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ABSTRACT 

 

Donor–acceptor cyclopropanes are a versatile class of synthetic intermediates, 

compatible in a broad range of ring-opening reactions and formal cycloadditions, and 

employed in numerous natural product syntheses.  We have developed new Lewis acid 

mediated cycloadditions for the synthesis of five-membered heterocycles, and applied 

existing a transition metal catalyzed cyclopropane cycloaddition method toward the 

synthesis of complex alkaloids. 

First, described is the development of a Lewis acid mediated (3 + 2) cycloaddition of 

donor–acceptor cyclopropanes with isocyanates, isothiocyanates and carbodiimides.  This 

reaction was found in certain cases to proceed with excellent stereochemical fidelity, 

providing access to an array of enantioenriched thioimidates and amidines. 

Second, we targeted the Melodinus alkaloids for total synthesis due to their unique 

structural features.  Synthetic efforts toward scandine, the parent of the natural product 

family, are detailed herein.  Our approach features a palladium catalyzed formal (3 + 2) 

cycloaddition of a vinyl cyclopropane and a β-nitrostyrene to rapidly assemble the central 

cyclopentane core of the natural product.  Initial efforts focused on the synthesis and 

application of a 1,1-divinylcyclopropane to the formal (3 + 2) cycloaddition reaction, 

whereas later work entailed the use of a mono-vinylcyclopropane with the goal of 

installing the second requisite vinyl group at a later stage using modern C–H 

functionalization technologies. 
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LIST OF ABBREVIATIONS 

 

Å Ångstrom 

[α]D specific rotation at wavelength of sodium D line 

Ac  acetyl 

Anal. combustion elemental analysis 

APCI atmospheric pressure chemical ionization 

app  apparent 

aq aqueous 

AIBN 2,2’-azobisisobutyronitrile 

Ar aryl 

atm  atmosphere 

BBN borabicyclononane 

Bn  benzyl 

Boc  tert-butyloxycarbonyl 

bp boiling point 

br  broad 

Bu  butyl 

i-Bu    iso-butyl 

n-Bu    butyl 

t-Bu   tert-Butyl 

Bz benzoyl 

c  concentration for specific rotation measurements 

°C  degrees Celsius 

ca. about (Latin circa) 

calc’d  calculated 



xxxi 
CAN ceric ammonium nitrate 

cat catalytic 

Cbz carbobenzyloxy 

CCDC  Cambridge Crystallographic Data Centre 

CDI  1,1'-carbonyldiimidazole  

cf. compare (Latin confer) 

CI  chemical ionization 

CID collision-induced dissociation 

cm–1 wavenumber(s) 

comp complex 

Cy  cyclohexyl 

d  doublet 

D deuterium 

dba  dibenzylideneacetone 

DBU  1,8-diazabicyclo[5.4.0]undec-7-ene 

DCE dichloroethane 

dec decomposition 

DIAD diisopropyl azodicarboxylate 

DMA N,N-dimethylacetamide 

DMAP  4-dimethylaminopyridine 

dmdba bis(3,5-dimethoxybenzylidene)acetone 

DMF  N,N-dimethylformamide 

DMSO  dimethyl sulfoxide 

DNA (deoxy)ribonucleic acid 

dppb  1,4-bis(diphenylphosphino)butane 

dppf 1,1'-bis(diphenylphosphino)ferrocene 

dr diastereomeric ratio 



xxxii 
EA activation energy 

EC50  median effective concentration (50%) 

EDC N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide 

ee  enantiomeric excess 

EI electron impact 

e.g. for example (Latin exempli gratia) 

equiv  equivalent 

ESI  electrospray ionization 

Et  ethyl 

FAB  fast atom bombardment 

FID flame ionization detector 

g  gram(s) 

GC gas chromatography 

gCOSY  gradient-selected correlation spectroscopy 

GlyPHOX 2-(2-(diphenylphosphino)phenyl)oxazoline 

h  hour(s) 

HIV  human immunodeficiency virus 

HMDS 1,1,1,3,3,3-hexamethyldisilazane 

HMPA hexamethylphosphoramide 

HOBt 1-hydroxybenzotriazole 

HPLC  high-performance liquid chromatography 

HRMS high-resolution mass spectroscopy 

HSV  herpes simplex virus 

hν light 

Hz  hertz 

IC50  median inhibition concentration (50%) 

i.e. that is (Latin id est) 



xxxiii 
IR  infrared (spectroscopy) 

J  coupling constant 

kcal kilocalorie 

KDA potassium diisopropylamide 

KHMDS potassium hexamethyldisilazide 

λ  wavelength 

L  liter 

LDA lithium diisopropylamide 

lit. literature value 

LTQ linear trap quadrupole 

m  multiplet; milli 

m  meta 

m/z  mass to charge ratio 

M metal; molar; molecular ion 

Me  methyl 

MHz  megahertz 

µ micro 

µwaves microwave irradiation 

min  minute(s) 

MM mixed method 

mol  mole(s) 

MOM methoxymethyl 

mp  melting point 

Ms  methanesulfonyl (mesyl) 

MS  molecular sieves 

n nano 

N normal 



xxxiv 
nbd  norbornadiene 

NBS  N-bromosuccinimide 

NIST National Institute of Standards and Technology 

NMO  N-methylmorpholine N-oxide 

NMR  nuclear magnetic resonance 

NOE  nuclear Overhauser effect 

NOESY  nuclear Overhauser enhancement spectroscopy 

Nu nucleophile 

[O]  oxidation 

o  ortho 

p  para 

PA proton affinity 

PCC pyridinium chlorochromate 

PDC  pyridinium dichromate 

Ph  phenyl 

pH  hydrogen ion concentration in aqueous solution 

PhH  benzene 

PhMe toluene 

PHOX phosphinooxazoline 

Piv pivaloyl 

pKa pK for association of an acid 

PMB p-methoxybenzyl 

pmdba bis(4-methoxybenzylidene)acetone 

ppm  parts per million 

PPTS pyridinium p-toluenesulfonate 

Pr  propyl 

i-Pr isopropyl 



xxxv 
Py  pyridine 

q  quartet 

ref reference 

R generic for any atom or functional group 

Rf  retention factor 

rt  room temperature 

s  singlet or strong or selectivity factor 

sat. saturated 

SET single electron transfer 

SN2 second-order nucleophilic substitution 

sp. species 

t  triplet 

TBAF  tetrabutylammonium fluoride 

TBHP tert-butyl hydroperoxide 

TBS  tert-butyldimethylsilyl 

TCDI 1,1’-thiocarbonyldiimidazole 

TCNE tetracyanoethylene 

Tf  trifluoromethanesulfonyl (trifyl) 

TFA  trifluoroacetic acid 

TFE 2,2,2-trifluoroethanol 

THF  tetrahydrofuran 

TIPS  triisopropylsilyl 

TLC  thin-layer chromatography 

TMEDA N,N,N’,N’-tetramethylethylenediamine 

TMS  trimethylsilyl 

TOF time-of-flight 

Tol tolyl 



xxxvi 
TON turnover number 

tR retention time 

Ts  p-toluenesulfonyl (tosyl) 

UV  ultraviolet 

v/v volume to volume 

w  weak 

w/v weight to volume 

X anionic ligand or halide 
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