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ABSTRACT 
 

Proteins are involved in myriad processes in all organisms.  They provide 

structural support in the membrane and scaffolding of each cell; they aid in the 

transmission of biochemical signals within and between cells; and they play central roles 

in combating various disease states.  The development of techniques enabling selective 

and site-specific functionalization of proteins is an active area of investigation, as such 

modifications are critical to many studies and uses of proteins.  For instance, with the 

addition of a unique reactive handle, a protein may be conjugated to a polymer for the 

production of protein-based therapeutics exhibiting improved bioavailability. 

Alternatively, proteins may be attached to slides to prepare diagnostic microarrays, 

reacted with hydrogels to create functional biomaterials, or decorated with fluorophores 

for in vivo imaging.  Site-specific protein tagging techniques have already contributed 

greatly to biomedical research and will continue to advance the state of the field. 

The focus of my thesis research has been the development of a novel site-specific 

protein labeling method centered on the eukaryotic enzyme N-myristoyl transferase 

(NMT).  In a process called myristoylation, NMT appends a fatty acid to the N-terminus 

of numerous substrate proteins.  Previous work demonstrated that NMT tolerates a wide 

range of chemically functionalized analogs of its natural fatty acid substrate.  Here, we 

describe efforts that exploit various features of NMT: its ability to bind and utilize 

reactive fatty acid analogs, its exquisite selectivity toward its protein substrates, and its 

orthogonality toward those proteins naturally present in bacteria. 
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First, in Chapter II, we discuss the development of a model system for NMT-

mediated protein labeling in the bacterium Escherichia coli.  We synthesized an azide 

fatty acid analog that can participate in bioorthogonal chemistries, and we prepared two 

GFP-based substrate proteins, each displaying a recognition sequence derived from a 

known substrate of NMT.  Our experiments indicate that labeling by NMT is site-

specific, quantitative, and highly selective for each engineered substrate within the 

bacterial milieu. 

As summarized in Chapter III, the model system was extended to the N-terminal 

labeling of two neuronal proteins, calcineurin (CaN) and calmodulin (CaM).  While CaN 

is naturally myristoylated, CaM was engineered to achieve labeling by NMT.  

Experiments with CaN and CaM confirmed that our NMT-based system is quantitative 

and selective in its labeling of both natural and engineered substrate proteins.  Extensive 

characterization of each protein allowed us to identify constructs that retain wild-type 

levels of activity even after labeling with the azide fatty acid. 

Three of the protein constructs reported in Chapters II and III were utilized for 

microarray studies, as described in Chapter IV.  We achieved rapid surface 

immobilization of each azide-labeled protein directly from lysate, a significant advantage 

when considering the time and resources normally required to purify proteins for 

downstream applications.  The experiments and methods summarized in this chapter will 

be adapted for high-throughput biochemical research with protein microarrays. 

Finally, the orthogonality of NMT toward bacterial systems was probed further 

for the purpose of selective labeling of individual bacterial proteins for live-cell imaging.  

In addition to identifying an azide fatty acid suitable for such studies, we also selected 
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two bacterial proteins that exhibit interesting functions and localization patterns, and we 

developed corresponding protein constructs for NMT-mediated labeling.  Progress 

toward the use of NMT for in vivo imaging applications in bacteria is described in 

Chapter V. 

Ultimately, our objective throughout the design and execution of these projects 

was to create and validate a new technique to achieve site-specific protein labeling.  The 

particular advantages of NMT include its tolerance of reactive fatty acid analogs and 

engineered substrate proteins, and its lack of interaction with proteins present in the 

widely used E. coli expression host.  We believe that the ideas and results presented in 

this thesis establish NMT-mediated protein labeling as a valuable tool for addition to the 

existing set of site-specific protein labeling methods.  Development of such methods 

represents an important and exciting area within the field of modern chemical biology. 
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CHAPTER I 
 

Protein Engineering: 

Techniques and Applications 
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ABSTRACT 

Proteins are an important class of cellular biomolecules, playing diverse roles in 

the structure, motility, communication, defense, division, and destruction of cells.  They 

are found in every cell of every organism, from bacteria to humans.  The incredible range 

of protein structures and functions is all the more remarkable considering that all proteins 

are built from the same simple canon of twenty amino acids.  To study proteins, both in 

their natural cellular context as well as within in vitro systems, scientists have long taken 

advantage of the limited chemical functionalities present in amino acid side chains to 

covalently attach proteins to other molecules.  Furthermore, protein engineering 

techniques have expanded the range of chemical moieties that may be incorporated into 

proteins.  Such techniques enable the differentiation of one subset of proteins from a 

larger population, and they allow for the selective conjugation of individual proteins to 

reactive partners ranging from polymers to fluorophores to microarray chips.  Given the 

central role played by proteins in so many cellular processes, advances in protein 

engineering have important implications for biomedical research and human health. 

This introductory chapter highlights some examples of protein engineering 

methods developed to date—specifically, the incorporation of non-canonical amino acids 

into proteins—as well as their applications.  Because the focus of this thesis is the 

development and use of a chemoenzymatic approach to N-terminal protein labeling, other 

strategies enabling functionalization of the N-terminus are also discussed.  Finally, we 

present an overview of the chapters comprising this thesis and summarize contributions 

to individual projects.    
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PROTEIN ENGINEERING 

Incorporation of Non-Canonical Amino Acids into Proteins 

Perhaps the most direct strategy for introducing non-natural functionalities into 

proteins is the incorporation of amino acid building blocks displaying such groups.  

Natural amino acids may be replaced by non-canonical analogs in a residue-specific or a 

site-specific manner.  Hundreds of non-canonical amino acids (ncAAs) have now been 

utilized for protein engineering; a selection of these is displayed in Figure I-1.1 

 

Figure I-1.  Numerous non-canonical surrogates for the amino acids 

methionine (Met), phenylalanine (Phe), and leucine (Leu) have been 

developed.  They may be bound by endogenous tRNA synthetases 

(those colored blue or green), or they may require the use of mutant 

tRNA synthetases (those colored red).  Adapted from Reference 1. 

 

Global replacement of an amino acid by a non-natural counterpart is useful for 

proteomics investigations or in other contexts requiring a snapshot in time of the entire 

protein population.  In contrast, single-site incorporation of an artificial amino acid is 
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valuable for detailed structural studies of a particular protein or controlled conjugation of 

a protein to a reactive partner.  Both methods are described here. 

Residue-specific incorporation of ncAAs generally requires no manipulation of 

the genetic material (DNA or mRNA) corresponding to the proteins that are to be 

synthesized.  Instead, as the ribosomal complex translates an mRNA strand into a protein, 

the tRNAs corresponding to a given codon deliver a pre-determined ncAA in place of the 

natural amino acid encoded by that codon.  The aminoacylation of tRNAs with ncAAs 

may be accomplished by endogenous tRNA synthetases or may require the use of 

engineered tRNA synthetases, as noted in Figure I-1.  Experimental parameters may be 

modulated to tune the timing and extent of ncAA incorporation into proteins.1–3 

The Tirrell Lab, the Schuman Lab, and others have contributed greatly to the 

development and application of global amino acid replacement methods, particularly with 

the establishment of the BONCAT (bio-orthogonal non-canonical amino acid tagging) 

technique in 2006.4  BONCAT has since been utilized for numerous proteomics studies, 

including examination of mixed-cell populations and zebrafish larvae, to name a few.5–7  

Imaging studies have also been described, wherein ncAAs were utilized in conjunction 

with reactive dyes to visualize proteins in bacteria and mammalian cells.8,9  The reagents, 

methods, and outcomes associated with residue-specific incorporation of ncAAs have 

proven to be of great use and interest to both biologists and chemists.10–12 

As a complementary technique to residue-specific ncAA incorporation, site-

specific incorporation of a ncAA may be desirable when a single protein is under 

investigation.  The ability to change one amino acid systematically has been integral to 

some structural studies, such as the Dougherty Lab’s research on ion channels.13  Adding 
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a single reactive ncAA to a protein has also allowed for controlled protein-polymer 

conjugation,14 an important step in the preparation of some protein therapeutics.15  

Largely developed by the Schultz Lab, methods for site-specific incorporation of ncAAs 

generally require that the gene encoding the protein of interest be modified to display a 

Stop codon at the desired site for ncAA incorporation.  In conjunction, suitable tRNAs 

that display the anticodon for the Stop codon must be chemically or enzymatically 

amino-acylated with a ncAA.  When the ribosomal complex encounters the Stop codon 

during translation, the ncAA is incorporated at the corresponding site into the protein 

product.16–18  Single-site replacement methods have been central to a number of 

biological studies during the past few decades,19 with their use recently extended to live 

fruit flies.20  However, these methods also have some limitations: in particular, they are 

not effective for replacement of the N-terminal residue, a transformation that has been 

achieved with the use of complementary approaches. 

 

Modification of the Protein N-Terminus 

The protein N- and C-termini are attractive targets for the conjugation of proteins 

to other substrates, including polymers, beads, slides, and fluorophores, because even in 

the folded state, the termini of many proteins are surface-accessible.21  Early attempts at 

selective modification of the N-terminus took advantage of the slight difference in pKa 

between the N-terminal amine and lysine amines, though success was generally limited to 

cases in which few lysine side chains presented competition.22  More recently, the Francis 

Group has reported their use of chemical approaches to achieve transformation of the 

protein N-terminus.23  They utilized their strategy to label antibodies, which retained their 
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ability to bind targets even after labeling.24  In contrast, the Tirrell Group described a 

biological approach to N-terminal labeling: the L,F-transferase enzyme was employed in 

vitro and in E. coli to add analogs of Leu, Phe, and Met to the N-terminus of peptides and 

proteins.25  Other site-specific chemoenzymatic labeling techniques have been developed; 

these methods and others are evaluated in a recent review, which also details the 

suitability of different approaches for N-terminal protein modification.26–30  For our work, 

we focused on the enzyme N-myristoyl transferase to achieve N-terminal protein 

functionalization. 

 

 

N-MYRISTOYL TRANSFERASE 

Structure and Function of N-Myristoyl Transferase 

The eukaryotic enzyme N-myristoyl transferase (NMT) catalyzes the transfer of 

myristic acid, a 14-carbon unbranched saturated fatty acid, to the N-terminus of various 

substrate proteins.  Members of many classes of proteins undergo this co-translational 

and irreversible transformation, which is called myristoylation (Figure I-2).  Substrates 

include protein kinases A and G, subunits of heterotrimeric G proteins, multiple tyrosine 

kinases, phosphatases, and even viral capsid proteins.31 
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Figure I-2.  Schematic overview of the process of myristoylation.  

NMT is colored blue, the fatty acid is colored red, and the substrate 

protein is colored yellow.  NMT first binds myristoyl-CoA and only 

then binds a substrate protein.  An amide linkage forms between the 

protein N-terminus and the fatty acid, the labeled protein is expelled, 

and NMT begins a new enzymatic cycle. 

 

 The hydrocarbon tail of myristic acid is thought to aid in the localization of some 

substrates to lipid membranes, underscoring the importance of myristoylation to the 

proper functioning of proteins that are involved in signal transduction and viral 

infectivity.32  Endogenous expression of NMT has been confirmed in 15 different 

eukaryotic species, ranging from yeast to humans, and dozens of substrate proteins have 

been identified.33,34  Notably, native expression of NMT has not been observed in 

Escherichia coli.35 

NMT substrate proteins share certain features within their N-terminal sequence 

domain; these characteristics play an important role in proper recognition by NMT.  The 

only absolute and universal constraint is that all NMT substrates must display a glycine 

(Gly, G) residue at the N-terminus; the initiating Met residue normally found in proteins 

must be removed by a separate enzyme, methionine amino-peptidase (Met-AP), prior to 
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myristoylation.36  Previous research using site-directed mutagenesis demonstrated that the 

amino acids at positions 3, 6, and 7 in the substrate protein (where position 1 is the initial 

Met) play a particularly important role in NMT binding.  More specifically, charged 

residues, aromatic residues, and proline are not permitted at position 3; serine or 

threonine is usually found at position 6; and positively charged residues are preferred at 

position 7.33,37  The combination of amino acids at positions 3, 6, and 7 may influence 

species-specific recognition of substrate proteins by NMT.37  The crystal structure of 

NMT, with both of its binding pockets highlighted, is depicted in Figure I-3. 

 

Figure I-3.  Crystal structure of NMT, with the binding pocket for 

myristic acid colored red and the binding pocket for the substrate 

protein colored yellow.  PDB ID: 1IID. 

 

Substitution of Fatty Acid Analogs for Myristic Acid 

At the outset of this work, two aspects of NMT were especially pertinent in 

drawing our attention to its possible use in a novel protein labeling method: its absence 
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from bacteria, and its tolerance toward reactive variants of myristic acid.  The ability of 

NMT to transfer functionalized fatty acid analogs was tested extensively by the Gordon 

Lab using octapeptide substrates with Saccharomyces cerevisiae NMT in an in vitro 

system.38–40  Of particular interest, analogs with useful chemical moieties, such as those 

seen in the ncAAs shown in Figure I-1, e.g., azide, alkyne, and ketone groups, were 

bound and transferred by NMT.  These functional groups can participate in powerful 

bioorthogonal reactions that allow for selective attachment of proteins bearing these 

groups to appropriately derivatized partners.41 

Building on the Gordon Lab’s in vitro work completed 15 years prior, the Ploegh 

Lab in 2007 employed azide-functionalized fatty acids for selective labeling and 

detection of myristoylated proteins in a cancer cell line.42  Azido and alkynyl fatty acids 

were also utilized in the past five years for N-terminal labeling by NMT in bacteria.43,44   

To the best of our knowledge, all NMT-based protein labeling studies completed to date 

with reactive analogs of myristic acid in cells have involved natural substrate proteins 

only, either for proteomic profiling projects or proof-of-principle purposes.  The primary 

goal of the work described in this thesis is to expand the scope of NMT-mediated 

labeling to simultaneously utilize non-natural variants of both the fatty acid and protein 

substrates.  We envisioned a system in which any protein of interest, engineered to 

display a short recognition sequence, could be co-expressed with NMT in the presence of 

a reactive fatty acid to achieve selective and site-specific functionalization. 
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THESIS ORGANIZATION 

Overview of Thesis Chapters 

The first task that we set out to accomplish was the development of a robust 

bacterial co-expression system to serve as a foundation for subsequent projects.  Initial 

work was attempted with natural NMT substrates, but we quickly progressed to the use of 

engineered non-natural substrates.  Chapter II details the development and evaluation of 

two GFP-based substrate proteins that were selectively and quantitatively labeled by 

NMT with an azido fatty acid.  This is the first example of the use of a non-natural 

substrate protein and a fatty acid analog together for NMT-mediated protein labeling. 

Chapter III describes an application of the system established in Chapter II.  

Building on our work with GFP, a common model protein, we undertook the task of 

labeling two proteins implicated in learning and memory: calcineurin (CaN) and 

calmodulin (CaM).  Both proteins are under investigation by neuroscientists for their 

important roles in the brain.  CaN is a natural substrate of NMT, but CaM is not.  We 

engineered CaM to display different NMT recognition sequences and demonstrated 

selective and quantitative N-terminal labeling of both CaN and CaM-based substrates 

with an azido fatty acid.  We also investigated the activity of the labeled proteins.  CaN 

was shown to be equally active whether it was labeled with the azido fatty acid or with 

myristic acid.  In addition, a CaM construct was identified that retained wild-type 

activity, even with the addition of an NMT recognition sequence and labeling with the 

azido fatty acid. 
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Chapter IV summarizes our work to date in immobilizing N-terminally 

functionalized proteins on surfaces, with the ultimate goal of studying protein activity in 

a high-throughput format.  Preliminary experiments were completed with agarose beads, 

though for the majority of our work in this area, we utilized protein microarrays.  Surface 

capture of N-terminally labeled GFP, CaN, and CaM-based constructs was achieved.  

Furthermore, the orthogonality of NMT in bacteria enabled selective coupling of these 

proteins directly out of lysate, with no prior purification. 

Finally, Chapter V describes our progress toward the use of NMT-mediated 

protein labeling to study the localization patterns of individual proteins in bacteria.  

Recent work has demonstrated that bacterial cells exhibit far more control over the 

spatiotemporal organization of their proteins than was previously thought.  Again, the 

absence of any natural NMT substrates from prokaryotes makes NMT a perfect candidate 

for the selective functionalization and visualization of appropriately engineered bacterial 

proteins of interest. 

A schematic overview summarizes the projects described in Chapters II, III, IV, 

and V of this thesis (Figure I-4). 
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Figure I-4.  Overview of thesis projects.  NMT-mediated labeling of 

both natural and engineered substrate proteins, as well as various 

applications of N-terminal protein labeling, are described herein.  

Transformation of E. coli cells with the appropriate plasmids enables 

co-expression of NMT and a substrate protein.  NMT appends certain 

fatty acid analogs to the N-terminus of substrate proteins.  Cells may be 

lysed or harvested intact for in vivo imaging experiments.  Mass 

spectrometry and therapeutic applications require purification of the 

substrate protein from lysate, while surface capture of the substrate 

protein may be performed from lysate due to the orthogonality of NMT 

in bacterial systems. 
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Thesis Contributions 

For Chapter II, I conceived the design of the model system and completed all 

cloning, expression, purification, mass spectrometry, and fluorescence gel experiments.  I 

also synthesized and characterized the azide fatty acid used in this chapter as well as in 

Chapters III and IV.  I analyzed all data. 

For Chapter III, I designed the CaM constructs and completed all cloning, 

expression, mass spectrometry, and fluorescence gel experiments; I analyzed the resultant 

data.  My collaborator, Dr. Tamara Kinzer-Ursem, contributed intellectually throughout 

this project and experimentally to the purification of the CaN and CaM constructs.  We 

conducted the activity assays and analyzed the results together.  Megan Lo, an 

undergraduate student, also aided in the completion of experiments with CaN and CaM. 

For Chapter IV, I completed preliminary experiments with agarose beads and the 

accompanying data analysis, while Dr. Kinzer-Ursem led our efforts in microarray 

preparation as well as protein microarray experiments and data analysis. 

For Chapter V, I conceived the project design and completed all cloning and 

protein expression experiments.  Professor Zemer Gitai of Princeton University provided 

input regarding which proteins to study.  The library of azide fatty acids and the 

cyclooctyne-coumarin dye were prepared by a former post-doctoral researcher, Dr. Janek 

Szychowski.  I completed all lysate and live-cell dye-labeling experiments with the azide 

fatty acids, and I analyzed all associated data.   
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ABSTRACT 

This chapter describes the design, development, and evaluation of a model system 

for NMT-mediated protein labeling.  First, we assembled the necessary components; their 

selection and design are described in the Introduction.  Green fluorescent protein (GFP) 

was chosen to be the test protein, owing to its widespread use and its facile detection by 

fluorescence measurements as well as conventional protein characterization methods. 

We prepared two different engineered GFP substrates, each displaying a different 

NMT recognition sequence, and achieved selective modification of each protein 

via co-expression with NMT in the presence of an azido fatty acid.  The labeled GFP 

substrates were purified, digested with a protease, and analyzed by mass spectrometry; 

identification of the N-terminal peptide fragment confirmed that site-specific labeling had 

occurred.  Whole-protein mass spectrometry was also performed to determine the extent 

of modification.  Finally, lysate samples containing a labeled GFP substrate were treated 

with a reactive dye and examined by SDS-PAGE.  Fluorescence detection indicated that 

NMT labeled only the engineered GFP substrate in vivo.  Together, these results 

demonstrate that our NMT-mediated protein labeling system is site-specific, quantitative, 

and highly selective.  These results also constitute the first example of NMT-mediated 

labeling of a non-natural substrate protein with a functionalized, non-natural fatty acid, 

paving the way for future projects with other proteins of interest and other fatty acids 

analogs. 
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INTRODUCTION 

The three components comprising our NMT-mediated protein labeling model 

system are a reactive fatty acid, NMT, and a substrate protein.  The design and 

development of each component are described below. 

 

Selection of 12-Azidododecanoic Acid  (12-ADA) 

The natural fatty acid substrate of NMT, myristic acid (Chart II-1), is chemically 

inert.  Fortunately, as described in Chapter I, dozens of reactive fatty acid analogs have 

been shown to be well-tolerated by NMT in an in vitro system.1–3  Ideally, the analog 

employed in our protein labeling system would be readily synthesized and purified, 

permeable to the bacterial cell wall and membrane, bound and transferred by NMT in 

high yields, and able to participate in bioorthogonal chemistries.  The compound 12-

azidododecanoic acid (abbreviated 12-ADA henceforth; Chart II-1) was investigated with 

these criteria in mind. 

Previous work indicated that 12-ADA was transferred to octapeptide substrates of 

NMT in higher yields than 9-, 11-, or 13-carbon analogs.2  More recent work in 

mammalian cells yielded similar results, with 12-ADA resulting in more robust protein 

labeling than closely related azido fatty acids.4  As described below, we synthesized and 

purified 12-ADA in high yields from adapted literature protocols.  We also attempted the 

synthesis of an alkynyl compound, 13-tetradecynoic acid, but the reaction yields were 

low and the product was difficult to purify.  Thus, for further work, we focused on the use 

of 12-ADA. 
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Chart II-1.  Structures of myristic acid, the natural fatty acid substrate 

of NMT, and 12-azidodecanoic acid (12-ADA), the fatty acid analog 

prepared for and utilized in our studies. 

 

The azide group can participate in three different bioorthogonal reactions: the 

Staudinger ligation, the copper-catalyzed azide-alkyne cycloaddition (CuAAC), and the 

strain-promoted azide-alkyne cycloaddition (SPAAC).5–10  All three of these reactions 

may be performed in the challenging environment of cell lysate with exquisite selectivity.  

The Staudinger ligation and SPAAC can also be conducted in live cells and organisms.  

By selecting 12-ADA for our protein labeling system, we were well-positioned to explore 

these chemistries with N-terminally functionalized proteins. 

 

Two-Plasmid Bacterial Co-expression System 

Co-expression of NMT and a substrate protein, whether natural or engineered, 

requires the presence of plasmid(s) harboring genes that encode each one.  In order to 

make our system modular, we decided to utilize two separate plasmids—one encoding 

NMT and the other encoding a substrate protein—rather than one plasmid encoding both.  

Changes to the various features of each plasmid (i.e., antibiotic resistance, origin of 

replication, promoter regions) could be readily made, if desired, to independently control 

the expression of NMT and the substrate protein.  Moreover, we postulated that 
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replacement of our test protein, GFP, with other substrate proteins for future studies 

would be more straightforward if NMT were encoded on a separate plasmid.  

Two GFP-based substrates, yARF-GFP and Fyn-GFP, were prepared, each 

displaying an NMT recognition sequence derived from a known substrate protein.  The 

yARF (yeast ADP-ribosylation factor) protein is a GTP-binding protein that helps to 

control trafficking within the cell.11  We engineered yARF-GFP to carry the first seven 

residues of yARF: MGLFASK.12  The Fyn protein is a member of the Src kinase 

family,13 and its first nine residues, MGCVQCKTK, are displayed by Fyn-GFP.  A 

C-terminal 6xHis tag was also added to each protein to aid in affinity purification and 

detection procedures.  The cloning scheme developed to construct the substrate plasmids 

is described in the Experimental Section of this chapter.  The NMT plasmids employed in 

our system encode human NMT1 or NMT2, as well as methionine aminopeptidase (Met-

AP).  The genes encoding NMT as well as both substrate proteins were placed under the 

control of IPTG (isopropyl β-D-1-thiogalactopyranoside)-inducible promoters. 

The co-expression protocol that we developed is shown schematically in Figure 

II-1.  Cells were transformed with the NMT and substrate plasmids, and overnight 

cultures were inoculated from the resultant cell stocks.  Expression cultures were then 

grown until cells reached an appropriate cell density, at which point 12-ADA was added 

and protein expression was induced.  After 3-4 hours of protein expression, cells were 

harvested.  As described in Chapter I, various applications could then be explored, 

utilizing intact cells, clarified lysates, or purified protein. 



II-6 
 

 

Figure II-1.  Experimental overview of our bacterial co-expression 

system for N-terminal protein labeling with NMT. 

 

 

RESULTS AND DISCUSSION 

Synthesis and Characterization of 12-ADA 

The compound 12-ADA was synthesized and purified as shown in Scheme II-1.  

The protocol we developed was adapted from literature precedent,2 and the product 

identity was confirmed by comparison with published IR, 1H NMR, 13C NMR, and ESI-

MS data.2,4  After optimizing the reaction, work-up, and purification steps, near-

quantitative yields of 12-ADA were routinely obtained.  Though literature protocols 

described a flash chromatography step for purification, we observed no difference in 

purity after a work-up only. 
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Scheme II-1.  The azide fatty acid utilized in our studies, 

12-azidododecanoic acid (12-ADA), was prepared from simple 

precursors. 

 

 

Expression and Purification of GFP-Based Substrate Proteins 

The plasmids pQE80_yARF-GFP and pQE80_Fyn-GFP were constructed using 

standard cloning procedures, as described in the Experimental Section of this chapter.  

The final plasmids were transformed into E. coli BL21(DE3) competent cells that had 

already been transformed with plasmids encoding human NMT1 or human NMT2, 

yielding four cell strains: BL21(DE3)/yARF-GFP/hNMT1, BL21(DE3)/yARF-

GFP/hNMT2, BL21(DE3)/Fyn-GFP/hNMT1, and BL21(DE3)/Fyn-GFP/hNMT2.  We 

moved forward with two of these cell strains: BL21(DE3)/yARF-GFP/hNMT1 and 

BL21(DE3)/Fyn-GFP/hNMT2.  These two strains were selected due to literature reports 

regarding the substrate selectivity of each human NMT isoform: yARF has been shown 

to be myristoylated to a greater extent by hNMT1 than hNMT2,12 while in vitro studies 
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demonstrated the preference of hNMT2 for a Src peptide substrate.14  As noted earlier, 

Fyn is a member of the Src kinase family. 

Co-expression of yARF-GFP or Fyn-GFP with NMT was completed as depicted 

in the schematic overview above (Figure II-1).  Briefly, overnight cultures were diluted 

1:50 into expression cultures containing the appropriate antibiotics to ensure retention of 

both plasmids.  Protein expression was induced at a cell density of OD600 ≈ 0.8 with the 

addition of IPTG, and at the same time, 12-ADA was added.  After 4 hours of expression 

at 37°C, cells were harvested from each culture and lysed.  Each protein, yARF-GFP or 

Fyn-GFP, was purified from lysate via denaturing or native Nickel-NTA 

chromatography.  Expression and purification protocols are presented in more detail in 

the Experimental Section at the end of this chapter.  Purification fractions were analyzed 

by SDS-PAGE, which confirmed the presence of each protein at the expected molecular 

weight of 32 kDa (Figure II-2). 
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Figure II-2.  SDS-PAGE analysis of native Ni-NTA purification 

fractions.  Red arrows indicate the presence of pure yARF-GFP (A) and 

Fyn-GFP (B) isolated from co-expression cultures grown in the 

presence of 12-ADA.  CL = Clarified Lysate; FT = Flow Through; W = 

Wash;  E = Elution; * = MW marker. 

 

MALDI-MS Analysis of Trypsinized Protein Samples 

After expressing and purifying yARF-GFP and Fyn-GFP, we verified that both 

proteins had been labeled with 12-ADA and determined the extent of their modification.  

First, to confirm that labeling had occurred only at the protein N-terminus, we employed 

matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). 

Purified samples of yARF-GFP and Fyn-GFP were digested with the trypsin 

protease, which cleaves peptides after arginine (Arg, R) and lysine (Lys, K) residues, 
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yielding a predictable set of fragments.  We were particularly interested in detecting the 

N-terminal fragment of each protein.  The expected masses for the N-terminal peptide of 

each protein—unlabeled, myristoylated, or labeled with 12-ADA—are presented in 

Table II-1. 

 

Table II-1.  Expected masses of the unlabeled (Mass 1), myristoylated 

(Mass 2), and 12-ADA-labeled (Mass 3) N-terminal peptide fragments 

of yARF-GFP and Fyn-GFP.  Masses account for removal of the initial 

Met residue, trypsin digestion, reduction, and alkylation.  Formation of 

a covalent bond between Gly and myristic acid or 12-ADA results in 

the loss of one water molecule.  All values are in Daltons (Da). 

 

 

After trypsinization, the resultant peptide fragments for each protein sample were 

prepared for MALDI-MS analysis using standard clean-up columns and matrix reagents.  

The MALDI mass spectrum for each protein is shown in Figure II-3. 
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Figure II-3.  MALDI mass spectra for yARF-GFP (A) and Fyn-GFP 

(B) indicate successful N-terminal labeling with 12-ADA.  Samples 

were co-expressed with NMT in the presence of 12-ADA, purified, and 

trypsinized.  The Fyn-GFP sample was also subjected to reduction and 

alkylation prior to trypsin digestion.  No unlabeled or myristoylated 

N-terminal peptide fragments were observed (see Table II-1). 

 

In analyzing each spectrum, we first looked for peaks corresponding to various 

expected fragments to ensure that the digestion was effective.  We also searched for each 

N-terminal peptide.  As shown in Figure II-3A, the 12-ADA-labeled N-terminal fragment 

for yARF-GFP was readily identified.  For Fyn-GFP, initially, we found that the 
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12-ADA-labeled N-terminal fragment was consistently 2 Da lower than expected (data 

not shown), perhaps due to disulfide bonding of the two cysteine residues found in that 

fragment.  Thus, we also examined Fyn-GFP samples that were reduced and alkylated 

following trypsinization.  After such treatment, the 2 Da discrepancy was no longer 

observed (Figure II-3B).  Notably, the myristoylated N-terminal fragment was not 

detected for either protein, indicating that competition between myristic acid and 

12-ADA is not a problem in our system.  In addition, negative control samples that were 

not exposed to 12-ADA during expression yielded spectra that lacked the peaks outlined 

in red in Figure II-3 (the “Mass 3” values in Table II-1), further confirming that those 

peaks correspond to the 12-ADA-labeled N-terminal fragments. 

 

Intact LC-MS Analysis of Protein Samples 

While MALDI-MS analysis of trypsinized yARF-GFP and Fyn-GFP samples 

showed that both proteins had been labeled with 12-ADA, they did not indicate what 

percent of the protein pool was tagged.  For both proteins, we were unable to detect the 

unlabeled N-terminal peptide fragment (Table II-1, “Mass 1”), even for negative control 

samples that were not exposed to 12-ADA, likely due to the fragments’ polarity, charge, 

and small size.  The inability to detect these fragments by MALDI-MS complicated 

efforts to measure the extent of 12-ADA labeling of yARF-GFP and Fyn-GFP.  

Fortunately, intact LC-MS of purified samples proved to be a more effective approach.  

The expected masses of the relevant protein species, as well as those actually observed in 

whole-protein mass spectra of yARF-GFP and Fyn-GFP, are presented in Table II-2. 
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Table II-2.  Expected masses of yARF-GFP and Fyn-GFP (unlabeled, 

myristoylated, or labeled with 12-ADA), and masses observed by intact 

LC-MS.  Expected mass values account for removal of initial Met and 

loss of 20 Da upon formation of GFP chromophore.  Analysis revealed 

quantitative labeling of both proteins with 12-ADA by NMT.  All mass 

values are in Da.  N/D = Not Detected. 

 

 

For both proteins, we routinely observed a large peak corresponding to the 

12-ADA labeled species, very little evidence of unlabeled protein (<5%), and no 

evidence of myristoylated protein.  Taken together, the two sets of MS data demonstrate 

that yARF-GFP and Fyn-GFP are both labeled solely and quantitatively at the N-terminus 

with 12-ADA by NMT, with no competition presented by myristic acid. 

As a step toward optimizing our co-expression system, we investigated the use of 

both minimal medium and rich media for our expression cultures.  Certain protocols 

developed in the Tirrell Lab for residue-specific incorporation of ncAAs recommend the 

use of minimal medium in order to boost ncAA incorporation, while avoiding the use of 

rich media that contain a given natural amino acid.  We hypothesized that myristic acid 

might similarly be present in rich media, which could negatively impact the extent of 

protein labeling with 12-ADA.  Thus, we originally used M9 minimal medium for protein 

expression, but later tested the use of rich media (LB and 2xYT).  Identical LC-MS 
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results were obtained for Fyn-GFP regardless of the expression medium, with no 

myristoylated protein species observed in any of the samples (Figure II-4). 

 

Figure II-4.  Intact LC-MS data for Fyn-GFP samples purified from 

expression cultures grown in M9 (A), LB (B), or 2xYT (C) medium.  

The compound 12-ADA was added to all three cultures.  No 

myristoylated Fyn-GFP was observed in any sample (see Table II-2). 
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These results are notable because the use of rich media for protein expression instead of a 

minimal medium often results in higher protein yields.  Moreover, as with the data 

presented in Table II-2, very little unlabeled protein was detected. 

 

Fluorescence Gel Analysis of Lysate Samples 

As mentioned at the beginning of this chapter, one notable feature of NMT is its 

absence from prokaryotic systems.  We were intrigued by the possibility of developing a 

chemoenzymatic labeling system that is not only site-specific and high-yielding, but also 

orthogonal to the widely used E. coli bacterial expression system.  To investigate whether 

or not the yARF-GFP/hNMT1 and Fyn-GFP/hNMT2 co-expression systems fulfill this 

additional criterion, we took advantage of existing bioorthogonal chemistries and 

reagents to detect the presence of 12-ADA-labeled proteins. 

For these experiments, lysates were utilized to effectively measure NMT’s 

selectivity toward our engineered substrate proteins.  Lysate samples were treated with an 

alkyne-TAMRA probe in a CuAAC reaction, which is known to conjugate azides and 

alkynes even in complex biological settings.15,16  Proteins were subsequently precipitated 

out of the reaction mixture and analyzed via SDS-PAGE (Figure II-5).  For each protein, 

the same gel was imaged for TAMRA fluorescence, then stained with Coomassie 

colloidal blue and imaged again.  As the gel images indicate, NMT transferred 12-ADA 

only to yARF-GFP and Fyn-GFP and did not label natural bacterial proteins.  These data 

demonstrated the activity and selectivity of our NMT-mediated protein labeling system, 

even when using a non-natural fatty acid substrate in conjunction with non-natural 

substrate proteins. 
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Figure II-5.  SDS-PAGE analysis of lysate samples containing yARF-

GFP (A, B) or Fyn-GFP (C, D) co-expressed with NMT in the presence 

of no fatty acid, myristic acid (“Myr”), or 12-ADA.  Lysate samples 

were treated with alkyne-TAMRA for detection of azide-labeled 

protein (A, C).  The same gels were stained with Coomassie colloidal 

blue (B, D).  Comparison of each pair of gel images indicates selective 

12-ADA labeling of yARF-GFP and Fyn-GFP. 
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CONCLUSION 

In summary, we designed, constructed, and evaluated a site-specific protein 

labeling system centered on the eukaryotic enzyme N-myristoyl transferase (NMT).  We 

developed two plasmids encoding GFP-based, non-natural substrates of NMT: yARF-

GFP and Fyn-GFP.  Both proteins display a recognition sequence derived from a known 

NMT substrate.  We co-expressed each protein with an isoform of human NMT in the 

presence of the azido fatty acid, 12-ADA, which was readily synthesized.  Purified 

protein samples were subjected to MALDI-MS analysis after trypsinization and were 

studied via intact LC-MS as well.  The MS data sets showed that labeling by NMT was 

specific for the N-terminus, as expected, and essentially quantitative.  Examination of 

lysate samples treated with an azide-reactive dye confirmed that NMT labels each 

engineered GFP substrate, but is inactive toward natural bacterial proteins.  The site-

specific, quantitative, and selective protein labeling system established here is the basis of 

the further research described in Chapters III, IV, and V. 

 

 

EXPERIMENTAL SECTION 

Materials 

Synthesis of 12-ADA.  12-bromododecanoic acid and sodium iodide were 

purchased from Aldrich.  Silica gel 60 was purchased from EMD Chemicals.  Sodium 

azide and all solvents were purchased from VWR. 

 

Cloning.  All oligonucleotide primers were ordered from Operon.  Polymerase 

chain reaction (PCR) experiments were carried out in a BioRad DNA Engine Peltier 
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Thermal Cycler using PfuTurbo DNA Polymerase (Stratagene/Agilent).  All restriction 

enzymes, restriction enzyme buffers, and bovine serum albumin (BSA) were purchased 

from New England BioLabs (NEB).  The pQE60 and pQE80 vectors from Qiagen were 

used for cloning.  NEB DNA Ladders (100 bp and 1 kbp “Quick-Load”) were used as 

markers for all DNA agarose gels, which were visualized with the addition of Plus One 

ethidium bromide solution from Amersham Biosciences on a UVP UV Transilluminator.  

Zymo Agarose-Dissolving Buffer (ADB) and Zymo Spin II columns, with their 

associated buffers, were used to purify DNA out of agarose gels.  T4 DNA Ligase from 

NEB or Roche was used for ligations with equivalent results.  All DNA acquisition from 

cells was completed using the Qiagen Spin Miniprep Kit and columns.  All sequencing 

requests were fulfilled by Laragen. 

 

Protein expression.  Plasmids encoding hNMT1 or hNMT2 and methionine-

aminopeptidase (Met-AP) were a gift from the laboratory of Professor Richard Kahn at 

Emory University (Atlanta, GA).12  E. coli BL21(DE3) cells were made chemically 

competent using the standard Zymo method (Stratagene) and were transformed with 

either the hNMT1 plasmid or hNMT2 plasmid.  M9 minimal medium was composed of 

M9 salts plus 0.4% dextrose, 100 μM CaCl2, 35 μg/mL thiamine, 1 mM MgSO4, and 4% 

20 amino-acid solution (1 g/L each).  LB medium was composed of 10 g tryptone (casein 

hydrolysate), 5 g yeast extract, and 10 g NaCl per liter.  2xYT medium was composed of 

16 g tryptone (casein hydrolysate), 10 g yeast extract, and 5 g NaCl per liter.  All media 

were autoclaved before use.  Kanamycin (Kan) was used at a working concentration of 

35 μg/mL, and ampicillin (Amp) was used at a working concentration of 200 μg/mL.  

Myristic acid was purchased from Fluka.  All optical density (OD) values were measured 

at 600 nm on a Cary UV-Vis spectrophotometer.  All SDS-PAGE gels described in this 

chapter were 12% acrylamide, Tris-Tricine gels cast in-house or NuPAGE Novex 4-12% 

Bis-Tris pre-cast gels (Invitrogen).  SeeBlue Plus2 Pre-Stained Protein Marker from 

Invitrogen served as the molecular weight ladder.  Gels were stained with Coomassie 

colloidal blue from Invitrogen.   
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Protein purification.  Nickel-NTA resin manufactured by Qiagen was used for 

purification of 6xHis-tagged yARF-GFP and Fyn-GFP from lysate.  For denaturing 

Ni-NTA purification, Buffers B, C, D, and E consisted of 8 M urea, 100 mM NaH2PO4, 

and 10 mM Tris-Cl with pH = 8.0, 6.3, 5.9, or 4.5, respectively.  For native Ni-NTA 

purification, buffers contained 50 mM NaH2PO4, 300 mM NaCl, and varying 

concentrations of imidazole (25–500 mM).  B-PER lysis buffer from Pierce was usually 

used for native Ni-NTA purification.  Lysozyme was purchased from Aldrich. 

 

Mass spectrometry.  The Pierce BCA Assay Kit was used to measure protein 

concentration in pure protein fractions prior to MS analysis.  Promega porcine trypsin 

was used in digests.  Microcon Centrifugal Devices were used to concentrate and buffer-

exchange whole-protein samples for intact LC-MS, while Microcon Centrifugal Devices 

and C18 Zip-Tips were both employed to concentrate and de-salt peptide samples for 

MALDI-MS (both from Millipore).  MALDI-MS data were collected on an Applied 

Biosystems Voyager DE-PRO MALDI TOF-MS.  Intact LC-MS data were collected on 

an Agilent 1100 MSD quadrupole ESI-MS.   

 

Fluorescence detection.  Lysate samples were treated with the reagents and 

according to the protocols of the Click-IT Tetramethylrhodamine (TAMRA) Protein 

Analysis Detection Kit from Invitrogen.  After reaction and precipitation, protein samples 

were run on Invitrogen NuPAGE Novex 4%–12% Bis-Tris pre-cast gels and imaged on a 

GE Typhoon laser scanner.  Gels were stained with Coomassie colloidal blue from 

Invitrogen. 

 

Methods 

Synthesis of 12-ADA.  12-Azidododecanoic acid (12-ADA) was synthesized 

according to literature precedent2 with minor modifications; in particular, the flash 

chromatography step was found to be unnecessary to obtain pure product.  Standard 

characterization techniques (ESI-MS, 1H NMR, 13C NMR) yielded data that matched 

published results.2,4 
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Cloning.  The pQE80 plasmid possesses an ampicillin resistance gene and a Col 

E1 Origin of Replication.  The GFP gene was PCR-amplified from the vector 

pQE9_GFP6_lacI_yPheRS_T415G, which was prepared by a former member of the 

Tirrell Lab, Inchan Kwon.  Two rounds of PCR with novel primers yielded a fragment 

including the GFP gene carrying an EcoRI restriction enzyme site, a ribosome-binding 

site appropriate for pQE vectors, and base pairs encoding the yeast ARF recognition 

sequence (MGLFASK, from ATG GGT CTG TTC GCG TCT AAA) or the Fyn 

recognition sequence (MGCVQCKTK, from ATG GGT TGC GTG CAA TGC AAA 

ACC AAA) at the 5′ end, and a BglII site at the 3′ end.  The PCR product and pQE60 

were digested with EcoRI and BglII, and the GFP insert was ligated into pQE60 to allow 

for the addition of a C-terminal 6xHis tag; each GFP construct was also placed under the 

control of a T5 promoter, which is inducible by isopropyl β-D-1-thiogalactopyranoside 

(IPTG).  The presence of the insert in the pQE60 construct was confirmed via test digests 

and sequencing.  Then, the entire cassette was digested out of pQE60 using AatII and 

NheI and ligated into pQE80, which had been digested with the same two enzymes.  The 

final pQE80 plasmids were used for protein expression because pQE80 carries the lacIq 

repressor necessary for cis regulation of the T5 promoter.  Each final construct, 

pQE80_yARF-GFP or pQE80_Fyn-GFP, was sequenced and transformed into competent 

cells already harboring an NMT plasmid for co-expression experiments. 

 

Protein expression.  Overnight cultures were inoculated in LB supplemented 

with Kan and Amp and grown in an incubator-shaker (37°C, 250 rpm).  The following 

day, overnight cultures were diluted 1:50 into fresh M9, LB, or 2xYT supplemented with 

Kan and Amp for expression cultures, which ranged in volume from 5 mL to 250 mL.  

Cultures were grown in an incubator-shaker (37°C, 250 rpm), and protein expression was 

induced with IPTG (1 mM, from 1 M stock in water) when the OD600 value was between 

0.8 and 1.1.  Pre-induction samples (1 mL) were collected as needed.  The azide fatty 

acid 12-ADA (500 µM, from 500 mM stock in DMSO) was also added at the time of 

induction.  After 3–4 hr of protein expression, cells were harvested via centrifugation 

(10 min x 10,000 g) and the final OD600 value measured.  Cell pellets were lysed 

according to the following formula, regardless of which lysis buffer was used: 50 µL 
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lysis buffer per mL culture per OD600 unit.  Crude lysates were centrifuged once more, 

and the supernatant (clarified lysate, i.e., cytosolic fraction) was saved for further 

experiments. 

 

Protein purification.  Protocols were followed largely as described in The 

QIAExpressionist handbook from Qiagen.  For denaturing Ni-NTA purification, cells 

were lysed in Buffer B.  The clarified lysate was incubated with Ni-NTA agarose for 1–2 

hr at 4°C with agitation and loaded on an empty column to collect fractions.  The protein-

agarose mixture was washed with Buffers B, C, and D, and the protein eluted with Buffer 

E (pH 4.5).  Purification fractions were analyzed by SDS-PAGE. 

For native Ni-NTA purification, cells were lysed in B-PER buffer or in the 

standard native Ni-NTA buffer (see “Materials”) with 10 mM imidazole.  Furthermore, 

for native Ni-NTA purification, lysozyme was added to the lysis buffer at 1 mg/mL, and 

the resuspended cell pellet was sonicated to aid in lysis.  The clarified lysate was 

incubated with Ni-NTA agarose for 1–2 hr at 4°C with agitation and loaded on an empty 

column to collect fractions.  The protein-agarose mixture was washed with buffer 

containing imidazole (25–100 mM) and the protein eluted at 150-200 mM imidazole.  

Purification fractions were analyzed by SDS-PAGE. 

 

Mass spectrometry.  For MALDI-MS experiments, solutions of pure protein 

were concentrated using Microcon columns (MWCO = 30 kDa).  Fyn-GFP samples were 

reduced and alkylated according to a standard published protocol.17  Protein samples 

were digested as follows: 90 μL of 75 mM NH4CO3 buffer and 1 μL porcine trypsin were 

added to 10 μL of a concentrated protein solution, and the mixtures were incubated at 

37°C for 2–8 hr, after which they were quenched with 10 μL 10% TFA.  C18 ZipTips 

were used to concentrate and de-salt the trypsin digest mixtures in preparation for 

MALDI-MS (α-cyanohydroxycinnamic acid matrix). 

For intact LC-MS experiments, solutions of pure protein were concentrated using 

Microcon columns (MWCO = 30 kDa) and buffer-exchanged into a 0.1% TFA 

(trifluoroacetic acid) solution.  A final solution of 100 pmol protein in 100 µL was run on 

the MSD instrument. 
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Fluorescence detection.  Cells were lysed with the buffer recommended in the 

instructions for the Invitrogen Click-iT kit (1% SDS, 50 mM Tris-HCl, pH 8.0) according 

to the formula mentioned earlier (50 µL lysis buffer per mL culture per OD600 unit).  

Clarified lysate samples were treated with alkyne-TAMRA and other kit reagents 

according to the protocols supplied by Invitrogen; the only modification was the use of 

15 µL of alkyne-TAMRA dye solution rather than 100 µL.  At the conclusion of the 25-

min reaction time, samples were precipitated following the methanol-chloroform 

precipitation protocol described in the same kit instructions; the only modification was 

the completion of one additional methanol wash of the protein pellet.  For SDS-PAGE 

analysis, protein pellets were resuspended in a denaturing buffer (8 M urea, 100 mM 

NaH2PO4, and 10 mM Tris-Cl) and loaded on NuPAGE Novex 4-12% Bis-Tris pre-cast 

gels.  To detect TAMRA signal on the Typhoon, the 532 nm laser served as the excitation 

source (filter set: 580 BP 30).  Gels were stained with Coomassie colloidal blue, then 

imaged again, with the 633 nm laser now serving as the excitation source (no filter). 
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ABSTRACT 

The NMT-mediated protein labeling system described in Chapter II serves as the 

foundation of the work described in this chapter.  We applied the principles and 

techniques developed for our GFP-based model system to achieve selective N-terminal 

labeling of two neuronal proteins, calcineurin (CaN) and calmodulin (CaM).  Both 

proteins are implicated in the complex pathways governing learning and memory, and 

both have been studied by neuroscience researchers for decades.  In the projects 

described herein, our objective was to utilize NMT and 12-ADA to site-specifically 

functionalize CaN and CaM for subsequent surface immobilization.  (Note that surface 

immobilization experiments are described in Chapter IV.)  We also aimed to create 

protein constructs that retained wild-type levels of activity even after undergoing 

engineering and labeling. 

Because CaN is a natural substrate of NMT, we proceeded directly to expression 

and labeling experiments.  However, CaM is not naturally myristoylated.  Thus, we 

prepared a family of engineered CaM constructs, each displaying an NMT recognition 

sequence.  CaN and the CaM constructs were co-expressed with NMT in the presence of 

12-ADA for N-terminal labeling and purified for intact LC-MS analysis and activity 

assays.  We were pleased to find that CaN and one of the engineered CaM constructs did 

retain wild-type activity, even after labeling with 12-ADA.  We also confirmed, via 

treatment of lysate samples with an azide-reactive dye, that NMT is selective toward CaN 

and the engineered CaM constructs in bacteria.  In summary, we extended our NMT-

based protein labeling system from a model protein, GFP, to proteins that perform 

important functions in complex organisms.  
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INTRODUCTION 

Calcineurin and Calmodulin 

Calcineurin (CaN) is a 79-kDa heterodimeric serine/threonine phosphatase that is 

enriched in the brain.1  The 60-kDa A subunit of CaN contains the catalytic domain of the 

enzyme as well as four other domains: a regulatory domain, an autoinhibitory domain, 

and domains for binding the CaN B subunit and calmodulin (CaM).  Of interest for our 

work, the 19-kDa B subunit is naturally myristoylated.2  It is apparent from the crystal 

structure of CaN (Figure III-1A) that the N-terminus of the CaN B subunit is accessible, a 

common feature of NMT substrate proteins. 

CaN performs important functions in different systems of the body.  It is involved 

in the signal transduction pathways of numerous cell types, including lymphocytes and 

kidney cells.3  In the brain, CaN plays a role in synaptic plasticity; CaN knock-out mice 

experience memory deficits and exhibit characteristics related to schizophrenia, such as 

impaired social interaction and disrupted nesting behaviors.4  Because CaN is highly 

conserved among eukaryotes and is involved in a variety of cellular processes, it has been 

studied extensively by neuroscientists and behavioral scientists as well as immunologists.  

Notably, CaN becomes active only upon binding of its A subunit by CaM. 

In contrast with CaN, CaM is a small, 16-kDa, monomeric protein.5  But, like 

CaN, CaM undergoes conformational changes upon binding Ca2+ ions.  In fact, CaM is 

generally inactive toward the more than 100 proteins it regulates until it binds four Ca2+ 

ions (Figure III-1B), at which point it is able to activate other proteins and enzymes, 

including CaN.  CaM is also highly conserved across eukaryotes and is present in all 

eukaryotic cells; it is enriched in the brain and involved in synaptic plasticity, like CaN.6 
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Figure III-1.  Crystal structures of CaN (A) and CaM (B, C).  Black 

arrows point to each protein N-terminus.  The conformation of CaM 

shown in (B) is observed upon binding of four Ca2+ ions, and that 

depicted in (C) corresponds to further structural changes upon binding 

of a partner protein by CaM.  For (A): PDB ID = 1AUI, yellow = Ca2+; 

red = Fe3+; orange = Zn2+; blue = CaN A subunit; grey = CaN B 

subunit; green = peptide substrate.  For (B): PDB ID = 1CLL and (C): 

PDB ID = 1CDM,  yellow = Ca2+; green = peptide derived from CaM 

kinase II, a CaM binding partner. 

 

We were intrigued by the similarities and differences apparent upon comparison 

of CaN and CaM.  As our interests include expanding the scope of our original NMT-

mediated protein labeling system, we were particularly excited by the parallel study of a 

large natural NMT substrate requiring no engineering, and a small, streamlined protein 

that could be challenging to engineer without an accompanying loss of function.  With 

the ultimate objective of site-specifically functionalizing both CaN and CaM to prepare 
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protein microarrays for high-throughput biochemical studies, we began by preparing 

CaM constructs that would be recognized by NMT. 

 

Engineering CaM for NMT-Mediated Protein Labeling 

In designing new CaM-based constructs for labeling with NMT, we drew 

inspiration from the model system described in Chapter II, in which we prepared two 

GFP-based constructs: yARF-GFP and Fyn-GFP.  For preparation of CaM constructs, we 

initially worked only with the yARF recognition sequence (MGLFASK) because the Fyn 

recognition sequence (MGCVQCKTK) contains two cysteine (Cys, C) residues.  CaM 

contains no Cys residues in its native form, and we hypothesized that addition of the 

nucleophilic thiol side chain of Cys could unfavorably alter the structure of CaM. 

The first construct we prepared was yARF-6xHis-CaM (Table III-1), engineered 

to display the 6xHis affinity purification tag as well as the yARF sequence.  Although 

expression, purification, and mass spectrometry experiments with this protein yielded 

good results, it was found to be four times less active than wild-type (WT) CaM.  It was 

not apparent whether the loss of activity was caused by the addition of the recognition 

sequence or the 6xHis tag, or both.  Thus, we sought to develop more constructs in order 

to (a) identify at least one construct that retained WT levels of activity and (b) better 

understand which sequence modification contributed more significantly to the loss of 

function observed for yARF-6xHis-CaM. 

As summarized below, we selected a second recognition sequence, derived from 

the N-terminal region of CaN-B (MGNEASYPL), to enable labeling of CaM by NMT.  

We also explored the use of flexible linkers, postulating that the placement of additional 
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features upstream of CaM might have a smaller effect on CaM activity if an intervening 

spacer were present.  A number of CaM fusion proteins have been reported, including 

multiple GFP-CaM fusions.7–15  In most reports, the identity of the linker was not 

provided or was simply incidental to the cloning scheme, with minimal quantitation of 

the impact of the linker on CaM activity.  However, one report described an active GFP-

CaM fusion in which addition of a linker (SRLIGSA) and GFP to CaM was found “not to 

significantly affect the functional properties of the CaM molecule.”9  Thus, we also 

prepared constructs possessing this linker in addition to an NMT recognition sequence.  

A full summary of constructs is presented in Table III-1. 

 

Table III-1.  Summary of engineered CaM constructs developed for 

N-terminal protein labeling studies.  The yARF and hCaNB recognition 

sequences are derived from known NMT substrates.  The 6xHis tag 

was included for affinity purification and immunodetection purposes.  

The linker was previously described.9  Estimated yields are based on 

actual yields from 100 mL cultures. 
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RESULTS AND DISCUSSION 

Expression and Purification of CaN 

We followed literature protocols for expression and purification of human CaN 

from an E. coli co-expression system.3  In addition to growing cultures in the presence of 

myristic acid, we also expressed CaN in the presence of 12-ADA.  Identical expression 

and purification results were obtained for both.  Yields of 2–3 mg pure protein per liter of 

bacterial culture have been reported; we obtained similar yields of pure Myr-CaN and 

pure 12-ADA-CaN. 

 

Cloning, Expression, and Purification of Wild-Type and Engineered CaM Constructs 

To prepare plasmids that encode the engineered CaM proteins listed in Table 

III-1, we followed different protocols than those described in Chapter II for cloning 

yARF-GFP and Fyn-GFP.  Using a modified site-directed mutagenesis approach, termed 

“two-step PCR,”16 we encoded the desired sequences directly into primers, with a 

plasmid that encodes Drosophila melanogaster CaM serving as the template; these steps 

are described in detail in the Experimental Section of this chapter.  This approach was 

considerably simpler and more efficient than the cloning strategy used to construct 

yARF-GFP and Fyn-GFP. 

After all five constructs had been prepared, the final plasmids were transformed 

into E. coli competent cells already harboring a plasmid encoding one of the two 

isoforms of human NMT.  Following the co-expression protocol outlined in Chapter II, 

we grew cultures of all five engineered CaM constructs in the presence of 12-ADA and 
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grew a control culture of WT CaM.  We then used phenyl sepharose resin to purify the 

proteins from lysate. 

Phenyl sepharose purification relies on a hydrophobic interaction between CaM 

and the sepharose resin.17  When CaM is in its Ca2+-bound form, a hydrophobic patch on 

the protein is exposed, and it binds the resin.  At this point, wash buffers containing high 

concentrations of salt and Ca2+ remove contaminants while CaM remains bound to the 

column.  In contrast, elution buffers contain Ca2+ chelators, such as EGTA, which cause 

CaM to give up its Ca2+ ions and undergo a conformational change that conceals its 

hydrophobic patch.  CaM no longer interacts with the resin and elutes off the column.  

(Purification protocols are presented in more detail in the Experimental Section.) 

All proteins were obtained in a very pure form after phenyl sepharose 

purification, as evidenced by SDS-PAGE analysis (Figure III-2). The amount of pure 

protein yielded by each 100 mL culture was used to estimate the per-liter yield for each 

protein, shown in Table III-1.  Unexpectedly, the yields for yARF-CaM and yARF-

Linker-CaM were consistently and significantly lower than those measured for WT CaM 

and the other engineered constructs.  Fortunately, purification of the 12-ADA-labeled 

engineered constructs (Figure III-2, B-F) appeared to be unaffected by the presence of the 

hydrophobic 12-ADA tag when compared to the purification results for WT CaM 

(Figure III-2A). 
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Figure III-2.  SDS-PAGE analysis of phenyl sepharose purification 

fractions for each CaM construct.  Pure protein is outlined with a blue 

box on each gel image: WT CaM (A); yARF-CaM (B); yARF-Linker-

CaM (C); yARF-6xHis-CaM (D); hCaNB-CaM (E); hCaNB-Linker-

CaM (F).  All constructs except WT CaM were expressed in the 

presence of 12-ADA for N-terminal labeling by NMT. * = MW 

marker; CL = Clarified Lysate; F = Flow-Through; W = Wash.  B1 = 

0.05 mg/mL BSA; B2 = 0.1 mg/mL BSA. 
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Intact LC-MS Analysis of Protein Samples 

After purifying 12-ADA-CaN, WT CaM, and 12-ADA-labeled engineered CaM 

constructs, we analyzed all seven proteins via intact LC-MS.  As with yARF-GFP and 

Fyn-GFP, we observed near-quantitative labeling of all proteins displaying an NMT 

recognition sequence.  No myristoylated protein species were detected for any samples.  

Across multiple expressions and purifications, yARF-CaM was the only protein for 

which greater than 10% unlabeled species was regularly observed; it is possible that this 

result is somehow correlated to the very low expression yields for this particular 

construct. 
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Table III-2.  Intact LC-MS results for WT CaM and 12-ADA-labeled 

CaN and CaM constructs.  All expected masses account for removal of 

the initial Met, excluding the WT CaM mass.  “+12-ADA (red.)” 

entries correspond to labeled proteins on which the azide group was 

reduced to an amine.  “% Labeled” = sum of the relative abundances of 

both 12-ADA-labeled species observed for each protein. 

 

 

An interesting pattern in the intact LC-MS results for the 12-ADA-labeled CaN 

and CaM constructs is the abundance of the reduced 12-ADA-labeled species across 

samples.  We investigated the cause of the azide reduction, examining the steps in our 

experimental protocol that could be responsible.  We wondered if the reduction was 

caused by the presence of DTT in the purification buffers, but the use of buffers lacking 

DTT did not decrease the extent of azide reduction (data not shown).  We also 

hypothesized that 12-ADA might be reduced in the cell or growth media during the 
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expression itself.  Thus, we conducted a time-course study with hCaNB-CaM in which 

12-ADA was added to the expression culture 2 hr or 1 hr prior to inducing protein 

expression, or at the time of induction.  We found that there was no time-dependent trend 

in the extent of 12-ADA reduction (Table III-3), indicating that reduction was unlikely to 

be occurring in the expression flask.  In related work, a sample of pure 12-ADA (in 

which the azide group was confirmed to be intact) was analyzed on the same instrument 

used for intact LC-MS analysis of proteins.  The major species detected was the reduced 

form of 12-ADA (data not shown), underscoring the notion that azide reduction most 

likely occurred during the actual LC-MS run. 

 

Table III-3.  Intact LC-MS results for hCaNB-CaM samples purified 

from expression cultures exposed to 12-ADA for different lengths of 

time.  12-ADA was added 2 hr or 1 hr prior to inducing protein 

expression, or at the time of induction (0 hr).  No unlabeled hCaNB-

CaM was detected in any sample, and no trend was observed for the 

extent of reduction of the azide moiety with respect to time.  N/D = Not 

Detected.  N/A = Not Applicable. 
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Evaluation of CaN and Engineered CaM Constructs via Phosphatase Activity Assays 

Next, we investigated the potential impact of protein engineering and labeling on 

the activity of our various constructs.  To address this issue, we utilized a phosphatase 

activity assay that tests the ability of CaN to dephosphorylate a phosphopeptide substrate 

derived from one of its natural substrate proteins.  The resultant free phosphate reacts 

colorimetrically with a malachite green reagent, producing a change in absorption that 

may be measured on a standard plate reader.18,19  Dephosphorylation depends on proper 

functioning of CaN, which in turn must be bound and activated by a functional form of 

CaM.  Moreover, both CaN and CaM are fully active only in their Ca2+-bound form, a 

fact that is important for the assays described here and especially pertinent for the assays 

described in the next section. 

For all of the assay results depicted in Figure III-3, the concentration of CaN was 

held constant, while the concentration of CaM was varied over roughly four orders of 

magnitude.  Ca2+ was also present at a saturating level.  After CaN, CaM, and Ca2+ were 

equilibrated, the phosphopeptide substrate was added to the solution to initiate the 

enzymatic reaction; the reaction was quenched after 10 minutes via addition of malachite 

green. 
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Figure III-3.  Free phosphate generated upon incubation of CaN, CaM, 

and Ca2+ with RII phosphopeptide was measured in a standard Biomol 

Green (malachite green) phosphatase activity assay.  (A) Myr-CaN or 

12-ADA-CaN was incubated with saturating Ca2+ and varying 

concentrations of WT CaM.  (B)  CaN was incubated with saturating 

Ca2+ and varying concentrations of WT CaM, 12-ADA-labeled yARF-

6xHis-CaM, or unlabeled yARF-6xHis CaM.  Results in (A) and (B) 
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indicate that 12-ADA has little effect on CaN or CaM activity.  (C)  

CaN was incubated with saturating Ca2+ and varying concentrations of 

WT CaM or a 12-ADA-labeled engineered CaM protein.  For (A), 

results are presented as % activity of Myr-CaN.  For (B) and (C), 

results are presented as % activity of WT CaM.  For all graphs, n ≥ 4. 

 

The first graph above indicates that myristoylated CaN (Myr-CaN) and 

12-ADA-CaN behave identically (Figure III-3A); we did not expect there to be much 

difference between these protein species because CaN is naturally myristoylated, and the 

azide moiety is largely inert.  For our initial studies with CaM, we examined only yARF-

6xHis-CaM (Figure III-3B).  We found that addition of the yARF recognition sequence 

and the 6xHis tag resulted in a four-fold loss of activity relative to WT CaM, though the 

12-ADA label did not appear to impact CaM activity.  These data motivated us to prepare 

more engineered CaM constructs for NMT labeling, as described earlier. 

After expressing and purifying the other members of the family of engineered 

CaM constructs, we tested them in the same phosphatase activity assay and were pleased 

to find that one construct, hCaNB-CaM, was as active as WT CaM (Figure III-3C).  The 

ability to functionalize a CaM construct in a site-specific manner without an 

accompanying loss of activity should enable researchers to study CaM in a variety of 

settings, such as in single-molecule fluorescence experiments or on protein microarrays.  

Considering the ubiquity of CaM in eukaryotes, and given the large number of proteins 

that CaM binds and activates, the hCaNB-CaM construct has the potential to be useful for 

researchers in a number of fields. 

Finally, in analyzing the data presented in Figure III-C, we were also able to 

answer a question posed near the beginning of this chapter: is the yARF sequence or the 
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6xHis tag responsible for the diminished activity of yARF-6xHis-CaM?  The yARF-CaM 

construct, which lacks a linker or affinity tag, is 25% less active than WT CaM.  Addition 

of the linker sequence or a 6xHis tag further decreases the activity of the corresponding 

constructs relative to the yARF-CaM and hCaNB-CaM parent constructs.  Thus, it seems 

that both the yARF sequence and the 6xHis tag contribute to the poor activity of yARF-

6xHis-CaM.  With a different recognition sequence and no linker or 6xHis tag, and with 

wild-type levels of activity, hCaNB-CaM is clearly the construct of choice for future 

studies. 

 

Calcium-Binding Behavior of Engineered CaM Constructs 

To obtain a better understanding of our engineered CaM constructs, we 

investigated their Ca2+-binding behavior with two different methods: a conventional 

electrophoretic mobility assay (“gel shift assay”) described in the literature to probe other 

CaM mutants,9,20 and the phosphatase activity assay described in the previous section. 

The electrophoretic mobility assay exploits the change in the apparent molecular 

weight of CaM during SDS-PAGE depending on the buffer environment.  As noted 

above, CaM undergoes a significant conformational change upon binding Ca2+, exposing 

a hydrophobic patch on the protein.  This structural change results in CaM running to a 

lower molecular weight in the presence of saturating levels of Ca2+.  In contrast, when 

CaM is in the presence of Ca2+ chelators, it runs to a higher apparent molecular weight.  

By utilizing SDS-PAGE buffers containing high concentrations of Ca2+ or EDTA, we 

found that our engineered and 12-ADA-labeled CaM constructs underwent a shift similar 
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to that of WT CaM: all six proteins appear to bind Ca2+ similarly at saturating levels of 

Ca2+ (Figure III-4A). 

 

Figure III-4.  (A) WT CaM and 12-ADA-labeled engineered CaM 

proteins were examined in an electrophoretic mobility (“gel shift”) 

assay.  SDS-PAGE buffers contained either Ca2+ (top) or EDTA 

(bottom).  Coomassie staining revealed a Ca2+-dependent shift in 

apparent mass for WT CaM (1), as well as for all 12-ADA-labeled 

engineered CaM proteins: yARF-CaM (2), yARF-Linker-CaM (3), 

yARF-6xHis-CaM (4), hCaNB-CaM (5), and hCaNB-Linker-CaM (6).  

Lysozyme (7) served as a negative control for Ca2+-dependent mobility.  

Protein marker lanes are denoted by *.  (B) CaN was incubated with 

saturating CaM (WT CaM or a 12-ADA-labeled engineered CaM 

protein) and varying concentrations of Ca2+; then, free phosphate was 

detected in a standard Biomol Green (malachite green) activity assay.  

Results are presented as % activity of WT CaM; n ≥ 4. 
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The phosphatase activity assay provided a more quantitative measure of the 

Ca2+-binding behavior of our family of CaM constructs.  The assay was carried out 

exactly as previously described, but instead of varying the concentration of CaM, we 

used a saturating level of CaM and varied the concentration of Ca2+ (Figure III-4B).  

Again, hCaNB-CaM was found to be the most active construct relative to WT CaM, with 

the other proteins exhibiting diminished activity in roughly the same order as was 

observed in the [CaM]-dependent phosphatase assay (Figure III-3C).  All of the KD 

values measured in our activity assay studies are summarized in Table III-4. 

 

Table III-4.  Binding constants for activity assay graphs (Figures 

III-3A, III-3C, and III-4B).  Values are reported as + standard error.  

ND = Not Determined. 

 

 

Fluorescence Gel Analysis of Lysate Samples 

Before proceeding to surface capture experiments with 12-ADA-CaN and 

12-ADA-hCaNB-CaM, we wanted to confirm that NMT is selective toward our 

constructs in E. coli.  In order to couple our proteins to microarrays directly from lysate, 
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it was important to establish that proteins other than our substrates were not labeled by 

NMT.  Utilizing experimental protocols optimized for the GFP/NMT model system, we 

examined clarified lysate samples of CaN and the engineered CaM constructs after in 

vivo labeling with 12-ADA.  For CaM, we focused on the two most active constructs: 

hCaNB-CaM and hCaNB-Linker-CaM.  (Similar results were obtained for the remainder 

of the constructs, though yARF-CaM and yARF-Linker-CaM were difficult to detect in 

this experiment due to their low expression levels.)  The gel images presented in Figure 

III-5 confirm that NMT is indeed selective toward CaN and the engineered CaM 

constructs in bacteria: fluorescent bands appear only at the molecular weight values for 

CaN-B and the engineered CaM proteins. 

 

Figure III-5.  SDS-PAGE analysis of lysate samples of CaN, hCaNB-

CaM, and hCaNB-Linker-CaM co-expressed with NMT in the presence 

of 12-ADA.  Lysate samples were treated with alkyne-TAMRA for 

detection of azide-labeled protein.  The gel was imaged for TAMRA 

(A) and stained with Coomassie colloidal blue (B).  Comparison of 

both gel images indicates selective 12-ADA labeling of each natural or 

engineered substrate protein.  Similar results were obtained for other 

engineered CaM constructs. 
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CONCLUSION 

The work presented in this chapter significantly expands the scope of the NMT-

mediated protein labeling system developed in Chapter II.  In moving beyond the test 

protein, GFP, we demonstrated the versatility and power of the system with proteins of 

real biomedical interest, calcineurin (CaN) and calmodulin (CaM).  A natural substrate of 

NMT, CaN was shown to be equally active in its myristoylated and 12-ADA-labeled 

forms.  Engineering of CaM to display different NMT recognition sequences also 

resulted in robust protein labeling with 12-ADA, as measured by intact LC-MS.  

Phosphatase activity assays investigating the behavior of the engineered CaM constructs 

showed that hCaNB-CaM was as active as WT CaM in both CaM-dependent and Ca2+-

dependent assays.  Finally, treatment of lysate samples with an azide-reactive dye 

confirmed that only the CaN and CaM-based substrates were labeled with 12-ADA by 

NMT, enabling the preparation of protein microarrays from lysate, as described in the  

next chapter. 

 

 

EXPERIMENTAL SECTION 

Materials 

Cloning.  All oligonucleotide primers were ordered from IDT.  The pET-15b 

plasmid encoding Drosophila melanogaster wild-type calmodulin was a gift from 

Professor Steven Mayo’s lab at Caltech.  The QuikChange site-directed mutagenesis kit 

was used as is from Stratagene/Agilent.  Polymerase chain reaction (PCR) experiments 

were carried out in a BioRad DNA Engine Peltier Thermal Cycler using PfuTurbo DNA 

Polymerase (Stratagene/Agilent).  All restriction enzymes, restriction enzyme buffers, 
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bovine serum albumin (BSA), and ligase were purchased from New England BioLabs 

(NEB).  NEB DNA Ladders (100 bp and 1 kbp “Quick-Load”) were used as markers for 

all DNA agarose gels, which were visualized with the addition of Plus One ethidium 

bromide solution from Amersham Biosciences on a UVP UV Transilluminator.  Zymo 

Agarose-Dissolving Buffer (ADB) and Zymo Spin II columns, with their associated 

buffers, were used to purify DNA out of agarose gels.  All DNA acquisition from cells 

was completed using the Qiagen Spin Miniprep Kit and columns.  All sequencing 

requests were fulfilled by Laragen. 

 

Protein expression.  Plasmids encoding hNMT1 or hNMT2 and methionine-

aminopeptidase (Met-AP) were a gift from the laboratory of Professor Richard Kahn at 

Emory University (Atlanta, GA).21  The plasmid encoding human CaN3 was purchased 

from Addgene.  E. coli BL21(DE3) chemically competent cells were prepared using the 

standard Zymo method (Stratagene) and were transformed with either the hNMT1 

plasmid or hNMT2 plasmid.  LB medium was composed of 10 g tryptone (casein 

hydrolysate), 5 g yeast extract, and 10 g NaCl per liter.  Media were autoclaved before 

use.  Kanamycin (Kan) was used at a working concentration of 35 μg/mL, and ampicillin 

(Amp) was used at a working concentration of 200 μg/mL.  Myristic acid was purchased 

from Fluka.  All optical density (OD) values were measured at 600 nm on a Cary UV-Vis 

spectrophotometer.  All SDS-PAGE gels described in this chapter were NuPAGE Novex 

4%–12% Bis-Tris pre-cast gels (Invitrogen).  SeeBlue Plus2 Pre-Stained Protein Marker 

from Invitrogen served as the molecular weight ladder.  Gels were stained with 

Coomassie colloidal blue from Invitrogen.   

 

Protein purification.  CaN was purified with Talon cobalt affinity resin 

(Clontech) and calmodulin-sepharose 4B resin (GE Healthcare); Nickel-NTA resin from 

Qiagen could be used in place of Talon resin, if desired.  All lysis, wash, and elution 

buffers were prepared exactly as reported.3  Lysozyme was purchased from Aldrich. 

CaM and engineered CaM constructs were purified using phenyl sepharose resin 

from GE Healthcare.  (The yARF-6xHis-CaM protein was also purified using Qiagen Ni-

NTA resin, in a manner identical to that described in Chapter II for yARF-GFP and Fyn-
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GFP.)  For CaM purification, the Lysis Buffer was 50 mM Tris (pH 7.5), 100 mM KCl, 1 

mM EDTA, 1 mM EGTA, 1 mM DTT, 1 mg/mL lysozyme, and 0.5 mM PMSF; Wash 

Buffer 1 was 50 mM Tris (pH 7.5) and 1 mM CaCl2; Wash Buffer 2 was 50 mM Tris (pH 

7.5), 1 mM CaCl2, and 500 mM NaCl; and Elution Buffer was 50 mM Tris (pH 7.5) and 

1.5 mM EGTA.  Lysozyme was purchased from Aldrich. 

 

Mass spectrometry analysis.  The Pierce BCA Assay Kit was used to measure 

protein concentration in pure protein fractions prior to MS analysis.  Millipore Microcon 

Centrifugal Devices were used to concentrate and buffer-exchange whole-protein 

samples for intact LC-MS analysis, which was carried out on an Agilent 1100 MSD 

quadrupole ESI-MS.   

 

Phosphatase activity assays.  Human recombinant WT CaM,  human 

recombinant WT myristoylated CaN, and Biomol Green (malachite green) reagent were 

purchased from Enzo Life Sciences.  The phosphorylated CaN-specific substrate peptide 

(pRII peptide) was purchased from GenScript.  All other reagents were reagent grade and 

purchased from Sigma-Aldrich.  Assay Buffer was composed of 50 mM Tris (pH 7.5), 

100 mM NaCl, 6 mM MgCl2, and 0.5 mM DTT. 

 

Electrophoretic mobility assay.  Buffers for the electrophoretic mobility assay 

was prepared as described.9,20  In summary, 5x Loading Buffer was 0.225 M Tris 

(pH 6.8) containing 50% glycerol, 5% SDS, and 0.05% bromophenol blue.  To 1 mL of 

the Loading Buffer, either 2 μL of 1 M CaCl2 was added for a final concentration of 2 

mM CaCl2 (for the +Ca2+ gel), or 6 μL of 0.5 M EDTA was added for a final 

concentration of 3 mM EDTA (for the +EDTA gel).  Running Buffer was MES running 

buffer (Boston BioProducts); to 1 L of the commercially available running buffer, which 

already contained 1 mM EDTA, either 3 mL of 1 M CaCl2 was added to achieve a final 

effective concentration of 2 mM CaCl2 (for the +Ca2+ gel), or 4 mL of 0.5 M EDTA was 

added to achieve a final concentration of 3 mM EDTA (for the +EDTA gel).  SDS-PAGE 

gels were NuPAGE Novex 4%–12% Bis-Tris pre-cast gels, and SeeBlue Plus2 Pre-

Stained Protein Marker served as the molecular weight ladder (both from Invitrogen).  

Gels were stained with Coomassie colloidal blue, also from Invitrogen. 
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Fluorescence detection.  Lysate samples were treated with the reagents and 

according to the protocols of the Click-IT Tetramethylrhodamine (TAMRA) Protein 

Analysis Detection Kit from Invitrogen.  After reaction and precipitation, protein samples 

were run on Invitrogen NuPAGE Novex 4%–12% Bis-Tris pre-cast gels and imaged on a 

GE Typhoon laser scanner.  Gels were stained with Coomassie colloidal blue from 

Invitrogen. 

 

Methods 

Cloning.  The template plasmid for all engineered CaM constructs was pET-15b 

encoding Drosophila melanogaster wild-type CaM.  Primers were designed to encode the 

amino acid sequences corresponding to the constructs outlined in Table III-1: the yARF 

recognition sequence (MGLFASK, from ATG GGT CTG TTC GCG TCT AAA), the 

hCaNB recognition sequence (MGNEASYPL, from ATG GGT AAC GAA GCG TCT 

TAC CCG CTG), a 6xHis tag, and/or the linker sequence (SRLIGSA, from TCT CGT 

CTG ATC GGT TCT GCT) at the 5′ end of the gene.  The QuikChange site-directed 

mutagenesis kit was used in conjunction with published protocols for the “two-step PCR” 

method; this approach circumvents “the tendency of the perfectly complementary 

mutagenic primers to dimerize with each other, rather than anneal to the target sequence 

[in the parent plasmid],” and thus enables the addition of long insertions.16  Briefly, for 

each construct, two single-primer PCR reactions were carried out to produce “hybrid” 

plasmids, comprised of one original (wild-type CaM) strand and one new (mutant) strand 

possessing the given sequence(s).  Then, in a second PCR step, the two reactions from the 

first step were combined and more polymerase was added to the reaction mixture.  After 

digestion with DpnI, the mixture was transformed into XL1-Blue competent cells and 

plated.  Colonies were selected for inoculation of cultures from which DNA was isolated 

and submitted for sequencing.  Each final construct was transformed into competent cells 

already harboring an NMT plasmid for co-expression experiments. 

 

Protein expression.  Overnight cultures were inoculated in LB supplemented 

with Kan and Amp and grown in an incubator-shaker (37°C, 250 rpm).  The following 
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day, overnight cultures were diluted 1:50 into fresh LB supplemented with Kan and Amp 

for expression cultures, which ranged in volume from 5 mL to 100 mL.  Cultures were 

grown in an incubator-shaker (37°C, 250 rpm), and protein expression was induced with 

IPTG (1 mM, from 1 M stock in water) when the OD600 value was between 0.8 and 1.1.  

Pre-induction samples (1 mL) were collected as needed.  Myristic acid or the azide fatty 

acid 12-ADA (500 µM, from 500 mM stock in DMSO) was also added at the time of 

induction.  After 3–4 hr of protein expression, cells were harvested via centrifugation 

(10 min x 10,000 g) and the final OD600 value was measured.  Cell pellets were lysed 

according to the following formula, regardless of which lysis buffer was used: 50 µL 

lysis buffer per mL culture per OD600 unit.  Crude lysates were centrifuged once more, 

and the supernatant (clarified lysate) was saved for further experiments. 

 

Protein purification.  Published protocols were followed with minor 

modifications for purification of CaN and CaM constructs.  

For CaN, a three-step protocol is described to purify the enzyme from bacterial 

lysate.3 Briefly, harvested cells were lysed using a probe sonicator and lysozyme (1 

mg/mL).  The three steps are an ammonium sulfate (high-salt) precipitation, a Talon 

cobalt affinity resin purification step, and CaM–sepharose chromatography.  All buffers 

were prepared and used exactly as reported in the literature to yield pure human CaN.  

All purification fractions were analyzed via SDS-PAGE for detection of pure protein. 

For CaM, a one-step phenyl sepharose purification is reported to isolate the 

protein from bacterial lysate.17,22  When CaM is in its Ca2+-bound form, a hydrophobic 

patch on the protein is exposed, and it binds the phenyl sepharose resin; CaM elutes from 

the resin in the presence of buffers containing Ca2+ chelators, which cause CaM to 

undergo a conformational change that hides its hydrophobic patch.  Briefly, harvested 

cells were lysed in Lysis Buffer using a probe sonicator and lysozyme (1 mg/mL).  

Clarified lysate was incubated with phenyl sepharose at 4°C for 30 min to ensure binding 

between CaM and the resin.  The slurry was poured into a column and washed alternately 

with Wash Buffers 1 and 2.  Then elution fractions were collected upon addition of 

Elution Buffer to the column.  All purification fractions were analyzed via SDS-PAGE 

for detection of pure protein. 
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Mass spectrometry analysis.  For intact LC-MS experiments, solutions of pure 

protein were concentrated using Microcon columns (MWCO = 30 kDa) and buffer-

exchanged into a 0.1% TFA (trifluoroacetic acid) solution.  A final solution of 100 pmol 

protein in 100 µL was run on the MSD instrument. 

 

Phosphatase activity assays: [CaM]-dependent assays.  The Ca2+/CaM-

activated phosphatase activity of CaN was determined using the malachite green assay, a 

colorimetric technique employed for quantitatively measuring the amount of inorganic 

phosphate released by dephosphorylation of a CaN-specific peptide substrate, pRII.  This 

assay takes advantage of the green color produced by the complex formed between 

malachite green, molybdate, and free phosphate (PO4).
18,19 

Briefly, varying concentrations of WT CaM were incubated with saturating Ca2+ 

(10 µM CaCl2) and 10 nM Myr-CaN or 12-ADA-CaN in Assay Buffer for 10 min at 

37oC.  To initiate the reaction, phosphorylated RII peptide substrate was added at a final 

concentration of 0.5 mM in 50 µL and allowed to react for 10 min.  A standard curve of 

inorganic phosphate (PO4) in Assay Buffer was made on each day of experiments.  A 

quantity of 50 µL of Biomol Green reagent (containing malachite green and molybdate) 

was added to the standard curve and experimental samples to terminate the reaction, and 

color was allowed to develop for 30 min.  The absorbance of all samples was measured at 

620 nm on a Tecan 96-well plate reader.  The absorbance values of the standard curve 

were plotted against the (known) concentrations of the PO4 standards and fit to a second-

order polynomial, from which the amount of CaN-mediated release of PO4 in the samples 

was calculated.  The CaN phosphatase activity was plotted as a function of CaM 

concentration using Prism (GraphPad Software).  The dose-response of CaN activity at 

varying CaM concentrations was calculated according to the sigmoidal dose response 

(Equation (1)): 

Y ൌ 	min൅	 ௠௔௫ି௠௜௡

ଵାଵ଴ಽ೚೒ሺ೉ఱబష೉ሻ
  (1)     

where X is the concentration, Y is the response, min is the lower asymptote of the curve, 

max is the upper asymptote of the curve, and X50 is the x-coordinate of the inflection 

point (x, y).  X50 represents the concentration at which CaN is half-maximally activated 

and is directly related to the ability of CaM to bind and activate CaN. 
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Phosphatase activity assays: [Ca2+]-dependent assays.  The ability of the 

12-ADA-labeled engineered CaM proteins to bind and activate CaN was measured using 

the malachite green assay described above in order to determine the CaM constructs’ 

Ca2+-dependent activation.  Briefly, 10 nM Myr-CaN, 1 µM wild-type CaM or 

engineered labeled CaM, and varying concentrations of free Ca2+ were incubated at 37°C 

for 10 min.  The concentration of free Ca2+ was tightly controlled by titration of the 

calcium chelator EGTA.23  The reaction was initiated by addition of phosphorylated RII 

peptide substrate at a final concentration of 0.5 mM in 50 µL.  The reaction was allowed 

to proceed for 10 min at 37°C.  A standard curve of inorganic phosphate (PO4) in Assay 

Buffer was made on each day of experiments.  Biomol Green reagent (50 µL) was added 

to the standard curve and experimental samples to terminate the reaction, and color was 

allowed to develop for 30 min.  The absorbance of all samples was measured at 620 nm 

on a Tecan 96-well plate reader.  The absorbance values of the standard curve were 

plotted against known concentrations of PO4 and fit to a second-order polynomial, from 

which the amount of CaN-mediated release of PO4 in the samples was interpolated.  The 

CaM-mediated CaN phosphatase activity as a function of Ca2+ concentration was plotted 

using Prism (GraphPad Software).  The dose-response of activity of the same was 

calculated according to Equation (1).  

 

Electrophoretic mobility assay.  These experiments were conducted according 

to literature protocols.9,20  Two different gels were run: a +Ca2+ gel, in which samples 

were exposed to an environment containing saturating levels of Ca2+, and a +EDTA gel, 

in which samples were exposed to an environment containing excess EDTA.  Samples of 

pure wild-type CaM, engineered CaM proteins, and lysozyme were prepared at equal 

concentrations, and 10 μg of each protein was loaded on a protein gel using the Loading 

Buffers described in the Materials section.  SDS-PAGE was performed using the 

Running Buffers described in the Materials section.  Gels were stained with Coomassie 

colloidal blue and imaged on the Typhoon with the 633 nm laser serving as the excitation 

source (no filter). 
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Fluorescence detection.  Cells were lysed with the buffer recommended in the 

instructions for the Invitrogen Click-iT kit (1% SDS, 50 mM Tris-HCl, pH 8.0) according 

to the following formula: 50 µL lysis buffer per mL culture per OD600 unit.  Lysate 

samples were reacted with alkyne-TAMRA and other kit reagents according to the 

protocols supplied by Invitrogen; the only modification was the use of 15 µL of alkyne-

TAMRA dye solution rather than 100 µL.  At the conclusion of the 25-min reaction time, 

samples were precipitated following the methanol-chloroform precipitation protocol 

described in the same kit instructions; the only modification was the completion of one 

extra methanol wash of the protein pellet.  For SDS-PAGE analysis, protein pellets were 

resuspended in a denaturing buffer (8 M urea, 100 mM NaH2PO4, and 10 mM Tris-Cl) 

and loaded on a NuPAGE Novex 4%–12% Bis-Tris pre-cast gel.  To detect TAMRA 

signal on the Typhoon, the 532 nm laser served as the excitation source (filter set: 580 BP 

30).  Gels were stained with Coomassie colloidal blue, then imaged again, with the 633 

nm laser now serving as the excitation source (no filter). 
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ABSTRACT 

In this chapter, we focus on the covalent conjugation of N-terminally labeled 

proteins to functionalized slides for the creation of protein microarrays.  Specifically, 

12-ADA-labeled yARF-GFP, CaN, and hCaNB-CaM, prepared via bacterial co-

expression with NMT, were selectively coupled to cyclooctyne-spotted glass slides.  

Moreover, rapid surface capture was achieved directly out of lysate, without prior 

purification of the recombinantly expressed proteins.  Our ability to prepare protein 

microarrays directly from cellular extracts exploits the orthogonality of NMT toward 

bacterial systems and the exquisite selectivity of NMT toward both natural and 

engineered substrate proteins.  We also describe experiments completed with an azide 

dye and acetylene- or cyclooctyne-derivatized agarose beads, which informed our 

subsequent work with microarrays; these studies provided a comparison of the relative 

efficiency of reacting azides with terminal alkynes versus cyclic strained alkynes, and 

they shed light on how reaction efficiency is affected by the presence of lysate proteins. 

The microarray studies described in this chapter were performed at Maven 

Biotechnologies in collaboration with Dr. Tamara Kinzer-Ursem.  Maven has developed 

an instrument for protein measurements based on a technology called LFIRE, or Label-

Free Internal Reflection Ellipsometry.  Successful coupling of our 12-ADA-labeled 

proteins to slides was confirmed using the LFIRE instrument, which enables sensitive 

and high-throughput detection of changes in height on the surface of a slide.  Our results 

in this area provide a strong foundation for future work evaluating the biochemical 

activity of CaM, CaN, and other labeled proteins in a microarray format. 
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INTRODUCTION 

Immobilization of Proteins on Surfaces 

Protein chips and microarrays have been utilized in a variety of contexts.  They 

may serve as components in medical diagnostic systems,1–3 and they may be useful 

research tools for in vitro studies of the interactions of proteins with small molecules and 

other proteins.4–7  Elucidating such interactions is a key step toward discovering new 

small-molecule drugs that bind specific protein targets and dissecting intricate protein–

protein networks that govern complex biological processes, such as memory formation, 

and disease states, such as oncogenesis. 

As such, the development of techniques to couple proteins to surfaces has been an 

area of active research for the past twenty years, continuing to the present day.8–10  In 

2000, the Schreiber Lab published a landmark paper describing the immobilization of 

proteins on aldehyde slides via lysine (Lys) side-chain amines.11  While this work 

represented a major advance at the time for high-throughput studies of protein-protein 

interactions, it also utilized a chemical reaction that is neither site-specific nor selective 

for a single protein: Lys residues are prevalent across the proteome and are often found at 

multiple sites within a single protein.  The use of the Lys-aldehyde reaction and other 

non-specific protein chemistries yields microarrays that display the protein of interest in 

various orientations, depending on the site of surface attachment on the protein; only a 

fraction of those protein molecules exhibit a useful or active orientation, rendering most 

of the microarray useless in some cases.  Thus, there has been a growing need for new 

chemistries offering greater selectivity within biological molecules to improve the utility 

of protein microarrays. 
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A major advance for protein chemistry occurred in 2001, when the Sharpless and 

Meldal Groups independently reported the selective copper-catalyzed reaction of azide 

and alkyne groups,12,13 which was soon shown to be bioorthogonal (i.e., neither reactive 

partner interacts with chemical groups normally present in biological settings).14  

Numerous other bioorthogonal reactions have been established that enable selective and 

controlled chemical reactions of biomolecules.15  Importantly, methods have been 

developed in concert to incorporate the appropriate chemical groups into proteins and 

other biomolecules, enabling their participation in bioorthogonal reactions.16–20  One 

notable outcome of these interdisciplinary advances is that bioorthogonal reactions have 

now been utilized to achieve site-specific and selective immobilization of proteins on 

surfaces, as described in a recent review.10  Clearly, much progress has been made since 

the Schreiber Lab’s report of aldehyde–protein microarrays thirteen years ago. 

Our objective for the work described here was to utilize NMT-mediated protein 

labeling as a step towards site-specific immobilization of functionalized proteins on 

surfaces for downstream applications.  We developed methods using yARF-GFP, a 

protein from our original model system, and applied them to the CaN and hCaNB-CaM 

proteins described in Chapter III.  Given that some surface immobilization techniques 

currently in use require purification of the protein of interest,10 we were also intrigued by 

the possibility of coupling our recombinant proteins to surfaces directly from lysate.  In 

general, the process of isolating a protein from lysate has three primary drawbacks: 

purification often requires considerable time and resources; it may result in a significant 

loss of net protein product; and it may cause adverse changes in protein structure and 

function.  Thus, advancing methods for protein–surface coupling that do not require prior 
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protein purification is highly desirable.  To that end, we describe our preliminary 

conjugation experiments with functionalized beads and a small-molecule dye, and then 

shift our focus to our work with protein microarrays. 

 

 

RESULTS AND DISCUSSION 

Experiments with Alkyne-Functionalized Agarose Beads 

For all of our protein conjugation experiments, we planned to utilize the azide–

alkyne cycloaddition reaction.12,13,21  In order to gain a better understanding of how this 

reaction behaves when one partner is immobilized, we completed preliminary 

experiments with alkyne-functionalized agarose beads and a small-molecule azide dye.  

As shown in Figure IV-1, agarose beads displaying N-hydroxy succinimidyl (NHS) ester 

groups were reacted with amine-bearing alkyne reagents.  Both acetylene (terminal 

alkyne) and azadibenzocyclooctyne (ADIBO) beads were prepared.  Either ethanolamine 

or methyl-PEG4-amine was used to quench unreacted NHS groups; this quenching step is 

important for protein experiments, because NHS groups also react readily with lysine 

amine groups.  Finally, beads were blocked with BSA or left unblocked.  In total, eight 

types of alkyne-derivatized beads were prepared. 
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Figure IV-1.  Schematic overview of functionalization of agarose 

beads.  NHS-ester agarose beads were reacted with an acetylene or a 

cyclooctyne-bearing amine, followed by treatment with a quenching 

agent to ensure that no unreacted NHS-ester groups remained. 

 

After completing the bead preparation protocol, we confirmed successful 

functionalization of the beads by reacting them with a small-molecule dye, Azide-

Fluor488.  We also wanted to determine whether or not the different quenching 

conditions and the BSA blocking step had any effect on azide-alkyne reaction efficiency.  

Either the copper-catalyzed or strain-promoted azide-alkyne reaction was carried out, 

depending on the bead type, with no-copper negative controls included for the acetylene 
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beads.  Equivalent levels of fluorescence were observed across all four bead types for 

each type of alkyne (acetylene or ADIBO), indicating that functionalization was 

successful and that the type of quencher and the BSA blocking step did not affect 

reaction efficiency (data not shown).  For subsequent experiments, we moved forward 

with both acetylene and ADIBO beads that had been quenched with methyl-PEG4-amine. 

Next, we investigated how different bead preparation conditions affected the 

nonspecific binding of lysate protein to the beads.  We hypothesized that the BSA 

blocking step would decrease nonspecific interaction of lysate proteins with the beads.  

We also expected to observe a higher background signal for ADIBO beads than for 

acetylene beads because the thiol groups in cysteine side chains are known to react with 

activated cyclooctynes.22,23  To test these hypotheses, we reacted NHS-AlexaFluor633 

with lysate protein collected from E. coli BL21(DE3) cells in which no protein 

expression had been induced, and we incubated beads with the dyed lysate.  The 

fluorescence of the beads was measured before and after washing.  The results, presented 

in Figure IV-2, indicate that the BSA blocking step did not have an impact on the 

interaction of our beads with lysate protein.  However, ADIBO beads did indeed show a 

four-fold higher lysate background signal, even after washing, as compared to acetylene 

beads: it is likely that some lysate proteins react covalently with the ADIBO beads. 
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Figure IV-2.  Fluorescence of beads after incubation with 

AlexaFluor633-dyed lysate, before/after washing.  Duplicate pairs are 

shown for each bead type, except the no-Cu negative control.  Beads 

were functionalized with acetylene-PEG4-amine or ADIBO-PEG4-

amine, quenched with methoxy-PEG-amine, and blocked with BSA 

(“+BSA”) or not blocked (“–BSA”).  All fluorescence measurements 

were normalized by number of beads.  After washing, roughly four 

times as much lysate remained on ADIBO beads as compared to 

acetylene beads. 

 

We were also interested in how the presence of lysate protein affected the reaction 

efficiency between the azido dye and the alkynyl beads, an important consideration for 

achieving successful capture of 12-ADA-labeled proteins from lysate on alkyne-

derivatized surfaces.  Acetylene and ADIBO beads were reacted with Azide-Fluor488 in 

the absence (Figure IV-3A) or presence (Figure IV-3B) of lysate protein.  We measured a 

two-fold lower fluorescence signal for beads that had been reacted with the azido dye in 
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the presence of lysate, for both acetylene and ADIBO beads.  Again, very consistent 

results were obtained within each bead type, regardless of whether or not the beads had 

been blocked with BSA.  These results were considered in the design of subsequent 

microarray experiments. 
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Figure IV-3.  Fluorescence of beads after reaction with Azide-

Fluor488 in the absence (A) or presence (B) of lysate.  Duplicate pairs 

are shown for each bead type, except the no-Cu negative controls.  

Beads were functionalized with acetylene-PEG4-amine or ADIBO-

PEG4-amine, quenched with methoxy-PEG-amine, blocked with BSA 

(“+BSA”) or not blocked (“–BSA”), and washed, prior to reaction with 

Azide-Fluor488.  All fluorescence measurements were normalized by 

number of beads.  The azide-alkyne reaction yield in lysate is 

approximately half the reaction yield in buffer only. 
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Examination of the graphs in Figure IV-3 reveals a clear difference in average 

signal for ADIBO beads versus acetylene beads after reaction with Azide-Fluor488.  

Strained alkynes such as ADIBO are known to react with azides more rapidly and to a 

greater extent than terminal alkynes do.24  However, as noted earlier and as evidenced by 

Figure IV-2, strained alkynes can also react nonspecifically with nucleophiles present in 

biological systems, particularly the thiol groups of Cys residues.23  Thus, there is a trade-

off between signal and background that is worth considering when selecting or designing 

an alkynyl molecule for reaction with azides, depending on the context of a given 

cycloaddition reaction.  For our purposes, we found that the copper catalyst required for 

reaction of terminal alkynes with azides strongly interfered with activation of CaN by 

CaM (data not shown); both proteins possess multiple metal-binding centers, as discussed 

in Chapter III, so it is likely that either or both proteins bound the Cu2+  and Cu1+ ions 

yielded by the copper catalyst.  Thus, we utilized cyclooctyne compounds exclusively 

when working with CaM and CaN, as described in the next section.   

 

Overview of LFIRE Instrumentation and Experimental Set-up 

In progressing from the use of an azido dye to the use of azide-labeled proteins, 

we also moved to a higher-throughput format than beads: protein microarrays.  More 

specifically, a robotic spotter was used to print cyclooctyne molecules on glass slides at a 

density of approximately 16 spots per square mm, with a distance of 300 µm between 

spots.  Glass slides were treated with a proprietary optical coating enabling their use in 

the Label-Free Internal Reflection Ellipsometry instrument, or LFIRE, developed by 

Maven Biotechnologies (Figure IV-4A).25  The protocols for preparing amine-coated 
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glass slides and printing NHS-cyclooctyne molecules on the slides are described in more 

detail in the Experimental Section of this chapter. 

Our LFIRE microarray experiments began with affixing a well structure to the 

printed slide, mounting the slide on a glass prism, and inserting the prism into the 

instrument (Figure IV-4B).  The slide was kept hydrated and remained mounted on the 

prism throughout the experiment.  Buffer was added to the wells, followed by a BSA 

blocking solution.  LFIRE measurements were collected during this time to establish a 

consistent baseline.  After the slide was thoroughly washed, cell lysate was added to each 

well, with simultaneous initiation of further LFIRE measurements.  An image of the 

entire slide was collected with a predetermined frequency, depending on the size of the 

total printed area; for our experiments, an image was collected approximately once every 

90 seconds.  Data analysis entailed stacking all of the images in a software program such 

as ImageJ, subtracting a background image, and detecting localized rises in signal 

corresponding to protein deposition on the slide surface.  The LFIRE experimental 

protocol is depicted schematically in Figure IV-4B, and the following sections describe 

our microarray work with 12-ADA-labeled yARF-GFP, CaN, and hCaNB-CaM. 
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Figure IV-4.  (A) Schematic overview of LFIRE instrument (adapted 

from Reference 25).  Polarized light aids in the detection of changes in 

height, i.e., protein deposition, on the microarray surface.  (B) 

Schematic overview of surface coupling experiments.  Slides are 

printed with cyclooctyne spots, blocked, incubated with cell lysate, and 

imaged on the LFIRE. 
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Surface Capture and LFIRE Analysis of yARF-GFP Lysates 

Lysates were prepared from E. coli cells in which yARF-GFP was expressed in 

the presence of no fatty acid, myristic acid, or 12-ADA; additionally, a negative control 

lysate was prepared from cells in which no test protein had been overexpressed.  The 

protein concentration of each of the four lysate samples was measured, so that equal 

concentrations of lysate protein could be added to different wells on the microarray slide.  

For these experiments, we used slides that had been printed with DIBO-NHS or ADIBO-

NHS (structures shown in Figure IV-4B).  As described above, LFIRE data were 

collected throughout the duration of the blocking and lysate-coupling steps.  Background-

subtracted data are presented in Figures IV-5 and IV-6. 

Analysis of the LFIRE data clearly indicated that significant coupling occurred 

only in the areas where DIBO or ADIBO was spotted, and only in wells to which lysate 

containing 12-ADA-yARF-GFP was added; the images shown in Figure IV-5 are 

representative of results obtained across multiple wells.  Furthermore, the similarity in 

appearance of the control wells (no test protein, yARF-GFP, and Myr-yARF-GFP) 

indicates that the majority of background protein deposition is unlikely to be yARF-GFP, 

but rather, is likely the result of nonspecific reaction between cysteine-containing lysate 

proteins and DIBO or ADIBO.  Finally, the large difference in appearance between Myr-

yARF-GFP wells and 12-ADA-yARF-GFP wells demonstrates that the strong signal 

measured for the latter is not simply due to hydrophobic attraction between the fatty acid 

tag and the slide.  Post-wash LFIRE data from multiple wells exposed to the same four 

lysate samples were analyzed quantitatively; those results are presented in Figure IV-6 

and confirm that selective coupling is achieved with 12-ADA-yARF-GFP out of lysate.   
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Figure IV-5.  LFIRE 3-D surface plots of microarrays after incubation 

with cell lysate containing no overexpressed protein (A, E); yARF-GFP 

(B, F); Myr-yARF-GFP (C, G); or 12-ADA-yARF-GFP (D, H).  The 

two microarray spots in back are BSA for all panels, and the two spots 

in front are DIBO (A–D) or ADIBO (E–H).  Significant protein 

coupling was observed only in the presence of 12-ADA-labeled yARF-

GFP lysate, and only within cyclooctyne-derivatized areas. 
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Figure IV-6.  Average post-wash LFIRE signal for DIBO and ADIBO 

microarray spots after exposure to different lysate samples.  For both 

DIBO and ADIBO slides, significant coupling was observed only in the 

presence of 12-ADA-labeled yARF-GFP.  Each bar represents the 

average of > 16 spots, + standard error of the mean.  * = no detectable 

signal. 

 

Surface Capture and LFIRE Analysis of CaN Lysates 

LFIRE experiments were performed with lysates containing Myr-CaN or 

12-ADA-CaN in a manner similar to that described above for the yARF-GFP lysates.  

(Controls with no protein or unlabeled protein were not performed; attempts to express 

CaN in a non-myristoylated/non-labeled form have been shown to result in significant 

protein aggregation.26)  Again, results indicated strong coupling only between 

cyclooctyne spots and 12-ADA-labeled protein (Figure IV-7).  For these experiments, 

data analysis was performed before and after a final wash step.  The strong post-wash 

signal observed in Figure IV-7B for 12-ADA-CaN, and its similarity to the pre-wash 

signal in Figure IV-7A, suggests that 12-ADA-CaN is covalently conjugated to the slide. 
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Figure IV-7. LFIRE 3-D surface plots of ADIBO-PEG5-NHS 

microarrays after incubation with cell lysate containing 12-ADA-CaN 

(A, B) or Myr-CaN (C, D).  For all panels, the 16 spots shown are a 

representative subset from a larger array of 289 spots.  (A) and (C) 

display signal immediately after incubation, prior to washing, while (B) 

and (D) display post-wash signal intensity.  Significant protein 

coupling was observed only in the presence of 12-ADA-CaN, only 

within cyclooctyne-derivatized areas. 

 

Further analysis of the CaN LFIRE data set was performed, as presented in Figure 

IV-8.  Plotting the signal as a function of time provided insight into the relative efficiency 

of the azide-cyclooctyne reaction versus background reactions between cyclooctynes and 

other molecules present in lysate (Figure IV-8A).   In particular, the data for the first 15 

minutes of the incubation period indicate that the azide-cyclooctyne reaction proceeds 

considerably faster than background reactions in our system.  Considering the significant 
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interest in and widespread use of the biocompatible azide-cyclooctyne reaction,15,27 we 

believe these results could be of interest to the larger chemistry/chemical biology 

community. 

We were also interested in gaining a better understanding of the enrichment factor 

achieved via protein coupling—that is, the amount of 12-ADA-labeled protein present on 

the slide versus present in lysate.  As shown in Figure IV-8, the final signal of 12-ADA-

CaN is roughly three times that of Myr-CaN: this result indicates that two-thirds of the 

12-ADA-CaN signal corresponds to the labeled species, while one-third is background.  

Quantitative Western blotting indicated that CaN constitutes roughly 7% of the total 

lysate protein for both Myr-CaN and 12-ADA CaN (data not shown).  Comparison of the 

~7% figure in lysate (i.e., background:labeled = 93:7 = 13.3:1) with the ~66% figure after 

coupling (i.e., background:labeled = 34:66 = 0.51:1) yields a 26-fold reduction in 

contaminating proteins relative to 12-ADA-CaN upon coupling to cyclooctyne 

microarrays from lysate. 
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Figure IV-8.  Quantitative analysis of CaN LFIRE surface plots. 

(A) Average signal for ADIBO microarray spots during incubation with 

lysate containing 12-ADA-CaN or Myr-CaN, prior to washing.  Lysate 

was added at 0 min.  (B) Average signal for ADIBO spots after lysate 

incubation and wash.  For both panels, data points represent the average 

signal of the 16 spots shown in Figure IV-7.  The results show that 

12-ADA-CaN couples more quickly and more specifically to ADIBO 

spots as compared to the control protein, Myr-CaN.  Error bars 

represent the standard deviation. 

 

Surface Capture and LFIRE Analysis of hCaNB-CaM Lysates 

Finally, LFIRE experiments similar to those outlined above were performed with 

lysates containing hCaNB-CaM expressed in the presence of myristic acid or 12-ADA; 

similar results were obtained as well.  Lysate containing 12-ADA-labeled hCaNB-CaM 

(henceforth referred to as “12-ADA-CaM”) coupled specifically to cyclooctyne spots, 

and the signal remained strong after washing (Figure IV-9, A and B).  Lower signal 

intensities were detected for the negative control lysate containing myristoylated hCaNB-

CaM (Myr-CaM) (Figure IV-9, C and D). 
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Figure IV-9.  LFIRE 3-D surface plots of ADIBO-PEG5-NHS 

microarrays after incubation with cell lysate containing 12-ADA-CaM 

(A, B) or Myr-CaM (C, D).  For all panels, the 16 spots shown are a 

representative subset from a larger array of 289 spots.  (A) and (C) 

display signal immediately after incubation, prior to washing, while (B) 

and (D) display post-wash signal intensity.  Significant protein 

coupling was observed only in the presence of 12-ADA-CaM, only 

within cyclooctyne-derivatized areas. 

 

The representative images in Figure IV-9 indicate that the “signal-to-noise” ratio 

(final signal of 12-ADA-CaM versus final signal of Myr-CaM) is lower than the 

corresponding ratio for CaN, although the mass spectrometry results presented in Chapter 

III confirmed that both CaN and hCaNB-CaM are labeled quantitatively with 12-ADA.  It 

is possible that the functionalized N-terminus of 12-ADA-CaM is less accessible for 

subsequent conjugation than that of 12-ADA-CaN; because CaN is a natural substrate of 
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NMT, it is likely that its native folded structure renders its N-terminus available for 

reaction.  Further surface coupling studies with natural NMT substrate proteins and 

engineered substrates will elucidate the extent to which this theory is correct. 

LFIRE data for the CaM lysates were also analyzed in a more quantitative manner 

(Figure IV-10).  Again, we observed a more rapid reaction rate for the azide-cyclooctyne 

reaction than for background reactions, with the difference in reaction rates most 

apparent during the first 15 minutes (Figure IV-10A).  As would be expected from the 

representative images shown in Figure IV-9, the average final post-wash signal of 

12-ADA-CaM lysate is lower than that of 12-ADA-CaN lysate, though it is considerably 

higher than that of Myr-CaM lysate (Figure IV-10B).  About 60% of the final signal for 

12-ADA-CaM is the recombinant protein (i.e., background:labeled = 40:60 = 0.67:1).  

Quantitative Western blots of 12-ADA-CaM and Myr-CaM indicated that CaM 

constitutes ~13% of the total lysate protein (background:labeled = 87:13 = 6.7:1).  Thus, 

we achieved a 10-fold reduction in contaminating proteins relative to 12-ADA-CaM upon 

coupling to cyclooctyne microarrays from lysate. 
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Figure IV-10.  Quantitative analysis of CaM LFIRE surface plots. 

(A) Average signal for ADIBO microarray spots during incubation with 

lysate containing 12-ADA-CaM or Myr-CaM, prior to washing.  Lysate 

was added at 0 min.  (B)  Average signal for ADIBO spots after lysate 

incubation and wash.  For both panels, data points represent the average 

signal of the 16 spots shown in Figure IV-9.  The results show that 

12-ADA-CaM couples more quickly and more specifically to ADIBO 

spots as compared to the control protein, Myr-CaM.  Error bars 

represent the standard deviation. 

 

 

CONCLUSION 

This chapter describes experiments completed with functionalized beads and 

microarrays, two different systems for surface capture of proteins.  Using Maven 

Biotechnologies’ LFIRE instrument, we detected selective coupling of 12-ADA-yARF-

GFP, 12-ADA-CaN, and 12-ADA-hCaNB-CaM to cyclooctyne-spotted glass slides.  The 

orthogonality exhibited by NMT toward bacterial proteins allowed us to couple 12-ADA-

labeled proteins to derivatized surfaces directly out of lysate, a useful feature for studies 
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of proteins that are difficult to purify or that are negatively affected by isolation from the 

lysate environment.  Experiments conducted with lysates containing no recombinant 

protein, unlabeled yARF-GFP, Myr-yARF-GFP, and 12-ADA-yARF-GFP resulted in 

significant surface coupling of 12-ADA-yARF-GFP only.  The similar appearance of all 

three controls indicated that the coupling observed for 12-ADA-yARF-GFP was indeed 

specific to the azide moiety and was related to neither the protein sequence nor the 

presence of a fatty acid tag.  Experiments conducted with 12-ADA-CaN and 12-ADA-

CaM demonstrated that enrichment factors of 26 and 10, respectively, were achieved 

upon selective coupling of each protein from lysate to cyclooctyne arrays.  These results 

provide a strong foundation for the completion of biochemical studies with CaN and 

CaM microarrays, as well as a set of methods for the surface capture of other proteins. 

 

 

EXPERIMENTAL SECTION 

Materials 

Experiments with alkyne-derivatized agarose beads.  NHS-ester agarose resin 

was purchased from GE Healthcare.  Azide-Fluor488, Acetylene-PEG4-amine, and 

ADIBO-PEG4-amine were purchased from Click Chemistry Tools.  Methyl-PEG4-amine 

was purchased from Pierce.  Ethanolamine and fluorescein salt were purchased from 

Sigma-Aldrich.  “Wash Buffer 1” was 1 mM HCl; “Wash Buffer 2” was 100 mM Tris-

HCl, pH 8.5; “Wash Buffer 3” was 100 mM NaOAc, pH 4.5.  “Coupling Buffer” was 200 

mM NaHCO3, 500 mM NaCl, pH 8.2.  For CuAAC reactions, CuSO4 was purchased 

from VWR, sodium ascorbate and aminoguanidine-HCl were purchased from Aldrich, 

and the ligand was bathophenanthroline sulfonated sodium salt from GFS Chemicals.  

For dye-labeling of lysate, NHS-AF633 (AlexaFluor-633 carboxylic acid, succinimidyl 
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ester) was purchased from Invitrogen.  The BCA Assay kit was purchased from Pierce.  

Methanol, chloroform, and other solvents were purchased from VWR. 

 

Cell lysate preparation.  Bacterial cultures were grown as described in Chapters 

II and III.  Lysis Buffer was composed of 50 mM Tris (pH 7.5), 100 mM NaCl, 0.1 mM 

PMSF, and Roche Complete Protease Inhibitor.  OmniLyse cell lysis kits were purchased 

from Claremont BioSolutions.  The BCA Assay kit was purchased from Pierce.   

 

Amine functionalization of glass slides.  Ammonium hydroxide was purchased 

from VWR. All other reagents were reagent grade and purchased from Sigma-Aldrich. 

 

Microarray printing.  “PBS-T” was composed of 50 mM phosphate, 150 mM 

NaCl, and 0.01% Tween-20.  “TBS-T” was composed of 50 mM Tris (pH 7.5), 150 mM 

NaCl, and 0.01% Tween-20.  The DIBO-NHS (Click-iT Succinimidyl Ester DIBO 

Alkyne) reagent was purchased from Life Technologies/Invitrogen.  ADIBO-NHS and 

ADIBO-PEG5-NHS were purchased from Click Chemistry Tools.  Methyl-PEG4-NHS 

(MS(PEG)4 succinimidyl ester) was purchased from Pierce.  Anhydrous DMSO was 

purchased from Cambridge Isotope Laboratories.  The SpotBot Personal Microarray 

System is manufactured by ArrayIt. 

 

Methods 

Experiments with alkyne-derivatized agarose beads.  Beads were resuspended 

in the bottle, and 5 mL of slurry was transferred to a new conical vial.  Packing buffer 

was removed, and beads were then washed 3 x 10 mL with Wash Buffer 1 and divided 

into two batches.  Each batch was reacted with 25 mM acetylene-PEG4-amine or 

ADIBO-PEG4-amine in Coupling Buffer for 5 hr at room temperature.  Quenching was 

accomplished with 100 mM ethanolamine or methyl-PEG4-amine in Coupling Buffer 

overnight at 4°C.  Beads were then washed 3 x 10 mL alternating between Wash Buffers 

2 and 3.  Some beads were blocked with BSA (0.1% in 500 mM NaCl, pH 8.2).  After a 

final set of washes with 500 mM NaCl, pH 8.2, beads were ready for reaction with the 

Azide-Fluor488 fluorescent probe. 
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To all beads, Azide-Fluor488 was added at a final concentration of 50 µM.  For 

ADIBO-functionalized beads, no additional reagents were required.  For acetylene-

functionalized beads, CuAAC click reactions were performed as follows: 200 µM 

CuSO4, 500 µM ligand, 5 mM sodium ascorbate, and 5 mM aminoguanidine-HCl (the 

Azide-Fluor488, CuSO4, and ligand were combined separately and pre-mixed for 3 min).  

All reactions were performed in standard Phosphate-Buffered Saline (PBS).  Reactions 

were allowed to proceed for 1.5 hr at room temperature, then beads were washed 8 times 

with PBS. 

For experiments with dye-labeled lysate, E. coli BL21(DE3) cells were grown but 

no protein expression was induced.  Cells were lysed in lysis buffer (1% SDS, 50 mM 

Tris-HCl, pH 8.0) according to the following formula: 50 µL lysis buffer per mL culture 

per OD600 unit.  Lysate was dye-labeled with NHS-AF633 in PBS, then precipitated 

according to the methanol-chloroform precipitation protocol described in the Invitrogen 

Click-iT kit handbook.  The protein pellets were resuspended in 8 M urea buffer, and 

protein concentration was measured using the BCA Assay kit.  Dyed lysate was used at a 

concentration of 0.25 mg/mL in experiments with beads. 

To measure the beads per unit volume, OD400 was measured on the plate reader.  

To measure the signal of Fluor488, samples were excited at 488 nm (bandwidth: 20 nm) 

and signal was read at 530 nm (bandwidth: 20 nm).  To measure the signal of AF633, 

samples were excited at 633 nm (bandwidth: 5 nm) and signal was read at 660 nm 

(bandwidth: 5 nm).  Fluorescence values were divided by OD400 values for normalization. 

 

Cell lysate preparation.  A cell pellet corresponding to approximately 5 mL of a 

given E. coli culture was resuspended in 500 µL Lysis Buffer at 4°C, lysed with 

mechanical disruption using OmniLyse cell lysis kits, and clarified of cellular debris via 

centrifugation (10 min x 10,000 g at 4°C).  The concentration of soluble protein was 

determined with the BCA Assay kit.  If lysates were not used the same day they were 

prepared, they were stored at -80°C and used within two weeks.     

 

Amine functionalization of Maven glass slides.  Microscope slides from Maven 

Biotechnologies were prepared for vapor phase deposition of APTES 
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((3-aminopropyl)triethoxysilane) by cleaning with RCA-1 (30% hydrogen peroxide, 

ammonium hydroxide, and RO water at a 1:1:10 ratio) and washing with DI water 3 

times. Excess water was removed with N2 gas, and slides were dried in an oven at 70-

80°C for 1 hr.  Slides were allowed to equilibrate to room temperature and placed in a 

vacuum desiccator.  Then 2 microcentrifuge tubes, each containing 100 µL APTES, were 

placed inside the vacuum desiccator. The chamber was evacuated to 22 mm Hg and 

slides were incubated for at least 2 hr.  Slides were stored at room temperature away from 

light prior to use. 

 

Microarray printing.  Microarrays were contact printed with a SpotBot Personal 

Microarray System using a 946 MP4 pin with approximately a 135 µm spot size on a 300 

µm pitch.  Microscope slides were washed 3 times with PBS-T and DI water and dried 

completely with N2 gas. Control spots of 0.1 mg/mL BSA in TBS-T and 0.5 mg/mL 

polyethylene glycol (PEG, MW 35000) were printed, as were DIBO-NHS, ADIBO-NHS, 

ADIBO-PEG5-NHS, and methyl-PEG4-NHS in anhydrous DMSO and 0.5 mg/mL PEG. 

All arrays were printed in 55–65% humidity in under 1.5 hr. Spots were allowed to dry 

slowly in a humidified chamber, and slides were stored under N2 gas with desiccant at  

-20°C. 

 

LFIRE experiments with lysate samples.  Maven amine-coated glass slides with 

printed microarrays were washed 3 times with PBS-T, mounted on a glass prism with 

index matching oil, and loaded into the LFIRE instrument. The optimal angle for the total 

internal reflection measurement, one that maximized the difference in signal between 

background and microarray spots, was determined.  Each microarray was blocked with 

0.25 mg/mL BSA in TBS-T for 1 hr and washed 5 times with TBS-T. Cell lysates 

containing recombinant proteins of interest were added at a final concentration of 0.5 

mg/mL. The microarrays were incubated with lysates for approximately 1 hr, then 

washed 8 times with TBS-T.  LFIRE data from each microarray were captured at 

approximately 80–120 second intervals throughout the experiment.  All experiments were 

performed at room temperature. 
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LFIRE data analysis.  The LFIRE instrument captures data in 16-bit grayscale 

TIFF units. These data were analyzed using the ImageJ software package.  First, images 

from one experiment were placed in sequential order, stacked, and image stabilized.  The 

image immediately preceding the addition of cell lysate was subtracted as a baseline from 

the sequence.  Plots of the change in microarray surface and surface profile pixel 

intensities were generated using the Surface Plot and Plot Profile functions in ImageJ.  To 

extract data from each microarray spot, regions of interest (ROIs) of uniform size were 

drawn around each spot, and the average pixel intensity from each ROI at each time point 

was exported to Microsoft Excel.  For GFP-containing samples, data from replicate 

microarray spots were averaged and normalized to the average pixel intensity of the BSA 

spots, yielding data in relative ellipsometry units (REU).  For CaN- and CaM-containing 

samples, data were not normalized to BSA spot intensities and are reported as TIFF units.  

All graphs were prepared with Prism software (GraphPad Software). 
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CHAPTER V 
 

Progress toward the In Vivo 

Visualization of Individual Bacterial 

Proteins after N-Terminal Labeling 
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ABSTRACT 

In previous chapters, we have taken advantage of the orthogonality exhibited by 

NMT toward the bacterial proteome.  This feature of NMT enabled in-lysate surface 

coupling of three different proteins that had been labeled by NMT, as summarized in 

Chapter IV.  Here, we describe efforts toward applying NMT-mediated protein labeling 

to the selective functionalization of bacterial proteins of interest in order to visualize 

them in live cells and study their localization patterns. 

Our initial attempts at such imaging experiments were complicated by the fact 

that thorough washing was not sufficient to remove unbound 12-ADA from cells; in fact, 

12-ADA may be incorporated into the cell membrane by endogenous enzymes.  Thus, we 

sought a different azide fatty acid that would be transferred by NMT to substrate proteins, 

but that could also be washed out of cells. We found that 7-azidoheptanoic acid fulfilled 

both of these criteria, as described in this chapter.  We also selected two proteins for 

initial studies, PyrG and MreB, both of which are known to undergo spatiotemporal 

localization in bacterial cells.  Cloning and expression were completed for both proteins, 

and an engineered MreB construct was found to be robustly labeled by NMT in live cells 

with both 7-azidoheptanoic acid and 12-ADA.  These results will be useful in future 

applications of the NMT-mediated protein labeling system to detailed imaging studies of 

bacterial protein organization. 
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INTRODUCTION 

Organization and Localization of Bacterial Proteins 

It has long been believed that bacteria do not exhibit sophisticated spatiotemporal 

orchestration of their proteins and other biomolecules.  Biology textbooks have generally 

depicted mammalian cells in great detail, with complex organelles that migrate precisely 

in space and time, while describing prokaryotes in more simple terms.  In a marked shift, 

recent research has shown that bacteria actually do organize and localize their proteins to 

a much greater degree than previously thought.1–3  Powerful imaging techniques, such as 

stochastic optical reconstruction microscopy (STORM) and electron cryotomography 

(ECT), have enabled scientists to study bacteria at resolutions that are orders of 

magnitude higher than those offered by traditional light microscopy.2,4  These 

developments and changes in the state of the field are summarized in the following 

selection from an essay written by Professor Bonnie Bassler, a leading microbiologist at 

Princeton University: 

 

 “Eukaryotes have long been known to possess sophisticated subcellular 

architecture in which DNA, RNA, and proteins are localized to the right place at 

the right time. Bacteria, in contrast, have until recently been thought to be 

unorganized bags of goop. Consequently, cell biology was generally restricted to 

eukaryotes. However, remarkable recent advances in imaging technologies… 

have made it so that we can now peer into bacterial cells as we traditionally 

peered into bigger eukaryotic cells. These technologies have revealed that 

bacteria are decidedly organized.”  (Adapted from Reference 5.) 
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NMT-Mediated Protein Labeling for Imaging Studies in Bacteria 

After developing the GFP/NMT model system described in Chapter II and 

confirming that NMT is selective toward engineered substrate proteins in bacteria, we 

recognized that NMT-mediated protein labeling could be a very useful tool for 

visualizing and studying individual bacterial proteins.  By adding an NMT recognition 

sequence to a bacterial protein of interest, we postulated that we could selectively label 

the protein with 12-ADA and react it with a cyclooctyne dye for imaging.  To test this 

hypothesis, we first attempted to utilize the original model system: Fyn-GFP and hNMT2 

were co-expressed in bacteria in the presence of 12-ADA, and cells were treated with a 

cyclooctyne-lissamine-rhodamine dye.  Initial results seemed promising, though the 

control experiment shown in Figure V-1 yielded an unexpected result: some cells 

appeared fluorescent even when no substrate protein was expressed. 

 

Figure V-1.  Confocal microscope images of live cells expressing no 

NMT substrate protein, after reaction with lissamine-rhodamine non-

fluorinated cyclooctyne dye (LR-NoFo).  Cells that were not exposed to 

12-ADA were dark (left panels), while prior exposure to 12-ADA 

yielded a fluorescence signal (right panels), despite the lack of a 

substrate protein for NMT to label with 12-ADA. 



V-5 
 
Based on the work described in Chapter II, we were confident that NMT was not labeling 

endogenous bacterial proteins.  Thus, we concluded that 12-ADA, unlike the LR-NoFo 

dye, was not removed from cells by standard wash conditions that are compatible with 

live cells.  In fact, 12-ADA may be transported into cells by bacterial enzymes 

responsible for the uptake of exogenous fatty acids; these fatty acids may then serve 

different functions within the cell, including structural roles in the cell membrane.6  In 

any case, 12-ADA appeared to be interacting with bacterial cells in a manner that 

rendered it unsuitable for our proposed live-cell imaging studies. 

In subsequent sections of this chapter, we describe our investigation of other azide 

fatty acids (FAs) to use in place of 12-ADA for imaging experiments.  Specifically, we 

tested azide FAs with shorter chain lengths, searching for at least one that would be (a) 

bound and transferred by NMT to a substrate protein, and (b) washed out of cells in its 

free form without the use of harsh wash conditions.  Using a combination of lysate and 

live-cell dye-labeling experiments, we identified a promising candidate, 7-azidoheptanoic 

acid.  The azide FAs that we tested and the experimental outcomes are described below. 

 

PyrG and MreB 

In addition to finding a suitable azide FA for imaging experiments, we also 

undertook the task of engineering two bacterial proteins for labeling by NMT.  The 

proteins we selected are PyrG and MreB, shown in Figure V-2. 
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Figure V-2.  Overview of the structures and localization patterns of 

PyrG and MreB.  The black arrows point to the N-terminus on the 

crystal structures of PyrG (A) and MreB (B).  In both proteins, the 

N-terminus appears to be surface-accessible.  Confocal images of 

mCherry fluorescent protein fusions to PyrG (C) and MreB (D) in 

E. coli show that PyrG forms straight filamentous structures, while 

MreB adopts a helical pattern along the length of the cell.  Adapted 

from References 7-10. 

 

PyrG is a 60-kDa enzyme involved in converting UTP to CTP, and it also plays 

important structural roles in the cell; the interplay between its enzymatic and physical 

functions is currently under investigation.9  PyrG is the E. coli homolog of a protein 

known as Ctp synthase (CtpS) in other bacterial species, such as C. crescentus.9  As 

shown in Figure V-2C, an mCherry-PyrG fusion protein was shown to form long 

filamentous structures along the cell membrane; PyrG also self-assembles into filaments 

in its purified form.9  We selected PyrG for further studies involving NMT labeling 

because it assembles into clear structures and also appears to perform interesting 

functions in the cell. 
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MreB is the primary bacterial homolog of actin.11  Like PyrG, this 37-kDa protein 

has been expressed, purified, and structurally characterized.  The crystal structure 

depicted in Figure V-2B is of the Thermotoga maritima form of MreB, which is 54% 

identical (70% related) to the E. coli form.  In cells, MreB appears to assemble into 

filaments that in turn organize into a helical structure along the length of the cell (Figure 

V-2D).  The length of the individual filaments is under continued investigation,12 but they 

appear to play a role in maintaining the overall structure of the cell as well as contributing 

to cell motility.10  We selected MreB for NMT-mediated protein labeling studies because, 

like PyrG, it forms interesting structures in the cell, and it is an early example of a 

bacterial protein whose localization patterns are actively regulated in vivo. 

 

 

RESULTS AND DISCUSSION 

Studies of Azide Fatty Acid Analogs: Dye-Labeling Lysate 

The structures of the azide FAs described in this chapter are shown in Chart V-1. 
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Chart V-1.  Azide fatty acids (azide FAs) and cyclooctyne-coumarin 

dye utilized for in vivo labeling studies in bacteria.  FA 7 is 12-ADA. 

 

 

The azide FAs (1-7) were prepared by a former post-doctoral scholar in the Tirrell Group, 

Dr. Janek Szychowski, in a manner similar to that described in Chapter II for the 

synthesis of 12-ADA.  The cyclooctyne-coumarin dye (8) utilized for the in vivo 

experiments described later in this chapter was prepared as previously described, also by 

Dr. Szychowski.13  Cyclooctyne 8 is known to cross the cell membrane of mammalian 

cells and react selectively with azide-tagged biomolecules without harming cells.  Its use 

in bacteria has not yet been reported, though we surmised that it would behave similarly 

in E. coli as in mammalian cells. 

First, we investigated the extent to which each of the azide FAs was transferred 

by NMT to a substrate protein.  For these experiments, we utilized the Fyn-GFP/hNMT2 
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co-expression system described in Chapter II.  Protein expression, cell harvesting, and 

cell lysis were carried out as previously described; the only difference was that no fatty 

acid or one of the azide FAs in Chart V-1 was added to the expression flasks instead of 

12-ADA when inducing protein expression.  Lysates were treated with alkyne-TAMRA 

to enable detection of azide-labeled protein, as described in Chapters II and III, and 

analyzed by SDS-PAGE (Figure V-3). 

 

Figure V-3.  SDS-PAGE analysis of lysate samples from Fyn-GFP/ 

hNMT2 co-expression cultures exposed to different azide FAs.  

Samples were treated with alkyne-TAMRA for detection of azide-

labeled Fyn-GFP.  The gel was stained with Coomassie colloidal blue 

(A) and imaged for TAMRA signal (B).  Fluorescent bands indicate 

successful and selective transfer of an azide FA onto Fyn-GFP.  Lanes 

correspond to cultures exposed to the following azide FAs: 1: no fatty 

acid; 2: FA 1, 3: FA 2, 4: FA 3, 5: FA 4, 6: FA 5, 7: FA 6, 8: FA 7. 
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We were pleased to find that azide FA 4, i.e., 7-azidoheptanoic acid, and FAs 

longer than 4 were appended by NMT to Fyn-GFP, as evidenced by the fluorescent bands 

in Figure V-3B (Lanes 5-8).  The brighter appearance of the fluorescent band in the FA 4 

lane (Lane 5) compared to the fluorescent bands for FAs 6 and 7 (Lanes 7-8) is simply an 

artifact of differences in protein loading across lanes, as confirmed by similar 

experiments culminating in SDS-PAGE analysis; when lanes were equally loaded with 

protein samples, we observed brighter TAMRA fluorescence for FAs 6 and 7, as might 

be expected (data not shown) .  The sharp drop-off in signal for azide FAs shorter than 4 

is in agreement with in vitro work carried out by the Gordon Lab with FAs possessing 

alkyl chains of varying lengths.14 

One other notable feature of the gel image in Figure V-3B is the weak second 

band in the FA 4 lane (Lane 5).  It is possible that FAs 4 and 5, 7-azidoheptanoic acid and 

8-azidooctanoic acid, respectively, may be utilized by lipoic acid ligase (also known as 

lipoate protein ligase) to label its substrate proteins; use of octanoic acid by this enzyme 

instead of lipoic acid has been documented when the concentration of lipoic acid is low 

or the concentration of octanoic acid is particularly high.15  We found in separate 

experiments that titrating just 100 µM free lipoic acid into the expression system 

eliminated the second band altogether (data not shown).  Thus, if background labeling of 

lipoic acid ligase substrates with FA 4 does appear to interfere with visualizing a protein 

of interest during live-cell imaging, then addition of a small amount of lipoic acid should 

address the problem.  However, given that the lower band in Lane 5 is significantly 

weaker than the Fyn-GFP band, this issue may not even arise in the context of 

microscopy experiments. 
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Studies of Azide Fatty Acid Analogs: Dye-Labeling Live Cells 

Next, we examined how effectively each of the azide FAs 1-7 could be washed 

out of cells.  In the first set of experiments described here, no substrate protein was 

expressed, yielding an experimental set-up similar to that in Figure V-1.  Four hours after 

the addition of no fatty acid or one of the azide FAs 1-7 to the expression flask, cells 

were harvested, but were not lysed.  Instead, samples were thoroughly washed, treated 

with cyclooctyne-coumarin 8, washed again, and analyzed on a 96-well plate reader.  

Coumarin fluorescence as well as cell density were measured so that fluorescence 

measurements could be normalized.  Both FA 1 and FA 4 produced a very low 

fluorescence signal (Figure V-4), indicating that those FAs were effectively washed out 

of cells prior to dye-labeling.  Interesting, FAs 1 and 4 are both relatively short and 

possess an odd number of carbons. 

 

Figure V-4.  Fluorescence signal of live E. coli cells after addition of 

an azide FA to the growth culture and subsequent dye-labeling with 

cyclooctyne-coumarin 8.  The azide FA added to each culture is 
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denoted as in Chart V-1.  Each fluorescence value represents the 

average of a triplicate set of identical cultures, + standard deviation.  

Fluorescence values were normalized by cell density (OD600) and were 

background-corrected via subtraction of the fluorescence value of a 

control culture that was treated with 8 but not exposed to a FA.  These 

experiments identified azide FA 4 as a promising candidate for in vivo 

labeling studies. 

 

In a follow-up set of experiments, we again tested FAs 4 and 7 (7-azidoheptanoic 

acid and 12-ADA, respectively), now alongside additional controls.  We grew cultures 

and dye-labeled cells as above, but we also prepared a sample that was exposed to neither 

a fatty acid nor cyclooctyne-coumarin 8, and a sample that was exposed to myristic acid 

and 8.  These controls provided some insight into the potential interference of cellular 

autofluorescence (i.e., the sample not treated with 8), the degree of nonspecific 

interaction between 8 and cellular components (i.e., the sample exposed to 8 but not to a 

fatty acid), and the degree of nonspecific interaction between 8 and an unreactive fatty 

acid (i.e., sample exposed to 8 and myristic acid).  Furthermore, we grew parallel cultures 

in which no substrate protein was expressed or Fyn-GFP and hNMT2 were co-expressed. 
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Figure V-5.  Fluorescence signal of live E. coli cells after addition of 

no FA (“–FA”), myristic acid (“Myr”), or an azide FA (4 or 7), 

followed by dye-labeling with cyclooctyne-coumarin 8.  Cells exposed 

to neither a FA nor 8 (“–FA, –dye”) served as a control.  Cells 

expressed no substrate protein (yellow bars) or co-expressed Fyn-GFP 

and hNMT2 (green bars).  Each fluorescence value represents the 

average of a duplicate set of identical cultures, + standard deviation.  

All fluorescence signals were normalized by cell density (OD600). 

 

The data, summarized in Figure V-5, provide some interesting results.  We were 

pleased to find that the fluorescence of cultures to which 4 was added was similar to that 

of cultures exposed to no fatty acid or to myristic acid prior to dye-labeling with 8.  This 

similarity indicates that the fluorescence observed for cultures exposed to 4 is essentially 

background fluorescence due to some coumarin dye remaining in cells after washing, 

unrelated to the fatty acid alkyl chain or the azide moiety of 4.  The results also indicate 

that almost half the background signal in each set of samples is simply cellular 
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autofluorescence, as illustrated by the “–FA, –dye” samples.  As expected, cultures 

exposed to 7 were considerably brighter than cultures exposed to 4 and the three controls.  

This result is in line with the observations associated with Figure V-1: azide FA 7 is not 

removed from cells by standard wash procedures and consequently reacts with 

cyclooctyne-coumarin 8. 

Surprisingly, the fluorescence signal for the Fyn-GFP/hNMT2 culture exposed to 

7 was almost double that of the culture exposed to 4, despite dye-labeling experiments in 

lysate (Figure V-3B) indicating that NMT transfers 4 to Fyn-GFP as well as it transfers 7.  

It is possible that cyclooctyne-coumarin 8, though membrane-permeable in mammalian 

cells, does not cross the bacterial cell membrane/cell wall to the same extent; in this 

scenario, most of the fluorescence in our live-cell experiments would arise from alkyne-

reactive cell membrane components (i.e. azide FA 7) rather than proteins inside the cell 

(i.e. Fyn-GFP labeled with 4 or 7) reacting with 8.  Future work probing the behavior and 

membrane permeability of coumarin 8 in live bacteria should elucidate the cause of this 

discrepancy. 

Finally, it may be worthwhile to confirm that FA 4 is not elongated or otherwise 

processed within the cell prior to binding by NMT.  The methods described in Chapters II 

and III for whole-protein LC-MS studies would be readily applicable to this problem: 

Fyn-GFP co-expressed with NMT in the presence of FA 4 would be purified and 

subjected to LC-MS, in order to verify the appearance of a mass shift corresponding to 

the addition of one molecule of FA 4.  It seemed unlikely that enzymatic elongation is 

occurring, given the difference in data sets obtained for FAs 4 and 7 in live-cell dye-
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labeling experiments.  Thus, we moved forward as planned with experiments involving 

engineered substrate proteins. 

For experiments with engineered PyrG and MreB constructs, described in the next 

section, we proceeded with FA 4, 7-azidoheptanoic acid, which fulfills both criteria 

established earlier for an azide FA to be suitable for imaging studies: FA 4 is transferred 

to substrate proteins by NMT, and free FA 4 is removed from live cells upon completion 

of a standard wash protocol. 

 

Preparation and Evaluation of yARF-PyrG and yARF-MreB Constructs 

As noted earlier, the bacterial proteins PyrG and MreB were selected for NMT-

mediated protein labeling studies.  Both proteins were engineered to display the yARF 

NMT recognition sequence (MGLFASK) described in Chapters II and III.  Rather than 

using a recombinant plasmid as the PCR template, as we had done for all previous 

cloning projects, we used genomic DNA isolated from E. coli cells as the template for 

PCR amplification.  The final yARF-PyrG and yARF-MreB constructs were transformed 

into E. coli BL21(DE3) competent cells already harboring the hNMT1 plasmid. 

Co-expression cultures were grown in LB medium as described in Chapters II and III, 

with the addition of no fatty acid, 4, or 7 when protein expression was induced.  Samples 

were collected at regular time points (30, 60, 90, and 120 min) to monitor cell density, 

protein expression, and extent of protein labeling for each culture.  Growth curves are 

presented first, in Figure V-6. 
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Figure V-6.  Growth rates for co-expression cultures of yARF-

PyrG/hNMT1 (A) and yARF-MreB/hNMT1 (B).  Cell density (OD600) 

was measured at 30-min intervals and plotted as a function of time.  

Addition of an azide FA (4 or 7) does not appear to impact cell growth 

for either protein.  Expression of yARF-MreB has a larger effect on cell 

growth than expression of yARF-PyrG. 
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In contrast with our earlier work involving GFP, CaN, and CaM, the experiments 

in this chapter involve engineered versions of proteins that are endogenous to bacteria 

and that perform important functions for proper cell functioning.  Thus, we were curious 

how the expression of yARF-PyrG or yARF-MreB and addition of 4 or 7 would affect 

cell growth, as measured by cell density (OD600).  For both the yARF-PyrG/hNMT1 and 

yARF-MreB/hNMT1 cultures, addition of an azide FA appeared to have little or no 

impact on growth rates, an encouraging sign with regard to utilizing NMT-mediated 

protein labeling to study bacterial proteins.  Expression of yARF-PyrG did not appear to 

impact cellular health as measured by cell density, which increased normally with time.  

However, expression of yARF-MreB did have a negative effect on growth, evidenced by 

a plateau in cell density after induction.  For future work, it will be worthwhile to place 

each construct under the control of native promoters in order to achieve endogenous 

levels of protein expression, as well as to limit expression to the appropriate times and 

places in the cell.  It will also be important to examine any changes to protein structure 

and function resulting from addition of an NMT recognition sequence and 12-ADA. 

At each time point, cells were also collected and lysed in order to determine the 

level of protein expression and the extent of labeling by NMT.  Lysate samples were 

treated with alkyne-TAMRA, precipitated, resuspended, and analyzed by SDS-PAGE, as 

described in Chapters II and III.  Examination of the results for yARF-PyrG (Figure V-7) 

indicate that the protein is expressed rapidly and robustly, though almost no NMT 

labeling is observed.  It is possible that the yARF-PyrG protein N-terminus is 

inaccessible to NMT in the protein’s folded state; it could be that the assembly of PyrG 

monomers into filaments blocks access to the N-terminus of individual protein 
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monomers; or in either of these scenarios, it is possible that the N-terminus is indeed 

labeled by NMT but is inaccessible for reaction with alkyne-TAMRA.  One or more of 

these factors, or others, could contribute to the lack of yARF-PyrG labeling by NMT, 

despite high expression levels. 
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Figure V-7.  SDS-PAGE analysis of lysate samples from yARF-PyrG/ 

hNMT1 co-expression cultures to which no FA, azide FA 4, or azide 

FA 7 was added.  Bacterial culture samples were collected at 30, 60, 

90, and 120 min, and resultant lysates were treated with alkyne-

TAMRA for detection of azide-labeled yARF-PyrG.  The gel was 

imaged for TAMRA signal (A) and stained with Coomassie colloidal 

blue (B).  The lack of fluorescent bands indicates poor labeling of 

yARF-PyrG by NMT, though the strong Coomassie-stained bands near 

62 kDa indicate successful expression. 
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Identical experiments were carried out with samples from yARF-MreB/hNMT1 

co-expressions.  Again, lysate samples were treated with alkyne-TAMRA, precipitated, 

resuspended, and analyzed by SDS-PAGE.  The results shown in Figure V-8 indicate that 

yARF-MreB expresses well and is labeled by NMT with either FA 4 or 7, a promising 

finding with regard to using 4 for future imaging studies.  Furthermore, high levels of 

protein expression and labeling were observed for yARF-MreB within just 30 min.  We 

anticipate that even shorter expression times could be used, thus providing a more 

accurate snapshot of yARF-MreB localization at a given point in time or in response to a 

particular stimulus. 
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Figure V-8.  SDS-PAGE analysis of lysate samples from yARF-MreB/ 

hNMT1 co-expression cultures to which no FA, azide FA 4, or azide 

FA 7 was added.  Bacterial culture samples were collected at 30, 60, 

90, and 120 min, and resultant lysates were treated with alkyne-

TAMRA for detection of azide-labeled yARF-MreB.  The gel was 

imaged for TAMRA signal (A) and stained with Coomassie colloidal 

blue (B).  The strong Coomassie-stained bands near 38 kDa and the 

corresponding TAMRA bands indicate rapid expression of yARF-

MreB and robust labeling by NMT. 
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CONCLUSION 

We have developed and evaluated nearly all of the necessary components to apply 

NMT-mediated protein labeling to the selective in vivo visualization of specific bacterial 

proteins.  As with the GFP-based model system described in Chapter II, a reactive fatty 

acid, NMT, and a substrate protein are required.  We evaluated a family of azide fatty 

acids with varying chain lengths and identified 7-azidoheptanoic acid as a promising 

candidate for imaging studies: our experiments demonstrate that this azide fatty acid is 

transferred to substrate proteins by NMT, like 12-ADA, and can be washed out of cells, 

unlike 12-ADA.  We also prepared two novel non-natural substrates for NMT labeling, 

yARF-PyrG and yARF-MreB, derived from proteins that exhibit interesting localization 

patterns in cells.  Cloning and expression of both constructs was successful, and yARF-

MreB was shown to be labeled efficiently by NMT with 7-azidoheptanoic acid. 

The final steps in this project include placement of yARF-MreB under the control 

of endogenous promoters, investigation of the impact of protein engineering and labeling 

on yARF-MreB, and ultimately, completion of live-cell imaging experiments.  Options 

for protein visualization include the treatment of cells with a cyclooctyne fluorophore 

followed by confocal microscopy, or possibly the use of ECT with an appropriate probe.  

In addition, the cloning and protein labeling methods summarized herein could be applied 

to other proteins of interest in bacteria.  The progress described here is a promising start 

towards employing NMT in detailed studies of the complex and fascinating internal 

environment of bacterial cells. 
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EXPERIMENTAL SECTION 

Materials 

Synthesis of azide fatty acids.  The starting materials (bromo-, iodo-, or chloro-

acids) were purchased from Aldrich.  Silica gel 60 was purchased from EMD Chemicals.  

Sodium azide and all solvents were purchased from VWR. 

 

Lysate studies with azide fatty acids.  The BL21(DE3)/Fyn-GFP/hNMT2 

bacterial co-expression system was described in Chapter II.  A control cell strain lacking 

pQE80_Fyn-GFP was also used.  LB medium was composed of 10 g tryptone (casein 

hydrolysate), 5 g yeast extract, and 10 g NaCl per liter.  All media was autoclaved before 

use.  Kanamycin (Kan) was used at a working concentration of 35 μg/mL, and ampicillin 

(Amp) was used at a working concentration of 200 μg/mL.  Myristic acid was purchased 

from Fluka.  All optical density (OD) values were measured at 600 nm on a Cary UV-Vis 

spectrophotometer.  Lysate samples were treated with the reagents and according to the 

protocols of the Click-IT Tetramethylrhodamine (TAMRA) Protein Analysis Detection 

Kit from Invitrogen.  Lysis Buffer was 1% SDS, 50 mM Tris-HCl, pH 8.0, as 

recommended by Invitrogen.  After reaction with alkyne-TAMRA and precipitation, 

protein samples were run on Invitrogen NuPAGE Novex 4–12% Bis-Tris pre-cast gels 

and imaged on a GE Typhoon laser scanner.  Gels were stained with Coomassie colloidal 

blue from Invitrogen. 

 

Live-cell dye-labeling studies with azide fatty acids.  Materials for expression 

cultures are as indicated above for “Lysate studies with azide fatty acids,” though cells 

were not lysed after harvesting.  Instead, cells were dye-labeled with cyclooctyne-

coumarin, prepared by Dr. Janek Szychowski as previously reported,13 and washed with 

phosphate-buffered saline (PBS).  Fluorescence measurements were collected on a Tecan 

96-well plate reader. 

 

Cloning.  All oligonucleotide primers were ordered from IDT.  Polymerase chain 

reaction (PCR) experiments were carried out in a BioRad DNA Engine Peltier Thermal 

Cycler using PfuTurbo DNA Polymerase (Stratagene/Agilent).  Genomic DNA, isolated 
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from E. coli BL21 (DE3) cells with the Qiagen DNEasy kit, served as the template DNA 

for PCR reactions.  All restriction enzymes, restriction enzyme buffers, bovine serum 

albumin (BSA), and ligase were purchased from New England BioLabs (NEB).  NEB 

DNA Ladders (100 bp and 1  kbp “Quick-Load”) were used as markers for all DNA 

agarose gels, which were visualized with the addition of Plus One ethidium bromide 

solution from Amersham Biosciences on a UVP UV Transilluminator.  Zymo Agarose-

Dissolving Buffer (ADB) and Zymo Spin II columns, with their associated buffers, were 

used to purify DNA out of agarose gels.  All plasmid DNA acquisition from cells was 

completed using the Qiagen Spin Miniprep Kit and columns.  All sequencing requests 

were fulfilled by Laragen. 

 

Time-course growth and expression studies.  BL21(DE3)/yARF-PyrG/hNMT1 

and BL21(DE3)/yARF-MreB/hNMT1 cell strains were prepared by transforming each 

final construct in pQE80 into BL21(DE3) competent cells already harboring the hNMT1 

plasmid.  The plasmid encoding hNMT1 and methionine-aminopeptidase (Met-AP) was a 

gift from the laboratory of Professor Richard Kahn at Emory University (Atlanta, GA).16  

Otherwise, all materials are identical to those listed above for “Lysate studies with azide 

fatty acids.” 

 

Methods 

Synthesis of azide fatty acids.  Azide fatty acids were prepared by Dr. Janek 

Szychowski with methods similar to those described in Chapter II for the synthesis of 12-

azidododecanoic acid (12-ADA).  The starting material for each compound was the 

bromo-, iodo-, or chloro-acid.  After reaction with sodium azide and a work-up 

procedure, each compound was isolated by rotary evaporation and characterized by ESI-

MS and 1H NMR. 

 

Lysate studies with azide fatty acids.  The BL21(DE3)/Fyn-GFP/hNMT2 

bacterial co-expression system, described in Chapter II, was utilized for studies with the 

different azide FAs.  (Control cultures lacking pQE80_ Fyn-GFP were also grown.)  In 

summary, overnight cultures were diluted into fresh LB, and expression cultures were 
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grown in an incubator-shaker (37°C, 250 rpm).  Protein expression was induced with 

IPTG (1 mM, from 1 M stock in water) when the OD600 value was between 0.8 and 1.1.  

(In control cultures lacking pQE80_Fyn-GFP, no protein expression was induced.)  

Either no fatty acid or one of the azide fatty acids in Chart V-1 (500 µM, from 500 mM 

stock in DMSO) was also added at the time of induction.  After 4 hr of protein 

expression, cells were harvested via centrifugation and the final OD600 value was 

measured.  Cell pellets were lysed according to the following formula: 50 µL Lysis 

Buffer per mL culture per OD600 unit.  Crude lysates were centrifuged once more, and the 

supernatant (clarified lysate) was reacted with alkyne-TAMRA according to the protocols 

supplied by Invitrogen, as described in Chapter II.  Samples were precipitated following 

the methanol-chloroform precipitation protocol described in the same kit instructions, and 

they were analyzed  by SDS-PAGE.  To detect TAMRA signal on the Typhoon, the 532 

nm laser served as the excitation source (filter set: 580 BP 30).  Gels were stained with 

Coomassie colloidal blue, then imaged again, with the 633 nm laser now serving as the 

excitation source (no filter). 

 

Live-cell dye-labeling studies with azide fatty acids.  Cultures were grown 

identically as indicated above for “Lysate studies with azide fatty acids,” except that cells 

were not lysed after harvesting.  Instead, cells were washed with PBS 3 times to remove 

excess azide FA, dye-labeled with 50 µM cyclooctyne-coumarin for 30 min at 37°C, and 

washed again to remove excess dye.  Absorption and fluorescence measurements were 

collected on a plate reader.  To measure the cells per unit volume, OD600 was measured 

on the plate reader.  To measure cyclooctyne-coumarin fluorescence, samples were 

excited at 380 nm (bandwidth: 5 nm) and signal was read at 475 nm (bandwidth: 5 nm).  

Fluorescence values were divided by OD600 values for normalization. 

 

Cloning.  Genomic DNA isolated from E. coli BL21(DE3) cells served as the 

template DNA for preparation of both yARF-PyrG and yARF-MreB.  Primers were 

designed to encode the yARF recognition sequence (MGLFASK, from ATG GGT CTG 

TTC GCG TCT AAA) at the 5′ end of the gene and a 6xHis tag at the 3′ end of the gene, 

as well as appropriate restriction sites.  The yARF-PyrG and yARF-MreB PCR products 
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were digested with EcoRI and HindIII and ligated into pQE80 digested with the same 

enzymes.  (Constructs were also prepared in pET-15b, though they were not utilized for 

further protein expression studies; similar PCR products were prepared, digested with 

NcoI and XhoI, and ligated into pET-15b that had been digested with the same enzymes.) 

All four constructs (pQE80_yARF-PyrG, pQE80_yARF-MreB, pET-15b_yARF-PyrG, 

and pET-15b_yARF-MreB) were transformed into DH-10b competent cells and plated.  

Colonies were selected for inoculation of cultures from which DNA was isolated and 

submitted for sequencing.  Each final construct was transformed into competent cells 

already harboring an NMT plasmid for co-expression experiments. 

 

Time-course growth and expression studies.  Co-expression of yARF-PyrG or 

yARF-MreB with hNMT1 was performed in a manner identical to that described in 

Chapter II and summarized above in the “Lysate studies with azide fatty acids” section.  

When inducing protein expression with IPTG, no fatty acid, FA 4 (7-azidoheptanoic 

acid), or FA 7 (12-ADA) was also added to the expression flask (500 µM, from 500 mM 

stock in DMSO).  Samples were collected after 30 min, 60 min, 90 min, and 120 min of 

protein expression.  At each time point, cells were harvested via centrifugation (10 min x 

10,000 g at 4°C).  To prepare growth curves, the OD600 of each time-point sample was 

also measured on a UV-Vis spectrophotometer.  Cell pellets were lysed according to the 

following formula: 50 µL Lysis Buffer per mL culture per OD600 unit.  Crude lysates 

were centrifuged once more, and the supernatant (clarified lysate) was reacted with 

alkyne-TAMRA according to the protocols supplied by Invitrogen, as described in 

Chapter II.  Samples were precipitated following the methanol-chloroform precipitation 

protocol described in the same kit instructions, and they were analyzed  by SDS-PAGE.  

To detect TAMRA signal on the Typhoon, the 532 nm laser served as the excitation 

source (filter set: 580 BP 30).  Gels were stained with Coomassie colloidal blue, then 

imaged again, with the 633 nm laser now serving as the excitation source (no filter). 
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SUMMARY OF THESIS WORK 

All of the projects presented in this thesis involve the use of N-myristoyl 

transferase (NMT) to achieve selective and site-specific protein labeling in bacteria.  

Both in vitro and in live cells, NMT catalyzes the transfer of myristic acid, a fatty acid, to 

the N-terminus of its substrate proteins.  While NMT plays important roles in eukaryotes, 

such as regulating signal transduction via myristoylation of its substrate proteins and 

enabling the infectivity of HIV and other viruses,1,2 we examined NMT from the 

perspective of protein engineering.  Specifically, we sought to exploit the tolerance of 

NMT toward reactive analogs of myristic acid and the ability of NMT to label engineered 

proteins displaying a recognition sequence derived from a natural substrate.  Additional 

strengths that NMT naturally possesses are its specificity for the protein N-terminus, an 

attractive site for subsequent protein conjugation,3 and its orthogonality toward 

endogenous bacterial proteins.4  We took advantage of all of these features to develop a 

novel site-specific protein labeling system, and we evaluated our NMT-based system for 

different applications. 

First, we constructed a bacterial model system for NMT-mediated protein 

functionalization, which required NMT itself, a test protein, and a reactive fatty acid 

tolerated by NMT.  For these initial studies, summarized in Chapter II, we prepared two 

GFP-based substrate proteins, yARF-GFP and Fyn-GFP, named for the corresponding 

known NMT substrates, yARF and Fyn.  In addition, we elected to incorporate 

12-azidododecanoic acid (12-ADA), which we synthesized and purified, in place of 

myristic acid; we were drawn to the azide moiety because it can participate in three 

different bioorthogonal reactions.5  Each GFP-based substrate protein was co-expressed 
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with NMT in E. coli in the presence of 12-ADA.  Purification of each substrate protein 

and subsequent mass spectrometry experiments confirmed that NMT transfers 12-ADA 

to the protein N-terminus in quantitative yields.  Treatment of lysate samples containing 

either engineered substrate protein with an azide-reactive fluorescent dye showed that 

NMT labeled only the substrate protein within the complex cellular environment of 

bacteria.  The work presented in Chapter II constitutes the first example of NMT-

mediated labeling of an engineered substrate protein with an analog of myristic acid. 

As described in Chapter III, the methods developed for the GFP-based model 

system were applied to two proteins, calcineurin (CaN) and calmodulin (CaM), that are 

involved in learning and memory formation in mammals.  CaN is naturally 

myristoylated; successful expression of CaN in bacteria actually requires co-expression 

with NMT in the presence of myristic acid.6  We found that substitution of 12-ADA for 

myristic acid had no impact on the activity of CaN, as measured in a phosphatase activity 

assay.  CaM is not naturally myristoylated, so we created a family of engineered CaM 

constructs and examined the impact that engineering and labeling had on the activity of 

each new protein.  One construct, hCaNB-CaM, retained wild-type levels of activity and 

was carried forward for surface coupling work.  Experiments similar to those described in 

Chapter II confirmed that NMT-mediated labeling of the CaN and CaM constructs was 

quantitative and selective. 

Chapter IV details our work with protein microarrays.  The yARF-GFP, CaN, and 

hCaNB-CaM proteins were each labeled with 12-ADA by NMT.  Lysate samples 

containing each labeled substrate protein were incubated with cyclooctyne-spotted glass 

slides, and protein deposition was detected with the LFIRE (Label-Free Internal 
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Reflection Ellipsometry) instrument as a change in height at the slide surface.  In this 

context, the orthogonality of NMT toward bacterial proteins is especially useful, as it 

enables surface immobilization of 12-ADA-labeled proteins without prior purification.  

To gain a better understanding of the kinetics of the azide-cyclooctyne reaction versus 

background reactions, we also measured the LFIRE signal over time.  We found that 

significant surface capture of our 12-ADA-labeled proteins occurred within only 15 

minutes, while the background signal remained relatively low.  Furthermore, by 

comparing the percent of lysate protein constituted by CaN or hCaNB-CaM with the 

percent of coupled protein determined to be CaN or hCaNB-CaM, we calculated 

enrichment factors of 26 and ten for CaN and hCaNB-CaM, respectively.  The methods 

we developed for our surface-coupling experiments comprise a strong foundation for 

completing high-throughput biochemical measurements with 12-ADA-labeled proteins 

captured directly out of lysate in a microarray format. 

In the final section, Chapter V, we summarize our progress toward using NMT-

mediated protein labeling to probe bacterial protein organization.  Recent research has 

demonstrated that prokaryotes orchestrate the expression and movement of their proteins 

with greater sophistication than previously thought.7,8  We believe that NMT would be an 

immensely useful tool for studying these phenomena, as NMT can functionalize a single 

predetermined substrate protein in bacteria for subsequent reaction with a dye or a probe.  

To that end, we identified an azide fatty acid, 7-azidoheptanoic acid, that is reactive, 

transferred by NMT to substrate proteins, and readily washed out of cells in its free form; 

in contrast, initial imaging experiments with 12-ADA showed that it is not removed from 

cells by standard wash protocols.  We also prepared constructs encoding the bacterial 
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proteins PyrG and MreB modified with the yARF recognition sequence; both PyrG and 

MreB assemble into complex structures in cells and exhibit interesting localization 

patterns.  Both yARF-PyrG and yARF-MreB expressed well, and the latter was robustly 

labeled with 7-azidoheptanoic acid or 12-ADA within 30 minutes.  The tools and 

materials prepared for these experiments constitute a strong start toward the use of 

NMT-mediated protein labeling for in vivo imaging of bacterial proteins of interest. 

In summary, the chapters comprising this thesis provide versatile methods and a 

strong case for the use of NMT in research projects involving site-specific 

functionalization of proteins.  Potential applications include the conjugation of proteins to 

polymers for therapeutic ends, to surfaces for diagnostic microarrays, or to fluorophores 

for imaging studies.  The N-terminus is well-suited for the covalent attachment of 

proteins to reactive partners because it is often surface-accessible, even in the folded state 

of a protein.  A number of chemoenzymatic protein labeling techniques have been 

developed in the past decade, each with its own benefits and drawbacks.9  The advantages 

of using NMT include the wide range of reactive myristic acid analogs that may serve as 

the fatty acid substrate, the small size of the recognition sequence required to achieve 

labeling of non-natural substrate proteins, and the orthogonality of NMT toward bacterial 

proteins.  We envision many exciting possibilities for future research involving NMT-

mediated protein labeling. 
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FURTHER STUDIES 

Activity Measurements of Surface-Immobilized CaN and hCaNB-CaM 

The larger goal of the work described in Chapter IV is the preparation of protein 

microarrays for high-throughput protein characterization studies, with an initial focus on 

measuring the activity of surface-bound CaN and hCaNB-CaM.  Various methods are 

available for measuring CaN and CaM activity levels; as described in Chapter III, we 

employed an assay involving colorimetric detection of free phosphate resulting from 

Ca2+/CaM-dependent dephosphorylation of a phosphopeptide substrate by CaN.  This 

approach could be adapted to measure free phosphate generated by surface-bound 

proteins, rather than proteins in solution, perhaps by making use of suitably derivatized 

96-well plates.  Other colorimetric assays have also been developed, such as 

dephosphorylation by CaN of para-nitrophenyl phosphate (pNPP).10  Alternatively, CaN 

or hCaNB-CaM could be immobilized on Biacor chips, enabling precise measurements of 

binding events.11  These applications and others will be explored in the future by my 

collaborator, Dr. Tamara Kinzer-Ursem, in her lab at Purdue University. 

 

Protein-Specific Imaging Studies in Bacteria 

As described in Chapter V, we have developed nearly all of the necessary 

components for selective in vivo labeling and visualization of yARF-MreB.  Dye-labeling 

experiments with lysates confirmed that bacterial co-expression of NMT and yARF-

MreB in the presence of 7-azidoheptanoic acid results in labeling of only yARF-MreB; 

dye-labeling experiments with intact live cells indicated that the use of 7-azidoheptanoic 

acid yields no fluorescence signal above background.  Thus, the next step is to dye-label 
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intact cells with a membrane-permeable and cytocompatible dye that reacts specifically 

with azides, such as cyclooctyne-coumarin12 or cyclooctyne-BODIPY,13 and conduct 

confocal imaging studies to elucidate where and how yARF-MreB is localized.  

Alternatively, other imaging methods with enhanced spatial resolution, such as electron 

cryotomography (ECT), could be utilized with suitable probes.14,15  Finally, to gain a 

more accurate understanding of how yARF-MreB behaves in the cell, it would be 

advisable to replace the gene encoding MreB in the bacterial genome with the gene 

encoding yARF-MreB.  This step would ensure that yARF-MreB is under the control of 

native promoters, so that its expression is turned “on” and “off” appropriately.  Following 

the cloning methods described in Chapters II, III, and V, more constructs could be readily 

prepared that encode engineered bacterial proteins for labeling by NMT and subsequent 

visualization. 

 

Controlled Conjugation and Release of N-Terminally Labeled Proteins from Hydrogels 

During the course of this thesis, the development of functional biomaterials 

benefitting from NMT-mediated protein labeling had not been explored.  However, work 

is currently underway to build upon the model system described in Chapter II to decorate 

hydrogels with site-specifically labeled proteins.  In this context, the orthogonality of 

NMT toward bacterial systems is again beneficial: hydrogels displaying cyclooctyne or 

alkyne sites can simply be incubated with lysate containing a 12-ADA-labeled protein of 

interest for attachment of the labeled protein to the material.  This project, led by Cole 

DeForest, a post-doctoral fellow in the Tirrell Lab, holds a great deal of potential. 
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Beyond the further studies described here, we are also excited by the idea of 

NMT-mediated protein labeling playing a role in entirely new applications.  Moreover, 

while all of the projects described in this thesis took advantage of azide–alkyne reactions, 

other bioorthogonal chemistries could be explored, given the tolerance shown by NMT 

toward a wide variety of reactive fatty acid analogs.  Similarly, dozens of recognition 

sequences have been identified, each possessing different steric and electrostatic 

characteristics depending on the residues comprising the sequence.  Finally, nearly any 

protein can be engineered to display an NMT recognition sequence, with minimal 

perturbation of protein structure and function.  The inherent characteristics of NMT, and 

its fascinating balance of specificity, selectivity, and promiscuity, render it a very 

powerful tool for protein-labeling studies.  We hope that the reagents, methods, and 

results presented in this thesis for NMT-mediated protein labeling will be of great use in 

future biomedical research. 
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