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Abstract 

Exit from mitosis is characterized by precise control of the cyclin-dependent kinase 

complex (Cdk) activity, breaking down mitotic structures, and completing cytokinesis. In 

Saccaromyces cerevisiae, protein phosphotase Cdc14 is involved in counteracting mitotic-

Cdk activity by promoting the degradation of mitotic cyclin Clb2, and stabilizing the 

Cdc28 inhibitor Sic1. The activity and the cellular localization of Cdc14 are tightly 

regulated by the cell cycle. Cdc14 is sequestered and inhibited in the nucleolus by forming 

the RENT (Regulator of Nucleolar Silencing and Teleophase) complex for most of the cell 

cycle. It is released and distributed into the cytoplasm in anaphase and telophase, and then 

returns to the nucleolus in G1 phase. Activation of Cdc14 is achieved via multi-site 

phosphorylation of Net1 leading to the release of Cdc14. Net1 is first phosphorylated by 

the Fourteen Early Anaphase Release (FEAR) network, and then by the Mitotic Exit 

Network (MEN).  

In this thesis, we show that a MEN component, protein kinase Dbf2-Mob1, plays a 

role in phosphorylating Net1 in late anaphase. We identified the effective Dbf2-Mob1 

phosphorylation sites in the N-terminal of Net1 by in vitro kinase reaction assay. We found 

that cells that express mutant Net1 show growth defects and chain-like terminal 

morphology under restrictive temperatures. Genetic interactions suggested that the MEN 

kinases and Cdc14 are related to the cell cycle defects caused by the phosphosite mutated 

Net1. Analyzing the phosphosite mutants with Fluorecence-activated cell sorting (FACS) 



vii 
and immunofluorescence assay, we found that the growth defects and the abnormal cell 

morphology are due to a defect in releasing Cdc14 in late anaphase, leading to disruption of 

mitotic exit. This result is further confirmed by western blot assay and the beads releasing 

assay.  

In summary, the regulation of Cdc14 release in late anaphase via phosphorylation 

of its inhibitor Net1 by Dbf2-Mob1 is demonstrated in this work. This thesis provides a 

crucial piece of information that furthers our understanding of the mechanism of mitotic 

exit. It also points to a fascinating mechanism of controlling cytokinesis and meiosis by 

regulating Net1 phosphorylation by the MEN.    
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Overview of the end of cell cycle   

The cell cycle is a series of events that enable a cell to duplicate itself and produce a 

new generation. It consists of four main phases: (1) Gap 1 (G1) phase, where cell size is 

enlarged and the biosynthesis rate is increased, (2) Synthesis (S) phase, where DNA 

replication occurs, (3) Gap 2 (G2) phase, where cell growth continues and (4) Mitosis (M) 

phase, where the replicated DNA is segregated and the cell divides into two daughter cells. 

Besides these phases, there is a G0 phase, which is when cells exit the cell cycle.  

During the M phase, correct partitioning of chromosomes to transmit genetic 

information to the next generation is very important. The M phase can be further 

subdivided into four stages: prophase, metaphase, anaphase, and telophase. The M phase is 

followed by cytokinesis, when nuclei, cytoplasm, and organelles are divided into two 

almost identical cells when (in budding yeast cells) the cell membrane pinches off  at the 

junction between the mother and daughter cells. Events in the cell cycle, such as spindle 

disassembly (Li and Cai, 1997), chromosomal condensation (Loidl, 2003), and DNA 

replication (Piatti, 1997) are tightly regulated by cyclin-dependent kinases (CDKs) (Amon 

et al., 1994; Holloway et al., 1993; Surana et al., 1993). CDK includes two major 

components: a cyclin subunit and a protein kinase subunit. In the mammalian system, 

multiple kinase subunits form complexes with different cyclin subunits in each cell cycle 

stage. However, in Saccharomyces cerevisiae, a single kinase (Cdc28/ Cdk1) regulates the 

whole cell cycle by forming complexes with different kinds of cyclin subunits.  

Various cyclin subunits activate and influence substrate selectivity of the kinase 

subunit at specific stages of the cell cycle. Cln1, Cln2, and Cln3 bind to Cdc28 to activate 
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Cdc28 at late G1 phase (Levine et al., 1995). B-type cyclins (Clbs) are involved in 

regulating activity of Cdc28 in S phase and M phase. Clb5 and Clb6 play a role at the S 

phase (Kuntzel et al., 1996; Toone et al., 1997), and Clb1, Clb2, Clb3, and Clb4 are 

involved in the G2/M phase (Fitch et al., 1992). Among all four Clbs, Clb2 is the major 

mitotic cyclin. The main states of the budding yeast cell cycle can be divided into high or 

low Clb-Cdk activity. Clb-Cdk activity is low in G1 phase but it is high in S, G2, and M 

phases (reviewed in Bardin et al., 2001; Deshaies, 1997; Miller and Cross, 2001). 

There are at least three means to regulate Cdk complex activity.  The first one is to 

tune the binding of the cyclin to Cdk or to control the degradation of cyclins. The second 

one is to associate Cdk with its inhibitors (eg. Sic1 and Cdc6). The regulation can also be 

achieved by phosphorylation of subunits of the Cdk complex (Deshaies, 1999; Mendenhall 

and Hodge, 1998; Donovan et al., 1994; Calzada et al., 2001). Clb-Cdk activity needs to be 

turned off so that cells can exit from mitosis and re-enter into G1. In Saccharomyces 

cerevisiae, the activity of Cdc28 is shut down by two distinct pathways: degradation of 

Clb2, the major mitotic cyclin, and accumulation of Sic1, the Cdc28 inhibitor. It has been 

shown that Cdc14, a phosphatase, is the key regulator for both pathways. Cdc14 

dephosphorylates Hct1/Cdh1, which then binds and activates the ubiquitin ligase 

Anaphase-Promoting Complex/Cyclosome (APC/C). APCCdh1 ubiquitinates Clb2 and leads 

to Clb2 degradation by proteasome. Cdc14 also dephosphorylates Sic1 itself and activates 

the Sic1 transcription factor (Swi5). Dephosphorylation of Sic1 stabilizes it by preventing it 

from rapid ubiquitination by SCF. Activation of the Swi5 further increases the Sic1 

transcription. This creates a positive feedback loop leading to inactivation of Cdc28 

(Visintin et al., 1998; Jaspersen et al., 1998).  
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The phosphatase activity of Cdc14 is inhibited by its nucleolar partner, Net1/Cfi1, 

which not only inhibits Cdc14 activity but also limits its cellular localization thus 

abolishing interaction with its substrates (Shou et al., 1999; Visintin et al., 1999). Two 

signaling networks are responsible for the release of Cdc14 from Net1/Cfi1: Cdc14 Early 

Anaphase Release (FEAR) and Mitotic Exit Network (MEN). The FEAR network 

phosphorylates Net1 leading to transient release of Cdc14 in early anaphase. Cdc14 

released by this mechanism remains localized to the nucleus. This early release of Cdc14 is 

important to timely induce mitotic exit but is not sufficient for inactivation of Clb-Cdk.  

Thus it is insufficient to drive cells to exit from mitosis. To exit mitosis, cells need to 

activate the MEN, which sustains the release of Cdc14 and enables its disperal throughout 

the cell (Jaspersen et al., 1998; Pereira et al., 2002; Shou et al., 1999; Stegmeier et al., 

2002; Visintin et al., 1999). However, the mechanism by which the MEN sustains Cdc14 

release in late anaphase and telophase is unknown. This thesis focuses on revealing the 

mechanism by which the MEN regulates Cdc14 release from Net1 in late anaphase though 

the end of mitosis.  

 

FEAR (Cdc Fourteen Early Anaphase Release) Network 

Cdc14 activity is tightly regulated throughout the cell cycle stages by control of its 

cellular localization. Cdc14 is sequestered within the nucleolus by association with 

Net1/Cfi1. In early anaphase, the FEAR network promotes phosphorylation of Net1/Cfi1 

by mitotic Cdks, weakening the binding between Cdc14 and Net1 and thus leading to early 

Cdc14 release (Azzam et al., 2004). The FEAR network consists of a number of proteins 
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such as Pds1, Esp1, Slk19, Zds1/2, PP2A, Clb1/2-Cdk1, Cdc5, Fbo1, and Spo12 (Figure I-

1, from the review Rock and Amon, 2009).  

When cells enter into anaphase, APC/C ubiquitinates the anaphase inhibitor, Pds1/ 

securin (Cohen-Fix et al., 1996; Cohen-Fix and Koshland, 1997). The destruction of Pds1, 

which binds to and inhibits Esp1 (known as separase), activates the protease activity of 

Esp1 to cleave Scc1 (a subunit of cohesion complex) thus promoting separation of sister 

chromatids (Ciosk et al., 1998). Pds1 also inhibits Esp1’s function in the FEAR pathway 

(Cohen-Fix and Koshland, 1999; Stegmeier et al., 2002; Sullivan and Uhlmann, 2003; 

Tinker-Kulberg and Morgan, 1999). Esp1 forms a complex with Slk19 to down-regulate 

PP2ACdc55 through the Cdc55-interacting protein, Zds1/2 (Sullivan and Uhlmann, 2003; 

Queralt and Uhlmann F, 2008). Zds1 (zillion different screen 1) and Zds2 are paralogues 

and involved in divergent cellular processes such as cell cycle, cell polarity, transcription 

and translation, and stress response (Yu et al., 1996; Schwer et al., 1998; Estruch et al., 

2005; Yasutis et al., 2010). By binding to Cdc55, Zds1 and Zds2 manipulate the cellular 

localization of PP2ACdc55. Without Zds1 and Zds1, PP2ACdc55 accumulates in the nucleus 

and antagonizes release of Cdc14 from the nucleolus. When Zds1 and Zds2 are activated 

by Esp1, they promote export of PP2ACdc55 to the cytoplasm (Rossio and Yoshida, 2011).  

The down-regulation of nuclear PP2ACdc55 activity promotes accumulation of phosphate 

on Net1 (in a manner that depends on Clb-Cdk), leading to release of Cdc14 from the 

nucleolus (Azzam et al., 2004). 

Other than direct phosphorylation of Net1 to release Cdc14, Clb1-Cdk1 and Clb2-

Cdk1 are also responsible for Spo12 phosphorylation (Tomson et al., 2009). Spo12 is 

believed to be a scaffolding protein in the nucleolus, and is involved in mitosis exit and 
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meiosis by an unknown mechanism. The protein level of Spo12 appears to be regulated by 

the cell cycle (Shah et al., 2001). Spo12 forms complex with Fob1, a nucleolar protein 

required for replication fork blocking, and binds to Net1 through Fob1. Fob1 serves as a 

negative regulator of FEAR network to maintain the interaction between Net1 and Cdc14. 

Phosphorylated Spo12 antagonizes Fob1 function leading to Cdc14 early anaphase release 

(Stegmeier et al., 2004).  

Cdc5 is the only known polo-like kinase in Saccharomyces cerevisiae and has 

multiple functions in mitosis and cytokinesis It is also involved in the DNA recombination 

checkpoint in meiosis (Iacovella et al., 2010). Cdc5 is not only a component in the FEAR 

network but also in the MEN pathway. It serves as a positive factor for the release of 

Cdc14 from nucleolus. The role of Cdc5 in the FEAR pathway is still unclear. It is 

suggested that Cdc5 is downstream of and/or in parallel to separase-Slk19. Cdc5 stimulates 

the protein degradation of Swe1 (the Cdk inhibitory kinase) through SUMO thus promoting 

phosphorylation of Cdc14 and Net1 (Liang et al., 2009; Simpson-Lavy, and Brandeis, 

2010). Cdc5 also dissociates Cdc14 from the RENT complex by directly phosphorylation 

of Net1 in vitro (Shou et al., 2002). 

  

The Roles of FEAR Network 

The FEAR network is in charge of the regulation of multiple events during early 

anaphase. It is recognized as a group of proteins that regulates the timely dissociation of 

Cdc14 from Net1 in early anaphase of mitosis (Stegmeier et al., 2002). Then the released 

Cdc14 can activate Cdc15, a component of the MEN pathway, and positively regulate 
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mitotic exit (Jaspersen and Morgan, 2000; Menssen et al., 2001; Stegmeier et al., 2002; Xu 

et al., 2000). Mutations of the FEAR proteins delay the exit from mitosis but do not abolish 

the whole process. However, combination of FEAR and MEN mutations leads to synthetic 

lethality (Stegmeier et al., 2002). In addition to activating the MEN pathway, FEAR is also 

the gatekeeper, which ensures that timely Cdc14 activation is coordinated to chromosome 

partitioning. The metaphase-anaphase transition starts when APC/C ubiquitinates and the 

proteasome degrades Pds1. This activates the separase-Slk19 complex to promote early 

anaphase Cdc14 release. Released Cdc14 dephosphorylates Pds1, which promotes its 

degradation and provides a positive feedback loop that enhances chromosome segregation. 

(reviewed in D'Amours and Amon, 2004; Stegmeier and Amon, 2004; Jeremy and Amon, 

2009).       

Other than regulating Cdc14 release and chromosome segregation, it has been 

reported that the FEAR plays a role in controlling the anaphase spindle, meiosis, and 

proper segregation of rDNA,. Cohesin cleavage is not sufficient for rDNA segregation 

during anaphase. Although the mechanism of cohesin-independent rDNA segregation is 

still unclear, it has been reported to be FEAR-activated and Cdc14-dependent. In FEAR 

mutants, segregation of rDNA but not the rest of the genome is defective. Cdc14 released 

during early anaphase is responsible for silencing and exclusion of RNA polymerase I from 

the nucleolus, which silences rDNA transcription. This promotes the recruitment of 

cohesin-like complexes, condensins, to rDNA. Condensins mediate the condensation of 

chromosome. It is suggested that the recruitment of condensins to rDNA can facilitate 

rDNA compaction and segregation (Hwang and Madhani, 2009; clemente-Clanco et al., 

2009; Wang et al., 2004).  
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The FEAR network is important for regulating spindle dynamics, stability, and 

midzone assembly. Microtubules are highly dynamic structures regulated by Clb-Cdk1. In 

the beginning of anaphase, the dynamic behavior of microtubules decreases dramatically, 

which stabilizes the anaphase spindle and allows chromosome segregation. It has been 

shown that this is affected by FEAR activation and Cdc14 activity. Cdc14 released through 

FEAR dephosphorylates the microtubule binding proteins, Ask1 and Fin1, which then 

stabilize the elongating spindle (Higuchi, and Uhlmann, 2005; Woodbury and Morgan, 

2007). Furthermore, Cdc14 activation by the FEAR network also regulates assembly of the 

spindle midzone (the overlaps between the interpolar microtubules). During spindle 

elongation, numerous proteins are recruited to this area to help stabilize this region. FEAR-

dependent release of Cdc14 dephosphorylates a group of proteins, including Ase1 (the 

microtubule-bundling protein) and Sli15. Dephosphorylation of Ase1 triggers its 

relocalization to the spindle midzone. Sli15 is the subunit of the chromosomal passenger 

complex, Ipl1-Sli15-Bir1. This complex is conserved in higher eukaryotes, where is is 

known as Aurora B-INCENP-Survivin. Dephosphorylation of Sli15 promotes the Ipl1-

Sli15-Birl complex to relocate to the spindle midzone. Once Ase1 and Ipl1-Sli15-Birl are 

localized at the spindle midzone, they recruit additional factors to assist anaphase spindle 

stabilization (de Gramont et al., 2007; Fu, et al., 2009; Mirchenko and Uhlmann, 2010). 

Recently, the FEAR network and Cdc14 have been identified as key players in the 

regulation of meiosis. Meiosis is a specialized form of cell division that results in the 

formation of gametes. In meiosis, there is a single round of DNA replication followed by 

two sequential rounds of chromosome segregation. Meiosis can be divided into two main 

stages, meiosis I and meiosis II, each of which contains the sequential phases: prophase, 
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metaphase, anaphase, and telophase. During meiosis I, homologous chromosomes are 

separated from each other followed by meiosis II, when where sister chromatids are 

separated. It has been shown that the FEAR network and Cdc14 employ a similar 

mechanism to regulate chromosomal DNA segregation in both meiosis I and meiosis II via 

down-regulation of Clb-Cdk1 activity. When the FEAR network or Cdc14 is inactivated, 

meiotic cells show a severe delay in disassembly of the meiosis I spindle. Furthermore, 

without the FEAR network and Cdc14, meiotic events become uncoupled, resulting in 

mixed meiosis I-like and meiosis II-like chromosome segregation patterns. This indicates 

that the FEAR network and Cdc14 serve as a safeguard to ensure that chromosome 

segregation occurs in the right sequence in the two stages of meiosis (Kerr et al., 2011; 

Khmelinskii et al., 2007; Marston et al., 2003).       

   

MEN (Mitotic Exit Network) 

The FEAR network regulates transient release of Cdc14 in early anaphase. 

However, the MEN is required to sustain the release of Cdc14 until the end of mitosis. 

Cells with defective FEAR delay mitotic exit for 10-20 minutes but eventually are able to 

complete the process. On the contrary, cells with inactivated MEN are unable to exit 

mitosis and arrest permanently in late anaphase. Thus, the MEN is the essential network for 

cells to exit from mitosis.  

The MEN is a Ras-like GTPase signaling cascade which consists of four protein 

kinases (Cdc5, Cdc15, Dbf2, and Dbf20) (Johnston et al., 1990; Kitada et al., 1993; 

Schweitzer and Philippsen, 1991; Toyn et al., 1991), a two-component GTPase-activating 
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protein (Bub2 and Bfa1) (Hu et al., 2001; Pereira et al., 2002), a spindle pole body (SPB) 

scaffold protein (Nud1) (Adams and Kilmartin, 1999), a protein phosphatase (Cdc14) (Wan 

et al., 1992), a Ras-like GTPase protein (Tem1) (Shirayama et al., 1994a), a GTP/GDP 

exchange factor (Lte1) (Shirayama et al., 1994b), and a Dbf2 binding protein  (Mob1) 

(Luca and Winey, 1998). Mutation of the proteins of this cascade leads to late anaphase 

arrest with high Clb2 and high Cdk1 activity (Figure I-1, from the review Rock and Amon, 

2009).  

Genetic and biochemical evidence indicate that Tem1 is at the top or near the top of 

the MEN. Tem1 seems to be regulated positively by Lte1, and negatively by Bub2-Bfa1 

(Bardin et al., 2000; Fesquet et al., 1999; Geymonat et al., 2002; Pereira et al., 2000). When 

cells form a mitotic spindle, Tem1 starts to localize to the cytoplasmic face of the spindle 

pole body, where Bub2-Bfa1 complex is located. When binding with Bub2-Bfa1 complex, 

Tem1 is in an inactive GDP-bound form. During late anaphase, Tem1 and the Bub2-Bfa1 

complex migrate to the daughter cell with one of the spindle pole body following the 

extended mitotic spindle. Let1 is restricted to the bud cortex. Once Tem1-Bub2-Bfa1 enters 

the bud and encounters Let1, Tem1 is activated as a substrate for the GEF, Let1 (Bardin et 

al., 2000; Pereira et al., 2000). The Cdc18-like protein, Nud1, serves as a scaffold for the 

core of MEN components and recruits the Tem1, Bub2-Bfa1, Cdc15, and Dbf2-Mob1 to 

the spindle pole body (Gruneberg et al., 2000; Visintin and Amon, 2001). Tem1-GTP is 

shown to bind to and activate protein kinase Cdc15 at the cytoplasmic face of spindle pole 

bodies (Asakawa et al., 2001; Lee et al., 2001a). Activated Cdc15 activates the protein 

kinase Dbf2, which form a complex with Mob1 (Mah et al., 2001). Activated Dbf2-Mob1 

phosphorylates the nuclear localization signal of Cdc14 resulting in the retention of Cdc14 



 

 11 

in the cytoplasm where it can interact with its substrates, such as Clb-Cdk (Mohl et al., 

2009). However, the mechanism resulting in high level of Net1 phosphorylation and the 

sustain release of Cdc14 by MEN is still unclear.  

The other component participating in the MEN pathway is Cdc5. Although Cdc5 is 

not the core component of the MEN, it activates the MEN in multiple ways. Cdc5 

inactivates the GAP activity of Bub2-Bfa1 through phosphorylation and is shown to be 

involved in Lte1 activation (Lee et al, 2001b; Hu et al., 2001; Geymonat et al., 2003). 

Furthermore, Cdc5 activates Dbf2-Mob1 in a Bub2-independent mechanism. By promoting 

FEAR network, early released Cdc14 can serve as positive feedback loop on activating 

Cdc15 thus promoting Dbf2-Mob1 activation (Jaspersen and Morgan, 2000; Stegmeier et 

al., 2002; Visintin et al., 2003).   

 

MEN in Cytokinesis 

Recently, the MEN was suggested to play an important role in cytokinesis. In the 

anaphase, Tem1, Cdc5, Cdc15, and Dbf2-Mob1 are recruited to the cytoplasmic face of the 

spindle pole body. However, at the end of mitosis, Cdc5, Cdc15, and Dbf2-Mob1 relocate 

to the bud neck where the separation of daughter and the mother cell occurs (Frenz et al., 

2000; Hwa Lim et al., 2003; Luca et al., 2001; Song et al., 2000; Xu et al., 2000; Yoshida 

and Toh-e, 2001, de Bettingnies and Johnston, 2003). This SPB-bud neck translocation of 

the MEN components suggests a potential link between MEN and cytokinesis. In addition, 

it has been reported that the MEN components move to the bud neck dependent on each 

other and along with components of septin ring, Cdc12 and Cdc3 (Frenz et al., 2000; Luca 
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et al., 2001; Yoshida and Toh-e, 2001). This supports the assertion that the MEN signaling 

pathway also regulates cytokinesis. The MEN proteins are required for septin ring 

formation, which is defected when Bub2 is inhibited (Lee et al., 2001a; Lee et al., 2001b; 

Park et al., 1999). Moreover, some genetic evidence shows that MEN mutants result in 

defects in cytokinesis. When the lethality phenotype of either tem1 or cdc15 deletion is 

bypassed by the net1-1 mutant, cells exhibit cytokinetic defects (Lippincott et al., 2001; 

Shou et al., 1999). cdc15-lytl and mob1 mutant strains also show cytokinesis defects with 

the chain-like undivided cells (Jimenez et al., 1998; Lippincott et al., 2001; Luca et al., 

2001; Shou et al., 1999; Jimenez et al., 2005).  

The release and activation of Cdc14 by MEN serves as a guard ensuring mitosis 

exit to occur before cytokinesis. It has been shown that the bud neck localization of Dbf2-

Mob1 is Cdc14-dependent, although the regulation of the Dbf2-Mob1 kinase activity at the 

bud neck is through Cdc15 (Lee et al., 2001a; Mah et al., 2001). The detailed mechanism 

about how MEN components regulate cytokinesis is still unclear.  

 

MEN Conservation  

In Schizosaccharomyces pombe, a pathway known as the septation initiation 

network (SIN) has been reported as the analogous pathway to the MEN in Saccharomyces 

cerevisiae. This pathway is named SIN because mutating the components in the network 

leads to defects in septation. Most of the components in the SIN, Plo1, Cdc16-Byr4, Spg1, 

Cdc7, Sid2-mob1, Cdc11, and Clp1/Flp1, are analogous to Cdc5, Bub2-Bfa1, Tem1, 

Cdc15, Dbf2-Mob1, Nud1, and Cdc14 in MEN. The orthologue of Let1 in the MEN 
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remains exclusive in the fission yeast. On the other hand, the orthologues of the scaffolding 

protein, Sid4, and the protein kinase complex, Sid1-Cdc14, which plays a role between 

Cdc7 and Sid2-Mob1, has not been found in the budding yeast. The major difference 

between the MEN and SIN is that SIN is not essential for mitosis exit but it plays a role in 

regulating cytokinesis (reviewed in Bardin and Amon, 2001; Krapp et al., 2004; Stegmeier 

and Amon, 2004; McCollum and Gould, 2001).  

The budding yeast Cdc14 and its orthologue Clp1 in the fission yeast are very 

similar; both are localized in the nucleolus during G1 and S phase. However, they are 

different in several aspects. For example, during G1 and S phase, Clp1 is also present on 

spindle pole bodies. Moreover, unlike Cdc14, Clp1 is released during early mitosis while 

Cdc14 is released during the anaphase. When Cdc14 is released from the nucleolus it enters 

the nucleus or even into cytoplasm, whereas when Clp1 is released it localizes to the 

mitotic spindle and medial ring instead. Additionally, SIN is not responsible for releasing 

Clp1 though it maintains its release status, whereas the MEN both regulates the release of 

Cdc14 and maintains its release status (Cueille et al., 2001; Trautmann et al., 2001). 

Furthermore, budding yeast Cdc14 and fission yeast Clp1 use different mechanisms to 

inhibit mitotic Cdks. Cdc14 promotes accumulation of the Cdc28 inhibitor, Sic1, and the 

degradation of Clb2, the active subunit of mitotic Cdks. Clp1 is not responsible for the 

accumulation of the inhibitor of the fission yeast Cdc28 orthologue Cdk1/Cdc2, Rum1. It is 

also not required for promoting the degradation of the fission yeast B-type cyclin, Cdc13 or 

activation of the APC/C specificity factor Ste9. It is suggested that Clp1 inhibits Cdk 

activity by controlling the phosphorylation status of Cdc2 (Esteban et al., 2004; Guertin et 

al., 2002; Cueille et al., 2001; Trautmann et al., 2001; Wolfe and Gould, 2004). 



 

 14 

Numerous components of the MEN have been identified in species other than yeast. 

The orthologues of the budding yeast Cdc14 was found in Caenorhabditis elegans, 

Xenopus laevis, and humans (Gruneberg et al., 2002; Kaiser et al., 2004; Li et al., 1997). 

Interestingly, these Cdc14 orthologues do not appear to be required for mitotic exit but they 

are essential for regulation of cytokinesis (reviewed in Trautmann and McCollum, 2002). 

In addition, their cellular locations at the cell cycle stages are somewhat different from the 

budding yeast Cdc14. CeCdc14 localizes to the central spindle in the anaphase and is 

essential for embryonic division and cytokinesis (Gruneberg et al., 2002; Saito et al., 2004). 

In Xenopus, there are two orthologues of Cdc14, namely XCdc14α and XCdc14β, both of 

which are localized in nucleolus and centrosome and play a critical role in regulating 

cytokinesis (Kaiser et al., 2004; Piel et al., 2001). There are also two Cdc14 orthologues in 

human, hCdc14A and hCdc14B. The cellular location of these proteins is cell cycle 

dependent (Kaiser et al., 2002; Mailand et al., 2002). Human Cdc14A locates at 

centrosomes in the interphase, after which it down-regulates Cdc25 activity to ensure 

timely activation of Cdk1-Cyclin B1 complexes at the G2/M phase transition and mitosis 

entry (Sacristan et al., 2011). Human Cdc14B localizes to the nucleolus in the interphase 

and it is recently reported to promote correct chromosome segregation and bipolar spindle 

formation through mitosis. (Tumurbaatar, et al., 2011)  

 

Conservation of Dbf2-Related Kinases 

The Dbf2 of Saccharomyces cerevisiae belongs to a highly conserved 

serine/threonine kinase family, namely NDR (the nuclear Dbf2-related), which is a subclass 
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of the AGC (protein kinases A, G, and C) group of kinases. The NDR kinases can be 

further classified into two families based on their structures and functions: the ndr family 

and the Wts/Lats family. Cbk1, Dbf2, and Dbf20 in Saccharomyces cerevisiae, Orb6 and 

Sid2 in Schizosaccharomyces pombe, Cot1 in Neurospora crassa, sax-1 in C. elegans, and 

LATS (Large tumor suppressor) kinases of Drosophila and humans belong to the Ndr 

family, while LATS in C. elegans, and the Lats1 and Lats2 of Drosophila and humans 

belong to the Wts family (Table I-1, from the review Hergovich et al., 2006). The unique 

conserved feature of the NDR family kinases are 30–60 amino acids located at the catalytic 

subdomains VIII, which is a hydrophobic motif located at the C terminus.  The 

phosphorylation sites in this motif are essential for catalytic activity. The function of these 

kinases is conserved and they control morphological changes, mitotic exit, cytokinesis, cell 

proliferation and apoptosis (reviewed in Hergovich et al., 2006). By analyzing different 

model systems it is further suggested that Ndr signaling and Wts signaling are involved in 

centrosome duplication (Hergovich et al., 2007; Toji et al., 2004) and chromosome 

alignment (Chiba et al., 2009). This also implies that the kinases in the NDR family may be 

activated by a conserved mechanism. They are controlled by the kinases from the Ste20 

family through phosphorylation. In addition, activation of their functions requires the 

formation of the complex with a broadly conserved protein Mob (Mps1-one binder, a 

protein binds to the N-terminal of the NDR kinases) (reviewed in Tamaskovic et al., 2003; 

Hergovich et al., 2006). Recently, the NDR kinases have been found to play a role in neural 

fate specification, neurite outgrowth and branching, and receptive field determination 

(reviewed in Emoto, 2011).   

It has been reported that the kinases of the NDR family in different species seem to 



 

 16 

possess similar functions. Cbk1 is another member of NDR family in Saccharomyces 

cerevisiae, and similarly to Dbf2, it requires Mob family protein (Mob2) to activate its 

activity and it may also be regulated by a network of proteins (Colman-Lerner et al., 2001; 

Nelson et al., 2003; Weiss et al., 2002). Cbk1 localizes to sites of polarized growth and cell 

wall remodeling, for example, bud necks, through its associating partners, Hym1 and 

Mob2. It has been reported that Cbk1 regulates multiple cellular morphogenesis pathways: 

the Ace2-independent pathway controlling polarized apical growth and mating projection 

formation, and the Ace2-dependent pathway regulating efficient cell separation following 

cytokinesis. Cbk1 is also involved in the “cytokinesis checkpoint” when forming a 

complex with Mob2, (Bidlingmaier et al., 2001; Colman-Lerner et al., 2001). The NDR 

kinase, Orb6, is the Cbk1 orthologue in Schizosaccharomyces pombe. It has been shown 

that Orb6 binds to its Mob2 counterpart and regulates cell polarity (Hou et al., 2003). In C 

elegans, the NDR kinase, Sax-1, has 66% identity and 74% similarity to human NDR1 and 

it regulates neuronal cell shape and polarity (Zallen et al., 2000). The Drosophila NDR 

kinase, Trc (tricornered), displays 70% identity and 79% similarity to the human NDR1 

and it is involved in controlling actin polarization and it plays a role in the morphogenetic 

checkpoint (Geng et al., 2000). In addition, Trc is regulated by the same conserved 

phosphorylation sites as in Dbf2 and Ndr and forms complex with Mob protein (He et al., 

2005; Mah et al., 2001; Millward et al.,1999)  

The best studied NDR kinases are WARTS (Wts) and LATS1 (large tumor 

suppressor), which both belong to the Wts family in Drosophila and humans. The LATS1 

in Drosophila was first identified in mosaic fly screens for tumor suppressors and negative 

regulators of cell proliferation (Xu et al., 1995). Wts negatively regulates cell proliferation 
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and promotes apoptosis by inhibiting the transcription of Cyclin E and by promoting the 

loss of DIAP1 (reviewed in Hay and Guo, 2003). Wts is phosphorylated by a Ste20-like 

kinase, Hpo, similar to Cdc15 in yeast (Mah et al., 2001; Wu et al., 2003) and it binds to a 

Mob protein, Mats, which simulates Wts kinase activity (Lai et al., 2005). Human LATS1 

rescues lats alleles in flies. Cellular localization and phosphorylation of hLATS1 is cell 

cycle dependent. hLATS1 localizes to the centrosomes in interphase and anaphase, and 

then to the midbody in the telophase. It also directly binds to hCDK1 and acts as hCDK1 

negative regulator. Through regulating hCDK1 activity, hLATS1 is suggested as a tumor 

suppressor that negatively regulates cell proliferation and modulating cell survival. 

hLATS1 also regulates cytokinesis through LIMK1 inhibition (Xia et al, 2002; Nishiyama 

et al., 1999; Yang et al., 2004).  

Two other NDR kinases in human are NDR1 and NDR2, which belong to the Ndr 

family. It has been shown that the hNDR may perform similar functions as its relatives in 

other species. hNDR interacts with hMob1, homologue of Mob1/2 in Saccharomyces 

cerevisiae and Schizosaccharomyces pombe, and is tightly cell cycle regulated. hNDR1/2 

plays a role in regulating cell proliferation and tumor development through controlling 

centrosome duplication and mitotic chromosome alignment. hNDR1/2 also play a role in 

regulating the G1/S phase transition by stabilizing c-myc and preventing p21 accumulation 

(Coulombe et al., 2003). 

 

Thesis Overview 

Net1 is first phosphorylated by the Fourteen Early Anaphase Release (FEAR) 
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network, and then by the Mitotic Exit Network (MEN) through an unknown mechanism. In 

this thesis, we showed that a MEN component, protein kinase Dbf2-Mob1, played a role in 

phosphorylating Net1 in the late anaphase. In Chapter II, We identified the effective Dbf2-

Mob1 phosphorylation sites in the N-terminal of Net1 by in vitro kinase reaction assay and 

by comparing site conservation between different Ascomyces. In Chapter III, we 

demonstrated that the phosphosite-mutated Net1 cells exhibit growth defects and chain-like 

terminal morphology under restrictive temperature. Genetic interactions suggested that the 

MEN kinases and Cdc14 are related to the same pathway that causes defects in the 

phosphosite-mutated Net1. In Chapter IV, we analyzed the phosphosite mutants with 

Fluorecence-activated cell sorting (FACS) and immunofluorescence assays, and we found 

that the growth defects and the abnormal morphologies are due to defects in releasing 

Cdc14 in the late anaphase leading to disruption of the mitotic exit. Western blot assays and 

the complex beads releasing assays further support our hypothesis. This thesis provided 

evidence for the hypothesis that the regulation of Cdc14 release in the late anaphase is via 

phosphorylating its inhibitor Net1 by Dbf2-Mob1. 
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Table I-1. Conservation of the NDR kinase signaling pathway 

 

 

Figure I-1. The FEAR network and the Mitotic Exit Network  
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Introduction 

In Saccharomyces cerevisiae, mitotic exit is tightly regulated by the MEN, Mitosis 

Exit Network. The MEN is a Ras-like GTPase signaling cascade network containing a Ras-

like GTPase protein (Tem1) (Shirayama et al., 1994a), a GTP/GDP exchange factor (Lte1) 

(Shirayama et al., 1994b), a two-component GTPase-activating protein (Bub2 and Bfa1) 

(Hu et al., 2001; Pereira et al., 2002), a spindle pole body (SPB) scaffold protein (Nud1) 

(Adams and Kilmartin, 1999), a protein phosphatase (Cdc14) (Wan et al., 1992), a Dbf2 

binding protein  (Mob1) (Luca and Winey, 1998), and four kinase proteins (Cdc5, Cdc15, 

Dbf2, and Dbf20) (Johnston et al., 1990; Kitada et al., 1993; Schweitzer and Philippsen, 

1991; Toyn et al., 1991). One of the major functions of the MEN is to control mitotic exit 

through regulation of the release of Cdc14. It has been found that at the end of mitosis, 

Cdc14 is released from the nucleolus to the cytoplasms, and both Cdc14 and the Cdc14 

nucleolus inhibitor Net1 are highly phosphorylated. When the MEN is defective, the 

phosphorylation status of both Cdc14 and Net1 drops. When the FEAR network is 

defective, mitotic exit is delayed but not terminated. However, when components in the 

MEN are mutated, cells are arrested at mitosis. In addition, when the MEN is defective, 

cells cannot sustain the cytoplasmic Cdc14 release and Cdc14 is sequestered in the 

nucleolus. This information indicates that the MEN plays a key role in regulating mitotic 

exit through regulating Cdc14 localization. However the detailed mechanism of how the 

MEN controls the mitotic exit is still unclear. The MEN is localized at the spindle pole 

body which is far from the nucleolus where both Net1 and Cdc14 are located.  
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 A fraction of Mob1 and Dbf2 colocalizes with Cdc14 in the nucleus and all three 

proteins function at kinetochores and other nuclear structures during anaphase. Dbf2-

Mob1 is also involved in maintaining chromosomal passenger protein on the mitotic 

spindle (Stoepel et al., 2005). This implies that Dbf2-Mob1 can directly interact with 

Cdc14 and even Net1. In order to locate Dbf2-Mob1 substrates, the first step is to identify 

the Dbf2-Mob1 kinase recognition sites and the consensus domains in the protein. It has 

been shown that Dbf2-Mob1 prefers phosphorylating serine rather than threonine. In 

addition, it recognizes and phosphorylates the serine or threonine with a specific sequence 

motif, R/KXXS/T, where the two amino acids in the middle of the motif are not selective. 

Through proteome chip assays, several possible substrate candidates such as Net1 (Mah et 

al., 2005) were found. Two Dbf2-Mob1 substrates, Cdc14 in the mitosis and Hof1 in the 

cytokinesis, were reported recently. Cdc14 is phosphorylated by Dbf2-Mob1 at its nuclear 

localization signal, leading to the loss of nuclear localization function, which then results in 

cytoplasmic localization of Cdc14 (Mohl et al., 2009). Hof1 is first phosphorylated by 

Cdc5, and then by Dbf2-Mob1. This phosphorylation promotes Hof1 to release from the 

septin ring and to bind with medial actomyosin ring (AMR), where it promotes AMR 

contraction and membrane ingression (Meitinger et al., 2011).  

Net1 is a phosphoprotein that is responsible for inhibition and sequestration of 

Cdc14 (Shou et al., 1999; Visintin et al., 1999; Traverso et al., 2001). In the early anaphase, 

Net1 is phosphorylated by Clb1-Cdk1 and Clb2-Cdk1, and possible by Cdc5, leading to 

early anaphase Cdc14 release (Azzam et al., 2004; Shou et al., 2002). Net1 is highly 

phosphorylated at the end of mitosis, when FEAR is no longer involved, and it is also one 

of the top substrate candidates of Dbf2-Mob1 from the proteome chip assay.  Therefore, it 
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is interesting to verify whether Dbf2-Mob1 is responsible for phosphorylating Net1 during 

the end of mitosis. Traverso et al. have found that the first 600 amino acids of Net1 act like 

full-length Net1 to Cdc14. It binds with Cdc14, which results in Cdc14 localization in the 

nucleolus, and it acts as a competitive inhibitor by blocking the active site of Cdc14 

(Traverso et al., 2001). Because the first 600 amino acids of Net1 are the functional domain 

for Cdc14 regulation, we cloned and expressed the first 600 amino acids of Net1 tagged 

with 6x His and evaluated the potential of being a Dbf2-Mob1 substrate in vitro.   

Here we use kinase reaction systems to locate the putative Dbf2-Mob1 sites in a 

truncated Net1 in vitro. Net1 WT is phosphorylated by purified and preactivated Dbf2-

Mob1 rather than kinase-dead Dbf2 (N305A)-Mob1. The phosphosite-mutated Net1s 

showed defective phosphorylation by Dbf2-Mob1. We suggest that Net1 is a specific 

substrate for Dbf2-Mob1 and the first ten putative phosphorylation sites are crucial in the in 

vitro system.   

 

Methods 

Multi site-directed mutagenesis 

1800 bp of the NET1 ORF, starting with the initiation codon, was PCR amplified, 

digested with XmaI and KpnI, and ligated into PET21b. Multi site-directed mutagenesis 

was performed with QuikChange® Multi Site-Directed Mutagenesis Kit (strategene) with 

primer sets: KJC33 for RSA204TA (5’-

AACAACCATTCGTAGTGCCGCTAATGGATCCATGAGGG-3’), KJC34 for 

KIV228SA (5’-ACACTTCTTCGAAGATCGTCGCCAACAACTCAGAT GACGAA 
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G-3’), KJC35 for KIK269SA (5’-GACGCAGGTAAAAAAATAAAAGCA 

AGCATCGTCGAGGAAGA-3’), KJC36 for RSA282TA (5’-TCGTGTCCAGATCA 

GCAGCCGTGGATCCAGATAAAAC-3’), KJC37 for RIT362SA (5’-ACCACTCCA 

AGAATAACAGCAGGAATGTTGAAAATCCCCG-3’), KJC38 for RSQ439SA (5’-

CCTTGCAACGTAGTCAAGCCGCCATCGCAGATAATAATGG-3’), KJC39 for 

RKS497SA (5’-CAACCACCAAGAAAGGCTGCACTGGAAACTATAGTGGAAA 

AG-3’), and KJC40 for KVS574SA (5’-CACTAGCTGGGAAAGTTGCTGCAAACA 

ACAACGCTTCAAAG-3’). PS5M was generated by Dane Mohl.  

  

Protein expression and purification 

Variety of 6His-600aa NET1 proteins were expressed in Rossetta bacteria cells and 

purified by nickel affinity with MagneHis particles (Promega). Plasmid carried WT and 

variety of mutant Net1 was transformed into competent Rossetta cells and plated on the 

LB/Ampicillin plate. Pick a single colony and incubate in 5 ml of LB/Ampicillin at 37 °C 

overnight. Transfer 2 ml of overnight culture into 1L of LB/Ampicillin and incubate at 37 

°C for about 4-5 hours until it reaches 0.5 O.D.600. Add 0.2 mg (final concentraion) of 

IPTG and shift the culture to 30 °C for another 5 hours. Cells were harvested with 4000 g 

for 20 min at 4 °C. Resuspend the cell pellets in 10 ml of wash buffer (50 mM Tris-HCl 

pH7.5 and 150 mM NaCl), spin down in SS34 rotor and frozen in liquid N2. Resuspend cell 

pellet in 10 ml lysis buffer (50 mM Tris-Cl pH7.5, 150 mM NaCl, 2% Triton X-100 and 20 

mM Imidazole). Sonicate cell suspension for 40 sec, with power at 60% output power for 4 

times with 60 sec cooling on ice in between. Spin the extract for 40 min in SS34 at 15K, 4 
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°C. Wash MagneHis resin for 3 times with lysis buffer. Collect the supernatant and 

incubate with 200ul washed MagneHis resin for 45 minutes in cold room on the rotator. 

Wash beads 2 times with 10 ml of Ni-NTA wash buffer (50 mM Tris-HCl pH7.5, 150 mM 

NaCl, 0.2% Triton X-100, and 20 mM Imidazole) for 10 minutes incubation on the rotator 

in cold room. Resuspend resin pellet in 1 ml Wash buffer and transfer to microfuge tube. 

Wash beads 2 times by incubating with 1 ml wash buffer for 2 minutes on ice. After final 

wash, do a 400ul elution with elution buffer (50 mM Tris-HCl pH7.5, 150 mM NaCl, 0.2% 

Triton X-100, and 300 mM Imidazole) for 4-5 times and save each elution individually. 

Perform a Bradford assay with each elutions and combine the peak fractions for dialysis 

into storage buffer (50 mM Tris-HCl pH7.5, 150 mM NaCl, 1mM DTT and 10% 

Glycerol). 

6His-Cdc15 was expressed in Sf9 cells and purified as previously described (Mah 

et al., 2001). Flag-6His-HA-DBF2/ 6His-Mob1 complex was expressed together in Sf9 

cells and purified as previously described (Mohl et al., 2009). 

 

Kinase reaction 

1 µg Dbf2-Mob1 or Dbf2 (N305A)-Mob1was activated by 0.2 µg Cdc15 kinase for 

20 min at 25 °C in Cdc15 kinase buffer (50 mM Hepes-KOH, pH 7.5, 5 mM MgCl2, 2.5 

mM MnCl2, 5 mM beta-glycerophosphate, 1 mM DTT, and 20 µM ATP). Activated Dbf2-

Mob1 was diluted with Dbf2 kinase buffer (50 mM Tris-HCl, pH 7.4, 60 mM potassium 

acetate, 10 mM magnesium chloride, 1 mM DTT, and 10 µM ATP) for 1:1 volumn ratio. 

3µ Ci of γ-[32 P]ATP and 5 µg N-600 aa 6His-Net1 either wild-type, or variety of 
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phosphorylation sites mutants are used for each reaction. Kinase reactions were incubated 

at 25 °C for 20 min and stopped with the addition of 2x SDS sample buffer. 

Phosphorylated proteins were separated by either 10% SDS-PAGE or 10% SDS-PAGE 

with 12 uM Phos-tagTM  (AAL-107). Gels were stained with commassive blue to detect for 

Net1 protein condition and mobility. After staining with commassive blue, gels were dried 

with heated platform with vacuum and 32P signals were detected by phosphoimager (Storm 

860). Gel images were further quantified with imageQuant software. 

 

Results 

Mapping the first 600 amino acid sequence  

It has been shown that Dbf2-Mob1 phosphorylates a specific sequence motif, 

R/KXXS/T (Mah et al, 2005). By analyzing the amino acid sequence of Net1, we found 15 

potential Dbf2-Mob1 recognition sites (bold-faced amino acids in Figure. II-1). We used 

sequence alignment to compare the Net1 protein sequence in S. cerevisiae to the Net1 

orthologs in other ascomycetes, S. bayanus, S. mikatae, S. paradoxus, and S. kudriavzevii, 

of Saccharomyces sensu stricto species, S. castellii of Saccaromyces sensu lato species, and 

Kluyveromyces latis, Candida glabrata, Lachancea thermotolerans, Zygosaccharomyces 

rouxii, and Vanderwaltozyma polyspora, that are loosely related to Sacchromyces but still 

under Sacchromycetaceae (Oda et al., 1997; Naumove et al., 2000). The first 12 potential 

Dbf2-Mob1 phosphorylation sites are conserved in at least five out of the six 

Saccharomyces, except RSQ439S which is only conserved in five out of the six 

Saccharomyces. Most of the first 12 sites are even conserved in more than three out of the 
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five loosely related fungi, except KRPP192T, RSA204T, KIV228S, and RKS497S (Table 

II-1). KRPP192T and RKS497S are only conserved in two out of the five loosely related 

fungi. RSA204T is conserved in only one out of the five loosely related fungi and 

KIV228S is the only putative site that is in the first 500 amino acids but is not found out of 

the Saccharomyces. 

           Some sites are highly conserved in the 11 fungi. For example, RVS212T and 

RIS259S are conserved in all 11 fungi, RSA282T, RLL295S, RIT362S are conserved in 

ten out of the 11 fungi, and the KIKS269S, RVV317S, RSQ439S are conserved in nine out 

of the 11 fungi. Most of the conserved sites are located in the first 500 amino acids. The 

last three putative Dbf2-Mob1 phosphorylation sites are poorly conserved even in the six 

Saccharomyces (Table II-1).  

 

Dbf2-Mob1 phosphorylates potential phosphorylation sites in Net1 in 

vitro 

In order to identify which putative sites are phosphorylated by Dbf2-Mob1, we 

generated three multi-site mutations of the potential phosphorylation sites in a plasmid 

construct that contains the first 1800 bp of the NET1 ORF followed by a 6x His tag. For 

simplicity, we refer to these constructs as phosphosite mutants (PSxM) with a number in 

place of x to indicate how many sites were mutated (e.g. PS5M). We made three multi-site 

mutants: PS5M, PS10M, and PS13M. In PS5M, five conserved sites (RPP192T, RVS212T, 

RIS259S, RLL295S, and RVV317S) were mutated.  This was constructed by Dane Mohl, a 

former member of our group. In PS10M, not only the previous five mutation sites but also 
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the remaining sites (RSA204T, KIV228S, KIK269S, RSA282T, and RIT362S) of the first 

10 conserved sites were mutated. With the exception of KRM520T and KED534T, all of 

the other potential phosphorylation sites were mutated in PS13M (Figure. II-1).  

Plasmids encoding these different mutants were transformed into the bacterial 

expression strain. Then we induced protein expression by IPTG, and purified the expressed 

proteins on a Ni-NTA column. His6-tagged Dbf2-Mob1, His6-tagged Dbf2 (N305A)-

Mob1 (kinase dead), and GST-tagged Cdc15 were purified by previous lab members (Mah 

et al., 2005; Mohl et al., 2009). When His6-tagged Dbf2-Mob1 was pre-activated with 

purified protein kinase Cdc15 and incubated with the wild type Net1 fragment containing 

the first 600 amino acids (WT) in the presence of γ-[32P]ATP for 20 min at room 

temperature, we observed incorporation of isotope label into the purified Net1. There was 

no incorporation of isotope label when the purified Net1 was incubated with His6-tagged 

Dbf2(N305A)-Mob1 (kinase dead) (Figure II-2a). This indicated that Net1 is a substrate of 

Dbf2-Mob1 in vitro.  In addition, the efficiency of label incorporation was decreased when 

more phosphorylation sites were mutated to alanine. This indicates that the mutated 

phosphorylation sites of Net1 were the primary targets of Dbf2-Mob1 (Figure II-2a). 

Analyzing the intensities of the incorporated isotope labels, we found that PS5M still had 

70% of the isotope incorporation when compared to WT, whereas both PS10M and PS13M 

exhibited strong decreases in labeling. The relatively similar labeling observed for PS10M 

and PS13M indicates that the first ten conserved potential Dbf2-Mob1 phosphorylation 

sites were the major targets for Dbf2-Mob1 (Figure II-2b). 

To analyze the different phosphoisoforms of the mutant Net1 proteins, we used 

Phos-tagTM  (AAL-107) gel to separate proteins by their modification levels. WT Net1 
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exhibited multiple phosphoisoforms, but PS10M and PS13M exhibited only background 

signal. Although PS5M still incorporated substantial [32P], the slowest migrating 

phosphoisoform migrated faster than the major WT phosphoisoform. This indicates that the 

mutated sites in PS5M did cause a specific defect in phosphorylation. The commassie 

staining also shows consistent results. WT and PS5M were barely detectable possibly 

because the proteins were distributed over different phosphorylation states whereas protein 

staining of the PS10M and PS13M were similar to WT treated with kinase-dead Dbf2 

(Figure II-2c). The distribution and strength of the incorporated [32P] signals in the various 

Net1 mutants were quantified and are displayed in Figure II-2d.  

 

Discussion 

Although it was previously shown that Dbf2-Mob1can phosphorylate Net1, the 

phosphorylation sites were not characterized (Mah et al., 2005). In this study, we screened 

for putative Dbf2-Mob1 phosphorylation sites in Net1 by using a combination of 

mutagenesis and in vitro kinase assays. By comparing candidates from the screen with 

published mass spectrometry experiments, we found that some of the sites that we 

identified are phosphorylated in a regulated manner during the cell cycle (Chen et al., 2002; 

Chi et al., 2007; Holt et al., 2009; Dephoure and Gygi, 2011). However, no correlation 

between the level of the conservation and the possibility of being phosphorylated was 

found (Table. II-2). For example, although phosphorylation of KIV228S is regulated during 

cell cycle, it is one of the less conserved Dbf2-Mob1 phosphorylation sites.  

We further showed that there are multiple phosphorylation sites in the first 600 
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amino acids of Net1 using the quantitative kinase assays and the Phos-tagTM  (AAL-107) 

gel system. The idea that Net1 is multi-phosphorylated by Dbf2-Mob1 could account for 

the observation that Net1 is heavily phosphorylated at the end of mitosis. Comparing the 

phosphorylation status of PS10M and PS13M to the conservation of these sites in a variety 

of fungi suggested that the first 10 putative Dbf2-Mob1 recognition sites may be 

particularly relevant for Net1 regulation.  

Several important questions remain unanswered. What is the stoichiometry of 

phosphorylation of the various sites? Are all sites phosphorylated simultaneously or 

consecutively? Understanding the detailed of the regulation mechanism of these 

phosphorylation sites is an interesting and urgent topic. 
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Figure Legends 

Figure II-1. Potential Dbf2-Mob1 phosphorylation sites are highly 

conserved in Net1 among Saccharomyces species 

Potential Dbf2-Mob1 sites, RXXT, RXXS, KXXT, or KXXS, are marked with bold 

face. The sites mutated in the net1-PS5M and net1-PS10M are labeled with blue and red 

underlines, respectively. The green underlines indicate sites mutated in net1-PS13M.  

 

Figure II-2. Purified Dbf2-Mob1 phosphorylated purified Net1 WT but 

not phosphosite mutants  

 (a) Incorporation of [32P] into purified Net1 shows an inverse correlation with the 

number of phosphosite mutated. Equal amounts of WT and mutant proteins were incubated 

with γ- [32P]ATP and with either pre-activated Dbf2-Mob1 (wild-type) or pre-activated 

Dbf2 (N305A)-Mob1 (kinase dead) at room temperature for 20 min. Dbf2-Mob1 was 

activated in vitro by prior incubation with protein kinase Cdc15 and ATP. Following the 

kinase reaction, samples were fractionated by 7% SDS-PAGE. The gel was stained with 

coomassie blue and subjected to autoradiography. “WT” refers to wild-type Net1 protein. 

“5M”, “10M”, or “13M” refer to mutation of 5, 10 or 13 potential Dbf2-Mob1 

phosphorylation sites.  
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(b) Quantification of the [32P] signal intensities from panel (a). [32P] signal was 

captured by phosphoimager and analyzed with ImageQuant. [32P] intensity of WT Net1 

was set to 1. [32P] intensities from all the other reactions were normalized to the signal from 

WT Net1. 5M shows about 30% decrease of the [32P] intensity. 10M and 13M exhibited a 

reduction of almost 90% in the [32P] signal. [32P] signals from WT or mutant Net1 

incubated with Dbf2 (N305A)-Mob1 (kinase dead) were barely detectable. 

            (c) Loss of hyperphosphorylated species in Net1 phosphosite mutants. Equal 

amounts of purified WT and mutant Net1 proteins were incubated with γ-[32P]ATP and 

with either pre-activated Dbf2-Mob1 (wild-type) or pre-activated Dbf2 (N305A)-Mob1 

(kinase dead) at room temperature for 20 min. Equal amounts of reactions were 

fractionated on a 10% SDS-polyacrylamide gels that contained 12 uM Phos-tagTM  (AAL-

107). Following SDS-PAGE, the gel was stained with coomassie blue and subjected to 

autoradiography. “WT” refers to wild-type Net1 protein. “5M”, “10M”, or “13M” refer to 

mutation of 5, 10 or 13 potential Dbf2-Mob1 phosphorylation sites.  

(d) Quantification of the pattern of [32P] signal distribution from panel (c).  [32P] 

signal was captured by phosphoimager and analyzed with ImageQuant. [32P] intensities 

along each lane were normalized to background signal and plotted to reveal the intensity 

distribution. Proteins with different levels of [32P] modification exhibited different 

mobility. Multiple [32P]-labeled species were observed in WT Net1 incubated with Dbf2-

Mob1. The majority of the [32P] signal for 5M shows faster mobility than that for WT Net1, 

consistent with loss of phosphorylation sites. 10M and 13M are nearly indistinguishable 

from the background.
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Table II-1. Potential Dbf2-Mob1 phosphorylation sites are highly conserved among Saccharomyces species. 

YJL076W/ NET1 of Saccharomyces cerevisiae ORF sequence was used to compare with fungi using online webpage of Saccharomyces 

genome database (http://www.yeastgenome.org/cgi-bin/FUNGI/showAlign). 

S. cerevisiae KRPP192T RSA204T RVS212T KIV228S RIS259S KIKS269S RSA282T RLL295S 
Lachancea thermotolerans - - RVST - RISS - - RLPS 
Zygosaccharomyces rouxii RNPS - RVST - RVSS KIKS RSET RLLS 
Candida glabrata KRGST KGQS RIST - RISS KITS RSAT RLLS 
Vanderwaltozyma polyspora - - RIST - RIRS RIIT KSET RFLS 
Kluyveromyces lactis - - RIST - RISS - KSET RLPS 
S. bayanus KRPPT RSAT RIST KMMS RISS KIKS RSET RLLS 
S. castellii KRPST RNPT RIST - RISS RIRS RSGT - 
S. kudriavzevii KRPPT - RIST KIMS RISS KIKS RSET RLLS 
S. mikatae KRPPT RSAT RIST KIIS RISS KIKS RSET RLLS 
S. paradoxus KRPPT RSGT RIST KIVS RISS KIKS RSAT RLLS 
     
S. cerevisiae RVV317S RIT362S RSQ439S RKS497S KRM520T KED534T KVS574S 
Lachancea thermotolerans - RITS RQTS - - - - 
Zygosaccharomyces rouxii RVVS RITS RQTS RKTS - KSAS - 
Candida glabrata RVIS RITS RQTS - - - - 
Vanderwaltozyma polyspora RVIS RITS - RISS - - - 
Kluyveromyces lactis - - RLPS - RAPS - - 
S. bayanus RVVS RITS RSQS RKNS - - - 
S. castellii RVLS RITS - - - - - 
S. kudriavzevii RVVS RITS RSQS RKSS RRMT - - 
S. mikatae RVVS RITS RSQS RKSS - KEES - 
S. paradoxus RVVS RITS RSQS RKSS KRMT KEDS KVST 
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S. cerevisiae % Identities % Positives % Gap 
Lachancea thermotolerans 33 37 24 
Zygosaccharomyces rouxii 39 41 37 
Candida glabrata 36 50 12 
Vanderwaltozyma polyspora 33 43 22 
Kluyveromyces lactis 31 44 19 
S. bayanus 56 63 4 
S. castellii 29 42 20 
S. kudriavzevii 60 65 2 
S. mikatae 60 66 2 
S. paradoxus 66 69 1 
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Table II-2. Summary of phosphorylated sites in Net1 first 600 amino acid  

• Lower-case letters in the boxes represent the phosphorylation site. 
• + or – represent increasing or decreasing phosphorylation level in log L/H. 

 
 RPP192T RSA204T RVS212T KIV228S RIS259S KIK269S RSA282T 
Mohl’s Mass-spec        
Azzam (2004)        
Holt (2009)        
Gygi(asynchronous)    +KIVSNNs    
Gygi(nocodazole)    +KIVSNNs    
Gygi(∆clb2)    +KIVSNNs    

 
 RLL295S RVV317S RIT362S RSQ439S RKS497S KRM520T 

KED534T 
KVS574S 

Mohl’s Mass-spec        
Azzam (2004)        
Holt (2009)        
Gygi(asynchronous)     +RKSs   
Gygi(nocodazole)    -RSQs    
Gygi(∆clb2) -RLLsGt   -RsQSs +RKSs   
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Figure II-1. Potential phosphorylation sites in the first 600 amino acids of 

Saccharomyces cerevisiae Net1 
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Figure II-2. Net1 was phosphorylated on multiple sites by Dbf2-Mob1 in 

vitro 

(a) 

 

(b) 
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 (c) 

 

(d) 
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Chapter III 

 

net1 Phosphosite Mutant Cells Exhibited Defects in Mitotic Exit 
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Introduction 

The MEN is responsible for heavy phosphorylation of Net1 and for releasing and 

maintaining Cdc14 in the cytoplasm. This regulation is thought to proceed through a 

signaling cascade where Ras-like GTPase Tem1 activates kinase Cdc15, which then 

activates the downstream kinase Dbf2 (Asakawa et al., 2001; Lee et al, 2001a). Mutations 

of the components in the MEN lead to cell arrest in the late mitosis or cytokinesis. Two 

kinase mutants, cdc15-2 and dbf2-2, lead to temperature-sensitive phenotypes and the 

mutations cause apoptosis at 34 °C and 37 °C, respectively (Grandin et al., 1998). In 

addition, mutations of the MEN components (Tem1, Cdc15, and Dbf2) or Cdc14 result in 

abnormal cell morphology. At the restrictive temperature, tem1-1, cdc15-2, dbf2-2, and 

Cdc14-1 cells form chain-like terminal morphology (Grandin et al., 1998; Jimenez et al., 

2005; Jimenez et al., 1998). If exit regulation from mitosis though the MEN is by 

phosphorylation of Net1 with Dbf2-Mob1, it would be interesting to verify whether the 

phosphosite-mutated net1 (PS11M and PS13M) cells lead to growth defects or abnormal 

morphologies in vivo, since PS11M and PS13M terminates the phosphorylation by Dbf2-

Mob1. In addition, it would be interesting to test if net1 phosphosite mutant cells exhibit 

defects in the cell cycle. 

Here we analyze the growth phenotype and the morphology of both WT and mutant 

net1 cells. We found that phosphosite mutant net1 shows both cold- and temperature-

sensitive phenotypes. net1 mutant cells also show chain-like morphology, similar to that in 

the MEN mutants. This indicated that net1 mutants cause defects in mitosis exit and/ or 

cytokinesis. We also looked at genetic interactions by combining WT NET1 or 
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phosphosite-mutated net1 with the MEN mutants. The phosphosite-mutated net1 cells 

exhibited a synthetic lethal phenotype in cdc15-2 background. We also study the mitotic 

deficiency with net1 phosphosite mutant cells by Fluorescence-activated cell sorting 

(FACS) and western blot assay, and we found that Net1 phosphosite mutant exhibits 

defects in mitotic exit. We suggested that Dbf2-Mob1 phosphorylates Net1 and promotes 

the exit from mitosis. 

 

Methods 

Strain construction, materials, and Net1 mutagenesis  

All strains used are in the W303 background (can1-100, leu2-3, his3-11, trp1-1, 

ura3-1, ade2-1).  

A strain, RJD5605, with base pair of 45-1008 of NET1 replaced with “CORE 

cassette”, KIURA3-KanMAX4, and with pGAL1-I-SCEI integrated in genomic DNA is a 

gift from Dr. Christopher M. Yellman of professor Shirleen Roeder’s lab in Yale 

University. The PCR fragment of full length NET1 ORF with 38 bp before start codon and 

31 bp after stop codon containing either WT or 13 phosphosite mutant (192T, 204T, 212T, 

228S, 259S, 269S, 282T, 295S, 317S, 362S, 439S, 497S, and 574S) was amplified with 

primer set, KJC52/ KJC85, and used for yeast trasformation to generate WT or mutant 

untagged NET1 in its original chromosome locus. Dilute overnight growth of RJD5605 

from YP-2% dextrose into YP-2% raffinose with starting concentration of 0.25 O.D.600 at 

30 °C. When cells reach approximate 0.6-0.8 O.D.600, add galactose to a 2% of final 

concentration to induce expression of I-SceI for 1 hour prior to yeast trasformation. Yeast 
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trasformation is followed the “high-efficiency lithium acetate/PEG” method generated from 

Gietz’s lab (http://home.cc.umanitoba.ca/~gietz/method.html). Transformants were plated 

onto YPD plates and replicated to FOA plates after ~2 days of growth at 30 °C. 

Chromosome DNA from the colonies grew on FOA plates were extracted and the NET1 

sequences were amplified by PCR and sequenced. Because of partial recombination, we 

end up with net1-PS11M (192T, 204T, 212T, 228S, 259S, 269S, 282T, 295S, 317S, 362S, 

439S) and net1-PS13M (192T, 204T, 212T, 228S, 259S, 269S, 282T, 295S, 317S, 362S, 

439S, 497S, and 574S) with no tag or any other genetic modification to the strain.  

Double mutation strains that with cdc15-2 were first transformed with PCR 

fragment to tag NET1 with 3xFlag then crossed to either WT or net1-PS13M and select 

spores with proper markers on different selecting medium.  

   

Growth assay 

For plating assays, strains were grown overnight in YP-2% dextrose and diluted to 

an O.D.600 of 0.25 in YP-2% dextrose. Cultures were grown at permissive temperature for 

strains with MEN mutants and 30 °C the rest of the strains for about 2 doubling cycles to 

reach stationary growth. Dilute cultures to an O.D.600 of 0.3 in water and perform a serial 

five-fold dilutions in water and were spotted onto YPD plates. Plates were incubated at a 

variety of temperatures as indicated in the text for 2–3 days before the photos were taken.  

 

Morphology observation with microscope 

Overnight yeast cultures were diluted in YPD to 0.25 O.D.600 and grow for 2-3 
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generation at indicated temperature. Cells are fixed with formaldehyde (HCHO) at a final 

concentration of 4% for 15 minutes at the original growth condition with constant shaking. 

Cells were collected by centrifugation and wash with 500 µl of Wash Buffer (1% β-

mercaptoethanol in 1x PBS). After the wash, cells were digested with 100 µl of lyticase 

solution to make spheroblast at 30°C. Cells condition were checked under microscope 

before proceed further staining. Spheroplastes were diluted with 10X volume PBS and spot 

30 µl of cell suspension to polyethyleneimine (Sigma P-3143) coated slides and leave in a 

moisture chamber for 30 min at RT. Slides were then washed with 1xPBS and fixed with 

MeOH and Acetone. After fixation, slides were washed with 0.1% Triton X-100 and 

blocked with blocking buffer [2% BSA, 0.1% Tween20 in DPBS] and labeled with DAPI. 

Images of cells were collected on a Zeiss LSM510 META inverted confocal microscope 

with 2-photon laser. Cell images were performed using ImageJ software. More than 100 

cells are counted for budding index quantification. 

 

Fluorescence Activated Cell Sorting (FACS) 

The 0.25 O.D.600 diluted wild-type and phosphosite mutants from overnight culture 

in YP-2% dextrose were grown for about 1 doubling cycle. Cells were treated with 0.3 

µg/ml of alpha-factor for 2.5 hours at permissive temperature. For cells treated with 

nacodazole at either permissive or restrictive temperature were harvested after 2.5 hours of 

treatment without going through time course. Cells that were going to test under restrictive 

temperature, we treated cells with alpha factor for 2 hours at permissive temperature then 

switched to restrictive temperature with additional added alpha factor for another 2 hours. 
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Alpha factor was released by washing cells through 0.2 µm filter with pre-warmed YP-2% 

dextrose. For each time point, we collected 1 O.D.600 unit of cells at each time points as 

indicated. Collect cells by spinning down with 8000 rpm at room temperature. Cells were 

fixed by resuspending cell pellets with 300 µl of ice-cold water and immediately add 700 µl 

of -20 °C ethanol on vortex. Cells were left in 70% ethanol for at least 3 hours at 4 °C. Spin 

down the fixed cells at top speed for 5 minutes at 4 °C, discard the supernatant, and wash 

once with 1 ml of 50 mM, pH 7.4 sodium citrate. RNA was removed by treating cells with 

4 mg/ ml of RNAse in 50 mM sodium citrate overnight at 37 °C. RNAse was removed by 

adding 50 µl of 20 mg/ml of Proteinase K and incubated for another 2.5 hours at 37 °C. 

After RNAse and Proteinase K treatment, cells were washed once with 50 mM sodium 

citrate buffer. DNA was stained with 1 ml of 16 µg/ml of propidium iodide with brief 

vortex and incubated for at least 30 min at room temperature in dark. Cell clumpy or 

aggregates was resuspended and separated by brief sonication for 10sec at settings of 30% 

with 1 sec On and 1 sec Off right before analyzing by cytometer.    

 

Cell extract preparation and Western Blotting 

The growth and synchronize condition was performed as previously described in 

method for FACS. 8 O.D.600 units of cells was collected at indicated time points, washed 

with 2 ml of ice cold sodium azide buffer, and frozen in liquid N2. Cell pellets were 

resuspended in 300 µl of 1x SDS loading buffer [70 µl of 100 mM Tris-HCl (pH 7.5), 20% 

glycerol, 4% SDS, 200 mM DTT, 1% of β- mercaptoethanol]. Cells were first boiled on 

dry base for 3 minutes with 100 µl of acid-washed glass beads (500 µm). Then, we lyses 
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the cells by vortexing on the Bio 101 multi-bead vortexer with top speed for 90 sec 

followed by boiled on dry base for another 5 minutes. After 1-minute spin at top speed, 10 

µl lysates were fractionated on a 10% SDS-PAGE gel followed by transfer to a 

nitrocellulose membrane in wet chamber for 2 hours. Western blot analysis was performed 

with the primary antibodies at the indicated dilutions: polyclonal anti-Net1 (Santa cruz sc-

27758, 1:500), monoclonal anti-Flag (Sigma F1804, 1:1000), polyclonal anti-Clb2 (Santa 

cruz sc-9071, 1:1000), polyclonal anti-Sic1 (Santa cruz sc-50441, 1:1000), monoclonal 

anti-Tubulin (Santa cruz sc-53030, 1:3000), polyclonal anti-Cdc28 (Santa cruz sc-6709, 

1:2000).  

 

Results 

net1 phosphosite mutants showed temperature sensitive phenotypes and 

abnormal terminal morphologies 

Net1 antagonizes Cdc14 by restricting its localization to the nucleolus and 

inhibiting its activity. When Net1 is phosphorylated by the FEAR network in early 

anaphase, it loses its binding to Cdc14 and thus releases Cdc14 into the nucleus. At the end 

of mitosis, Net1 is heavily phosphorylated and Cdc14 is completely released into both 

nucleus and cytoplasm. However, the mechanism is still unclear. Our previous efforts 

identified Net1 phosphosite mutations that greatly reduced Net1 phosphorylation by Dbf2-

Mob1 in vitro. We next sought to study these mutations in vivo to see if they have an effect 

on exit from mitosis. 
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We used gene replacement technology to integrate Net1 phosphosite mutants (net1-

PS11M and net1-PS13M) at the natural chromosomal locus. To evaluate the effect of these 

mutations on growth, cells were spotted at five-fold serial dilutions on YP-2% dextrose and 

grown for 2-3 days at different temperatures. At 25 °C or 30 °C, WT cells and the 

phosphosite mutants grew equivalently. However, net1 phosphosite mutants exhibited 

growth defects at 16 °C and 38 °C whereas WT cells grew normally (Figure III-1).  

In addition to their growth defect, MEN mutants at the non-permissive temperature 

also show abnormal morphology. We therefore sought to test whether net1 phosphosite 

mutants also exhibited abnormal morphology. Cells incubated under either permissive (30 

°C) or restrictive (16 °C and 38 °C) conditions for more than 3 generations were fixed with 

formaldehyde and stained with DAPI to indicate the position of the nucleus. At the 

permissive temperature, WT cells and phosphosite mutants exhibited similar morphology, 

although a small portion of the net1 mutants exhibited slightly elongated buds. Under the 

restrictive temperature the morphology of WT cells was normal, whereas the phosphosite 

mutants exhibited formation of chains of cells that failed to separate. In addition, a fraction 

of the phosphosite mutant cells exhibited elongated, rod-shaped buds (Figure III-2a). The 

unusual morphology of the phosphosite mutant cells suggested that mitosis and/or 

cytokinesis was defective when Net1 could not be phorphorylated by Dbf2-Mob1. 

 

net1 phosphosite mutant cells were synthetic-lethal with cdc15-2  

If phosphorylation of Net1 contributes to the role of the MEN in promoting exit 

from mitosis, one predicts that the phosphosite mutants would display synthetic lethality 
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with MEN mutants. To address this hypothesis, we performed a genetic interaction assay 

by incorporating net1-PS13M into cdc15 strains. The MEN mutant, cdc15-2 (the Ala206 

Asp206 mutant) that arrest in late mitosis at 38 °C were selected. Single and double mutant 

cells were spotted in five-fold serial dilutions on YP-2% dextrose, and grown for 2-3 days 

at different temperatures. We found that the net1-PS13M cdc15-2 double mutant displayed 

synthetic-lethality. Double mutant cells showed less tolerance to the intermediate 

temperature of 28 °C than cells with either single mutation alone (Figure III-3). Taken 

together, these observations are consistent with the idea that MEN-dependent 

phosphorylation of Net1 regulates the exit from mitosis. 

 

net1 phosphosite mutants cells were defective in exit from mitosis 

Net1 sequesters Cdc14 in the nucleolus, and this antagonistic function of Net1 is 

counteracted by the MEN. Given our observation that the terminal MEN signaling 

component Dbf2–Mob1 directly phosphorylates Net1 in vitro, we hypothesized that this 

phosphorylation might disrupt Cdc14 binding, thereby enabling Cdc14 to escape to the 

nucleus and cytoplasm, where it promotes the exit from mitosis. If this is the case, a mutant 

of Net1 that cannot be phosphorylated should exhibit defects in both the release of Cdc14 

from the nucleolus and the exit from mitosis. 

Our previous data suggested that at both low and high temperatures, net1 

phosphosite mutants exhibited abnormal morphology similar to what is observed in cells 

with MEN mutations. This suggests that the net1 phosphosite mutant cells may have 

defects in exit from mitosis. To evaluate this idea, we performed Fluorescence Activated 
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Cell Sorting (FACS) to measure chromosomal DNA in WT and phosphosite mutant cells. 

We arrested cells in G1 phase of the cell cycle with alpha-factor at the permissive or 

restrictive temperature. Then we removed alpha-factor to allow resumption of cell cycle 

progression and collected cells at 30 minute intervals for analysis by FACS.  Seventy-five 

minutes after release, alpha factor was added back to trap in the subsequent G1 phase any 

cells that had successfully divided. 

At 30°C, WT, net1-PS11M, and net1-PS13M cells showed similar DNA 

distribution patterns throughout the time course. At restrictive temperature (38°C), WT 

cells completed replication by 60’ after release from alpha-factor arrest and had largely 

returned to the subsequent G1 phase by 90’. On the other hand, net phosphosite mutant 

cells showed similar kinetics of DNA replication but stayed at 2N and failed to divide for at 

least 180’. This indicates that phosphorylation of Net1 by Dbf2-Mob1 was crucial for cells 

to complete mitosis and cell division (Figure. III-4d-f).  

To further understand the cell cycle regulation in the phosphosite mutant cells, we 

used western blot assay. Two proteins, Sic1 and Clb2, are normally used as indicators for 

cell cycle stages. Clb2 is a B-type cyclin involved in regulating cells proceeding through 

the G2 and M phases of the cell cycle (Enserink and Kolodner, 2010). Clb2 is expressed 

during the G2-M phase and activates Cdc28 to promote the transition from G2 to M. Clb2 

is ubiquitinated by APCcdh1 and degraded by the proteasome, which allows cells to exit M 

phase and enter into G1 phase. Failure to degrade Clb2 leads to cell cycle arrest at mitosis 

exit (Surana et al., 1993). Taken together, Clb2 is a marker protein for indicating the G2-M 

stages of the cell cycle. By contrast, Sic1 is usually used for indicating G1 phase. Sic1 is a 

cyclin-dependent kinase inhibitor specific for the B-type cyclin-CDK complex and 
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regulates the cell cycle at the G1 to S phase transition. Sic1 is highly expressed during late 

mitosis and the G1 phase, and then quickly degraded by the combined actions of SCF 

ubiquitin ligase and the proteasome when cell enters into S phase.  

For the western blot assay, we grew WT and phosphosite mutant cells at permissive 

or restrictive temperatures, and collected cells at different time points after release from the 

alpha factor arrest (alpha factor was added back after 90’ to trap in G1 phase cells that 

completed mitosis). Cell lysates were fractionated by SDS-PAGE and immunoblotted to 

detect Sic1 and Clb2 protein levels in each sample. Cdc28 was monitored as the loading 

control. WT and phosphosite mutant cells showed similar patterns for both Sic1 and Clb2 

at 30°C. As expected, Sic1 was expressed at time 0 (G1) and disappeared at later time 

points, while cells started to accumulate Clb2. Clb2 levels declined and Sic1 reaccumulated 

at 120’, as cells completed mitosis and were arrested in the subsequent G1 phase.  On the 

other hand, WT and phosphosite mutant cells showed different Sic1 and Clb2 expression 

patterns at the restrictive temperature. WT cells showed similar patterns for both Sic1 and 

Clb2 at 30°C and 38 °C, except that exit from mitosis occurred one time point earlier at the 

high temperature. By contrast, Clb2 levels never declined and Sic1 levels never exhibited a 

second peak in net1-PS13M cells grown at 38 °C This indicates that phosphosite mutant 

cells exhibited defects in exit from mitosis at 38 °C (Figure. III-4g). 

  

 

Discussion 
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In this work, we showed low and high temperature-sensitive phenotypes of the cells 

with Dbf2-Mob1 phosphorylation site mutations in Net1. We also showed that net1-PS11M 

and net1-PS13M cells exhibit abnormal morphology, which is similar to the morphology of 

the MEN kinase mutant. Double mutants with cdc15-2 and net1-PS13M show synthetic-

lethal phenotype. Furthermore, we showed that phosphosite mutant cells exhibit defects in 

mitotic exit under restrictive temperature with both western blot assay and FACS analysis. 

This suggests that the MEN is involved in regulating Net1 phosphorylation. 

Permissive and restrictive temperature experiments allow us to analyze abnormal 

morphology, and these assays showed that cells with phosphosite mutant Net1 are defective 

and exit mitosis abnormally. Moreover, some cells showed defects in exit from cytokinesis. 

The majority of Net1 phosphosite mutant cells were in budded form, but a portion of the 

cells exhibited chain-like undivided budded form at both 16 °C and 38 °C (Figure III-2a 

and -2b). The large percentage of the cells arrested at the budded stage indicated that cells 

exhibited defects in mitotic exit. However, the multibudded/ chain-like morphology 

indicated that cells suffer from defects in premature mitotic exit before closing of the bud 

neck. On the other hand, we also found a very small percentage these populations of cells 

were unbudded. This suggested that some cells are able to leak through the mitosis or the 

cytokinesis defects, which matches the growth assay results that colonies showed up in the 

first 5 fold diluted spot. The chain-like morphology has been reported in the tem1-1, cdc15-

2, dbf2-2, and cdc14-1 cells (Grandin et al., 1998; Javier et al., 2004). Together with our 

morphology data, it further indicated the mechanism for regulating the exit from mitosis is 

through phosphorylation of Net1. 
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    To understand the relationship between the MEN and Net1, we performed the 

genetic interaction assay. We found that double mutation with cdc15-2 and net1-PS13M 

showed a synthetic-lethal phenotype, which indicated that Cdc15 and Net1 are in the same 

pathway. It has been shown that the kinase activity and the cellular location of Dbf2 are 

both regulated by Cdc15. In the cdc15-2 cells, Dbf2 not only fails to be activated but it also 

fails to localize at the bud neck and spindle pole body. Dbf2 travels on the spindle pole 

body and seems to meet with Net1 when the spindle pole body encounters with the 

daughter bound nucleolus (Visintin and Amon, 2001; Stoepel et al., 2005).  
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Figure Legends 

Figure III-1. Net1 phosphosite mutants were low and high temperature-

sensitive 

Five-fold serial dilution of cells were plated onto YP-2% dextrose. WT indicated 

wild-type cells. net1 phosphosite mutant cells are mutated in its original chromosome DNA 

locus by DNA recombination. net1-PS11M (11M) cells exhibited one more site, 

S439A439, than PS10M used in in vitro kinase reaction, while net1-PS13M (13M) cells 

are the same as the PS13M in in vitro kinase reaction. Temperatures used to test the growth 

phenotype are as indicated. 

 

Figure III-2. Microsopic terminal morphology of net1 phosphosite 

mutant cells    

(a) net1 phosphosite mutant cells showed abnormal morphology under restrictive 

temperature. Net1-WT, PS11M, and PS13M cells grew in YP-2% dextrose under indicated 
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temperature for more than 3 doubling times were formaldehyde fixed and stained with 

DAPI to indicate DNA localization. DAPI staining is presented in bright white dot. 

(b) Quantification of the DAPI staining results in each strains under 16 °C, 30 °C, 

and 38 °C. Cells were grouped with the form of the budding stage and labeled as 

“unbudded”, “budded”, and “multibudded”. A total number of 100 cells were calculated.  

 

Figure III-3. net1-13M phosphosite mutant was synthetic lethal with 

MEN mutants  

net1-PS13M is synthetic-lethal with cdc15-2. 0.3 O.D.600 unit of cells of NET1-WT, 

cdc15-2, net1-PS13M, and cdc15-2 net1-PS13M double mutation background were diluted 

with five-fold serial dilution and plotted on YP-2% dextrose from left to right. Plates were 

incubated at the indicated temperature for 2-3 days before the picture was taken.  

 

Figure III-4. Cells with Dbf2-Mob1 phosphosite mutant cells were 

defective in exit from mitosis  

Wild-type (WT) and phosphosite mutated (PS11M and PS13M) Net1 were 

harvested at indicated time points after released from alpha factor arrest.  

(a-c) WT and phosphosite mutant cells showed similar cell cycle progression under 

permissive temperature. 1 O.D.600 unit of WT, PS11M, and PS13M cells were grown at 30 

°C and collected by adding ethanol to a final 70% concentration to each time points, as 

indicated. Time “0” was the time right before cells released from alpha factor treatment. 0.2 

ug/ml of alpha factor was added back at 90 minutes time point. Time points were labeled as 
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minutes after released from alpha factor. Cell types were indicated at the bottom and the 

chromosome copy number was labeled at the top with arrow to indicate the specific peak.  

(d-f) Phosphosite muatant cells were defective in exit from mitosis under restrictive 

temperature. 1 O.D.600 unit of WT, PS11M, and PS13M cells were grown at 38 °C and 

collected by adding ethanol to a final 70% concentration to each time points, as indicated. 

Time “0” was the time right before cells released from alpha factor treatment. 0.2 ug/ml of 

alpha factor was added back at 80 minutes time point. Time points were labeled as minutes 

after released from alpha factor. Cell types were indicated at the bottom and the 

chromosome copy number was labeled at the top with arrow to indicate the specific peak. 

(g) Phosphosite mutant cells exhibited defects of Clb2 degradation and the re-

accumulation of Sic1 under restrictive temperature. 8 O.D.600 unit of WT and PS13M cells 

were grown at 30 °C or 38 °C after 2-3 hours of alpha factor arrest. Time “0” was the time 

right before cells released from alpha factor treatment on filter. Cells were collected 

followed the time point as indicated. The time points labeled with blue color were the time 

we added 0.2 ug/ml of alpha factor back to the culture to prevent cells entering 2nd round of 

cell cycle. Temperature and the strain type were labeled at the top of each blot. Protein 

extract from each time point were analyzed by 10% SDS-PAGE and blotted with 

polyclonal anti-Net1, polyclonal anti-Clb, polyclonal anti-Sic1, and monoclonal anti-Cdc28. 
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Figure III-1. net1 phosphosite mutant cells were low and high 

temperature-sensitive 
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Figure III-2. Microsopic terminal morphology of net1 phosphosite 

mutant cells 

(a) 

 

 

(b) 
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Figure III-3. net1-13M phosphosite mutant was synthetic lethal with 

cdc15-2 mutant 
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Figure III-4. Cells with Dbf2-Mob1 phosphosite mutant Net1 was 

defective in exit from mitosis  
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Chapter IV 

 

net1 Phosphosite Mutant Cells Were Defective in 

Releasing Cdc14  
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Introduction 

In Saccharomyces cerevisiae, the localization of Cdc14 is tightly regulated 

throughout cell cycle, and Net1 is responsible for the regulation of the activity and the 

location of Cdc14. Net1 binds to Cdc14 and sequesters it in the nucleolus during the G1 

phase, S phase, and metaphase. It has been shown that overexpression of Net1 causes the 

distribution of Net1 protein throughout the cell. In such a cell, Cdc14 is no longer 

sequestered in the nucleolus but present throughout the cell. This indicates that Net1 

controls the cellular localization of Cdc14. Mislocalized Net1 leads to mislocalization of 

Cdc14 (Visintin, et al., 1999, Shou et al., 1999).  

In addition, Net1 inhibits the activity of Cdc14 when they form a complex in vitro 

(Traverso et al., 2001, Shou et al., 1999). It has been shown that Net1 binds to the active 

site of Cdc14 and inhibits Cdc14 phosphotase activity in vitro (Traverso et al., 2001). This 

mechanism also been reported in in vivo system. Deletion of Net1 leads to a delay of bud 

formation, elongation of bud morphology, and delay of mitotic spindle formation. Cells in 

the Net1 deletion background escaped from nocodazle arrest and prematurely exited from 

mitosis. These phenotypes are similar to those phenotypes caused by overexpression of 

Cdc14, although Net1 deletion is not lethal but overexpression of Cdc14 is. These results 

suggest that Net1 is a negative regulator of Cdc14 activity in vivo (Visintin, et al., 1999). 

This idea was tested by overexpression of Net1, which is lethal and leads to cellular arrest 

at telophase with high Clb2 and low Sic1 levels, similar to the phenotype with Cdc14 

deleted. Furthermore, deletion of Net1 rescues the temperature-sensitive lethality of tem1-
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1, cdc15-2, and dbf2-2. This implies that promoting the dissociation of Cdc14 from Net1 is 

likely to be a key for mitotic exit pathway.  

Cdc14 is initially released from the nucleolus in early anaphase when Net1 is 

phosphorylated by FEAR network. However, the FEAR network cannot maintain the 

release state of Cdc14 because Cdc14 moves back to nucleolus when the MEN is defective. 

The way to regulate the release of Cdc14 and sustain the cytoplasmic Cdc14 in the late 

anaphase is not clear.  

Recently, a mechanism for sustaining cytoplasmic Cdc14 was discovered. Dbf2-

Mob1 inhibits the function of the nuclear localization signal (NLS) of Cdc14 through 

phosphorylation. This leads to the blocking of the reuptake of the cytoplasmic Cdc14 back 

to the nucleus. When the Dbf2-Mob1 phosphorylation sites in the NLS are mutated 

(Cdc14-PS1,2 A), cells cannot sustain the cytoplamic release of Cdc14 in the late anaphase 

(Mohl et al., 2009). This mechanism explains why Cdc14 is phosphorylated, and it 

identifies which kinase is in charge of Cdc14 phosphorylation at the end of mitosis. 

However, it is still unclear what  phosphorylates Net1 and how Net1 phosphorylation 

maintains the release of Cdc14 from nucleolus at the end of mitosis. In our previous 

chapters, we demonstrated that Dbf2-Mob1 is the kinase that regulates the mitotic exit and 

we proved that Dbf2-Mob1 is responsible for Net1 phoshorylation in vitro and in vivo by 

genetic interaction assays. It would be interesting to test whether this process is the answer 

for late anaphase Cdc14 release.  

 

Methods 
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Growth assay  

This method is described in the Chap III. 

 

Cell growth and synchronization procedure 

Cells were grown overnight in YP-2% Dextrose and diluted into 0.25 O.D.600 YP-

2% Dextrose. Diluted cells were grown at permissive temperature for about 1 doubling 

cycle then synchronized in G1 phase with alpha-factor added at 10 ug/ml for BAR1 Cells 

and 0.3 ug/ml for bar1∆ cells for at least 2.5 hours at 30 °C. The arrested condition was 

judged when greater than 90% of cells displayed the elongated “shmoo” phenotype under 

microscope. For cells that were going to test the phenotype under restrictive temperature, 

cells were moved to 38 °C for another 2 hours added with 0.2 ug/ml of alpha factor after 

the initial 2 hours treatment with alpha factor. Cells were released from alpha factor arrest 

condition by filtered through a 0.2 µm filter jar by washed and resuspend with 50 ml of YP-

2% dextrose twice, then resuspended in pre-warmed YP-2% dextrose. “Time 0” was 

collected before the release procedure. A 0.2 ug/ ml of alpha factor was added into cultures 

at either 90 minutes or 75 minutes after the first alpha factor release for cultures at the 

permissive or restrictive temperature, respectively. For western blot boiling extract 

experiment, 8 O.D.600 unit of cells was collected at each time point as indicated. For 

Fluorescence Activated cell sorting experiment, 1 O.D.600 unit of cells was collected at each 

time point. 

  

Immunofluorescent staining 
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The growth and synchronize condition was performed as previously described in 

method for FACS. 1 O.D.600 units of cells was collected at indicated time points. Cells are 

fixed with formaldehyde (HCHO) at a final concentration of 4% for 15 minutes at the 

original growth condition with constant shaking. Cells were collected by centrifugation and 

wash with 500 µl of Wash Buffer (1% β-mercaptoethanol in 1x PBS). After the wash, cells 

were digested with 100 µl of lyticase solution to make spheroblast at 30°C. Cells condition 

were checked under microscope before proceed further staining. Spheroplastes were diluted 

with 10X volume PBS and spot 30 µl of cell suspension to polyethyleneimine (Sigma P-

3143) coated slides and leave in a moisture chamber for 30 min at RT. Slides were then 

washed with 1xPBS and fixed with MeOH and Acetone. After fixation, slides were washed 

with 0.1% Triton X-100 and blocked with blocking buffer [2% BSA, 0.1% Tween20 in 

DPBS] and labeled with primary antibodies. Goat polyclonal anti-Cdc14 antibody was used 

to detect cellular localization of Cdc14. Mouse anti-Nop1 monoclonal antibody and rat 

anti-tubulin monoclonal antibody YOL1/34 were used to detect nucleolus and cell cycle 

stages, correspondingly. Secondary antibodies conjugated with Alexa fluor® 488, Alexa 

fluor® 633, and Alexa fluor® 546 were used to detect Cdc14, Nop1, and Tubulin, 

respectively. Images of cells were taken on a Zeiss LSM510 META inverted confocal 

microscope with 2-photon laser. Cell images were processed using ImageJ software. 

Tubulin, Nop1 and DAPI are presented in green, red, and blue, respectively. Spindle length 

measurements were also performed using ImageJ software. More than 100 cells are 

counted for Cdc14 localization profile. 
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Immunoprecipitation and Dbf2-Mob1 release/ kinase assay 

100 O.D.600 units of a log phase cell culture were harvested to prepare extracts for 

immunoprecipitation. Cells were washed once with 2 ml of ice-cold 1x PBS plus 5 mM 

NEM and frozen in liquid N2. Cell pellets were resuspended in 600 µl of lysis buffer [25 

mM HEPES/KOH (pH7.5), 300 mM NaCl, 2 mM DTT, 0.5% Triton X-100, 1 mM EDTA, 

2 mM EGTA, freshly add 1x Protease Inhibitor Cocktail (Roche), 5 mM NEM, and 1 mM 

AEBSF] and supplemented with 400 µl volume of acidwashed glass beads (500 µm). 

Samples were lysed using Bio 101 multi-beads vortexer at setting 6.5 (speed) and 60 sec 

(time) for three times with 3 minutes on ice in between. Lysates was collected and 

transfered to another eppendorf tube. The glass beads was washed once with 600 µl of lysis 

buffer without sodium chloride and Triton X-100 and combined with previous lysates into 

the same tube. Combined lysates were then centrifuged for 5 minutes at top speed and the 

supernatant was collected. At the same time, wash acid-washed anti-Flag M2 affinity gel 

with wash buffer [25 mM HEPES/KOH (pH7.5), 150 mM NaCl, 2 mM DTT, 0.25% Triton 

X-100, 1 mM EDTA, 2 mM EGTA, freshly add 1x Protease Inhibitor Cocktail (Roche), 5 

mM NEM, and 1 mM AEBSF] for three times before mixed with cell extracts. Clarified 

extract was incubated with 250 µl of 50% slurry of equilibrated affinity gel on rotator for 

1.5 hours at 4 °C. Affinity gel were collected and washed five times with wash buffer and 

divided to 25 µl beads for each reaction. When affinity gel was incubated with cell lysates, 

we started to assemble the preactivated Dbf2-Mob1 in vitro. We incubate purified Dbf2-

Mob1 with purified Cdc15 in Cdc15 kinase buffer [50 mM Hepes-KOH, pH 7.5, 5 mM 

MgCl2, 2.5 mM MnCl2, 5 mM beta-glycerophosphate, 1 mM DTT, and 20 µM ATP] for 20 
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minutes at room temperature. Then, mixed with equal total volume of Dbf2 Kinase buffer 

[50 mM Tris, pH 7.4, 60 mM potassium acetate, 10 mM magnesium chloride, 1mM DTT, 

and 10 µM ATP]. We used 0 µg, 0.025 µg, 0.05 µg, 0.1 µg, and 0.2 µg of preactivated 

Dbf2-Mob1 to treat affinity gel with NET1/Cdc14 complex on it in total 30 µl volume for 

each reaction. After 30 minutes incubation on rotator, we add 70 µl of HEBD buffer [20 

mM HEPES (pH 7.2), 150 mM NaCl + 2 mM EDTA + 0.1 mg/ml BSA + 1 mM DTT] and 

spin the affinity gel down to collect the supernatant. We washed affinity gel with another 

100 µl of HEBD and spin down to collect supernatant. Proteins in the combined 

supernatant was precipitated with 15% TCA on ice for 30 min and pellets was collected by 

spin down at top speed for 10 minutes at 4 °C. Pellets was washed twice with ice-cold 

acetone and resuspend with 40 µl of 1X SDS buffer. This is the sample we called “Sup”. 

The affinity beads was mixed with 50 µl of 1X SDS buffer and labeled with “Beads”. 

Samples were boiled for 5 minutes on dry base and fractionated on a 10% SDS-PAGE gel 

followed by transfer to a nitrocellulose membrane in wet chamber for 2 hours. Western blot 

analysis was performed with the primary antibodies at the indicated dilutions: polyclonal 

anti-Cdc14 (Santa cruz sc-12044, 1:500), monoclonal anti-Flag (Sigma F1804, 1:1000).  

 

Results  

The temperature-sensitive phenotype of net1-PS13M cells was rescued by 

CDC14P116L 

Given that (i) Dbf2 function is required for release of Cdc14 from the nucleolus in 

anaphase, which in turn is required for exit from mitosis, (ii) Dbf2–Mob1 directly 
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phosphorylates Net1, and (iii) a mutant of Net1 lacking Dbf2 phosphorylation sites was 

defective in exit from mitosis, an attractive hypothesis that emerges is that phosphorylation 

of Net1 by Dbf2–Mob1 promotes release of Cdc14. We therefore sought to determine 

whether the Net1 phophosite mutant has an altered ability to sequester Cdc14 in the 

nucleolus.  

To address this hypothesis, we first looked for genetic interaction between net1-

PS13M and CDC14TAB6 . The dominant TAB6 allele produces a Cdc14 protein with a 

Pro116 Leu116 point mutation the reduces the binding affinity for Net1 (Shou et al., 1999). 

Because of this, CDC14TAB6 serves as a dominant bypass suppressor of the late anaphase 

arrest caused by inactivation of the MEN. If net1-PS13M fails to exit mitosis efficiently 

due to a defect in releasing Cdc14, we predicted that it too would be suppressed by 

CDC14TAB6. 

To perform genetic interaction assays, we spotted five-fold serial dilutions of single 

and double mutant cells on on YP-2% dextrose, and grew for 2-3 days under different 

temperatures. We found that at the permissive temperature, all the cells grew normally. At 

the restrictive temperature, the net1-PS13M cells exhibited poor growth whereas the net1-

PS13M CDC14TAB6 double mutant cells grew far better (Figure III-4a). The double mutants 

essentially grew as well as the CDC14TAB6 cells.  Thus, CDC14TAB6 potently suppressed the 

growth defect of net1-PS13M.  

 

Defective Cdc14 release in the net1 phosphosite mutant cells 

To further test our hypothesis that phosphorylation of Net1 by Dbf2–Mob1 
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mediates release of Cdc14 from the nucleolus, we performed immunofluorescence assays. 

We arrested WT and net1-PS13M cells at G1 stage with alpha-factor and collected time 

points after removing alpha-factor. Cells were fixed with formaldehyde and then 

permeabilized on pre-coated microscope slides with methanol/ acetone. The cellular 

localization of Cdc14 was detected by staining with polyclonal anti-Cdc14. Cell cycle 

stages were evaluated by tubulin staining and the nucleolar location was shown by Nop1 

staining.  

The length of the microtubule spindle is indicative of different cell cycle stages 

(Winey et al., 2001; Yeh et al., 1995). Tubulin forms a spindle, which then elongates to 

direct the segregation of chromosomal DNA. In budding yeast, the length of metaphase 

spindles is 1.5-2 µm. The metaphase spindles elongate during anaphase and reach a length 

of 10 µm during telophase. Ten to twelve micron spindles are observed at the terminal 

arrest of MEN mutants. 

In WT cells, Cdc14 was sequestered in the nucleolus in the G1 and S phases up 

through metaphase of mitosis (0-2 µm), and released from the nucleolus in cells with 

spindles ranging from 4-10 µm in length. This indicates that Cdc14 was released from the 

nucleolus in early anaphase and remained in the released state throughout anaphase and 

telophase. On the other hand, Cdc14 in net1-PS13M cells had a different releasing pattern. 

Cdc14 was released from nucleolus to nucleus with spindles 2-4 µm in length in a small 

percentage of the cells, but it was sequestered back to nucleolus with mitotic spindles 6-10 

µm in length with focal staining of Cdc14. This indicated that Cdc14 is partially released in 

early anaphase but cannot sustain the release stage throughout anaphase and telophase 

(Figure. IV-2a).  
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We quantified the localization of Cdc14 in about 100 cells in each spindle length 

category. We found that when spindle length is 2-6 µm there is partial released Cdc14 in 

net1-PS13M cells and in wild-type cells.  However, the percentage of cells with spindles 6-

8 µm in length and Cdc14 confined to the nucleolus was greatly increased in the net1-

PS13M strain compared to wild type. This was further exacerbated in cells with 8-10 µm 

spindles (Figure. IV-2b). These data are consistent with the hypothesis that phosphorylation 

of Net1 by Dbf2–Mob1 triggers the release of Cdc14 from the nucleolus during late 

anaphase. 

 

Phosphorylation of Net1 by Dbf2-Mob1 regulated the release of Cdc14       

Our previous data suggested that mitotic exit is regulated through phosphorylation 

of Net1 by Dbf2-Mob1. The immunofluorescence experiments further proved that this 

phosphorylation reaction is involved in the regulation of Cdc14 release from the nucleolus 

in late anaphase. Therefore we sought to test whether the phosphorylation of Net1 by Dbf2-

Mob1 can directly facilitate the dissociation of Cdc14 from the immunoprecipitated RENT 

complex.  

To address this question, we performed a release assay, in which Net1-3xFlag and 

the associated RENT subunits were immunopurified from extracts of wild-type or net1 

phosphosite mutant cells by capturing Net1-3xFlag on anti-Flag M2 affinity beads. Then, 

we treated these beads with Dbf2-Mob1 plus ATP. If phosphorylation of Net1 by Dbf2-

Mob1 can loosen the binding between Net1 and Cdc14, Cdc14 should be released from the 

beads into the supernatant. With wild type RENT complex, Cdc14 began to appear in the 
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supernatant when the immobilized complex was treated with 0.025 ug of Dbf2-Mob1 and 

the amount of released Cdc14 increased progressively as more kinase was added. On the 

other hand, Dbf2–Mob1 was unable to induce release of Cdc14 from net1-PS11M, even 

when 0.2 ug of Dbf2-Mob1 was used (Figure. IV-3). Taken together, these data suggest 

that Dbf2-Mob1 kinase is sufficient to release Cdc14 from wild type Net1, but not from the 

Net1 phosphosite mutant.  

     Temperature-sensitive MEN mutants are unable to grow at 37°C, and MEN gene 

knockouts are inviable at normal growth temperatures (e.g. 25°C or 30°C). If 

phosphorylation of Net1 by Dbf2–Mob1 is the principal means by which the MEN induces 

exit from mitosis, we would expect that a phosphosite mutant of Net1 would be inviable at 

all growth temperatures. However, net1-PS13M grows normally at 30°C. This suggested 

that there must be at least one other target for Dbf2–Mob1 that accounts for the essential 

nature of this protein kinase. One candidate for a ‘second’ target is Cdc14 itself. In prior 

work, this lab showed that Dbf2–Mob1 phosphorylates Cdc14 adjacent to a nuclear 

localization sequence (NLS) in the C-terminal region, and this inactivates the function of 

the NLS. By this mechanism, Dbf2–Mob1 promotes the redistribution of Cdc14 from the 

nucleoplasm to the cytoplasm during late anaphase. We speculated that the MEN thereby 

triggers exit from mitosis by a two-stage mechanism. Dbf2–Mob1 first phosphorylates 

Net1 to induce release of Cdc14 from the nucleolus to the nucleoplasm. Normally, this 

Cdc14 could enter the cytoplasm but it immediately returns to the nucleus due to the action 

of the C-terminal NLS.  However, upon phosphorylation of Cdc14 by Dbf2–Mob1, the C-

terminal NLS is inactivated, allowing Cdc14 to accumulate in the cytoplasm where it can 

dephosphorylate and activate its targets such as Cdh1. If this idea is correct and Dbf2–
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Mob1 has two substrates that account for its essential nature, mutation of the 

phosphorylation sites in both Net1 and Cdc14 would be expected to result in synthetic 

lethality. To test this possibility, we constructed a mutant that combined net1-PS13M and 

cdc14-PS1,2A (the latter mutant is lacking the phosphorylation sites adjacent to the NLS). 

Double mutant spores readily germinated upon dissection of tetrads, indicating that the 

double mutant is not inviable. This was further substantiated by spotting five-fold dilutions 

of single and double mutants cells on YPD and incubating the plates at 30°C and 38°C 

(Fig. IV-3).  

 

Discussion 

In order to exit from mitosis, it is necessary to phosphorylate both Cdc14 and Net1 

(Vinsitin et al., 2003). The mechanism responsible for Cdc14 phosphorylation in late 

mitosis has been illustrated (Mohl et al., 2009). However, it is unclear how Net1 is 

phosphorylated at the end of mitosis. In this work, we showed that Dbf2-Mob1 is 

responsible for phosphorylation of Net1 in late mitosis. This is also the key to promote late 

anaphase Cdc14 release, leading to mitotic exit. Besides regulating mitotic exit, this 

mechanism may also be involved in promoting cytokinetic exit. Net1 phosphosite mutant 

strains show chain-like budding morphology, when cells were grown at both cold and 

restrictive temperatures (Figure III-2a). This morphology indicates that cells suffer from 

defects in premature of mitotic exit before closing of the bud neck, and thus cells continue 

the next round of budding cycle. The chain-like morphology has been reported in tem1-1, 

cdc15-2, dbf2-2, and cdc14-1 cells (Grandin et al., 1998; Jimenez et al., 1998; Jimenez et 
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al., 2005). We also found a small portion of cells containing higher amount of chromosome 

DNA (4N) with FACS technology (data not shown).  

One possible reason of why phosphosite mutant cells showed morphology of 

mitotic exit defect and growth defect is that it failed to release Cdc14. We test this idea 

with genetic interaction assays using a Cdc14 mutant (cdc14P116L), which has a lower 

binding affinity to Net1. The net1-PS13M cdc14P116L double mutant cells rescued the 

temperature sensitive phenotype of net1-PS13M cells alone, which indicated that net1-

PS13M might have defects in Cdc14 release. On the other hand, double mutation of net1-

PS13M and cdc14-PS (1,2A) cells cannot rescue the temperature sensitive phenotype of 

net1-PS13M cells. However, unlike the cdc15-2, net1-13M double mutant, net1-PS13M, 

Cdc14-PS (1,2A) double mutant showed similar growth defect as shown in net1-PS13M 

cells alone. This indicated that the defect caused by net1-PS13M is down stream of the 

cdc14-PS (1,2A). It is also possible that there is another target of Db2-Mob1 that must be 

mutated in order to cause lethality phenotype.  

In our previous data, cells with phosphosite-mutated net1 grew normally, similar to 

that of WT cells at permissive temperatures. Surprisingly, we found focal localization of 

Cdc14 in the mutant cells in our immunostaining assay. Similar observations have been 

reported. Shou et al. showed that Cdc14 localized in nucleolus in cdc5 mutant cells but the 

cells showed no obvious growth defects (Shou et al., 2002). Since Cdc5 is responsible for 

activating the MEN, the reason why cells show focal Cdc14 in the cdc5 mutated cells may 

be due to the failure of Dbf2-Mob1 kinase activation. It is possible that there is still some 

baseline release of Cdc14 that escaped our detection by our indirect immunostaining 

method, and thus this baseline release is sufficient for cell to exit from mitosis under 
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permissive temperatures. It is also possible that there is another minor pathway to support 

the basal growth even when majority of Cdc14 is sequestered. 

We found the focal nucleolus localization of Cdc14 in the cells with Dbf2-Mob1 

phosphosite mutated Net1. We further tested the ability of release Cdc14 from the RENT 

complex by adding activated Dbf2-Mob1 to the immunoprecipitated RENT complex on the 

beads. Significantly, we found that about an eight-fold difference in the ability to release 

Cdc14 between WT and mutant Net1. This result is positively related to the data from the 

in vitro kinase reaction where the phosphorylation level of the phosphosite mutant Net1s 

are about 80% lower than that of WT. Taken together, it strengthened our hypothesis that 

Dbf2-Mob1 is in charge of Net1 phosphorylation and promoting the release of Cdc14.     
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Figure legends 

Figure IV-1. net1 phosphosite mutant displayed genetic interactions with 

cdc14 mutants  

(a) cdc14P116L mutant rescued temperature-sensitive growth of cells with net1-

PS13M. 0.3 O.D.600 unit of cells of NET1-WT, cdc14P116L, net1-PS13M, and cdc14P116L 

net1-PS13M double mutation background were diluted with five-fold serial dilution and 

plotted on YP-2% dextrose from left to right. Plates were incubated at the indicated 

temperature for 2-3 days before the picture was taken.  

(b) Double mutation of net1-PS13M and cdc14 (PS1,2A) cells showed temperature 

sensitive phenotype as net-PS13M cells alone. 0.3 O.D.600 unit of cells of NET1-WT, cdc14 

(PS1,2A), net1-PS13M, and double mutation of cdc14 (PS1,2A) net1-PS13M background 

were diluted with five-fold serial dilution and plotted on YP-2% dextrose plates as 

described for panel (a). 

 

Figure IV-2. Dbf2-Mob1 phosphorylation site mutant cells were defective 

in releasing Cdc14 in late anaphase  

Wild-type (WT) and phosphosite mutated (PS13M) net1 cells were harvest at 

stationary growth and immuntained as described in the method section. 

(a) net1-PS13M cells shows nucleolus localization phenotype of Cdc14. Strain 

types were labeled at the right side of each panel. Images were grouped by the spindle 

lengths as indicated at the left side. Cells were collected and fixed with 4-5% of 
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formaldehyde and fixed on the slides with Methanol/ Acetone after lysozyme treatment. 

The cellular localization of Cdc14, Tubulin, and Nop1 were monitored by staining with 

polyclonal anti-Cdc14, monoclonal anti-Tubulin, and monoclonal anti-Nop1 and shown 

with green, red, and blue color, respectively.  

(b) Quantification of the immunostaining results in each spindle length group. We 

divided spindle length into 0-2, 2-4, 4-6, 6-8, and 8-10 µm group as labeled at the bottom. “ 

No release ” means the Cdc14 signal is completely overlap with the Nop1 signal. “Partial 

release” means the Cdc14 signal is overlap but also out side of the Nop1 signal. “Full 

release” means the Cdc14 signal decorate the whole cell and not specifically localized with 

the Nop1 signal. Data is collected from about 100 cells in each spindle length category. 

 

Figure IV-3. Dbf2-Mob1 phosphorylation site mutant cells were defective 

in releasing Cdc14 in in vitro. 

WT, net1-PS11M, and net1-PS13M cells were collected at their stationary growth. 

Net1 in both strains are tagged with 3xFlag tag so that we can capture the Net1/ Cdc14 

complex by anti-Flag beads. Immunoprecipitated protein extracts were incubated with 

various amount of purified and pre-activated Dbf2-Mob1 as indicated on the top. Strain 

type is labeled at the left side. Proteins collected from the supernatant were labeled as 

“Sup”, while proteins extracted from the beads by boiling were labeled as “Beads”. 

Extracts from either Sup or Beads were analyzed on the 10% SDS-PAGE and blot for 

monoclonal anti-Flag for Net1 and polyclonal anti-Cdc14 as indicated at the right side. The 

rough quantification data comparing the amount of Cdc14 released at the highest Dbf2-
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Mob1 used was marked at the bottom of each panel.    
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Figure IV-1. net1 phosphosite mutant displayed genetic interactions with 

cdc14 mutants 

(a) 

 

 

(b) 
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Figure IV-2. Dbf2-Mob1 phosphorylation site mutant cells were defective 

in releasing Cdc14 in late anaphase  

(a) 
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 107 

Figure IV-3. Dbf2-Mob1 phosphorylation site mutant cells were defective 

in releasing Cdc14 in in vitro. 
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Future Directions 
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Summary 

In this thesis, we showed that Dbf2-Mob1 phosphorylates Net1 in the in vitro 

assay, and we found the effective phosphorylation sites in Net1. We also showed that 

phosphosite mutant cells exhibited defects in mitotic exit by growth assays, morphology 

assays, Fluorescence-activated cell sorting (FACS), and western blots. The phoshosite 

mutant cells also exhibited defects in Cdc14 release in genetic assays, immunofluorescent 

assays, and the bead releasing assays. We conclude that Dbf2-Mob1 is the key kinase 

phosphorylating Net1 and promoting Cdc14 release in the late anaphase.  

 

Future questions 

The mechanism we proposed may be applied to other unsolved mechanisms.  

(1) Exit from cytokinesis. In the morphology assay, a small portion of the cells 

show undivided, chain-like multibudded shape with DNA distributed into each bud. This is 

the signature of cells that go on to the second round of the mitosis but exhibit defects in 

completing cell division process. This morphology has been reported in all the MEN 

component mutant cells and the cdc14-1 cells.  However, the detailed mechanism is still 

unclear.  It would be interesting to test whether Net1 phosphorylation is also the key 

mechanism for cytokinesis. 

(2) Regulation of meiosis. It has been reported that Cdc14 cellular localization is 

tightly regulated in meiosis and that cdc14 mutant cells (cdc14-1) exhibit dyads 

morphology and uneven distribution of the DNA into each spore (Marston et al., 2003). In 

addition, the MEN component, Cdc15, plays an important role in spore formation (Pablo-
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Hernando et al., 2007; Diamond et al., 2009). Therefore we sought out to test whether 

Dbf2-Mob1 regulates meiosis through regulating Cdc14 release by phosphorylating Net1.  

In our preliminary work, we test the sporulation rate and the morphology of the 

spores in the WT, PS10M, and PS13M cells in w303 background. We found that the WT 

cells started to sporulate within 24 hours, while more than 95% of the PS10M and PS13M 

cells were still unsporulated. Less than 50% of the cells in PS10M and PS13M were 

sporulated in day 4 (Figure V-1). In addition, we found that the phosphosite mutant cells 

exhibit abnormal spore morphology and uneven DNA distribution (Figure V-2a-b). 

Furthermore, we found that cdc14P116L rescued both the abnormal morphology and the 

sporulation rate in 10M and 13M cells (Figure V-3). However, Cdc14P116L WT double 

mutants show defects in meiosis. Taken together, we propose that Dbf2-Mob1 could 

regulate meiosis through the control of  Cdc14 cellular localization by phosphorylation of 

Net1. 
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Figure Legends 

Figure V-1. Phosphosite mutant cells exhibited defects in sporulation  

net1 phosphosite mutants showed delayed in sporulation. Net1-WT, PS10M, and PS13M 

cells grew on YP-2% dextrose plates at 25 °C for 24 hours and transferred into sporulation 

media. Cells were formaldehyde fixed and stained with DAPI to indicate DNA localization. 

DAPI staining is presented in bright white dot. The days in the sporulation media is labeled 

at the left side of the images. Cell type is marked on the top of each image. 

 

Figure V-2. Phosphosite mutant cells exhibited abnormal spore 

morphology  

(a) The sporulation morphology and nucleus distribution in WT cells. Net1-WT cells grew 

on YP-2% dextrose plates at 25 °C for 24 hours and transferred into sporulation media. 

Cells were formaldehyde fixed and stained with DAPI to indicate DNA localization. DIC 

represents the light field imaging.  

(b) Phosphosite mutant cells exhibited abnormal spore morphology and uneven distribution 

of the nucleus. net1-PS10M cells grew on YP-2% dextrose plates at 25 °C for 24 hours and 
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transferred into sporulation media. Cells were formaldehyde fixed and stained with DAPI 

to indicate DNA localization. DIC represents the light field imaging.  

Figure V-3. Cdc14P116L rescued the sporulation defects in net1 phosphosite 

mutant cells  

Diploid cells with either NET1 WT/ net1∆ or net1-PS mutant/ net1∆ were combined with 

Cdc14 WT/ Cdc14P116L. Cells grew on YP-2% dextrose plates at 25 °C for 24 hours and 

transferred into sporulation media. Cells were formaldehyde fixed and stained with DAPI 

to indicate DNA localization. DAPI staining is presented in bright white dot. The days in 

the sporulation media is labeled at the left side of the images. Cell type is marked on the 

top of each image.
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Figure V-1. Phosphosite mutant cells exhibits defects in sporulation 
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Figure V-2. Phosphosite mutant cells exhibited abnormal spore 

morphology 

(a) WT cells 

 

(b) net1-PS10M cells 
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Figure V-3. Cdc14P116L rescued the sporulation defects in phosphosite 

mutant cells 

 

 

 

 

 

 

 

 

 


