

i ox3=Y{N=2} YR IHLLL) 4 e (N Z1) 402~ 1. 50U eHI 314 (2 0usU-E oUsrb 1 eT])
73:2(N-2) 1 soeysuetn(=(iitez.eTalhn{ol )+l SeTa{HITII4H(8L)®TL.T5))))
A NZ=vin) SC=SomFE(TeTemn}
1ol TFOSG) TolGy 1.
c1=YiN=11) 7 &9 [VI uUTeuT da LedsSUyiyCymiae)
35 78UV, 0)=22-1X2=X)w{{X =X} o lZ2=L3)/(X2-X3 )= X3=X} @ (ZIN-1)=22}/ A FURMAT(&H $0=F13.7, 74 FOx U=FLlO.7,9R AND CAS=FIL.1,7H nl38)2F6.C)
L {x1-#2)1/{%x1~x3} 3 CALL EXIT
IF{4-21) 43,642,402 1) FUz5uell.-SG1-1T+,59K1)/Su
4™ 2J1)=A{JT)-0A TT=41.-531/U
N2 61 M=1,11 . fFe=Sat U
61 ZE(M, )= UZE(MyJ)~ZE(¥,21))/04 FzAGeSaE el L. -5Sul
42 WOITE CUTPUT TAPE 7,43,01 ¢ (2ZEIMyJ),¥=21,11) FosCREGe(TT-CaSa{ 2, a(TTosV+CFeiFT=FU}}=(RV/SLI/UDI
43 FOIMATLI2,11F6.3) FX=FRe(-FQs$S
TFQY=22) 24,44,23 FY:Fgef +FRaS
44 WRITe NUTPUT TAPE 6,45, {TALI)(ZE(MyT)yM=1y11),1=Kyd)} FS=FReFR+FOeF
L, IC, (2ZE(M,211,M=1,11) IFTD) 14,114,111
45 FLUMATI4HHIRATE OF CHANGE OF CRCSS SECTION WwIVH REBSPECT TO /7 L IF{FS-1.) 13,13,12
1 (1H3{2,L1F13.4)) 12 FS=1.
46 THUEA) 49,47,47 [NEERETTTLIRS N
47 THINN) 48449,48 TF(miS3)=170C"0) La, 14,7
48 CALL ALTER(4voNP NMyNS,NFZ,052) 13 wi39)=wlI¥)sl.
49 CALL EX{T 16 ALTURN

BT Etd?
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TRACE - FOLLOWS A SPFCIFIED SET OF CURVES STORING DAVA AT EACH PT.

SURRQUTINE TRACE{DSI,J)

COMMON Wy A, TAsPyNL NFoFRy WRyGrH UV oNT o IK4Q

OIMENSION WE100),A(801,1A020)1,P190),FRIB0},UWRI30) ¢G{30)4H{20,20)
LeLf20),VE15),NIL30),1K131),0110000)

IK(l)=1

KO=IK{N)

P1=-9999999939,
OS=SGRTFIL.-¥)e(lam1./(2,4250.2Y8Y)}»0S]
wtk0)=DS
CiKO+1)=0,
QKO+ 2) =Y
GiKO+31=5.
CIXKO+4)=],
0(KQ+5)=1.
CiKDs51=0. )
D54=0$-.00021
50 28 1%1,50%,2
X=X
Y=Y
PO=py
P10=P1
50 TC 3
DS=.58LS
o

-

cT®

~

Y=Yl
Pvi=PQ
Pi=PlO
D0 18 Mxl,2
KaKGe7ail4M=1)
IF{K+NL~31630) 4,4,33
4 XI=x
Yl=Y
X=X+C{K-2)*D5
Y=Y+C(K-1)e0S

w

X3=x
YJ=Y
ASSIGN 6 TO N8
IFIX) 30,30,%
S R=SURTF(XeX+YeY)
S=Y/R
Cexiw
CALL CURI1+14RySsC F FXsFY,FS)
DE=FR(N)-F

X=X+CF/(FX-PIeFY)
Y=Y+DF/LFY-PJIeF X}
IPR={{X-XJ)®e24(¥Y~YJ)wu2)/DSnu2
GO TU HB, (6,6)
ASSIGN 8 TO N8
1F{DS5-.0003) 5,7,7
IFIERR~.28DS1) 5,5,2
X=X={RR®(2.¢(X=X[)-D5S#Q(K=-2}}/1.5
Y=Y-[RR®#[2,#1Y-Y[)-0Se0(K-1))}/1.5
Pl==FY/FX
PJR—FX/FY
TFIFX) 17,9,10
) PI=9959939949,
1o TF(FY} 12,11,12
11 »4:9999999399,
12 IFLABSFLFY)-ABRSFIFX}) 13,13,14
12 UIR+E)I=1./SORTFLL.+PTeP])
W(Ke5)=PTeQIKeb)
6o 1o 17
14 CIKe5)=21./50TF {1, ¢PJeP])
TF(FY) 15,16.16
19 GIXE5)a-5(K+5)
16 JR+6)1=PJaQ(K+5)
17 LtK}=05
LiK+Ll)=X
wiKk42)=Y
Win+6)==SURTF(1./FS-1.)
1% CONTINUE
w(K=4}=Q(K=11)+DSa{5.80(K=-101+8.0C(K-31~y(K+s))/1 2,
GAX+3)=QIK=11)+0Se( QIK=1G} 44, 2CIK=3)1+0{K¢4) /3
[F{16.905{-05%0LIK+3}aQ{K+4)) 2,29,29
&9 TSA=GSA-DS
1FUS) 22419,2¢C
19 1FIDSA) 20,25.22
27 wWALTE CUTPUT TAPE 6421 ,Ny1sDSHERRIF I FSyXsY4CIKe3)
21 FORMAT{IN N=12,3H 1=12,4H DS=F8.7,5H ERR=F12.9,3M4 FxF8.7,4H FSaF9.
1743H X=F11.8,30 YsFLl1.8,3H Z=F11.8)
22 1FIDSAY 23,23,24
23 DSA=Q(KU)=-.0NCO1
¢4 IFLERR-,N6eDST) 25,28,28
25 IFICS+.0M01-0(KU)) 26,28,28
26 IFL4, eCST-0OSeU{Ke3}eC(Keb})
27 D5=2,=0S
28 COATINUE
on, Tn 33
3C GBINY=[aN-1
IKIN#1)aK
IFIM-2) 32,31,31
N=0{K-7)¢x]
QIK=4)Y=Q{K-11)+4{D=xT ) (Q(K-10)&(X1+2.8D) /D+Q(K~3)a{2.#XE+D}/X1)/b.
CONTINUE
RETURN
NI(N)=TemM~-1
WRITE QUTPUT TAPE 6424sNLyINI{K)sK=1,N)
FORMAT{THOIF fL=216,26H, TRACE EXCEEDED MEMCRY.
1CUKRVE WERE (2514))
CALL EXIV
END

o

a ~

28,28,27

3

w
N

3

3

*

/25HOINTERVALS PER

15 ITFL132-L1)
16 wRITL
17 FURMAT({132A1)

PLOT — CUMPUTES AN ARRAY OF GRADIENTS AND PLLCTS ThE SURFACE

SUARGUTINE PLOT

COMMON WoAp TA, PoNL NFsFRyWRGeH Us VNI, 1K G

DIMENSTON WUL0UDALBC) 4 TAI20),P{90},FRIZLILWRIZCH +GL30)4H120,20)
1,U1203,VE15) ,NIL30),1KE31),00100C0),Y180},2¢(80),00(20}),6G1(11,20)

00 1 N=1,20
1 UGIN)=.18FLOATF{21-1i}

no 2 1=1,11

Q=.157CT798*FLOATFIL1L1-1)

S=5INFIQ)

C=CAasFiQ)

B0 2 N=1,20

R=UGINDY

CALL CURINGD RS, CoFyFX4FY,FS)
2 GLUL,N)Y=2SQRIF(FS}

WRITE OUTPUT TAPE 643,{A01),1261,64),1A01),3=14221+LA0)]),1231,45)
3 FORMATI(34MIGRADIENTS OF THE CURRENT FUNCTION/LIH ASYMPTUTE=4F11.5/
L11M SJ. ROUT =11F11.5/F22.5,10F11.5/11H EXPONENT =11F11.5/F22.54
23F11.571

WRITE QUTPUT TAPE
FORMATIIHOLLIF G, 4)
SPACE=606065506060
OGT=0060€06260¢6C
DASH=4C6062506040
VE2T=316360506C00
X=2eNF+l

O 5 N=zl,~F
R=FR(N)#s2
NY=K-Nel
ZINI=AL{TI)~A(72)0lR@{1as(R=-1,}2(ALP?II4R8ALT4H})I-ALTS)SISCRTFILI-R]
1 =1.#+RE[.54.1250Re{1.#Re(.5+2.58R})}))

INDEX=IK(N#]1) -4

ZENJYSZUNISCUINDEX B+, 5800 ENDEX-2) 20U INDEX ] )

YIN}=FR{N)
Y{d)=2-FRrRINY
Y(NF+l)=l,
LINF+L)=A(T1)-A(T72)
ARITE CUTPUT TAPE 6,6
1etAtll, 1=31,45)
& FNRMAT{4CHIGRAPH OF MERICIAN AND EQUATORIAL PLANES/11H ASYMPTGTE=
14F11.5,11H PRUFILE  =5F11.5/11H SuU. RONT =11F11.5/F22.5,19F11,5/
211H EXPONENT =11F11.5/F22.5+3F11.5/}

X=2.

NX=-,083332333

LM=23

OL 19 L=leb™

X=X+0X

DU 8 Nzl,K
TF{Y (NY=X)
5 CONTINUE

1IFtY(1))
4 [FIN-2)
2 IF(N=K)

634 S tIGLIT,N)-T=1,11),0=1,20)
N

»

v

flALT) p1=61,64) 4 CALTY  1=T1,T5),LALE),1=1,422)

~

841259

18,23,18
12,412,129
11,13,1

3
11 TFIYINI-X=A4Y(N=1}) 12,12,13
12 X3=Y{N+1)

13=2iN#1)
GO TC 14
3 x3=¥(N-21
13=11IN-2)
X2=Y{(N)
22=2{1}
x1l=Y{h-1)
IL=LZ2-(X2=X) e t{X1~X) e {Z2~Z3) /7 (X2=X3}=UX3-X)®UZ(N=-1}=22)7(X1=-X2})/
1(x1-x3)
LESXINTFIZD.8(2.-20)+.5)
TFELI) 19,18,1%
12,18,16
CUTPUT TAPE 6417,(SPATE,1=21,111,007

*

5010 19

18 #Q1TE UUTPUT TAPL 4,17,SPACE
14 CONFINUE

[FIYOL) 22,23,2¢
27 WRITE OUTPUT TAPL 641 7.5PACES{DASH,1=1,439)4VERT, (CASHeI=1,91}
Zi1y=A0T71)
Y{1)=0.
¥M=NI(L1} N

Sl 21 K=2,KM
Z(K)=COTwK=3)+A[71}
Y(R}=0({Te¥=5)
IF{YIK-11-YUlK)}
TINUE

21+27422

FERN
PX=,183333333
Lw=28
onoTG 7
3 FRAC=WIIBI/[wl98) 4w (991}
WRITE QUTPUT TAPE n,24,FrRACIKINFe])
FORMAT(ATH FRACTIGH GF GRAUIENTS GREATER THAN ONE= F7.5:16H DIMENS
110N OF 4= 16}
RETURN
ENC

>
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SAMPLING PROGRAM FOR CURRENT FUNCTIGON

COMMCN W, A

DIMENSION Wi1G0),A(80),
1 61011,20),62111,20)
READ INPUT TAPE 5,1, (1A2t1),1x1,51)

1 FORMAT(3512)

LU 3 [=1,82

RLAD INPUT TAPE 5,2,13,A1

FORMAT(12,F8.5)

TFITJ)Y 3,4,3

Atigd=al

N0 5 1=1.,11

6=2.157C738«FLDATF(1L~-1)

STEEI=SINF(Q)

CTLTI1=COSFLQ)

T & N=1,27

5 UGIN}=,1eFLOATF(21-N)
K=73
LBk
7 CALL PSEY
LN B [=1,11
5=5T(1}
£=CYLI)
10 8 N=1,20
2=UGIN)
CALL CURIN, 2 Ry S,CoFsFX,FY,FS)
FLUTI,N)=F
8 52(14N)=100.#(SURTFIFS)=G14{I,N}}
TFIK) 9,9,12
9 WRITE DUTPUT TAPE 6,10, (A00)+1261,64),(A(1),01=1,22),LA00),1231,45)
T o CIFLEEWNDY,T21,11),051,20)

10 FOIMAT{2IHICURRENT FUNCTICN FOR/L1IH ASYMPTUTE=4F11.5/11H $S4. ROOY
1=11F11.5/F22.5,10F11.5/11H EXPONENT =11F11.5/F22.5,3F11.5/
ZUIHCLIF9.4)}

nNo1l F=1,11
L0 11l N=l,20
G2UEaNI=,018G21 TN}

11 GLUT NDI=G2i14N}

12 #2ITE QUTPUT TAPE 6913,KI{A(I)s1=261s64),0A013,1=1,22),0A00),1231,
1 4514 4(G2(14N)s0=1,11)sN=1,20)

13 FORMAT{SIHIGRACIENTS DR VARJATJON THEREUF WlTH RESPECT TC A(I2,1K}
17114 ASYMPYNTC=4F11.5/11H SQ. ROGT =11F11.5/F22.5y10F11.5/114 EXPQO
ZMENT =11F11.5/F22.5,3F11.5/11HOL1F9.41})

ALKII=AIKT )=, 31

UG(23) o STL113,CTEL11) ,IA2142),F1CEL1423)4

pwo0N

w

MOMENT - COMPUTES ALL MOMENTS UP TO A GIVEN GROER

SUBROUTINE MOMENT (L)

COMMON Wy A T8, B NL,NF,FRyWRyGeHyUs VNI IK,C

CIMENSEION WILNO)4A(BG) 12020} ,P1{90),FR{30),WR(3I0)4GL130)JHL20,20}
L,U020),VI15)4NIL30),1K(31),0{12000),V(30},X010)¢YL{10},B(10,410)
2 40T(30,3)

DO 1 M=1,30

GiM}=0.

DD 18 N»),NF

R=FR{N)#e2

Zl= A{71)~A{T72)e(Re{1,+{R-1.3e(A(T3)¢ReA(T74)}1-ALT5}a(SURTF(Llu~R}
1 -1.4R8{.5¢,125sRe{l.+R*(.5+2.5eR))}})

I

r

IM=NI(N)+]

CO 13 [=1,1M,2

Lo 9 1522,3
K=IK{N}+To{1+][S~4)
TF(I+IS=3) &4,9,4

r5=01«)

({11=01K+1)

YUI1)=C{K+2)

1=21+0(K+3)
H2x{1)#e2¢Y{1}we2

CU S M=2,L™m
X{P)=X{M-1)eX(1)-YIM-1)=Y(])
YIMp=Y(M=L)ex(l)ex(w-1)svL])
Htlell)=1,

2.2 5
2{2,1
nG 7L

&

v

Sel
EETIL.

FaCl=1.

D8 6 IL224Ly2
FAC=FAC®FLUATF{L~T1L+2)
BlLyL)=1l./FAC
BlLL-1}=Z/FAC

O 7 MIa3,L

LIl S R

o

~

Cu 8 L=1l,tM

CO g M3b,1,42

I=In+l
DICIN,IS)=0[K45)8B(L ,M)aXIMI~B(L, ML) m(Q(K4S8X{MAL)4Q(K46)2Y(Ms1)

«

K=kel 1)#FLOATF L1=m/L) /FLDATF (L +m+ 1)
KI=1a21K) IFCI-IM) 9.153,15
AlKEI=A{K[)+.01 3 CONTINUE
TFIKD) T4l4,7 IFLI-1) 12,12,1¢
14 CALL EXIT 10 00 11 M=1,1IN
END 1L TUe}=TIMI+0S(DT{M, 1144, 00T (M, 2)+DT{M,3}}/3.
12 53 13 Maj, [N
13 OTtH,11=0DT{M,3)
DATA CARDS FOR SAMPLE PROGRANM DI=X(1)we2/(0Sm{xXt{1)+.58D5))
N0 14 M2l,IN
1 PARAMETERS (TduU COLUMNS EACH) FOR WHICH THE DERIVATIVES GF 14 F{MI=T(M)e¢X{1}a(DTiM,1)«{3.401)-Ql=DT(M,2))/3.
THE GAADIENTS ARE YO BE CALCULATED. . 50 10 17
» ONE CARD FOIR EACH NON-Z530 PARAMETER. COLUMNS 1-2 CONTALIN TS 15 Ql=Xf1)#e2/{DSalx{1)+.5#DS))
NUMBLR AND 3-10 CQONTAIMN [TS VALUE. (FURMAT 00.00000). I 16 M=1,1IM
1 BLANK CARD. 1o T{MI=TI{MI4IX{1)+0S) @ {DFIM,2)¢{2.4QL)+DT (M, 1) e{1.-C1))/3,
L7 SU3CI=GU30)ewr(N)eT(])
0T 18 Mz2,1n4
18 Sim=1)=G{M=1)¢wRIN)2T(K)
RETURN ¢
23
PSET - COMPUTES MODIFIED PARAMETER SET TC SAVE TI®E IN CUR
SUBRUUTINE PSET
COMRON Wy Ap1A,F
CIMENSEON WE100),A080),14120),P(120)
Al=1o/AL1)en2
Pla)=-a(21e82/16.
PIZ)==8(2)-P(4) START - SETS UP CURVES TO 2E TRACED AND wEIGMTS FCR INTEGRATIONS

1 +.25#(A13)-A(2)14.420597

PL121=A(2)
PL221=.019117060A13)8(A13)422,729552)1-8(2)e(16.4A12))/64.4.3067029

PE25)=.035507922eA(3)=s2

PI231=,062359133 -,0571092e4(3)=-P{25)
Pl24)=A12)ee2/66.,-.C1C1LT0OB*Al3)=(A13)+3,66369CF)
vi31) 420337

PL32)=P122)+.25%(al2)-813))
P{33})=P(23)
P{34)=p(24)

P35)1=P(29)

Plall=AietAl+40.)/32.4.38156008 1
PI51)=A18021+1,)/16,4.23816202

Plul)== 18758A14.0544938937 2

PIT71)=.21345392 -P1351)
PIEL)=—Al®A1/32,-.012749604
Pl521=414)

PI53)=4L%)

PLs21=ALT)

Ple3)=a(8)

P{54)=A110)
Pte4qal=alll)
Pi721=a012)
o173)=a013)
PLT6)=A014})
PISS)=a115)
PLES)=ALLTY
P(T75)=A(18)
PI{S2)=a(19}
Pl33)=a(20}
PLB4)=AL21)
Pt3sl=a122)

PL43)=aL5)

Pla4)=A[9)

PL45)=ALL1S}
Pla2)=-P(41)+P143)-P{44}4P(45)1+42,2(P(23)-PI22)-P{24)4P(25))

oo

ow

~

‘e

RETURN
END

SUHPOLTINE START

COMMON W Ay T8, P, NL NFyFR K

CIMENSION w(lI2D),AtB I 1A{201,PLIOULIFR{IC)wRI3D) (TL31)

iFel

FAC=1./FLCATF (FarMen)

nN4=M/2

DLLG J=lenNA

Jl=MF+l-y

TE(I-2) 14243

s~ T 4/FLUATFINFe{NF45)])

T0 6

«30x=2,2

G TR 6

IT1J=4) 4,5,5

X=2.58X~1.5¢n{J=2}

FLUR (-1

X=2.z8X=1a28n{4-2)

D0 8 K=1,19

2=1./71xex=-1.1

Til)=x

Tl2)1=1.58X%x~.5

007 N=3,M

TIN}={FLCATF(2aN—1)exXsT(N=1)-FLOAFFIN-1)aT{N-2))/FLOATF (N}
(™)

U=FLCATF (M)

D=UsZetiXeQ-TiM-1))

0 sZoZa{fU-1.)10tXexeQeTIM-2))=-C+(3,-2.8U)sXeTiN-1))
X=X=-0/C0
1F(ABRSF(D/DD)
CONTINUE
FRIJI=.25#11.-X)2e2
wld)=x
FRUJI}=4258(1.¢X)we2
mR{JI=FACS(1.=-X)1/7Q
WRIJIV=FACE(1.4x)/Que2
RETURN

END

~.0000C1) 9,9,3
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FILLD CALCULATIONS AND/OR PLOT TRACE

CUMMUN Wy Ay TAYP oNLyNF FR Ry GyHoUs VNI, 1RO
CIMENSION WULUCG),A(B7),TAL201,P190)FRI3) ,,wWREI3D) ¢6GL30)4HI20,20)
1hUC20)e VLS oNI130),IK(31}1,Q{I0000),TI14)+XtLk)gY (1) 4I(54),BY(40)
2 yRZL4GY,XY{6L),TZL4C),DY{%0,3),D2(40,3})
READ INPUT TAPE S5S¢1lsnF,0S$,NT,DST
FORMATII3,F5.34134F5.3)
no o3 1=1,80
READ INPUT TAPE
FORMATIL2,F6.5)
IFE1J) 3,4,3
afld)=al
CALL PSET
WRITE OQUTPUT TAPE 695, 1AL1)s1261,04)8A01),1=71,75),lAL1),1=1,22)
1 2 LACT),1231,45)
S FORMAT(1IHLASYMPTOTE=4F11.5,11H
111F11.5/F22.5,10F11.5/11H EXPONENT
TFINF) 36436,6
& CALL SFaRT
CALL TRACE(DS,-1)
CALL MCHENT{3}
READ INPUT TAPE S,7+1T,(T(1)s1=1,14)

NGO
ca

Se2s1J441

~

o

PROFILE=SF11.5/11H $Q. RCOT =

=11F11.5/F22.543F11.5}

FORMAT(11,14F5.2)
IFLIT-1) 35,8,36

J=

10
FEFEDY
X(Jp=T11)
1Fty-62)
XtJell=0,
READ INPUT TAPL Se7,iT41T(1)40=1,14)
TFLIT-13 12,1249

wZ=n

MI=MZ+}
1IFt2ZtMze1)
PO 1o Mal,»
nY{M)=G,
wIix)=C,

OU 30 N=l,NF
T=FR{NI®a2

I=slyl4

11,11,38

14415514

Z1= ALT1)-A(T2)etia{) +{R-1.1(AIT3)IROA(T4}})-ALT5)8(SCATF(1.-R)
1 -1.¢Re(.5+.125e0 11, 4R0(,542.50R}1)}} 1
DU 17 Mal,mZ
TY{®)i=), 2
17 124m

Tm=nNI{N)+L

25 k=1,1m,2

21 15=2,3

K=TKIN)+To{I+1S-4}

1FtEe1S~3) 19,21.19

cS=gIK}

X1=C(K*1)

Z1=90tK+3)421

T1=0(K+a)a{xXl-X])

F2sUX1~x)ee2+{QiN+2)-Y)au2
Tiz{XleX)ma24{u(K42)eV)we2

=2, 8XeQtKes)

L2=C{Ke3) e [GIK+2Z)=Y}-X2eO (K6}
152U2+2,eYeQ(K+5)

20 20 M3l Ml

22=21iM)-11

U1=F142280(K+5)

Tl=(SCRTFIT2472872) 1823
P2=1SARTFITI+422022)}ae]

DY{M, 1S)=Ul/01etul+T4) /02

BZtM, 1S)1=u2/01-75/D2

TFtI-IM) 21,27,27

LINTINUE

TF0I=1) 24,244,222

T 23 Ma), v
TY[MI=TY(M)+05e (DY (M, 1} +4.#DY(M2)¢0Y(M,3))/3.
TZIM}=TZ{M)+DSa{DIIM, 1}+4.8D21%,2)+02(My3)]/3.
fu 25 M=l,mM

OYEe, L1=nym, 2}

NZEM,1)=021M,3)

T1=X1ee2/(NSe(X1t.020S})

Gl 24 M=) ,M7

TY{M)=TY(M)+ 1o (DY{M,1)e(3,4Q11-CleDYIM,2)}/3,
TZ(MI=TZ(M)eAlo{0ZIM,1)2(3.401)-0L0Z(M,2))/3,
HU TE 29

nEzKle82/(DSe{X1+.5205))

My 28 “MalyM2

TYy(M)=FY (M4 (X1+DS)@{0OY(M,2) 082,401 0+0Y (M1} .-CQL} )/,
FZIM)=TZ{M)+{X1+DSIO10OZ(Ma2) % (2,401 )+D2IM, 1 0], -Q12) /3,
o Mal, M1

YIMI4RRIN)®TY (M)

LM +wRANYSTL(M)

RITE JUTPUT TAPE 643L14X,Y
FI2%aT{36HIMAGNETIC FIELDS AND TANGENTS FUR X=FS5.2,4H
T34 Ma], M2
GLID)#(XOX-2,8YeY4+2 (M) oZ(MIV/ISCGRIFIXEXeYaYLZ{M)uZIM})]}ens
GU3ZYeYeZ (M} (SCRIF(YsY+I(MI#Z{M}))we5
OY=SORTF(1.+(02/0Y)ee2)

3

<

S

6

7

23
£

s

11

¥=F5.2) 12

13

14

HT=-L2/0Y
IF{X)

32433432

BY(M}eSURTF{1 +(6Z{M)/BY M) )os2)
ST=-HZ(M}/8Y(M)

Tu=2. 0 (DY43YIM) JoSORTELL.+1(OZ+BIIMII/LOYSEYIN)}) we2)
TU== (UZeBZIMII/LCYHBY (M)}

ARITF QUTPUT TAPE 6435,0B,UT,SB,ST,TB,TT,Z(M}
FOAMAT(SH DIPOLE2FY,4,9H SURFACE2FI.4,8H
TFCET=1) 36,3,36

TFINT) 33,39,37

DF=1./FLCATF(NT)

£O 38 N=l AT

FR{H1=1.001-DNFeFLOATF{N)

NF=NT

CALL TRACE(DST,C}

CALL EXIT

ENO

-

o

TOTAL2F9.4,3H I=F5.2)

3

@

13
.20
21

z

DATA CARDS FOR FIELD PRDGRAM

+ OF
RDS  COLUMNS

1-3 NC. OF CURVES FTRACED FOR FIELD CALCULATEONS ($30)

4-8 BASIC [NTERVAL ON THESE CURVES (3G.1101

9~11 NUMBER OF PLUGT CURVES VO BE FTRACED (#30)

12-16 BASIC INTERVAL DN THESE CURVES (%0.200]
ONE CARD TODR EACH NON-2ERQ PARAMETER. COLUMRS 1-2 CONTAIN ITS
NUMBER AND 3-10 CONTAIN ITS VALUE. (FORMAT 00.uCO000)J
ALANK CARD.
ANY NUMBER OF FIELD POINT CARDS EACH CONTAINING A SINGLE DIGIT
IN COLUMY 1 AND 14 NUMBERS FOLLOWING I7 (FORMAT 00.00). If
THE OIGIT IS 1, THE FIRST ¥®O NUMBERS ON THAT CARD Wikt BE
TAKEN AS X AND ¥ CUORDINATES AND THE REMAINING NUMBERS 83 A
LiST OF 2 COORDINAFES. EIFHER X OR Y SHOULD 8€ Z2ERG. IF THE
DIGIT IS GREATZR THAN 1y THE CARD WILL BE TREAFHD AS A CONTIN-
UATIOCN CARD, BUT NO MORE THAN TWO SUCH CARDS (4G 2 VALUES
ALTOGETHER) MUSY FOLLOW ANY GIVEN I CARD. A ZERO IN A Z LESY
WILL TTRMINATE THE LIST UNLESS ET OCCURS FIRST.
BLANK CARD.

ALTER = THEDRETICALLY ZEROS MOMENTS BY THE SHORTEST ROUTE

SURRUUTINE ALTER[NN,NP,N%,NS,NF2,052)

COMMON Wy Ay [ALP N NF o FRyWR 2 GeHoUy Y

DIMENSION Wl170),A080),1A120)+P(90),FRU3UI,WRI30) 45130141 120420)
LoUt201 eV {151 V20151,V3120),0a020) 4HI{20,15) 4HILIS 4151 eHR{20415}
WDENP=NM
MPENMe]
TFINF2=NF)
NF=NF2
CALL START
DO 3 I=Ll,NM
no3 J=1,NM
HILTpdd=tel 1,8}

CALL MATINV{HIZNM,V3,1,DET)

NU & K=1,N0

DR & J=1,ND

JI=deNe

HI(K, =7,

SU 4 T=14Nm

HICK D) =HI K S 4nT Ik, D) #HIT, JT)

DU 6 J=1,ND

O 5 =1,ND

HKUJ,RIal,

NME 5 Ks1aNW

FREJ N =RIJ o NT 41Ky ) UK N /UTK ) 202
Jl=genm

AL pdV=HKLD s S via/uldl) e

DL 29 NAT=Y, Vi

G0 7 K=1,Nm

DafK)=C.

D0 T L=1,NM

DA{K}=CAIK)==TIK,LIev(L)

U0 3 Js1.ND

V3(Jl=Ca

DO 8 K=1,NM
V3LJ)=VI{IIeHIIK, J)#DALK) JULK) 882

CALL MATINVIHK,N2,V3,1,0ET)

N0 3 K=1,N%

N 9 4=1,"

DALK)I=CALKI=HI(K, J)nV3(J)

N0 10 J=1,%n

Ji=Jenm

CACIT)=V3LSL

00 11 Jst, NP

[Jy=1at)

ALTJ)I=aL1J)4DA0Y)

TALL PSET

CALL TRACE{DS2,-1)

CALL MCMENT{WS)

14241

Lo 12
E1=E1+ABSFIVLEIIL]
C2=EZ48HSFIG(J))

J=14NM

06 13 Jakme, 15
£3=E3¢48SF{V(J))
C4=E4+ABSFIGIIN)
wRITE QUTPUT TARE A 14 E14C2+E3,E4,11ALI1,ULL)DALI)41=1,NP)
FORMATI32P1SUM OF MOMENTS BREFOKRE AND AFTER 1LIHC PRIMARY=2F10.5/
11YHOSECONDARY=2F 1 (. 5¢ 3SHCPARAMETERS, WEIGHTS AND INCREMENTS /
{1HCTI3,F6.3,FL0,5))
10 15 [=1415
VEiE)I=GIiI}
1C=99-NATL
PRITE UUTPUY TAPT T7,1641C,{VII),1=1,15)
FORMATII24F16.5,6F9.5/8F9.5)
CALL PLOT
vRITE DUTPUT TAPE 6417,(VET},151,15)
FOAMAT{13H AND MOMENTS= Z1HCF12.5,7F9.5,7F8.5)
IF(NS-8) 2Ge18.18
HWM=15+48 INS/BI+Se (NS/LOWNS/9)
WP ITE QUTPUT TAPE 6,19, (GIT),E=16,nW}
FORMAT(L6HOHIGHER MOMENTS=4F3.5,10F8.5)
CONTINUE
2ETURN
END
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