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Abstract 

 

 

This dissertation describes the development of three novel variants of the 

zwitterionic Claisen rearrangement.  Initial studies demonstrate an efficient and 

diastereoselective ketene-Claisen rearrangement catalyzed by metal salts.  This process 

involves the condensation of ketenes and allylic amines to form zwitterionic enolates 

which undergo [3,3]-sigmatropic rearrangements to afford α,β-disubstituted-γ,δ-

unsaturated amides.  The scope of this chemistry is further expanded through the 

development of a Lewis acid–catalyzed acyl-Claisen rearrangement which employs acid 

chlorides as ketene surrogates.  Based on these studies, a new tandem acyl-Claisen 

rearrangement for the construction of structurally complex 1,7-dioxo-acyclic 

architectures is achieved.  The versatility of this tandem transformation for macrolide 

antibiotic synthesis is demonstrated through a concise total synthesis of erythronolide B, 

in 24 linear steps. 
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