

Novel Variants of the Zwitterionic Claisen Rearrangement and the Total Synthesis of Erythronolide B

Thesis by
Vy Maria Dong

In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy in Chemistry

California Institute of Technology
Pasadena, California
2004
(Defended October 31, 2003)

© 2004

Vy Maria Dong

All Rights Reserved

Acknowledgments

I wish to thank the many people who have supported me during graduate school and whose efforts have made this dissertation possible. In particular, I am grateful to my thesis advisor, David MacMillan, for his advice and encouragement through every phase of my training as a chemist—from scrubbing fume hoods in Lewis Hall to making complex natural products. Special thanks are due to my Caltech thesis committee (Peter Dervan, John Bercaw, Rudolph Marcus, and Dave) and my Berkeley candidacy committee (Jean Fréchet, Carolyn Bertozzi, and Peter Vollhardt) for their valuable input and time. I would like to thank Larry Overman at UC Irvine for sparking my interest in organic synthesis, the opportunity to conduct undergraduate research in his lab, and his continued support ever since.

I owe a great deal to everyone in the MacMillan group, past and present, for their friendship and professional collaboration the last five and a half years. Together, we've shaped a formidable research lab, and enjoyed hundreds of pizzas and birthday cakes along the way. I am especially indebted to Tehshik Yoon for his mentorship my first year, and his key contributions to project Claisen. A big thanks to my fellow classmate Jake Wiener for the countless days we spent rotovaping, talking, and mostly laughing together in lab. Nick Paras has been a great friend and bay-mate; I will always be grateful that he kept bay twelve filled with Greek music, dancing, food, and aromas. I want to especially thank Alan Northrup, Joel Austin, and Sean Brown for the excellent chemistry discussions, among other fun times. I would like to especially acknowledge

my officemates, Ian Mangion, Sandra Lee and Nikki Goodwin, for their (much appreciated) cheery countenances. Special thanks to the postdocs, especially, Roxanne Kunz, Yongkwan Kim, Sungon Kim, Wenjing Xiao, Ioana Drutu, Chris Sinz, and Simon Blakey, for their help and advice. I would like to thank Rob Knowles for his enthusiastic efforts on erythronolide B, and to wish him success with his future studies. For the care with which they reviewed my manuscript, a wholehearted thanks to Roxanne, A-train, and Sandy.

I would like to extend my appreciation to the Heathcock, Ellman, Grubbs, and Stoltz groups for sharing their equipment, chemicals, and chemical expertise on many occasions. The NMR, x-ray diffraction, and mass spec staff at Berkeley and Caltech have been instrumental to the success of my studies; my thanks to them. I want to acknowledge the administrative staff for their hardwork and dedication, especially Dian Buchness, Lynne Martinez, and Selina Fong. I am especially thankful to Selina for the thoughtfulness with which she cared for our group.

I gratefully acknowledge Stephen Martin at UT Austin for providing an authentic sample of erythronolide B, and the National Science Foundation for providing my graduate research fellowship.

Importantly, I would like to express my gratitude to my family and friends whose support and good will kept me going through the pursuit of this dissertation. I am especially grateful to my parents, Ly and Lua, for the many sacrifices they've made for my education; *con cam on ba ma!* I would like to thank my siblings Thy, Chi and Phi for always being there for me. Special thanks to my grandparents, aunts, uncles, and cousins for making the holiday celebrations terrific, and memorable. I am more than grateful to

the Alkhas family for welcoming me into their home. Gilbert, Denise, Avner and Evan “the mad scientist” have enriched my life with their presence; my many thanks to them. I am especially indebted to William for his kindness and generosity, not to mention, the many home-cooked meals and delicious pirashkis.

Finally, I would like to thank Wilmer Alkhas who has done everything imaginable to make this journey easier, and more worthwhile; I hope that he will accept this thesis as a tiny token of my gratitude for his tremendous love, patience, and support.

Abstract

This dissertation describes the development of three novel variants of the zwitterionic Claisen rearrangement. Initial studies demonstrate an efficient and diastereoselective ketene-Claisen rearrangement catalyzed by metal salts. This process involves the condensation of ketenes and allylic amines to form zwitterionic enolates which undergo [3,3]-sigmatropic rearrangements to afford α,β -disubstituted- γ,δ -unsaturated amides. The scope of this chemistry is further expanded through the development of a Lewis acid-catalyzed acyl-Claisen rearrangement which employs acid chlorides as ketene surrogates. Based on these studies, a new tandem acyl-Claisen rearrangement for the construction of structurally complex 1,7-dioxo-acyclic architectures is achieved. The versatility of this tandem transformation for macrolide antibiotic synthesis is demonstrated through a concise total synthesis of erythronolide B, in 24 linear steps.

Table of Contents

Acknowledgments	iii
Abstract	vi
Table of Contents	vii
List of Schemes	x
List of Figures	xii
List of Tables	xiii

Chapter 1. The Lewis Acid–Catalyzed Ketene-Claisen Rearrangement

Introduction	1
Reaction Design	5
Results and Discussion	8
<i>Role of the Lewis acid</i>	9
<i>Origins of stereoselectivity</i>	11
<i>Scope of the ketene-Claisen rearrangement</i>	12
Concluding Remarks	15
Experimental Methods	16
References	22

Chapter 2. The Lewis acid–Catalyzed Acyl-Claisen Rearrangement

Reaction Design	24
Results and Discussion	25
<i>Allyl morpholine components</i>	28
<i>Acid chloride components</i>	30
Concluding Remarks	33
Experimental Method	35
X-ray Data	48
References	53

Chapter 3. Design of a New Cascade Reaction for the Construction of Complex Acyclic Architecture: The Tandem Acyl-Claisen Rearrangement

Introduction	57
<i>Representative tandem reactions involving the Claisen rearrangement</i>	57

Reaction Design	60
Results and Discussion	62
<i>Allyl dimorpholine component</i>	63
<i>Acid chloride component</i>	64
<i>Applications for macrolide synthesis</i>	66
<i>Regioselective hydrolysis</i>	67
Concluding Remarks	69
Experimental Methods	70
X-ray Data	90
References	122

Chapter 4. Erythronolide B and the Erythromycins

Isolation and Structure	124
Biosynthesis of Erythronolide B	125
Clinical Usage	128
Concluding Remarks	129
References	130

Chapter 5. Synthetic Strategies towards Erythronolide B and Erythromycin B

Introduction	133
Approaches to Erythronolide B and Erythromycin B	135
<i>Corey's synthesis</i>	136
<i>Kotchetkov's synthesis</i>	139
<i>Muzler's synthesis</i>	141
<i>Martin's synthesis of erythromycin B</i>	144
Concluding Remarks	146
References	148

Chapter 6. Applications of the Tandem Acyl-Claisen Rearrangement in Macrolide Synthesis: A Total Synthesis of Erythronolide B

Synthesis Plan	151
Tandem Acyl-Claisen Rearrangement	152
<i>Electronic considerations for the protecting group in diamine 5</i>	153
Initial Attempts to Stereoselectively Oxidize C(6)	156
Chiral Resolution of Ketone 4 by Aldol Coupling to Aldehyde 2	159
Synthesis of Seco Acid 42	161
Late-Stage Attempts to Stereoselective Oxidize C(6)	163
<i>Felkin-selective organolithium approach</i>	163
<i>Directed epoxidation approach</i>	164

<i>Epoxidation by m-CPBA</i>	165
Completion of Erythronolide B	168
<i>Macrolactonization</i>	168
Asymmetric Tandem Acyl-Claisen Rearrangement	173
<i>Background</i>	173
<i>Improving the preparation of boron complex</i>	174
Concluding Remarks	177
Experimental Methods	179
References	202

List of Schemes

Chapter 1

Scheme 1. First enantioselective catalytic Claisen rearrangement (Hiersemann, 2002)	3
Scheme 2. Corey's enantioselective Ireland-Claisen promoted by boron complex 4	4
Scheme 3. Ketene-Claisen rearrangement by Bellus (1978)	6
Scheme 4. Proposed Lewis acid-catalyzed ketene-Claisen rearrangement	7
Scheme 5. Ward procedure for synthesizing methyl ketene	8
Scheme 6. Attempted Lewis acid-catalyzed ketene-Claisen rearrangement of 24	8

Chapter 2

Scheme 1. Proposed Lewis acid-catalyzed acyl-Claisen rearrangement	25
Scheme 2. N-allyl morpholines for the acyl-Claisen rearrangement	27

Chapter 3

Scheme 1. Tandem rhodium-catalyzed Bamford-Stevens/thermal aliphatic Claisen rearrangement sequence	57
Scheme 2. Domino copper-catalyzed C-O Coupling-Claisen rearrangement	57
Scheme 3. Acyl-Claisen rearrangement	58
Scheme 4. Example of a tandem Cope/Claisen rearrangement	58
Scheme 5. Double-Claisen rearrangement	59
Scheme 6. Proposed tandem-acyl Claisen rearrangement for the rapid construction of stereochemically complex acyclic frameworks	60
Scheme 7. Mechanistic rationale for predicted stereochemistry in the first Claisen event	61
Scheme 8. Mechanistic rationale for predicted stereochemistry in the second Claisen event	62
Scheme 9. Rationale for regioselectivity in the iodolactonization	69

Chapter 5

Scheme 1. Corey's general macrolactonization method	137
Scheme 2. Corey's ring-cleavage approach to C(1)-C(9) segment of erythronolide B	138
Scheme 3. Corey's ring-cleavage to install the C(6) stereocenter	139
Scheme 4. Kotchetkov's derivitization of levoglucosan to C(1) to C(6) fragment 27	141
Scheme 5. Mulzer's acyclic approach to C(1)-C(6) fragment of erythronolide B	143
Scheme 6. Felkin selective allylation to install the C(5) hydroxyl stereocenter	144
Scheme 7. Martin's approach to the C(3)-C(9) segment of erythromycin	146

Chapter 6

Scheme 1.	<i>Tandem acyl-Claisen rearrangement with diamine 9</i>	152
Scheme 2.	<i>Von Braun cleavage of diamine 9</i>	153
Scheme 3.	<i>Synthesis of the C(3)–C(9) fragment 22</i>	155
Scheme 4.	<i>Directed epoxidation of amide 23 with VO (acac)₂</i>	156
Scheme 5.	<i>Directed epoxidation of ketone 26 with VO(acac)₂</i>	157
Scheme 6.	<i>Ozonolysis/grignard strategy on 22</i>	158
Scheme 7.	<i>Elaboration of racemic bisamide 22 to racemic ketone 4</i>	158
Scheme 8.	<i>Synthesis of the C(3)–C(15) fragment 35 and 36</i>	160
Scheme 9.	<i>Transformation of the acid 35 to aldehyde 38</i>	161
Scheme 10.	<i>Elaboration of aldehyde 38 to the seco acid 42</i>	162
Scheme 11.	<i>Installing the C(6) stereocenter by an organolithium addition</i>	163
Scheme 12.	<i>Synthesis of the C(6) epi-macrolactone 46</i>	164
Scheme 13.	<i>Directed epoxidation of 47</i>	165
Scheme 14.	<i>Synthesis of seco acid 50</i>	166
Scheme 15.	<i>Synthesis of macrolactone 54</i>	168
Scheme 16.	<i>Kotchetkov's closing sequence from macrolactone 54 to erythronolide B</i>	170
Scheme 17.	<i>Final oxidation/deprotection to erythronolide B</i>	171
Scheme 18.	<i>Asymmetric acyl-Claisen rearrangement by Yoon and Kim</i>	173

List of Figures

Chapter 1

<i>Figure 1.</i> Charge-acceleration in the Claisen rearrangement	2
<i>Figure 2.</i> Carboxylate 10 inhibits catalytic turnover	5
<i>Figure 3.</i> Amine catalyzed ketene dimerization pathway	10
<i>Figure 4.</i> Role of the Lewis acid (LA) in catalyzing the ketene-Claisen rearrangement	11
<i>Figure 5.</i> Origins of (Z)-enolate geometry control in additions to monosubstituted ketenes	12
<i>Figure 6.</i> Origins of diastereoselectivity in the ketene-Claisen rearrangement	12
<i>Figure 7.</i> Rationale for relative rates of rearrangement for the trans vs. cis allyl amines	15

Chapter 3

<i>Figure 1.</i> Applications of the tandem acyl-Claisen rearrangement for macrolide synthesis	67
--	----

Chapter 4

<i>Figure 1.</i> Representative members of the erythromycin macrolide family of antibiotics	125
<i>Figure 2.</i> Predicted domain organization and biosynthetic intermediates of the erythromycin synthase	126
<i>Figure 3.</i> Biosynthesis of fatty acids involves the three enzymatic steps	128

Chapter 5

<i>Figure 1.</i> Erythromycin family: popular targets in total synthesis for more than two decades	134
<i>Figure 2.</i> Corey's synthesis (thirty steps from 14 , < 0.5% yield)	136
<i>Figure 3.</i> Kotchetkov's synthesis (thirty six steps from 28)	140
<i>Figure 4.</i> Mulzer synthesis (twenty five steps from 29 , 0.8% yield)	142
<i>Figure 5.</i> Martin's synthesis (twenty seven steps from 42 , 0.8% yield)	145

Chapter 6

<i>Figure 1.</i> A novel synthesis of erythronolide B	151
<i>Figure 2.</i> Future directions	178

List of Tables

Chapter 1

Table 1. Lewis acid-promoted ketene-Claisen rearrangement between cinnamyl pyrrolidine and methyl ketene	9
Table 2. Ketene-Claisen rearrangement of representative allyl pyrrolidines	13

Chapter 2

Table 1. Effect of Lewis acid on the acyl-Claisen rearrangement of cinnamyl pyrrolidine	26
Table 2. Catalyzed acyl-Claisen rearrangement between crotyl morpholine and propionyl chloride	28
Table 3. Catalyzed acyl-Claisen rearrangement between representative allyl morpholines and propionyl chloride	29
Table 4. Acyl-Claisen rearrangement of allyl morpholines and representative acid chlorides	31
Table 5. Catalyzed Acyl-Claisen rearrangement between allyl morpholines and representative acid chlorides	32

Chapter 3

Table 1. Lewis Acid-Promoted Tandem Acyl-Claisen Rearrangement between Propionyl Chloride and Allyl Dimorpholine 12	63
Table 2. Tandem Acyl-Claisen Rearrangement between Propionyl Chloride and Representative Allyl Dimorpholines	64
Table 3. Tandem Acyl-Claisen Rearrangement between Representative Allyl Dimorpholines and Acid Chlorides.	66
Table 4. Regioselective hydrolysis	68

Chapter 6

Table 1. Effects of representative protecting groups (R^2) on the tandem-Claisen rearrangement	154
Table 2. 1H NMR Data for Macrolactone 54 and Kotchetkov's Macrolactone	169
Table 3. 1H NMR Data for erythronolide B (1)	172
Table 4. Preliminary results on the asymmetric acyl-Claisen rearrangement of diamine 17	174
Table 5. Temperature and counter-ion effects on the asymmetric tandem Claisen rearrangement	176