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Abstract

Physical adsorption of hydrogen or other chemical fuels on the surface of
carbonaceous materials offers a promising avenue for energy storage applications. The
addition of a well-chosen sorbent material to a compressed gas tank increases the
volumetric energy density of the system while still permitting fast refueling, simplicity of
design, complete reversibility, high cyclability, and low overall cost of materials. While
physical adsorption is most effective at temperatures below ambient, effective storage
technologies are possible at room temperature and modestly high pressure. A
volumetric Sieverts apparatus was designed, constructed, and commissioned to
accurately measure adsorption uptake at high pressures and an appropriate
thermodynamic treatment of the experimental data is presented.

In Chapter 1, the problem of energy storage is introduced in the context of hydrogen
as an ideal alternative fuel for future mobile vehicle applications, and with methane in
mind as a near-term solution. The theory of physical adsorption that is relevant to this
work is covered in Chapter 2. In-depth studies of two classes of materials are presented
in the final chapters. Chapter 3 presents a study of the dissociative “hydrogen spillover”
effect in the context of its viability as a practical hydrogen storage solution at room
temperature. Chapters 4-5 deal with zeolite-templated carbon, an extremely high

surface-area material which shows promise for hydrogen and methane storage
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applications. Studies of hydrogen adsorption at high pressure (Chapter 4) and
anomalous thermodynamic properties of methane adsorption (Chapter 5) on ZTCs are
presented. The concluding chapter discusses the impact of and possible future

directions for this work.
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Nomenclature

Symbol Description

t time

P pressure

T temperature

Vv volume

R gas constant

n molar number

Nads molar number adsorbed

Ne specific excess (adsorption) uptake
N, specific absolute (adsorption) uptake
u potential energy

F Helmholtz free energy

G Gibbs free energy

) chemical potential

S entropy

s specific entropy

H enthalpy (of adsorption)

h specific enthalpy (of adsorption)
Ah specific differential enthalpy (of adsorption)
Ost isosteric heat (of adsorption)

Nmax adsorption scaling factor

a weight factor

0 Langmuir surface coverage

p density

V, volume of adsorbed molecule

Vads specific volume of adsorption layer
Vinax maximum specific volume of adsorption layer
A (surface) area

AgeT specific BET surface area

tads thickness of adsorbed layer

Vs

volume of solid sorbent

Default Unit

S
MPa

K

mL

ki K* mol™
mol

mol

mmol g™
mmol g
kJ

kJ



