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ACCRETION INTO AND EMISSION FROM BLACK HOLES

Don Nelson Page

ABSTRACT

Analyses are given of various processes involving matter falling
into or coming out of black holes.

A significant amount of matter may fall into a black hole in a
galactic nucleus or in a binary system. There gas with relatively high
angular momentum is expected to form an accretion disk flowing into the
hole. 1In this thesis the conservation laws of rest mass, energy, and
angular momentum are used to calculate the radial structure of such a
disk. The averaged torque in the disk and flux of radiation from the
disk are expressed as explicit, algebraic functions of radius.

Matter may be created and come out of the gravitational field of
a black hole in a quantum-mechanical process recently discovered by
Hawking. In this thesis the emission rates of massless particles by
Hawking's process are computed numerically. The resulting power spectra
of neutrinos, photons, and gravitons emitted by a nonrotating hole are
given. For rotating holes, the rates of emission of energy and angular
momentum are calculated for various values of the rotation parameter.
The evolution of a rotating hole is followed as energy and angular
momentum are given up to the emitted particles. It is found that angu-
lar momentum is lost considerably faster than energy, so that a black
hole spins down to a nearly nonrotating configuration before it loses a

large fraction of its mass. The implications are discussed for the
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lifetimes and possible present configurations of primordial black
holes (the only holes small enough for the emission to be significant
within the present age of the universe).

As an astrophysical application, a calculation is given of the
gamma-ray spectrum today from the emission by an assumed distribution
of primordial black holes during the history of the universe. Comparison
with the observed isotropic gamma-ray flux above about 100 MeV yields
an upper limit of approximately lOl'pc—3 for the average number density
of holes around S}clOlag. (This is the initial mass of a nonrotating
black hole that would just decay away in the age of the universe.) The
prospects are discussed for observing the final, explosive decay of an
individual primordial black hole. Such an observation could test the
combined predictions of general relativity and quantum mechanics and

also could provide information about inhomogeneities in the early uni-

verse and about the nature of strong interactions at high temperatures.
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PART I

INTRODUCTION



This thesis is a compilation of four papers, published or in
press, that analyze physical processes in the gravitational fields of
black holes and discuss possible astrophysical implications of those
processes. The first paper deals with the accretion of a disk of
matter into a black hole. Such disks are likely to exist around holes
of stellar mass or greater which are in binary systems or galactic
nuclei. The remaining three papers deal with the quantum mechanical
emission of particles by black holes—-a process that is significant
only for holes much smaller than a stellar mass that may have been
created in the early universe. The analyses of accretion and emission
both use the basic background gravitational field of a Kerr black
hole; but other than that similarity, the treatments and domains of

applicability are quite distinct.



PART IT

DISK~-ACCRETION

INTO BLACK HOLES

(a) Introductory Discussion



Since black holes of stellar mass or greater cannot emit any
remotely significant amounts of matter and radiation, such holes can
be detected only by the effects that they have on material outside
their surfaces. The best hope for detection of such holes is the ob-
servation of radiation from matter falling into them. The most prom-—
ising places to look for this seem to be in galactic nuclei (Lynden-—
Bell 1969, Lynden-Bell and Rees 1971) or in binary systems (Pringle
and Rees 1972, Shakura and Sunyaev 1973), where there is a substantial
amount of material available and where a black hole might reasonably
be expected to reside.

In these environments, the matter that flows into a black hole
will probably have sufficiently large angular momentum to form an ac-
cretion disk (Prendergast and Burbidge 1968; cf. the four references
above). The matter must give up most of its energy and angular
momentum before being swallowed by the hole. It does this by viscously
transferring some energy and angular momentum outward through the disk,
and by emitting radiation off the faces of the disk. The ratio of
energy to angular momentum carried outward by viscous stresses is a
fixed function of radius, as is the ratio of energy to angular momentum
carried away by radiation. These losses cause the matter to move in-
ward through a sequence of nearly Keplerian orbits, which also have a
definite relationship between energy and angular momentum. By compar-—
ing these three energy-angular momentum relations, one can calculate
how much of the energy and angular momentum released by the matter

must be transported outward by stresses and how much must be radiated.
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Pringle and Rees (1972) and Shakura and Sunyaev (1973) did Newtonian
analyses of this problem, and Novikov and Thorne (1973) made the first
relativistic analysis.

Novikov and Thorne solved for the radial structure of an accretion
disk and its radiation by using the conservation of rest mass, the con-
servation of angular momentum, and the conservation of energy as seen
locally in the frame of the matter. They assumed a fixed, radius-
independent rate M of mass flow inward through the disk, and they
presumed that the disk was in the equatorial plane of the Kerr (1963)
gravitational field outside the black hole. Their analysis yielded
expressions for the vertically integrated shear stress and the flux of
radiation off the disk at a given radius in terms of two integrals over
functions of the Kerr metric (Novikov and Thorne 1973, Egs. 5.4.1h,j).
These two integrals had to be evaluated numerically, so the radial
structure was not expressed in closed algebraic form.

In attempting to rederive the radial structure, I used the conser-—
vation of rest mass and the conservation of angular momentum in the
same form as Novikov and Thorne but used the conservation of energy as

seen by an observer at infinity in a different form:
>
Ve(-T-3/3t) =0 : (II.1a)

%
instead of 2+ v = o0 ) (IT.1b)

5
Here 3/3t is the timelike Killing vector at infinity, u dis the
four-velocity of the matter, and T is the stress—energy tensor. For

matter in nearly circular motion, Eq. (IL.la) is simply a linear
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combination of Eq. (II.1b) and the law of angular-momentum conserva-
tion, but my formulation of the problem seemed to lead to equations
different from Novikov and Thorne's. The apparent discrepancy turned
out to be proportional to dE/dr - Q2dL/dr, where E, L, and i are
the energy, angular momentum, and angular velocity respectively of
circular geodesic orbits at radius r . One night I discovered a
proof (erroneous at first, as it turned out, but which I later re-
placed by a correct proof) that this quantity was identically zero.
The resulting identity not only removed the apparent discrepancy be-
tween the equations of Novikov and Thorne and of mine but also allowed
the results to be cast in a simpler form so that one of the integrals
could be evaluated explicitly for any arbitrary stationary; axially
symmetric geometry and the other could be evaluated explicitly for
the case of the Kerr metric. Thus the shear stress integrated verti-
cally through an accretion disk and the radiation flux emitted off
the surface could be expressed as explicit, algebraic functions of
the radius.

These results are written up in Paper I, with Kip Thorne as co-—
author, who is responsible for most of the manner of presentation and
for pointing out that the analysis is valid in a time-averaged sense

even if the disk is highly dynamical.
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DISK-ACCRETION ONTO A BLACK HOLE.
I. TIME-AVERAGED STRUCTURE OF ACCRETION DISK*¥

Do~ N. PAGEL AND KIP S. THORNE
California Institute of Technology, Pasadena, California
Received 1973 December 26

ABSTRACT

An analysis is given of the time-averaged structure of a disk of material accreting onto a black hole. The
analysis is valid even if the disk is highly dynamical. It assumes only that the hole is stationary and axially
symmetric (e.g., that it is a Kerr hole); that the disk lies in the equatorial plane of the hole, with its material
moving in nearly geodesic circular orbits; that the disk is thin; and that radial heat transport is negligible com-
pared with heat losses through the surface of the disk. The most important result of the analysis is an explicit,
algebraic expression for the radial dependence of the time-averaged energy flux emitted from the disk’s surface,
F(r).
Subject headings: binaries — black holes

I. INTRODUCTION

It now seems probable that some compact X-ray sources are binary systems consisting of a normal star that
dumps material onto a companion black hole. The most popular current models for the mass transfer (Pringle
and Rees 1972; Shakura and Sunyaev 1973; review in Novikov and Thorne 1973) presume that the transferred
material forms a thin disk around the hole. Viscous stresses (magnetic and/or turbulent) transfer angular momentum
outward through the disk, thereby allowing the material to spiral gradually inward. The viscous stresses, working
against the disk’s differential rotation, heat the disk, causing it to emit a large flux of X-rays.

Disk accretion onto a black hole may also occur in the nuclei of galaxies (Lynden-Bell 1969; Lynden-Bell and
Rees 1971; review in Novikov and Thorne 1973). In this case the hole is envisaged as supermassive (M ~ 107 to
10'* M), and the accreting material is interstellar gas and magnetic fields. The models predict significant radiation
in the ultraviolet, optical, infrared, and radio regions of the spectrum, but not much X-rays.

Thus far all models for disk accretion onto black holes have been steady-state models, or at least quasi-steady-
state. In this paper we ask the question: How much can be learned about the time-averaged behavior of a highly
dynamical accreting disk by application of the laws of conservation of rest mass, angular momentum, and energy ?
(Of course, our results are also applicable to steady-state disks and quasi-steady-state disks.) We shall find that
the conservation laws yield an explicit algebraic expression for the time-averaged energy flux, F(r), emitted by the
disk’s surface, as a function of radius, and also an explicit algebraic expression for the time-averaged torque in
the disk, W, (r).

The precise assumptions that underlie these expressions are spelled out in § II; the expressions for F(r) and
W, '(r) are presented in § Illa and are derived in §§ 1115 and Ill¢; and some implications of these expressions for
steady-state disk models are spelled out in § IV. Throughout we shall use the notation of Novikov and Thorne
(1973) and of Misner, Thorne, and Wheeler (1973)—including units withe¢ = G = k = 1 (k = Boltzmann constant)

—except where typography limitations force changes. The main change is the use of a dagger (E" and L), where
previous usage would be a tilde (£ and L).

II. ASSUMPTIONS AND NOTATION FOR THE ANALYSIS

In analyzing the time-averaged structure of the accretion disk, we make the following assumptions and use the
following notation.

1) Assumption: The black hole has an external spacetime geometry in which the disk, with negligible self-gravity,
resides. The external geometry is stationary, axially symmetric, asymptotically flat, and reflection-symmetric in an
equatorial plane. (At the end of the analysis, and only there, we shall specialize our formulae to the Kerr geometry.)

* This paper and its companion (Thorne 1974) were cited in previous writings (e.g., in Misner, Thorne, and Wheeler 1973
[*MTW”] and in Novikov and Thorne 1973) as “ K. S. Thorne, Black-Hole \-Iodels for Compau X-ray Sources Ap.J., In prepara-
tion (1973).” The research reported in these papers was completed in late 1972; it was reported by KST at thc Texas Svmposmm
on Relativistic Astrophysics in New York City, 1972 December 21, and at a »arlety of subsequent meetings in 1973; but it was
not written up for publication until this late date (1973 November) because of a complete preoccupation with the proob of MTW.

T Supported in part by the National Science Foundation [GP-36687X].

f National Science Foundation Predoctoral Fellow.
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Notation: In and near the equatorial plane we introduce coordinates ¢ (‘time™), r (“‘radius™), z (*“height above
equatorial plane’’), ¢ (*‘azimuthal angle’), with respect to which the metric reads

ds® = —e®dt® + e*(dp — wdt)* + e*dr® + dz*; (1a)

2 2\2 2\2 a\z  [2)\2

. 5 S —auw| < —2u G M2
W = (?f‘f+ ujgw) L (aw) G (bf) d (52) ’ (16)
v, 1, j1, w are functions of r only; (lc)
as r— oo, v=Inr+ O(1fr), v~ p~ O(fr), w ~ O(1[r?%). (1d)

Note that

(—8)'2 = (—det| gos|)*2 = e"*¥ 2, (1e)

As one moves out of the equatorial plane, the metric coefficients acquire corrections of order (z/r)?. (All such

corrections will be ignored in this paper.) For proofs of the existence of such a coordinate system sece Papapetrou
(1966), Kundt and Triimper (1966), Carter (1969, 1970).

ii) Assumption: The central plane of the disk lies in the equatorial plane of the black hole.

iif) Assumption: The disk is thin; i.e., at radius r its thickness Az = 24 is always much less than r. This permits
us to use the metric in its near-equatorial-plane form (1), with v, ¢, 2, @ independent of z.

iv) Assumption: There exists a time interval A¢ which (a) is small enough that during Ar the external geometry
of the hole changes negligibly; but (b) is large enough that, for any radius r of interest, the total mass that flows
inward across r during Ar is large compared with the typical mass contained between r and 2r. Notation: by { >
we denote an average over angle Ap = 27 and over time Ar:

At r2x
Pz, )y = QwAf)~ f W(t, r, z, p)depd . @
0 0

If ¥ is a tensor field, it is to be Lie-dragged along ¢/éf and 2/¢p during the averaging process. Equivalently, its
components in the #, r, z, p coordinate system are to be averaged.

v) Notation: The ““local rest frame” of the baryons at an event Z, (the frame in which there is no net spatial
baryon flux) has a 4-velocity u'5*(#) (*inst’’ means ““‘instantaneous’’). When mass-averaged over ¢ and At and
height, this 4-velocity is denoted

ur) = %) [ ooz, ®)

Here p, is the density of rest mass (number density of baryons » multiplied by a standard constant, mean rest
mass per baryon) as measured in the instantaneous local rest frame; X is the time-averaged surface density,

() = f_H Cpovdz; o)

and H is the maximum half-thickness of the disk during the time Az,

H= max (h). : 5

Without making any assumptions about the types of stress-energy present (magnetic fields, viscous stresses, etc.),
we algebraically decompose the stress-energy tensor T with respect to the 4-velocity field u:

T=p(l +Tu@u+t+uQ@qg+qu, (6a)
IT = ““specific internal energy,” (6b)
t = ““stress tensor in averaged rest frame”’ is a second-rank,

symmetric tensor orthogonal to u, t-u = u-t =0, (6¢c)
q = “‘energy-flow vector” is a 4-vector orthogonal to u, g-u = 0., l (6d)

We use units in which ¢ = G = k (Boltzmann constant) = 1.

Vi) Assumption: When mass-averaged over @, Az, and height, the baryons move very nearly in equatorial,
circular, geodesic orbits about the black hole. Thus,

u(r) ~ w(r) = (four-velocity for a circular geodesic orbit in the equatorial plane) . (7a)
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Such orbits have specific energy-at-infinity E*, specific angular momentum L', and angular velocity € given by
Ef(r) = —w(r), Li(r) = wy(r), Q(r) = weo/wt. (7b)

Consequence of above assumption.—Physically, the mean motion can be nearly geodesic only if radial pressure forces
are negligible compared with the gravitational pull of the hole:

5 g . t
(radial accelerations due to pressure gradients) ~ P_ (PE) |
) o/ .r
<« (gravitational acceleration of hole) ~ |ET .| = |(1 — EY),|.

Integrating this inequality and using the relation (valid for any astrophysical material)

(internal energy density) = poIl ~ |t,.],
we see that

M«1—E. (8)

We call this the “condition of negligible specific heat.” It says that the internal energy is negligible compared with
the gravitational potential energy. In other words, as the material of the disk spirals slowly inward, releasing
gravitational energy, a negligible amount of the energy released is stored internally. Almost all energy is transported
away or radiated away. In terms of temperatures, condition (8) says

I ~ T/m, ~ TJ10¥K « 1 — Et ~ M|r,

where M is the mass of the hole and m,, is the mass of a proton. ) s )
vii) Assumption: Heat flow within the disk is negligible, except in the vertical direction; i.e.,

<Q(r: b9 )~ <(]:(", Z))(ajez) . (93_)

(This is a reasonable assumption in view of the thinness of the disk.)

viii) Assumption: The only time-averaged stress-energy that reaches out of the faces of the disk is that carried
by photons. (This assumption is meant to rule out gravitational waves as well as extended magnetic fields. If
magnetic fields bulge out of the disk, but do not extend to heights |z| ~ r, then one can “‘redefine them into the
disk” by making the “official” disk thickness, 2H, large enough to enclose them.) Moreover, essentially all the
stress-energy carried off is borne by photons of wavelength A « M = (size of hole).! (This allows one to neglect
coherent superposition of the radiation reaction in adjacent [different r] regions of the disk, and to neglect “*black-
hole superradiance effects.””) In addition—and as a corollary of (9a)—the photons emitted from the disk’s surface
are emitted, on the average, vertically as seen in the mean local rest frame of the orbiting gas. This, together with
our neglect of (typically nonvertical) reimpinging radiation—see below—means that

%) =Lt =<7 ={qp> =g =<¢» =0 atz=+H. (99)

ix) Assumption: One can neglect energy and momentum transport from one region of the disk to another by
photons emitted from the disk’s surface. (This assumption is not very reasonable; heating of the outer regions by
X-rays from the inner regions may be rather important—see Shakura and Sunyaev 1973. And in the inner regions,
M < r < 10M, intense gravitational fields may pull a non-negligible fraction of the emitted photons back onto the
disk. The effects of this are currently being studied by Cunningham 1974 and by Polnarey 1974.)

III. TIME-AVERAGED RADIAL DISK STRUCTURE
a) Summary of Results

By combining the assumptions of § IT with the laws of conservation of rest mass, angular momentum, and energy

(§ IlIc, below) one can derive three important equations for the time-averaged radial structure of the disk. These
are equations for three quantities:

radius-independent, time-averaged rate [rate measured
dM, i : .
7 = (in terms of group-theoretically defined coordinate | » (10a)
time 7] at which rest mass flows inward through disk

M, =

1 We thank Douglas M. Eardley for pointing out to us the need for this assumption.



Py e 1o
DON N. PAGE AND KIP S. THORNE Vol. 191

h
(=]
]

F(r) =<{¢(r,z = H)) ={—q%(r,z = —H))
time-averaged flux of radiant energy [energy per unit proper
_ | time = per unit proper area 4] flowing out of upper face
of disk, as measured by an observer on the upper face who
orbits with the time-averaged motion of the disk’s matter
= (time-averaged flux flowing out of lower face) , (10b)
+H
War)= | e
-H
— (g % (time-fweraged torque per unit circumference ac_:ting acr(?ss) : (10c)
a cylinder at radius r, due to the stresses in the disk
The equations derived are
My = —2meVtV+eZy | (11a)
F(r) = (My[4m)e—+¥+uf, (11b)
Wo' = (My[2x)e V¥ +O[(EY — QLY /(- QIS . (11c)

Here v, ¢, p are the metric coefficients (functions of r) of equation (1); E¥, L, Q are the specific energy-at-infinity
specific angular momentum, and angular velocity (functions of r) defined in equations (7a, b); £ and u" are the

sx;rface density and radial velocity (unknown functions of r) defined in equations (3) and (4); and f'is the function
of radius

f= 0 E' - oLy-2[ ('~ QLYL! dr

= =0l [ Ol (12)

Here rn, (““ms™ = “marginally stable’) is the radius of the innermost stable circular geodesic orbit:
rms = (radius at which dE¥[dr = dL[dr = 0) . (13)

The derivation of equations (11) will be presented in §§ I1I5 and Tllc.
When specialized to the Kerr metric, the above functions have the following forms. We express them in terms of

M = mass of black hole ,

a = specific angular momentum of hole (a > 0 if disk
orbits in same direction as hole rotates; a < 0 if it
orbits in opposite direction) ,

a, = a/M (note: —1 < a, < +1),

o
1l

= (r/M)"? = (dimensionless radial coordinate) ,
Xo = (rms/M)V?,

X, X2, X3 = the three roots of x* — 3x + 24, = 0; in particular ,
x; = 2cos (Jcos~ta, — w/3),

Xz = 2cos (Jcos~ta, + 7/3),

x3 = —2cos($cos ta,).
& =1 4 a4 4 %9, B =1 + aux™",
¥=1=—3x"242ux"", D=1-2x"7+a,x"*,
& =1+ 4a,*x~* — 4a,°x7% + 3a,*x"8, F=1 = @~ o B,

F=1—-2x"24agx"". (14)
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They are (cf. Bardeen, Press, and Teukolsky 1972)
e = o -1G, e = M?2xtof | e = g-1 (15a, b, c)
Pt = = MxF, w = 2a M *x"Cef 2 Q = M—tx~ 8@, (154, e, )
Et = g=13g LY = Mx&2F , (15g, h)
Et — QLY = 113 0= =3 M~ 9B~ (151, j)
Xo = {3 + Z; — sgn (a)[3 — Z,)3 + Z, + 2Z,)]*32, where (15k)
Zi=1+ (1 — a0l +a)"® + (1 — a)'®],  Zy= (a,® + Z,9)"; (151, m)
2
7= g w =g [F % e () - st ()
B 3(xp — ay)? | (x — x2) B 3(xz — ay)? 1 (x - xs)] )
Xo(xg — x1)(x3 — X3) Xg — Xg xa(xz — x1)(x3 — x2) Xg — X3

(15n)

The rest of § Il is a derivation of the radial-structure formulae (11), beginning (§ I1I5) with a crucial relation
for geodesic orbits, and then turning (§ I1l¢) to formulation and manipulation of the conservation laws.

b) The Energy-Angular-Momentum Relation for Circular Geodesic Orbits

Consider circular geodesic orbits in the equatorial plane of metric (1) with four-velocities w(r) having nonzero
components given by equation (7b). By combining the geodesic equation and the normalization condition,

Vew =0, wew = —1, (16)
with the symmetry of the covariant derivative and the vanishing of the radial component w,, one obtains

0 = [V,w — IV(ww)]-(2/0r) = WiWpp — WW.,r = WE(W, o — Wer)

= —WEWa, = — W, — WoW,, = W(E', — QL)) (17)
Hence, the circular geodesic orbits satisfy the fundamental relation
Et, = QL ., (18)

This is a special case of the universal *““energy-angular-momentum relation,” dE = QdlJ or
(change of energy) = (angular velocity)-(change of angular momentum) , 19

which plays a fundamental role throughout astrophysics. (See, e.g., Appendix B of Ostriker and Gunn 1969;
eq. [80] of Bardeen 1970; Hartle 1970; and § 10.7 of Zel'dovich and Novikov 1971.)

¢) Formulation and Manipulation of the Conservation Laws

The radial structure of the disk is governed by three conservation laws: conservation of rest mass, of angular
momentum, and of energy.

In differential form the law of rest-mass conservation reads
Vlpou™¥) = 0. (20

We convert to a more useful integral conservation law by integrating over the 3-volume of the disk between
radius r and r + Ar and over time A¢, and by then using Gauss’s theorem to convert to a surface integral:

0 =f V'(Puu‘“")(—g)”‘thdrdqu) =f pou“’“-daz
: i ey

+H t+ At p227 T+ Ar
= [ f j j Polt st — g)”’dq:dtdz] + [total rest mass in the 3-volume];*4¢
—-H t [¢]

r

= (A)Q@we" ¥ *3u) Ar + 0.
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The second bracket, [ ], can be neglected compared with the first because of assumption (iv) of § II (mass in Ar
negligible compared with mass that flows across r in time Ar). Physically the above equation says

My = —2me’*V*rEy" = (time-averaged rate of accretion of rest mass) is independent of radius r.  (21)

This is the first of our radial structure equations, equation (11a).
In differential form the law of angular-momentum conservation reads

Yol =0, J = T.¢|ép = (density-flux 4-vector for angular momentum) . 22)

Apgain we convert to an integral conservation law by integrating over the 3-volume between radius r and r + Ar
and over time At, and by then using Gauss’s theorem to convert to a surface integral. In the case of rest mass there
was no flux across the upper and lower faces of the disk (z = + H), so the only contributions to the surface integral
were at the outer and inner radii, » + Ar and r, and at the hypersurfaces of constant time, ¢ + At and ¢. However,
radiation pouring out of the disk produces an angular-momentum flux across the upper and lower faces, so in
this case we get six terms in the surface integral:

0= f V. J(—g)"2dtdrdzdp = J JdE = | T,ed°%,
W e e

r+Ar

+H ~t+At p2x
= { f J [po(l + IDuu + t,7 + u,q" + qau'}(——g)”quadtdz}
-H vt 0

r
+H

THAr pt+AE p2n
= {.[ f J- [po(l + Muu® + 1,7 + uug® + qmu“](‘g)llzdwita’r}
T t 0

+ {total angular momentum in the 3-volume}i*2¢, (23)

—-H

In the first brace, {}, we can ignore II (negligible specific heat; eq. [8]); and we can ignore u,g" and g,u” by com-
parison with the u,¢* of the second brace (negligible heat transport along the plane of the disk; eq. [9a]). Hence,
the first brace reduces to

r+Ar

{j+H(Z”At)[<PD>¢‘wur * <fa’>](-g)”2f12} = {@mAn[ZLWT + Wr]evt v rprar

—-H T
= At[—MoL' + 2me**¥** W, Ar. 24)
Here we have used equations (4), (7), and (21), and the definition

+H
W, = f LY 25)
-H

In the second brace { } of formula (23) the first and last terms vanish because #* = 0, and the second term vanishes
by equation (9b). Hence, the second brace becomes

T+Ar +H
{ [ (ZTrAt)u,,(q=>(—g)”2(1r} = 2At[2we’* Y HALIF]Ar, (26)
" -H

where we have used equations (7a, b), plus definition (10b) of F. The third brace {} in formula (23) can be neg-
lected compared with the first brace because of assumption (iv). Combining a zero value for the third brace with
equation (26) for the second brace and equation (24) for the first brace, we obtain

(MLt — 2me*+¥*4W,7), = dme*+¥*+AFLY . @n

This is our final form for the law of angular momentum conservation. The first term represents the angular
momentum carried by the rest mass of the disk; the second term is the angular momentum transported mechanic-
ally by torques in the disk (by viscous stresses, by turbulent stresses, by magnetic stresses, etc.); the third term is
the angular momentum carried away from the disk’s surface by radiation,

The differential form of the law of energy conservation is

VE=0, E = —T-g/¢t = (density-flux 4-vector for energy-at-infinity) . (28)

By manipulating this conservation law in precisely the same manner as we manipulated the law of angular momen-
tum conservation (22), we arrive at the time-averaged and volume-integrated conservation law

[MOEf 4 zﬁev+9+u”/tr].r = eV tVTEFET (29)
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The second term can be rewritten in terms of W, by use of the orthogonality relation «*,? = 0, which implies
that u*W,2 = 0, or

Wy = —uPldt)W,7 = —QW,".
The result for equation (29) is
[M,Et — 2ue"*¥+2 W/ TQ] , = 4me’ *V*+4FE?, (30)

d) Integration of the Conservation Laws

Equations (27) and (30) can be integrated to obtain the emitted flux F and the torque per unit circumference
W,r. This is done as follows:
1) Change variables to

fE 4ﬂ_ev+&+uF/Mo i W= 277ev+w+“pyofi'*"yo . (313., b)
ii) In terms of these variables the conservation laws (27) and (30) become
@ —w), =/L', (E'— Qw), =fE*. (32, b)

iii) Multiply (32a) by Q, subtract from (32b), and use the ““energy-angular-momentum relation” (18) to obtain
the algebraic relation

w = [(E' — QL)/(-Q)]f . (33)

iv) Insert this expression for w into (32a), and integrate the resulting first-order differential equation for f]
making use of (18). The result is

: +)2
E = s - [ @ - amhrdr + const

W7

v) To fix the constant of integration, use the following physical fact: When the accreting material reaches the
innermost stable circular orbit, r = ry,, it drops out of the disk and falls directly down the hole. Hence, just inside
r = rpy, there is negligible material to *““torque up”’ the material just outside » = r_.—which means that the torque
W,', and hence w, must vanish at r = r,,.2 To make w(t,s) vanish we must choose our constant of integration

such that
\2
Uit L5 QL) W = B - j — QINL'dr.

vi) Bring this result into the following alternative forms by integration by parts and use of the energy-angular-
momentum relation (18):

f= —Q(Et - QL*)‘zf' (Et — QLYLY dr

—0 (Bt~ QL*)"“[E*L* i TR o D { L*E'_,dr]

*Tms

= —Q(E' - QL*)—E[_Efo 4 B ol s + 2 '

“Tms

E*L*,,dr] d (34)

Equation (34) for fand equations (31), (33) for F and W, are the radial-structure equations (12) and (11b, ¢)
quoted in § Illa.

1V. STEADY-STATE DISK MODELS

Steady-state relativistic models for the accretion disk around a Kerr black hole have been built by Novikov
and Thorne (1973). These models are patterned after Newtonian models by Shakura and Sunvaev. They include
details of vertical structure (vertical force balance; vertical energy transport; etc.), as well as details of radial
structure.

2 1t is conceivable that the disk material might contain extremely strong magnetic fields, and that these fields might transport
a torque from the infalling material at r < ry, to the disk at r = rps. In this case the boundary condition at r.s would be modified,
and the solution for f would be changed. It seems to us unlikely that the changes would be substantial, except very near rq, (i.e.,
at r — rms < 0.1rns). But when constructing explicit disk models, one should examine this possibility carefully.
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All of the quantities appearing in the Novikov-Thorne models (§§ 5.9 and 5.10 of their paper) are expressed as
explicit, algebraic functions of radius, except one: the function 2(r). The results of this paper allow one to also
express -2 as an explicit algebraic function of r—or, equivalently, of x = (r/M)"2. Direct comparison of equations
(5.6.14b) and (5.4.1b, ¢) of Novikov-Thorne with equations (11b) and (15d, n) of this paper shows that

I # gyx—>

) — 1 £ 3 e
i {1~ 3x~% + Zaux~")PP % [x %o — 30y In (.\‘0)

3(x2 — a4)?

- X (x; — x9)(x; — x3)

3(x; — as)? o (x — ,q)

.Yo g x,

i Xa(xa — X%1)(X2 — X3)

X — X
n 3) —
.\'0 ™ X2

3(x3—a*)2 ]n(x—xs)]-

Xalxg — x1)(xa — x2) Xo — X3

(33)

(NoTe.—In equation [5.4.1h] of Novikov and Thorne there is an error, pointed out to us by Chris Cunningham:
the sign in the exponential should be plus rather than minus.)
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PART IIT

PARTICLE EMISSION RATES

FROM BLACK HOLES

(a) Historical Background
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General relativity and quantum mechanics have certainly been
among the most fundamental developments of physics in the twentieth
century. General relativity expressed gravity in terms of curvatures
of spacetime, a concept radically different from the Newtonian theory
of instantaneous action at a distance. Quantum mechanics expressed
physical processes in terms of amplitudes that give probabilities for
certain observations rather than the deterministic evolution of all
observables. Both of these new formulations could be shown to reduce
to the older laws of classical physics in the realm of experience
where the older laws had been strongly verified, but they predicted
different phenomena in other realms. Quantum mechanics predicted new
effects such as the uncertainty principle that would show up for very
small objects like atoms, and general relativity predicted new ef-
fects such as collapse into black holes that would show up for very
large objects like massive stars.

One would like to unify general relativity and quantum mechanics
(a task not yet completed), but it appeared that, at least in the
present universe, the realm where general relativity is important
(very large objects) does not overlap the realm where quantum mechan-—
ics is important (very small objects). For example, general rela-
tivity is important for an object that has a linear size L mnot much
greater than its Schwarzschild radius ZGM/c2 (the size of the black

hole it would form), so that

2
C—GL < M . (II1.1)
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Alternatively, quantum mechanics is important for an object whose
intrinsic size L is not much greater than its reduced Compton wave-—

length <i/Mec, so

M <

’% it . (III1.2)

For both general relativity and quantum mechanics to be important,
the combination of (ITII.1l) and (III.2) requires
AG, 1/2 %3

L £ (;3) = Lpjanek = 1-62x10 “Tem CEEE 3D

which is a length much shorter than that probed by any current exper-

iment. Likewise, the density must be

2 5
p=M > L2 > S

= _ 93 -3
«ﬁGZ S Ppianck = 5.16 10" g cm s CIII.&)

which is far beyond any densities observed in the present universe.
Therefore, one might conclude that any significant union of general
relativity and quantum mechanics could not be experimentally tested.
However, quantum effects associated with strong gravitational
fields could show up observationally if they would accumulate over the

age of the universe, which gives a factor of roughly 1061 in terms of

the Planck time

2 _ 4G 1/2 ~44
o1 anck = LPlaan/c = cs) = 5. 30 210 " 5., CLIT.5)

It turns out that such effects indeed can occur for primordial black
holes within a certain mass range--the effects being observable in

the present universe if there are a sufficient number of such black
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holes. These effects involve the creation and emission of particles
by black holes, which will now be discussed.

The first prediction of emission by a black hole was made by
Zel'dovich (1971,1972). He pointed out on heuristic grounds that a
rotating black hole should amplify certain waves and that there
should be an analogous quantum effect of spontaneous radiation of
energy and angular momentum. Later Misner (1972) and Starobinsky
(1973) confirmed the amplification by a Kerr hole of scalar waves in
the "superradiant regime'" (where the angular velocity of the wave-
fronts is lower than that of the hole), and Bekenstein (1973a) showed
that amplification should occur for all kinds of waves with positive
energy density. However, the quantum effect predicted by Zel'dovich
was not universally known, and in fact Larry Ford at Princeton Uni-
versity and I independently rediscovered it.

The argument for this spontaneous radiation was that in a quan-
tum analysis the amplification of waves is stimulated emission of
quanta, so that even in the absence of incoming quanta one should get
spontaneous emission. By using the relation between the Einstein co-
efficients for spontaneous and stimulated emission, one can calculate
the spontaneous rate from the amplification factor, as Starobinsky
(1973) noted, at least when the spontaneous emission probability is
much less than unity.

A problem arose for neutrinos in that Unruh (1973) showed that
their waves are never amplified. This result violated Bekenstein's

conclusion and seemed to be a breakdown in the Hawking (1971) area
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theorem. The reason for the violation was traced to a negative local
energy density of the classical neutrino waves at the horizon. However,
Feynman suggested (unpublished) that the lack of amplification might
be due to the Pauli exclusion principle, so that incident neutrinos
suppress spontaneous emission which otherwise occurs. The amplifica-
tion factor would then be less than unity, since the calculation of

an unquantized neutrino wave cannot directly show the spontaneous
emission but only how the emission changes as the incident flux is
varied.

One might be surprised to find such a difference between inte-
gral and half-integral spins showing up in the behavior of their un-
quantized waves, but this is merely an illustration of the connection
between spin and statistics. Pauli (1940) has shown that half-
integral spins must be assigned anticommutation relations in order to
get a positive energy density, which is precisely what the unquantized
neutrino waves violate in not showing superradiénce. |

Indeed, this same behavior occurs in the Klein paradox. A scalar
wave incident on an electrostatic potential step higher than the
kinetic energy plus twice the mass gives a reflected current greater
than the incident current. On the other hand, a Dirac wave incident
on such a step gives less reflected current. (This is the result if
one makes the causality requirement of the transmitted waves' having a
group velocity away from the step, rather than having the momentum
vector away from the step as in Bjorken and Drell 1964.) Nikishov

(1970) uses field theory to calculate the pair production by a
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potential step of general shape with no particles incident. His re-
sults show that the expected number of particles emitted in a given

Klein-paradox state is

<N> = + (A-1) ” (ITL.6)

where A 1is the amplification factor for the reflected wave of the
unquantized Klein-Gordon (+) or Dirac (-) equation. This formula ap-
plies even if the emission probabilities are not small, so that <>
includes the possibility of emitting more than one particle (if a
boson) in the same state.

Unruh (1974) made a formal calculation of second quantization
of scalar and neutrino fields in the complete Kerr metric and found
essentially the same results as Eq. (II1I1.6) if he chose the initial
vacuum state to correspond to no particles coming out of the past
horizon. Ford (1975) quantized the massive scalar field in a somewhat
different way with similar results. However, Unruh noted that the
actual situation might be different, with no past horizon but the
black hole formed by collapse. Nevertheless, neither he nor any of
the discoverers of the spontaneous emission attempted to calculate
that situation.

Meanwhile (summer 1973), Stephen Hawking at Cambridge University
heard of this work through Douglas Eardley and so while in Moscow dis-—
cussed it with Zel'dovich and Starobinsky. Believing in the reality
of the spontaneous emission but wishing to put its derivation on a

firmer footing, Hawking dared to attempt the difficult calculation of
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field theory during the collapse and formation of a black hole.
Separating out the essential elements, Hawking found how to calculate
the particle emission at late times, after the collapse had settled
down to form a stationary black hole. At first Hawking got an in-
finite number of particles emitted, but then he discovered that the
infinity corresponded to emission at a steady rate. However, the
emission was not only in the superradiant states or modes but in all
modes that could come from the black hole!

Hawking initially did not believe this result (a consolation to
those of us who doubted it also when we first heard it). Thinking
that the emission might be an artifact of the spherical symmetry he
had assumed, Hawking considered nonspherical collapse and got the same
emission. Then he tried putting in a cutoff on the frequencies of the
modes in the initial state before the collapse, but that eliminated
all the emission, including the spontaneous emission in the superradi-
ant modes that Hawking was certain existed. Perhaps most convincing
to Hawking was the fact that the emission rate was just that of a
thermal body with the same absorption probabilities as the black hole
and with a temperature (in geometrical units) equal to the surface
gravity of the hole divided by 27 . This result held for fields of
any spin and seemed to confirm some thermodynamic ideas of Bekenstein
(1973b). However, before the emission process was discovered, Bardeen,
Carter, and Hawking (1973) had argued against Bekenstein's suggestion
of a black-hole temperature proportional to surface gravity. Thus
Bekenstein's ideas were originally not a motivation for Hawking's cal-

culation.
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As word of his calculation began to spread, Hawking published
a simplified version of it in Nature (1974). However, even at this
stage Hawking was not certain of the result and so expressed the
title as a question, "Black hole explosions?" He noted that the cal-
culation ignored the change in the metric due to the particles created
and to quantum fluctuations. One objection raised by several people
was that the calculation seemed to give a very high energy flux just
outside the horizon, which might prevent the black hole from forming
at all. Hawking later answered this and other problems by a more
detailed version of the calculation (Hawking 1975a), which showed that
an infalling observer would not see many particles near the horizon.
However, it might be noted that there is still some controversy about
the existence of particles there. The back reaction of the particles
created would, in Hawking's view, simply be to reduce the mass of the
hole by the amount of the energy radiated away.

Presumably quantum fluctuations of the metric itself can give
rise to the emission of gravitons in addition to the emission of other
particles calculated as if the geometry were fixed. By considering
linearized fluctuations in the metric about a given background, the
emission of gravitons can be handled in the same manner as the emission
of any other particles, though one might argue that graviton emission
depends more fundamentally upon the assumed fluctuations in the metric.
Therefore, any observed consequences of graviton emission can be
viewed as testing whether gravity is quantized.

Hawking has argued (unpublished) that quantum mechanics allows

small deviations of the action from the extremum value that gives the
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classical field equations for matter and gravity. Thus the classical
equations can be violated in a small region near a black hole, giving
rise to the emission of matter or gravitational waves, but the equa-
tions cannot be violated significantly on a very large surface sur-
rounding the hole. Therefore, quantities determined by surface
fluxes at infinity do remain conserved: energy, momentum, angular
momentum, and charge. This is the basis for arguing that the emission
carries away the quantities of the hole which otherwise would be con-
stant. Note that baryon and lepton numbers are not observed to be
connected with long-range fields, so they presumably cannot be deter-
mined by surface fluxes at infinity and thus would not be conserved
globally by the black-hole emission process.

The thermal emission first calculated by Hawking has been veri-
fied by several subsequent calculations. Boulware (1975) and Davies
(1976) have calculated the emission from a collapsing shell. Gerlach
(1975) has interpreted the emission as parametric amplification of the
zero-point oscillations of the field inside the collapsing object.
DeWitt (1975) has given detailed derivations of both the spontaneous
emission process in the complete Kerr metric (with no particles coming
out of the past horizon) and of the thermal emission from a black hole
formed by collapse. Unruh (1975) has found that his derivation in the
complete Kerr metric will give not only the spontaneous but also the
thermal emission if the boundary condition at the past horizon is
changed from no particles seen by an observer at fixed radius just

outside the horizon to no particles seen by an observer freely falling
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along the horizon. Wald (1975), Parker (1975) and Hawking (1975b)
have calculated the density matrix of the emitted particles and find
that it, as well as the expected number in each mode, is precisely
thermal. Bekenstein (1975) has given an information-theory argument
of why this should be so. Hartle and Hawking (1975) have done a path-
integral calculation of the probability for a particle to propagate
out of a black hole from the future singularity and show that this
method also leads to the same thermal emission. In summary, the
thermal emission from a black hole has been derived in a variety of
ways by several people, so its prediction seems to be a clear conse-

quence of our present theories of quantum mechanics and general rela-

tivity.
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(b) Numerical Calculations
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After recognizing the existence of spontaneous emission from a
rotating black hole, I intended to calculate those emission rates to
show how fast a black hole would give up its angular momentum. How-
ever, after Hawking announced his result of thermal emission and after
my initial objections to it were answered by the more detailed publica-
tion of his calculations, I began calculating the thermal emission
rates.

The basic result from Hawking's calculation that I needed was
his expression for the expected number of particles emitted in a mode
in terms of the absorption probability for that mode (Eq. 3.4 of
Hawking 1975). To compute the absorption probabilities for neutrino,
photon, and graviton modes, I used the separated wave equation of
Teukolsky (1972,1973), and I modified the computer programs iﬁitially
written by Teukolsky and Press (1974) for solving the Teukolsky equa-
tion numerically. The thermal emission by Hawking's formula was then
integrated over all frequency modes for a given angular mode, and
finally the angular modes were summed to give the total emission.

In calculating the total number rate and power in a given angular
mode, by far the most computer time is spent evaluating the absorption
probabilities at the different frequencies. Therefore, it was desired
to reduce the number of such evaluations needed for a given accuracy
of the integrated number rate and power. To accomplish this, an algo-
rithm was devised which would vary the step size for the integration
and yet which would not waste calculéted points if the attempted step

size proved to be too large to give the required accuracy.
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The algorithm did the integration in a sequential manner by
starting at zero frequency and moving through a series of intervals
to some frequency high enough that the integral from there to infin-
ity could be accurately estimated without evaluating any more points.
As a first attempt, a new interval was integrated in one step--a
"step" being the basic unit of integration. The integral for each
step was estimated by Bode's rule (the closed-type Newton-Cotes for-—
mula for the integral of a quartic polynomial which fits five points
equally spaced between the ends of the step). An estimate for the
error was made by comparing Bode's rule with Simpson's rule applied
once for each half of the step, using the same five points already
evaluated for Bode's rule. Thus the error estimate reflected the
fourth-order error of Simpson's rule, but the integration was accu-
rate to the sixth-order error of Bode's rule.

If the error estimate exceeded the preset tolerance criterion,
the first half of the interval was taken as the next attempt for a
successful step, requiring only two new points to be evaluated to
apply Bode's rule again. This step-halving was iterated until the
step was made sufficiently small to be successfully integrated
within the error criterion. Then the integration proceeded forward
with the other half of the last unsuccessful step. If it could be
integrated successfully without further halving, the step size was
doubled to do the second half of the next uncompleted step. As long
as the integrations were successful, the step-doubling was continued

until the original interval was finished. Thus the points temporarily
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discarded by successively halving the step were actually saved and
re-used when the step size was successively doubled.

Once the step-doubling was completed (or if the interval was
done successfully in one step), the algorithm proceeded to a new in-
terval. The size of this interval was chosen so that the estimated
error would be one-half the tolerance criterion if the fourth deriv-
ative stayed the same as its value estimated for the last step. The
fact that this constant-fourth-derivative assumption was false led to
the occasional need to halve the step size before the estimated error
was reduced below the tolerance criterion.

Paper II gives the massless particle emission rates from a
Schwarzschild black hole and estimates the resulting lifetimes of
primordial black holes. In addition, this paper derives analytic ex-
pressions for the absorption probabilities, cross sections, and
emission rates for low frequency waves in the field of a black hole
of arbitrary rotation. Paper III extends the numerical calculations
to rotating holes and shows how they evolve as they lose energy and
angular momentum to massless or nearly massless particles. The im-
plications for the lifetimes and present configurations of primordial
black holes are discussed. Following Paper IIT is a listing of coef-
ficients of polynomial fits used to calculate the angular eigenvalues

for neutrinos that are needed in solving the radial Teukolsky equa-

tion.
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Hawking has predicted that a black hole will emit particles as if it had a temperature proportional to its
surface gravity. This paper combines Hawking's quantum formalism with the black-hole perturbation methods
of Teukolsky and Press to calculate the emission rate for the known massless particles. Numerical results
indicate that a hole of mass M » 10" g should emit a total power output of 2 X 107* ¢ ®G~*M~?, of which
81% is in neutrinos, 17% is in photons, and 2% is in gravitons. These rates plus an estimate for the emission
rates of massive particles from smaller holes allow one to infer that a primordial black hole will have decayed
away within the present age of the universe if and only if its initial mass was M < (5 + 1) X 10" g.

[. INTRODUCTION

Hawking has calculated quantum mechanically’
that a black hole will emit particles as if it were
a hot body with a temperature T proportional to
its surface gravity. Since the surface gravity
is inversely proportional to the black-hole mass
M, and the emitting area A is proportional to
M?, the luminosity or total power emitted is pro-
portional to AT® or M™. As M decreases at this
rate, the black-hole lifetime will be proportional
to M®. Dimensional arguments indicate that
the lifetime will be less than the age of the uni-
verse only if Ms 10'® g. Consequently, the thermal
emission is insignificant for black holes formed
by the stellar collapse (M= M,, lifetime = 10° yr),
but it is of crucial importance for the small pri-
mordial black holes possibly formed by fluctua-
tions in the early universe.?™

This paper reports numerical calculations of the
emission rates for massless particles. The spec-
tra from the dominant angular modes are given
for neutrinos, photons, and gravitons. The spec-
tra are integrated to give the total number rate
and power emitted in the various modes. From the
total power emitted in all modes, the lifetime of
a black hole is predicted. Essentially, this paper
gives numerical coefficients for the dimensionally
determined quantities of the preceding paragraph.

To simplify the notation, dimensionless units
will be used such that

fi=c=G=F (Boltzmann’s constant)=1, (1)

That is, all quantities will be written in terms of
the Planck mass ([Fc/G]¥?=2.18x107° g), length
(G /Y2 =1.62x107% cm), time ([HG/ %2
=5.39%107" sec), temperature ([#c5/GIY%/k=1,42
x10% °K), energy ([#c%G]"*=1.96x10" erg
=1.22x10* MeV), power (¢%G =3.63%10% erg
sec™'), charge ([#c¥2=5.62x10"° esu = 11.7e),

etc. For example, the electron mass ismn, =4.19
%x1072%, the muon mass is my, =8.65%107**, the
blackbody background temperatureis 7, =1.9x 1072
the age of the universe is £, = 10%" (= 17 billion
years), and the solar mass and luminosity are
M=9.14%10%" and L,=1.05x107%, respectively.’

The present paper will limit itself to the known
massless particles (v,, ¥,, ¥, ¥,. ¥, and gravi-
ton) being emitted from an uncharged, nonrotating
hole. Future papers in this series are being
planned to consider rotating holes and the emission
of massive particles. Massless particles will
dominate the emission when T s, (the smallest
nonzero rest mass known). The approximation of
zero rest mass should also be valid form, <T <m,,
in which case electrons and positrons will be
emitted ultrarelativistically so that their rest
mass can be ignored, whereas heavier particles
will hardly be emitted at all. The approximation
breaks down for the case T 2my, or M s5x10'*
~1%10" g, which will not be considered.

Zaumen® and Gibbons” have shown that a black
hole will discharge rapidly by a Schwinger-type
pair-production process if

Q,= Q/MzMm,e=2.05X10""M

=M/5.34x10°M, . @)

@, is the charge parameter (dimensionless with-
out setting % =1) that must be of order unity to
affect significantly the geometry of a black hole
and hence the emission of uncharged particles.
Therefore, except for black holes above 10° Mg,
which do not radiate at a significant rate anyway,
the charge of the black hole can be ignored when
analyzing the emission of uncharged particles.
For a black hole small enough to be emitting elec-
trons and positrons, the resulting random charge
fluctuations are estimated to be of order unity.
Such fluctuations do not affect the geometry signi-

198
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ficantly since only W> 1~ 2X107° g is being con-
sidered, but they do affect the coupling of the hole
to electrons and positrons so that their average
emission rates may be changed by a fraction of
the order of the fine-structure constant. This
effect will be ignored until a future paper.

The idealization of no rotation for the black hole
is much less justified than the idealization of no
charge, but there are two effects that may tend to
make the rotation small. First there is the ten-
dency of a rotating hole to emit more particles
with angular momentum in the same direction as
the hole than in the opposite direction. Indeed,
for a hole rotating as fast as possible for a given
mass, each particle emitted must decrease the
angular momentum of the hole, and it appears that
this decrease is characteristic of the total emission
at any finite rotation. However, the classically
dimensionless (no %’s needed to make it dimen-
sionless) rotation parameter that determines the
shape of a black hole is

a*EJ/Mz, (3)

where J is the magnitude of the angular momentum.

For a,=1 (maximum rotation), it is easy to show
that the emission leads to a decrease in a,, but
for a, near zero, it is not yet known whether the
angular momentum decreases fast enough com-
pared with the mass to keep a_decreasing, or
whether dlnJ/dlnM=2 at some finite a,, causing
a_ to approach that value asymptotically rather
than continuing to decrease toward zero.

The second effect which may tend to reduce the
rotation is an instability to the exponential growth
of massive scalar fields in a quasibound state
around a rotating hole, Eardley has suggested
this effect® as an analog of the “black-hole bomb,”?
in which the rest mass of the field replaces the
mirror to confine the field. This instability should
rapidly drain angular momentum from the hole
into orbiting particles, which then decay or radiate
away their energy and angular momentum by grav-
itational radiation,'®if (1) the size of the hole is
roughly the Compton wavelength of one of these
scalar particles (a pion, say), (2) the size of the
particle itself is not too large compared with the
size of the hole, and (3) it is possible to create
many particles in the same mode so that the field
can grow exponentially. (One might suppose that
if a scalar particle were made of Fermi constit-
uents, the exclusion principle for the constituents
would prevent the scalar particles from piling up
in the same mode by coherent amplification, so
the drain of angular momentum would not occur
at any exponentially large rate limited by the grav-
itation radiation from the mode but rather at a
rate limited by the decay or interaction time,

which would not be much, if any, faster than the
direct emission mechanisms.)

In summary, this paper will consider the emis-
sion rates from an uncharged, nonrotating hole
for massless particles of spin 3. 1, and 2. This
is meant to apply to neutrinos, photons. and grav-
itons (and possibly ultrarelativistic electrons and
positrons from a hole small enough) being emitted
from a primordial black hole that has been neutra-
lized, if necessary, by e° emission and that some-
how has little angular momentum.

Il. THEORETICAL FORMALISM

According to Hawking's calculation, the expected
number of particles of the jth species with charge
e emitted in a wave mode labeled by frequency or
energy w, spheroidal harmonic /, axial quantum
number or angular momentum m, and polarization
or helicity p is

(Njiimp) = T wimol €xpl27k 7 (w - m2 — e@)] = 1172,
4)

Here the minus sign is for bosons and the plus
sign is for fermions; I;_,,, is the absorption
probability for an incoming wave of that mode (i.e.,
minus the fractional energy gain in a scattered
classical wave, —Z in the calculations of Teukol-
sky and Press'!); x, Q, and ¢ are the surface
gravity, surface angular frequency, and surface
electrostatic potential, respectively, of the black
hole. The values of ¥, 2, and ® are linked to the
hole’s mass M, area A, angular momentum J, and
charge @ by the first law of black-hole mechan-

ics®?

dM = —é—‘; dA + QdJ + @dQ. (5)

The expected number emitted in each mode re-
markably is the same as that of a thermal body
whose absorptivity matches that of the hole and
whose temperature is

K
= ©)

S0 1A can be identified as the entropy of the black
hole.! For a Kerr-Newman black hole with the
horizon at radius

7. =M+ (M - @ - PV, (M)
the specific expressions for x, €, and & are®®
4u(r, =MD

A

=M1+ (13- Q.7 - 2,V - - 8)
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Q- 4ia hole decrease at the rates given by the total power
T A and torque emitted:
. By 2 2 29/2] -1 1 fl"v xpl27& " (w —mQ — ed)]
T {Z-Q, +2(1-Q.° - a, ¥2] ( ) 'z:p a7 Jump{e‘(P[ (
oM @) ¥ 1}"(5,);@, (12)
aMm
The nontrivial part of the calculation of the
:5:4"@'* power and torque is the determination of the ab-
A sorption probabilities I'. Fortunately, Teukolsky
-9 1+ (1~ 02 = a Ve has shown' that the fundamental equations for

* 9 _ Q‘z +2(1 = Q: = a:z)xlz
= 2Qx- (10)

Here the quantities after the arrows are the lead-
ing terms for a, =a/M=J/M*<<1 and @, =Q/M<x<1.
To convert from the expected number emitted

per mode to the average emission rate per fre-
quency interval, one counts the number of modes
per frequency interval with periodic boundary
conditions in a large container around the black
hole and divides by the time it takes a particle to
cross the container, finding

dN vdk
SR (2 (11

for each j, I, m, p, and frequency interval
(w,w+dw). Since each particle carries off ener-
gy @ and angular momentum m about the axis of
the hole, the mass and angular momentum of the

uoses = [T s IT [1 (2522) T2 (

n=1

s L [(l—s) z(z+s)1:r . (e=m 2] (_
siime T LD TR ,,,,[ (nx—-z-[fc)

gravitational, electromagnetic, and neutrino-
field perturbations of an uncharged rotating black
hole decouple into a single equation for each field,
and furthermore that each of these equations is
completely separable into ordinary differential
equations. Teukolsky and Press'! have developed
analytic and numerical techniques for interpreting
and solving these equations for gravitational and
electromagnetic perturbations. Their techniques
can be extended easily to the neutrino field, and
I have simply modified their computer programs
to cover neutrinos as well as gravitons and photons.
A check on the numerical computation can be
givenby the analytic form of I for small Mw, which
has been derived by Starobinsky and Churilov'®
for boson fields and which is extended in the Ap-
pendix to fermion fields obeying the Teukolsky
equation. For a massless field with spin-s
scattering off an uncharged hole, the formulas are

X 2141
i mﬂ)(ﬂ w) , 25 even, (13)
2m
2141
w) . 2s odd, (14)

with fractional errors of order (Axw)*'*!. Since [>s, the dominant contribution is from the /=5 modes,

which give

i =%w2=8M [a+o1® = a®V?] @ fors=0, (15)
A 2

Dicims =3 (“ )(2: w) =M fors=}, (16)

T 4 A 2 2 2

wams = g 7 M°+ 0 - 1Da*] (@-mD*  for s=1, an

16 A [ 2 2 2 Ly 5
wams = 535 o |M7+ 0 = DA + G - Dl (0 -mR0* for s=2. (18)

Here only the lowest-order term in @ has been kept, except for the w —m® factor for bosons which guar-
antees that in the superradiant regime w<mf, the absorption probability for bosons in negative. [Le.,
waves are amplified rather than absorbed. The thermal factor of Eq. (12) is also negative in this regime,

so the quantum emission rate remains positive.]
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From the behavior of these analytic absorption probabilities at low frequencies for the various angular
modes, one can get the low-frequency (Mw<<1) absorption cross section for a massless particle of spin

s averaged over all orientations of the black hole:'®

A

»

2aM?,

e -2
g(w)=1w EI;‘;M»J:JQ LABM® - a®w?,

L AGBM? + FMPa® + a®)w*, s

At high frequencies (Mw> 1) the angle-averaged
cross section for each kind of particle must ap-
proach the geometrical-optics limit of 277442 for
a nonrotating hole and roughly the same value for
a rotating hole.'” Thus the cross sections are
smaller at low frequencies. As the frequency is
reduced to zero, the cross sections retain finite
values for neutrinos and hypothetical spin-0 mass-
less particles and go to zero as the frequency
squared for photons and as the frequency to the
fourth power for gravitons.

Combining the low-frequency absorption prob-
abilities (13) and (14) with the thermal factor (4)
for a black hole with negligible rotation, one gets
the emission rate in a given angular and polari-
zation eigenstate for low frequencies,

d B [(I—s)!(l +5)!

2
. . 21+1
dtdw ' T a2 [(@DN21 +1) ! .r] (@)™

(20)

where B=2 for bosons and B=7 for fermions. The
fractional errors are of order M(w —m). Thus in
each case the emission rate at low frequencies
goes as «?'"!  and the power goes as @w***?, This
qualitative behavior causes the particles with low-
er spins (and thus lower ! allowed, since I =s) to
be emitted faster from a nonrotating hole, there-
by dominating the low-frequency power drain from
such a hole. However, the analytic expressions
for low frequency break down long before the
actual spectra peak, so numerical calculations
are needed to determine whether and to what ex-
tent this effect holds also for the total power drain.

Il. NUMERICAL CALCULATIONS

The particle emission rates were calculated by
using Hawking’s formula (4) and Eq. (11) with the
absorption probabilities I" computed by the method
of Ref. 9, Sec. VII, using Bardeen’s transforma-
tion discussed therein to allow stable integration
of the Teukolsky equation from the horizon to in-
finity. A purely ingoing solution was chosen on
the horizon, and after this solution was numeri-

w
I
=

%]
1]
wj=

(19)

]
I
-

i
e

r

cally integrated out to a sufficiently large radius,
it was resolved into ingoing and outgoing waves at
infinity. Then I was calculated as the ratio of the
energy going down the hole to the energy of the
ingoing wave at infinity, and the thermal factors
were multiplied in to give the quantum emission
rates. These rates were multiplied by the energy
or angular momentum of each particle, integrated
over frequency, and summed over all angular
modes, polarizations, and species of particles to
give the total power and torque emitted [ef. Eq.
(12)].

The accuracy of the numerical result was limited
by the step size in integrating the Teukolsky
equation, the radius where the resolution into in-
going and outgoing waves is made, and the step
size in integrating the spectra. To keep these
three sources of error under control, variable
step sizes were used with an error criterion for
each step, and the resolution into ingoing and out-
going waves was required to be the same within
a certain accuracy at two different radii. Thus the
total error was governed by three accuracy criter-
ia, and these were chosen for each mode to give
roughly the same effect on the final result so that
the result might have nearly the greatest accuracy
possible for a given computer machine time.

The numerical calculations of the emission rates
compared favorably with Eq. (20) at low frequen-
cies, although departures from the extended
Starobinsky-Churilov expression become signifi-
cant at fairly small values of Mw. For example,
the actual value of I" for neutrinos with [ =3
becomes 50% larger than that given by Eq. (14)
when Mw=0.05. This effect prevents one from
getting an accurate estimate of the total power
and torque emitted by inserting (13) and (14) into
(12). [One might have expected such an estimate
to be fairly accurate on grounds that the exponen-
tial of 8mVw (for a nonrotating hole) in the denom-
inator of (12) might become large and make the
integrand small before the expression for T de-
velops serious errors.] In fact, such an estimate
gave only 35% of the actual total power in neu-
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trinos, 13% of the actual power in photons, and
5% of the actual power in gravitons, or 30% of the
total in all massless particles.

V. RESULTS

The power spectra for neutrinos, photons, and
gravitons are given in Fig. 1. The integrated
emission rates and power for the dominant angular
modes are listed in Table I. The total in all of the
known massless fields (four kinds of neutrinos
with one helicity each and photons and gravitons
with two helicities each) is 1.130x107° &G ~'w!
for the emission number rate and 2.011x10"*
XAc’G TM? for the power. One may compare these
numerical results with the naive estimates of
thermal emission from cross sections ¢ that are
assumed to be independent of frequency. Then the
power would be

P=acT* [{o,)+ L o)+ L o) + L o(f)

+0(1) +0(g)] (21)

for emission of v,, ¥, , ¥, T, ¥ andg (gravitons).
Here

.n.zk-:
“= o' -

is the radiation density constant,’ and T is the
temperature of the black hole, given by Eq. (6).
If we take the high-frequency limit, all the cross
sections go to 277G*M*/c*, and the power estimate
becomes 5.246X107*/ic®G "M 2, which is a factor
of 2.6 too large. If we take the low-frequency
limit, Eq. (19) shows that the photon and graviton
cross sections go to zero, whereas the neutrino
cross sections go to 27G*M?/¢*, so the power
estimate becomes 0.181x10* %¢®G 2M ™%, which is
a factor of 11 too small. (The thermally averaged
cross sections turn out to be 18.057M? for photons,
6.4927M° for photons and 0.7427M? for gravitons.)
If the black hole is small enough that electrons
and positrons are emitted ultrarelativistically
(and thus at the same rate for each helicity as
neutrinos) but not small enough for heavier par-
ticles to be emitted at a significant rate, the
power is 3.65X107*4c®G"M™. The peak in the
neutrino power spectrum (which should be the
same as that for ultrarelativistic electrons) is
at w=0.18M"; therefore, the assumption of only
ultrarelativistic e* applies for

m,=4.19%10"**«< 0.18 M ' < m, =8.65%x107%",
(23)

which is true for the mass range
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FIG. 1. Power spectra from a black hole, obtained by
adding all angular modes for four kinds of neutrinos and
for two polarization states (helicities) each of photons
and gravitons. The lowest angular modes, L =s, domin-
ate, but the! =s + 1 modes can be seen coming in with a
small “bump” in the neutrino spectrum at Mw = 0.4 and
in the photon spectrum at Mw«w =~ 0.5. The total power
spectrum can be seen at high frequencies to approach
that of a thermal body with a cross section of 277M?,
but at low frequencies the spectrum drops below the
Planck form as the cross section of the black hole is re-
duced.

2.1xX10'%=4,5%X10" g < M< 4,3x10*'=9.4%X10"g.
(24)

A black hole with M > 10'7 g would emit virtually
no known massive particles, and a hole with

M s5%10" g would emit muons and heavier part-
icles at a significant rate.

Knowing the expression for the total power,
emitted from a nonrotating black hole, one can
calculate the lifetime of such a hole. The power
emitted causes the mass to decrease at the rate

aMm he* a

a =T A

where @ is a numerical coefficient (see above)
that depends on which particle species can be
emitted at a significant rate. Since most of the
decay time of the hole is spent near the original
mass M,, @ can be taken to be its value ¢, at
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TABLE [. Emission rates and powers for the dominant angular modes.
For each mode For each (s,l)

DGR T L rate f power & g" rate | power 2
1 1 6 4 8 1.191%x107% 1.969x107° 8 9.531 x10~ 1.575 x107¥
1 3 5 3 8 112 x10"® 375 %10 16 0.180 x10™* 0.060 x10~*
1 5 4 2 9 95 %107 49 x107* 24 0,002 x107* 0.001 x10°%
2 2 6 3 8 2.44 X107 5.49 %1078 6 1.463 x10™ 0.330 x10°¥
2 4 5 24 8 1.63 %107 6.67 x10”® 10 o0.016 x10~* 0.007 x10~*
2 6 4 2 94 1.1 x10"% 6.5 x10"1° 14 0.0001 <107 0.0001 x107*
4 4 5 2.4 8 1.10 x10~® 3.81 %1077 10 0.110 =10~* 0.038 x=107*
4 6 4 2 9.4 4.7 %107 26 x10" 14 0.0007%x10"' 0.0004 x10~*

Total rate and power for all modes 1.130 x107% 2611 =30~

* s is the spin of the field, here doubled to give an integer; i.e., 2s=1 for neutrinos,

2s5=2 for photons, and 2s=4 for gravitons.

b1 is the total angular momentum of the mode.
©107% is the fractional error criterion for each step in the radial integration of the

Teukolsky equation.

107¢ is the fractional error criterion for the resolution of a numerical solution of the
Teukolsky equation into ingoing and outgoing waves.
€10~°% is the absolute error criterion for the integration over frequencies.
f Rate in units of ¢3G~1M1=4.038 x10%% (M /g) ™ sec™.
8 Power in units of e8¢ 2M~2=1.719 x10%®(M/g) 2 erg sec™l.
hg is the number of modes for a given! and s, (2! +1) x(number of particle species with
the given s) x(number of polarizations or helicities for each species).

that mass, if @(M) does not change rapidly with
mass near M, (as it might for M, S 5x10" g).
Then the lifetime of the hole is

e ;?: %ﬂi (26)
For M>>10"7 g, @=2.011xX107*, so
T=8.66x10"*"(M,/g)* sec
=2.16x10%°(M,/Mg)* yr. 27

For 5x10™ g<<M<<107 g, ¢=3.6%X107%, so
T~ 4.8%107% (M,/g)® sec=1.5%x10"* (M,/g)* yr.
(28)

Since the lifetime of a black hole of stellar mass
is so enormous, the decay is important only for
black holes of much smaller mass, which cannot
be formed by any processes (except for extremely
rare quantum tunneling) that we know of in the
present universe but which might have formed in
the early universe.?™ It is of interest to deter-
mine what initial masses should have decayed
away and what masses should still be around.
Taking the lifetime of the black hole as the pre-
sent age of the universe, say 16 billion years,'®
one finds that if only the known massless particles
are emitted, M,=3.9%X10" g. This is inconsistent
with negligible emission of massive particles, so

one must add ultrarelativistic e* emission, getting
M,=4.7X10" g. This is at the mass where muon
and pion emission are beginning to become im-
portant, so a somewhat larger mass should have
decayed by now. However, unless the power is
increased more than a factor of 2 due to the
emission of muons and heavier particles (unlikely)
and unless the universe age is outside 8-18
billion years'® (also unlikely), probably M,=(5=1)
x 10" g is the initial mass of a primordial non-
rotating, uncharged black hole that just decays
away at the present age of the universe by the
emission of the known elementary particles.

In conclusion, the power emitted from an un-
charged, nonrotating black hole of mass M> 107
gis

P=2.011%x10" %G M?
=3.458%10%(M/g)? erg sec™!

=2.28%X10"% Lo M/Mg) 2, (29)

of which 81.4% is in the four kinds of neutrinos,
16.7% is in photons, and 1.9% is in gravitons,
assuming these are the only massless particles.
For 5X10" g M 10" g,
P=~3.6%107" icSGM?
=6.3x10"(M/10" g)~erg sec™', (30)

of which 45% is in electrons and positrons, 45%
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is in neutrinos, 9% is in photons, and 1% is in Among these are S. A. Teukolsky and W. H. Press,
gravitons. This assumes electrons and muons who gave me their computer programs for calcula-
are the lightest particles with rest mass. The ting the absorption probabilities of photons and
emission of particles is unimportant for stellar- gravitons, and who advised me on the modifica-
mass black holes but should have caused any pri- tions needed for neutrinos and on other numerical
mordial black hole with an initial mass less than problems. B. A. Zimmerman, K. H. Despain,

4% 10" g (and perhaps somewhat greater values) F. J. Nagy, and C. L. Rosenfeld assisted me in

to decay away by now. programming and using the Lawrence Berkeley

Laboratory CDC-7600 computer via a remote
terminal at Caltech. S. W. Hawking and B. J. Carr
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APPENDIX

The absorption probability I" at low frequencies can be calculated by analytically solving the Teukolsky
equation with the approximation Mw <1 and finding what fraction of any ingoing wave from infinity gets
reflected back out. In Boyer-Lindquist coordinates for an uncharged hole, a massless field of spin-
weight s, frequency w, and axial quantum number m obeys the radial Teukolsky equation'®

A"”Edr— (A”' %f) + [(7* + @)W — daMbrom + &@m® +2ia(r = Mms — 2iM(r® — &)ws +(2irws — VAR =0. (A1)
Here
Asri-2Mr+al=(r-7)r-7)), (A2)
and A is an eigenvalue of the angular equation
Y 4 7. - dS 2 (m+scos©)\? ol
a4 (sme “ )+ [(s_. aw cosO)? - (—m—) —s(sLisA=a w] 8=0. (A3)

(X is the same as in Ref. 15 and is the same as A +2@nw in Ref. 11.)
Following Starobinsky and Churilov'® generally, define

T-% _T-M-(M—a)V?

oo T 20 -2V fas)
_m-w M
Q= e = (M - w), (A5)
k=2w(r, — M) =2Mw(l - a )2, (A6)
Then small Mw implies that the radial equation can be approximated as
2SR dR 3 . : . 5
Flx+1) =3 Hs+Dx(x+1)(2x+1) = +[B2x* + 2iskx® — Mx(x +1) +i5Q(2x+1) + @ | R =0, AN

with #<<1. Small Mw also implies @*«? <<1, in which case the angular eigenvalue becomes very nearly
A=(l-s)(l+s+1), (A8)

where I -5 is a non-negative integer. (In the limit of ¢, —0, [ is the total angular momentum of the mode.)

For kx<<[+1, the first two terms inside the square brackets of Eq. (A7) can be dropped, leading to an
equation with three regular singular points. A solution obeying the ingoing boundary conditions at the
horizon'® is*°

R=x""19(x41)"2"19 F(-l-8,I-5+1; 1-5+2iQ; —x). (A9)

Here ,F (a, b; c; 2) is the hypergeometric function. For x> |Q| +1, the last two terms inside the square
brackets can be dropped, and x+1 can be replaced by x, leading to an equation with one regular and one
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irregular singular point. The solution is, if 2/ is not an integer.*!
R=Cie~ ™ x'% F(l—s+1; 21 +2; 2ikx) + Cie~ ™ x~F-3"1 F(-1 —5; =213 2ikx). (A10)

Here ,F,(a; ¢; 2) is the confluent hypergeometric function. [To avoid solutions with logarithmic terms,
and to simplify the matching procedure, we will henceforth assume 27 is nearly, but not exactly, integral.
This is actually the case when a®w®+0 if we use Eq. (A8) as the definition of [ when X is given from Eq.
(A3) rather than as an approximate formula for A when [—§ is given as a non-negative integer.]

By matching the two solutions in the overlap region |Q| +1<<x<<(I+1)/k, one can get

c . F2LENTA-5+2iQ _ D(=21-1T(1 -5 +2iQ) (AdD)
T Tl=8+ DI+l +250), . 2  Dl=l=sD{=l+2i0 -

Then the asymptotic form of the confluent hypergeometric functions can be used to get the solution in the
form

R= Yiue-ler-l + Youl eier—'.!s-l (Al?.\
for kx> 1, where
I+ DT21+2T(1 -5+2iQ) k (-2 T(-21-1T(1-5+2iQ) k&

e R gipy-its-1 R oiytes
Yoo = T s+ DT+s + DIA+1+2i@ & O RO O Tl o T (o lr2iQ) @ 2R

(A13)

T3+
) (2ik)F .

W

y. - T@I+DT@I+2T( 5 +2iQ) (5)=’+*(2m_,_,_1+ T(-20)T(=21-1T(1 -5 +2iQ) (%
T T -s+ VP T +1 +2iQ) [T(-1-s)2T(-1+2i@ (

To obtain the ratio of outgoing to ingoing fluxes, one can either calculate the normalization factors of
Ref. 11 to apply to |¥,u/%il?, or one can use the following trick: Solve the radial equation with S re-
placed by —-S to get the asymptotic form

B_ =2 e Wi g rellsytset (a14)

[i.e., Zi, and Zou are the same as ¥, and Y., respectively, in Eq. (A13) above with s replaced by —s].
Then the reflection coefficient is (cf. Ref. 11)

_ dEm_“ Your Zout
LR dEin Yin Zin VALE)
After some algebra, one finds that with a fractional error of order k%' ",
Ve i 1"(—21)I‘(-2!—1)[ﬂl-s+1) T+1+20Q) oaimg] -
: B Tis=l2 e — . 16
scimp = Re 14" cos[n(z - s) TR+ DT@+2) | T(—l-5) | T(cizzig | Rae)

Now one can keep 2s exactly integral and take the limit as I — s approaches a non-negative integer. Then

(MU= 17 TU+1+2iQ) . are
11“'“°‘Re%[(zz)!(zz+1):] TirziQ 1}-

(A17T)

Taking the cases of integral or half-integral spins separately (corresponding to 2I even or odd, respec-
tively) to express the quotient of the two I functions as a finite product, and rewriting @ and % in terms
of w, m, §, k, and A, one obtains Eqs. (13) and (14). The result for integral spins was given by Star-
obinsky and Churilov, though not the result for half-integral spins.
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Particle Emission Rates from a Black Hole.

ITI. Massless Particles from a Rotating Hole®

DON N. PAGE

California Institute of Technology, Pasadena, California 91125

ABSTRACT

The calculations of the first paper of this series (for non-
rotating black holes) are extended to the emission rates of massless or
nearly massless particles from a rotating hole and the consequent
evolution of the hole. The power emitted increases as a function of
the angular momentum of the hole, for a given mass, by factors of up to
13.35 for neutrinos, 107.5 for photons, and 26380 for gravitoms.
Angular momentum is emitted several times faster than energy, so a
rapidly rotating black hole spins down to a nearly nonrotating stﬁte
before most of its mass has been given up. The third law of black hole
mechanics is proved for small perturbations of an uncharged hole, show-
ing that it is impossible to spin up a hole to the extreme Kerr configu-
ration. If a hole is rotating fast enough, its area and entropy
initially increase with time (at an infinite rate for extreme Kerr) as
heat flows into the hole from particle pairs created in the ergosphere.

As the rotation decreases, the thermal emission becomes dominant,

¥Supported in part by the National Science Foundation [AST75-01323 AO1]

and by the Danforth Foundation through a predoctoral fellowship.
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drawing heat out of the hole and decreasing its area. The lifetima
of a black hole of a given mass varies with the initial rotation by
a factor of only 2.0-2.7 (depending upon which particle species are
emitted). If a nonrotating primordial black hole with initial mass
5 % 1014g would have just decayed away within the present age of the
universe, a hole created maximally rotating would have just died if
its initial mass were about 7 x 1014g. Primordial black holes
created with larger masses would still exist today, but they would
have a maximum rotation rate determined uniquely by the present mass.
If they are small enough today to be emitting many hadrons, they are

predicted to be very nearly nonrotating.



T
L. TINTRODUCTION

Black holes, as Hawking and others have shown,l_6 emit particles
like thermal bodies. Paper 17 reported numerical calculations of the
emission rates from a nonrotating black hole. This paper gives the
rates for the known particles of zero or negligible rest mass from a
rotating (Kerr) black hole and shows how such a hole would evolve as
it emitted these particles. These results are of interest in testing
the validity of the simplifying assumption that most black holes which
emit significantly today are not rotating (see, for example, Refs.
7-9).

Paper I noted that although a small black hole will quickly give
up its electric charge,lo—12 it is much less certain whether the rota-
tion will also become small. The main difference in the time scales
of the two processes can be seen in the following way (using henceforth

the dimensionless Planck units spelled out in Paper I):

The parameters that determine the shape of a black hole are
3 2 =
a, # I/ and Q, = o/ s ()

where J is the angular momentum, Q is the charge, and M is the
mass (which sets the scale of the size). These quantities have a

domain limited by the constraint

s d0 € 1, (2)

Only black holes which emit quanta of wmuch smaller energy than the

hole mass will be considered, so that the adiabatic approximation used
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in the quantum calculations of the emission Y will be valid. The
quanta emitted have typical energies of the ordsr of the black hole

temperature or of M—l (with [1015g]_l = 266 MeV in conventional

units), which we want much less than M , so we nead

M>> 1 ("Planck mass'") = 2.18 x IO_Jg (3)

2 .
Then roughly M~ quanta are needed to carry away the energy of the
hole; i.e., the entropy in the radiation, which is roughly the number
of quanta when thermally distributed, is of the same order as the

Boda i ; £ 13
initial entropy of the hole, which is one-fourth the area or

roughly Mz.

When a black hole is charged and/or rotating so that Q, and/or
a, are significantly different ffom zero, and when it has temperature
or electrostatic potential high enough to permit emission of electrons
or positrons, it tends to emit most of its quanta with the same sign

of the charge and/or angular momentum as the hole. A charged particle

carries off charge

|aQ] = e = 0.0854 (%)

which is roughly of order unity, and a typical quantum also carries

off an angular momentum

-AJ = mn (5)
of order unity. Since a, and Q, must have ebsolute wvalues not
greater than unity, the number of charged particles needed to neutral-

ize the hole is Q/e, which is only of order M , whereas the nucber
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of particles needed to carry off the angular momentum J

is of

order Mz. Thus the charge can be emitted fairly quickly, but the

loss of angular momentum requires roughly the same number of particles

as the loss of mass. Therefore, in this paper we will assume that the

charge neutralization has already occurred but that the angular momen-—

tum may still be significant.

Though one expected a black hole to give up its angular momentum
in the same order of time as it gives up its mass, it has not been

12
known whether a, tends to zero as the black hole evolves. Carter

argued that it would tend asymptotically toward a fixed value less
than unity, but he gave no indication of what that value would be.
Numerical calculations were needed to show whether &n J always de-
creases faster than 4n Mz, pushing a, toward zero, or whether these
two quantities decrease equally fast at some nonzero limiting value for
a.. There is some indirect evidence, to be given below, that if there
were a large enough number of massless scalar fields (unknown at
present and therefore not calculated in this paper) to dominate the
emission, a, might indeed get hung up at some nonzero value. How-
ever, this paper shows that emission of the known massless fields can
only decrease a, toward zero, and that in fact the decrease is
rather rapid compared with the mass decrease.

Because black holes that died in recent epochs or that are emit-—
ting significantly today spend almost all their lives with temperatures

of order 20 MeV, which is well above the mass of the electron but well

below that of each known heavier particle, it is reasonable to do the
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calculations for the idealized case of emission of a fixed set of
species with negligible rest mass. For example, the '"canonical
combination' used below is the set of known species with masses less
than 20 MeV: gravitons, photons, electron and muon neutrinos with

one helicity each, electrons, and the corresponding antileptons.
However, the results will also be given for other sets of species,

to include some of the possibilities (to be discussed below) of other
near-massless particles in nature or of the emission from black holes
too cold to emit electrons and positrons.

The quantities to be calculated in this paper are the rates at
which energy and angular momentum are radiated; the evolution of the
mass, rotation parameter, and area of the hole; the lifetimes of holes
with different initial angular momenta; the masses of primordial black
holes (PBHs) that would be just disappearing today; and the maximum
rotation parameters that PBHs of various masses today could have. The
remainder of the paper will derive the mathematical formulas for the
quantities desired, describe the numerical methods used to calculate

them, give the results, and discuss their properties.

II. MATHEMATICAL FORMULAS

Since the total number of particles emitted during the black-
hole evolution, roughly M2 , 1s assumed to be very large, the emission
may be approximated as a continuous process with negligible fluctua-
tions due to particle discreteness. Then the rates are well-determined

functions of M and a, alone (assuming Q, = 0, which was justified
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above). The rest masses of the particles emitted are assumed to be
negligible, and the particle species emitted are assumed to be fixed
(independent of M), so the only scale in the problem (other than the
Planck units, which are here defined to be unity) is determined by @M.
All quantities to be calculated scale as some power of M and can
therefore be put into a scale-invariant form (e.g., depending only on
a,) by dividing out this power of M--or, when one calculates the evo-
lution of a hole (Egs. [12] ff. below), by dividing cut the value of M
at some particular point on the evolutionary track.

First, let us consider the rates at which the mass and angular
momentum of a black hole decrease, which are given in Paper I by Eq.

(L:12). Since the time t scales as Ma, we may define the scale-

invariant quantities

= —M3d 4n M/dt

h
i

2 aM/de b 6)

~M3d n J/dt L

0
11

—Ma; dJ/dec . (7

These can be seen to be functions of a, 2alone:

I1f we define the scale-invariant energy of an emitted particle as

X = Mw " (8)
then Eq. (I:12) gives
5. 1 [ ;
(2] = == | dx <N, o P A (9)
g §.4 g 27 ! jxZmp ma;l

where the expected number of particles of the jtP species of spin s
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emitted in the mode or state with energy M "x, spheroidal harmonic

2 , axial angular momentum m , and polarization p is

L s gmp ¢ 250%)
<N_ > = : - (10)
e R N e T 3
e - (-1 8

N

0

b

Here Eq. (I:4) has been used, with the values of the surface gravity,
angular frequency, and electrostatic potential of the hole obtained

from Eqs. (L:8), (1:9), and (I:10). szmp is the absorption prob-

ability for am incoming wave of the mode considered and can be found

1

i~

by numerically solving the Teukolsky equation. sk It can easily be
seen to depend only on a, and x in addition to the subscripts.
The dependence on the species j and polarization p is only through
the spin s (assumed positive) and the number of polarizations p
that the species has; then £ and m can take on any values such’
that & -s and 2-—|m| are nonnegative integers.

Next, let us consider the evolution of the black hole. Equations
(6) and (7) give the rates of change of M and J with respect to
time once f and g have been calculated. Since £ and g are
functions-of a,, however, it is easier to solve the equatiomns if a_

is considered as the independent variable. Furthermore, dividing Eq.

(7) by Eq. (6) shows us that

d n a, d &n J z
itaM - dgmm 2 = f-2 =R, 5

which approaches a constant value as &a, approaches zero (assuming

the value is positive so indeed a, = 0 as M =+ 0). Beczause of the
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logarithms in Eq. (11), it is convenient to define the independant
variable to be

y £ ~Ina, . (12)

To cover the greatest range of possibilities, the evolution will first

be calculated from a, =1 or y=0 to a,=0 or y =<; a black

hole starting at a different value of a, will simply follow the

evolutionary track from that point onward.

Now the object is to find how the mass and time vary with y .

Let the starting mass at a, = 1 be

M, = M(y = 0) 3 (13)

this will be the mass that sets the scale. With an eye back on Eq.

(ll), set

z = -m(M) (14)

which has the initial value

z(0) = 0 ‘ (15)

and evolves according to the reciprocal of Eq. (1l1) as

dz/dy = 1/h = £/(g - 2£) . (16)

It has been noted that the time scales as the mass cubed, so define

the scale-invariant time parameter as

T = Ml r €17
with initial wvalue

TR = 4 (18)
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Then Eq. (6) combined with Eq. (16) gives

dt _ e _ e
d¢  th - g-2f : L

From the solutions z(y) and T(y) of the coupled differential
equations (16) and (19), one can get y(t) and z(T) , and hence

a, and M/M, , as a function of time. From theszs, one can find how

other quantities evolve, such as the area

A = sm?+ (-a2? . (20)

Once one has the evolution of a black hole from a, = 1, one can
consider holes with other initial wvalues A of the rotation param-—
eter. They will follow the same solution =z(y) and 7T(y) but with

different initial values:

¥y« = 2fn ey, s (21)
z, £ z(y,) = —Q,n(_Mi/Ml) . (22)
ol w2 e (23
§ - By 1 N ;

These equations determine M, and ti such that the hole would have

1
mass Mi and rotation a*i at time ti if it had started with
M=M, and a, =1 at time t =0 . In terms of Mi and a,, , the
evolution follows
i 2,7z
H= M = Yo s (24)
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32
(T-7.) : (25)

3 3
= = N — =
£ £y dl(T Ti) Mi e i

Equation (25) and the 'standard evolution law" z(y) and T(y) can

be inverted to get T and hence y and a, as functions of time,

and then Eq. (24) gives the mass.

A particular quantity desired is the lifetime T(Mi’a*i) of a
black hole with initial mass M., and rotation parameter a,.. Lt can

be seen from Eq. (25), assuming that the black hole does evolve to

a,*0 or y*®® a M-+ 0 , that this is

T(M ,a,) Z =) -t =M e (ToT) (26)

11

where

Te = Tly==) (27)

is the lifetime in units of Mi of a hole that started with By = 1.

The mass dependence of the lifetime can be divided out to get the
scale—invariant quantity

3z,

-3 n, n _
Mi T(Mi,aki) = e (Tf Li) " (28)

@
"

thus written in terms of quantities previously calculated. Once the
lifetime of any black hole is known, one can calculate the initial
mass of a primordial black hole that has just disappeared within the

resent age t of the universe:
= o

=%
= (13 g1/3 _ /3 3

i gt
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Since PBHs would have been spinning down since their creation
at time t, 289 their present values of a, should have an upper
limit a*max(bhto) less than unity, depending upon the present mass
M. It is simpler to solve for the inverse function Mhi (a.,t ), the
minimum mass of a PBH with a

. today. By combining Eqs. (24) and

(25) with t-t. = t , one finds that
o

o = ti/3(‘r—ri)“1/3 Cok SR (30)

where T and 2z are evaluated at the present value of y or a, .
Clearly, the minimum occurs at the smallest value of Ti > Which is
zero if PBHs can be created with a,; up to unity, so in that case

M, (8.t ) = 2 [t(-tn 2173 2R 20 (31)

where -%n a, 1is shown explicitly as the argument of 1(y) and

zly). TE i has a smaller maximum value, the corresponding minimum

for T, 1is to be used in Eq. (30) to give M . (z2.,t ). One can see
i min- %7 0

that for fixed Ti"M in Eq. (30) is a monotonically increasing func-

tion of a,, assuming g-2f is always positive so that T is a de-
: . % <

creasing function of a, by Egq. (19). Then the inverse a*max(d’to)

is uniquely defined and is a monotonically increasing function of M .

IIT. NUMERICAL METHODS

The major part of the numerical calculations consisted of com-
puting the functions £(a,) and g(a,) by Egqs. (9) and (10), which was

done at 14 values of a, from 0.01 to 0.99999 to an accuracy of one

10
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part in roughly 104 or better at low a, and 103 at high a,. The

basic method is briefly summarized in §III of Paper L. In order to
cover different possibilities for the set of particle species, the

contributions to £ and g from each species were calculated

separately. Thus £ and

1/2 gl/Z’ f1 and 81> and f2 and 85

were calculated as the contributions from one species with two

polarizations of spin %3 1, and 2, respectively:

fs(a*)

X X g
o) = 1% | axignten>
G 0

x
e (32)

ma.,.

Here the dependence on the species is only through its spin s ,
and the sum over the two polarizations has already been taken, since

the expected number emitted in a mode labeled by x, %, and m 1is

independent of the polarization. Then,

(Z) = Bupg (f1/2)+ ny (fl\ +n, (fz) . (33)

&1/2

where 0y o0 o and n, are the number of species with spin -% .
1, and 2, respectively, assuming that there are no massless particles
of other spins.

A total of 463 angular modes (2 combination of s,% , m, and a,)
were calculated and integrated over frequency: 170 modes for s = 1/2,

155 for s =1, and 138 for s = 2 . TFor example, at low a all

%
the modes up through £ = 5/2 for s = 1/2 and through %2 =3 for

s =1 and s = 2 were calculated. At high a,  the 2 = m modes

were calculated up to 2 = 25/2 for s =1/2, ¢ =11 for s = 1,

13,
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and £ =9 for s = 2, and several £ = m+l modes were calculated
(with considerably smaller results), but no modes with £ -m > 1 .
At intermediate values of a,, some combination between these two
extremes was taken. The modes calculated appeared to include nearly
all of the radiation, though estimates for the small contributions
of all the other modes were added in, assuming that the sum over m
dropped off exponentially in £ roughly as the calculated modes did.
Once the functions fS and g, were found at 14 values of a,,
an interpolation algorithm was needed to evaluate them at other values
of a

% ©r ¥y . These functions varied by factors of up to 25000 from

a, = 0.01 to a, = 0.99999, and the variation with a, was particu—

*

larly rapid at the upper end. To find smooth relationships, wvarious
functions of the f's and g's were plotted against various functions of
a,. 0Of the combinations tried, a small fractional power of the f's

and g's versus the surface gravity K of the hole was the most linear.:
Therefore, cubic spline fits,16 ninimizing the sunm of the squares of

the third derivative discontinuities at the 14 values of a_, were

%
made of fso'é and gso'4 versus

e = 201 + (1-a2y Wt (34)
which varies from 0 at a, =1 or y=0 to 1 at a, =0 or

y = ®. The fits of these variables indeed were quite smooth, ﬁith
the slopes never changing by a factor of more than 3.6 (even though
the values of the fractional powers themselves changed by factors
exceeding 50) and with only four of the eighty—four values of the

second derivatives of the splines at the knots exceeding unity in

12
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magnitude.

The functions fS and g, were evaluated at 363 values of a,
from 1 down to 0.0005 by the cubic spline interpolation algorithm
and then were combined by Eq. (33) for some combination of n's to get
f and g at each point. A fourth-order Runga-Kutta method was used
to integrate Eqs. (16) and (19) simultaneously over the corresponding
range of y with the initial values set by Eqs. (15) and (18). At
every othgr point (since the integration requires two points per step),
the values of M/Ml, 8 . Mi(a*i’to)’ Mmin(a*’to)’ and A/A1 (where
Al = SﬂMi was the area at a,= 1) were calculated by Egqs. (24), (28),
(29), (31), and (20). As a check on the accuracy of the numerical
integration, the step size was halved, which resulted in agreement to
four or five decimal places.

For a, smaller than 0.0005, the values of f and g at a,= 0

or y =« were used:

Q
1

f(a,= 0) - (35)

B = gla=0) . (36)

Then Eqs. (16) and (19) become

dz/fdy ~ of(8-20) = Y ) (37)
y-)-co
dtldy ~ & Pfp-w) (38)

)r—-)-r:o

so the solution is

13
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z N Yy £ 9 " (39)
. ___l -1 —3z A
te Tf 3 o 3 (£9)
where
§ = | (=52 - vay (41)
g=2f
0

is a constant that was simply estimated as z-Yy at a, = 0.0005.

The solution for large y or small a, gives the asymptotic forms

M/, o 1EL L g0 al ~ [3u(rf—1)]1/3 , (42)
8 % =gt (43)
3

[cE. Eq. (I:26), where Mo = Mi and T = T(Mi’a*i= 031
1/3
M (2> 0,e) Vv (3ot ) , (&%)

L3 3§ -3y -1/3

Mmin(a*’to) (3 to) (3ane a, - 1)

1/3 -6 - = -0y -
Y (tO/Tf) e e ™ Mi(a*i— 1,to)e ass (&5)
a/ay v Ml 2[3u(1f-r)]2/3 i (46)

IV. RESULTS

The values of fs’ the scalefinvariant power in a two-helicity
particle species of spin s , and of gs , the scale-invariant torgue
per angular momentum of the hole, are listed at the 14 wvalues of

I
=
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in Table I, along with the extrapolated vaiues for a,= 1., The cubic
spline interpolations are graphed in Figs. 1 and 2, which show that
below roughly a, = 0.6 the neutrino (s =1/2) power dominates, fol-
lowed by photons (s=1) and finally gravitons (s=2). However, at
greater values of a, the order is reversed, with gravitons dominat-—

ing the emission and photons and neutrinos coming second and third,

respectively.

This behavior can be explained qualitatively in the following
way: For a slowly rotating hole, the coupling depends most strongly
on the spheroidal harmonic index 2 (which reduces to the total, not

the orbital, angular momentum when a,= 0) rather than on the axial

angular momentum m or the spin s . The coupling is greater at

lower % wvalues (e.g., Paper I showed that the emission rate at low
22+1

frequencies goes as ), but £ > s , so the emission is greater

at lower values of s , which allow lower values of 2 . On the other

hand, a rapidly rotating hole couples strongly with the axial angular

momentum and also with the spin,l7 so the s = £ = m angular mode

dominates greatly and now has an effect increasing with s

It is of interest to note that as a, > 1 , the surface gravity
and hence temperature of the black hole go to zero, but the emission

does not. In fact, Eq. (10) becomes

<N 25+l r

% o (=1)

. >
jxLmp a,~1

jlmp(a*’x) H(n - 2x) , (&7)

where H(m -2x) is the Heaviside step function (0 if m-2x<0, 1 if

m-2x >0), so one gets simply the spontaneous emission (first discovered
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" ;o X8s : . .
by Zel'dovich™ )in the superradiant regime where the angular velocity
; . 1 .-1
w/m of the wave is lower than the angular velocity Q_ . =M = of
the hole. For bosons (2s even), I is negative in the superradiant
= : ' . 218,39 ; - 2
regime, as predicted by Zel'dovich and confirmed by Misner,
; 21 22
Starobinsky, and Press and Teukolsky for scalar waves, and by
Teukolsky and Starobinsky and Churilov23 for electromagnetic and
gravitational waves. That is, the waves gain amplitude on reflection
and extract rotational energy from the hole in the wave analogue of
24 28 .
the Penrose process. Bekenstein =~ has shown that this result fol-
. 2 s 23 w
lows from Hawking's area theorenm 6 for waves with positive definite
energy density. For fermions (2s odd), T is always positive, as
Unruh has shown for the classical neutrino field, which has a
negative energy density near the hole in the superradiant regime. In
the quantum analysis, the amplification of a boson wave corresponds
to stimulated emission, whereas the Pauli exclusion principle prevents
fermions from being amplified. The fact that this behavior shows up
in the solutions of the classical wave equations is a manifestation of
. ; . 28 5 :
the connection between spin and statistics. Field theoretic deriva-

tions of the spontaneous emission from a rotating black hole with the

appropriate initial state for no thermal emission have been given by

Unruh29 and Fq:d,30 but one must remember that a black hole formed by

collapse has a nonzero temperature (except when a.= 1) and thus emits
1-6
at a greater rate.

Figures 1 and 2 also show the power and relative torque for

various combinations (nl/2, nys n2) of the numbers of species emitted

16
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with spin-%, 1, and 2, respectively. Since photons and gravitons
are the only massless bosons known or commonly theorized to exist as
free particles (thus excluding gluons, which are conjectured to exist
only in color singlet configurations31), only combinations with
n, =n, = 1 have been given. There is a greater uncertainty about
n1/2’ the number of 2-helicity spin—l/Z species. The simplest picture
consistent with experiment is that nl/Z = 2, corresponding to the
(ve,;;) species with a left-handed electron neutrino and its right-
handed antiparticle, and the (Uu,;ﬁ) species with its muon neutrino
and antineutrino. However, both of these species may also have the
opposite helicity states, which would couple to gravity even if the
V-A weak interaction32 didn't couple them to other leptons, thus mak-—
ing nl/2 = 4 . Indeed, vectorlike gauge theories of elementary
particles have been made33_35 in which there are additional neutrino
states. Furthermore, black holes small enough to evaporate within the
present age of the universe are hot enough to emit ultrarelativistic
electrons and positrons,7 each with two spin states, so nl/2 must be

augmented by 2 over the number for neutrinos if we consider all rest

masses less than 20 MeV as negligible. Therefore, curves are given
for ‘nl/2 from 2 to 10. 1In Figs. 3, 4, 5, 6, 7, and 8, the “canonical
combination" (nl/2’nl’n2) = (4,1,1) is labeled as "everything emitted,”
meaning all of the presently known species with rest mass below 20 MeV,
as listed explicitly in Fig. 9.

Figure 3 graphs the lifetime of a black hole—-—in units of its

initial mass cubed--(i.e., Bi of Eq. [28]), versus the initial rotation

17
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parameter a.., for various combinations of (nl/Z’nl’nZ)' (The
1 3 g
conversion factor in cgs units is [10 Sg] = 5.23 x10 53 =

1.66 x108yr.) Then Fig. 4 gives the initial mass of a PBH that just

evaporates today (Eq. [29]), assuming the present age of the universe

is

£, = 16 % 109yrs = Ga3Y m 10 5 (48)
so that

ti/f" T R e (49)

For example, a PBH emitting the canonical combination of all known
species (except for the small amount of muons and heavier particles
emitted) would have just given up all its mass by now if dits initial
mass had been 4.73 x 10143 if nonrotating or 6.26 x 1014g if ipi—
tially maximally rotating. The curves marked "neutrinos only emitted"
in Figs. 3 and 4, as in Figs. 1 and 2, give the results if only one
species of neutrinos are emitted; for successive graphs it does not
matter how many neutrino species there are for the curves labeled
"neutrinos only,'" since those graphs have the rates scaled out and
depend only on the ratios of f's and of g's at different values of
2y

The time evolution of the mass and rotation parameter are shown
in Figs. 5 and 6. The curves for neutrinos, photons, or gravitons
only cover the purely hypothetical cases in which the black hole emits
only particles of one spin; they are included to illustrate the dif-

ferent behavior that would result. For example, gravitons cause the

18
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mass and particularly a, to decrease more rapidly at large a, ,

as compared with the behavior at small a, , than photons or neu-—
trinos do. Only one combination with species of all three spins
being emitted is included,(nl/z,nl,nz) = (4,1,1), since other com-—
binations gave curves only slightly different. Omne can see that for
this canonical combination, a black hole which started at a, =1
will lose half its initial mass in 71% of its lifetime but half its
initial a, in only 21% of its lifetime. (Half the angular momentum
3 = %a, is lost in only 6.7% of the lifetime.)

Figure 7 shows how a, varies with the mass as the black hole
gives up its angular momentum and energy. The emission of gravitons
causes a, to decrease at the fastest rate compared with M , essen-
tially because gravitons have the greatest spin and thus carry off
the most angular momentum per quantum. For the canonical  combination
of species, Fig. 6 showed that a, is reduced to 0.19 after half of
the lifetime from a, = 1, but since it takes 71% of the lifetime to
reduce M to half its original value, a, is further reduced to
0.06 by then, as Fig. 7 illustrates directly. A check of the values
represented by Fig. 1 reveals that £ dis then only 17 greater than
its value at a, = 0 . Therefore, a black hole decaying by the emis-
" sion of gravitons, photons, the presently known neutrinos, and ultra-
relativistic electrons and positrons will emit more than 50%Z of its
energy when it is so slowly rotating that its power is within 17 of

the Schwarzschild value given in Paper I. This result gives a fairly

strong justification for the usual simplifying assumption,mentioned

19
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in the Introduction, that emitting black holes ars not rotating.7 ?

One might note that this result was not appareat a priori, since
h(a*) in Eq. (11) might have gone to zero at a nonzero value of a,
in which case the curves in Fig. 7 would have leveled out at that
value of a, as M decreased. In fact, although the calculatioas
have not been ma@e for hypothetical massless spin-0 particles, there
are two reasons for suspecting that h might indead go to zero some-
where if the emission were predominantly in scalar radiation:

(1) If one defines hs(a*) by Eq. (11) with £ and g replaced
by fs and g, » one has the logarithmic $10pe of a, vs. M in the
curves for only one spin emitted in Fig. 7. These curves thus have
a, going as some power of M for small a, , where the power is
hs(a*= 0). The numerical calculations indicate that there is a re-—

markably linear relationship between hs(a*= 0) and the spin s for

ey %3 1, @angd 23

h_(a,=0) = 13.4464s - 1.1948 (50)

is accurate to one part in 104 for all three values, roughly the ac-—
curacy of the numerical calculations. Although there is no apparent
theoretical reason to suspect such a highly linear relatioanship, which
comes only after one does integrals over frequency and sums over
angular modes in Eq. (32) and therefore seems to be accidental, it is
tempting to extrapolate it to s = 0 to get a negative wvalue for
ho(a*= 0). One can easily see that the emission of any species makes

h(a,= 1) > 0, since Eq. (47) says that the emission from a maximally

20
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rotating hole is entirely in the superradiant regime where each

quantum contributes

!
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Therefore, if ho(a*) is continuous and is negative at a, = 0, it

must become zero at some intermediate a,

(2) The dominant angular mode at small a,

is presumably the
2 = s mode, as it is for s =-%, 1, and 2. For s =0 that mode
carries off energy but no angular momentumj so unless higher angular
modes contribute significantly, one would expect go(a*= 0) to be
roughly zero and hence ho(a*= 0) to be roughly -2. The higher angu-
lar modes would raise ho(a*= 0) above -2 (conceivably to the value
—-1.1948 predicted by Eq. [50]!) but would probably leave it negative,
so again one deduces that ho(a*) may be zero for some a, between

zero and one.

If either (1) or (2) is wvalid and if scalar radiation dominates
sufficiently at low a, for the total radiation to give h(a*= 8) <0,
then the black hole will spin down only to the nonzero value of a,
at which h(a*) = 0. This does not occur for emission of the cznoni-
cal combination of species, which causes the hole to spin down
rapidly toward a, = 0, as shown in the curve marked "everything” in

Fig. 7. Once a, 1is reduced to a small value, it decreases as a

power law of M , with the exponent being

h(a,= 0) = 6.3611 (52)

in the canonical case.
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Another interesting result is the evolution of the black-hole
area A , which is illustrated in Fig. 8. The area first increases
with time at large a, and then decreases to zero along with a_

and the mass. This can be seen formally by using Eq. (11) to differ-

entiate Eq. (20):

d &n A B e =12 N
d n a, " g - 2f (1 a*) . (53)

One may further use Eq. (6) to express the time derivative as

da
dt

=3 =1/2

R - a2) (g-2£) - gl - (54)

3

For small a, , the right hand side of Egq. (54) becomes —2aM “F .

This means that the area decreases logarithmically at twice the rate
the mass does from Eq. (6), which is obvious since at small a, the
area is simply proportional to M2 . At large a,, it was shown
above that h > 0, and hence g-2f >0 since £ >0 . But

2,-1/2 ’ -
(1 - a,) diverges as a, > 1 , so dA/dt becomes positive and

even goes infinite as a, + 1 (cf. the vertical behavior of the curves

at the right edge of Fig. 8). The area is at a maximum where

2f = [1 - (1—a§)l/2]g ! (55)

For the canonical combination of species, this occurs at a, = 0.8868,

where the area is 17.3% greater than the original value, after a time

of only 6.729 M3i or 1.7% of the total lifetime 394.5 M2 of a hole

with a,. = 1 .

=1
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Physically, the behavior of the area can be understood by
thermodynamic arguments, since the area is proportional to the en—
tropy of the black hole (as was first suggested by Bekenstein,36
though there were problems with this interpretation for a black hole
immersed in a background of very low temperature until Hawking dis-—
covered that black holes not only absorb but also emit thermal
radiationl3). At high values of a, , the emission is primarily the
spontaneous emission discovered by Zel'dovich18 that corresponds to
the stimulated emission of superradiant scattering. In this process,
pairs are created in the ergosphere wiFh particles (say) being
emitted to infinity with positive energies and their antiparticles
going down the hole with negative energies as measured at infinity
but positive energies as measured locally. In fact, the antipar-—
ticles can even be on classical trajectories at the horizon. Thus
heat flows down the hole as well as out to infinity, increasing the
entropy of both. On the other hand, at lower values of a, the
emission is primarily thermal, drawing entropy out of the hole. The
process may still be regarded as the creation of pairs, with anti-
particles going down the hole having negative energies with respect
to infinity, but outside the superradiant regime (which becomes neg-—
ligible at small a*), the antiparticles also have negative energy
locally at the horizon and therefore cannot be on classical trajec-
tories. Instead, they are tunneling through a classically forbidden
region in virtual states that actually bring heat out of the hole.

There is still some entropy produced by the partial scattering

off the gravitational potential barrier surrounding the hole, but
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outside the superradiant regime this can only parcially cancel the

entropy flow out of the hole and serves in effect to increase the

entropy emitted to the surrounding region for a given

entropy loss by the hole. TFor example, numerical calculations for

a nonrotating hole show that the emission of s = 1/2 particles into
empty space increases the external entropy by 1.6391 times the entropy
drawn out of the hole, s = 1 particles increase it by a factor of
1.5003, s = 2 particles by 1.3481, and the canonical combination of
species gives 1.6233 times as much entropy in radiation as the entropy

decrease of the hole.

The fact that g - 2f >0 at a, = 1 allows one to prove the
third law of black hole mechanic537 for small perturbations of an un-—
charged black hole. (Similar reasoning can presumzbly be made also
for an electrically charged hole). The third law states that it is im-
possible to reduce the surface gravity K to zero by a finite sequence
of operations: Using Egs. (6) and (7) to differentiate the expression
for K in Eq. (I:8) (cf. Eq. [34]), one finds that the emission of

particles makes

g 1= @-ahY?) (g-26) + 1-aDrs g-26
& - v BT (s6)
o 2}14(1—ai)1/2[1 4 (1—a§)l/2] <0 prk

which diverges as a, * 1 or «k > 0 . Incident particles can only
decrease Kk at a finite rate (which even gets smaller as Kk 1is re-

37 . . . L | £
duced™ "), so eventually the emission dominates and keeps x away from
zero. Thus it is impossible to spin up a black hole to the extreme Kerr

configuration.
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Figure 9 gives the maximum present value of the rotation pa;am-
eter a, for a PBH with present mass M that was created 16 billion
years ago, assuming no spin up from incident particles. The curves
resulting from the emission of neutrinos, photons, or gravitons only
are purely illustrative; the true maximum is probably near or somewhat
below the curve for the canonical combination of particle species,
since those species and possibly a few others are the ones predomi-
nantly emitted for the mass range shown. For example, electrons,
positrons and all lighter particles will be emitted with negligible
effects from their rest masses over the whole range shown, and muons
and heavier particles will also be emitted at a significant rate for
M< 5=x lOlAg, as Paper 1 pointed out. The graph shows that a PBH
with M < 10153 should have a, < 0.64 today.

The asymptotic behavior of the graphs in Figs. 1-9 as small a,
was given in funcciongl form by Egqs. (35-46), and the parameters o,
Bs ¥ 9 Tes and Mi(a*i = O,to) are given in Table II for the various

: . . 2
combinations (nl/2’nl’n2) of species of spin 2> 1, and 2. Note that

d fn M T - e~ 02 R S
d &n a, a,=0 - T B—20 T g(a,=0) - 2£(a =0) h(a*=0)
is the reciprocal of the exponent of the power-law behavior of a2z,

versus M at the lower left edge of Fig. 7. The ratio of the life-

time of a black hole with a*i= i

to one of the same initial mass

with a*i= 0 is

Ban , so Eq. (29) gives the initial mass of a PBH

with Ays™ 1 that would just go away today as
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M, (a,= Lt ) = (e_ft M3 = (Ger ™3 m (e, =0,¢ ), (58)

here written in terms of the parameters in Table II. Then Mﬁin(a*’to)
can be directly evaluated from the last quantity in Eq. (45) at small

a,. One can invert this asymptotic formula to obtain

w

LOLE) [ M/M, (2, =1t )] 17y (59)

for M << Mi(a*i= l,to). For example, the canonical combination of
species gives

L OLe ) v (14/4.870 x10M8) 0 38 = 4234 x 1072 (/1014 8- 301,

(60>

The actual maximum is almost certainly somewhat lower than this, since
muons and other particles omitted in the calculation will have de—
creased the spin even more, and thg upper limit on a,q TBY be lower
than unity; but unless small black holes were formed significantly
more recently than 16 billion years ago, one may predict that any black
hole found today with M < lolég will have a, < 0.0000423.

One can also get .asymptotic forms near a,= 1. The lifetime has

already been given by Eq. (26) with z;= o, T = 0, and T listed in

£
Table I1; and Mi(a*i= l,to) was given by Eq. (58). If we set

e
i

1= f(a,= 1) 5 (61)

B, =81 (62)

which can be evaluated by combining the numbers of the last row of

Table I according to Eq. (33), then integrating Egs. (6) and (7) for

[§®]
o



a small time ¢t << M

= W

from t =0 at ap=1 and M= Hl gives

‘( — \. —3
M dl(l aldl £) d (63)
J M2(1 -B M—3t) (64)
1 ;i ? i
a, = J/M2 v 1= (B,- 20 )M—3t (65)
% 1 it 3 >

Since the mass decreases only infinitesimally within the age of the

3
i i >> i M= M
universe if Ml alto’ one can use Eq. (65) with ™ dl and ¢t >

I
T

as an asymptotic approximation to a*max(M’to) for large ™M . For
example, the canonical combination of species gives
. 9 : 15 .=3
a*max(M’to = 16x107yrs) v 1 —.(Mll.SOO:xlo 2)
= 1 = 0.003378( 20 %3 2 T . (66)

This formula depends only weakly on the number of spin—% species, since

gravitons dominate the emission. However, since £ and g change so

rapidly with a, near one (e.g., decreasing roughly 107 between 2a,=1

and a,= 0.9999), these asymptotic formulas are only accurate very near

- i I
V. CONCLUSIONS

The power emitted from a black hole in particles of negligible

mass and of spin %3 1, and 2 are strongly increasing functions of the

. 2 ! g
rotation parameter a, = J/M” , varying in the range a.= 0 to HEF'L

by factors of 13.35 for spin %3 107.5 for spin 1, and 26380 for spin 2.
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The power increases 299.3 times for the '"canonical combination"

of 4 spin~l3 1 spin-1, and 1 spin-2 species that represent all of the
presently known particles with rest masses less than 20 YeV. The
power is greatest in spin—%‘particles for a, < 0.6, followed by spin
1 and then spin 2; but for a, > 0.6 the order is reversed.

The emission of angular momentum also increases greatly with =
even after the linear dependence expected at small a, 1is factored
out to get the relative torque or logarithmic rate of decrease in the
angular momentum of the hole. The relative torque g behaves similar

to the relative power £ with respect to spin and a_, , but it is
always sufficiently greater than 2f, for the three spins calculated,
that a black hole spins down toward a Schwarzschild configuration
much faster than it loses energy. More than half of the energy is
emitted after a, is reduced below a small value, less than 0.06 for
the canonical combination of species. At this point the power is
within 1% of its Schwarzschild value, so the assumption that decaying
black holes have negligible rotation is generally wvalid.

Even though the power emitted is such a strong fupnction of 2, ,
the fact that a black hole loses a, so rapidly means that the total
lifetime for a given mass varies only by a factor betwzen 2.02 (for
the emission of Spiﬁ‘% only) and 2.67 (for spin 2 only) over all 340
A black hole emitting the canonical species has a lifetime 2.32
times as long if initially nonrotating as one the same mass maximally

rotating initially. The initial mass of a PBH created 16 billion

4
years ago that just disappears today varies from 4.73 x lOl'g for a
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Schwarzschild hole to 6.26 xlﬂlag for an extreme Kerr hole initially.
(This is for the emission of the canonical species; the emissicn of
muons and heavier particles will make these masses somewhat greater,
say 5 x 1015g and 6.6 x 1014g respectively.)

A black hole evolving from a5 1 idinitially has its area and
entropy increase as heat flows into the hole from particle pairs
created in the ergosphere. Then as a, falls low enough (below
0.89 for the canonical species), the non-superradiant thermal emission
begins to dominate, taking heat out of the hole and thus causing the
entropy and area to decrease. The maximum increase in the area is
about 17.3% for the canonical emission. For a Schwarzschild hole
that emits its energy into the canonical species in empty space, the
emission process increases the entropy of the universe G%Au% entropy
ourside) by 62.3% of the black hole's initial entropy.

Finally, it was shown that a black hole cannot be spun up to

a,= 1. A PBH today is predicted to have a maximum rotation parameter

14g <M< 1016g

as a function of mass that is given by Fig. 9 for 10
and by Eqs. (59) and (66) for larger and smaller values of the mass.
Black holes that are small enough to emit many muons and heavier par-

ticles today are seen to be very nearly nonrotating.

This work was aided by discussions with many colleagues. Special
thanks are due S. A. Teukolsky and W. H. Press for making available to
me their computer programs to calculate the absorption probabilities

for gravitons and photons. F. J. Nagy gave continued guidance on the
use of the Lawrence Berkeley CDC-7600 computer. XK. S. Thorme offered

constructive suggestions on the manuscript.
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FIGURE CAPTIONS
Fig. 1. Power emitted in various combinations of spacies by a rotating
black hole, expressed in a scale-invariant way by f . The syzbol
i
: . Eo b e T a
(nllz,nl,nz) denotes a combination of o/ spin-3, n; spin 1, an

n, spin-2 species, where each species is assumed to have two polar—

izations (e.g., left-handed neutrino plus right-handed anti-nsutrino).

Fig. 2. Relative torque emitted by a black hole (i.e., the rate of
emission of angular momentum, divided by the angular momentum of

the hole), expressed in a scale-invariant form by g .

Fig. 3. Lifetime of a black hole, scaled by the initial mass cubad to

give Gi , versus the initial rotation parameter ay- "Everything
emitted" means the canonical combination (4,1,1) of all known par-—

ticles with masses less than 20 MeV.

Fig. 4. 1Initial mass of a primordial black hole created with rotation
parameter a*i 16 x 109yrs ago that just goes away today, assuming
that it emits the combination (nllz,nl,nz) of species with negligible
rest mass. The emission of all known particles, including those
with masses greater than 20 MeV, would give a curve slightly zbove
the (4,1,1) curve labeled "Everything emitted.'" However, if there
are additional neutrino states, the true curve would be slightly

above one of the higher curves shown.

Fig. 5. Time evolution of the mass of a black hole which started out

maximally rotating. The vertical and horizontal axes have been

scaled by the initial mass M, =M, and lifetine ﬁ? 8. = HB i
i 1 v T i

n
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For a black hole that starts with a_‘.:i

< 1, one can use one of
the same curves but shrink the axes so that the upper left corner
of the graph is on the curve at a later point (to be determined

from the wvalue of t/lifetime at a, = ag; in Fig. 6) and the

lower right corner stays fixed, at the endpoint of the curve.

Fig. 6. Time evolution of the rotation parameter a, of a black

hole that started with a,. = 1

*1 . For any given curve represent-—

ing the emission of an assumed cowmbination of species, the evolu-
tion from 2y < 1 can be gotten by moving the left wvertical

axis to the right until it intersects the curve at a, = a .

*i

meanwhile shrinking the horizontal axis appropriately to leave

its right end fixed.

Fig. 7. Variation of the rotation parameter with the mass during the
evolution of a black hole, which proceeds from the upper right to
the lower left corner. The evolution from By < 1 can be
gotten by keeping the left end of the horizontal axis fixed and
shrinking the scale so that M/Mi = 1 falls at &, = a,; on the
curve considered.

Fig. 8. Evolution of the area A of a black hole, scaled by the
initial area Ai in the case Bp; = 1 . For general Axg > the
evolution starts at that value of a, with the vertical axis re-
scaled to give A/Ai = 1 there, and proceads to the left along
the appropriate curve as a, decreases with time. The evolution

of A 1is plotted versus a, rather than time to spread out the

very rapid changes near a, = 1, where A actually increases with
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time. Since the area is four times the entropy of the hole

LS,

these curves can also be viewed as giving the evolution of the

entropy.

9. Maximum present rotation parameter a, of a primordial black
hole with mass M today, assuming it was created 16 billion

years ago with unity as the upper limit on the rotation parameter
then. Under these assumptions, the actual maximum is probzably
near (particularly for M > lOng) or somewhat below (particularly

j
for M < 10 5g) the bottom curve given, depending upon the ad-—-

ditional emitted species not covered in the canonical combina-—

tion.
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(e) Neutrino Angular Eigenvalues
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Press and Teukolsky (1973) have described a continuation method
for calculating the eigenvalues of the angular Teukolsky equation and
have given polynomial approximations for the case of gravitonms.
Teukolsky and Press (1974) gave polynomial fits for the angular eigen-—
values of electromagnetic perturbations. Since Paper III includes the
emission of neutrinos as well, their angular eigenvalues were also cal-
culated by the continuation method and then fit to sixth-degree poly-
nomials in aw whose coefficients are listed below in Table I. The
optimal polynomial for each angular mode (2,m) was chosen to give the
best least-squares fit to the eigenvalues at 21 values of aw evenly
spaced from 0 to 1 or to m/2, whichever was larger. (An exception is
2=3.5, m=1.5, which used values of aw up to m/2 = .75.) To six
decimal places, the constant term always agreed with £(&+1), so that

term is not listed.
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PART IV

GAMMA RAYS FROM

PRIMORDIAL BLACK HOLES

(a) Introductory Discussion
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The quantum-mechanical emission from black holes is important
in principle when one considers the final state of a system that has
undergone gravitational collapse. However, in practice the emission
would not be observable for a hole of a solar mass or greater, since
the emission temperature would be less than 10"7°K, the lifetime for
decay would be greater than 1066yrs, and the absorption of background
radiation would dominate the emission in the present epoch. The
present universe is not likely to produce black holes of mass smaller
than the sun, so the only hope for observable quantum effects is from
holes possibly formed in the early stages of the universe. Such holes
are known as primordial black holes (PBHs).

Stephen Hawking (1971) first suggested the possibility of PBHs,
which might result from fluctuations in the early universe such that
there would be regions with deficient energy which would collapse grav-
itationally. Zel'dovich and Novikov (1967) had previously made an
analysis indicating that condensed objects in the early universe should
accrete matter rapidly and grow as fast as the particle horizon. Thus
the absence of any such enormous condensation in our observable uni-
verse seemed to be evidence against PBHs. However, Carr and Hawking
(1974) found that the situation analyzed by Zel'dovich and Novikov cor—
responded to the special initial conditions of having everything thrown
at the hole from the beginning, and that a PBH formed locally would
not grow so fast but could remain small (unless the equation of state
were as stiff as causality allowed; cf. Lin, Carr, and Fall 1976).

Carr (1975) has gone on to analyze the mass spectrum of PBHs that could
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be produced by wvarious conditions in the early universe, finding

that under certain reasonable assumptions the spectrum might go as a
certain power law in the mass. The detection of radiation from these
PBHs would be not only a confirmation of quantum effects in strong
gravitational fields but also an indication of the degree of inhomo-
geneity in the early universe.

The possibility of detecting emission from PBHs depends on their
number density. Hawking (1971) noted that measurements of the decel-
eration parameter of the universe set an upper limit on the PBH mass
density. Chapline (1975) obtained a smaller limit for holes near
lOng from the isotropic X-ray background above 10 MeV. Carr (1975)
deduced similar limits for PBHs in this mass range and other limits
for different mass regimes. Later Carr (1976) showed in a qualitative
manner what the shape of the photon spectrum from PBHs would be with-
out absorption and how it compared with the observed isotropic spectrum.

In Paper IV below, Hawking and I looked in somewhat more detail at
the possibilities for observing hard gamma rays from PBHs. Hawking
originated most of the ideas concerning bursts from dying PBHs, and I
derived the formulas and did the numerical integrations for the back-
ground spectrum from all decaying PBHs. The main bases for these
latter calculations were Carr's power-law mass spectra of PBHs and my
calculations of the total power and photon spectrum from a nonrotating
black hole (Paper II, with Paper III justifying the neglect of possible
rotation). The photon spectrum is listed in Table II below. We found

that it might be possible to detect exploding PBHs without too much
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difficulty if conditions were the optimum consistent with present
observations. On the other hand, they might be indefinitely more
difficult to detect. However, the payoff of a positive detection

could be tremendous in terms of knowledge about fundamental physics

and conditions of the early universe.
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(b) Photon Spectrum from a Single Black Hole
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Paper I1 gives the photon power spectrum from a nonrotating
black hole in graphical form (Fig. 1). For that paper, the emission
rates were calculated at frequency values that were unevenly spaced in
order to optimize the integration over frequency of the total rate and
power. However, for the calculations of Paper IV, it was desired to
have the spectrum evaluated at evenly spaced frequencies, so the cross
section 0 and the rate and power spectra were calculated for 100

values of
x = Mw (IV.1)

from 0.01 to 1.00. The cross section in units of the high-frequency

cross section o = 27ﬁM2 is (cf. Paper IL, Eg. 19)

T 1
S{x) = o " ey me anp(x) 5 (1Iv.2)

and the photon emission rate is (cf. Paper IV, Eq. 3)

_ 1 Y™  97® sowy
£ S 3cw T 8mx ., 8x : L2
Lymype -1 mle - 1)
The power spectrum is
_ MdE
xf(x) = T ae # (Iv.4)

which is what is plotted in Fig. 1 of Paper II.

The values of x , S(x), f(x), and xf(x) calculated for Paper
IV are listed in Table II, along with the estimated errors in solving
the Teukolsky equation and resolving the solution into ingoing and out-

going waves at large radius. The calculations were estimated to be
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accurate to one part in roughly 105 below x = 0.4 , roughly 104 up

to x = 0.7, and roughly lO3 over the rest of the range to x =1 .
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TABLE II. Photon Cross Section and Spectrum from a Nonrotating
Black Hole
_ . 2 by oob By 4 - o4 M AE
x = Mw S(x) = g/27mM 10" ECx) = 10 TEds 10 xf(x) =10 Tl
0.01 .000085 + .000000 .002545 + . 000000 .000025 + .000000
0.02 .000366 £.000000 .019249 £.000000 .000385 + .000000
0.03 .000896 *.000000 .061614 +.000000 .001848 + .000000
0.04 .001750 £.000000 .138865 +£.000001 .005555 + .000000
0.05 .003023 £.000000 .258439 £.000002 .012922 + .000000
0.06 .004847 +.000000 . 426341 +.000004 -025580 + .000000
0.07 .007392 £.000000 .647399 +.000006 .045318 + .000000
0.08 .010882 *.000000 .925440 £.000008 -.074035 + .000001
0.09 .015611 £.000000 1.263397 +.000012 .113706 + .000C01
0.10 .021957 *£.000000 1.663329 *.000016 .166333 + .000002
Bl 1L .030411 £.000000 2.126357 % .000021L .233899 + .000002
0.12 .041596 £.000000 2.652469 £.000026 .318296 + .000003
0513 .056304 *£.000001 3.240147 £.000033 .421219 + .000004
0.14 .075516 £.000001 3.885769 £.000040 .544008 + .000006
015 .100426 *.000001 4.582687 +.000048 .687403 £ .000007
0.16 .132433 +£.000001 5.319932 %.000057 .851189 £ .000009
0.17 .173094 *.000002 6.080519 £.000066 1.033688% .000011
0.18 .223991 +£.000003 6.839484 +.000075 1.231107 * .000013
019 .286479 *.000003 7.562087 £.000084% 1.436797 % .000016
0.20 .361281 *.000004% 8.203066 +.000092 1.640613+% .000018
0.21 . 447935 £,000005 8.708384 £.000098 1.828761* .000021
0.22 .544219 +£.000006 9.021066 £.000100 1.984634 + .000023
023 .645791 +.000007 9.091843 £.000100 2.091124 + .000024
0.24 . 746384 £.000009 8.892828 = .000100 2.134279 + .000025
0.25 .838750 £.000010 8.429183 £ .000099 2.107296 = .000025
0.26 .916195 +.000011 7.742420 £ .000091 2.013029 + .000024
0.27 .974093 £,000012 6.902077 *.000082 1.863561 + .000022
0.28 1.010737 £.000012 5.988895 £ .000072 1.676890+ .000020
0.29 1.027220 *.000013 5.077117 *.000062 1.472364+ .000018
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TABLE II - Continued
3 ) 2 Bpn e n il g 4 4 MAE
% 5 S(x) = o/27m 10%8G 210" L 10%x£(0 210" T
0.30 1.026618 +.000013  4.222725 +.000052  1.266818 +.000016
0.31 1.012944 +.000013  3.459785 + .000044  1.072533 +.000014
0.32 .990308 +.000013  2.802983 £ .000037 .896955 *.000012
0.33 .962408 £.000012  2.252973 £ .000029 . 743481 + .000010
0.34 .932344 *.000013  1.801891 + .000024 .612643 +.000008
0.35 .902633 £.000013  1.437716 + .000020 .503200 *.000007
0.36 .875332 £,000013  1.147186 +.000017 .412987 +.000006
0.37 .852122 +.000011 .917498 + .000012 .339474 +.000005
0.38 . 834518 +.000013 .737129 +.000011 .280109 +.000004
0.39 . 823814 +.000014 .596131 + .000010 .232491 +.000004
0.40 .821103 * .000016 . 486123 * .000010 194449 +.000004
0.41 .827128 *.000019 . 400142 * .000009 .164058 + .000004
0.42 . 842044 *.000022 .332471 +.000009 .139638 + .000004
0.43 . 865137 *.000026 .278477 + .000008 119745 + 000004
0. 44 .894598 * .000030 .234503 + .000008 .103181 * .000003
0.45 .927537 +.000034 .197797 +.000007 .089009 + .000003
0.46 .960344 *.000038 .166439 +.000007 .076562 * .000003
0.47 .989362 *.000042 .139224 £ .000006 .065435 £ .000003
0.48 1.011648 * .000045 .115484 +.000005 .055432 + .000003
0.49 1.025498 +.000047 .094883 +.000004 046493 = .000002
0.50 1.030575 +.000049 .077220 +.000004 .038610 * 000002
0.51 1.027657 *.000051 .062309 £.000003 .031777 % .000002
0.52 1.018228 *.000053 .049918 £ .000003 .025958 + 000001
0.53 1.004070 *.000055 .039772 £.000002 .021079 * .000001
0.54 .986987 *.000058 .031565 *.000002 .017045 + 000001
0.55 .968656 +.000061 .024995 *.000002 .013747 * .000001
0.56 .950585 *.000066 .019778 +.000001 .011075 * .000001
0.57 .934124 * 000072 .015661 +.000001 .008927 % .000001
0.58 .920500 + . 000080 .012428 +.000001 .007208 * .000001

0.59 .910823 + .000090 .009897 +.000001 .005839 £ .000001
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TABLE II - Continued
. .. TP R beery =10% M AE
= Mw S(x) = ag/27mM 10 £(x) =10 dcde 10 'xf(x) =10 Tt
0.60 .906059 +.000100 .007919 + .000001 .004751 + .000001
0.61 .906933 = .000120 .006372 = .000001 .003887 + .000001
0.62 .913765 * .000140 .005159 + .000001 .003198 + .000000
0.63 .926270 +.000160 .004199 + .000001 .002646 + .000000
0.64 .943398 +.000180 .003433 + .000001 .002197 + .000000
0.65 .963312 £ .000160 .002812 + .000000 .001828 + .000000
0.66 .983647 +.000180 .002303 £ .000000 .001520 £ .000000
0.67 1.001912 +£.000190 .001880 *+ .000000 .001260 + .000000
0.68 1.016037 £.000210 .001527 + .000000 .001039 + .000000
0.69 1.024740 £ .000220 .001234 + .000000 .000851 + .000000
0.70 1.027644 £.000230 .000990 + .000000 .000693 + .000000
0. 71 1.025145 £ .000230 .000790 = .000000 .000561 + .000000
.72 1.018153 +.000240 .000628 + .000000 . 000452 + .000000
0.73 1.007829 *.000250 .000497 £ .000000 .000363 + .000000
0.74 -995399 £ .000260 .000392 + .000000 .000290 £ .000000
0.75 .982044 £.000270 .000309 £ .000000 .000232 + .000000
0.76 .968866 *.000290 .000244 = .000000 .000185 + .000000
0.77 .956886 £ .000310 .000192 *+ .000000 .000148 + .000000
0.78 .947051 £.000340 .000152 * .000000 .000118 £ .000000
0.79 .940236 = .000380 .000120 = .000000 .000095 £+ .000000
0.80 .937188 = .000430 .000096 = .000000 .000076 £ .000000
0.81 -938445 £ ,000500 .000076 + .000000 .000062 + .000000
0.82 .944190 £ .000570 .000061 + .000000 .000050 = .000000
0.83 .954091 £ .000660 .000049 + .000000 .000041 + .000000
0.84 .967201 £ .000750 .000040 + .000000 .000033 £ .000000
0.85 .982008 £ .000850 .000032 £ .000000 .000027 = .000000
0.86 .996648 £ .000940 .000026 = .000000 .000022 £ .000000
0.87 1.009284 = .001000 .000021 £ .000000 .000018 + .000000
0.88 1.018489 +,001100 .000017 +.000000 .000015 = .000000

0.89 1.023473 £ .001200 .000013 = .000000 .000012 + .000000
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TABLE II - Continued

x = Mw

S(x) = 0/27mM2

& dNY

4 .
10 f(x)_ 10 mm—‘

4 M dE

104xf(x) = 10 dtdm

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

1.024105 * .001200
1.020801 +=.001300
1.014308 +.001300
1.005524 +.001400
.995383 +.001400
.984793 = .001500
.974603 £ .001700
.965618 +.001900
.958600 £.002100
.954236 £ .002400
.953086 +.002800

.000011 £ .000000
.000008 £ .000000
.000007 £ .000000
.000005 £+ .000000
.000004 = .000000
.000003 = .000000
.000003 £.000000
.000002 *.000000
.000002 = .000000
.000001 £.000000
.000001 = .000000

.000010 * .000000
.000008 £ .000000
.000006 = .000000
.000005 +£.000000
.000004 = .000000
.000003 *.000000
.000002 £ .000000
.000002 £ .000000
.000002 £.000000
.000001 £.000000
.000001 +.000000
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ABSTRACT

This paper examines the possibilities of detecting hard gamma
rays produced by the quantum mechanical decay of small black holes
created by inhomogeneities in the early universe. Observations of
the isotropic gamma-ray background around 100 MeV place an upper
limit of 107 pc™ on the average number density of primordial black
holes with initial masses around 1015 g. The local number density
could be greater than this by a factor of up to 10~ if the black
holes were clustered in the halos of galaxies. The best prospect
for detecting a primordial black hole seems to be to look for the
burst of hard gamma rays that would be expected in the final stages
of the evaporation of the black hole. Such observetions would be
a great confirmation of general relativity and quantum theory and
would provide information about the early universe and about
strong interaction physics.
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I. INTRODUCTION

The aim of this paper is to discuss the possibilities of detecting
high-energy gamma rays produced by the quantum mechanical decay of small
black holes created in the early universe. Recently it has been shown
(Hawking 1974, 1975a,b; Wald 1975; Parker 1975; DeWitt 1975) that the strong
gravitational fields around black holes cause particle creation and that the
black holes emit all species of particles thermally with a temperature of

6, —1

about l.2)<102 M °K where M 1is the mass in grams of the black hole.

One can think of this emission as arising from the spontaneous creation of
pairs of particles near the event horizon of the black hole. One particle,
having a positive energy, can escape to infinity. The other particle has
negative energy and has to tunnel through the horizon into the black hole
where there are particle states with negative energy with respect to in—
finity. Equivalently, one can regard the particles as coming from the
singularity inside the black hole and tunneling out through the event hori-
zon to infinity (Hartle and Hawking 1975). As black holes emit particles,
they lose mass and so will evaporate completely and disappear in a time of
the order of 10“26 M3sec (Page 1978). (For M < 1014 g this lifetime may be
shortened by strong interaction effects discussed in § III.)

It would be practically impossible to detect particle emission from
black holes of stellar mass because the temperature would be less than 10-7 K.
One does not know of any process that could produce black holes in the present
epoch with mass substantially less than a stellar mass and therefore with
higher temperatures. However, one would expect that small black holes would
have been created in the early universe if at these epochs the universe was
chaotic or had a soft equation of state (Hawking 1971; Carr and Hawking 197%4;

Carr 1975a). Such black holes will be referred to as primordial. If their
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original mass was less than M, = 5:;:10]"4 g (Page 1975), they would have com-

pletely evaporated by mow. Primordial black holes of slightly greater initcial

/7,
mass would by now have decayed to a mass of around S:xlOl4 g and would have a

el °K = 20 MeV. Calculations by Page (1973) in-

7

temperature of about 2.5 x10
dicate that suéh a black hole would radiate energy at the rate of 2.5:;101
erg secul of which 1 percent is in gravitons, 45 percent is in neutrinos, 45 per-
cent is in electrons and positrons, and 9 percent is in photons. (At this tem-—
perature there will also be some emission of muons and »ions which is not
included in the energy rate above.) It would be very difficult to detect the
gravitons or neutrinos because they have such small interaction cross sectiomns.
The charged particles would be deflected by magnetic fields and so weculd not
propagate freely to the earth. On the other hand, the photons, whose nuzher
spectrum would be peaked at about 120 MeV, could reach us from anywhere in the
observable universe. There are three possibilities for detecting these photons.
(1) One could look in the isotropic gamma-ray background for the inte-—

grated emission of all the primordial black holes in the universe. As shown

in § II, a uniform distribution of primordial black holes would give a2 back-
ground number spectrum of gamma rays with a logarithmic slope of -3 zbove

120 MeV. Below 120 MeV the spectrum may be flatter depzsnding on the slope of
the number spectrum of black holes. Observations of background gamma rays
(Fichtel et al. 1975) show no indication of a break in the spectrum at 120 MeV.
This puts an upper limit of about 3 x 10—52 cm_3 or about 104 pc—3 on

dn/dinM at M, where n 1is the original number per comoving volume of
primordial black holes with original masses less than . [Similar upper

limits have been placed by Chapline (1975) and Carr (1975b5)]. The upper limit

on the local number density might be increased by a factor of up to 106 if the
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black holes were clustered in the halos of galaxies rather than being uniformly

distributed throughout the universe.

(2) One might hope to detect the steady emission from a primordial black
hole sufficiently near the earth. However, the upper limit from the gamma-ray
background indicates that the nearest primordial black hole is probably not
closer than 1015 cm, about one and a half times the distance to Pluto. To
obtain a counting rate of one photon per thousand seconds would require a de-
tector with directional resolution (to overcome background) and an effective

area of at least lO8 cmz.

(3) As the black hole loses mass, its temperature will rise and the black
hole will begin emitting particles of higher rest mass. In the statistical
bootstrap (Hagedorn 1973, Frautschi 1971) or dual resonance models of strong
interactions (Huang and Weinberg 1970) the number of species of particles rises
exponentially with mass. This might cause a black hole to emit all its remain-
ing mass in a very short time when it got down to a mass of about MH =
6.6xlOl gm corresponding to the Hagedorn limiting temperature of about
160 MeV. The heavy hadrons emitted by the hole would decay rapidly and one
might expect about 10-30 percent of their energy or about 1034 ergs to emerge
as a short burst of hard gamma rays between 100 and 1000 MeV. These bursts
cannot be connected with those reported by Klebesadel (1973) which were very
soft (v 150 keV). If the number density of primordial black holes were near
the upper limit set by the gamma-ray background, one would expect one burst
per month within a distance of 200 pc if the black holes were uniformly dis-—
tributed or about 2 pc if they were clustered in the halos of galaxies. To

detect such a burst one would need a detector with an effective area of

greater than 4 x lO5 cm2 in the former case and 40 cm2 in the latter. The
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burst could be distinguished from the gamma-ray backgrouad by the arrival of

several photons in a short period of time or from within a small solid angle.
Even if black holes do not explode at MH they will have a very rapid f£inal
burst of emission when their mass gets down to some value MB between M
and ].O10 g. In this case one would expect the number of photons fo be re-
duced by a factor q_z and the energy of these photons to increase by a

factor q where q = MH/MB . To observe such bursts would require detectors
with areas q2 times the areas given above.

A definite observation of gamma rays from a primordial black hole would
be a tremendous vindication of general relativity and quantum theory and
would give us important information about the early universe and strong inter-
actions at high energies, information that probably could not be obtainad in
any other way. On the other hand, negative observations which placed a strong
upper limit on the density of primordial black holes would also give us valu-
able information because they would indicate that the early universe was prob-
ably nearly homogeneous and isotropic with a hard equation of state. The
best experimental prospect would seem to be to look for bursts using large-—area
wide—-angle detectors with either good time or good angular resolution. Such
detectors could be flown on constant-pressure balloons or on the space shuttle.
If the particles and photons from the burst were of sufficiently high energy,
it might be possible to detect them from the ground either by alr showers or
by Cerenkov radiation in the upper atmosphere.

In § IT we compute the background gamma-ray spectrum that would be pro-—
duced by a uniform distribution of primordial black holes with a power-law
spectrum of masses. In § III we consider the final burst of emission on the
basis of various theories of strong interactions. Where convenient, we use

dimensionless units in which G = c¢= =k =1
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II. THE GAMMA-RAY BACKGROUND

In this section we shall calculate the present number flux dJ/dwo of
gamma rays of frequency W, from primordial black holes. (Henceforth we
shall use the abbreviation pbh.) To do this, we must integrate the con-~
tributions over the cosmological time t and at each t integrate over all

pbh masses M the emission at the blue-shifted angular frequency
= = (R J 1
W= (1+ Z)uw, (PO/R) W, (0

R dis the expansion parameter of the universe at time ¢t , and the subscript
o denotes the value of a quantity at the present epoch. The interactions
of the gamma rays wilith the other matter of the universe will be taken 1nto
account by putting in a factor e ' for the probability of a photon's propa—
gating without energy loss through absorption optical depth T £from t to
t0 , but the effect of the absorbed radiation will not be considered.

Consider a uniform distribution of pbh's created shortly after t = 0
in a nearly Friedman universe. Let n(Mi) denote the original number per comoving
volume of pbh's with original masses less than Mi . One can express n as

M, /M

n(M,) n [ s(y) dy - (2)
0

s 1s a dimensionless function with s(l) =1 and M, 1is the original mass

of a pbh that would just have evaporated by the present time to . We shall

assume that, apart from statistical fluctuations, the pbh's are uncharged

and nonrotating. Any charge would be rapidly neutralized by the preferential
emission of electrons or positrons (Carter 1974, Gibbons 1975). Pbh's would

also lose angular momentum but only slowly. One would not expect them to be

formed with large angular momenta.
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A pbh will emit photons at a rate

an r, _(x)
- y AP phuts) R
£ =3 dw-ZW)Zglpeer_l &)

Here T (x)

- is the absorption probability for photons of total angular

momentum £ , axial angular momentum m , polarizatiom or helicity p , and

frequency w = M_lx where M = M(Mi,t) is the mass to which a pbh of original

mass Mi has been reduced by time t

In terms of these functions the specific number flux today of gamma rays

from pbh's is

dJ . d(nurber of photons)
dwo ~ d(area)d(time)d(solid angle)dmo
to
_n =E i
e = dt(14Z) e dy s(y) f(x) z (&)
0

Here vy = Mi/M* is to be integrated over all values of the initial mass of
pbh's that do not disappear by time t , and x 1is the wvalue of Mun at that

t and y .

To calculate dJ/du.\0 , one needs a specific model for M(Mi,t), s(y),
R(t), and T(wo,t), as well as the numerical results for £(x) (Page 1973).
As long as a pbh emits predominantly a fixed number of particle species at
ultrarelativistic energies (i.e., with negligible effects from thzs rest mass),

dM o
R T s (5)
dt MZ

Page (1976) showed that for an uncharged, nonrotating hole emitting only

n

known particles, a = 2.011 x 10"~ for M >> 1017

ticles only), and o = 3.6 x lO_4 for 5. .x 1014 g << M << 1017

g (emitting massless par-

g (emitting

predominantly massless particles and ultrarelativistic electrons and positrons).



This implies that sl

/,
M, = Gee )3 = 215101 = sx10M g . (6)

Since the important part of the spectrum comes from M = M, , and since a
is not known for M § M, anyway, we shall take o = 3.6 x10 . Then our model

for the mass evolution is

M= (Mz - 3&:)1/3 = M__’:_(y3 - t/to)1/3 . (7

If we use this expression to solve for y 1in terms of x at some ¢t , we

find that
tO &
N . 33 -2/3 3.3 ars
.-y = N urs J dtr2 e * dx xzf(x)(E—-+ s ] s[(E—-+ ELEL—O 1
dw o t 3 3 £ 3 3
o hn 0 5 M, wg o M, w
(8)
where we have introduced r = R/RD = (l+Z)—1, a function of t .

One can see from this formula that if w_  >> (to/t)l/3 rx/M, and if e "
is insensitive to mo over the dominant part of the integral (generally
t’bto, Tl xNl.2; and e_T'hl » SO W 23 0.2 M;l =~ 120 MeV), then the
integral has no dependence upon W, and dJ/dLn0 is proportional to m;3 s
independent of the form of s(y), R(t), and T(wo,t) except for pathological
cases. For small values of W the integral is cut off by redshift and opa-
city factors. This means that the function s(y), which determines the shape

of the initial number spectrum of pbh's, is important only in the region near

y =1 . We shall assume that in this region it has a power-law form:

s(y) =y ° @)

Such a form for s(y) is supported by the work of Carr (1975a) who finds that

a certain reasonable class of density fluctuations in the early universe favors
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pbh formation with a power-—law spectrum where the exponent £ 1is related
to the ratio Y of pressure to energy density in the early universe by

2 + 4y

B= S5t (10)

(A very soft equation of state with Y =0 gives B8 = 2 ; a non-interacting

relativistic gas with 7y = 1/3 gives B = 2.5; and a stiff equation of
state with v =1 gives B = 3.)

As a model fof R(t), we shall take a standard Friedman model with
non-interacting dust and radiation obeying Einstein's field equatioms with
cosmological constant A= 0 . Such a model may be labeled by the Hubble

constant Ho to set the scale and by two dimensionless parameters to de—

termine the matter and radiation content:

8npmatter _ Sﬂpradiation 1
&y = 2 ' e, = 2 ’ (11)
3H 31
o o

where the densities are measured at the present epoch. We take H.o to be
60 km s_l Mpc—l. We take Qr to be 0.0001 on the basis of observations

of the microwave background and the assumption that nondegenerate electron
and muon neutrinos were in thermal equilibrium with photons in the early
stages of the universe. The value of Qm is not well known. A lowar limit
seems to be 0.0013, and Gott et al. (1974) suggest that 0.06 is the nost
probable value but the observations do not completely rule out QmAz_l & AL
fact the value of Qm makes very little difference to the predicted gamma-
ray spectrum except below about 10 MeV where it 1s strongly influencad by
thé opacity in the universe at redshifts Z g 100 . This opacity arises
mainly from pair production caused by high-energy garma rays strikiag neutral

hydrogen or helium atoms. We have used the cross sections derived by Batha
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and Heitler (1934) with corrections by Wheeler and Lamb (1939) for hydrogen

and by Knasel (1968) for helium. They find that the total cross section for
pair production in hydrogen is 0.012%4 cmzlg and in helium is 0.0083 cmz/g
independent of the gamma-ray energy provided it is ab;ve about 100 MeV. A
primordial abundance of 70 percent hydrogen and 30 perceant helium by mass
was assumed (cf. Danziger 1970), making the opacity 0.0112 cmzfg at high
energies, and a crude correction for lower energies was made.

Figure 1 shows the predicted background gamma-ray spectrum from prim-
ordial black holes for Qr = 0.0001 and Qm = 0.06 and for various values
of the exponent B 1in the initial number spectrum of the primordial black
holes. Figure 2 shows the spectra with Qm = 1 (approximately a k =0
cosmology). As expected, the curves all agree more or less above 120 MeV
and have a logarithmic slope of -3. Below 120 MeV the curves differ for
different values of B but they all flatten zad turn over at about 10 MeV.
All the curves can be moved up or down by adopting different wvalues of the
constant 7] that multiplies the factor s(y) in the initial pbh number
spectrun M,dn/dM . In figures 1 and 2 the value of 7 was chosen as
1 % 104 pc—3 to be consistent with the upper limit set by the observations
which are shown in figure 3. These seem to fit roughly a power—law spectrum
with exponent -2.4 from about 0.3 MeV to 200 MeV. There is no evidence of
a break in the spectrum at 120 MeV but the observations in this region,
which were by Fichtel et al. (1975), were statistical in nature and were
fitted to an assumed power-law spectrum. Nevertheless, it is clear that
dn/dinM at M = M, cannot be greater than 10& pc—3 and that this is only
an upper limit.

The considerations above have been based on the assumption of a uniform

distribution of primordial black holes throughout the universe. The obsarved
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matter in the universe, however, is strongly concentratad in galaxies and

possibly in halos. Any initial velocity with which pri=ordial black holes

were created would have been reduced almost to zero by the expansion o

rh

the
universe. Thus one might expect that they would be conceatrated in the
gravitational potential wells of galaxies. Unlike the gas, they would en—
counter very little friction in passing through the planas of the galaxy and

so they would be distributed throughout the halo. If we assume that the
primordial black holes are concentrated in halos of thz order of 40 kpc around
each galaxy with an r_z density distribution instead of being spr2ad uniformly,
the upper limit on the number density of pbh's averaged over the whole uni-
verse would be about the same but the local density would be zbout a factor of

lO6 greater.

i i BURSTS

In the calculations of Page (1978) it was assumed that the emitted par-—
ticles interacted only with the gravitational field and not with =sach other.
This should be a good approximation for the emission of gravitoms, photons,
and leptons. It will break down when the mass of the black hole £alls below
about 2 x 1014 g corresponding to a temperature of about 50 M2V zat which
pions, the lightest hadrons, would begin to be emitted in significant nuzbers.
Although the present field theory derivations of particle creation by black
holes break down when strong interactions become important, there are thermo-—
dynamic and statistical arguments which indicate that a black holes would
still emit thermal radiation with a temperatura related to the mass in the
same way as before (Hawking 1975c). The problem is to calculate what thermal
radiation consists of in the presence of strong interactions and how it

decays as it moves away from the black hole. At present there is little

10



=121~

experimental knowledge on either of these questions so one has to rescrt
to theoretical models. Possibly the simplest of such models is the statis-—
tical bootstrap theory (Hagedorn 1965; Frautschi 1971; Hagedorn 1973). 1In
this approach one considers the eigenstates of the strongly—-interacting
fields contained within some box of volume V . Let G(E,V) be the number
of eigenstates with energy between E and E + dE . One can define a
quantity p(m,V) such that G(E,V) is equal to the number of eigenstates of
a system of non-interacting particles with mass spectrum p(m,V) and total
energy between E and E + dE contained in a box of volume V . One re-
gards p(m,V) as representing the spectrum of resonances in the strongly

/-

interacting fields. If one neglects long-range gravitational and electro-

magnetic fields, one might expect p(m,V) would be independent of V for

V greater than a hadron volume Vh = 10_39 cm3 because the strong inter-—
actions have a range of order lO_13 cm. One then makes the bootstrap as-—
sumption that the density of energy levels in a volume Vh is just given
by this mass spectrum, i.e.,

p(E) = 0(E,V,) . (12)
This gives an effective mass spectrum of the form

=b
p(m) = am =~ exp(m/c) (13)

where 5/2 < b < 7/2 and c = 160 MeV.

Similar mass spectra are obtained from dual-resonance models of strong
interactions (Fubini and Veneziano 1969; Huang and Weinberg 1970).

If one regards this mass spectrum as representing different species

of non-interacting particles all of which a black hole would emit thermally

3
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like point particles, the rate of energy emission would become infinite

when the black hole got down to a mass MH of about 7 x 1013 g corras-—
ponding to a temperature of about 160 MeV because the Boltzmann factor
exp(-E/T) would be cancelled out by the exponential in the mass spectrum.
The black hole would convert itself into a fireball of vary heavy hadrons.
In the conventional statistical bootstrap theory, which neglects gravita-—
tional interactions, these heavy hadrons would decay slowly with lifetimes
of the order of 1013 sec (Carlitz, Frautschi, and Nah= 1973). However,
gravitational interactions between the hadrons would be significant compared
to thermal energies for particle masses above 10_5 g. They would increase
the rate of collisions between such heavy hadrons and hence, by detailed
balance, the rate at which they can emnit lighter hadrons and decay. Thus
the fireball could probably be treated as a pressureless fluid which main-—
tained itself in thermal equilibrium at a temperature of about 160 MeV as

it expanded with parabolic velocity (cf. Carter et al. 1975). One would
expect the fireball to radiate electrons, positrons, muons, photons, and
perhaps neutrinos thermally from its surface. It would radiate away all its
energy in a time of about 10_7 sec giving a burst of gamma rays peaked around
250 MeV with total energy about 1034 ergs.

This picture can be criticized on the ground that, even if there were
in some sense an exponential mass spectrum of hadrons, they would be of the
same size as the black hole or larger and thus would not be emitted as point
particles. One might regard hadrons as composite bodias made up from quarks
and gluons which are point particles and which are asymptotically free at
small distances but are strongly bound at separations greater than 10_13

cm

(Gross and Wilczek 1973; Politzer 1973,1974). In this case it might be that
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black holes smaller than lO_14 cm or 1014 g would emit individual quarks
and gluons as non-interacting point particles. When they had traveled a
distance of about 10_l3 con from the black hole, they would feel the inter-—
action with other quarks and gluons and would join up with them to form
hadrons which would then decay into lighter particles. The rate of energy
emission would be about lO46 T’](M/g)-—2 ergs/sec where n 1is number of
species of quarks, gluons, leptons, photons and gravitons with rest mass
less than the black-hole temperature. In the original quark-gluon theory
(Fritzch and Gell-Mann 1972) there were 18 species of quarks (three flavors,
three colors and their antiparticles) and 8 species of gluons. Thus q
would be 36. About 1.5 percent of the rest-mass energy of the black hole
would be emitted directly in high-energy photons and further photons would
arise from thevdecay of highly-relativistic hadrons. One might therefore
expect that betwesn 10 and 30 percent of the rest-mass energy of the black

hole would emerge as photons at around 500 (M/1014 g)_l MeV. The emission

would become very rapid when the mass of the black hole got down to 10lO 4
giving a burst of about 1030 photons at around 5 x 106 MeV.

The recent discovery of the J or Y particles (Aubert et al. 1974;
Augustin et al. 1974) suggests that there may be a fourth flavor of quark
with a rather higher mass. It also seems that it may be necessary to postu-—
late a fifth and a sixth flavor to explain the electron-positron annihila-
tion cross section into hadrons. It is therefore possible that there is an
infinite sequence of quarks with higher and higher masses. These higher
mass quarks would increase the rate of energy loss of a black hole hot
enough to emit them. The final burst of very rapid emission could there—

fore come at some mass between the Hagedorn mass MH and 1010 g + In

this case one would expect the number of photons to be q"2 times the number

13
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in the statistical bootstrap picture and the energy of each photonm to be

q times greater, where gq 1is the ratio of the Hagzedorn mass to the mass

at which the burst occurs.

The authors are grateful to B. J. Carr, S. C. Frautschi, G. P. Garmire

and F. J. Nagy for discussions and suggestiomns.
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FIGURE CAPTIONS

Figs. 1 and 2. Predicted number spectra dJ/dwO of gamma rays from prim-—

Fig. 3.

ordial black holes having initial number spectra dn/d(Mi/H*) =

4 <3 -8 o ~ o
10" pe (Hi/M*) for initial masses Mi around M, = 5 x 10 B,
where B 1s given values from 2 (bottom curve) to 4 (top curve)
in steps of 1/2. Fig. 1 assumes the present matter density is

0.06 of the critical value for closure of the universe; Fig. 2

assumes it is at the critical wvalue.

Observed diffuse gamma ray spectrum as reported in Fichtel et al.
(1975). The shaded region represents their SAS-2 measurements and
uncertainties; the other points represent previous measurements

they enumerate and reference.
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