
CHAPTER 6

GENERAL CONCLUSION

In this thesis, a dual-valved GDD to fulfill the “band-pass” flow regulation has been developed and *in vitro/ex vivo* tested. Our GDD has been verified capable of draining out eye fluid when IOP is higher than 20 mmHg, and stopping the drainage when IOP is lower than 20 mmHg to prevent hypotony. A new IOP sensor is proposed with a new implantation location so that the quality factor can be retained and also the concern of water filling the capacitor chamber is solved. To accurately design the desired cracking pressure and also predict the life-time of a NC check-valve, parylene-C’s mechanical, thermal and polymer properties are investigated. The results show that parylene-C is a highly temperature-sensitive material, and therefore it can be tailored by thermal annealing to obtain the desired properties.

In chapter 2, a paradigm of NC check-valve is proposed with several slanted tethers to transmit the necessary downward force and therefore the NC check-valve is capable of supplying the desired cracking pressure. The desired residual tensile stress can be achieved by stretching the tethers based on several mechanisms such as: pop-up/self-stiction mechanisms; or by thermal annealing the tethers at the elevated temperature, and then quenching them down to room temperature to introduce the high thermal tensile stress. Therefore, three different approaches are developed to create the slanted tethers: generating and adopting sloped sacrificial photoresist, using pop-up

mechanism, and using the self-stiction bonding which inevitably happens after the drying process. The cracking pressure of the NC check-valve can be controlled by several parameters such as the number of the slanted tethers, the sloping angle of the slanted tethers, the geometry of the slanted tethers (the width and the thickness), and also the residual stress of the slanted tethers which can be manipulated by the annealing temperatures. The testing results show that the residual thermal tensile stress is the most controllable method among all, and can introduce the highest cracking pressure.

In chapter 3, a new dual-valved glaucoma drainage device with “band-pass” flow profile regulation capability is proposed by integrating four crucial components: one self-stiction bonding NC check-valve developed in chapter 2, one NO valve, one parylene-C fixation anchor, and one all parylene-C protective hollow tube. Our GDD is designed with the form factor that can be put in a #19-gauge needle to fulfill the minimally invasive implantation surgical procedure and the implantation can be done in a 15 minute surgery. The #19-gauge needle creates a wound less than 2 mm in diameter, and therefore it will seal by itself after the surgery and the suture is never needed. Two types of GDD integration approaches are proposed to facilitate the capability of optimizing the check-valves’ position. The GDD is placed in the translimbal area with one end staying in the anterior chamber and the other end staying subconjunctivally. The cracking pressure of the NC check-valve of the GDD is designed as 10–20 mmHg. Therefore, the dual-valved GDD is capable of draining away the excessive aqueous when the IOP is in the range of 20–50 mmHg. The NC check-valve also protects the eye from postoperative hypotony as it closes when IOP is lower than 10 mmHg. In addition, the GDD also has a benefit of closing at the sudden unexpected high IOP to prevent hypotony.

In chapter 4, two methods are proposed to improve the performance of the IOP sensor, whose quality factor was reported to degrade during the *ex/in vivo* implantation due to the high loss tangent of the aqueous humor. The first approach is to mount an implantation tube on the accessing hole on the back side of the sensing part. The new IOP sensor is implanted at the pars plana with the implantation tube penetrating through the choroid, while the sensing part is still left outside the eyeball but covered under the conjunctiva. The sensing coil, therefore, can skip the influence of the aqueous humor by this new approach which is also used by Ahmed Glaucoma valve [70]. The *in vitro* characterization experiment demonstrates its feasibility and the capability of preventing the sensing coil from immersing in the aqueous humor. The other approach is to cover the sensing part with thicker low loss tangent materials such as parylene-C to isolate the sensing coil and the surrounding lossy solution. The benchtop tests prove the concept of using low loss tangent materials to preserve the quality factor of the IOP sensor while submerging in the saline solution. Among all the tested low loss materials, the experiments using parylene-C film as the passivation layer shows that the quality factor can be recovered by covering the sensing coil with extra 20 μm parylene-C film, which results in an IOP sensor with 27- μm -thick parylene-C film above the coil metal. The 27- μm -thick parylene-C film can be easily deposited and patterned with the regular surface micromachining techniques. Therefore thickening the IOP sensing coil by depositing thicker parylene-C film during the clean room fabrication is a practical and feasible concept to enhance the electromagnetic coupling between the sensing coil and the external reader to enable the telemetric IOP sensing.

Several important parylene-C properties related to the development of GDD and IOP sensor are measured and demonstrated in chapter 5. Those properties include: polymer properties such as densification, glass transition temperature measurement, and crystallization; thermal properties such as oxidation; and mechanical properties such as Young's modulus, tensile strength, yield point, percentage of elongation, creep, stress relaxation, and viscoplasticity properties, etc. As parylene-C has been widely used in bioMEMS development, those properties mentioned above become very important in developing the bioMEMS devices, especially the implantable ones. Wrongful using of the parylene-C can lead to cracking of the device, short lifetime, or even unpredictable malfunctions.

As for densification, parylene-C starts to shrink when the surrounding temperature gets higher than $\sim 50^{\circ}\text{C}$, implying the occurrence of the crystallization and also the T_g of $\sim 50^{\circ}\text{C}$.

When annealed at 100°C , oxidation of parylene-C is not observable by FTIR, implying that very little oxidation happens during the annealing at 100°C . Therefore, soft baking of parylene-C film in the convection oven during the lithography process should not seriously deteriorate the parylene-C within couple of hours. For high temperature annealing, vacuum system is suggested to preserve the parylene-C properties.

The XRD scanning results show that the parylene-C crystallizes rapidly once the temperature goes beyond T_g . The crystallinity and the crystallite size increase as the annealing temperature increase and the annealing time gets longer. The time constant of parylene-C crystallization at 100°C is found as 0.845 min.

The glass transition temperature highly depends on the pre-annealing temperature of the tested parylene-C samples. T_g of as-deposited parylene-C is found in between 50.2-57°C, while T_g of pre-annealed parylene-C samples changes depending on the pre-annealing temperatures. It is assumed that the crystallization during the parylene-C annealing could be the major effect causing the T_g shifting.

As different annealing condition corresponds to different crystallinity of parylene-C films, uniaxial tensile test are performed onto differently pre-annealed parylene-C samples to study the relationship between the crystallinity and its mechanical properties change. It shows that parylene-C with higher crystallinity behaves stiffer, stronger and more brittle than as-deposited parylene-C film.

The creep and stress relaxation behavior are significantly influenced by the glass transition temperature. For the creep and stress relaxation tested at the temperature lower than T_g , the parylene-C behaves similar to elastic material. On the other hand, parylene-C behaves like viscoelastic material when tested at a temperature higher than T_g . Therefore, in order to have more stable mechanical properties at its operating temperature, the parylene-C properties can (and have to) be tailored to a proper T_g by pre-annealing the parylene-C at the appropriate temperature. In addition, the stress relaxation results of parylene-C provide very important information for people to predict the lifetime of the slanted tether parylene-C NC check-valves.

The preliminary viscoplastic results of parylene-C tested at 37°C concludes that parylene-C is a viscoplastic material when operated in human body temperature. That is, the parylene-C's mechanical properties might not be the same as the as-deposited parylene-C that people have studied and reported in the past. Therefore, more detail

researches need to be done to understand parylene-C's properties at 37°C so that a more reliable and safer parylene-C-based implant can be developed and implanted in the human bodies.

BIBLIOGRAPHY

- [1] I. S. Solomon. (2012, Jan. 13). *Aqueous Humor Dynamics* [Online]. Available: <http://www.nyee.edu/pdf/solomonaqhumor.pdf>
- [2] C. R. Neagu, "A Medical Microactuator based on an Electrochemical Principle," Ph.D. dissertation, MESA Research Institute, Univ. of Twente, Enschede, The Netherlands, 1998.
- [3] M. Yanoff, J. S. Duker, and J. J. Augsburger, *Ophthalmology*, 2nd ed. St. Louis, MO: Mosby, 2004.
- [4] H. A. Quigley, "Number of people with glaucoma worldwide," *British Journal of Ophthalmology*, vol. 80, no. 5, pp. 389–393, May 1996.
- [5] National Glaucoma Research. (2012, Jan. 15). [Online]. Available: <http://www.ahaf.org/glaucoma/about/>
- [6] Glaucoma Research Foundation. (2012, Jan. 12). [Online]. Available: <http://www.glaucoma.org/>
- [7] eHow. (2012, Jan. 13). *What Are the Treatments for Refractory Glaucoma?* [Online]. Available: http://www.ehow.com/facts_5632872_treatments-refractory-glaucoma_.html
- [8] Wikipedia. (2012, Jan. 13). *Timolol* [Online]. Available: <http://en.wikipedia.org/wiki/Timolol>
- [9] Wikipedia. (2012, Jan. 13). *Travoprost* [Online]. Available: <http://en.wikipedia.org/wiki/Travoprost>

- [10] Wikipedia. (2012, Jan. 13). *Latanoprost* [Online]. Available: <http://en.wikipedia.org/wiki/Latanoprost>
- [11] Drugs.com. (2012, Jan. 13). *Pilocarpine* [Online]. Available: <http://www.drugs.com/pro/pilocarpine.html>
- [12] K. S. Lim, B. D. S. Allan, A. W. Lloyd, A. Muir, and P. T. Khaw, "Glaucoma drainage devices; past, present, and future," *British Journal of Ophthalmology*, vol. 82, no. 9, pp. 1083–1089, Sep 1998.
- [13] Eyewiki. (2012, Jan. 13). *Trabeculectomy* [Online]. Available: <http://eyewiki.aao.org/Trabeculectomy>
- [14] Wikipedia. (2012, Jan. 13). *Glaucoma valve* [Online]. Available: http://en.wikipedia.org/wiki/Glaucoma_valve
- [15] B. Bae, N. Kim, H. Kee, S. Kim, Y. Lee, and K. Park, "Design and analysis of an electromagnetically driven valve for a glaucoma implant," in *Proc. of the IEEE International Conference on Robotics and Automation*, Seoul, Korea, 2001, pp. 145–150.
- [16] B. Bae, N. Kim, H. Kee, S. H. Kim, Y. Lee, S. Lee, and K. Park, "Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment," *Journal of Microelectromechanical Systems*, vol. 11, no. 4, pp. 344–354, Aug 2002.
- [17] B. Bae, K. Park, and M. A. Shannon, "MEMS Application of Actuators and Sensors for Glaucoma Treatment," in *MEMS/NEMS Handbook*, C. T. Leondes, Ed., New York, NY: Springer US, 2006, pp. 1386–1428.
- [18] B. H. Bae, H. S. Kee, S. H. Kim, Y. Lee, T. S. Sim, Y. W. Kim, and K. H. Park, "In vitro experiment of the pressure regulating valve for a glaucoma implant,"

Journal of Micromechanics and Microengineering, vol. 13, no. 5, pp. 613–619, Sep 2003.

[19] C. H. Hong, A. Arosemena, D. Zurakowski, and R. S. Ayyala, "Glaucoma drainage devices: A systematic literature review and current controversies," *Survey of Ophthalmology*, vol. 50, no. 1, pp. 48–60, Jan–Feb 2005.

[20] R. S. Ayyala, J. L. Duarte, and N. Sahiner, "Glaucoma drainage devices: state of the art," *Expert Review of Medical Devices*, vol. 3, no. 4, pp. 509–521, Jul 2006.

[21] A. Zorab, "The reduction of tension in chronic glaucoma," *Ophthalmoscope*, vol. 10, pp. 258–261, 1912.

[22] J. Stefansson, "An operation for glaucoma," *Am J Ophthalmol*, vol. 8, pp. 681–693, 1925.

[23] M. U. Troncoso, "Use of Tantalum Implants for Inducing a Permanent Hypotony in Rabbits' Eyes," *American Journal of Ophthalmology*, vol. 32, no. 4, pp. 499–508, 1949.

[24] R. H. Bock, "Subconjunctival Drainage of the Anterior Chamber by a Glass Seton," *American Journal of Ophthalmology*, vol. 33, no. 6, pp. 929–933, 1950.

[25] W. E. Muldoon, P. H. Ripple, and H. C. Wilder, "Platinum Implant in Glaucoma Surgery," *AMA Archives of Ophthalmology*, vol. 45, no. 6, pp. 666–672, 1951.

[26] E. Epstein, "Fibrosing Response to Aqueous. Its Relation to Glaucoma," *Br J Ophthalmol.*, vol. 43, pp. 641–647, 1959.

[27] A. C. B. Molteno, "New Implant for Drainage in Glaucoma—Animal Trial," *British Journal of Ophthalmology*, vol. 53, no. 3, pp. 161–168, 1969.

- [28] A. C. B. Molteno, "New Implant for Drainage in Glaucoma—Clinical Trial," *British Journal of Ophthalmology*, vol. 53, no. 9, pp. 606–615, 1969.
- [29] A. C. B. Molteno, J. L. Straughan, and E. Ancker, "Long Tube Implants in Management of Glaucoma," *South African Medical Journal*, vol. 50, no. 27, pp. 1062–1066, 1976.
- [30] T. Krupin, S. M. Podos, B. Becker, and J. B. Newkirk, "Valve Implants in Filtering Surgery," *American Journal of Ophthalmology*, vol. 81, no. 2, pp. 232–235, 1976.
- [31] R. S. Ayyala, D. Zurakowski, J. A. Smith, R. Monshizadeh, P. A. Netland, D. W. Richards, and W. E. Layden, "A clinical study of the Ahmed glaucoma valve implant in advanced glaucoma," *Ophthalmology*, vol. 105, no. 10, pp. 1968–1976, Oct 1998.
- [32] A. L. Coleman, R. Hill, M. R. Wilson, N. Choplin, R. Kotasneumann, M. Tam, J. Bacharach, and W. C. Panek, "Initial Clinical Experience with the Ahmed Glaucoma Valve Implant," *American Journal of Ophthalmology*, vol. 120, no. 1, pp. 23–31, Jul 1995.
- [33] M. C. Huang, P. A. Netland, A. L. Coleman, S. W. Siegner, M. R. Moster, and R. A. Hill, "Intermediate-term clinical experience with the Ahmed Glaucoma Valve implant," *American Journal of Ophthalmology*, vol. 127, no. 1, pp. 27–33, Jan 1999.
- [34] F. Topouzis, A. L. Coleman, N. Choplin, M. M. Bethlem, R. Hill, F. Yu, W. C. Panek, and M. R. Wilson, "Follow-up of the original cohort with the Ahmed

glaucoma valve implant," *American Journal of Ophthalmology*, vol. 128, no. 2, pp. 198–204, Aug 1999.

[35] M. T. Britt, L. D. LaBree, M. A. Lloyd, D. S. Minckler, D. K. Heuer, G. Baerveldt, and R. Varma, "Randomized clinical trial of the 350-mm(2) versus the 500-mm(2) Baerveldt implant: Longer term results—Is bigger better?," *Ophthalmology*, vol. 106, no. 12, pp. 2312–2318, Dec 1999.

[36] D. K. Heuer, M. A. Lloyd, D. A. Abrams, G. Baerveldt, D. S. Minckler, M. B. Lee, and J. F. Martone, "Which Is Better? One or two? A Randomized Clinical Trial of Single-Plate Versus Double-Plate Molteno Implantation for Glaucomas in Aphakia and Pseudophakia," *Ophthalmology*, vol. 99, no. 10, pp. 1512–1519, Oct 1992.

[37] D. S. Minckler, A. Shammas, M. Wilcox, and T. E. Ogden, "Experimental studies of aqueous filtration using the Molteno implant," *Trans Am Ophthalmol Soc.*, vol. 85, pp. 368–392, 1987.

[38] A. C. B. Molteno, "The optimal design of drainage implants for glaucoma," *Trans Ophthalmol Soc NZ*, vol. 33, pp. 39–41, 1981.

[39] M. F. Smith, M. B. Sherwood, and S. P. Mcgorray, "Comparison of the Double-Plate Molteno Drainage Implant with the Schocket Procedure," *Archives of Ophthalmology*, vol. 110, no. 9, pp. 1246–1250, Sep 1992.

[40] M. A. Lloyd, G. Baerveldt, P. S. Fellenbaum, P. A. Sidoti, D. S. Minckler, J. F. Martone, L. Labree, and D. K. Heuer, "Intermediate-Term Results of a Randomized Clinical-Trial of the 350 Versus the 500-Mm(2) Baerveldt Implant," *Ophthalmology*, vol. 101, no. 8, pp. 1456–1463, Aug 1994.

- [41] S. W. Siegner, P. A. Netland, R. C. Urban, A. S. Williams, D. W. Richards, M. A. Latina, and J. D. Brandt, "Clinical Experience with the Baerveldt Glaucoma Drainage Implant," *Ophthalmology*, vol. 102, no. 9, pp. 1298–1307, Sep 1995.
- [42] S. L. Smith, R. J. Starita, R. L. Fellman, and J. R. Lynn, "Early Clinical-Experience with the Baerveldt 350-Mm(2) Glaucoma Implant and Associated Extraocular-Muscle Imbalance," *Ophthalmology*, vol. 100, no. 6, pp. 914–918, Jun 1993.
- [43] M. Rollett and M. Moreau, "Le drainage au crin de la chambre anterieure contre l'hypertonie et la douleur," *Rev Gen Ophthalmol*, vol. 26, pp. 289–292, 1907.
- [44] H. Row, "Operation to control glaucoma—Preliminary report," *Archives of Ophthalmology*, vol. 12, no. 3, pp. 325–329, Sep 1934.
- [45] M. U. Troncoso, "Cyclodialysis with insertion of a metal implant in the treatment of glaucoma—A preliminary report," *Archives of Ophthalmology*, vol. 23, no. 2, pp. 270–297, Feb 1940.
- [46] G. G. Gibson, "Transscleral Lacrimal Canaliculus Transplants," *Trans Am Ophthalmol Soc*, vol. 40, pp. 499–515, 1942.
- [47] M. W. Bick, "Use of Tantalum for Ocular Drainage," *Archives of Ophthalmology*, vol. 42, no. 4, pp. 373–388, 1949.
- [48] W. Losche, "Vorschlage zur Verbesserung der Zyklodialyse," *Klin Monatsbl Augenheilkd*, vol. 121, pp. 715–716, 1952.
- [49] G. B. Bietti, "The present state of the use of plastics in eye surgery," *Acta Ophthalmol*, vol. 33, pp. 337–370, 1955.
- [50] V. La Rocca, *Int Cong Ophthalmol (Brussels)*, 1958.

- [51] R. A. Ellis, "Reduction of Intraocular Pressure Using Plastics in Surgery," *American Journal of Ophthalmology*, vol. 50, no. 5, pp. 733–743, 1960.
- [52] N. T. Mascati, "A new surgical approach for the control of a class of glaucomas," *Int Surg*, vol. 47, pp. 10–15, 1967.
- [53] P. F. Lee and W. T. Wong, "Aqueous-Venous Shunt for Glaucoma - Report on 15 Cases," *Annals of Ophthalmology*, vol. 6, no. 10, pp. 1083–1088, 1974.
- [54] F. M. Honrubia, M. P. Grijalbo, M. L. Gomez, and A. Lopez, "Surgical-Treatment of Neovascular Glaucoma," *Transactions of the Ophthalmological Societies of the United Kingdom*, vol. 99, pp. 89–91, 1979.
- [55] S. S. Schocket, V. Lakhapal, and R. D. Richards, "Anterior-Chamber Tube Shunt to an Encircling Band in the Treatment of Neovascular Glaucoma," *Ophthalmology*, vol. 89, no. 10, pp. 1188–1194, 1982.
- [56] T. C. White, "A new implantable ocular pressure relief device. A preliminary report," *Glaucoma*, vol. 7, pp. 289–294, 1985.
- [57] N. H. Joseph, M. B. Sherwood, G. Trantas, R. A. Hitchings, and L. Lattimer, "A One-Piece Drainage System for Glaucoma Surgery," *Transactions of the Ophthalmological Societies of the United Kingdom*, vol. 105, pp. 657–664, 1986.
- [58] P. S. Fellenbaum, A. R. Almeida, D. S. Minckler, P. A. Sidoti, G. Baerveldt, and D. K. Heuer, "Krupin Disk Implantation for Complicated Glaucomas," *Ophthalmology*, vol. 101, no. 7, pp. 1178–1182, Jul 1994.
- [59] M. A. Lloyd, G. Baerveldt, D. K. Heuer, J. F. Martone, D. S. Minckler, J. L. Zhao, and Q. H. Nguyen, "The Baerveldt Glaucoma Implant—Long-Term

Histologic Studies in Rabbits and Clinical Experience in Humans," *Investigative Ophthalmology & Visual Science*, vol. 32, no. 4, pp. 746–746, Mar 15 1991.

[60] D. D. Kim and J. E. Memmen, "Spontaneous disengagement of the Optimed implant," *Archives of Ophthalmology*, vol. 114, no. 11, pp. 1420–1421, Nov 1996.

[61] S. G. Smith and J. C. Galanis, "One-Year Results of the Intrascleral Glaucoma Implant," *Journal of Cataract and Refractive Surgery*, vol. 21, no. 4, pp. 453–456, Jul 1995.

[62] A. D. Pandya, C. Rich, D. E. Eifrig, J. Hanker, and R. L. Peiffer, "Experimental evaluation of a hydroxylapatite reservoir tube shunt in rabbits," *Ophthalmic Surgery and Lasers*, vol. 27, no. 4, pp. 308–314, Apr 1996.

[63] Y. Glovinsky and M. Belkin, "Evaluation of the "G-plant" glaucoma shunt in rabbit eyes," *Investigative Ophthalmology & Visual Science*, vol. 38, no. 4, pp. 38–53, Mar 15 1997.

[64] P. Helies, M. Savoldelli, J. M. Legeais, J. M. Parel, and G. J. Renard, "Artificial meshwork (MESH). Clinical and histological study in the rabbit with a six months follow up.," *Investigative Ophthalmology & Visual Science*, vol. 38, no. 4, p. 1246, Mar 15 1997.

[65] F. M. White, *Fluid mechanics*, 3rd ed. New York: McGraw-Hill, 1994.

[66] J. A. Beswick and C. McCulloch, "Effect of Hyaluronidase on the Viscosity of the Aqueous Humour," *Br J Ophthalmol.*, vol. 40, pp. 545–548, 1956.

[67] M. Johnson, C. R. Ethier, R. D. Kamm, W. M. Grant, D. L. Epstein, and D. Gaasterland, "The Flow of Aqueous-Humor through Microporous Filters,"

Investigative Ophthalmology & Visual Science, vol. 27, no. 1, pp. 92–97, Jan 1986.

- [68] R. S. Ayyala, D. Zurakowski, R. Monshizadeh, C. H. Hong, D. Richards, W. E. Layden, B. T. Hutchinson, and A. R. Bellows, "Comparison of double-plate Molteno and Ahmed glaucoma valve in patients with advanced uncontrolled glaucoma," *Ophthalmic Surgery and Lasers*, vol. 33, no. 2, pp. 94–101, Mar–Apr 2002.
- [69] D. C. Broadway, M. Iester, M. Schulzer, and G. R. Douglas, "Survival analysis for success of Molteno tube implants," *British Journal of Ophthalmology*, vol. 85, no. 6, pp. 689–695, Jun 2001.
- [70] *Ahmed Glaucoma Valve* [Online]. Available: <http://www.ahmedvalve.com/>
- [71] Abbott Medical Optics. (2012, Jan. 13). *Baerveldt Glaucoma Implant Package Insert* [Online]. Available: http://www.amo-inc.com/pdf/Baerveldt_packageinsert.pdf
- [72] IOP Ophthalmics, Inc. (2012, Jan. 14). [Online]. Available: <http://www.iopinc.com/store/molteno/>
- [73] L. Cantor, J. Burgoyne, S. Sanders, V. Bhavnani, J. Hoop, and E. Brizendine, "The effect of mitomycin C on molteno implant surgery: A 1-year randomized, masked, prospective study," *Journal of Glaucoma*, vol. 7, no. 4, pp. 240–246, Aug 1998.
- [74] P. A. Sidoti, A. Y. Mosny, D. C. Ritterband, and J. A. Seedor, "Pars plana tube insertion of glaucoma drainage implants and penetrating keratoplasty in patients

with coexisting glaucoma and corneal disease," *Ophthalmology*, vol. 108, no. 6, pp. 1050–1058, Jun 2001.

[75] Q. H. Nguyen, D. L. Budenz, and R. K. Parrish, "Complications of Baerveldt glaucoma drainage implants," *Archives of Ophthalmology*, vol. 116, no. 5, pp. 571–575, May 1998.

[76] S. Shoji, "Fluids for sensor systems," *Microsystem Technology in Chemistry and Life Science*, vol. 194, pp. 163–188, 1998.

[77] A. van den Berg and T. S. J. Lammerink, "Micro total analysis systems: Microfluidic aspects, integration concept and applications," *Microsystem Technology in Chemistry and Life Science*, vol. 194, pp. 21–49, 1998.

[78] D. Cline, H. W. Hofstetter, and J. R. Griffin, *Dictionary of visual science*, 4th ed. Boston: Butterworth-Heinemann, 1997.

[79] H. Cao, "Pressure Sensors," in *Minimally Invasive Medical Technology*: Taylor & Francis, 2001, pp. 33–45.

[80] N. Ducrey, J. Geinoz, and R. Faggioni, "Non-Contact Applanation Tonometry," *Ophthalmologica*, vol. 170, no. 5, pp. 446–449, 1975.

[81] C. R. Ethier, M. Johnson, and J. Ruberti, "Ocular biomechanics and biotransport," *Annual Review of Biomedical Engineering*, vol. 6, pp. 249–273, 2004.

[82] I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, "Ocular rigidity in living human eyes," *Investigative Ophthalmology & Visual Science*, vol. 46, no. 2, pp. 409–414, Feb 2005.

[83] P. A. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, "The influence of central corneal thickness and age on

intraocular pressure measured by pneumotonometry, noncontact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry," *British Journal of Ophthalmology*, vol. 89, no. 7, pp. 851–854, Jul 2005.

[84] S. Asrani, R. Zeimer, J. Wilensky, D. Gieser, S. Vitale, and K. Lindenmuth, "Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma," *Journal of Glaucoma*, vol. 9, no. 2, pp. 134–142, Apr 2000.

[85] E. Hughes, P. Spry, and J. Diamond, "24-hour monitoring of intraocular pressure in glaucoma management: A retrospective review," *Journal of Glaucoma*, vol. 12, no. 3, pp. 232–236, Jun 2003.

[86] R. Puers, G. Vandevenne, and D. De Bruyker, "Electrodeposited copper inductors for intraocular pressure telemetry," *Journal of Micromechanics and Microengineering*, vol. 10, no. 2, pp. 124–129, Jun 2000.

[87] K. C. Katuri, S. Asrani, and M. K. Ramasubramanian, "Intraocular pressure monitoring sensors," *IEEE Sensors Journal*, vol. 8, no. 101–2, pp. 12–19, Jan–Feb 2008.

[88] J. W. McLaren, R. F. Brubaker, and J. S. FitzSimon, "Continuous measurement of intraocular pressure in rabbits by telemetry," *Investigative Ophthalmology & Visual Science*, vol. 37, no. 6, pp. 966–975, May 1996.

[89] W. Mokwa and U. Schnakenberg, "Micro-transponder systems for medical applications," *IEEE Transactions on Instrumentation and Measurement*, vol. 50, no. 6, pp. 1551–1555, Dec 2001.

- [90] Sajeeda and T. J. Kaiser, "Passive telemetric readout system," *IEEE Sensors Journal*, vol. 6, no. 5, pp. 1340–1345, Oct 2006.
- [91] C. C. Collins, "Miniature Passive Pressure Transensor for Implanting in Eye," *IEEE Transactions on Biomedical Engineering*, vol. BME-14, no. 2, pp. 74–83, 1967.
- [92] O. Akar, T. Akin, and K. Najafi, "A wireless batch sealed absolute capacitive pressure sensor," *Sensors and Actuators A: Physical*, vol. 95, no. 1, pp. 29–38, Dec 15 2001.
- [93] A. Baldi, W. Choi, and B. Ziaie, "A self-resonant frequency-modulated micromachined passive pressure transensor," *IEEE Sensors Journal*, vol. 3, no. 6, pp. 728–733, Dec 2003.
- [94] A. DeHennis and K. D. Wise, "A double-sided single-chip wireless pressure sensor," in *Proc. of the 15th IEEE International Conference on Micro Electro Mechanical Systems*, Las Vegas, NV, 2002, pp. 252–255.
- [95] M. A. Fonseca, M. G. Allen, J. Kroh, and J. White, "Flexible wireless passive pressure sensors for biomedical applications," in *Technical Digest of the 12th IEEE Solid-State Sensors, Actuators, and Microsystems Workshop*, Hilton Head Island, SC, 2006, pp. 37–42.
- [96] L. Rosengren, P. Rangsten, Y. Backlund, B. Hok, B. Svedbergh, and G. Selen, "A System for Passive Implantable Pressure Sensors," *Sensors and Actuators A: Physical*, vol. 43, no. 1–3, pp. 55–58, May 1994.

[97] P.-J. Chen, "Implantable Wireless Intraocular Pressure Sensors," Ph.D. dissertation, Electrical Engineering, California Institute of Technology, Pasadena, CA, 2008.

[98] P.-J. Chen, S. Saati, R. Varma, M. S. Humayun, and Y. C. Tai, "Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant," *Journal of Microelectromechanical Systems*, vol. 19, no. 4, pp. 721–734, Aug. 2010.

[99] Parylene Engineering. (2012, Jan. 13). *Why Parylene* [Online]. Available: http://www.paryleneengineering.com/why_use_parylene.html

[100] Specialty Coating Systems. (2012, Jan. 13). *SCS Parylene Properties* [Online]. Available: <http://www.scscoatings.com/index.aspx>

[101] W. F. Beach, "Parylene Coatings," in *Electronic materials handbook: Packaging* Materials Park, OH: ASM International, 1989, pp. 789–801.

[102] W. F. Beach, "Xylylene Polymers," in *Encyclopedia of Polymer Science and Technology*: John Wiley & Sons, Inc., 2002.

[103] C. Y. Shih, T. A. Harder, and Y. C. Tai, "Yield strength of thin-film parylene-C," *Microsystem Technologies—Micro- and Nanosystems Information Storage and Processing Systems* vol. 10, no. 5, pp. 407–411, Aug 2004.

[104] C. Hassler, R. P. von Metzen, P. Ruther, and T. Stieglitz, "Characterization of parylene C as an encapsulation material for implanted neural prostheses," *Journal of Biomedical Materials Research Part B—Applied Biomaterials*, vol. 93B, no. 1, pp. 266–274, Apr 2010.

- [105] M. Koch, A. Evans, and A. Brunschweiler, *Microfluidic technology and applications*. Philadelphia, PA: Research Studies Press, 2000.
- [106] X. Q. Wang, Q. Lin, and Y. C. Tai, "A Parylene micro check valve," in *Proc. of the 12th IEEE International Conference on Micro Electro Mechanical Systems*, Orlando, FL, 1999, pp. 177–182.
- [107] X.-Q. Wang and Y.-C. Tai, "A normally closed in-channel micro check valve," in *Proc. of the IEEE 13th International Conference on Micro Electro Mechanical Systems (MEMS)*, Miyazaki, Japan, 2000, pp. 68–73.
- [108] J. Xie, X. Yang, X. Q. Wang, and Y. C. Tai, "Surface micromachined leakage proof parylene check valve," in *Technical Digest of the 14th IEEE International Conference on Micro Electro Mechanical Systems*, Interlaken, Switzerland, 2001, pp. 539–542.
- [109] R. A. Habing, "Flow and Plate Motion in Compressor Valves," Ph.D. dissertation, Univ. of Twente, Enschede, The Netherlands, 2005.
- [110] S. Dabral, J. Vanetten, X. Zhang, C. Apblett, G. R. Yang, P. Ficalora, and J. F. McDonald, "Stress in Thermally Annealed Parylene Films," *Journal of Electronic Materials*, vol. 21, no. 10, pp. 989–994, Oct 1992.
- [111] M. LeCompte, X. Gao, and D. W. Prather, "Photoresist characterization and linearization procedure for the gray-scale fabrication of diffractive optical elements," *Applied Optics*, vol. 40, no. 32, pp. 5921–5927, Nov 10 2001.
- [112] L. A. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, "A new paradigm for high resolution 3D lithography," in *Proc. of the 21st IEEE International*

Conference on Micro Electro Mechanical Systems, Tucson, Arizona, 2008, pp. 395–398.

[113] Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, and G. Voirin, "One-Step 3d Shaping Using a Gray-Tone Mask for Optical and Microelectronic Applications," *Microelectronic Engineering*, vol. 23, no. 1–4, pp. 449–454, Jan 1994.

[114] J. Q. Su, J. L. Du, J. Yao, F. H. Gao, Y. K. Guo, and Z. Cui, "A new method to design half-tone mask for the fabrication of continuous micro relief structure," *Proc. SPIE 3680*, pp. 879–886, 1999.

[115] T. J. Suleski and D. C. O'Shea, "Gray-Scale Masks for Diffractive-Optics Fabrication .1. Commercial Slide Imagers," *Applied Optics*, vol. 34, no. 32, pp. 7507–7517, Nov 10 1995.

[116] B. Wagner, H. J. Quenzer, W. Henke, W. Hoppe, and W. Pilz, "Microfabrication of Complex Surface Topographies Using Grey-Tone Lithography," *Sensors and Actuators A: Physical*, vol. 46, no. 1–3, pp. 89–94, Jan–Feb 1995.

[117] C. M. Waits, A. Modafe, and R. Ghodssi, "Investigation of gray-scale technology for large area 3D silicon MEMS structures," *Journal of Micromechanics and Microengineering*, vol. 13, no. 2, pp. 170–177, Mar 2003.

[118] H. A. Zhang, S. Wang, and Y. Xu, "Study and applications of a parylene self-sealing structure," *MEMS 2006: 19th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest*, pp. 282–285, 2006.

- [119] C. H. Mastrangelo and C. H. Hsu, "Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory," *Journal of Microelectromechanical Systems*, vol. 2, no. 1, pp. 33–43, 1993.
- [120] C. H. Mastrangelo and C. H. Hsu, "Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments," *Journal of Microelectromechanical Systems*, vol. 2, no. 1, pp. 44–55, 1993.
- [121] N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," *Journal of Micromechanics and Microengineering*, vol. 6, no. 4, pp. 385–397, Dec 1996.
- [122] T. J. Yao, X. Yang, and Y. C. Tai, "BrF3 dry release technology for large freestanding Parylene MEMS," in *Technical Digest of the 11th International Conference on Solid-State Sensors and Actuators (Transducers '01, Eurosensors XV)*, Munich, Germany, 2001, pp. 652–655.
- [123] T. J. Yao, X. Yang, and Y. C. Tai, "BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators," *Sensors and Actuators A: Physical*, vol. 97–98, pp. 771–775, Apr 1 2002.
- [124] A. Witvrouw, H. A. C. Tilmans, and I. De Wolf, "Materials issues in the processing, the operation and the reliability of MEMS," *Microelectronic Engineering*, vol. 76, no. 1–4, pp. 245–257, Oct 2004.
- [125] J. Han, B. Flachsbart, R. I. Masel, and M. A. Shannon, "Micro-fabricated membrane gas valves with a non-stiction coating deposited by C(4)F(8)/Ar plasma," *Journal of Micromechanics and Microengineering*, vol. 18, no. 9, Sep 2008.

- [126] R. Maboudian, W. R. Ashurst, and C. Carraro, "Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments," *Sensors and Actuators A: Physical*, vol. 82, no. 1–3, pp. 219–223, May 15 2000.
- [127] M. Mehregany, M. G. Allen, and S. D. Senturia, "The Use of Micromachined Structures for The Measurement of Mechanical Properties and Adhesion of Thin Films," in *Technical Digest of the 3rd IEEE Solid State Sensors Workshop*, Hilton Head Island, SC, 1986, pp. 58–61.
- [128] B. J. Briscoe and S. S. Panesar, "The Application of the Blister Test to an Elastomeric Adhesive," *Proc. of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences*, vol. 433, no. 1887, pp. 23–43, Apr 8 1991.
- [129] Y. Z. Chu and C. J. Durning, "Application of the Blister Test to the Study of Polymer Polymer Adhesion," *Journal of Applied Polymer Science*, vol. 45, no. 7, pp. 1151–1164, Jul 5 1992.
- [130] A. N. Gent and L. H. Lewandowski, "Blow-Off Pressures for Adhering Layers," *Journal of Applied Polymer Science*, vol. 33, no. 5, pp. 1567–1577, Apr 1987.
- [131] J. A. Hinkley, "A Blister Test for Adhesion of Polymer-Films to Sio2," *Journal of Adhesion*, vol. 16, no. 2, pp. 115–125, 1983.
- [132] H. S. Jeong, Y. Z. Chu, C. J. Durning, and R. C. White, "Adhesion Study of Polyimide to Si Surfaces," *Surface and Interface Analysis*, vol. 18, no. 4, pp. 289–292, Apr 1992.
- [133] K. Kendall, "Thin-Film Peeling—Elastic Term," *Journal of Physics D: Applied Physics*, vol. 8, no. 13, pp. 1449–1452, 1975.

- [134] K. T. Wan and Y. W. Mai, "Fracture-Mechanics of a New Blister Test with Stable Crack-Growth," *Acta Metallurgica Et Materialia*, vol. 43, no. 11, pp. 4109–4115, Nov 1995.
- [135] K. T. Wan and Y. W. Mai, "Modified blister tests for evaluation of thin flexible membrane adhesion on rigid substrate," *Materials Science Research International*, vol. 1, no. 2, pp. 78–81, Jun 1995.
- [136] C. Wang, "Measurements of interfacial strength from the blister test," *Journal of Applied Polymer Science*, vol. 73, no. 10, pp. 1899–1912, Sep 6 1999.
- [137] M. G. Allen and S. D. Senturia, "Analysis of Critical Debonding Pressures of Stressed Thin-Films in the Blister Test," *Journal of Adhesion*, vol. 25, no. 4, pp. 303–315, 1988.
- [138] T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, "Residual stress in thin-film parylene-C," in *Proc. of the 15th IEEE International Conference on Micro Electro Mechanical Systems*, Las Vegas, NV, 2002, pp. 435–438.
- [139] P.-J. Chen, D. C. Rodger, E. M. Meng, M. S. Humayun, and Y. C. Tai, "Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation," *Journal of Microelectromechanical Systems*, vol. 16, no. 2, pp. 223–231, Apr. 2007.
- [140] P.-J. Chen, D. C. Rodger, M. S. Humayun, and Y. C. Tai, "Floating-Disk Parylene Microvalves for Self-Pressure-Regulating Flow Controls," *Journal of Microelectromechanical Systems*, vol. 17, no. 6, pp. 1352–1361, Dec. 2008.
- [141] P.-J. Chen, D. C. Rodger, S. Saati, J. C. Altamirano, C.-H. Lin, R. Agrawal, R. Varma, M. Humayun, and Y. C. Tai, "Implementation of Microfabricated

Sutureless Flexible Parylene Tissue Anchors on Minimally Invasive Biomedical Implants," in *Proc. of the 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences*, Paris, France, 2007, pp. 518–520.

[142] K. Dietz, *Dry Film Photoresist Processing Technology* Port Erin, British Isles: Electrochemical Publications Ltd, 2001.

[143] P. R. Kanikella, "Process Development and Applications of A Dry Film Photoresist," M.S. thesis, Department of Materials Science and Engineering, Univ. of Missouri-Rolla, Rolla, MI, 2007.

[144] E. Koukharenko, M. Kraft, G. J. Ensell, and N. Hollinshead, "A comparative study of different thick photoresists for MEMS applications," *Journal of Materials Science—Materials in Electronics*, vol. 16, no. 11–12, pp. 741–747, Nov 2005.

[145] E. Kukharenko, M. M. Farooqui, L. Grigore, M. Kraft, and N. Hollinshead, "Electroplating moulds using dry film thick negative photoresist," *Journal of Micromechanics and Microengineering*, vol. 13, no. 4, pp. S67–S74, Jul 2003.

[146] X. C. Shan, Y. F. Jin, H. J. Lu, and C. K. Wong, "Process development of negative tone dry film photoresist for MEMS applications," in *Proc. of the 7th International Conference on Solid-State and Integrated Circuits Technology*, Beijing, China, 2004, pp. 575–578.

[147] M. O. Heuschkel, L. Guerin, B. Buisson, D. Bertrand, and P. Renaud, "Buried microchannels in photopolymer for delivering of solutions to neurons in a network," *Sensors and Actuators B: Chemical*, vol. 48, no. 1–3, pp. 356–361, May 30 1998.

[148] K. Stephan, P. Pittet, L. Renaud, P. Kleimann, P. Morin, N. Ouaini, and R. Ferrigno, "Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures," *Journal of Micromechanics and Microengineering*, vol. 17, no. 10, pp. N69–N74, Oct 2007.

[149] Y. C. Tsai, H. P. Jen, K. W. Lin, and Y. Z. Hsieh, "Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis," *Journal of Chromatography A*, vol. 1111, no. 2, pp. 267–271, Apr 14 2006.

[150] P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Del Tin, G. Medoro, I. Chartier, N. Minaresi, M. Tartagni, and R. Guerrieri, "Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips," *Lab on a Chip*, vol. 5, no. 2, pp. 158–162, 2005.

[151] P. Vulto, N. Glade, L. Altomare, J. Bablet, G. Medoro, A. Leonardi, A. Romani, I. Chartier, N. Minaresi, M. Tartagni, and R. Guerrieri, "Dry film resist for fast fluidic prototyping," in *Proc. of the 8th International Conference on Miniatureized Systems for Chemistry and Life Sciences*, Malmö, Sweden, 2005, pp. 43–45.

[152] T. N. Pornsin-Sirirak, S. W. Lee, H. Nassef, J. Grasmeyer, Y. C. Tai, C. M. Ho, and M. Keenon, "MEMS wing technology for a battery-powered ornithopter," in *Proc. of the IEEE 13th International Conference on Micro Electro Mechanical Systems (MEMS)*, Miyazaki, Japan, 2000, pp. 799–804.

[153] T. N. Pornsin-sirirak, Y. C. Tai, H. Nassef, and C. M. Ho, "Titanium-alloy MEMS wing technology for a micro aerial vehicle application," *Sensors and Actuators A: Physical*, vol. 89, no. 1–2, pp. 95–103, Mar 20 2001.

- [154] P. Jorge and M. Toepper, "An Assessment of Thick Dry Photoresist for Wafer Bumping," pp. 1–6.
- [155] Lea-Test Ltd. (2012, Jan. 13). *Glaucoma* [Online]. Available: <http://www.lea-test.fi/en/eyes/glaucoma.html>
- [156] R. Sampaolesi, N. Calixto, D. Carvalho.CA, and R. Reca, "Diurnal Variation of Intraocular Pressure in Healthy Suspected and Glaucomatous Eyes," *Bibliotheca Ophthalmologica*, no. 74, pp. 1–23, 1968.
- [157] M. L. Dietsche, J. T. Wilensky, D. K. Gieser, M. T. Mori, and R. Zeimer, "The Individual Nature of Diurnal-Variations in Intraocular-Pressure," *Investigative Ophthalmology & Visual Science*, vol. 32, no. 4, pp. 809–809, Mar. 15 1991.
- [158] J. T. Wilensky, "Diurnal variations in intraocular pressure," *Trans Am Ophthalmol Soc*, vol. 89, pp. 757–90, 1991.
- [159] A. M. Leung, W. H. Ko, T. M. Spear, and J. A. Bettice, "Intracranial-Pressure Telemetry System Using Semicustom Integrated-Circuits," *IEEE Transactions on Biomedical Engineering*, vol. 33, no. 4, pp. 386–395, Apr. 1986.
- [160] M. Leonardi, P. Leuenberger, D. Bertrand, A. Bertsch, and P. Renaud, "First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens," *Investigative Ophthalmology & Visual Science*, vol. 45, no. 9, pp. 3113–3117, Sep. 2004.
- [161] E. Y. Chow, A. L. Chlebowski, and P. P. Irazoqui, "A Miniature-Implantable RF-Wireless Active Glaucoma Intraocular Pressure Monitor," *IEEE Transactions on Biomedical Circuits and Systems*, vol. 4, no. 6, pp. 340–349, Dec. 2010.

- [162] M. A. Fonseca, J. M. English, M. von Arx, and M. G. Allen, "Wireless micromachined ceramic pressure sensor for high-temperature applications," *Journal of Microelectromechanical Systems*, vol. 11, no. 4, pp. 337–343, Aug 2002.
- [163] Y. Backlund, L. Rosengren, B. Hok, and B. Svedbergh, "Passive Silicon Transensor Intended for Biomedical, Remote Pressure Monitoring," *Sensors and Actuators A: Physical*, vol. 21, no. 1–3, pp. 58–61, Feb 1990.
- [164] L. Rosengren, Y. Backlund, T. Sjostrom, B. Hok, and B. Svedbergh, "A system for wireless intra-ocular pressure measurements using a silicon micromachined sensor," *Journal of Micromechanics and Microengineering*, vol. 2, no. 3, p. 202, 1992.
- [165] J. Shih, J. Xie, and Y. C. Tai, "Surface micromachined and integrated capacitive sensors for microfluidic applications," in *Proc. of the the 12th IEEE International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers'03)*, Boston, MA, 2003, pp. 388–391.
- [166] T. H. Lee, *The design of CMOS radio-frequency integrated circuits*, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
- [167] S. Timoshenko and S. Woinowsky-Krieger, *Theory of plates and shells*, 2d ed. New York, NY: McGraw-Hill, 1959.
- [168] D. K. Cheng, *Field and wave electromagnetics*. Reading, MA: Addison-Wesley, 1989.
- [169] J. M. Kim, D. H. Oh, J. H. Park, J. W. Cho, Y. W. Kwon, C. Y. Cheon, and Y. K. Kim, "Permittivity measurements up to 30 GHz using micromachined probe,"

Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp. 543–550, Mar 2005.

[170] A. Nyshadham, C. L. Sibbald, and S. S. Stuchly, "Permittivity Measurements Using Open-Ended Sensors and Reference Liquid Calibration—an Uncertainty Analysis," *IEEE Transactions on Microwave Theory and Techniques*, vol. 40, no. 2, pp. 305–314, Feb 1992.

[171] Microwaves101.com. (2012, Jan. 13). *Miscellaneous dielectric constants* [Online]. Available: <http://www.microwaves101.com/encyclopedia/Miscdielectrics.cfm>

[172] W. F. Gorham, "A New General Synthetic Method for Preparation of Linear Poly-P-Xylylenes," *Journal of Polymer Science Part A—1: Polymer Chemistry*, vol. 4, no. 12PA, pp. 3027–3039, 1966.

[173] M. Gazicki, G. Surendran, W. James, and H. Yasuda, "Polymerization of Para-Xylylene Derivatives (Parylene Polymerization) .2. Heat-Effects during Deposition of Parylene-C at Different Temperatures," *Journal of Polymer Science Part A: Polymer Chemistry*, vol. 23, no. 8, pp. 2255–2277, 1985.

[174] G. Surendran, M. Gazicki, W. J. James, and H. Yasuda, "Polymerization of Para-Xylylene Derivatives .5. Effects of the Sublimation Rate of Di-P-Xylylene on the Crystallinity of Parylene-C Deposited at Different Temperatures," *Journal of Polymer Science Part A: Polymer Chemistry*, vol. 25, no. 8, pp. 2089–2106, Aug 1987.

[175] M. Gazicki-Lipman, "Vapor Deposition Polymerization of para-Xylylene Derivatives—Mechanism and Applications," *Journal of the Vacuum Society of Japan*, vol. 50, no. 10, pp. 601–608, 2007.

[176] L. A. Errede, R. S. Gregorian, and J. M. Hoyt, "The Chemistry of Xylylenes .6. The Polymerization of Para-Xylylene," *Journal of the American Chemical Society*, vol. 82, no. 19, pp. 5218–5223, 1960.

[177] W. F. Beach, "Model for Vapor-Deposition Polymerization of Para-Xylylene," *Macromolecules*, vol. 11, no. 1, pp. 72–76, 1978.

[178] J. B. Fortin and T. M. Lu, "A model for the chemical vapor deposition of poly(para-xylylene) (parylene) thin films," *Chemistry of Materials*, vol. 14, no. 5, pp. 1945–1949, May 2002.

[179] J. F. Gaynor, "A heterogeneous model for the chemical vapor polymerization of poly-p-xylylenes," in *Proceedings of the Second International Symposium on Low and High Dielectric Constant Materials—Materials Science, Processing, and Reliability Issues*, Montreal, Quebec, Canada, 1997, pp. 176–185.

[180] S. Rogojevic, J. A. Moore, and W. N. Gill, "Modeling vapor deposition of low-K polymers: Parylene and polynaphthalene," *Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films*, vol. 17, no. 1, pp. 266–274, Jan–Feb 1999.

[181] G. R. Yang, S. Ganguli, J. Karcz, W. N. Gill, and T. M. Lu, "High deposition rate parylene films," *Journal of Crystal Growth*, vol. 183, no. 3, pp. 385–390, Jan 1998.

[182] P. K. Wu, G. R. Yang, J. F. McDonald, and T. M. Lu, "Surface-Reaction and Stability of Parylene-N and Parylene-F Thin-Films at Elevated-Temperatures," *Journal of Electronic Materials*, vol. 24, no. 1, pp. 53–58, Jan 1995.

[183] H. L. Huang, Y. G. Xu, and H. Y. Low, "Effects of film thickness on moisture sorption, glass transition temperature and morphology of poly(chloro-p-xylylene) film," *Polymer*, vol. 46, no. 16, pp. 5949–5955, Jul 25 2005.

[184] J. J. Senkevich and S. B. Desu, "Morphology of poly(chloro-p-xylylene) CVD thin films," *Polymer*, vol. 40, no. 21, pp. 5751–5759, Oct 1999.

[185] G. W. Ehrenstein and R. P. Theriault, *Polymeric materials: structure, properties, applications*. Munich; Cincinnati, OH: Hanser ; Hanser Gardner Publications, 2001.

[186] W. D. Niegisch, "Molecular Orientation in Poly-P-Xylylene Films," *Journal of Applied Physics*, vol. 38, no. 11, pp. 4110–4117, 1967.

[187] D. W. Grattan and M. Bilz, "The Thermal Aging of Parylene and the Effect of Antioxidant," *Studies in Conservation*, vol. 36, no. 1, pp. 44–52, 1991.

[188] D. J. Monk, H. S. Toh, and J. Wertz, "Oxidative degradation of parylene C (poly(monochloro-para-xylylene)) thin films on bulk micromachined piezoresistive silicon pressure sensors," *Sensors and Materials*, vol. 9, no. 5, pp. 307–319, 1997.

[189] T. E. Nowlin, D. Foss smith Jr., and G. S. Cieloszyk, "Thermal Oxidative Stability of Poly-P-Xylylenes," *Journal of Polymer Science Part A: Polymer Chemistry*, vol. 18, no. 7, pp. 2103–2119, 1980.

[190] M. Bera, A. Rivaton, C. Gandon, and J. L. Gardette, "Photooxidation of poly(para-xylylene)," *European Polymer Journal*, vol. 36, no. 9, pp. 1753–1764, Sep 2000.

[191] M. Kochi, K. Oguro, and I. Mita, "Photoluminescence of Solid Aromatic Polymers .1. Poly(P-Xylylene)," *European Polymer Journal*, vol. 24, no. 10, pp. 917–921, 1988.

[192] B. Lu, S. Y. Zheng, B. Q. Quach, and Y. C. Tai, "A study of the autofluorescence of parylene materials for μ TAS applications," *Lab on a Chip*, vol. 10, no. 14, pp. 1826–1834, 2010.

[193] K. G. Pruden and S. P. Beaudoin, "Model for the photooxidation of paralenes," *Journal of Polymer Science Part A: Polymer Chemistry*, vol. 42, no. 11, pp. 2666–2677, Jun 1 2004.

[194] K. G. Pruden, K. Sinclair, and S. Beaudoin, "Characterization of parylene-N and parylene-C photooxidation," *Journal of Polymer Science Part A: Polymer Chemistry*, vol. 41, no. 10, pp. 1486–1496, May 15 2003.

[195] T. E. Baker, S. L. Bagdasarian, G. L. Fix, and J. S. Judge, "Characterization of Vapor-Deposited Paraxylylene Coatings," *Journal of the Electrochemical Society*, vol. 124, no. 6, pp. 897–900, 1977.

[196] ALS Infrared Beamlines. (2012, Jan. 13). *Characteristic IR Band Positions* [Online]. Available: <http://infrared.als.lbl.gov/content/web-links/60-ir-band-positions>

[197] Y. Long, R. A. Shanks, and Z. H. Stachurski, "Kinetics of Polymer Crystallization," *Progress in Polymer Science*, vol. 20, no. 4, pp. 651–701, 1995.

[198] R. Iwamoto, R. C. Bopp, and B. Wunderlich, "Crystallization during Polymerization of Poly-P-Xylylene .3. Crystal-Structure and Molecular-Orientation as a Function of Temperature," *Journal of Polymer Science Part B: Polymer Physics*, vol. 13, no. 10, pp. 1925–1938, 1975.

[199] S. Kubo and B. Wunderlich, "Crystallization during Polymerization of Poly-P-Xylylene," *Journal of Polymer Science Part B: Polymer Physics*, vol. 10, no. 10, pp. 1949–1966, 1972.

[200] L. You, G. R. Yang, D. B. Knorr, J. F. McDonald, and T. M. Lu, "Texture of Vapor-Deposited Parylene Thin-Films," *Applied Physics Letters*, vol. 64, no. 21, pp. 2812–2814, May 23 1994.

[201] J. M. Hsu, L. Rieth, S. Kammer, M. Orthner, and F. Solzbacher, "Effect of thermal and deposition processes on surface morphology, crystallinity, and adhesion of Parylene-C," *Sensors and Materials*, vol. 20, no. 2, pp. 87–102, 2008.

[202] L. Mandelkern, *Crystallization of polymers*, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2002.

[203] G. Treiber, K. Boehlke, A. Weitz, and B. Wunderlich, "Crystallization during Polymerization of Poly-Para-Xylylene .2. Polymerization at Low-Temperature," *Journal of Polymer Science Part B: Polymer Physics*, vol. 11, no. 6, pp. 1111–1116, 1973.

[204] B. Wunderlich, "Crystallization during Polymerization," *Angewandte Chemie—International Edition*, vol. 7, no. 12, pp. 912–919, 1968.

[205] C. J. Brown, "Lin-Poly-Para-Xylylene .2. The Crystal Structure of Di-P-Xylylene," *Journal of the Chemical Society*, pp. 3265–3270, 1953.

[206] C. J. Brown and A. C. Farthing, "Lin-Poly-Para-Xylylene .3. Preparation by the Wurtz Reaction, and Investigation of Structure," *Journal of the Chemical Society*, pp. 3270–3278, 1953.

[207] W. D. Niegisch, "Crystallography of Poly-P-Xylylene," *Journal of Applied Physics*, vol. 37, no. 11, pp. 4041–4046, 1966.

[208] R. Iwamoto and B. Wunderlich, "Crystal-Structure of Poly-P-Xylylene .1. Alpha Form," *Journal of Polymer Science Part B: Polymer Physics*, vol. 11, no. 12, pp. 2403–2411, 1973.

[209] N. S. Murthy and H. G. Kim, "Molecular Packing in Alkylated and Chlorinated Poly-P-Xylylenes," *Polymer*, vol. 25, no. 8, pp. 1093–1096, 1984.

[210] G. Surendran, M. Gazicki, W. J. James, and H. Yasuda, "Polymerization of Para-Xylylene Derivatives (Parylene Polymerization) .4. Effects of the Sublimation Rate of Di-Para-Xylylene on the Morphology and Crystallinity of Parylene-N Deposited at Different Temperatures," *Journal of Polymer Science Part a: Polymer Chemistry*, vol. 25, no. 6, pp. 1481–1503, Jun 1987.

[211] J. E. Field, "An x-ray study of the proportion of crystalline and amorphous components in stretched rubber," *Journal of Applied Physics*, vol. 12, no. 1, pp. 23–34, Jan 1941.

[212] J. M. Goppel, "On the Degree of Crystallinity in Natural Rubber .2. The Orientation of the Rubber Crystallites in Stretched Samples," *Applied Scientific Research Section A: Mechanics, Heat, Chemical Engineering, Mathematical Methods*, vol. 1, no. 1, pp. 18–26, 1947.

[213] J. M. Goppel, "On the Degree of Crystallinity in Natural Rubber .1. An Improved Method to Determine the Degree of Crystallization in Rubber," *Applied Scientific Research Section A: Mechanics, Heat, Chemical Engineering, Mathematical Methods*, vol. 1, no. 1, pp. 3–17, 1947.

[214] S. Krimm and A. V. Tobolsky, "Quantitative X-Ray Studies of Order in Amorphous and Crystalline Polymers—Scattering from Various Polymers and a Study of the Glass Transition in Polystyrene and Polymethyl Methacrylate," *Textile Research Journal*, vol. 21, no. 11, pp. 805–822, 1951.

[215] P. H. Hermans and A. Weidinger, "Quantitative X-Ray Investigations on the Crystallinity of Cellulose Fibers—a Background Analysis," *Journal of Applied Physics*, vol. 19, no. 5, pp. 491–506, 1948.

[216] P. H. Hermans and A. Weidinger, "X-Ray Studies on the Crystallinity of Cellulose," *Journal of Polymer Science*, vol. 4, no. 2, pp. 135–144, 1949.

[217] P. H. Hermans and A. Weidinger, "Crystallinity of Precipitated Cellulose," *Journal of Polymer Science*, vol. 5, no. 5, pp. 565–568, 1950.

[218] L. E. Alexander, *X-ray diffraction methods in polymer science*. New York, NY: Wiley-Interscience, 1969.

[219] W. D. Niegisch, "Morphology of Poly-P-Xylylene," *Journal of Polymer Science Part B: Polymer Letters*, vol. 4, no. 8, pp. 531–536, 1966.

[220] S. W. Youn, H. Goto, S. Oyama, M. Takahashi, and R. Maeda, "Control of parameters influencing the thermal imprint of parylene/silicon," *Japanese Journal of Applied Physics Part 1: Regular Papers, Brief Communications & Review Papers*, vol. 46, no. 9B, pp. 6363–6369, Sep 2007.

- [221] J. B. Fortin and T. M. Lu, *Chemical vapor deposition polymerization: the growth and properties of parylene thin films*. Boston: Kluwer Academic Publishers, 2004.
- [222] R. G. Shaw, Y. L. Yeh, and J. W. Lewis, "Polymers of Improved Performance Capabilities and Processes Therefor," U.S. Patent 3 503 903, Mar. 31, 1970.
- [223] K. P. Menard, *Dynamic mechanical analysis: a practical introduction*. Boca Raton, FL: CRC Press, 2008.
- [224] H. G. Gilch and W. L. Wheelwright, "Polymerization of Alpha-Halogenated P-Xylenes with Base," *Journal of Polymer Science Part A—1: Polymer Chemistry*, vol. 4, no. 6, pp. 1337–1349, 1966.
- [225] W. A. Alpaugh and D. R. Morrow, "The thermal properties of monochloro-para-xylylene," *Thermochimica Acta*, vol. 9, no. 2, pp. 171–204, 1974.
- [226] J. J. Senkevich, "Thickness effects in ultrathin film chemical vapor deposition polymers," *Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films*, vol. 18, no. 5, pp. 2586–2590, Sep–Oct 2000.
- [227] C. Kamezawa, Y. Suzuki, and N. Kasagi, "Mechanical Response Evaluation of High-Thermally-Stable-Grade Parylene Spring," in *Proc. of the IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS)*, Sorrento, Italy, 2009, pp. 615–618.
- [228] H. S. Noh, Y. Huang, and P. J. Hesketh, "Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannel," *Sensors and Actuators B: Chemical*, vol. 102, no. 1, pp. 78–85, Sep 1 2004.

- [229] H. S. Noh, K. S. Moon, A. Cannon, P. J. Hesketh, and C. P. Wong, "Wafer bonding using microwave heating of parylene intermediate layers," *Journal of Micromechanics and Microengineering*, vol. 14, no. 4, pp. 625–631, Apr 2004.
- [230] P. Tewari, R. Rajagopalan, E. Furman, and M. T. Lanagan, "Control of interfaces on electrical properties of SiO(2)-Parylene-C laminar composite dielectrics," *Journal of Colloid and Interface Science*, vol. 332, no. 1, pp. 65–73, Apr 1 2009.
- [231] M. Chanda and S. K. Roy, *Plastics technology handbook*, 4th ed. Boca Raton, FL: CRC Press/Taylor & Francis Group, 2007.
- [232] PerkinElmer. (2012, Jan. 13). *Introduction to Dynamic Mechanical Analysis (DMA): A Beginner's Guide* [Online]. Available: http://www.perkinelmer.com/CMSResources/Images/44-74546GDE_IntroductionToDMA.pdf
- [233] *Standard Test Method for Tensile Properties of Thin Plastic Sheeting*, ASTM Standard D882, 2009.
- [234] *Standard Test Method for Tensile Properties of Plastics*, ASTM Standard D638, 2008.
- [235] M. A. Spivack, "Mechanical Properties of Very Thin Polymer Films," *Review of Scientific Instruments*, vol. 43, no. 7, pp. 985–990, 1972.
- [236] J. M. Hutchins and N. G. McCrum, "Effect of Thermal Fluctuation on Creep of Polyethylene," *Nature-Physical Science*, vol. 236, no. 69, pp. 115–117, 1972.
- [237] A. W. Thornton, "Creep of Polyethylene above Room Temperature," *Journal of Applied Physics*, vol. 41, no. 11, pp. 4347–4350, 1970.

[238] J. C. H. Lin, C. Po-Jui, B. Yu, M. Humayun, and T. Yu-Chong, "Minimally Invasive Parylene Dual-Valved Flow Drainage Shunt for Glaucoma Implant," in *Proc. of the 22nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS)*, Sorrento, Italy, 2009, pp. 196–199.

[239] H. F. Brinson, *Polymer engineering science and viscoelasticity: an introduction*. New York: Springer, 2007.

[240] A. Plaseied and A. Fatemi, "Tensile Creep and Deformation Modeling of Vinyl Ester Polymer and Its Nanocomposite," *Journal of Reinforced Plastics and Composites*, vol. 28, no. 14, pp. 1775–1788, Jul 2009.

[241] A. Pasricha, M. E. Turtle, and A. F. Emery, "Time-dependent response of IM7/5260 composites subjected to cyclic thermo-mechanical loading," *Composites Science and Technology*, vol. 56, no. 1, pp. 55–62, 1996.

[242] E. Marklund, J. Varna, and L. Wallstrom, "Nonlinear viscoelasticity and viscoplasticity of flax/polypropylene composites," *Journal of Engineering Materials and Technology—Transactions of the ASME*, vol. 128, no. 4, pp. 527–536, Oct 2006.

[243] L. O. Nordin and J. Varna, "Nonlinear viscoplastic and nonlinear viscoelastic material model for paper fiber composites in compression," *Composites Part A: Applied Science and Manufacturing*, vol. 37, no. 2, pp. 344–355, 2006.

[244] M. E. Tuttle, A. Pasricha, and A. F. Emery, "The Nonlinear Viscoelastic-Viscoplastic Behavior of Im7/5260 Composites Subjected to Cyclic Loading," *Journal of Composite Materials*, vol. 29, no. 15, pp. 2025–2046, 1995.

[245] L. J. Zapas and J. M. Crissman, "Creep and Recovery Behavior of Ultrahigh Molecular-Weight Polyethylene in the Region of Small Uniaxial Deformations," *Polymer*, vol. 25, no. 1, pp. 57–62, 1984.

[246] E. Chailleux and P. Davies, "Modelling the non-linear viscoelastic and viscoplastic behaviour of aramid fibre yarns," *Mechanics of Time-Dependent Materials*, vol. 7, no. 3–4, pp. 291–303, 2003.

[247] Y. C. Lou and R. A. Schapery, "Viscoelastic Characterization of a Nonlinear Fiber-Reinforced Plastic," *Journal of Composite Materials*, vol. 5, pp. 208–234, 1971.

[248] M. Mognis and J. Varna, "Nonlinear viscoelastic, viscoplastic characterization of unidirectional GF/EP composite," *Mechanics of Time-Dependent Materials*, vol. 7, no. 3-4, pp. 269–290, 2003.

[249] M. Mognis and J. Varna, "Micromechanics based modeling of nonlinear viscoplastic response of unidirectional composite," *Composites Science and Technology*, vol. 63, no. 1, pp. 19–31, 2003.

[250] L. O. Nordin and J. Varna, "Nonlinear viscoelastic behavior of paper fiber composites," *Composites Science and Technology*, vol. 65, no. 10, pp. 1609–1625, Aug 2005.

[251] R. Miranda Guedes, A. Torres Marques, and A. Cardon, "Analytical and Experimental Evaluation of Nonlinear Viscoelastic-Viscoplastic Composite Laminates under Creep, Creep-Recovery, Relaxation and Ramp Loading," *Mechanics of Time-Dependent Materials*, vol. 2, no. 2, pp. 113–128, 1998.

[252] F. P. Incropera and D. P. DeWitt, *Fundamentals of heat and mass transfer*, 4th ed. New York: Wiley, 1996.

[253] P. K. Chandra and P. J. d. A. Sobral, "Calculation of viscoelastic properties of edible films: application of three models," *Ciência e Tecnologia de Alimentos*, vol. 20, pp. 250–256, 2000.

[254] D. D. Joye, "Stress-Relaxation in 3-Element and 4-Element Mechanical Models of Viscoelastic Materials," *Journal of Applied Polymer Science*, vol. 47, no. 2, pp. 345–350, Jan 10 1993.

[255] M. S. Nandra, I. A. Lavrov, V. R. Edgerton, and Y. C. Tai, "A Parylene-Based Microelectrode Array Implant for Spinal Cord Stimulation in Rats," in *Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS)*, Cancun, MEXICO, 2011, pp. 1007–1010.

[256] K. D. Wise, P. T. Bhatti, J. B. Wang, and C. R. Friedrich, "High-density cochlear implants with position sensing and control," *Hearing Research*, vol. 242, no. 1–2, pp. 22–30, Aug 2008.

[257] E. M. Schmidt, J. S. McIntosh, and M. J. Bak, "Long-Term Implants of Parylene-C Coated Microelectrodes," *Medical & Biological Engineering & Computing*, vol. 26, no. 1, pp. 96–101, Jan 1988.

[258] J. C. H. Lin, D. Peigang, G. Lam, L. Bo, L. Yi-Kuen, and T. Yu-Chong, "Creep of parylene-C film," in *Proc. of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers'11)*, Beijing, China, 2011, pp. 2698–2701.

- [259] C. T. Zhang and I. D. Moore, "Nonlinear mechanical response of high density polyethylene .1. Experimental investigation and model evaluation," *Polymer Engineering and Science*, vol. 37, no. 2, pp. 404–413, Feb 1997.
- [260] C. T. Zhang and I. D. Moore, "Nonlinear mechanical response of high density polyethylene .2. Uniaxial constitutive modeling," *Polymer Engineering and Science*, vol. 37, no. 2, pp. 414–420, Feb 1997.
- [261] S. R. Bodner and Y. Partom, "Large Deformation Elastic-Viscoplastic Analysis of a Thick-Walled Spherical Shell," *Journal of Applied Mechanics*, vol. 39, no. 3, pp. 751–757, 1972.
- [262] S. R. Bodner and Y. Partom, "Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials," *Journal of Applied Mechanics—Transactions of the ASME*, vol. 42, no. 2, pp. 385–389, 1975.
- [263] K. S. Chan, S. R. Bodner, and U. S. Lindholm, "Phenomenological Modeling of Hardening and Thermal Recovery in Metals," *Journal of Engineering Materials and Technology—Transactions of the ASME*, vol. 110, no. 1, pp. 1–8, Jan 1988.
- [264] M. Pyrz and F. Zairi, "Identification of viscoplastic parameters of phenomenological constitutive equations for polymers by deterministic and evolutionary approach," *Modelling and Simulation in Materials Science and Engineering*, vol. 15, no. 2, pp. 85–103, Mar 2007.
- [265] F. Zairi, M. Nait-Abdelaziz, K. Woznica, and J. M. Gloaguen, "Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate," *Journal of Engineering Materials and Technology—Transactions of the ASME*, vol. 129, no. 1, pp. 29–35, Jan 2007.

[266] F. Zairi, K. Woznica, and M. Nait-Abdelaziz, "Phenomenological nonlinear modelling of glassy polymers," *Comptes Rendus Mecanique*, vol. 333, no. 4, pp. 359–364, Apr 2005.