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ABSTRACT

Proteins are involved in myriad processes in all organisms. They provide
structural support in the membrane and scaffolding of each cell; they aid in the
transmission of biochemical signals within and between cells; and they play central roles
in combating various disease states. The development of techniques enabling selective
and site-specific functionalization of proteins is an active area of investigation, as such
modifications are critical to many studies and uses of proteins. For instance, with the
addition of a unique reactive handle, a protein may be conjugated to a polymer for the
production of protein-based therapeutics exhibiting improved bioavailability.
Alternatively, proteins may be attached to slides to prepare diagnostic microarrays,
reacted with hydrogels to create functional biomaterials, or decorated with fluorophores
for in vivo imaging. Site-specific protein tagging techniques have already contributed
greatly to biomedical research and will continue to advance the state of the field.

The focus of my thesis research has been the development of a novel site-specific
protein labeling method centered on the eukaryotic enzyme N-myristoyl transferase
(NMT). In a process called myristoylation, NMT appends a fatty acid to the N-terminus
of numerous substrate proteins. Previous work demonstrated that NMT tolerates a wide
range of chemically functionalized analogs of its natural fatty acid substrate. Here, we
describe efforts that exploit various features of NMT: its ability to bind and utilize
reactive fatty acid analogs, its exquisite selectivity toward its protein substrates, and its

orthogonality toward those proteins naturally present in bacteria.
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First, in Chapter II, we discuss the development of a model system for NMT-
mediated protein labeling in the bacterium Escherichia coli. We synthesized an azide
fatty acid analog that can participate in bioorthogonal chemistries, and we prepared two
GFP-based substrate proteins, each displaying a recognition sequence derived from a
known substrate of NMT. Our experiments indicate that labeling by NMT is site-
specific, quantitative, and highly selective for each engineered substrate within the
bacterial milieu.

As summarized in Chapter III, the model system was extended to the N-terminal
labeling of two neuronal proteins, calcineurin (CaN) and calmodulin (CaM). While CaN
is naturally myristoylated, CaM was engineered to achieve labeling by NMT.
Experiments with CaN and CaM confirmed that our NMT-based system is quantitative
and selective in its labeling of both natural and engineered substrate proteins. Extensive
characterization of each protein allowed us to identify constructs that retain wild-type
levels of activity even after labeling with the azide fatty acid.

Three of the protein constructs reported in Chapters II and III were utilized for
microarray studies, as described in Chapter IV.  We achieved rapid surface
immobilization of each azide-labeled protein directly from lysate, a significant advantage
when considering the time and resources normally required to purify proteins for
downstream applications. The experiments and methods summarized in this chapter will
be adapted for high-throughput biochemical research with protein microarrays.

Finally, the orthogonality of NMT toward bacterial systems was probed further
for the purpose of selective labeling of individual bacterial proteins for live-cell imaging.

In addition to identifying an azide fatty acid suitable for such studies, we also selected
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two bacterial proteins that exhibit interesting functions and localization patterns, and we
developed corresponding protein constructs for NMT-mediated labeling. Progress
toward the use of NMT for in vivo imaging applications in bacteria is described in
Chapter V.

Ultimately, our objective throughout the design and execution of these projects
was to create and validate a new technique to achieve site-specific protein labeling. The
particular advantages of NMT include its tolerance of reactive fatty acid analogs and
engineered substrate proteins, and its lack of interaction with proteins present in the
widely used E. coli expression host. We believe that the ideas and results presented in
this thesis establish NMT-mediated protein labeling as a valuable tool for addition to the
existing set of site-specific protein labeling methods. Development of such methods

represents an important and exciting area within the field of modern chemical biology.
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ABSTRACT

Proteins are an important class of cellular biomolecules, playing diverse roles in
the structure, motility, communication, defense, division, and destruction of cells. They
are found in every cell of every organism, from bacteria to humans. The incredible range
of protein structures and functions is all the more remarkable considering that all proteins
are built from the same simple canon of twenty amino acids. To study proteins, both in
their natural cellular context as well as within in vitro systems, scientists have long taken
advantage of the limited chemical functionalities present in amino acid side chains to
covalently attach proteins to other molecules. Furthermore, protein engineering
techniques have expanded the range of chemical moieties that may be incorporated into
proteins. Such techniques enable the differentiation of one subset of proteins from a
larger population, and they allow for the selective conjugation of individual proteins to
reactive partners ranging from polymers to fluorophores to microarray chips. Given the
central role played by proteins in so many cellular processes, advances in protein
engineering have important implications for biomedical research and human health.

This introductory chapter highlights some examples of protein engineering
methods developed to date—specifically, the incorporation of non-canonical amino acids
into proteins—as well as their applications. Because the focus of this thesis is the
development and use of a chemoenzymatic approach to N-terminal protein labeling, other
strategies enabling functionalization of the N-terminus are also discussed. Finally, we
present an overview of the chapters comprising this thesis and summarize contributions

to individual projects.
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PROTEIN ENGINEERING

Incorporation of Non-Canonical Amino Acids into Proteins

Perhaps the most direct strategy for introducing non-natural functionalities into
proteins is the incorporation of amino acid building blocks displaying such groups.
Natural amino acids may be replaced by non-canonical analogs in a residue-specific or a
site-specific manner. Hundreds of non-canonical amino acids (ncAAs) have now been
utilized for protein engineering; a selection of these is displayed in Figure I-1."

Ng
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H,N” “COOH  H,N“ "COOH H,;N” "COOH H,N“ "COOH HoN“ “GOOH H,N” "COOH H,N~ "COOH  HN~ ~COOH

Met Se-Met Aha Hpg Hag Tcg Anl Aoa
g 2
2y . Br ~ N "'{f.\'J'“.’;.; P )\.\7
HaN” “COOH H,N” ~COOH HaN" "~ COOH HN~ ~COOH HaN" " COOH H,N" " COOH
Phe p-IF p-BrF p-AzF p-EtF p-AcF

H,N“COOH  H.N~ ~COOH

Leu Onv

Figure I-1. Numerous non-canonical surrogates for the amino acids
methionine (Met), phenylalanine (Phe), and leucine (Leu) have been
developed. They may be bound by endogenous tRNA synthetases
(those colored blue or green), or they may require the use of mutant

tRNA synthetases (those colored red). Adapted from Reference 1.

Global replacement of an amino acid by a non-natural counterpart is useful for
proteomics investigations or in other contexts requiring a snapshot in time of the entire

protein population. In contrast, single-site incorporation of an artificial amino acid is
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valuable for detailed structural studies of a particular protein or controlled conjugation of
a protein to a reactive partner. Both methods are described here.

Residue-specific incorporation of ncAAs generally requires no manipulation of
the genetic material (DNA or mRNA) corresponding to the proteins that are to be
synthesized. Instead, as the ribosomal complex translates an mRNA strand into a protein,
the tRNAs corresponding to a given codon deliver a pre-determined ncAA in place of the
natural amino acid encoded by that codon. The aminoacylation of tRNAs with ncAAs
may be accomplished by endogenous tRNA synthetases or may require the use of
engineered tRNA synthetases, as noted in Figure I-1. Experimental parameters may be
modulated to tune the timing and extent of ncAA incorporation into proteins.'~

The Tirrell Lab, the Schuman Lab, and others have contributed greatly to the
development and application of global amino acid replacement methods, particularly with
the establishment of the BONCAT (bio-orthogonal non-canonical amino acid tagging)
technique in 2006.* BONCAT has since been utilized for numerous proteomics studies,
including examination of mixed-cell populations and zebrafish larvae, to name a few.””’
Imaging studies have also been described, wherein ncAAs were utilized in conjunction
with reactive dyes to visualize proteins in bacteria and mammalian cells.*’ The reagents,
methods, and outcomes associated with residue-specific incorporation of ncAAs have
proven to be of great use and interest to both biologists and chemists.'*"?

As a complementary technique to residue-specific ncAA incorporation, site-
specific incorporation of a ncAA may be desirable when a single protein is under
investigation. The ability to change one amino acid systematically has been integral to

some structural studies, such as the Dougherty Lab’s research on ion channels.” Adding



I-5
a single reactive ncAA to a protein has also allowed for controlled protein-polymer
conjugation,"® an important step in the preparation of some protein therapeutics.'’
Largely developed by the Schultz Lab, methods for site-specific incorporation of ncAAs
generally require that the gene encoding the protein of interest be modified to display a
Stop codon at the desired site for ncAA incorporation. In conjunction, suitable tRNAs
that display the anticodon for the Stop codon must be chemically or enzymatically
amino-acylated with a ncAA. When the ribosomal complex encounters the Stop codon
during translation, the ncAA is incorporated at the corresponding site into the protein

118 Single-site replacement methods have been central to a number of

product.
biological studies during the past few decades,” with their use recently extended to live
fruit flies.”’ However, these methods also have some limitations: in particular, they are

not effective for replacement of the N-terminal residue, a transformation that has been

achieved with the use of complementary approaches.

Modification of the Protein N-Terminus

The protein N- and C-termini are attractive targets for the conjugation of proteins
to other substrates, including polymers, beads, slides, and fluorophores, because even in
the folded state, the termini of many proteins are surface-accessible.”’ Early attempts at
selective modification of the N-terminus took advantage of the slight difference in pK,
between the N-terminal amine and lysine amines, though success was generally limited to
cases in which few lysine side chains presented competition.”” More recently, the Francis
Group has reported their use of chemical approaches to achieve transformation of the

protein N-terminus.” They utilized their strategy to label antibodies, which retained their
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ability to bind targets even after labeling.”® 1In contrast, the Tirrell Group described a
biological approach to N-terminal labeling: the L,F-transferase enzyme was employed in
vitro and in E. coli to add analogs of Leu, Phe, and Met to the N-terminus of peptides and
proteins.”> Other site-specific chemoenzymatic labeling techniques have been developed;
these methods and others are evaluated in a recent review, which also details the

26-30
For our work,

suitability of different approaches for N-terminal protein modification.
we focused on the enzyme N-myristoyl transferase to achieve N-terminal protein

functionalization.

N-MYRISTOYL TRANSFERASE

Structure and Function of N-Myristoyl Transferase

The eukaryotic enzyme N-myristoyl transferase (NMT) catalyzes the transfer of
myristic acid, a 14-carbon unbranched saturated fatty acid, to the N-terminus of various
substrate proteins. Members of many classes of proteins undergo this co-translational
and irreversible transformation, which is called myristoylation (Figure 1-2). Substrates
include protein kinases A and G, subunits of heterotrimeric G proteins, multiple tyrosine

kinases, phosphatases, and even viral capsid proteins.”'
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Figure I-2. Schematic overview of the process of myristoylation.
NMT is colored blue, the fatty acid is colored red, and the substrate
protein is colored yellow. NMT first binds myristoyl-CoA and only
then binds a substrate protein. An amide linkage forms between the
protein N-terminus and the fatty acid, the labeled protein is expelled,

and NMT begins a new enzymatic cycle.

The hydrocarbon tail of myristic acid is thought to aid in the localization of some
substrates to lipid membranes, underscoring the importance of myristoylation to the
proper functioning of proteins that are involved in signal transduction and viral
infectivity.”> Endogenous expression of NMT has been confirmed in 15 different
eukaryotic species, ranging from yeast to humans, and dozens of substrate proteins have

been identified.>***

Notably, native expression of NMT has not been observed in
Escherichia coli.”

NMT substrate proteins share certain features within their N-terminal sequence
domain; these characteristics play an important role in proper recognition by NMT. The
only absolute and universal constraint is that all NMT substrates must display a glycine

(Gly, G) residue at the N-terminus; the initiating Met residue normally found in proteins

must be removed by a separate enzyme, methionine amino-peptidase (Met-AP), prior to
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myristoylation.”® Previous research using site-directed mutagenesis demonstrated that the
amino acids at positions 3, 6, and 7 in the substrate protein (where position 1 is the initial
Met) play a particularly important role in NMT binding. More specifically, charged
residues, aromatic residues, and proline are not permitted at position 3; serine or
threonine is usually found at position 6; and positively charged residues are preferred at
position 7.%**7 The combination of amino acids at positions 3, 6, and 7 may influence
species-specific recognition of substrate proteins by NMT.*” The crystal structure of

NMT, with both of its binding pockets highlighted, is depicted in Figure I-3.

fatty acid
binding pocket

protein
binding pocket

Figure I-3. Crystal structure of NMT, with the binding pocket for
myristic acid colored red and the binding pocket for the substrate

protein colored yellow. PDB ID: 11ID.

Substitution of Fatty Acid Analogs for Myristic Acid
At the outset of this work, two aspects of NMT were especially pertinent in

drawing our attention to its possible use in a novel protein labeling method: its absence
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from bacteria, and its tolerance toward reactive variants of myristic acid. The ability of
NMT to transfer functionalized fatty acid analogs was tested extensively by the Gordon
Lab using octapeptide substrates with Saccharomyces cerevisiae NMT in an in vitro
system.”®*° Of particular interest, analogs with useful chemical moieties, such as those
seen in the ncAAs shown in Figure I-1, e.g., azide, alkyne, and ketone groups, were
bound and transferred by NMT. These functional groups can participate in powerful
bioorthogonal reactions that allow for selective attachment of proteins bearing these

groups to appropriately derivatized partners.”*!
Building on the Gordon Lab’s in vitro work completed 15 years prior, the Ploegh
Lab in 2007 employed azide-functionalized fatty acids for selective labeling and
detection of myristoylated proteins in a cancer cell line.** Azido and alkynyl fatty acids
were also utilized in the past five years for N-terminal labeling by NMT in bacteria.***
To the best of our knowledge, all NMT-based protein labeling studies completed to date
with reactive analogs of myristic acid in cells have involved natural substrate proteins
only, either for proteomic profiling projects or proof-of-principle purposes. The primary
goal of the work described in this thesis is to expand the scope of NMT-mediated
labeling to simultaneously utilize non-natural variants of both the fatty acid and protein
substrates. We envisioned a system in which any protein of interest, engineered to

display a short recognition sequence, could be co-expressed with NMT in the presence of

a reactive fatty acid to achieve selective and site-specific functionalization.
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THESIS ORGANIZATION

Overview of Thesis Chapters

The first task that we set out to accomplish was the development of a robust
bacterial co-expression system to serve as a foundation for subsequent projects. Initial
work was attempted with natural NMT substrates, but we quickly progressed to the use of
engineered non-natural substrates. Chapter II details the development and evaluation of
two GFP-based substrate proteins that were selectively and quantitatively labeled by
NMT with an azido fatty acid. This is the first example of the use of a non-natural
substrate protein and a fatty acid analog together for NMT-mediated protein labeling.

Chapter III describes an application of the system established in Chapter II.
Building on our work with GFP, a common model protein, we undertook the task of
labeling two proteins implicated in learning and memory: calcineurin (CaN) and
calmodulin (CaM). Both proteins are under investigation by neuroscientists for their
important roles in the brain. CaN is a natural substrate of NMT, but CaM is not. We
engineered CaM to display different NMT recognition sequences and demonstrated
selective and quantitative N-terminal labeling of both CaN and CaM-based substrates
with an azido fatty acid. We also investigated the activity of the labeled proteins. CaN
was shown to be equally active whether it was labeled with the azido fatty acid or with
myristic acid. In addition, a CaM construct was identified that retained wild-type
activity, even with the addition of an NMT recognition sequence and labeling with the

azido fatty acid.
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Chapter IV summarizes our work to date in immobilizing N-terminally
functionalized proteins on surfaces, with the ultimate goal of studying protein activity in
a high-throughput format. Preliminary experiments were completed with agarose beads,
though for the majority of our work in this area, we utilized protein microarrays. Surface
capture of N-terminally labeled GFP, CaN, and CaM-based constructs was achieved.
Furthermore, the orthogonality of NMT in bacteria enabled selective coupling of these
proteins directly out of lysate, with no prior purification.

Finally, Chapter V describes our progress toward the use of NMT-mediated
protein labeling to study the localization patterns of individual proteins in bacteria.
Recent work has demonstrated that bacterial cells exhibit far more control over the
spatiotemporal organization of their proteins than was previously thought. Again, the
absence of any natural NMT substrates from prokaryotes makes NMT a perfect candidate
for the selective functionalization and visualization of appropriately engineered bacterial
proteins of interest.

A schematic overview summarizes the projects described in Chapters II, III, IV,

and V of this thesis (Figure [-4).
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Figure I-4. Overview of thesis projects. NMT-mediated labeling of
both natural and engineered substrate proteins, as well as various
applications of N-terminal protein labeling, are described herein.
Transformation of E. coli cells with the appropriate plasmids enables
co-expression of NMT and a substrate protein. NMT appends certain
fatty acid analogs to the N-terminus of substrate proteins. Cells may be
lysed or harvested intact for in vivo imaging experiments. Mass
spectrometry and therapeutic applications require purification of the
substrate protein from lysate, while surface capture of the substrate
protein may be performed from lysate due to the orthogonality of NMT

in bacterial systems.
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Thesis Contributions

For Chapter II, I conceived the design of the model system and completed all
cloning, expression, purification, mass spectrometry, and fluorescence gel experiments. I
also synthesized and characterized the azide fatty acid used in this chapter as well as in
Chapters III and IV. I analyzed all data.

For Chapter III, I designed the CaM constructs and completed all cloning,
expression, mass spectrometry, and fluorescence gel experiments; I analyzed the resultant
data. My collaborator, Dr. Tamara Kinzer-Ursem, contributed intellectually throughout
this project and experimentally to the purification of the CaN and CaM constructs. We
conducted the activity assays and analyzed the results together. Megan Lo, an
undergraduate student, also aided in the completion of experiments with CaN and CaM.

For Chapter IV, I completed preliminary experiments with agarose beads and the
accompanying data analysis, while Dr. Kinzer-Ursem led our efforts in microarray
preparation as well as protein microarray experiments and data analysis.

For Chapter V, I conceived the project design and completed all cloning and
protein expression experiments. Professor Zemer Gitai of Princeton University provided
input regarding which proteins to study. The library of azide fatty acids and the
cyclooctyne-coumarin dye were prepared by a former post-doctoral researcher, Dr. Janek
Szychowski. I completed all lysate and live-cell dye-labeling experiments with the azide

fatty acids, and I analyzed all associated data.
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CHAPTER II

Development and Evaluation of a
Bacterial Model System for
N-Terminal Protein Labeling with
N-Myristoyl Transferase
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ABSTRACT

This chapter describes the design, development, and evaluation of a model system
for NMT-mediated protein labeling. First, we assembled the necessary components; their
selection and design are described in the Introduction. Green fluorescent protein (GFP)
was chosen to be the test protein, owing to its widespread use and its facile detection by
fluorescence measurements as well as conventional protein characterization methods.

We prepared two different engineered GFP substrates, each displaying a different
NMT recognition sequence, and achieved selective modification of each protein
via co-expression with NMT in the presence of an azido fatty acid. The labeled GFP
substrates were purified, digested with a protease, and analyzed by mass spectrometry;
identification of the N-terminal peptide fragment confirmed that site-specific labeling had
occurred. Whole-protein mass spectrometry was also performed to determine the extent
of modification. Finally, lysate samples containing a labeled GFP substrate were treated
with a reactive dye and examined by SDS-PAGE. Fluorescence detection indicated that
NMT labeled only the engineered GFP substrate in vivo. Together, these results
demonstrate that our NMT-mediated protein labeling system is site-specific, quantitative,
and highly selective. These results also constitute the first example of NMT-mediated
labeling of a non-natural substrate protein with a functionalized, non-natural fatty acid,
paving the way for future projects with other proteins of interest and other fatty acids

analogs.
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INTRODUCTION

The three components comprising our NMT-mediated protein labeling model
system are a reactive fatty acid, NMT, and a substrate protein. The design and

development of each component are described below.

Selection of 12-Azidododecanoic Acid (12-ADA)

The natural fatty acid substrate of NMT, myristic acid (Chart II-1), is chemically
inert. Fortunately, as described in Chapter I, dozens of reactive fatty acid analogs have
been shown to be well-tolerated by NMT in an in vitro system.' Ideally, the analog
employed in our protein labeling system would be readily synthesized and purified,
permeable to the bacterial cell wall and membrane, bound and transferred by NMT in
high yields, and able to participate in bioorthogonal chemistries. The compound 12-
azidododecanoic acid (abbreviated 12-ADA henceforth; Chart II-1) was investigated with
these criteria in mind.

Previous work indicated that 12-ADA was transferred to octapeptide substrates of
NMT in higher yields than 9-, 11-, or 13-carbon analogs.” More recent work in
mammalian cells yielded similar results, with 12-ADA resulting in more robust protein
labeling than closely related azido fatty acids.* As described below, we synthesized and
purified 12-ADA in high yields from adapted literature protocols. We also attempted the
synthesis of an alkynyl compound, 13-tetradecynoic acid, but the reaction yields were
low and the product was difficult to purify. Thus, for further work, we focused on the use

of 12-ADA.
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Chart I1-1. Structures of myristic acid, the natural fatty acid substrate
of NMT, and 12-azidodecanoic acid (12-ADA), the fatty acid analog

prepared for and utilized in our studies.

myristic acid
HO /ll\/\-//\\.//\//\\/ S~

12-azidododecanoic acid (12-ADA)
HO NSNS SNy S

The azide group can participate in three different bioorthogonal reactions: the
Staudinger ligation, the copper-catalyzed azide-alkyne cycloaddition (CuAAC), and the
strain-promoted azide-alkyne cycloaddition (SPAAC).>'® All three of these reactions
may be performed in the challenging environment of cell lysate with exquisite selectivity.
The Staudinger ligation and SPAAC can also be conducted in live cells and organisms.

By selecting 12-ADA for our protein labeling system, we were well-positioned to explore

these chemistries with N-terminally functionalized proteins.

Two-Plasmid Bacterial Co-expression System

Co-expression of NMT and a substrate protein, whether natural or engineered,
requires the presence of plasmid(s) harboring genes that encode each one. In order to
make our system modular, we decided to utilize two separate plasmids—one encoding
NMT and the other encoding a substrate protein—rather than one plasmid encoding both.
Changes to the various features of each plasmid (i.e., antibiotic resistance, origin of
replication, promoter regions) could be readily made, if desired, to independently control

the expression of NMT and the substrate protein. Moreover, we postulated that
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replacement of our test protein, GFP, with other substrate proteins for future studies
would be more straightforward if NMT were encoded on a separate plasmid.

Two GFP-based substrates, yARF-GFP and Fyn-GFP, were prepared, each
displaying an NMT recognition sequence derived from a known substrate protein. The
yARF (yeast ADP-ribosylation factor) protein is a GTP-binding protein that helps to
control trafficking within the cell.'" We engineered yARF-GFP to carry the first seven
residues of yARF: MGLFASK."”? The Fyn protein is a member of the Src kinase
family,” and its first nine residues, MGCVQCKTK, are displayed by Fyn-GFP. A
C-terminal 6xHis tag was also added to each protein to aid in affinity purification and
detection procedures. The cloning scheme developed to construct the substrate plasmids
is described in the Experimental Section of this chapter. The NMT plasmids employed in
our system encode human NMT1 or NMT2, as well as methionine aminopeptidase (Met-
AP). The genes encoding NMT as well as both substrate proteins were placed under the
control of IPTG (isopropyl B-D-1-thiogalactopyranoside)-inducible promoters.

The co-expression protocol that we developed is shown schematically in Figure
II-1. Cells were transformed with the NMT and substrate plasmids, and overnight
cultures were inoculated from the resultant cell stocks. Expression cultures were then
grown until cells reached an appropriate cell density, at which point 12-ADA was added
and protein expression was induced. After 3-4 hours of protein expression, cells were
harvested. As described in Chapter I, various applications could then be explored,

utilizing intact cells, clarified lysates, or purified protein.
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Figure II-1. Experimental overview of our bacterial co-expression

system for N-terminal protein labeling with NMT.

RESULTS AND DISCUSSION

Synthesis and Characterization of 12-ADA

The compound 12-ADA was synthesized and purified as shown in Scheme II-1.
The protocol we developed was adapted from literature precedent,” and the product
identity was confirmed by comparison with published IR, '"H NMR, *C NMR, and ESI-
MS data.>* After optimizing the reaction, work-up, and purification steps, near-
quantitative yields of 12-ADA were routinely obtained. Though literature protocols
described a flash chromatography step for purification, we observed no difference in

purity after a work-up only.
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Scheme II-1. The azide fatty acid utilized in our studies,
12-azidododecanoic acid (12-ADA), was prepared from simple

precursors.
0
Br + Na’ - Nal
Hok/\\/”‘\,/“\/”‘\/’“\/ N=N"*=N-
sodium iodide
12-bromododecanoic acid sodium azide

DMF

overnight, under air

room temperature

l simple work-up
O

12-azidododecanoic acid (12-ADA)

Expression and Purification of GFP-Based Substrate Proteins

The plasmids pQE80 yARF-GFP and pQE80 Fyn-GFP were constructed using
standard cloning procedures, as described in the Experimental Section of this chapter.
The final plasmids were transformed into E. coli BL21(DE3) competent cells that had
already been transformed with plasmids encoding human NMTI1 or human NMT2,
yielding four cell strains: BL21(DE3)/yARF-GFP/hNMT1, BL21(DE3)/yARF-
GFP/hNMT2, BL21(DE3)/Fyn-GFP/hNMT1, and BL21(DE3)/Fyn-GFP/hNMT2. We
moved forward with two of these cell strains: BL21(DE3)/yARF-GFP/hNMT1 and
BL21(DE3)/Fyn-GFP/hNMT2. These two strains were selected due to literature reports
regarding the substrate selectivity of each human NMT isoform: yARF has been shown

to be myristoylated to a greater extent by hNMT]1 than hNMT2,'* while in vitro studies
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demonstrated the preference of hNMT?2 for a Src peptide substrate.'* As noted earlier,
Fyn is a member of the Src kinase family.

Co-expression of yARF-GFP or Fyn-GFP with NMT was completed as depicted
in the schematic overview above (Figure II-1). Briefly, overnight cultures were diluted
1:50 into expression cultures containing the appropriate antibiotics to ensure retention of
both plasmids. Protein expression was induced at a cell density of ODgg =~ 0.8 with the
addition of IPTG, and at the same time, 12-ADA was added. After 4 hours of expression
at 37°C, cells were harvested from each culture and lysed. Each protein, yARF-GFP or
Fyn-GFP, was purified from lysate via denaturing or native Nickel-NTA
chromatography. Expression and purification protocols are presented in more detail in
the Experimental Section at the end of this chapter. Purification fractions were analyzed
by SDS-PAGE, which confirmed the presence of each protein at the expected molecular

weight of 32 kDa (Figure I1-2).
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Figure II-2. SDS-PAGE analysis of native Ni-NTA purification

fractions. Red arrows indicate the presence of pure yARF-GFP (A) and
Fyn-GFP (B) isolated from co-expression cultures grown in the
presence of 12-ADA. CL = Clarified Lysate; FT = Flow Through; W =
Wash; E = Elution; * = MW marker.

MALDI-MS Analysis of Trypsinized Protein Samples

After expressing and purifying yARF-GFP and Fyn-GFP, we verified that both
proteins had been labeled with 12-ADA and determined the extent of their modification.
First, to confirm that labeling had occurred only at the protein N-terminus, we employed
matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS).

Purified samples of yARF-GFP and Fyn-GFP were digested with the trypsin

protease, which cleaves peptides after arginine (Arg, R) and lysine (Lys, K) residues,
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yielding a predictable set of fragments. We were particularly interested in detecting the
N-terminal fragment of each protein. The expected masses for the N-terminal peptide of
each protein—unlabeled, myristoylated, or labeled with 12-ADA—are presented in

Table II-1.

Table II-1. Expected masses of the unlabeled (Mass 1), myristoylated
(Mass 2), and 12-ADA-labeled (Mass 3) N-terminal peptide fragments
of yARF-GFP and Fyn-GFP. Masses account for removal of the initial
Met residue, trypsin digestion, reduction, and alkylation. Formation of
a covalent bond between Gly and myristic acid or 12-ADA results in

the loss of one water molecule. All values are in Daltons (Da).

Protein (N-terminal peptide) | Mass 1 | Mass 2 (+Myr) | Mass 3 (+12-ADA)
YARF-GFP (GLFASK) 622.20 832.56 845.52
Fyn-GFP (GCVQCK) 751.22 961.58 974.54

After trypsinization, the resultant peptide fragments for each protein sample were
prepared for MALDI-MS analysis using standard clean-up columns and matrix reagents.

The MALDI mass spectrum for each protein is shown in Figure II-3.
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Figure II-3. MALDI mass spectra for yARF-GFP (A) and Fyn-GFP
(B) indicate successful N-terminal labeling with 12-ADA. Samples
were co-expressed with NMT in the presence of 12-ADA, purified, and
trypsinized. The Fyn-GFP sample was also subjected to reduction and
alkylation prior to trypsin digestion. No unlabeled or myristoylated

N-terminal peptide fragments were observed (see Table II-1).

In analyzing each spectrum, we first looked for peaks corresponding to various
expected fragments to ensure that the digestion was effective. We also searched for each
N-terminal peptide. As shown in Figure II-3A, the 12-ADA-labeled N-terminal fragment

for yARF-GFP was readily identified. For Fyn-GFP, initially, we found that the
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12-ADA-labeled N-terminal fragment was consistently 2 Da lower than expected (data
not shown), perhaps due to disulfide bonding of the two cysteine residues found in that
fragment. Thus, we also examined Fyn-GFP samples that were reduced and alkylated
following trypsinization. After such treatment, the 2 Da discrepancy was no longer
observed (Figure II-3B). Notably, the myristoylated N-terminal fragment was not
detected for either protein, indicating that competition between myristic acid and
12-ADA is not a problem in our system. In addition, negative control samples that were
not exposed to 12-ADA during expression yielded spectra that lacked the peaks outlined
in red in Figure II-3 (the “Mass 3” values in Table II-1), further confirming that those

peaks correspond to the 12-ADA-labeled N-terminal fragments.

Intact LC-MS Analysis of Protein Samples

While MALDI-MS analysis of trypsinized yARF-GFP and Fyn-GFP samples
showed that both proteins had been labeled with 12-ADA, they did not indicate what
percent of the protein pool was tagged. For both proteins, we were unable to detect the
unlabeled N-terminal peptide fragment (Table II-1, “Mass 1), even for negative control
samples that were not exposed to 12-ADA, likely due to the fragments’ polarity, charge,
and small size. The inability to detect these fragments by MALDI-MS complicated
efforts to measure the extent of 12-ADA Ilabeling of yARF-GFP and Fyn-GFP.
Fortunately, intact LC-MS of purified samples proved to be a more effective approach.
The expected masses of the relevant protein species, as well as those actually observed in

whole-protein mass spectra of yYARF-GFP and Fyn-GFP, are presented in Table I1-2.
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Table II-2. Expected masses of yARF-GFP and Fyn-GFP (unlabeled,
myristoylated, or labeled with 12-ADA), and masses observed by intact
LC-MS. Expected mass values account for removal of initial Met and
loss of 20 Da upon formation of GFP chromophore. Analysis revealed
quantitative labeling of both proteins with 12-ADA by NMT. All mass
values are in Da. N/D = Not Detected.

Protein Expected Mass Observed Mass | % 12-ADA-Labeled
yARF-GFP 31,817.85 N/D
+Myr 32,028.20 N/D > 98 %
+12-ADA 32,041.16 32,041.31
Fyn-GFP 32,062.17 N/D
+Myr 32,272.52 N/D > 98 %
+12-ADA 32,285.48 32,280.02

For both proteins, we routinely observed a large peak corresponding to the
12-ADA labeled species, very little evidence of unlabeled protein (<5%), and no
evidence of myristoylated protein. Taken together, the two sets of MS data demonstrate
that yARF-GFP and Fyn-GFP are both labeled solely and quantitatively at the N-terminus
with 12-ADA by NMT, with no competition presented by myristic acid.

As a step toward optimizing our co-expression system, we investigated the use of
both minimal medium and rich media for our expression cultures. Certain protocols
developed in the Tirrell Lab for residue-specific incorporation of ncAAs recommend the
use of minimal medium in order to boost ncAA incorporation, while avoiding the use of
rich media that contain a given natural amino acid. We hypothesized that myristic acid
might similarly be present in rich media, which could negatively impact the extent of
protein labeling with 12-ADA. Thus, we originally used M9 minimal medium for protein

expression, but later tested the use of rich media (LB and 2xYT). Identical LC-MS
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results were obtained for Fyn-GFP regardless of the expression medium, with no

myristoylated protein species observed in any of the samples (Figure 11-4).
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Figure II-4. Intact LC-MS data for Fyn-GFP samples purified from
expression cultures grown in M9 (A), LB (B), or 2xYT (C) medium.
The compound 12-ADA was added to all three cultures. No
myristoylated Fyn-GFP was observed in any sample (see Table II-2).
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These results are notable because the use of rich media for protein expression instead of a
minimal medium often results in higher protein yields. Moreover, as with the data

presented in Table II-2, very little unlabeled protein was detected.

Fluorescence Gel Analysis of Lysate Samples

As mentioned at the beginning of this chapter, one notable feature of NMT is its
absence from prokaryotic systems. We were intrigued by the possibility of developing a
chemoenzymatic labeling system that is not only site-specific and high-yielding, but also
orthogonal to the widely used E. coli bacterial expression system. To investigate whether
or not the yYARF-GFP/hNMT1 and Fyn-GFP/hNMT?2 co-expression systems fulfill this
additional criterion, we took advantage of existing bioorthogonal chemistries and
reagents to detect the presence of 12-ADA-labeled proteins.

For these experiments, lysates were utilized to effectively measure NMT’s
selectivity toward our engineered substrate proteins. Lysate samples were treated with an
alkyne-TAMRA probe in a CuAAC reaction, which is known to conjugate azides and
alkynes even in complex biological settings.'>'® Proteins were subsequently precipitated
out of the reaction mixture and analyzed via SDS-PAGE (Figure 11-5). For each protein,
the same gel was imaged for TAMRA fluorescence, then stained with Coomassie
colloidal blue and imaged again. As the gel images indicate, NMT transferred 12-ADA
only to yARF-GFP and Fyn-GFP and did not label natural bacterial proteins. These data
demonstrated the activity and selectivity of our NMT-mediated protein labeling system,
even when using a non-natural fatty acid substrate in conjunction with non-natural

substrate proteins.
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Figure II-5. SDS-PAGE analysis of lysate samples containing yARF-
GFP (A, B) or Fyn-GFP (C, D) co-expressed with NMT in the presence
of no fatty acid, myristic acid (“Myr”), or 12-ADA. Lysate samples
were treated with alkyne-TAMRA for detection of azide-labeled
protein (A, C). The same gels were stained with Coomassie colloidal
blue (B, D). Comparison of each pair of gel images indicates selective

12-ADA labeling of yARF-GFP and Fyn-GFP.
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CONCLUSION

In summary, we designed, constructed, and evaluated a site-specific protein
labeling system centered on the eukaryotic enzyme N-myristoyl transferase (NMT). We
developed two plasmids encoding GFP-based, non-natural substrates of NMT: yARF-
GFP and Fyn-GFP. Both proteins display a recognition sequence derived from a known
NMT substrate. We co-expressed each protein with an isoform of human NMT in the
presence of the azido fatty acid, 12-ADA, which was readily synthesized. Purified
protein samples were subjected to MALDI-MS analysis after trypsinization and were
studied via intact LC-MS as well. The MS data sets showed that labeling by NMT was
specific for the N-terminus, as expected, and essentially quantitative. Examination of
lysate samples treated with an azide-reactive dye confirmed that NMT labels each
engineered GFP substrate, but is inactive toward natural bacterial proteins. The site-
specific, quantitative, and selective protein labeling system established here is the basis of

the further research described in Chapters III, IV, and V.

EXPERIMENTAL SECTION

Materials

Synthesis of 12-ADA. 12-bromododecanoic acid and sodium iodide were
purchased from Aldrich. Silica gel 60 was purchased from EMD Chemicals. Sodium

azide and all solvents were purchased from VWR.

Cloning. All oligonucleotide primers were ordered from Operon. Polymerase

chain reaction (PCR) experiments were carried out in a BioRad DNA Engine Peltier
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Thermal Cycler using PfuTurbo DNA Polymerase (Stratagene/Agilent). All restriction
enzymes, restriction enzyme buffers, and bovine serum albumin (BSA) were purchased
from New England BioLabs (NEB). The pQE60 and pQES80 vectors from Qiagen were
used for cloning. NEB DNA Ladders (100 bp and 1 kbp “Quick-Load”) were used as
markers for all DNA agarose gels, which were visualized with the addition of Plus One
ethidium bromide solution from Amersham Biosciences on a UVP UV Transilluminator.
Zymo Agarose-Dissolving Buffer (ADB) and Zymo Spin II columns, with their
associated buffers, were used to purify DNA out of agarose gels. T4 DNA Ligase from
NEB or Roche was used for ligations with equivalent results. All DNA acquisition from
cells was completed using the Qiagen Spin Miniprep Kit and columns. All sequencing

requests were fulfilled by Laragen.

Protein expression. Plasmids encoding hNMT1 or hNMT2 and methionine-
aminopeptidase (Met-AP) were a gift from the laboratory of Professor Richard Kahn at
Emory University (Atlanta, GA).”? E. coli BL21(DE3) cells were made chemically
competent using the standard Zymo method (Stratagene) and were transformed with
either the hNMT1 plasmid or hNMT2 plasmid. M9 minimal medium was composed of
MO salts plus 0.4% dextrose, 100 uM CaCl,, 35 pg/mL thiamine, 1 mM MgSOy, and 4%
20 amino-acid solution (1 g/L each). LB medium was composed of 10 g tryptone (casein
hydrolysate), 5 g yeast extract, and 10 g NaCl per liter. 2xYT medium was composed of
16 g tryptone (casein hydrolysate), 10 g yeast extract, and 5 g NaCl per liter. All media
were autoclaved before use. Kanamycin (Kan) was used at a working concentration of
35 pug/mL, and ampicillin (Amp) was used at a working concentration of 200 pg/mL.
Myristic acid was purchased from Fluka. All optical density (OD) values were measured
at 600 nm on a Cary UV-Vis spectrophotometer. All SDS-PAGE gels described in this
chapter were 12% acrylamide, Tris-Tricine gels cast in-house or NuPAGE Novex 4-12%
Bis-Tris pre-cast gels (Invitrogen). SeeBlue Plus2 Pre-Stained Protein Marker from
Invitrogen served as the molecular weight ladder. Gels were stained with Coomassie

colloidal blue from Invitrogen.
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Protein purification. Nickel-NTA resin manufactured by Qiagen was used for
purification of 6xHis-tagged yARF-GFP and Fyn-GFP from lysate. For denaturing
Ni-NTA purification, Buffers B, C, D, and E consisted of 8 M urea, 100 mM NaH,PO,,
and 10 mM Tris-Cl with pH = 8.0, 6.3, 5.9, or 4.5, respectively. For native Ni-NTA
purification, buffers contained 50 mM NaH,PO;, 300 mM NaCl, and varying
concentrations of imidazole (25-500 mM). B-PER lysis buffer from Pierce was usually

used for native Ni-NTA purification. Lysozyme was purchased from Aldrich.

Mass spectrometry. The Pierce BCA Assay Kit was used to measure protein
concentration in pure protein fractions prior to MS analysis. Promega porcine trypsin
was used in digests. Microcon Centrifugal Devices were used to concentrate and buffer-
exchange whole-protein samples for intact LC-MS, while Microcon Centrifugal Devices
and C,g Zip-Tips were both employed to concentrate and de-salt peptide samples for
MALDI-MS (both from Millipore). MALDI-MS data were collected on an Applied
Biosystems Voyager DE-PRO MALDI TOF-MS. Intact LC-MS data were collected on
an Agilent 1100 MSD quadrupole ESI-MS.

Fluorescence detection. Lysate samples were treated with the reagents and
according to the protocols of the Click-IT Tetramethylrhodamine (TAMRA) Protein
Analysis Detection Kit from Invitrogen. After reaction and precipitation, protein samples
were run on Invitrogen NuPAGE Novex 4%—12% Bis-Tris pre-cast gels and imaged on a
GE Typhoon laser scanner. Gels were stained with Coomassie colloidal blue from

Invitrogen.

Methods

Synthesis of 12-ADA. 12-Azidododecanoic acid (12-ADA) was synthesized
according to literature precedent’ with minor modifications; in particular, the flash
chromatography step was found to be unnecessary to obtain pure product. Standard
characterization techniques (ESI-MS, 'H NMR, “C NMR) yielded data that matched

published results.*



11-20

Cloning. The pQES80 plasmid possesses an ampicillin resistance gene and a Col
El Origin of Replication. The GFP gene was PCR-amplified from the vector
pQE9 GFP6 lacl yPheRS T415G, which was prepared by a former member of the
Tirrell Lab, Inchan Kwon. Two rounds of PCR with novel primers yielded a fragment
including the GFP gene carrying an EcoRI restriction enzyme site, a ribosome-binding
site appropriate for pQE vectors, and base pairs encoding the yeast ARF recognition
sequence (MGLFASK, from ATG GGT CTG TTC GCG TCT AAA) or the Fyn
recognition sequence (MGCVQCKTK, from ATG GGT TGC GTG CAA TGC AAA
ACC AAA) at the 5" end, and a BglII site at the 3" end. The PCR product and pQE60
were digested with EcoRI and BglIl, and the GFP insert was ligated into pQE60 to allow
for the addition of a C-terminal 6xHis tag; each GFP construct was also placed under the
control of a T5 promoter, which is inducible by isopropyl p-D-1-thiogalactopyranoside
(IPTG). The presence of the insert in the pQE60 construct was confirmed via test digests
and sequencing. Then, the entire cassette was digested out of pQE60 using Aatll and
Nhel and ligated into pQES80, which had been digested with the same two enzymes. The
final pQE80 plasmids were used for protein expression because pQES0 carries the lacI®
repressor necessary for cis regulation of the TS5 promoter. Each final construct,
pQE80_yARF-GFP or pQE80 Fyn-GFP, was sequenced and transformed into competent

cells already harboring an NMT plasmid for co-expression experiments.

Protein expression. Overnight cultures were inoculated in LB supplemented
with Kan and Amp and grown in an incubator-shaker (37°C, 250 rpm). The following
day, overnight cultures were diluted 1:50 into fresh M9, LB, or 2xYT supplemented with
Kan and Amp for expression cultures, which ranged in volume from 5 mL to 250 mL.
Cultures were grown in an incubator-shaker (37°C, 250 rpm), and protein expression was
induced with IPTG (1 mM, from 1 M stock in water) when the ODgg value was between
0.8 and 1.1. Pre-induction samples (1 mL) were collected as needed. The azide fatty
acid 12-ADA (500 uM, from 500 mM stock in DMSO) was also added at the time of
induction. After 3—4 hr of protein expression, cells were harvested via centrifugation
(10 min x 10,000 g) and the final ODgy value measured. Cell pellets were lysed

according to the following formula, regardless of which lysis buffer was used: 50 uL
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lysis buffer per mL culture per ODggp unit. Crude lysates were centrifuged once more,
and the supernatant (clarified lysate, i.e., cytosolic fraction) was saved for further

experiments.

Protein purification. Protocols were followed largely as described in The
QIAExpressionist handbook from Qiagen. For denaturing Ni-NTA purification, cells
were lysed in Buffer B. The clarified lysate was incubated with Ni-NTA agarose for 1-2
hr at 4°C with agitation and loaded on an empty column to collect fractions. The protein-
agarose mixture was washed with Buffers B, C, and D, and the protein eluted with Buffer
E (pH 4.5). Purification fractions were analyzed by SDS-PAGE.

For native Ni-NTA purification, cells were lysed in B-PER buffer or in the
standard native Ni-NTA buffer (see “Materials””) with 10 mM imidazole. Furthermore,
for native Ni-NTA purification, lysozyme was added to the lysis buffer at 1 mg/mL, and
the resuspended cell pellet was sonicated to aid in lysis. The clarified lysate was
incubated with Ni-NTA agarose for 1-2 hr at 4°C with agitation and loaded on an empty
column to collect fractions. The protein-agarose mixture was washed with buffer
containing imidazole (25-100 mM) and the protein eluted at 150-200 mM imidazole.
Purification fractions were analyzed by SDS-PAGE.

Mass spectrometry. For MALDI-MS experiments, solutions of pure protein
were concentrated using Microcon columns (MWCO = 30 kDa). Fyn-GFP samples were
reduced and alkylated according to a standard published protocol.'” Protein samples
were digested as follows: 90 uL of 75 mM NH4COs3 buffer and 1 pL porcine trypsin were
added to 10 pL of a concentrated protein solution, and the mixtures were incubated at
37°C for 2-8 hr, after which they were quenched with 10 pL 10% TFA. C,g ZipTips
were used to concentrate and de-salt the trypsin digest mixtures in preparation for
MALDI-MS (a-cyanohydroxycinnamic acid matrix).

For intact LC-MS experiments, solutions of pure protein were concentrated using
Microcon columns (MWCO = 30 kDa) and buffer-exchanged into a 0.1% TFA
(trifluoroacetic acid) solution. A final solution of 100 pmol protein in 100 pL. was run on

the MSD instrument.
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Fluorescence detection. Cells were lysed with the buffer recommended in the
instructions for the Invitrogen Click-iT kit (1% SDS, 50 mM Tris-HCI, pH 8.0) according
to the formula mentioned earlier (50 pL lysis buffer per mL culture per ODgyo unit).
Clarified lysate samples were treated with alkyne-TAMRA and other kit reagents
according to the protocols supplied by Invitrogen; the only modification was the use of
15 pL of alkyne-TAMRA dye solution rather than 100 pL. At the conclusion of the 25-
min reaction time, samples were precipitated following the methanol-chloroform
precipitation protocol described in the same kit instructions; the only modification was
the completion of one additional methanol wash of the protein pellet. For SDS-PAGE
analysis, protein pellets were resuspended in a denaturing buffer (8 M urea, 100 mM
NaH,PO,, and 10 mM Tris-Cl) and loaded on NuPAGE Novex 4-12% Bis-Tris pre-cast
gels. To detect TAMRA signal on the Typhoon, the 532 nm laser served as the excitation
source (filter set: 580 BP 30). Gels were stained with Coomassie colloidal blue, then

imaged again, with the 633 nm laser now serving as the excitation source (no filter).
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ABSTRACT

The NMT-mediated protein labeling system described in Chapter II serves as the
foundation of the work described in this chapter. We applied the principles and
techniques developed for our GFP-based model system to achieve selective N-terminal
labeling of two neuronal proteins, calcineurin (CaN) and calmodulin (CaM). Both
proteins are implicated in the complex pathways governing learning and memory, and
both have been studied by neuroscience researchers for decades. In the projects
described herein, our objective was to utilize NMT and 12-ADA to site-specifically
functionalize CaN and CaM for subsequent surface immobilization. (Note that surface
immobilization experiments are described in Chapter IV.) We also aimed to create
protein constructs that retained wild-type levels of activity even after undergoing
engineering and labeling.

Because CaN is a natural substrate of NMT, we proceeded directly to expression
and labeling experiments. However, CaM is not naturally myristoylated. Thus, we
prepared a family of engineered CaM constructs, each displaying an NMT recognition
sequence. CaN and the CaM constructs were co-expressed with NMT in the presence of
12-ADA for N-terminal labeling and purified for intact LC-MS analysis and activity
assays. We were pleased to find that CaN and one of the engineered CaM constructs did
retain wild-type activity, even after labeling with 12-ADA. We also confirmed, via
treatment of lysate samples with an azide-reactive dye, that NMT is selective toward CaN
and the engineered CaM constructs in bacteria. In summary, we extended our NMT-
based protein labeling system from a model protein, GFP, to proteins that perform

important functions in complex organisms.
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INTRODUCTION

Calcineurin and Calmodulin

Calcineurin (CaN) is a 79-kDa heterodimeric serine/threonine phosphatase that is
enriched in the brain.' The 60-kDa A subunit of CaN contains the catalytic domain of the
enzyme as well as four other domains: a regulatory domain, an autoinhibitory domain,
and domains for binding the CaN B subunit and calmodulin (CaM). Of interest for our
work, the 19-kDa B subunit is naturally myristoylated.” It is apparent from the crystal
structure of CaN (Figure I1I-1A) that the N-terminus of the CaN B subunit is accessible, a
common feature of NMT substrate proteins.

CaN performs important functions in different systems of the body. It is involved
in the signal transduction pathways of numerous cell types, including lymphocytes and
kidney cells.” In the brain, CaN plays a role in synaptic plasticity; CaN knock-out mice
experience memory deficits and exhibit characteristics related to schizophrenia, such as
impaired social interaction and disrupted nesting behaviors.* Because CaN is highly
conserved among eukaryotes and is involved in a variety of cellular processes, it has been
studied extensively by neuroscientists and behavioral scientists as well as immunologists.
Notably, CaN becomes active only upon binding of its A subunit by CaM.

In contrast with CaN, CaM is a small, 16-kDa, monomeric protein.5 But, like
CaN, CaM undergoes conformational changes upon binding Ca”" ions. In fact, CaM is
generally inactive toward the more than 100 proteins it regulates until it binds four Ca*"
ions (Figure III-1B), at which point it is able to activate other proteins and enzymes,
including CaN. CaM is also highly conserved across eukaryotes and is present in all

eukaryotic cells; it is enriched in the brain and involved in synaptic plasticity, like CaN.°
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Figure III-1. Crystal structures of CaN (A) and CaM (B, C). Black
arrows point to each protein N-terminus. The conformation of CaM
shown in (B) is observed upon binding of four Ca*" ions, and that
depicted in (C) corresponds to further structural changes upon binding
of a partner protein by CaM. For (A): PDB ID = 1AUI, yellow = Ca®";
red = Fe’'; orange = Zn®'; blue = CaN A subunit; grey = CaN B
subunit; green = peptide substrate. For (B): PDB ID = ICLL and (C):
PDB ID = 1CDM, yellow = Ca*"; green = peptide derived from CaM
kinase II, a CaM binding partner.

We were intrigued by the similarities and differences apparent upon comparison
of CaN and CaM. As our interests include expanding the scope of our original NMT-
mediated protein labeling system, we were particularly excited by the parallel study of a
large natural NMT substrate requiring no engineering, and a small, streamlined protein
that could be challenging to engineer without an accompanying loss of function. With

the ultimate objective of site-specifically functionalizing both CaN and CaM to prepare



I1-5
protein microarrays for high-throughput biochemical studies, we began by preparing

CaM constructs that would be recognized by NMT.

Engineering CaM for NMT-Mediated Protein Labeling

In designing new CaM-based constructs for labeling with NMT, we drew
inspiration from the model system described in Chapter II, in which we prepared two
GFP-based constructs: yARF-GFP and Fyn-GFP. For preparation of CaM constructs, we
initially worked only with the yARF recognition sequence (MGLFASK) because the Fyn
recognition sequence (MGCVQCKTK) contains two cysteine (Cys, C) residues. CaM
contains no Cys residues in its native form, and we hypothesized that addition of the
nucleophilic thiol side chain of Cys could unfavorably alter the structure of CaM.

The first construct we prepared was yARF-6xHis-CaM (Table III-1), engineered
to display the 6xHis affinity purification tag as well as the yARF sequence. Although
expression, purification, and mass spectrometry experiments with this protein yielded
good results, it was found to be four times less active than wild-type (WT) CaM. It was
not apparent whether the loss of activity was caused by the addition of the recognition
sequence or the 6xHis tag, or both. Thus, we sought to develop more constructs in order
to (a) identify at least one construct that retained WT levels of activity and (b) better
understand which sequence modification contributed more significantly to the loss of
function observed for yARF-6xHis-CaM.

As summarized below, we selected a second recognition sequence, derived from
the N-terminal region of CaN-B (MGNEASYPL), to enable labeling of CaM by NMT.

We also explored the use of flexible linkers, postulating that the placement of additional
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features upstream of CaM might have a smaller effect on CaM activity if an intervening
spacer were present. A number of CaM fusion proteins have been reported, including
multiple GFP-CaM fusions.” " In most reports, the identity of the linker was not
provided or was simply incidental to the cloning scheme, with minimal quantitation of
the impact of the linker on CaM activity. However, one report described an active GFP-
CaM fusion in which addition of a linker (SRLIGSA) and GFP to CaM was found “not to

959

significantly affect the functional properties of the CaM molecule.” Thus, we also

prepared constructs possessing this linker in addition to an NMT recognition sequence.

A full summary of constructs is presented in Table III-1.

Table I1I-1. Summary of engineered CaM constructs developed for
N-terminal protein labeling studies. The yARF and hCaNB recognition
sequences are derived from known NMT substrates. The 6xHis tag
was included for affinity purification and immunodetection purposes.
The linker was previously described.” Estimated yields are based on

actual yields from 100 mL cultures.

Construct Name Amino Acid Sequence Estimated Pure Yield for
Preceding CaM 1 L Culture (mg)
yARF-CaM MGLFASK- 2
yARF-Linker—CaM MGLFASK-SRLIGSA—- 4
yARF-6xHis—CaM MGLFASK-HHHHHH- 35
hCaNB-CaM MGNEASYPL- 62
hCaNB-Linker—CaM MGNEASYPL-SRLIGSA- 45
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RESULTS AND DISCUSSION

Expression and Purification of CaN

We followed literature protocols for expression and purification of human CaN
from an E. coli co-expression system.” In addition to growing cultures in the presence of
myristic acid, we also expressed CaN in the presence of 12-ADA. Identical expression
and purification results were obtained for both. Yields of 2-3 mg pure protein per liter of
bacterial culture have been reported; we obtained similar yields of pure Myr-CaN and

pure 12-ADA-CaN.

Cloning, Expression, and Purification of Wild-Type and Engineered CaM Constructs

To prepare plasmids that encode the engineered CaM proteins listed in Table
ITI-1, we followed different protocols than those described in Chapter II for cloning
yARF-GFP and Fyn-GFP. Using a modified site-directed mutagenesis approach, termed
“two-step PCR,”'® we encoded the desired sequences directly into primers, with a
plasmid that encodes Drosophila melanogaster CaM serving as the template; these steps
are described in detail in the Experimental Section of this chapter. This approach was
considerably simpler and more efficient than the cloning strategy used to construct
yARF-GFP and Fyn-GFP.

After all five constructs had been prepared, the final plasmids were transformed
into E. coli competent cells already harboring a plasmid encoding one of the two
isoforms of human NMT. Following the co-expression protocol outlined in Chapter II,

we grew cultures of all five engineered CaM constructs in the presence of 12-ADA and
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grew a control culture of WT CaM. We then used phenyl sepharose resin to purify the
proteins from lysate.

Phenyl sepharose purification relies on a hydrophobic interaction between CaM
and the sepharose resin.'” When CaM is in its Ca*"-bound form, a hydrophobic patch on
the protein is exposed, and it binds the resin. At this point, wash buffers containing high
concentrations of salt and Ca*" remove contaminants while CaM remains bound to the
column. In contrast, elution buffers contain Ca? chelators, such as EGTA, which cause
CaM to give up its Ca*" ions and undergo a conformational change that conceals its
hydrophobic patch. CaM no longer interacts with the resin and elutes off the column.
(Purification protocols are presented in more detail in the Experimental Section.)

All proteins were obtained in a very pure form after phenyl sepharose
purification, as evidenced by SDS-PAGE analysis (Figure II1-2). The amount of pure
protein yielded by each 100 mL culture was used to estimate the per-liter yield for each
protein, shown in Table III-1. Unexpectedly, the yields for yARF-CaM and yARF-
Linker-CaM were consistently and significantly lower than those measured for WT CaM
and the other engineered constructs. Fortunately, purification of the 12-ADA-labeled
engineered constructs (Figure I11-2, B-F) appeared to be unaffected by the presence of the
hydrophobic 12-ADA tag when compared to the purification results for WT CaM

(Figure III-2A).



E)

x OO QY
B)
v
r "'*
OOV + QY
D)
T
dzc
1+ -
!i=
285
R e
OCEY * QY
F)
;E: [
'L
.:"" - -
'l:
aEs
48s
" re
- L ——

O * O QY
§7E
i -
. = -
! g
’ ot
238
‘e~
AN QY
- .S o]
s
o
— -
L E
‘. -
f: < R Trp—
ORI S
: ; [
== v
=
. B
-
- e - w-

Figure III-2. SDS-PAGE analysis of phenyl sepharose purification

fractions for each CaM construct. Pure protein is outlined with a blue
box on each gel image: WT CaM (A); yARF-CaM (B); yARF-Linker-
CaM (C); yARF-6xHis-CaM (D); hCaNB-CaM (E); hCaNB-Linker-

CaM (F).

All constructs except WT CaM were expressed in the

presence of 12-ADA for N-terminal labeling by NMT. * = MW
marker; CL = Clarified Lysate; F = Flow-Through; W = Wash. BI =
0.05 mg/mL BSA; B2 =0.1 mg/mL BSA.
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Intact LC-MS Analysis of Protein Samples

After purifying 12-ADA-CaN, WT CaM, and 12-ADA-labeled engineered CaM
constructs, we analyzed all seven proteins via intact LC-MS. As with yARF-GFP and
Fyn-GFP, we observed near-quantitative labeling of all proteins displaying an NMT
recognition sequence. No myristoylated protein species were detected for any samples.
Across multiple expressions and purifications, yARF-CaM was the only protein for
which greater than 10% unlabeled species was regularly observed; it is possible that this
result is somehow correlated to the very low expression yields for this particular

construct.
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Table I11-2. Intact LC-MS results for WT CaM and 12-ADA-labeled
CaN and CaM constructs. All expected masses account for removal of
the initial Met, excluding the WT CaM mass. “+12-ADA (red.)”
entries correspond to labeled proteins on which the azide group was
reduced to an amine. “% Labeled” = sum of the relative abundances of

both 12-ADA-labeled species observed for each protein.

. Expected Observed Relative o
Frotein Mass (Da) Mass (Da) Abundance % Labeled
Human CaN, B subunit 19,168.72 N/D N/A
+12-ADA 19,392.03 19,392.12 0.59 > 08 %
+12-ADA (red.) 19,366.03 19,363.70 0.41
WT CaM 16,679.80 16,677.38 1.00 N/A
YARF-CaM 17,283.53 17,281.28 0.12
+12-ADA 17,506.84 17,504.78 0.75 88%
+12-ADA (red.) 17,480.84 17,478.84 0.13
YARF-Linker-CaM 17,968.34 N/D N/A
+12-ADA 18,191.65 18,188.88 0.75 > 98 %
+12-ADA (red.) 18,165.65 18,165.27 0.25
YARF-6xHis-CaM 18,106.30 N/D N/A
+12-ADA 18,329.68 18,327.36 0.72 > 98 %
+12-ADA (red.) 18,303.68 18,302.44 0.28
hCaNB-CaM 17,511.71 N/D N/A
+12-ADA 17,735.02 17,731.59 0.45 > 098 %
+12-ADA (red.) 17,709.02 17,706.47 0.55
hCaNB-Linker-CaM 18,196.52 18,193.50 0.07
+12-ADA 18,419.83 18,416.77 0.48 93 %
+12-ADA (red.) 18,393.83 18,391.58 0.45

An interesting pattern in the intact LC-MS results for the 12-ADA-labeled CaN
and CaM constructs is the abundance of the reduced 12-ADA-labeled species across
samples. We investigated the cause of the azide reduction, examining the steps in our
experimental protocol that could be responsible. We wondered if the reduction was
caused by the presence of DTT in the purification buffers, but the use of buffers lacking
DTT did not decrease the extent of azide reduction (data not shown). We also

hypothesized that 12-ADA might be reduced in the cell or growth media during the
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expression itself. Thus, we conducted a time-course study with hCaNB-CaM in which

12-ADA was added to the expression culture 2 hr or 1 hr prior to inducing protein

expression, or at the time of induction. We found that there was no time-dependent trend

in the extent of 12-ADA reduction (Table III-3), indicating that reduction was unlikely to

be occurring in the expression flask.

In related work, a sample of pure 12-ADA (in

which the azide group was confirmed to be intact) was analyzed on the same instrument

used for intact LC-MS analysis of proteins. The major species detected was the reduced

form of 12-ADA (data not shown), underscoring the notion that azide reduction most

likely occurred during the actual LC-MS run.

Table I111I-3. Intact LC-MS results for hCaNB-CaM samples purified

from expression cultures exposed to 12-ADA for different lengths of

time.

12-ADA was added 2 hr or 1 hr prior to inducing protein

expression, or at the time of induction (0 hr). No unlabeled hCaNB-

CaM was detected in any sample, and no trend was observed for the

extent of reduction of the azide moiety with respect to time. N/D = Not

Detected. N/A = Not Applicable.

] - . . Expected | Observed Relative |, 0
Time Point | Protein Species Mass (Da) | Mass (Da) | Abundance % Labeled |% Reduced

hCaNB-CaM 17,511.71 N/D N/A

2hr +12-ADA 17,735.02 | 17,732.40 0.64 > 08 % 36%
+12-ADA (red.) 17,709.02 | 17,706.87 0.36
hCaNB-CaM 17,511.71 N/D N/A

1 hr +12-ADA 17,735.02 | 17,732.41 0.59 > 98 % 41%
+12-ADA (red.) 17,709.02 | 17,706.90 0.41
hCaNB-CaM 17,511.71 N/D N/A

0 hr +12-ADA 17,735.02 | 17,732.68 0.61 > 98 % 39%
+12-ADA (red.) 17,709.02 | 17,707.13 0.39
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Evaluation of CaN and Engineered CaM Constructs via Phosphatase Activity Assays
Next, we investigated the potential impact of protein engineering and labeling on
the activity of our various constructs. To address this issue, we utilized a phosphatase
activity assay that tests the ability of CaN to dephosphorylate a phosphopeptide substrate
derived from one of its natural substrate proteins. The resultant free phosphate reacts
colorimetrically with a malachite green reagent, producing a change in absorption that

may be measured on a standard plate reader.'™"

Dephosphorylation depends on proper
functioning of CaN, which in turn must be bound and activated by a functional form of
CaM. Moreover, both CaN and CaM are fully active only in their Ca**-bound form, a
fact that is important for the assays described here and especially pertinent for the assays
described in the next section.

For all of the assay results depicted in Figure III-3, the concentration of CaN was
held constant, while the concentration of CaM was varied over roughly four orders of
magnitude. Ca®" was also present at a saturating level. After CaN, CaM, and Ca*" were
equilibrated, the phosphopeptide substrate was added to the solution to initiate the

enzymatic reaction; the reaction was quenched after 10 minutes via addition of malachite

green.
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Figure III-3. Free phosphate generated upon incubation of CaN, CaM,
and Ca*" with RII phosphopeptide was measured in a standard Biomol
Green (malachite green) phosphatase activity assay. (A) Myr-CaN or
12-ADA-CaN was incubated with saturating Ca’" and varying
concentrations of WT CaM. (B) CaN was incubated with saturating
Ca®" and varying concentrations of WT CaM, 12-ADA-labeled yARF-
6xHis-CaM, or unlabeled yARF-6xHis CaM. Results in (A) and (B)
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indicate that 12-ADA has little effect on CaN or CaM activity. (C)
CaN was incubated with saturating Ca®" and varying concentrations of
WT CaM or a 12-ADA-labeled engineered CaM protein. For (A),
results are presented as % activity of Myr-CaN. For (B) and (C),
results are presented as % activity of WT CaM. For all graphs, n > 4.

The first graph above indicates that myristoylated CaN (Myr-CaN) and
12-ADA-CaN behave identically (Figure III-3A); we did not expect there to be much
difference between these protein species because CaN is naturally myristoylated, and the
azide moiety is largely inert. For our initial studies with CaM, we examined only yARF-
6xHis-CaM (Figure I1I-3B). We found that addition of the yARF recognition sequence
and the 6xHis tag resulted in a four-fold loss of activity relative to WT CaM, though the
12-ADA label did not appear to impact CaM activity. These data motivated us to prepare
more engineered CaM constructs for NMT labeling, as described earlier.

After expressing and purifying the other members of the family of engineered
CaM constructs, we tested them in the same phosphatase activity assay and were pleased
to find that one construct, hCaNB-CaM, was as active as WT CaM (Figure I1I-3C). The
ability to functionalize a CaM construct in a site-specific manner without an
accompanying loss of activity should enable researchers to study CaM in a variety of
settings, such as in single-molecule fluorescence experiments or on protein microarrays.
Considering the ubiquity of CaM in eukaryotes, and given the large number of proteins
that CaM binds and activates, the hCaNB-CaM construct has the potential to be useful for
researchers in a number of fields.

Finally, in analyzing the data presented in Figure III-C, we were also able to

answer a question posed near the beginning of this chapter: is the yARF sequence or the
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6xHis tag responsible for the diminished activity of yARF-6xHis-CaM? The yARF-CaM
construct, which lacks a linker or affinity tag, is 25% less active than WT CaM. Addition
of the linker sequence or a 6xHis tag further decreases the activity of the corresponding
constructs relative to the yARF-CaM and hCaNB-CaM parent constructs. Thus, it seems
that both the yARF sequence and the 6xHis tag contribute to the poor activity of yARF-
6xHis-CaM. With a different recognition sequence and no linker or 6xHis tag, and with
wild-type levels of activity, hCaNB-CaM is clearly the construct of choice for future

studies.

Calcium-Binding Behavior of Engineered CaM Constructs

To obtain a better understanding of our engineered CaM constructs, we
investigated their Ca’*-binding behavior with two different methods: a conventional
electrophoretic mobility assay (“gel shift assay”) described in the literature to probe other

CaM mutants,g’20

and the phosphatase activity assay described in the previous section.
The electrophoretic mobility assay exploits the change in the apparent molecular
weight of CaM during SDS-PAGE depending on the buffer environment. As noted
above, CaM undergoes a significant conformational change upon binding Ca*, exposing
a hydrophobic patch on the protein. This structural change results in CaM running to a
lower molecular weight in the presence of saturating levels of Ca*”. In contrast, when
CaM is in the presence of Ca’" chelators, it runs to a higher apparent molecular weight.

By utilizing SDS-PAGE buffers containing high concentrations of Ca*" or EDTA, we

found that our engineered and 12-ADA-labeled CaM constructs underwent a shift similar
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to that of WT CaM: all six proteins appear to bind Ca®" similarly at saturating levels of
Ca®" (Figure I1I-4A).
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Figure III-4. (A) WT CaM and 12-ADA-labeled engineered CaM
proteins were examined in an electrophoretic mobility (“gel shift”)
assay. SDS-PAGE buffers contained either Ca®" (top) or EDTA
(bottom). Coomassie staining revealed a Ca’’-dependent shift in
apparent mass for WT CaM (1), as well as for all 12-ADA-labeled
engineered CaM proteins: yARF-CaM (2), yARF-Linker-CaM (3),
yARF-6xHis-CaM (4), hCaNB-CaM (5), and hCaNB-Linker-CaM (6).
Lysozyme (7) served as a negative control for Ca’"-dependent mobility.
Protein marker lanes are denoted by *. (B) CaN was incubated with
saturating CaM (WT CaM or a 12-ADA-labeled engineered CaM
protein) and varying concentrations of Ca®’; then, free phosphate was
detected in a standard Biomol Green (malachite green) activity assay.

Results are presented as % activity of WT CaM; n > 4.
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The phosphatase activity assay provided a more quantitative measure of the
Ca’"-binding behavior of our family of CaM constructs. The assay was carried out
exactly as previously described, but instead of varying the concentration of CaM, we
used a saturating level of CaM and varied the concentration of Ca®" (Figure III-4B).
Again, hCaNB-CaM was found to be the most active construct relative to WT CaM, with
the other proteins exhibiting diminished activity in roughly the same order as was
observed in the [CaM]-dependent phosphatase assay (Figure III-3C). All of the Kp

values measured in our activity assay studies are summarized in Table I11-4.

Table III-4. Binding constants for activity assay graphs (Figures
II-3A, [I-3C, and III-4B). Values are reported as + standard error.
ND = Not Determined.

[CaM]-Dependent | [CaZ*]-Dependent
Protein Activity Assay: Activity Assay:
Ky (nM) Kp (nM)
Myr-CaN 21112 -
12-ADA-CaN 12 +12 -
WT CaM 31+14 107 £ 12
hCaNB-CaM 31+£14 93112
hCaNB-Linker-CaM 43+16 105+ 12
yARF-CaM 33+17 75+12
yARF-6xHis-CaM ND 87 +12
yARF-Linker-CaM ND 79213

Fluorescence Gel Analysis of Lysate Samples
Before proceeding to surface capture experiments with 12-ADA-CaN and
12-ADA-hCaNB-CaM, we wanted to confirm that NMT is selective toward our

constructs in E. coli. In order to couple our proteins to microarrays directly from lysate,
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it was important to establish that proteins other than our substrates were not labeled by
NMT. Utilizing experimental protocols optimized for the GFP/NMT model system, we
examined clarified lysate samples of CaN and the engineered CaM constructs after in
vivo labeling with 12-ADA. For CaM, we focused on the two most active constructs:
hCaNB-CaM and hCaNB-Linker-CaM. (Similar results were obtained for the remainder
of the constructs, though yARF-CaM and yARF-Linker-CaM were difficult to detect in
this experiment due to their low expression levels.) The gel images presented in Figure
III-5 confirm that NMT is indeed selective toward CaN and the engineered CaM
constructs in bacteria: fluorescent bands appear only at the molecular weight values for

CaN-B and the engineered CaM proteins.
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Figure I1I-5. SDS-PAGE analysis of lysate samples of CaN, hCaNB-
CaM, and hCaNB-Linker-CaM co-expressed with NMT in the presence
of 12-ADA. Lysate samples were treated with alkyne-TAMRA for
detection of azide-labeled protein. The gel was imaged for TAMRA
(A) and stained with Coomassie colloidal blue (B). Comparison of
both gel images indicates selective 12-ADA labeling of each natural or
engineered substrate protein. Similar results were obtained for other

engineered CaM constructs.
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CONCLUSION

The work presented in this chapter significantly expands the scope of the NMT-
mediated protein labeling system developed in Chapter II. In moving beyond the test
protein, GFP, we demonstrated the versatility and power of the system with proteins of
real biomedical interest, calcineurin (CaN) and calmodulin (CaM). A natural substrate of
NMT, CaN was shown to be equally active in its myristoylated and 12-ADA-labeled
forms. Engineering of CaM to display different NMT recognition sequences also
resulted in robust protein labeling with 12-ADA, as measured by intact LC-MS.
Phosphatase activity assays investigating the behavior of the engineered CaM constructs
showed that hCaNB-CaM was as active as WT CaM in both CaM-dependent and Ca”"-
dependent assays. Finally, treatment of lysate samples with an azide-reactive dye
confirmed that only the CaN and CaM-based substrates were labeled with 12-ADA by
NMT, enabling the preparation of protein microarrays from lysate, as described in the

next chapter.

EXPERIMENTAL SECTION

Materials

Cloning. All oligonucleotide primers were ordered from IDT. The pET-15b
plasmid encoding Drosophila melanogaster wild-type calmodulin was a gift from
Professor Steven Mayo’s lab at Caltech. The QuikChange site-directed mutagenesis kit
was used as is from Stratagene/Agilent. Polymerase chain reaction (PCR) experiments
were carried out in a BioRad DNA Engine Peltier Thermal Cycler using PfuTurbo DNA

Polymerase (Stratagene/Agilent). All restriction enzymes, restriction enzyme buffers,
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bovine serum albumin (BSA), and ligase were purchased from New England BioLabs
(NEB). NEB DNA Ladders (100 bp and 1 kbp “Quick-Load”) were used as markers for
all DNA agarose gels, which were visualized with the addition of Plus One ethidium
bromide solution from Amersham Biosciences on a UVP UV Transilluminator. Zymo
Agarose-Dissolving Buffer (ADB) and Zymo Spin II columns, with their associated
buffers, were used to purify DNA out of agarose gels. All DNA acquisition from cells
was completed using the Qiagen Spin Miniprep Kit and columns. All sequencing

requests were fulfilled by Laragen.

Protein expression. Plasmids encoding hNMT1 or hNMT2 and methionine-
aminopeptidase (Met-AP) were a gift from the laboratory of Professor Richard Kahn at
Emory University (Atlanta, GA).*' The plasmid encoding human CaN® was purchased
from Addgene. E. coli BL21(DE3) chemically competent cells were prepared using the
standard Zymo method (Stratagene) and were transformed with either the hNMTI
plasmid or hNMT2 plasmid. LB medium was composed of 10 g tryptone (casein
hydrolysate), 5 g yeast extract, and 10 g NaCl per liter. Media were autoclaved before
use. Kanamycin (Kan) was used at a working concentration of 35 pg/mL, and ampicillin
(Amp) was used at a working concentration of 200 pg/mL. Myristic acid was purchased
from Fluka. All optical density (OD) values were measured at 600 nm on a Cary UV-Vis
spectrophotometer. All SDS-PAGE gels described in this chapter were NuPAGE Novex
4%—12% Bis-Tris pre-cast gels (Invitrogen). SeeBlue Plus2 Pre-Stained Protein Marker
from Invitrogen served as the molecular weight ladder. Gels were stained with

Coomassie colloidal blue from Invitrogen.

Protein purification. CaN was purified with Talon cobalt affinity resin
(Clontech) and calmodulin-sepharose 4B resin (GE Healthcare); Nickel-NTA resin from
Qiagen could be used in place of Talon resin, if desired. All lysis, wash, and elution
buffers were prepared exactly as reported.” Lysozyme was purchased from Aldrich.

CaM and engineered CaM constructs were purified using phenyl sepharose resin
from GE Healthcare. (The yARF-6xHis-CaM protein was also purified using Qiagen Ni-
NTA resin, in a manner identical to that described in Chapter II for yARF-GFP and Fyn-
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GFP.) For CaM purification, the Lysis Buffer was 50 mM Tris (pH 7.5), 100 mM KCI, 1
mM EDTA, 1 mM EGTA, 1 mM DTT, 1 mg/mL lysozyme, and 0.5 mM PMSF; Wash
Buffer 1 was 50 mM Tris (pH 7.5) and 1 mM CaCl,; Wash Buffer 2 was 50 mM Tris (pH
7.5), 1 mM CaCl,, and 500 mM NaCl; and Elution Buffer was 50 mM Tris (pH 7.5) and
1.5 mM EGTA. Lysozyme was purchased from Aldrich.

Mass spectrometry analysis. The Pierce BCA Assay Kit was used to measure
protein concentration in pure protein fractions prior to MS analysis. Millipore Microcon
Centrifugal Devices were used to concentrate and buffer-exchange whole-protein
samples for intact LC-MS analysis, which was carried out on an Agilent 1100 MSD
quadrupole ESI-MS.

Phosphatase activity assays. @ Human recombinant WT CaM,  human
recombinant WT myristoylated CaN, and Biomol Green (malachite green) reagent were
purchased from Enzo Life Sciences. The phosphorylated CaN-specific substrate peptide
(pRII peptide) was purchased from GenScript. All other reagents were reagent grade and
purchased from Sigma-Aldrich. Assay Buffer was composed of 50 mM Tris (pH 7.5),
100 mM NaCl, 6 mM MgCl,, and 0.5 mM DTT.

Electrophoretic mobility assay. Buffers for the electrophoretic mobility assay
was prepared as described.””® In summary, 5x Loading Buffer was 0.225 M Tris
(pH 6.8) containing 50% glycerol, 5% SDS, and 0.05% bromophenol blue. To 1 mL of
the Loading Buffer, either 2 uLL of 1 M CaCl, was added for a final concentration of 2
mM CaCl, (for the +Ca”*" gel), or 6 pL of 0.5 M EDTA was added for a final
concentration of 3 mM EDTA (for the +EDTA gel). Running Buffer was MES running
buffer (Boston BioProducts); to 1 L of the commercially available running buffer, which
already contained 1 mM EDTA, either 3 mL of 1 M CaCl, was added to achieve a final
effective concentration of 2 mM CaCl, (for the +Ca" gel), or 4 mL of 0.5 M EDTA was
added to achieve a final concentration of 3 mM EDTA (for the +EDTA gel). SDS-PAGE
gels were NUPAGE Novex 4%—12% Bis-Tris pre-cast gels, and SeeBlue Plus2 Pre-
Stained Protein Marker served as the molecular weight ladder (both from Invitrogen).

Gels were stained with Coomassie colloidal blue, also from Invitrogen.
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Fluorescence detection. Lysate samples were treated with the reagents and
according to the protocols of the Click-IT Tetramethylrhodamine (TAMRA) Protein
Analysis Detection Kit from Invitrogen. After reaction and precipitation, protein samples
were run on Invitrogen NuPAGE Novex 4%—12% Bis-Tris pre-cast gels and imaged on a
GE Typhoon laser scanner. Gels were stained with Coomassie colloidal blue from

Invitrogen.

Methods

Cloning. The template plasmid for all engineered CaM constructs was pET-15b
encoding Drosophila melanogaster wild-type CaM. Primers were designed to encode the
amino acid sequences corresponding to the constructs outlined in Table III-1: the yARF
recognition sequence (MGLFASK, from ATG GGT CTG TTC GCG TCT AAA), the
hCaNB recognition sequence (MGNEASYPL, from ATG GGT AAC GAA GCG TCT
TAC CCG CTG), a 6xHis tag, and/or the linker sequence (SRLIGSA, from TCT CGT
CTG ATC GGT TCT GCT) at the 5" end of the gene. The QuikChange site-directed
mutagenesis kit was used in conjunction with published protocols for the “two-step PCR”
method; this approach circumvents “the tendency of the perfectly complementary
mutagenic primers to dimerize with each other, rather than anneal to the target sequence
[in the parent plasmid],” and thus enables the addition of long insertions.'® Briefly, for
each construct, two single-primer PCR reactions were carried out to produce “hybrid”
plasmids, comprised of one original (wild-type CaM) strand and one new (mutant) strand
possessing the given sequence(s). Then, in a second PCR step, the two reactions from the
first step were combined and more polymerase was added to the reaction mixture. After
digestion with Dpnl, the mixture was transformed into XL1-Blue competent cells and
plated. Colonies were selected for inoculation of cultures from which DNA was isolated
and submitted for sequencing. Each final construct was transformed into competent cells

already harboring an NMT plasmid for co-expression experiments.

Protein expression. Overnight cultures were inoculated in LB supplemented

with Kan and Amp and grown in an incubator-shaker (37°C, 250 rpm). The following
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day, overnight cultures were diluted 1:50 into fresh LB supplemented with Kan and Amp
for expression cultures, which ranged in volume from 5 mL to 100 mL. Cultures were
grown in an incubator-shaker (37°C, 250 rpm), and protein expression was induced with
IPTG (1 mM, from 1 M stock in water) when the ODgo9 value was between 0.8 and 1.1.
Pre-induction samples (1 mL) were collected as needed. Myristic acid or the azide fatty
acid 12-ADA (500 pM, from 500 mM stock in DMSO) was also added at the time of
induction. After 3—4 hr of protein expression, cells were harvested via centrifugation
(10 min x 10,000 g) and the final ODgyy value was measured. Cell pellets were lysed
according to the following formula, regardless of which lysis buffer was used: 50 pL
lysis buffer per mL culture per ODggo unit. Crude lysates were centrifuged once more,

and the supernatant (clarified lysate) was saved for further experiments.

Protein purification.  Published protocols were followed with minor
modifications for purification of CaN and CaM constructs.

For CaN, a three-step protocol is described to purify the enzyme from bacterial
lysate.” Briefly, harvested cells were lysed using a probe sonicator and lysozyme (1
mg/mL). The three steps are an ammonium sulfate (high-salt) precipitation, a Talon
cobalt affinity resin purification step, and CaM—sepharose chromatography. All buffers
were prepared and used exactly as reported in the literature to yield pure human CaN.
All purification fractions were analyzed via SDS-PAGE for detection of pure protein.

For CaM, a one-step phenyl sepharose purification is reported to isolate the
protein from bacterial lysate.'”” When CaM is in its Ca*"-bound form, a hydrophobic
patch on the protein is exposed, and it binds the phenyl sepharose resin; CaM elutes from
the resin in the presence of buffers containing Ca>" chelators, which cause CaM to
undergo a conformational change that hides its hydrophobic patch. Briefly, harvested
cells were lysed in Lysis Buffer using a probe sonicator and lysozyme (1 mg/mL).
Clarified lysate was incubated with phenyl sepharose at 4°C for 30 min to ensure binding
between CaM and the resin. The slurry was poured into a column and washed alternately
with Wash Buffers 1 and 2. Then elution fractions were collected upon addition of
Elution Buffer to the column. All purification fractions were analyzed via SDS-PAGE

for detection of pure protein.
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Mass spectrometry analysis. For intact LC-MS experiments, solutions of pure
protein were concentrated using Microcon columns (MWCO = 30 kDa) and buffer-
exchanged into a 0.1% TFA (trifluoroacetic acid) solution. A final solution of 100 pmol

protein in 100 pL was run on the MSD instrument.

Phosphatase activity assays: [CaM]-dependent assays. The Ca**/CaM-
activated phosphatase activity of CaN was determined using the malachite green assay, a
colorimetric technique employed for quantitatively measuring the amount of inorganic
phosphate released by dephosphorylation of a CaN-specific peptide substrate, pRII. This
assay takes advantage of the green color produced by the complex formed between
malachite green, molybdate, and free phosphate (POy)."*"

Briefly, varying concentrations of WT CaM were incubated with saturating Ca>"
(10 uM CaCly) and 10 nM Myr-CaN or 12-ADA-CaN in Assay Buffer for 10 min at
37°C. To initiate the reaction, phosphorylated RII peptide substrate was added at a final
concentration of 0.5 mM in 50 pL and allowed to react for 10 min. A standard curve of
inorganic phosphate (PO4) in Assay Buffer was made on each day of experiments. A
quantity of 50 puL of Biomol Green reagent (containing malachite green and molybdate)
was added to the standard curve and experimental samples to terminate the reaction, and
color was allowed to develop for 30 min. The absorbance of all samples was measured at
620 nm on a Tecan 96-well plate reader. The absorbance values of the standard curve
were plotted against the (known) concentrations of the PO, standards and fit to a second-
order polynomial, from which the amount of CaN-mediated release of POy in the samples
was calculated. The CaN phosphatase activity was plotted as a function of CaM
concentration using Prism (GraphPad Software). The dose-response of CaN activity at

varying CaM concentrations was calculated according to the sigmoidal dose response

(Equation (1)):

max—min 1
1+10Log(X50-X) ( )

Y = min+
where X is the concentration, Y is the response, min is the lower asymptote of the curve,
max is the upper asymptote of the curve, and X50 is the x-coordinate of the inflection
point (x, y). X50 represents the concentration at which CaN is half-maximally activated

and is directly related to the ability of CaM to bind and activate CaN.
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Phosphatase activity assays: [Ca’']-dependent assays. The ability of the
12-ADA-labeled engineered CaM proteins to bind and activate CaN was measured using
the malachite green assay described above in order to determine the CaM constructs’
Ca®"-dependent activation. Briefly, 10 nM Myr-CaN, 1 puM wild-type CaM or
engineered labeled CaM, and varying concentrations of free Ca®" were incubated at 37°C
for 10 min. The concentration of free Ca®" was tightly controlled by titration of the
calcium chelator EGTA.* The reaction was initiated by addition of phosphorylated RII
peptide substrate at a final concentration of 0.5 mM in 50 pL. The reaction was allowed
to proceed for 10 min at 37°C. A standard curve of inorganic phosphate (PO,) in Assay
Buffer was made on each day of experiments. Biomol Green reagent (50 pL) was added
to the standard curve and experimental samples to terminate the reaction, and color was
allowed to develop for 30 min. The absorbance of all samples was measured at 620 nm
on a Tecan 96-well plate reader. The absorbance values of the standard curve were
plotted against known concentrations of PO4 and fit to a second-order polynomial, from
which the amount of CaN-mediated release of POy in the samples was interpolated. The
CaM-mediated CaN phosphatase activity as a function of Ca®" concentration was plotted
using Prism (GraphPad Software). The dose-response of activity of the same was

calculated according to Equation (1).

Electrophoretic mobility assay. These experiments were conducted according

20 Two different gels were run: a +Ca”" gel, in which samples

to literature protocols.
were exposed to an environment containing saturating levels of Ca*", and a +EDTA gel,
in which samples were exposed to an environment containing excess EDTA. Samples of
pure wild-type CaM, engineered CaM proteins, and lysozyme were prepared at equal
concentrations, and 10 pg of each protein was loaded on a protein gel using the Loading
Buffers described in the Materials section. SDS-PAGE was performed using the
Running Buffers described in the Materials section. Gels were stained with Coomassie

colloidal blue and imaged on the Typhoon with the 633 nm laser serving as the excitation

source (no filter).
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Fluorescence detection. Cells were lysed with the buffer recommended in the
instructions for the Invitrogen Click-iT kit (1% SDS, 50 mM Tris-HCI, pH 8.0) according
to the following formula: 50 pL lysis buffer per mL culture per ODgyo unit. Lysate
samples were reacted with alkyne-TAMRA and other kit reagents according to the
protocols supplied by Invitrogen; the only modification was the use of 15 pL of alkyne-
TAMRA dye solution rather than 100 pL. At the conclusion of the 25-min reaction time,
samples were precipitated following the methanol-chloroform precipitation protocol
described in the same kit instructions; the only modification was the completion of one
extra methanol wash of the protein pellet. For SDS-PAGE analysis, protein pellets were
resuspended in a denaturing buffer (8 M urea, 100 mM NaH,POy4, and 10 mM Tris-Cl)
and loaded on a NuPAGE Novex 4%-12% Bis-Tris pre-cast gel. To detect TAMRA
signal on the Typhoon, the 532 nm laser served as the excitation source (filter set: 580 BP
30). Gels were stained with Coomassie colloidal blue, then imaged again, with the 633

nm laser now serving as the excitation source (no filter).
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CHAPTER IV

Surface Capture of N-Terminally

Functionalized Proteins out of Lysate
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ABSTRACT

In this chapter, we focus on the covalent conjugation of N-terminally labeled
proteins to functionalized slides for the creation of protein microarrays. Specifically,
12-ADA-labeled yARF-GFP, CaN, and hCaNB-CaM, prepared via bacterial co-
expression with NMT, were selectively coupled to cyclooctyne-spotted glass slides.
Moreover, rapid surface capture was achieved directly out of lysate, without prior
purification of the recombinantly expressed proteins. Our ability to prepare protein
microarrays directly from cellular extracts exploits the orthogonality of NMT toward
bacterial systems and the exquisite selectivity of NMT toward both natural and
engineered substrate proteins. We also describe experiments completed with an azide
dye and acetylene- or cyclooctyne-derivatized agarose beads, which informed our
subsequent work with microarrays; these studies provided a comparison of the relative
efficiency of reacting azides with terminal alkynes versus cyclic strained alkynes, and
they shed light on how reaction efficiency is affected by the presence of lysate proteins.

The microarray studies described in this chapter were performed at Maven
Biotechnologies in collaboration with Dr. Tamara Kinzer-Ursem. Maven has developed
an instrument for protein measurements based on a technology called LFIRE, or Label-
Free Internal Reflection Ellipsometry. Successful coupling of our 12-ADA-labeled
proteins to slides was confirmed using the LFIRE instrument, which enables sensitive
and high-throughput detection of changes in height on the surface of a slide. Our results
in this area provide a strong foundation for future work evaluating the biochemical

activity of CaM, CaN, and other labeled proteins in a microarray format.
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INTRODUCTION

Immobilization of Proteins on Surfaces

Protein chips and microarrays have been utilized in a variety of contexts. They
may serve as components in medical diagnostic systems,'” and they may be useful
research tools for in vitro studies of the interactions of proteins with small molecules and
other proteins.*” Elucidating such interactions is a key step toward discovering new
small-molecule drugs that bind specific protein targets and dissecting intricate protein—
protein networks that govern complex biological processes, such as memory formation,
and disease states, such as oncogenesis.

As such, the development of techniques to couple proteins to surfaces has been an
area of active research for the past twenty years, continuing to the present day.* ' In
2000, the Schreiber Lab published a landmark paper describing the immobilization of
proteins on aldehyde slides via lysine (Lys) side-chain amines.''" While this work
represented a major advance at the time for high-throughput studies of protein-protein
interactions, it also utilized a chemical reaction that is neither site-specific nor selective
for a single protein: Lys residues are prevalent across the proteome and are often found at
multiple sites within a single protein. The use of the Lys-aldehyde reaction and other
non-specific protein chemistries yields microarrays that display the protein of interest in
various orientations, depending on the site of surface attachment on the protein; only a
fraction of those protein molecules exhibit a useful or active orientation, rendering most
of the microarray useless in some cases. Thus, there has been a growing need for new
chemistries offering greater selectivity within biological molecules to improve the utility

of protein microarrays.
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A major advance for protein chemistry occurred in 2001, when the Sharpless and
Meldal Groups independently reported the selective copper-catalyzed reaction of azide

"> which was soon shown to be bioorthogonal (i.e., neither reactive

and alkyne groups,'*
partner interacts with chemical groups normally present in biological settings).14
Numerous other bioorthogonal reactions have been established that enable selective and
controlled chemical reactions of biomolecules.”” Importantly, methods have been
developed in concert to incorporate the appropriate chemical groups into proteins and
other biomolecules, enabling their participation in bioorthogonal reactions.'®* One
notable outcome of these interdisciplinary advances is that bioorthogonal reactions have
now been utilized to achieve site-specific and selective immobilization of proteins on
surfaces, as described in a recent review.'® Clearly, much progress has been made since
the Schreiber Lab’s report of aldehyde—protein microarrays thirteen years ago.

Our objective for the work described here was to utilize NMT-mediated protein
labeling as a step towards site-specific immobilization of functionalized proteins on
surfaces for downstream applications. We developed methods using yARF-GFP, a
protein from our original model system, and applied them to the CaN and hCaNB-CaM
proteins described in Chapter III. Given that some surface immobilization techniques
currently in use require purification of the protein of interest,'® we were also intrigued by
the possibility of coupling our recombinant proteins to surfaces directly from lysate. In
general, the process of isolating a protein from lysate has three primary drawbacks:
purification often requires considerable time and resources; it may result in a significant

loss of net protein product; and it may cause adverse changes in protein structure and

function. Thus, advancing methods for protein—surface coupling that do not require prior
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protein purification is highly desirable. To that end, we describe our preliminary
conjugation experiments with functionalized beads and a small-molecule dye, and then

shift our focus to our work with protein microarrays.

RESULTS AND DISCUSSION

Experiments with Alkyne-Functionalized Agarose Beads

For all of our protein conjugation experiments, we planned to utilize the azide—
alkyne cycloaddition reaction.'>'**! In order to gain a better understanding of how this
reaction behaves when one partner is immobilized, we completed preliminary
experiments with alkyne-functionalized agarose beads and a small-molecule azide dye.
As shown in Figure IV-1, agarose beads displaying N-hydroxy succinimidyl (NHS) ester
groups were reacted with amine-bearing alkyne reagents. Both acetylene (terminal
alkyne) and azadibenzocyclooctyne (ADIBO) beads were prepared. Either ethanolamine
or methyl-PEG4-amine was used to quench unreacted NHS groups; this quenching step is
important for protein experiments, because NHS groups also react readily with lysine
amine groups. Finally, beads were blocked with BSA or left unblocked. In total, eight

types of alkyne-derivatized beads were prepared.
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Figure IV-1. Schematic overview of functionalization of agarose
beads. NHS-ester agarose beads were reacted with an acetylene or a
cyclooctyne-bearing amine, followed by treatment with a quenching

agent to ensure that no unreacted NHS-ester groups remained.

After completing the bead preparation protocol, we confirmed successful
functionalization of the beads by reacting them with a small-molecule dye, Azide-
Fluor488. We also wanted to determine whether or not the different quenching
conditions and the BSA blocking step had any effect on azide-alkyne reaction efficiency.
Either the copper-catalyzed or strain-promoted azide-alkyne reaction was carried out,

depending on the bead type, with no-copper negative controls included for the acetylene
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beads. Equivalent levels of fluorescence were observed across all four bead types for
each type of alkyne (acetylene or ADIBO), indicating that functionalization was
successful and that the type of quencher and the BSA blocking step did not affect
reaction efficiency (data not shown). For subsequent experiments, we moved forward
with both acetylene and ADIBO beads that had been quenched with methyl-PEG4-amine.

Next, we investigated how different bead preparation conditions affected the
nonspecific binding of lysate protein to the beads. We hypothesized that the BSA
blocking step would decrease nonspecific interaction of lysate proteins with the beads.
We also expected to observe a higher background signal for ADIBO beads than for
acetylene beads because the thiol groups in cysteine side chains are known to react with

activated cyclooctynes.”**

To test these hypotheses, we reacted NHS-AlexaFluor633
with lysate protein collected from E. coli BL21(DE3) cells in which no protein
expression had been induced, and we incubated beads with the dyed lysate. The
fluorescence of the beads was measured before and after washing. The results, presented
in Figure IV-2, indicate that the BSA blocking step did not have an impact on the
interaction of our beads with lysate protein. However, ADIBO beads did indeed show a

four-fold higher lysate background signal, even after washing, as compared to acetylene

beads: it is likely that some lysate proteins react covalently with the ADIBO beads.
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Figure IV-2. Fluorescence of beads after incubation with

AlexaFluor633-dyed lysate, before/after washing. Duplicate pairs are
shown for each bead type, except the no-Cu negative control. Beads
were functionalized with acetylene-PEG4-amine or ADIBO-PEG4-
amine, quenched with methoxy-PEG-amine, and blocked with BSA
(“+BSA”) or not blocked (“~BSA”). All fluorescence measurements
were normalized by number of beads. After washing, roughly four
times as much lysate remained on ADIBO beads as compared to

acetylene beads.

We were also interested in how the presence of lysate protein affected the reaction
efficiency between the azido dye and the alkynyl beads, an important consideration for
achieving successful capture of 12-ADA-labeled proteins from lysate on alkyne-
derivatized surfaces. Acetylene and ADIBO beads were reacted with Azide-Fluor488 in
the absence (Figure IV-3A) or presence (Figure IV-3B) of lysate protein. We measured a

two-fold lower fluorescence signal for beads that had been reacted with the azido dye in
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the presence of lysate, for both acetylene and ADIBO beads. Again, very consistent
results were obtained within each bead type, regardless of whether or not the beads had
been blocked with BSA. These results were considered in the design of subsequent

microarray experiments.
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A) Azide-Fluor488 Fluorescence vs. Bead Type
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Figure IV-3. Fluorescence of beads after reaction with Azide-
Fluor488 in the absence (A) or presence (B) of lysate. Duplicate pairs
are shown for each bead type, except the no-Cu negative controls.
Beads were functionalized with acetylene-PEG4-amine or ADIBO-
PEG4-amine, quenched with methoxy-PEG-amine, blocked with BSA
(“+BSA”) or not blocked (“~BSA”), and washed, prior to reaction with
Azide-Fluor488. All fluorescence measurements were normalized by
number of beads. The azide-alkyne reaction yield in lysate is

approximately half the reaction yield in buffer only.
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Examination of the graphs in Figure IV-3 reveals a clear difference in average
signal for ADIBO beads versus acetylene beads after reaction with Azide-Fluor488.
Strained alkynes such as ADIBO are known to react with azides more rapidly and to a
greater extent than terminal alkynes do.** However, as noted earlier and as evidenced by
Figure IV-2, strained alkynes can also react nonspecifically with nucleophiles present in
biological systems, particularly the thiol groups of Cys residues.” Thus, there is a trade-
off between signal and background that is worth considering when selecting or designing
an alkynyl molecule for reaction with azides, depending on the context of a given
cycloaddition reaction. For our purposes, we found that the copper catalyst required for
reaction of terminal alkynes with azides strongly interfered with activation of CaN by
CaM (data not shown); both proteins possess multiple metal-binding centers, as discussed
in Chapter III, so it is likely that either or both proteins bound the Cu*" and Cu'" ions
yielded by the copper catalyst. Thus, we utilized cyclooctyne compounds exclusively

when working with CaM and CaN, as described in the next section.

Overview of LFIRE Instrumentation and Experimental Set-up

In progressing from the use of an azido dye to the use of azide-labeled proteins,
we also moved to a higher-throughput format than beads: protein microarrays. More
specifically, a robotic spotter was used to print cyclooctyne molecules on glass slides at a
density of approximately 16 spots per square mm, with a distance of 300 um between
spots. Glass slides were treated with a proprietary optical coating enabling their use in
the Label-Free Internal Reflection Ellipsometry instrument, or LFIRE, developed by

Maven Biotechnologies (Figure IV-4A).*> The protocols for preparing amine-coated
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glass slides and printing NHS-cyclooctyne molecules on the slides are described in more
detail in the Experimental Section of this chapter.

Our LFIRE microarray experiments began with affixing a well structure to the
printed slide, mounting the slide on a glass prism, and inserting the prism into the
instrument (Figure IV-4B). The slide was kept hydrated and remained mounted on the
prism throughout the experiment. Buffer was added to the wells, followed by a BSA
blocking solution. LFIRE measurements were collected during this time to establish a
consistent baseline. After the slide was thoroughly washed, cell lysate was added to each
well, with simultaneous initiation of further LFIRE measurements. An image of the
entire slide was collected with a predetermined frequency, depending on the size of the
total printed area; for our experiments, an image was collected approximately once every
90 seconds. Data analysis entailed stacking all of the images in a software program such
as Imagel, subtracting a background image, and detecting localized rises in signal
corresponding to protein deposition on the slide surface. The LFIRE experimental
protocol is depicted schematically in Figure IV-4B, and the following sections describe

our microarray work with 12-ADA-labeled yARF-GFP, CaN, and hCaNB-CaM.
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Figure IV-4. (A) Schematic overview of LFIRE instrument (adapted
from Reference 25). Polarized light aids in the detection of changes in
height, i.e., protein deposition, on the microarray surface. (B)
Schematic overview of surface coupling experiments. Slides are
printed with cyclooctyne spots, blocked, incubated with cell lysate, and
imaged on the LFIRE.
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Surface Capture and LFIRE Analysis of yARF-GFP Lysates

Lysates were prepared from E. coli cells in which yARF-GFP was expressed in
the presence of no fatty acid, myristic acid, or 12-ADA; additionally, a negative control
lysate was prepared from cells in which no test protein had been overexpressed. The
protein concentration of each of the four lysate samples was measured, so that equal
concentrations of lysate protein could be added to different wells on the microarray slide.
For these experiments, we used slides that had been printed with DIBO-NHS or ADIBO-
NHS (structures shown in Figure 1V-4B). As described above, LFIRE data were
collected throughout the duration of the blocking and lysate-coupling steps. Background-
subtracted data are presented in Figures IV-5 and IV-6.

Analysis of the LFIRE data clearly indicated that significant coupling occurred
only in the areas where DIBO or ADIBO was spotted, and only in wells to which lysate
containing 12-ADA-yARF-GFP was added; the images shown in Figure IV-5 are
representative of results obtained across multiple wells. Furthermore, the similarity in
appearance of the control wells (no test protein, yARF-GFP, and Myr-yARF-GFP)
indicates that the majority of background protein deposition is unlikely to be yARF-GFP,
but rather, is likely the result of nonspecific reaction between cysteine-containing lysate
proteins and DIBO or ADIBO. Finally, the large difference in appearance between Myr-
yARF-GFP wells and 12-ADA-yARF-GFP wells demonstrates that the strong signal
measured for the latter is not simply due to hydrophobic attraction between the fatty acid
tag and the slide. Post-wash LFIRE data from multiple wells exposed to the same four
lysate samples were analyzed quantitatively; those results are presented in Figure IV-6

and confirm that selective coupling is achieved with 12-ADA-yARF-GFP out of lysate.
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Figure IV-5. LFIRE 3-D surface plots of microarrays after incubation
with cell lysate containing no overexpressed protein (A, E); yARF-GFP
(B, F); Myr-yARF-GFP (C, G); or 12-ADA-yARF-GFP (D, H). The
two microarray spots in back are BSA for all panels, and the two spots
in front are DIBO (A-D) or ADIBO (E-H). Significant protein
coupling was observed only in the presence of 12-ADA-labeled yARF-

GFP lysate, and only within cyclooctyne-derivatized areas.
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Figure IV-6. Average post-wash LFIRE signal for DIBO and ADIBO
microarray spots after exposure to different lysate samples. For both
DIBO and ADIBO slides, significant coupling was observed only in the
presence of 12-ADA-labeled yARF-GFP. Each bar represents the
average of > 16 spots, + standard error of the mean. * = no detectable

signal.

Surface Capture and LFIRE Analysis of CaN Lysates

LFIRE experiments were performed with lysates containing Myr-CaN or
12-ADA-CaN in a manner similar to that described above for the yARF-GFP lysates.
(Controls with no protein or unlabeled protein were not performed; attempts to express
CaN in a non-myristoylated/non-labeled form have been shown to result in significant
protein aggregation.’®)  Again, results indicated strong coupling only between
cyclooctyne spots and 12-ADA-labeled protein (Figure IV-7). For these experiments,
data analysis was performed before and after a final wash step. The strong post-wash
signal observed in Figure IV-7B for 12-ADA-CaN, and its similarity to the pre-wash

signal in Figure IV-7A, suggests that 12-ADA-CaN is covalently conjugated to the slide.
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Figure IV-7. LFIRE 3-D surface plots of ADIBO-PEG5-NHS
microarrays after incubation with cell lysate containing 12-ADA-CaN
(A, B) or Myr-CaN (C, D). For all panels, the 16 spots shown are a
representative subset from a larger array of 289 spots. (A) and (C)
display signal immediately after incubation, prior to washing, while (B)
and (D) display post-wash signal intensity. Significant protein
coupling was observed only in the presence of 12-ADA-CaN, only

within cyclooctyne-derivatized areas.

Further analysis of the CaN LFIRE data set was performed, as presented in Figure
IV-8. Plotting the signal as a function of time provided insight into the relative efficiency
of the azide-cyclooctyne reaction versus background reactions between cyclooctynes and
other molecules present in lysate (Figure IV-8A). In particular, the data for the first 15
minutes of the incubation period indicate that the azide-cyclooctyne reaction proceeds

considerably faster than background reactions in our system. Considering the significant
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interest in and widespread use of the biocompatible azide-cyclooctyne reaction,”’ we
believe these results could be of interest to the larger chemistry/chemical biology
community.

We were also interested in gaining a better understanding of the enrichment factor
achieved via protein coupling—that is, the amount of 12-ADA-labeled protein present on
the slide versus present in lysate. As shown in Figure IV-8, the final signal of 12-ADA-
CaN is roughly three times that of Myr-CaN: this result indicates that two-thirds of the
12-ADA-CaN signal corresponds to the labeled species, while one-third is background.
Quantitative Western blotting indicated that CaN constitutes roughly 7% of the total
lysate protein for both Myr-CaN and 12-ADA CaN (data not shown). Comparison of the
~7% figure in lysate (i.e., background:labeled = 93:7 = 13.3:1) with the ~66% figure after
coupling (i.e., background:labeled = 34:66 = 0.51:1) yields a 26-fold reduction in

contaminating proteins relative to 12-ADA-CaN wupon coupling to cyclooctyne

microarrays from lysate.
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Figure IV-8. Quantitative analysis of CaN LFIRE surface plots.
(A) Average signal for ADIBO microarray spots during incubation with
lysate containing 12-ADA-CaN or Myr-CaN, prior to washing. Lysate
was added at 0 min. (B) Average signal for ADIBO spots after lysate
incubation and wash. For both panels, data points represent the average
signal of the 16 spots shown in Figure IV-7. The results show that
12-ADA-CaN couples more quickly and more specifically to ADIBO
spots as compared to the control protein, Myr-CaN. Error bars

represent the standard deviation.

Surface Capture and LFIRE Analysis of hCaNB-CaM Lysates

Finally, LFIRE experiments similar to those outlined above were performed with
lysates containing hCaNB-CaM expressed in the presence of myristic acid or 12-ADA;
similar results were obtained as well. Lysate containing 12-ADA-labeled hCaNB-CaM
(henceforth referred to as “12-ADA-CaM”) coupled specifically to cyclooctyne spots,
and the signal remained strong after washing (Figure IV-9, A and B). Lower signal

intensities were detected for the negative control lysate containing myristoylated hCaNB-

CaM (Myr-CaM) (Figure IV-9, C and D).
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Figure IV-9. LFIRE 3-D surface plots of ADIBO-PEGS5-NHS
microarrays after incubation with cell lysate containing 12-ADA-CaM
(A, B) or Myr-CaM (C, D). For all panels, the 16 spots shown are a
representative subset from a larger array of 289 spots. (A) and (C)
display signal immediately after incubation, prior to washing, while (B)
and (D) display post-wash signal intensity. Significant protein
coupling was observed only in the presence of 12-ADA-CaM, only

within cyclooctyne-derivatized areas.

The representative images in Figure IV-9 indicate that the “signal-to-noise” ratio
(final signal of 12-ADA-CaM versus final signal of Myr-CaM) is lower than the
corresponding ratio for CaN, although the mass spectrometry results presented in Chapter
IIT confirmed that both CaN and hCaNB-CaM are labeled quantitatively with 12-ADA. Tt
is possible that the functionalized N-terminus of 12-ADA-CaM is less accessible for

subsequent conjugation than that of 12-ADA-CaN; because CaN is a natural substrate of
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NMT, it is likely that its native folded structure renders its N-terminus available for
reaction. Further surface coupling studies with natural NMT substrate proteins and
engineered substrates will elucidate the extent to which this theory is correct.

LFIRE data for the CaM lysates were also analyzed in a more quantitative manner
(Figure IV-10). Again, we observed a more rapid reaction rate for the azide-cyclooctyne
reaction than for background reactions, with the difference in reaction rates most
apparent during the first 15 minutes (Figure IV-10A). As would be expected from the
representative images shown in Figure IV-9, the average final post-wash signal of
12-ADA-CaM lysate is lower than that of 12-ADA-CaN lysate, though it is considerably
higher than that of Myr-CaM lysate (Figure IV-10B). About 60% of the final signal for
12-ADA-CaM is the recombinant protein (i.e., background:labeled = 40:60 = 0.67:1).
Quantitative Western blots of 12-ADA-CaM and Myr-CaM indicated that CaM
constitutes ~13% of the total lysate protein (background:labeled = 87:13 = 6.7:1). Thus,
we achieved a 10-fold reduction in contaminating proteins relative to 12-ADA-CaM upon

coupling to cyclooctyne microarrays from lysate.
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Figure IV-10. Quantitative analysis of CaM LFIRE surface plots.
(A) Average signal for ADIBO microarray spots during incubation with
lysate containing 12-ADA-CaM or Myr-CaM, prior to washing. Lysate
was added at 0 min. (B) Average signal for ADIBO spots after lysate
incubation and wash. For both panels, data points represent the average
signal of the 16 spots shown in Figure IV-9. The results show that
12-ADA-CaM couples more quickly and more specifically to ADIBO
spots as compared to the control protein, Myr-CaM. Error bars

represent the standard deviation.

CONCLUSION

This chapter describes experiments completed with functionalized beads and
microarrays, two different systems for surface capture of proteins. Using Maven
Biotechnologies’ LFIRE instrument, we detected selective coupling of 12-ADA-yARF-
GFP, 12-ADA-CaN, and 12-ADA-hCaNB-CaM to cyclooctyne-spotted glass slides. The
orthogonality exhibited by NMT toward bacterial proteins allowed us to couple 12-ADA-

labeled proteins to derivatized surfaces directly out of lysate, a useful feature for studies
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of proteins that are difficult to purify or that are negatively affected by isolation from the
lysate environment. Experiments conducted with lysates containing no recombinant
protein, unlabeled yARF-GFP, Myr-yARF-GFP, and 12-ADA-yARF-GFP resulted in
significant surface coupling of 12-ADA-yARF-GFP only. The similar appearance of all
three controls indicated that the coupling observed for 12-ADA-yARF-GFP was indeed
specific to the azide moiety and was related to neither the protein sequence nor the
presence of a fatty acid tag. Experiments conducted with 12-ADA-CaN and 12-ADA-
CaM demonstrated that enrichment factors of 26 and 10, respectively, were achieved
upon selective coupling of each protein from lysate to cyclooctyne arrays. These results
provide a strong foundation for the completion of biochemical studies with CaN and

CaM microarrays, as well as a set of methods for the surface capture of other proteins.

EXPERIMENTAL SECTION

Materials

Experiments with alkyne-derivatized agarose beads. NHS-ester agarose resin
was purchased from GE Healthcare. Azide-Fluor488, Acetylene-PEG4-amine, and
ADIBO-PEG4-amine were purchased from Click Chemistry Tools. Methyl-PEG4-amine
was purchased from Pierce. Ethanolamine and fluorescein salt were purchased from
Sigma-Aldrich. “Wash Buffer 1” was 1 mM HCI; “Wash Buffer 2” was 100 mM Tris-
HCI, pH 8.5; “Wash Buffer 3” was 100 mM NaOAc, pH 4.5. “Coupling Buffer” was 200
mM NaHCOs;, 500 mM NaCl, pH 8.2. For CuAAC reactions, CuSO4 was purchased
from VWR, sodium ascorbate and aminoguanidine-HCI were purchased from Aldrich,
and the ligand was bathophenanthroline sulfonated sodium salt from GFS Chemicals.

For dye-labeling of lysate, NHS-AF633 (AlexaFluor-633 carboxylic acid, succinimidyl
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ester) was purchased from Invitrogen. The BCA Assay kit was purchased from Pierce.

Methanol, chloroform, and other solvents were purchased from VWR.

Cell lysate preparation. Bacterial cultures were grown as described in Chapters
IT and III. Lysis Buffer was composed of 50 mM Tris (pH 7.5), 100 mM NacCl, 0.1 mM
PMSF, and Roche Complete Protease Inhibitor. OmniLyse cell lysis kits were purchased

from Claremont BioSolutions. The BCA Assay kit was purchased from Pierce.

Amine functionalization of glass slides. Ammonium hydroxide was purchased

from VWR. All other reagents were reagent grade and purchased from Sigma-Aldrich.

Microarray printing. “PBS-T” was composed of 50 mM phosphate, 150 mM
NaCl, and 0.01% Tween-20. “TBS-T” was composed of 50 mM Tris (pH 7.5), 150 mM
NaCl, and 0.01% Tween-20. The DIBO-NHS (Click-iT Succinimidyl Ester DIBO
Alkyne) reagent was purchased from Life Technologies/Invitrogen. ADIBO-NHS and
ADIBO-PEG5-NHS were purchased from Click Chemistry Tools. Methyl-PEG4-NHS
(MS(PEG)4 succinimidyl ester) was purchased from Pierce. Anhydrous DMSO was
purchased from Cambridge Isotope Laboratories. The SpotBot Personal Microarray

System is manufactured by Arraylt.

Methods

Experiments with alkyne-derivatized agarose beads. Beads were resuspended
in the bottle, and 5 mL of slurry was transferred to a new conical vial. Packing buffer
was removed, and beads were then washed 3 x 10 mL with Wash Buffer 1 and divided
into two batches. Each batch was reacted with 25 mM acetylene-PEG4-amine or
ADIBO-PEG4-amine in Coupling Buffer for 5 hr at room temperature. Quenching was
accomplished with 100 mM ethanolamine or methyl-PEG4-amine in Coupling Buffer
overnight at 4°C. Beads were then washed 3 x 10 mL alternating between Wash Buffers
2 and 3. Some beads were blocked with BSA (0.1% in 500 mM NaCl, pH 8.2). After a
final set of washes with 500 mM NaCl, pH 8.2, beads were ready for reaction with the
Azide-Fluor488 fluorescent probe.
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To all beads, Azide-Fluor488 was added at a final concentration of 50 uM. For
ADIBO-functionalized beads, no additional reagents were required. For acetylene-
functionalized beads, CuAAC click reactions were performed as follows: 200 uM
CuSOy4, 500 pM ligand, 5 mM sodium ascorbate, and 5 mM aminoguanidine-HCI (the
Azide-Fluor488, CuSOy, and ligand were combined separately and pre-mixed for 3 min).
All reactions were performed in standard Phosphate-Buffered Saline (PBS). Reactions
were allowed to proceed for 1.5 hr at room temperature, then beads were washed 8 times
with PBS.

For experiments with dye-labeled lysate, E. coli BL21(DE3) cells were grown but
no protein expression was induced. Cells were lysed in lysis buffer (1% SDS, 50 mM
Tris-HCI, pH 8.0) according to the following formula: 50 pL lysis buffer per mL culture
per ODgoo unit. Lysate was dye-labeled with NHS-AF633 in PBS, then precipitated
according to the methanol-chloroform precipitation protocol described in the Invitrogen
Click-iT kit handbook. The protein pellets were resuspended in 8 M urea buffer, and
protein concentration was measured using the BCA Assay kit. Dyed lysate was used at a
concentration of 0.25 mg/mL in experiments with beads.

To measure the beads per unit volume, OD4y was measured on the plate reader.
To measure the signal of Fluor488, samples were excited at 488 nm (bandwidth: 20 nm)
and signal was read at 530 nm (bandwidth: 20 nm). To measure the signal of AF633,
samples were excited at 633 nm (bandwidth: 5 nm) and signal was read at 660 nm

(bandwidth: 5 nm). Fluorescence values were divided by OD4g values for normalization.

Cell lysate preparation. A cell pellet corresponding to approximately 5 mL of a
given E. coli culture was resuspended in 500 pL Lysis Buffer at 4°C, lysed with
mechanical disruption using OmniLyse cell lysis kits, and clarified of cellular debris via
centrifugation (10 min x 10,000 g at 4°C). The concentration of soluble protein was
determined with the BCA Assay kit. If lysates were not used the same day they were

prepared, they were stored at -80°C and used within two weeks.

Amine functionalization of Maven glass slides. Microscope slides from Maven

Biotechnologies were prepared for vapor phase deposition of APTES
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((3-aminopropyl)triethoxysilane) by cleaning with RCA-1 (30% hydrogen peroxide,
ammonium hydroxide, and RO water at a 1:1:10 ratio) and washing with DI water 3
times. Excess water was removed with N, gas, and slides were dried in an oven at 70-
80°C for 1 hr. Slides were allowed to equilibrate to room temperature and placed in a
vacuum desiccator. Then 2 microcentrifuge tubes, each containing 100 pnL. APTES, were
placed inside the vacuum desiccator. The chamber was evacuated to 22 mm Hg and
slides were incubated for at least 2 hr. Slides were stored at room temperature away from

light prior to use.

Microarray printing. Microarrays were contact printed with a SpotBot Personal
Microarray System using a 946 MP4 pin with approximately a 135 pm spot size on a 300
um pitch. Microscope slides were washed 3 times with PBS-T and DI water and dried
completely with N, gas. Control spots of 0.1 mg/mL BSA in TBS-T and 0.5 mg/mL
polyethylene glycol (PEG, MW 35000) were printed, as were DIBO-NHS, ADIBO-NHS,
ADIBO-PEG5-NHS, and methyl-PEG4-NHS in anhydrous DMSO and 0.5 mg/mL PEG.
All arrays were printed in 55-65% humidity in under 1.5 hr. Spots were allowed to dry
slowly in a humidified chamber, and slides were stored under N, gas with desiccant at

-20°C.

LFIRE experiments with lysate samples. Maven amine-coated glass slides with
printed microarrays were washed 3 times with PBS-T, mounted on a glass prism with
index matching oil, and loaded into the LFIRE instrument. The optimal angle for the total
internal reflection measurement, one that maximized the difference in signal between
background and microarray spots, was determined. Each microarray was blocked with
0.25 mg/mL BSA in TBS-T for 1 hr and washed 5 times with TBS-T. Cell lysates
containing recombinant proteins of interest were added at a final concentration of 0.5
mg/mL. The microarrays were incubated with lysates for approximately 1 hr, then
washed 8 times with TBS-T. LFIRE data from each microarray were captured at
approximately 80—120 second intervals throughout the experiment. All experiments were

performed at room temperature.
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LFIRE data analysis. The LFIRE instrument captures data in 16-bit grayscale
TIFF units. These data were analyzed using the Imagel software package. First, images
from one experiment were placed in sequential order, stacked, and image stabilized. The
image immediately preceding the addition of cell lysate was subtracted as a baseline from
the sequence. Plots of the change in microarray surface and surface profile pixel
intensities were generated using the Surface Plot and Plot Profile functions in ImageJ. To
extract data from each microarray spot, regions of interest (ROIs) of uniform size were
drawn around each spot, and the average pixel intensity from each ROI at each time point
was exported to Microsoft Excel. For GFP-containing samples, data from replicate
microarray spots were averaged and normalized to the average pixel intensity of the BSA
spots, yielding data in relative ellipsometry units (REU). For CaN- and CaM-containing
samples, data were not normalized to BSA spot intensities and are reported as TIFF units.

All graphs were prepared with Prism software (GraphPad Software).
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CHAPTER V

Progress toward the In Vivo
Visualization of Individual Bacterial

Proteins after N-Terminal Labeling
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ABSTRACT

In previous chapters, we have taken advantage of the orthogonality exhibited by
NMT toward the bacterial proteome. This feature of NMT enabled in-lysate surface
coupling of three different proteins that had been labeled by NMT, as summarized in
Chapter IV. Here, we describe efforts toward applying NMT-mediated protein labeling
to the selective functionalization of bacterial proteins of interest in order to visualize
them in live cells and study their localization patterns.

Our initial attempts at such imaging experiments were complicated by the fact
that thorough washing was not sufficient to remove unbound 12-ADA from cells; in fact,
12-ADA may be incorporated into the cell membrane by endogenous enzymes. Thus, we
sought a different azide fatty acid that would be transferred by NMT to substrate proteins,
but that could also be washed out of cells. We found that 7-azidoheptanoic acid fulfilled
both of these criteria, as described in this chapter. We also selected two proteins for
initial studies, PyrG and MreB, both of which are known to undergo spatiotemporal
localization in bacterial cells. Cloning and expression were completed for both proteins,
and an engineered MreB construct was found to be robustly labeled by NMT in live cells
with both 7-azidoheptanoic acid and 12-ADA. These results will be useful in future
applications of the NMT-mediated protein labeling system to detailed imaging studies of

bacterial protein organization.
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INTRODUCTION

Organization and Localization of Bacterial Proteins

It has long been believed that bacteria do not exhibit sophisticated spatiotemporal
orchestration of their proteins and other biomolecules. Biology textbooks have generally
depicted mammalian cells in great detail, with complex organelles that migrate precisely
in space and time, while describing prokaryotes in more simple terms. In a marked shift,
recent research has shown that bacteria actually do organize and localize their proteins to
a much greater degree than previously thought."” Powerful imaging techniques, such as
stochastic optical reconstruction microscopy (STORM) and electron cryotomography
(ECT), have enabled scientists to study bacteria at resolutions that are orders of
magnitude higher than those offered by traditional light microscopy.”®  These
developments and changes in the state of the field are summarized in the following
selection from an essay written by Professor Bonnie Bassler, a leading microbiologist at

Princeton University:

“Eukaryotes have long been known to possess sophisticated subcellular
architecture in which DNA, RNA, and proteins are localized to the right place at
the right time. Bacteria, in contrast, have until recently been thought to be
unorganized bags of goop. Consequently, cell biology was generally restricted to
eukaryotes. However, remarkable recent advances in imaging technologies...
have made it so that we can now peer into bacterial cells as we traditionally
peered into bigger eukaryotic cells. These technologies have revealed that

bacteria are decidedly organized.” (Adapted from Reference 5.)
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NMT-Mediated Protein Labeling for Imaging Studies in Bacteria

After developing the GFP/NMT model system described in Chapter II and
confirming that NMT is selective toward engineered substrate proteins in bacteria, we
recognized that NMT-mediated protein labeling could be a very useful tool for
visualizing and studying individual bacterial proteins. By adding an NMT recognition
sequence to a bacterial protein of interest, we postulated that we could selectively label
the protein with 12-ADA and react it with a cyclooctyne dye for imaging. To test this
hypothesis, we first attempted to utilize the original model system: Fyn-GFP and hNMT?2
were co-expressed in bacteria in the presence of 12-ADA, and cells were treated with a
cyclooctyne-lissamine-rhodamine dye. Initial results seemed promising, though the
control experiment shown in Figure V-1 yielded an unexpected result: some cells

appeared fluorescent even when no substrate protein was expressed.

12-ADA - +
LR-NoFo Dye + +
) Fl - v
DIC i)

QoA )

Red

Figure V-1. Confocal microscope images of live cells expressing no
NMT substrate protein, after reaction with lissamine-rhodamine non-
fluorinated cyclooctyne dye (LR-NoFo). Cells that were not exposed to
12-ADA were dark (left panels), while prior exposure to 12-ADA
yielded a fluorescence signal (right panels), despite the lack of a

substrate protein for NMT to label with 12-ADA.
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Based on the work described in Chapter II, we were confident that NMT was not labeling
endogenous bacterial proteins. Thus, we concluded that 12-ADA, unlike the LR-NoFo
dye, was not removed from cells by standard wash conditions that are compatible with
live cells. In fact, 12-ADA may be transported into cells by bacterial enzymes
responsible for the uptake of exogenous fatty acids; these fatty acids may then serve
different functions within the cell, including structural roles in the cell membrane.’ In
any case, 12-ADA appeared to be interacting with bacterial cells in a manner that
rendered it unsuitable for our proposed live-cell imaging studies.

In subsequent sections of this chapter, we describe our investigation of other azide
fatty acids (FAs) to use in place of 12-ADA for imaging experiments. Specifically, we
tested azide FAs with shorter chain lengths, searching for at least one that would be (a)
bound and transferred by NMT to a substrate protein, and (b) washed out of cells in its
free form without the use of harsh wash conditions. Using a combination of lysate and
live-cell dye-labeling experiments, we identified a promising candidate, 7-azidoheptanoic

acid. The azide FAs that we tested and the experimental outcomes are described below.

PyrG and MreB
In addition to finding a suitable azide FA for imaging experiments, we also
undertook the task of engineering two bacterial proteins for labeling by NMT. The

proteins we selected are PyrG and MreB, shown in Figure V-2.



Figure V-2. Overview of the structures and localization patterns of

PyrG and MreB. The black arrows point to the N-terminus on the
crystal structures of PyrG (A) and MreB (B). In both proteins, the
N-terminus appears to be surface-accessible. Confocal images of
mCherry fluorescent protein fusions to PyrG (C) and MreB (D) in
E. coli show that PyrG forms straight filamentous structures, while
MreB adopts a helical pattern along the length of the cell. Adapted

from References 7-10.

PyrG is a 60-kDa enzyme involved in converting UTP to CTP, and it also plays
important structural roles in the cell; the interplay between its enzymatic and physical
functions is currently under investigation.” PyrG is the E. coli homolog of a protein
known as Ctp synthase (CtpS) in other bacterial species, such as C. crescentus.” As
shown in Figure V-2C, an mCherry-PyrG fusion protein was shown to form long
filamentous structures along the cell membrane; PyrG also self-assembles into filaments
in its purified form.” We selected PyrG for further studies involving NMT labeling
because it assembles into clear structures and also appears to perform interesting

functions in the cell.
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MreB is the primary bacterial homolog of actin.'' Like PyrG, this 37-kDa protein
has been expressed, purified, and structurally characterized. The crystal structure
depicted in Figure V-2B is of the Thermotoga maritima form of MreB, which is 54%
identical (70% related) to the E. coli form. In cells, MreB appears to assemble into
filaments that in turn organize into a helical structure along the length of the cell (Figure
V-2D). The length of the individual filaments is under continued investigation,'* but they
appear to play a role in maintaining the overall structure of the cell as well as contributing
to cell motility.'" We selected MreB for NMT-mediated protein labeling studies because,
like PyrG, it forms interesting structures in the cell, and it is an early example of a

bacterial protein whose localization patterns are actively regulated in vivo.

RESULTS AND DISCUSSION

Studies of Azide Fatty Acid Analogs: Dye-Labeling Lysate

The structures of the azide FAs described in this chapter are shown in Chart V-1.
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Chart V-1. Azide fatty acids (azide FAs) and cyclooctyne-coumarin
dye utilized for in vivo labeling studies in bacteria. FA 7 is 12-ADA.
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The azide FAs (1-7) were prepared by a former post-doctoral scholar in the Tirrell Group,
Dr. Janek Szychowski, in a manner similar to that described in Chapter II for the
synthesis of 12-ADA. The cyclooctyne-coumarin dye (8) utilized for the in vivo
experiments described later in this chapter was prepared as previously described, also by
Dr. Szychowski.”” Cyclooctyne 8 is known to cross the cell membrane of mammalian
cells and react selectively with azide-tagged biomolecules without harming cells. Its use
in bacteria has not yet been reported, though we surmised that it would behave similarly
in E. coli as in mammalian cells.

First, we investigated the extent to which each of the azide FAs was transferred

by NMT to a substrate protein. For these experiments, we utilized the Fyn-GFP/hNMT?2
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co-expression system described in Chapter II. Protein expression, cell harvesting, and
cell lysis were carried out as previously described; the only difference was that no fatty
acid or one of the azide FAs in Chart V-1 was added to the expression flasks instead of
12-ADA when inducing protein expression. Lysates were treated with alkyne-TAMRA

to enable detection of azide-labeled protein, as described in Chapters II and III, and

(AL

analyzed by SDS-PAGE (Figure V-3).
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Figure V-3. SDS-PAGE analysis of lysate samples from Fyn-GFP/
hNMT2 co-expression cultures exposed to different azide FAs.
Samples were treated with alkyne-TAMRA for detection of azide-
labeled Fyn-GFP. The gel was stained with Coomassie colloidal blue
(A) and imaged for TAMRA signal (B). Fluorescent bands indicate
successful and selective transfer of an azide FA onto Fyn-GFP. Lanes
correspond to cultures exposed to the following azide FAs: 1: no fatty

acid; 2: FA1,3: FA2,4:FA3,5: FA4,6: FAS5,7: FA 6,8: FA 7.
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We were pleased to find that azide FA 4, i.e., 7-azidoheptanoic acid, and FAs
longer than 4 were appended by NMT to Fyn-GFP, as evidenced by the fluorescent bands
in Figure V-3B (Lanes 5-8). The brighter appearance of the fluorescent band in the FA 4
lane (Lane 5) compared to the fluorescent bands for FAs 6 and 7 (Lanes 7-8) is simply an
artifact of differences in protein loading across lanes, as confirmed by similar
experiments culminating in SDS-PAGE analysis; when lanes were equally loaded with
protein samples, we observed brighter TAMRA fluorescence for FAs 6 and 7, as might
be expected (data not shown) . The sharp drop-off in signal for azide FAs shorter than 4
is in agreement with in vitro work carried out by the Gordon Lab with FAs possessing
alkyl chains of varying lengths."*

One other notable feature of the gel image in Figure V-3B is the weak second
band in the FA 4 lane (Lane 5). It is possible that FAs 4 and 5, 7-azidoheptanoic acid and
8-azidooctanoic acid, respectively, may be utilized by lipoic acid ligase (also known as
lipoate protein ligase) to label its substrate proteins; use of octanoic acid by this enzyme
instead of lipoic acid has been documented when the concentration of lipoic acid is low
or the concentration of octanoic acid is particularly high.”” We found in separate
experiments that titrating just 100 uM free lipoic acid into the expression system
eliminated the second band altogether (data not shown). Thus, if background labeling of
lipoic acid ligase substrates with FA 4 does appear to interfere with visualizing a protein
of interest during live-cell imaging, then addition of a small amount of lipoic acid should
address the problem. However, given that the lower band in Lane 5 is significantly
weaker than the Fyn-GFP band, this issue may not even arise in the context of

microscopy experiments.
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Studies of Azide Fatty Acid Analogs: Dye-Labeling Live Cells

Next, we examined how effectively each of the azide FAs 1-7 could be washed
out of cells. In the first set of experiments described here, no substrate protein was
expressed, yielding an experimental set-up similar to that in Figure V-1. Four hours after
the addition of no fatty acid or one of the azide FAs 1-7 to the expression flask, cells
were harvested, but were not lysed. Instead, samples were thoroughly washed, treated
with cyclooctyne-coumarin 8, washed again, and analyzed on a 96-well plate reader.
Coumarin fluorescence as well as cell density were measured so that fluorescence
measurements could be normalized. Both FA 1 and FA 4 produced a very low
fluorescence signal (Figure V-4), indicating that those FAs were effectively washed out
of cells prior to dye-labeling. Interesting, FAs 1 and 4 are both relatively short and

possess an odd number of carbons.

Coumarin Fluorescence Signal vs. Azide FA
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Figure V-4. Fluorescence signal of live E. coli cells after addition of
an azide FA to the growth culture and subsequent dye-labeling with

cyclooctyne-coumarin 8. The azide FA added to each culture is
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denoted as in Chart V-1. Each fluorescence value represents the
average of a triplicate set of identical cultures, + standard deviation.
Fluorescence values were normalized by cell density (ODgg) and were
background-corrected via subtraction of the fluorescence value of a
control culture that was treated with 8 but not exposed to a FA. These
experiments identified azide FA 4 as a promising candidate for in vivo

labeling studies.

In a follow-up set of experiments, we again tested FAs 4 and 7 (7-azidoheptanoic
acid and 12-ADA, respectively), now alongside additional controls. We grew cultures
and dye-labeled cells as above, but we also prepared a sample that was exposed to neither
a fatty acid nor cyclooctyne-coumarin 8, and a sample that was exposed to myristic acid
and 8. These controls provided some insight into the potential interference of cellular
autofluorescence (i.e., the sample not treated with 8), the degree of nonspecific
interaction between 8 and cellular components (i.e., the sample exposed to 8 but not to a
fatty acid), and the degree of nonspecific interaction between 8 and an unreactive fatty
acid (i.e., sample exposed to 8 and myristic acid). Furthermore, we grew parallel cultures

in which no substrate protein was expressed or Fyn-GFP and hNMT2 were co-expressed.



Coumarin Fluorescence Signal vs. FA
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Figure V-5. Fluorescence signal of live E. coli cells after addition of
no FA (“-FA”), myristic acid (“Myr”), or an azide FA (4 or 7),
followed by dye-labeling with cyclooctyne-coumarin 8. Cells exposed
to neither a FA nor 8 (“—FA, —dye”) served as a control. Cells
expressed no substrate protein (yellow bars) or co-expressed Fyn-GFP
and hNMT2 (green bars). Each fluorescence value represents the
average of a duplicate set of identical cultures, + standard deviation.

All fluorescence signals were normalized by cell density (ODyg).

The data, summarized in Figure V-5, provide some interesting results. We were
pleased to find that the fluorescence of cultures to which 4 was added was similar to that
of cultures exposed to no fatty acid or to myristic acid prior to dye-labeling with 8. This
similarity indicates that the fluorescence observed for cultures exposed to 4 is essentially
background fluorescence due to some coumarin dye remaining in cells after washing,
unrelated to the fatty acid alkyl chain or the azide moiety of 4. The results also indicate

that almost half the background signal in each set of samples is simply cellular
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autofluorescence, as illustrated by the “—FA, —dye” samples. As expected, cultures
exposed to 7 were considerably brighter than cultures exposed to 4 and the three controls.
This result is in line with the observations associated with Figure V-1: azide FA 7 is not
removed from cells by standard wash procedures and consequently reacts with
cyclooctyne-coumarin 8.

Surprisingly, the fluorescence signal for the Fyn-GFP/hNMT2 culture exposed to
7 was almost double that of the culture exposed to 4, despite dye-labeling experiments in
lysate (Figure V-3B) indicating that NMT transfers 4 to Fyn-GFP as well as it transfers 7.
It is possible that cyclooctyne-coumarin 8, though membrane-permeable in mammalian
cells, does not cross the bacterial cell membrane/cell wall to the same extent; in this
scenario, most of the fluorescence in our live-cell experiments would arise from alkyne-
reactive cell membrane components (i.e. azide FA 7) rather than proteins inside the cell
(i.e. Fyn-GFP labeled with 4 or 7) reacting with 8. Future work probing the behavior and
membrane permeability of coumarin 8 in live bacteria should elucidate the cause of this
discrepancy.

Finally, it may be worthwhile to confirm that FA 4 is not elongated or otherwise
processed within the cell prior to binding by NMT. The methods described in Chapters II
and III for whole-protein LC-MS studies would be readily applicable to this problem:
Fyn-GFP co-expressed with NMT in the presence of FA 4 would be purified and
subjected to LC-MS, in order to verify the appearance of a mass shift corresponding to
the addition of one molecule of FA 4. It seemed unlikely that enzymatic elongation is

occurring, given the difference in data sets obtained for FAs 4 and 7 in live-cell dye-
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labeling experiments. Thus, we moved forward as planned with experiments involving
engineered substrate proteins.

For experiments with engineered PyrG and MreB constructs, described in the next
section, we proceeded with FA 4, 7-azidoheptanoic acid, which fulfills both criteria
established earlier for an azide FA to be suitable for imaging studies: FA 4 is transferred
to substrate proteins by NMT, and free FA 4 is removed from live cells upon completion

of a standard wash protocol.

Preparation and Evaluation of yARF-PyrG and yARF-MreB Constructs

As noted earlier, the bacterial proteins PyrG and MreB were selected for NMT-
mediated protein labeling studies. Both proteins were engineered to display the yARF
NMT recognition sequence (MGLFASK) described in Chapters II and III. Rather than
using a recombinant plasmid as the PCR template, as we had done for all previous
cloning projects, we used genomic DNA isolated from E. coli cells as the template for
PCR amplification. The final yARF-PyrG and yARF-MreB constructs were transformed
into E. coli BL21(DE3) competent cells already harboring the hNMT1 plasmid.
Co-expression cultures were grown in LB medium as described in Chapters II and III,
with the addition of no fatty acid, 4, or 7 when protein expression was induced. Samples
were collected at regular time points (30, 60, 90, and 120 min) to monitor cell density,
protein expression, and extent of protein labeling for each culture. Growth curves are

presented first, in Figure V-6.
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ODgqp vs. Time for yYARF-PyrG Cultures
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Figure V-6. Growth rates for co-expression cultures of yARF-

PyrG/hNMT1 (A) and yARF-MreB/hNMT1 (B). Cell density (ODggo)

was measured at 30-min intervals and plotted as a function of time.

Addition of an azide FA (4 or 7) does not appear to impact cell growth

for either protein. Expression of yARF-MreB has a larger effect on cell

growth than expression of yARF-PyrG.



V-17

In contrast with our earlier work involving GFP, CaN, and CaM, the experiments
in this chapter involve engineered versions of proteins that are endogenous to bacteria
and that perform important functions for proper cell functioning. Thus, we were curious
how the expression of yARF-PyrG or yARF-MreB and addition of 4 or 7 would affect
cell growth, as measured by cell density (ODgop). For both the yARF-PyrG/hNMT1 and
yARF-MreB/hNMT1 cultures, addition of an azide FA appeared to have little or no
impact on growth rates, an encouraging sign with regard to utilizing NMT-mediated
protein labeling to study bacterial proteins. Expression of yARF-PyrG did not appear to
impact cellular health as measured by cell density, which increased normally with time.
However, expression of yARF-MreB did have a negative effect on growth, evidenced by
a plateau in cell density after induction. For future work, it will be worthwhile to place
each construct under the control of native promoters in order to achieve endogenous
levels of protein expression, as well as to limit expression to the appropriate times and
places in the cell. It will also be important to examine any changes to protein structure
and function resulting from addition of an NMT recognition sequence and 12-ADA.

At each time point, cells were also collected and lysed in order to determine the
level of protein expression and the extent of labeling by NMT. Lysate samples were
treated with alkyne-TAMRA, precipitated, resuspended, and analyzed by SDS-PAGE, as
described in Chapters II and III. Examination of the results for yARF-PyrG (Figure V-7)
indicate that the protein is expressed rapidly and robustly, though almost no NMT
labeling is observed. It is possible that the yARF-PyrG protein N-terminus is
inaccessible to NMT in the protein’s folded state; it could be that the assembly of PyrG

monomers into filaments blocks access to the N-terminus of individual protein
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monomers; or in either of these scenarios, it is possible that the N-terminus is indeed
labeled by NMT but is inaccessible for reaction with alkyne-TAMRA. One or more of
these factors, or others, could contribute to the lack of yARF-PyrG labeling by NMT,

despite high expression levels.
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Figure V-7. SDS-PAGE analysis of lysate samples from yARF-PyrG/
hNMTI co-expression cultures to which no FA, azide FA 4, or azide
FA 7 was added. Bacterial culture samples were collected at 30, 60,
90, and 120 min, and resultant lysates were treated with alkyne-
TAMRA for detection of azide-labeled yARF-PyrG. The gel was
imaged for TAMRA signal (A) and stained with Coomassie colloidal
blue (B). The lack of fluorescent bands indicates poor labeling of
YARF-PyrG by NMT, though the strong Coomassie-stained bands near

62 kDa indicate successful expression.
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Identical experiments were carried out with samples from yARF-MreB/hNMT 1
co-expressions. Again, lysate samples were treated with alkyne-TAMRA, precipitated,
resuspended, and analyzed by SDS-PAGE. The results shown in Figure V-8 indicate that
yARF-MreB expresses well and is labeled by NMT with either FA 4 or 7, a promising
finding with regard to using 4 for future imaging studies. Furthermore, high levels of
protein expression and labeling were observed for yARF-MreB within just 30 min. We
anticipate that even shorter expression times could be used, thus providing a more
accurate snapshot of yARF-MreB localization at a given point in time or in response to a

particular stimulus.
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Figure V-8. SDS-PAGE analysis of lysate samples from yARF-MreB/
hNMT]1 co-expression cultures to which no FA, azide FA 4, or azide
FA 7 was added. Bacterial culture samples were collected at 30, 60,
90, and 120 min, and resultant lysates were treated with alkyne-
TAMRA for detection of azide-labeled yARF-MreB. The gel was
imaged for TAMRA signal (A) and stained with Coomassie colloidal
blue (B). The strong Coomassie-stained bands near 38 kDa and the
corresponding TAMRA bands indicate rapid expression of yARF-
MreB and robust labeling by NMT.
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CONCLUSION

We have developed and evaluated nearly all of the necessary components to apply
NMT-mediated protein labeling to the selective in vivo visualization of specific bacterial
proteins. As with the GFP-based model system described in Chapter II, a reactive fatty
acid, NMT, and a substrate protein are required. We evaluated a family of azide fatty
acids with varying chain lengths and identified 7-azidoheptanoic acid as a promising
candidate for imaging studies: our experiments demonstrate that this azide fatty acid is
transferred to substrate proteins by NMT, like 12-ADA, and can be washed out of cells,
unlike 12-ADA. We also prepared two novel non-natural substrates for NMT labeling,
yARF-PyrG and yARF-MreB, derived from proteins that exhibit interesting localization
patterns in cells. Cloning and expression of both constructs was successful, and yARF-
MreB was shown to be labeled efficiently by NMT with 7-azidoheptanoic acid.

The final steps in this project include placement of yARF-MreB under the control
of endogenous promoters, investigation of the impact of protein engineering and labeling
on YARF-MreB, and ultimately, completion of live-cell imaging experiments. Options
for protein visualization include the treatment of cells with a cyclooctyne fluorophore
followed by confocal microscopy, or possibly the use of ECT with an appropriate probe.
In addition, the cloning and protein labeling methods summarized herein could be applied
to other proteins of interest in bacteria. The progress described here is a promising start
towards employing NMT in detailed studies of the complex and fascinating internal

environment of bacterial cells.
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EXPERIMENTAL SECTION

Materials

Synthesis of azide fatty acids. The starting materials (bromo-, iodo-, or chloro-
acids) were purchased from Aldrich. Silica gel 60 was purchased from EMD Chemicals.

Sodium azide and all solvents were purchased from VWR.

Lysate studies with azide fatty acids. The BL21(DE3)/Fyn-GFP/hNMT2
bacterial co-expression system was described in Chapter II. A control cell strain lacking
pQE80 Fyn-GFP was also used. LB medium was composed of 10 g tryptone (casein
hydrolysate), 5 g yeast extract, and 10 g NaCl per liter. All media was autoclaved before
use. Kanamycin (Kan) was used at a working concentration of 35 pg/mL, and ampicillin
(Amp) was used at a working concentration of 200 pg/mL. Myristic acid was purchased
from Fluka. All optical density (OD) values were measured at 600 nm on a Cary UV-Vis
spectrophotometer. Lysate samples were treated with the reagents and according to the
protocols of the Click-IT Tetramethylrhodamine (TAMRA) Protein Analysis Detection
Kit from Invitrogen. Lysis Buffer was 1% SDS, 50 mM Tris-HCL, pH 8.0, as
recommended by Invitrogen. After reaction with alkyne-TAMRA and precipitation,
protein samples were run on Invitrogen NuPAGE Novex 4-12% Bis-Tris pre-cast gels
and imaged on a GE Typhoon laser scanner. Gels were stained with Coomassie colloidal

blue from Invitrogen.

Live-cell dye-labeling studies with azide fatty acids. Materials for expression
cultures are as indicated above for “Lysate studies with azide fatty acids,” though cells
were not lysed after harvesting. Instead, cells were dye-labeled with cyclooctyne-
coumarin, prepared by Dr. Janek Szychowski as previously reported,"’ and washed with
phosphate-buffered saline (PBS). Fluorescence measurements were collected on a Tecan

96-well plate reader.

Cloning. All oligonucleotide primers were ordered from IDT. Polymerase chain
reaction (PCR) experiments were carried out in a BioRad DNA Engine Peltier Thermal

Cycler using PfuTurbo DNA Polymerase (Stratagene/Agilent). Genomic DNA, isolated
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from E. coli BL21 (DE3) cells with the Qiagen DNEasy kit, served as the template DNA
for PCR reactions. All restriction enzymes, restriction enzyme buffers, bovine serum
albumin (BSA), and ligase were purchased from New England BioLabs (NEB). NEB
DNA Ladders (100 bp and 1 kbp “Quick-Load”) were used as markers for all DNA
agarose gels, which were visualized with the addition of Plus One ethidium bromide
solution from Amersham Biosciences on a UVP UV Transilluminator. Zymo Agarose-
Dissolving Buffer (ADB) and Zymo Spin II columns, with their associated buffers, were
used to purify DNA out of agarose gels. All plasmid DNA acquisition from cells was
completed using the Qiagen Spin Miniprep Kit and columns. All sequencing requests

were fulfilled by Laragen.

Time-course growth and expression studies. BL21(DE3)/yARF-PyrG/hNMT1
and BL21(DE3)/yARF-MreB/hNMTT1 cell strains were prepared by transforming each
final construct in pQE80 into BL21(DE3) competent cells already harboring the hNMT1
plasmid. The plasmid encoding hNMT1 and methionine-aminopeptidase (Met-AP) was a
gift from the laboratory of Professor Richard Kahn at Emory University (Atlanta, GA).'®
Otherwise, all materials are identical to those listed above for “Lysate studies with azide

fatty acids.”

Methods

Synthesis of azide fatty acids. Azide fatty acids were prepared by Dr. Janek
Szychowski with methods similar to those described in Chapter II for the synthesis of 12-
azidododecanoic acid (12-ADA). The starting material for each compound was the
bromo-, iodo-, or chloro-acid. After reaction with sodium azide and a work-up
procedure, each compound was isolated by rotary evaporation and characterized by ESI-

MS and 'H NMR.

Lysate studies with azide fatty acids. The BL21(DE3)/Fyn-GFP/hNMT?2
bacterial co-expression system, described in Chapter II, was utilized for studies with the
different azide FAs. (Control cultures lacking pQE80 Fyn-GFP were also grown.) In

summary, overnight cultures were diluted into fresh LB, and expression cultures were
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grown in an incubator-shaker (37°C, 250 rpm). Protein expression was induced with
IPTG (1 mM, from 1 M stock in water) when the ODggo value was between 0.8 and 1.1.
(In control cultures lacking pQE80 Fyn-GFP, no protein expression was induced.)
Either no fatty acid or one of the azide fatty acids in Chart V-1 (500 uM, from 500 mM
stock in DMSO) was also added at the time of induction. After 4 hr of protein
expression, cells were harvested via centrifugation and the final ODgoy value was
measured. Cell pellets were lysed according to the following formula: 50 pL Lysis
Buffer per mL culture per ODggo unit. Crude lysates were centrifuged once more, and the
supernatant (clarified lysate) was reacted with alkyne-TAMRA according to the protocols
supplied by Invitrogen, as described in Chapter II. Samples were precipitated following
the methanol-chloroform precipitation protocol described in the same kit instructions, and
they were analyzed by SDS-PAGE. To detect TAMRA signal on the Typhoon, the 532
nm laser served as the excitation source (filter set: 580 BP 30). Gels were stained with
Coomassie colloidal blue, then imaged again, with the 633 nm laser now serving as the

excitation source (no filter).

Live-cell dye-labeling studies with azide fatty acids. Cultures were grown
identically as indicated above for “Lysate studies with azide fatty acids,” except that cells
were not lysed after harvesting. Instead, cells were washed with PBS 3 times to remove
excess azide FA, dye-labeled with 50 uM cyclooctyne-coumarin for 30 min at 37°C, and
washed again to remove excess dye. Absorption and fluorescence measurements were
collected on a plate reader. To measure the cells per unit volume, ODgpp was measured
on the plate reader. To measure cyclooctyne-coumarin fluorescence, samples were
excited at 380 nm (bandwidth: 5 nm) and signal was read at 475 nm (bandwidth: 5 nm).

Fluorescence values were divided by ODgg values for normalization.

Cloning. Genomic DNA isolated from E. coli BL21(DE3) cells served as the
template DNA for preparation of both yARF-PyrG and yARF-MreB. Primers were
designed to encode the yARF recognition sequence (MGLFASK, from ATG GGT CTG
TTC GCG TCT AAA) at the 5" end of the gene and a 6xHis tag at the 3’ end of the gene,
as well as appropriate restriction sites. The yARF-PyrG and yARF-MreB PCR products
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were digested with EcoRI and HindIII and ligated into pQE80 digested with the same
enzymes. (Constructs were also prepared in pET-15b, though they were not utilized for
further protein expression studies; similar PCR products were prepared, digested with
Ncol and Xhol, and ligated into pET-15b that had been digested with the same enzymes.)
All four constructs (pQE80 yARF-PyrG, pQE80 yARF-MreB, pET-15b_yARF-PyrG,
and pET-15b_yARF-MreB) were transformed into DH-10b competent cells and plated.
Colonies were selected for inoculation of cultures from which DNA was isolated and
submitted for sequencing. Each final construct was transformed into competent cells

already harboring an NMT plasmid for co-expression experiments.

Time-course growth and expression studies. Co-expression of yARF-PyrG or
yARF-MreB with hNMT1 was performed in a manner identical to that described in
Chapter II and summarized above in the “Lysate studies with azide fatty acids” section.
When inducing protein expression with IPTG, no fatty acid, FA 4 (7-azidoheptanoic
acid), or FA 7 (12-ADA) was also added to the expression flask (500 uM, from 500 mM
stock in DMSO). Samples were collected after 30 min, 60 min, 90 min, and 120 min of
protein expression. At each time point, cells were harvested via centrifugation (10 min x
10,000 g at 4°C). To prepare growth curves, the ODgy of each time-point sample was
also measured on a UV-Vis spectrophotometer. Cell pellets were lysed according to the
following formula: 50 uL Lysis Buffer per mL culture per ODggo unit. Crude lysates
were centrifuged once more, and the supernatant (clarified lysate) was reacted with
alkyne-TAMRA according to the protocols supplied by Invitrogen, as described in
Chapter II. Samples were precipitated following the methanol-chloroform precipitation
protocol described in the same kit instructions, and they were analyzed by SDS-PAGE.
To detect TAMRA signal on the Typhoon, the 532 nm laser served as the excitation
source (filter set: 580 BP 30). Gels were stained with Coomassie colloidal blue, then

imaged again, with the 633 nm laser now serving as the excitation source (no filter).
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SUMMARY OF THESIS WORK

All of the projects presented in this thesis involve the use of N-myristoyl
transferase (NMT) to achieve selective and site-specific protein labeling in bacteria.
Both in vitro and in live cells, NMT catalyzes the transfer of myristic acid, a fatty acid, to
the N-terminus of its substrate proteins. While NMT plays important roles in eukaryotes,
such as regulating signal transduction via myristoylation of its substrate proteins and
enabling the infectivity of HIV and other viruses,'” we examined NMT from the
perspective of protein engineering. Specifically, we sought to exploit the tolerance of
NMT toward reactive analogs of myristic acid and the ability of NMT to label engineered
proteins displaying a recognition sequence derived from a natural substrate. Additional
strengths that NMT naturally possesses are its specificity for the protein N-terminus, an
attractive site for subsequent protein conjugation,’ and its orthogonality toward
endogenous bacterial proteins.! We took advantage of all of these features to develop a
novel site-specific protein labeling system, and we evaluated our NMT-based system for
different applications.

First, we constructed a bacterial model system for NMT-mediated protein
functionalization, which required NMT itself, a test protein, and a reactive fatty acid
tolerated by NMT. For these initial studies, summarized in Chapter II, we prepared two
GFP-based substrate proteins, yARF-GFP and Fyn-GFP, named for the corresponding
known NMT substrates, yARF and Fyn. In addition, we elected to incorporate
12-azidododecanoic acid (12-ADA), which we synthesized and purified, in place of
myristic acid; we were drawn to the azide moiety because it can participate in three

different bioorthogonal reactions.” Each GFP-based substrate protein was co-expressed
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with NMT in E. coli in the presence of 12-ADA. Purification of each substrate protein
and subsequent mass spectrometry experiments confirmed that NMT transfers 12-ADA
to the protein N-terminus in quantitative yields. Treatment of lysate samples containing
either engineered substrate protein with an azide-reactive fluorescent dye showed that
NMT labeled only the substrate protein within the complex cellular environment of
bacteria. The work presented in Chapter II constitutes the first example of NMT-
mediated labeling of an engineered substrate protein with an analog of myristic acid.

As described in Chapter III, the methods developed for the GFP-based model
system were applied to two proteins, calcineurin (CaN) and calmodulin (CaM), that are
involved in learning and memory formation in mammals. CaN is naturally
myristoylated; successful expression of CaN in bacteria actually requires co-expression
with NMT in the presence of myristic acid.® We found that substitution of 12-ADA for
myristic acid had no impact on the activity of CaN, as measured in a phosphatase activity
assay. CaM is not naturally myristoylated, so we created a family of engineered CaM
constructs and examined the impact that engineering and labeling had on the activity of
each new protein. One construct, hCaNB-CaM, retained wild-type levels of activity and
was carried forward for surface coupling work. Experiments similar to those described in
Chapter II confirmed that NMT-mediated labeling of the CaN and CaM constructs was
quantitative and selective.

Chapter IV details our work with protein microarrays. The yARF-GFP, CaN, and
hCaNB-CaM proteins were each labeled with 12-ADA by NMT. Lysate samples
containing each labeled substrate protein were incubated with cyclooctyne-spotted glass

slides, and protein deposition was detected with the LFIRE (Label-Free Internal
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Reflection Ellipsometry) instrument as a change in height at the slide surface. In this
context, the orthogonality of NMT toward bacterial proteins is especially useful, as it
enables surface immobilization of 12-ADA-labeled proteins without prior purification.
To gain a better understanding of the kinetics of the azide-cyclooctyne reaction versus
background reactions, we also measured the LFIRE signal over time. We found that
significant surface capture of our 12-ADA-labeled proteins occurred within only 15
minutes, while the background signal remained relatively low. Furthermore, by
comparing the percent of lysate protein constituted by CaN or hCaNB-CaM with the
percent of coupled protein determined to be CaN or hCaNB-CaM, we calculated
enrichment factors of 26 and ten for CaN and hCaNB-CaM, respectively. The methods
we developed for our surface-coupling experiments comprise a strong foundation for
completing high-throughput biochemical measurements with 12-ADA-labeled proteins
captured directly out of lysate in a microarray format.

In the final section, Chapter V, we summarize our progress toward using NMT-
mediated protein labeling to probe bacterial protein organization. Recent research has
demonstrated that prokaryotes orchestrate the expression and movement of their proteins
with greater sophistication than previously thought.”® We believe that NMT would be an
immensely useful tool for studying these phenomena, as NMT can functionalize a single
predetermined substrate protein in bacteria for subsequent reaction with a dye or a probe.
To that end, we identified an azide fatty acid, 7-azidoheptanoic acid, that is reactive,
transferred by NMT to substrate proteins, and readily washed out of cells in its free form;
in contrast, initial imaging experiments with 12-ADA showed that it is not removed from

cells by standard wash protocols. We also prepared constructs encoding the bacterial
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proteins PyrG and MreB modified with the yARF recognition sequence; both PyrG and
MreB assemble into complex structures in cells and exhibit interesting localization
patterns. Both yARF-PyrG and yARF-MreB expressed well, and the latter was robustly
labeled with 7-azidoheptanoic acid or 12-ADA within 30 minutes. The tools and
materials prepared for these experiments constitute a strong start toward the use of
NMT-mediated protein labeling for in vivo imaging of bacterial proteins of interest.

In summary, the chapters comprising this thesis provide versatile methods and a
strong case for the use of NMT in research projects involving site-specific
functionalization of proteins. Potential applications include the conjugation of proteins to
polymers for therapeutic ends, to surfaces for diagnostic microarrays, or to fluorophores
for imaging studies. The N-terminus is well-suited for the covalent attachment of
proteins to reactive partners because it is often surface-accessible, even in the folded state
of a protein. A number of chemoenzymatic protein labeling techniques have been
developed in the past decade, each with its own benefits and drawbacks.” The advantages
of using NMT include the wide range of reactive myristic acid analogs that may serve as
the fatty acid substrate, the small size of the recognition sequence required to achieve
labeling of non-natural substrate proteins, and the orthogonality of NMT toward bacterial
proteins. We envision many exciting possibilities for future research involving NMT-

mediated protein labeling.
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FURTHER STUDIES

Activity Measurements of Surface-Immobilized CaN and hCaNB-CaM

The larger goal of the work described in Chapter IV is the preparation of protein
microarrays for high-throughput protein characterization studies, with an initial focus on
measuring the activity of surface-bound CaN and hCaNB-CaM. Various methods are
available for measuring CaN and CaM activity levels; as described in Chapter I1I, we
employed an assay involving colorimetric detection of free phosphate resulting from
Ca”*/CaM-dependent dephosphorylation of a phosphopeptide substrate by CaN. This
approach could be adapted to measure free phosphate generated by surface-bound
proteins, rather than proteins in solution, perhaps by making use of suitably derivatized
96-well plates.  Other colorimetric assays have also been developed, such as
dephosphorylation by CaN of para-nitrophenyl phosphate (pNPP).'” Alternatively, CaN
or hCaNB-CaM could be immobilized on Biacor chips, enabling precise measurements of
binding events.'' These applications and others will be explored in the future by my

collaborator, Dr. Tamara Kinzer-Ursem, in her lab at Purdue University.

Protein-Specific Imaging Studies in Bacteria

As described in Chapter V, we have developed nearly all of the necessary
components for selective in vivo labeling and visualization of yARF-MreB. Dye-labeling
experiments with lysates confirmed that bacterial co-expression of NMT and yARF-
MreB in the presence of 7-azidoheptanoic acid results in labeling of only yARF-MreB;
dye-labeling experiments with intact live cells indicated that the use of 7-azidoheptanoic

acid yields no fluorescence signal above background. Thus, the next step is to dye-label
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intact cells with a membrane-permeable and cytocompatible dye that reacts specifically
with azides, such as cyclooctyne-coumarin'? or cyclooctyne-BODIPY," and conduct
confocal imaging studies to elucidate where and how yARF-MreB is localized.
Alternatively, other imaging methods with enhanced spatial resolution, such as electron

cryotomography (ECT), could be utilized with suitable probes.'*"

Finally, to gain a
more accurate understanding of how yARF-MreB behaves in the cell, it would be
advisable to replace the gene encoding MreB in the bacterial genome with the gene
encoding yARF-MreB. This step would ensure that yARF-MreB is under the control of
native promoters, so that its expression is turned “on” and “off” appropriately. Following
the cloning methods described in Chapters I, I1I, and V, more constructs could be readily

prepared that encode engineered bacterial proteins for labeling by NMT and subsequent

visualization.

Controlled Conjugation and Release of N-Terminally Labeled Proteins from Hydrogels

During the course of this thesis, the development of functional biomaterials
benefitting from NMT-mediated protein labeling had not been explored. However, work
is currently underway to build upon the model system described in Chapter II to decorate
hydrogels with site-specifically labeled proteins. In this context, the orthogonality of
NMT toward bacterial systems is again beneficial: hydrogels displaying cyclooctyne or
alkyne sites can simply be incubated with lysate containing a 12-ADA-labeled protein of
interest for attachment of the labeled protein to the material. This project, led by Cole

DeForest, a post-doctoral fellow in the Tirrell Lab, holds a great deal of potential.
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Beyond the further studies described here, we are also excited by the idea of
NMT-mediated protein labeling playing a role in entirely new applications. Moreover,
while all of the projects described in this thesis took advantage of azide—alkyne reactions,
other bioorthogonal chemistries could be explored, given the tolerance shown by NMT
toward a wide variety of reactive fatty acid analogs. Similarly, dozens of recognition
sequences have been identified, each possessing different steric and electrostatic
characteristics depending on the residues comprising the sequence. Finally, nearly any
protein can be engineered to display an NMT recognition sequence, with minimal
perturbation of protein structure and function. The inherent characteristics of NMT, and
its fascinating balance of specificity, selectivity, and promiscuity, render it a very
powerful tool for protein-labeling studies. We hope that the reagents, methods, and
results presented in this thesis for NMT-mediated protein labeling will be of great use in

future biomedical research.
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