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Abstract

Increasingly tightened restrictions on antenna beam-width force the use of higher per-

formance hardware in gimbaled satellite communication transceivers. The need for more

precise hardware is forcing the price of gimbal-mounted satellites antennas higher. In

addition to the increased cost, as more satellites are launched every year, the demand

for antenna systems which can receive data from the new satellites grows. Although al-

gorithms capable of tracking a satellite with a mobile antenna have been developed and

characterized in detail, instabilities in the system and cross-axis effects degrade the per-

formance. Since an increase in tracking capability would be most beneficial if it did not

require extensive hardware changes, this project focuses on improvements to the conical

scanning algorithm. An algorithm which is one of the oldest, and most common mobile

satellite tracking system implementations. Initial work was done on developing and char-

acterizing a new estimator which could be used while continuing to scan the antenna with

as few software modifications as possible. After successful development, work was done to

eliminate the induced scanning motion and gain observability in the system using nothing

but the noise inherent in the system.
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1: Introduction

1.1 Problem

An antenna must be pointed in the direction of the signal’s source in order to receive

signals. The goal of mobile satellite communications systems is to keep an antenna pointed

as closely as possible to a far target over an extended period of time. This target could be

a boat, plane, satellite, or any other device which is broadcasting a signal. By inertially

stabilizing the antenna with gyroscope feedback, the antenna can be kept pointing at its

target over short time-scales. Over long time-scales, however, external disturbances begin

to compound the drift and a long term tracking method must be used to keep the antenna

pointing on target. Long term tracking is achieved through the use of an active control

system which nutates the beam and estimates how well the antenna is aligned with the

target by watching the resulting change in signal strength.

This work aims to develop a long term tracking algorithm from a theoretical frame-

work. The framework chosen sets the problem up as a peak-seeking problem, where the

goal is to minimize the distance to the satellite over all time. Similar peak seeking control

problems used in other fields are discussed. One commonly implemented technique used

in the radio frequency (RF) communications field, conical scanning, is analyzed in detail

[3]. This detailed analysis provides performance characteristics which can be compared

to new developments, and helps to reveal the problems with the original estimator that

need to be resolved.

An improved algorithm is suggested and analyzed to show the response of the new

estimator to the same situations that the traditional method was subject to. Increased

performance parameters indicate the suitability of the new estimator, and the effects that

these changes have on the closed-loop tracking system are discussed. This thesis does

not attempt to find an optimal estimator, or a way of keeping an antenna pointed to its

target that has better performance than any previously developed algorithms. Rather

than finding a complex system that is difficult to implement, this work proposes a simple

new solution. The new system has the potential for wide spread implementation on
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current systems without the need for extensive hardware changes.

1.2 Background

Since the development of radar, methods for tracking vehicles have been needed for every-

thing from communication systems to defense systems. Estimates of an object’s location

could be to for pinpoint an enemy ship or relay messages to aircraft. The earliest radar

needed to be pointed at the target by an operator. Thus, the operator had to know

the location of the target. While this worked well for stationary dishes with fixed tar-

gets, this became difficult for longer range communication antennas and therefore a more

sophisticated method for tracking became a necessity.

Conical scanning has become the most widely implemented method for satellite track-

ing due to its simplicity [3]. With nothing but a perturbing motion defined by two sine

waves, which can be easily superimposed upon the tracking signals, a relatively stable

controller can be implemented. This estimator has been used on everything from small

mobile antennas mounted on military vehicles to the large 64-m diameter antennas used

by NASA/JPL to communicate with spacecraft [3].

1.3 Motivation

For many Geosynchronous satellites and fixed antennas the dish can be manually pointed

and locked into place but, when either the source or receiver is in motion, a tracking

system is needed to keep the antenna on target. When mis-pointed, the strength of

the received signal drops, reducing performance. Even when the path of a satellite is

known, without feedback, the accumulation of error in location due to wind or other

disturbances causes the antenna to drift off course and lose the signal. In order to prevent

this the transmitting and receiving stations can broadcast their locations between each

other continuously. However, this adds to the complexity of the system. It also reveals

the location of the ground station to nearby observers which is undesirable for military

applications.

Methods for tracking using only the Received Signal Strength (RSS) were developed
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in order to avoid these problems [3]. The most commonly used RSS tracking method is

known as conical scanning, which rotates the antenna around the current best estimate

of the satellite’s location known as the boresight axis. By inducing this circling motion,

the RSS changes with distance from the target. By convolving the RSS with the position

offset wave in the x and y directions over a full cycle, it is possible to extract the phase

offset, which can be used to estimate the location along each axis.

1.4 Literature Review

A number of different approaches to develop peak-seeking controllers have been developed

for a variety of wide-spread applications ranging from communications links to dynamic

optimization and formation flying techniques. Finding the location where a cost function

is minimized or performance function is maximized is the goal of many systems. There

are significant variations in methodology based on the specific problem being addressed.

A method used for peak-seeking in a different field might apply to implementation on a

mobile communications system.

The general problem of finding and staying at a peak is called “peak-seeking” in

control literature, although this term is not used much in the gimbal pointing or tracking

industry. An example of a similar problem comes from formation flight control[1]. Two

aircraft seek to maximize the aerodynamic efficiency (reduce drag) by flying close to one

another. The aerodynamic efficiency is maximized at a particular relative position, which

cannot be known exactly a priori and may move slowly with changing parameters.

1.4.1 Conical Scanning

Conical scanning is one of the most commonly implemented systems, and the one which

was analyzed most throughly during the course of this research. This method works by

comparing the motion of the scan to the change in received signal along the elevation

and cross-elevation axis. If the signal strength drops as the antenna is moving to the

left, the satellite must be located to the right of where it is pointed. Alternatively, if the

signal strength increases, then the satellite position is farther left. By averaging the the

left-right estimate over a full scan, an estimate of the location of the satellite with respect
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to the scanning axis is generated. This process of keeping the signal “peaked up” is called

tracking and consists of convolving the received signals with the antenna’s perturbations.

[2].

One of the most thorough analyses of conical scanning was done as a technical report

released by NASA/JPL in 1976 [3]. This report documents the work which was done to

demonstrate the feasibility of using conical scanning on the 64-meter diameter paraboloid

antenna at Goldstone, California. The report describes how the system was perturbed,

and the effect which the scanning rate, as well as the scanning radius had on perfor-

mance without assuming a shape for the signal strength. A detailed analysis of the noise

performance was carried out along with a comparison to experimental results.

Although the application was for fixed Earth stations (not mobile, with no stabiliza-

tion), the tracking algorithm is the same as is used on many mobile antennas. NASA/JPL

have since researched and implemented a variety of other tracking techniques. Rather

than using a näıve correlation, these more advanced architectures use a Kalman filter

formulation for the estimator.

1.4.2 Parameter Estimation using Assumed Functions

Chichka et al. at the University of California, Los Angeles investigated formation flying

techniques in 2006. Rather than attempting to model the system perfectly, they con-

structed functions of the form which they expected, but without choosing values for the

individual parameters [1]. By calculating these parameters online, they were able to adapt

as unknown factors began arising. A method for using an adaptive loop that calculates

the parameters and how they change over time was provided.

This technique became problematic during implementation. In particular it was de-

signed to allow the parameters to vary over time, which while it helped optimize the system

when atmospheric attenuation problems arose, also obscured the definitive robustness and

stability parameters. Additionally, the nature of the antenna communication problems

eliminated the need for online calculations of the initial function since the shape could be

determined through simple system identification techniques.
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1.4.3 Extended Kalman Filter

One method for estimating the position is to use an extended Kalman filter to keep track

of the best location estimate as well as the error from various sources. An analysis of

this method was carried out for use in pointing a laser beam at an optical position sensor

which underwent dynamic disturbances. Light intensity was used as feedback [4]. This

method is similar to the proposed mobile communications infrastructure where the signal

is strongest with perfect pointing, and drops off as the laser gets farther from the target.

The method proposed in the paper, “Laser Beam Pointing and Stabilization by In-

tensity Feedback Control,” [4] discusses the advantages and disadvantages of using an

extended Kalman filter observer for pointing the laser. The biggest drawback to this

approach was that it was not possible to steer the laser to the optimal operation point

due to the symmetry inherent in the situation. However, they were able to steer to sub-

optimal operation points which helped to bound the total amount of accumulating error

so it improved upon an open loop system.

While the setup was designed for a mobile communications framework, the implemen-

tation of this method was more complex than the more standard conical scanning methods,

and did not provide any particular advantage over the conical scanning method. Rather

than analyzing this method in detail, it may be more beneficial to incorporate extended

Kalman Filter observers on top of a new method.
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2: Problem Setup

2.1 Theoretical Setup

I took a theoretical approach to solving this problem, starting with the fundamental

method of trying to estimate an (x, y) position, with nothing but a measurement of

distance from the origin. This measurement was obtained from the signal strength. The

velocities in each direction were taken from gyroscopes. Figure 2.1 shows the theoretical

problem setup. For a real system, the following sensors and actuators would be present

which could be transformed onto a Cartesian coordinate system with the following values.

For now, it is assumed that the Received Signal Strength can be modeled as r2 and the

controller is trying to minimize ∫ tf

t0

r2 dt. (2.1)

- Gyroscope Sensors: ẋ, ẏ

- Received Signal Strength: x2 + y2

- Actuators: Tx, Ty

- Disturbances: Dx, Dy

- Process Dynamics: ẍ = Tx +Dx, ÿ = Ty +Dy

The following methods explore the advantages and disadvantages of conical scanning,

as well as new proposed alternative methods for RSS tracking. These methods were

developed to eliminate some of the problems which arise using the traditional conical

scanning methods.
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Figure 2.1: Theoretical problem setup.

2.2 Variable Parameters

In order to characterize each of these methods, it is important to keep in mind which

parameters can be changed to optimize a given system. While the simulations give a

baseline set of characteristics to compare, each antenna will have different properties, and

depending on the intended application, a single method may not be optimal in all cases.

By considering the advantages and disadvantages of each estimator, the gains and method

can be chosen for the task.

- A: The amplitude of the perturbation and convolved waves.

- ω: The scanning frequency in radians / second.

- X0, Y0: The position which the scanning takes place around. This information is

not available to the estimator, but is used for simulating the path.

2.3 Analysis Methodology

In each of the following sections a different estimator was analyzed to identify its advan-

tages and disadvantages. For each of the proposed methods a Simulink model was used to

analyze the tracking ability of the system using different estimator gains. The Simulink

model is provided as well as a list of advantages and disadvantages for each method.
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Most of these approaches follow the basic block diagram shown in figure 3.8. These

approaches implicitly or explicitly produce some estimate of position x and y.

2.4 Simulink Conventions

While many of the Simulink blocks are standard the following blocks have the listed

parameters.

- x pos wave: A cos(ωt) +X0

- y pos wave: A sin(ωt) + Y0

- x vel wave: −Aω sin(ωt)

- y vel wave: Aω cos(ωt)

- Delay: The delay block inserts a time delay into the system in order to integrate

over the proper time range t0, tf .

- Band-Limited White Noise: Simulates Band-Limited White Noise with a power

spectral density as listed to get the desired noise characteristics.

2.5 Stabilized Dynamics Block with Noise

While the estimator and tracking characteristics change for each simulation, the internal

dynamics and noise inherent to the system have been kept consistent. Figure 2.2 is

the Simulink model which shows the dynamics of the system, implements a stabilizing

controller, and contains three types of noise with varying properties.

2.5.1 Dynamics

The dynamics of the system are given by integrators, which take the current forces applied

by the torque from the motor and give out the sensor measurements measured by the gy-

roscopes, as well as a second integrator which keeps track of the (x,y) position throughout

the simulation in order to extract the measurement of received signal strength.
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Figure 2.2: Simulink model of the stabilized dynamics with noise.

2.5.2 Stabilizing Controller

A PI controller was designed to give the system 20 Hz of bandwidth with a 60◦phase

margin in order to stabilize the system. The following choice of parameters results in a

system with the desired characteristics.

KP +
KI

s
(2.2)

. where KP = 86.6, KI = 5000.

2.5.3 Noise

Three different types of noise were included within this simulation. They were chosen in

order to simulate the effects of various factors on a real system.

- Sensor Noise: The sensor noise was modeled to simulate the noise in the output

signals from the gyroscopes. The power spectral density of this noise was chosen so

the random drift in the position incurred by the noise was approximately 1 milli-

radian of drift over 2 seconds.

- Disturbances: The disturbance noise arises from external torques applied to the

antenna causing it to accelerate. In a real system, this noise could be a result of

the wind. This noise was modeled so that there would be about 10 micro-radians

of drift over 2 seconds.
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- Noise in the received signal: The model of the received signal was disturbed by

atmospheric effects over time. We introduced the RSS noise in order to have a RMS

error of 40 micro-radians in the estimated radius.
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3: Initial Simulations

3.1 Traditional Conical Scanning

A simulation of the traditional method of conical scanning was used on the JPL Deep

Space Network [3]. As can be seen in figure 3.1, the reference velocity was chosen to be

the derivative of the position offset. The desired position signal was then convolved with

the RSS signal to get an estimate of position.

Along the x-axis, the offset wave is A cos(ωt), which is positive for the first half cycle

and negative for the second. Conical scanning compares the relative magnitude of the RSS

when the antenna is pointed right of the boresight axis to when the antenna is pointed

left. Along the y-axis, the offset wave is A sin(ωt), which is positive when the antenna is

pointed above the boresight axis and negative when it is pointed below.

3.1.1 Simulink Model

The Simulink model, which demonstrate the perturbations and traditional conical scan-

ning estimator, is shown in figure 3.1. The velocity perturbations are fed through the

process block before being estimated by convolving the received signal with the position

perturbation and multiplying it by a gain. This model has unity feedback for simulation

purposes, however, better tracking performance could be achieved by adding a feedback

term.

3.1.2 Advantages

This method will be considered the baseline to which the new alternatives will be com-

pared. Conical scanning has good tracking characteristics as well as disturbance rejection

in the RSS signal which allows it to work even with imperfect conditions such as at-

mospheric disturbances. Faster conical scanning rates, and larger deviations from the

boresight axis allow for faster tracking, and position updates can be made.
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Figure 3.1: Current implementation of the conical scanning system used for the JPL Deep
Space Network. [3]

3.1.3 Disadvantages

The largest disadvantage with conical scanning is the increase in error for real time sensing

because the extra position offset is added to the inherent noise in the system. Even if the

position estimate for the satellite is perfect, the constant scanning means the antenna will

always be off center by a constant distance. When the target and receiver are stationary,

scanning can be periodic, and the antenna can be directed back to the boresight axis after

finding the highest signal strength if the disturbances accumulate slowly.

In addition to artificially adding an error term, the tracker does not provide an estimate

which is proportional in each dimension. This causes the motion in one of the two axes

to be significantly faster than the other, which becomes apparent in the simulation as

a curved path to the peak in signal strength. This indirect path causes the antenna to

accumulate error more quickly and lose tracking ability for a moving receiver.

3.2 Predicted Gradient Conical Scanning

In an attempt to eliminate some of the disadvantages associated with traditional conical

scanning, a different set of signals were convolved. Rather than convolving the position

offset wave with the RSS, the velocity wave used to produce the position offset was

convolved with the derivative of the RSS. A model showing how this is implemented is

shown in figure 3.2.
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3.2.1 Simulink Model

Figure 3.2: Simulink model of the predicted gradient conical scanning method.

3.2.2 Advantages

The simulation of this method revealed similarities to the closed loop traditional conical

scanning simulation shown in figure 3.1. The noticeable advantages attained by changing

the estimator showed up in the tracking capabilities. While movement to the origin was

similar in magnitude, higher gains could be added to the feedback before the system be-

came unstable. This advantage seemed to be due to the fact that by taking the derivative

of the received signal, the magnitude of the convolved signal was significantly reduced.

By reducing the tracking signal, a larger feedback gain would reproduce similar tracking

characteristics.

The two most important apparent advantages came from the path that the tracker

followed. Instead of following a curved path to the origin, the estimator seemed to go more

consistently straight towards the origin in a way such that the velocity of the tracker in

each direction was directly proportional to its offset in that direction. This motion helped

to keep the system stable under increased feedback gains, and reduced the accumulation

of error.

A second advantage of the alternative estimator is that the amplitude of the pertur-

bations seem to have less effect on the tracking capabilities. Reducing the amplitude does

not seem to reduce the stability of the system even when noise is added.
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3.2.3 Disadvantages

The disadvantage associated with this method, which was not present in the traditional

conical scanning method, arose from taking the derivative of the RSS signal. If the received

signal is particularly noisy, taking the derivative could introduce even more noise. This

extra noise could cause the system to go unstable unless steps were taken to reduce this

effect. One possible solution could be to limit the output signal.

3.3 Measured Gradient Conical Scanning

One of the biggest advantages of convolving the velocity wave with the derivative of the

RSS is that the gyroscopes in the system provide a direct measurement of the velocity.

Rather than using the reference velocity, the measured velocity given by the gyroscopes

can be used. This is something that can not be used in the traditional conical scanning

methodology since the position perturbation is convolved.

3.3.1 Simulink Model

Figure 3.3 shows how the output from the gyroscope can be redirected and used in the

estimator. This should have very little effect when done without noise as the gyroscope

should perfectly reflect the predicted motion. However, when noise is added it propagates

through the system dynamics and appears in the gyroscope signal.

Figure 3.3: Simulink model of the measured gradient conical scanning method.
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3.3.2 Advantages

By convolving the measured velocities in both direction, some of the symmetry in the

previous problems is broken, allowing for the estimator to track along a much more direct

path. Rather than curving off to the side, the antenna follows a direct path along the

gradient of the RSS, which for circularly symmetric signals sends it to the peak at the

origin.

The other advantage attained by using the measurements apparent through simulation

is that noise in the system arises in both of the convolved signals, and as such seems to

have less effect on the tracking ability than in the traditional conical scanning. This

is similar to the predicted gradient conical scanning method. The noise seems to add

observability to the system rather than destabilize the system.

3.3.3 Disadvantages

The biggest drawback to this method is that taking the derivative of the RSS signal which

as in the predicated gradient conical scanning case can create very noisy signals.

3.4 Measured Gradient Tracking

In this method, when feeding the measured velocities into the convolution, the inherent

noise in the system is used in observing position. In this case rather than rotating the

antenna about a bore axis, white noise is used to simulate effects of noise in the system,

and to help the system start tracking.

3.4.1 Simulink Model

The Simulink model shown in figure 3.4 eliminates the perturbing circulation term, but

keeps the rest of the simulation the same. When no noise is present in the system, nothing

changes as the lack of motion removes all observability, however, the noise internal to the

process block adds an initial perpetuation. This noise adds enough observability that the

antenna is able to estimate its position and track to the origin.
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Figure 3.4: Simulink model of the measured gradient tracking method.

3.4.2 Advantages

By using band-limited white noise as the reference velocity, the need for introducing an

extra error term is eliminated if the noise models the natural noise inherent in the system.

If the internal noise is not high enough to provide observability, an additional white noise

term can be added as the reference velocity connecting to the input port on the left of

figure 3.4. This method still seems to provide an advantage over the measured gradient

conical scanning method as a white noise input will keep the antenna pointed closer to

on target on average than a forced circulation.

3.4.3 Disadvantages

The same drawback that the other gradient methods had of taking derivative of noisy

signals is enhanced in this case. In addition to a noisy RSS feed, a noisy velocity mea-

surement arises from the reference velocity, and the system loses some the predictability

in its tracking performance.

3.5 Preliminary Results

The initial simulations of each method presented evidence that the new estimators im-

proved upon the traditional conical scanning estimator. At a minimum, each estimator
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seems to have its own set of advantages which could be utilized based on the desired

pointing requirements. Based on the preliminary results, a more detailed mathematical

analysis was performed and is provided as follows in order to compare the traditional

conical scanning estimator to the newly proposed gradient conical scanning estimator.

3.6 Overview of Approach

Both solutions have inner stabilization loops for ẋ and ẏ which for will be left out for

the purpose of this analysis since the simulation is performed with no noise, effectively

removing the effects of the inner stabilization loop. Both solutions use a circular scan in

x and y to gain observability. By keeping as many parameters constant as possible the

following performance metrics will be determined.

3.7 Performance Metrics

- Steady State Response: Estimate produced after a full cycle while the system is in

steady state conditions should match the real position exactly.

- Step Response: The step response in x from a unit input in the satellites position

along x should remain near the range of [0, 1].

- Ramp Response: The ramp response of the x estimator due to motion along the x

axis should stay bounded around the position of the satellite over time.

- Cross-Axis Step Response: The step response in x from a unit input in the satellites

position along y should remain near the range of [0, 1].

- Cross-Axis Ramp Response: The ramp response of the x estimator due to motion

along the y axis should stay bounded around the position of the satellite over time.

- Noise Response: The estimator should reject enough noise which is propagating

through the system as possible so the noise does not cause the system to go unstable.
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3.8 Top Level Block Diagram

Both axes have an inner, fast stabilization loop. The outer tracking loop compensation

acts to keep the system at x = 0, y = 0 by commanding the stabilization (velocity) loop.

The perturbation generation commands the inner loop as well and creates the dithering

or scanning motion. The Estimator observes the scanning action and x2 + y2 to estimate

position for the outer loop to use as can be seen in figure 3.8

Figure 3.5: Overall system design diagram for the conical scanning estimators to track to
the origin.

3.9 System Dynamics Equations

Equations 3.1 and 3.2 show the position perturbation around the boresight axis induced by

moving the antenna with sinusoidal signals in both the x and y axis. The circular scanning

motion is characterized by two parameters: the frequency (ω) and amplitude (A). The

frequency clearly should not be beyond the stabilization loop bandwidth because then the

stabilization loop would not be able to keep up with the commanded perturbation motion.

Increasing the amplitude increases the effective signal to noise ratio, but is undesirable

because it means that the antenna spends more time away from the ideal position. The

equations that are used to model the perturbations are given by

xperturb(t) = A cos(ωt+ φ) (3.1)
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and

yperturb(t) = A sin(ωt+ φ). (3.2)

In the steady-state with no noise, by adding these perturbations to our initial position

(x0, y0) we get equations 3.3 and 3.4 showing the location the antenna is pointing over

all time for x(t)

x(t) = x0 + xperturb(t) = x0 + A cos(ωt+ φ) (3.3)

and y(t)

y(t) = y0 + yperturb(t) = y0 + A sin(ωt+ φ). (3.4)

Combining these two equations gives

R(t)2 = x(t)2 + y(t)2 = (x0 + A cos(ωt+ φ))2 + (y0 + A sin(ωt+ φ))2. (3.5)
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4: Detailed Analysis of Traditional

Conical Scanning

4.1 Estimator

Figure 4.1: The range measurement (signal strength) is convolved with the position per-
turbation.

Under the traditional method of conical scanning, the signal strength R2 is convolved

with the position perturbation (xperturb, yperturb) and integrated over a full scan in order to

get a position estimate (x̂, ŷ). Figure 4.1 shows an overview of the estimator which takes

in the received signal and convolves it with the position perturbation signals in order to

get an estimate of the current position.

Equations 4.1 and 4.2 show the most general form for the estimator of both x̂

x̂(t) =
ω

2πA2

∫ t

t− 2π
ω

R(τ)2xperturb(τ) dτ (4.1)

and ŷ

ŷ(t) =
ω

2πA2

∫ t

t− 2π
ω

R(τ)2yperturb(τ) dτ. (4.2)

Maintaining the assumption that the system is at steady state without noise, it be-

comes possible to substitute in equations 3.5, 3.1, and 3.2 to get equations 4.3, and 4.4.

These equations show that with the gain factor of ω
2πA2 was chosen so that x̂ = x0 and

ŷ = y0 after a single cycle are given by
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x̂(t) =
ω

2πA2

∫ t

t− 2π
ω

(
(A cos(ωτ + φ) + x0)

2 + (A sin(ωτ + φ) + y0)
2)A cos(ωτ + φ)dτ = x0

(4.3)

and

ŷ(t) =
ω

2πA2

∫ t

t− 2π
ω

(
(A cos(ωτ + φ) + x0)

2 + (A sin(ωτ + φ) + y0)
2)A sin(ωτ + φ)dτ = y0.

(4.4)

4.2 Step Response

While the steady state response of the estimator is perfect, an actual system will be moving

through a combination of controlled motion during tracking, and noise introduced into

the system by external torques. In order to determine the effects of this motion it becomes

important to analyze the transient response.

Figure 4.2: Step response of the traditional conical scanning estimator with ω = 2π and
A = 0.1 while varying φ.

Figure 4.2 shows how the step response varies with φ. This indicates the position

over the scan at which the step occurs since the step response when the y perturbation

is maximum as compared to when the x perpetuation is maximum. For all simulations

performed on both the traditional conical scanning estimator, and the gradient conical
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scanning estimator, varying φ had a similar affect. The curve shifted, but had similar

characteristics for a fixed A and estimator.

For purposes of the analysis φ = 3π
2

was chosen as it depicts one of the worst case step

and ramp responses for the traditional conical scanning estimator. This occurs because

the step response continuously overestimates the actual position due to the convolution

method. While the problems discussed in the following sections occur over a large range

of values for φ, the differences are easiest to see with this particular value.

Figure 4.3: Step response of the traditional conical scanning estimator with ω = 2π and
φ = 3π

2
while varying A.

Figure 4.3 shows the step response of the traditional conical scanning estimator when

scanning with a few different radii. For all future plots with varying A, the following

values will be used A = (1/16, 1/4, 1, 4, 16). A = 1 is the same as setting the radius of

the scan equals the size of the step taken.

Figure 4.3 shows some of the problems which arise using the traditional estimator.

While the estimator works well for large values of A, as A is decreased, the transient

response gets worse. When A = 1/16 of the step size, x̂
xactual

> 5 this proves problematic

as any tracking loop will have to be slow enough to smooth out these large variations,

and robust enough that the system will not go unstable.

After looking at the step response of the system, it is important to look at the cross-

axis step response. This shows the transient response in the estimate of y due to a step

response in x. Figure 4.4 shows how the cross-axis step response varies for different values

of A. While the cross-axis step response does not have the same problems of estimating a
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position which is always too high or too low, it does grow unbounded for smaller A. This

figure indicates that the estimates of x and y are coupled which could create instabilities

in the system. It is this feature of the traditional estimator which causes the asymmetric

tracking motion and generates a curved track to the origin increasing the amount of

accumulated error.

Figure 4.4: Cross-axis step response of the traditional conical scanning estimator with
ω = 2π and φ = 3π

2
while varying A.
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4.3 Ramp Response

The ramp response of the system is generated by providing an input of 1 radius / cycle to

the origin. This shows how the system would respond if the target was moving, or when

the tracking feedback is pushing the boresight axis toward the origin.

Figure 4.5: Ramp response of the traditional conical scanning estimator with ω = 2π and
φ = 3π

2
while varying A.

When using the traditional estimator, figure 4.5 shows how the error compounds over

time. This causes the estimate to grow unbounded over time, and decrease the viability

of the estimate. Within just six cycles with a small value of A (simulating a fast moving

tracker) the estimate is off by nearly an order of magnitude. This estimate would quickly

become unusable as it would cause system instability if fed back to the tracker.

The accumulating error in the cross-axis response is unbounded and indicates the

closed loop system would go unstable when the ratio of A
StepSize

is small. During tracking

the system is constantly in motion, which makes the transient response for motion is quite

important.
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Figure 4.6: Cross-axis ramp response of the traditional conical scanning estimator with
ω = 2π and φ = 3π

2
while varying A.

4.4 Noise Response

Through simulation it was apparent that whenever the radius of the perturbing term was

reasonably large in comparison to the amount of noise in the system, most of the noise was

smoothed out through the estimator. The noise used for this simulation was band-limited

white noise of the type described in section 2.5. Since the estimator is able to smooth out

some of the noise, and the closed loop system acts as a low pass filter, the simulation is

fairly robust to noise introduced to the system.

4.5 Problems

The traditional estimator works very well under conditions where the radius of the scan is

comparable to or larger than the motion caused by tracking or external noises, however,

figure 4.3 shows how far off the estimator can be when the radius of the scan is too

small. While this problem could be overcome by using a large scanning radius, larger

scans prevent the antenna from pointing directly at the origin since during the scan. The

antenna is constantly being forced away from the best estimate by the radius of the scan.

The asymmetry in the step response, and the ramp response results in curved trajec-

tories increasing the total accumulated error. The error in the position estimate create

instabilities like the ones in the transient responses when tracking too quickly. The dis-

cussion in chapter 6 goes into detail on how these instabilities limit the tracking feedback.
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5: Detailed Analysis of Gradient Con-

ical Scanning

5.1 Estimator

A new estimator was designed to help eliminate some of the problems that arose using

the traditional method many of which are due to the fact that the R2 term is unbounded

and increases quickly while moving away from the origin.

Rather than using the value of the received signal strength R2(t) directly, the new

conical scanning estimator uses the derivative of the received signal d
dt

[R(t)2] strength,

and convolves it with the velocity perturbation signal ( d
dt

[xperturb],
d
dt

[yperturb]) over one

scan in order to estimate the current position. Figure 5.2 shows a schematic for the new

estimator which has a different gain, as well as different signals to convolve.

Figure 5.1: The range measurement (signal strength) is differentiated with respect to time
before being convolved with the velocity perturbation.

The most general form of the gradient conical scanning estimator is given by equations

5.1 and 5.2 with the equations

x̂(t) =
1

2πA2ω

∫ t

t− 2π
ω

d

dτ
[R(τ)2]

d

dτ
[xperturb(τ)] dτ (5.1)



32

and

ŷ(t) =
1

2πA2ω

∫ t

t− 2π
ω

d

dτ
[R(τ)2]

d

dτ
[yperturb(τ)] dτ. (5.2)

As with the traditional conical scanning estimator, by making the assumption that

the system is at steady state with no noise, we can substitute equations 3.5, 3.1, and 3.2

into the estimator. After substituting in equations 3.5, 3.1, and 3.2 we get equations 5.3

and 5.4. These equations

x̂(t) =
1

2πA2ω

∫ t

t− 2π
ω

d

dτ

[
(A cos(ωτ) + x0)

2 + (A sin(ωτ) + y0)
2] (−Aω sin(ωτ)) dτ = x0

(5.3)

and

ŷ(t) =
1

2πA2ω

∫ t

t− 2π
ω

d

dτ

[
(A cos(ωτ) + x0)

2 + (A sin(ωτ) + y0)
2] (Aω cos(ωτ)) dτ = y0

(5.4)

show that this estimator is also able to perfectly estimate position after a single cycle.

Therefore, the estimator is able to perfectly predict position while it is at steady state

with no noise.

5.2 Step Response

The step response for the new estimator can be seen in figure 5.2 with the same properties

used in figure 4.3.

The step response shown in figure 5.2 has a significant improvement over the step re-

sponse of the traditional conical scanning estimator in figure 4.3. Rather than performing

worse when smaller values of A are used, the step response is independent of A. This would

indicate that rather than becoming unstable if more noise were to very quickly move the

antenna beyond the scanning radius, the estimator would work just as well as if the step

response induced by the noise was much smaller. This is an important characteristic of

the estimator as it is able to estimate the step response well regardless of the size of the

jump. Additionally, since the step response is independent of A a smaller conical scanning

radius can be used which keeps the antenna pointed closer to the estimated position and

improves the overall received signal strength.
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Figure 5.2: Step response of the gradient conical scanning estimator with ω = 2π and
φ = 3π

2
while varying A.

While the step response has good characteristics, it is important to keep track of what

is going on with the other estimator. This can be done by looking at the cross-axis step

response shown in figure 5.3 which shows how ŷ varies with a step input in x.

The cross-axis response is also independent of A. Unlike the cross-axis step response

given by figure 4.4 which showed an unbounded increase in the cross-axis step response by

reducing the scanning radius. Since the response is independent of A the size of the step

is no longer important. The error is not only bounded but significantly smaller than the

cross-axis step response of the traditional conical scanning estimator. The asymmetrical

tracking which causes the track to curve to the origin is eliminated.
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Figure 5.3: Cross-axis step response of the gradient conical scanning estimator with ω =
2π and φ = 3π

2
while varying A.

5.3 Ramp Response

While the step response is independent of A for the gradient conical scanning estimator,

this is not the case for the ramp response. Figure 5.3 shows the ramp response for the

gradient conical scanning estimator, and while it is independent of A, the error is bounded.

It is apparent that the estimator averages slightly below the ramp response input line.

This occurs due to the inherent time delay introduced in the system due to the integration

over a full scan. This lag appears in the ramp response of the traditional conical scanning

estimator as well but it less apparent due to the significantly larger error accumulation.

While the estimator is no longer independent of A, it still has two advantages over

the traditional estimator. First, the error is now bounded for a given A. The error does

not accumulate unbounded as more cycles are made, but rather oscillates between the

maximum and minimum values chosen by the perturbing radius. Additionally, the error

in estimate is much smaller than the error for the same value of A with the traditional

conical scanning estimator.

The cross-axis ramp response has similar advantages over the response of the tradi-

tional conical scanning estimator. Just like the ramp response shown in figure 5.3, the

cross-axis response in figure 5.3 depends on the perturbation radius A. However, just as
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Figure 5.4: Ramp response of the gradient conical scanning estimator with ω = 2π and
φ = 3π

2
while varying A.

in the ramp response the error is bounded, and does not increase over the course of the

ramp. It is also significantly less sensitive to the amplitude A than the traditional conical

scanning method.

Figure 5.5: Cross-axis ramp response of the gradient conical scanning estimator with
ω = 2π and φ = 3π

2
while varying A.

5.4 Noise Response

The noise response of the gradient conical scanning estimator is not as good as that of

the traditional conical scanning estimator due to the added derivative term. The received

signal strength is a noisy signal, and taking the derivative of such a signal just increases
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the noise. The noise response of the estimator is significantly worse as most of the high

frequency noise gets through.

Even though the noise response of the estimator is significantly worse, this may not

have a dramatic effect on the closed loop system. The closed loop system acts as a low

pass filter for the noise, and most of the higher frequency noise that makes it through the

estimator will be at frequencies above the bandwidth of the control loop so the system

will be unable to track them. This will effectively limit the effect of the noise and prevent

the system from going unstable by not tracking the noise. The comparison of the closed

loop system is done in chapter 6.

5.5 Problems

While the gradient estimator seems to be a significant improvement over the traditional

estimator the largest problem comes from noise in the received signal strength. The noise

response is the only performance metric which the gradient estimator does not do as

well as the traditional conical scanning estimator. The noise ends up not being a large

problem due to the low pass filtering capability of introducing the estimator to the closed

loop system.
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6: Closed Loop Simulation

In addition to analyzing the estimators individually, a simulation was performed of the

closed loop system where the estimator was added back in and the output is fed through

a PI feedback control back into the system dynamics. Figure 6.1 depicts the full closed

loop traditional conical scanning system, including the tracking feedback.

Figure 6.1: Closed loop system of the traditional conical scanning estimator including
tracking feedback.

The closed loop system for the gradient conical scanning estimator is similar and is

shown before in figure 6.1.

Figure 6.2: Closed loop system of the gradient conical scanning estimator including track-
ing feedback.
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When running the simulation, varying values were used for kpt and kit until the system

went unstable. The gains were chosen by modeling the system as a mass spring system,

and determining the parameters needed for critical damping. This showed that kit = kpt
2

2

in order to get a reasonable phase margin for a given value for kpt.

Using the traditional estimator with A = 0.1, and ω = 2π , I was able to push kpt up

to 2.490 when starting from the (x, y) location (0.1, 0) before the system went unstable.

Using the gradient estimator with A = 0.1, and ω = 2π , I was able to push kpt up to

2.605 when starting from the (x, y) location (0.1, 0) before the system went unstable.

This increases the effective bandwidth of the system, allows for better tracking per-

formance. The increase in bandwidth boosts performance, and allows for faster tracking.
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7: Conclusions and Future Direction

7.1 Conclusions

Three new methods for peak seeking controllers were developed to solve the problem of

pointing a receive only antenna at a remote satellite. All three of these estimators worked

well in simulation, with the measured gradient conical tracking method being the largest

breakthrough in control. However, the research focused on the gradient conical scanning

estimator which modified the traditional conical scanning estimator by convolving the

derivative of each signal rather than the signals themselves.

By performing a detailed analysis of the steady state and transient responses the

following metrics were used to determine how good the estimator was.

- Steady State Response: Estimate produced after a full cycle while the system is in

steady state conditions should match the real position exactly.

- Step Response: The step response in x from a unit input in the satellites position

along x should remain near the range of [0, 1].

- Ramp Response: The ramp response of the x estimator due to motion along the x

axis should stay bounded around the position of the satellite over time.

- Cross-Axis Step Response: The step response in x from a unit input in the satellites

position along y should remain near the range of [0, 1].

- Cross-Axis Ramp Response: The ramp response of the x estimator due to motion

along the y axis should stay bounded around the position of the satellite over time.

- Noise Response: The estimator should reject enough noise which is propagating

through the system as possible so the noise does not cause the system to go unstable.

The new gradient conical scanning estimator outperforms the traditional conical scanning

estimator against all metrics with the exception of the noise response. However, the extra

noise introduced within the system does not cause the system to become unstable, but
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rather is canceled out by the properties of the closed loop system. The closed loop system

is able to have higher bandwidth with the gradient estimator which allows for better

tracking performance.

The gradient conical scanning estimator is shown to be a theoretical improvement

over the traditional estimator, and in cases without excessive amounts of noise, should

outperform the traditional estimator. The gradient conical scanning estimator is the

recommended estimator to us on mobile satellite communications antenna.

7.2 Future Work

The research presented is a thorough investigation of particular estimators, however, this

research has produced quite a few new paths for future research.

7.2.1 Signal Saturation

Some of the instability in the system is generated by commanding forces which are too

large for the system to handle. These large forces cause the antenna to move rapidly (due

to the proportional feedback control) which causes the tracking loop to become unstable.

By adding saturation limits to the feedback, or to the received signal strength it may be

possible to increase the region of attraction around the origin and have a system which

is stable from any initial position.

7.2.2 Parameter Optimization

Future work could be done to find the optimal parameters for a given system. By exploring

the expected noise characteristics, it may be possible to optimize for the best scanning

frequency, perturbation amplitude, or even estimator. This type of analysis should be

carried out to determine how robust a particular method is to noise.

7.2.3 Measured Gradient Scanning and Tracking Systems

The effects of using the gyroscope measurements rather than the predicted velocities were

not explored through the course of this project. A more in-depth analysis of the effect
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from using gyroscope measurements could be made to better predict the characteristics

of this model. In addition to using the measurements, the effect the internal noise has on

observability is another topic which could be explored. I showed through simulation that

noise has enough observability to track to the origin, but bounds on noise have not been

provided.

7.2.4 Hardware Implementation

While the theoretical grounding for the new estimators shows they will work better in

certain conditions than the traditional conical scanning estimator, it is important that a

hardware test under real world conditions is performed to determine if the assumptions

made in the thesis can be validated. Work is ongoing to implement the gradient conical

scanning estimator on a hardware platform.
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