

Synthesis and Thermodynamic Studies of Physisorptive Energy Storage Materials

Thesis by
Nicholas Stadie

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2013
(defended November 5, 2012)

© 2013
Nicholas Stadie
All Rights Reserved

“Be glad of life,
for it gives you the chance
to love and to work and to play
and to look up at the stars...”

- Henry van Dyke

Acknowledgements

I had many great teachers who gave me a solid platform on which to build my work, among them Profs. John Kouvettakis, Edward Skibo, Karl Booksh, Tim Steimle, and Ulrich Hausermann. I credit my love of chemistry to Mr. Achtziger and Mr. Ishihara. Professor George Wolf remains a great inspiration to me, especially his commitment to teaching; I strive to live up to his standards. Prof. Wilson Francisco was responsible for giving me the confidence to seek a higher education, and is a seemingly infinite source of positive energy. With Prof. Michael O'Keeffe, I first saw the beauty of materials and periodic structures. I will always feel very privileged to have had the opportunity to work in his laboratory, and fondly remember our lunches together drawing nets and picking apart the periodic table.

The work presented in this thesis would not have been possible without discussions and collaborations with John Vajo and Robert Cumberland at HRL Laboratories, Joe Reiter and Bob Bowman at JPL, and the members of the Hydrogen and Energy group at EMPA. I thank Carol Garland for many patient hours sitting next to me at the TEM, and Sonjong Hwang and Joseph Beardslee for thoughtful discussions and assisting me with (crucial and timely) measurements. I would like to give special thanks to Mike Vondrus whose talents contributed to the success of building the high-pressure Sieverts apparatus, and who devoted extra time to making my life easier. Many other friendly

faces around campus (especially in the central warehouse) made the fabrication work truly a pleasure. Finally, Pam Albertson deserves a monument of credit for keeping us all on track.

I am very grateful to Justin Purewal who taught me how to (carefully) do the experimental science described in this thesis. Andrew Wilson was an honor to have mentored and his hard work will continue to be appreciated long after his short visit. Max Murialdo was tireless in helping with measurements during the final portion of this thesis work and the quantity of data that contributed to the quality of the final results is in large part due to his efforts. I also thank the rest of the Fultz group for keeping me motivated and setting the bar very high; I hope you'll forgive me for (occasionally) hoarding all the good tools.

I thank my thesis committee for thoughtful discussions of this material and for half a decade of coursework and guidance. I thank Channing Ahn for being a challenge-loving, risk-taking, always jovial, and straight-shooting adviser. I thank Brent Fultz for always encouraging me, leading by example, giving us students more than our fair share of his time and careful thought, and creating a model group atmosphere for carrying out effective and rewarding science. It was an honor and a pleasure to be in this group.

I draw endless inspiration to work as hard as I can from my family and friends. All my work is dedicated to Eyrún, who makes me undeniably happy.

Abstract

Physical adsorption of hydrogen or other chemical fuels on the surface of carbonaceous materials offers a promising avenue for energy storage applications. The addition of a well-chosen sorbent material to a compressed gas tank increases the volumetric energy density of the system while still permitting fast refueling, simplicity of design, complete reversibility, high cyclability, and low overall cost of materials. While physical adsorption is most effective at temperatures below ambient, effective storage technologies are possible at room temperature and modestly high pressure. A volumetric Sieverts apparatus was designed, constructed, and commissioned to accurately measure adsorption uptake at high pressures and an appropriate thermodynamic treatment of the experimental data is presented.

In Chapter 1, the problem of energy storage is introduced in the context of hydrogen as an ideal alternative fuel for future mobile vehicle applications, and with methane in mind as a near-term solution. The theory of physical adsorption that is relevant to this work is covered in Chapter 2. In-depth studies of two classes of materials are presented in the final chapters. Chapter 3 presents a study of the dissociative “hydrogen spillover” effect in the context of its viability as a practical hydrogen storage solution at room temperature. Chapters 4-5 deal with zeolite-templated carbon, an extremely high surface-area material which shows promise for hydrogen and methane storage

applications. Studies of hydrogen adsorption at high pressure (Chapter 4) and anomalous thermodynamic properties of methane adsorption (Chapter 5) on ZTCs are presented. The concluding chapter discusses the impact of and possible future directions for this work.

Contents

Acknowledgements	iv
Abstract	vi
1 Mobile Energy	1
1.1 Introduction	1
1.2 Hydrogen and Energy	2
1.3 Methane and Energy	7
1.4 Hydrogen Storage	9
1.5 References	12
2 Physical Adsorption	13
2.1 Van der Waals Forces	15
2.1.1 Intermolecular Potentials	17
2.1.2 Dispersion Forces	19
2.1.3 Modern Theory of Physical Adsorption	20
2.2 Gas-Solid Adsorption Models	22
2.2.1 Monolayer Adsorption	23
2.2.2 Multilayer Adsorption	28
2.2.3 Pore-Filling Models	31
2.2.4 Gibbs Surface Excess	33

2.3 Adsorption Thermodynamics	36
2.3.1 Gibbs Free Energy	36
2.3.2 Entropy of Adsorption	37
2.3.3 Enthalpy of Adsorption	38
2.4 Thermodynamic Calculations from Experimental Data	43
2.4.1 Ideal Gas Assumption	45
2.4.2 Isoexcess Assumption	47
2.4.3 Calculations Without Fitting	48
2.4.4 Linear Interpolation	50
2.4.5 Virial Type Fitting Equation	53
2.4.6 Generalized-Langmuir Fitting Equation	58
2.5 Generalized-Langmuir High-Pressure Adsorption Model	62
2.6 Conclusions	69
2.7 References	70
3 Hydrogen Spillover in Platinum-Doped Superactivated Carbon	72
3.1 Overview	72
3.2 Materials Processing and Synthesis	75
3.2.1 MSC-30 and AX-21	75
3.2.2 Synthesis Methods	75
3.3 Materials Characterization	77
3.3.1 Nitrogen Adsorption	77

3.3.2 X-Ray Diffraction	77
3.3.3 Transmission Electron Microscopy	78
3.3.4 Thermal Gravimetric Analysis	79
3.4 Hydrogen Sorption	80
3.4.1 Experimental Methods	80
3.4.2 Long-Duration Experiments	81
3.4.3 Hydrogen Cycling	82
3.4.4 Hydrogen Sorption Results	85
3.5 Discussion	88
3.6 Conclusions	90
3.7 References	91
4 Zeolite-Templated Carbon: Characterization and Hydrogen Adsorption	92
4.1 Overview	92
4.1.1 Background	92
4.1.2 High-Pressure Hydrogen Storage	93
4.1.3 Zeolite-Templated Carbons	93
4.1.4 Further Investigation	94
4.2 Materials Synthesis	95
4.2.1 Raw Materials	95
4.2.2 Caltech Experiments	96
4.2.3 HRL Experiments	97

4.3 Materials Characterization	98
4.3.1 Nitrogen Adsorption	98
4.3.2 Carbon Dioxide Adsorption	101
4.3.3 Skeletal Density Measurements	101
4.3.4 X-Ray Diffraction	101
4.3.5 X-Ray Photoelectron Spectroscopy	103
4.3.6 Electron Microscopy	105
4.3.7 Electron Energy-Loss Spectroscopy	107
4.3.8 Solid-State Nuclear Magnetic Resonance	109
4.4 Hydrogen Adsorption	111
4.4.1 Standard-Pressure Experiments	111
4.4.2 High-Pressure Experiments	111
4.4.3 Hydrogen Adsorption Results	112
4.4.4 Enthalpy of Adsorption	114
4.5 Discussion	116
4.5.1 Skeletal Density	116
4.5.2 Surface Area	118
4.5.3 Enthalpy of Adsorption	120
4.6 Conclusions	121
4.7 References	122

5 Zeolite-Templated Carbon: Anomalous Methane Adsorption	124
5.1 Introduction	124
5.1.1 Background	124
5.1.2 Materials	126
5.2 Methane Adsorption	129
5.2.1 High-Pressure Experiments	129
5.2.2 Fitting the Experimental Data	133
5.2.3 Trends	134
5.3 Enthalpy of Adsorption	137
5.4 Entropy of Adsorption	139
5.5 Discussion	140
5.6 Conclusions	141
5.7 References	142
6 Conclusions	144
6.1 Summary of Results	144
6.1.1 Hydrogen Spillover for Storage Applications	146
6.1.2 Anomalous Adsorption Properties of ZTCs	148
6.2 Future Work	150
6.2.1 Zeolite-Templated BC _x Materials	150
6.2.2 Pressure to Change Chemical Potential: Carbon Nanotubes	153
6.3 References	156

Appendix A: Experimental Adsorption Measurements	157
Appendix B: Further Results Concerning Hydrogen Spillover	166
Appendix C: Carbon Dioxide Adsorption on ZTCs	171
Appendix D: BET and DR Trends of Adsorption Uptake	173
Appendix E: Pressure Driven Phase Transition	174
Appendices References	179

Nomenclature

<u>Symbol</u>	<u>Description</u>	<u>Default Unit</u>
t	time	s
P	pressure	MPa
T	temperature	K
V	volume	mL
R	gas constant	$\text{kJ K}^{-1} \text{ mol}^{-1}$
n	molar number	mol
n_{ads}	molar number adsorbed	mol
n_e	specific excess (adsorption) uptake	mmol g^{-1}
n_a	specific absolute (adsorption) uptake	mmol g^{-1}
U	potential energy	kJ
F	Helmholtz free energy	kJ
G	Gibbs free energy	kJ
μ	chemical potential	kJ mol^{-1}
S	entropy	J K^{-1}
s	specific entropy	$\text{J mol}^{-1} \text{ K}^{-1}$
H	enthalpy (of adsorption)	kJ
h	specific enthalpy (of adsorption)	kJ mol^{-1}
Δh	specific differential enthalpy (of adsorption)	kJ mol^{-1}
q_{st}	isosteric heat (of adsorption)	kJ mol^{-1}
n_{max}	adsorption scaling factor	mmol g^{-1}
α	weight factor	-
θ	Langmuir surface coverage	-
ρ	density	g mL^{-1}
V_a	volume of adsorbed molecule	\AA^3
V_{ads}	specific volume of adsorption layer	mL g^{-1}
V_{max}	maximum specific volume of adsorption layer	mL g^{-1}
A	(surface) area	m^2
A_{BET}	specific BET surface area	$\text{m}^2 \text{ g}^{-1}$
t_{ads}	thickness of adsorbed layer	\AA
V_s	volume of solid sorbent	mL