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Abstract

This thesis presents recent research into analytic topics in the classical theory of General Relativity.
It is a thesis in two parts. The first part features investigations into the spectrum of perturbed,
rotating black holes. These include the study of near horizon perturbations, leading to a new generic
frequency mode for black hole ringdown; an treatment of high frequency waves using WKB meth-
ods for Kerr black holes; and the discovery of a bifurcation of the quasinormal mode spectrum
of rapidly rotating black holes. These results represent new discoveries in the field of black hole
perturbation theory, and rely on additional approximations to the linearized field equations around
the background black hole. The second part of this thesis presents a recently developed method
for the visualization of curved spacetimes, using field lines called the tendex and vortex lines of the
spacetime. The works presented here both introduce these visualization techniques, and explore
them in simple situations. These include the visualization of asymptotic gravitational radiation;
weak gravity situations with and without radiation; stationary black hole spacetimes; and some pre-
liminary study into numerically simulated black hole mergers. The second part of thesis culminates
in the investigation of perturbed black holes using these field line methods, which have uncovered

new insights into the dynamics of curved spacetime around black holes.
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Chapter 1

Overview and Summary

1.1 Introduction

This thesis details research I have completed during my time as a graduate student at Caltech. My
focus has been on the analytic treatment of problems in General Relativity. My research roughly
divides into two broad topics, and so I have split this thesis into two parts. The first part, Part
I, deals exclusively with investigations of perturbed black holes. Part II details a new program
for the visualization of curved spacetime; the intended application for this program is to interface
with numerical relativity and provide a means for drawing physical insights from the dynamics
of simulated spacetimes. In the papers I include in the second part of this thesis, the visualization
technique is introduced, developed, and applied to various simple, analytically tractable situations in
relativity. The most interesting and intricate application is to the study of perturbed black holes, and
in this sense the study of perturbed black holes forms a unifying theme for my work. As such, in this
summary chapter, I will first introduce the theory of linearized perturbations of the exact spacetimes
which represent black holes. This is done in Section 1.2. Afterward, I will briefly summarize the
work presented in this thesis, discussing each of the two parts in turn. Section 1.3 deals with studies
of the spectra of perturbed black holes given in Part I, Chapters 2, 3, and 4. Section 1.4 discusses
the research I have participated in which develops and applies the new visualization methods, which
make up Part II, Chapters 5, 6, 7, 8, and 9. Finally, in Section 1.5, I conclude this introductory
chapter with some remarks on future work which may grow out of the topics detailed here.

It is important to keep in mind that the overarching motivation for the topics of study presented
in this thesis, and indeed the motivation for nearly all contemporary work in the classical theory of
General Relativity, is the quest for the direct detection of gravitational waves by experiments such
as LIGO [1]. These gravitational wave detectors are essentially Michelson interferometers, built with
such an extreme sensitivity that they hope to measure the tiny strains which gravitational waves
arriving at Earth will produce in the detector. The strongest sources for such waves, at least in

the frequency band ground-based detectors are sensitive to, are binary systems of compact objects



2

in close orbit, and the merger of these systems. Accurate theoretical predictions of the emitted
radiation is needed for data analysis in these experiments, both to serve as noise filters and to allow
for interpretation of the signals. This demand for accurate theory has driven the science of relativity
and compact binary mergers, and the development of analytic approximations to treat them. The
need for information beyond what is available from approximations in turn has pushed the field of
numerical relativity to simulate the gravitational wave signal from the merger of compact binaries.
It is almost assured that direct detection of gravitational waves will occur within the next decade,
an event which will fundamentally change the science of astronomy, providing a unique view into
the most violent processes in the Universe. It is possible that advanced ground- and space-based
gravitational wave detectors will eventually open a new window into cosmology, allowing us to probe
the earliest moments of cosmic history. The promise that gravitational wave astronomy will allow

us to test our physical models inspires all of the work I will present here.

1.2 Black Hole Perturbation Theory

A good question to ask at the outset is why we study perturbations of black holes. The first part
of the answer lies in the importance of the background objects themselves, the exact solutions to
the Einstein field equations which we know as black holes. Black holes, once thought of merely as
mathematical artifacts, now pay a central role in our understanding of the Universe. We observe
them in binary systems, accreting gas from companion stars into hot disks which shine brightly in the
X-ray sky. We predict their production in the violent deaths of massive stars. Most spectacularly,
we have come to realize that truly enormous black holes lie at the centers of most galaxies, with
masses millions to billions of times greater than our Sun. These supermassive black holes also accrete
material, and the light of these active galactic nuclei is visible to us from the far reaches of space
and time, giving us a probe into the history of our Universe.

Of course, no realistic physical system involving a black hole is described by the pristine, exact
solutions of the Einstein field equations. Such solutions represent isolated, unchanging bodies far
removed from other influences. Instead, the astrophysical black holes of our Universe are the sites
of the most energetic events known to occur. As such we must consider perturbations to the exact
solutions, whether it be by matter orbiting or accreting onto the hole, or the gravitational influence
of distant objects. This leads us to the second part of the answer to our question, which is the large
array of problems that can be treated using black hole perturbation theory (BHPT). Whenever the
influence of external processes near black holes are small compared to the curvature produced by
the black hole, we can linearize the Einstein field equations around the exact black hole solution;
these linearized equations are the heart of BHPT.

Black hole perturbation theory governs the generation and propagation of all kinds of waves in



3

a black hole spacetime, whether they be electromagnetic, gravitational, or scalar in nature. If we
are interested in the light that is emitted by a charge falling into a black hole, we must use black
hole perturbation theory. If we wish to describe the rate at which a satellite orbiting a black hole
slowly spirals inward due to the loss of orbital energy to gravitational radiation, then BHPT is the
tool we must reach for. Even the description of how light is bent by the spacetime curvature of the
host black hole is governed by these wave equations, since in the limit where the waves have short
wavelength compared to the size of the black hole, the wave equations reduce to the equations of
geometric optics in a black hole spacetime.

The pioneering paper by Regge and Wheeler [2] birthed the study of perturbations of the non-
rotating Schwarzschild black hole, even before the exact solution for the rotating black hole was
found by Kerr [3]. It would be another decade after Kerr’s discovery before Teukolsky would give
a full treatment of the perturbations of a rotating black hole [4]. The linearized Einstein equations
describing waves in these spacetimes are second order partial differential equations, which can be
separated into coupled ordinary differential equations. These wave equations are sourced by masses
and charges associated with the matter which perturbs the hole. Alternatively, the equations can be
cast in the form of an initial value problem, which allows for the evolution of arbitrary wave content
in the spacetime. Finally, the linearized equations also describe fundamental excitations of the black
hole spacetime. These eigenmodes of the equations represent natural, decaying oscillations of the
spacetime itself, and are known as the quasinormal modes (QNMs) of the black hole. Gravitational,
electromagnetic, and scalar QNMs all exist, and have been extensively studied (two standard and
comprehensive reviews are [5] and [6]).

It is no surprise then that BHPT has a central role in modern research in General Relativity and
in astrophysics. Perturbations of black holes and black hole-like objects also make an appearance in
a variety of quantum gravity models, especially string-theory inspired models. What is surprising
is that new discoveries are still being made in BHPT, after more than half a century of continuous
investigation.

I have participated in a few of these discoveries during my graduate studies at Caltech. Of course,
in order to break new ground in a such well-trod subject, we must look to the extremes, and so many
of the topics I will present deal with regimes where additional approximations are applied to the
linearized equations. These topics, where BHPT is supplemented by additional approximations, will
be treated in the first part of this thesis. They include a discussion of physics near the perturbed
black hole’s horizon, where a new fundamental frequency of quasinormal oscillation is revealed;
the specialization to the high frequency limit around spinning black holes, where connections to
geometric optics are described, along with approximate QNM equations of practical value; and a
treatment of rapidly rotating black holes, where a novel feature of the QNM frequency spectrum is

found.
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In addition to looking at the extremes, new understanding of an old problem can be found by
bringing to bear new tools. The second half of this thesis details one such tool, a visualization
technique for curved spacetimes, and its application to the QNM oscillations of black holes. These
visualizations show that the QNM oscillations of a black hole can thought of as being made up of
near-zone, source components which generate far-zone waves that propagate away from the hole.
This division is in analogy to the familiar case of electromagnetic radiation generated by time-
varying sources, and hints at previously unknown spacetime dynamics, where the tidal curvature
interacts with frame-dragging effects in order to produce gravitational waves. In the case of QNMs,
the sources are the decaying spacetime perturbations on and near the event horizon.

Before turning to a summary of the remainder of this thesis, we will briefly review some of the

essentials of BHPT.

1.2.1 Review of Black Hole Perturbation Theory

The fundamental equations for BHPT take a simple form when the Einstein field equations are
projected onto a set of four basis vectors, two null and two complex spatial vectors, which results in
the Newman-Penrose equations [7, 8]. In this case, the equations can be linearized about the black
hole solutions, and Teukolsky showed that scalar, electromagnetic, and gravitational perturbations
all obey the same master equation [4]. In the frequency domain this equation is separable into two
second order differential equations, one which describes the angular dependence of the waveform and
one which describes the radial dependence. These equations give the behavior of a spin-weighted
scalar quantity which we will here call v, from which other physical quantities can be constructed.

The scalar is expanded as

(r? —2M7r + a?)=%/? / Py
= dw e~ e 1y (1) 6 Sim (6), 1.1
( oo %; 1m (1) sS1m (0) (1.1)

and indexed in terms of its spin weight s, an azimuthal quantum number /, and a magnetic quantum
number m. Here M is the mass of the hole, and a is the spin parameter of the hole, which ranges
from a = 0 for a nonspinning black hole and a = M for a maximally spinning hole. The spin-
dependent radial factors have been extracted to simplify the equation that su;, obeys. The angular

functions S5, are the spin-weighted spheriodal harmonics [9], and they obey the Sturm-Liouville

eigenequation
d dsSim
CSC@@ <sin9 jgl > + Vo sSim =0, (1.2)
Vo =a%w? cos? 0 — m? csc? 0 — 2aws cos ) — 2ms cos O csc? 0 — s2 cot? 0 + s + s Apm , (1.3)
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for angular eigenvalues ;A;,,. The radial function is given by a second order radial equation

2
d sUlm
2
dr?

+ ‘/;“(r7w> sAlm)sulm =7. (14)

The potential V,. depends on spin weight of the scalar under consideration, is frequency dependent,
and, in the case of a spinning black hole, is complex. We will not write it out explicitly, but it is
given several times in the following chapters. The source term 7T is determined by a combination
of the stress-energy of the matter 7, and the background metric, followed by an expansion in
frequency space. Finally, r, is the radial “tortoise” coordinate, which stretches the region near the
event horizon out onto an infinite domain. It also accounts for the infinite phase shift which occurs
in the asymptotic waves scattered from a Coulomb-type potential. It is defined by the expression

dr*_ r2 + a?
dr — 2 —2Mr+a?’

(1.5)

and note that the horizon occurs at ry, which is the larger of the two roots in the denominator of
Eq. (1.5). In this thesis, we will deal almost exclusively with vacuum perturbations, where 7 = 0.

The radial equation must be supplemented with appropriate physical boundary conditions. The
precise behavior in the limit as r approaches the horizon or » — oo depends on the particular field
under consideration, but the general idea is the same for all perturbations. At each of the two limits,
asymptotic solutions to Eq. (1.4) can be found, and of these two solutions one will correspond to
waves flowing in from the boundary and one to waves flowing out through the boundary. We require
for black holes that there be no waves emerging from the horizon, and at infinity we will usually
require that there be no waves coming into the spacetime. The exception to this is when we are
interested in the problem of reflection and transmission through the horizon of waves impinging on
the black hole from far away.

As a concrete example of the radial behavior, consider the case where the scalar quantity is the
spin-weight s = —2 scalar ¥, in a Schwarzschild spacetime; this quantity is formed by contracting
certain members of the Newman-Penrose null basis with the perturbed Riemann tensor R, -, and
it is a key element of BHPT since it describes the outgoing radiation from an isolated system. In

this case we solve the radial Teukolsky equation to get Wy,

(r2 —2Mr + a?)
7’2-'—(12

Y=ty = Z/dwe_’“t 9 Ui (1) —2Sim (6) (1.6)

ilm

and the asymptotic limits are given by

Btrans(TQ _ 2M,,,)26—iw(t+r*) r—ry L7
—2Uim = Boutr2€—iw(t—r*) +Binr—2€—iw(t+r*) r — 00 ' ( ' )
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We see by comparing Eq. (1.6) to the r — oo limit that the asymptotic behavior for outgoing

radiation (at a particular frequency) is
Uy ~ T*lefiw(tfr*) , (18)

just as we would expect. The generalization to spinning black holes is detailed several times in the
studies included in this thesis, especially Chapters 2—4, and 9.

A final concept, central to the work discussed here, is the quasinormal mode solutions of BHPT.
When there are no source terms, and no incoming waves into the spacetime, we can solve Eq. (1.4)
for the eigenmodes of su;, and the corresponding eigenvalues, the complex frequencies w. As
mentioned above, these solutions have the physical interpretation of the natural oscillation modes
of a black hole spacetime. The frequencies w are always found to have negative imaginary parts,
which means that these eigenmodes decay in time. The QNMs have been studied in great detail in
a variety of circumstances. They are excited to some degree by any perturbation of the black hole
(except the special but important case of a monochromatic source) and play an important role in
the gravitational wave signal from the end of a black hole binary merger. Once the two holes have
merged to produce a final black hole this hole emits gravitational waves with the QNM frequency
spectrum. The analysis of [10] includes a detailed example of the study of the manner in which
numerically simulated merger waveforms transition into a QNM ringdown.

All of the studies in the first half of this thesis are concerned with the QNM spectrum, as is the
final chapter of the second part of this thesis, Chapter 9, where the QNM oscillations of spacetime
are investigated using the visualization techniques of tendex and vortex lines (Section 1.4 of this

chapter).

1.3 The Extremes of Black Hole Perturbation Theory

The first part of this thesis is concerned with extensions to and new results concering the QNM
spectrum of perturbed Kerr black holes. These topics are covered in Chapters 2, 3, and 4, which
were originally published as [11], [12], and [13], respectively. In this section, we will briefly discuss

each chapter and its main results.

1.3.1 The Horizon Mode

The first approximation we will use to better understand BHPT is the near horizon approximation.
The essential idea is that near the horizon of the black hole, the wave equations of BHPT become
simple. In the near horizon region we can perform an expansion in distance from the horizon, using

a parameter eyg = (r —ry)/r+ < 1. We find that, in a frame which co-rotates with the black
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—ik(t£r.) Tn addition, particle orbits

hole, the oscillatory dependence of the waves on (¢,7) is ¢ ~ e
become universal in Boyer-Linquist coordinates in the near horizon region. All particles slow their
radial infall as they approach the black hole and begin to co-rotate with the horizon, asymptotically
freezing into place on the horizon. Mino and Brink [14] used this behavior and the near horizon
expansion in order to compute the radiation produced by a point particle as it falls onto the horizon.
Their results pointed to a universal frequency for radiation emitted during this final stage of a plunge.
The frequency is equal to the angular frequency of the horizon Q g, and decays exponentially in time
due to redshifting at some rate proportional to the surface gravity of the black hole. Since every
particle plunge emits at the same frequency, with an exponential decay just like a QNM, this hints
at an interpretation of this final emission as a component of the natural frequency spectrum of the
black hole. This “horizon mode” is not formally a QNM, but it behaves identically to one and should
be considered as part of the ringdown spectrum following any event that perturbs the black hole.
In [11], Yanbei Chen and I showed that this interpretation of the horizon mode held by considering
situations in which the black hole perturbations are sourced in an initial data setup, rather than by
a point particle plunge. There is a subtlety in the near horizon region when prescribing this data,
since the initial perturbations must have a radial dependence which ensures that infalling observers
do not see diverging quantities. Taking this detail into account, we can show that a family of horizon

mode frequencies exists for generic initial data with the form

wg = mQyg — 2ingy, n>1, (1.9)

where gg is the surface gravity, m is the magnetic quantum number of the perturbation, and n is
an integer which controls the decay rate. The smallest value n can take is 1, and which particular
value of n is excited by the near horizon data depends on how the data decays as it approaches the
horizon. From these considerations, we were also able to identify that the value for n quoted by
Mino and Brink for the sourced radiation is actually smaller than is allowed by the considerations
discussed above (in fact they have n = 1/2). In our study we were able to show that their original
work contained a critical error, and that a correction of this error should result in our lowest value
of n=1.

Whether the horizon mode is more than a mathematical curiosity in the case of a generic ringdown
is an important question. It is possible that, like the vast array of high order frequency modes, this
mode has no important role in the radiation from a strongly deformed black hole. In order to
investigate this question further, in our study we searched for the presence of the horizon mode in a
pragmatic fashion: we tested whether the use of this mode offered an improvement in the analysis
of the gravitational waves emitted during the ringdown phase of a numerical simulation of a binary

black hole merger. We found no evidence of the horizon mode in this waveform, in the sense that its
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use gave no improvement over the use of the standard QNM frequencies. The waveform analyzed was
from an equal-mass merger, but we expect based on our analysis that the horizon mode will be most
important for events with large mass ratios, since these events can generate strong perturbations
concentrated near the final black hole horizon. Our work opens up the possibility for many future
studies, in particular a complete analysis of the radiation from the plunging particle (correcting and
extending the work of [14]) and a search for the horizon mode in waveforms from higher mass ratio

mergers.

1.3.2 The High Frequency Approximation and WKB Methods

The high frequency regime offers another avenue for new discoveries in BHPT. In this case, the
Teukolsky equation is expanded in the limit where the frequency is large, MR[w] > 1, in order to
arrive at simple expressions for the solutions to the QNM eigenvalue problem. This is equivalent to
the requirement that the aziumuthal quantum number [ is large, [ > 1. It is known that at leading
order in this eikonal expansion, the waves propagate along null geodesics of the spacetime [15]. Higher
order corrections determine the dispersion of the waves. For the case of QNMs, this geometric-optics
correspondence demands that the waves be partially bound to the black hole, so that the signal can
oscillate. For nonrotating black holes, these QNMs correspond to the unstable bound orbit of the
black hole (the “light ring” of the hole) [16-19], their frequency corresponds to the orbital frequency
on the light ring, and their decay rate to the rate at which a perturbed bundle of geodesics will
diverge away from the unstable orbit (the Lyapunov exponent of the orbit).

One important technique for finding these modes is the WKB method familiar from nonrela-
tivistic quantum mechanics. The WKB technique was first suggested by Schutz and Will [20], and
extended to higher orders and applied to various black hole spacetimes by many authors (see [6]).
However, the WKB method cannot be easily used in the case of Kerr black holes with generic spins,
since in this case the angular eigenvalue problem is coupled to the radial eigenvalue problem. Dolan
gave a partial solution, using a WKB method to find results for the cases where the unstable orbits
are equatorial (with equal angular and azimuthal quantum numbers, [ = m) and polar (m = 0) [21];
in these cases the angular problem can be solved or simplified, and these special cases cannot be
used to understand the case of a generic mode.

In Reference [12], collaborators and I detailed a joint-WKB solution to both the radial and
angular problems, which is presented in Chapter 3. This study completes the study of high frequency
QNMs in Kerr; in it we provide simple analytic methods for finding the QNM frequencies and wave
functions, and we also discuss the geometric correspondence of these modes with unstable null orbits
in Kerr. Previous work in slow Kerr showed at the frequency of these modes could be separated
into orbital and precession frequency contributions, and we gave a natural extension of this result

to the case of generic spins. Perhaps of greatest interest, we examined the accuracy of our WKB
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Figure 1.1: QNM frequency values in the high frequency limit, computed using WKB methods. The
real part is normalized by plotting Qr = wr/(1+1/2) (left panel), and the imaginary part by plotting
Q7 =wr/(n+1/2) (right panel). The frequencies are plotted as a function of = m/(l+1/2). The
curves indicate a = 0.1M (Blue, dot-dashed), a = 0.5M (Purple, dashed), and a = 0.9M (Black,
solid).

approximations and found that they were quite accurate even for the low-frequency QNMs which
are excited to the highest amplitudes during the merger of two black holes [22], or when a particle
falls into a black hole [23]. This means that these approximations may be helpful in a variety of
analytical and astrophysical situations in the future.

The WKB mode frequencies are plotted as a function of y = m/(I41/2) are plotted in Figure 1.1
for a variety of spin values. The real part of the frequency is plotted using Qr = R{w}/(l + 1/2),
and the imaginary part using Q; = —S{w}/(n + 1/2), where n is the overtone number; we see that
in the eikonal case, the decay rate of the QNM is one order lower in [ than the real part of the
frequency.

My contributions to this work included reproducing and correcting computations throughout
the paper and in helping to build the interpretation of the splitting of the eikonal frequencies into
precession and orbital frequencies. 1 also aided in the writing and editing throughout the paper,

especially in the introductory and concluding sections, and the geometric optics section.

1.3.3 The Nearly Extreme Kerr Black Hole and the Bifurcation of the
QNM Spectrum

Growing out of our work on the WKB method in BHPT, I present a final approximation method
used to make recent discoveries. This is the near extremal approximation, in which the Kerr black
hole is assumed to be rotating almost as fast as is physically allowable. At the limit of extreme
rotation, the Kerr spacetime simplifies, and analytic solutions to the radial Teukolsky equation can
be found. By expanding in a small parameter ¢ = 1 — a/M < 1, where a = M is the extreme spin,
we can find analytic solutions for the radial equation when the spacetime is only nearly extremal.

This line of investigation has been pursued in the past by many authors [24-30], but in the past
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incorrect assumptions were made regarding how the frequencies would behave in the nearly extremal
limit. The correct analytic formula for the QNM frequencies in this limit was found only recently
by Hod [30], but even then the domain in which these expressions are applicable was not clear.

Using the WKB results discussed above, we discovered that there were two distinct regimes of
mode behavior in the nearly extremal case [13]. For modes which are nearly equatorial, there is only
one family of QNMs, all of which are localized near the horizon and have decay rates that limit to
zero as the spin of the black hole becomes extremal. We call these the zero-damping modes, because
of their limiting behavior. Meanwhile, for modes which are nearly polar, the spectrum divides into
two sets of modes. The majority of the modes are also zero-damping modes localized near the
horizon, but a few modes exist which are localized away from the horizon and which always have
nonzero decay. We call these latter modes the damped modes. These splitting of the modes into
sets localized in two regions is analogous to the wavefunctions in a double-well potential in quantum
mechanics. Meanwhile, for holes which are not rapidly spinning, no such splitting has been observed.
Instead, QNMs with fixed angular quantum numbers can be arranged in a tower of increasing decay
rate, indexed with a single overtone number n. Our results indicate that at some high spin below the
extreme case, a = M, the spectrum undergoes a transition, where the tower of overtones actually
divides into two families and which can no longer be said to be indexed with a single number.

This transition in the spectrum is illustrated in Figure 1.2, which is taken from [13]. Depicted
is the QNM frequencies in the complex frequency plane, with the convention w = wgr — iw;. At a
spin a = 0.999M, the spectrum is made up of a series of overtones with strictly increasing wy, but
at spin a = 0.9999 the spectrum has distinctly divided into two branches. At the moment, it is not
clear if this transition has astrophysical relevance. However, observational evidence hints that real
black holes may in fact have large spins [31], and so these intricate features of the spectrum may
have observable consequences.

My contributions to this paper included checking the results throughout, performing a numerical
investigation of the bifurcation of the spectrum, and generating a numerical fit for the critical spin
parameter above which the zero-damping modes become more important than the damping modes.

I also contributed to the writing and editing.

1.4 The Visualization of Curved Spacetime

Perhaps the most important advance in GR in the past several decades the development of numerical
relativity. Initially plagued by instabilities, in the past ten years the fully nonlinear evolution of the
Einstien field equations on computers has become routine. These simulations primarily focus on
the merger of compact binaries. Astrophysically relevant binary black hole simulations feature two

black holes which orbit on quasi-circular paths, and which gradually spiral inward due to the loss
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Figure 1.2: Splitting of the spectrum into two branches for the mode | = 10, m = 7, as the spin a
increases from a = 0.999M (left panel) to a = 0.9999M (right panel), so that ¢ = 1 — a decreases
from € = 1073 to € = 10~%. The plot gives contours of constant value of a complex series expansion
whose roots are the QNM frequencies; darker values indicate values closer to zero, and they cluster
around the QNM frequencies. The + markers indicate analytic predictions of the zero damped
modes, and the x marker indicates the WKB prediction for the least damped mode. In the left
panel the modes form a single family of increasing decay rate, and the right panel shows how this
family splits into two at a larger spin. There are three damped modes in this case.

of orbital energy and angular momentum to gravitational radiation. Eventually these holes reach
the binary analogue of a last stable circular orbit, exit the adiabatic inspiral regime, and rapidly
plunge towards each other. The two holes merge into a common, deformed black hole, which then
rings down in accordance with Price’s theorem [32-34], which states that the hole must shed all of
its multipole moments and settle into a final Kerr state.

As mentioned in Section 1.1, the practical importance of carrying out these simulations in the
fully nonlinear regime lies in the science of gravitational wave detection. The strongest gravitational
wave signals emerge from systems where compact masses experience rapid accelerations, and this is
exactly what occurs in a binary merger. While the understanding of gravitational wave signals and
the eventual generation of signal templates served as a driving motivation for the development of
numerical relativity, we have not fully explored the insights available to us now that we can study
dynamic gravitational systems.

Even in the cases of the black hole binary mergers so far simulated, a full understanding of the
gravitational dynamics has not been established. The data extracted from these simulations always
includes the asymptotic gravitational wave signal, but often the only other information extracted
about the bulk spacetime are the trajectories of the black holes (especially with regards to the
measurement of the final black hole kick), and sometimes the evolution of the apparent and even

horizons. These simulations generally do not record the evolution of the curvature in the bulk of
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the spacetime, which is not surprising considering the fact that the curvature is described by a rank
four tensor. It is not at all clear what quantities to record the values of during the evolution, and
what any such quantities might mean. There is a need for physically meaningful quantities which
can be computed and used by relativists to understand simulated spacetimes.

To this end, the second part of this thesis details studies which develop and apply novel techniques
for the visualization of curved spacetimes. The essence of the method is to recast the Riemann
curvature tensor into a form that can then be described entirely in terms of vector fields with
associated scalar field strengths; these quantities can be visualized at a given instant of time by
plotting the integral curves of the vector fields in the usual way. The letter in which we introduced
this method [35] is reproduced in Chapter 5. These techniques are intended for use in numerical
simulations, but the remaining papers included in this thesis deal almost exclusively with analytic
explorations. In order to develop and understand these visualization techniques before applying
them to simulations, I and collaborators at Caltech and Cornell applied these methods to familiar
situations. These included asymptotic radiation, discussed in Chapter 6, weak gravity situations,
which are discussed in Chapter 7, and also in black hole spacetimes. This last topic is split into two
parts. First, in Chapter 8 we investigate exact black hole solutions, and then in Chapter 9 we apply

our visualization techniques to perturbed black holes.

1.4.1 Tendex and Vortex Lines

We express the curvature of spacetime in terms of what we call tendex and vortex lines. The tendex
lines describe tidal effects, giving at each point the preferred directions and strengths of tidal forces.
The vortex line describe frame-dragging, in terms of differential gyroscopic precession at each point
in spacetime. The manner in which we compute and draw these lines is a multiple part process, and
is well suited for application to numerical simulations of spacetime. Let us briefly review the elements
of this process, so as to make this summary relatively self-contained. The first step is to choose a
way in which to divide four dimensional spacetime into three dimensional, spatial slices. These slices
are moments of simultaneity according to some family of observers, and the only constraint on these
observers is that they move with timelike four velocities u* which are normal to a set of spatial
surfaces. Their four velocities are then used to project the curvature information of spacetime onto

the spatial slices, by defining first the spatial metric h,, by

Ry = Guo + upty. (1.10)

The spatial metric with one index raised, h,”, acts as projection operator onto the spatial slices.

With a combination of the spatial metric and the observers’ four velocities, we can project the

Riemann curvature tensor onto the spatial slices. This naturally breaks the curvature tensor into
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two parts, a tidal tensor &;; and a frame-drag tensor B;;. They are defined by the relations
1
Euw = hu"hP Rappoufu®, By, = 5h,ﬂhVﬁeW,JR"ﬂﬂ,,u”. (1.11)

Since all free indexes have been contracted with h,%, we can transition to using spatial indexes
7, k, ... for h and for any quantity completely projected onto spatial slices. In spatial coordinates,
the tidal and frame drag fields are
1
Euw = &k = Rjpko, B, — Bji = §€jmpRmpkoa (1.12)
where we have denoted with a 0 indexes that are contracted with the four velocity u* and where
we have defined the spatial Levi-Civita tensor €;;; = €, ke These two tensors are symmetric and
traceless, and so they carry all of the curvature information of vacuum spacetimes in their ten
independent components. The fact that they are tensors on spatial slices is essential for interfacing
with numerical simulations, where three dimensional curvature quantities are evolved from slice to
slice.
The next step is to compute the eigenvectors and eigenvalues of £ and Bj,. In order to find

the eigenvectors and eigenvalues we must to solve the generalized eigenvalue problem,
EfVe =2V} (1.13)

Frequently, we find it useful to choose an orthonormal basis, a set of four vectors u* and €}, and to

project &j;, into this basis, £.; = M,,egel;”7 and then solve the usual eigenvalue problem
gdi)Vl; = )\Vi) (1.14)

in this basis. The result of this procedure is a set of three eigenvector fields for the tidal field, and
three more for the frame drag field. These eigenvector fields do not have a direction associated with
them, in contrast to typical vector fields. Associated with each vector field is its eigenvalue. Locally,
the three eigenvectors associated with each of the tidal and frame-drag fields are orthogonal, and
the three eigenvalues of each field must sum to zero at a point, since &£;, and Bj;, are traceless.
The final step in the visualization procedure is to integrate the eigenvector fields to produce
field lines. These are what we call the tendex and vortex lines. We call the eigenvalues associated
with the three families of tendex lines those lines tendicities, and similarly the eigenvalues of the
frame-drag field the vorticities of the vortex lines. The field lines are in many ways analogous to
electric and magnetic field lines, but they do not have some of the essential features which make

the study of electromagnetism so intuitive. An example is that the tendex and vortex lines have
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nonvanishing divergence in vacuum. As such, it is not useful to illustrate tendicity and vorticity by
the density of field lines at a given point.

The tendex lines provide the preferred axes for tidal distortions at a point, and their tendicities
the amounts of tidal stretch or strain, in the following way. If we consider two points separated by
an infinitesimal spatial vector &7, then they experience a differential acceleration Aa? according to

the equation
Ad? = —E7 €7, (1.15)

Similarly, two gyroscopes separated by &7 will experience differential precession. Each will measure

the other to precess about its own preferred direction with a precession velocity A given by
AQY = Bk (1.16)

What we have in the end is a complicated set of field lines, with properties both familiar and
alien, but which completely embody the spacetime curvature as measured by the family of observers
who move with velocity u#”. We must see if their use can yield physical intuition into what can
otherwise be opaque numerical results. In the papers which I participated in and which I reproduce
in this thesis, I and my collaborators have begun to answer these questions, and we have begun to
formulate a new understanding of the generation of gravitational radiation in curved spacetimes.
Along the way, we detail and partially address a variety of challenges, perhaps the most difficult
of which is the question of how to deal with the gauge ambiguities inherent in the use of tendex
and vortex lines. As we will see, in fact the gauge dependence of these lines is mild in practice.
Specifically, slicings used in simulations pass smoothly through event horizons without coordinate
singularities. Such slicings are horizon penetrating, and black holes cannot be simulated unless the
time slicing is horizon penetrating. The studies I present in this thesis indicate that, in the case of
horizon penetrating slicings, the physical understanding available from the use of tendex and vortex
lines is robust.

In Chapter 5, I reproduce the study in which collaborators and I introduced the idea of tendex
and vortex lines, and applied them to visualize two numerical spacetimes [35]. The most interesting
application of the lines was to gain a better understanding of the superkick merger of two spinning
black holes. This is a merger where the spins of the black holes lie in the orbital plane, and features
strongly beamed radiation and a corresponding black hole recoil, which varies sinusoidally with
the initial orientations of the spins. Investigation of the tendex and vortex structures in such a
simulation led to an explanation of the superkick in terms of mass- and current-multipole moments,
whose relative phasing determines the strength of the kick.

My contributions to this initial study were limited in comparison to my role in later work. I
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participated in discussions during the conception of the paper, helped to determine some of the

underlying conventions, and helped to check the results and edit the paper.

1.4.2 Gravitational Radiation and the Topology of Vortex and Tendex

Lines

One of the simplest situations in which we can begin to explore the use of vortex and tendex lines
is the case of gravitational plane waves. Since plane waves stretch and squeeze objects orthogonal
to their direction of propagation, it is not surprising that the tensor and frame-drag fields have no
components in the direction of propagation. The result is that one tendex and one vortex line at
each point is aligned with the propagation direction but has vanishing strength, and we can ignore
these lines. The other two tendex and two vortex lines are simply related to each other; locally the
two tendex lines passing through each point are orthogonal to each other, lie in the transverse plane,
and have equal and opposite strength. The same is true of the vortex lines, and further the two sets
are constrained such that they are rotated by 7/4 relative to each other.

For a true plane wave, these local features determine the tendex and vortex line patterns ev-
erywhere. Of greater physical interest is the asymptotic regime far from an isolated source of
gravitational waves. In this case the gravitational waves are effectively spherical waves propagating
radially, and locally all of the properties of plane waves hold. What is interesting is the manner
in which the tendex and vortex lines link up globally. Like the famous case of a vector field on a
sphere, globally the requirement that only two lines pass through each point must fail somewhere;
these points are the singular points of the eigenvector fields, and at these points the radiation must
have vanishing strength. The number and character of these singular points are controlled by topo-
logical considerations, just as in the case of vector fields, although there is a greater number of
possible types of singular points for tendex and vortex lines, since they do not have an orientation.

I led a group of collaborators at Caltech in a short study of the topological patterns of the
tendex and vortex lines of generic, asymptotic radiation [36], which is reproduced in Chapter 6. Our
results indicate that, while a great variety of possible patterns and singular points are possible, for
physically realistic systems where the quadrupolar component of gravitational radiation is dominant,
the pattern is relatively universal.

The study includes the visualization of a simple model for a black hole merger which experiences
a strong kick. The method was to compute the asymptotic multipole moments of a simple, weak
gravity arrangement of point particles with spin; these moments reflect the possible asymptotic
gravitational fields of spinning black holes. When there is no spin, the gravitational radiation is
dominated by the time-changing mass quadrupole moment. The left hand panel of Figure 1.3

illustrates the tendex and vortex lines produced by a time-varying pure mass quadrupole. There are
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Figure 1.3: Asymptotic tendex line patterns of radiation from two sources. The coloring indicates
the tendicity, where darker indicates stronger tidal effects; the lightest spots are where the radiation
vanishes. Left: Mass quadrupole source, with equal radiation above and below the equator. There
are two singular points in the field line patter visible on the equator, where the radiation vanishes;
two more are hidden from view. Right: Superkick model which incorporates both a mass quadrupole
and a current-quadrupole. The radiation is stronger above the equator, and the singular points of
vanishing radiation have moved below the equator.

four singular points, which lie in the orbital plane, and the radiation above and below the equatorial
plane is equal. Adding spins gives an additional current-quadrupole contribution, and this deforms
the pattern of lines far from the system in a manner that depends on the orientation of the spins.
In [35], we postulated that a strong black hole kick could result from the beating of mass and a
current multipole against each other, in an orientation which gave constructive interference above
and destructive interference below the orbital plane. We illustrate this model in [36] by arranging
the spins in the orbital plane and adjusting their direction; for constructive interference, the singular
points are pushed below the orbital plane, and the relative strength of the radiation above the plane
is increased compared to that below. This is shown in the right hand panel of Figure 1.3. The result
is a recoil of the black hole away from the beamed radiation. We also note that the most extreme
topological deformation would push all of the singular points onto the south pole of the sphere, but

this does not appear possible for black holes with reasonable spins.

1.4.3 Weak Gravity

Chapter 7 details the first extensive analytic study of tendex and vortex lines, presented in [37]. In
this paper, we explore situations where gravity is weak, and can therefore be treated by Newtonian
and nearly-Newtonian equations. Our purpose was to fully introduce the formalism of tendex and

vortex lines, investigate them in the simplest static situations, and then to investigate the generation



Figure 1.4: Tendex lines in the orbital plane of and equal mass binary, with separation a = 20M
(where M is the total mass of the binary), produced using a multipolar approximation. The solid
black circle has radius A = 2.24a. The colors are fixed by the tendicity weighted by wr so as to scale
out the 1/r falloff in the wave zone (with dark blue strongly positive, dark red strongly negative, and
light green near zero). Inside the dotted black curve (r = $a*/M = 10a), the binary’s (nonradiative)
monopole moment dominates, £ ~ M/r3 | and the red (stretching) tendex lines are nearly radial.
Outside the dotted black curve, the (radiative) quadrupole moment dominates, £ ~ 4M?3/a*r, and
the tendex lines are strong only where they are approximately transverse to the radial direction.

of gravitational radiation in simple systems using the lines.

One of the most interesting insights to emerge from this study, and one which strongly influ-
ences our followup work, is the description of the generation of gravitational waves by a Newtonian
binary. We focus on the appearance of the tendex lines, which are the dominant structures in this
nonspinning binary pair. The leading contributions in a v/c, Post-Newtonian type expansion of the
metric give a tendex line pattern near the binary system which is the same as in purely Newtonian
gravity: the lines describe the near-field tidal effects which adjust almost instantaneously to the
motion of the binary pair. Outside of the orbit of the binary, the system is amenable to a multipo-
lar expansion, and retardation effects become important. It is here that the tendex lines give new
insights. In Figure 1.4 (taken from [37]), we can see that as we move further from the near-zone,
the radial tendex lines begin to pick up wavelike behavior. They grow weak when nearly radial,
reflecting the fact that in the wave zone, the radial tendexes have zero tendicity. Meanwhile, when
the tendex lines move along the approximately transverse direction, they grow in strength again. In
Figure 1.4 the lines are colored by their tendicity, and in order to give a clear representation of how
the strength of tidal effects vary along the lines we have scaled out the expected wave-zone radial
behavior by multiplying by wr. This image gives a direct illustration of the manner in which near

zone sources smoothly transition into asymptotic radiation.
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I share first author credit with four collaborators for this study, and several other authors pro-
vided contributions to the text; Kip Thorne especially made major contributions to the writing and
conceptual understanding of the text. My primary contributions were to the sections on the general
formalism and to the analysis of the the Newtonian binary. I also contributed to the editing and
writing throughout the rest of the paper, checked various results throughout the text, and derived

a connection to the Newman-Penrose curvature quantities.

1.4.4 Stationary Black Holes

In Chapter 8 I reproduce a study of tendex and vortex lines in stationary black hole spacetimes,
which are the simplest spacetimes where the curvature is strong. The analytic control and familiar
territory afforded by these black hole spacetimes allows for an initial investigation of the slicing-
dependence of the tendex and vortex lines. We also extend our understanding of the form that the
vortex lines take in weak gravity systems to situations where frame-dragging is large. The tendex
lines in Schwarzschild are no different than in the Newtonian case (in fact, even the eigenvalues
of the tidal tensor are the same if Schwarzschild coordinates are used). The investigation of Kerr,
on the other hand, provides us with a first glimpse of how vortex lines are generated by rotations
in strong gravity. We see that two families of lines emerge from the horizon, one set of negative
lines from above the equator and a mirror pair from below; these lines arc around the opposite pole
and return through the horizon. The third set of vortex lines form axial spirals. These lines are
visualized for a slowly spinning Kerr black hole (the Kerr metric linearized in a/M) in Figure 1.5,
taken from [38].

We also expand on the idea, briefly introduced in [35], of horizon tendicity and vorticity. These
are simply the projections of the tidal and frame-drag tensors onto the horizon, using the spatial
horizon normals. Both our analytic explorations, and our early numerical studies such as those
reported in [35], indicate that horizon tendexes and vortexes play an essential role in the physical
understanding of spacetimes with black holes. An analogy can be made between these quantities
and charges or currents set up on boundaries in electromagnetism. In the case of the Kerr black
hole, there is a sense in which the negative horizon vorticity in the northern hemisphere sources
vortex lines nearly normal to the horizon, which we call a vortex. This idea carries through to both
perturbed spacetimes and numerical simulations, with the horizon vorticity sourcing near-horizon
vortexes. The same can be said of the positive horizon vortex in the southern hemisphere, and
also for horizon tendexes sourced by horizon tendicity. This will be discussed further below, in
Section 1.4.5.

Additionally, we learned from this study that the form of the vortex and tendex lines is robust
under even fairly extreme changes to the slicing, so long as the time slices are horizon penetrating.

In coordinate systems where the time slices do not pass through the horizon, we found singular
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Figure 1.5: (a) Tendex lines, and (b) vortex lines for a slowly rotating Kerr black hole. Here we take
a/M = 0.1. The horizon is color coded by its tendicity Exy in (a) (uniformly red signifying negative
tendicity) and vorticity Byy in (b), and the field lines are color coded by the sign of their tendicity
or vorticity (blue for positive, red for negative). In (a), the spiraling lines have been made to spiral
more loosely by multiplying the rate of change in the r direction by five. The semi-transparent cone-
like surfaces emerging from the horizon’s north and south polar regions show where the magnitude
of the vorticity at a given radius has fallen to 80% (outermost cones), 85%, and 90% (innermost
cones) of the polar magnitude. We identify the innermost cone (the 90% contour) as the edge of the
frame-drag vortex. The equatorial plane is shown for reference in both panels.

features at those horizons. In particular, in Schwarzschild coordinates around a nonrotating black
hole, the lines never reach the horizon (they cannot, since the horizon is not covered by the slicing),
but this fact is not obvious since the lines are either radial or degenerate on spheres. In Kerr,
these lines fail to reach the horizon, and also twist around as they encounter the infinite winding
implicit in the Boyer-Lindquist coordinate system. Some analytic results are given which provide an
understanding of how allowing the slices to pass through the horizon tends to form generic tendex
and vortex patterns in the Kerr case. These simple studies are key to future work in numerical
spacetimes.

I share first author credit on this paper with Fan Zhang, and several other authors made key
contributions. My contributions were in the analytical computation of the eigenvector fields for the
spacetimes considered, along with the tendicities and vorticities; the treatment of the Schwarzschild,
and the slowly spinning Kerr, and the checking of the Kerr visualizations; and the writing and
editing. The visualization of Kerr in various coordinate systems and slicings was carried out by Fan

Zhang both using analytic results I provided and using numerical tools.
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1.4.5 Perturbed black holes

Chapter 9 presents the most intricate and involved study in our series of papers on the use of tendex
and vortex methods, originally published as [39]. In this study, we use the methods introduced in
previous papers to gain a deeper understanding of perturbed black holes. Along the way, we also
discover a great deal about the lines themselves. For example, we develop further evidence that
the lines are robust under gauge transforms, and we compare the perturbations in Schwarzschild to
those in Kerr in order to gain insights into both the perturbations of Kerr and the influence which
spin has on the appearance of tendex and vortex lines.

One subtlety that must be stated in advance is the almost all of the visualizations carried out
in [39] are actually of the perturbation to the tidal and frame drag fields, 6& and 6/8. Thus, in this
study, the lines do not describe the actual tidal and frame drag effects throughout the spacetime.
Rather, the goal of these visualizations is to investigate and isolate the dynamics of the curvature
perturbations. It is true though that where the perturbations dominate over the background, such as
in the wave zone and in regions where the background tidal and frame-drag fields have degenerate
eigenvalues, the eigenvectors of the perturbations 0€ and dB do describe directly the tidal and
frame-drag effects. Another important exception is in the case of the vortex lines of a perturbed
Schwarzschild black hole. In this case, since there is no background frame-dragging, the lines visualize
the true frame-drag field B5.

What is gained by visualizing only the perturbations are new insights into the dynamics of
the perturbations to black holes. We find that the perturbed horizon tendicity and vorticity act
as sources for these lines which extend away from the horizon and transition into gravitational
radiation. In situations where the horizon tendicity and vorticity oscillate in sign over time, we
will find an analogy to RLC circuits, where regions near the horizon briefly appear to store the
curvature perturbations as the horizon tendicity or vorticity oscillates through zero. An example of
this is given in Figure 1.6, where snapshots of the strength of the vortex lines and the strength of
the (perturbative) tendex lines are plotted in the equatorial plane, over half of a wave cycle, for an
oscillatory quadrupolar perturbation of the hole. In the near zone, the tendex strength lags that
of the vortex by a quarter cycle, appearing to store curvature “energy” when the frame-drag field
is momentarily at a minimum. In this case the analogy is promising but not exact; there is also a
sense in which there are near horizon waves, propagating down into the horizon, and a study of the
tendex and vortex lines themselves reveals complicated dynamics which calls for further study. Some
vortex lines are illustrated in the top row of Figure 1.6. Nevertheless, these visualization techniques
have revealed new aspects of black hole perturbation theory, even after more than half a century of
dedicated study.

I share first author credit on this paper with David Nichols, and several other collaborators made

contributions, especially Kip Thorne. My primary contribution to this study was the sections dealing
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Gl = T/4 ot =3n/4

Figure 1.6: Time evolution of the equatorial vortexes (top and middle rows) and equatorial per-
turbative tendexes (bottom row) for the superposed (2,2) and (2, —2) magnetic-parity mode of
Schwarzschild in RWZ gauge. The color scale plots £+/vorticity x 7, and the gravitational-wave-
induced exponential decay of the vorticity and tendicity has been removed. Top row: Equatorial
vortex lines and their vorticity plotted in a region near the horizon (16M across) followed over time
t. The real part of the eigenfrequency is denoted o, so the successive panels, left to right cover half
a cycle of the mode’s oscillation. Middle row: The vorticity of the equatorial vortex lines in the
near, intermediate and beginning of wave zone (30M across) at the same time steps as the top row.
Bottom row: Tendicity of the negative tendex lines passing through the equatorial plane plotted at
the same time steps as the top row.

with perturbed Schwarzschild black holes, analyzed using the Regge-Wheeler-Zerilli formalism. This
included examining the [ = 2 modes for m = 0, 12, and also superimposed m = 2 and m = —2
QNMs. These portions of the paper comprise the major investigation of the dynamics of the tidal
and frame-drag fields, and also provided partial results for the gauge comparisons in our study. I also
assisted partly in understanding the reconstruction of the Kerr metric from the Hertz potential, and
I contributed to the writing and editing throughout the paper, as well as some limited, independent
checking on the sections of the paper which dealt with the Kerr black hole, and with the Schwarzschild
black hole in ingoing radiation gauge. David Nichols performed the investigation of perturbed Kerr
black holes, as well as the [ = 2, m = 2 perturbation of Schwarzschild in ingoing radiation gauge for

the gauge comparisons.
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1.5 Outlook

The work discussed in this thesis is, in almost all cases, merely the first step in a series of larger
programs. It is my hope that in the future I and other researchers will build on these topics,
especially working to strengthen their application to gravitational wave science. We are entering an
era in which gravitational wave theory will make contact with observations, so the computation of
observable quantities is more important than ever.

For the materials in Chapters 2 — 4, contact with observations may still be far off, for these
studies of the QNM spectrum of black holes will require the precise measurement of gravitational
waves from black hole ringdowns. Nevertheless, the deeper understanding of BHPT that these
studies offer may find application in approximations of the Green function for black holes, which
in turn helps in studies of gravitational self-force and the improvement of predictions for extreme
mass ratio inspirals. Actual observations of extreme mass ratio systems require the launch of a
space-based gravitational wave detector, which at the time of writing of this thesis seems like a
far-off prospect.

Meanwhile, the materials of Chapters 59 can find immediate application to numerical simula-
tions. This is in fact the next step in the development of the techniques of tendex and vortex lines,
and this effort is currently underway. There is also a great deal of promise in the application of
tendex and vortex lines to the numerous exact solutions to the field equations which are known but
have ambiguous physical interpretation. These solutions certainly do not represent physical systems,
due to their inevitably possessing singularities or negative energy content, but they may also have

much to tell us about the nonlinear side of relativity.
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Topics in Black Hole Perturbation
Theory
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Chapter 2

New Generic Ringdown
Frequencies at the Birth of a Kerr
Black Hole

We discuss a new ringdown frequency mode for vacuum perturbations of the Kerr black
hole. We evolve initial data for the vacuum radial Teukolsky equation using a near hori-
zon approximation, and find a frequency mode analogous to that found in a recent study
of radiation generated by a plunging particle close to the Kerr horizon. We discuss our
results in the context of that study. We also explore the utility of this mode by fitting
a numerical waveform with a combination of the usual quasinormal modes (QNMs) and

the new oscillation frequency.

Originally published as A. Zimmerman, and Y. Chen, Phys. Rev. D 84, 084012 (2011).
Copyright 2011 by the American Physical Society.

2.1 Introduction

Black holes are born when a massive star exhausts its nuclear burning processes, leading to a
runaway collapse where gravity dominates over all other interactions. They can also be produced by
the merger of binary systems containing compact stellar remnants, such as neutron stars or smaller
black holes. Stellar collapse and binary mergers resulting in black holes are astrophysical processes
where it is expected that gravitational effects are strong, resulting in regions of high curvature.
Observations of such processes would provide a strong test of General Relativity.

Gravitational wave astronomy will provide a powerful tool for investigating astrophysical pro-
cesses involving highly curved regions of spacetime. In the absence of external fields and matter,
black hole binary mergers are completely invisible in the electromagnetic spectrum, and no light

can reach observers from the interior of a massive star undergoing core collapse. In these situations
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gravitational waves are expected to carry away as much as a few percent of the total mass energy of
the system, and can provide direct information about these otherwise unobservable events (see e.g
).

In this study, we focus on the gravitational wave signal produced in the final stages of the birth
of a black hole, when the gravitational waves can be described using linear perturbation theory on
the Kerr spacetime. Measurement of such waves could provide a key test of the so called “No-Hair
Theorem” of General Relativity. The No-Hair Theorem is the statement that stationary black hole
spacetimes are described completely using only a few parameters, namely mass, spin, and electric
charge. This theorem has been proved for the case of Einstein-Maxwell black hole solutions, through
the uniqueness theorem for the Kerr-Newman black holes [2]. Thus, when a black hole is born in a
merger or stellar collapse, the resulting object must radiate away all of its multipole moments ¢ > 2
over the course of a ringdown phase. This phase involves emission of gravitational waves in a well
known spectrum of exponentially decaying frequency modes, called the quasinormal modes (QNMs)
[3-5], and also late time “tails” which have a power-law fall-off in time. Observed deviation from
QNM oscillation in the ringdown phase would be indicative that the spacetime is not represented
by perturbations on a Kerr spacetime, and so would be a violation of the No-Hair Theorem [6-9].

In addition to this test, detailed study of QNM ringdown is a key component in detection of
gravitational waves in the first place. Accurate theoretical and numerical gravitational waveforms
are necessary for the success of the method of matched filtering, which will be used to extract the
faint signal from the noise in these experiments. Matched filtering uses a gravitational wave template
to filter the noise and determine if the wave is present. Accurate modeling of the ringdown phase is
then necessary to build useful theoretical templates.

In this study we focus on black hole mergers, which provide a cleaner system with definite
numerical predictions, and for which the possibility of detection is higher. The recent strides in
numerical relativity [10] have allowed several groups to solve the problem of binary inspiral and
merger completely for the first time (see [11, 12] for recent reviews). Such simulations have provided
enormous insight into binary mergers, and indeed they can serve as a test bed for the theory of
black hole perturbations, in addition to providing complete theoretical gravitational wave templates.
However, the computational expense of such simulations prohibits their use in generating a large
bank of templates for use in matched filtering. As such, a three stage, semianalytic approximation
scheme has been developed to treat binary inspirals. This method has the advantage of reducing
the computational expense for template generation. Also, analytic methods help to build intuition
into the physical processes of the merger.

The first stage is the long, quasistatic decay of the orbit of the binary, which is treated using
the Post Newtonian approximation to General Relativity. The next phase is the rapid merger of

the binary, requiring full numerical treatment (though various methods have been employed to
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approximate the entire merger, e.g. [13, 14]). Finally, once the two compact objects are surrounded
by a common horizon, the system can be approximated by the evolution of perturbations of the final
Kerr spacetime. The radiation generated in this phase is governed by the Teukolsky equation [15].
The QNM frequencies are given by the allowed spectrum of the Teukolsky equation, when physically
appropriate boundary conditions are imposed. The QNMs are located at the poles in the Green’s
function of the radial Teukolsky equation, and are found using a variety of methods (see e.g. [5] for
a recent review).

Generally, it has been assumed that the QNMs make up the entire spectrum of oscillations during
the ringdown phase after merger. Here we seek a new frequency, characterized by the properties
of the Kerr horizon. We are inspired by a study by Mino and Brink [16], which investigated the
radiation of a point particle falling into a Kerr black hole, using a near horizon expansion to find
the radiation analytically. As the infalling particle approaches the horizon, its trajectory in Boyer-
Lindquist coordinates asymptotes to pure angular motion around the black hole with frequency

QHv

Qp a ry =M+ M?—a?. (2.1)

T oM ry
Here a is the spin parameter, M is the mass, and r; is the Boyer-Lindquist radius of the outer
horizon. From the viewpoint of an observer at infinity, the particle is frozen at the horizon, corotating
with it and sourcing radiation at its rotation frequency. Calculations by Mino and Brink show that

the radiation arrives at future null infinity with an exponential decay,
Uy ~ e imSat=gnt (2.2)

Here W4 encodes the outgoing radiation, as discussed fully in Section 2.2, and m is the azimuthal
quantum number of the radiation. The decay rate gg is the surface gravity, given by

M2 — a?

2.
2M’T’+ ( 3)

9gH =
The frequency here does not depend on details of the particle’s energy and momentum, because
the particle’s late-plunge trajectory is essentially universal in the Boyer-Lindquist coordinate system.
This suggests that this oscillation mode, the “horizon mode,” may be more general than this single
case considered by Mino and Brink. If we take the naive point of view that the late stages of the
merger can be approximated by gravitational perturbations falling onto a final black hole, then we
have a situation where the infalling perturbations will source outgoing waves like point particles.
Though this viewpoint is crude, it does suggest a search for this new frequency mode in post-merger
ringdowns.

In this paper we will argue for the existence of a horizon mode (HM) with a frequency of mQy
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and a decay constant which we find to be an integer multiple of gy. We find that the particular
decay rate depends on our model for how the spacetime transitions from the nonlinear merger into
the regime of first order perturbations on the Kerr spacetime.

This paper is organized as follows: Section 2.2.1 provides a simple argument for the presence of
this frequency. In Section 2.2.2 we derive this mode through a direct construction, using a simple
model for the transition from merger to ringdown. In Section 2.2.3, we explore the consequences of
a different model for the transition. In Section 2.3.1, we reconcile our results with those of Mino
and Brink. In order to test the utility of this new HM, in Section 2.4 we use the HM in combination
with the QNMs to fit a waveform generated by full numerical general relativity, and compare fits

that include the HM to fits with the QNMs alone.

2.2 The Near Horizon Approximation

We first present a heuristic argument for the presence of an HM analogous to that of Eq. (2.2) in
the solutions to the Teukolsky equation. We then derive the HM by evolving initial data for the
Teukolsky equation in a near horizon approximation. Finally, we investigate the consequences of a

different model for the transition of the spacetime into the regime of linear perturbation theory.

2.2.1 Simple Argument for a Horizon Mode

In the Boyer-Lindquist (BL) coordinate system, the components of the Weyl tensor which represent
outgoing perturbations of the Kerr spacetime are represented compactly by the Newman-Penrose

curvature scalar,

Uy = Calgry5nam’8n7m6 . (2.4)

Note that we use a metric signature of (— + ++), and use the appropriate conventions of [17] for

Newman-Penrose (NP) quantities such as 4. We use the Kinnersley null tetrad [18],

r? + a? a ., 1 . = . i
e = (A’LO’A) : N%ZE(TQ-"-CL{—A,O,CL) , mi{:ﬁ(zasmG,O,l,Sine),
(2.5)
where
1
A=7r*—2Mr+a?, P= g ¥ =72 +a%cos? 0, (2.6)
r — iacos

and the overbar represents complex conjugation.
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With these choices, Uy satisfies a separable linear wave equation [15], and can be written as

Va(t,r,0,6) = ot / Ao S TR () S (6) 2.7)
m
Here, Sy, (0) are the spin-weighted spheroidal harmonics [19, 20], with the appropriate spin weight
for Uy, s = —2. In the limit w — 0, they reduce to the spin-weighted spherical harmonics
oYy (0,¢). The radial function Ry, (r) is the solution to the radial Teukolsky equation [15].
Note that W4 vanishes in the background Kerr spacetime, and its perturbed value is independent of
tetrad perturbations and gauge transformations.

We can see the relationship between the scalar ¥4 and the outgoing gravitational waveform via
its asymptotic form near future null infinity. In this limit, for asymptotically flat spacetimes (see,
e.g. [21]),

Uy(r — o0) = —02(hy —ihy) . (2.8)

Here the + and x indicate the polarization of the gravitational waves.
In the BL coordinates, using the Kinnersley tetrad, the asymptotic behavior near the horizon of

the two homogeneous radial solutions are

etk outgoing
R@?nw (T) ~ 5 (29)

AZe= " ingoing

with & = w—mQpg. Together with the separation of ¥y, Eq (2.7), these solutions are associated with
outgoing and ingoing radiation at the horizon. The tortoise coordinate r* is defined by dr*/dr =
(r? 4+ a?)/A. Note that r* — —occ as 7 — 7.

One of these two solutions is selected out as unphysical, based on its behavior near the event
horizon. Here we repeat an argument first presented by Teukolsky [15]. We demand that fields
neither vanish exactly nor diverge at the horizon when measured by a physical observer. Near the
horizon, the trajectory of any freely falling observer will approximately match that of an ingoing

null geodesic (see e.g. [16, 22]), independent of the observer’s energy or angular momentum, with
t+r* = const, § = const, ¢ = Qpyt. (2.10)

This means that for distant observers, the infalling trajectory does not appear to enter the horizon,
but instead asymptotes to it while circulating around the horizon with a constant frequency. A
more natural set of coordinates is ingoing Kerr coordinates, (v,r,6, q~5), where dv = dt + dr*, and
dgﬁ =d¢ + a dr*/(r? + a?). Ingoing null geodesics lie on lines of constant v and qB

In this ingoing coordinate system, the metric does not become singular at the horizon. However,
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even in these coordinates, the Kinnersley tetrad used to define W4 becomes singular at the horizon.
This can be repaired by using a Lorentz transform to boost into the reference frame of an infalling
observer who carries a nonsingular tetrad, namely

A 2(r? + a?)

1 in —
)Ka n A

_ . 2.11
2(r2 + a? K ( )

lin -

Here the subscript “in” indicates the regular ingoing tetrad. The tetrad, written in the ingoing Kerr

components, is

A a r? 4+ a? —p i
=11 0 B=10,- 0,0 # =~ (iasinf, 0,1, — ).
in ( 72(T2+a2>7 7T2+a2)7 nln ( ) ) ) YUy )7 mln \/i tasmduo, v, 7sin9

(2.12)
With this tetrad, the physical observer measures a curvature scalar of
] 9(r2 2172
= {(T — )] v, (213)

As a consequence, the two radial solutions in Eq. (2.9) correspond to Wil ~ e~iwveimé and vin ~
A—2e—iwveimde2ikr™  The second diverges at the horizon, and so is selected as unphysical. In other
words, if waves emerge from the horizon, then the ingoing observers will see a diverging curvature due
to blueshift effects. Note that while it is a particular observer that carries the tetrad of Eq. (2.12)
near the horizon, these general results hold for all physical observers. This is because the tetrad that
another physical observer carries can be related to that in Eq. (2.12) through nonsingular Lorentz
transformations.

However, if the frequency w is complex, this divergence can be removed. To see this, we let
w = mfQy — i7, and seek an appropriate v (the real part of the frequency is chosen so that the

observer does not measure increasingly rapid oscillations when approaching the horizon). We note

that near the horizon, A ~ e2947" For the physical observer, then,

Uil ~ exp (—iwv +imp — dgr* + 277“*) . (2.14)

We see from this that if

this solution remains regular at the horizon, and the solution decays along the observer’s worldline
in just such a way that the growth is compensated for. This particular frequency is selected out by
a physically allowed solution of the Teukolsky equation, and so we must consider its place in the
usual QNM spectrum. Modes with v > 2gy decay exponentially for the physical observer. In this
sense, the decay rate of Eq. (2.15) gives the least damped, physically reasonable mode in this simple
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argument.

2.2.2 The Near Horizon Limit: The > Boundary Model

With our heuristic argument in hand, we now derive the HM using a specific ansatz. In order to
keep our results relevant to the problem of compact binary inspiral, we consider the following model.
We imagine that to the future of some spacelike hypersurface ¥, the spacetime can be described
with linear perturbation theory on the Kerr spacetime, while to the past of ¥ the spacetime may
be nonlinear. We denote ¥ by setting the Boyer-Lindquist time coordinate ¢ = 0. The past of X
represents the inspiral and merger phases of binary coalescence. To the future of ¥ we can use the
Teukolsky equation to evolve initial perturbations on ¥ forward. A similar ansatz has been used
in the Close Limit approach [23], and Lazarus project [24] which used numerical integration of the
Teukolsky equation to evolve initial data on an initial time slice [24, 25]. We refer to our model as
the ¥ boundary model.

Given this ansatz, we evolve initial data ¥|—g = p~*W4|4—g and 9;1)|t—o, using the Green’s
function. The full details of the analysis are presented in Appendix 2.A. A near horizon expansion
allows us to obtain part of the evolution analytically. Physically, we postulate that just after the
merger of the binary, the perturbations are concentrated in a small region near the horizon, so that
the initial data used in the Green’s function evolution only has support in a small region near the
horizon. This expansion allows us to use the asymptotic form for the Green’s function, and to keep
terms only to first order in ¢ = (r — r4)/ry < 1. While we focus on the physical picture where the
perturbations are concentrated near the horizon, our results hold for the evolution of the initial data
which is near the horizon even if the data on the initial surface extends to large r. In addition, due
to redshift effects, this finite region near the horizon produces (decaying) radiation over an infinite
region of null infinity.

Specifically, let v|;—¢ and 0:¢|t—o be nonzero only between ry and (1 + &)ry, with £ < 1. We
truncate the integrals of the Green’s function over the initial perturbation to this small region. To
first order in distance from the horizon, A ~ 2Mr ke, with k = m . From Appendix 2.A,
equation (2.76), we have that U, takes the form of equation (2.7) with the radial function Ry, ()
given to leading order in € by equation (2.77),

(A+ry / ; / i N -
Romo(r) ~ 7/ o [ﬁgmw(r )+ iwame (r')  (2ME + ima)ame, (") Como(r17) s (2.16)

2Mr, (ke)3 2(Mr; )2 (ke)?

T+

where the functions aume, (r) and Beme, () can be found from the initial data, using equations (2.68),

(2.69), (2.74), and (2.75). The function G, (r,7') is the frequency domain radial Green’s function.
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In order to evaluate this expression, we insert the explicit form of the radial Green’s function,

~ 1 R> (r) R (') ' <r
a _ / _ Imw Imw )
emeo(777) Weme { R (r) RyP (') v/ >r

(2.17)

The functions R,” ~and Ri% = are two homogeneous solutions to the radial Teukolsky equation,
with the up-mode (no radiation from past null infinity) and in-mode (no radiation from the past

horizon) boundary conditions, respectively. They have the asymptotic forms

BETEESAQ —ikr™ =Ty
Rhnw( ) - Bref 3 piwr* Bln
tmw’ "€

7

r—le—wr* 5 0o

tmw’
(2.18)
o ( ) R C;I:lweikr* + Crof A2€—ikr* =Ty
tmw Cgr‘izbr?’elw* r — 00 ’
(2.19)

where the Wronskian Wy, is given by Wy, = QZWBemetrans,

Imw

Since we are interested in the waves at infinity, r — oo, we insert the appropriate asymptotic

expression for R . Also, since the integral extends only over the near horizon region, we insert

the asymptotic expression of R}~ — BIFansAZe=ikr™ o~ BUans( \fp, ke)2e =" Thus,
zrans 3 i
R — R W B etT 7 2.20
Imw (T OO) QZUJB?;,LW re fmw ( )
(1+&)r4 -
Ztmmew = ——/ dr e te7tkr M7y Bome (r) + (iMwry 4+ 2MK + ima)cpme, (1) | - (2.21)
K S,

In order to complete the integration, we need to know how the initial data behaves to leading
order in e. We can write to leading order appme, (r) ~ o €" and Bemw(r) = BY,,.,€°. We find the
leading order powers n and p by essentially repeating the argument given in Section 2.2.1, with some
additional care.

Here we cannot follow a single observer who falls past the horizon, since we wish to know the
behavior of U4 on the initial slice 3. We consider instead a family of accelerated observers who
cross the surface t = 0 at a variety of radii, extending all the way to the horizon but not penetrating
it. We choose the four-velocities of these observers at this initial surface to vary with r, u(r),
such that all members of this family carry the regular tetrad (2.12). These observers measure an
initial perturbation in their own frames, and for an observer at some r the measured perturbation
is related to that expressed in the Kinnersley tetrad by ¥t = [2(r? + a?)/A]?Uy ~ e 2V . Since
all the observers are physical, we expect that the perturbation they measure does not diverge as we

take the limit » — r, moving along the family of observers. However, this requires that ¥y ~ 2.
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Thus, we require n = 2, p = 2 on this interval.

Inserting this into (2.21) we have

9 [(r+(1+8) o
Zomw = — {MT+5gmw + (iMwry +2Mk + ima)agmw} - / dr e e
K Jr,
9 (r+(1+8 )
= [Mr+ﬁgmw + (iMwry +2Mk + ima)ozgmw] f/ dr etmikre/n (2.22)
K Jr,
Focusing on the integral, which we denote I, we have
I= i e(2ik/29m) In€ (2.23)

w— (mQy — 4igy)

Here, there is a pole in the denominator which will select out the frequency
wg =my — digy , (X Model) (2.24)

when Eq. (2.7) is integrated over w.

Combining Eqgs. (2.7), (2.20), (2.22), and (2.23), we integrate over w. We close the contour
in the lower half plane, selecting out the poles of Eq. (2.20) by the residue theorem. The zeros
of B}‘;W comprise one set of poles in the lower half plane, and these poles give the usual QNM

frequencies. We wish to focus on the contribution from the additional pole at wy, and so from here

in

we ignore the poles coming from By .

Similarly, we will not consider here the influence of the
pole at w = 0 (actually part of a branch cut along the negative imaginary axis, which generates the
late-time power-law tails). Also, we will not consider the possible poles in the terms ozgmw and B?mw,
which receive their frequency dependence from the projection of the initial data onto the spheroidal

harmonics.

This integral converges for t — r* + In&/2gy > 0; otherwise, we must close the contour in the

upper half plane and the integral vanishes. Noting that as r — oo, p — —r~!, we have
U, = EZZ eiwn(t=r)timé g, (0) H(t—r* + Ine (2.25)
~ 2 Btrans
mew = Lﬂ:ﬁw |:(MWHT+ +ma — 2iMH>a2mw - iMT+62mw:| ) (226)
wHBémw

where H is the unit step function. In the above, all frequencies are to be evaluated at wy from
(2.24). As £ < 1, the waves at infinity appear at late retarded times. This sharp turn-on of the
wave is an artifact of our truncation of the integral at (1 + &)ry. A smoother falloff of the initial
data with increasing radii would result in a smoother turn on of the wave at infinity. These waves
at early times are sourced by initial data on ¥ which cannot be evolved using the near horizon

approximation. We see also that the waves continue to reach infinity for all retarded times after the
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turn on. As mentioned previously, this is due to redshift effects near the horizon, which stretch the

radiation from the finite near horizon region out over an infinite region of null infinity.

2.2.3 The Characteristic Boundary Model

While the frequency of the radiation in Eq. (2.23) matches the result of our heuristic argument,
the decay rate does not. The decay rate is determined by the radial behavior of the initial data,
as we can see in Egs. (2.22) and (2.23). In order that wy = mQy — 2igy, the initial data would
need to behave as Wy|;—g ~ €, which we have argued against based on our requirement that physical
observers near the horizon measure nonsingular initial data. However, a change of our ansatz shows
that the initial data can be proportional to € and still represent physical perturbations. In this case
the surface bounding the regime of linear perturbation theory is an ingoing null surface, instead of
a surface of constant ¢. This differs from the ¥ boundary model, and so differs from the Close Limit
Approach. We will refer to this second model as the characteristic boundary model.

As the spacetime transitions into the linear regime, the nonlinear perturbations radiate away
towards infinity or down into the black hole. We imagine that the regions of nonlinear evolution are
bounded by characteristics of the linear wave equation. This is a more physically motivated assump-
tion than a transition in spacetime properties along the entire surface . The ingoing characteristics
have a trajectory r(t) = r, (1 + e~ 291 (t=t0)) [16], where t — to > 1. The comparison of these two
models in both BL (¢,7) coordinates and the tortoise (¢,7*) coordinates is given in Figure 2.1. In
the (¢,7*) coordinates, we see that the horizon is pushed to r* — —oo, and that the initial data of
the ¥ model is stretched out onto an infinite interval in 7*. We see in both figures that the horizon
is hidden behind the boundary characteristics, and our previous argument for the radial dependence
of the initial data on ¥ no longer holds. We must find a new way to determine the r dependence of
initial data in this model.

We will again evolve initial data on the constant time slice 3, this time with support only on a
small interval outside the boundary characteristics. At time ¢ = 0, we set the inner boundary of the
initial data set to be at 74 (1 + &), and the outer boundary at r1 (1 4 &). We will use the same
physical observers as before. To first order their trajectories are lines of constant v and ¢, just like
the ingoing boundary characteristics. The physical observer who passes 74 (1 + &) at ¢ = 0 has a
trajectory rops(t) = ry (1 4+ e298(¢—tne)) At ¢ = 0 the observer measures an initial perturbation
WP~ €520, (1obs(0)). At a later time ¢, the observer measures Wi ~ €5 249100, (1444(t)), and so
the measured perturbation grows exponentially in time. However, the perturbation will also decay in
time due to its evolution. We insist then that the decay be such that this observer (and similarly, all
of the physical observers near the horizon) do not experience an exponentially growing perturbation.
This will set the behavior of ¥, on the initial surface.

We examine then the perturbation as measured by the observer along his trajectory. Given
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Figure 2.1: Comparison of the ¥ and characteristic models. In both figures, the trajectory of the
observer discussed and the characteristic boundary surface are plotted, with (6, ¢) suppressed. The
thick line is the interval where the initial data is nonzero, and the two points are £; and &s, respec-
tively. The shaded regions correspond to the nonlinear regime of each model. Left: Comparison in
BL coordinates of the two models, with the event horizon illustrated. Right: Comparison in (¢,7*)
coordinates, where the horizon is pushed to r* — co.

" and Bemw = BY,,,€" on the initial surface, we again combine

data that behaves as oy, = agmwe
Egs. (2.16)- (2.19), this time taking the asymptotic limits as v — r4 and r — r;. We focus on the

outgoing solution only, since the observer will not measure the ingoing waves. We find that

—_—
ezkr

Rémw("‘) ~ (6—2gH(t—tobS)(n—ikr+/n) _ elnfl(n—ikm_/re)) ) (227)

w— (mQy — 2nigy)

Integrating Eq. (2.7) with this radial function, and noting again that for the observer vops = t + 7*

is constant, so that t = vops — 7, we have

A 1
\114(Tobs) ~ eizmQHtiémgHt |:-H(tL + tobs) - H(Qt + 21:;51 >:| : (2'28)
H

For n = 1, the decay of the perturbation along the worldline of the observer is just enough to cancel
the exponential growth. The initial data on 3 can be taken to be proportional to e.
With the initial data, we can return our attention to the perturbations measured at infinity.

Repeating the analysis of Section 2.2.2 with this initial data, we have for r — oo

1 ~ s e . 11152 11161
U, = -§ A wn(t—r)timég, OV H(t—r* 4+ —2 ) — H(t—r* + —2 2.29
4 , - Imw€ émw( ) r+ 2gH r+ 2gH 5 ( )

with Zsme as in Eq. (2.26) but with wy given by

wg = mQy — 2igy . (Boundary Model) (2.30)

We have recovered the decay rate indicated by the heuristic argument of Section 2.2.1. The difference
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of step functions here and in Eq. (2.28) is again due to the sharp truncation of the integral at each
end of the interval on ¥. Now the radiation turns off due to the truncation of the initial data at
the boundary characteristic £;. At this retarded time the gravitational radiation would give way to
radiation sourced by the perturbations in the nonlinear region of spacetime on X. For this second
model it seems that a method for evolving data along characteristics would be better suited than
an evolution from a constant time slice. Such a characteristic evolution has been presented for the
Schwarzschild black hole, for example in [26]. Others [27] have presented numerical evolution of
characteristics, again for the Schwarzschild black hole. Another possible formulation which would
be natural in this context would be the use of an asymptotically hyperboloidal spacelike surface in

place of ¥, as discussed in [28].

2.3 Reconciliation with the Mino-Brink Mode

In Section 2.2.2 and 2.2.3, we saw that the condition that physical observers measure regular curva-
ture near the horizon determines the decay rate for the gravitational radiation at infinity. In fact,
the mode of Mino and Brink, with frequency w = mQy — igy, has a decay rate which violates the
regularity conditions discussed in both sections. Its decay rate is too small, for example, compared
to Egs. (2.24) and (2.30) with decay rates v > 2gg. Thus, although the mode found in [16] motivates
our study, the two results are in disagreement. In this section, we first provide a simple alternative
estimate for the expected decay rate of radiation from a point particle, using the notation of Newman
and Penrose for convenience [29]. With this estimate as motivation, we then find that correction
of an error in [16] unexpectedly leads to the vanishing of the first order mode discussed there. We
conclude that the actual leading order radiation from an infalling point particle has a decay rate

which matches our characteristic boundary model in Section 2.2.3.

2.3.1 Point Particle Radiation in Newman-Penrose Formalism

We wish to calculate the radiation generated by a point particle at the last stages of its plunge into
a Kerr black hole. Once again, the radiation is described by the Teukolsky formalism, this time with
the appropriate source term for the matter content. However, it will turn out to be convenient to
make the near horizon expansion in the Newman-Penrose formalism, in order to obtain an estimate
for the behavior of the radiation. As we show in Appendix 2.B, we can write to leading order in A

(¢) near the horizon, using the Kinnersley tetrad,

(DA + 4yD)U4 ~ ATy | (2.31)
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where

D=Wv,, A=npv,, 5= PR (2.32)
and where the source term T} is given by (2.79).
In addition, we can approximate
. r2 4 g2 r2 4+ a2
D ~ & O+ O + Qydy) = ———L 2.33
A (Or + Opx + Qu0y) oA (2.33)
. r2 4+ q2 r2 + g2
~ T+ 9. _
~ 5 (O — 0 + Qu0y) = 75 -, (2.34)
and write
M?*r3(LiL_ + 49y Ly )Wy ~ 4rSATy . (2.35)

In absence of Ty, this directly gives the asymptotic ingoing and outgoing waves of Eq. (2.9). Let us

specialize W4 to a particular azimuthal quantum number, m, and we have

Li=08,+0, +imQy . (2.36)

We turn now to T;. We expand the stress-energy tensor of a point particle in terms of the

azimuthal quantum number m to match the expansion of ¥, implicit in (2.36), which gives

ubu? 1

T = = —0(r = r(1)3(0 - o(t))em@=¢t) (2.37)
ubu” dr* . B
= pme 0 (" = 1 (£)0(x — x(8))e ™) (2.38)

Here we have defined x = cos#, and used the properties of the delta function. The mass of the
particle is given by u. If we define v = ¢ + r* and v = ¢t — r*, and once again use the properties of

the delta function, we can write

5(r*—r*(t))=5(“;“—r*<“;“>)=25(v_w, (2.39)

du/dt

where vg(t) is the value at which the argument of the delta function in (2.39) vanishes, which is at
first order simply the value vy = const to which the trajectory asymptotes. Also, to leading order
the trajectory will have t = —r*, so du/dt = 2 to leading order.

We have then that

2uru” dr* /dr

THY —
Bouts dujdt

§(v = vo(t))3(x — x(1))e™@=m1) . (2.40)
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We must now project T+ onto the null Kinnersley basis in order to find Ty, see (2.79). This will
result in a projection of the four velocity onto the Kinnersley basis, for example with u,, = u,n*, and
in this basis some of the components are vanishing or divergent as r — 74 (as seen in Section 2.2.1).
In order to examine the leading order behavior near the horizon, it is then best to express the four
velocity components in terms of the regular, ingoing basis, related to the Kinnersley tetrad by (2.11).

In the ingoing basis, we have

1 T —
u= uinlin -+ uﬁlnin + uﬁl’min + ufﬁmin s (241)

l,n,m,m
in

with u all smooth and finite throughout the trajectory — including on and within the future

horizon. The four velocity in the Kinnersley basis can be expressed as

u = dlg+u"ng + v™mg + v mg (2.42)
B Aul, 1 2(r? + a?)ul, m
 2(r2 +a?) K+ A DK+ Uin K
+ull'mg . (2.43)

Finally, we lower the tetrad indexes on the components of the four velocity using the null metric

0 -1 0 O
) -1 0 0 0
Nab = (244)
0 0 1
0 0 1 0
This gives us
Uty = A%(ul)? Uty = —Aul ul™ | Ut = (u)? . (2.45)
Let us first consider T}, 5, which gives the dominant contribution Ty to Ty,
Tamm ~ —(A+29)ATmm . (2.46)
It turns out that to first order AT}, = 0. We can see this by noting that at first order
2 2)2
sut ~ ) Z‘L ) (E-QpL.) (2.47)
T (um>26im(¢—QHt) 5 5 A
N in — — , 2.48
Forr (E—QuL.) (v =20)8(x = x0) (2.48)

with xg = cosfy the value of x to which the particle asymptotes to at the horizon. Acting on this
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with A from (2.34), we get

2 2
7°++a

ATy ~
2%

So we see that

Physically, this is because A takes its derivative almost along the direction of motion, along which
Tim does not change to first order. This means that the exact contribution of Ty, to Ty must be
reexamined with other terms included, and its contribution is in fact at the order of T};,,. Thus, we
expect

(LyL_ +4guL )Ty ~ A%5(v — vg) . (2.51)

We have a simple scenario: if we integrate across the v = vy surface, removing the derivatives

Oy = (0¢ + Or+)/2 from the left-hand side, we will have a u-dependent ¥4, which obeys
Uy~ A2~ ehonm o gmdant (2.52)

Here we have recovered the decay rate near the horizon discussed in Section 2.2.3. This indicates
that the corresponding decay rate of the waves as r — oo is that of Egs. (2.29)-(2.30). However, this
argument lacks the detailed calculations of Mino and Brink, who found a mode with a slower decay
rate. Under examination, however, it is an error in [16] which leads to a mode with a spuriously low

decay rate. We discuss this in the next section.

2.3.2 Eliminating the Leading Order Frequency Mode of Mino and Brink

We turn now to the study by Mino and Brink, which we abbreviate as MB. In this study, the source
term is evolved using the Green’s function method much as Section 2.2 of our study, resulting in
an integrand for the integral (2.17) which has a pole at w = mQy — igy, i.e. equation (MB 3.7).
The pole then selects out this oscillation frequency for the outgoing radiation at infinity. However,
it turns out that this pole is canceled out by terms in the amplitude Zime, when an error in MB is
corrected for. We find this error in going from (MB A14) to (MB B4). The first equation gives a
piece of the Fourier decomposition of the source term Ty, and is drawn from [30], equations (2.21)
and (2.25) therein.

Taking the leading order contribution of (MB A14), we find that (MB B4) should read at leading

order

2
Ao m@m@[ﬁw+cm>]
44/ 271']\/[7’3_ K K
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— 6
T —ECOT0 12 oy Spmeve ™ (2.53)
r4+ +iacosfy

where 6 is the value of 6 that the point particle asymptotes to on the horizon, and Eisco contains
information on the particle’s constants of motion. This equation differs from MB by the factor of

—1 in front of the term ikr; /k. When this difference is accounted for, we have for (MB 3.6)
Zomw & (w0 —mQy +igy)(w — mQy + 2igy) . (2.54)

The first root of Zg,, then cancels the pole in the denominator of (MB 3.7). It also appears that the
second root removes the frequency mode our rough argument in Section 2.3.1 suggests. However,
(2.54) holds only to first order, and at second order there are additional terms not proportional to
these roots. While a second surprising cancellation can only be ruled out by a careful study of the
MB analysis at second order (or an equivalent formulation), it would seem unlikely that the next
order of frequency mode would vanish as well. Such a careful study goes beyond the scope of this
paper. However, investigation does indeed show that at second order there is an HM with a decay

rate of 29y [31].

2.4 Numerical Study

In the previous sections we argued for the presence of an HM in the ringdown spectrum. In this
section we test a numerical waveform for evidence of this mode. For this study we use the publicly
available waveform generated by Scheel et. al. [32] by the evolution of an equal mass black hole
binary through merger and ringdown. First we compute the overlap between the final portion of
the numerical waveform and either a combination of QNM oscillations, or a combination of QNM
oscillations and the HM, in order to see if the given combination is a good fit to the waveform. Next,
we use a best-fit of the overlap to extract the mass and spin of the black hole from the waveform.
Again, we compare the extraction using just the QNMs with an extraction which includes the HM.

For our HM, we focus on the less damped of the two frequencies discussed in Section 2.2, wy =
m&y — 2igy. This mode agrees with the frequency mode from the point particle plunge discussed
in Section 2.3.1, and also from the more physically motivated model of the perturbed black hole’s
transition into the linear perturbation regime, discussed in Section 2.2.3. Throughout this section
we will discuss only the dominant ¢ = 2, m = 2 mode in the spherical harmonic decomposition of the
waveform. Note that, because of the rotation of the Kerr black hole, there is a Zeeman-like splitting
of the QNMs into modes which corotate with the black hole and modes which counter-rotate with the
hole. The counterrotating mode frequencies are equivalent to the £ = 2, m = —2 QNM frequencies,
= —Wne—m (see [7] for a detailed discussion).

but with a negative real part of the frequency, wSf
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Figure 2.2: A comparison of the real and imaginary parts of wy (dashed) and the first four QNMs,
with £ =2, m = £+2 (solid).

Each additional overtone we consider in the numerical analysis in the following sections thus adds
two distinct modes.

Figure 2.2 compares the real and imaginary parts of wy with those of the first four QNM for
¢ =2, m = 2 (corotating modes) and £ = 2, m = —2 (counterrotating modes), as a function of
a/M. These QNM frequency values are drawn from [33] and calculated using the methods discussed
in [5], whose values are used throughout this study. Note also that while many studies refer to
n = 0 as the slowest decaying QNM, here we count overtones from n = 1. The corotating QNMs
generally have a higher frequency than the HM, and the first two QNMs have slower decay rates.
The third corotating QNM has a comparable decay rate, and the fourth decays faster than the
HM. Meanwhile, the counterrotating QNMs decrease in frequency with increasing a/M, until they
oscillate more slowly than the HM. The decay rates of the counterrotating QNMs also remain nearly
constant over the whole range of a/M, and so in this case the third and fourth QNMs both decay

more quickly than the HM over a large range of a/M. As a/M goes to zero, wy ceases to drive
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Figure 2.3: The section of the numerical waveform given in Scheel et. al. over which ¢y ranges in
the overlap integral. Here we give both the real (solid) and imaginary (dashed) portions of Myr¥,.

oscillations, and the HM simply decays exponentially. Also, we see that as a/M goes to zero,
the degeneracy between co- and counterrotating modes is restored. Finally, in Table 2.1 we give
numerical values for the QNMs, evaluated at ay/M; for the final, merged black hole whose spectrum
we study [32] (in units of the initial ADM mass of the binary), as well as the value of the HM at

this spin parameter.

2.4.1 Comparison of Overlaps

Consider the final portion of the numerical waveform, (t)H (¢t — to), with H(¢) the unit step
function, and ¢y a constant which we consider to be the time where the ringdown phase be-
gins. We wish to see how well a waveform made from a linear combination of damped sinusoids,
P = e(ZiR=m)(E=t) [ (£ — t), can be made to fit 1. Since we do not know a priori at what point
in the numerical waveform the ringdown phase begins, we vary ty as a free parameter in our study.
This allows us to see where in the waveform our combination of sinusoids fails to be a good fit; at
sufficiently early typ we do not expect a particular combination of ; to model the chosen section of
the waveform accurately. However, a combination of 1 that fits the waveform well over a range of
to that includes the early parts of the ringdown more accurately represents the frequency spectrum

of the ringdown than another set of damped sinusoids that first fails at a larger value of ;.
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(n, £, m) Muwaonm

( ) 0.52670 + 0.081297
( ) 0.51486 + 10.245814
(3,2,2)  0.49296 + 0.41513i
(4.2,2)
(5,2,2)

0.46387 + 0.58873i
0.43291 + 0.76035i
(1,2-2)  0.31072 + 0.08874i
(2,2,-2)  0.27312 4 0.27733i
(3,2-2)  0.21198 + 0.49963
(4,2,-2)  0.15865 + 0.75811
(5,2,-2)  0.12707 + 1.03031i

m Mwum
2 0.37177 4+ 0.43089:

Table 2.1: Values of the QNMs and HM evaluated at the spin parameter ay/My = 0.68646 appro-
priate for the final black hole of [32].

For two waveforms s1(t) and sa(t) cut off at ¢, we first define the inner product

+oo
<81‘82> E/ gl(t)SQ(t)dt . (255)

to

The overlap, p, of two waveforms is given by the magnitude of the normalized inner product of the

waveforms. Our goal then is to maximize the overlap of ¢(t,) and the combination Y a1y,
k

|<§awk|w>\2 ;dkAkAjaj
2 = _ kg
a <Zk:akwk|;akwk> B lzdlBlmam ’

(2.56)

where Ay = (Y)Y , Bim = (¥t ). This maximum overlap characterizes how well the 15, can be

made to approximate 9, given the optimum choice of . The maximization yields!
ALB YA,

Ponax (V5 {wr, 3] = W : (2.57)

Using this equation to compute pmax, we take the first n QNMs (recall that each overtone includes

two frequency modes, both the co- and counterrotating modes) and compute the maximum overlap

with the numerical waveform as a function of the starting time ¢;. We then find the maximum

overlap using the first (n — 1) QNMs and the HM. Here, and throughout this section, we normalize

our units by Mp, the sum of the initial ADM masses for the two black holes that merge [32]. In these

units, the mass M of the final black hole is given as My /My = 0.95162+0.00002, and its spin a; by

ay/My = 0.65325 £ 0.00004. For large values of ty, only the least damped mode contributes to the

waveform, and so any 9, that includes the first QNM will provide ppax = 1. Therefore it is useful

1The Lagrange multiplier method yields AAtG = AB&, with X\ already the extremum. This means A should be
the maximum eigenvalue of M = B—! AAT. However, since M only has one non-zero eigenvalue, we have A\ = trM =
ATB1A.
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Figure 2.4: Comparisons of 1 — pyax for overlaps using just the QNMs (solid) and those which
replace one QNM pair with the HM (dashed). The top panel compares the first QNM pair (both co
and counterrotating) with the HM alone. The second panel compares the first two QNM pairs with
the first QNM pair and the HM. Subsequent panels compare the first n (n = 3,4,5 JQNM pairs
with the first n — 1 pairs and the HM.

to investigate 1 — ppax. Figure 2.3 plots the segment of the waveform over which we range ty for
the overlap calculations. Figure 2.4 compares 1 — ppax on a log scale for overlaps using the QNMs
alone to those including the HM. In the context of gravitational wave signals, it is preferable to have
a good overlap for ¢y close to the peak of the signal. This is when the gravitational wave signal is
strongest, and also the point in the waveform when the number of QNMs that make a significant
contribution to the waveform is the greatest, before the most-damped QNMs become negligible.
We see that the horizon mode alone provides a poor fit for the waveform for all values of ¢y, and
that the first two QNMs provide a better fit at earlier ¢y than the first QNM and the horizon mode.
Replacing the n'® QNM with the HM gives comparable results at n = 4, and provides a (very slight)
improvement at early to for n > 5. We note that this improvement becomes apparent at a ¢y earlier

than the peak value of |¢|, which occurs at tyax = 3953.8Mj. This means even for n > 5, the HM
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makes an improvement only when portions of the waveform which should not be well modeled by a
set of damped sinusoids are included in the overlap. In fact, we find empirically that adding modes
with low decay rates always tends to improve overlap calculations at early values of ty. This is due
to the fact that less damped modes will better fit the region near the peak of the waveform. In this
case we would expect comparable results from the n = 3 mode addition and the HM mode addition,
and for the HM to improve the overlap compared to n = 4; however, the single HM must compete
with the pair of co- and counterrotating modes that make up the next overtone. For these reasons,
we find that overlap comparisons do not provide a compelling case for the presence of the HM in
the waveform, nor do they rule the mode out.

As a second test, we would like to investigate the use of the HM in performing parameter
extraction from a ringdown waveform. This practical test of the utility of the HM is more physically
motivated than overlap comparisons, and can provide better evidence for the presence of the HM in

the waveforms.

2.4.2 Extraction of Mass and Black Hole Spin

As a second test, we will extract the mass M and the spin parameter a from the waveform. We
extract the mass first. To do this, we set a/Mj to the value given in [32] for the final black hole, but
allow M to vary (note that the QNMs and the HM are function of a/M, not a/My). We then calculate
Pmax as a function of M, using equation (2.57), and find the value of M which maximizes pmax-
When doing so, there is a distinct residual oscillation in the extracted value of M/Mj. Investigation
reveals that the residual oscillation is compensated for by including the first £ = 4, m = 4 corotating
QNM in the fit. Appendix 2.C gives a brief discussion of the possible sources of this mode mixing
in the numerical waveform.

The top panel of Figure 2.5 gives the extracted M as a function of ¢y, for two sets of frequency
modes. The first set is composed of the first three £ = 2, m = 2 QNM pairs (co- and counterrotating),
plus the first corotating ¢ = 4, m = 4 QNM. The second set replaces the third ¢ = 2, m = 2 QNM
pair with the HM. We expect the extraction to fail at early values of #y, where the sinusoids are
a poor fit to the waveform, and at late values of ¢y, where the waveform has decayed significantly.
Indeed, one can see in the top panel of Figure 2.5 that the extraction begins to diverge as portions
of the waveform preceding the peak of |1)| at tmax = 3953.8 My (shown with a solid vertical line)
are included in the extraction, corresponding to values of ¢y earlier than the peak. The middle and
bottom panels of Figure 2.5 show the results of the same extraction, using the first four and five
£ =2, m =2 QNM pairs, respectively, and comparing to extractions which replace the QNM pair
with the largest decay with the HM. We see in these figures that the extraction can be carried out
to even earlier values of ¢ty than the peak of 1, but since these extractions include portions of the

waveform which do not correspond to ringdown, we do not expect these early time extractions to
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n QNMS AMQNM AaQNM
(Mo x 1073) (Mg x 1073)
3 1.23+1.66 0.20 £ 3.36
4 1.70 +1.96 1.23+4.95
) 0.84 +8.14 2.55 +8.74
n QNMs A My Aapm
(Mp x 10_3) (My x 10_3)
2 0.53 £ 1.37 0.42 +2.95
3 1.15+1.73 1.57 £5.07
4 0.40 +8.03 3.00 £ 8.93

Table 2.2: Extracted masses and spin parameters, for extractions using the first n QNMs, and
extractions using the first n QNMs plus the HM.

be accurate.

In all cases, Figure 2.5 shows that the substitution of the HM does not improve the extraction
over the next most-damped QNM. We find the mean and RMS deviation of the extraction over an
interval ¢o/My = [3954,4074] for all three extractions. This interval covers a region of ¢y that begins
just outside the peak and continues until the extractions begin to diverge rapidly. We compare to
the mass given in [32] giving a difference in extracted mass of AMqnw = My — Mo for the fits
that use only QNMs and AMyy = My — Mypwm for those that include the HM. We present the
values of AM in Table I. We see that in all cases, the HM gives a comparable extraction. For the
extractions that use a larger number of QNMs, we see that the RMS deviation grows. This appears
to be due to the fact that the extractions with a larger number of modes diverge slightly earlier than
those with n = 3 and n = 2 QNMs shown in the top panel of Figure 2.5.

We carry out the same test for the spin of the black hole a/My, by fixing the mass M at its final
value and allowing a/Mj to vary. The results are given in Figure 2.6. The situation is the same as
in the case of the mass extractions. We calculate the mean and RMS deviation from the mean on
the interval to/My = [3954,4074], and compare the extracted spin parameters to that given in [32],
and give the results for Aa in Table 2.4.2. Once more, extractions with just QNMs are essentially
the same as those with the HM replacing the most rapidly decaying QNM of a given set. From these

extraction tests, we cannot conclude that the HM is present in the numerical waveforms.

2.5 Discussion

Using two methods, we have found an additional ringdown mode for the Kerr black hole. This HM
depends only on the fundamental properties of the black hole: it oscillates at the horizon frequency
of the black hole, and decays at a rate proportional to the surface gravity of the black hole. It
will arise when generic initial perturbations source linear gravitational radiation, a situation that

would occur as the spacetime transitions from a regime of stronger, nonlinear perturbations into
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Figure 2.5: Values for the extracted masses Mqnm (solid) and Mpwm (dashed) as functions of ¢, for
three extractions. The top panel compares the first three QNM pairs with the first two and the HM.
The middle panel compares the first four QNM pairs with the first three and the HM. The bottom
panel compares the first five QNM pairs with the first four and the HM. The solid horizontal line is
at M /My = 0.95162, the mass of the final black hole as given in [32]. The solid vertical line gives
the peak of |¢].
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Figure 2.6: Values for the extracted spins agnm and amm as functions of ¢, for three extractions.
The top panel compares the first three QNM pairs with the first two and the HM. The middle panel
compares the first four QNM pairs with the first three and the HM. The bottom panel compares the
first five QNM pairs with the first four and the HM. The solid horizontal line is at a/My = 0.65325,
the spin of the final black hole as given in [32]. The solid vertical line gives the peak of |y|.
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a final ringdown phase. This occurs at the last stage of a compact binary merger, or stellar core
collapse resulting in a black hole. We emphasize that this mode is not in the QNM spectrum which
is generally taken as the complete spectrum for the ringdown of a black hole. At the same time,
this oscillation mode is part of what is normally considered the “ringdown” phase of an event that
results in a final black hole, since it arises in linearized perturbation theory about the final black
hole.

In fact we have discussed two possible decay rates for the HM, each dependent on our model
of how the spacetime transitions from nonlinear evolution into the linear regime. One mode, found
using a naive model of transition at a set time slice, decays rapidly. The second was found by
noting that nonperturbative regions of the spacetime should be bounded by ingoing and outgoing
characteristics, and is physically better motivated. It has a decay rate v = 2gy, approximately the
same decay rate as the n = 3,/ =2, m = 2 QNM. We find that this mode has the same influence on
overlap calculations as the n = 4 pair of QNMs, though it does not appear to improve parameter
extraction over the use of an additional QNM pair with n > 4. Due to its comparable decay rate
to the n = 3 QNMs, it should be considered in the construction of waveform templates that use
n > 3 QNMs. The HM should also be included as part of the ringdown spectrum when considering
the potential use of an observed ringdown signal as a test of the No-Hair Theorem. Otherwise, the
presence of this non-QNM oscillation in the spectrum might lead one to conclude that the signal
was emitted from an object other than a Kerr black hole.

The analytic approach presented here also builds some intuition into the origin of various fre-
quency modes of linear perturbations of the Kerr spacetime. The HM studied here arises when the
influence of perturbations near the horizon are considered. Integration of these initial perturbations
using the Green’s function approach results in the presence of a pole in the frequency integral of
Eq. (2.7). This mode depends only on the properties of the black hole which govern its near horizon
geometry. Meanwhile, the usual QNMs arise because of the poles in the Wronskian of the radial
Green’s function, Egs. (2.18)-(2.19). In our model, these modes arise due to the interaction of the
initial perturbations with the complicated potential of the wave equation present further from the
event horizon, a situation analogous to that explored for Schwarzschild black holes by Price [26]. In
this work, decaying perturbations on the surface of a collapsing star are associated with outgoing
radiation; comparison of our results with [26] indicates that our HM is associated with the decaying
mode at the stellar surface, but that the rotation of the Kerr black hole in our case guarantees that
this mode oscillates with the horizon frequency in addition to its simple decay.

We have also reviewed the problem of gravitational radiation from a point particle infalling near
the horizon. Previous work [16] both motivated this study and guided our investigation. However,
our results conflict with those of the motivating study. In investigating this discrepancy, we have

found an error in the original calculation of [16], the correction of which cancels the first order results
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for the radiation at infinity. We have also argued that the form of the next order correction agrees
with our results for vacuum perturbations. We leave the detailed calculation of the correct second
order terms to a future study [31].

Future study using a variety of numerical waveforms will be key in determining the importance
of the HM in template generation and gravitational wave detection. In a simulation where the
excitation of slowly decaying QNMs is suppressed, we would expect the HM to be a clear component
of the ringdown. Future study of how one might suppress this QNM excitation would be valuable,
and such simulations would provide the best testing ground for the presence of the HM in numerical
simulations. In addition, the properties of the near horizon region, the HM itself, and the regularity
conditions on the initial data discussed here may be of interest in the mathematical study of the

stability of the Kerr black hole (see e.g. [34] and the references therein).
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2.A Green’s Function Formalism For the Teukolsky Equation

The Teukolsky equation, for spin s = —2, can be written in Boyer-Lindquist coordinates using the
Kinnserly tetrad as [15]
L[y] = AT, (2.58)

with L the linear Teukolsky operator described below; ¢ = W,/p*; and the source term T a com-
plicated function of the stress-energy tensor T, the Kinnersley tetrad, and the Kerr rotation

coefficients. The Teukolsky operator is

L =Ly + Lo+ A10} + A28, + A30,05 + A40; + As0y + Ag (2.59)
L, =-0,(A719,), Ly = —ﬁae(sm 00%) , (2.60)
A = (r? ZgaQ)2 o a 211212 0 7 Ay — 4M(7Z; a?)  A(r +ia2cos 0) , (2.61)
Agz“zié", A4:Z—Z—m, (2.62)



52

da(r — M) 1cosf 4cot? 6+ 2
As = Ag=—— .
° A3 +AQSinZG ’ ¥ A2

(2.63)

We introduce the adjoint operator L*, which is the Teukolsky operator with the substitutions
(0 = —0¢ 0y — —0y), and the Green’s function G(a'#;2*) for L, which obeys L[G(z";a")] =
L*[G(x™aM)] = 6(' —t)6(r" — r)6(0" — 0)5(¢’ — ¢) = 6*(z'* — x*). Now, note that given a pair of

functions u and v we have

uL*[v] — vL[u] =0,[A™ (vd,u — ud,v)] + ﬁ@g [vsin 00pu — wsin 00gv] + A10: [udiv — vOu]

— A0 [uv] + A3[0:(ugv) — Op(v0su)] + As0g[udpv — vOyu] — A504[uv] . (2.64)

Now, we let u = (z"), v = G(z'*;2"), and we integrate the entire expression over the domain
of interest for our situation, t € [0,00), r € (ry,00), 8 € [0,7], ¢ € [0,27], using spherical polar
coordinates and a Euclidean volume element d*z = dtd®z = r2sin 6 dtdrdfdé. To evaluate the left

side of equation (2.64) we note

/d4x (") LG (2™ 2M)] = /d4m Y(x)ot (2 — ') = P(a™) . (2.65)

Also, we have

/d4a: G(x™™; x")L[y(x")] = /d4x G2 2")AT2T . (2.66)

On the right hand side of Eq. (2.64), we note that the terms involving A4 and As vanish when
integrated over ¢, due to the periodicity of ¢. The term —A3d,(v0;u) vanishes for the same reason.
The first term becomes a boundary term when integrated over r. In order to have only ingoing
waves at the horizon, and only outgoing waves at infinity, we must impose homogeneous boundary
conditions on ¥ (z*) and G(z'*; x*), and so this term also vanishes. The term involving derivatives of
# vanishes when integrated over 6, since we require that the initial data and the Green’s function be
regular on the boundary of [0, 7]. The terms involving A; and As are total derivatives in time, and
so when we integrate over ¢ we remove the time derivatives and evaluate the terms on the boundary

at t = 0. Since our physical source is transient, the terms vanish at the bound of t — co. We have

(') z/d4a: G(z™; x") AT + [/ Az A10,G (x5 M )ap () — /dga: A1G(x'; 2t) Opp ()

—/d3x AsG (5 2t )ep () +/d3x A38¢,G(x’“;x“)w(x“)] (2.67)

t=0

Thus far we have kept the source term T in place for comparison with other studies of the evolution
of the Teukolsky equation. In this study we are interested in the vacuum case, and so we set 7' = 0

here and throughout Section 2.2.
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We can further simplify this expression for ¢ (z#) by performing the angular integrations. Let

us expand the initial perturbation in terms of spherical harmonics,

1/)(757 T, 9, d)) = Z aé'm/(r)Yl'm/(@; ¢) ) (268)
t=0 om!

(L, r,0,0) = > b (1) Yo (0, 0) - (2.69)
t=0 o m!

In addition, we expand the Green’s function in the frequency domain, where it can be written down
explicitly in terms of the spin-weighted spheroidal harmonics and the Green’s function for the radial

Teukolsky equation [15, 17],

d - ~ = (b
Glasah)| = / ¢ 2 Gemal 1) S (8)Sems (@)™ (2:70)
t=0 4m

So, we have 04G(a'"; z#) = —imG(x™; ). With this, we can now perform the integration over ¢,

using the identity

27 dd) ) ,
/ @9 pitm—m")¢ _ S’ (2.71)
0 2m

which allows us to resolve the summation over m’ contained in Eq. (2.68)-(2.69). From here, it
is convenient to impose the near horizon approximation, for which the motivation is discussed in
Section 2.2.2. We keep terms only to the leading order in € = (r—r4)/r; < 1. In this approximation,
we have that A ~ 2Mr ke, with k = /1 — a2/M?2. To first order in e,

Al o~ (2Mry) Y ke)T?, (2.72)
2Mk + 1ma
—imAs — Ay A ——————— . 2.
AT A M e =)

We note that all & dependence for these functions enters in at second order in the near horizon

expansion. We define

_ 204+ 1) —m)! [T . _
Qe (1) = Z ag/m(r)\/( 47r(€’)+ oy /0 sin 0d0 Pyspy, (€08 0) Seme. (6), (2.74)

20+ 1) —m)! [T, _
Bémw(r) = Zbe’m(’f')\/( 47r(£/):_m)' ) A 31n0d9Pg/m(cos9)ngw(0), (275)
where Py, (x) are the associated Legendre polynomials. The functions cgme(r) and Bemw(r) are
nonzero only on the interval r € [ry, (1 4 &)ry], which allows us to truncate the radial integrals in
Eq. (2.67). In fact, we only desire the leading order behavior in e of these functions, and this is
discussed in Section 2.2.2.

Inserting Eqgs. (2.68) - (2.74) into (2.67), and exchanging primed and unprimed labels, we have
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finally
N dw —iwt+imeo
w(‘r ) = % Z € Rfmw (T)Sfmw(e)a (276)
m

Gome (') . (2.77)

Romo(r) = — /“*9” gt [ Bemes () + 00 (') (2M s + ima) g (1)
emw\T) = " 2Mr, (ke)3 2(Mr, )2 (ke)3

T+

We resolve this expression in Section 2.2.2.

2.B The Teukolsky Equation in the Newman-Penrose For-

malism

We refer the reader to [17, 29] for the full formalism. Here we simply collect some of the longer
expressions used for Section 2.3.1.

From (2.14) of [15] we have

[(A+3’yf’7+4u+ﬂ)(f)+4efp)f(577‘+B+3a+4ﬂ')(577+4ﬂ)73\112 OB — 4771y
(2.78)

Here W, refers to the background value of the NP scalar, U5 = Mp? for Kerr. The scalar 2 is the
perturbative value of W4, which is zero at leading order for Kerr. Here, 15, A, § are all derivative
operators along the directions of the null basis, and the Greek characters represent combinations of
the spin coefficients. Also note the unfortunate but standard use of 7 on the left-hand side to refer
to one of the spin coefficients in the null tetrad, while on the right side it refers to the numerical
7 from the Einstein field equations. It is generally clear which is which, and in any case the NP

coeflicient enters at subleading order here. The source term T} is given by

Ty =(A+3y— 5+ 4+ 1) {(5—2f+2a)Tnm - (A+2y—2ﬁ+ﬂ)Tm}

+ (0 =7+ B+ 3a+4n) [(A + 274+ 20)Tom — (6 — 7+ 28 + 2a)Tnn} . (2.79)

Here, the terms Ty, are the components of the stress-energy tensor in the tetrad basis, Ty, =
Tontn”, Tnm = TntmY, ete.

To specialize to the near horizon approximation, we note that D contains A~1, and therefore
dominates over all the other terms. In addition, we have v =5 = pp(r — M)/2 and u = 0, to first
order.

Using the commutation relation between D and A (NP4.4), we have, near the horizon

AD — DA = 2vD + (lower order terms) (2.80)
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which subsequently gives the O(A™!) term on the left-hand side of the equation
(DA + 4yD) 0. (2.81)

We investigate this expression more fully in Section 2.3.1.

2.C Mode Corrections to the Wavefunction

The presence of oscillation at the n = 1, £ = 4, m = 4 corotating QNM merits some brief discussion.
Figures 2.7 and 2.8 give the extraction of M and a using the first three QNM pairs (and comparing
the the first two QNM pairs with the HM), without the £ = 4, m = 4 mode included. Comparison
with the topmost panels of Figures 2.5 and 2.6 shows that the distinct oscillation is successfully

removed by including this mode.
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Figure 2.7: Extraction of the mass M /M, as a function of ¢y, using only first three QNM pairs

(solid) or the first two QNM pairs and the HM (dashed). Here we do not include the corotating
n=1, £=4, m =4 mode.

A certain amount of mode mixing between the QNMs is expected due to the fact that the wave-
form is decomposed into spin-weighted spherical harmonics during the extraction of the waveform.
In fact, the angular eigenfunctions of the Teukolsky equation are the spin-weighted spheroidal har-
monics. These functions become the usual spherical harmonics when aw = 0. Using this fact, the
spheroidal harmonics can be expanded in terms of spin-weighted spherical harmonics and powers of
aw, as first discussed in [20]. Only spherical harmonics with the same s and m contribute in the
expansion. As such, we see immediately that the mixing with the £ = 4, m = 4 QNM frequency
cannot arise from the decomposition into spherical harmonics. The portions of the waveforms that

can mix into the £ = 2, m = 2 waveform arise from the expansions of Ss3z, 542, etc. Explicitly, the
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4, m = 4 mode.

expansion of the spheroidal harmonic for s = —2, is

20+1 CiimoChisy —2Yim

W+ 1) — @ +1)] O(a*w?) (2.82)

Som =—2 Yo + daw Z

L0

where ng‘w are the usual Clebsch-Gordon coefficients. For both the horizon mode and the lowest

order QNMs, aw < 1 is true for all a/M, and so the expansion is not obviously divergent, although

it is only good when a/M < 1. The inclusion of additional QNM frequencies with m = 2 does not

remove the residual oscillation in the extraction of M and a seen in Figures 2.7 and 2.8 (though a

corotating ¢ = 3, m = 2 reduces the amplitude of the oscillation somewhat). In fact, extractions

using a large number of modes generally have sharp features, in addition to systematic deviations
from the values of M and a given in [32].

The presence of the £ = 4, m = 4 mode in the £ = 2, m = 2 waveform is unexpected, and
we attribute it to errors arising from the numerical generation and extraction of the waveform.
The spectral code used in [32] generates its gauge dynamically, and while the waveform extraction
method attempts remove gauge effects, studies find that these gauge effects still generate errors [35].

We suspect such gauge errors are the source of mode-mode mixing.
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Chapter 3

Quasinormal-Mode Spectrum of
Kerr Black Holes and Its
Geometric Interpretation

There is a well-known, intuitive geometric correspondence between high-frequency quasi-
normal modes of Schwarzschild black holes and null geodesics that reside on the light-ring
(often called spherical photon orbits): the real part of the mode’s frequency relates to the
geodesic’s orbital frequency, and the imaginary part of the frequency corresponds to the
Lyapunov exponent of the orbit. For slowly rotating black holes, the quasinormal-mode’s
real frequency is a linear combination of the orbit’s precessional and orbital frequencies,
but the correspondence is otherwise unchanged. In this paper, we find a relationship
between the quasinormal-mode frequencies of Kerr black holes of arbitrary (astrophys-
ical) spins and general spherical photon orbits, which is analogous to the relationship
for slowly rotating holes. To derive this result, we first use the WKB approximation to
compute accurate algebraic expressions for large-I quasinormal-mode frequencies. Com-
paring our WKB calculation to the leading-order, geometric-optics approximation to
scalar-wave propagation in the Kerr spacetime, we then draw a correspondence between
the real parts of the parameters of a quasinormal mode and the conserved quantities
of spherical photon orbits. At next-to-leading order in this comparison, we relate the
imaginary parts of the quasinormal-mode parameters to coefficients that modify the am-
plitude of the scalar wave. With this correspondence, we find a geometric interpretation
of two features of the quasinormal-mode spectrum of Kerr black holes: First, for Kerr
holes rotating near the maximal rate, a large number of modes have nearly zero damping;
we connect this characteristic to the fact that a large number of spherical photon orbits
approach the horizon in this limit. Second, for black holes of any spins, the frequencies

of specific sets of modes are degenerate; we find that this feature arises when the spher-
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ical photon orbits corresponding to these modes form closed (as opposed to ergodically

winding) curves.

Originally published as H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, and
Y. Chen, Phys. Rev. D 86, 104006 (2012). Copyright 2012 by the American Physical
Society.

3.1 Introduction

Quasinormal modes (QNMs) of black-hole spacetimes are the characteristic modes of linear per-
turbations of black holes that satisfy an outgoing boundary condition at infinity and an ingoing
boundary condition at the horizon (they are the natural, resonant modes of black-hole perturba-
tions). These oscillatory and decaying modes are represented by complex characteristic frequencies
w = wpg — 1wy, which are typically indexed by three numbers, n, [, and m. The decay rate of the per-
turbation increases with the overtone number n, and [ and m are multipolar indexes of the angular

eigenfunctions of the QNM.

3.1.1 Overview of Quasinormal Modes and Their Geometric Interpreta-
tion

Since their discovery, numerically, in the scattering of gravitational waves in the Schwarzschild
spacetime by Vishveshwara [1], QNMs have been thoroughly studied in a wide range of spacetimes,
and they have found many applications. There are several reviews [2-6] that summarize the many
discoveries about QNMs. They describe how QNMs are defined, the many methods used to cal-
culate QNMs (e.g., estimating them from time-domain solutions [7], using shooting methods in
frequency-domain calculations [8], approximating them with inverse-potential approaches [9] and
WKB methods [10, 11], numerically solving for them with continued-fraction techniques [12, 13],
and calculating them with confluent Huen functions [14, 15]), and the ways to quantify the excitation
of QNMs (see, e.g., [16, 17]). They also discuss the prospects for detecting them in gravitational
waves using interferometric gravitational-wave detectors, such as LIGO [18] and VIRGO [19], and
for inferring astrophysical information from them (see, e.g., [20, 21] for finding the mass and spin
of black holes using QNMs, [22, 23] for quantifying the excitation of QNMs in numerical-relativity
simulations binary-black-hole mergers, and [24, 25] for testing the no-hair theorem with QNMs).
There have also been several other recent applications of QNMs. For example, Zimmerman and
Chen [26] (based on work by Mino and Brink [27]) study extensions to the usual spectrum of modes
generated in generic ringdowns. Dolan and Ottewill use eikonal methods to approximate the modal

wave function, and they use these functions to study the Green’s function and to help understand
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wave propagation in the Schwarzschild spacetime [28-30].

Although QNMs are well understood and can be calculated quite precisely, it remains useful to
develop intuitive and analytical descriptions of these modes. Analytical insights into QNMs have
come largely from two limits: the high-overtone limit (n > 1) and the eikonal limit (I > 1). In the
high-overtone limit, the frequencies of a QNM are related to the surface gravity of the horizon (see
e.g., [31, 32] for the numerical discovery for Schwarzschild black holes, [33] for an analytical proof for
Schwarzschild holes, and [34, 35] for proofs for other spherically symmetric black-hole spacetimes).
In this paper, we focus on the eikonal limit.

An important calculation in the eikonal limit (I >> 1) was performed by Ferrari and Mashhoon
[9], who showed that for a Schwarzschild black hole, the QNM’s frequency (which depends only on

a multipolar index ! and an overtone index n) can be written as
wr(+1/2)Q—ivL(n+1/2). (3.1)

The quantities €2 and vy, are, respectively, the Keplerian frequency of the circular photon orbit and
the Lyapunov exponent of the orbit, the latter of which characterizes how quickly a congruence
of null geodesics on the circular photon orbit increases its cross section under infinitesimal radial
perturbations [30, 36]. Equation (3.1) hints at an intriguing physical description of QNMs, first
suggested by Goebel [37]: for modes with wavelengths much shorter than the background curvature,
the mode behaves as if it were sourced by a perturbation that orbits on and diffuses away from the
light ring on the time scale of the Lyapunov exponent. Thus, photon surfaces [38] play an important
role in the structure of a spacetime’s QNMs.

Ferrari and Mashhoon [9] also derived an analogous result to Eq. (3.1) for slowly rotating black
holes. They showed for [ 2 m > 1, the real part of the frequency is given by

Q =~ worp + (3.2)

m
mwprec )
where we,p, is now the Keplerian orbital frequency for the spherical photon orbit ! and Wprec 18
the Lense-Thiring-precession frequency of the orbit (which arises because of the slow rotation of the
black hole). The term proportional to wpyec also has a simple geometric-optics interpretation. Inertial
frames near the high-frequency wave at the light ring are dragged with respect to inertial frames at
infinity, and this frame dragging causes the perturbation’s orbit to precess about the spin axis of the
black hole with a frequency, wyrec. If the orbit is inclined at an angle of sin® @ = m?/I(1+1) (the ratio
of angular momenta L2 /L? for quantized waves in flat space), then the projection of the precessional

velocity onto the orbital plane scales the precessional frequency by a factor of ~m/(l + 1/2).

1By “spherical photon orbits”, we mean those orbits that remain on a sphere of constant radius, but do not
necessarily close or explore the whole sphere.
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Figure 3.1: Low-overtone QNM spectrum of three Kerr black holes of different spins with approx-
imate degeneracies in their spectra. From left to right, we plot the three lowest-overtone QNM
excitations for (i) a/M = 0.69 in which (I,m) = (j,2) are black triangles and (I',m’) = (j + 1, —2)
are blue squares, where j = 3,...,9; (ii) a/M = 0.47 in which (I, m) = (4, 3) are magenta dots and
(I’,m') = (j+1,—-3) are cyan cycles, where j = 3,...,9; (iii) ¢/M = 0.35 in which (I,m) = (4,4) are
red diamonds and (I',m’) = (j + 1, —4) are purple stars, where j = 5,...,10. For these spin param-
eters, the mode with positive values of m and wg (a corotating mode) of index [ is approximately
degenerate with the mode with m’ = —m, and wg (a counterrotating mode) of index " =1+ 1.

Why the QNM frequency is multiplied by (I + 1/2) is a feature that we will explain in greater
detail in this paper. Intuitively, this term arises because in the high-frequency limit, any wavefront
traveling on null orbits will have an integral number of oscillations in the 6 and ¢ directions. For
the wave to be periodic and single-valued, there must be m oscillations in the ¢ direction. For the 6
direction, it is a Bohr-Sommerfeld quantization condition that requires I — |m| 4+ 1/2 oscillations in
this direction, which implies that there should be a net spatial frequency of roughly (I + 1/2). This
increases the frequency of the radiation seen far from the hole by the same factor.

From this intuitive argument, we expect that the real part of the mode should be

WR = L (Worb + %wprcc) 5 (33)

where we define L = [+ 1/2. In this paper, we will show that an equation of the form of Eq. (3.3)
does, in fact, describe the QNM frequencies of Kerr black holes of arbitrary astrophysical spins (and
it recovers the result of Ferrari and Mashhoon for slowly spinning black holes). As we mention in
the next part of this section, the exact details of the correspondence between QNMs and photon

orbits is richer for rapidly rotating black holes than for slowly rotating or static black holes.

3.1.2 Methods and Results of this Article

To derive Eq. (3.3) requires that we develop a geometric-optics interpretation of the QNMs of
Kerr black holes with arbitrary astrophysical spins. Finding the correspondence requires two steps:
first, we need to calculate the approximate frequencies using the WKB method; next, we must
articulate a connection between the mathematics of waves propagating in the Kerr spacetime in the
geometric-optics approximation and those of the WKB approximation (the first step). Finally, with

the geometric-optics description of QNMs, we can make a physical interpretation of the spectrum
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(for example, the degeneracy or the lack of damping in the extremal limit).

In Section 3.2, we describe how we solve the eigenvalue problem that arises from separating
the Teukolsky equation [39] (a linear partial differential equation that describes the evolution of
scalar, vector, and gravitational perturbations of Kerr black holes) into two nontrivial linear ordinary
differential equations. The two differential equations, the radial and angular Teukolsky equations,
share two unknown constants—the frequency, w, and the angular separation constant, A;,—that
are fixed by the boundary conditions that the ordinary differential equations must satisfy (ingoing
at the horizon and outgoing at infinity for the radial equation, and well-behaved at the poles for
the angular equation). The goal of the WKB method is to compute the frequency and separation
constant approximately.

Although there has been work by Kokkotas [40] and Iyer and Seidel [41] using WKB methods
to compute QNM frequencies of rotating black holes, their results were limited to slowly rotating
black holes, because they performed an expansion of the angular separation constant, A;,,, for small,
dimensionless spin parameters, a/M, and only applied the WKB method to the radial Teukolsky
equation to solve for the frequency. In a different approach, Dolan developed a matched-expansion
formalism for Kerr black holes of arbitrary spins that can be applied to compute the frequency of
QNMs, but only for modes with [ = |m| and m = 0 [29].

Therefore, it remains an outstanding problem to compute a WKB approximation to the quasi-
normal modes of Kerr black holes of large spins and for any multipolar index m. In Section 3.2,
we solve the joint eigenvalue problem of the radial and angular Teukolsky equations by applying
a change of variables to the angular equation that brings it into the form of a bound-state prob-
lem in quantum mechanics. Applying the WKB method to the angular equation, we arrive at a
Bohr-Sommerfeld condition that constrains the angular constant in terms of the frequency (and the
indexes [ and m). Simultaneously, we can analyze the radial equation in the WKB approximation,
and the two equations together define an system of integral equations, which can be solved for the
eigenvalues. When we expand the Bohr-Sommerfeld condition in a Taylor series in terms of the
numerically small parameter, aw/l, the system of integral equations reduces to an algebraic system
(which, in turn, leads to a simpler expression for the frequency). The approximate frequency agrees
very well with the result that includes all powers of aw/l, and, in the eikonal limit, it is accurate to
order 1/ for Kerr black holes of arbitrary spins, for modes with any value of m, and for both the
real and the imaginary parts of the frequency.

To interpret the WKB calculation of Section 3.2 in the language of propagating waves in the
geometric-optics limit within the Kerr spacetime, we analyze waves around a Kerr black hole in
Section 3.3 using the geometric-optics approximation and the Hamilton-Jacobi formalism. We con-
firm that the leading-order pieces of the WKB frequencies and angular constants correspond to the

conserved quantities of the leading-order, geodesic behavior of the geometric-optics approximation
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(specifically, the real part of w, the index m, and the real part of A, are equivalent to the energy
&, the z-component of the specific angular momentum L, and Carter’s constant Q plus L2, respec-
tively). The specific geodesics corresponding to a QNM are, in fact, spherical photon orbits. The
next-to-leading-order WKB quantities (the imaginary parts of w and A;,,,) correspond to dispersive,
wavelike corrections to the geodesic motion (they are the Lyapunov exponent and the product of this
exponent with the change in Carter’s constant with respect to the energy). Table 3.1 in Section 3.3
summarizes this geometric-optics correspondence.

In Section 3.4, we make several observations about features of the QNM spectrum of Kerr black
holes that have simple geometric interpretations. First, we find that for extremal Kerr black holes,
a significant fraction of the QNMs have a real frequency proportional to the angular frequency of
the horizon and a decay rate that rapidly falls to zero; we explain this in terms of a large number
of spherical photon orbits that collect on the horizon for extremal Kerr holes. Second, we expand
the WKB expression for the real part of the frequency as in Eq. (3.3), and we interpret these terms
as an orbital and a precessional frequency of the corresponding spherical photon orbit. These two
frequencies depend on the spin of the black hole and the value of m/L very weakly for slowly-rotating
black holes, though quite strongly when the spin of the black hole is nearly extremal. Finally, we use
the geometric-optics interpretation given by Eq. (3.3) to explain a degeneracy in the QNM spectrum
of Kerr black holes, in the eikonal limit, which also manifests itself, approximately, for small { (see
Figure 3.1). The degeneracy occurs when the orbital and precession frequencies, wor, and wpyec are
rationally related (i.e., worb/wWprec = p/q for integers p and ¢) for a hole of a specific spin parameter,
and when the corresponding spherical photon orbits close. By substituting this result into Eq. (3.3)
one can easily see that modes with multipolar indexes [ and m become degenerate with those of
indexes I’ =1 + kq and m’ = m — kp for any non-negative integer k, in the eikonal limit (note that
in Figure 3.1, we show an approximate degeneracy for k£ = 1 and for three spin parameters, such

that ¢/p =1/4, 1/6, and 1/8, respectively.)

3.1.3 Organization of the Paper

To conclude this introduction, we briefly summarize the organization of this paper: In Section 3.2,
we review the Teukolsky equations, and we then describe the WKB formalism that we use to calcu-
late an accurate approximation to the angular eigenvalues A;,, = Aﬁw + iAlIm and QNM frequencies
w = wp — iwy, in the eikonal limit L > 1 and for holes of arbitrary spins. We verify the accuracy
of our expressions in Section 3.2.4 by comparing the WKB frequencies to exact, numerically calcu-
lated frequencies. In Section 3.3, we develop a correspondence between the WKB calculation and
mathematics of wave propagation within the Kerr spacetime in the geometric-optics limit, using the
geometric-optics approximation and the Hamilton-Jacobi formalism. At leading-order, the QNM

frequencies and angular eigenvalues correspond to the conserved quantities of motion in the Kerr
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spacetime for spherical photon orbits; at next-to-leading order in the geometric-optics approxima-
tion, we connect the the decaying behavior of the QNMs to dispersive behaviors of the waves. Finally,
in Section 3.4, we interpret aspects of the QNM spectrum geometrically, such as the vanishing of
the damping rate for many modes of extremal black holes, the decomposition of the frequency into
orbital and precessional parts, and the degeneracies in the QNM frequency spectrum. Finally, in
Section 9.6, we conclude. We use geometrized units in which G = ¢ = 1 and the Einstein summation

convention throughout this paper.

3.2 WKB Approximation for the Quasinormal-Mode Spec-
trum of Kerr Black Holes

In this section, we will derive expressions for the frequencies of quasinormal modes of Kerr black
holes using the WKB approximation. We will need to compute the real and imaginary parts to an
accuracy of O(1) in terms of [ > 1, which implies that we must calculate wg to leading and next-to-
leading order and w; to leading order. Here, we will focus on obtaining an analytic approximation
to the frequency spectrum, and we will leave the geometrical interpretation of our results until the
next section.

Before specializing our results to the angular and radial Teukolsky equations, we will review a
basic result about the WKB expansion that we will use frequently throughout this paper; a more
complete discussion of WKB methods can be found in [11]. Given a wave equation for ¢ (x)

2 %P

we will expand the solution as ¢ = eSo/¢+Si+eS2+ where the leading and next-to-leading action

variables are given by

So = =+i /z VU(z)dz, (3.5a)
S1 = 7% logU(x). (3.5b)

The formulas above will be the basis for our analysis of the radial and angular Teukolsky equations

in the next sections.

3.2.1 The Teukolsky Equations

Teukolsky showed that scalar, vector, and tensor perturbations of the Kerr spacetime all satisfy
a single master equation for scalar variables of spin weight s; moreover, the master equation can

be solved by separation of variables [39]. We will use u to denote our scalar variable, and we will
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separate this scalar wave as

u(t,r,0,0) = e “e™PR(r)ug(6). (3.6)

Then, at the relevant order in [ >> 1, the angular equation for uy(#) can be written as

1
d [ dug 4 A | ug =0, (3.7)

a . ,dUg 2.2 2,
nddo sin 6 ]+ [a w” cos” 0

do sin® 6

where Ay, is the angular eigenvalue of this equation. Following the definition in [42], we use the
renormalized radial function given by u, = A®%2y/r2 4+ a2R. The equation obeyed by the radial

function w,(r) is

d*u,  K? — AN d A d
“ gy =0, — == 2 (3.82)
dr? (r2 + a?)? dre — r2+4a?dr
with
K = —w(r* +a*) +am, N = Ay + dPw? - 2amw, A=1r*—2Mr+a®. (3.8b)

Here we have used the facts that wg ~ O(1), wr ~ O(1), m ~ O(I) to drop terms that are of higher
orders in the expansion than those that we treat. Note that the spin s of the perturbation no longer
enters into these equations after neglecting the higher-order terms. The only subtlety here is that the
s-dependent terms 2m.s cos 6/ sin® 6 and s2 cot? @ diverge at the poles, # = 0, 7. For non-polar modes
it will be shown in the following section that the wave function asymptotes to zero near the poles,
and therefore these s dependent corrections are not important. For polar modes m = 0, the angular
wave functions do not vanish at the pole, and so it is not as clear that these terms can be neglected
as small. However, numerical evidence presented in Section 3.2.4 also shows that neglecting the s
dependent terms in the angular Teukolsky equation only contributes a relative error proportional to

1/L2.

3.2.2 The Angular Eigenvalue Problem

We will first find an expression for A;,, in terms of w, [, and m, by analyzing the angular equation

in the WKB approximation. By defining

. o)

and dz = df/sin 0, we can write the angular equation as

dQUQ
dxz?

+ V9% =0, (3.10a)
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where

VY9 = a%w? cos? fsin® 6 — m? + Ay, sin? 6. (3.10b)

When written in this form, it is clear that, aside from polar modes where m = 0, ug must satisfy a
boundary condition that it be 0 as @ — oo (which corresponds to § — 0, 7). In the special case
when m = 0, ug approaches a constant instead. Furthermore, the angular equation is now in a form
that is amenable to a WKB analysis (which will be the subject of the next part).

First, however, we outline how we will perform the calculation. Because the frequency w =
wpr — iwy is complex, the angular eigenvalue A;,,, a function of w, must also be complex. We will

write

Ay = AR 1Al (3.11)

to indicate the split between real and imaginary parts. We will treat a real-valued w = wg in the first

R

e (wgr); we shall account for —iw; by including

part of this section, and, therefore, a real-valued A

it as an additional perturbation in the next part of this section.

3.2.2.1 Real Part of A;,,, for a Real-Valued w

For wr € R, we will compute the eigenvalues A (wg), of Eq. (3.10a) for standing-wave solutions
that satisfy physical boundary conditions. At the boundary, § = 0,7 (or £ = Foo) the potential
satisfies V? = —m? independent of the value of Aﬁm this implies that the solutions to Eq. (3.10a)
behave like decaying exponential functions at these points (i.e., the wave does not propagate). For
there to be a region where the solutions oscillate (i.e., where the wave would propagate), A;,, must
be sufficiently large to make V? > 0 in some region. Depending on the relative amplitudes of A,
and a?w?, V¥ either has one maximum at § = 7/2 (when Aj;,, > aw?), or two identical maxima
at two locations symmetrically situated around § = 7/2 (when A, < a?w?). It turns out that the
region where the maximum of V¢ > m? is centered around 7/2; therefore, all solutions fall into the
former category rather than the latter.

The length scale over which the function ug varies is 1/ Ve , and the WKB approximation is valid
only if the potential V¢ does not vary much at this scale. Therefore, to use the WKB approximation,
we require that

1 av?

N < V7. (3.12)

This condition applies regardless of the sign of V?. Empirically, we find this condition to hold for

V% in Eq. (3.10a), except around points at which V% = 0. We will refer to these as turning points,

and they can be found by solving for the zeros of the potential,

a’w? cos? Osin® O — m? + Al sin?0 =0, (3.13)
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which are given by

2m?

A + @202, + /(Ai, + a2w?, )% + 4m?’

sin® 0y =

(3.14)

where we only keep the physical solution and assume 0 < §_ < 7/2. It is obvious that 6, =7 —6_.
Using the leading and next-to-leading WKB approximation, we can write the solution to the wave

equation in the propagative region, z_ < x < x4, as

el 3 ANV | i f3 eV
Vo ()"

ug(r) = , (3.15)

where a4 are constants that must be fixed by the boundary conditions that the solution approaches

zero at @ = 0, 7. For x > x, we find

ctr€

ug(x) = [Ve(x)}1/4 , (3.16a)
and x < x_,
oo i e V)
ug(x) = [Ve(x)}1/4 , (3.16b)

with c4 also being constants set by the boundary conditions. Note that outside of the turning
points, we have only allowed the solution that decays towards x — £oo.

Around the turning points z1, the WKB approximation breaks down, but uy can be solved
separately by using the fact that Vyp(x ~ 1) o< x — zx. Solutions obtained in these regions can be
matched to Egs. (3.15)—(3.16b); the matching condition leads to the Bohr-Sommerfeld quantization
condition [43]

0+ m2
/ dG\/aQwIQ%COSQG— —— + Al = (L —|m|)~. (3.17)
0_ sin“ 6
Here we have defined
1
L=t+1. (3.18)

which will be used frequently throughout this paper. The limits of the integration are the values of

0 where the integrand vanishes [the turning points of Eq. (3.14)].

If we define
_m _ Aﬁn _ WR
= 7 ag(a,p) = 12 Qr(a,pn) = I (3.19)

then all three of these quantities are O(1) in our expansion in L. From these definitions, we can

re-express the limits of integration as

22

a+a20? + /(o + a2Q%)? +4u?

sin? 0y = (3.20)
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and the integral as

sin® 0

0+ 12
/ dﬁ\/aR— +a2Q2cos? 0 = (1 — |u|)7. (3.21)
For each set of quantities (g, i, 2r), we can express ap as an implicit function involving elliptic

integrals; however, if we treat a{lr as a small parameter, then the first two terms in the expansion

are
2002
a*Q%

Oéle— B

(1-p?) . (3.22)

We derive and discuss this approximation in greater detail in Appendix 3.A. Higher order corrections
are on the order of (aQ2g)*. For a = 0, we note that this is accurate with a relative error of O(1/L?),
because for a Schwarzschild black hole
AP = (14 1) —s(s+1). (3.23)
As we will confirm later in Figure 3.2, Eq. (3.22) is an excellent approximation even for highly
spinning black holes.
To understand intuitively why the approximation works so well, we will focus on corotating
modes (i.e., those with positive and large m, or p near unity), which have the highest frequencies
and, therefore, the largest possible values for aQlg. For a fixed value of (I, m), wg is a monotonically

increasing function of a, and

i a) < Wi(a = M) = mQft = - 3.24
wg'(a) < wg'(a ) =mQy oM ( )
In setting this upper bound, we have used the result that the low-overtone QNM frequencies approach

mQ g for m > 0 and for extremal black holes (first discussed by Detweiler [44], and discussed further

by, e.g. [45, 46]); we have also used Qp to denote the horizon frequency of the Kerr black hole,

a

Q =
H 2M’r+ ’

(3.25)

and ry to indicate the position of the horizon [note that ri (a = M) = M]. Normalizing Eq. (3.24)
by L, we find
aQr < (u/2)(a/M) < 1/2. (3.20)

Even for the upper bound a2 = 1/2, as can be checked numerically against Eq. (3.21), the relative
accuracy of Eq. (3.22) is still better than 0.2%.
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3.2.2.2 Complex A;,, for a Complex w

To solve for the next-to-leading-order corrections to A;,,, we must compute the imaginary part AlIm.
Because w; < wpr, when we allow w = wr — iwy to be a complex number in the angular eigenvalue
problem (3.7), we can treat the term linear in w; as a perturbation to the angular equation. Using

the perturbation theory of eigenvalue equations, we find that
Al = —2d%wrwr(cos® ), (3.27)

where

9+ 2 0
/ cos 20
/(;0320|U9|2 sin 0do _ \/azw% cos? 0 — - 4 AR
m

sin? 6
/ lug|? sin Od

(cos® ) = (3.28)

do

sin? 6 lm

- /9+ :
0 \/aQwIQ% cos2f) — -2 4 AR

By taking the derivative of both sides of the Bohr-Sommerfeld condition (3.17) with respect to the

variable z = awg and by treating A;,, as a function of z, we can rewrite the above expression as

1 0AF
(cos? ) = _ 1 o4 () (3.29)
22 0z |,
Substituting this expectation value into Eq. (3.27), we find
0A},(2)
Al = aw; { éz L_M . (3.30)

Equation (3.30) defines a numerical prescription for computing A;,, = Af* +iA! . This approach
is quite natural: as w becomes complex, A, is the analytic function whose value on the real axis is

given by AF . The approximate formula (3.22), therefore, becomes

2,.2 2
A, ~L2 - LY 31
Im 9 L2 5 (333')
or
QQ2
aml-"o= (1=, (3.31b)

for a complex frequency w, where we have defined €2 to be w/L.
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3.2.3 The Radial Eigenvalue Problem

Now that we have solved for the angular eigenvalues A;,, in terms of w, we turn to the radial

Teukolsky equation. From Eq. (4.4a), we see that the radial equation is already in the form

2

d“u,
2
dr?

+V'u, =0, (3.32a)

if we define , , , [ - ]
r [w(r?® + a®) — mal®* — A |Apn (aw) + a*w?® — 2maw
Vi(r,w) = CEYDE : (3.32b)

Note here that V" is an analytic function of w, and that it is real-valued when w is real.

In general, the WKB approximant for w, is given at leading order by
Uy = bye’ F R L ANRVA GO L (3.33)

although in order to obtain a mode which is outgoing at r. — 400 (the same as 7 — co) and ingoing

at r, — —oo (r — r4), we must have
up = byt S VYT gyl (3.34a)
for the region containing r — +oo, and

up = b_e VY0 gyt (3.34b)

for the region containing r. — —oco. Intuitively speaking, a solution to Eq. (3.32a) will satisfy the
asymptotic behavior above if V" ~ 0 around a point r = rg, and V. > 0 on both sides. Then, the
WKB expansion (3.33) is valid in the two regions on both sides of r = rp, and the solution in the
vicinity of ry must be obtained separately by matching to the WKB approximation. The matching
will constrain the frequency, thereby giving a method to determine w. A detailed calculation of this
procedure has been carried out by Iyer and Will [11] to high orders in the WKB approximation; the
only difference between our calculation and their result at lower orders comes from the more complex

dependence of V" on w in our case (particularly because A;,,, depends on w in a more involved way).

3.2.3.1 Computing wp

From Iyer and Will [11], the conditions at the leading and next-to-leading order that must be solved

to find wg are
ov’"

VT(T(LUJR) = a’l"
(

=0. (3.35)

T0,WR)
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After a short calculation, these conditions can be expressed as

_ ha A(ro)
QR = ’I”g n o2 r% T o2 5(@93) 5 (336&)
0 | Qr(r?+a®) — pa

~ or

; (3.36b)

r=ro

A(r)

where we have defined

2 2,2
B(z) = Va(z) + 22 = 2pz ~ \/1 * % —ouz+ H- (3.37a)

2

In deriving Eq. (3.36b), we have used the fact that at » > 7o, (r? + a?)?/A is a monotonically
increasing function, and, therefore the extrema of V" are the same as those of V" (r? + a?)?/A; we
then also used the fact that the quantity within the square brackets in Eq. (3.36b) is always nonzero
at points at which V" = 0.

One method of jointly solving Egs. (3.36a) and (3.36b) would be to use Eq. (3.36b) to express

Qg in terms of rq
(M —ro)pa

Op =
R (ro = 3M)rg + (ro + M)a?’

(3.38)

and then insert this into Eq. (3.36a) to obtain ry; finally Qg can be obtained by substituting this
ro back into Eq. (3.38). If we use the approximate formula (3.37a) in this process, the equation for
ro becomes a sixth-order polynomial in 2 = ro/M, the roots of which can be found efficiently. For

convenience, we write this polynomial here

224 (x — 3)% 4+ 42%[(1 — p?)2? — 22 — 3(1 — p?)](a/M)?

+(1 = p?)[(2 = p?)2® + 22+ p?)z + (2 = 1)) (a/M)*. (3.39)

For each pair (i, a/M), there are in general two real roots for , which correspond to the two possible
values of ro/M (and the two real frequencies with opposite signs).
Note that the procedure above will not work when m = 0 (when both the numerator and

denominator of Eq. (3.38) vanish). In this case, we can directly require that
(rp = 3M)r2 + (rp + M)a® = 0. (3.40)

The solution, r,, can be found in closed form [29, 47]. Inserting it into Eq. (3.36a), the result can

be expressed in terms of elliptic integrals

T/ A(rp)

a?A(rp) } ’

(r2 +a?)?

Qnla,ji=0) = £+ (3.41)

(r2 + a?)EllipE [
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Figure 3.2: Left: Difference in Qg(a, 1) [Eq. (3.38)] that arises from using the approximate formula
for Ajm [Eq. (3.31a)] as opposed to the exact formula. Here a/M = 0.7, 0.9,0.95, and 0.99 correspond
to black solid, red dashed, blue dotted, and purple long-dashed curves, respectively. The quantity
plotted on the vertical axis has been scaled by 10°. Right: Difference in Q;(a,u) [Eq. (3.42)] from
using the approximate formula for A;,, [Eq. (3.31a)] rather than the exact formula. The same spins
and conventions are used as in the right panel. We scale the quantity plotted along the vertical axis
by 10% in this figure.

where EllipE denotes an elliptic integral of the second kind. Here we have used the subscript p for
this special case, because this mode will turn out to correspond to polar orbits. Note this formula
agrees with the one derived in [29)].

We plot in Figure 3.2 the relative error in {2z that comes from using the approximate expression
for A;p, [Eq. (3.31a)] rather than the exact Bohr-Sommerfeld condition. The error is always less than
~ 10~* (we scale the quantity plotted on the vertical axis by 10%), and therefore, we will use the
approximate expression for Ay, for the remaining calculations involving Qg throughout this paper.
In Figure 3.3, we plot Qg for a/M = 0, 0.3, 0.5, 0.9, 0.99, and 1 (the flat curve corresponds to
a/M = 0, and those with increasing slopes are the increasing values of a/M). While for low values
of a/M below ~ 0.5, Qi depends roughly linearly upon y, for higher values of a/M (and for p > 0),
Qg grows more rapidly than linearly. For a/M =1, Qg — 1/2 when p — 1, as anticipated.

3.2.3.2 Computing w;

At leading order, the imaginary part w; can be calculated using the same procedure set forth by

Iyer and Will [11]. They find that

=—(n+1/2)Qs(a,p). (3.42)
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Figure 3.3: Real and imaginary parts of the QNM spectra from the WKB approximation. Left:
Black solid curves show Qp for a/M = 0 (the flat curve) and a/M = 1 (the curve that increases
towards 0.5); red (light gray) dashed and dotted curves show a/M = 0.3 and 0.5, while blue (dark
gray) dotted and dashed curves show a/M = 0.9 and 0.99. Right: Black solid curves show §; for
a/M = 0 (again the flat curve) and a/M = 1 the curve that decreases and heads to zero. The red
dashed curve shows a/M = 0.5, while blue dotted and dashed curves show a/M = 0.9 and 0.99,
respectively. For a/M = 1, modes with pu 2 0.74 approach zero (modes that do not decay), while
others still decay.

In our calculation, we must also take into account that V" also depends on w through the angular
eigenvalue’s dependence on w. If we use the approximate formula for «, we obtain a reasonably

compact expression for ;:

V467292, — 1) + 2a20%,(3 — p2)

Qr=A )
! (TO)QTS‘QR —4daMrop + a?roQg[ro(3 — p?) + 2M (1 + p?)] + a*Qr(1 — p?)

(3.43)

In Figure 3.2, we plot the relative error in Q; from using the approximate formula for A,
identically to the way in which it is used in Figure 3.2 (although here we scale the quantity plotted
on the vertical axis by 10%). Because the error is always less than ~ 1073, we will use the approximate
expression for A;,, for computing Q; in the remainder of this paper. In [29], an alternate expression
for wy (for m = 0) was computed by finding an analytic expression for the Lyapunov exponent (see
Section 3.3.3.2, where we discuss the exponent’s connection to the QNM’s decay rate); this expression
gives the same result as (3.43) for 1 = 0 to a high accuracy. In Figure 3.3, we plot Q;(a, p) for several
values of a/M (the same as those in Figure 3.3, though not a/M = 0.3). The curve for a/M =0 is
flat, and those with larger spins have more rapidly decreasing slopes for increasing values of a/M.
It is interesting to note that in the limit a — 1, Q; becomes zero for values of p in a finite interval
0.74 < p < 1 (not only for u = 1 does €; vanish). We will put forward an explanation for this

phenomenon in Section 3.4, after we make connections between QNMs and wave propagation in
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the Kerr spacetime.

The vanishing of the QNM’s decay rate for extremal black holes has been discussed by many
authors in the past. Detweiler [44] first showed that modes with [ = m had vanishing decay.
Mashhoon [48] extended the work of Goebel [37] to Kerr-Newman black holes when he calculated the
frequency and Lyapunov exponent of equatorial unstable photon orbits. He found that for extremal
Kerr-Newman holes (which have M? = a? + Q?, with @) the charge of the hole) when a > M/2, the
Lyapynov exponent vanished, by analogy with the vanishing decay for p = 0.74 discussed above.
For QNMs of a massive scalar field around an extremal Kerr black hole, Hod [49] found that the
modes have vanishing damping when the mass of the scalar field is smaller than a critical value.
Berti and Kokkotas [50] numerically calculated QNM frequencies for Kerr-Newman black holes using
continued fractions, and found good agreement with Mashhoon’s result for | = m = 2, s = 2 modes
(i.e., for extremal holes there was zero decay). Cardoso [45] explored Detweiler’s calculation of the
decay of extremal modes, and could show that some but not all modes with m # [ and m > 0
have vanishing decay rates. Hod also extended Detweiler’s calculation to m > 0 and found that all
such modes have zero decay in the extremal Kerr case [46], in contrast to our findings. Hod also
computed QNM frequencies and decays for eikonal QNMs in the extremal Kerr limit [51] and found
agreement with Mashhoon’s result. In the end, the particular value of m at which the QNM mode
decay rate for an extremal black hole vanishes is not a settled issue; our results here indicate that

for L > 1, only some subset of the m > 0 modes have vanishing decay rates.

3.2.4 Accuracy of the WKB Approximation

Because we calculated the leading and next-to-leading orders in the WKB approximation to wg,
we expect that the relative error for increasing L should scale as O(1/L?). For the imaginary part,
we computed only the leading-order expression, and we would expect that the relative error might
scale as O(1/L). In addition, because at this order of approximation we do not account for the spin
of the wave, we anticipate that the error for the gravitational modes may be larger than those for
scalar modes. In Figures 3.4-3.7, we confirm most of these expectations, but we find the somewhat
unexpected result that the relative error for the imaginary part also scales as O(1/L?). In fact,
this finding is consistent with Egs. (52) and (53) of [29], where the next order contributions are
calculated for the special cases of m =1 and m = —I respectively.

In Figure 3.4, we compare the WKB approximation to wr with numerical computations of the
s = 2, gravitational-wave, quasinormal-mode spectra; specifically, we plot the fractional error against
w=m/L, forl =2,3,...,14, and for black holes of spins a/M = 0.3, 0.5, 0.9, and 0.95. The relative
error clearly converges to O(L?). Even for [ = 2, the relative error tends to be < 30%, and at [ > 3
the relative error stays below ~ 1.5L~2 (this means error is < 10% for [ = 3 and higher).

In Figure 3.5, we compare the WKB spectra with s = 0 scalar quasinormal-mode spectra, for
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Figure 3.4: Fractional error, dwr/wg, of the WKB approximation to the s = 2, gravitational-wave,
quasinormal-mode spectrum, multiplied by L2. The four panels correspond to four different spins
which (going clockwise from the top left) are a/M = 0.3, 0.5, 0.95, and 0.9. Errors for [ = 2,3,4
are highlighted as red solid, brown dashed, and pink dotted lines, while the rest (I = 5,...,14) are
shown in gray. This shows that the relative error approaches the O(1/L?) scaling quite quickly.
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Figure 3.5: Fractional error, dwg/wg, of the WKB approximation to the s = 0, scalar-wave,
quasinormal-mode spectrum, again scaled by L?. The four panels correspond to the same four spins
in Figure 3.4. The points shown in the four panels are for values of [ in the range | = 2,3,...,14.
Because all values of | nearly lie on the same curve, the relative error has converged at an order
O(1/L?) even for very low [. The overall error is also significantly lower than that for the s = 2

modes.
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Figure 3.6: Fractional error, dwr/wr, of the WKB approximation to the s = 2, gravitational-wave,
quasinormal-mode spectrum, also scaled by L?. The panels and the curves are plotted in the same

-0.5

0.0

I

0.5

1.0

LX0wy/w))

t a=0.5,s=2

091 .0 -0.5 0.0 0.5 1.0
u

1.0

0.8} a=0.95, s=2

LXOwy/w))

way as in Figure 3.4, and the error scales similarly.
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Figure 3.7: Fractional error, dw;/wy, of the WKB approximation to the s = 0, scalar-wave,

quasinormal-mode spectrum, again multiplied by L2. The four panels and the points are shown

-0.5

0.0
u

0.5

1.0

in the same way as in Figure 3.5, and there is a similar rapid convergence of the error.
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the same values of | and the same black-hole spins. We find a much better agreement. For all [ > 2
modes, the relative error stays below 4 x 1072L~2. This suggests that coupling between the spin of
the wave (i.e., its tensor polarization) and the background curvature of the Kerr black hole is the
main source of error in our WKB approximation.

In Figures 3.6 and 3.7, we perform the same comparisons as in Figures 3.4 and 3.5 for the
imaginary part of frequency. Surprisingly, we find that for both s = 0 and 2, the relative error in wy
is O(L~2). For s = 0, the relative error is < 6 x 1072L~2, while for s = 2, the error is < L~2.

With this comparison, we conclude our direct calculation of the QNM spectrum by WKB tech-
niques. We will discuss additional features of the QNM spectrum in Section 3.4, but before doing
so, we will develop a geometric interpretation of our WKB results. Doing so will help us to develop

more intuition about our WKB expressions.

3.3 Geometric Optics in the Kerr Spacetime

In this section, we first briefly review the formalism of geometric optics, which describes the prop-
agation of waves with reduced wavelengths A that are much shorter than the spacetime radius of
curvature, R, and the size of the phase front, £. In the geometric-optics approximation, the phase
of the waves remains constant along null geodesics (rays), while the amplitude can be expressed
in terms of the expansion and contraction of the cross-sectional area of bundles of null rays. We
will then specialize the geometric-optics formalism to the Kerr spacetime, and we will write down
the most general form of propagating waves in the geometric-optics approximation. Using the
Hamilton-Jacobi method, we see that the waves’ motion can be related to the null geodesics in the
spacetime. By applying boundary conditions to the approximate wave, we obtain expressions for
the quasinormal-mode waveforms and their corresponding complex frequency spectra and angular

separation constants, in the eikonal limit.

3.3.1 Geometric Optics: General Theory

Here we briefly review the geometric-optics approximation to scalar-wave propagation (see, e.g.,
Section 22.5 of Reference [52] for details). A massless scalar wave u propagating in curved spacetime
satisfies the wave equation

9"V, Vyu=0. (3.44)

If we write

u = Ae'? (3.45)
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then at leading order in A/L, we have
9" kyk, =0, k,=0,9, (3.46)

while at next-to-leading order,

2k"0, log A+ V k" = 0. (3.47)

Note that Eq. (3.46) also implies that k* is geodesic,
KV Ky, = KMV, V,® = KV, V,® = k'V,k, = 0. (3.48)

Equations (3.45)—(3.48) encode information about the transport of the amplitude A and phase
® along a null geodesic (or a ray). The phase should be kept constant, because Eq. (3.46) states

k40,8 =0, (3.49)

while the amplitude is transported along the ray in a manner that depends upon the propagation
of neighboring rays. Because the 2D area, A, of a small bundle of null rays around the central ray
satisfies the equation

V,k* = k"0, log A, (3.50)

it is possible to show from Eq. (3.47) that
k9, (AI/QA) ~0, (3.51)

which implies A oc A=1/2,

The transport equations (3.49) and (3.51) provide a way to construct a wave solution from a
single ray; therefore, any solution to the wave equation (3.44) in a 4D spacetime region can be found
from a three-parameter family of null rays (with smoothly varying initial positions and wave vectors)
by assigning smoothly varying initial values of (®, A) and then transporting these values along the
rays. (We use the phrase “smoothly varying” to mean that the values of (®, A) must change on
the scale of £ > X.) We note it is often convenient to divide the three-parameter family of initial
positions of the null rays into two-parameter families of rays with constant initial values of ®. The
constant-® surfaces are the initial phase fronts, which, upon propagation along the rays, become
3D phase fronts of the globally defined wave. The more usual 2D phase fronts, at a given time, are
obtained if we take a particular time slicing of the spacetime and find the 2D cross sections of the
3D phase fronts in this slicing.

The above formalism describes wave propagation up to next-to-leading order in £/, which will
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be enough for us to build a geometric correspondence for both the real frequency, the decay rate,

and the angular separation constant of QNMs in the Kerr spacetime.

3.3.2 Null Geodesics in the Kerr Spacetime

Now let us review the description of null geodesics in the Kerr spacetime using the Hamilton-Jacobi

formalism. In general, the Hamilton-Jacobi equation states

" (9,9)(9,5) = 0, (3.52)

where S(z#) is called the principal function. For the Kerr spacetime, the Hamilton-Jacobi equation
can be solved via separation of variables (see, e.g., [53]), through which the principal function can
be expressed as

S(t,0,¢,7) = Sp(0) + L.+ Sy (r) — Et | (3.53)

where £ and L, are constants that are conserved because of the the timelike and axial Killing vectors
of the Kerr spacetime. Physically, £ and L, represent the energy and z-directed specific angular

momentum of the massless scalar particle. The functions S, (r) and Sy(#) are given by

r ! [
Sr(r):/ A?:/))dr’, 59(9):/ \VO(0)do’ (3.54a)

where R(r) and ©(0) are given by

R(r) = [E(r* + a®) — L.a]* — A[(L. — a€)* + Q] (3.54b)
O(f) = Q — cos? O(L?/sin? 0 — a*E?), (3.54c¢)

and A(r) is given in Eq. (4.4b). The constant Q is the Carter constant of the trajectory, which is a
third conserved quantity along geodesics in the Kerr spacetime.

The principal function S(z#;&, L., Q) contains information about all null geodesics; equations
of motion for individual null geodesics are given by first choosing a particular set of (£, L., Q), and
then imposing

oS oS oS

%ZO’TLZ:O’@:O' (3.55)

These conditions lead to a set of first-order differential equations

dt 7“2 a? 9
d)\ [E(r* +a®) — L.a] — a(a€sin®0 — L), (3.56a)

A
do ( L 9) a[E(r? +ZQ> — L.a] 7 (3.56b)
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Table 3.1: Geometric-optics correspondence between the parameters of a quasinormal mode, (w,
Aim, I, and m), and the conserved quantities along geodesics, (€, L., and Q). To establish a corre-
spondence with the next-to-leading-order, geometric-optics approximation, the geodesic quantities
& and Q must be complex.

Wave Quantity Ray Quantity Interpretation
Wave frequency is same as energy of null ray (determined by

WR £ spherical photon orbit).
Azimuthal quantum number corresponds to z angular momen-
m L, . . . . .
tum (quantized to get standing wave in ¢ direction).
R 9 Real part of angular eigenvalue related to Carter constant
Ajy, Q+ L . ] . . o
(quantized to get standing wave in 6 direction).
Wave decay rate is proportional to Lyapunov exponent of rays
wr Y= *51 . . .
neighboring the light sphere.
I Nonzero because wy # 0 (see Sections 3.2.2.2 and 3.3.3.3 for
Ay, Qr

further discussion).

r_ R % _ s, (3.56¢)

where we have defined

d d
—=%—, Y=r’+d’cos’ :
™ i r°+ a”cos” 0, (3.57)

and ( is an affine parameter along the null geodesics.

3.3.3 Correspondence with Quasinormal Modes

Here we will find connection between the general set of wave solutions in the previous section,
and the particular solutions that correspond to a quasinormal modes, in the geometric-optics limit.
Specifically, we will look for waves that propagate outwards at infinity and down the horizon. With
this correspondence, we will be able to make a geometric interpretation of our WKB results from

Section 3.2.

3.3.3.1 Leading Order: Conserved Quantities of Rays and the Real parts P of Quasinormal-

Mode Parameters

It is straightforward to note that the Hamilton-Jacobi equation (3.52) is identical to the leading-order
geometric-optics equations, if we identify the phase, ®, with the principal function, S. Therefore,

at leading order, we can write

S — e—igteiLz¢e:|:iSQe:tiST ) (358)

where we recall that the amplitude A differs from unity only at next-to-leading order (we will treat

it in the following subsections). Here, we have a chosen set of conserved quantities, (£, Q, L), to
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identify the wave we wish to connect with a quasinormal-mode solution. The region in which the
wave propagates is identical to the region in which geodesics with these conserved quantities can
propagate. In addition, for each point in this region, there is one (and only one) geodesic passing
through it; that we have & in front of Sy and S, means only that either propagation direction could
be a solution to the wave equation.

Now we note that u, a scalar wave in the Kerr spacetime, must separate as in Eq. (3.6). By

comparing Eq. (3.6) and Eq. (3.58), we can immediately identify that
E=wgr. (3.59)

Because £ is a real quantity (the conserved energy of the null geodesic), we see that at leading order,
the wave does not decay. Next, we also observe that in order for u to be consistently defined in the
azimuthal direction, L, (of the null geodesics that S describes) must be an integer. This allows us
to make the second identification

L.=m. (3.60)

Comparing Sy from Eq. (3.54a) and ug from Egs. (3.15) and (3.10b) (focusing on one direction of 6

propagation, and ignoring next-to-leading-order terms), we can also conclude that
Q=Af —m?. (3.61)

At this stage, given any set of (£,Q,L.), we will be able to find a wave solution that exists in
the region in which the geodesics travel. Not all such sets of conserved quantities correspond to
quasinormal modes, however, because they may not satisfy the correct boundary conditions of
QNMs.

We will first explain the conditions on the radial motion of the geodesics that will allow these
particular geodesics to correspond to a wave that satisfies outgoing and downgoing conditions at
r. — oo, respectively. If the radial geodesics satisfy R > 0 everywhere, then there will be traveling
waves across the entire 7, axis, which will not satisfy the boundary conditions; if there are two
disconnected regions of traveling waves, however, waves will scatter off the potential on each side,
and they will also fail to satisfy the boundary conditions. The only way to satisfy the boundary
conditions is to have a point rg at which R = 0 and R’ = 0, in which case there will be a family of
geodesics on each side of r = ry (with each member a homoclinic orbit which has r — r¢ on one end)
and a spherical orbit with constant r = rg. The corresponding wave has zero radial spatial frequency

at 7 = rg, and this frequency increases towards r < ry and decreases towards r > rg. Noting that

R=V"(r*+ a2)2 , (3.62)
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the condition

R=R =0 (3.63)

is the same as the condition, Eq. (3.35), which determines wg in terms of L and m in the WKB ap-
proximation. It is worth mentioning that although the condition of Eq. (3.63) imposed on (£, Q, L)
can be interpreted most easily as the condition for a spherical photon orbit, the wave function for
the quasinormal mode we are considering is not localized around that orbit. The wave function at
leading order, in fact, has a constant magnitude at every location that homoclinic orbits reach (i.e.,
the entire r axis). We will derive the amplitude corrections in the next section.

The quantization of the frequency wg in terms of the multipolar indices [ and m arises from the
quantization of the motion in the angular directions. For the azimuthal direction, it is easy to see
that for the wave function to be single-valued, we need to impose L, = m € Z. For the 6 direction,
we note that

0 =V’sin?4, (3.64)

and the @-quantization condition for the wave, Eq. (3.17), is
0+
VO do = (L — |m|)r. (3.65)
0

This corresponds to the Bohr-Sommerfeld condition for a particle moving in a potential given by ©.
Consequently, the condition for a standing wave along the 8 direction (at leading order) is equivalent

to

2.2 2

Q= Ay (wra) —m2~ L2 —m? 2 ;"R {1 - ”22] . (3.66)

In summary, we connected the QNM’s wave function to the Hamilton-Jacobi principal function
of homoclinic null geodesics (at leading order). These geodesics have the same energy, Carter
constant, and z-component of its angular momentum as a spherical photon orbit; however only
spherical orbits with quantized Carter constants and z-angular momenta correspond to quasinormal
modes. In Table 3.1, we summarize our geometric-optics correspondence; so far we have identified
the first three entries on the table. We can find the next two correspondences by investigating

next-to-leading-order geometric optics in the next part.

3.3.3.2 Next-to-Leading Order: Radial Amplitude Corrections and the Imaginary
Part of the Frequency

We showed in the previous part that the conserved quantities of a spherical photon orbit, (€, Q, L.),
R

correspond simply to the real parts of the quasinormal-mode parameters, (wg, A%,

m), which are
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Figure 3.8: Schematic plot of trajectories in the -6 plane of homoclinic orbits outside of the peak
of the potential (specifically for a black hole with spin a/M = 0.7 and a photon orbit with radius
ro/M = 2.584). The two horizontal grid lines mark the turning points, § = 61; between these
turning points, there are two homoclinic orbits passing through every point, while at turning points
only one orbit passes through. Vertical grid lines indicate when the value of parameter A has changed
along the orbit by (an arbitrarily chosen value) A\ = 0.046M . Near the spherical photon orbit, each
homoclinic orbit undergoes an infinite number of periodic oscillations in 6 while r — r( is growing
exponentially as a function of .

the leading-order quantities of a quasinormal mode. Here, we will show that the behavior of the
homoclinic orbits—namely, how the orbits propagate away from the spherical orbit, and how they
move between 6L—reveals the spatiotemporal variation of the wave (i.e, the decay rate and the
shape of its wave function in space). In Figure 3.8, we plot the trajectory of a particular series of
homoclinic orbits on the r-0 plane, to which we will refer at several points in the discussion below.

With the appropriate values of (£, Q, L,), the function u in Eq. (3.58) solves the wave equation
to leading order and satisfies the required boundary conditions. To recover the decaying behavior
of quasinormal modes, however, we make corrections to the amplitude of the wave, which appear at
next-to-leading order in the geometric-optics approximation. Because of symmetry, there should not
be any correction to the amplitude in the ¢ direction, and the correction in the ¢ direction should

be a simple decay; therefore, we write

u= Aexp(iS) = e VA (r)Ag(h) e~ il eFiS0 EiSr (3.67)
—_———

A(t,r,0)

This general expression contains four possible directions in which the wave could be propagating:
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the +6 direction and the +r direction (depending on the signs in front of S, and Sp). Because the
boundary conditions require that the waves propagate towards r, — +oo for r > rg and r, - —0o0
for r < 1o, the sign in front of S, should be positive for r > ry and negative for r < ro. For 6
motion, however, we insist that both directions (signs) be present, because a quasinormal mode is a

standing wave in the # direction. Focusing on r > rg, we write
u=e A (r) [Af e + Ay e 0] eI OIS = gy oy (3.68)

We will next require that both u; and u_ satisfy the wave equation to next-to-leading order,
separately. By explicitly computing Eq. (3.47) (or AV A = const) in the Kerr spacetime, we find

the amplitude satisfies the relation

dlosA 115 (A(r)5,.8,) + S,La@(sin 0005s)) . (3.69)

= d¢ 2 in 6

Here ( is an affine parameter along the geodesic specified by (€, Q, L.). If we use the parameter A
defined by d/d\ = ¥d/d({ then we can separate the left-hand side of the equation as
dlog A d d dt

= % logA £ Jog Ag(0) — v .
i T 108 Ar(r) + —-log Ag(0) — v (3.70)

Because the right-hand side of Eq. (3.56a) for dt/d\, separates into a piece that depends only

upon 7 and one that depends only upon 6, we will write Eq. (3.56a) schematically as

dt = =

— = t 3.71
oottt (3.71)
where 7 is only a function of r and fis only a function of . Uunlike in Eq. (3.56a), we will require
that tTaverage to zero when integrating over A for half a period of motion in the 6 direction (i.e.,

from 0_ to 0;). We can ensure this condition is satisfied by subtracting an appropriate constant

from ¢ and adding it to £. Combining Eqs. (3.69)—(3.71) and performing a separation of variables,

we obtain
dlog A, = R
VR ar —t = 74\/72 , (3.72a)
dlog Ax = 1
\/@7059 L i = — g (VOsing), (3.72b)

where a prime denotes a derivative with respect to r for functions of r only, and a derivative with
respect to 6 for functions of 6 only (whether it is a 6 or r derivative should be clear from the context).
While it might at first seem possible to add a constant to the definition of Z, and subtract it from &

and still have both v, and u_ satisfy the next-to-leading order geometric optics, because we have
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already chosen to have ¢ average to zero,

/ i i) (3.73)
Y—= = /”yt =0, 3.73
oo VO

this separation is the only way to guarantee that |Af9t\ match each other at both ends. We will
discuss the angular wave function in greater detail in the next part of this section.
Let us now turn to the radial equation, from which we will be able to compute the decay rate.

Close to rg, we can expand R(r) to leading order as

~ (T — 7‘0)2 "
R(r) & =R (ro) (3.74)

Substituting this result into Eq. (3.72a), we find

dlog A, 1 = [ 2 1
= by = == .
dr r—ro [’Y Ry 2] ’ (8.75)

where we used the notation Ry = R”(rg). For A, to be a function that scales as A, ~ (r —rg)"

around rg for some integer n (namely it scales like a well-behaved function), we need to have

7
v = (n—’_;)@:(n—’—lm)r&@or—lm(;f[//&' (3.76)
To arrive at the second line, we used Eq. (3.74), the fact that dr/d\ = v/R, and that { is the part
of dt/d) that does not vanish when averaging over one cycle of motion in the 6 direction; the limit
in the expression comes from the fact that the approximation in Eq. (3.74) becomes more accurate
as r — ro.

The physical interpretation of the rate that multiplies (n + 1/2) is somewhat subtle. Because
the # motion is independent from r motion, a bundle of geodesics at the same r slightly larger than
ro, but at different locations in @, will return to their respective initial values of 8 with a slightly
increased value of r after one period of motion in the 6 direction. The area of this bundle increases
in the process, and by Eq. 3.51, the amplitude of the wave must decay; the rate of decay is governed
by the quantity that multiplies (n + 1/2) in Eq. (3.76).

In addition, as shown in Figure 3.8, the homoclinic orbits do pass through an infinite number
of such oscillations near ry, because the radial motion is indefinitely slower than the § motion as r

approaches 7. It is clear from Figure 3.8 that

1 Ar _ Alog(r —ro)
r—rg AN AN

(3.77)

approaches a constant as r — rg. By multiplying the above equation by the constant value of
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(AN)/(At) over one orbit of motion in the # direction,

1 Ar _ Alog(r —ro)
r—1r9 At At

also approaches a constant. This is usually defined as the Lyapunov exponent of one-dimensional
motion; here, however, we emphasize that it is defined only after averaging over entire cycle of 6
motion. By comparing Eq. (3.78) with the second line of Eq. (3.76), and bearing in mind that the
Lyapunov exponent is defined after averaging over one period of # motion, one can write Eq. (3.76)
as

7=+ 3. (3.79)

To put Eq. (3.76) into a form that relates more clearly to Eq. (3.42), we use the conditions on

the phase function,

%:O, %20, (3.80)
which hold for any point on the trajectory of the particle. We will apply this condition to two points
on the particle’s trajectory: one at (t,7,0, ¢) and the second at (t + At,r+ Ar, 0, ¢+ A¢), where At
is chosen such that the particle completes a cycle in € in this time (and it moves to a new location

shifted Ar and A¢). Substituting in the explicit expressions for the principal function in Eqgs. (3.53)
and (3.54a), we find

o [ VR, s
- l/ Ay AS)| = A (3.81a)
9 r+Ar /R(’/’/) , B

where we have defined

ASy =2 / " NCICAL jf VO(0)do' . (3.82)
0_

Because the change Ar is infinitesimal for r near rg, the integrand is roughly constant, and the
r-dependent part of the integral becomes the product of the integrand with Ar. Then, one can use

Eq. (3.74) to write Egs. (3.81a) and (3.81b) as

1 OR Ar 0ASy

- =A .
JIRIN, OE T 1o 0 O (8.832)
L OR Ar0AS, (5530)

= +
V2R{AGOQr —19  0Q

Now, we also note that for a given fixed L, = m, the angular Bohr-Sommerfeld condition in Eq.

(3.65) makes Q a function of £ through the condition that ASy = (L — |m|)w. Because ASp is a
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function of &, its total derivative with respect to £ must vanish,

~0. (3.84)
BS

0ASy  0ASy (dQ)

oc T o0 \ae

Therefore, when we multiply Eq. (3.83b) by (dQ/d€)ps and add it to Eq. (3.83a), we obtain the

condition that

1 OR OR [(dQ Ar
— | =+ —= | = = At. 3.85
VIRIA, [85+8Q<d5> } (3.85)
Combining this fact with the definition of the Lyapunov exponent in Eq. (3.78) and Eq. (3.79), we

find that

r—7To

B 1 VZRIA,
v = (n + 2) 6773 N 877% @ , (3.86)
o 0Q \ dE ) gq v

where we recall that the quantities should be evaluated at rg. Equation (3.86) is equivalent to
Eq. (3.42). Note, however, that in Eq. (3.86) we explicitly highlight the dependence of Q on &
through the term (dQ/d€)ps. There is an analogous term in Eq. (3.42) from the dependence of
Ay on w in the expression for the potential V", which we must take into account when computing
OV /Ow; however, we did not write it out explicitly in Eq. (3.42).

Summarizing the physical interpretation of the results in this subsection, we note that the Lya-
punov exponent ~y, is the rate at which the cross-sectional area of a bundle of homoclinic rays
expand, when averaged over one period of motion in the 8 direction in the vicinity of r9. The spa-
tial Killing symmetry along ¢ means the extension of the ray bundle remains the same along that

direction. This, therefore, allows us to write
A~ et (3.87)
Correspondingly, the Av/.A = const law requires that
A~e 2 (3.88)

which agrees with the decay rate of the least-damped QNM. The higher decay rates given by
Eq. (3.76) come from an effect related to the intrinsic expansion of the area of a phase front.
More specifically, if the amplitude is already nonuniform at points with different r —ro (but same 6),
then shifting the spatial locations of the nonuniform distribution gives the appearance of additional

decay.
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3.3.3.3 Next-to-Leading Order: Angular Amplitude Corrections and the Imaginary

Part of Carter’s Constant

Having found a relation in Eq. (3.72a) between the imaginary part of the energy, wy, and the rate
of divergence of rays, we now turn to Eq. (3.72b) to understand the geometric meaning of the
complex part of Aj,. We recall from Section 3.3.3.1 that Q = Aﬁn — m?, at leading order, for a
real Carter constant Q. Because A;,, becomes complex at next to leading order (and because m
remains unchanged), if the correspondence Q@ = A;,,, —m? holds for a complex A;,,, then the Carter
constant should also be complex, and its imaginary part should be equivalent to A . In this part,
we argue that this relationship holds.
By integrating Eq. (3.72b), we find that

1
14i = —— X
© =\ singvo ¥

o ’75 /
+ /9 7 @dH] . (3.89)

To interpret this equation, we will assume that the orbit is sufficiently close to rg that the change
in r over the course of a period of motion in  is negligible. Under this assumption (and with the

fact that d\ = df/v/©) we can write the integral in the exponent in Eq. (3.89) as

/0 }éd@’ =y {[t(a) —t(0-)] - (ﬁ;) (A(0) — )\(9_)]} : (3.90)

where At/AM is the average of dt/d\ over a cycle of § motion. We obtain this expression by using
the fact that d¢/dX is equivalent to i plus a constant when r (and hence 2) does not change. Because
# has zero average (by definition) over a period of # motion, then when written in the form above,
the constant must be (At)/(AN). We can write this average rate of change in a useful form by noting

that, from Eq. (3.56a) and Eq. (3.54b),

dt 1R ..
afﬂg‘ka gCOS 9 (391)

Averaging this expression over a cycle of # motion, noting that the first term on the right-hand side

is independent of 6, and using Eq. (3.54b) gives

-1
AL LR o7 e, /9* A9\ _ L OR | OAS)/O
AN 2A 0E 0. VO 0. VO - 2A 08 20AS8/0Q
1 OR 1 /dQ
=587 3 <dg)BS . (3.92)

In the last step we have used the Bohr-Sommerfeld condition (3.84). Also according to Eq. (3.56a)
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and Eq. (3.56¢), we can find

HO) — 10 ag/ NCIGLA 22%7; AO) = A(0)), (3.93a)
)\(0)—)\(9_):2@ /9 NG (3.93b)

where to derive these two equations, we can again use the fact that d\ = df/ v/O and the definition
of ©; for the first we also make use of Eq. (3.91).
Finally, we insert Eqs. (3.93a), (3.93b), and (3.92) into Eq. (3.90) to find

0

5 Jéd&’ = (—iv) [aag + <Z§)BS aag} [.56(0)] - (3.94)

Substituting Eq. (3.94) into the solution for AF in Eq. (3.89) gives that

(3.95)

The phase in this equation, however, is precisely the correction to the leading-order expression for

the phase ¢5%(?) if we allow £ and Q to be complex, where their imaginary parts are given by
d
€ = —y = —w;, Q= ( d?) (=), (3.96)

Through next-to-leading order, therefore, the 6 portion of the wave is given by

¢iS0(6) 4 o—iSe(8)

AfeiSe(0) 4 g~ e—iSe(6) —
f ¢ sin 6+/©

: (3.97)

where £ and Q used in Sy are complex.

In the geometric-optics approximation, therefore, we have shown that we can account for the
amplitude corrections to the wave by allowing the conserved quantities, & and Q, to be complex
[with their imaginary parts given in Eq. (3.96)]. Furthermore, through the geometric-optics corre-
spondence, and the definition of Allm in Eq. (3.30) we can confirm that AlIm = Qy; therefore, the
relationship

Q= A, —m?, (3.98)

is true for a complex Q and A;,,.

In closing, we note that at the same 6, the magnitude of the two components of the wave in Eq.
(3.95) are not equal. More specifically, the integral involving # makes A+ have a larger amplitude at
0 < /2 and a smaller amplitude at 8 > w/2; A~ has the opposite profile. Therefore, the net wave

function remains symmetric about 6 = /2.
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3.4 Features of the Spectra of Kerr Black Holes

In this section, we will use the WKB formula and the geometric-optics correspondence in the first
two sections of this paper to explain several aspects of the quasinormal-mode spectrum of Kerr
black holes. Specifically, we will explain the absence of damping for a significant fraction of modes
of extremal Kerr holes. We will also decompose the frequency into orbital and precessional parts and
explain a degeneracy in the spectra of Kerr holes in terms of a rational relation of these frequencies

when the corresponding photon orbits close.

3.4.1 Spherical Photon Orbits and Extremal Kerr Black Holes

We will first review the properties of spherical photon orbits. These orbits can be found by setting
R(r) = R'(r) =0 (see, e.g., [53]), and their conserved quantities are fixed by the radius of the orbit
r and the spin of the black hole a to be

r3(r3 — 6Mr? + 9M?r — 4a*M)

2

Q&% =— o — M2 , (3.99a)
3 —3Mr? + a®r +a®?M

L./E=- alr =) . (3.99b)

We will next discuss additional features of these orbits.

For a given spin parameter a, there is a unique spherical photon orbit with parameters (€, L., Q)
for any radius between the outermost and innermost photon orbits (the retrograde and prograde
equatorial photon orbits). Their radii (which we denote 7, for prograde and r9 for retrograde orbits)

are given by

2
ry = 2M [1 + cos (3 arccos (—L@))} , (3.100a)
ro = 2M |1+ cos gaurccos la| (3.100Db)
2 — 3 M . .

At each r; < r <y, the spherical orbit’s inclination angle reaches a maximum and minimum of 6

(at which © = 0). These angles are given by

[2\/MA(2r3 —3Mr2 + Ma?) — (r® — 3M2r + 2Ma?)| r

2
0. —
COS + a2(r — M)2 s

(3.101)

which are equivalent to the turning points of the integral (3.17) (and, therefore, we use the same
symbols for these angles).

Using the geometric-optics correspondence between (£, L., Q) and (Qg, u, oszn)7 we see that
equatorial orbits at r; and 79 correspond to modes with p = —1 and +1, respectively, or modes

with m =+l and | > 1 (strictly speaking, though, u = m/(I+1/2) never precisely reaches +1). We



Figure 3.9: The values of r and cos 61 of spherical spherical orbits, for a/M = 0 (black, solid vertical
line), 0.5 [red (light gray) dashed curve], 0.9 [blue (dark gray) dashed curve] and 0.99999 (black,
solid curve). Note that for a = 0, all such orbits have r = 3M, while for a = M, a significant fraction
reside at r = M.

can also relate rp, the real root of Eq. (3.40), to the polar orbit and modes with m = 0. For orbits
between the equatorial and polar ones, we can use Egs. (3.36a) and (3.36b) to obtain a p between
—1 and +1. Then, only those modes that can be written as m/(l + 1/2) with the allowed integer
values of [ and m correspond to a QNM (though the photon orbits that correspond to QNMs are a
dense subset of all photon orbits).

Note in Figure 3.9 that for a ~ M, a significant fraction of spherical photon orbits of different
inclination angles all have nearly the same radius, r ~ M. Through the geometric-optics corre-
spondence, a large fraction of modes (a finite range of values of p) relate to this set of modes with
r & M. In Figure 3.10, we explicitly show the relation between modes characterized by p and their
corresponding spherical-photon-orbit radii (normalized by the horizon radius) for several values of
a/M of slightly less than unity. The radius exhibits an interesting transition between two kinds of
behaviors: for g > . = 0.744, the value of r is very close to M (the horizon radius for an extremal
Kerr black hole), and for p < p, the radii increase linearly. The orbits with p > u. have a range of
inclination angles. Their sinf1 span from 0.731 (at g, the most inclined orbit) to 1 (at p =1, the
prograde equatorial orbit).

For the extremal black holes, therefore, a nonzero fraction of corotating spherical photon orbits
appear to coincide with the horizon in the Boyer-Lindquist coordinate system. Although the proper

distance between these orbits will not vanish (see [54]), this does not seem to be a coordinate effect,
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Figure 3.10: Radii of corotating spherical photon orbits as a function of u, for a/M = 0.9 (black
solid line), 0.99 (red dashed curve), 0.9999 (blue dotted line). For extremal Kerr black holes, a
nonzero fraction of all spherical photon orbits are on the horizon.

because there is a definite physical change of the modes for these values of p > p,.. By comparing
Figure 3.10 with Figure 3.3, we see that these orbits also have Q; ~ 0. A vanishing imaginary part
of the frequency corresponds to a vanishing of the radial Lyapunov exponent for this entire nonzero
region of spherical photon orbits. This, therefore, would lead to a curious effect for a highly spinning
black hole: for perturbations with p > p., modes do not move away from or into the horizon very
quickly. If we were to solve an initial-data problem containing these modes, we would find that
they live for a long time. One subtlety here is that QNMs with low damping rates are generally
difficult to excite: the black hole excitation factor for a generic Kerr black hole can be proved to be
proportional to wy (See [30] for Schwarzschild case and [55] for Kerr; see also [56] for Kerr). In the

—iwrt gyer the linear factor w; dominates and we would eventually

long run the exponential factor e
see these long-lived perturbations. Moreover, as these modes are centered around the equatorial
plane, we would see these perturbations escaping roughly near the equatorial direction. In fact [56]
showed that a long-lived emission in the form of superposed QNMs with zero decay results from the

perturbations of an extremal Kerr black hole; their work was for [ = m modes only, and together

with our eikonal results for generic m can provide a basis for future studies of zero-decay modes.

3.4.2 A Mode’s Orbital and Precessional Frequencies

In this part, we will define two frequencies associated with individual spherical photon orbits (the
orbital and precessional frequencies) and understand their connection to the real part of the QNM
frequency. We begin by noting that because spherical photon orbits have only two independent

degrees of freedom describing their motion [see, e.g., Eq. (3.99)], the orbit can be characterized
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by two frequencies. The first is the #-frequency, 2y, the frequency at which the particle oscillates
below and above the equatorial plane. During each #-cycle, which takes an amount of time given
by Ty = 27/, the particle also moves in the azimuthal (or ¢) direction. If this angle is 27 for a
corotating orbit (m > 0) or —27 for a counterrotating orbit (m < 0), then there is no precession (and
these simple, closed orbits have effectively one frequency describing their motion, as the spherical
photon orbits of a Schwarzschild black hole do). The difference between the A¢ and 27 (its

precession-free value) we will denote as the precession angle,

Adprec = Ap — 2msgnm,, (3.102)

where sgnm is the sign of m. We can also associate the rate of change of ¢p..c with a frequency,

Qprec = A(bprec//TG = AQsprecQQ/(27T) . (3103)

Both Ty and A¢prec can be computed from geodesic motion [see the formulas for Qp and A¢prec in
Eq. (3.106)].

It is possible to perform a split of the real part of the QNM into two analogous frequencies. To
derive this split, start from a single ray, along which the phase of the wave must be constant. Also
suppose that the ray originates from 6_ and ends at 6, after traveling only one-half of a cycle of

motion in the 6 direction. During this time, the statement that the phase is unchanged is that

0=—wrTy/2+ (L — |m|)m + mA¢p/2. (3.104)

Using (half of) Eq. (3.102), the real part of the frequency is

wr = LQy(m/L) + mQprec(m/L). (3.105)

Note that Qg and Qpyec both depend on m/L.
More explicitly, given the orbital parameters (£, Q, L. ), the quantities Ty and A¢ can be obtained
by computing

0 1 OR [ db
Te_i@ﬁ%\/@de—’_ﬁg /6’ (3.106a)
1 0 1 OR do
Ap = “I [1 - 8log5} %v@d@ + AL P T (3.106b)

(expressions that hold for any spherical photon orbit—not simply orbits that satisfy the Bohr-
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Sommerfeld condition) and the two frequencies are given by

0 1 0R [ do\ "
Qprcc = QQ%;S - (Sgan)QG . (3107]3)

These can be expressed in terms of (£, Q, L,) using elliptic integrals (as was done in [47]), but we
will not carry this out explicitly.

For very slowly spinning black holes, a short calculation shows that

1 M
Qp ~ . 3.108a
T aTM 3 ( )
2a 25
Qoree ¥ = —, .108b
prec VorM2 T 13 (3.108b)

where 7( is the circular-photon-orbit radius for a Schwarzschild black hole, ro = 3M, and S = aM.
The expression for €y is the Keplerian frequency of the spherical photon orbit, and Qppec = 25/rg is
the Lense-Thirring precessional frequency. In the slow-rotation limit, therefore, our formula recovers
Ferrari and Mashhoon’s result Eq. (3.2).

For any value of a, we can normalize Eq. (3.105) by L, and write

Qr(a, p) = Qola, p) + pprec(a, p) - (3.109)

In Figure 3.11, we explore the two frequencies in the decomposition of Qi by separately plotting g
and Qprec, for different values of a.

For small values of a/M, Qp and Qe are consistent with the constant values predicted by
Egs. (3.108a) and (3.108b). For larger values of a/M, Qg does not vary much as a function of u
until @ ~ 0.7M; for spins greater than this value, it is only for larger values of p that €y changes
significantly by decreasing from the equivalent values for a = 0. Finally, as a — M, Qy vanishes for
i > s ~ 0.744. The precessional frequency, (prec, on the other hand, monotonically increases as
a function of p even for small values of a/M; as a — M, Qprec grows to Qg at p ~ ., and stays
there for all values of u > p.. For a ~ M and p > ., there is one additional feature worth noting;:
because {29 ~ 0 and Q4 ~ Qp, this gives rise to the interpretation of the mode as a ray that sticks
on the horizon and corotates with the horizon at its angular frequency of {2; moreover, there seems

to be no restoring force along the 6 direction.
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Figure 3.11: Right: Orbital frequency, Qy, plotted against u, for a/M = 0.3 [red (light gray) solid
curve], 0.7 [blue (dark gray) solid curve], 0.9 (purple dashed line), and 1 (black dotted line). The
orbital frequency vanishes for a significant range of p for extremal black holes. Left: Precessional
frequency, €24, versus p, using the same conventions relating curves to spins as in the left panel. The
precessional frequency approaches the horizon frequency, {2g, for a range of values of u for extremal
black holes.
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Figure 3.12: A diagram showing the spin parameters, a, and the ratios of the multipolar indexes
m/ L, at which the orbital and precessional frequencies have a ratio of p/q. Although we only perform
our numerical calculations at a discrete set of m/L values (shown by the dots), in the eikonal limit,
each set of points for a given ratio of p/q approaches a continuous curve.
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Figure 3.13: For black holes with spins a/M = 0.768, 0.612, and 0.502, the spherical photon orbits
with Worb = 2Wprec, On the left, worh, = 3wprec in the center, and worp, = 4wprec 0N the right,
respectively. These orbits correspond to quasinormal modes in the eikonal limit with m/L = 0.5.
The top figures show the photon orbit, the red, solid curve, on its photon sphere (represented by a
transparent sphere). The dashed black line is the equatorial (§ = 7/2) plane, which was inserted for
reference. The bottom figures are the same photon orbits, but plotted in the ¢-0 plane, instead.

3.4.3 Degenerate Quasinormal Modes and Closed Spherical Photon Or-
bits

Finally, in this section, we interpret the degeneracy of QNM frequencies (of which Figure 3.1 was
an example). Recall that in that figure, for a/M =~ 0.7, we found pairs of modes such as (2,2) and
(3,-2), (3,2) and (4,—2), (4,2) and (5, —2), and so on, all have approximately the same frequency.
For another, lower spin a/M = 0.4, pairs like (3,3) and (4, —3), (4,3) and (5, —3), et cetera, have
approximately the same frequency.

The approximate degeneracy exists because the ratio between 0y and e can be rational, and
the photon orbits close. If for a certain mode of a black hole with spin a, with m and L, and for
integers p and ¢,

qQy (a, %) = PQprec (a, %) , (3.110)

this means that there exists a closed spherical photon orbit that satisfies the conditions necessary
to correspond to a QNM. Equation (3.110) implies that

m
a, —

LQy ( L) + Mprec (a, %) =(L+kq)Q (a, %) + (m — kp)Qprec (a, %) . (3.111)

If Qg and Qprec do not change much from = m/L to ' = (m — kp)/(L + kq) (either because spin
is small—and therefore Qg and Qe depend weakly on p—or because L > kq and m >> kp), then

Im __  l+kgm—Ekp
wh™ 2 Wh : (3.112)



98

Because 2; depends similarly on p, under the same conditions,
wh™ g ltkem=hp (3.113)

therefore, the modes are degenerate. It is also clear from Eq. (3.110) that the degeneracy happens
at the same time that the corresponding orbit is closed. The three series mentioned at the beginning

of the paper correspond to p/q = 4, 6, and 8, respectively (for k = 1).

3.4.3.1 Slowly Spinning Black Holes

For a/M <« 1, when Egs. (3.108a) and (3.108b) apply, the condition for degenerate modes becomes

Now
qﬁ = % <1 (3.114)

(a statement that holds independent of p). This implies that orbits of all inclinations close for these
spins.

For these specific spins, the QNM spectrum is completely degenerate, by which we mean that all
modes have the same decay rate, and all real parts of the frequencies are integer multiples of only
one frequency (similar to those of a Schwarzschild black hole). Using this approximate formula to

find a for the three instances of degeneracy in Figure 3.1, we find
asy = 0.65M, ag/ ~043M, ag/ ~0.32M. (3.115)
These are not very far away from spins we found empirically.

3.4.3.2 Generic Black Holes

For a generic spin parameter a, we will explain degeneracies that exist around a mode with L > 1
and |m| > 1. If the condition in Eq. (3.110) holds for p,q < min(L, |m|), then there is a range of
|k| < min(L, |m|)/ max(p, q) in which there is a degeneracy between all (L + kg, m — kp) and (L, m).
These modes must be those close to the mode of indices (L, m), because, strictly speaking, it is only
the orbit corresponding to m/L which is precisely closed.

To find this degeneracy, we will search for spin parameters a for which Eq. (3.110) holds for any
set of indexes (L, m) and integers (p, q) that satisfy L, |m| > p, ¢ (we generally either find one or zero
solutions). To visualize this degeneracy, for each pair (p, ¢), we will mark all possible pairs of (m/L, a)
in a 2D plot; the values of the spins are sufficiently dense for each value of m/L that they form a
smooth curve when plotted against m /L. Some of these curves are shown in Figure 3.12. Because for
a fixed p/q the degenerate spins for a/M < 0.3 are nearly independent of m/L, Eq. (3.114) should

be an accurate prediction for spins less that that value. As a concrete illustration of the orbits
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corresponding to these degenerate modes, we plot closed orbits for m/L = 0.5 and for a/M = 0.5,
0.61, and 0.77 in Figure 3.13. The values of the spins agree quite well with those predicted in
Figure 3.12.

3.5 Conclusions and Discussion

In this paper, we extended the results of several earlier works [9, 29, 40, 41] to compute the
quasinormal-mode frequencies and wave functions of a Kerr black hole of arbitrary astrophysical
spins, in the eikonal limit (I > 1). We focused on developing a greater intuitive understanding of
their behavior, but, in the process, we calculated expressions for large-I quasinormal-mode frequen-
cies that are reasonably accurate even at low [. Specifically, we applied a WKB analysis to the system
of equations defined by the angular and radial Teukolsky equations. Using a Bohr-Sommerfeld con-
dition for the angular equation, we related the angular separation constant to the frequency; when
we expanded the constraint to leading order in aw/l, we found an equally accurate and algebraically
simpler relation between the frequency and angular eigenvalue. We then used a well-known WKB
analysis on the radial Teukolsky equation to obtain expressions for the QNM frequencies and the
angular separation constants. The accuracy of the approximate expressions for the QNM frequency
are observed to be of order O(L~2) even though we had only expected a O(L~!) convergence for
the imaginary part.

Next, we reviewed that a massless scalar wave in the leading-order, geometric-optics approx-
imation obeys the Hamilton-Jacobi equations, which are very similar to the Teukolsky equations
when [ > 1. By identifying terms in the Hamilton-Jacobi equations and Teukolsky equations, we
related the conserved quantities of the Hamilton-Jacobi equations to the eigenvalues of the sepa-
rated Teukolsky equations. Specifically, we confirmed that the energy, angular momentum in the z
direction, and Carter constant in the Hamilton-Jacobi equations correspond to the real frequency,
the index m, and the angular eigenvalue minus m? in the Teukolsky equations, respectively. Fur-
thermore, we found that the conditions that define a quasinormal mode in the WKB approximation
are equivalent to the conditions in the geometric-optics approximation that determine a spherical
photon orbit that satisfies an identical Bohr-Sommerfeld quantization condition.

By analyzing the next-to-leading-order, geometric-optics approximation, we showed that the
corrections to the amplitude of the scalar wave correspond to the imaginary parts of the WKB
quantities. Specifically, we saw that the imaginary part of the frequency is equal to a positive
half-integer times the Lyapunov exponent averaged over a period of motion in the 6 direction. The
imaginary part of the angular eigenvalue is equal to the imaginary part of the Carter constant, which
is, in turn, related to an amplitude correction to the geometric-optics approximation to the angular

function for 6.
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We then applied these results to study properties of the QNM spectra of Kerr black holes. We
observed that for extremal Kerr black holes a significant fraction of the QNMs have nearly zero
imaginary part (vanishing damping) and their corresponding spherical photon orbits are stuck on
the horizon (in Boyer-Lindquist coordinates). We plan to study this unusual feature of extremal Kerr
black holes in future work. In addition, we showed that for Kerr black holes of any spin, the modes’
frequencies (in the eikonal limit) are a linear combination of the orbital and precession frequencies of
the corresponding spherical photon orbits. This allows us to study an intriguing feature of the QNM
spectrum: namely, when the orbital and precession frequencies are rationally related—i.e, when the
spherical photon orbits are closed—then the corresponding quasinormal-mode frequencies are also
degenerate.

We hope that the approximate expressions for the quasinormal-mode frequencies in this paper
will prove helpful for understanding wave propagation in the Kerr spacetime. This not unreasonable
to suppose, because Dolan and Ottewill have shown in [28, 30] that to calculate the Green’s function
analytically in the Schwarzschild spacetime, one needs to know analytical expressions for the fre-
quency of the quasinormal modes (specifically, this comes from the fact that the frequencies of the
quasinormal mode are the poles of the Green’s function in the frequency domain). We, therefore,
think that our approximate formulas could assist with the calculation of the Green’s function in the

Kerr spacetime, in future work.

Acknowledgments

We thank Emanuele Berti for discussing this work with us and pointing out several references to us.
We also thank Jeandrew Brink for insightful discussions about spherical photon orbits in the Kerr
spacetime. We would also like to thank the anonymous referee for carefully reviewing our manuscript
and offering many helpful suggestions. We base our numerical calculation of the QNM frequencies
on the Mathematica notebook provided by Emanuele Berti and Vitor Cardoso [57]. This research is
funded by NSF Grants PHY-1068881, PHY-1005655, CAREER Grant PHY-0956189; NASA Grant
No.NNX09AF97G; the Sherman Fairchild Foundation, the Brinson Foundation, and the David and
Barabara Groce Startup Fund at Caltech.

3.A The Taylor Expanded Bohr-Sommerfeld Condition

The Bohr-Sommerfeld constraint (3.17) gives us a way to evaluate A;, in terms of [, m, and w; the
error in this approximation scales as 1/I. Because it is an integral equation, it is not particularly
convenient to solve, and it is beneficial to have an approximate, but algebraic expression for the

frequency of a QNM. With the benefit of hindsight, one can confirm through numerical calculations
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of exact QNM frequencies performed using Leaver’s method that the parameter aw/! is numerically
a small number for all black hole spins. We can then expand the angular separation constant, Aj,,,

in a series in aw/l as Ay, = A o+ 0 Ay, where A?m satisfies the equation

\/i w(1+5-m) (3116)

and at leading order, 09 ,0° = 4-arcsin[m/(l + 1/2)]. One can easily verify that the solution to this
equation is the angular eigenvalue of a Schwarzschild black hole, AY = (I+1/2)? (note that we are
assuming [ > 1). Now we will compute the lowest-order perturbation in aw/l, which turns out to

be quadratic in this parameter [i.e., (aw/l)?] below:

/ §Aim + a*w? cos? 0 d0— 0. (3.117)
602 \/l+1/2 —m?2/sin* 0

The integration limits 6, ,60_ also can be expanded in a series in aw/l, and the lowest-order
terms of this series are given by 69,6°; The perturbation in 6,,6_ would result in some quartic
corrections in aw/l [i.e., (aw/l)*] when we evaluate the integrals of Eqgs. (3.117) and (3.116), because
the integrand is of order (aw/l)? and the width of the correction in 6, ,6_ are also of order (aw/1)%.
As a result, we will not need it here. Evaluating the integral in Eq. (3.117) is straightforward, and
we find

2,2 2

o 0 - a“w B m
A = Al + 641 = U1 +1) - — [1 T 1)} (3.118)

Interestingly, the above expression is consistent with the expansion of A;, for small aw given in
[58], even in the eikonal limit, where aw is large. The reason for this fortuitous agreement is again
that for QNMs of Kerr black holes of any spin, aw/l is small, and the expansion only involves even
powers of this parameter, (aw/l)?. Because the coefficients in the expansion of aw scale as 1/I¥
for even powers of (aw)® and 1/1*+1 for odd powers of (aw)”, in the limit of large I, the two series
actually are equivalent in the eikonal limit. In principle, one can also expand and solve Eq. (3.17) to
higher orders in the parameter aw/l and compare with the expansion in aw in [58]; we expect that
the two series should agree. This would be useful, because it would effectively let one use the small

aw expansion in the eikonal limit, where the series would, ostensibly, not be valid.

Bibliography
[1] C. V. Vishveshwara, Nature 227, 936 (1970).

2] K. D. Kokkotas and B. Schmidt, Living Rev. Relativity 2, 2 (1999),

http://www.livingreviews.org/lrr-1999-2.



3]
4
5]
6]
7]
8]
9]

[10]

1]

12]

13]

14]

[15]

16]

17]

18]

19]

20]

21]

22]

23]

[24]

[25]

[26]

102

H.-P. Nollert, Classical Quantum Gravity 16, R159 (1999).

V. Ferrari and L. Gualtieri, Gen. Relativ. Gravit. 40, 945 (2008).

E. Berti, V. Cardoso, A. O. Starinets, Classical Quantum Gravity 26, 163001 (2009).
R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011).

M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. Lett. 27, 1466 (1971).
S. Chandrasekhar and S. Detweiler, Proc. R. Soc. Lond. A 344, 441 (1975).

V. Ferrari and B. Mashhoon, Phys. Rev. D 30, 295 (1984).

B. F. Schutz and C. M. Will, Astrophys. J. 291, L33 (1985).

S. Iyer and C. M. Will, Phys. Rev. D 35, 3621 (1987).

E. W. Leaver, Proc. R. Soc. Lond. A 402, 285 (1985).

H.-P. Nollert, Phys. Rev. D 47, 5253 (1993).

P. P. Fiziev, Classical Quantum Gravity 27, 135001 (2010).

D. Staicova and P. P. Fiziev, arXiv:1112.0310 (2011).

E. W. Leaver, Phys. Rev. D 34, 384 (1986).

Y. Sun and R. H. Price, Phys. Rev. D 38, 1040 (1988).
http://www.ligo.caltech.edu/
http://www.ego-gw.it/public/virgo/virgo.aspx

F. Echeverria, Phys. Rev. D 40, 3194 (1989).

E. E. Flanagan, and S. A. Hughes, Phys. Rev. D 57, 4566 (1998).

A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D 75, 124018 (2007).

E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Briigmann,
Phys. Rev. D 76, 064034 (2007).

O. Dreyer, B. Kelly, B. Krishnan, L. S. Finn, D. Garrison, and R. Lopez-Aleman, Classical
Quantum Gravity 21, 787 (2004).

E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73, 064030 (2006).

A. Zimmerman and Y. Chen, Phys. Rev. D 84, 084012 (2011).



103

[27] Y. Mino and J. Brink, Phys. Rev. D 78, 124015 (2008).

[28] S. R. Dolan and A. C. Ottewill, Classical Quantum Gravity 26, 225003 (2009).
[29] S. R. Dolan, Phys. Rev. D 82, 104003 (2010).

30] S. R. Dolan and A. C. Ottewill, Phys. Rev. D 84, 104002 (2011).

31] H. P. Nollert, Phys. Rev. D 47, 5253 (1993).

[32] N. Andersson, Classical Quantum Gravity 10, L61 (1993).

[33] L. Motl, Adv. Theor. Math. Phys. 6, 1135 (2003).

[34] L. Motl and A. Neitzke, Adv. Theor. Math. Phys. 7, 307 (2003).

[35] T. Padmanabhan, Classical Quantum Gravity 21, L1 (2004).

[36] V. Cardoso, A. S. Miransa, E. Berti, H. Witek, V. T. Zanchin, Phys. Rev. D 79, 064016 (2009).
[37] C. J. Goebel, Astrophys. J. 172, L95 (1972).

[38] C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math. Phys. 42, 818 (2001).
[39] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).

[40] K. D. Kokkotas, Classical Quantum Gravity 8, 2217 (1991).

[41] E. Seidel and S. Iyer, Phys. Rev. D 41, 374 (1990).

[42] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).

[43] R. Shankar, Principles of Quantum Mechanics, (Plenum Press, New York, 1980).
[44] S. Detweiler, Astrophys. J. 239, 292 (1980).

[45] V. Cardoso Phys. Rev. D 70, 127502 (2004).

[46] S. Hod, Phys. Rev. D 78, 084035 (2008).

[47] E. Teo, Gen. Relativ. and Gravit. 35, 1909 (2003).

[48] B. Mashhoon, Phys. Rev. D 31, 290 (1985).

[49] S. Hod, Phys. Rev. D 84, 044046 (2011).

[50] E. Berti and K. D. Kokkotas, Phys. Rev. D 71, 124008 (2005).

[51] S. Hod, Phys. Rev. D 80, 064004 (2009).



104

[52] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, (W. H. Freeman and Company,
New York, 1973).

[63] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford,
1983).

[54] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J. 178, 347 (1972).
[65] H. Yang, A. Zimmerman, Z. Y. Zhang and Y. Chen, unpublished

[56] K. Glampedakis and N. Andersson, Phys. Rev. D 64, 104021 (2001).

[67] http://www.phy.olemiss.edu/~berti/qnms.html

[58] E. Berti, V. Cardoso, M. Casals, Phys. Rev. D 73, 024013 (2006).



105

Chapter 4

Branching of Quasinormal Modes

for Nearly Extremal Kerr Black
Holes

We show that nearly extremal Kerr black holes have two distinct sets of quasinormal
modes, which we call zero-damping modes (ZDMs) and damped modes (DMs). The
ZDMs exist for all harmonic indexes [ and m > 0, and their frequencies cluster onto
the real axis in the extremal limit. The DMs have nonzero damping for all black hole
spins; they exist for all counterrotating modes (m < 0) and for corotating modes with
0 < u < pe =0.74 (in the eikonal limit), where p = m/(I +1/2). When the two families
coexist, ZDMs and DMs merge to form a single set of quasinormal modes as the black
hole spin decreases. Using the effective potential for perturbations of the Kerr spacetime,
we give intuitive explanations for the absence of DMs in certain areas of the spectrum

and for the branching of the spectrum into ZDMs and DMs at large spins.

Originally published as H. Yang, F. Zhang, A. Zimmerman, D. A. Nichols, E. Berti, and
Y. Chen, Phys. Rev. D 87, 041502 (R) (2013). Copyright 2013 by the American Physical
Society.

4.1 Introduction

Nearly extremal Kerr (NEK) black holes (BHs)—i.e., BHs for which the dimensionless angular
momentum a =/ 1 in the geometrical units, G = ¢ = M = 1, used in this paper—have drawn much
attention recently. Besides the mounting evidence for fast-rotating BHs in astronomy [1], NEK

BHs have considerable theoretical significance, e.g., in studies of weak cosmic censorship [2] and in

calculations of black-hole entropy [3].

For extremal Kerr BHs (a = 1) the near-horizon geometry reduces to AdSgx S? [4].
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observation led to the Kerr/CFT conjecture, which states that extremal Kerr BHs are dual to the
chiral limit of a two-dimensional conformal field theory [5]. In the past few years the extremal Kerr
spacetime and spacetimes violating the Kerr bound were shown to be unstable [6]. The stability
of BHs depends on the sign of the imaginary part of their complex free vibration modes, called
quasinormal modes (QNMs) [7]. Therefore the NEK QNM frequencies studied here can shed light
on the onset of extremal Kerr instabilities and prove useful in quantum field theory (for example, in
the calculation of two-point functions [8]).

Detweiler first used an approximation to the radial Teukolsky equation for NEK BHs (see also [9])
to show that QNMs with angular indexes I = m have a long decay time [10]. Using Detweiler’s result,
Sasaki and Nakamura [11] calculated QNM frequencies analytically and Andersson and Glampedakis
proposed long-lived emission from NEK BHs [12]. However, there remains a long-standing contro-
versy in the literature about what set of QNMs decay slowly [13], whether long-lived radiation is
possible [14], and whether the imaginary part of the QNM frequencies vanishes as a — 1 (compare
[11, 14] with [13]). Despite the importance of this problem, our present understanding of the QNM
spectrum of NEK BHs is inconclusive.

In a recent paper [15], some of us used a WKB analysis to relate Kerr QNMs in the eikonal limit
to spherical photon orbits around Kerr BHs. We pointed out that a subset of spherical photon orbits
of extremal Kerr BHs reside on the horizon and that the corresponding QNMs have zero damping.
This happens when the parameter u = m/(l + 1/2) 2 p. ~ 0.74. Hod [16] computed p. in the
eikonal limit, finding an approximate analytical result in agreement with [15].

In this work, we will show that the NEK geometry has two distinct sets of QNMs: zero-damping
modes (ZDMs) and damped modes (DMs). ZDMs are associated with the near-horizon geometry
of the BH, and they exist for all allowed values of | and m > 0 (we classify modes using Leaver’s
conventions [17], but we use units in which the BH has mass M = 1). DMs are associated with
peaks of the potential barrier; in the eikonal limit, they exist when p < 0.74. This implies that
ZDMs and DMs coexist if 0 < p < 0.74. Figure 4.1 is a “phase diagram” in QNM space, showing
the regions where either the ZDMs or both the DMs and the ZDMs exist for scalar and gravitational
perturbations with [ < 15. We will discuss this phase diagram further below.

When the ZDMs and DMs coexist, and when the BH spin a is small, for each (I, m) there is
only a single set of QNMs characterized by the overtone number n (where modes with larger n have
stronger damping). For larger a, this set of QNMs appears to break into two branches. The DM
branch originates from lower-overtone modes at smaller a, and its modes retain a finite decay rate
as a — 1. The ZDM branch originates from higher-overtone modes whose imaginary part becomes
smaller than that of DMs as a — 1, thereby forming the second branch. This is similar to the
behavior of eigenmodes in quantum mechanics when we parametrically split a single potential well

into two potential wells (cf. Figure 4.2 below, as well as [18] for a somewhat analogous phenomenon
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Figure 4.1: (Color online.) Phase diagram for the separation between the single- and double-branch
regime for NEK BHs. Large purple dots and gold crosses correspond to (I, m) pairs with only ZDMs
for perturbations with spin —2 and 0, respectively. Smaller blue dots correspond to (I,m) pairs
with both ZDMs and DMs. The green line is the phase boundary, computed using the eikonal
approximation.

in the theory of oscillations of ultracompact stars).

4.2 Matched Expansion

Fore=1-—a < 1and w—m/2 < 1, the radial Teukolsky equation can be written in a self-similar
form when (r — 1) < 1 and in an asymptotic form (by setting @ = 1) when (r — 1) > /e (cf.
[9, 10, 19]). The solutions of the Teukolsky equation in these regions (hypergeometric and confluent
hypergeometric functions, respectively) can be matched at /e < (r—1) < 1 to provide the following

condition for QNM frequencies:

e*ﬂ§72i5 In(m)—146 In(8€) F2(2Z5)F(1/2 +s—im— 7’5)
I'2(—2i6)I'(1/2 + s — im + i9)
y I(1/2 — s —im —i6)T[1/2 +i(m — § — V2d)]
I(1/2 — s —im +i6)T[1/2 +i(m + § — V2&)]

=1. (4.1)

Here we denote the eigenvalues of the angular Teukolsky equation by A, and we define 62 =
Tm?/4 — (s +1/2)? — JAp, and @ = (w — mQpy)/y/€ [note that Oy = a/(r? + a?) is the horizon
frequency and r, = 1+ /1 — a2 is the horizon radius]. Scalar, electromagnetic, and gravitational
perturbations correspond to spin s = 0, —1, —2, respectively. If we choose the conventions that
Re(8) > 0 and Zm(5) > 0 when 62 is positive and negative, respectively, then the left-hand side of

Eq. (4.1) is usually a very small number, except when it is near the poles of the I'-functions in the
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Figure 4.2: (Color online.) Plot of the potential term for a = 1, Eq. (4.6), for p = 0.4, 0.5, 0.6,
0.7, 0.8, and 0.9 (black-solid, red-dashed, red-dotted, blue-dotted, blue-dashed, and magenta-solid
curves, respectively). The transition from single-branch to double-branch happens between p = 0.7
and u = 0.8.

numerator. When m > 0, we can always find the solution near the poles at negative integers:
1/2 4 i(m — 6 — V2&) =~ —n, (4.2)
or

o OVe z( 1>£ (4.3)

Note that the overtone index n of these ZDM frequencies need not correspond precisely to the same
overtone index of Kerr QNMs at lower spins. This set of solutions was first discovered by Hod
[13]. The matched-expansion derivation shows that this set of modes depends on the near-horizon
region of the Kerr BH. Equation (4.3) is quite accurate when |6 > 1, but when [§| < 1 it needs an
additional correction [19]. However, the /€ scaling of the decay rate is still correct when |§] < 1.
The solutions to Eq. (4.3) with m < 0 are those that arise from the symmetry w; ,, = —wj _; there
are no solutions with m < 0 and Re(w) > 0, when w —m/2 is not small. Thus, the ZDMs only exist
in the corotating regime m > 0.

Another set of solutions of Eq. (4.1) may exist when §2 < 0 and 2i6 ~ —n, with n a positive
integer. A more detailed analysis shows that, in this case, two nearly degenerate hypergeometric
functions have comparable contributions to the near-horizon solution [19]. As a result, Eq. (4.1) is
no longer valid when 2ié ~ —n. As a consistency check, we looked for solutions with 2id ~ —n using

Leaver’s method and we did not find any.
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4.3 WKB Analysis

The matched-expansion method assumes that w ~ m/2, but Eq. (4.1) does not hold for modes which
do not meet this requirement (i.e., DMs). To compute these modes, we will instead use a WKB

analysis in the eikonal limit [ > 1. The radial Teukolsky equation when [ > 1 is [15]

d?u, Pu, K?-— A)\?
dr? + Vetur = dr? (r2 + aQ);nur =0 (4.42)

with

d A i
dre — r2+4+a?dr’

K = —w(r? + a%) + am, N = Ay + a?w? — 2amw,

A=7r?—2r+ad%. (4.4Db)

We define w = wg —iwy, and we note that the real and imaginary parts scale as wg o I and wy o< {°,
while the angular constant scales as Aj,, o [?. We only keep the leading-order terms in the eikonal
limit in the following discussion (therefore all s-dependent terms are neglected, and the Ay, are real).
In Figure 4.2 and below, we will refer to —V,. as “the potential”. According to the WKB analysis and
its geometric correspondence in [15], the position of the peak of the potential asymptotes the horizon
as a — 1 for some of the corotating modes. For this set of QNMs, one can verify that V" (where
primes denote derivatives with respect to 7.) scales as A?; thus, the peak 7 of the potential becomes
broad as rg approaches the horizon. It then follows that w; o \/W/(?WVT — 0, and wg — m/2 in
order to satisfy V,.(wg,79) = 0 for these modes. Assuming that ro = 1+ ¢y/€ for the nearly extremal

modes, where ¢ is some constant, we can apply the eikonal equations in [15] and obtain

’/‘%14— )
’ V2

my/2e m_Fove (n+1) Ve (4.5)

WR R — —
Fo ' 2

with Fo = /Tm2/4 — Ajp(w = m/2). Comparing this result with Egs. (4.3) and (4.5), we can see
the two sets of frequencies are essentially the same modes, although obtained in very different ways.
Here 7§ and 62 differ by 1/4, which is reasonable because in the eikonal limit Fy o< [ and § o [
(making 1/4 a higher-order correction).

To build intuition about Fy and d, we look at V. for extreme Kerr BHs, with w replaced by m/2:

—D? [(r+1)?

r 3
v, = 2 b~ alw) + 2 (46)

(r2 +1)2 4

where L = [+ 1/2 and a(u) = Ajn/L?. According to the WKB analysis of the radial Teukolsky
equation [20], the QNM frequencies are determined by the peak of the potential. As shown in

Figure 4.2, when p is large the maximum of the potential is at the horizon, r = 1, as expected for
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ZDMs. As u decreases and falls below some critical value ., the peak moves outside the horizon,
and the horizon becomes a local minimum of the potential. At the peak w; is nonzero because
d?V,./dr?|., # 0, so we have DMs. The criterion for having no peak outside the horizon is

(r+1)?* ,

3
A —a(u)+1u2>0 for r=1, (4.7)

i.e., F& > 0 (or 62 > 0). The values at which FZ (or %) vanish lead to the condition for the critical
pe: a(pe) = Tp2. If we use the approximation a(p) &~ 1—a?w?(1—p?)/(2L?) [15], this will reproduce
Hod’s approximate analytical result u. =~ [(15 — 1/193)/2]'/2 [16]. We can obtain the exact . (in
the eikonal limit) by inserting a(u.) = Zu2 into the Bohr-Sommerfeld condition for a derived in

[15]:

0 2 2
/ \/a— o i cost 0= (1~ . (4.8)
6_

sin? 0
where 6, = 7—60_ and §_ = arcsin(v/3—1) are the angles at which the integrand vanishes. Therefore

we have

1 0+ 7 1 1
= 1= - — ——— + —cos? 4.
fhe T+ Z/r /0_ dﬂ\/4 sin20+4COb 0, (4.9)

which yields the numerical value p. ~ 0.74398. In the eikonal limit, when p > p. NEK BHs have
only ZDMs (“single-phase regime”); when 0 < p < p., both DMs and ZDMs exist (“double-phase

regime”).

4.4 Phase Boundary

Although there is a clear criterion for determining the boundary between the single-phase regime
and the double-phase regime in the eikonal limit (when g < u., the peak of the potential no longer
resides on the horizon) it is not immediately clear if a similar criterion holds when [ is small. For
scalar perturbations, however, we can write the radial Teukolsky potential for extreme-Kerr BHs
with generic I, m, under the assumption that w = m/2 (and, therefore, the ¢A;,, remain real for the

ZDMs):

v (r=17[(r+17? ,
= - A
r (’I"2 1)2 4 m 0m

(r—1)?2 [3 5  (r=1)(2r+3r—1)

(Sl P T R R

2> A, or

It is not difficult to see that there is still no peak outside the horizon when %m
F2 > 0. For electromagnetic and gravitational perturbations the potential terms —V,. are complex
functions, thereby making the positions of their extrema more difficult to define. Detweiler [21],

however, has shown that the radial function can be transformed so that it satisfies a differential
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equation with a real potential. Using this potential, the criterion to exclude peaks outside the

horizon is [19]:

F2

Il
YN

m? —s(s+1) — sApn (w: m) > 0. (4.11)

2
Note that this expression respects the pairing symmetry _A;, = sAp, + 2s, and that for all s,
F2 and 6?2 differ from each other only by 1/4. For s = 0,—2 and 2 < [ < 100, we have searched
all QNMs numerically and have not found any mode simultaneously satisfying §% < 0 and F2 > 0;
therefore, the sign of 62 also determines whether a peak exists outside the horizon. In addition, we
have used Leaver’s continued-fraction algorithm to determine the phase boundary numerically. As
shown in Figure 4.1, the actual phase boundary matches the criterion predicted by the eikonal limit,
= phe. In addition, for scalar and gravitational perturbations, we find numerically that modes are
in the single-phase regime when F2 > 0 for all [ < 15. This reinforces our physical understanding

that DMs are associated with a peak of the potential outside the horizon, while ZDMs are somewhat

similar in nature to the s-modes in ultracompact stars [18].

4.5 Bifurcation

Schwarzschild and slowly spinning Kerr BHs have a single set of QNMs for each [,m that are
characterized by their overtone number n. If the ZDMs originate from modes at higher-n than the
DMs when the BH spin is low, then when the spin increases beyond a critical value as = 1 — €4, a
single set of QNMs may split into two branches.

We numerically investigate this bifurcation effect by examining the complex QNM frequency
plane to search for solutions of Leaver’s continued-fraction equations [17, 19]. In Figure 4.3, we
plot the contours of constant value of the logarithm of the continued-fraction expansion, truncating
at N = 800 terms. The QNM frequencies correspond to the local minima of this sum, where the
contours cluster. The shading indicates the value of the fraction, with darker values nearly zero.

When p < pe, a single set of QNMs splits into two branches for increasing a (see the left-hand
panels of Figure 4.3, where [ = 10, m = 7, as the spin increases from a = 0.9990 to a = 0.9999
from the upper panel to the lower). The ZDM branch is quite accurately described by Eq. (4.3); the
imaginary part of the ZDMs scales like /€, and they move towards the real axis as e — 0. The DM
branch changes relatively little with increasing spin (it is expected that the WKB peak can only
support a finite number of modes [19], and there are only three DMs in the lower-left panel). In this
case, the WKB formulae of [15] are in good agreement with the lowest-overtone DM (marked with
a X in the figure).

For p > p. there is no bifurcation, and the modes are predicted fairly well by Eq. (4.3). We can
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Figure 4.3: (Color online.) QNM frequencies with [ = 10 for NEK BHs. Contours are constant values
of the logarithm of the continued fraction in the complex plane; darker shading indicates values near
zero. The + symbols are the ZDM predictions, a x is the lowest-overtone WKB prediction from
[15], and the box is centered at the WKB prediction from Eq. (4.5). No branching is observed for
modes with m = 8. Note that the closed contours with light shading have large values and do not
correspond to any QNM. Further discussion of the figure is in the text.

see this in the right-hand panels of Figure 4.3, where [ = 10, m = 8 and we again raise the spin from
a = 0.9990 to a = 0.9999. For the m = 8 modes, we also mark the leading-order WKB prediction of
Eq. (4.5) with a box. For the bifurcation effect, we can define a benchmark a, = 1 — ¢, as the BH
spin at which the imaginary part of the fundamental ZDM is equal to that of the fundamental DM:

vavrl (4.12)

Y (14 206) = 5L

2V/2

DN =
=

To

The right-hand side of Eq. (4.12) can be evaluated using the approximate WKB formula in [15].
Since both sides of Eq. (4.12) depend on ¢, we solve for €. iteratively; this converges quickly for
a variety of initial spins. By computing €. for { < 15 and 0 < m < (I + 1/2)u., we find that
L?%c. = 1073(11.6 — 3.12u — 18.0p?) is a reasonable fitting formula. For the [ = 10, m = 7 case,
Eq. (4.12) gives €. ~ 107°, which is in agreement with numerical results; for the [ = 2, m = 1 case
it gives €, ~ 1073,

In Figure 4.3, however, it is clear that the bifurcation actually starts when the fundamental
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ZDM’s imaginary part equals the imaginary part of the highest-overtone DM (in Figure 4.3 it is
the third overtone). This happens at a spin as < a.. Because we do not have a good estimate of
the number of modes in the DM branch (beyond the fact that it should be proportional to L and
a function of y in the eikonal limit [19]) and because WKB techniques are not accurate for these

high-overtone DMs, finding an analytic solution for as; remains an open problem.

4.6 Conclusions

We identified two different regimes in the NEK QNM spectrum. In the double-phase regime, we
found that the lowest ZDM becomes less damped than the lowest DM at some critical a., for which
we provided an analytical estimate. For sufficiently large a, Eq. (4.3) is accurate at the least for
those ZDMs with smaller decays than the point where the branches bifurcate. We estimate that the
number of ZDMs below the bifurcation is oc y/e5/e [19]. In the future, we would like to investigate
the behavior of the ZDM branch in the high-overtone limit [22], where these approximations break

down.
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Part 11

Visualization of Curved Spacetime
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Chapter 5

Frame-Dragging Vortexes and
Tidal Tendexes Attached to
Colliding Black Holes:

Visualizing the Curvature of
Spacetime

When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor)
gets split into an “electric” part £;;, that describes tidal gravity and a “magnetic” part
Bji, that describes differential dragging of inertial frames. We introduce tools for visu-
alizing B, (frame-drag vortex lines, their vorticity, and vortexes) and &;;, (tidal tendex
lines, their tendicity, and tendexes), and also visualizations of a black-hole horizon’s
(scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics

of curved spacetime in merging black-hole binaries.

Orginally published as R. Owen, J. Brink, Y. Chen, J. D. Kaplan, G. Lovelace, K. D.
Matthews, D. A. Nichols, M. A. Scheel, F. Zhang, A. Zimmerman, and K. S. Thorne,
Phys. Rev. Lett. 106, 151101 (2011). Copyright 2011 by the American Physical Society.

5.1 Introduction

When one foliates spacetime with spacelike hypersurfaces, the Weyl curvature tensor Cypg4s (same as
Riemann in vacuum) splits into “electric” and “magnetic” parts £, = C()j()k and Bj, = %equCquO
(see e.g. [1] and references therein); both &5, and B, are spatial, symmetric, and trace-free. Here
the indexes are in the reference frame of “orthogonal observers” who move orthogonal to the space

slices; 0 is their time component, €jpq is their spatial Levi-Civita tensor, and throughout we use
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(a) (b)

Figure 5.1: Vortexes (with positive vorticity blue, negative vorticity red) on the 2D event horizons
of spinning, colliding black holes, just before and just after merger. (From the simulation reported
in [4].)

units with ¢ =G = 1.

Because two orthogonal observers separated by a tiny spatial vector £ experience a relative tidal
acceleration Aa; = —&;EF, &1, is called the tidal field. And because a gyroscope at the tip of &
precesses due to frame dragging with an angular velocity AQ; = B;£" relative to inertial frames at

the tail of &, we call B, the frame-drag field.

5.2 Vortexes and Tendexes in Black-Hole Horizons

For a binary black hole, our space slices intersect the 3-dimensional (3D) event horizon in a 2D
horizon with inward unit normal N; so By is the rate the frame-drag angular velocity around N
increases as one moves inward through the horizon. Because of the connection between rotation and
vorticity, we call By the horizon’s frame-drag vorticity, or simply its vorticity.

Because By is boost-invariant along N [2], the horizon’s vorticity is independent of how fast
the orthogonal observers fall through the horizon, and is even unchanged if the observers hover
immediately above the horizon (the FIDOs of the “black-hole membrane paradigm” [3]).

Figure 5.1 shows snapshots of the horizon for two identical black holes with transverse, oppositely
directed spins S, colliding head on. Before the collision, each horizon has a negative-vorticity region
(red) centered on S, and a positive-vorticity region (blue) on the other side. We call these regions of
concentrated vorticity horizon vortezes. Our numerical simulation [4] shows the four vortexes being
transferred to the merged horizon (Figure 5.1b), then retaining their identities, but sloshing between
positive and negative vorticity and gradually dying, as the hole settles into its final Schwarzschild
state; see the movie in Reference [5].

Because £y n measures the strength of the tidal-stretching acceleration felt by orthogonal ob-
servers as they fall through (or hover above) the horizon, we call it the horizon’s tendicity (a word
coined by David Nichols from the Latin tendere, “to stretch”). On the two ends of the merged hori-
zon in Figure 5.1b there are regions of strongly enhanced tendicity, called tendezes; cf. Figure 5.5
below.

An orthogonal observer falling through the horizon carries an orthonormal tetrad consisting of
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her 4-velocity U, the horizon’s inward normal N, and transverse vectors es and ez. In the null
tetrad 1 = (U — N)/+/2 (tangent to horizon generators), n = (U +N)/v/2, m = (es +ie3)/v/2, and
m*, the Newman-Penrose Weyl scalar Uy [6] is Uo = (Exn +iBnn)/2. Here we use sign conventions
of [7], appropriate for our (-+++) signature.

Penrose and Rindler [8] define a complex scalar curvature K = R/4+4iX /4 of the 2D horizon, with
R its intrinsic (Ricci) scalar curvature (which characterizes the horizon’s shape) and X proportional
to the 2D curl of its Héjicek field [9] (the space-time part of the 3D horizon’s extrinsic curvature).
Penrose and Rindler show that I = —Ws+ up— Ao, where p, o, u, and A are spin coefficients related

to the expansion and shear of the null vectors 1 and n, respectively. In the limit of a shear- and

expansion-free horizon (e.g. a quiescent black hole; Figure 5.2a,b,c), up — Ao vanishes, so K = —Us,
whence R = =2y and X = —2Byy. As the dimensionless spin parameter a/M of a quiescent
(Kerr) black hole is increased, the scalar curvature R = —2€xx at its poles decreases, becoming

negative for a/M > /3/2; see the blue spots on the poles in Figure 5.2b compared to solid red
for the nonrotating hole in Figure 5.2a. In our binary-black-hole simulations, the contributions of
the spin coefficients to K on the apparent horizons are small [L2-norm < 1%] so R ~ —2&yn and
X ~ —2BNn, except for a time interval ~ 5M;,; near merger. Here M. is the binary’s total mass.
On the event horizon, the duration of spin-coefficient contributions > 1% is somewhat longer, but
we do not yet have a good measure of it.

Because X is the 2D curl of a 2D vector, its integral over the 2D horizon vanishes. Therefore,
positive-vorticity regions must be balanced by negative-vorticity regions; it is impossible to have
a horizon with just one vortex. By contrast, the Gauss-Bonnet theorem says the integral of R
over the 2D horizon is 87 (assuming S> topology), which implies the horizon tendicity Eypy is
predominantly negative (because Eyny ~ —R /2 and R is predominantly positive). Many black holes
have negative horizon tendicity everywhere (an exception is Figure 5.2b), so their horizon tendexes

must be distinguished by deviations of Exn from a horizon-averaged value.

5.3 3D Vortex and Tendex Lines

The frame-drag field Bj;, is symmetric and trace free and therefore is fully characterized by its three
orthonormal eigenvectors e; and their eigenvalues Byj, Bss and Bsz. We call the integral curves
along e; vortex lines, and their eigenvalue Bﬁ those lines’ vorticity, and we call a concentration of
vortex lines with large vorticity a vortex. For the tidal field £;;, the analogous quantities are tendex
lines, tendicity and tendexes. For a nonrotating (Schwarzschild) black hole, we show a few tendex
lines in Figure 5.2a; and for a rapidly-spinning black hole (Kerr metric with a/M = 0.95) we show

tendex lines in Figure 5.2b and vortex lines in Figure 5.2c.

If a person’s body (with length ¢) is oriented along a positive-tendicity tendex line (blue in
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Figure 5.2: Four different black holes, with horizons colored by their tendicity (upper two panels)
or vorticity (lower two panels), ranging from most negative (red) to most positive (blue); and with
a Kerr-Schild horizon-penetrating foliation (Exercise 33.8 of Reference [18]). (a) A nonrotating
black hole and its tendex lines; negative-tendicity lines are red, and positive blue. (b) A rapidly
rotating (Kerr) black hole, with spin a/M = 0.95, and its tendex lines. (¢) The same Kerr black
hole and its vortex lines. (d) Equatorial plane of a nonrotating black hole that is oscillating in an
odd-parity I = m = 2 quasinormal mode, with negative-vorticity vortex lines emerging from red
horizon vortexes. The lines’ vorticities are indicated by contours and colors; the contour lines, in
units (2M)~2 and going outward from the hole, are -10, -8, -6, -4, -2.

Figure 5.2a), she feels a head-to-foot compressional acceleration Aa = |tendicity|¢; for negative
tendicity (red) it is a stretch. If her body is oriented along a positive-vorticity vortex line (blue
in Figure 5.2c), her head sees a gyroscope at her feet precess clockwise with angular speed AQ =
[vorticity|¢, and her feet see a gyroscope at her head also precess clockwise at the same rate. For
negative vorticity (red) the precessions are counterclockwise.

For a nonrotating black hole, the stretching tendex lines are radial, and the squeezing ones lie on
spheres (Figure 5.2a). When the hole is spun up to a/M = 0.95 (Figure 5.2b), its toroidal tendex
lines acquire a spiral, and its poloidal tendex lines, when emerging from one polar region, return
to the other polar region. For any spinning Kerr hole (e.g. Figure 5.2¢), the vortex lines from each
polar region reach around the hole and return to the same region. The red vortex lines from the red
north polar region constitute a counterclockwise vortex: the blue ones from the south polar region

constitute a clockwise vortex.
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Figure 5.3: Head-on, transverse-spin simulation: (a) Shortly after merger, vortex lines link horizon
vortexes of same polarity (red to red; blue to blue). Lines are color coded by vorticity (different
scale from horizon). (b) Sloshing of near-zone vortexes generates vortex loops traveling outward as
gravitational waves; thick and thin lines are orthogonal vortex lines.

As a dynamical example, consider a Schwarzschild black hole’s fundamental odd-parity | = m = 2
quasinormal mode of pulsation, which is governed by Regge-Wheeler perturbation theory [10] and has
angular eigenfrequency w = (0.74734 — 0.17792¢) /2M, with M the hole’s mass. From the perturba-
tion equations, we have deduced the mode’s horizon vorticity: Byy = R{9sin? 0/(2iwM?) exp[2i¢p —
iw(t+2M)]}. (Here £ is the ingoing Eddington-Finklestein time coordinate, and the mode’s Regge-
Wheeler radial eigenfunction Q(r) is normalized to unity near the horizon.) At time ¢ = 0, this
Bnn exhibits four horizon vortexes [red and blue in Figure 5.2d], centered on the equator at
0, ¢) = (7/2,1.159+kn/2) (k = 0,1,2,3), and with central vorticities Byny = —(—1)*39.22/(2M)2.
From analytic formulae for Bj; and a numerical Q(r), we have deduced the equatorial-plane red
vortex lines and vorticities shown in Figure 5.2d. As time ¢ passes, the vortexes rotate counterclock-
wise, so they resemble water splayed out from a turning sprinkler. The transition from near zone to
wave zone is at r ~ 4M (near the outermost part of the second contour line). As one moves into the
wave zone, each of the red vortexes is smoothly transformed into a gravitational-wave trough and
the 3D vortexes that emerge from the blue horizon vortexes (concentrated in the dark region of this

figure) are transformed into gravitational-wave crests.

5.4 Vortex and Tendex Evolutions in Binary Black Holes
(BBHs)

We have explored the evolution of frame-drag vortexes and tidal tendexes in numerical simulations
of three BBHs that differ greatly from each other.

Our first simulation (documented in Reference [4]; movies in Reference [5]) is the head-on,
transverse-spin merger depicted in Figure 5.1 above, with spin magnitudes a/M = 0.5. As the

holes approach each other then merge, their 3D vortex lines, which originally link a horizon vortex
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Figure 5.4: Insets: snapshots of the common apparent horizon for the a/M = 0.95 anti-aligned
simulation, color coded with the horizon vorticity Byy. Graphs: Byy as a function of polar angle
6 at the azimuthal angle ¢ that bisects the four vortexes (along the black curves in snapshots).

to itself on a single hole (Figure 5.2¢), reconnect so on the merged hole they link one horizon vortex
to the other of the same polarity (Figure 5.3a). After merger, the near-zone 3D vortexes slosh (their
vorticity oscillates between positive and negative), generating vortex loops (Figure 5.3b) that travel
outward as gravitational waves.

Our second simulation (documented in Reference [11]; movies in Reference [12]) is the inspiral
and merger of two identical, fast-spinning holes (a/M = 0.95) with spins antialigned to the orbital
angular momentum. Figure 5.4 shows the evolution of the vorticity Byy on the common apparent
horizon beginning just after merger (at time ¢/M;,; = 3483), as seen in a frame that co-rotates
with the small horizon vortexes. In that frame, the small vortexes (which arise from the initial
holes’ spins) appear to diffuse into the two large central vortexes (which arise from the initial holes’
orbital angular momentum), annihilating some of their vorticity. (This is similar to the diffusion
and annihilation of magnetic field lines with opposite polarity threading a horizon [3].) Making this
heuristic description quantitative, or disproving it, is an important challenge.

Our third simulation (see movies in Reference [13]) is a variant of the “extreme-kick” merger
studied by Campanelli et al. [14] and others [15, 16]: two identical holes, merging from an initially
circular orbit, with oppositely directed spins a/M = 0.5 lying in the orbital (x,y) plane. In this
case, the vortexes and tendexes in the merged hole’s (z,y) plane rotate as shown in Figure 5.2d. We
have tuned the initial conditions to make the final hole’s kick (nearly) maximal, in the +z direction.
The following considerations explain the origin of this maximized kick:

In a plane gravitational wave, all the vortex and tendex lines with nonzero eigenvalues lie in the
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Figure 5.5: Bottom inset: tendex and vortex lines for a plane gravitational wave; E x B is in the
propagation direction. Upper two insets: for the “extreme-kick simulation”, as seen looking down
the merged hole’s rotation axis (—z direction): the apparent horizon color coded with the horizon
tendicity (left inset) and vorticity (right inset), and with 3D vortex lines and tendex lines emerging
from the horizon. The tendexes with the most positive tendicity (blue; E) lead the positive-vorticity
vortexes (blue, B) by about 45° as they rotate counterclockwise. This 45° lead is verified in the
oscillating curves, which show the rotating By and Eyn projected onto a nonrotating ¢ = 2, m = 2
spherical harmonic.

wave fronts and make angles of 45 degrees to each other (bottom inset of Figure 5.5.) For vectors E
(parallel to solid, positive-tendicity tendex line) and B (parallel to dashed, positive-vorticity vortex
line), E x B is in the wave’s propagation direction.

Now, during and after merger, the black hole’s near-zone rotating tendex lines (top left inset in
Figure 5.5) acquire accompanying vortex lines as they travel outward into the wave zone and become
gravitational waves; and the rotating near-zone vortex lines acquire accompanying tendex lines.

Because of the evolution-equation duality between &;; and B;j, the details of this wave formation

i5
are essentially the same for the rotating tendex and vortex lines. Now, in the near zone, the vectors
E and B along the tendex and vortex lines (Figure 5.5) make the same angle with respect to each
other as in a gravitational wave (45 degrees) and have E x B in the —z direction. This means that
the gravitational waves produced by the rotating near-zone tendex lines and those produced by the
rotating near-zone vortex lines will superpose constructively in the —z direction and destructively
in the +z direction, leading to a maximized gravitational-wave momentum flow in the —z direction
and maximized black-hole kick in the +z direction. An extension of this reasoning shows that the

black-hole kick velocity is sinusoidal in twice the angle between the merged hole’s near-zone rotating

vortexes and tendexes, in accord with simulations.



123
5.5 Conclusions

In our BBH simulations, the nonlinear dynamics of curved spacetime appears to be dominated by (i)
the transfer of spin-induced frame-drag vortexes from the initial holes to the final merged hole, (ii)
the creation of two large vortexes on the merged hole associated with the orbital angular momentum,
(iii) the subsequent sloshing, diffusion, and/or rotational motion of the spin-induced vortexes, (iv)
the formation of strong negative £y poloidal tendexes on the merged horizon at the locations of the
original two holes, associated with the horizon’s elongation, and a positive Eyn tendex at the neck
where merger occurs, and (v) the oscillation, diffusion, and/or circulatory motion of these tendexes.

We conjecture that there is no other important dynamics in the merger and ringdown of BBHs. If
so, there are important consequences: (i) This could account for the surprising simplicity of the BBH
gravitational waveforms predicted by simulations. (ii) A systematic study of frame-drag vortexes
and tidal tendexes in BBH simulations may produce improved understanding of BBHs, including
their waveforms and kicks. The new waveform insights may lead to improved functional forms for
waveforms that are tuned via simulations to serve as templates in LIGO/VIRGO data analysis.
(iil) Approximation techniques that aim to smoothly cover the full spacetime of BBH mergers (e.g.
the combined Post-Newtonian and black-hole-perturbation theory method [17]) might be made to
capture accurately the structure and dynamics of frame-drag vortexes and tidal tendexes. If so,

these approximations may become powerful and accurate tools for generating BBH waveforms.
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Chapter 6

Classifying the Isolated Zeros of
Asymptotic Gravitational
Radiation by Tendex and Vortex
Lines

A new method to visualize the curvature of spacetime was recently proposed. This
method finds the eigenvectors of the “electric” and “magnetic” components of the Weyl
tensor and, in analogy to the field lines of electromagnetism, uses the eigenvectors’ inte-
gral curves to illustrate the spacetime curvature. Here we use this approach, along with
well-known topological properties of fields on closed surfaces, to show that an arbitrary,
radiating, asymptotically flat spacetime must have points near null infinity where the
gravitational radiation vanishes. At the zeros of the gravitational radiation, the field of
integral curves develops singular features analogous to the critical points of a vector field.
We can, therefore, apply the topological classification of singular points of unoriented
lines as a method to describe the radiation field. We provide examples of the structure
of these points using linearized gravity and discuss an application to the extreme-kick

black-hole-binary merger.

Originally published as A. Zimmerman, D. A. Nichols, and F. Zhang, Phys. Rev. D |
(2011). Copyright 2011 by the American Physical Society.

6.1 Introduction

A recent study [1] proposed a method for visualizing spacetime curvature that is well-suited for
studying spacetimes evolved from initial data using numerical-relativity codes. The method first

projects the Riemann curvature tensor R,,., into a spatial slice, thereby splitting it into two sym-
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metric, trace-free spatial tensors, £ and B (see e.g. [2] and the references therein). These tensors
are the spacetime-curvature analogs of the electric and magnetic fields in Maxwell’s theory. The
“electric” tensor &€ is familiar; it is the tidal field in the Newtonian limit. The frame-drag field
B (the “magnetic” curvature tensor) describes the differential frame dragging of spacetime. The
eigenvectors of the tidal field provide the preferred directions of strain at a point in spacetime,
and its eigenvalues give the magnitude of the strain along those axes. Similarly, the eigenvectors
of the frame-drag field give preferred directions of differential precession of gyroscopes, and their
eigenvalues give the magnitude of this precession [1, 3, 4].

The study [1] then proposed using the integral curves of these eigenvectors as a way to visualize
the curvature of spacetime. Three orthogonal curves associated with &, called tendex lines, pass
through each point in spacetime. Along each tendex line there is a corresponding eigenvalue, which
is called the tendicity of the line. For the tensor B, there is a second set of three orthogonal
curves, the vortex lines, and their corresponding eigenvalues, the vorticities. These six curves are
analogous to the field lines of electromagnetism, and the six eigenvalues to the electric and magnetic
field strengths. The tendex and vortex lines, with their corresponding vorticities and tendicities,
represent very different physical phenomena from field lines of electromagnetism; they allow one to
visualize the aspects of spacetime curvature associated with tidal stretching and differential frame-
dragging. In addition, each set of curves satisfies the constraint that its eigenvalues sum to zero at
every point, since £ and B are trace-free.

Wherever the eigenvector fields are well-behaved, the tendex and vortex lines form extended,
continuous fields of lines in a spatial slice. At points where two (or more) eigenvectors have the same
eigenvalue, the eigenvectors are said to be degenerate. Any linear combination of the degenerate
eigenvectors at these points is still an eigenvector with the same eigenvalue; therefore, the span of
these eigenvectors forms a degenerate subspace. Singular features can appear at points of degeneracy,
where many lines intersect, terminate, or turn discontinuously. The topology of unoriented fields
of lines and their singular points has been studied both in the context of general relativity and
elsewhere. For example, Delmarcelle and Hesselink [5] studied the theory of these systems and
applied them to real, symmetric two-dimensional tensors. In the context of relativity, Penrose and
Rindler [6] examined the topology of unoriented lines, or ridge systems, to characterize the principle
null directions about single points in spacetime. Finally, Penrose [7] also applied the study of ridge
systems to human handprint and fingerprint patterns.

In this paper, we focus on the vortex and tendex lines and their singular points far from an
isolated, radiating source. In Section 6.2, we show that two of the vortex and tendex lines lie on
a sphere (the third, therefore, is normal to the sphere), and that the vortex and tendex lines have
the same eigenvalues. Moreover, the two eigenvalues on the sphere have opposite sign, and the

eigenvalue normal to the sphere has zero eigenvalue. This implies that the only singular points in
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the lines occur when all eigenvalues vanish (i.e. when the curvature is exactly zero at the point, and
all three eigenvectors are degenerate).

In Section 6.3 we employ a version of the Poincaré-Hopf theorem for fields of integral curves to
argue that there must be singular points where the curvature vanishes. Penrose, in a 1965 paper
[8], made a similar observation. There, he notes in passing that gravitational radiation must vanish
for topological reasons, although he does not discuss the point any further. Here we show that the
topological classification of singular points of ridge systems can be applied to the tendex and vortex
lines of gravitational radiation. This allows us to make a topological classification of the zeros of
the radiation field.

In Section 6.4, we visualize the tendex and vortex lines of radiating systems in linearized gravity.
We begin with radiation from a rotating mass-quadrupole moment, the dominant mode in most
astrophysical gravitational radiation. We then move to an idealized model of the “extreme-kick”
configuration (an equal-mass binary-black-hole merger with spins anti-aligned in the orbital plane
[9]). As we vary the magnitude of the spins in the extreme-kick configuration, we can relate the
positions of the singular points of the tendex and vortex patterns to the degree of beaming of gravi-
tational waves. We also visualize the radiation fields of individual higher-order multipole moments,
which serve, primarily, as examples of patterns with a large number of singularities. Astrophysically,
these higher multipoles would always be accompanied by a dominant quadrupole moment; we also,
therefore, look at a superposition of multipoles. Since the tendex lines depend nonlinearly upon the
multipoles, it is not apparent, a priori, how greatly small higher multipoles will change the leading
order quadrupole pattern. Nevertheless, we see that for an equal-mass black-hole binary, higher
multipoles make only small changes to the tendex line patterns. Finally, we discuss our results in
Section 9.6.

Throughout this paper we use Greek letters for spacetime coordinates in a coordinate basis and
Latin letters from the beginning of the alphabet for spatial indexes in an orthonormal basis. We use
a spacetime signature (— + ++) and a corresponding normalization condition for our tetrad. We
will use geometric units, in which G = ¢ = 1.

We will also specialize to vacuum spacetimes, where the Riemann tensor is equal to the Weyl
tensor C,p0. To specify our slicing and to compute £ and B, we use a hypersurface-orthogonal,
timelike unit vector, eg, which we choose to be part of an orthonormal tetrad, (eg,eq,es,es).
We then perform a 3 + 1 split of the Weyl tensor by projecting it and its Hodge dual *C. 0 =
1

gewaﬂCaﬁgp into this basis,

Eap = Caubueoue()u » (61)

Bap = =" Cappveo’eq” . (6.2)
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Here our convention for the alternating tensor is that €y123 = +1 in an orthonormal basis. Note
that, while the sign convention on B is not standard (see e.g. [10]), it has the advantage that &
and B obey constraints and evolution equations under the 3 + 1 split of spacetime that are directly
analogous to Maxwell’s equations in electromagnetism [2, 4]. After the projection, we will solve the

eigenvalue problem for the tensors £ and B in the orthonormal basis,
Eapt” = \vg, (6.3)

and we will then find their streamlines in a coordinate basis via the differential equation relating a

curve to its tangent vector,
dxt

E = ’Uaeau . (64)

Here s is a parameter along the streamlines.

6.2 Gravitational Waves Near Null Infinity

Consider a vacuum, asymptotically flat spacetime that contains gravitational radiation from an
isolated source. We are specifically interested in the transverse modes of radiation on a large sphere
S near future null infinity. To describe these gravitational waves, we use an orthonormal tetrad
(eo,e1,e2,e3), with e timelike and es, e3 tangent to the sphere, and we associate with this tetrad

a corresponding complex null tetrad,

1 1
l=—(eyg+e1), n=—(e —ei),
2(o 1) 2(0 1)

m = %(e2 +ies), = —(es — ies). (6.5)
Here, [ is tangent to outgoing null rays that pass through S and strike a sphere at null infinity. We
enforce that the null tetrad is parallelly propagated along these rays, and that it is normalized such
that {,n* = —m,m" = —1 (all other inner products of the null tetrad vanish). With these rays,
we can associate Bondi-type coordinates (see e.g. [11, 12]) on a sphere at future null infinity with
those on S. The timelike vector e specifies our spatial slicing in this asymptotic region. When the
orthonormal and null tetrads are chosen as in Eq. (6.5), £ and B are related to the complex Weyl

scalars [13]. With the Newman-Penrose conventions appropriate to our metric signature (see, e.g.,

[10]), and our convention in Eq. (6.2), one can show that

20, Wy — U, (U 4 Uy)
Eap —iBapy = | » Tot¥a g,  WazTo) | (6.6)

Vo4 W
* * - =,
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where * indicates entries that can be inferred from the symmetry of £ and B.

In an asymptotically flat spacetime, the peeling theorem [13] ensures that Wy ~ r~! (with r
an affine parameter along the rays), and that the remaining Weyl scalars fall off with progressively
5

higher powers of r, U3 ~ r=2, Uy ~ 773 U ~ r~% and ¥y ~ 7~ Asymptotically, only ¥y

contributes to £ and B,

0 0 0
. 1
Eap — 1Bap = 5 0 Uy Wy . (67)
0 0y —Uy

We see immediately that one eigenvector of both £ and B is the “radial” basis vector e;, with
vanishing eigenvalue. The remaining 2 x 2 block is transverse and traceless, and the eigenvectors in
this subspace have a simple analytical solution. The eigenvalues are Ay = +|Uy4|/2 for both tensors,
and the eigenvectors of £ have the explicit form

—&x3€e9 + (522 — )\i)eg Im¥, ey + (RG\IJ4 F ‘\IJ4|)63

T T L T (G - 0a)? | /(ImUa)? + (Rely T |Wa))? (6.8)

The eigenvectors of B are locally rotated by +m/4 with respect to those of € [4]. As a result,
although the global geometric pattern of vortex and tendex lines may differ, their local pattern and
their topological properties on S will be identical. Moreover, when the eigenvalues of £ (the tendicity
of the corresponding tendex line) vanish, so must those of B (the vorticity of the vortex lines). In
arguing that the radiation must vanish, we can, therefore, focus on the tendex lines on S without
loss of generality. Physically, however, both the vortex and the tendex lines are of interest. Similarly,
since the two sets of tendex lines on S have equal and opposite eigenvalue and are orthogonal, we
need only consider the properties of a single field of unoriented lines on .S in order to describe the
topological properties of all four tendex and vortex lines on the sphere. Note that thus far we leave

2

the coordinates (z%,23) on S unspecified. We will assume that these coordinates are everywhere

nonsingular, for instance by being constructed from two smooth, overlapping charts on S.

6.3 The Topology of Tendex Patterns Near Null Infinity

Before investigating the properties of the tendex lines on S, we first recall a few related properties of
vector fields on a 2-sphere. A well-known result regarding vector fields on a sphere is the “hairy-ball
theorem.” This result states, colloquially, that if a sphere is covered with hairs at each point, the
hair cannot be combed down everywhere without producing cowlicks or bald spots. The hairy-
ball theorem is a specific illustration of the Poincaré-Hopf theorem, applied to a 2-sphere. On a
2-sphere, this theorem states that the sum of the indexes of the zeros of a vector field must equal

the Euler characteristic, y, of the sphere, specifically x = 2. The index of a zero of a vector field
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(also called a singular point) can be found intuitively by drawing a small circle around the point
and traveling once around the circle counterclockwise. The number of times the local vector field
rotates counterclockwise through an angle of 27 during this transit is the index. More precisely, we
can form a map from the points near a zero of the vector field to the unit circle. To do this consider
a closed, oriented curve in a neighborhood of the zero, and map each point on the curve to the unit
circle by associating the direction of the vector field at that point with a particular point on the
unit circle. The index is the degree of the map (the number of times the map covers the circle in a
positive sense). For the zero of a vector field, the index is a positive or negative integer, because we
must return to the starting point on the unit circle as we finish our circuit of the curve around the
Zero.

The concept of an index and the formal statement of the Poincaré-Hopf theorem generalizes
naturally to ridge systems, fields of unoriented lines such as the tendex lines on S. For ridge systems
on the sphere, the index of a singular point can be a half-integer [5]. Intuitively, this can occur
because fields of lines do not have orientation. As one traverses counterclockwise about a small
circle around a singular point, the local pattern of lines can rotate through an angle of 7 during
the transit. We illustrate the two fundamental types of singularity in Figure 6.1, which, following
[6], we call loops for index ¢ = 1/2 and triradii for i = —1/2. One can argue that the Poincaré-Hopf
Theorem holds for ridge systems, by noting that we can create a singular point with integer index
by bringing two half-index singularities together (see Figure 6.2 for a schematic of the creation of
a singularity of index ¢ = 1 from two loop singularities). Ridge patterns near singularities with
integer index ¢ = £1 can be assigned orientations consistently; they must, therefore, have the same
topological properties as streamlines of vector fields (which, in turn, have the same properties as the
underlying vector fields themselves). By arguing that one can always deform a ridge system so that
its singular points have integer index, one can see that the sum of the indexes of a ridge system on
a sphere must equal the Euler characteristic of the surface, x = 2 (see [5] and the references therein
for a more formal statement and proof of this theorem). In Figure 6.3 we show several other ridge
singularities with integer index for completeness. In the top row, we show three patterns with index
i = 1, and in the bottom left, we sketch a saddle type singularity with index i = —1. All of these
patterns can be consistently assigned an orientation and, thus, have the same topological properties
as vector field singularities.

Having arrived at the result that the tendex lines on S must have singular points in a general,
asymptotically flat vacuum spacetime, we now recall the fact that the singular points appear where
there is a degenerate eigenvalue of the tidal tensor. From the result of Section 6.2, the only de-
generacies occur where the curvature vanishes completely, and it follows therefore that there must
be points of vanishing curvature on S. In general we would expect the radiation to vanish at a

minimum of four points, as Penrose [8] had previously noted. In this case there would be four loop



Figure 6.1: Illustrations of the two types of half-index singularities for ridge systems on a two-
dimensional space. On the left is a loop singularity with index ¢ = 1/2, and on the right is a
triradius with ¢ = —1/2.

singularities with index ¢ = 1/2, whose index sums to x = 2. As we highlight in Section 6.4, where
we show several examples of multipolar radiation in linearized theory, the number of singular points,
the types of singularities, and the pattern of the tendex lines contains additional information.

Additional symmetry, however, can modify the structure of the singular points, as we see in the
simple example of an axisymmetric, head-on collision of two non-spinning black holes. Axisymmetry
guarantees that the Weyl scalar W is purely real when we construct our tetrad, Eq. (6.5), by choosing
e, and e3 to be the orthonormal basis vectors of spherical polar coordinates on S, eg and ey [14].
Using the relation ¥y = —ﬁ+ + ihy, we see that the waves are purely + polarized. By substituting
this relationship into (6.7), we also see that ey and e, are the eigenvectors whose integral curves
are the tendex lines. The tendex lines, therefore, are the lines of constant latitude and longitude,
and the singular points reside on the north and south poles of S. Their index must be i = 1, and
the local pattern at the singularity will resemble the pattern at the top left of Figure 6.3 for one
set of lines, and the image on the top right of Figure 6.3 for the other set (see also [4]). In this
special situation, axisymmetry demands that there be two singular points on the axis, rather than
four (or more). Moreover, these singular points are each generated from the coincidence of two loop
singularities, with one singular point at each end of the axis of symmetry. Similarly, if U, were
purely imaginary, then the radiation would only contain the x polarization. The 7/4 rotations of
the unit spherical vectors would then be the eigenvectors of the tidal field, and the two singularities
at the poles would resemble that illustrated at the top middle of Figure 6.3.

It is even conceivable that four loops could merge into one singular point. This singularity would
have the dipole-like pattern illustrated at the bottom right of Figure 6.3, and it would have index
i = 2. Though this situation seems very special, we show in the next section how a finely tuned
linear combination of mass and current multipoles can give rise to this pattern. Because there is
only one zero, the radiation is beamed in the direction opposite the zero, resulting in a net flux of
momentum opposite the lone singular point.

Before concluding this section, we address two possible concerns. The scalar ¥4 = C,,, ,on'm”n’m?

depends both on the curvature and on the chosen tetrad. We first emphasize that the singular points
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Figure 6.2: An illustration of the formation of a singularity with index ¢ = 1 from two loop singular-
ities with index ¢ = 1/2. The local structure of the two loops is shown in the top left, and the arrow
represents, schematically, how they might join together into the extended pattern at the top right.
Finally, the two loop singularities can be brought together until they coincide (which we represent
by an arrow pointing to the image at the bottom). This resulting local pattern can be assigned an
orientation and is equivalent to the singular point of a vector field.

we have discussed have nothing to do with tetrad considerations, in particular with the behavior of
the vectors tangent to the sphere, m, and m. Though these vectors will also become singular at
points on the sphere, we are free to use a different tetrad on S in these regions, just as we can cover
the sphere everywhere with smooth coordinates using overlapping charts. Secondly, the vanishing
of radiation does not occur due to the null vector n coinciding with a principle null direction of the
spacetime. We note that, if ¥4 vanishes at a point on S, then a change of basis cannot make W,
(or any of the other curvature scalars) non-vanishing. For example, a rotation about I by a complex
parameter a induces a transformation on the other basis vectors,

=1, m' =m +al, m' =m+al, n' =n+am+am + aal . (6.9)

Under this rotation, ¥, transforms as
U, = Uy +4aV;+ 6a°0y +4a° ¥ +a*¥, (6.10)

which vanishes when the Weyl scalars are zero in the original basis. The remaining scalars transform
analogously, and the other independent tetrad transformations are also homogeneous in the Weyl

scalars (see e.g. [10]).



133

Figure 6.3: Top row: Diagrams of three orientable ridge patterns, which can be made from a
combination of two loops, all with index ¢ = 1. Bottom row: On the left is an orientable ridge
pattern with index ¢ = —1 (which is identical to a saddle point of a vector field). It can be

constructed by joining two triradii singularities. The figure on the right shows a dipole-like pattern
with index ¢ = 2, which can come from the coincidence of four loops.

6.4 Examples from Linearized Gravity

We now give several examples of the tendex and vortex patterns on S from weak-field, multipolar
sources. We first investigate quadrupolar radiation, produced by a time-varying quadrupole mo-
ment. For many astrophysical sources, such as the inspiral of comparable-mass compact objects,
the gravitational radiation is predominantly quadrupolar. As a result, our calculations will capture
features of the radiation coming from these astrophysical systems. We will then study a combina-
tion of rotating mass- and current-quadrupole moments that are phase-locked. The locking of these
moments was observed by Schnittman et al. in their multipolar analysis of the extreme-kick merger
[15]. We conclude this section by discussing isolated higher multipoles. Although it is unlikely that
astrophysical sources will contain only higher multipoles, it is of interest to see what kinds of tendex
patterns occur. More importantly, while the tidal tensor is a linear combination of multipoles, the
tendex lines will depend nonlinearly on the different moments. Actual astrophysical sources will
contain a superposition of multipoles, and it is important to see how superpositions of multipoles
change the leading-order quadrupole pattern.

We perform our calculations in linearized theory about flat space, and we use spherical polar
coordinates and their corresponding unit vectors for our basis. One can compute from the multipolar
metric in [16] that for a symmetric, trace-free (STF) quadrupole moment Z,;, the leading-order
contributions to £ and B on S are
}TT

— 1
Er ) = g | VTabt = 1) + CacVTealt — r)eas

)

(6.11)
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— 1 TT
BE;;) ? = _; [ec(a(4)l—b)c(t - ’I“):| . (612)

Here, the superscript (¥ indicates four time derivatives, TT means to take the transverse-traceless
projection of the expression, and €,. is the antisymmetric tensor on a sphere. In this expression,
and in what follows, the Latin indexes run only over the basis vectors eg and ey, and repeated Latin

indexes are summed over even when they are both lowered.

6.4.1 Rotating Mass Quadrupole

As our first example, we calculate the STF quadrupole moment of two equal point masses (with
mass M /2) separated by a distance a in the equatorial plane, and rotating at an orbital frequency

Q). We find that

DTpe(t — ) = Ma2Q*(1 + cos? 0) cos{2[p — Q(t — )]},

Wyt — 1) —2Ma?*Q* cos Osin{2[¢ — Q(t — 7)]},

Wyt —r) ~ Tyt — 7). (6.13)

By substituting these expressions into Egs. (6.11) and (6.8), we find the eigenvectors of the tidal
field. We can then calculate the tendex lines on the sphere by solving Eq. (6.4) with a convenient

normalization of the parameter along the curves,

%liz = 7711 (4)Ig¢ N (614)
do 1 (1)

bk —W T — A1) 1
ds rsin 6 ( 9 = A+) (6.15)

Here, A is the positive eigenvalue. The differential equation for the vortex lines [found from the
corresponding frame-drag field of Eq. (6.12)], has the same form as those of the tendex lines above;
however, one must replace (4)Ig¢ in the first equation by W70 and Wy, by —(4)Ig¢ in the second
equation.

We show the tendex and vortex lines corresponding to the positive eigenvalues in the left and
right panels of Figure 6.4, respectively, at a retarded time ¢t — r = 0. We also plot the magnitude
of the eigenvalue on the sphere, using a color scheme in which purple (darker) regions at the poles
correspond to large eigenvalues and yellow (lighter) colors near the equator are closer to zero. Both
the tendex and vortex lines have four equally spaced loop singularities on the equator at the points
where the field is zero (the two on the back side of the sphere are not shown). Because the vortex
and tendex lines must cross each other at an angle of 7/4, the global geometric patterns are quite
different.

We note here that these two figures also provide a visualization for the transverse-traceless (TT),
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“pure-spin” tensor spherical harmonics [16]. For example, we can see that the mass-quadrupole
tendex lines are the integral curves of the eigenvectors of the real part of the £ = 2, m = 2 electric-
type TT tensor harmonic. First, the tendex lines correspond to the electric-type harmonic, because
the tidal tensor is even under parity. Second, the radiation pattern will not contain an £ = 2, m =0
harmonic, because the overall magnitude of the quadrupole moment of the source is not changing
in time; also, the £ = 2, m = 41 harmonics are absent because the source is an equal-mass binary
and is symmetric under a rotation of 7. Finally, the £ = 2, m = —2 moment is equal in magnitude
to the m = 2 harmonic, since the tidal tensor is real. Using similar considerations, we can identify
the vortex lines of the mass quadrupole as a visualization of the real parts of the £ = 2, m = 2
magnetic-type tensor harmonics.

In addition, the eigenvalue (the identical color patterns of both panels of Figure 6.4) is given by

the magnitude of the sum of spin-weighted spherical harmonics,
/\+ X |_2Y22 + _2}/2_2| . (616)

One can see this most easily by using the symmetries described above, the expression for the eigen-
value Ay = |Uy|/2, and the spin-weighted spherical harmonic decomposition of W,. It is also possible
to verify this expression using the tensor harmonics above and the standard relations between tensor
spherical harmonics and spin-weighted spherical harmonics (see e.g. [16]). Radiation from numerical
spacetimes is usually decomposed into spin-weighted spherical harmonics, and, as a result, the pat-
tern of the eigenvalue is familiar. The tendex lines, however, also show the polarization pattern of
the waves on S (a feature that numerical simulations rarely explicitly highlight). Figure 6.4 (and the
accompanying negative-tendicity lines not shown) gives the directions of preferred strain on S, and
hence the wave polarization that can be inferred from gravitational-wave-interferometer networks
such as LIGO/VIRGO. Thus, visualizations such as Figure 6.4 give complete information about the

gravitational waves passing through S.

6.4.2 Rotating Mass and Current Quadrupoles in Phase

As our second example, we will consider a source that also has a time-varying current-quadrupole
moment, Sgp. In linearized theory, one can show that the tidal tensor and frame-drag field of a current
quadrupole are simply related to those of a mass quadrupole. In fact, B, of the current quadrupole
has exactly the same form as £y of a mass quadrupole, Eq. (6.11), when one replaces T, by
(4/3)*S,;,. Similarly, £, of the current quadrupole is identical to By, of a mass quadrupole, Eq.
(6.12), when (MZ,; is replaced by —(4/3)*)Sy.

We impose that the source’s mass- and current-quadrupole moments rotate in phase, with fre-

quency 2, and with the current quadrupole lagging in phase by 7/2. This arrangement of multipoles
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Figure 6.4: Left: The positive tendex lines on S generated by a rotating quadrupole moment in
linearized gravity. The sphere is colored by the magnitude of the eigenvalue; purple (darker) areas
at the poles corresponding to a large eigenvalue, and yellow (lighter) areas near the equator indicate
a value closer to zero. Four loop singularities appear equally spaced on the equator at the points of
vanishing tendicity. Right: As in the left panel, the positive vortex lines and their magnitude of the
eigenvalue on S (using the same coloring). The loop singularities lie at the same locations as they
do for the tendex lines, but they are locally rotated by /4.

models the lowest multipoles during the merger and ringdown of the extreme-kick configuration (a
collision of equal mass black holes in a quasi-circular orbit that have spins of equal magnitude lying
in the orbital plane, but pointing in opposite directions), when the mass- and current-quadrupole
moments rotate in phase [15]. The relative amplitude of the mass- and current-multipoles depends
upon, among other variables, the amplitude of the black-holes’ spin. We, therefore, include a free
parameter C' in the strength of the current quadrupole which represents the effect of changing the
spin. An order-of-magnitude estimate based on two fast-spinning holes orbiting near the end of
their inspiral indicates that that their amplitudes could be nearly equal, C = O(1). To determine
the exact relative amplitude of the mass- and current-quadrupole moments of the radiation would
require comparison with numerical relativity results.

We calculate the current-quadrupole moment by scaling the mass quadrupole by the appropriate
factor of C' and letting the term 2[¢p—Q(t—r)] in the equations for Zp,(¢—7) become 2[¢p—Q(t—r)]—7 /2
in the corresponding expressions for S,,(t — 7). In linearized theory, the tidal tensor and frame-drag
fields of the different multipoles add directly. As a result, the equations for the tendex lines have
the same form as Egs. (6.14) and (6.15), but one must now replace the mass quadrupole (4)I0¢ by
(4)Ig¢ — (4/3)W Sy in the first expression and (DZyy by D Zyy + (4/3)(4)Sg¢ in the second.

First, we allow the current quadrupole to be half as large as the mass quadrupole, C = 1/2.
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Figure 6.5: The positive tendex lines on S generated by the superposition of rotating mass- and
current-quadrupole moments, 7/2 out of phase, in linearized gravity. The sphere is colored by
the tendicity as in Figure 6.4. Interference between the moments leads to beaming of the radiation
toward the north pole. Similarly, the singular points of the tendex lines now fall on a line of constant
latitude in the southern hemisphere.

We show the positive tendex lines and positive eigenvalue in Figure 6.5. Due to the relative phase
and amplitude of the two moments, the tensors add constructively in the northern hemisphere and
destructively in the southern hemisphere on S. This is evident in the eigenvalue on the sphere in
Figure 6.5, which, one can argue, is now given by an unequal superposition of spin-weighted spherical
harmonics,

)\+ X ‘_QYQQ + b_2Y2_2| s (617)

with b < 1. As in previous figures, dark colors (black and purple) represent where the eigenvalue is
large, and light colors (white and yellow) show where it is nearly zero. While the singular points are
still equally spaced on a line of constant latitude, they no longer reside on the equator; they now
fall in the southern hemisphere. This is a direct consequence of the beaming of radiation toward the
northern pole.

The case shown above has strong beaming, but it is possible to make the beaming more pro-
nounced. To get the greatest interference of the multipoles, the mass and current quadrupoles must
have equal amplitude in the tidal field. Because the tidal field of the current quadrupole is 4/3 as
large as the tidal field of the mass quadrupole, setting C' = 3/4 gives the strongest constructive
interference in the tidal fields. In this case, the eigenvalue vanishes at just one point, the south
pole, and the eigenvalue can be shown to be proportional to just a single spin-weighted spherical
harmonic,

>\+ o |,2}/22| . (618)



Figure 6.6: South polar region of the tendex line pattern of a gravitational wave generated by
rotating mass- and current-quadrupole moments. The amplitude and phase of the moments are
chosen so that the radiation vanishes only at the south pole. The purple (darker) areas indicate a
positive eigenvalue, while yellow (lighter) areas are values closer to zero. The singularity at the pole
has index ¢ = 2.

As a result, the four equally spaced singular points of the tendex lines must coincide at one singular
point whose index must be ¢ = 2. This is precisely the dipole-like pattern depicted in Figure 6.3.
We show the tendex lines around the south pole in Figure 6.6. The vortex lines are identical to the
tendex lines, but they are globally rotated by 7/4 in this specific case.

We see that the beaming can be maximized by carefully tuning the phase and amplitude of
the mass- and current-quadrupole moments. Interestingly, the maximally beamed configuration
corresponds with the coincidence of all singular points at the south pole in the radiation zone.

Whether this degree of beaming could occur from astrophysical sources is an open question.

6.4.3 Higher Multipoles of Rotating Point Masses

We also investigate the effect of including higher multipoles on the tendex lines on S. For the orbiting,
non-spinning, point masses of the first example the next two lowest multipoles arise from the current
octopole (the £ = 3 STF moment [16]) and the mass hexadecapole (the £ =4 STF moment). From

the multipolar metric in [16], one can show that the tidal field for these two moments are

- 1 TT
gﬁb_s = o |:€c(a(5)8b)cr (t - T)} > (619)
1 TT
(=4 _  __— |(6) _ (4) _ }
gab 2Ur |: Iabrr (t 7’) + €ac€dp chrr (t 7’) ,

(6.20)
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where the index r indicates contraction with the radial basis vector e,, and so repeated r indexes
do not indicate summation. The STF current-octopole moment can be expressed compactly as
Sijk = (Lﬁvxi‘:ﬂﬁ)STF, where LY is the Newtonian angular momentum and xil is the position of one
of the point masses. The superscript STF indicates that all indexes should be symmetrized, and all
traces removed. In Cartesian coordinates, the vectors have the simple forms Ly = (0,0, Mav/4)
and x4 = (a/2)(cos[2], sin[2t], 0), where € is the Keplerian frequency and v is the relative velocity.
Similarly, one can write the STF mass-hexadecapole moment as Z;ji = M (xi\xf; k'l )STF  for the
same vector xf;l as above. Because these tensors have many components, we shall only list those

that are relevant for finding the tendex lines. We will also define oo = ¢ — Q(t — r) for convenience.

For the current octopole the relevant components are

- Ma3vQP
(‘))Seer(t —r)= 7%(5 cos 0 + 3 cos 30) sin 2av
Ma3vQP
(5)89¢T(t —r)= —% cos 26 cos 2av,
O Sggn(t — 1) = =P Sgo,(t — 1), (6.21)

and for the mass hexadecapole they are

4Q6
[(cos? @ + cos 46) cos 2cc — 128 5in? O(1 + cos? §) cos 4a]

(6)109'rr(t - ’/‘) =
Ma*Qb

O Ty (t — 1) = — [cos 30 sin 2a0 — 128 sin? § cos 0 sin 40 ,

O Ty grr(t —7) = = O Ty, (t — 7). (6.22)

The tendex lines of the current octopole can be found by solving the system of differential equations
in Egs. (6.14) and (6.15) by substituting (VZgs by (9)Spg,/2 and M Zge by —()Spy,./2 Similarly,
for the mass hexadecapole, one must make the substitutions of (4)Ig¢ by (G)ngmn /12 and Oy by
©) Zppr /12 in the same equations.

In the left panel of Figure 6.7 we show the tendex line pattern for the current octopole, and
in the right panel of Figure 6.7 we show the pattern for the mass hexadecapole. Together with
the mass quadrupole, Figure 6.4, these are the three lowest multipole moments for the equal-mass
circular binary. For the current octopole, there are eight triradius singular points and twelve loop
singularities (and thus the net index is two). Four of the loop singularities remain equally spaced on
the equator, at the same position of those of the quadrupole, but the remaining singularities appear
at different points on S. The mass hexadecapole has eight loop singularities equally spaced on the
equator, and there are integer-index saddle-point-like singularities at each pole.

Gravitational radiation from astrophysical sources will likely not be dominated by these higher

multipoles. Nevertheless, these figures are of interest as examples of tendex lines with many singular
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points and as visualizations of tensor harmonics. By analyzing the symmetries in a way analogous
to that discussed in Section 6.4.1, we can identify the current-octopole tendex lines with the integral
curves of ¢ = 3, m = 2 magnetic-type harmonics, and we can associate the mass-hexadecapole lines
with those of the £ = 4, m = 4 electric-type harmonics. In the case of the mass hexadecapole, the
m = 2 moment is not ruled out by symmetry, but it is suppressed relative to the m = 4 moment.
This occurs because the m = 4 moment oscillates at twice the frequency of the m = 2 moment,
and the tidal tensor for this higher-order moment is given by taking six time derivatives of the
STF moment, Eq. (6.22). This enhances the m = 4 radiation by a factor of 26 over the m = 2
contribution. Similarly, we can relate the eigenvalue to the magnitude of the corresponding sum
of s = —2 spin-weighted spherical harmonics, and the tendex line patterns to the the polarization
directions that could be inferred from networks of gravitational-wave interferometers.

Finally, we show the pattern generated from the linear combination of the three lowest multipole
moments in Figure 6.8. Any astrophysical source will contain several multipoles, with the quadrupole
being the largest. The tendex lines depend nonlinearly on the multipoles, and it is important,
therefore, to see to what extent higher multipoles change the overall pattern. We find the total
tidal tensor by linearly combining the tidal tensor of each individual moment, and we then find the
eigenvectors and tendex lines of the total tidal tensor. The pattern formed from the combination
of multipoles depends upon the parameters of the binary; in making this figure we assumed (in

3/2

units in which M = 1) a separation of a = 15, an orbital frequency Q = a~°/%, and a velocity

v =aQ = a2, When these higher moments are combined with the mass quadrupole, the tendex
line structure resembles that of the mass quadrupole. The pattern is deformed slightly, however, by
the presence of the higher multipoles. The loop singularities on the equator are no longer evenly
spaced; rather, the pair illustrated (and the corresponding pair which is not visible) are pushed

slightly closer together.

6.5 Conclusions

Tendex and vortex lines provide a new tool with which to visualize and study the curvature of
spacetime. Fundamentally, they allow for the visualization of the Riemann tensor, through its de-
composition into two simpler, trace-free and symmetric spatial tensors. These tensors, £ and B,
can be completely characterized by their eigenvectors and corresponding eigenvalues. The integral
curves of these eigenvector fields are easily visualized, and their meaning is well understood; phys-
ically, the lines can be interpreted in terms of local tidal strains and differential frame-dragging.
Here, the simple nature of these lines allows us to apply well-known topological theorems to the
study of radiation passing through a sphere near null infinity.

Tendex line patterns must develop singularities (and thus have vanishing tendicity) on a closed
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Figure 6.7: Left: The tendex lines of a current-octopole moment of an equal-mass, circular binary
of point masses. The colors on the sphere represent the tendicity, with the same scale described
in Figure 6.4. The current octopole also has four loop singularities on the equator (at the same
position of those of the rotating quadrupole), but it has eight additional loops and eight triradius
singularities off of the equator. Only half of the singular points are visible on the sphere; the other
half appear on the back side. Right: The tendex lines on S of the mass hexadecapole of an equal-
mass, circular binary of point masses, with the sphere colored by the tendicity as in the left panel.
The hexadecapole has eight loop singularities equally spaced on the equator and two saddle-point-
like singularities (from the coincidence of two triradius singularities at a point) at the poles. Again,
only half are visible in the figure. Four of the singular points on the equator coincide with those of
the quadrupole, but the remaining four appear at different locations.

surface. When we applied this fact to the tendex lines of gravitational radiation near null infinity
from arbitrary physical systems, we could easily show that the gravitational radiation must at least
vanish in isolated directions. Although this result is somewhat obvious in retrospect and has been
noted before [8], the result does not appear to be well-known. We also began exploring the manner in
which these singular points can provide a sort of fingerprint for radiating spacetimes. The essential
elements of this fingerprint consist of the zeros of the curvature on the sphere, together with the
index and the tendex line pattern around these zeros. We studied these patterns for a few specific
examples, such as the four equally spaced loops of a rotating mass quadrupole. A more interesting
case is that of a radiating spacetime composed of locked, rotating mass and current quadrupoles,
which can be thought of as a simplified model of the late stages of the extreme-kick black-hole-
binary merger. Here, the shifted positions of the singular points of the tendex pattern provide a
direct illustration of gravitational beaming for this system. By seeking the most extreme topological
arrangement of singular points, we also described a maximally beaming configuration of this system.

The radiation generated by higher-order STF multipole moments gives more complex examples

of tendex and vortex patterns, with many singular points of varied types. Additionally, we argued
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Figure 6.8: The tendex lines of a superposition of mass-quadrupole, current-octopole, and mass-
hexadecapole moments of an equal-mass circular binary. It assumes a total mass M = 1, a separation
a = 15, an orbital frequency Q = a=3/2 and a velocity v = aQ = a~ /2. The sphere is colored by the
tendicity in an identical way to that of Figure 6.4. When the tidal tensors of the three multipoles
are combined, the net pattern is dominated by the quadrupole and contains only the four loops.
The loop singularities are no longer equally spaced on the equator; the two pairs are pushed closer
together due to the influence of the higher multipoles.

that their tendex and vortex patterns provide a visualization of the tensor spherical harmonics
on the sphere; the eigenvalue illustrates the magnitude of these harmonics, and the lines show the
tensor’s polarization in an intuitive manner. The sum of the three multipoles illustrated in Figure 6.8
shows how including higher-order multipoles slightly deforms the pattern of quadrupole radiation
to make a more accurate total radiation pattern of the equal-mass binary. Similar illustrations
of complete radiation patterns could be readily produced from numerical spacetimes, when ¥, is
extracted asymptotically using a tetrad with appropriate peeling properties. Such visualizations,
and their evolution in time, could provide a useful method for visualizing the gravitational emission
from these systems.

This study of the tendex and vortex lines (and their singular points) of asymptotic radiation
fields is one of several [4] exploring and developing this new perspective on spacetime visualization.
Naturally, it would be of interest to extend the two-dimensional case here to a larger study of
the singular points in the full, three-dimensional tendex and vortex fields. Methods to find and
visualize the singular points (and singular lines) of 3D tensors have been discussed preliminarily in
[17], though there is still room for further work. We suspect that singular points will be important
in visualizing and studying the properties of numerical spacetimes with these methods. Further,
we expect that there is still much to be learned from the study of the vortexes and tendexes of

dynamical spacetimes.
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Chapter 7

Visualizing Spacetime Curvature
via Frame-Drag Vortexes and Tidal
Tendexes

I. General Theory and
Weak-Gravity Applications

When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum
Riemann tensor) gets split into two spatial, symmetric, and trace-free (STF) tensors:
(i) the Weyl tensor’s so-called “electric” part or tidal field £;;, which raises tides on
the Earth’s oceans and drives geodesic deviation (the relative acceleration of two freely
falling test particles separated by a spatial vector £* is Aa; = —&;€); and (ii) the Weyl
tensor’s so-called “magnetic” part or (as we call it) frame-drag field Bjj, which drives
differential frame dragging (the precessional angular velocity of a gyroscope at the tip of

¢ as measured using a local inertial frame at the tail of £*, is AQ; = B;,&).

Being STF, &, and Bji, each have three orthogonal eigenvector fields which can be
depicted by their integral curves. We call the integral curves of £;;’s eigenvectors tidal
tendex lines or simply tendex lines, we call each tendex line’s eigenvalue its tendicity,
and we give the name tendex to a collection of tendex lines with large tendicity. The
analogous quantities for Bj, are frame-drag vortex lines or simply wvortex lines, their

vorticities, and vortexes.

These concepts are powerful tools for visualizing spacetime curvature. We build up
physical intuition into them by applying them to a variety of weak-gravity phenomena:
a spinning, gravitating point particle, two such particles side-by-side, a plane gravita-
tional wave, a point particle with a dynamical current-quadrupole moment or dynam-

ical mass-quadrupole moment, and a slow-motion binary system made of nonspinning



146

point particles. We show that a rotating current quadrupole has four rotating vor-
texes that sweep outward and backward like water streams from a rotating sprinkler.
As they sweep, the vortexes acquire accompanying tendexes and thereby become out-
going current-quadrupole gravitational waves. We show similarly that a rotating mass
quadrupole has four rotating, outward-and-backward sweeping tendexes that acquire
accompanying vortexes as they sweep, and become outgoing mass-quadrupole gravita-
tional waves. We show, further, that an oscillating current quadrupole ejects sequences of
vortex loops that acquire accompanying tendex loops as they travel, and become current-
quadrupole gravitational waves; and similarly for an oscillating mass quadrupole. And
we show how a binary’s tendex lines transition, as one moves radially, from those of two
static point particles in the deep near zone, to those of a single spherical body in the
outer part of the near zone and inner part of the wave zone (where the binary’s mass
monopole moment dominates), to those of a rotating quadrupole in the far wave zone

(where the quadrupolar gravitational waves dominate).

In paper IT we will use these vortex and tendex concepts to gain insight into the quasi-
normal modes of black holes, and in subsequent papers, by combining these concepts
with numerical simulations, we will explore the nonlinear dynamics of curved spacetime
around colliding black holes. We have published a brief overview of these applications
in Physical Review Letters [1]. We expect these vortex and tendex concepts to become

powerful tools for general relativity research in a variety of topics.

Originally published as D. A. Nichols, R. Owen, F. Zhang, A. Zimmerman, J. Brink, Y.
Chen, J. D. Kaplan, G. Lovelace, K. D. Matthews, M. A. Scheel, and K. S. Thorne,
Phys. Rev. D 84, 124914 (2011). Copyright 2011 by the American Physical Society.

7.1 Motivation and Overview

In the 1950s John Archibald Wheeler coined the phrase geometrodynamics to epitomize his intuition
that curved spacetime must have a rich range of nonlinear dynamical behaviors — behaviors that are
important in our Universe and are worthy of probing deeply by both theoretical and observational
means (see Reference [2] and earlier papers by Wheeler reprinted therein and also Reference [3]).
It was obvious to Wheeler that analytical tools by themselves would not be sufficient to reveal the
richness of geometrodynamics, so he encouraged his colleagues and students to begin developing
numerical tools [4-6], and he encouraged Joseph Weber to develop technology for gravitational-wave
observations [7].

Today, a half century later, numerical relativity has finally reached sufficient maturity (for a
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review, see Reference [8] and the references therein) that, hand in hand with analytical relativity,
it can be used to explore nonlinear geometrodynamics in generic situations; and gravitational-wave
detectors are sufficiently mature [9-13] that they may soon observe nonlinear geometrodynamics in
black-hole collisions.

Unfortunately, there is a serious obstacle to extracting geometrodynamical insights from numerical-
relativity simulations: a paucity of good tools for visualizing the dynamics of curved spacetime. We
are reasonably sure that buried in the billions of numbers produced by numerical-relativity simula-
tions there are major discoveries to be made, but extracting those discoveries is exceedingly difficult
and perhaps impossible with the tools we have had thus far.

Until now, curved spacetime has been visualized primarily via (isometric) embedding diagrams (Sec-
tion 23.8 of Reference [14]): choosing spacelike two-dimensional surfaces in spacetime, and embed-
ding them in flat 3-dimensional Euclidean space or 241-dimensional Minkowski spacetime in a
manner that preserves the surfaces’ intrinsic geometry. (For some examples of embedding diagrams
applied to black-hole spacetimes, see, e.g., References [15-17]). Unfortunately, such embedding dia-
grams are of very limited value. They capture only two dimensions of spacetime, and the 2-surfaces
of greatest interest often cannot be embedded globally in flat Euclidean 3-space or flat Minkowski
2+1-dimensional spacetime [15, 18-20]. Mixed Euclidean/Minkowski embeddings are often required
(e.g., Figure 4 of Reference [15]), and such embeddings have not proved to be easily comprehended.
Moreover, although it is always possible to perform a local embedding in a flat 3-space (in the vicin-
ity of any point on the two-surface), when one tries to extend the embedding to cover the entire
two-surface, one often encounters discontinuities analogous to shocks in fluid mechanics [18, 20].

A systematic approach to understanding the connection between nonlinear near-field dynamics in
general relativity and emitted gravitational waves is being developed by Rezzolla, Jaramillo, Macedo,
and Moesta [21-24]. This approach focuses on correlations between data on a surface at large radius
(ideally null infinity) and data on world tubes in the source region (such as black-hole horizons).
The purpose is to use such correlations to infer the dynamics of a black hole (e.g. the kick) directly
from data on its horizon. While we find this approach exciting and attractive, in our own work we
seek a more direct set of tools: tools that can probe the dynamics of spacetime curvature that cause
such correlations in the first place, and that can be more readily and intuitively applied to a wider
range of other geometrodynamic phenomena. It is our hope that eventually our tools and those of
Rezzolla et. al. [21-23] will provide complementary pictures for understanding spacetime dynamics,
and particularly black-hole kicks.

We have introduced our new set of tools in a recent paper in Physical Review Letters [1]. They
are tools for visualizing spacetime curvature, called tidal tendez lines, tendicities, and tendezres; and
frame-drag vortex lines, vorticities and vorteres. These tools capture the full details of the Weyl

curvature tensor (vacuum Riemann tensor), which embodies spacetime curvature. They do so in
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three-dimensional, dynamically evolving pictures, of which snapshots can be printed in a paper such

1 Specifically, as of this writing two movies

as this one, and movies can be made available online.
can be seen at References [26, 27]; one shows the vortex lines from a rotating current quadrupole,
the other, vortex lines from two particles that collide head-on with transverse, antiparallel spins.

We have found these tools to be an extremely powerful way to visualize the output of numerical
simulations. We have also used them to obtain deep new insights into old analytical spacetimes.
We have applied them, thus far, to pedagogical linear-gravity problems (this paper and [28]), to
stationary and perturbed black holes (Paper II in this series), and to simulations of the inspiral
and mergers of spinning black holes ([1] and Paper IIT). We plan to apply them in the future in
a variety of other geometrodynamical venues, such as black holes ripping apart neutron stars and
curved spacetime near various types of singularities.

This is the first of a series of papers in which we will (i) present these tools, (ii) show how to use
them, (iii) build up physical intuition into them, and (iv) employ them to extract geometrodynamical
insights from numerical-relativity simulations. Specifically:

In this paper (Paper I), we introduce these vortex and tendex tools, and we then apply them to
weak-gravity situations (linearized general relativity) with special focus on the roles of vortexes and
tendexes in gravitational-wave generation. In a closely related paper [28], three of us have applied
these tools to visualize asymptotic gravitational radiation and explore the topology of its vortex and
tendex lines, and also to explore a linearized-gravity model of an extreme-kick merger. In Paper 11
we shall apply our new tools to quiescent black holes and quasinormal modes of black holes, with
special focus once again on the roles of vortexes and tendexes in generating gravitational waves.
In Paper III and subsequent papers we shall apply our tools to numerical simulations of binary
black holes, focusing on nonlinear geometrodynamics in the holes’ near zone and how the near-zone
vortexes and tendexes generate gravitational waves.

The remainder of this paper is organized as follows:

In Section 7.2.1 we review the well-known split of the Weyl curvature tensor into its “electric” and
“magnetic” parts &; and B;;, and in Section 7.2.2 we review the Maxwell-like evolution equations
for &; and B;; and discuss the mathematical duality between these fields. Then in Section 7.3 we
review the well-known physical interpretation of &;; as the tidal field that drives geodesic deviation
and the not so well-known interpretation of B;; [29, 30] as the frame-drag field that drives differential
frame dragging, and we derive the equation of differential frame dragging.

In Section 9.1.2 we introduce our new set of tools for visualizing spacetime curvature. Specifically:

In Section 7.4.1 we introduce tendex lines and their tendicities, and we quantify them by their

1Just as there is no unique method to evolve field lines in electromagnetism, so too is there no unique way to
match tendex or vortex lines at one time with others at a later time. Nevertheless, animations of field lines are useful
for pedagogical purposes and for building intuition [25]. While some of the authors and colleagues are investigating
how to evolve tendex and vortex lines in generic situations, the animations of the lines posted online all have special
symmetries that provide a natural way to connect lines at one time with lines at the next.
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stretching or compressional force on a person; and we also introduce vortex lines and their vorticities
and quantify them by their twisting (precessional) force on gyroscopes attached to the head and feet
of a person. Then in Section 7.4.2 we introduce vortezes and tendezes (bundles of vortex and tendex
lines that have large vorticity and tendicity) and give examples.

In the remainder of this paper we illustrate these new concepts by applying them to some well-
known, weak-gravity, analytic examples of spacetime curvature. In Section 7.5 we focus on the
spacetime curvature of stationary systems, and in Section 7.6 we focus on dynamical systems and
develop physical pictures of how they generate gravitational waves.

More specifically, in Section 7.5.1, we compute &;; and B;; for a static, gravitating, spinning
point particle; we explain the relationship of B;; to the particle’s dipolar “gravitomagnetic field,” we
draw the particle’s tendex lines and vortex lines, and we identify two vortexes that emerge from the
particle, a counterclockwise vortex in its “north polar” region and a clockwise vortex in its “south
polar” region. In Section 7.5.2, we draw the vortex lines for two spinning point particles that sit side
by side with their spins in opposite directions, and we identify their four vortexes. Far from these
particles, they look like a single point particle with a current-quadrupole moment. In Section 7.5.3,
we draw the vortex lines for such a current-quadrupole particle and identify their vortexes. Then in
Section 7.5.4, we show that the tendex lines of a mass-quadrupole particle have precisely the same
form as the vortex lines of the current-quadrupole particle, and we identify the mass quadrupole’s
four tendexes.

Turning to dynamical situations, in Section 7.6.1 we compute &;; and B;; for a plane gravitational
wave, we express them in terms of the Weyl scalar ¥4, and we draw their vortex and tendex lines. In
Section 7.6.2 we explore the quadrupolar (I = 2, m = 0) angular pattern of gravitational waves from
the head-on collision of two black holes, and we draw their vortex lines and tendex lines, intensity-
coded by vorticity and tendicity, on a sphere in the wave zone. In Section 7.6.3 we compute &;; and
B;; for a general, time-varying current-quadrupolar particle, and then in Sections 7.6.4 and 7.6.5 we
specialize to a rotating current quadrupole and an oscillating current quadrupole, and draw their
vortex and tendex lines. Our drawings and the mathematics reveal that the particle’s outgoing
gravitational waves are generated by its near-zone vortexes. The rotating current quadrupole has
four vortexes that spiral outward and backward like four water streams from a rotating sprinkler.
As it bends backward, each vortex acquires an accompanying tendex, and the vortex and tendex
together become a gravitational-wave crest or gravitational-wave trough. The oscillating current
quadrupole, by contrast, ejects vortex loops that travel outward, acquiring accompanying tendex
loops with strong tendicity on the transverse segment of each loop and weak on the radial segment—
thereby becoming outgoing gravitational waves.

In Section 7.6.6 we show that a time-varying mass quadrupole produces the same phenomena as

a time-varying current quadrupole, but with vortexes and tendexes interchanged.
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In Section 7.6.7 we study the vortexes and tendexes of a slow-motion binary made of nonspinning
point particles. In the near zone, the tendex lines transition, as one moves radially outward, from
those of two individual particles (radial and circular lines centered on each particle) toward those
of a single spherical body (radial and circular lines centered on the binary and produced by the
binary’s mass monopole moment). In the transition zone and inner wave zone, the mass monopole
continues to dominate. Then at radii r ~ a?/M (where a is the particles’ separation and M is the
binary’s mass), the radiative quadrupole moment begins to take over and the tendex lines gradually
transition into the outward-and-backward spiraling lines of a rotating quadrupole.

We make some concluding remarks in Section 9.6.

Throughout this paper we use geometrized units with ¢ = G = 1, and we use the sign conventions
of MTW [14] for the metric signature, the Weyl curvature, and the Levi-Civita tensor. We use Greek
letters for spacetime indexes (0-3) and Latin letters for spatial indexes (1-3), and we use arrows
over 4-vectors and bold-face font for spatial 3-vectors and for tensors. In orthonormal bases, we use

hats over all kinds of indexes.

7.2 The Tidal Field &;; and Frame-Drag Field B;;

7.2.1 341 Split of Weyl Curvature Tensor into &;; and B;;

For a given spacetime, the Weyl curvature tensor can be calculated from the Riemann tensor by
subtracting Riemann’s trace from itself; i.e., by subtracting from Riemann the following combinations
of the Ricci curvature tensor R*,, and Ricci curvature scalar R (Eq. (13.50) of MTW [14]):

nY  _ ppv [ v] 1 [k V]
C" = R,y =28 R+ 0% 07 R (7.1)

o]

Here 0%, is the Kronecker delta, and the square brackets represent antisymmetrization. Note that
in vacuum, C* = R"  and thus in vacuum the Weyl tensor contains all information about the
spacetime curvature.

Let us pick a foliation of spacetime into a family of spacelike hypersurfaces. We shall denote
by u* the 4-velocity of observers who move orthogonal to the foliation’s space slices, and by v, =
9w + uuu, the induced spatial three metric on these slices, so that v,* is the projection operator
onto the slices. As is well-known, e.g. [31], using this projection operator, we can split the Weyl

tensor covariantly into two irreducible parts, which are symmetric, trace-free (STF) tensors that lie

in the foliation’s hypersurfaces (i.e. that are orthogonal to u*). These pieces are

Eap = V"8 Cpporvutu’ ie. &ij = Ci()jﬁ , (7.2a)



151

v

e and

an even-parity field called the “electric” part of C*

o * L : 1
Bas = =787 *Cppovutu” ie. Bij = =€ipgC*.

5 " (7.2b)

an odd-parity field known as the “magnetic” part of C* Vpg. Here the symbol * represents the (left)
Hodge dual, *Clor = %GWMC"AW, and for each field the second expression is written in 3+1
notation: the Latin (spatial) indexes are components in the foliation’s hypersurface, and the 0is a
component on the foliation’s unit time basis vector € = @. Our normalization for the Levi-Civita
tensor is that of MTW: in a right-handed orthonormal frame, €555 = +1, and the spatial Levi-
Civita tensor is defined by €,y = €ipg> with €355 = 1 in a right-handed orthonormal basis. Note
that Egs. (8.1) are a direct and intentional analogy to the decomposition of the Maxwell tensor of

electromagnetism F),,, into the familiar electric and magnetic fields E; and B; [31]:

1
Ei = F@ s Bz = — *Flf = §€iqupq. (73)

Note that our sign conventions differ from [31], where €155 = —1, and so Eq. (8.1b) has an additional
minus sign in order to maintain a strict analogy with the magnetic field B; of electromagnetism.

This results in a B;; defined with a different sign convention than, for example, in [32, 33].

7.2.2 Evolution of gz’j and Bij

The propagation equations for the Weyl tensor and its gravito-electromagnetic representation are the
Bianchi identities. We shall write them down and discuss them in three contexts: a general foliation
and coordinate system, the local-Lorentz frame of a freely falling observer, and the weak-gravity,

nearly Minkowski spacetimes of the current paper (Paper I in this series).

7.2.2.1 General Foliation and Coordinate System in the Language of Numerical Rel-

ativity

Because this paper is a foundation for using &;; and B;; to interpret the results of numerical-relativity
simulations, we shall write their evolution equations (the Bianchi identities) in a general coordinate
system of the type used in numerical relativity, and we shall discuss these equations’ mathematical
structure in the language of numerical relativity.

We denote by t a time coordinate that is constant on the foliation’s hypersurfaces, and by « and
ﬁ the foliation’s lapse and shift functions, so the orthogonal observers’ 4-velocity is @ = a‘l(a_; — 5)
The 3+1 split divides the Bianchi identities into evolution equations that govern the time evolution

of the spatial fields, and constraint equations that are obeyed by the fields on each time slice. The
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evolution equations are [34, 35]

8t5ij Zﬁﬂgij + a[DkBl(iej’)“l - 3gk(in)k + Kkkgij - 6ikl5kaln6jmn + QGkBl(iEjI;l] s (7 4)
atBij :EﬁBij + a[—Dkgl(l'Ejl)gl — 3Bk(1KJ)k + KkkBij - GikZBkalnGjmn - 2akgl(i6jl)€l} .

Here the extrinsic curvature, Lie derivative on a second rank tensor, and acceleration of the slicing

are respectively defined by

1
Kij = *%(5%%:;' = D;B; — D;Bi), (7.5)
Ls€i; = B*Dip&ij+ EwD;B* + &y DiB* (7.6)
ar, = Diplna. (7.7)

The derivative D; is the covariant derivative associated with the induced metric «;; on the slices.
The evolution system (7.4) is closed by an additional evolution equation for the 3-metric, which is
Eq. (7.5), and evolution equations for the extrinsic curvature and the 3-dimensional connection I‘fj,

which are

8tKij :EﬁKij — a[Bkaj - Ff]l—‘;ﬂ + 326'Jq + 32 lIlOéaj Ina — I‘fjﬁkq - 251] + KkkKij],

(7.8)
6tl“fj Z,Cﬁl_‘ic] — OéDkKij + KijDkOé — 2Kk(le)Ol + 20é€kl(i6j)l,
where we have defined
¢ = ln(ay™'/?), (7.9)
LgTy; = Blary; + 20,0, 8" — T,08" + 0,0, 8%, (7.10)

The above equations are symmetric hyperbolic if ¢ and 3? are specified functions of time and space.
The constraint equations on each slice are the definitions of &;; and B;j,
Ej = PRy + KF K — KKy,

(7.11)
Bi; = ¢;"* Dy Ky;,

from which the Einstein constraints follow from the condition that &;; and B;; are symmetric and

trace-free, and the definition of Ffj,

1
Il = 57“ (Oivie + O5vie — Orvij) - (7.12)
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The Bianchi identities imply derivative constraints on &;; and Bi;:

D& = By K'ie¥;

DiBij = —gikKilEklj . (7.13)

These last equations are automatically satisfied if Eqs. (7.11) are satisfied. Equations. (7.13) are
nonlinear, but otherwise they have the same structure as the constraints in simple electromagnetism.

Note also that the equations governing £ and B, Eqs (7.4) and (7.13) share another similarity
with the field equations of electromagnetism. Namely, just as the Maxwell equations are invariant

under the duality transformation
E—> B, B — —E, (7.14)
i.e. under a rotation in the complexified notation
E—iB - ¢™/*(E—iB), (7.15)

so the exact Maxwell-like Bianchi identities (7.4) are also invariant under the same duality transfor-
mation

E- B, B— -£. (7.16)

This duality in the structure of Eqgs. (7.4) and also (7.13) does not in general enable one to
construct one metric solution of Einstein’s equations from another, known solution. However, as we
shall see, we can utilize this duality in weakly gravitating systems to find the £ and B generated by

one set of source moments, given the expressions for £ and B for a dual set of moments.

7.2.2.2 Local-Lorentz Frame of a Freely Falling Observer

When one introduces the local-Lorentz frame of a freely falling observer in curved spacetime, one
necessarily specializes one’s foliation: (i) The local-Lorentz foliation’s space slices are flat at first
order in distance from the observer’s world line, so its extrinsic curvature K;; vanishes along the
observer’s world line. (ii) Because the observer is freely falling, her acceleration aj vanishes, which
means that successive hypersurfaces in the foliation are parallel to each other along the observer’s
world line.

These specializations, plus the vanishing shift 8; = 0 and unit lapse function @ = 1 of a local-
Lorentz frame, bring the constraint and evolution equations (7.13) and (7.4) into the following

Maxwell-like form:
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%—(sz)s = 0, %—i—(Vxﬁ')S:O. (7.17)

Here the superscript S means “take the symmetric part” and the remaining notation is the same as

in the flat-spacetime Maxwell equations (including changing from D to V for the spatial gradient).

7.2.2.3 Weak-Gravity, Nearly Minkowski Spacetimes

In this paper’s applications (Sections 7.5 and 7.6), we shall specialize to spacetimes and coordinate
systems that are weakly perturbed from Minkowski, and we shall linearize in the perturbations. In
this case, the Bianchi identities (7.4) take on precisely the same Maxwell-like form as in a local-
Lorentz frame in strongly curved spacetime, Egs. (7.17). To see that this is so, note that 8y, Kj,
ak, Ejk, and By, are all first-order perturbations and that « is one plus a first-order perturbation;
and linearize Eqs. (7.4) in these first-order quantities.

When the weak-gravity spacetime is also characterized by slow motion, so its source regions are
small compared to the wavelengths of its gravitational waves, the evolution equations control how
the near-zone £;;, and Bji, get transformed into gravitational-wave fields. For insight into this, we
specialize to harmonic gauge, in which the trace-reversed metric perturbation B;w is divergence-free,
O hy,, = 0.

Then in the near zone, £, and Bjj [which are divergence-free and curl-free by Eqgs. (7.17)] are

expressible in terms of the metric perturbation itself as
1 1
Eij = —§6i8jh00, Bij = §€i aqajhpo. (718)

Because hqo, at leading order in r/X (ratio of radius to reduced wavelength), contains only mass
multipole moments (Eq. (8.13a) of [36]), so also £;, contains only mass multipole moments. And
because hyo at leading order in r/X contains only current multipole moments, so also Bjj contains
only current multipole moments.

In the wave zone, by contrast, Eqs. (7.17) show that the locally plane waves are sustained by
mutual induction between £ and B, just like for electromagnetic waves, which means that these two
wave-zone fields must contain the same information. This is confirmed by the wave-zone expressions

for £, and Bjj, in terms of the metric perturbation,
1,5 1 b 9
&“ = —§8Ohij7 Bij = —§€i np(')ohqj . (719)

Both fields are expressed in terms of the same quantity, h;;. In addition, in the wave zone, £ and
B are related to each other through a /4 rotation of their polarization tensors (see Section 7.6.1

below). Correspondingly, we will see in Section 7.6 that, if a time-varying mass moment produces
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+ polarized radiation in the wave zone, then the current moment that is dual to it produces x
polarized radiation of the same magnitude.

In the transition zone, the inductive coupling between £ and B, embodied in Egs. (7.4), enables
these equations to act like a blender, mixing up the multipolar information that in the near zone is
stored separately in these two fields. After an infinite amount of inductive blending, we arrive at
future null infinity, Z*, where the mixing has been so thorough that £ and B contain precisely the
same information, though it is distributed differently among their tensor components [Egs. (7.19)].

The details of this transition-zone mixing, as embodied in Egs. (7.17), are in some sense the
essence of gravitational-wave generation. We shall explore those details visually in Section 7.6 by
tracking the tendex and vortex lines (introduced in Sec 9.1.2) that extend from the near zone,
through the transition zone, and into the far zone.

Finally, note that the duality of £ and B becomes especially convenient for slow-motion systems,
where we can relate £ and B to source multipole moments that appear in the weak-field near zone.
In particular: to obtain the £ and B generated by a specific current moment S;, we can simply
apply the duality transformation (7.16) to the £ and B for its dual moment, which is the mass
moment Z,;, but with one caveat: the differing normalizations used for mass moments and current

moments [36] enforce the duality relation

20 +1
s S -y, (7.20)

T
¢ 2

when making this duality transformation; note that both transformations, Eqgs. (7.16) and (7.20),

must be made at once to arrive at the correct expressions; see Section 7.6.

7.3 Physical Interpretations of &;; and B;;

It is rather well-known that in vacuum? the electric part of the Weyl tensor, &;;, describes tidal
gravitational accelerations: the relative acceleration of two freely falling particles with separation
vector &F is Aa’ = —&%;¢9. For this reason &;; is often called the tidal field, a name that we shall
adopt.

Not so well-known is the role of the magnetic part of the Weyl tensor B, in governing differential
frame dragging, i.e. the differential precession of inertial reference frames: in vacuum? a gyroscope
at the tip of the separation vector £*, as observed in the local-Lorentz frame of an observer at the

tail of £¥, precesses with angular velocity AQJ = B7,.£*. For this reason, we call Bjy, the frame-drag

2 In a non-vacuum region of spacetime, the local stress-energy tensor also contributes to tidal accelerations via its
algebraic relation to the Ricci tensor which in turn contributes to the Riemann tensor. In this case, £;; describes that
portion of the tidal acceleration due to the “free gravitational field,” i.e., the portion that is sourced away from the
location where the tidal acceleration is measured; and similarly for B;; and differential frame dragging. In this paper
we shall ignore this subtle point and focus on tidal forces and differential frame dragging in vacuum.
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We deduced this frame-drag role of Bjj; during our research and then searched in vain for any
reference to it in the literature, while writing our Physical Review Letter on vortexes and tendexes [1].
More recently we have learned that this role of Bj, was known to Frank Estabrook and Hugo
Wahlquist [29] 46 years ago and was rediscovered two years ago by Christoph Schmidt [30] (who
states it without proof).

For completeness, in this section we shall give a precise statement and proof of the frame-drag

role of B, and a corresponding precise statement of the tidal-acceleration role of &jy.

7.3.1 Physical Setup

Consider an event P in spacetime and an observer labeled A whose world line passes through P
and has 4-velocity « there; see Figure 7.1. Introduce an infinitesimally short 4-vector 5 at P, that
is orthogonal to @ and thus is seen as spatial by observer A. Denote by P’ the event at the tip of 5
Introduce a second observer B whose world line passes through P’ and is parallel there to the world
line of observer A, so if we denote B’s 4-velocity by the same symbol 4 as that of A and imagine
a vector field « that varies smoothly between the two world lines, then Vgﬁ’ =0 at P. Let 5 be
transported by observer A in such a way that it continues to reach from world line A to world line

B. Then the vectors @ and E satisfy the following three relations at P:
£-a=0, [@4,&=0, VAa=0. (7.21)

The first says that the separation vector is purely spatial at P in the reference frame of observer A;
the second says that E continues to reach between world lines A and B, so the quadrilateral formed
by « and 5 in Figure 7.1 is closed; the third says that the two observers’ world lines are parallel to

each other at P—i.e., these observers regard themselves as at rest with respect to each other.

7.3.2 Interpretation of &;; as the Tidal Field

Let the two observers A and B fall freely, i.e. move on geodesics. Then for this physical setup, the

equation of geodesic deviation states that [e.g. [14] Eq. (11.10)]
VaVa = —R(_, % €1) , (722)

where R is the Riemann tensor. In physical language, the left side is the acceleration Ad of observer
B at P’, as measured in the local-Lorentz frame of observer A at P. This relative acceleration

is purely spatial as seen by observer A, and the right side of Eq. (7.22) tells us that in spatial,
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Figure 7.1: Spacetime geometry for computing the precession of a gyroscope at one location P’,
relative to gyroscopic standards at a nearby location P.

3-dimensional vector and tensor notation (and in vacuum so Ragys = Cagys), it is given by
Add = —Rig 08" = —&9,68 ;e Aa=—-E(_,¢). (7.23)

Since (as is well-known) this relative acceleration produces the Earth’s tides when ;i is caused by
the moon and sun, &£ is called the tidal field, and Eq. (7.23) is known as the tidal-acceleration

equation.

7.3.3 Interpretation of B;; as the Frame-Drag Field

Next let the two observers A and B in Figure 7.1 be accelerated if they wish (with the same 4-

acceleration @ up to differences proportional to £), and give each of them a spatial unit vector & that

is tied to an inertial-guidance gyroscope, so the following relations are satisfied:

G-i=0, &-6=1, Vgi=G i, a

Vaii . (7.24)

The first of these says that & is purely spatial as seen in the observer’s reference frame; the second
says that ¢ has unit length; the third is the Fermi-Walker transport law for an inertial-guidance
gyroscope.

The local-frame-dragging-induced rate of change of & at P’ as measured using inertial-direction
standards at P, is VgV&r&'. We can write this as

NVad +R(_,3,1,€) , (7.25)

VaVz0 =V:Vzd+ [Vﬁ, Vg]& = VE
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where R is the Riemann tensor and we have used the fact that [@,£] = 0; cf. Egs. (11.8) and (11.9)
of MTW [14].

Evaluating the first term V V& using the Fermi-Walker transport law [the third of Eqs. (7.24)]
and the fact that the observers are momentarily at rest with respect to each other [the third of Egs.

(7.21)], we bring Eq. (7.25) into the form

—

VaVes = R(_,G6,@,8) + @V 7). (7.26)

We are only interested in the spatial part of this rate of change, so we can ignore the second term
on the right side of the equation. We switch to the three-dimensional viewpoint of the observer at
P (where our calculation is being done) and we denote the spatial part of Vng&' by o

o=

a 2 . . 2
[V vfﬂ} project orthogonal to @ (7.27)

Equation (7.26) tells us that this rate of change is not only orthogonal to @ (spatial) but also

orthogonal to o; it therefore can be written as a rotation
c=A0xo. (7.28)

Here AQ is the frame-dragging angular velocity at P’ as measured using inertial standards at P. We

can solve for this angular velocity AQ by crossing o into Eq. (7.28) and using o - o = 1:
AQ=0ox0. (7.29)
Inserting expression (7.26) for 6 and switching to index notation, we obtain
AQ; = €507 R* 5,07¢7 . (7.30)

Rewriting the Riemann tensor component in terms of the gravitomagnetic part of the Weyl tensor
(in vacuum), Rkp@q = —e”@psliv’sq7 performing some tensor manipulations, and noticing that because
AQ is crossed into o when computing the precession any piece of AS2 along o is irrelevant, we
obtain

AQ; = B8, e AQ =B(_,¢). (7.31)

Put in words: in vacuum the frame-dragging angular velocity at P’, as measured using inertial
directions at the adjacent event P, is obtained by inserting the vector & (which reaches from P to
P’) into one slot of the gravitomagnetic part of the Weyl tensor.

Because of the role of B;; in this equation of differential frame dragging, we call B;; the frame-drag
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field.

7.4 Our New Tools: Tendex and Vortex Lines; Their Ten-

dicities and Vorticities; Tendexes and Vortexes

7.4.1 Tendex Lines and Their Tendicities; Vortex Lines and Their Vor-
ticities

As symmetric, trace-free tensors, the tidal field £ and frame-drag field B can each be characterized

completely by their three principal axes (eigendirections) and their three associated eigenvalues.

If p is a (smoothly changing) unit eigenvector of the tidal field £ (or of the frame-drag field
B), then the integral curves of p can be regarded as “field lines” associated with € (or B). For &
we call these integral curves tidal tendex lines, or simply tendex lines®, because € tidally stretches
objects it encounters, and the Latin word tendere means “to stretch.” For B we call the integral
curves frame-drag vortex lines, or simply vortex lines, because B rotates gyroscopes, and the Latin
word vertere means “to rotate.” At each point P in space there are three orthogonal eigendirections
of € (and three of B), so through each point there passes three orthogonal tendex lines and three
orthogonal vortex lines.

Outside a spherically symmetric gravitating body with mass M, such as the Earth or a Schwarzschild

black hole, the tidal field, in a spherical polar orthonormal basis, has components

Erp = M , Eop=Epp = +% (7.32)
(e.g. Section 1.6 and Eq. (31.4) of [14]). The tidal-acceleration equation Aa/ = —&7,£F tells us
that this tidal field stretches objects radially and squeezes them equally strongly in all tangential
directions (see the people in Figure 7.2). Correspondingly, one eigenvector of £ is radial, and the
other two are tangential with degenerate eigenvalues. This means that one set of tendex lines is
radial (the red tendex lines in Figure 7.2), and any curve lying on a sphere around the body is a
tendex line. If we break the tangential degeneracy by picking our tangential unit eigenvectors to be
the basis vectors e; and e $ of a spherical polar coordinate system, then the tangential tendex lines
are those vectors’ integral curves — the blue curves in Figure 7.2.
When the spherical body is weakly gravitating and is set rotating slowly, then it acquires a
nonzero frame-drag field given by Eqs. (7.43) below. The corresponding vortex lines are shown in
Figure 7.3. (See Section 7.5.1 below for details.)

To any tendex (or vortex) line, with unit eigenvector p, there is associated an eigenvalue &,, =

3The word tendex was coined by David Nichols.
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Figure 7.2: Tendex lines outside a spherically symmetric, gravitating body. The lines are colored by
the sign of their tendicity: red lines have negative tendicity (they stretch a person oriented along
them); blue lines have positive tendicity (they squeeze).

Figure 7.3: Vortex lines outside a slowly spinning, spherically symmetric, gravitating body with
spin angular momentum S. The lines are colored by the sign of their vorticity: red lines have
negative vorticity (they produce a counterclockwise differential precession of gyroscopes); blue lines
have positive vorticity (clockwise differential precession).
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Ejkpj p* which is called the line’s tendicity (or B,y = Bjrp’ p¥ which is called the line’s vorticity). The
physical meaning of this tendicity (or vorticity) can be read off the tidal-acceleration equation (7.23)
[or the equation of differential frame dragging (7.31)]. Specifically, if a person’s body (with length
?) is oriented along a tidal tendex line (Figure 7.2), she feels a head-to-foot stretching acceleration
Aa = —&,,L. If the line’s tendicity &, is negative (red tendex line), her body gets stretched; if the
tendicity is positive (blue tendex line), she gets compressed.

If her body is oriented along a vortex line (Figure 7.3), then a gyroscope at her feet precesses
around the vortex line with an angular speed, relative to inertial frames at her head, given by
AQ = Bp,l. If the line’s vorticity is negative (red vortex lines in Figure 7.3), then the gyroscope
at her feet precesses counterclockwise relative to inertial frames at her head, and (because By, is
unchanged when one reverses the direction p), a gyroscope at her head precesses counterclockwise
relative to inertial frames at her feet. Correspondingly, we call the (red) vortex line a counterclockwise
vortex line. If the line’s vorticity is positive (blue vortex lines in Figure 7.3), the precessions are
clockwise and the vortex line is said to be clockwise.

For any spacetime, the tendex lines color coded by their tendicities (e.g. Figure 7.2) and the
vortex lines color coded by their vorticities (e.g. Figure 7.3) depict visually all details of the Weyl
curvature tensor.

Since £ and B are trace-free, at any point in space the sum of the three tendex lines’ tendicities
vanishes, and the sum of the three vorticities vanishes. Because £ and B are also symmetric, each
is characterized by five numbers at any point in space. The direction of one tendex line fixes two
numbers and its tendicity fixes a third, leaving only two numbers to be specified. The direction
of a second tendex line, in the plane orthogonal to the first, fixes a fourth number and the second
line’s tendicity fixes the fifth and final number — leaving the last line’s direction and tendicity fully

determined. Similarly, this is the case for vortex lines and their vorticities.

7.4.2 Vortexes and Tendexes

We give the name frame-drag vortez, or simply vortez, to a bundle of vortex lines with large vorticity.
In Figure 7.3, the red vortex lines near the north polar axis, which are enclosed by blue circles,
constitute a negative-vorticity (counterclockwise) vortex; the blue vortex lines near the south polar
axis, which are enclosed by red circles, constitute a positive-vorticity (clockwise) vortex. These two
vortexes emerge from the north and south poles of the spinning point particle.

Similarly, we give the name tidal tendex, or simply tendex, to a strong concentration of tendex

lines. We shall meet our first example at the end of Section 7.5.4 below.
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7.5 Weak-gravity, Stationary Systems

7.5.1 One Stationary, Weakly Gravitating, Spinning Body

When gravity is weak and slowly changing (e.g., outside a slowly precessing, spinning, weakly grav-

itating body such as the Earth), one can write the spacetime metric in the form

ds® = —a?dt” + §;,(da’ + B7dt)(dx® + B¥dt) (7.33a)

(e.g. Section 23.9.3 of [37]; or Chap. 10 of MTW [14] with the spatial coordinates changed slightly).

a2—(12M) , ,B:fi—fxn, (7.33b)

are the squared lapse function and the shift function, M is the body’s mass, S is its spin angular

Here

momentum, and
r=+z2+y?+22, n=e; (7.33¢)

2

are the radius and the unit radial vector, with {a!, 22, 23} = {x,¥, 2}. In spherical polar coordinates

(associated with the Cartesian coordinates {z,y, z} in the usual way), the metric (7.33a) becomes

ds? = —a?dt* + dr? + r2d6* + r? sin® 0(d¢ — wdt)? |

w = 28/r3. (7.33d)

It is conventional to rewrite general relativity, in this weak-field, slow-motion situation, as a field
theory in flat spacetime. In this language, the geodesic equation for a test particle takes the form
IRE

ﬁ:g—FUXH, (734)

which resembles the Lorentz force law in electromagnetic theory; see, e.g., [38] and references therein,

especially [39]. Here v = dx/dt is the particle’s velocity [Cartesian components (dx/dt, dy/dt, dz/dt)]

and
1 9 M
g = —§V0é :—ﬁn,
S —3(8-
H = V><5:2|:3(T3n)n:| (7.35)

are the body’s gravitoelectric field (same as Newtonian gravitational acceleration) and its gravito-
magnetic field. Note that these fields have the same monopole and dipole structures as the electric
and magnetic fields of a spinning, charged particle.

In this paper we shall adopt an alternative to this “gravito-electromagnetic” viewpoint. For the
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gravitational influence of the mass M, we shall return to the Newtonian viewpoint of a gravitational
acceleration g and its gradient, the tidal gravitational field (the electric part of the Weyl tensor)
L,

E = —Vg y i.e., 51']' = —0ij = '1)71']' = 504 i - (736)

Here the comma denotes partial derivative (actually, the gradient in our Cartesian coordinate system)
and ® is the Newtonian gravitational potential, which is related to the lapse function by a? = 1+2®
in the Newtonian limit. The components of this tidal field in the spherical coordinates’ orthonormal
basis e = 0/0r, e; = (1/r)0/90, e; = (1/rsin0)0/0¢ are easily seen to be

2M M

& =—"5 " oo =%5 =173

= (7.37)

[Egs. (7.32) above], which are symmetric and trace-free as expected. The field lines associated with
this tidal field are easily seen to be those depicted in Figure 7.2 above.

For the effects of the spin angular momentum, we shall think of the spinning body as “dragging
space into motion” with a velocity and angular velocity (relative to our Cartesian coordinates) given
by

d@space 28 ddspace 25

dt Evspacczfﬁ:rigxna dt :w:ﬁ

(7.38)

[cf. the d;(da? + B7dt)(dz® + B¥dt) term in the metric (7.33a) and the (d¢ — wdt)? term in the
metric (7.33d)]. Just as the vorticity V x v of a nonrelativistic fluid with velocity field v(x) is twice
the angular velocity €2 of rotation of a fluid element relative to an inertial reference frame, so the
vorticity associated with the “space motion,” V X vgpace, turns out to be twice the vectorial angular
velocity of an inertial-guidance gyroscope relative to inertial reference frames far from the body (“at
infinity”) — or equivalently, relative to our spatial Cartesian coordinates {z,y, z}, which are locked
to inertial frames at infinity. In formulas: Let o be a unit vector along the spin angular momentum

vector of an inertial-guidance gyroscope. Viewed as a vector in our Cartesian basis, it precesses

do

E = Qfd X o, (739)

with a frame-dragging vectorial angular velocity equal to half the vorticity of space viewed as a fluid:

Qg = %V X Uspace = 71V X ,6 = 7%H = - [M} ; (740)

2 r3

see e.g. Eq. (25.14) of [37], or Eq. (40.37) of [14]. This dipolar frame-dragging angular velocity is
shown in Figure 7.4.
For dynamical black holes and other strong-gravity, dynamical situations, it is not possible to

measure gyroscopic precession with respect to inertial frames at infinity, since there is no unambigu-
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Figure 7.4: For a weakly gravitating, slowly rotating body with spin angular momentum S, the
dipolar frame-dragging angular velocity relative to inertial frames at infinity, Q¢. The arrows are
all drawn with the same length rather than proportional to the magnitude of €2¢.

ous way to compare vectors at widely separated events.*

On the other hand, we can, in general, measure the precession of inertial-guidance gyroscopes at
one event, with respect to inertial frames at a neighboring event — i.e., we can measure differential
frame dragging as embodied in the frame-drag field (magnetic part of the Weyl tensor) B;;. In our
weak-gravity, slow-motion situation, this frame-drag field is equal to the gradient of Q¢ (Eq. (5.45b)
of [42]):

B=VQyy, ie. Bk = Qajk - (7.41)

For our weakly gravitating, spinning body, Q¢ has the dipolar form (7.40), so the frame-drag
field is

3

Bjr = —

rd

251y + (S - 1) (85 — 5nyna)] (7.42)

Here the parentheses on the subscripts indicate symmetrization. In spherical polar coordinates, the

components of this frame-drag field are

_ _650059

3S5sin 6
b 4 T4 -

B = —2399 =-2B -

, B.; = B;; = (7.43)

For this (and any other axially symmetric) frame-drag field, one of the three sets of vortex lines

4There is an exception: One can introduce additional geometric structure, e.g, an auxiliary flat spacetime, that
provides a way of carrying a reference frame inward from infinity to all other locations and thereby compare vectors
at different events. Some of us have used this approach to localize linear momentum in the gravitational field around
black holes [40, 41]. However, the auxiliary structure has great arbitrariness, and for the vortex and tendex concepts
of this paper there is no need for such auxiliary structure, so we eschew it.
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is along the ¢ direction (i.e. the S x @ direction)—i.e., it is azial—and the other two are poloidal.
By computing the eigenvectors of the tensor (7.42) and then drawing the curves to which they are
tangent, one can show that the body’s vortex lines have the forms shown in Figure 7.3.

Notice that the poloidal, negative-vorticity vortex lines (the poloidal red curves in Figure 7.3)
all emerge from the north polar region of the spinning body, encircle the body, and return back to
the north polar region.

Why do these have negative rather than positive vorticity? Choose the eigendirection p at
the body’s north pole to point away from the body. The body drags inertial frames in a right-
handed manner (counterclockwise as seen looking down on the north pole), and the frame dragging
is stronger at the tail of p (nearer the body) than at the tip, so the frame-dragging angular velocity
decreases from tail to tip, which means it is more left-handed (clockwise) at the tip than the tail; it
has negative vorticity.

The poloidal, positive-vorticity vortex lines (the poloidal blue curves in Figure 7.3) all emerge
from the body’s south polar region, swing around the body, and return to the south polar region.

The azimuthal vortex lines have negative vorticity above the hole’s equatorial plane (blue az-

imuthal circles) and positive vorticity below the hole’s equatorial plane (red azimuthal circles).

7.5.2 Two Stationary, Weakly Gravitating, Spinning Point Particles with
Opposite Spins

Consider, next, two weakly gravitating, spinning point particles with opposite spins, sitting side by

side. Place the particles (named A and B) on the z axis, at locations {za,ya,2z4} = {+a,0,0},

{zp,yB,28} = {—a,0,0} and give them vectorial spins S4 = Se,, Sp = —Se,. Then the frame-

drag angular velocity relative to inertial frames at infinity is

SA — S(SA -nA)nA _ SB — 3(53 . nB)'n,A
3 )

(7.44)
B

where r4 = |& — x4| and rp = |x — x| are the distances to the particles and ny = (x — x4)/r4a
and ng = (x — xp)/rp are unit vectors pointing from the particles’ locations to the field point; cf.
Eq. (7.40). This vector field is plotted in Figure 7.5(a). It has just the form one might expect from
the one-spin field of Figure 7.4.

For these two spinning particles, the frame-drag field (gradient of Eq. (7.44)] is

. ) , 3 . ) ,
255 + (S na) (@ = 5ulnk)]| + =5 2580} + (S - n) (7" — Sy

3
1 rgl

By =
J A

(7.45)

[cf. Eq. (7.42)], where we have moved the vector and tensor indexes up for simplicity of notation.
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(a)

Figure 7.5: For two stationary point particles sitting side-by-side with their spins in opposite direc-
tions (thick black arrows), two types of streamlines in the plane of reflection symmetry formed by
the particles’ spins and their separation vector. (a) The frame-dragging angular velocity Qg and its
streamlines, with the arrows all drawn at the same length rather than proportional to the magnitude
of Q4. (b): The two sets of vortex lines of the frame-drag field B. The negative-vorticity vortex
lines are solid and colored red, and the positive-vorticity ones are dashed and blue. In this figure,
as in preceding figures, the colors are not weighted by the lines’ vorticities, but only by the signs of
the vorticities.

(In our Cartesian basis, there is no difference between up and down indexes.)

The best two-dimensional surface on which to visualize vortex lines of this B is the z-z plane (the
plane formed by the particles’ spins and their separation vector). The system is reflection symmetric
through this plane. On this plane, one of the principal directions of B is orthogonal to it (in the y
direction); the other two lie in the plane and are tangent to the in-plane vortex lines. By computing
the eigendirections of B [i.e., of the tensor (7.45)] and mapping out their tangent vortex lines, and
checking the sign of B, along their tangent directions p, we obtain Figure 7.5.

Note that, as for a single spinning particle (Figure 7.3) , so also here for two spins, the negative-
vorticity vortex lines (solid red curves) emerge from the tips of the spins and the positive-vorticity
vortex lines (dashed blue curves) emerge from their tails. For a single spin, the negative-vorticity
vortex lines emerge from the tip, travel around the body, and return to the same tip. Here, the lines
close to each spinning body leave and enter the same body’s tip, but the majority emerge from one
body’s tip, travel around that body and enter the other body’s tip. Similarly the positive-vorticity
vortex lines (dashed and blue) emerge from one body’s tail, travel around that body, and enter the
other body’s tail (aside from the lines near each body that exit and return to the same body’s tail).

The collection of solid red vortex lines near each arrow tip in Figure 7.5(b) constitutes a negative-

vorticity frame-drag vortex, and the collection of dashed blue vortex lines near each arrow tail is a
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Figure 7.6: Current-quadrupolar streamlines associated with the two stationary spinning particles
of Figure 7.5, for which the current-quadrupole moment has nonzero components S, = S., = Sa.
(a) The frame-dragging angular velocity €2¢q and its streamlines, and (b) the two sets of vortex lines,
in the z-z plane. Figure (b) also describes the tendex lines for a static mass-quadrupolar particle
whose only nonzero quadrupole-moment components are Z,, = Z,,.

positive-vorticity vortex.

7.5.3 The Two Spinning Particles Viewed from Afar: Stationary, Quadrupo-
lar Frame-Drag Field

When viewed from afar, the two spinning bodies produce a current-quadrupole gravitational field

with quadrupole moment (e.g. Eq. (5.28b) of [36])

STF
. 2
Spq = (/Jpqugx) = (Spaq + (_Sp)(_aq))STF = Spag + Sqap — g(S +@)0pg - (7.46)

Here j, = Sp0(x — a) — Spdé(x + a) is the angular momentum density. Since the only nonzero
components of S and a are S, = S and a, = a, the only nonzero components of the current-
quadrupole moment are

O — (7.47)

The frame-drag-induced velocity of space (negative of the shift function) for this current quadrupole,

and the frame-drag angular velocity and frame-drag tensor field are

nxS-n 1
Vspace = —,@ =, Qfd = §V X Uspace » B = VQfd s (7.48)

r3
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[e.g. Eq. (10.6b) of [36]; also Egs. (7.40) and (7.41) above]. Inserting Eq. (7.47) for the quadrupole
moment into Egs. (7.48), and plotting Q¢ and the vortex lines of B in the -z plane, we obtain the
graphs shown in Figure 7.6.

Notice that the current-quadrupolar frame-drag angular velocity in Figure 7.6(a) is, indeed, the
same as that for two oppositely directed spins [Figure 7.5(a)] in the limit that the spins’ separation
goes to zero—i.e., as seen from afar—and the current-quadrupolar vortex lines of the frame-drag
tensor field [Figure 7.6(b)] is the vanishing-separation limit of that for the two oppositely directed
spins (Figure 7.5Db).

Here, as for finitely separated spinning particles, there are two red frame-drag vortexes, one
emerging from the origin in the upper right direction, the other in the lower-left direction; and
similarly, there are two blue frame-drag vortexes, one emerging in the upper left direction and the

other in the lower right direction.

7.5.4 Static, Quadrupolar Tidal Field and its Tendex Lines and Tendexes

For an idealized static particle with time-independent mass-quadrupole moment Z,, and all other
moments (including the mass) vanishing, the squared lapse function is a? = 14 2® = 1 — (Z,,/7) pq
[36], where ® is the Newtonian gravitational potential. Therefore, the particle’s tidal field £, = @ i
[Eq. (7.40)] is

1 /7
Eip = -3 <M> , (7.49)
"/ pajk

For comparison, for a particle with time-independent current-quadrupole moment S,,, the shift

function is 8; = (—4/3)€jpq(Spk/T) kg, which implies that the frame-drag field is [Eqgs. (7.48)]

2 /S
"/ pajk

Notice that, once the differing normalization conventions (7.20) are accounted for, Eqs. (7.49)
and (7.50) are the same, as required by the duality relations (7.16) and (7.20). This means that,
for a static current quadrupole whose only nonzero components are Z,, = Z,,, the tendex lines
will have precisely the same forms as the vortex lines of the static current quadrupole (7.47); i.e.,
they will have the forms shown in Figure 7.6b. In this case there are two negative-tendicity (solid
red) tidal tendexes, one emerging from the origin in the upper right direction, and the other in the
lower-left direction; and there are two positive-tendicity (dashed blue) tidal tendexes, one emerging

in the upper left direction and the other in the lower right direction.



169

7.6 Gravitational Waves and their Generation

We turn now to dynamical situations, which we describe using linearized gravity. We first discuss
the tendex and vortex structure of plane gravitational waves. We then examine wave generation by

time-varying multipolar fields, and the accompanying tendex and vortex structures of these systems.

7.6.1 Plane Gravitational Wave

In this section, we will describe the features of £ and B for plane gravitational waves, and connect
our observations to the linearized-gravity and Newman-Penrose (NP) formalisms. In Appendix 7.A
we review the Newman-Penrose formalism and its connection to the spatial tensors £ and B.

Consider gravitational-wave propagation in an asymptotically flat spacetime, in transverse-
traceless (TT) gauge. Near future null infinity, Z+, we can linearize around a Minkowski background
and obtain

1 1
(c/'ij = —iagh” 5 Bij = —§eipqnp8§hqj . (751)

It is convenient to expand these expressions in terms of the two gravitational-wave polarization

+

tensors, e, and e

J 57
Lo o e o Ly o v
Eij = —§(h+eij + hxeij), Bi; = —§(h+eij — hxeij), (7.52)

where ejg- and eixj are symmetric, trace-free, and orthogonal to the waves’ propagation direction.
Letting the unit-norm vector e; denote the direction of propagation of the gravitational wave, then
one can expand the polarization tensors in terms of the remaining two vectors of an orthonormal

triad, e; and e3, as

e = e;Re; —ez3Re;, (7.53)

ex = e;Qezteze;. (7.54)

Consider first a + polarized wave. We have that

1

£=—-
2

. 1 . .
hiet = 5[(—h+)eﬁ ®e;+hie;®egl, (7.55)

so we see that Th /2 are the two eigenvalues of £ (the two tendicities), and e; and e; are the two

corresponding eigenvectors. Now, define a second basis locally rotated at each point by 7/4 = 45°,

™
[N

cost sinZ e;
_ 4 4 21 (7.56)

m=x s A
— Sl 1 COS 4 €3

™
[t
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Figure 7.7: The tendex lines (left) and vortex lines (right) of a plane gravitational wave propagating
in the z direction (out of the picture). The tendex lines are lines of constant = and y, and the vortex
lines are rotated by /4 (lines of constant = £ y). The blue (dashed) curves correspond to positive
tendicity and vorticity (squeezing and clockwise differential precessing, respectively) and the red
(solid) curves denote negative tendicity and vorticity (stretching and counterclockwise precessing).
The tendicity (vorticity) is constant along a tendex line (vortex line), and the tendicity (vorticity)
of a red line is equal in magnitude but opposite in sign to that of a blue (dashed) line.

Then, a simple calculation shows that
ex =€ Ré;—e;®e;, (7.57)

and one can immediately see that B is diagonal in this new basis

B=—lhie =i 08 - héoe). (7.58)
The eigenvalues of B (the vorticities), like those of £ (the tendicities), are Fhy /2, but B’s eigen-
vectors, €; and €3, are locally rotated by m/4 compared to those of €. Correspondingly, the vortex
lines of h4 must be locally rotated by 7/4 with respect to the tendex lines.

The local rotation of the tendex and vortex lines is most transparent for a plane gravitational
wave. In Figure 7.7, we show the tendex and vortex lines of a plane gravitational wave propagating
out of the page (i.e. e; = e; is the propagation direction). Because the eigenvectors of £ are e; = e;
and e; = ey, the tendex lines are the lines of constant x and y, illustrated by red (solid) lines and blue
(dashed) lines, respectively, on the left of Figure 7.7. Similarly, the vortex lines are lines of constant
x £y, again drawn as blue (dashed) lines and red (solid) lines, respectively. The tendicity (vorticity)
has constant magnitude along the lines, but the two sets of tendex (vortex) lines have opposite
sign; consequently, the tidal (frame-drag) field produces a stretching (counterclockwise differential
precession) along the solid red direction and a squeezing (clockwise differential precession) of the
same magnitude along the dashed blue direction.

More generally, gravitational waves will contain both 4+ and x polarizations, and to study their

vortex and tendex lines, it will be useful to express the electric and magnetic tensors in the spatial
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orthonormal basis (ej, es,e3). They can be written conveniently as matrices:

0 0 0 0 0 0
1 " - 1 - -
gdi) = 5 0 _h+ —hy ) B&B = 5 0 hy —h+ . (759)
0| —hx hy 0| —hy —hy

It is useful to introduce an associated Newman-Penrose null tetrad consisting of two real null vectors,

—

[ (along the waves’ propagation direction) and 7, and a conjugate pair of complex null vectors i

and m* given by

- 1 .., . 1 .., . 1 . ok 1 . R
l:ﬁ(eo—i—ei), n:ﬁ(eo—ei), m:E(eQ—i—zeg), m :ﬁ(eé—zeg) (7.60)

[Egs. (7.74) of Appendix 7.A]. For plane waves on a Minkowski background, the NP curvature scalar

that characterizes the radiation is
Uy = Clpentm ™' nPm* = —ﬁ+ + zhx , (7.61)

so we can compactly rewrite Egs. (7.59) as

(7.62)

This expression holds for any plane gravitational wave propagating in the ¢&; direction.

For any outgoing gravitational wave in an asymptotically flat space, as one approaches asymptotic
null infinity the general expression (7.76) for £,; +iB3,; reduces to expression (7.62), because all the
curvature scalars except Wy vanish due to the peeling property of the Weyl scalars near null infinity.
Further discussion of the tidal and frame-drag fields of radiation near null infinity and their tendex
and vortex lines is given in [28].

It is helpful to draw some simple analogies between gravitational and electromagnetic plane
waves. For a generic mixture of + and x polarizations, the magnitudes of the nonvanishing eigen-

values of both £ and B are simply

1 m—— 1

This mirrors plane waves in electromagnetism, where |E| = | B] is equal to the sum in quadrature of
the magnitudes of the two polarizations. The absent longitudinal components in an electromagnetic

plane wave correspond to the vanishing of the eigenvalues for the eigenvectors of £ and B along
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Figure 7.8: Tendex lines (left) and vortex lines (right) for the gravitational waves that would arise
from the merger of equal-mass black holes falling together along the z axis. The positive tendicity
and vorticity lines are shown in blue (dashed) and the negative lines are depicted in red (solid).
Each line’s intensity is proportional to its tendicity (or vorticity), which varies over the sphere as
the dominant spin-weighted spherical harmonic, _2Y¥5 (6, ¢) sin?#. Dark red and blue near the
equator correspond to large-magnitude tendicity and vorticity, and light nearly white colors at the
poles indicate that the tendicity and vorticity are small there.

the propagation direction. The orthogonality of the vectorial electromagnetic field strengths E1B
becomes the /4 rotation between the meshes (Figure 7.7) formed by the two transverse eigenvectors

of the tensorial quantities £ and B.

7.6.2 Gravitational Waves from a Head-On Collision of Two Black Holes

As an example of the usefulness of this approach, we calculate the tendex and vortex lines at large
radii for gravitational waves emitted by the head-on collision of two equal-mass nonspinning black
holes. If the holes move along the z axis and we use as our spatial triad the unit vectors of spherical
polar coordinates, (ej,e;,€3) = (e, €;5,€5) = (0r,7710p, (rsin@)~19,), and choose our null tetrad
in the usual way (7.60), then we can apply the results described by Fiske et al. [43], namely, that
R[P4] is axisymmetric [and, when decomposed into spin-weighted spherical harmonics, is dominated
by the [ = 2, m = 0 harmonic, _2Y3 (6, ¢)] and that [P4] = 0. Then the electric and magnetic

parts of the Weyl tensor are given by

0 0 0 0 0 0
1 1
(‘:&B = 5 0 §R(\Ij4) 0 9 Bdi) = 5 0 0 %(\114) s (764)
0 0  —R(Vq) 0|R(Ty) 0

and the eigenvalues of both £ and B are £R(¥,)/2. The eigenvectors of £ are the unit vectors e;
and e 3 and those of B are e; &= e 5 Thus, the radiation is purely + polarized in this basis. The
tendex lines are the lines of constant 6 and ¢ on a sphere, and the vortex lines are rotated relative
to the tendex lines by /4 = 45°.

We show these lines in Figure 7.8: the tendex lines on the left, and the vortex lines on the right.
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As in Figure 7.7, the red (solid) lines correspond to negative tendicity and vorticity, and the blue
(dashed) lines denote positive values. The intensity of each line is proportional to the magnitude
of its tendicity (or vorticity), which varies over the sphere as Y5 (0, ¢) o sin?# (the dominant
spherical harmonic). Correspondingly, the dark blue and red regions near the equator represent
strong tendicity and vorticity, whereas the light off-white colors near the poles indicate that the
tendicity and vorticity are small there.

We remark in passing that the duality of £ and B implies that, if there were a source of gravita-
tional waves which had a ¥4 that is purely imaginary and equal to the iR[¥,] for our colliding black
holes, then those waves’ vortex lines would be the same as the tendex lines of Figure 7.8, and the
tendex lines would be the same as the vortex lines of the same figure (but with the sign of the lines’
vorticity flipped). One can see this because (i) Eq. (7.61) shows we would have a pure x polarized
wave, and (ii) when we apply the rotation of basis (7.56) to (7.62) under the condition of R(¥,) =0
we get once again the matrices (7.64), but with (€5, €;) as basis vectors and with all instances of
R(W4) replaced by I(¥4). This duality does not address, however, how to construct a source with

a purely imaginary Wy.

7.6.3 Wave Generation by a Time-Varying Current Quadrupole

A dynamical current-quadrupole moment Sp,(t) generates a metric perturbation described by the
Spq(t — r)/r terms in Eqgs. (8.13) of [36]. It is straightforward to show that the corresponding
frame-drag field is

2 S (2)8 m (2)8 7 (4)81"
Bij = 3|~ (pq> + €ipq ( £ ) €imn +2 7;0( - (J> . (7'65)
3 ") paij r an r Ao r

2)

Here Spq is to be regarded as a function of retarded time, ¢t —r, and the prefixes ) and ) mean two
time derivatives and four time derivatives. This equation shows explicitly how B;; in the near zone
transitions into B;; in the wave zone — or equivalently, how rotating (or otherwise time-changing)
frame-drag vortexes in the near zone generate gravitational waves.

This transition from near zone to far zone can also be described by the linear approximation
to the Maxwell-like equations for the frame-drag field B and the tidal field £, Eqgs. (7.17). These
equations govern the manner by which the current-quadrupole near-zone frame-drag field (7.50)

acquires an accompanying tidal field as it reaches outward into and through the transition zone, to

the wave zone. That accompanying tidal field is most easily deduced from the S,q(t —r)/r terms in
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the metric perturbation, Egs. (8.13) of [36]. The result is:

4 s @S,
Eij = 3ot |~ (Tp’“) + —T”” : (7.66)
kg q

In the near zone, the current quadrupole’s tidal field [first term of (7.66)] behaves differently
from its frame-drag field [first term of (7.65)]: it has one additional time derivative and one fewer
space derivative. As a result, the tidal field is smaller than the frame-drag field in the near zone by
a factor of r/X, where X is the reduced wavelength of the emitted gravitational waves.

As one moves outward through the near zone to the transition zone, where r ~ X, the tidal
field increases in magnitude to become the same strength as the frame-drag field. The frame-drag
and tidal fields behave this way, because it is the near-zone vortexes that generate the gravitational
waves, as discussed above.

In the wave zone, the general current-quadrupole (outgoing-wave) frame-drag field (7.65) reduces
to

4

By = |8t - )

ab — 3r

}TT (7.67)

Here the indexes are confined to transverse directions (the surface of a sphere of constant r) in the
orthonormal basis e;, e & and “TT” means “take the transverse, traceless part”. From the third of
the Maxwell-like equations (7.17), or equally well from the general current-quadrupole tidal field,
Eq. (7.66), we infer the wave-zone tidal field:

4 W TT
Eab = 3, €@ Spelt =1 (7.68)
where €,; is the 2-dimensional Levi-Civita tensor on the sphere. Since &£,; = R, 555 = —%(z)h;fg ,

where h:;r is the transverse, traceless gravitational-wave field, our wave-zone tidal distortion (7.68)
agrees with the standard result for the wave-zone current-quadrupole gravitational-wave field (Eq.

(4.8) of [36]).

7.6.4 Rotating Current Quadrupole

In this section, we will discuss the vortex and tendex lines of a rotating current quadrupole.

A large rotating-current-quadrupole moment arises during the merger and ringdown of the
extreme-kick configuration of a binary black hole (a quasicircular binary made of identical black
holes, whose spins are antialigned and lie in the orbital plane). During the merger, the four vortexes
associated with the initial holes’ spins get deposited onto the merged horizon’s equator, and they
then rotate around the final Kerr hole’s spin axis at the same rate as their separation vector rotates,

generating a large, rotating-current-quadrupole moment (paper III in this series).
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Figure 7.9: For a rotating current quadrupole in linearized theory, two families of vortex lines in
the plane of reflection symmetry (the z-y plane). The red (solid) curves are lines with negative
vorticity, and the blue (dashed) curves are lines of positive vorticity. The color intensity of the
curves represents the strength of the vorticity, but rescaled by (kr)®/[1 + (kr)*] (with k the wave
number) to remove the vorticity’s radial decay. (a) We see the quadrupolar near-zone pattern and the
transition into the induction zone. In the induction zone, the pattern carries four “triradius” singular
points [44] in each family of curves, necessitated for the transition from the static quadrupole pattern
to the spiraling radiation pattern. This same figure also describes the tendex lines of a rotating mass
quadrupole (see the end of Section 7.6.6). (b) In the wave zone, the lines generically collect into
spirals, which form the boundaries of vortexes (regions of concentrated vorticity).

As a simple linearized-gravity model of this late time behavior, imagine that at an initial time
t = 0, the two vortex-generating spins, of magnitude S, are separated by a distance a along the
x axis and are pointing in the £y direction — i.e. they have the same configuration as the static
current quadrupole discussed in Section 7.5.3 above. Then at ¢t = 0, the spins’ current-quadrupole
moment has as its nonzero components Sy, = Sy = Sa [Eq. (7.47) with the spin axes changed
from z to y]. As time passes, the spins’ separation vector and the spins’ directions rotate at the
same angular velocity w so the configuration rotates rigidly. Then it is not hard to show that the

current-quadrupole moment evolves as

Sey = Sy = Sacos(2wt),

Sex = —S8yy = —Sasin(2wt) . (7.69)

It is straightforward to calculate the frame-drag field produced by this quadrupole moment using
Eq. (7.65), and to then compute the vortex lines and their vorticities.
The explicit expressions for these lines are somewhat lengthy, and not particularly instructive;

but the shapes of the vortex lines and the values of their vorticities are quite interesting.
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7.6.4.1 Vortex and Tendex Lines in the Plane of Reflection Symmetry

There are two sets of vortex lines that lie in the -y plane (the plane of reflection symmetry) and one
set that passes orthogonally through this plane. We show the in-plane vortex lines in Figure 7.9a
and 7.9b. The two panels depict the negative-vorticity vortex lines by red (solid) curves and the
positive-vorticity lines by blue (dashed) curves. The darkness of the lines is proportional to the
vorticity; dark red (blue) indicates strong negative (positive) vorticity, and light red (blue) indicates
weaker vorticity. To remove the effects of the radial dependence in the coloring, we have scaled the
vorticity by (kr)5/[1+ (kr)%], where k = 1/A = 2w is the wave number of the radiation. Figure 7.9a
shows the region of the near zone that is difficult to see in Figure 7.9b, an equivalent figure that
spans a larger region of the z-y plane. As one can see from the figures, the two sets of lines have
the same pattern, but are rotated with respect to each other by 7/2 = 90°.

In the near zone (inner region of Figure 7.9a), the vortex-line pattern is the same as for the
static current quadrupole of Figure 7.6b. At the transition to the wave zone, the vortex lines fail to
curve back into the central region and instead bend outward, joining a wave-zone spiral pattern.

That spiral pattern consists of four vortexes (regions of concentrated vorticity) that spiral out-
ward and backward as the quadrupole rotates. These four regions of alternating positive and negative
vorticity are bounded by tight clusters of vortex lines, just outside of which the sign of the dominant
vorticity changes.

This same rotating vortex structure occurs in the case of an [ = 2, m = 2, odd-parity (current-
quadrupolar) perturbation of a Schwarzschild black hole (Paper II in this series). There the horizon
vorticity pattern takes the place of the current quadrupole.

In Figure 7.10 we indicate the structure of the tendex lines on the equatorial plane. Because
the symmetry properties of the system imply different constraints on the tendex field than on the
vortex field, some explanation is needed. The plane in which this and the previous two figures are
drawn is a plane of reflection symmetry for the problem. However, because the source is a pure
current quadrupole, it must be antisymmetric under reflection across this plane (as such a reflection
is a parity inversion). The vorticity, which itself has an odd-parity relationship with its source, is
symmetric under this reflection, constraining the vortex lines to be either tangent or orthogonal to
the plane, as noted above. The tendicity is antisymmetric under this reflection, so one family of
lines can be tangent to the plane, so long as it has zero tendicity, and two other families of lines
must cross the plane at equal and opposite inclinations, with equal and opposite tendicities, such
that they are exchanged under the reflection. The diagram in Figure 7.10 shows the single family
of tendex lines tangent to the symmetry plane. As these curves have exactly zero tendicity, they
are physically relevant only in that they denote the orientation of the other two families of tendex
lines, which are not tangent to the plane, but whose projection onto the plane must be orthogonal

to the curves shown (because all three curves are mutually orthogonal). The shading of the lines in
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Figure 7.10: Tendex lines in the equatorial plane for a rotating current quadrupole in linearized
theory. The curves shown are lines of identically zero tendicity, enforced by symmetry. The lines
are shaded by the absolute value of the tendicity of the other two tendex lines that cross the lines
shown, but are not tangent to the plane, and have equal and opposite tendicities.

Figure 7.10 does not represent the tendicity of the lines drawn (which is identically zero), but rather
of the other two tendex lines, which intersect the lines drawn with mutually equal and opposite
tendicity. Again, this shading is rescaled by (kr)°/[1 + (kr)*]. Though it is not apparent to the

4 near the singular point (origin), rather than r®

eye, the strength of the tendicity grows only as
as for the vorticity. As argued early in Section 7.6.3, this can be interpreted intuitively as meaning
that the vorticity is sourced directly from the current quadrupole, while the tendicity is sourced by
induction from the time-varying vortex field.

For a rotating mass quadrupole (e.g. the quadrupole moment of an equal-mass binary), the

tendex lines in the plane of reflection symmetry will have precisely the same form as the rotating-

current-quadrupole vortex lines of Figures 7.9a and 7.9b; see Section 7.6.6.

7.6.4.2 Vortex Lines Outside the Plane of Reflection Symmetry: Transition from Near

Zone to Wave Zone

Outside the plane of reflection symmetry and in the wave zone, the extrema of the vorticity show
a spiraling pattern that is the same at all polar angles. More specifically, at all polar angles 6, the
magnitude of the vorticity, as a function of azimuthal angle ¢, has four maxima, and the locations
of those maxima are the same as in the equator (6 = w/2). As in the equator, the maxima at fixed
time ¢ spiral around at an angular rate ddmax/dr = —w as one moves outward in radius, and as in
the equator, vortex lines collect near these spiraling maxima, and those lines too undergo spiraling

behavior.



Figure 7.11: For the same rotating current quadrupole as in Figure 7.9, the family of vortex lines
that pass orthogonally through the z-y plane of reflection symmetry, color coded as in Figure 7.9. In
the wave zone, lines with approximately zero vorticity extend away from the source nearly radially,
while lines with significant vorticity are dragged into tangled spirals by the rotation of the source.
In the left inset, we see the transition between the near and wave zones. Here, lines with nearly zero
vorticity escape to infinity as in the wave zone, but those with significant vorticity are drawn toward
the source. The right inset delves down into the near zone, where the lines are approximately those
of a stationary current quadrupole. This same figure also describes the tendex lines of a rotating
mass quadrupole (see the end of Section 7.6.6).

Figure 7.11 shows the development of this spiraling structure as one moves outward from the
near zone (innermost inset) into the wave zone (outer region of figure). This figure focuses on the
family of vortex lines that pass orthogonally through the x-y plane of reflection symmetry. After
entering the wave zone, the lines with nonnegligible vorticity (the blue and red lines) collect into a
somewhat complicated spiral pattern, tangling among themselves a bit as they spiral. The gray lines
with very low vorticity, by contrast, point radially outward. An animation of this rotating system
can be seen at Reference [26].

It should be noted Figure 7.11, and the animation at Reference [26], represent somewhat incom-
plete descriptions of the structure of these field lines. The red and blue helical spirals shown in
Figure 7.11 do not cross one another. However, at any point in space, there must be three mutually
orthogonal vortex lines, with vorticities summing to zero. Since at all points in the wave zone there
is a field line of nearly zero vorticity directed in a nearly radial direction, through any point along
these spirals of positive or negative vorticity, field lines of opposite vorticity must lie orthogonal to
the spiral and to the approximately radial lines. As shown in the following subsection, these lines

form closed loops in the far-field region.
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Figure 7.12: Vortex lines of a time-varying current quadrupole at very large r. The lines are colored
by the vorticity scaled by r, to remove the 1/r falloff, but the color coding is the same as in previous
figures. At very large distances from the source, the lines are transverse and live on a sphere. The
third vortex line not shown is radial and has vanishing eigenvalue.

7.6.4.3 Vortex Lines in the Far Wave Zone

In the far wave zone (strictly speaking at future null infinity), the frame-drag field becomes transverse
and traceless, and takes the simple form (7.67). Of its three sets of vortex lines, one is radial (with
vanishing vorticity) and the other two are tangent to a sphere of constant radius r (with vorticity
of equal and opposite sign). The two sets of vortex lines on the sphere have an interesting angular
pattern that is shown in Figure 7.12. The vortex line that lies in the equator alternates between
positive and negative vorticity, going to zero at four points (one of which is shown at the front of
the sphere). This line is just the limit of the spirals where vortex lines collect in Figure 7.9b at very
large r. [Further discussion of the vortex and tendex lines of radiation at large r is given in [28],
where the dual figure to Figure 7.12 (tendex lines of a rotating mass quadrupole) is discussed in
detail.]

How the vortex lines transition to the transverse pattern of Figure 7.12 at very large r, from the
spiraling pattern of Figure 7.11 in the inner wave zone, is of considerable interest. We can explore
this by examining the frame-drag field at sufficiently large radii that the 1/r piece dominates over all
other components, and that the 1/r2 part of the frame-drag field may be thought of as a perturbation
to the leading-order 1/r part. In this region, the vortex lines show two kinds of qualitative behavior.
Some of the vortex lines continue to form spirals that meander out and do not close, as in Figure 7.11.
There also are lines that form closed loops similar to the leading-order vortex lines of Figure 7.12.
We show both of these types of lines in Figure 7.13. The red, solid, spiraling lines continue to collect

on the maximum-vorticity spirals in the far wave zone. These lines begin to resemble the transverse



Figure 7.13: Vortex lines of a rotating current quadrupole at sufficiently large r that the 1/r? part of
the frame-drag field may be thought of as a perturbation to the transverse vortex lines of Figure 7.12.
The lines are colored by the vorticity as in that figure. We also show a black dotted circle in the
equatorial plane to identify this plane. The red solid lines shown here continue to collect on the
maximum-vorticity spiral, but they oscillate much more in polar angle than do the similar lines
shown in the near wave zone in Figure 7.11. The blue dashed lines shown here form closed loops
that pass from one positive-vorticity spiral to the next. This family of lines more closely resembles
the transverse lines of Figure 7.12, though in the limit of infinite radius, the spiraling lines will also
close to form transverse lines on the sphere. There are also spiraling positive-vorticity (blue) lines
and closed-loop, negative-vorticity (red) lines, but to keep the figure from appearing muddled, we
do not show them.

lines of Figure 7.12 more than the spiraling lines in the near wave zone of Figure 7.11 do, because
they rise and fall in polar angle as they wind around the maximum-vorticity spiral. It is only in
the limit of infinite radius that these spirals close to form loops. The blue, dashed, closed lines, on
the other hand, resemble the closed lines at infinity in Figure 7.12 much more closely. The lines at
finite 7 do have some subtle differences between the corresponding lines at infinity: At finite radii,
each individual line passes from one maximum-vorticity spiral to the other; in doing so the line must
slightly increase in radius and rotate in azimuthal angle. At the large radii shown in Figure 7.13,
this effect is very subtle. We finally note that there are also spiraling, positive-vorticity lines and

closed, negative-vorticity lines that we do not show to avoid visual clutter.

7.6.5 Oscillating Current Quadrupole

The vortex lines of an oscillating current quadrupole (this section) have a very different structure
from those of the rotating current quadrupole (last section). This should not be surprising, because
the two quadrupoles arise from very different physical scenarios, e.g., for the oscillating quadrupole,

the ringdown following a head-on collision of black holes with antialigned spins, and for the rotating
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Figure 7.14: For an oscillating current quadrupole in linearized theory, two families of vortex lines
in the plane of reflection symmetry (the a-y plane). The color coding is the same as for the rotating
current quadrupole, Figure 7.9. (a) The vortex lines begin, near the origin, like the static quadrupole
pattern of Figure 7.6. The effects of time retardation cause the pattern to stretch making larger
rectangular loops in the transition zone. As time passes and the quadrupole oscillates, these loops
detach from the origin and propagate out into the wave zone. (b) Farther from the source, the
loops take on a more regular alternating pattern of gravitational waves. The coloring shows that
the vorticity is strongest at the fronts and backs of the loops, where the vortex lines are transverse
to the direction of propagation. In the regions of the closed loops that extend radially, the field is
weak (as one would expect for a transverse gravitational wave). This same figure also describes the
tendex lines of an oscillating mass quadrupole (see the end of Section 7.6.6).

quadrupole, the ringdown following the inspiral and merger of an extreme-kick black-hole binary.
See Papers II and III of this series.

In linearized theory, one can envision an oscillating current quadrupole as produced by two
particles, separated by a distance a along the x axis, whose spins, antialigned and pointing in the

+y direction, oscillate in magnitude as S coswt. The resulting quadrupole moment is [cf. Eq. (7.46)]

Spy = Syz = Sacoswt. (7.70)

The frame-drag and tidal fields, and thence vortex and tendex lines, for this current quadrupole
can be computed from Egs. (7.65) and (7.66).

As for the rotating quadrupole, the z-y plane of reflection symmetry contains two families of
vortex lines, and a third family passes orthogonally through that plane. The in-plane vortex lines are
depicted in Figure 7.14 using the same color conventions as for the rotating quadrupole (Figure 7.9).
Figure 7.14a shows the region of the near zone that is difficult to see in Figure 7.14b, an equivalent
image that spans a larger region of the x-y plane. As one can see from the figures, the two families

of vortex lines, solid red (negative vorticity) and dashed blue (positive vorticity) have the same
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pattern, but are rotated by /2 = 90°.

The way in which the gravitational waves are generated differs greatly from the rotating current
quadrupole of the previous section. In the near zone, the two sets of vortex lines form a static
quadrupole pattern (identical to the near-zone rotating quadrupole of Figure 7.9a, but rotated by
/4 due to the orientation of the spins). In the transition zone, the vortex lines form distorted loops
that head away from the origin, along the lines y = £z, in alternating fashion. As they extend into
the wave zone, the lines form two qualitatively different kinds of loops. The majority of the loops
reside only in one of the four quadrants of the equatorial plane, but there are also loops that pass
through all four quadrants, staying near the regions of maximum vorticity, where lines collect at
the gravitational-wave crests. For both types of loops, they maintain the same wavelength, but the
wave front becomes wider at larger radii, as they become gravitational waves. The portion of a loop
transverse to the radial direction (the direction of propagation) has strong vorticity, as one would
expect for a gravitational wave; in the radial portion of the loop, the vorticity is weak. Each cycle
of the oscillating quadrupole casts off another set of vortex loops as the near-zone region passes
through zero vorticity, and the loops travel outward towards infinity. This illustrates clearly the
manner in which the near-zone vortex pattern generates gravitational waves in the far zone through
its dynamics.

As with the rotating current quadrupole, one can envision the equatorial vortex line of Figure 7.12
as the limit of the wave fronts of the planar vortex lines in Figure 7.14b at large distances. It is again
of interest to understand how the vortex lines outside the equatorial plane become the remaining
vortex lines in Figure 7.12. To do so, we will make reference to Figure 7.15, which shows the
vortex lines at a distance sufficiently large that the 1/r2 portions of the frame-drag field can be
thought of as a small perturbation to the transverse vortex lines of Figure 7.12. We show only the
three-dimensional analog of the lines that pass through all four quadrants in the equatorial plane,
and do not show the lines that remain in just one octant (analogous to the loops that remain in one
quadrant in the equatorial plane) to keep the figure as simple as possible.

Near the poles, these vortex lines have nearly the same structure as the purely transverse lines
of Figure 7.12; it is only near the equator that the lines begin to differ. As the lines approach the
equator, they also increase in radius, due to the 1/r? parts of the frame-drag field. In doing so, they
pass from one gravitational-wave crest to the next, and the lines sharply turn during their passage
between successive crests. The portion of the line on this next crest runs nearly parallel to the
equator, until it begins moving slightly inward (again due to the 1/7? parts of the frame-drag field).
As it then sharply turns again, it returns to the original crest and begins heading back toward the
poles. This sharp turning happens on both sides of the sphere, which causes the lines to form the
closed loops that reside in either the northern or the southern hemisphere in Figure 7.15. Only in

the limit that r goes to infinity do the radial perturbations vanish, and the loops in the northern
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Figure 7.15: Vortex lines of an oscillating current quadrupole at sufficiently large 7 that the 1/r?
part of the frame-drag field may be thought of as a perturbation to the transverse vortex lines of
Figure 7.12. The lines are colored in the same way as that figure, and the pattern of the lines
around the poles is nearly identical to the transverse lines of Figure 7.12. Near the equator, the 1/r2
perturbation causes the lines to bend and form closed loops that reside in either the northern or the
southern hemisphere. The blue horizontal lines in the blow-up inset should be compared with dense
blue (dashed) bundles in Figure 7.14b, and red lines with the red bundles immediately outside of
the blue ones.

and southern hemisphere connect to form the transverse pattern in Figure 7.12.

7.6.6 Wave Generation by a Time-Varying Mass Quadrupole

A time-varying mass-quadrupole moment 7, (t) gives rise to metric perturbations of flat space given
by the terms proportional to Z,,(t—r)/r and its derivatives in Egs. (8.13) of [36]. It is straightforward

to calculate that the frame-drag field for these metric perturbations is

s @37,
Bij = epq(i ( pk) - (”” : (7.71)
r 3)kq r q

Notice that this mass-quadrupolar frame-drag field is the same as the current-quadrupolar tidal field

(7.66), with the current-quadrupole moment S,, replaced by —%Ipq; cf. the duality relations (7.16)
and (7.20). Correspondingly, the vortex lines of this mass quadrupole will be the same as the tendex
lines of the equivalent current quadrupole.

The mass quadrupole’s tidal field can be deduced from its frame-drag field (7.71) by using the
third of the Maxwell-like equations (7.17). The result is

1 T AL, L,
g o= 5| (%) rem () e (5
,Pqij ,qn

Alternatively, this mass-quadrupolar tidal field can be deduced from the current-quadrupolar frame-

—((4)1]) . (7.72)
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drag field (7.65) by using the duality relation S,y — +37,, [Eqs. (7.16) and (7.20)].

As a result, the tendex lines of this mass quadrupole will be the same as the vortex lines of the
current quadrupole, Figures 7.9 and 7.11 - 7.14, with the red (solid) lines describing tidal stretching,
and the blue (dashed) lines, tidal squeezing.

7.6.7 Slow-Motion Binary System Made of Identical, Nonspinning Point

Particles

As a final example of a weakly gravitating system, we investigate the tendex lines of a Newtonian,

equal-mass binary made of nonspinning point particles in a circular orbit. We assume a separation

a between particles that is large compared to their mass M, so the orbital velocity v = %\/M /a is

small compared to the speed of light (“slow-motion binary”).

Close to the binary, where retardation effects are negligible, the tidal field is given by the New-

tonian expression & = ® ;i [Eq. (7.36)], with ® the binary’s Newtonian gravitational potential

My Mp

d=— — .
e —xa| |x-—xp|

(7.73)

Here M4 = Mp = M/2 are the particles’ masses with M the total mass, and 4 and xp are the
locations of particles, which we take to be on the = axis, separated by a distance a.

In Figure 7.16, we show the near-zone tendex lines associated with this potential’s tidal field,
color coded in the usual way (see the figure’s caption). Close to each particle, the tendex lines
resemble those of a static, spherically symmetric object. Moving farther from the particle, one can
see the effects of the particle’s companion, bending and compressing the lines. At radii » 2 a, the
Newtonian potential and tidal field can be expanded in multipole moments with the monopole and
quadrupole dominating. At r >> a, the monopole dominates and the tendex lines become those of
a single spherical body.

The binary’s orbital angular velocity is w = \/W (Kepler’s formula), and the binary emits
gravitational waves with angular frequency 2w, reduced wavelength A = 1/(2w) = %\/W , and
wavelength A = 27 X. As a concrete example, we choose the particles’ separation to be a = 20M,;
then A = v/5a ~ 2.24a, and A = 2mv/5a ~ 14a.

Figure 7.17 shows tendex lines in this binary’s orbital plane, focusing on the transition and wave
zones 1 2 A = 2.24a (outside the solid black circle). The shapes and colors of the tendex lines in
this figure can be understood in terms of the binary’s multipole moments:

In the transition zone and wave zone, r 2 A, the tidal field is the sum of a nonradiative monopo-
lar piece with magnitude £y ~ M/r®, and a quadrupolar piece with magnitude (1/r)0%Z/0t* ~
(2w)*($Ma?)/r ~ 4M?3/a’r; higher order moments are negligible. The two moments contribute

about equally at radius r = £a?/M = 10a (dotted black circle in the figure). The (nonradiative)
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Figure 7.16: For a weak-gravity binary made of identical nonspinning point particles, in the near
zone where retardation is negligible, two families of tendex lines lying in a plane that passes through
the two particles (e.g. the orbital plane). The red (solid) curves are lines with negative tendicity,
and the blue (dashed) curves have positive tendicity. The color intensity of the curves represents the
magnitude of the tendicity, rescaled by 73 7% /[M3(r% + r%)], where r4 and rp are the distances to
the particles, to remove the tendicity’s radial falloff. Near each particle, the tendex lines resemble
those of an isolated spherical body; as one moves closer to the particle’s companion, the lines bend in
response to its presence. At radii large compared to the particles’ separation a, the binary’s monopole
moment comes to dominate, and the tendex lines resemble those of a single isolated spherical body.

monopole moment, with its red radial and blue circular tendex lines, dominates inside this circle.
The (radiative) quadrupole moment dominates outside the circle, so there the tendicity is significant
(strong red and blue) only when the tendex lines are transverse; strong red alternates, radially, with
strong blue as the waves propagate radially. Ultimately, at very large radii (far outside the domain
of Figure 7.17), the quadrupole moment will totally dominate, and the tendex-line pattern will
become that of a rotating quadrupole, depicted in Figure 7.9b.

Figure 7.18 shows the tendex lines for this same binary, with the same parameters, in three
dimensions, i.e. above and below the equatorial plane. In the inner region, the monopole moment
dominates so the red (stretching) tendex lines are nearly radial, and the blue (squeezing) tendex lines
are nearly circular, centered on the binary. As one moves outward, the radiative quadrupole moment
begins to distort these radial and circular tendex lines, and then at large radii, the now-dominant
quadrupole moment drives them into the same spiraling pattern as we have seen in Figure 7.11 for

the tendex lines of a rotating, pure mass quadrupole.
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Figure 7.17: Tendex lines in the orbital plane of the same binary as Figure 7.16, with separation
a = 20M (where M is the total mass), focusing on the transition and wave zones r > A = 2.24a. The
solid black circle has radius A. The colors are fixed by the tendicity weighted by wr so as to scale out
the 1/r falloff in the wave zone (with dark blue strongly positive, dark red strongly negative, and
light green near zero). Inside the dotted black curve (r = $a?/M = 10a), the binary’s (nonradiative)
monopole moment dominates, £ ~ M/r® | and the red (stretching) tendex lines are nearly radial.
Outside the dotted black curve, the (radiative) quadrupole moment dominates, £ ~ 4M?/a*r, and
the tendex lines are strong (significant tendicity) only where they are approximately transverse to
the radial direction.
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Figure 7.18: Tendex lines outside the (central, horizontal) orbital plane, for the same binary and
parameters as Figure 7.17. In the inner region, the binary’s monopole moment dominates, & ~ M /r?,
so the red (stretching) tendex lines are nearly radial and the blue (squeezing) tendex lines are nearly
circular. At larger radii, the (radiative) quadrupole moment begins to be significant and then
dominate, so the tendex lines begin to spiral outward as for the rotating quadrupole of Figure 7.11.

7.7 Conclusions

In this paper, we have focused on the electric and magnetic parts of the Weyl curvature tensor,
&ij and B;;, and have given them the names tidal field and frame-drag field, based on their roles
in producing tidal gravitational accelerations and differential frame dragging. Being parts of the
Riemann tensor, these fields are well defined (though slicing dependent) in strong-gravity situations
such as the near zone of colliding black holes. For this reason, and because they embody the full
vacuum Riemann tensor and are easily visualized, &;; and B;; are powerful tools for exploring the
nonlinear dynamics of spacetime curvature (geometrodynamics).

As tools for visualizing &;; and B;;, we have introduced tendex and vortex lines (the integral
curves of the eigenvectors of &;; and B;;), along with their tendicities and vorticities (the eigenvectors’
eigenvalues). The tendex and vortex lines are gravitational analogs of electric and magnetic field
lines. Moreover, just as the electromagnetic field tensor is fully determined by its electric and
magnetic field lines, together with their field-line densities (which encode the lengths of the electric
and magnetic vectors), so the vacuum Riemann curvature tensor is fully determined by its tendex and
vortex lines, together with their colors (which encode the tendicities and vorticities as in Figure 7.17).

In terms of their transformation properties, the (&;;, B;;) pair is strictly analogous to the pair

of electric and magnetic 3-vector fields: they are components of a 4-tensor, divided into two groups

in a slicing dependent manner. We are confident that this mild and transparent form of frame
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dependence will not prevent our tendex and vortex concepts from becoming useful tools for studying
geometrodynamics, any more than the frame dependence of electric and magnetic fields and field
lines have been impeded these fields from being useful tools for studying electromagnetism in flat or
curved spacetime.

Using various examples from linearized gravity, for which analytical formulas are available, we
have plotted color-coded tendex and vortex lines, and thereby we have gained insight into the
behaviors of the tidal and frame-drag fields. This intuition from weak-gravity examples will be of
great value when studying strongly gravitating systems in asymptotically flat spacetimes, e.g. binary
black holes. This is because, in the weak-gravity region of spacetime outside such strong-gravity
systems, linearized gravity is a good approximation. More specifically:

For stationary, strongly gravitating systems (e.g., stationary black holes and neutron stars), the
tendex and vortex lines in their asymptotic, weak-gravity regions will be well approximated by our
linearized-theory results in Section 7.5 (and, perhaps in some cases, extensions to higher multipoles).

For oscillatory, strongly gravitating systems (e.g., binary black holes and oscillating neutron
stars), the wave zones’ tendex and vortex lines will be well approximated by those of our examples
in Section 7.6, and their extensions. Whether the system has strong gravity or weak gravity, its
wave-zone field lines are controlled by radiative multipole moments that are tied to the system’s
near-zone dynamics.

As one moves inward through the weak-gravity wave zone into the near zone and the region
of strong gravity, the details of the field lines and the system’s dynamics may be quite different
for strong-gravity systems than for our weak-gravity examples. Nevertheless it seems likely that
in all cases, the gravitational waves will be generated by dynamical motions of near-zone tendexes
and vortexes (regions of strong tendicity and vorticity). By exploring that near-zone tendex/vortex
dynamics, we can gain deep physical insight into nonlinear spacetime curvature. This will be a
central theme of Papers II and III in this series.

Whatever may be a source’s strong-field dynamics, it will be useful to focus on the imprints
that the strong-field dynamics leaves on the tendex/vortex structures in the strong-to-weak-gravity
transition region. Those transition-region tendex/vortex imprints will govern spacetime curvature
throughout the asymptotic, weak-gravity region, and in particular will govern the radiative multi-
pole moments that control the emitted gravitational waves. Moreover, the imprinted structures in
the strong-to-weak-gravity transition region may turn out to have some sort of effective dynamics
that can be captured by simple analytical models and can become a powerful tool for generating

approximate gravitational waveforms, e.g. for use in gravitational-wave data analysis.
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7.A The Newman-Penrose Formalism

In this appendix we give the connection between the electric and magnetic parts of the Weyl tensor
€ and B, and the five Newman-Penrose (NP) curvature scalars [46].

The NP formalism [46] is especially useful for expressing the gravitational-wave content of a
dynamical spacetime at asymptotic null infinity. It is also a crucial foundation for the study of
black-hole perturbations and for the Petrov classification of vacuum spacetimes, both of which will
naturally make contact with the study of vortexes and tendexes. In order to make contact with
numerical simulations, we will need to understand the connection between the NP formalism and
gravitational waves propagating on a flat background, as discussed in Section 7.6.1.

Because we use the opposite metric signature to that of the original Newman-Penrose paper [46]
and the widely used Penrose-Rindler book [32], our sign conventions for the NP quantities and for
Egs. (7.76) and (7.81) below differ from theirs. Ours are the same as in [33].

To begin with, we define an orthonormal tetrad €; = (€, €}, €5,€;) with time basis vector
¢, = u orthogonal to our chosen foliation’s spacelike hypersurfaces, and with the spatial basis
vectors €3, €, €5 lying in those hypersurfaces. We use this tetrad to build a complex null tetrad for
use in the NP formalism:

1 A A 1 .. 1 1. ~

— ei) ) m = 7(5@ + 253) , m* = 7(6@ - leg) . (7.74)

V2

Vg = Cupel"m”1’m?, (7.75a)
U, = CupoltnlPm? (7.75b)
Uy = Cupel'm"m*n?, (7.75¢)
Vs = Cupeln"m*n?, (7.75d)
Uy = Cupentm™n’m*° (7.75¢)
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Using the null tetrad (7.74) built from our orthonormal tetrad, we can express the spatial orthonor-
mal components of the electric and magnetic parts of the Weyl tensor in terms of the Weyl scalars

as follows:

Eap T 1By
20y — (¥ - V3) i(Wy + U3)
v v ;
= * % — \I/Q —%(\Ifo - \114) s (776)
Yo+ Uy

(cf. Eq (3.65) of [33], where the differences are due to differing conventions on both B and our null
tetrad). In Eq. (7.76), the rows and columns are ordered as 1,2,3 and the entries indicated by  are
given by the symmetry of the matrix.

The entries in Eq. (7.76) can be derived in a straightforward manner from the definitions of €
and B, Egs. (8.1a) and (8.1b), and the definitions of the Weyl scalars, Eqs. (7.75a)-(7.75¢). For
example, we have

1 1
—(Rp1p1 + 2Rp1in + Rinin) = —

2 4(Rnlnl - 2-Rnlln + Rlnln) = Rlnln 5 (777)

&ii = Ripip =

where we have used the symmetry properties of the Riemann tensor to eliminate and combine many

terms. This result is not obviously equal to any of the Weyl scalars, but note that

I *
Rlnln - _Rnnln - Rnnnl - _(R nil + Rmnml + R™ nm*l) - _Rm*nml - Rmnm*l

= Rimm*n + Rimmn = V2 + \II; y (778)

where we have used the fact that in the null tetrad basis {l_; i, m, m*}, indexes are raised and lowered

with the metric components

0 -1 0 0
s 000 o
N N I (7.79)
0 0 10

and the fact that the Ricci tensor vanishes in vacuum spacetimes. Similar manipulations give
1 , . .
Bii = 56" Rygi0 = Ragio = —iRmemin = i(Rimnm + Rimemn) = (=2 +¥3), (7.80)

so we see that &7 + iBj; = 2¥,. Similar computations give all of the entries of (7.76).

We will often have reason to consider the “horizon tendicity” and “horizon vorticity.” These
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are the values of £ and B projected normal to the two-dimensional event horizon of a spacetime
containing a black hole, evaluated at the horizon. If the inward normal to the horizon is denoted N
and we choose the vector e; such that it coincides with —IN at the horizon, then we immediately

have the useful result

1 1 L
Uy = Enn + iBNN) = 5(5‘” + ’L'Bij)NLNJ R (781)

5

which we will use in our studies of analytic and numerical spacetimes containing horizons (papers

IT and IIT in this series).
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Chapter 8

Visualizing Spacetime Curvature
via Frame-Drag Vortexes and Tidal
Tendexes

II. Stationary Black Holes

When one splits spacetime into space plus time, the Weyl curvature tensor (which equals
the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the
tidal field €, which produces tidal forces, and the frame-drag field B, which produces
differential frame dragging. In recent papers, we and colleagues have introduced ways to
visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields
of £) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding
entities for the frame-drag field: frame-drag vortex lines and their vorticities. These
entities fully characterize the vacuum Riemann tensor. In this paper, we compute and
depict the tendex and vortex lines, and their tendicities and vorticities, outside the
horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict
the black holes’ horizon tendicity and vorticity (the normal-normal components of £
and B on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity
is proportional to the horizon’s intrinsic scalar curvature, and the horizon vorticity is

proportional to an extrinsic scalar curvature.

We show that, for horizon-penetrating time slices, all these entities (£, B, the tendex
lines and vortex lines, the lines’ tendicities and vorticities, and the horizon tendicities
and vorticities) are affected only weakly by changes of slicing and changes of spatial co-
ordinates, within those slicing and coordinate choices that are commonly used for black
holes. We also explore how the tendex and vortex lines change as the spin of a black
hole is increased, and we find, for example, that as a black hole is spun up through a

dimensionless spin a/M = /3 /2, the horizon tendicity at its poles changes sign, and
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an observer hovering or falling inward there switches from being stretched radially to
being squeezed. At this spin, the tendex lines that stick out from the horizon’s poles
switch from reaching radially outward toward infinity, to emerging from one pole, swing-

ing poloidally around the hole and descending into the other pole.

Originally published as Z. Zhang, A. Zimmerman, D. A. Nichols, Y. Chen, G. Lovelace,
K. D. Matthews, R. Owen, and K. S. Thorne, Phys. Rev. D 86, 084049 (2012). Copy-
right 2012 by the American Physical Society.

8.1 Motivation and Overview

It has long been known that, when one performs a 3+1 split of spacetime into space plus time,
the Weyl curvature tensor Cng+s gets split into two spatial, symmetric, traceless tensors: the so-
called “electric” part, £, which we call the tidal field (because it is responsible for the gravitational
stretching and squeezing that generates tides), and the so-called “magnetic” part B, which we call
the frame-drag field (because it generates differential frame dragging, i.e., differential precession of
gyToScopes).

Recently [1, 2], we and colleagues have proposed visualizing the tidal field by means of the integral
curves of its three eigenvector fields, which we call tendez lines, and each line’s eigenvalue, which
we call its tendicity. These are very much like electric field lines and the magnitude of the electric
field. Similarly, we have proposed visualizing the frame-drag field by integral curves of its three
eigenvector fields, which we call vortex lines, and each curve’s eigenvalue, which we call its vorticity.
These are analogous to magnetic field lines and the magnitude of the magnetic field.

In our initial presentation [1] of these new concepts and their applications, we demonstrated
that they can be powerful tools for visualizing the nonlinear dynamics of curved spacetime that is
triggered by the inspiral, collision, and merger of binary black holes. We expect them also to be
powerful visualization tools in other venues of nonlinear spacetime dynamics (geometrodynamics).

After our initial presentation [1], we have turned to a methodical exploration of these tools,
in a series of papers in this journal. We are beginning in Papers I-III by applying these tools
to “analytically understood” spacetimes, in order to gain intuition into the relation between their
visual pictures and the analytics. Then in Paper IV and thereafter, we shall apply them to numerical
spacetimes, looking for types of features we have already found, and retrieving their analytical origin.

In [2] (henceforth Paper I), using examples of nearly flat (linearized) spacetimes, we have shown
that tendex lines and vortex lines can illustrate very well the spacetime dynamics around oscillating
multipole sources, and we have connected various features of the field lines to physical understanding,

and to the analytics. We found that, in the near zone of an oscillating multipole, the field lines are
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attached to the source; in the transition zone, retardation effects cause the field lines to change
character in understandable ways; and in the wave zone, the field lines approach those of freely
propagating plane waves. In a supplementary study [3], some of us have classified the tendex and
vortex lines of asymptotically flat space times at future null infinity according to the lines’ topological
features.

Recently, Dennison and Baumgarte [4] computed the tendex and vortex fields of approximate
analytical solutions of boosted, non-spinning black holes (both isolated holes and those in binaries).
Specifically, they computed an analytical initial-data solution of the Einstein constraint equations
(in the form of that of Bowen and York [5]) that is accurate through leading order in a boost-like
parameter of the black holes. Their results are an important analytical approximation to the vortex
and tendex fields of a strong-field binary, and will likely be useful for understanding aspects of
numerical-relativity simulations of binary black holes.

In Paper III, we shall explore the tendex and vortex lines, and their tendicities and vorticities,
for quasinormal-mode oscillations of black holes—and shall see very similar behaviors to those we
found, in the linearized approximation, in Paper I [2]. In preparation for this, we must explore in
depth the application of our new tools to stationary (Schwarzschild and Kerr) black holes. That is
the purpose of this Paper II.

In Paper IV we shall apply our tools to numerical simulations of binary-black-hole inspiral,
collision, and merger, and shall use our linearized visualizations (Paper I), our stationary-black-
hole visualizations (Paper II), our quasinormal-mode visualizations (Paper IIT), and Dennison and
Baumgarte’s visualizations [4] to gain insight into the fully nonlinear spacetime dynamics that the
binary black holes trigger.

This paper is organized as follows: In Section 8.2, we briefly review the underlying theory of
the 3 4+ 1 split of spacetime and our definitions of the tidal field £ and frame-drag field B in [1, 2].
In Section 8.3, we introduce the concepts of horizon tendicity (the normal-normal component of
€ on a black-hole horizon) and horizon vorticity (the normal-normal component of B), which, for
stationary black holes, can be related to the real and imaginary parts of the Newman-Penrose Weyl
scalar ¥y and are the horizon’s scalar intrinsic curvature and scalar extrinsic curvature (aside from
simple multiplicative factors).

In Section 8.4, we give formulae for the eigenvector and eigenvalue fields for the tidal field around a
static (Schwarzschild) black hole, we draw pictures of the black hole’s corresponding tendex lines, and
we discuss the connection to the tidal stretching and squeezing felt by observers near a Schwarzschild
hole. (The frame-drag field vanishes for a Schwarzschild hole.)

In Section 8.5, we turn on a slow rotation of the hole, we compute the frame-drag field B generated
by that rotation, we visualize B via color-coded pictures of the horizon vorticity and the vortex lines,

and we discover a spiraling of azimuthal tendex lines that is created by the hole’s rotation. In this
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section, we restrict ourselves to time slices (and the fields on those time slices) that have constant
ingoing Eddington-Finklestein time, and that therefore penetrate the horizon smoothly. (For the
Schwarzschild black hole of Section 8.4, the tendex lines are the same in Schwarzschild slicing as in
Eddington-Finklestein slicing; the hole’s rotation destroys this.)

In Section 8.6, we turn to rapidly rotating (Kerr) black holes, and explore how the vortex and
tendex lines and the horizon vorticities and tendicities change when a hole is spun up to near
maximal angular velocity. In these explorations, we restrict ourselves to horizon-penetrating slices,
specifically: slices of constant Kerr-Schild time ¢, and the significantly different slices of constant
Cook-Scheel, harmonic time . By using the same spatial coordinates in the two cases, we explore
how the time slicing affects the tendex and vortex lines and the horizon tendicities and vorticities.
There is surprisingly little difference, for the two slicings; the field lines and horizon properties change
by only modest amounts when one switches from one slicing to the other (top row of Figure 8.6
compared with bottom row). By contrast, when we use non-horizon-penetrating Boyer-Lindquist
slices (Appendix 8.A), the field lines are noticeably changed. In Section 8.6 we also explore how the
vortex and tendex lines (plotted on a flat computer screen or flat sheet of paper) change when we
change the spatial coordinates with fixed slicing (Figure 8.5). We find only modest changes, and
they are easily understood and quite obvious once one understands the relationship between the
spatial coordinate systems.

In Section 8.7, we briefly summarize our results. In three appendices, we present mathematical
details that underlie some of the results in the body of the paper.

Throughout this paper we use geometrized units, with G = ¢ = 1. Greek indexes are used for
4D spacetime quantities, and run from 0 to 3. Latin indexes are used for spatial quantities, and run
from 1 to 3. Hatted indexes indicate components on an orthonormal tetrad. Capital Latin indexes
from the start of the alphabet are used for angular quantities defined on spheres of some constant
radius, and they generally run over 6, ¢. We use signature (— + ++) for the spacetime metric, and

our Newman-Penrose quantities are defined appropriately for this signature, as in [6].

8.2 Tendex and Vortex Lines

In this section we will briefly review the 3 + 1 split and the definition of our spatial curvature
quantities. A more detailed account is given in Paper I of this series [2]. To begin with, we split
the spacetime using a unit timelike vector «, which is everywhere normal to the slice of constant
time. This vector can be associated with a family of observers who travel with four-velocity «, and
will observe the corresponding time slices as moments of simultaneity. We consider only vacuum
spacetimes, where the Riemann tensor R, - is the same as the Weyl tensor C.,s. The Weyl

tensor has ten independent degrees of freedom, and these are encoded in two symmetric, traceless
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spatial tensors £ and B. These spatial tensors are formed by projection of the Weyl tensor C,. o
and (minus) its Hodge dual *C),,, onto the spatial slices using u*, and the spatial projection
operator ,*. The projection operator is given by raising one index on the spatial metric of the
slice, Yuv = guv +uuu,. The resulting spatial projection of the Weyl tensor is given by an even-parity

field called the “electric” part of C),, - and also called the “tidal field”,
Eap = V"8 Coparut'u” , e &; = C’i()j() , (8.1a)
and an odd-parity field called the “magnetic” part of C,,,, and also called the “frame-drag field”,

1
Bap = —7a"78° "Copovutu” ,  ie. Bij = S€;pCP. (8.1b)

2 30

Here, as usual, we give spatial (Latin) indexes to quantities after projection onto the spatial slices
using v,*. We note that our conventions on the antisymmetric tensors are, when expressed in an
orthonormal basis, €3155 = +1 and €555 = +1, with €, = €0ijk-

The real, symmetric matrices, &;; and B;; are completely characterized by their orthogonal
eigenvectors and corresponding eigenvalues. Note that, since each tensor is traceless, the sum of
its three eigenvalues must vanish. Our program for generating field lines to visualize the spacetime

curvature is to find these eigenvector fields by solving the eigenvalue problem,
Eiv? = ' (8.2)

This results in three eigenvector fields for each of the two tensors £ and B. These fields are vector
fields on the spatial slice, and behave as usual under transformations of the spatial coordinates (but
not changes of the slicing vector u#). By integrating the streamlines of these eigenvector fields,
we arrive at a set of three tendez lines and three wvortex lines. These lines are associated with the
corresponding eigenvalues, the tendicity of each tendex line and worticity of each vortex line. In
visualizations, we color code each tendex or vortex line by its tendicity or vorticity.

This method of visualization represents physical information about the spacetime in a very natu-
ral way. It was shown in Paper I that the tidal field £ describes the local tidal forces between nearby
points in the spacetime, and the less-familiar frame-drag field B describes the relative precession of
nearby gyroscopes. In the local Lorentz frame of two freely falling observers, separated by a spatial

vector &7, the differential acceleration experienced by the observers is
Ad' = —E';¢7. (8.3a)

If these same observers carry inertial guidance gyroscopes, each will measure the gyroscope of the
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other to precess (relative to her own) with a vectorial angular velocity dictated by B,
AQ = B¢l (8.3b)

In particular, note that if one observer measures a clockwise precession of the other observer’s
gyroscope, the second observer will also measure the precession of the first to be clockwise.

The physical meaning of the tendex and vortex lines is then clear: if two observers have a small
separation along a tendex line, they experience an acceleration along that line with a magnitude (and
sign, in the sense of being pushed together or pulled apart) given by the value of the tendicity of that
line, as governed by Eqgs. (8.3a) and (8.2). In the same way, two observers separated along a vortex

line experience differential frame dragging as dictated by Eqgs. (8.3b) and (8.2) (with &;; — B;j).

8.3 Black-Hole Horizons; The Horizon Tendicity £yy and
VOI'tiCity BNN

In many problems of physical interest, such as black-hole perturbations and numerical-relativity
simulations using excision (as in the SpEC code [7]), black-hole interiors are not included in the
solution domain. However, we are interested in structures defined on spacelike surfaces that penetrate
the horizon, and, in order to retain the information describing the dynamics of spacetime in and near
the black-hole region, we must define quasilocal quantities representing the tendicity and vorticity
of the excised black-hole region.

We define the horizon tendicity and vorticity as follows: For a hypersurface-normal observer
with 4-velocity , passing through a worldtube such as an event horizon or a dynamical horizon, the
worldtube has an inward pointing normal N orthogonal to #, and two orthonormal vectors tangent
to its surface, €5 and €5 (together these four vectors form an orthonormal tetrad). The horizon
tendicity is defined as Eyn = &;N'N7 and the horizon vorticity is Byy = B;jN*N7. Physically,
they represent the differential acceleration and differential precession of gyroscopes, respectively, as
measured by the observer, for two points separated in the direction of N , and projected along that
direction.

The horizon tendicity and vorticity have several interesting connections with other geometric
quantities of 2-surfaces. In particular, they fit nicely into the Newman-Penrose (NP) formalism [8].
Rather than describe spacetime in terms of the tetrad u, N, & and €3, the NP approach describes
spacetime in terms of a null tetrad, with two null vectors l_: and 77, together with a complex spatial

vector m and its complex conjugate m*. It is convenient to adapt this tetrad to the 2-surface so
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that it is given by

I (i — N), i =

[\

= —— (& + i€3) . (8.4)

S

On an event horizon, l'is tangent to the generators of the horizon and 7 is the ingoing null normal.

It is not difficult to show that in this tetrad the complex Weyl scalar ¥y is given by
Vs = Ciimmn = (Enn +iByN)/2, (8.5)

where Cjpm=n i the Weyl tensor contracted into the four different null vectors of the tetrad in the
order of the indexes.

Penrose and Rindler [9] relate the NP quantities to curvature scalars of a spacelike 2-surface in
spacetime. In turn, we can then connect their results to the horizon tendicity and vorticity. More

specifically: Penrose and Rindler define a complex curvature of a 2-surface that equals
1 .
ICZZ(R—HX). (8.6)

Here R is the intrinsic Ricci curvature scalar of a the 2D horizon and X is a scalar extrinsic curvature
(a curvature of the bundle of vector spaces normal to the two-surface in spacetime). This extrinsic
curvature X is related to the Héjicek field [10] Q4 = n#V4l, (where V4 denotes the covariant

AB s the antisymmetric tensor

derivative projected into the 2D horizon) by X = ¢48V 4Qp, where ¢
of the 2D horizon. In the language of differential forms, X is the dual of the exterior derivative of
the Hajicek 1-form.

Penrose and Rindler [9] show that for a general, possibly dynamical black hole,
K=—-¥s+4 pup— Ao, (8.7)

where p, o, u, and A are spin coefficients related to the expansion and shear of the null vectors I

and 77, respectively. This means that the horizon tendicity and vorticity are given by

ENN —R/2 + 2R[up — Aa], (8.8a)

By —X/2+23[up — o] . (8.8b)

In the limit of a stationary black hole (this paper), p and o vanish, so

SNN:—R/Q, and BNN:—X/Q. (89)
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The 2D horizon of a stationary black hole has spherical topology, and the Gauss-Bonnet theorem
requires that the integral of the scalar curvature R over a spherical surface is 8m; accounting for
factors of two, the integral of the horizon tendicity Exn over the horizon is —47 (the average value
of the horizon tendicity will be negative). Stokes’s theorem states that the integral of an exact form
such as X vanishes on a surface of spherical topology, and the horizon vorticity will also have zero
average. In formulae:

]{gNNdA = —471’7 fBNNdA =0 (810)

for the horizon of a stationary black hole.

It is worth noting a few other examples in the literature where the complex curvature quantities
(and as such, horizon tendicity and vorticity) have been used. The most common use of horizon
vorticity (in a disguised form) is for computing the spin angular momentum associated with a
quasilocal black-hole horizon. Following References [11-13], it has become common to compute

black hole spin in numerical-relativity simulations using the following integral over the horizon:
R 7{[( NipldA (8.11)
87 gt s '

where Kj; is the extrinsic curvature of the spatial slice embedded in spacetime, N is the inward-
pointing unit normal vector to the horizon in the spatial slice, and { is a rotation-generating vector
field tangent to the two-dimensional horizon surface. If @ is a Killing vector, then one can show that
J is conserved. In Reference [14], this was applied to binary-black-hole simulations with J given as
a certain kind of approximate Killing vector that can be computed even on a deformed two-surface.
In Reference [15], and independently in References [16, 17], this idea was refined. The quantity .J
can be shown to be boost invariant (independent of boosts of the spatial slice in the direction of N )
if 7 is divergence-free. Hence, in References [15-17],  is restricted to have the form ¢? = eABV(,
where ( is some scalar quantity on the two-surface (eventually fixed by a minimization problem for
other components of the Killing equation). Once this substitution has been made, an integration by

parts allows J to be written as:

1
J= 5 j[xgdA. (8.12)

The quantity ¢ is fixed by a certain eigenvalue problem on the horizon 2-surface. On a round
2-sphere, the operator in this eigenproblem reduces to the conventional Laplacian, and ¢ can be
shown to reduce to an £ = 1 spherical harmonic. Thus the quasilocal black-hole spin defined in
References [15-17] can be thought of as the dipole part of the horizon vorticity.

There are simpler ways in which one can distill a measure of black hole spin from the concepts
of horizon vorticity and tendicity. In Reference [17], an alternative measure of spin was made by

comparing the maximum and minimum values of the horizon scalar curvature to formulae for a Kerr
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black hole. This method has roots in older techniques by which spin is inferred from the horizon’s
intrinsic geometry through measurements of geodesic path length (see, for example, References [18—
20]). The method of computing spin by comparing horizon curvature extrema to Kerr formulae could
be extended to use the extrinsic scalar curvature, or the horizon vorticity or tendicity (which differ
from the scalar curvatures in dynamical situations). While such methods have the benefit of relative
simplicity, their practical value in numerical relativity is weakened by an empirical sensitivity of the
inferred spin to effects such as “junk” radiation and black hole tides [17, 21].

In Reference [22], it was shown that higher spherical-harmonic components of these horizon
quantities provide natural definitions of source multipoles on axisymmetric isolated horizons. In
References [23] and [24], this formalism was extended to less symmetric cases for use with numerical-
relativity simulations, while attempting to introduce as little gauge ambiguity as possible into the

process. Related applications of this formalism can be found in References [25, 26].

8.4 Schwarzschild Black Hole

In this section, we examine vortex and tendex lines for a non-rotating black hole with mass M.
These lines, of course, depend on our choice of time slicing. As in the numerical simulations that
are the focus of Paper IV, so also here, we shall use a slicing that penetrates smoothly through the

black hole’s horizon. The slices of constant Schwarzschild time ¢ for the hole’s Schwarzschild metric

2

2 _ _(1_ 2 r
ds® = —(1—2M/r)dt +1—2M/7“

+r2df* + 12 sin” Odp? (8.13)
do not penetrate the horizon smoothly; rather, they become singular as they approach the horizon.
(Dennison and Baumgarte [4] compute the tidal and frame-drag fields of a Schwarzschild black hole
in a slice of constant Schwarzschild time and in isotropic coordinates; see their paper for comparison.)

The simplest horizon-penetrating slices are those of constant ingoing Eddington-Finkelstein (EF)
time

t=t+2MIn|r/2M — 1] . (8.14)

The Schwarzschild metric (8.13), rewritten using EF coordinates {f,7,6, ¢}, takes the form
2M 4M . 2M
ds® = — (1 - )de + —dtdr + (1 + )dr2 + 72d6? + r*sin” dg? . (8.15)
r r r

The observers who measure the tidal and frame-drag fields that lie in a slice of constant ¢ have

4-velocities 4 = —aEpﬁf, where agrp = 1/4/14 2M/r is the normalizing lapse function. These
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observers can be regarded as carrying the following orthonormal tetrad for use in their measurements:

. 1 [<1+2M)8 QMG} . 1 5
U= —F—— P | €p = T
1+ 2M]r r)t 1+ 2M]r
L1 .1
69—;89, €y = rsin@a(b’ (8.16)

The nonzero components of the tidal field that they measure using this tetrad are

2M M
Eip = — ", géé:g%:ﬁ, (8.17)
and the frame-drag field B,; vanishes. (See, e.g., Eq. (31.4b) of [27]).
Note that the black hole’s tidal field (8.17) has the same form as the Newtonian tidal tensor
outside of a spherical source. Since the tidal field is diagonal in this tetrad, its eigenvalues and its

unit-normed eigenvectors are

_;”:é}W _é:é'Aa ;:g¢7
2M M
M=ctm M=d=g (8.18)

Because the two transverse eigenvalues Ay and A, are degenerate, any vector in the transverse vector
space spanned by € and € 3 is a solution to the eigenvalue problem, and correspondingly, any curve
that lies in a sphere of constant r can be regarded as a tendex line. However (as we shall see in the
next section), when the black hole is given an arbitrarily small rotation about its polar axis § = 0,
the degeneracy is broken, the non-degenerate transverse eigenvectors become €; and €, 3 and the
transverse tendex lines become circles of constant latitude and longitude.

In Figure 8.1, we plot a few of these transverse tendex lines (giving them a blue color corre-
sponding to positive tendicity A\g > 0 and A, > 0), and also a few of the radial tendex lines (colored
red for negative tendicity A, < 0). Also shown are two human observers, one oriented along a blue
tendex line (and therefore being squeezed by the tidal field) the other oriented along a red tendex
line (and therefore being stretched).

8.5 Slowly Rotating Black Hole

8.5.1 Slicing and Coordinates

When the black hole is given a slow rotation with angular momentum per unit mass a, its metric

(8.13) in Schwarzschild coordinates acquires an off-diagonal g:4 term:

ds* = —(1—2M/r)dt* + _ +72d6? + r?sin” dg?* — daM e Odtdy  (8.19)
1—2M/r T
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Figure 8.1: Tendex lines for a non-rotating (Schwarzschild) black hole. These lines are identical to
those generated by a spherically symmetric mass distribution in the Newtonian limit. Also shown
are observers who experience the tidal stretching and compression associated with the tendex lines.

[the Kerr metric in Boyer-Lindquist coordinates, Eq. (8.28) below, linearized in a]. The slices of
constant EF time ¢ = ¢ 4+ 2M In |r/2M — 1| are still smoothly horizon penetrating, but the dragging
of inertial frames (the off-diagonal g;4 term in the metric) causes the Schwarzschild ¢ coordinate to

become singular at the horizon. To fix this, we must “unwrap” ¢, e.g., by switching to
¢ =0b+ (a/2M)In|1 —2M/r|, (8.20)

thereby bringing the “slow-Kerr” metric (8.19) into the form

oM 4M - oM -, 4aM -
ds® = — (1 - r)d? + Tdtdr + (1 + )dr2 4 r2d0% + 2 sin2 0d? — 22 sin? 0didd
T

— 2a+/1 + 2M/r sin? Odrde (8.21)

[Eq. (8.45) below, linearized in a], which is well behaved at and through the horizon. The observers
who move orthogonally to the slices of constant ¢ have 4-velocity # and orthonormal basis the same

as for a non-rotating black hole, Eq. (8.16), except that €; is changed to

R S [0 + 1+ 20/n)0); (8.22)

V1+2M/r

[Eq. (8.46) below, linearized in a.
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Figure 8.2: (a) Tendex lines, and (b) vortex lines for a slowly rotating (Kerr) black hole. Here we
take a/M = 0.1. The horizon is color coded by its tendicity Exn in (a) (uniformly red signifying
negative tendicity) and vorticity By in (b), and the field lines are color coded by the sign of their
tendicity or vorticity (blue for positive, red for negative). That is, the radial tendex lines, the vortex
lines emerging from the north pole and the azimuthal vortex lines on the bottom carry negative
tendicity or vorticity, while all other lines have positive tendicity or vorticity.) In (a), the spiraling
lines have been made to spiral more loosely by multiplying the rate of change in the r direction
by five. The semi-transparent cone-like surfaces emerging from the horizon’s north and south polar
regions show where the magnitude of the vorticity at a given radius has fallen to 80% (outermost
cones), 85%, and 90% (innermost cones) of the polar magnitude. We identify the innermost cone
(the 90% contour) as the edge of the frame-drag vortex. The equatorial plane is shown for reference
in both panels.

8.5.2 Frame-drag Field and Deformed Tendex Lines

The slow rotation gives rise to a frame-drag field

—6aM cos 6 —3aM sin 6 3aM cosf
Big=—-—"—, B;=Bj.=—ron—" Bi=B-:=—""—— 8.23
T ,,,4 70 or 7“4 /—1 + 2M/7“ 0 P ’/'4 ( )

[Eq. (8.40b) linearized in a/M] that lives in the slices of constant EF time ¢. This field’s vortex lines,
shown in Figure 8.2b, are poloidal and closely resemble those of a spinning point mass (a “current
dipole”) in the linearized approximation to general relativity (Figure 3 of Paper I [2]). At radii
r > M, the field asymptotes to that of a linearized current dipole.

The rotating hole’s horizon vorticity is Byn = Bz = —6(aM/r*) cos §, which is negative in the
north polar regions and positive in the south polar regions. Correspondingly, there is a counterclock-
wise frame-drag vortex sticking out of the hole’s north pole, and a clockwise one sticking out of its

south pole. We identify the edge of each vortex, at radius 7, as the location where the vorticities of
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the vortex lines that emerge from the hole at the base of the vortex, fall (as a function of 8 at fixed
r) to 90% of the on-pole vorticity. The vortex edges are shown, in Figure 8.2, as semi-transparent
surfaces; for comparison we also show where the vorticity has fallen to 85% and 80% of the on-pole
vorticity at a given radius r.

The hole’s (small) spin not only generates a frame-drag field B;;; it also modifies, slightly, the
hole’s tidal field &;; and its tendex lines. However, the spin does not modify the field’s tendicities,
which (to first order in a/M) remain A8 = —2M/r3, \§ = )\i = M/r® [Eq. (8.18)]. The modified

unit tangent vectors to the tendex lines are

- 2Masin 6 - 2Masin 6 -
£ o ~ g o ~ g o
= N —_ —€ 2 ~ = 2 ———— € ~ = 2, 24
e =6 r2y/1+2M/r ¢’ Y ¢+r2\/1+2M/reT’ =G (824

Correspondingly, there is a slight (though hardly noticeable) bending of the radial tendex lines near
the black hole, and—more importantly—the azimuthal tendex lines (the ones tangent to V(f) cease
to close. Instead, the azimuthal tendex lines spiral outward along cones of fixed 6, as shown in
Figure 8.2a. Since these lines have been only slightly perturbed from closed loops, they spiral quite
tightly, appearing as solid cones. In order to better visualize these spiraling lines, we have increased
their outward (r directed) rate of change by a factor of five as compared to the axial rate of change

in Figure 8.2a.

8.5.3 Robustness of Frame-Drag Field and Tendex-Line Spiral

The two new features induced by the hole’s small spin (the frame-drag field, and the spiraling of the
azimuthal tendex lines) are, in fact, robust under changes of slicing. We elucidate the robustness of
the tendex spiral in Appendix 8.C. We here elucidate the robustness of the frame-drag field and its
vortex lines and vorticities:

Suppose that we change the time function #, which defines our time slices, by a small fractional

amount of order a/M; i.e., we introduce a new time function
t'=1+&(r,0), (8.25)

where ¢ is EF time and ¢ has been chosen axisymmetric and time-independent, so it respects the
symmetries of the black hole’s spacetime. Then “primed” observers who move orthogonal to slices
of constant #' will be seen by the EF observers (who move orthogonal to slices of constant ) to
have small 3-velocities that are poloidal, v = v"es + véeé. The Lorentz transformation from the EF
reference frame to the primed reference frame at some event in spacetime induces a change of the

frame-drag field given by
B =—-2vxE&E° (8.26)
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[see, e.g., Eq. (B12) of [28], linearized in small v], where the S means symmetrize. Inserting the EF

tidal field (8.17) and the poloidal components of v, we obtain as the only nonzero components of 68
0B, = 0B, = —(3M /3 . (8.27)

This axisymmetric, slicing-induced change of the frame-drag field does not alter the nonzero
components of the frame-drag field in Eq. (8.23); it only introduces a change in the component Bf. 5
This is a sense in which we mean the frame-drag field is robust. A simple calculation can show that
one vorticity is unchanged, B 36 = 3aM cos 6/r%, but the corresponding vortex line will no longer
be a circle of constant (r,d). Instead, it will wind on a sphere of constant r relative to these closed
azimuthal circles with an angle whose tangent is given by w0 csc 6+/r2 + 2Mr. The poloidal vortex
lines must twist azimuthally to remain orthogonal to these spiralling azimuthal lines, as well.

Although we will not see this specific kind of spiraling vortex lines in the next section on rapidly
rotating Kerr black holes, we will see a different spiraling of the azimuthal vortex lines: spiraling on

cones of constant #. We describe the reason for this in Appendix 8.C.
8.6 Rapidly Rotating (Kerr) Black Hole
We shall now explore a rapidly rotating black hole described by the precise Kerr metric.

8.6.1 Kerr Metric in Boyer-Lindquist Coordinates

The Kerr metric is usually written in Boyer-Lindquist (BL) coordinates {¢,r,0, ¢}, where it takes

the form
2Mr b sin? @ 4Marsin® 0
2_ _(q1_ 2, &2 2 2 AMarsm v
ds ( > ) dt” + Adr + Xdo* + > Adg = dtdg ,
¥ =r%+a%cos? 6, A =7r?—2Mr+a?, A= (r*+d*)? - d*Asin® 0. (8.28)

Because the slices of constant ¢ are singular at the horizon (and therefore not of much interest
to us), we relegate to Appendix 8.A the details of their tidal and frame-drag fields, and their vortex

and tendex lines.

8.6.2 Horizon-Penetrating Slices

In our study of Kerr black holes, we shall employ two different slicings that penetrate the horizon
smoothly: surfaces of constant Kerr-Schild time coordinate £, and surfaces of constant Cook-Scheel
time coordinate . By comparing these two slicings’ tendex lines with each other, and also their

vortex lines with each other, we shall gain insight into the lines’ slicing dependence.
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Figure 8.3: Slices of constant Boyer-Lindquist time ¢, Kerr-Schild time ¢, and Cook-Scheel time £,
drawn in a Kerr-Schild spacetime diagram for a black hole with a/M = 0.95.

The Kerr-Schild ([29, 30], see also, e.g., Exercise 33.8 of [27]) time coordinate (also sometimes
called ingoing-Kerr time) is defined by

- dr. r*+a?
F=tagr, —r, h - . 8.29
+re—r where o A (8.29)

The Cook-Scheel [31] time coordinate is

2 2
ry+a r—r
+ In +

Ty —T—

t=t+ ={+4 2MIn

(8.30)

2M’

r—r— r—r—

(see Egs. (19) and (20) of [31]) where 7 is the value of the Boyer-Lindquist radial coordinate r at

the event horizon, and r_ is its value at the (inner) Cauchy horizon:

re =M+ M?—a?. (8.31)

Figure 8.3 shows the relationship between these slicings for a black hole with a/M = 0.95. In
this figure, horizontal lines are surfaces of constant Kerr-Schild time ¢. Since ¢, £ and ¢ differ solely
by functions of r, the surfaces of constant Cook-Scheel time ¢ are all parallel to the ¢ = 0 surface
shown in the figure, and the surfaces of constant Boyer-Lindquist time ¢ are all parallel to the ¢ = 0
surface. The Kerr-Schild and Cook-Scheel surfaces penetrate the horizon smoothly. By contrast,
the Boyer-Lindquist surfaces all asymptote to the horizon in the deep physical past, never crossing

it; i.e., they become physically singular at the horizon.
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Figure 8.4: Curves of constant Boyer-Lindquist angle ¢, Kerr-Schild angle ¢, and ingoing-Kerr angle
¢ for a black hole with a/M = 0.95.

8.6.3 Horizon-Penetrating Coordinate Systems

Not only is the Boyer-Lindquist time coordinate ¢ singular at the event horizon; so is the Boyer-
Lindquist azimuthal angular coordinate ¢. It winds around an infinite number of times as it asymp-
totes to the horizon. We shall use two different ways to unwind it, associated with two different

horizon-penetrating angular coordinates: The ingoing-Kerr coordinate

_ o0
b=+ —2 |7 :¢+/ Lar (8.32)
re—r_ |r—r_ r A
and the Kerr-Schild coordinate
©=¢—tan"t(a/r) . (8.33)

Figure 8.4 shows the relationship of these angular coordinates for a black hole with a/m = 0.95.
Notice that: (i) all three angular coordinates become asymptotically the same as r — oo; (ii) the two
horizon-penetrating coordinates, ingoing-Kerr d~) and Kerr-Schild ¢, differ by less than a radian as
one moves inward to the horizon; and (iii) the Boyer-Lindquist coordinate ¢ plunges to —co (relative
to horizon-penetrating coordinates) as one approaches the horizon, which means it wraps around
the horizon an infinite number of times.

In the literature on Kerr black holes, four sets of spacetime coordinates are often used:
e Boyer-Lindquist coordinates, {t,r,0,¢} . These are the coordinates in Section 8.6.1.

e Ingoing-Kerr coordinates, {t,r,0, QNS} Often in this case £ is replaced by a null coordinate,
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v =t+r (curves v = const, § = const, and ¢ = const are ingoing null geodesics).

e Quasi-Cartesian Kerr-Schild coordinates, {t,r,y, z} and their cylindrical variant {#, @, 2, ¢ }.

Here

T4y = (rJrz'a)ew;sinH, z=rcosl,
w = a2+ y?=/r2+a2sin%g,
¢ = arctan(y/z) = ¢ + arctan(a/r) . (8.34)

The Kerr-Schild spatial coordinates {z, y, z} resemble the coordinates typically used in numer-
ical simulations of binary black holes at late times, when the merged hole is settling down into
its final, Kerr state. These coordinate systems resemble each other in the senses that (i) both
are quasi-Cartesian, and (ii) for a fast-spinning hole, the event horizon in both cases, when
plotted in the coordinates being used, looks moderately oblate. For this reason, in our study
of Kerr black holes, we shall focus our greatest attention on Kerr-Schild coordinates. The Kerr

metric, written in Kerr-Schild coordinates, has the form

2M 3
222

rr+ay ryYy—ar z

kﬂky> datda” |k, = (17 ) 7 (8.35)

d2: b b
o (n“”+ r24+a2’ r24a2’r

where 7 is the Boyer-Lindquist radial coordinate, and is the larger root of
52
2y + 22 =r+a? <1—2> , (8.36)
r

and 7, is the usual flat Minkowski metric.

e Cook-Scheel harmonic coordinates [31], {t,Z,y,z} where  is given by Eq. (8.30), while

the spatial coordinates are defined by

T+ig = [r— M +ia]e?sin(d), (8.37)
z = [r— M]cos(h). (8.38)

These coordinates are harmonic in the sense that the scalar wave operator acting on them
vanishes. In these coordinates, the event horizon of a spinning black hole is more oblate than

in Kerr-Schild coordinates—and much more oblate for a/M near unity.
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8.6.4 Computation of Tendex and Vortex Lines, and their Tendicities and

Vorticities

Below we show pictures of tendex and vortex lines, color coded with their tendicities and vorticities,
for our two horizon-penetrating slicings and using our three different sets of spatial coordinates. In
all cases we have computed the field lines and their eigenvalues numerically, beginning with analyt-
ical formulas for the metric. More specifically, after populating a numerical grid using analytical
expressions for the metric, we numerically compute &;; and B;;, as well as their eigenvalues and
eigenvectors. A numerical integrator is then utilized to generate the tendex and vortex lines. Fi-
nally, we apply analytical transformations that take these lines to whatever spatial coordinate system
we desire.

Although not required for the purpose of generating the figures in the following sections, it is
nevertheless possible to find analytical expressions for &;; and B;;, and subsequently their eigenvalues
and eigenvectors. These expressions provide valuable insights into the behavior of the tendex and

vortex lines, and we present such results for the ingoing-Kerr coordinates in Appendix 8.B.

8.6.5 Kerr-Schild Slicing: Tendex and Vortex Lines in Several Spatial

Coordinate Systems

Once the slicing is chosen, the tidal and frame-drag fields, and also the tendex and vortex lines and
their tendicities and vorticities, are all fixed as geometric, coordinate-independent entities that live
in a slice. If we could draw an embedding diagram showing the three-dimensional slice isometrically
embedded in a higher-dimensional flat space, then we could visualize the tendex and vortex lines
without the aid of a coordinate system. However, the human mind cannot comprehend embedding
diagrams in such high-dimensional spaces, so we are forced to draw the tendex and vortex lines in
some coordinate system for the slice, in a manner that makes the coordinate system look like it is
one for flat space.

Such a coordinate-diagram plot of the lines makes them look coordinate dependent—i.e., their
shapes depend on the coordinate system used. Nevertheless, the lines themselves are geometrically
well-defined, independent of coordinate system, and they map appropriately between them. The
visual features of these lines are also qualitatively similar in reasonable coordinate systems.

Figure 8.5 is an important example. It shows the tendex lines (left column of plots) and vortex
lines (right column of plots) for a fast-spinning Kerr black hole, with a = 0.95M. We have also
colored the horizon of the black hole according to its horizon tendicity and vorticity, respectively. In
all cases the slicing is Kerr-Schild; i.e., the lines lie in a slice of constant . The three rows of figures
are drawn in three different spatial coordinate systems: ingoing-Kerr, Kerr-Schild, and Cook-Scheel.

Notice the following important features of this figure:
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Figure 8.5: Kerr black hole with a/M = 0.95 in Kerr-Schild slicing, drawn in three different
spatial coordinate systems. The left and center columns of drawings [panels (a), (c), (e)] show
tendex lines; the right column of drawings [panels (b), (d), (f)] show vortex lines. The three rows,
from top downward, use ingoing-Kerr spatial coordinates {r, 6, ¢} [panels (a) and (b)], Kerr-Schild
spatial coordinates {z, y, z} [panels (c) and (d)], and Cook-Scheel spatial coordinates {Z, 7, Z} [panels
(e) and (f)]. In all cases, the lines with positive tendicity or vorticity are colored blue; those with
negative tendicity or vorticity are colored red. The horizon is shown with its horizon tendicity (left
column of drawings) and horizon vorticity (right column) color coded from dark blue for strongly
positive to dark red for strongly negative. (Horizon tendicity is negative near the equator and positive
near the poles. Vorticity on the other hand transitions from being negative on top to positive on the
bottom.) In Kerr-Schild coordinates [panels (c) and (d)], we have also shown as semi-transparent
surfaces, contours of 7 times tendicity and #* times vorticity, where 72 = 224124 22 for Kerr-Schild
spatial coordinates. In panel (c), the innermost equatorial contour has the most negative tendicity
while the others have 90%, 80%, 30%, 20%, and 10% this value, and the innermost polar contour has
the least negative tendicity. In panel (d) the contour with the most negative vorticity consists of the
innermost red cone and the outermost red bubble (at the north pole), and the others are at 90% and
80% of this value. The blue contours of panel (d) (at the bottom half of that panel) are arranged
similarly but with positive vorticity.
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e As expected, the qualitative features of the tendex lines are independent of the spatial coordi-
nates. The only noticeable differences from one coordinate system to another are a flattening
of the strong-gravity region near the hole as one goes from ingoing-Kerr coordinates (upper
row of panels) to Kerr-Schild coordinates (center row of panels) and then a further flattening

for Cook-Scheel coordinates (bottom row of panels).

e The azimuthal (toroidal) tendex and vortex lines (those that point predominantly in the €}
direction) spiral outward from the horizon along cones of constant 6, as for the tendex lines of
a slowly spinning black hole [cf. the form of ‘é in Egs. (8.50)]. As we shall discuss in Appendix
8.C, this is a characteristic of a large class of commonly used, horizon-penetrating slicings of

spinning black holes.

e All the poloidal tendex and vortex lines have (small) azimuthal (¢) components, which do not
show up in this figure; see the € 3 components of the eigenvectors ‘_/;5 , V’f , V5 and Vf in Egs.

(8.50) and (8.51).

e Left column of drawings: For this rapidly spinning black hole, the horizon tendicity is posi-
tive (blue) in the north and south polar regions, and negative (red) in the equatorial region,
by contrast with a slowly spinning hole, where the horizon tendicity is everywhere negative
(Figure 8.2). Correspondingly, a radially oriented person falling into a polar region of a fast-
spinning hole gets squeezed from head to foot, rather than stretched, as conventional wisdom
demands. The relationship Exny = —R/2 between the horizon’s tendicity and its scalar cur-
vature tells us that this peculiar polar feature results from the well-known fact that, when
the spin exceeds a/M = \/§/ 2 ~ 0.8660, the scalar curvature goes negative near the poles,
at angles 0 satisfying 2(a/M)?cos?0 > 1+ /1 — (a/M)2. This negative scalar curvature
is also responsible for the fact that is it impossible to embed the horizon’s 2-geometry in a

3-dimensional Euclidean space when the spin exceeds a/M = v/3/2 [32].

e Left column of drawings: The blue (positive tendicity) tendex lines that emerge from the north
polar region sweep around the hole, just above the horizon, and descend into the south polar
region. In order to stay orthogonal to these blue (squeezing) tendex lines, the red (stretching)
lines descending from radial infinity get deflected away from the horizon’s polar region until
they reach a location with negative tendicity (positive scalar curvature), where they can attach
to the horizon; see the central panels, which are enlargements of the north polar region for the

left panels.

e Right column of drawings: The vortex-line structure for this fast-spinning black hole is very
similar to that for the slow-spinning hole of Figure 8.2, and similar to that for a spinning

point mass in the linear approximation to general relativity (Figure 3 of Paper I [2]). The



214

principal obvious change is that the azimuthal vortex lines are not closed; instead, they spiral

away from the black hole, like the azimuthal tendex lines.

e Right column of drawings: Most importantly, as for a slow-spinning black hole, there are two
vortexes (regions of strong vorticity): as a counterclockwise vortex emerging from the north
polar region, and a clockwise vortex emerging from the south polar region. As we shall see
in Paper IV, when two spinning black holes collide and merge, these vortexes sweep around,
emitting gravitational waves. In Figure 8.5(d), these vortexes are indicated by contours of

2 = 22 + y? + 22 for Kerr-Schild coordinates {z,y,z}. Notice in

7 times vorticity, where 7
particular that each contour consists of one cone together with one bubble attached to the
horizon, with the bubbles enclosing the polar regions excluding them from the vortexes. This

is a feature not seen for the slow-spinning case.

8.6.6 Slicing-Dependence of Tendex and Vortex Lines

To explore how a Kerr black hole’s vortex and tendex lines depend on the choice of slicing, we focus
in Figure 8.6 on a black hole with a/M = 0.875, viewed in a slice of constant Kerr-Schild time,
t =constant, and in a slice of constant Cook-Scheel harmonic time, £ =constant. In the two slices,
we use the same spatial coordinates: Kerr-Schild. (We chose a/M = 0.875, rather than the 0.95 that
we used for exploring spatial coordinate dependence, because it is simpler to handle numerically in
the Cook-Scheel slicing.)

The most striking aspect of Figure 8.6 is the close similarity of the tendex lines (left column of
drawings) in the two slicings (upper and lower drawings), and also the close similarity of the vortex
lines (right column of drawings) in the two slicings (upper and lower). There appears to be very
little slicing dependence when we restrict ourselves to horizon-penetrating slicings.

By contrast, if we switch from a horizon-penetrating to a horizon-avoiding slice, there are notice-
able changes in the field lines: Compare the top row of Figure 8.6 (a/M = 0.875 for a Kerr-Schild,
horizon-penetrating slice) with Figure 8.7 (the same hole, a/M = 0.875, for a Boyer-Lindquist,
horizon-avoiding slice), concentrating for now on panels (a) and (b) depicting tendex and vortex
lines in Boyer-Lindquist spatial coordinates. The most striking differences are (i) the radial tendex
lines’ failure to reach the horizon for horizon-avoiding slices, contrasted with their plunging through
the horizon for horizon-penetrating slices, and (ii) the closed azimuthal tendex and vortex lines
for Boyer-Lindquist horizon-avoiding slices, contrasted with the outward spiraling azimuthal lines
for horizon-penetrating slices. In Appendix 8.C we show that this outward spiral is common to a
class of horizon-penetrating slices. Lastly, we note that Figure 8.7 (a) and (b) are plotted using
Boyer-Lindquist spatial coordinates in order to compare with analytical expressions given in that

appendix. When we use Kerr-Schild spatial coordinates, as is done in Figure 8.6, in order to fa-
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(a)

(c)

Figure 8.6: Tendex lines and vortex lines for a Kerr black hole with a/M = 0.875 in Kerr-Schild
spatial coordinates, for two different slicings: Kerr-Schild ¢ =constant, and Cook-Scheel
t =constant. The left and center columns of drawings [panels (a) and (c¢)] show tendex lines; the
right column of drawings [panels (b) and (d)] show vortex lines. The top row of drawings [panels
(a) and (b)] is for Kerr-Schild slicing; the bottom row [panels (c) and (d)] is for Cook-Scheel slic-
ing. Since the slicings are different, it is not possible to focus on the same sets of field lines in the
Kerr-Schild (upper panels) and Cook-Scheel (lower panels) cases. However, we have attempted to
identify similar field lines by ensuring they pass through the same Kerr-Schild spatial coordinate
locations on selected surfaces. (The color of the lines and horizon are similar to Figure 8.5)
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cilitate a more appropriate comparison, we observe that the Boyer-Lindquist azimuthal coordinate
singularity depicted in Figure 8.4 causes the tendex and vortex lines in Boyer-Lindquist slicing to
wind in ¢ direction when close to horizon. This feature is clearly visible in Figure 8.7 (c¢) and (d),
where we display the tendex and vortex lines in Kerr-Schild spatial coordinates.

Based on our comparison of Kerr-Schild and Cook-Scheel slicings (Figure 8.6), and our analysis
of the ubiquity of azimuthal spiraling lines in horizon-penetrating slices (Appendix 8.C), we con-
jecture that horizon-penetrating slicings of any black-hole spacetime will generically share the same
qualitative and semi-quantitative structures of tendex and vortex lines. This conjecture is of key
importance for our use of tendex and vortex lines to extract intuition into the dynamical processes
observed in numerical simulations. More specifically:

Numerical spacetimes have dynamically chosen slicings, and the primary commonality from sim-
ulation to simulation is that the time slicing must be horizon penetrating, to prevent coordinate
singularities from arising on the numerical grid near the horizon. Our conjecture implies that, re-
gardless of the precise slicing used in a simulation, we expect the tendex and vortex lines to faithfully
reveal the underlying physical processes. We will build more support for this conjecture in Paper
I1I, by comparing the final stages of a numerical black-hole merger with a perturbed Kerr black hole,
using very different slicing prescriptions.

We conclude this section with a digression from its slicing-dependence focus:

When we compare the a/M = 0.875 black hole of Figure 8.6 with the a/M = 0.95 hole of
Figure 8.5, the most striking difference is in the tendex lines very near the horizon. The value
a/M = 0.875 is only slightly above the critical spin a/M = v/3/2 = 0.8660 at which the horizon’s
poles acquire negative scalar curvature. Correspondingly, for a/M = 0.875, the blue tendex lines
that connect the two poles emerge from a smaller region at the poles than for a/M = 0.95, and they
hug the horizon more tightly as they travel from one pole to the other; and the red, radial tendex
lines near the poles suffer much smaller deflections than for a/M = 0.95 as they descend into the

horizon (see insets).

8.7 Conclusion

Using vortex and tendex lines and their vorticities and tendicities, we have visualized the spacetime
curvature of stationary black holes. Stationary black-hole spacetimes are a simple arena in which
to learn about the properties of these visualization tools in regions of strong spacetime curvature.
From the features of the vortex and tendex lines and their vorticities and tendicities that we describe
below, we have gained an understanding of these visualization tools and made an important stride
toward our larger goal of using these tools to identify geometrodynamical properties of strongly

curved spacetimes—particularly those in the merger of binary black holes.
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Black hole spacetimes have an event horizon (a feature that was absent in our study of weakly
gravitating systems in Paper I). To understand our visualization tools on the horizon, we defined
and discussed the horizon tendicity and horizon vorticity of stationary black holes. The horizon
tendicity and vorticity are directly proportional to the intrinsic and extrinsic curvature scalars of a
two-dimensional horizon. As a result, the average value of the horizon tendicity must be negative,
and the horizon vorticity must average to zero. Any region of large vorticity on the horizon (a
horizon vortex), therefore, must be accompanied by an equivalent vortex of the opposite sign, but
there is not an analogous constraint for horizon tendexes.

Outside the horizon, we also visualized the tendex lines and vortex lines, the tendicities and vor-
ticities, and the regions of large tendicity (tendezes) and large vorticity (vortexes) for Schwarzschild
and Kerr black holes (the latter both slowly and rapidly spinning). In particular, we investigated
how the vortex and tendex lines of Kerr black holes changed when they were drawn in different
time slices and with different spatial coordinates—within the set of those time slices that smoothly
pass through the horizon and spatial coordinates that are everywhere regular. We found our visual-
izations are quite similar between two commonly used, though rather different, horizon-penetrating
time functions: Kerr-Schild and Cook-Scheel. The spatial-coordinate dependence was also mild, and
was easily understandable in terms of the relation between the different coordinate systems. Because
the coordinate systems used in numerical simulations of black holes are also horizon penetrating,
this suggests that the vortex and tendex lines will not be very different, even though the dynamical
coordinates of the simulation may be.

This study is a foundation for future work on computing the tendexes and vortexes of black-
hole spacetimes. A recent work by Dennison and Baumgarte [4]—in which the authors calculated
the tendex and vortex fields of approximate initial data representing non-spinning, boosted black
holes, and also black-hole binaries—will also be helpful for understanding binaries. In addition, our
investigations of the slicing and coordinate dependence of tendexes and vortexes is complemented
by another recent study of Dennison and Baumgarte [33], where expressions are given for computing
curvature invariants in terms of the vorticities, tendicities, and the eigenvector fields which give the
tendex and vortex lines. These expressions will likely be of use in future analytic and numerical
studies of tendexes and vortexes.

In a companion paper (Paper III), we turn to perturbed black holes. We aim to deepen our
understanding of tendex and vortex lines in these well-understood situations and to see what new
insights we can draw from these spacetimes by using vortex and tendex lines. Ultimately, we will
apply these visualization techniques and our intuition from simpler analytical spacetimes to study
numerical simulations of strongly curved and dynamic spacetimes and their geometrodynamics. In

Paper IV, we will do just this, focusing on binary-black-hole mergers.
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8.A Kerr Black Hole in Boyer-Lindquist Slicing and Coordi-
nates

For a rapidly rotating Kerr black hole in Boyer-Lindquist (BL) coordinates {t,r,0, ¢}, the metric is
given by Eq. (8.28) above. A “BL observer”, who moves orthogonally to the slices of constant BL

time ¢, has a 4-velocity @ and orthonormal tetrad given by

R A 2Mar I FAY
i= g (0 20 R
L1 L X1

This tetrad is also often called the locally non-rotating frame [34, 35]. In this orthonormal basis,

the tidal and frame-drag fields are given by (cf. Egs. (6.8a-6.9d) of [36])

99

_Qe% /JQm 0
Eab = * QA= 0 |, (8.40a)
* * Q.
Qmfe -nQ. 0
By = * QmiZE 0 |, (8.40D)
* * Qm

with entries denoted by * fixed by the symmetry of the tensors, and where

Mr(r? — 3a? cos? )
Q. = = , (8.40c)




219

Figure 8.7: (a) Tendex lines for a Kerr black hole with a/M = 0.875 on a slice of constant Boyer-
Lindquist time ¢, plotted in Boyer-Lindquist spatial coordinates. The lines with positive ten-
dicity are colored blue and negative are colored red. (b) Vortex lines for this same black hole, slicing
and coordinates, with lines of positive vorticity colored blue and negative colored red. (c) and (d)
Tendex and vortex lines for the same black hole and same Boyer-Lindquist slicing, but drawn in the
Kerr-Schild spatial coordinates. (The color of the lines and horizon are similar to Figure 8.5)

~ Macos0(3r? — a? cos® 0)

Qm 53 , (8.40d)
Aa?sin® 0
§= (CETSER (8.40e)
~ 3aVA(r? +a?)sing 3,/
= 1 =1Toe (8.40f)

The functions . and Q,,, are related to the real and imaginary parts of the complex Weyl scalar Uy
calculated using the Kinnersley null tetrad by Vo = —Q.+iQ,,,. Note that there is a duality between
the electric and the magnetic curvature tensors: namely, by replacing Q. — @, and Q,, = —Q.,
the tensor transforms as £,; — B;.

The block diagonal forms of £,; and B,; imply that one of the eigenvectors for each will be €.
When integrated, this gives toroidal tendex and vortex lines (i.e., lines that are azimuthal, closed

circles). The other two sets of lines for each tensor are poloidal (i.e., they lie in slices of constant ¢).
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More specifically, the eigenvectors of the tidal field are

e _ (N — 638 + €4 VE = (X5 — 33)¢r + €3¢ iE=g,. (8.41)
VOE = £ 1 (&) JO5 — € + (€7 '

The labeling of these eigenvectors is such that, as a — 0, they limit to the corresponding eigenvec-
tors (8.18) of a Schwarzschild black hole. The tendicities (eigenvalues) associated with these three

eigenvectors, which appear in the above formulas, are

2 2 2 2
e (e -4 () (e

2 = Q.. (8.42)

The eigenvectors of the frame-drag field are

1
o]

g5 _ (A — Bg) + By

: (8.43)
VOB = Bjg)* + (B,5)?

©
I
&)

ot

Here the labeling + and — of the poloidal eigenvectors corresponds to the signs of their eigenvalues

(vorticities). The eigenvalues are

2 2
M= _QTm - \/(&%w) (ﬁ) +12Q2, A5 = Q. (8.44)

The tendex and vortex lines tangent to the eigenvectors (8.41) and (8.43) are shown in Figure 8.7

for a rapidly rotating black hole, a/M = 0.875. The lines with positive eigenvalues (tendicity or
vorticity) are colored blue, and those with negative eigenvalues are colored red. Far from the black
hole, the tendex lines resemble those of a Schwarzschild black hole, and the vortex lines resemble
those of a slowly spinning hole. However, near the horizon the behavior is quite different. The nearly
radial tendex lines in the inset of Figure 8.7 are bent sharply as they near the horizon, because of
the black hole’s spin.

Before closing this appendix, we describe the behavior of the eigenvalues near the poles. From
Egs. (8.42), we see that as § — 0 and 6 — , )\‘g — )\‘;. Along the polar axis, therefore, the
poloidal and axial eigenvectors of £,; become degenerate, and any vector in the plane spanned by
these directions is also an eigenvector at the axis. Meanwhile, for B,;, Eqs. (8.44) show that as
0 — 0, )\f — )\5, and as 6 — m, \B — )\S. Once again there is a degenerate plane spanned by
two eigenvectors at the polar axis. In Paper III, in which we study the tendex and vortex lines of
perturbed Kerr black holes, the degenerate regions have a strong influence on the perturbed tendex

and vortex lines (see Appendix F of Paper III).
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8.B Kerr Black Hole in Kerr-Schild Slicing and Ingoing-Kerr

Coordinates

In ingoing-Kerr coordinates {Z,r,6, ¢} [Eqs. (8.29) and (8.32)], the Kerr metric takes the form (see,
e.g., Chapter 33 of [27], though we use the Kerr-Schild time # [29, 30], or Eq. (D.4) of [37])

2M 4M - 4Marsin®6 . - N
ds® = — (1 — T)d? + 5 " drdi — %dtw + H2dr? + 2d6% — 2aH sin® drdé
Asin?6 -
2P T dd?
S dd?
oM
H? =1+ Er, (8.45)

where ¥ and A are defined in Eq. (8.28). The 4-velocities of ingoing-Kerr observers, who move

orthogonally to slices of constant £, and the orthonormal tetrads they carry, are given by

. . VA aH
u_Hat_iaTa ef—ﬁar+ﬁa¢7

1 o1
€r — —— — — 07 .4
€ \/589, € \/ 1 Sin98¢ (8.46)

(see, e.g., [38] or [37]).

The components of the tidal field in this orthonormal basis are

_ 2+¢€ 3a(r?+a?)sin g 6aMr(r®4a?)sin
Qe 1-¢ Qm HVAYZ Qe HAVS
2 .2 2 .2
Ea=| * Q. (1 + Sapgn @ 9) —Qum A , (8.47)
2 2
* * Qe ?tg - Qe (]- + 3aH521121 0)

where Q¢, Qm, and £ are defined in Egs. (8.40¢), (8.40d), and (8.40e). Just as in Boyer-Lindquist
slicing and coordinates (Appendix 8.A), so also here, the components B,; of the frame-drag field

can be deduced from &; by the duality relation
By = €i5lQc=Qum, Qu——a. - (8.48)

The eigenvalues of the tidal field (8.47), i.e. the tendicities, and their corresponding eigenvectors

are
3¢ Qe 3 Qe
E _ E _ E _ .
S Y ES RN A0 = SpEy T g As = Qe (8.49)
(2Masin 0)*F

¢ =QA(H*S)* + =3 , F=7r*4+2Mr+a*;

VA

- 1
Ve /3 (2 2\ >
- — H Jr a 7 Jr D —
" ( (T )6 2Qmasinf

vy

[Qe(F + a®sin®0) — (] €; — 2Marsin 05(;) ,
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_ 1 A

V:gg _ W(H\/E(TQ —‘rCLQ)é} + QQW\/“;HQ [QE(F—i—aQ sin? 6) + d é’é — QMGTSiDHé;Z) ,

- 1

Vf = (2Ma7“ sin fe; + H\/E(T2 + a2)5(;> . (8.50)
¢

Here the quantities v,., vg, and v § are the norms of the vectors in large parentheses (which give the
eigenvectors V€ unit norms). As for Boyer-Lindquist slicing, our r, 6, ¢ labels for the eigenvectors
and eigenvalues are such that as a — 0, they limit to the corresponding Schwarzschild quantities
in Eddington-Finkelstein slicing. Note that although the expressions for ‘_/;5 and V;g appear nearly
identical, the coefficient of the term in front of € for V'TS includes —(, and that in front of € for ‘7:95
includes +¢. This seemingly small difference determines whether the eigenvectors are predominantly
radial or poloidal. Note also that the limit a — 0 must be taken carefully with the vectors written
in this form in order to recover the eigenvectors of a Schwarzschild hole.

As for Boyer-Lindquist slicing, so also here, the eigenvectors and eigenvalues (vorticities) for B;

can be derived from those for £,; using the Kerr duality relations:

{V;87 V—E’ Vf} = {V!‘g’ V987 V§}|Qe_>Q'm7 Qm——Qe > (8'51)
{Aé’ )\i’ )\g} = {)\f7 )\g’ Ag}‘QG_)QTH ~,Q7n_>_Qe ° (8'52)

As in the case of Boyer-Lindquist slicing, so also for Kerr-Schild slicing, the transverse (nonradial)
eigenvectors are degenerate on the polar axis. This can be seen, for example, from the form of £,; in
Eq. (8.47), or from the corresponding eigenvalues in Egs. (8.49): as sinf — 0, the matrix becomes

diagonal with two equal eigenvalues, A\gp and A4. This is an inevitable consequence of axisymmetry.

8.C Spiraling Axial Vortex and Tendex Lines for Kerr Black
Holes in Horizon-Penetrating Slices

In Figures 8.5, 8.6, and 8.7, the azimuthal tendex and vortex lines of a Kerr black hole in horizon-
avoiding Boyer-Lindquist slices are closed circles, while those in horizon-penetrating Kerr-Schild and
Cook-Scheel slices are outward spirals. In this section, we argue that outward spirals are common
to a wide class of horizon-penetrating slices, including ingoing-Kerr and Cook-Scheel slicings.
The class of time slices that we will investigate are those that differ from Boyer-Lindquist slices,
t, by a function of Boyer-Lindquist r,
t'=t+ f(r). (8.53)

For example, both ingoing Kerr and Cook-Scheel times fall into this category. By computing the

normal to a slice of constant ¢’ [when expressed in terms of the locally non-rotating frame of Eq.
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. 9" (. [gTdf(r)
U/ — gt/t, <U+ F d'{‘ (3 . (854)

Here g** and ¢"" are the contravariant components of the metric in Boyer-Lindquist coordinates,

(8.39)] we find that

and g''!" are those in coordinates that use ' instead. Defining

tf rr
"Y = t/t/ b

gtt : (8.55)
we can see that the above transformation has the form of a set of local Lorentz transformations
between the locally non-rotating frame and the new frame, and that v2 = 1/(1 — v?). This implies

that we can express the timelike normal and the new radial vector as

@ =y (T + ver), =i+ é;), (8.56)
and that we need not change the vectors &; and € 3 in making this transformation.

From the expressions for how the tidal and frame-drag fields transform under changes of slicing
(see Appendix B of [28]), we find that we can compute the new components of the tidal field in the
transformed slicing and tetrad from the tidal and frame-drag fields in the Boyer-Lindquist slicing
and tetrad [Eq. (8.40a) and (8.40b)]. For a change in slicing corresponding to a radial boost, these

general transformation laws simplify to

Eprpr = SFTL s (8.57&)
Eoir = ’y(é’ veATCBCT) (8.57b)
Eap =1L+ 0*)EFE +v2ER 045 — 2ves04BE el (8.57c)

where fl, B , and C =0 and (57 and where repeated lowered index C is summed over its two values.
To understand how B is transformed, we use the duality € — B and B — —& in the transformation
laws (8.57a)—(8.57c).

By substituting the explicit expressions for the Boyer-Lindquist slicing and tetrad tidal fields
and the definition of y in Eq. (8.40f), we see

~(#)e. (L) an (35 Q.
g[z’l;’ = * 72 (% ) Qe _720 (1%2) Qm . (858)
* * 72 (1 - U2%> Qe

In calculating B, we could again use the duality in Eq. (8.48).
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To compute the tendex lines and the tendicity, we express Eq. (8.58) in a new basis given by

1
Epr =~ (Epr — YV \/£E}) , 8.59a
1+72v2§( " \/g ¢) ( )
- 1 o s
&y = 75(7@\/56?, +85), (8.50b)

Nigeerr

and where €, is again unchanged. In this basis, the tidal field becomes block diagonal

3 1+~20v2
4?2 (%2 _ m) 0. 'Y\/f(lig'y 90, 0

1-¢
Eariy = : 2 (3o o |- (3.60)
* * Q.
We then see that the tendicities are
A = =% = s TP + PP QR + 1P+ P0G (3.612)
dor = =%+ s TP P8P + P+ 00 (5.61b)
Aor = Qe (8.61c)

and the corresponding vectors have an identical form to those in Eq. (8.41), when one replaces the
components of the tidal field, the tendicities, and the unit vectors there with the equivalent (primed)
quantities in Eqgs. (8.59)—(8.61):

> ()‘7‘” - gé//é//)éf" + gf,//é//é’é

Vo = , 8.62a
\/()\7‘” - gé//é//)2 + (gf‘//é//)2 ( )

= ()\9” - gé//é//)gf” + gﬁ//é//é’é

Vi = , (8.62D)
\/(AGH - (c/‘é//é//)2 + ((c/‘fué//)Z
Vi = &30 (8.62¢)

From the expressions for the eigenvectors, we can explain several features of the tendex lines in
Figures 8.5, 8.6, and 8.7. When v = 0 [i.e., when f(r) = 0 and the slicing is given by the horizon-
avoiding, Boyer-Lindquist time], the azimuthal lines formed closed loops, and the radial and polar
lines live within a plane of constant ¢. For all other slicings in this family [i.e., v # 0 and f(r) # 0],
the azimuthal lines pick up a small radial component, and they will spiral outward on a cone of
constant § with a pitch angle whose tangent is proportional to yv+/¢; the radial and polar lines will
also wind slightly in the azimuthal direction (an effect that is more difficult to see in Figures 8.5
and 8.6). By duality, an identical result holds for the azimuthal vortex lines of B, and an analogous
behavior holds for the poloidal vortex lines (in Boyer-Lindquist slicing, they remain in planes of

constant ¢, but in horizon-penetrating slicings, they twist azimuthally).
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For this class of slices, the azimuthal eigenvector of the tidal field changes linearly in the velocity of
the boost, but the tendicity along the corresponding tendex line is unchanged. The other eigenvectors
also change linearly in the velocity, but their tendicities are quadratic in v; therefore, for small
changes in the slicing, the tendicities change more weakly. This result is reminiscent of a similar
qualitative result for perturbations of black holes in the next paper of this series: the tendex lines
appear to be more slicing dependent than their corresponding tendicities.

In the relatively general class of slicings investigated here, we showed that the generic behavior
of the azimuthal lines in horizon-penetrating slices is to spiral outward radially (and the other lines
must also wind azimuthally as well). This, however, is not the most general set of slicings that
still respect the symmetries of the Kerr spacetime [e.g., those of the form ¢ = ¢ + g(r,0) are].
These slicings will have a § component to their boost velocities, and (based on the argument for
slowly spinning black holes in Section 8.5.3), the azimuthal vortex lines will also wind in the polar
direction. A more generic behavior, therefore, would be azimuthal lines that no longer wind on
cones of constant §. Because we were not aware of any simple analytical slicings of this form, we did
not investigate here; however, we suspect that this more general behavior of the lines may appear
in numerical simulations.

Before concluding, we note that by choosing

A 2Mr
"=V H2AY YTV (8:63)

we can recover the results given in Appendix 8.B for the tidal field (and by duality, the frame-drag

field). Similarly, if we choose

_ 2 2
_ Alr —r-) ; R (8.64)
Al(r —=r_ )X +2M(r? +ryr + 13 + a?)] VA

then we can use Eq. (8.58) to calculate the tidal and frame-drag fields in time-harmonic Cook-Scheel
slicing (and its associated tetrad). The expressions were not as simple as those in Appendix 8.B,
and for this reason, we do not give them here. Because the velocity in Cook-Scheel slicing falls off
more rapidly in radius than that in ingoing-Kerr slicing, the azimuthal lines should have a tighter

spiral (a feature that we observe in Figure 8.6).
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Chapter 9

Visualizing Spacetime Curvature
via Frame-Drag Vortexes and Tidal
Tendexes III. Quasinormal
Pulsations of Schwarzschild and

Kerr Black Holes

In recent papers, we and colleagues have introduced a way to visualize the full vacuum
Riemann curvature tensor using frame-drag vortex lines and their vorticities, and tidal
tendex lines and their tendicities. We have also introduced the concepts of horizon vor-
tezes and tendexes and 3-D wortezes and tendexes (regions on or outside the horizon
where vorticities or tendicities are large). In this paper, using these concepts, we dis-
cover a number of previously unknown features of quasinormal modes of Schwarzschild
and Kerr black holes. These modes can be classified by a radial quantum number 7,
spheroidal harmonic orders (I,m), and parity, which can be electric [(—1)!] or magnetic
[(=1)"*1]. Among our discoveries are these: (i) There is a near duality between modes
of the same (n,l,m): a duality in which the tendex and vortex structures of electric-
parity modes are interchanged with the vortex and tendex structures (respectively) of
magnetic-parity modes. (ii) This near duality is perfect for the modes’ complex eigen-
frequencies (which are well known to be identical) and perfect on the horizon; it is
slightly broken in the equatorial plane of a non-spinning hole, and the breaking be-
comes greater out of the equatorial plane, and greater as the hole is spun up; but even
out of the plane for fast-spinning holes, the duality is surprisingly good. (iii) Electric-
parity modes can be regarded as generated by 3-D tendexes that stick radially out of the
horizon. As these “longitudinal,” near-zone tendexes rotate or oscillate, they generate

longitudinal-transverse near-zone vortexes and tendexes, and outgoing and ingoing grav-
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itational waves. The ingoing waves act back on the longitudinal tendexes, driving them
to slide off the horizon, which results in decay of the mode’s strength. (iv) By duality,
magnetic-parity modes are driven in this same manner by longitudinal, near-zone vor-
texes that stick out of the horizon. (v) When visualized, the 3-D vortexes and tendexes
of a (I,m) = (2,2) mode, and also a (2, 1) mode, spiral outward and backward like water
from a whirling sprinkler, becoming outgoing gravitational waves. By contrast, a (2, 2)
mode superposed on a (2, —2) mode has oscillating horizon vortexes or tendexes that eject
3-dimensional vortexes and tendexes, which propagate outward becoming gravitational
waves; and so does a (2,0) mode. (vi) For magnetic-parity modes of a Schwarzschild
black hole, the perturbative frame-drag field, and hence also the perturbative vortexes
and vortex lines, are strictly gauge invariant (unaffected by infinitesimal magnetic-parity
changes of time slicing and spatial coordinates). (vii) We have computed the vortex and
tendex structures of electric-parity modes of Schwarzschild in two very different gauges
and find essentially no discernible differences in their pictorial visualizations. (viii) We
have compared the vortex lines, from a numerical-relativity simulation of a black hole
binary in its final ringdown stage, with the vortex lines of a (2,2) electric-parity mode of

a Kerr black hole with the same spin (a/M = 0.945) and find remarkably good agreement.

Originally published as D. A. Nichols, A. Zimmerman, Y. Chen, G. Lovelace, K. D.
Matthews, R. Owen, F. Zhang, and K. S. Thorne, Phys. Rev. D 86, 104028 (2012).
Copyright 2012 by the American Physical Society.

9.1 Motivations, Foundations and Overview

9.1.1 Motivations

This is the third in a series of papers that introduce a new set of tools for visualizing the Weyl
curvature tensor (which, in vacuum, is the same as the Riemann tensor), and that develop, explore,
and exploit these tools.

We gave a brief overview of these new tools and their applications in an initial Physical Review
Letter [1]. Our principal motivation for these tools was described in that Letter, and in greater
detail in Section I of our first long, pedagogical paper [2] (Paper I). In brief: we are motivated by
the quest to understand the nonlinear dynamics of curved spacetime (what John Wheeler has called
geometrodynamics).

The most promising venue, today, for probing geometrodynamics is numerical simulations of the
collisions and mergers of binary black holes [3]. Our new tools provide powerful ways to visualize the

results of those simulations. As a byproduct, our visualizations may motivate new ways to compute
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the gravitational waveforms emitted in black-hole mergers—waveforms that are needed as templates
in LIGO’s searches for and interpretation of those waves.

We will apply our tools to black-hole binaries in Paper IV of this series. But first, in Papers
I-111, we are applying our tools to analytically understood spacetimes, with two goals: (i) to gain
intuition into the relationships between our tools’ visual pictures of the vacuum Riemann tensor and
the analytics, and (ii) to gain substantial new insights into phenomena that were long thought to be
well understood. Specifically, in Paper I [2], after introducing our tools, we applied them to weak-
gravity situations (“linearized theory”); in Paper II [4], we applied them to stationary (Schwarzschild
and Kerr) black holes; and here in Paper III we will apply them to weak perturbations (quasinormal

modes) of stationary black holes.

9.1.2 Our New Tools, In Brief

In this section, we briefly summarize our new tools. For details, see Sections II, III, and IV of Paper
I [2], and Sections IT and IIT of Paper IT [4].

When spacetime is foliated by a family of spacelike hypersurfaces (surfaces on which some time
function t is constant), the electromagnetic field tensor F},, splits up into an electric field E; = F};

and a magnetic field B; = %fiﬁijl‘cv which are 3-vector fields living in the spacelike hypersurfaces.

Here the indexes are components in proper reference frames (orthonormal tetrads) of observers who
move orthogonally to the hypersurfaces, and €, 18 the Levi-Civita tensor in those hypersurfaces.
Similarly, the Weyl (and vacuum Riemann) tensor C,,,, splits up into: (i) a tidal field & =
Ciojo0
geodesic deviation, Aa; = —55,;Aa:i“ [Eq. (3.3) of Paper I]; and (ii) a frame-drag field B;; =
Ciopa-

B;@Axf“ [Eq. (3.11) of Paper IJ.

which produces the tidal gravitational accelerations that appear, e.g., in the equation of

%e%ﬁ P which produces differential frame-dragging (differential precession of gyroscopes), AQ; =

We visualize the tidal field € by the integral curves of its three eigenvector fields, which we call
tendex lines, and also by the eigenvalue of each tendex line, which we call the tendicity of the line
and we depict using colors. Similarly, we visualize the frame-drag field B by frame-drag vortex lines
(integral curves of its three eigenvector fields) and their vorticities (eigenvalues, color coded). See
Figures 9.2 and 9.3 below for examples. Tendex and vortex lines are analogs of electric and magnetic
field lines. Whereas through each point in space there pass just one electric and one magnetic field
line, through each point pass three orthogonal tendex lines and three orthogonal vortex lines, which
identify the three principal axes of £ and B.

A person whose body is oriented along a tendex line gets stretched or squeezed with a relative
head-to-foot gravitational acceleration that is equal to the person’s height times the line’s tendicity
(depicted blue [dark gray] in our figures for squeezing [positive tendicity] and red [light gray] for

stretching [negative tendicity]). Similarly, if the person’s body is oriented along a vortex line, a
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gyroscope at her feet precesses around her body axis, relative to inertial frames at her head, with an
angular velocity equal to her height times the line’s vorticity (depicted blue [dark gray] for clockwise
precession [positive vorticity] and red [light gray] for counterclockwise [negative vorticity]).

We color code the horizon of a black hole by the normal-normal component of the tidal field,
ENN, to which we give the name horizon tendicity, and also by the normal-normal component of
the frame-drag field, By, the horizon vorticity; see, e.g., Figure 9.9 below. These quantities are
boost-invariant along the normal direction N to the horizon in the foliation’s hypersurfaces.

A person hanging radially above the horizon or falling into it experiences head-to foot squeezing
(relative acceleration) equal to the horizon tendicity times the person’s height, and a differential
head-to-foot precession of gyroscopes around the person’s body axis with an angular velocity equal
to the horizon vorticity times the person’s height.

For any black hole, static or dynamic, the horizon tendicity £y nx and vorticity By are related
to the horizon’s Newman-Penrose Weyl scalar Wy, and its scalar intrinsic curvature R and scalar

extrinsic curvature X’ by
1
5NN+Z'BNN:2\112:—5(R+i)()+2(up—>\0) ; (9.1)

[5], and Section III of [4]. Here p, o, u, A are spin coefficients related to the expansion and shear
of the null vectors | and 7 used in the Newman-Penrose formalism [with (I + 7)/v/2 = @ the
normal to the foliation’s hypersurfaces, (I — i7)/v/2 = N the normal to the horizon in the foliation’s
hypersurfaces, and &, = (m-+m*)/v/2 and & = (m—m*)/(iv/2) tangent to the instantaneous horizon
in the foliation’s hypersurfaces]. For stationary black holes, p and o vanish, and Exyy = —%R and
By = — 3.

For perturbations of Schwarzschild black holes, it is possible to adjust the slicing at first order
in the perturbation, and adjust the associated null tetrad, so as to make the spin coefficient terms
in Eq. (9.1) vanish at first order in the perturbation; whence Enyy = —%R and Byny = —%X. For
perturbations of the Kerr spacetime, however, this is not possible. See Appendix 9.E for details.
Following a calculation by Hartle [6], we show in this appendix that for Kerr one can achieve
R+iX = —4(¥y + XD o(M)) on the horizon, accurate through first order. Here, and throughout this
paper, the superscripts (¥ (or subscripts (;)) indicate orders in the perturbation.

For the dynamical black holes described in [1] and for the weakly perturbed holes in this paper,
we found that the spin terms in Eq. (9.1) are numerically small compared to the other terms, so
ENN ~ —%R and Byy ~ —%X. In addition, in a recent study of the tendexes and vortexes of
approximate black hole initial data, Dennison and Baumgarte [7] found that these spin terms vanish

to a high order in the small velocities of their black holes, giving further evidence that these terms

are typically negligible.
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Because X is the 2-dimensional curl of a 2-dimensional vector (the Héjicek field) [8], its integral
over the black hole’s 2D horizon vanishes; and by virtue of the Gauss-Bonnet theorem, the horizon
integral of R is equal to 8w. Correspondingly, for fully dynamical black holes as well as weakly

perturbed black holes, the horizon integrals of Eyx and By y have the approximate values [1]

/BNN’ZO, /gNN2—47T. (92)
H H

9.1.3 Overview of This Paper’s Results
9.1.3.1 Slicing, Coordinates and Gauges

Throughout this paper, we use slices of constant Kerr-Schild time ¢ (which penetrate smoothly
through the horizon) to decompose the Weyl tensor into its tidal and frame-drag fields; and we
express our quasinormal perturbations, on the slices of constant ¢, in Kerr-Schild spatial coordi-
nates (Sections 9.2.1 and 9.2.2, and also Paper II [4]). In the zero-spin (Schwarzschild) limit, the
Kerr-Schild slices become slices of constant ingoing Eddington-Finkelstein time # and the spatial co-
ordinates become those of Schwarzschild. Our choice of Kerr-Schild is dictated by these coordinates’
resemblance to the coordinates that are typically used in numerical-relativity simulations of binary
black holes, at late times, when the merged hole is settling down into its final Kerr-black-hole state;
see, e.g., Figure 9.15 below.

For a perturbed black hole, the slices and coordinates get modified at perturbative order in ways
that depend on the gauge used to describe the perturbations (i.e., the slicing and spatial coordinates
at perturbative order); see Section 9.2.3.

For spinning black holes, we perform all our computations in ingoing radiation gauge (Sec-
tion 9.2.1 and Appendix 9.C). For non-spinning (Schwarzschild) black holes, we explore gauge
dependence by working with two gauges that appear to be quite different: ingoing radiation gauge
(Appendix 9.C), and Regge-Wheeler gauge (Appendix 9.A). Remarkably, for each mode we have
explored, the field-line visualizations that we have carried out in these two gauges look nearly the
same to the human eye; visually we see little gauge dependence. We discuss this and the differences
in the gauges, in considerable detail, in Section 9.2.3 and Appendix 9.D.

For a Schwarzschild black hole, we have explored somewhat generally the influence of perturbative
slicing changes and perturbative coordinate changes on the tidal and frame-drag fields, and on their
tendex and vortex lines, and tendicities and vorticities (Section 9.2.3). We find that the tendicities
and vorticities are less affected by perturbative slicing changes, than the shapes of the tendex
and vortex lines. We also find that while coordinate changes affect the shapes of the tendex and
vortex lines, the tendicity and vorticity along a line is unchanged, and that in the wave zone a

perturbative change in coordinates affects the tendicity and vorticity at a higher order than the
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effect of gravitational radiation.
For this reason, in this paper we pay considerable attention to vorticity and tendicity contours,

as well as to the shapes of vortex and tendex lines.

9.1.3.2 Classification of Quasinormal Modes

As is well known, the quasinormal-mode, complex eigenfrequencies of Schwarzschild and Kerr black
holes can be characterized by three integers: a poloidal quantum number [ = 2,3, ..., an azimuthal
quantum number m = —I, -l 4+ 1,... + [, and a radial quantum number n. For each {n,l,m} and its
eigenfrequency wym, there are actually two different quasinormal modes (a two-fold degeneracy).
Of course, any linear combination of these two modes is also a mode. We focus on those linear
combinations of modes that have definite parity (Appendix 9.C).

We define a tensor field to have positive parity if it is unchanged under reflections through the
origin, and negative parity if it changes sign. A quasinormal mode of order (n,l,m) is said to have
electric parity [or magnetic parity] if the parity of its metric perturbation is (—1)! [or (—1)!*1]. The
parity of the tidal-field perturbation is the same as that of the metric perturbation, but that of the
frame-drag field is opposite. In much of the literature the phrase “even parity” is used in place of
“electric parity”, and “odd parity” in place of “magnetic parity”; we avoid those phrases because of
possible confusion with positive parity and negative parity.

In this paper, we focus primarily on the most slowly damped (n = 0) quadrupolar (I = 2) modes,
for various azimuthal quantum numbers m and for electric- and magnetic-parity. Since we discuss

exclusively the n = 0 modes, we will suppress the n index and abbreviate mode numbers as (I, m).

9.1.3.3 The Duality of Magnetic-Parity and Electric-Parity Modes

In vacuum, the exact Bianchi identities for the Riemann tensor become, under a slicing-induced
split of spacetime into space plus time, a set of Maxwell-like equations for the exact tidal field and
frame-drag field [Eqgs. (2.15) of Paper I [2] in a local Lorentz frame; Eqgs. (2.13) and (2.4) of Paper
I in general]. These Maxwell-like equations exhibit an exact duality: If one takes any solution to
them and transforms € — B, B — —&, they continue to be satisfied (Section IIB 1 of Paper I [2]).

This duality, however, is broken by the spacetime geometry of a stationary black hole. A
Schwarzschild black hole has a monopolar tidal field £ and vanishing frame-drag field B; and a
Kerr black hole has a monopolar component to its tidal field (as defined by a spherical-harmonic
analysis at large radii or at the horizon), but only dipolar and higher-order components to its
frame-drag field.

When a Schwarzschild or Kerr black hole is perturbed, there is a near duality between its electric-
parity mode and its magnetic-parity mode of the same (I, m); but the duality is not exact. The

unperturbed hole’s duality breaking induces (surprisingly weak) duality-breaking imprints in the
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quasinormal modes. We explore this duality breaking in considerable detail in this paper (Sec-
tions 9.2, 9.3.1, 9.3.2.3, and 9.3.3.2, and Appendices 9.C and 9.E.2).

If one tries to see the duality between electric-parity and magnetic-parity modes, visually, in
pictures of the perturbed hole’s tendex and vortex lines, the duality is hidden by the dominant
background tidal field and (for a spinning hole) the background frame-drag field. To see the duality
clearly, we must draw pictures of tendex and vortex lines for the perturbative parts € and 6B of
the tidal and frame-drag fields, with the unperturbed fields subtracted off. We draw many such
pictures in this paper.

We have made extensive comparisons of the least damped (n = 0) electric-parity and magnetic-
parity modes with (I = 2, m = 2). These two (2,2) modes (for any chosen black-hole mass M and
spin parameter a) have identically the same complex eigenfrequency, i.e., they are degenerate (as
has long been known and as we discussed above). This frequency degeneracy is an unbroken duality.

Pictures of the perturbative vortex and tendex lines and their color-coded vorticities and tendic-
ities show a strong but not perfect duality: For a non-spinning hole, the perturbative vortex lines
and their vorticities for the magnetic-parity mode (e.g., Figure 9.2) look almost the same as the
perturbative tendex lines and their tendicities for the electric-parity mode (Figure 9.12); and simi-
larly for the other pair of lines and eigenvalues. As the hole’s spin is increased, the duality becomes
weaker (the corresponding field lines and eigenvalues begin to differ noticeably); but even for very
high spins, the duality is strikingly strong; see bottom row of Figure 9.12 below. The duality remains
perfect on the horizon in ingoing radiation gauge for any spin, no matter how fast (Section 9.3.1 and
Appendix 9.E), and there is a sense in which it also remains perfect on the horizon of Schwarzschild

in Regge-Wheeler gauge (last paragraph of Appendix 9.A.5).

9.1.3.4 Digression: Electromagnetic Perturbations of a Schwarzschild Black Hole

As a prelude to discussing the physical character of the gravitational modes of a black hole, we shall
discuss electromagnetic (EM) modes, i.e., quasinormal modes of the EM field around a black hole.
The properties of EM modes that we shall describe can be derived from Maxwell’s equations in the
Schwarzschild and Kerr spacetimes, but we shall not give the derivations.

Because the unperturbed hole has no EM field and the vacuum Maxwell equations exhibit a
perfect duality (they are unchanged when E — B and B — —E), the EM modes exhibit perfect
duality. For any magnetic-parity EM mode, the magnetic field pierces the horizon, so its normal
component By is nonzero, while Fn vanishes. By duality, an electric-parity EM mode must have
Exn # 0 and By = 0. For a magnetic-parity mode, the near-zone magnetic fields that stick out of
the horizon can be thought of as the source of the mode’s emitted EM waves. We make this claim
more precise by focusing on the fundamental (n = 0), magnetic-parity, [ = 1, m = 1 mode:

Figure 9.2 shows magnetic field lines for this (1,1) mode, on the left (a) in the hole’s equatorial
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Figure 9.1: (a) Some magnetic field lines in the equatorial plane for the (1, 1) quasinormal mode of
the electromagnetic field around a Schwarzschild black hole, with Eddington-Finklestein slicing. The
horizon is color coded by the sign of the normal component of the magnetic field. The configuration
rotates counterclockwise in time. (b) Some magnetic field lines for this same quasinormal mode, in
3 dimensions.

plane, and on the right (b) in 3 dimensions with the equatorial plane horizontal. On the left, we see
a bundle of magnetic field lines that thread through the horizon and rotate counterclockwise. As
they rotate, the field lines spiral outward and backward, like water streams from a whirling sprinkler,
becoming the magnetic-field component of an outgoing electromagnetic wave. The electric field lines
for this mode (not shown) are closed circles that represent the electric part of electromagnetic waves
traveling outward at radii r > 2M and inward at radii 7 ~ 2M. This mode’s waves, we claim, are
generated by the near-zone, rotating magnetic field lines that thread the hole (Figure 9.1a). An
analogy will make this clear.

Consider a rotating (angular velocity o), perfectly conducting sphere in which is anchored a
magnetic field with the same dipolar normal component By o R[Y1!(0, ¢)e~%!] as the horizon’s
By for the (1,1) quasinormal mode (the red [light gray] and blue [dark gray] coloring on the horizon
in Figure 9.1). At some initial moment of time, lay down outside the conducting sphere, a magnetic-
field configuration that (i) has this By at the sphere, (ii) satisfies the constraint equation V- B = 0,
(iii) resembles the field of Figure 9.1 in the near zone, i.e., at r < A = ¢/o and at larger radii has
some arbitrary form that is unimportant; and (iv) (for simplicity) specify a vanishing initial electric
field. Evolve these initial fields forward in time using the dynamical Maxwell equations. It should
be obvious that the near-zone, rotating magnetic field will not change much. However, as it rotates,

via Maxwell’s dynamical equations it will generate an electric field, and those two fields, interacting,
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will give rise to the outgoing electromagnetic waves of a [ = 1, m = 1 magnetic dipole. Clearly,
the ultimate source of the waves is the rotating, near-zone magnetic field that is anchored in the
sphere. (Alternatively, one can regard the ultimate source as the electric currents in the sphere, that
maintain the near-zone magnetic field.)

Now return to the magnetized black hole of Figure 9.1, and pose a similar evolutionary scenario:
At some initial moment of time, lay down a magnetic-field configuration that (i) has the same normal
component at the horizon as the (1,1) mode, (ii) satisfies the constraint equation V- B = 0, and (iii)
resembles the field of Figure 9.1 in the near zone. In this case, the field is not firmly anchored in the
central body (the black hole), so we must also specify its time derivative to make sure it is rotating
at the same rate as the (1,1) quasinormal mode. This means (by a dynamical Maxwell equation)
that we will also be giving a nonvanishing electric field that resembles, in the near zone, that of the
(1,1) mode and in particular does not thread the horizon. Now evolve this configuration forward
in time. It will settle down, rather quickly, into the (1,1) mode, with outgoing waves in the wave
zone, and ingoing waves at the horizon. This is because the (1,1) mode is the most slowly damped
quasinormal mode that has significant overlap with the initial data.

As for the electrically conducting, magnetized sphere, so also here, the emitted waves are pro-
duced by the rotation of the near-zone magnetic field. But here, by contrast with there, the emitted
waves act back on the near-zone magnetic field, causing the field lines to gradually slide off the
horizon, resulting in a decay of the field strength at a rate given by the imaginary part of the mode’s
complex frequency.

This back-action can be understood in greater depth by splitting the electric and magnetic fields,
near the horizon, into their longitudinal (radial) and transverse pieces. The longitudinal magnetic
field is By and it extends radially outward for a short distance; the tangential magnetic field is a
2-vector B" parallel to the horizon; and similarly the electric field has Ex = 0, and so is purely
transverse. The tangential fields actually only look like ingoing waves to observers who, like the
horizon, move outward at (almost) the speed of light: the observers of a Schwarzschild time slicing.
As one learns in the Membrane Paradigm for black holes (Sections III.B.4 and III.C.2 of [9]), such
observers can map all the physics of the event horizon onto a stretched horizon—a spacelike 2-surface
of constant lapse function o = m < 1 very close in spacetime to the event horizon. On the
stretched horizon, these observers see ET = N x B" (ingoing-wave condition), and the tangential

magnetic field acts back on the longitudinal field via

0By

() . Ty —
L+ V- (aBT) =0. (9.3)

Here DV . (aB7) is the 2-dimensional divergence in the stretched horizon, and the lapse function

in this equation compensates for the fact that the Schwarzschild observers see a tangential field that
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diverges as 1/« near the horizon, due to their approach to the speed of light.

Equation (9.3) is a conservation law for magnetic field lines on the stretched horizon. The density
(number per unit area) of field lines crossing the stretched horizon is By, up to a multiplicative
constant; the flux of field lines (number moving through unit length of some line in the stretched
horizon per unit time) is B", up to the same multiplicative constant; and Eq. (9.3) says that the
time derivative of the density plus the divergence of the flux vanishes: the standard form for a
conservation law.

The longitudinal magnetic field By (0, ) is laid down as an initial condition (satisfying the
magnetic constraint condition). As it rotates, it generates the ingoing-wave near-horizon transverse
fields embodied in E™ and B"™ (and also the outgoing electromagnetic waves far from the hole);
and the divergence of aB™, via Eq. (9.3), then acts back on the longitudinal field that produced it,
pushing the field lines away from the centers of the blue (dark gray) and red (light gray) spots on the
stretched horizon toward the white ring. Upon reaching the white ring, each field line in the red region
attaches onto a field line from the blue region and slips out of the horizon. Presumably, the field line
then travels outward away from the black hole and soon becomes part of the outgoing gravitational

waves. The gradual loss of field lines in this way is responsible for the mode’s exponential decay.

9.1.3.5 The Physical Character of Magnetic-Parity and Electric-Parity Modes

For a Schwarzschild black hole, the physical character of the gravitational modes is very similar to
that of the electromagnetic modes:

Just as a magnetic-parity EM mode has nonzero By and vanishing Ep, so similarly: for a
Schwarzschild black hole, the magnetic-parity modes of any (I,m) have nonzero (solely perturba-
tive) horizon vorticity By = By, and vanishing perturbative horizon tendicity 6Enn = 0; and
correspondingly, from the horizon there emerge nearly normal vortex lines that are fully perturbative
and no nearly normal, perturbative tendex lines.

Just as in the EM case the near-zone magnetic fields that emerge from the horizon are the source
of the emitted electromagntic waves, so also in the gravitational case, for a magnetic-parity mode, the
emerging, near-zone, vortex lines and their vorticities can be thought of as the source of the emitted
magnetic-parity gravitational waves (see the next subsection). In this sense, magnetic-parity modes
can be thought of as fundamentally frame-drag in their physical origin. Figure 9.2 below depicts a
(2,2) example. We will discuss this example in Section 9.1.3.6.

For a Schwarzschild black hole, the electric-parity modes of any (I, m) have nonzero perturbative
horizon tendicity 6En N # 0, and vanishing horizon vorticity 6By = Byy = 0; and correspond-
ingly, from the horizon there emerge nearly normal perturbative tendex lines and no nearly normal
vortez lines. The emerging, near-zone, perturbative tendex lines can be thought of as the source of

the mode’s emitted electric-parity gravitational waves. In this sense, electric-parity modes can be
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thought of as fundamentally tidal in their physical origin.

There is a close analogy, here, to the tidal and frame-drag fields of dynamical multipoles in
linearized theory (Paper I [2]): Electric-parity (mass) multipoles have a tidal field that rises more
rapidly, as one approaches the origin, than the frame-drag field, so these electric-parity multipoles
are fundamentally tidal in physical origin. By contrast, for magnetic-parity (current) multipoles it is
the frame-drag field that grows most rapidly as one approaches the origin, so they are fundamentally
frame-drag in physical origin.

When a black hole is spun up, the horizon vorticities of its electric-parity modes become nonzero,
and the horizon tendicities of its magnetic-parity modes acquire nonzero perturbations. However,
these spin-induced effects leave the modes still predominantly tidal near the horizon for electric-parity

modes, and predominantly frame-drag near the horizon for magnetic-parity modes (Section 9.3).

9.1.3.6 The (2,2) Magnetic-Parity Mode of a Schwarzschild Hole

In this and the next several subsections, we summarize much of what we have learned about specific
n =0, = 2 modes (the least-damped quadrupolar modes), for various m. We shall focus primarily
on magnetic-parity modes, since at the level of this discussion the properties of electric-parity modes
are the same, after a duality transformation 6& — B, IB — —0€&.

It is a remarkable fact that, for a magnetic-parity mode of a Schwarzschild black hole, all gauges
share the same slicing, and the mode’s frame-drag field is unaffected by perturbative changes of
spatial coordinates; therefore, the frame-drag field is fully gauge invariant. See Section 9.2.3. This
means that Figures 9.2-9.8 are fully gauge invariant.

We begin with the (2,2) magnetic-parity mode of a Schwarzschild black hole. Figure 9.2 depicts
the negative-vorticity vortex lines (red) and contours of their vorticity (white and purple [dark
gray]), in the hole’s equatorial plane. Orthogonal to the red (solid) vortex lines (but not shown) are
positive-vorticity vortex lines that also lie in the equatorial plane. Vortex lines of the third family
pass orthogonally through the equatorial plane. The entire configuration rotates counterclockwise,
as indicated by the thick dashed arrow. The dotted lines, at radii » = X and r = A (where X is the
emitted waves’ reduced wavelength), mark the approximate outer edge of the near zone, and the
approximate inner edge of the wave zone.

Just as the near-zone electromagnetic (1,1) perturbations are dominated by radial field lines
that thread the black hole and have a dipolar distribution of field strength, so here the near-zone
gravitational perturbations are dominated by (i) the radial vortex lines that thread the hole and have
a quadrupolar distribution of their horizon vorticity Byy = 0By, and also by (ii) a transverse,
isotropic frame-drag field By, = B¢3¢9 = —%(5BNN that is tied to By in such a way as to guarantee
that this dominant part of B is traceless.

This full structure, the normal-normal field and its accompanying isotropic transverse field, makes
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Figure 9.2: Some vortex lines (solid, red lines) and contours of vorticity (shaded regions) in the
equatorial plane for the (2,2) magnetic-parity quasinormal mode of a non-rotating, Schwarzschild
black hole, with complex eigenfrequency w = (0.37367 — 0.088967) /M where M is the hole’s mass.
The horizon (central circle) is color coded by the horizon vorticity By as seen by someone looking
down on the black hole; this vorticity is entirely perturbative. The thick, solid red curves are one
set of vortex lines in the equatorial plane—the set with negative vorticity. These lines include some
that emerge from the horizon in the negative-vorticity (red) regions, and some that never reach the
horizon. The other, positive-vorticity, equatorial vortex lines are orthogonal to the ones shown, and
are identical to those shown but rotated through 90 degrees around the hole so some of them emerge
from the horizon in the positive-vorticity (blue) regions. The contours represent the vorticity of the
red (negative-vorticity) vortex lines, with largest magnitude of vorticity white and smallest purple
(dark gray); the contours mark where the vorticity has fallen to 50%, 25%, 10%, and 5% of the
maximum value attained at the center of the horizon vortex. The two dotted circles are drawn at
Schwarzschild radii r = A and r = 7A = A/2. They mark the approximate outer edge of the near
zone and the approximate inner edge of the wave zone. The arrow marks the direction of rotation
of the perturbation.
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Figure 9.3: The vortex lines (solid black for clockwise; dashed black for counterclockwise) and color-
coded vorticities in the equatorial plane for the same magnetic-parity (2,2) mode as in Figure 9.2.
This figure differs from Figure 9.2 in ways designed to give information about the emitted gravita-
tional waves: (i) It extends rather far out into the wave zone. (ii) It shows the angular structure
of the vorticity for the dominant vortex lines in each region of the equatorial plane. More specifi-
cally: the color at each point represents the vorticity of the equatorial vortex line there which has
the largest magnitude of vorticity, with radial variations of vorticity normalized away (so the linear
color code on the left indicates vorticity relative to the maximum at any given radius). The regions
of large positive vorticity (blue [dark gray]) are clockwise vortexes; those of large negative vorticity
(red [light gray]) are counterclockwise vortexes.

up the longitudinal, nonradiative frame-drag field B near the horizon. (As we shall discuss below,
this longitudinal structure is responsible for generating the mode’s gravitational waves, and all of
the rest of its fields.) Somewhat smaller are (i) the longitudinal-transverse components of B (B.;
and B, <13)’ which together make up the longitudinal-transverse part of the frame-drag field, a 2-vector
BT parallel to the horizon, and give the horizon-piercing vortex lines small non-normal components;
and (ii) transverse-traceless components By, = —B 36 which make up the transverse-traceless part
of the frame-drag field, a 2-tensor BT parallel to the horizon, and are ingoing gravitational waves
as seen by Schwarzschild observers. (This decomposition into L, LT, and TT parts is useful only
near the horizon and in the wave zone, where there are preferred longitudinal directions associated
with wave propagation.)

As the near-zone, longitudinal frame-drag field B" rotates, it generates a near-zone longitudinal-
transverse (LT) perturbative frame-drag field BT via B’s propagation equation (the wave equation
for the Riemann tensor), and it generates a LT tidal field 6& LT yia the Maxwell-like Bianchi identity
which says, in a local Lorentz frame (for simplicity), 0€/0t = (V x B)S, where the superscript S
means “symmetrize” [Eq. (2.15) of Paper I]. These three fields, B, B*", and 6" together maintain
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each other during the rotation via this Maxwell-like Bianchi identity and its (local-Lorentz-frame)
dual dB/dt = —(V x E)S. They also generate the transverse-traceless parts of both fields, B*" and
SETT | which become the outgoing gravitational waves in the wave zone and ingoing gravitational
waves at the horizon.

In the equatorial plane, this outgoing-wave generation process, described in terms of vortex and
tendex structures, is quite pretty, and is analogous to the (1,1) magnetic-field mode of Figure 9.1 and
Section 9.1.3.4: As one moves outward into the induction zone and then the wave zone, the equatorial
vortex lines bend backward into outgoing spirals (Figure 9.2) and gradually acquire accompanying
tendex lines. The result, locally, in the wave zone, is the standard pattern of transverse, orthogonal
red and blue vortex lines; and (turned by 45 degrees to them) transverse, orthogonal red and blue
tendex lines, that together represent plane gravitational waves (Figure 7 of Paper I).

It is instructive to focus attention on regions of space with large magnitude of vorticity. We
call these regions vorteres. Figure 9.3 shows that the equatorial frame-drag field consists of four
outspiraling vortexes, two red ([light gray| counterclockwise) and two blue ([dark gray] clockwise).

The solid black lines in the figure are clockwise vortex lines. In the clockwise vortexes of the
wave zone, they have the large magnitude of vorticity that is depicted as blue (dark gray), and they
are nearly transverse to the radial wave-propagation direction; so they represent crests of outgoing
waves. In the counterclockwise vortexes (red [light gray] regions), these clockwise vortex lines have
very small magnitude of vorticity and are traveling roughly radially, leaping through a red vortex (a
wave trough) from one blue vortex (wave crest) to the next. These clockwise vortex lines accumulate
at the outer edges of the clockwise (blue) vortexes.

The dashed black lines are counterclockwise vortex lines, which are related to the red (light gray),
counterclockwise vortexes in the same way as the solid clockwise vortex lines are related to the blue
(dark gray), clockwise vortexes.

Outside the equatorial plane, this mode also represents outgoing gravitational waves, once one
gets into the wave zone. We depict the strengths of those waves in Figure 9.4. The blue (dark
gray) regions are locations where one vortex line has vorticity at least 85% of the maximum at that
radius; in this sense, they are clockwise vortexes. In the near zone, two (blue) clockwise vortexes
emerge radially from the horizon parallel to the plane of the picture, and two (red) counterclockwise
vortexes emerge radially toward and away from us. These are 3-dimensional versions of the four
vortexes emerging from the horizon in the equatorial plane of Figure 9.3. In the wave zone, the
“85%” vortexes are concentrated in the polar regions, because this mode emits its gravitational
waves predominantly along the poles. The waves are somewhat weaker in the equatorial plane, so
although there are spiraling vortexes in and near that plane (Figure 9.3), they do not show up at
the 85% level of Figure 9.4. The off-white, spiral-arm structures in the equatorial plane represent

the four regions where the wave strength is passing through a minimum.
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Figure 9.4: Some 3-dimensional clockwise vortex lines (shown black) and regions of large vorticity
(vortexes, shown blue [dark gray] and red [light gray]) and small vorticity (shown off-white), for the
same magnetic-parity mode of a Schwarzschild black hole as in Figures 9.2 and 9.3. More specifically:
the inner sphere is the horizon, color coded by its vorticity. The blue region is a clockwise vortex in
which one vortex line has vorticity at least 85% of the maximum value at that radius, and similarly
for the counterclockwise red region. The four off-white regions are locations where no vortex line
has magnitude of vorticity in excess of 25% of the maximum at that radius.

Turn attention from the wave zone to the horizon. There the ingoing waves, embodied in B*T
and 6€TT (which were generated in the near and transition zones by rotation of B-), act back on
B, causing its vortex lines to gradually slide off the horizon and thereby producing the mode’s
exponential decay.

Just as this process in the electromagnetic case is associated with the differential conservation
law (9.3) for magnetic field lines threading the horizon, dBy /0t + @V - (aB™), so also here it is
associated with an analogous (approximate) conservation law and an accompanying driving equation,

Egs. (9.111) of Appendix 9.E:

DU + (6% 4 27 — 20)T; =0, (9.4a)

(D —2)T; = (8" + 7 — 4a) Ty . (9.4b)

Here the notation is that of Newman and Penrose: D is a time derivative on the horizon, \Ilgl) is
the mode’s €Y + iB" (equivalently 6Enn + iByn in disguise), with SEY and 6EnN vanishing for
our mode; Uy is the LT field 6&€YT + i6BYT (as measured by Schwarzschild observers) in disguise;

U is the ingoing-wave €T T + idB*T (as measured by Schwarzschild observers) in disguise; 8* is a
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divergence in disguise; and €, 7 and « are NP spin coefficients. Equation (9.4b) says that the ingoing
waves embodied in 6" + iB™" drive the evolution of the quantity ¥, and Equation (9.4a) is an
approximate differential conservation law in which this ¥, plays the role of the flux of longitudinal
vortex lines (number crossing a unit length per unit time) and ¥y (i.e., Byy) is the density of
longitudinal vortex lines. This differential conservation law says that the time derivative of the
vortex-line density plus the divergence of the vortex-line flux is equal to some spin-coefficient terms
that, we believe, are generally small. (By integrating this approximate conservation law over the
horizon H, we see that fH By ndA must be nearly conserved, in accord with Eq. (9.2) above, which
tells us that the horizon integral is nearly zero. In both cases, the integral conservation law (9.2) and
the differential conservation law (9.4a), it is numerically small spin coefficients that slightly spoil the
conservation. In Eq. (9.28), for a magnetic-parity mode of Schwarzschild and Eddington-Finkelstein
slicing, we make this conservation law completely concrete and find that in this case it is precise;
there are no small spin coefficients to spoil it.

Returning to the evolution of the (2,2) magnetic-parity mode: The ingoing waves, via Eqgs. (9.4),
push the longitudinal vortex lines away from the centers of the horizon vortexes toward their edges
(toward the white horizon regions in Figures 9.2 and 9.3). At the edges, clockwise vortex lines from
the blue (dark gray) horizon vortex and counterclockwise from the red (light gray) horizon vortex
meet and annihilate each other, leading to decay of the longitudinal part of the field and thence the
entire mode.

We expect to explore this evolutionary process in greater detail and with greater precision in
future work.

Turn, next, to spinning black holes. In this case, the (2,2) magnetic-parity mode has qualitatively
the same character as for a non-spinning black hole. The principal change is due to the spin raising
the mode’s eigenfrequency, and the near zone thereby essentially disappearing, so the perturbed
vortex lines that emerge from the horizon have a significant back-spiral-induced tilt to them already

at the horizon. See Figure 9.12 below.

9.1.3.7 The (2,1) Magnetic-Parity Mode of a Schwarzschild Hole

For the (2,1) magnetic-parity mode of a Schwarzschild black hole, there are two horizon vortexes in
the hole’s northern hemisphere (one counterlockwise, the other clockwise), and two in the southern
hemisphere. From these emerge the longitudinal part of the frame-drag field, in the form of four 3D
vortexes (Figure 9.5).

These four vortexes actually form two spiral arms, each of which contains vortex lines of both
signs (clockwise and counterclockwise). The surface of each arm is color coded by the sign of the
vorticity that is largest in magnitude in that region of the arm. This dominant vorticity flips sign

when one passes through the equatorial plane—from positive (i.e., blue [dark gray]; clockwise) on
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Figure 9.5: Three-dimensional vortexes for the magnetic-parity, (2,1) mode of a Schwarzschild black
hole. The colored surfaces enclose the region where, for each radius, the vorticity of at least one
vortex line exceeds 90% of the maximum for that radius. In the blue and red (dark and light gray)
regions, the clockwise and counterclockwise vortex lines, respectively, have the larger vorticity.

one side of the equator to negative (i.e., red [light gray]; clockwise) on the other side. The reason for
this switch is that for m = 1 the ¢"™? angular dependence means reflection antisymmetry through
the polar axis, which combined with the positive parity of the [ = 2 frame-drag field implies reflection
antisymmetry through the equatorial plane. The (2,2) mode of the previous section, by contrast,
was reflection symmetric through both the polar axis and the equatorial plane.

By contrast with the (2,2) mode, whose region of largest vorticity switched from equatorial in the
near zone to polar in the wave zone (Figure 9.3), for this (2,1) mode, the region of largest vorticity
remains equatorial in the wave zone. In other words, this mode’s gravitational waves are stronger
in near-equator directions than in near-polar directions. (Recall that in the wave zone, the vortexes
are accompanied by tendexes with tendicities equal in magnitude to the vorticities at each event, so
we can discuss the gravitational-wave strengths without examining the tidal field.)

Close scrutiny of the near-horizon region of Figure 9.5 reveals a surprising feature: Within the
90% vortexes (colored surfaces), the sign of the largest vorticity switches as one moves from the
near zone into the transition zone—which occurs not very far from the horizon; see the inner dashed

circle in Figure 9.2 above). This appears to be due to the following: The near-zone vortexes are
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Figure 9.6: Vortex lines and vorticities for magnetic-parity (2,0) mode of Schwarzschild in a surface
Sy of constant ¢. The line and coloring conventions are the same as in Figure 9.3 (solid lines
for clockwise, dashed for counterclockwise; color shows vorticity of the vortex line with largest
magnitude of vorticity, with radial variations removed and intensity of color as in the key on right
edge of Figure 9.3). The central circle is the horizon, color coded by the horizon vorticity.

dominated by the longitudinal part of the frame-drag field §B", which generates all the other fields
including 6B~" via its rotation [see discussion of the (2,2) mode above]. The longitudinal-transverse
field 6B is strong throughout the near zone and comes to dominate over 6B as one moves into
the transition zone. Its largest vorticity has opposite sign from that of §BY, causing the flip of
the dominant vorticity and thence the color switch as one moves into the transition zone. (Note
that a similar switch in the sign of the strongest vorticity occurs for the magnetic-parity (2,2) mode
vortexes illustrated in Figure 9.4, although there the transition occurs farther out, at the edge of
the wave zone.)

In Sections 9.5.1 and 9.5.2, we explore in considerable detail this magnetic-parity (2,1) mode and

also its near dual, the electric-parity (2,1) mode, focusing especially on the shapes of their vortexes.

9.1.3.8 The (2,0) Magnetic-Parity Mode of a Schwarzschild Hole

The (2,0) magnetic-parity mode has very different dynamical behavior from that of the (2,1) and
(2,2) modes. Because of its axisymmetry, this mode cannot be generated by longitudinal, near-zone
vortexes that rotate around the polar axis, and its waves cannot consist of outspiraling, intertwined

vortex and tendex lines.
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Instead, this mode is generated by longitudinal, near-zone vortexes that oscillate, and its waves
are made up of intertwined vortex lines and tendex lines that wrap around deformed tori. These
gravitational-wave tori resemble smoke rings and travel outward at the speed of light. More specifi-
cally:

Because of axisymmetry, the (2,0) magnetic-parity mode has one family of vortex lines that are
azimuthal circles of constant r and 6, and two families that lie in surfaces Sy of constant ¢. Figure
9.6 is a plot in one of these Sy surfaces. (The plot for any other ¢ will be identical to this, by
axisymmetry.) This plot shows the vortex lines that lie in Sy, and by color coding at each point,
the vorticity of the strongest of those lines.

Notice that, at this phase of oscillation, there are clockwise (solid) vortex lines sticking nearly
radially out of the horizon’s polar regions and counterclockwise (dashed) vortex lines sticking nearly
radially out of the horizon’s equatorial region. A half cycle later the poles will be red (light gray)
and equator blue (dark gray). These near-zone vortex lines are predominantly the longitudinal part
of the frame-drag field 6B, which we can regard as working hand in hand with the near-zone,

ET to generate the other fields.

longitudinal-transverse tidal field &

As we shall see in Section 9.5.3 (and in more convincing detail for a different oscillatory mode
in Section 9.4.3), the dynamics of the oscillations are these: Near-zone energy ! oscillates back and
forth between the near-zone dBY, and the near-zone 6B*" and §€XT. As sBY decays, its vortex lines
slide off the hole and (we presume) form closed loops, lying in Sy, which encircle outgoing deformed
tori of perturbed tendex lines that become the transverse-traceless gravitational waves. Only part of
the energy in 6B" goes into the outgoing waves. Some goes into the TT ingoing waves, and the rest

EYT which then use it to regenerate

(a substantial fraction of the total energy) goes into 6B and §
6B, with its horizon-penetrating vortex lines switched in sign (color), leading to the next half cycle
of oscillation.

The vortex lines that encircle the gravitational-wave tori are clearly visible in Figure 9.6. Each

solid (clockwise) line is tangential (it points nearly in the 6 direction) when it is near the crest

1We use the term energy in a generalized and descriptive sense here and elsewhere in this paper. We note,
however, that with a suitable (nonunique) definition of local energy, we can make these notions more precise. For
example, the totally symmetric, traceless Bel-Robinson tensor serves as one possible basis for this. In vacuum it is
Tuvpo = 1/2(ChawpCop®e? + CravsCpe ) with * denoting the Hodge dual, and it is completely symmetric and
obeys the differential conservation law V,T#,,, = 0. Given a unit timelike slicing vector # we conveniently have
W (@) = Tuvpoubu’uPu® = 1/2(E;; EY + B;; BY) > 0 as a positive-definite superenergy built from the squares of the
tidal and frame-drag fields in a given slice (see the reprint of Bel’s excellent paper [10] for motivation and definition,
e.g., Penrose and Rindler [5] for the spinor representation of the Bel-Robinson tensor, and e.g., [11] for its relation
to notions of quasilocal energy). As another example, magnetic-parity modes of Schwarzschild are describable by
the Regge-Wheeler function Q(r«,t) which satisfies the Sturm-Liouville equation Q r,r, — Q.tt — V(r+)Q = 0 [Eq.
(9.33) but with the e~** time dependence absorbed into Q]. The integral conservation law associated with this
Sturm-Liouville equation is 9/9t f: ( ,2” + Q,Qt + VQ2> dry = 2Q,7‘*Q,t|z' The quantity inside the integral can be
regarded as an energy density, and the quantity on the right hand side an energy flux. For the (2, m) magnetic-parity
mode, Egs. (9.40a) and (9.40d) express @ in terms of the time derivative of the longitudinal part of 6B with its
angular dependence Y2™ removed: Q = (r3/12)98B;7/0t. Other expressions in Egs. (9.40) and (9.54) relate Q ., to
the LT parts of B and 6€. This could be the foundation for a second way to make more precise the notion of energy
fed back and forth between the various parts of B and 0€.
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Figure 9.7: Positive-tendicity (blue) and negative-tendicity (red) perturbative tendex lines of a (2,0)
magnetic-parity perturbation of a Schwarzschild black hole. These lines spiral around deformed tori
of progressively larger diameter. The viewpoint is looking down onto the equatorial plane from the
positive symmetry axis. Upper right inset: The negative tendex line spiraling around the outermost
torus, viewed in cross section from the equatorial plane. Lower right inset: The negative tendex line
spiraling around the small torus third from the center, viewed in cross section from the equatorial
plane. Also shown, in black in the main drawing and the large inset, are two of this mode’s vortex
lines, one from Figure 9.6 wrapping around the outermost torus in a Sy plane; the other an azimuthal
circle wrapping around that torus in the ¢ direction. This figure was actually drawn depicting vortex
lines of the electric-parity mode discussed in Section 9.5.4; but by duality (which is excellent in the
wave zone), it also represents the tendexes of the magnetic-parity mode discussed in this section.

(the maximum-vorticity surface) of a blue (dark gray), lens-shaped gravitational-wave vortex. As
it nears the north or south pole, it swings radially outward becoming very weak (low vorticity) and
travels across the red trough of the wave, until it nears the next blue crest. There it swings into the
transverse, 6 direction and travels toward the other pole, near which it swings back through the red
trough and joins onto itself in the original blue crest.

Each dashed (counterclockwise) closed vortex line behaves in this same manner, but with its
transverse portions lying near red (light gray) troughs (surfaces of most negative vorticity). Near
the red troughs, there are blue azimuthal vortex lines (not shown) that encircle the hole in the ¢
direction, and near the blue crests, there are red azimuthal lines.

Figure 9.7 sheds further light on these gravitational-wave tori. It shows in three dimensions
some of the perturbative tendex lines for the (2,0) magnetic-parity mode that we are discussing.
(For this mode, two families of perturbative tendex lines, one red [counterclockwise] and the other
blue [clockwise], have nonzero tendicity and the third family has vanishing tendicity.) As is required
by the structure of a gravitational wave (transverse tendex lines rotated by 45 degrees relative to
transverse vortex lines), these perturbative tendex lines wind around tori with pitch angles of 45
degrees; one family winds clockwise and the other counterclockwise, and at each point the two lines
have the same magnitude of vorticity.

A close examination of Figure 9.7 reveals that the tori around which the perturbative tendex
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lines wrap are half as thick as the tori around which the vortex lines wrap. Each tendex-line torus
in Figure 9.7 is centered on a single node of the gravitational-wave field; the thick red torus in the
upper right panel reaches roughly from one crest of the wave to an adjacent trough. By contrast,
each vortex-line torus (Figure 9.6 and black poloidal curves in Figure 9.7) reach from crest to crest
or trough to trough and thus encompass two gravitational-wave nodes.

Each node in the wave zone has a family of nested tendex-line tori centered on it. The four tendex-
line tori shown in Figure 9.7 are taken from four successive families, centered on four successive
nodes. The second thin torus is from near the center of one nested family; it tightly hugs a node
and therefore has near vanishing tendicity. The two thick tori are from the outer reaches of their
nested families.

For further details of the (2,0) modes, see Sections 9.5.3 and 9.5.4 below.

9.1.3.9 The Superposed (2,2) and (2,—2) Magnetic-Parity Mode of a Schwarzschild
Hole

As we have seen, the magnetic-parity, (2,2) mode of a Schwarzschild black hole represents vortexes
that rotate counterclockwise around the hole, spiraling outward and backward (Figures 9.2, 9.3 and
9.4 above). If we change the sign of the azimuthal quantum number to m = —2, the vortexes rotate
in the opposite direction, and spiral in the opposite direction. If we superpose these two modes
(which, for Schwarzschild, have the same eigenfrequency), then, naturally, we get a non-rotating,
oscillatory mode—whose dynamics are similar to those of the (2,0) mode of the last subsection. See
Section 9.4 for details.

Figure 9.8 is a snapshot of the two families of vortex lines that lie in this mode’s equatorial
plane. The plane is colored by the vorticity of the dashed vortex lines; they are predominantly
counterclockwise (red), though in some regions they are clockwise (blue).

The red (light gray) regions form interleaved rings around the black hole, that expand outward at
the speed of light, along with their dashed vortex lines. These rings are not tori in three dimensions
because [by contrast with the (2,0) mode] the frame drag field grows stronger as one moves up to the
polar regions, rather than weakening. As the mode oscillates, the longitudinal near-zone frame-drag
field BY, which drives the mode, generates new interleaved rings, one after another and sends them
outward.

During the oscillations, there are phases at which the longitudinal field B threading the hole
goes to zero, and so the hole has vanishing horizon vorticity. The near-zone oscillation energy, at

these phases, is locked up in the near-zone, longitudinal-transverse fields BYT and €T

, which, via
the Maxwell-like Bianchi identities (and the propagation equation that they imply), then feed energy
into the longitudinal near-zone frame-drag field B, thereby generating new horizon-threading vortex

lines, which will give rise to the next ejected interleaved ring.
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Figure 9.8: Equatorial vortex structure of the superposed (2,2) and (2, —2), magnetic-parity, fun-
damental modes of a Schwarzschild black hole. The colors encode the vorticity of the dashed vortex
lines. The vorticity of the solid lines is not shown, but can be inferred from the fact that under a
90° rotation, the dashed lines map into solid and the solid into dashed.

We explore these dynamics in greater detail in Section 9.4.3.

9.1.4 This Paper’s Organization

The remainder of this paper is organized as follows: In Section 9.2, we introduce the time slicing
and coordinates used throughout this paper for the background Schwarzschild and Kerr spacetimes,
we introduce the two gauges that we use for Schwarzschild perturbations (Regge-Wheeler-Zerilli and
ingoing radiation gauges) and the one gauge (ingoing radiation) we use for Kerr, we discuss how our
various results are affected by changes of gauge, and we discuss how we perform our computations.
In Sections 9.3, 9.4, and 9.5, we present full details of our results for the fundamental (most slowly
damped) quadrupolar modes of Schwarzschild and Kerr: (2,2) modes in Section 9.3; superposed (2,2)
and (2,-2) modes in Section 9.4, and both (2,1) and (2,0) modes in Section 9.5. In Section 9.3.4,
we compare vortex lines computed in a numerical-relativity simulation of a binary black hole at
a late time, when the merged hole is ringing down, with the vortex lines from this paper for the
relevant quasinormal mode; we obtain good agreement. In Section 9.6, we make a few concluding
remarks. And in six appendices, we present mathematical details that underlie a number of this

paper’s computations and results.
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9.2 Slicings, Gauges and Computational Methods

When calculating the tidal and frame-drag fields of perturbed black-hole spacetimes, we must choose
a slicing and also spatial coordinates on each slice, for both the background spacetime and at first
order in the perturbations (“perturbative order”). The perturbative-order choices of slicing and
spatial coordinates are together called the chosen gauge. We will always use the same choice of
background slicing and coordinates in this study, but we will use different choices for our gauge.

This section describes the choices we make, how they influence the vortex and tendex lines and
their vorticities and tendicities (which together we call the “vortex and tendex structures”), and a
few details of how, having made our choices, we compute the perturbative frame-drag and tidal fields
and the vortex and tendex structures. Most of the mathematical details are left to later sections
and especially appendices.

In Section 9.2.1, we describe our choices of slicing and spatial coordinates. In Section 9.2.2, we
sketch how we calculate the perturbative frame-drag and tidal fields and visualize their vortex and
tendex structures. In Section 9.2.3, we explore how those structures change under changes of gauge,

i.e., changes of the perturbative slicing and perturbative spatial coordinates.

9.2.1 Slicing, Spatial Coordinates, and Gauge

Throughout this paper, for the background (unperturbed) Kerr spacetime, we use slices of constant

Kerr-Schild (KS) time #, which is related to the more familiar Boyer-Lindquist time by

5 d* 2 2
t=t+r,—r, where d: —_ Za (9.5)

(Eq. (6.2) of Paper II [4]). Here ¢ and r are the Boyer-Lindquist time and radial coordinates, a is
the black hole’s spin parameter (angular momentum per unit mass), and A = r? — 2Mr + a2, with
M the black-hole mass. Our slices of constant ¢ penetrate the horizon smoothly, by contrast with
slices of constant ¢, which are singular at the horizon. In the Schwarzschild limit a — 0, ¢ and r
become Schwarzschild’s time and radial coordinates, and ¢ becomes ingoing Eddington-Finkelstein
time, £ =t + 2M In |r/2M — 1|.

On a constant-f slice in the background Kerr spacetime, we use Cartesian-like KS (Kerr-Schild)
spatial coordinates, when visualizing vortex and tendex structures; but in many of our intermediary
computations, we use Boyer-Lindquist spatial coordinates {r,0, ¢} (which become Schwarzschild as

a — 0). The two sets of coordinates are related by

z+iy = (r +ia)e®sind z=rcosf, (9.6)
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[Eq. (6.7) of Paper II]. Here
~ > a
G=¢ +/ Sar 9.7)

[Eq. (6.5) of Paper II] is an angular coordinate that, unlike ¢, is well behaved at the horizon. In
the Schwarzschild limit, the KS {z,y, z} coordinates become the quasi-Cartesian {z,y, z} associated
with Eddington-Finkelstein (EF) spherical coordinates {r, 6, ¢}.

Our figures (e.g., 9.2-9.8 above) are drawn as though the KS {z,y, z} were Cartesian coordinates
in flat spacetime—i.e., in the Schwarzschild limit, as though the EF {r,0, ¢} were spherical polar
coordinates in flat spacetime.

We denote by gLOV) the background metric in KS spacetime coordinates [Eq. (6.8) of Paper II] (or
EF spacetime coordinates in the Schwarzschild limit). When the black hole is perturbed, the metric
acquires a perturbation h,, whose actual form depends on one’s choice of gauge—i.e., one’s choice
of slicing and spatial coordinates at perturbative order.

For Schwarzschild black holes, we use two different gauges, as a way to assess the gauge de-
pendence of our results: (i) Regge- Wheeler-Zerilli (RWZ) gauge, in which h,,, is a function of two
scalars (@ for magnetic parity and Z for electric parity) that obey separable wave equations in the
Schwarzschild spacetime and that have spin-weight zero (see Appendix 9.A for a review of this for-
malism), and (ii) ingoing radiation (IR) gauge, in which h,,, is computed from the Weyl scalar ¥
(or ¥y) that obeys the separable Bardeen-Press equation. The method used to compute the metric
perturbation from Wy is often called the Chrzanowski-Cohen-Kegeles (CCK) procedure of metric
reconstruction (see Appendix 9.C).

In Appendix 9.D, we exhibit explicitly the relationship between the RWZ and IR gauges, for
electric- and magnetic-parity perturbations. The magnetic-parity perturbations have different per-
turbative spatial coordinates, but the same slicing. (In fact, all gauges related by a magnetic-parity
gauge transform have identically the same slicing for magnetic-parity perturbations of Schwarzschild
[although the same is not true for Kerr|; see Section 9.2.3). For electric-parity perturbations, the
two gauges have different slicings and spatial coordinates.

For all the perturbations that we visualize in this paper, the tendexes and vortexes show quite
weak gauge dependence. See, e.g., Section 9.3, where we present results from both gauges. The
results in Sections 9.4 and 9.5 are all computed in RWZ gauge.

For Kerr black holes, there is no gauge analogous to RWZ; but the IR gauge and the CCK
procedure that underlies it are readily extended from Schwarzschild to Kerr. In this extension, one
constructs the metric perturbation from solutions to the Teukolsky equation (see Appendix 9.B) for
the perturbations to the Weyl scalars ¥y and Wy, in an identical way to that for a Schwarzschild
black hole described above. Our results in this paper for Kerr black holes, therefore, come solely

from the IR gauge.
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9.2.2 Sketch of Computational Methods

This section describes a few important aspects of how we calculate the tidal and frame-drag fields,
and their vortex and tendex structures which are visualized and discussed in Sections 9.3, 9.4, and
9.5.

We find it convenient to solve the eigenvalue problem in an orthonormal basis (orthonormal
tetrad) given by the four-velocities of the Kerr-Schild (KS) or Eddington-Finkelstein (EF) observers,
and a spatial triad, €, carried by these observers.

The background EF tetrad for the Schwarzschild spacetime, expressed in terms of Schwarzschild

coordinates, is

g(O)f; 10 2M9 5(0)7; 9 _2M90
7«/1—|—2M/r a? Ot r or)’ 7 7«/1—|—2M/r or a?rot)’

0 _ 10 o _ 1 0

% T o0’ ‘% T Tsing 0¢ (9.8)

[cf. Egs. (4.4) of Paper II, which, however, are written in terms of the EF coordinate basis rather than
Schwarzschild]. The background orthonormal tetrad for KS observers (in ingoing Kerr coordinates

{t,r,0, gg}, see Paper II, Section VI C) is

S0 _ 1 20 _ (2 1 o
€ \/i(’?g, € Asin68¢’ (9.92a)

where we have defined

2Mr

S =12 4 a? cos? 6, H =1+ s A= (r*4+a®)? - d*(r* = 2Mr 4 a®)sin®6  (9.9b)

[see Eq. (B2) of Paper II].

When the black hole is perturbed, the tetrad {E(O),é’f(o),é’go),é’g)} acquires perturbative cor-
rections that keep it orthonormal with respect to the metric g, = g,(f,)) + hu. We choose the
perturbative corrections to the observers’ 4-velocity so as to keep it orthogonal to the space slices,
i.e., so as to keep @ = —aVi. (Here a@ = dr/di, differentiating along the observer’s world line, is

the observer’s lapse function.) A straightforward calculation using the perturbed metric gives the

following contravariant components of this u:

1 v, (0
ut = uig) +u(yy ugyy = —ih()@u’&) — v u®) (9.10)

where hyy = hwu‘(‘o)ul(’o), and “l(lo) is the four-velocity of the background observers.
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We choose the perturbative corrections to the spatial triad {€;} so the radial vector stays orthog-
onal to surfaces of constant r in slices of constant #, the 6 direction continues to run orthogonal to
curves of constant 6 in surfaces of constant r and ¢, and the fi; vector changes only in its normalization.

When written in terms of the unperturbed tetrad and projections of the metric perturbation into

the unperturbed tetrad, the perturbation to the tetrad then takes the form

_ 1, i (1 1. o _A

i) = 5hoot0) ~ heio) - et = _Ehﬁef( ) ho sl (9.11a)
NCONNS SRR (1) B -0 _ 1, 0

€é = _ihee o - h9¢€(0) 5 qu - —2h¢¢6$ ) (gllb)

where 7 is summed over 7, é, and ngS, and A is summed over only 6 and qZ;
In Appendices 9.A (RWZ gauge) and 9.C (IR gauge), we give the details of how we compute the
components

& =&V + e B
1] 17

. L= B%” + Bg) (9.12)

i
of the tidal and frame-drag field in this perturbed tetrad. The background portions 52(;) and B%))
are the stationary fields of the unperturbed black hole, which were computed and visualized in
Paper II. The perturbative pieces, 52,(5_1) and Bg) are the time-dependent, perturbative parts, which
carry the information about the quasinormal modes, their geometrodynamics, and their gravitational
radiation.

58;3 for a chosen quasinormal

,

As part of computing the perturbative 5;:(3,1) = 55;5 and Bg) =
mode of a Kerr black hole, we have to solve for the mode’s Weyl-scalar eigenfunctions \Ilél) and
\11511) and eigenfrequency w. To compute the frequencies, we have used, throughout this paper,
Emanuele Berti’s elegant computer code [12], which is discussed in [13] and is an implementation
of Leaver’s method [14]. To compute the eigenfunctions, we have used our own independent code
(which also uses the same procedure as that of Berti). In Appendix 9.C, we describe how we extract
the definite-parity (electric or magnetic) eigenfunctions from the non-definite-parity functions.

To best visualize each mode’s geometrodynamics and generation of gravitational waves in Sec-
tions 9.3, 9.4, and 9.5, we usually plot the tendex and vortex structures of the perturbative fields S%(jl)
and Bz(]l) However, when we compare our results with numerical-relativity simulations, it is neces-
sary to compute the tendex and vortex structures of the full tidal and frame-drag fields (background
plus perturbation), because of the difficulty of unambiguously removing a stationary background
field from the numerical simulations. As one can see in Figures 9.15 and 9.26, in this case much
of the detail of the geometrodynamics and wave generation is hidden behind the large background
field.

In either case, the tendex and vortex structure of the perturbative fields or the full fields, we

compute the field lines and their eigenvalues in the obvious way: At selected points on a slice, we
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numerically solve the eigenvalue problem
E;Vs =\, (9.13)

and similarly for B::; and we

for the three eigenvalues A and unit-normed eigenvectors V; of &;: E

177
then compute the integral curve (tendex or vortex line) of each eigenvector field by evaluating
its coordinate components V7 in the desired coordinate system (KS or EF) and then numerically
integrating the equation

J )
% —VI, (9.14)

where s is the proper distance along the integral curve.

9.2.3 Gauge Changes: Their Influence on Tidal and Frame-Drag Fields
and Field Lines

For perturbations of black holes, a perturbative gauge change is a change of the spacetime coordi-
nates, o =z 4 &%, that induces changes of the metric that are of the same order as the metric
perturbation; when dealing with definite parity perturbation, we split the generator of the trans-
form £ into definite electric- and magnetic-parity components. The gauge change has two parts: A

change of slicing generated by £°, and a change of spatial coordinates
t=1t4¢° o =2l 4+ ¢ (9.15)

Here all quantities are to be evaluated at the same event, P, in spacetime.

Because £° is a scalar under rotations in the Schwarzschild spacetime—and all scalar fields
in Schwarzschild have electric parity—for a magnetic-parity £, £€° vanishes, and the slicings for
magnetic-parity quasinormal modes of Schwarzschild are unique. For these modes, all gauges share

the same slicing (see Appendix 9.D).?

2In the Kerr spacetime, however, there are magnetic-parity changes of slicing, because £9 no longer behaves as
a scalar under rotations. To understand this more clearly, consider, as a concrete example, a vector in Boyer-
Lindquist coordinates with covariant components &, = (0,0, Xém,Xém)f(r)e*“’t, where qum are the components
of a magnetic-parity vector spherical harmonic [see Eq. (9.86a)]. This vector’s contravariant components are & =
(gt‘f’X(l;”, 0,9% x\m, g¢¢XZ”)f(r)e*’“’t, where g*?, g9 and g?? are the contravariant components of the Kerr metric
(which have positive parity). The vector £#, has magnetic parity and a nonvanishing component £°; therefore, it is
an example of a magnetic-parity gauge-change generator in the Kerr spacetime that changes the slicing.
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9.2.3.1 Influence of a Perturbative Slicing Change

For (electric-parity) changes of slicing, the new observers, whose world lines are orthogonal to the

new slices, ¢’ =const, move at velocity
Av = —aVE° (9.16)

with respect the old observers, whose world lines are orthogonal to the old slices # =const). Here
V is the gradient in the slice of constant ¢, and a = (dr/d#t) is the lapse function, evaluated along
the observer’s worldline. In other words, Awv is the velocity of the boost that leads from an old
observer’s local reference frame to a new observer’s local reference frame. Just as in electromagnetic
theory, this boost produces a change in the observed electric and magnetic fields for small Av given
by AB = Av x E and AE = —Aw X B, so also it produces a change in the observed tidal and
frame-drag fields given by

AB = (Av x €)%, AE = —(Av x B)S (9.17)

(e.g., Egs. (A12) and (A13) of [15], expanded to linear order in the boost velocity). Here the

superscript S means symmetrize.

9.2.3.2 Example: Perturbative Slicing Change for Schwarzschild Black Hole

For a Schwarzschild black hole, because the unperturbed frame-drag field vanishes, A€ is second
order in the perturbation and thus negligible, so the tidal field is invariant under a slicing change. By
contrast, the (fully perturbative) frame-drag field can be altered by a slicing change; AB = (Avx &)3
is nonzero at first order.

Since the unperturbed tidal field is isotropic in the transverse (6, ¢) plane, the radial part of Awv
produces a vanishing AB. The transverse part of Av, by contrast, produces a radial-transverse AB
(at first-order in the perturbation). In other words, a perturbative slicing change in Schwarzschild
gives rise to a vanishing AE and an electric-parity AB whose only nonzero components are

— AB.

AB;é = ABé72 and AB P

53 (9.18)
For a Schwarzschild black hole that is physically unperturbed, the first-order frame-drag field is
just this radial-transverse AB, and its gauge-generated vortex lines make 45 degree angles to the

radial direction.
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9.2.3.3 Influence of a Perturbative Change of Spatial Coordinates

Because £ and B are tensors that live in a slice of constant £, the perturbative change of spatial
coordinates, which is confined to that slice, produces changes in components that are given by
the standard tensorial transformation law, & j: (2 [P]) = Epq(a*[P]) (82702 ) (2P /0x7"). To first
order in the gauge-change generators z*, this gives rise to the following perturbative change in the

tidal field
AE; = —Eijut" — Ent® ;- Ent’ i — En€® — Ent); — Ent i, (9.19)

and similarly for the frame-drag field B. Here the subscript | denotes covariant derivative with
respect to the background metric, in the slice of constant #. The two expressions in Eq. (9.19) are
equal because the connection coefficients all cancel.

The brute-force way to compute the influence of a spatial coordinate change x’ =iy &7 on the
coordinate shape 27 (s) of a tendex line (or vortex line) is to (i) solve the eigenequation to compute
the influence of AE;; [Eq. (9.19)] on the line’s eigenvector, and then (ii) compute the integral curve
of the altered eigenvector field.

Far simpler than this brute-force approach is to note that the tendex line, written as location
P(s) in the slice of constant # as a function of spatial distance s along the curve, is unaffected by the
coordinate change. Therefore, if the old coordinate description of the tendex line is 27 (s) = 27 [P(s)],
then the new coordinate description is 27’ (s) = /[P (s)] + &1 [P(s)]; i.e., 27 (s) = x7(s) + & [27(s)].
In other words, as seen in the new (primed) coordinate system, the tendex line appears to have been
moved from its old coordinate location, along the vector field &7, from its tail to its tip; and similarly

for any vortex line.

9.2.3.4 Example: Perturbative Spatial Coordinate Change for a Schwarzschild Black
Hole

Because the frame-drag field of a perturbed Schwarzschild black hole is entirely perturbative, it is
unaffected by a spatial coordinate change. This, together with AB = 0 for magnetic-parity modes
implies that the frame-drag field of any magnetic-parity mode of Schwarzschild is fully gauge invari-
ant!

By contrast, a spatial coordinate change (of any parity) mixes some of the background tidal field
into the perturbation, altering the coordinate locations of the tendex lines.

As an example, consider an electric-parity (2,2) mode of a Schwarzschild black hole. In RWZ

gauge and in the wave zone, the tidal field is given by

M A
€5 = 3T o020 —g0) —w(t—r.)],



£ = % — —cos[2(¢p — ¢po) — w(t —14)]
2A
57¢ = —QCOS[Q(Qf)*%) —w(t—rJ],
2M A

where A is the wave amplitude.
Focus on radii large enough to be in the wave zone, but small enough that the wave’s tidal field is
a small perturbation of the Schwarzschild tidal field. Then the equation for the shape of the nearly

circular tendex lines that lie in the equatorial plane, at first order in the wave’s amplitude, is

1dr i 2rA

rdo B (€55 — Err) ~ 3Mw c08[2(¢ — o) — w(t —7.)] (9.21)

(an equation that can be derived using the standard perturbation theory of eigenvector equations).

Solving for r(¢) using perturbation theory, we obtain for the tendex line’s coordinate location

T(¢v t) = 7o+ P(¢a 7‘07t) s (9.22)
A
p(d,rort) = T, 31\20 SIn2(6 — bo) — Wt — rox)] -

Here r, is the radius that the chosen field line has when ¢ = ¢,. Notice that the field line undergoes
a quadrupolar oscillation, in and out, as it circles around the black hole, and it is closed—i.e., it is
an ellipse centered on the hole. The ellipticity is caused by the gravitational wave. As time passes,
the ellipse rotates with angular velocity d¢/dt = w/2, and the phasing of successive ellipses at larger
and larger radii r, is delayed by an amount corresponding to speed-of-light radial propagation.
Now, consider an unperturbed Schwarzschild black hole. We can produce this same pattern of
elliptical oscillations of the equatorial-plane tendex lines, in the absence of any gravitational waves,

by simply changing our radial coordinate: Introduce the new coordinate

=7+ where & =p(o,r,t), (9.23)

with p the function defined in Eq. (9.22). In Schwarzschild coordinates, the equatorial tendex
lines are the circles r = r, =constant. In the new coordinate system, those tendex lines will have
precisely the same shape as that induced by our gravitational wave [Eq. (9.22)]: ' = r, + p(¢, 1, ).
Of course, a careful measurement of the radius of curvature of one of these tendex lines will show it
to be constant as one follows it around the black hole (rather than oscillating), whereas the radius of
curvature of the wave-influenced tendex line will oscillate. In fact, if we follow along with the tendex
line and measure the tendicity along the line, we find that the tendicity of the line is unchanged by

the change in coordinates. To be explicit, consider the tendicity, which we denote A4, along one of
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the lines r = r,. Enacting the coordinate transform on the tendicity but continuing to evaluate it

along the perturbed line, we have the identity

/\¢(T)|r=ro = >‘¢(T/ - §T)|W=ro+p = >\¢(To +p—p) = )‘¢(To) . (9.24)

Nevertheless, if one just casually looks at the Schwarzschild tendex lines in the new, primed, coor-
dinate system, one will see a gravitational-wave pattern.
The situation is a bit more subtle for the perturbed black hole. In this case, the tendex lines are

given by Eq. (9.22), and we can change their ellipticity by again changing radial coordinates, say to
' =r+ap(p,rt). (9.25)

The radial oscillations Ar’ of the elliptical tendex lines in the new (r/, ¢, t) coordinate system will
have amplitudes 1 + « times larger than in the original (r, ¢,t) coordinates, and in the presence of
the gravitational waves it may not be easy to figure out how much of this amplitude is due to the
physical gravitational waves and how much due to rippling of the coordinates.

On the other hand, the tendicities of these tendex lines are unaffected by rippling of the coor-
dinates. They remain equal to Ay = €55 = M/r3 + (A)r)cos[2(¢ — @) — w(t — 1)) = M/(r")? +
(A/r") cos[2(¢p — ¢o) — w(t — 7,)] at leading order, which oscillates along each closed line by the
amount AEz; = (A/r)cos[2(¢ — ¢o) — w(t — r.)] that is precisely equal to the gravitational-wave
contribution to the tendicity. Note that in this example, even without evaluating the tendicity along
the perturbed lines to cancel the coordinate change, the change in the tendicity due to the coordinate
change enters at a higher order than the contribution from the gravitational wave.

Therefore, in this example, the tendicity and correspondingly the structures of tendexes capture
the gravitational waves cleanly, whereas the tendex-line shapes do not do so; the lines get modified
by spatial coordinate changes. This is why we pay significant attention to tendexes and also vortexes

in this paper, rather than focusing solely or primarily on tendex and vortex lines.

9.3 (2,2) Quasinormal Modes of Schwarzschild and Kerr Black
Holes

In Section 9.1.3.6, we described the most important features of the fundamental, (2,2) quasinormal
modes of Schwarzschild black holes. In this section, we shall explore these modes in much greater
detail and shall extend our results to the (2,2) modes of rapidly spinning Kerr black holes. For
binary-black-hole mergers, these are the dominant modes in the late stages of the merged hole’s

final ringdown (see, e.g., [16]).
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9.3.1 Horizon Vorticity and Tendicity

We can compute the horizon tendicity Exny and vorticity Byy [or equivalently ¥y = %(SNN +
iBnn)] using two methods: first, we can directly evaluate them from the metric perturbations,
and second, we can calculate them, via Eq. (9.114) in the form (9.116), from the ingoing-wave
curvature perturbation g, which obeys the Teukolsky equation (Appendix 9.B). For perturbations
of Schwarzschild black holes, both methods produce simple analytical expressions for the horizon
quantities; they both show that the quantities are proportional to a time-dependent phase times
a scalar spherical harmonic, e~™!Y},, [see, e.g., Eq. (9.121)]. For Kerr holes, the simplest formal
expression for the horizon quantities is Eq. (9.116), and there is no very simple analytical formula.
Nevertheless, from these calculations one can show that there is an exact duality between £y and
By in ingoing radiation gauge for quasinormal modes with the same order parameters (n,l, m) but
opposite parity, for both Schwarzschild and Kerr black holes; see Appendix 9.E.2. For Schwarzschild
black holes in RWZ gauge, there is also a duality for the horizon quantities, although it is complicated
by a perturbation to the position of the horizon in this gauge; see Appendices. 9.A.4 and 9.A.5 for
further discussion.

In Figure 9.9, we show 0 Ey y and § By for the (2,2) modes with both parities, of a Schwarzschild
black hole (upper row) and a rapidly rotating Kerr black hole (bottom row).

The duality is explicit in the labels at the top: the patterns are identically the same for §Enn
(tendexes) of electric-parity modes and dByn (vortexes) of magnetic-parity modes [left column];
and also identically the same when the parities are switched [right column] The color coding is
similar to Figure 9.3 above (left-hand scale). The red (light gray) regions are stretching tendexes
or counterclockwise vortexes (negative eigenvalues); the blue (dark gray), squeezing tendexes or
clockwise vortexes (positive eigenvalues).

For the Schwarzschild hole, the electric-parity tendex pattern and magnetic-parity vortex pattern
(upper left) is that of the spherical harmonic Y?2(6, ¢), and the perturbative electric-parity vorticity
and magnetic-parity tendicity vanish (upper right).

For the rapidly spinning Kerr hole, the electric-parity tendexes and magnetic-parity vortexes
(lower left) are concentrated more tightly around the plane of reflection symmetry than they are
for the Schwarzschild hole, and are twisted; but their patterns are still predominantly Y?2. And
also for Kerr, the (perturbative) electric-parity vorticity and magnetic-parity tendicity have become
nonzero (lower right), they appear to be predominantly Y32(6,$) in shape, they are much less
concentrated near the equator and somewhat weaker than the electric-parity tendicity and magnetic-

parity vorticity (lower left).
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Figure 9.9: Perturbative horizon tendicities d Ex and vorticities 0 Byy for the (2,2) quasinormal
modes with electric and magnetic parities (see column labels at the top). The top row is for a
Schwarzschild black hole, a = 0; the bottom for a rapidly spinning Kerr black hole, a/M = 0.945.

The color intensity is proportional to the magnitude of the tendicity or vorticity, with blue (dark
gray) for positive and red (light gray) for negative. For discussion, see Section 9.3.1 of the text.
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9.3.2 Equatorial-Plane Vortex and Tendex Lines, and Vortexes and Ten-

dexes

As for the weak-field, radiative sources of Paper I, so also here, the equatorial plane is an informative
and simple region in which to study the generation of gravitational waves.

For the (2,2) modes that we are studying, the 6&;;, of an electric-parity perturbation and the 613
for magnetic parity are symmetric about the equatorial plane. This restricts two sets of field lines
(tendex lines for electric-parity d&;x; vortex lines for magnetic-parity d8;%) to lie in the plane and
forces the third to be normal to the plane. By contrast, the electric-parity B, and magnetic-parity
0E;j, are reflection antisymmetric. This requires that two sets of field lines cross the equatorial plane
at 45° angles, with equal and opposite eigenvalues (tendicities or vorticities), and forces the third
set to lie in the plane and have zero eigenvalue (which makes them have less physical interest).

In this section, we shall focus on the in-plane field lines and their vorticities and tendicities.

9.3.2.1 Magnetic-Parity Perturbations of Schwarzschild Black Holes

In Section 9.1.3.6 and Figures 9.2 and 9.3, we discussed some equatorial-plane properties of the
magnetic-parity (2,2) mode. Here we shall explore these and other properties more deeply. Recall
that for the magnetic-parity mode, the frame-drag field, and hence also the vortex lines and their

vorticities, are fully gauge invariant.
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Figure 9.10: Three representations of the vortex lines and vortexes in the equatorial plane of a
Schwarzschild black hole perturbed by a magnetic-parity (2,2) quasinormal mode. The bottom
panels span a region 56M on each side, and the top panels are a zoom-in of the lower panels, 30M
on each side. All panels show positive-vorticity lines as solid and negative-vorticity lines as dashed.
In all panels, blue (dark gray) corresponds to positive and red (light gray) to negative; the intensity
of the color indicates the strength of the vorticity at that point normalized by the maximum of the
vorticity at that radius (darker shading indicates a larger strength and lighter, weaker). Similarly, in
all panels, the central circle surrounded by a narrow white line is the horizon colored by its vorticity
as described above. Left column: Vortex lines colored and shaded by their scaled vorticity. Middle
column: Negative vorticity coloring the plane with black vortex lines. Right column: Vorticity with
the larger absolute value coloring the plane and black vortex lines. For discussion of this figure, see
Section 9.3.2.1.

In Figure 9.10, we show six different depictions of the vortex lines and their vorticities in the
equatorial plane, each designed to highlight particular issues. See the caption for details of what is
depicted.

The radial variation of vorticity is not shown in this figure, only the angular variation. The
vorticity actually passes through a large range of values as a function of radius: from the horizon to
roughly » = 4M ~ 1.5X (roughly the outer edge of the near zone), the vorticity rapidly decreases;
between r ~ 4M and 12M (roughly the extent of the transition zone), it falls off as 1/r; and at
r 2 12M (the wave zone), it grows exponentially due to the damping of the quasinormal mode as
time passes. (The wave field at larger radii was emitted earlier when the mode was stronger.) In
the figure, we have removed these radial variations in order to highlight the angular variations.

By comparing the left panels of Figure 9.10 with Fig 9 of Section VI D of Paper I, we see a strong
resemblance between the vortex lines of our (2,2), magnetic-parity perturbation of a Schwarzschild

black hole, and those of a rotating current quadrupole in linearized theory. As in linearized theory,
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when the radial (or, synonymously, longitudinal) vortex lines in the near zone rotate, the effects of
time retardation cause the lines, in the transition and wave zones, to collect around four backward-
spiraling regions of strong vorticity (the vortexes) and to acquire perturbative tendex lines as they
become transverse-traceless gravitational waves. The most important difference is that, for the
black-hole perturbations, the positive vortex lines emerge from the blue, clockwise horizon vortexes
and spiral outward (and the negative vortex lines emerge from the counterclockwise horizon vortexes)
rather than emerging from a near-zone current quadrupole.

Although the left panels of Figure 9.10 highlight most clearly the comparison with figures in
Paper I, the middle and right panels more clearly show the relationship between the vortex lines
(in black) and the vorticities, throughout the equatorial plane. In the middle panels (which show
only the negative vorticity), the negative vortex lines that emerge longitudinally from the horizon
stay in the center of their vortex in the near zone, and then collect onto the outer edge of the
vortex in the transition and wave zones. Interestingly, near the horizon, there are also two weaker
regions of negative vorticity between the two counterclockwise vortexes, regions associated with the
tangential negative vortex lines that pass through this region without attaching to the horizon (and
that presumably represent radiation traveling into the horizon).

In the right panels of Figure 9.10 (which show the in-plane vorticity with the larger absolute
value), a clockwise vortex that extends radially from the horizon takes the place of the weaker
region of counterclockwise vorticity. From these panels, it is most evident that the vortexes and
vortex lines of opposite signs are identical, though rotated by 90°. These panels also highlight that
there are four spirals of nearly zero vorticity that separate the vortexes in the wave zone, which
the spiraling vortex lines approach. All three vorticities nearly vanish at these spirals; in the limit
of infinite radius, they become vanishing points for the radiation, which must exist for topological

reasons [17].

9.3.2.2 Gauge Dependence of Electric-Parity Tendexes for a Schwarzschild Black Hole

In this subsection, we explore the gauge dependence of the (2,2) modes for a Schwarzschild black
hole. In Section 9.2.3, we showed that for magnetic-parity modes, all gauges share the same slicing.
Therefore, to maximize any gauge dependence that there might be, we focus on the electric-parity
(2,2) mode.

Because the frame-drag field of the unperturbed Schwarzschild black hole vanishes, this mode’s
perturbative frame-drag field will be unaffected by perturbative changes of the spatial coordinates.
Therefore, we focus on the perturbative tidal field 0&€ of the electric-parity mode, which is sensitive
to both perturbative slicing changes and perturbative spatial coordinate changes.

In Figure 9.11, we plot this field’s perturbative equatorial tendexes and tendex lines for the

electric-parity (2,2) mode in RWZ gauge (left panel) and IR gauge (right panel)—which differ, for
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Figure 9.11: The equatorial-plane, electric-parity tendexes and tendex lines of a (2,2) perturbation
of a Schwarzschild black hole in RWZ gauge (left panel) and IR gauge (right panel). The conventions
for the lines, the coloring and the shading are identical to those in the right panels of Figure 9.10.

this mode, in both slicing and spatial coordinates. The tendex lines for the two gauges were seeded
at the same coordinate points, so all the differences between the panels can be attributed to the
gauge differences.

The two panels are almost identical. Therefore, these maximally sensitive tendexes and tendex
lines are remarkably unaffected by switching from one gauge to the other. The primary differences
are that (i) the tendex lines of IR gauge tend to be pulled closer to the horizon very near the horizon
as compared to RWZ gauge (ii) the lines falling onto the attracting spiral are bunched even more
tightly in IR gauge than in RWZ gauge; however, more lines reach the spiral in RWZ gauge in this
figure, and (iii) the four tendex spirals wind more tightly in IR gauge, which is most easily seen by
comparing the lower right and upper left corners of the two panels.

One subtlety that must be remarked upon is that the central circle colored by the normal-normal
component of the tidal field (surface tendicity) in the RWZ gauge (left panel of Figure 9.11) is simply
the surface r = 2M, and not the true event horizon. The location of the event horizon is affected by
the perturbations in a gauge-dependent manner, as discussed by Vega, Poisson, and Massey [18]. We
rely on the results of this article in the brief discussion that follows. In RWZ gauge, the horizon is at
rg = 2M + 6r(L,0, ¢), where the function dr can be solved for by ensuring that the vector tangent
to the perturbed generators (in our case, I# = 9z*/0t) remains null [18]. We give an expression for
or in Appendix 9.A.5. There we also discuss the correction to the horizon tendicity in RWZ gauge.

One key result is that the horizon tendicity has the same angular distribution in RWZ gauge as in
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Figure 9.12: Vortexes and tendexes and their field lines in the equatorial plane for (2,2) modes of
Schwarzschild and Kerr black holes. The lines, the coloring and the shading are identical to those in
the right panels of Figure 9.10. The upper row is for a Schwarzschild black hole (@ = 0); the lower
row, for a rapidly spinning Kerr black hole (a = 0.945); see labels on the left. The left column shows
the vortex lines and vorticities for magnetic parity (which are gauge invariant for the perturbations
of a Schwarzschild hole); the middle and right columns show the tendex lines and tendicities for the
electric-parity mode in IR gauge; see labels at the top. In the right column, the equatorial plane is
isometrically embedded in three-dimensional Euclidean space. The top panels are 24M across; the
bottom, 14M. This figure elucidates duality and the influence of black-hole spin; see the discussion
in Section 9.3.2.3.

IR gauge (given by the Y22 spherical harmonic), so that the normal-normal tendicity on the horizon
and on the surface at r = 2M differ only by an amplitude and phase in RWZ gauge. Meanwhile, in
IR gauge the horizon remains at ry = 2M and so the colored central circle is in fact the horizon,
colored by its horizon tendicity.

However, the bulk tendexes and tendex lines are determined completely independently of these
horizon considerations, and so Figure 9.11 provides an accurate comparison of them in the two

gauges.

9.3.2.3 Duality and Influence of Spin in the Equatorial Plane

In this subsection, we use Figure 9.12 to explore duality and the influence of spin, for the fundamental
(2,2) mode.

By comparing the left and center panels in the top row of Figure 9.12, we see visually the
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near duality between the electric- and magnetic-parity modes for a Schwarzschild hole. This near
duality is explored mathematically in Appendix 9.C. Specifically, the vortexes and their lines for the
magnetic-parity mode (left) are nearly identical to the tendexes and their lines for the electric-parity
mode. The only small differences appear in the size of the nearly zero-vorticity (or tendicity) regions,
and the curvatures of the lines.

For the fast-spinning Kerr black hole (the bottom left and center panels of Figure 9.12), the near
duality is still obvious, especially in the colored vortexes and tendexes; but it is less strong than for
Schwarzschild, especially in the field lines. The vortex lines (on the left) continue to look like those
of a Schwarzschild black hole, but the tendex lines (in the middle) curve in the opposite direction,
which makes some lines reach out from the horizon and connect back to it instead of spiraling away
from the horizon.

By comparing the top and bottom panels in the left and center columns of Figure 9.12, we see
the influence of the background black hole’s spin on the dynamics of the perturbative vortexes and
tendexes. For fast Kerr (bottom), the vortexes and tendexes near the horizon look more transverse
(less radial) than for Schwarzschild, because the size of the near zone is much smaller. (The frequency
of the waves is nearly twice that for a perturbed Schwarzschild hole.) The higher frequency also
explains why the spirals of the vortexes and tendexes are tighter.

In the isometric embedding diagrams in the right column of Figure 9.12, we see that proper radial
distance in the near zone is somewhat larger than it appears in the flat, planar drawing. Taking this
into account, we conclude that, aside from a few small differences, the qualitative ways in which waves
are generated for fast Kerr and for Schwarzschild are the same: two pairs of vortexes or tendexes
emerge longitudinally from horizon vortexes, and twist into backward spirals that eventually form

the transverse-traceless gravitational waves.

9.3.2.4 Vortexes of Electric-Parity Mode, and Perturbative Tendexes of Magnetic-
Parity Mode for a Schwarzschild Black Hole

In Figure 9.13, we visualize the vortexes of the electric-parity (2,2) mode of a Schwarzschild hole.
(By near duality, the perturbative tendexes of the magnetic-parity mode must look nearly the same.)

As noted at the beginning of Section 9.3.2, reflection antisymmetry of the frame-drag field for this
electric-parity mode dictates that through each point in the plane there will pass one zero-vorticity
vortex line lying in the plane, and two vortex lines with equal and opposite vorticities that pass
through the plane at 45 degree angles and are orthogonal to each other and to the zero-vorticity
line. The vorticity plotted in Figure 9.13 is that of the counterclockwise, 45 degree line. For the
clockwise line, the vorticity pattern is identically the same, but blue instead of red.

There are again four regions of strong vorticity (four vortexes), which spiral outward from the

horizon, becoming gravitational waves. In this case, the four regions look identical, whereas for the
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Figure 9.13: For an electric-parity (2,2) mode of a Schwarzschild black hole: the vorticity of the
counterclockwise vortex lines that pass through the equatorial plane at a 45 degree angle. The
clockwise vortex lines that pass through the plane have equal and opposite vorticity. By near duality,
this figure also depicts the perturbative tendex structure for the magnetic-parity (2,2) mode. The
conventions for coloring and shading are the same as in Figure 9.10. Because the horizon vorticity
is exactly zero for this mode, the horizon is shown as a white disk. The left panel, a region 30M
across, is a zoom in of the right panel, which is 56 M across.

tendexes of this same electric-parity mode (middle column of Figure 9.12) there is an alternation
between blue and red. There is actually an alternation here, too, though it does not show in the
figure: The relative tilt of the lines (in the sense of the ¢ direction) rotates, such that in one tendex,
the red tendex lines pass through the plane with a forward 45 degree tilt on average, and in the next

tendex, with a backward 45 degree tilt; and conversely for the blue tendex lines.

9.3.3 Three-Dimensional Vortexes and Tendexes

In this section, we shall explore the 3-dimensional vortexes and tendexes of the (2,2) modes of
Schwarzschild and Kerr black holes, which are depicted in Figure 9.14. In the first subsection, we
shall focus on what this figure tells us about the generation of gravitational waves, and in the second,

what it tells us about duality.

9.3.3.1 Physical Description of Gravitational-Wave Generation

In Section 9.1.3.6 of the Introduction, we summarized in great detail what we have learned about
gravitational-wave generation from our vortex and tendex studies. There we focused on the (2,2)
magnetic-parity mode, and among other things we scrutinized the upper left panel of Figure 9.14
(which we reproduced as Figure 9.4). Here, instead, we shall focus on the (2, 2) electric-parity mode
as depicted in the right half of Figure 9.14.

We begin with the perturbative tendexes of the electric-parity, (2,2) mode of a Schwarzschild
black hole (third panel on top row of Figure 9.14). The 3-D tendexes emerge from the horizon as
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Figure 9.14: Three-dimensional vortexes and tendexes of the same four modes as are shown in
Figure 9.12. As there, so here, the top row is for a Schwarzschild black hole, and the bottom for
fast-spin Kerr, a = 0.945; the left two columns (one in Figure 9.12) are for a magnetic-parity (2,2)
mode (with the vortexes in IR coordinates), and the right two columns (one in Figure 9.12) are
for electric parity in IR gauge. For each parity, the first column shows structures of the field that
generates the waves (§B for magnetic parity; € for electric parity) and the second column shows
structures of the other field (not included in the equatorial-plane drawings of Figure 9.12). In each
panel, the colored surfaces show the outer faces of vortexes (for 0B) or tendexes (for JE), defined as
the locations, for a given radius, where the largest-in-magnitude eigenvalue of the field being plotted
(6B or 0F) has dropped to a certain percentage (90, 85, 80 or 75) of its maximum for that radius;
that percentage is shown alongside the colored surfaces. As in previous figures, the surface is red
(light gray) if that largest-in-magnitude eigenvalue is negative and blue (dark gray) if positive. The
off-white regions are surfaces where the largest-in-magnitude eigenvalue has dropped to 15%, 20%
or 25% of the maximum at that radius. In each panel the black lines are a few of the vortex lines
(for 0 B panels) or tendex lines (for  E' panels) that become transverse when they reach large radii,
and thereby produce the tidal or frame-drag force of an emitted gravitational wave. For discussion
of this figure, see Section 9.3.3.
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four deformed-cylinder structures, two red (light gray) and two blue (dark gray). These are the
extensions into the third dimension of the four near-zone, equatorial-plane tendexes of the center
panel in Figure 9.12 above. As we enter the transition zone, the four 3D tendexes lengthen vertically
(parallel to the poles), and then as we enter the wave zone, they spiral upward and downward around
the poles; they have become gravitational waves. They are concentrated near the poles because the
(2,2)-mode gravitational waves are significantly stronger in polar directions than in the equator.

In this panel, we also see black tendex lines that emerge from the horizon and spiral upward and
downward alongside the polar-spiraling tendexes, becoming nearly transverse at large radii—part of
the outgoing gravitational waves. Of course, there are similar tendex lines, not shown, inside the
spiraling tendexes. In addition, we also see tendex lines in the inner part of the wave zone that are
approximately polar circles; these are also part of the outgoing waves.

The top rightmost panel depicts the vortexes associated with this electric-parity mode. The
horizon vorticity vanishes, so the horizon is white. The vortexes near the horizon are dominated
by the longitudinal-transverse part of the frame-drag field BY", which interacts with & and &Y
to maintain their joint near-zone structure as they rotate (cf. the description of the dual magnetic-
parity mode in Section 9.1.3.6). However, of course, there is also a BT associated with the ingoing
gravitational waves. At large radii, in the outgoing-wave zone, the vortexes, like the tendexes of the
third panel top row, spiral upward and downward around the polar axis; they have joined with the
tendexes to form the full gravitational-wave structure.

For insight into how (we think) the near-zone tendexes of this electric-parity mode, extending
radially out of the horizon, generate these outgoing gravitational waves, and how the ingoing waves,
that they also generate, act back on them and drive their gradual decay, see the description of this
mode’s dual in Section 9.1.3.6.

For the rapid-spin Kerr black hole, the tendex and vortex structures (last two panels of second row
of Figure 9.14) are quite similar to those for the Schwarzschild black hole. The detailed differences
are similar to those in the equatorial plane (see discussion in Section 9.3.2.3 above): smaller near zone
and tighter spiraling for the tendexes because of the higher eigenfrequency; nonvanishing horizon
vorticity with a predominantly Y32(6, ¢) angular structure. In the near zone, the 3D vortexes seem
to have acquired a longitudinal (radial) part, emerging from the Y32 horizon vortexes (though this
is largely hidden behind the off-white structures). Thus, for a Kerr black hole, one might intuitively
describe the generation of gravitational waves as being produced by a superposition of near-zone
tendexes that induce vortexes by their motions, and near-zone vortexes that induce tendexes by
their motions. However, because the near-zone vortexes are weaker than the tendexes, the tendexes

still play the dominant role for gravitational-wave generation in this electric-parity mode.
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Figure 9.15: Left: Vortex lines of a a/M = 0.945 Kerr black hole perturbed by an electric-parity
(2,2) quasinormal-mode in IR gauge. Right: Vortex lines from a a/M = 0.945 ringing down Kerr
black hole obtained from a numerical simulation [19] of two identical merging black holes with spins
of magnitude 0.97 aligned parallel to the orbital angular momentum. In the simulation, we chose a
late enough time that the common apparent horizon is essentially that of a single, perturbed black
hole, and we computed the vortex lines using methods summarized in Reference [1].

9.3.3.2 Approximate Duality

By comparing the magnetic-parity left half of Figure 9.14 with the electric-parity right half, we can
visually assess the degree to which there is a duality between the modes in three dimensions. For
the perturbations of Schwarzschild black holes (top row), the most notable difference between the
magnetic- and electric-parity perturbations is that the transition between the longitudinal near-zone
and spiraling wave-zone vortexes of the magnetic-parity perturbation is more abrupt, and happens
closer to the horizon than it does in the electric-parity perturbations. The reason for this is encoded
in Egs. (9.89), (9.90), and (9.91), but we do not have a simple physical explanation for why this
occurs. This difference is magnified for perturbations of the rapidly rotating Kerr black hole (bottom
row). Thus, the small breaking of duality quantified in Appendix 9.C for Schwarzschild black holes
seems to be more pronounced in three-dimensions than in two, and stronger for rapidly rotating
black holes than for non-rotating ones.

Nevertheless, the qualitative picture of wave generation by longitudinal near-zone tendexes and

vortexes is essentially dual for perturbations of the two parities.

9.3.4 Comparing Vortex Lines of a Perturbed Kerr Black Hole and a
Binary-Black-Hole-Merger Remnant

As a conclusion to this section and a prelude to future work, in Figure 9.15 we compare the vortex

lines found using our analytic methods to those found in a numerical ringdown of a fast-spinning
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Kerr black hole.

More specifically, we compare an electric-parity, (2,2) quasinormal-mode perturbation of a Kerr
black hole with dimensionless spin a/M = 0.945, to a ringing-down Kerr black hole of the same spin
formed in a numerical simulation [19] of the merger of two equal-mass black holes with equal spins
of magnitude 0.97 aligned with the orbital angular momentum. (Note that because of the symmetry
of this configuration, during the ringdown there is no magnetic-parity (2,2) mode excited.)

For both the analytical and numerical calculations, the vortex lines are those of the full frame-
drag tensor ng- = B%)) + Bg), including the background part B%)) and the perturbation BS) = 58;3
(as in Appendix 9.F). This makes the lines look quite different from those for just 6B;; depicted in
Figures 9.12 and 9.14.

Near the equator, the vortex lines in both panels look like those of an unperturbed Kerr black
hole (see Paper II). Closer to the axis of rotation, the background vortex lines become degener-
ate, and the perturbations break the degeneracy by picking the principal axes of the perturbative
field. Correspondingly, near the rotation axis and at large enough radii to be in or near the wave
zone, the vortex lines resemble those of transverse-traceless gravitational waves, which are emitted
symmetrically above and below the hole.

Although the vortex lines from these similar physical situations were computed using very differ-
ent methods and gauge conditions, the results are remarkably similar (see Figure 9.15). This gives
us confidence that our analytical methods can guide our understanding of the vortexes and tendexes

in the late stages of numerical simulations.

9.4 Superposed (2,2) and (2, —2) Quasinormal Modes of
Schwarzschild

9.4.1 Magnetic-Parity Superposed Modes

In Section 9.1.3.9, we summarized the properties of the quasinormal mode of Schwarzschild that is
obtained by superposing the magnetic-parity (2,2) and (2, —2) modes. Here we give details. The
vortex lines and vorticities for this superposed mode are depicted in Figure 9.16 using the three
types of visualizations in Figure 9.10.

The left column of Figure 9.16 shows the two families of vortex lines that lie in the equatorial
plane, color coded by their vorticities. The solid-line family has predominantly positive (clockwise)
vorticity, but in some regions its vorticity becomes weakly negative (counterclockwise). The dashed-
line family has predominantly negative vorticity, but in some regions it is weakly positive. A rotation
around the hole by angle 7/2 maps each family into the other.

In the center column of Figure 9.16, the vortex lines are drawn black and the equatorial plane



Figure 9.16: The vorticities and vortex lines in the equatorial plane of a Schwarzschild black hole, for
the fundamental magnetic-parity (2, 2) mode superposed on the fundamental magnetic-parity (2, —2)
mode, depicted using the same three visualization techniques as in Figure 9.10. Here, however, we
do not scale the vorticity by any function, but the numbers on the vorticity scale on the left of
the panels are equal to /vorticity X r (where r is radius), in units of the maximum value of this
quantity, which occurs on the horizon at ¢ = 37/4 and ¢ = 7w/4. The top panels cover a region
30M across, and the bottom panels are a zoom-out of the upper panels, 56 M across. The central
circle in all panels is the horizon as viewed from the polar axis, colored by its vorticity. Left column:
The two families of vortex lines (one shown dashed, the other solid) with each line colored, at each
point, by the sign of its vorticity (blue [dark gray] for positive, i.e., clockwise; red (light gray) for
negative, i.e., counterclockwise), and each line has an intensity proportional to the magnitude of
its vorticity. Center column: The same vortex lines are colored black, and the equatorial plane is
colored by the vorticity of the dashed family of lines. Right column: The same as the center column,
but the equatorial plane is colored by the vorticity with the larger magnitude.

is colored by the vorticity of the dashed lines. To deduce the coloring for the solid lines, just rotate
the colored plane (but not the lines) by 7/2 and interchange red (light gray) and blue (dark gray).
By contrast with most previous figures, the radial variation of the vorticity is not scaled out of this
figure; so in the wave zone (roughly, the outer half of right panel) the coloring oscillates radially, in
color and intensity, in the manner of a gravitational wave. At large radii, there is also a growth of
intensity (and saturation of the color scale) due to the waves emitted earlier having larger amplitude.

In the right column of Figure 9.16, the vortex lines are again drawn black, and the equatorial
plane is now colored by the larger of the two vorticities in amplitude.

Together, the columns of Figure 9.16 provide the following picture: For each family of lines, the
equatorial-plane vortexes form interleaved rings (dashed lines and red [light gray] vortexes for center

column). Most of the family’s vortex lines form closed, distorted ellipses that, when tangential, lie
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in a single vortex (red for dashed lines), and when more nearly radial, travel from one vortex to
another. In the wave zone, these line and vortex structures grow longer tangentially as they propagate
outward, and they maintain fixed radial thickness. When one looks at both families simultaneously,
focusing on the strongest at each point (right column), one sees vortexes of alternating red and blue
vorticity (light and dark gray). The angular oscillations are those of a quadrupolar structure; the
radial oscillations are those of a propagating wave.

In the near zone, the vortex lines have rather sharp, right angled features associated with the
quadrupolar nature of the near-zone perturbation; this is to be compared to the oscillating current
quadrupole in linearized gravity (Paper I, Section VI, Figure 15). There are multiple singular points
in the lines: degenerate points where the lines cross with sharp bends, and where both families of
vortex lines take on the same eigenvalue. (The third eigenvalue, that of the lines perpendicular to the
plane, must then be minus twice the vorticity of these lines, in order for the sum of the eigenvalues
to vanish).

We shall discuss the dynamics of these vortex lines and vortexes in Section 9.4.3 below, after
first gaining insight into the electric-parity superposed mode (whose vortexes will teach us about

this magnetic-parity mode’s tendexes through the near duality).

9.4.2 Electric-Parity Superposed Mode

For the mode constructed by superposing electric-parity (2,2) and (2,-2) modes of Schwarzschild, as
for the electric-parity (2,2) mode itself (Section 9.3.2.4), symmetry considerations dictate that: (i)
one family of vortex lines lies in the equatorial plane and has vanishing vorticity, (ii) two families
pass through the equatorial plane at 45° angles, with equal and opposite vorticities, and (iii) the
horizon vorticity vanishes.

In Figure 9.17 [analog of Figure 9.13 for the (2,2) electric-parity mode], we show the vorticity
of the family of counterclockwise vortex lines, as they pass through the equatorial plane.

In the near zone of this figure, we see again a distinct quadrupolar structure, with four lobes of
strong vorticity present near the horizon (four near-zone vortexes). Beyond these near-zone lobes,
there is a ring of vanishing vorticity, followed by an annulus where the cast-off vortexes of a previous
cycle have begun to deform into an annulus of stronger vorticity. In the wave zone, the vortexes have
transitioned into outward traveling transverse waves, with regions of vanishing vorticity between the
crests and troughs of each wave. The waves are strongest along the diagonals, though in the near
zone the (LT) frame-drag field is strongest in the up, down, left and right directions.

By (near) duality, the tendexes of the magnetic-parity superposed mode will have the same form
as these electric-parity-mode vortexes. Accordingly, in the next section, we will use this figure to
elucidate the magnetic-parity mode’s dynamics — and by duality, also the dynamics of this electric-

parity mode.



Figure 9.17: For the electric-parity, superposed (2,2) and (2,-2) fundamental modes of Schwarzschild:
the vorticity of the counterclockwise vortex lines that pass through the equatorial plane at 45° angles.
By near duality, this figure also depicts the perturbative tendex structure for the magnetic-parity
superposed mode. The intensity scale of the red color (left edge of figure) is the same as that in the
center column of Figure 9.16. The left panel, a region 30M across, is a zoom-in of the right panel,
which is 56 M across. This figure is the superposed-mode analog of Figure 9.13.

9.4.3 Dynamics of the Magnetic-Parity Superposed Mode

We now turn to the dynamics of the magnetic-parity superposed mode, which we studied in Sec-
tion 9.4.1

In Figure 9.18 for this mode we show, in the equatorial plane, the time evolution of (i) the vortex
lines and their vorticities near the black hole (top row), and (ii) on a larger scale that extends into
the wave zone, the mode’s vortexes (middle row) and perturbative tendexes (bottom row). The
four panels in the top row are stills from a movie at [20]. To be absolutely clear, the vortexes and
tendexes are those of the same magnetic-parity mode. As in the center column of Figure 9.16, the
top and middle rows show only one family of vortexes, that for the dashed vortex lines which have
predominantly negative vorticity; and as in Figure 9.17, the bottom row shows only the tendicity
of the negative-tendicity perturbative tendexes that pass through the equatorial plane at 45°. Time
t = 0 (left panels of Figure 9.18) is chosen at a moment when the horizon vorticity is maximum,
whereas Figures 9.16 and 9.17 are snapshots at the slightly earlier time ot ~ —7/3 (which gives
nearly the same vortex structures as the fourth column, after a rotation by 7/2).

In interpreting Figure 9.18, especially the top row, we emphasize that there is no unique way
of following a single vortex or tendex line in time. The same is true of electric and magnetic field
lines in Maxwell’s theory (cf. [21]). While we hope to elucidate this issue in future work, here, in
constructing the panels in the top row of Figure 9.18, we have simply started the integration of
the vortex lines from the same points at each time step, making no attempt to identify and follow
individual lines from moment to moment. Correspondingly, in order to interpret Figure 9.18 and

gain insight into the dynamics of the superposed mode, instead of trying to follow individual lines,
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Figure 9.18: Time evolution of the equatorial vortexes (top and middle rows) and equatorial per-
turbative tendexes (bottom row) for the superposed (2,2) and (2,—2) magnetic-parity mode of
Schwarzschild in RWZ gauge. The color scale is the same as the center column of Figure 9.16, and
the gravitational-wave-induced exponential decay of the vorticity and tendicity has been removed.
Top row: Equatorial vortex lines and their vorticity plotted in a region near the horizon (16 M across)
followed over time ¢. The real part of the eigenfrequency is denoted o, so the successive panels, left
to right, cover half a cycle of the mode’s oscillation. Middle row: The vorticity of the equatorial
vortex lines in the near, intermediate and beginning of wave zone (30M across) at the same time
steps as the top row. Bottom row: Tendicity of the counterclockwise tendex lines passing through
the equatorial plane (which is dual to the left panel of Figure 9.17), plotted at the same time steps
as the top row.

we will focus on the lines’ evolving shapes, and the structures of the vortexes and tendexes and the
equations governing their evolution on the horizon.

As a foundation for understanding the near-zone dynamics depicted in this figure, we write down
explicit expressions for the longitudinal and longitudinal-transverse parts of the frame-drag and tidal

fields on the horizon:

[ 3 —iw(t-
By = R|g—me <t+2M>] (0, 9), (9.26a)
S .
R _ —iw(t+2M) N
Bii = %_—ZﬁMQ(l Be ]DAJ), (9.26b)
Y o A
R —iw(t+2M) . Bpn.
5Ef~A = R _2\/§M2(1+IB)6 :| ( €4 DA)yv

(9.26¢)
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where
3

2iwM (1 — 4iwM) -~

B

(9.26d)

Here the normalization is that of Appendix 9.A, w = (0.37367 — 0.08896¢)/M is the mode’s

eigenfrequency, € AB is the Levi-Civita tensor on the horizon,
V=Y?24+Y27? = /15/8nsin? f cos 2¢ (9.26¢)

is this mode’s scalar spherical harmonic, and D 4 is the covariant derivative on the unit 2-sphere
(related to the covariant derivative on the horizon by D ; = 2MV ;). [Equations (9.26) follow from
Egs. (9.40), (9.41), (9.54) of Appendix 9.A, the vector-spherical-harmonic definitions (9.82a) and
(9.86a), and definition (9.5) of the EF time coordinate.]

Equations (9.26) are the fields measured by Eddington-Finkelstein observers. The conservation
law (9.4a) for longitudinal field lines threading the horizon (which we shall need below) involves, by
contrast, the LT frame-drag field measured by Schwarzschild observers on the “stretched horizon”
(very close to the event horizon). Since the Schwarzschild observers move outward with velocity
v = (2M/r)N ~ N with respect to the EF observers, and with v = 1/v/1 — v2 =~ 1/(v/2a), the field
they measure is By, = y(B*Y — N x 6€"T). This field diverges as 1/a as the stretched horizon
is pushed toward the event horizon; to remove that divergence, in the Membrane Paradigm [9]) we

renormalize by multiplying with a:

1

H _ LT _ LT LTy _
By = aBgy =ay(B" — N x € )_%[4]\42

eiw(f+2]\/1):| D;Y. (9.27)
The second line is obtained by inserting the EF fields (9.26a) and (9.26b), and v = 1/4/2a, into the
first line. The conservation law for longitudinal vortex lines threading the horizon (actually, one of

the Maxwell-like Bianchi identities in disguise) says that
OBNN /0L +V 4(—=B) =0; (9.28)

cf. Eq. (9.4a) and subsequent discussion. (In this Schwarzschild-perturbation-theory case, there are
no small spin-coefficient terms to spoil the perfection of the conservation law.) The vortex-line
density and flux expressions (9.26a) and (9.27) do, indeed, satisfy this conservation law, by virtue
of the fact that the 2-dimensional Laplacian acting on the quadrupolar spherical harmonic ) gives
D ;DAY = —6).

Equations (9.26) and (9.28) tell us the following: (i) On and near the horizon, the LT fields B*"
[Eq. (9.26b)] and 6&"T [Eq. (9.26¢)], and also BEA [Eq. (9.27)], all oscillate approximately out of
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phase with the longitudinal field BY [Eq. (9.26a)].> Therefore, near-zone energy is fed back and
forth between the L and LT fields as the black hole pulsates.

(ii) The conservation law (9.28) says that, if we regard By as the density of vortex lines of B"
threading the horizon, and —BEA as the flux of vortex lines (number crossing a unit length in the
horizon per unit time), then these horizon-threading vortex lines of BY are conserved during the
pulsation. More specifically:

(iii) As the mode evolves in Figure 9.18 from ot = 0 to ot = 7, the conserved vortex lines are
pushed away from the center of each horizon vortex toward its white edges, and there the conserved
lines from the red region (counterclockwise) annihilate with the conserved lines from the blue region
(clockwise). The pushing is embodied in the vortex-line flux fB?A, which grows stronger during
this evolution.

(iv) As the mode evolves further from ot = 7/2 to ot = , conserved vortex lines of B are created
in pairs (one clockwise, the other counterclockwise) at the white edges of the horizon vortexes, and
move inward toward the center of each vortex.

Turn, now, from the conserved vortex lines of BY piercing the horizon to the 3D vortex lines
outside the horizon, depicted in the top row of Figure 9.18. Because these are lines of the full 3D
frame-drag field B and not its longitudinal part B, they do not obey a conservation law and there
is no unique way of following individual lines from one panel to the next. However, their evolving
shapes teach us much about the geometrodynamics of this superposed mode:

At time ot = 0 (upper left panel), the horizon-piercing vortex lines of the full frame-drag field B
are almost perfectly radial, with clockwise (solid) tendex lines emerging from the two blue horizon
tendexes, and counterclockwise (dashed) tendex lines emerging from the two red horizon tendexes.
As time passes, the horizon piercing lines become less radial and the horizon vorticity decreases (ot =
7/4) until the lines’ angles to the horizon are almost all near 45° and the horizon vorticity vanishes
(ot = w/2). Note that the lines that lie precisely on the diagonals, and which contact the horizon
radially in the middle panel (ot = 7/2), have zero vorticity where they strike the horizon. This
latter fact allows them to have a more radial angle of intersection than almost all other lines. The
near-horizon frame-drag field has evolved at this time from being predominantly longitudinal, B",
to being predominantly longitudinal-transverse, BT, but with some small admixture of transverse-
traceless ingoing waves, BTT. As time moves onward from ot = 7/2 to ot = , the vortex lines
in the outer part of each panel reach around on the horizon and attach to a quadrant on the side
rather than directly below themselves—a quadrant that has newly acquired the color corresponding

to the lines’ own vorticity (blue for solid lines, red for dashed lines).

3The longitudinal-transverse frame-drag field BT lags approximately 1.04 ~ 7/3 radians behind Bypy on the
horizon, while the LT component of the tidal field, EXT, lags approximately 1.21 ~ 2w /5 radians behind By n. Most
importantly for interpreting Figure 9.18, the two nonzero tendicities of the tidal field are (in the equatorial plane)

+ /8,3(; + qup and on the horizon they lag nearly m/2 radians behind By n; the damping of the perturbation adds
slightly to the phase lag, so that it is actually 7/2 + arctan[S(w)/R(w)] ~ 7/2 + 0.234 out of phase with By .
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At ot = 0 (upper left panel), the near-horizon, nearly circular vortex lines in each quadrant
represent, predominantly, the transverse-isotropic part of B and keep it trace free. As time passes
and BY decreases, we can regard these lines as traveling outward, forming the distorted ellipses which
become gravitational waves in the far zone. The manner in which these circular vortex lines are
restored each cycle appears to be as follows: As discussed above, as the horizon vorticity oscillates
through zero, formerly longitudinal lines are pushed away from their respective vortexes and become
first more longitudinal-transverse, and then attach to a different quadrant of the horizon; meanwhile
the BT is being regenerated with opposite sign in each quadrant, which requires new transverse-
isotropic lines of opposite vorticity. These lines run tangent to the horizon, hugging it while they
cross through a vortex of strong opposite vorticity. At each edge of the vortex these isotropic-
transverse lines link up with predominantly radial lines which have the same sign of vorticity (it
appears that it is the degenerate points at these edges that allow for such a reconnection). This
deforms the highly distorted, nearly circular arcs, which then lift off the horizon and propagate away
as the cycle progresses.

This entire evolution is being driven by the oscillatory turn-off and turn-on of the longitudinal
part of the frame-drag field B

Turn attention to the evolution of the mode’s equatorial vortexes (middle row) and tendexes
(bottom row). In accord with our discussion above of the evolution of the horizon fields, Egs. (9.26),
these panels reveal (see below) that the vortexes and tendexes oscillate out of phase with each
other. Near-zone energy (see footnote 1 in Section 9.1.3.8) gets fed back and forth between vortexes
and tendexes in an oscillatory manner (though during this feeding, some of it leaks out into the
transition zone and thence into gravitational waves). This oscillatory feeding enables the near-zone
perturbative tendexes to store half of the oscillation energy (while the LT vortexes store the other
half) when the longitudinal frame-drag field B is temporarily zero; and then use that energy to
regenerate B,

The evidence for this near-zone feeding, in Figure 9.18, is the following: (i) The near-horizon
vortexes are strongest along the diagonals, while the regions of strong near-zone tendicity always
occur along the vertical and horizontal directions. Thus, the vortexes and tendexes tend to occupy
different regions, with a 7/4 rotation between the patterns [as one should expect from the angular
dependences in Egs. (9.26a) and (9.26¢)]. (ii) There is a ~ 7/2 phase difference in the time evolution
of the vortexes and tendexes. At those times when the horizon vorticity and near-horizon vortexes
are strongest, the near-horizon tendexes are weak. As the horizon oscillates through zero vorticity,
the tendexes are reaching their maximum strength.

A careful study of the phases of these time behaviors reveals that the dynamics are not precisely
/2 out of phase, as can be seen clearly in the first panel in the bottom row of Figure 9.18: though

the horizon vorticity is at its maximum, the tendicities have just oscillated through zero in this
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region and are beginning to regenerate. As mentioned in footnote 3 above, this additional phase lag
is due to the mode’s damping, and in radians its magnitude is arctan[S(w)/R(w)] ~ 0.234.

The 7/4 differences in spatial phase and ~ 7 /2 differences in temporal phase are lost as the
frame-drag and tidal fields travel outward through the intermediate zone and into the wave zone; an
inspection of the outer edges of the time series plots shows bands of strong tendicity and vorticity in
phase in time and space, propagating outward in synch. This must be the case, since for plane waves
in linearized gravity, the vortex and tendex lines are in phase temporally and spatially (though the
lines are rotated by /4 with respect to each other at each event; see Paper I, Sec VI A).

By scrutinizing the middle and bottom rows of Figure 9.18, (which extend from the near zone
through the intermediate zone and into the inner parts of the wave zone), one can see visually how
the oscillatory feeding of energy between near-zone vortexes and tendexes gives rise to outgoing

vortexes and tendexes that represent gravitational waves.

9.5 (2,1) and (2,0) Quasinormal Modes of Schwarzschild

In this section we will complete our study of the quadrupolar perturbations of Schwarzschild black
holes. Specifically, we will explore the vortex and tendex structures and the dynamics of the (2,1)

and (2,0) magnetic- and electric-parity perturbations of a Schwarzschild hole, in RWZ gauge.

9.5.1 Vortexes of (2,1) Magnetic-Parity Mode and Perturbative Tendexes
of (2,1) Electric-Parity Mode

In Section 9.1.3.7, we summarized the most important properties of the (2,1) magnetic-parity mode
of a Schwarzschild black hole. In this subsection and the next, we shall give additional details about
this mode and its electric-parity dual. We begin with the vortex structure for magnetic parity.

The horizon vorticity of the magnetic-parity (2,1) mode has an angular dependence given by
the spherical harmonic Y21(6, ¢) (of course). We display this horizon vorticity in the left panel of
Figure 9.19. There are four horizon vortexes, two of each sign, and vanishing horizon vorticity all
along the equator.

As we noted in Section 9.1.3.7, this mode’s symmetry dictates that the frame-drag field be
reflection antisymmetric through the equatorial plane. As for the electric-parity (2,2) frame drag
field, which also has this property (second paragraph of Section 9.3.2; also Section 9.3.2.4 and
Figure 9.13), this implies that one family of vortex lines lies in the equatorial plane with vanishing
vorticity, and two cross through that plane at 45° with equal and opposite vorticities. The negative
vorticities of the crossing lines are plotted in the middle panel of Figure 9.19, along with the projected

horizon vorticity, as if the horizon were viewed from above. The positive-vorticity pattern of the
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Figure 9.19: The (2,1) magnetic-parity horizon vorticity and vortexes. Left panel: The horizon
vorticity for the (2,1) magnetic-parity perturbation of Schwarzschild, colored as in Figure 9.9. There
are four horizon vortexes, two clockwise (blue [dark gray]) and two counterclockwise (red [light
gray]). The horizon vorticity vanishes at the equator and the poles. Middle panel: Vorticity of the
counterclockwise vortex lines passing through the equatorial plane, colored and normalized as in the
middle and right hand columns of Figure 9.10 and plotted in a region 24M across. The (blue [dark
gray]) vorticity of the clockwise vortex lines has precisely this same pattern, because the two families
of lines pass through the equatorial plane with the same magnitude of vorticity at each point. Right
panel: Three dimensional vortexes colored and labeled as in Figure 9.14. By near duality, this figure
also represents (to good accuracy) the tendicity and tendex structure of the (2,1) electric-parity
mode.

other family of crossing lines is identical to this negative-vorticity pattern, since at each point the
two lines have the same vorticity magnitude.

The fact that there are just two spiraling vortexes in this figure, by contrast with four for the
(2,2) modes, is guaranteed by the modes’ azimuthal orders, m = 1 here and m = 2 for (2,2).

The vortex structure outside the equatorial plane, depicted in the right panel of Figure 9.19, was
discussed in Section 9.1.3.7. The two red (light gray), 3D vortexes are the same ones depicted in the
middle panel. They actually extend across the equatorial plane (via the 45° vortex lines) into the
region occupied by the blue (dark gray) vortexes; but we do not see them there in the 3D drawing
because the blue vortexes have larger vorticity and we have chosen to show at each point only the

largest-vorticity vortex.

9.5.2 Vortexes of (2,1) Electric-Parity Mode and Perturbative Tendexes
of (2,1) Magnetic-Parity Mode

Turn, next, to the vortex lines and vortex structure of the (2,1) electric-parity mode. [By near
duality, the perturbative tendex lines and tendex structure of the (2,1) magnetic-parity mode will
be the same.]

For this mode, with the parity reversed from the previous section, the frame-drag field is sym-
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Figure 9.20: The (2,1) electric-parity vortex lines, vorticities and vortexes in the equatorial plane.
For this mode the horizon’s vorticity vanishes, so the horizon is plotted as a white disk or sphere. Left
panel: Counterclockwise vortex lines (dashed) and their vorticity (red [light gray] color) normalized
as in Figure 9.10, and plotted in a region 24M across. Middle panel: Both clockwise (solid) and
counterclockwise (dashed) vortex lines, and the vorticity (color) of the line with the larger magnitude
of vorticity, in a region 24M across. Right Panel: Three-dimensional vortexes colored and labeled as
in Figure 9.14. By near duality, this figure also represents to good accuracy the perturbative tendex
lines, tendicities and tendexes for the magnetic-parity (2,1) mode.

metric under reflection through the equatorial plane rather than antisymmetric. Therefore, there
are two sets of vortex lines that remain in the equatorial plane, with the third set normal to it. In
this sense the vortexes’ structures are analogous to those of the magnetic-parity, (2,2) mode; and
in fact they are strikingly similar, aside from having two arms rather than four.

We show the vortexes and vortex lines in Figure 9.20. The left and middle panels of Figure 9.20
show the lines that remain in the equatorial plane, along with color-intensity plots depicting the
lines’ vorticities.

The left panel of Figure 9.20 shows the counterclockwise lines and their vorticities. As in the case
of the (2,2) mode, we see a spiraling region of strong vorticity which contacts the horizon, and an
accompanying spiral of low vorticity. At the horizon, the frame-drag field is primarily longitudinal-
transverse, and correspondingly its vortex lines enter the horizon at a (nearly) 45° angle. As for the
(2,2) mode, there is a limiting spiral that all the outspiraling vortex lines approach, near the edge
of the vortex.

There is also a small region of strong vorticity near the horizon which forms a second spiral,
opposite the primary spiral, although it quickly becomes weak; this second vortex coincides with
the region of strong positive vorticity, as we see in the middle panel of Figure 9.20, and we think
its existence is due to the frame-drag field at the horizon being primarily longitudinal-transverse. It
also should be compared to the similar regions of strong negative vorticity near the positive horizon

vortexes of the magnetic-parity (2,2) mode in Figure 9.10.
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Figure 9.21: The horizon vorticities (§Bxn) of the quadrupolar, (2,0), magnetic-parity mode. As
in Figure 9.9, the color intensity is proportional to the magnitude of the vorticity with blue (dark
gray) for positive and red (light gray) for negative. The arrow points along the polar axis. The
vorticity oscillates sinusoidally in time, causing 0By first to vanish and then to change sign.

In the middle panel, we plot both the counterclockwise (dashed) and clockwise (solid) vortex
lines, and we color each point by the vorticity that is strongest. We see two strong vortexes spiraling
out to form gravitational waves, and we see that under a rotation through 180° the clockwise and
counterclockwise vortex lines map into each other.

Finally, in the right panel of Figure 9.20, we show the vortexes in three dimensions using the
same conventions as in Figure 9.14: the red (light gray) and blue (dark gray) surfaces are the
locations where the vorticity of largest magnitude has fallen to 90% of its maximum at each radius.
By contrast with the (2,1) magnetic-parity mode, where the 3D vortexes are antisymmetric through
the equator (and so they flip colors; see Figure 9.19), here they are symmetric and so have the same
color above and below the equatorial plane.

By duality, for the (2,1) magnetic-parity mode, with its antisymmetric 3D vortexes (Figure 9.19),
the 3D perturbative tendexes are symmetric through the equatorial plane and have the form shown

in this right panel of Figure 9.20.

9.5.3 Vortexes of (2,0) Magnetic-Parity Mode and Perturbative Tendexes
of (2,0) Electric-Parity Mode

In Section 9.1.3.8, we described in detail the dynamics of the axisymmetric (2,0) magnetic-parity
mode of Schwarzschild and the gravitational waves it emits—waves in which the vortex and tendex
lines wrap around deformed tori. In this section and the next, we shall discuss some other details
of this mode and its dual, the (2,0) electric-parity mode.

In Figure 9.21, we show the horizon vorticity for this magnetic-parity mode. Of course, it
is proportional to the scalar spherical harmonic Y2°(6, ). At this moment of time, there are
clockwise vortexes (blue [dark gray]) in the northern and southern hemispheres, and a band-shaped

counterclockwise vortex (red [light gray]) in the equatorial region. As time passes, the horizon
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Figure 9.22: Left and middle panels: Near- and transition-zone vortex lines and their vorticities in
an Sy plane of constant ¢, for the axisymmetric (2,0) magnetic-parity mode of Schwarzschild in the
near and transition zones (30M across). Left panel: The predominantly counterclockwise family
of vortex lines. Middle panel: The predominantly clockwise family of vortex lines. Right panel:
Vorticity of the axial lines normal to an S, plane, in near and wave zones (56M across). The color
intensity in each panel gives the vorticity of the lines, scaled as in Figure 9.16.

vorticity oscillates, with red vortexes becoming blue and blue becoming red in each half cycle, while
also decaying exponentially. The cause of these oscillations, as we discussed in Section 9.1.3.8, is
exchange of energy between §B" (whose normal-normal component is the horizon vorticity) and
SEYT (which we will visualize in the next section).

As we discussed in Section 9.1.3.8, symmetries dictate that this mode has two families of vortex
lines lying in planes Sy of constant ¢ and a third family consisting of azimuthal circles of constant r
and 6. In Figure 9.6, we explored in detail the wave-zone wrap-around-torus shapes of the Sy vortex
lines, and their vorticity patterns. In the near zone, the line shapes and vorticities are somewhat
more complex. We elucidate them in Figure 9.22, where, to make the figure more understandable
and preserve some features lost in Figure 9.6, we show the two families of vortex lines in separate
panels, left and center.

As for the superposed (2,2) and (2, —2) perturbations of Section 9.4, each family takes on both
positive and negative vorticities, but is predominantly one or the other. And unlike the (2,2) mode
and the superposed mode, the (2,0) line families do not map into each other after a 90° rotation;
rather, they have distinct patterns (as one might expect, since their plane is S, rather than the
equatorial plane). On the other hand, because of this mode’s oscillating nature, the predominantly
positive lines are the same as the predominantly negative lines a half-cycle previous (with signs
reversed). For this reason, we illustrate the two families at the same moment in time, the moment
when the horizon vorticity reaches a maximum with blue (dark gray) near the poles and red (light
gray) near the equator.

One striking feature of Figure 9.22 is a set of isolated points where six lines meet, three from
each family (three in each panel). These are nodes (zeros) of the frame-drag field, as one can see

from the fact that the coloring there is white. These are also points where, dynamically, the field
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lines can reconnect, changing their topologies.

Let us focus on the near-horizon, predominantly negative vortex lines (dashed lines) in the
left panel of Figure 9.22. The lines that emerge from the counterclockwise horizon vortex in the
equatorial region loop over the north or south pole of the black hole, and reconnect to the opposite
side of that horizon vortex. We think that, as the mode oscillates, these lines will merge at the
equator then slide off the horizon and form closed loops surrounding the hole, of the sort that we
see in the outer parts of the lenticular blue (dark gray) region of the center panel, and these will
then expand and deform and reconnect to form the set of wrap-around-deformed-torus lines of the
left panel, which lie in the outer part of the transition zone and are becoming outgoing gravitational
waves.

Next focus on the near-horizon, predominantly positive vortex lines (solid lines) in the middle
panel of Figure 9.22. The lines, that emerge from the clockwise horizon vortex in the north polar
region, swing around the equator and descend into the south polar horizon vortex. We think that,
as the oscillation proceeds, these lines will slide off the horizon and immediately form closed loops
that wrap around deformed tori, which expand to become like those near the left and right edges
of the left panel (outer part of transition zone), and then continue their expansion, becoming the
gravitational-wave wrap-around-torus lines whose inner parts are at the left and right edges of the
right panel.

Notice, in the middle panel near the equator, two regions of weakly negative (pink [light gray])
vorticity, and their near-zone lines that appear to have just disconnected from the horizon but are
mostly radially directed. And notice similarly the pink regions near the left and right edges of this
panel, again with vortex lines that are traveling roughly radially. These pink regions are actually
toroidal, because of the rotation symmetry around the vertical axis. In the outer transition zone
and the wave zone, they are the regions in which this family’s wrap-around-torus, gravitational-wave
vortex lines are crossing over from one clockwise vortex (wave crest) to another. This feature of
crossover lines with weakly reversed vorticity appears to be a robust feature of oscillatory modes.
For other examples, see the weakly blue regions in the left panel, and see the superposed (2,2) and
(2,-2) mode in Figure 9.16, where the dashed vortex lines, with predominantly counterclockwise (red
[light gray]) vorticity, become weakly blue (darker gray) in the crossover regions.

The right panel of Fig 9.22 shows the vorticity of the axial lines (constant 7,0 circles) in both
near zone and wave zone. Near the horizon, these lines are largely part of the transverse, isotropic
piece of the longitudinal field §BY; they have opposite color to the horizon vortexes at the horizon,
as they must, in order to keep 0BY trace-free. Near the horizon, these lines also contain a smaller
component of the ingoing-wave transverse-traceless field 68TT. In the wave zone, they are fully

outgoing-wave 6B,



Figure 9.23: For the (2,0) electric-parity mode of Schwarzschild in RWZ gauge: the vorticity of the
counterclockwise vortex lines that pass through the plane Sy of constant ¢. The color intensity
(scale on left) is scaled as in Figure 9.16. Left panel: 30M across, showing the near and intermediate
zones and beginning of the wave zone. Right panel: 56 M across.

9.5.4 Vortex Lines of (2,0) Electric-Parity Mode and Perturbative Tendex
Lines of (2,0) Magnetic-Parity Mode

For the (2,0) electric-parity mode of Schwarzschild in RWZ gauge, the only nonzero components of
the frame-drag field are 4B, $ and 0B, 3 Near the horizon, where decomposition into longitudinal,
longitudinal-transverse, and transverse-traceless parts is meaningful, B vanishes (and hence the
horizon vorticity vanishes), 613, 5 is the sole component of BT, and oB, é is the sole component of
sB'T.

By (near) duality, the same is true for the (2,0) magnetic-parity mode of the last subsection,
with §B replaced by J€.

Because the only nonzero components are 613, 3 and 0B, 3 and because of the axisymmetry, there
is a family of zero-vorticity vortex lines which lie in a plane Sy of constant ¢, and the other two
sets of vortex lines have equal and opposite vorticity and pass through Sy at 45 degree angles. In
Figure 9.23, we show in Sy the vorticity of the counterclockwise lines that pass through it. A plot
for the clockwise lines would be identical, but with blue changed into red.

Notice the remarkable absence of structure in the near zone. All we see is toroidal vortexes
separated by circular null surfaces and a polar null line. (Recall the axisymmetry around the vertical
polar axis). The absence of structure is presumably due to the fact that this mode is sourced by
the longitudinal perturbative tendex field, and not by this frame-drag field (though its longitudinal-
transverse part plays a key role of periodically storing near-zone energy during the oscillations; cf.
the discussion of the dual mode below). The vorticity vanishes along the polar axis because of
axisymmetry and the fact that the radial-radial part of the frame-drag field vanishes.

For greater insight into this frame-drag field, we show in the left panel of Figure 9.24 several of
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Figure 9.24: Vortex lines for the (2,0) electric-parity mode of Schwarzschild in RWZ gauge. Left
panel: Two vortex lines of each sign in the near zone and innermost part of transition zone. The
positive (blue lines) and negative (red) lines are identical but wind their tori in opposite directions.
Right panel: Two counterclockwise vortex lines in the transition zone, with the vorticity shown in a
semitransparent slice Sq of constant ¢ as a density plot. The vortex lines are plotted in black rather
than red in this panel to aid the eye.

its three-dimensional vortex lines in the near zone and innermost part of the transition zone. These
vortex lines wind densely around axisymmetric deformed tori.

Note that the large torus is attached to the horizon. Its vortex lines intersect the horizon at
the approximately 45° angles characteristic of the longitudinal-transverse part of the field, which is
these lines’ dominant component.

For the dual, magnetic-parity (2,0) mode, this torus depicts the perturbative tendex lines of
the near zone, and those lines predominantly belong to the longitudinal-transverse part of the tidal
field, 6€T. This is the part that stores the mode’s near-zone oscillation energy when 68" is passing
through zero and its perturbative vortex lines are detached from the horizon (see the discussion of
this mode’s dynamics in Section 9.1.3.8). Immediately after this snapshot, these tendex lines’ SEVT
begin to regenerate the near-horizon longitudinal frame-drag field 68" and its horizon vorticity. As
it does so, these tendex lines and their torus (presumably) detach from the horizon and expand
outward into the transition then wave zone, becoming the tendex-line component of a gravitational-
wave torus like those displayed in Figure 9.7 above.

The small torus in the left panel of Figure 9.24 encircles the equatorial point on the innermost
node of the field (innermost white circle in Figure 9.23). It is also the innermost torus shown in
Figure 9.7 above.

In the right-hand panel of Figure 9.24, for the (2,0) electric-parity mode we show two counter-
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clockwise vortex lines in the transition zone. By chance, the larger of the selected lines nearly forms
closed orbits, and so even after wrapping its torus four times it appears as a thin ribbon. While
it is difficult to tell with this nearly closed line, extended integration reveals that it does wrap a
(deformed) torus.

Notice that both lines (both tori) in the right panel straddle the second null of the frame-drag

field (second-from-center white circle in Figure 9.23).

9.6 Conclusions

Although the theory of black-hole quasinormal modes is roughly half a century old, most past
studies of them have focused on their mathematical properties, their eigenfrequencies and emitted
gravitational waves, and their excitation by various physical processes. Aside from a geometric-optics
interpretation of high-frequency modes (see, e.g., [22-24]), little was known, before this paper, about
their geometrodynamic properties—e.g., the structure and dynamics of their spacetime curvature in
the near zone and transition zone, and how the near-zone curvature generates gravitational waves.

In this paper we have used our new vortex and tendex tools to explore, in depth, the geometro-
dynamics of the quadrupolar modes for Schwarzschild and Kerr black holes. Most importantly, we
have discovered that:

(i) There is a near duality between electric-parity modes and magnetic-parity modes, in which
tendexes get mapped into vortexes and vortexes into tendexes.

(ii) The electric-parity (I,m) = (2,2) and (2,1) modes are generated by near-zone, longitudinal
vortexes that extend out of the horizon and rotate (four tendexes for m = 2; two for m = 1). The
vortexes’ rotation generates outgoing and ingoing gravitational waves; the ingoing waves act back
on the longitudinal vortexes, gradually pushing them off the horizon, which results in the mode’s
exponential attenuation.

(iv) By (near) duality, the electric-parity (2,2) and (2,1) modes are generated and attenuated in
the same way, but with near-zone, longitudinal tendexes rather than vortexes playing the central
role.

(v) The magnetic-parity (2,0) mode and superposed (2,2) & (2,-2) mode are generated by near-
zone, longitudinal vortexes that extend out of the horizon and oscillate between clockwise and
counterclockwise vorticity. In these oscillations, energy is fed back and forth between the longitudinal
vortexes and longitudinal-transverse, near-zone tendexes that do not penetrate the horizon. In
each oscillation, as the horizon vorticity passes through zero, the longitudinal vortex lines slide
off the horizon and reconnect to form toroidal vortexes that travel outward, becoming gravitational
waves; and the near-zone tendexes then regenerate the longitudinal vortexes (with reversed vorticity),

thereby triggering the next half cycle of oscillation.
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(vi) The electric-parity (2,0) mode and superposed (2,2) & (2,-2) mode exhibit these same ge-
ometrodynamics, but with the roles of the vortexes and tendexes reversed.

In future papers, these quasinormal-mode insights will be a foundation as we explore the ge-
ometrodynamics of merging binary black holes using numerical simulations.

While all analytic approximations fail near the time of merger, black-hole perturbation theory
does approximate a binary-black-hole spacetime well in some epochs: the merged hole during its
ringdown, each tidally deformed hole during inspiral, and each perturbed hole during the initial
relaxation that causes spurious “junk” gravitational radiation. Before exploring the fully nonlinear
vortex and tendex structures in simulations, we are likely first to compare numerical vortex and
tendex structures during these epochs with the corresponding perturbative results (as in Figure 9.15).
Such comparisons will allow us to determine to what degree the insights we have gained from
our perturbative studies can also be applied to numerical simulations—particularly the relative
insensitivity of vortexes and tendexes to changes in gauge and slicing.

Building on these comparisons, our future work will then include initial explorations of the fully
nonlinear geometrodynamics of the warped spacetimes present in binary-black-hole simulations. For
example, Kamaretsos, Hannam, and Sathyaprakash [25] have recently observed relationships be-
tween the properties (masses and spins) of the initial holes in a binary-black-hole merger and the
particular quasinormal modes that are excited in the remnant (modes which generate the ringdown
portion of the gravitational waves). By examining the vortex and tendex structures of a variety
of binary-black-hole mergers, we hope to gain insight into the origin of such relationships. Also,
following Dennison and Baumgarte’s recent exploration [7] of the vortex and tendex structures in
approximate, perturbative initial data, we intend to explore the vortex and tendex structures of
constraint-satisfying binary-black-hole initial data, which could give insight into the initial pertur-
bations (and the corresponding spurious “junk” gravitational radiation) that appear in all currently
used, binary-black-hole initial-data schemes.

Ultimately, we plan to use vortexes and tendexes to explore the geometrodynamics of binary-
black-hole spacetimes throughout the entire simulated inspiral, merger, and ringdown. We expect
that these tools will provide insights into the behavior of these spacetimes and perhaps also motivate
new ways of constructing phenomenological waveform templates for use in gravitational-wave data

analysis.
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9.A Quasinormal Modes of a Schwarzschild Black Hole in
Regge-Wheeler Gauge

In this appendix, we review the Regge-Wheeler-Zerilli (RWZ) formalism for black-hole perturbations,
and we discuss the calculations that underlie the results reported in Sections 9.3, 9.4, and 9.5 for

quadrupolar perturbations of non-spinning black holes in the RWZ gauge.

9.A.1 Regge-Wheeler-Zerilli Formalism

Here we review the equations governing quasinormal modes for a non-rotating black hole in the
Regge-Wheeler-Zerilli gauge [27, 28].4 We write the metric in Schwarzschild coordinates with a

small perturbation A,

d 2
ds? = —ad® + S 4+ r7(d6° +sin® 0d%) + hy,detds” o> =1—2M/r.  (9.29)
@
The components of h,, obey separable differential equations, and importantly h,, can be split into
definite-parity perturbations (electric and magnetic) which do not couple to each other.
For magnetic-parity perturbations, the only nonzero components of h,, in Regge-Wheeler gauge
are

hia = ho(r)e ™ X5™(0,0) ,  hea =hi(r)e I X5(0, 0) . (9.30)

Here w is the mode’s complex QNM eigenfrequency, and X4" is the magnetic-parity vector spherical

harmonic on the unit two-sphere,
Xpm = —cscfY!™ 4, Xém =sinfY'™ (9.31)

with Y™ (6, #) denoting the scalar spherical harmonics. Regge and Wheeler [27, 29] showed that

the radial parts of the metric perturbation, ho(r) and hq(r), can be expressed in terms of a single

4There are many errors in the original paper of Regge and Wheeler [27], most of which were corrected by Edelstein
and Vishveshwara [29]. We use the corrected equations without further comment.
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scalar radial eigenfunction Q(r) as

ho = _%(TQ),T , hi = 27% ) (9.32)

which satisfies the eigenequation
Qv +0%Q = Vo(r)Q, Vo(r) = o (l(l; b_ 6:;4) . (9.33)

Here 7, is the tortoise coordinate
dr, = d—g , 7 =14+ 2M In(a®r/2M) , (9.34)

which goes to +oo far from the hole and —oo at the hole’s horizon. This eigenequation must be
solved subject to the boundary conditions of outgoing waves at infinity, Q ~ ¢*“™ as 7, — 400, and
ingoing waves at the horizon, Q ~ e™™™ as r, — —o0.

For electric-parity modes, the nonzero components of h,, in RWZ gauge are [28]

hyy = O(ZHO(T)e—zwtylm ’ By = 0(2T) e—zwtylm 7
[0

her = Hy(r)e ™'Y | hap = r*QapK(r)e Y™,

(9.35)

Here Q 45 denotes the metric on the unit 2-sphere. We can write the metric perturbation functions

in terms of the Zerilli function Z(r) as®

AN+ 1)r? + 3AMr + 6M?
K = Z+aZ,,
[ r2(Ar +3M) +ad,
Ar? — 3AMr — 3M?
H = —i Z—iwrZ,
! " [(7" —2M)(\r + SM)} e,
Ar(r —2M) — w?r* + M(r — 3M) A+ 1)M — w?r3
H K H; . 9.36
0 [ (r —2M)(\r + 3M) iwr(Mr +3M) | (9:36)
Here we have used Zerilli’s notation
1
A= §(l —1H(l+2). (9.37)
The Zerilli function satisfies the eigenequation
Z,r*r* +W2Z = VZ(T)Z 5 (938)

5In Hi we have corrected a term in the numerator of the fraction: the last term, —3M?, was incorrectly written
as —3M by Zerilli, an error that should be obvious on dimensional grounds.
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where
2X2(X\ + 1)r3 + 62 M7r? + 18AM?r + 18 M3

r3(Ar + 3M)?

Vi(r) = (9.39)

The slices of constant Schwarzschild time ¢ do not intersect the black hole’s horizon, so in
performing our 3+1 split, we use slices of constant Eddington-Finklestein time £ = ¢ +2M In(r/2M —
1). Written in Schwarzschild coordinates, the perturbed tetrad for the EF observers is given by
Egs. (9.8) and (9.11). For any chosen mode, we compute the frame-drag and tidal fields by (i)
computing, from the metric-perturbation components h,,,, the perturbation § Rog+s to the Riemann
tensor (same as Weyl) in Schwarzschild coordinates; (ii) projecting the total Riemann tensor Rngys =

R

apys T O0Rapys (where R((xﬁ) 5 is the unperturbed Riemann tensor) onto the perturbed EF tetrad;

(iii) reading off £,; = R4 and B,; = eaqupéOb and splitting them into their unperturbed and

perturbed parts.

9.A.2 Magnetic-Parity (2, m) Mode: Frame-Drag Field

We first focus on the (2, m) quadrupolar modes for magnetic-parity perturbations. Carrying out the
above computation, expressing the answer for the frame-drag field in terms of the Regge-Wheeler
function Q(r) and the electric-parity scalar, vector, and tensor harmonics (see discussion in Ap-

pendix 9.C.3), and simplifying using Eq. (9.33), we obtain:

R [Bime V"], (9.40a)
B(l) R [Bauye Y™ (9.40b)
1 —tw
12Q
Bim)(r) = o3 (9.40d)

4iMw@Q + 2a2rQ’

B m)\") = — )
2(u)(7) iwrda?\/14+2M/r

(9.40e)

By (r) = — 1 ] ( [3042(7“ — M)(r* + 4M?) 4+ 4iMwr?(r — 3M) — r3w?(r* + 4M2)] Q

iwrbat(r + 2M
+ra? [(r— 3M)(r? + AM?) + 4i Mwr] Q’) : (9.40f)

where a prime denotes a derivative with respect to 7, Y™ and Y% are given by Eqgs. (9.83), and
d i is the Kronecker delta.
We have solved the Regge-Wheeler equation (9.33) numerically for the most slowly damped,

quadrupolar normal mode. When the numerical solution is inserted into the above expressions for
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B(l)

ab’

radial-transverse components near the horizon. To deal with this, we have derived the following

numerical errors cause problems with delicate cancellations in the transverse-traceless and

asymptotic formula for Q(r) near the horizon, r,/M <« —1:

3Y N 9iMwY?
(1-4iMw)e (1 —-4iMw)(1—2iMw)e?
3(1+ 12iMw + 40M>?w?)Y3

T O(1— 4iMw) (1 — 2Miw)(3 — LiMw)d o) (9.41)

sz—ZiMW 14+

where Y = e"+/2M _ Inserting this into Eqs. (9.40), we find, of course, that all components of B,; are
finite at the horizon.

Using Eqgs. (9.40) for the frame-drag field, our analytic formula (9.41) for Q(r) near the horizon,
and our numerical solution for Q(r) at larger radii, and the (2,2) harmonics, we compute the
vortex lines and their vorticities for the fundamental (2,2) quasinormal mode. We illustrate them
in Figures 9.2, 9.3, 9.4 and 9.10.

For our superposition of the (2,2) and (2, —2) modes we can simply sum the (2,2) and (2, —2)
harmonics in the above expressions. We plot the vortex lines for the resulting frame-drag field in
Figures 9.8, 9.16, and the top row of Figure 9.18. We use the (2,1) harmonics for generating the
vortexes of the magnetic-parity, (2,1) perturbations that are illustrated in Figure 9.19. Finally,
we use the (2,0) harmonics to produce the vortexes and vortex lines of the (2,0) magnetic-parity
perturbation. We note that Y;O = Y;(g = 0 for this mode. This means that BL%) is block-diagonal,
and the vortex lines split into a pair of lines which remains in a slice of constant ¢ and a single,
axial line that runs in circles of constant (r,6). In a slice of constant ¢, we illustrate the two sets
of vortex lines in the slice and their vorticity together in Figure 9.6 and separately in the left and
middle panels of Figure 9.22. We also plot the vorticity of the axial lines in a slice in the right panel
of Figure 9.22.

9.A.3 Electric-Parity (2, m) Modes: Frame-Drag Field

Carrying out the calculation described at the end of Section 9.A.1 using the electric-parity metric
perturbation (9.35), expressing the result in terms of the Zerilli function Z with the aid of Eqgs. (9.36),
and simplifying using Zerilli’s differential equation (9.38), we obtain for the frame-drag field of a

(2,m) electric-parity perturbation

1) _ —iw m
B} =R [Byee “X5"], (9.42b)

BYL =R [Byeye @ X%7] (9.42¢)
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where

[6M2a? —iwr?(2r + 3M)| Z — 2Mra®(2r + 3M)Z'

P = : 9.42d
1(e) 275@2\/@ ( )
1
Bye) = —12Ma?(M? + 4rfy) — iw(r? + 4M? AMWr3 (2 + 3M)] Z
) 2riad(2r 4+ 3M)(r +2M) ([ o (M* 4 4rfy) — ie(r” + )B2 + 4AMw?r®(2r + 3M)]

— ra® [AM By + iwr(2r + 3M)(r? + 4M?)] Z’) . (9.42¢)

Here a prime denotes a derivative with respect to r, and X4§" and X4 are the magnetic-parity
vector and tensor spherical harmonics given by Eqgs. (9.86) (see discussion in Appendix 9.C.3). We

have defined here for convenience the functions

B = ’%—%LW , By = (2r® —6Mr — 3M?). (9.42f)
We note again that the horizon vorticity, Bﬁg\,, vanishes. With this BC%) we can again compute
the eigenvector fields and eigenvalues for the perturbed spacetime, and from them compute the
vortex lines. We use these expressions to calculate the vortex lines and their vorticities generated by
electric-parity perturbations. In order to compute the vortex lines for these modes, once again we
expand Z around the horizon in terms of ¥ = e"+/2™ up to O(Y3). We use this series to match to
a numerical solution of the Zerilli equation subject to ingoing-wave boundary conditions. Because
the Zerilli potential V, is more complicated than the Regge-Wheeler potential Vg, the coefficients
of the expansion of Z in powers of Y are lengthy, but easily computed using algebraic computing
software such as Mathematica. For this reason, we do not give the coefficients here.

For an electric-parity (2,2) perturbation, the only set of vortex lines that are confined to the
equatorial plane have vanishing vorticity (and are of less physical interest). Instead, we used the
above frame-drag field to compute, and then plot in Figure 9.13, the vorticity of one of the sets
of vortex lines that pass through the equatorial plane at a 45 degree angle: the set with negative
vorticity. Just as with the magnetic-parity modes, we superpose a (2,2) perturbation with a (2, —2)
perturbation by a simple sum of the harmonics. The vorticity of these lines passing through the
equatorial plane (the analog of Figure 9.13) is plotted in Figure 9.17.

For the vortex lines of the (2,1) mode, there is a reflection symmetry about the equatorial plane,
which implies that there are two sets of vortex lines confined to the plane, with a third normal to it.
We illustrate the vortex lines and 3D vortexes of this mode in Figure 9.20. Finally, when we use the
(2,0) harmonics, we note that X3¢ = X2 = X;Z = (0. While this means that the frame drag field
is simple, it is not block-diagonal and its nonzero vortex lines pass through all three dimensions.

There is a single set of axial vortex lines with zero vorticity, and two sets with equal and opposite
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vorticity that wind around deformed tori. We illustrate the vorticity in a slice of constant ¢ for the

negative lines in Figure 9.23. In addition, we illustrate some 3D vortex lines in Figures 9.7 and 9.24.

9.A.4 Electric-Parity (2,2) Mode: Tidal Field

To help understand the slicing dependence of our results, we compare fields generated by electric-
parity perturbations, because the slicings are identical for all magnetic-parity perturbations. In
particular, we focused on the perturbed tidal field for the electric-parity, (2,2) mode. Carrying out

the calculation of this mode as above when using the electric-parity metric perturbation (9.35), we

obtain
£l = R [Byoe ™y (9.43a)
£} = R [Bye VP, (9.43b)
Qi 1 —iw
Ly =R [(—2E1<e>5ABY22 + E3<e>Y§23> e t] : (9.43¢)
3z
Bie(r) == 53, (9.43d)
3Ma? — 2iMw(2r +3M)| Z — o?r(2r + 3M)Z’
Eye)(r) :[ “ iMw(2r ) o7r(2r ) , (9.43¢)
27‘4a2m
1 302(3M3 4 6M2r 4+ 4M 72 + 473)(4M + ra?)
Eye)(r) =575 - . +
2riat(r +2M) (2r + 3M)

4iMwr(3M? + 6Mr — 22) 4 A
AM Z
(2r + 3M) T M A+ rat)
3M? +6Mr — 2r2)(4M 2
T+a?r {( i ; - ;j\}( +rat) 4@'er2} Z’> , (9.43f)

where Z is a function which obeys the same Regge-Wheeler equation (9.33) as @ and can be
built from the Zerilli function Z as, (see, e.g., Ch. 4, Eq. (156) of [30])

A (9.44)

L_[XO+n,  3Ma? Z,
R r(Ar + 3M) A

for integers [ > 2. This implies there is an exact duality between &;; for electric-parity perturbations
and B;» magnetic-parity perturbations [in fact for any (I, m) mode] in RWZ gauge. This follows from
the facts that these radial-radial components have the same time, radial, and angular dependence
(but not necessarily the same amplitude and phase). However, we can fix the relative normalization

of the Regge-Wheeler function @ and Zerilli function Z such that Q = —wZ/8, in which case we
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have for Egs. (9.40d) and (9.43a)

Bl(m) (’I“) = iEl(e) (’I“) . (945)

Substituting Z into Egs. (9.43b)—(9.43c) does not illustrate the near-duality of the other components
of €M and BY in an obvious manner, so we leave these equations in terms of Z.

As we discuss in the next section, however, the exact duality of 575;) and BSQ) does not immediately
correspond to an exact duality of the horizon tendicity and vorticity. This happens because in RWZ
gauge, the electric-parity perturbations deform the horizon, which changes the horizon tendicity.

For the electric-parity, (2, 2) perturbation, the tidal field is symmetric about the equatorial plane,
and there are two sets of tendex lines that remain in the equatorial plane (just as the vortex lines
of the (2,2) magnetic-parity mode did). The tendex lines are illustrated in the left-hand panel of
Figure 9.11.

9.A.5 Perturbed Horizon and Horizon Tendicity for Electric-Parity Modes

We discuss here the correction to the position of the horizon and its influence on the perturbed
horizon tendicity for the electric-parity (2,2) modes. First, we calculate the correction to the horizon
position dr using the same procedure as that of Vega, Poisson, and Massey [18]. The horizon

generators, ﬂ for the perturbed spacetime are given by

OxH L
= Qa7 < , 0T, ’ ) .
= = = (1+5,6%,00,69) (9.46)

where an overdot represents a derivative with respect to . The functions 66 and d¢ change the
location of individual generators, but do not alter the shape of the surface defined by the instanta-
neous horizon. We will not treat them here, but they are described in [18]. By requiring that the

generators remain null to first order in the perturbation, we find
or — 4Mor = 2Mhll . (9.47)

For IR gauge, hy = 0 and the only physical solution of Eq. (9.47) is ér = 0. Magnetic-parity
RWZ perturbations also have h;; = 0, and, therefore, the coordinate location of the horizon does
not change in this gauge either. For electric-parity perturbations in RWZ gauge, we use the fact
that hy = hj; on the horizon to solve for the perturbation to the horizon’s shape. For a general

electric-parity perturbation of indexes (I,m), Egs. (9.35) allow us to write

e M —iwt . H, 7H0 iwr™
or = §R ot i & }/lm TEIQIlM <7ﬂ_2]\46 ):| 3 (948)
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where k = (4M)~! is the horizon’s unperturbed surface gravity. We evaluate these quantities on
the horizon using the near-horizon expansion of the Zerilli function Z, and they are finite.
The perturbation to the position of the horizon corrects the perturbative horizon tendicity in

two ways: First, the background horizon tendicity 9 when evaluated at r = 2M + 0r, becomes,

T )

through first order in dr,

1 3
—m + 7(57‘ . (9.49)

8;2)(T = T}{) = SM3

Next, we recall that € = g0 4 é}fl)

s is normal to surfaces of constant r through perturbative order.

Now that the horizon’s surface is deformed, however, the normal to the horizon N is no longer

precisely the same as €;. It receives a correction such that
1 v
N# :N'y‘“’vl,(r +or) = ego)“ + e&l)# +ONH — <5Nyef;0) ) efﬁo)u , (9.50)

where N = N(© + N() is a normalization factor and SN# = (7%;V,,§7")/N(0) deforms N away from

€. Note that the leading-order normal remains NO = é'f(o). The deformation of the horizon normal

produces additional modifications to the horizon tendicity,
3 v
EnN = Eu(2M +Or)NPNP = €0 + € + cmor + 260) 5N — 266N, (951)

where, as usual, 57571:) includes the effects of both the perturbation to the tidal field and to 5751)
(and where all quantities are evaluated at the unperturbed horizon position r = 2M). The new
contributions [the last three terms on the right-hand side of Eq. (9.51)] come from the displacement
of the position of the horizon §r and the deformation to the normal SN.

In RWZ gauge, the (£,7) components of SN vanish, although SN does have angular components;
this means that the deformation to the normal to the horizon 6N does not affect the horizon

tendicity in RWZ gauge. [To show this, note first that when the deformation to the normal has no
(0)v

(t,7) components §N,e;’” = 0. Then observe that the (projected) spatial tidal field £ (53,3) is diagonal
and that 0N has only angular components; therefore, the term 5#2)5N # =0 and all terms involving
SN in Eq. (9.51) vanish as well.] Only the shifted coordinate location of the horizon, changes the

horizon tendicity, and we find

(1) _ e, 3 9

Evn =& + 8M35T' (9.52)

From Eq. (9.48), we see that the angular distribution of 5[(\}])\, in RWZ gauge is the same as in IR
gauge [it is Y22(0, ¢)].

With the angular dependence of the horizon tendicity well understood, let us focus on the ampli-
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Eje Exp[—iw;]

/M

Figure 9.25: Plot illustrating the contributions to the amplitude El(e)e_wf [Eq. (9.53)] of the per-
turbed horizon tendicity 81(\}])\,, in RWZ gauge for the electric-parity, (2,2) perturbation. Plotted

agianst £ are the amplitude contributions from STE;,) (dashed line), and from the perturbative shift of
the horizon generators [dot-dashed line; see Eqgs. (9.49) and (9.52)]. The time-dependent amplitude
of the total perturbed horizon tendicity is the solid line.

tude and time dependence of the horizon tendicity. Using a notation analogous to that in Eq. (9.43a),

we write the horizon tendicity in the form
EGX = Ere)(r = 2M)e Y22 (9.53)

for some amplitude Ej) [we can do this because both terms in Eq. (9.52) have the same time
dependence]. This amplitude has two contributions: one from the amplitude (and phase) of STS;),
and the other from the correction to the radial perturbation of the generators [second term on the
right hand side of Eq. (9.52)]. We plot these contributions to El(e)e*i“’f of Eq. (9.53) in Figure 9.25,
as a function of ¢ and normalized by the maximum of the (perturbed) horizon tendicity. We also

—iwt (the sum of the two

plot the amplitude of total perturbation to the horizon tendicity, E)e
contributions). The two contributions are of roughly the same magnitude, but are out of phase.
The influence of the change in horizon position (dot-dashed line) is slightly larger than 572;) (dashed
line).

That 51(\}])\, differs from 575;) only by an amplitude and phase means that, in some sense, the duality
between the horizon tendicity and vorticity (which is exact in IR gauge) is still intact; however, they
are no longer related by the simple phase shift of 7. In fact, we could choose a different normalization
between the Regge-Wheeler function @ and the Zerilli function Z than we did in Appendix 9.A.4
to restore this duality relation, but this would only hold for the horizon tendicity and vorticity [and
the duality in Eq. (9.45) would be more complicated, with a complex amplitude replacing the factor
of 1].
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9.A.6 Magnetic-Parity, Superposed (2,2) and (2,—2) Modes: Tidal Field

In order to understand better the dynamics and interaction of the tendexes and vortexes, we compute
the perturbations to the tidal field that must accompany the frame-drag field of a magnetic-parity
perturbation for the superposed (2,2) and (2, —2) modes. These tidal perturbations are much like
the frame-drag perturbations of an electric-parity metric perturbation, as expected by the near-
duality. Their odd parity ensures that they must be reflection antisymmetric about the equatorial
plane. If we consider the tendex lines of £1) alone, there must be a zero tendicity set of tendex lines
in the plane, and two sets which pass through the plane at 45° with equal and opposite tendicity.
We are also assured that 51(\}1)\, = 0. From the calculation described at the beginning of Section 9.A.1

above, we obtain:

&y =0, (9.54a)
575114) =R |:E1(rn)eiiwt (Xfiz + Xf{Q)} , (9.54b)
5[(412@ =R |:E2(m)e_iwt (Xffé + X%}f)} , (9.54c¢)

2iwrQ + 4Mao?Q’

By = , 9.54d
Hom) iwrda?\/1 4+ 2M/r ( )
B [6Ma?(a® + 1) + iw(r? — 3Mr — 2M? + 6M?a?) — 4AMw?r?] Q
2(m) = iwrtat(1+ 2M/r)
2 [-12M2 4 4r(M + iM?w) + iwr®] @
N o? | 7( iM2w) + iwrd] Q ' (9.54¢)

twrtat(1 4 2M/r)

We illustrate the tendicity of the predominantly negative tendex lines in the equatorial plane
in the time series of Figure 9.18 (bottom row), which shows the evolution over a half period of

oscillation of the metric perturbation.

9.B Teukolsky’s Equation and Black-Hole Perturbations in
the Newman-Penrose Formalism

The results in this appendix appear in many places in the literature (see, for example, Teukolsky’s

paper [31]). We summarize them here because we will need them in Appendices 9.C and 9.E.
Teukolsky’s equation relies on the Newman-Penrose (NP) formalism using Kinnersley’s tetrad,

which is the principal complex null tetrad in the Schwarzschild and Kerr spacetimes. For Kerr, in the

Boyer-Lindquist coordinate basis {0;, 0;, 99,0} [Eq. (6.1) of Paper II], this tetrad’s contravariant
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components are given by

1

ll}‘ = K(’r‘2 + a/2’ A’ 07 a) b
1

I 2—A

n 22(7“ +a”, ,0,a),

1

mt = ——— (iasin®,0,1,icsch), 9.55

\/E(r—l—z'acose)( ) ( )

with the final leg given by m*, the complex conjugate of . Here
A=r*42Mr+a®, ¥ =r>+a’cos’h. (9.56)

When a is taken to zero, we recover the Kinnersley tetrad for Schwarzschild spacetime in the
Schwarzschild coordinate basis [Eq. (4.1) of Paper II]. The Teukolsky equation also requires the NP
spin coefficients, certain contractions of covariant derivatives of the tetrad above given by Eq. (4.1a)
of [32] (though with the opposite signs because of differing metric-signature conventions). The

nonzero spin coefficients in this tetrad are

1 ia 2 . 9
— T = —=p" sl
p r —iacosf’ ﬂp ’

1

=———p*coth, a=m— ",
B ol B
_prA B +7’7M
Hn= o3 Y= oy
T=——2 ing. (9.57)

V2x

The Weyl scalars ¥y and W, are defined in terms of the Weyl tensor by ¥y = C\pelm”1Pm?
and ¥y = Cppen?*m*™n’m*® . These both vanish in the background when using the Kinnersley
tetrad, and are gauge invariant at first order in the perturbation theory [31], consequently. At
that perturbative order, they satisfy decoupled, linear, second-order partial-differential equations.
Teukolsky’s big breakthrough [31] was to show that, when those equations are re-expressed in terms
of

Yo =Ty and Y_p=p 1Ty, (9.58)

they take on a unified form (the Teukolsky equation) that depends on the spin-weight s = +2
for 19 and s = —2 for 1_5, and that is separable; i.e., it has a solution of the form !~ =

s Rimw (1) s Stmw (G)ei(m¢_Wt). The Teukolsky equation implies for the radial function ;Ry,,, the fol-
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lowing ordinary differential equation (in vacuum)

O:A_Si (As+1d5lew> n (K2_2is(T—M)K

o I A + diswr + 2amw — a®w? — SAlm> sRime

(9.59)

where (A, is a separation constant that is a function of aw [i.e., sAim = sAm(aw)], and K =
(r? + a®)w — am. The radial function has the symmetries ;Rpnw = (—1)™sR;_m_wo-. The angular
function, —2Simw(0), (called the spin-weighted spheroidal harmonic) satisfies the ordinary differential

equation (in vacuum)

csc Hi (sin Gd #Stme >

do do

+ (a2w2 cos? 0 — m? csc? 0 — 2aws cos — 2ms cot O cscf — s? cot? 0 + s + sAim)sSimew = 0. (9.60)

This angular function has the symmetries ;Sp,, (7 — 0) = (—1)(m+l),sSlmw(9) and S5}, (0) =
(—=1)™%¢ _ S)_m_w~(0), where we are using a phase convention such that the angular functions agree
with the usual convention for spin-weighted spherical harmonics in the limit that spin parameter, a,
goes to zero.

It is often useful, in working with the perturbation equations, to change variables from the

separation constants s A, to Chandrasekhar’s [30]
sNim = sApm + 5+ |s| — 2amw + a*w? | (9.61)

which are the same for positive and negative spin weights, +s.

9.C The Chrzanowski-Cohen-Kegeles Procedure and the Ingoing-
Radiation-Gauge Metric

In this appendix, we will review the formalism used for computing the ingoing-radiation-gauge (IR
gauge) metric, using what is known as the Chrzanowski-Cohen-Kegeles (CCK) procedure. We will
also connect the CCK procedure to Chrzanowski’s original calculation of definite-parity harmonics,
which we find useful for our calculations.

Although Chrzanowski conjectured that “the conceptual benefits of having found the perturbed
Kerr metric potentials surpass the usefulness of these potentials for doing future computations” [33],
the procedure he helped to formulate has found several applications in the past few years. Lousto and
Whiting [34] revisited Chrzanowski’s construction and found explicit expressions for computing the

Hertz potential corresponding to specific perturbations of the Weyl curvature scalars ¥y and ¥, in
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the Schwarzschild spacetime. Ori then derived a similar result for Kerr black holes, using a frequency-
domain calculation [35]. Yunes and Gonzalez were the first to explicitly compute the metric of a
perturbed Kerr black hole from the Hertz potential [36], and Keidl, Friedman, and Wiseman were
the first to use the procedure to calculate the metric perturbation from a static point particle in
the Schwarzschild spacetime [37]. More recently, Keidl, Shah, and their collaborators articulated a
formalism for computing the gravitational self-force of a point particle in the Schwarzschild or Kerr
spacetimes using the metric constructed from a Hertz potential [38]. They were then able to compute
the conservative piece of the self-force from this metric perturbation in the Schwarzschild spacetime
[39]. In the first article [38], they gave a concise summary of constructing metric perturbations from
a Hertz potential, and they called this process the Chrzanowski-Cohen-Kegeles (CCK) procedure or
formalism (names we will also adopt).

In the first part of this appendix, we will review the CCK formalism in a similar manner to
how Keidl summarized it in [38]. While the metric we ultimately compute in this paper is nearly
identical to that described by Chrzanowski [33], we find it helpful to put Chrzanowski’s original
calculation into the context of the more recent work on the CCK procedure. Furthermore, we
review the CCK procedure here, rather than simply referring the interested reader to [38], because
there are several differences between our calculation and that set forth in [38]: we use a metric of
the opposite signature, we calculate the metric corresponding to quasinormal modes with complex
frequencies, we construct the metric in a different radiation gauge, and (like Chrzanowski’s original
calculation) we are interested in metric perturbations of definite parities.

Because the CCK formalism relies heavily on the Newman-Penrose formalism and Teukolsky’s
equation for perturbations of Weyl curvature scalars, we review these in Appendix 9.B. In the second
part of this appendix, we will describe how to use the CCK procedure to compute definte-parity
metric perturbations corresponding to quasinormal modes. In the third part of this appendix, we
compute the metric perturbations in a notation in which they can be compared more easily with
those of the RWZ formalism (a calculation originally performed by [33]), and we also give explicit
analytial expressions for the tidal and frame-drag fields for (2,2) perturbations, which highlight a
near duality between the perturbative pieces of these fields for perturbations of opposite parities. In
the final part, we summarize how we numerically calculate the IR gauge metric perturbations that

we use in the visualizations in Figures 9.4, 9.12, 9.14, 9.15, and 9.26.

9.C.1 The CCK Procedure

The purpose of the CCK procedure is to construct a metric perturbation, h,,, from a given solution
to Teukolsky’s equation, either v, = Wy or ¢_o = p~*¥, (see Appendix 9.B for a summary of
the Teukolsky formalism). As part of the calculation, it is necessary to relate the solutions of the

Teukolsky equation to a Hertz potential from which the metric perturbation is directly constructed
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[see Eq. (9.66) for the general relationship, Eq. (9.72) for the relationship for the radial functions
for their harmonics, and Eq. (9.78) for the relationship of the radial functions of definite-parity
perturbations].

The CCK procedure can construct a metric in either ingoing-radiation (IR) gauge,

hut” =0, h,“,gé‘oy) =0, (9.62)
or outgoing-radiation gauge
hun’ =0, h,wg?o”) =0, (9.63)

for Schwarzschild and Kerr black holes. Here [¥ and n” are two vectors of a Newman-Penrose null
tetrad [for our calculations, we will use the Kinnersley tetrad, Eq. (9.55)], and gé‘ol; is the background
Schwarzschild or Kerr metric. Because our goal is to compute vacuum perturbations of Kerr that are
regular on the future event horizon, we will construct the metric perturbation in IR gauge, and we
will be able to compute it by algebraically inverting a differential relationship between the harmonics
of the Hertz potential and those of ¢_o [the result is in Eq. (9.72)].

The Hertz potential is tensor with the same symmetries as the Riemann tensor, whose double
coordinate divergence is a harmonic coordinate metric. Stewart [40] showed that in Type D space-
times, there is sufficient gauge freedom that one can represent the independent degrees of freedom
of the perturbative part of the Hertz potential as a single complex scalar; furthermore, if one applies
a coordinate transformation from harmonic gauge into IR gauge, the Hertz potential, which we will
denote by ¥, is a solution of the vacuum Teukolsky equation for scalars of spin weight s = —2 (the
same as 1_5). One can then construct a metric perturbation from the Hertz potential by applying

several differential operators to ¥y,

hyw ={=1 (6 +a* +38—7)(0 +48+ 37) —mum, (D — p+3e — €")(D + 3p + 4e)
Hmy [(D+p* —p+e +36)(6+48+37)+ (8 +38—a* —7" —7)(D+3p+4e)]} Uy

+ c.c. (9.64)

(see, e.g., Egs. (93) and (94) of [37]). The differential operators are defined by D = {#V, and
0 = m#V,,. The last term in Eq. (9.64), denoted by “c.c.,” means to take the complex conjugate of
the entire expression, so that the metric perturbation is real.

When computing perturbations of black holes, it is helpful to be able to relate a given Hertz
potential Wy to a specific perturbation of the Weyl scalar Wy. It is possible to do this by comput-
ing the components of the perturbative Riemann tensor from the metric perturbations (9.64 that
correspond to the Weyl scalar

Uy = Coppn®m*Pnrm* . (9.65)
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The result can be expressed compactly as

1
Yoy = 3 (LT3, — 12M 0,V ) (9.66)

[see, e.g., Table I of the paper by Keidl [38], where our LT is their £~] We have used the shorthand
that £ = £ £] 211 where

LI = —(0p + scot§ —icsc00,) +iasin 0, . (9.67)

In general, solving for the Hertz potential Wy that corresponds to a perturbed Weyl scalar Wy
involves inverting the fourth-order partial differential equation (9.66); however, when ¥y and ¢_o are
expanded in harmonics in the frequency domain, it is possible to perform the inversion algebraically.

The algebraic inversion can be completed by expanding ¥ _s in harmonics,

w—Q - Z ¢g;nw) - Z —2Rl'rnw(T) —QSlan (e)ei(mqbfwt) ) (968)

Ilmw Ilmw
where _o Ry (1) and _2Sim., (0) satisfy Egs. (9.59) and (9.60). In the IR gauge, the Hertz potential
is a solution to the Teukolsky equation with spin s = —2; consequently, it can also be expanded in

the same harmonics

Ui = > W™ =3 X (r) —2Simu(0)e’ ™07 (9.69)

Imw Imw
The radial function of the Hertz potential’s harmonics _s X, () also satisfies the vacuum Teukolsky
radial equation, but because it is not the same radial function as in the harmonics of 1_5, we denote
it with a different function. The radial functions of the harmonics of ¥ and ¢ _5 can be related by

substituting Eqgs. (9.68) and (9.69) into Eq. (9.66) and using the Teukolsky-Starobinsky identity
L4580 = D_2Sime (9.70)

(Eq. (59) of Ch. 9 of [30], after noting that our LI is equivalent to —L, there), and the identity
28w = (= 1) 28— - (9.71)

Then, it is necessary to equate the full radial function for a given angular and time harmonic of
the Hertz potential to the radial functions _s Ry, of 9_o. After this relationship is inverted, the

individual radial harmonics of the Hertz potential can be written as

(—1)™D* 4R} .. —12iMw _5Rim.,

o X = 8
2 D*2 | 144 M202

(9.72)
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The constant D* = D}

Ilmw

= D;_m—w~ is defined by
D? = X2(A +2)2 — 8A(5A + 6)(aw? — amw) + 96Aa’w? + 144(a*w? — amw)?, (9.73)

where A is the separation constant (9.61) used by Chandrasekhar [30] (a choice of the separation
constant that is the same for both the angular and the radial equations). Although the Teukolsky-
Starobinsky identities are usually derived assuming real frequencies, they have been shown to hold
for complex frequencies as well (for a recent derivation, see [41]).

The general description of the CCK formalism is now complete: (i) For a vacuum perturbation
of U,, we can find the Hertz potential ¥y that corresponds to this perturbation by expanding ¥y
in harmonics [Eq. (9.69)], and expressing the radial functions of this expansion in terms of those
of ¥v_o = p~W, via Eq. (9.72). (ii) From the resulting ¥y, we can then compute the metric
perturbations via Eq. (9.64).

Next, we will show that if we choose the radial function of the Hertz potential to correspond
to a perturbation of ¥_5 with definite parity, then the result of this calculation is equivalent to

Chrzanowski’s original calculation of definite-parity metric perturbations [33].

9.C.2 Definite-Parity Harmonics and Chrzanowski’s Calculation

Let us now connect this CCK procedure with Chrzanowski’s original calculation of metric perturba-
tions of definite parities. We shall begin by showing that, if the perturbations have definite parity
(electric or magnetic), then the Hertz potential must itself transform as Wy — £(—1)"¥% under
parity (the plus and minus correspond to electric- and magnetic-parity perturbations, respectively),
and its radial harmonics must satisfy _o X = . = £(—1)"_2X}mw. In turn, this implies that the
radial harmonics of ¢_, must satisfy the same relationship 2R} ., _ . = £(—=1)"_2Rimu-

To deduce these relationships, we discuss the parity of the terms that appear in Eq. (9.64).
The Newman-Penrose tetrad and spin coefficients of the background spacetime transform in several
different ways under parity: [ and 7i have positive parity, and m does not have a definite parity,
m — —m*. Similarly, the differential operator D = [#V, has positive parity, and § = m"V,
again does not have a definite parity, 8 — —d*. Three of the nonzero spin coefficients map to their
complex conjugates under parity (p — p*, p — p*, and v — ~*), and the remaining four spin
coefficients become minus their complex conjugates under parity (o« — —a*, 8 — =%, ©# — —7%,
and 7 — —7*). These relationships hold true for both Schwarzschild and Kerr, although in the
former case, the spin coefficients are real and, therefore, have definite parity.

When applying a parity transformation to the perturbative metric tensor, h,, dz*dz", where
hyy is given by Eq. (9.64), we can show that the tensor differential operator in Eq. (9.64) becomes

its complex conjugate by using the parity transformations for the spin coefficients, NP tetrad, and
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differential operators above. As a result, the metric perturbation will have either electric or magnetic

parity when the Hertz potential transforms as
Ty — (-1 (9.74)

under parity. The plus sign corresponds to an electric-parity perturbation, and the minus sign
describes a magnetic-parity perturbation. The condition this implies on the harmonics is also quite
simple, and we can determine it by applying a parity transformation to the Hertz potential expanded
in harmonics [Eq. (9.69)] and equating it to its complex conjugate. Then using the properties of the

Teukolsky angular functions
sStmw (T —0) = (*1)m+l—sslmw (), STme (0) = (*1)m+s—ssl—m—w* 0), (9.75)

(see Appendix 9.B) and equating the radial function of each time and angular harmonic, we obtain

the following condition on its radial functions,
*2Xl*7m7w* = i(_l)m72lew . (976)

Similarly by substituting Eq. (9.72) into the expression above, we find an analogous relationship for

the radial function of the Weyl scalar ¢_,
—2R?—m—w* = i(_1)m—2lew . (977)

For these definite-parity perturbations, the relationship between the radial functions of the Hertz

potential and ¥_s, Eq. (9.72) also simplifies,
o X = E8(D* £12iMw) ™ 9Rppe ; (9.78)

namely, for definite-parity perturbations, the radial functions of ¢_5 and ¥ g differ by only a complex
constant. Because Eq. (9.78) shows that the two radial functions _o X and _o Ry, differ only
by a constant multiple, we will express both ¥y and 1_5 in terms of the radial function of 1_,
_9Rymw, for simplicity.

In the next part (and also for all other IR gauge calculations in this paper), we will compute a
metric perturbation that corresponds to a perturbation of ¢_o of the form
1

¢,2 =+ (D* + 127;MUJ),2lew6i(m¢_wﬂ,QSlmw

| = 0o

+ = (=1)"(D F12iMw*) _oR;,, e "7 08 - (9.79)
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The corresponding Hertz potential is
\I/H = _2lewei(m¢—wt)_2slmw + (—l)m_gR;mwge_i(m¢_w*t)_QSl_m_w* . (980)

We choose the prefactors on the modes of ¥_s so as to make the Hertz potential (and, therefore,
the metric) as simple as possible. Furthermore, this choice gives the same definite-parity metric as

that of Chrzanowski (when we take the real part of his expressions).

9.C.3 Definite-Parity CCK Metric Perturbations and Tidal and Frame-
Drag Fields for Schwarzschild Black Holes

In the first two parts of this section, we will calculate electric- and magnetic-parity perturbations
of Schwarzschild black holes in IR gauge. Because Chrzanowski performed this calculation in Table
IIT of reference [33], and our results agree with his, we do not go into great detail describing the
calculations; instead, we aim show the results here so as to be able to compare with the RWZ
formalism in Appendix 9.A. In the third part, we will compute the tidal and frame-drag fields
corresponding to these metric perturbations and show a near duality of the tidal and frame-drag

fields of opposite parity perturbations for the (2,2) mode.

9.C.3.1 Electric-Parity Metric Perturbations

We begin this part by comparing the metric produced by the CCK procedure to that of the RWZ
formalism. We will write the RWZ metric using the covariant notation described by Martel and

Poisson [42]. Martel and Poisson write the electric-parity perturbations as

) =" nlpytm, (9.81a)
lm
ey =" myhm, (9.81b)
lm
WGy =12 (K™QapY'™ + Gy lg) (9.81c)
lm

where the lowercase indexes run over the radial and time coordinates (e.g., a,b = t, r), and uppercase
indexes run over the angular coordinates as before, A, B = 6, ¢. The angular functions Y™ are scalar
spherical harmonics, Y™ are the electric-parity Regge-Wheeler harmonics, and Y% are transverse-
traceless, electric-parity tensor harmonics; the term 2 4p is the metric on a 2-sphere. The vector

and tensor harmonics are defined by

Y™ = Day'™, (9.82a)
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1
Y% = |DaDp + 51(1 + 1)Qap| Y™, (9.82D)

where D4 is the covariant derivative on a 2-sphere.

Because the Schwarzschild spacetime is spherically symmetric, we can see, intuitively, that the
CCK metric, Eq. (9.64), corresponding to an electric-parity quasinormal-mode perturbation [the
plus sign in Eq. (9.80)] will have a relatively simple form. The angular operators acting on the Hertz
potential in Eq. (9.64) become the spin-weight raising and lowering operators, and the angular
functions become the spin-weighted spherical harmonics; furthermore, and when the spin-weighted
harmonics are combined with the appropriate factors of m and m* the angular functions become
proportional to the scalar, vector, and tensor harmonics described above. When performing the
calculation, we will need to use the following identities, which can be found, for example, by adapting

Egs. (2.22a) and (2.38¢) in the review by Thorne [43] to the notation used here,

o fii+1 .
Y}l = ( 9 )(—1)/lmmA - 1Ylmm,4) s (983&)
D * *
Vi = 5 (c2Yimmamsp + 2Yimmimp) . (9.83b)

The Teukolsky-Starobinsky constant for spin-weighted spherical harmonics is D = (I +2)!/(I — 2)!.

We can then find that the metric coefficients are given by

2/D

hip) = —a?hiy) = a*hl) = —=E R Rine Y, (9.84a)
© _ _g2p@ _ VD S P —— .
hig = —a“h, 4 = 00+ 1)042%{ [dr* o R <zw—|— . —oRun| Y e , (9.84b)

d 1 ,
%{ [(WTZ - M)%—2le - [2M20¢2 —iw(=3r+7M) — Tsz} _gle:| YXge_m} .

(9.84c)

In the last equation we have used the radial Teukolsky equation to eliminate the second-derivative
term, and we have defined p? = (I — 1)(I + 2) [which is also equal to I(I + 1) — s(s + 1) for s = —2].

There are a few noteworthy differences between the IR gauge electric-parity perturbations, and
the electric-parity RWZ-gauge metric. The CCK metric has a strictly angular part of the perturba-
tion which is proportional to the transverse-traceless harmonics, and the trace portion of the angular
block vanishes; conversely, the angular block of the RWZ metric perturbation has a trace part, but
no transverse-traceless perturbation. The hgi) part of the metric perturbation also has a simpler
relationship with the hgf) and hﬁ) components in IR gauge than in RWZ gauge; one reason for
this is that the IR gauge metric has electric-parity vector perturbations, whereas the RWZ metric
sets these to zero. Finally, the IR gauge metric is finite on the future event horizon for ingoing

4

radiation. One can see this by noting that both _5 Ry, and d_sRy,,/dr, scale as ate =™ near the
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horizon, which will cancel any negative powers of o in the expressions for the metric coefficients.
The same is not as manifest for the RWZ perturbations (see Appendix 9.A for more details on the
RWZ formalism).

9.C.3.2 Magnetic-Parity Metric Perturbations

The magnetic-parity perturbations are given by

hg)“) -0, (9.85a)
pm) — Z pim xtm (9.85b)
g-zwww, 9550

where the magnetic-parity harmonics are defined by

X = —eAPDpYi™, (9.86a)

1
X4 = —5(a“Dp + e5“Da)DeY™, (9.86b)

and e4p is the Levi-Civita tensor on a unit 2-sphere. As in the previous part, we can compute the
CCK metric (9.64), which is relativitely simple for a Schwarzschild black hole. The reason for the
simplification is the same, but we will need the following two identities that relate the spin-weighted

spherical harmonics to magnetic-parity vector and tensor harmonics

100+ 1)

Xl — 5 (_1Yimma +1Yimm?), (9.87a)
D
Xxlm — —i£(,2YlmmAmB — oYmimi). (9.87h)

These relationships can found in Egs. (2.22b) and (2.38f) of [43]. The magnetic-parity metric
perturbations have the same radial and time dependence as the electric-parity perturbations for the

vector and tensor parts,

m m vD d ) 202 " —iw
O[2h7(nA) = 7hEA) = m% { |:dr*_2le - <ZW + r> _2le:| Xf4 € t} . (988&)
m 2 . d _
ho) = _Ws { {(W«? - M) i —oRym — [31°0° —iw(=3r + TM) — r’w?]_ QRZ,,L} Xlme M} .

(9.88b)

Because they have the same radial dependence as the electric-parity metric, the magnetic-parity
peturbations will also be well-behaved on the future event horizon.

The major difference between the RWZ formalism’s magnetic-parity metric and the IR gauge
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metric is that in IR gauge, the transverse-traceless metric perturbation is no longer required to be

Zero.

9.C.3.3 Tidal and Frame-Drag Fields of the (2,2) Mode

In this part, we calculate the tidal and frame-drag fields for a (2,2) mode in IR gauge of both electric
and magnetic parities. We find an interesting near duality between the tidal and frame-drag fields
of opposite-parity peturbations that we noted in Sections 9.1.3.3, 9.3.2.3 and 9.3.3.2.

We compute the tidal and frame-drag fields from the metric by evaluating the components of
the Weyl tensor and its dual in the tetrad (9.8) including the perturbative corrections to the tetrad
(9.11a)—(9.11b). We find that for an electric-parity mode, the tidal and frame-drag fields can be

written as

EL) = 2R (B (r) Y2267, (9.89a)
LY = 2B (nYe ™), (9.89b)
gl =om [(—;El(e) (r)8,15Y?* + Enye) (r)YjZB> eiwt} , (9.89¢)
B =0, (9.89d)
B = 2R (B (r) X 2e 1], (9.89€)
BYS) = 2R(Bue (r) X Tpe . (9.89¢f)

The symbol 6 4 5 is the Kronecker delta function, and the traceless property of £ requires that the ra-
dial function in front of the Kronecker delta must be minus one-half that of Ef(,;) i.e., =(1/2)Eq(ey(r)].

For the magnetic-parity perturbation, the frame-drag and tidal fields are

B = 2R{ By ()Y e 1], (9.90a)
BUL™ = 2R(Buugy (r) Y32, (9.90b)
By = 2%[(—331@)(7“)5431/22 + By ()Y 3% )e ™1 | (9.90¢)
g™ =0, (9.90d)
L = 2R[Ey ) ()X e, (9.90¢)
Ly = 2R[Brim) ()X e ™. (9.90f)

Interestingly, the radial functions of the tidal and frame-drag fields of the opposite-parity per-

turbations are nearly identical

Bim)(r) = iExe)(r) (9.91a)
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» M\/3(r + 2M) , d
Bri(m)(r) = iEp1(e) (1) — lW [—(204 +iwr) 2 Rap + ey _oRoa| , (9.91b)
V3(r +2M)
Bzt () = i Brrgey (1) + Y2 T2 M o Ry 9.91
1(m) (1) = 11100 (7) Saiva w_2Roa ( c)
. M\/3(r + 2M) , d
EI(m) (7') = —ZBI(e) (7") + 'LW |:—(206 + ZWT)—ZRQQ + Tdr* _2R22:| s (ggld)
. V3(r+2M
Ei(m) (1) = =iBue) (1) — ( )MW—2322~ (9.91e)

rSady/2

In fact, there is an exact duality of the radial-radial components, which implies that the horizon
vorticity of a magnetic-parity perturbation is the same as the horizon tendicity of an electric-parity
perturbation. For completeness, we list the expressions for the radial functions for the electric-parity

perturbations, which are lengthy, but will be needed in the next appendix.

26

d
Eyo)(r) = — . {ﬂ(r —3M + iwr?) T ——2Ra + [—5r% + 16 Mr — 12M*
—dwr?(4r — 9M) + 7“4w2]_2R22} ) (9.92a)
Enie(r) = ! r2[3r% + 6M? + iwr?(r — 3M) 4+ rw?] d 2 Roo
1I(e) 76.\/6r(r + 2M) ot dry
+ [(=97% + 18M7? — 12M?r + 24M®) — iwr? (872 — 16 M1 + 18M?)
2,4 (40 _ . 6,3
+ 2w r*(4r — 9M) + ir°w ]2R22}7 (9.92b)
E (r) = L ir?w(—2r? + 3Mr + 3M? + riw?) d o Rog + [6(r® + 4M?)
i) r5(r 4 2M)atV6 drs
+iw(4r® — 11Mr? 4+ 12M?r + 12M3) — w?r?(4r? — 4AMr — 9M?)
— 3iw’r’a? + r6w4]2R22} ) (9.92¢)
V2 { > d
Bye)(r) = r2[9M — iwr(r — 3M) + r3w? _oR
1) (7) r2/3r(r +2M)a* | ( ) ]dr* e

+ [~24Mra? + iwr(12M? — 25 M7 + 5r%) — w3 (4r — 9M) — ir5w3]_2R22} . (9.92d)

1
r4(r 4 2M)atV6

+ [<24M + 2iwr(2r — TM) + w?r(—4r? + 4Mr + 9M?) — 3iw*ria® + 7“5w4]2R22} .

—oR99

d
P )= {iwr(—272 + 3Mr + 3M? 4 riw?) dr

*

(9.92¢)

From these expressions, it is clear that the tidal and frame drag-fields are regular on the horizon,

4

because, as noted above _o Ry, and d_o Ry, /dr, scale as « e~ pear the horizon; consequently,

they will cancel the corresponding powers of « in the denominators of these functions.
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9.C.4 Analytical and Numerical Methods for Computing Metric Pertur-
bations and Tidal and Frame-Drag Fields in IR Gauge

The procedures for calculating the metric perturbations and their tidal and frame-drag fields are
identical for Schwazschild and Kerr black holes; however, because the analytical expressions for
the Newman-Penrose quantities, the angular Teukolsky function, and the metric derived from these
mathematical objects are significantly simpler for Schwarzschild black holes, the amount of work we
can perform analytically differs for rotating and non-rotating black holes. Even for Schwarzschild
black holes, however, we will not be able to compute all aspects of the metric perturbation ana-
lytically. We calculate the the least-damped [ = 2, m = 2 quasinormal-mode frequencies for both
Schwarzschild and Kerr black holes using the Mathematica notebook associated with [13], an imple-
mentation of Leaver’s method [14]. Similarly, we compute the radial Teukolsky functions _aRjmne
corresponding to a quasinormal-mode solution for both Schwarzschild and Kerr black holes numer-
ically. We compute it in two ways, which give comparable results: we solve the boundary-value
problem for a quasinormal mode solution to the radial Teukolsky equation, Eq. (9.59), using a
shooting method, and we compare the result with a series solution given by Leaver [14] (as is also
done in the notebook of [13]). For Kerr black holes, the numerical solution requires the angular
eigenvalue, 4A;,, associated with the quasinormal mode frequency, which we again compute from
the implementation of Leaver’s method in [13].

The most significant difference between the calculations of quasinormal modes of Schwarzschild
and Kerr black holes arises from differences in the Teukolsky angular function, and the angular
operators used in computing the metric (9.64). First, the spin-weighted spheroidal harmonics in
the expression for the Hertz potential, Eq. (9.80), reduce to spin-weighted spherical harmonics
for Schwarzschild black holes. Second, the angular operators in Eq. (9.64) reduce to spin-weight
lowering operators, in the non-spinning limit. As a result, the metric perturbation can be expressed,
analytically, in terms of electric- or magnetic-parity scalar, vector, and tensor spherical harmonics
of a single [, for Schwarzschild black holes. For perturbations of Kerr black holes, there are not
these additional simplifications. First, we must calculate the spin-weighted spheroidal harmonics
numerically, which we do using a series solution put forward by Leaver [14] (the same method
as that implemented in [13]). Second, the angular operators are no longer the spin-weight lowering
operators. The metric perturbation computed from these functions, therefore, is not nearly as simple
as that of the Schwarzschild limit. In fact, for our calculations with spinning black holes, we find it
easier to work with a numerical fit to the analytical expression for the metric.

Once we calculate the metric perturbation, we construct the perturbation to the Weyl tensor
in the same way for both rotating and non-rotating black holes. We can then calculate the tetrad

components of the tidal field, £,;, and frame-drag field, B,;, using the background tetrad in Eq.
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(9.8 for Schwarzschild holes or Eq. (9.9a) for Kerr holes and its perturbative corrections in Eqs.
(9.11a)—(9.11b). From these fields, we can solve the eigenvalue problem and compute tendex and

vortex lines, and their corresponding tendicities and vorticities.

9.D Relationship Between Regge-Wheeler-Zerilli and Ingoing-
Radiation Gauges

In this appendix, we construct generators of infinitesimal coordinate transformations between RWZ

and IR gauges, for both magnetic- and electric-parity perturbations of Schwarzschild black holes.

9.D.1 Magnetic-Parity Gauge Transformation

In this part, we compute the gauge-change generator that transforms the magnetic-parity metric
in IR gauge to the same metric in Regge-Wheeler gauge. We show, as noted in Section 9.2.3, that
this infinitesimal magnetic-parity coordinate transformation does not change the time function that
specifies the slicing (into surfaces of constant £). In addition, perturbative changes of the spatial
coordinates will not alter the coordinate (or tetrad) components of the frame-drag field; therefore,
the fields in both gauges will be equal.

The calculation that shows these facts is relatively straightforward. Regge and Wheeler showed
in Eq. (17) of [27] that, beginning in any gauge, it is possible to remove the transverse-traceless part

of the magnetic-parity metric perturbation [Eq. (9.85¢) in the notation used in Appendix 9.C.3] by

an infinitesimal coordinate transformation of the form

- 1
£ =—2> hg"(0,0,X™), (9.93)
Im
where X!™ is a magnetic-parity, vector spherical harmonic. This follows from the fact that the

perturbation to the metric transforms under this change of coordinates by
h#l/ — hm, + 25(#\”) s (9.94)

(where | denotes a covariant derivative with respect to the background metric, and parenthesis
around the indexes means the expression is symmetrized) and from the definition of the magnetic-
parity, transverse-traceless tensor harmonics (9.86b). The result can also be found from Eqgs. (5.5)
and (5.6) of [42].

For a multipolar perturbation with indexes (I,m) in IR gauge, the function —1 3, hb™/2 is

given by the radial function in Eq. (9.88b) multiplied by e~ and the full coordinate transformation
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vector is therefore

g™ =g =0, (9.95a)
m 1 . d . i
gxg ) = 75 =S { [(zwrQ — M) - —oRyy — [3p%0® —iw(=3r + TM) — T‘QWQ]Qle:| Xlme Mt} )
a .

(9.95b)

A short calculation can verify that hy4 and h,.4 are the only nonzero components of the metric after

this transformation (the same as in RWZ gauge) and they are given by

hia _%{\/5(14-711)1)7@4 {[%;ﬁroﬁ + (iMw + r’w?)) di* _oRim
+ [a?(a® 4 iwr) — w?r(3r — TM) — iw?’r?’]gle} Xﬁme_i“’t} , (9.96a)
hya :%{_i“ [(r _aM 4 iwr)-L LR,
I(I+1)Dab dr.
+ [—a®(3p® + 30®) —iw(4r — IM) + w2r2]2le} Xﬁme_i“’t} . (9.96b)

It is not immediately apparent, however, that this gauge is RWZ gauge, because it is expressed in
terms of the radial function of ¥_s, (_o Ry ), rather than the Regge-Wheeler function Q.
To show that this transformation did bring the metric into Regge-Wheeler gauge, it is necessary

to use the relationship between @ and _5 Ry, given in, e.g., Eq. (319) of Ch. 4 of [30]°

_ —2iw 9 d
@ = oD — 12i0w) {(r SM o+ dwr”) 2 Bim
+ [—a?(2p? + 30®) — iw(dr — M) + r%ﬁ]Qle} . (9.97)

After substituting this relationship into Egs. (9.32) and (9.30) and taking its imaginary part—so
that the RWZ metric is real and is expressed in terms of _sR;,,—it becomes apparent that the
transformation brings the IR gauge metric into RWZ gauge.

Because the gauge change from IR to RWZ is generated by a strictly spatial 5 (m) and because
B is a strictly first-order quantity for perturbations of Schwarzschild holes, the frame-drag analog
of Eq. (9.19) guarantees that the frame-drag field must be identically the same in the two gauges:

B¢ =BV, (9.98)

6 Aside from several differences in notation (the radial function used by Chandrasekhar, Z (=), is related to the
Regge-Wheeler function by Q = iwZ (=), and his radial function for the Teukolsky equation, Y_g is related to that
of this paper by _2Rj,, = r3Y_3), there is one additional subtle point about using this equation. This equation
is expressed as a relationship between Yio (proportional to the radial function of ¥q) and Z(=). Because the time
dependence of ¥y is given by e in [30], then the Yo there is equivalent to Y}, of ¥y with a time dependence
given by e~*?. In addition, because Y_o satisfies the same equation as Y+*27 then this equation is valid for Y_o when
o is replaced by w.
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This can be confirmed explicitly for the (2,2) mode by substituting Eq. (9.97) into the tetrad
components of the RWZ frame-drag field in Egs. (9.40a)—(9.40f) and finding that they are identical
to the IR gauge frame-drag field of Egs. (9.90), (9.91), and (9.92).
When thought of as abstract tensors without reference to any coordinate system, it is also the
case that the tidal fields are equal,
EMG — ghW (9.99)

Because there is a background tidal field, perturbative differences in the coordinates enter into the
components of the tidal field and the components are no longer equal; see Eq. (9.19). Therefore,
visualizations of the tendex lines or tendicity in the two coordinate systems (when the coordinates

are drawn as though they were flat) look different.

9.D.2 Electric-Parity Gauge Transformation

In this part, we construct an infinitesimal generator of an electric-parity coordinate transformation
that brings the electric-parity IR gauge to RWZ gauge. The transformation changes the time function
(and hence how we define the slicing) in addition to the spatial coordinates. This implies that neither
the frame-drag fields nor the coordinate components of the tidal field will equal in the two gauges
(but the tidal field written without coordinates will be); see Eqgs. (9.18) and (9.19), respectively.
The gauge-change generator that connects the two gauges is somewhat more complex for the
electric-parity perturbations than it was for the magnetic-parity ones. The transformation can
be found by using Eq. (19) of [27] or Egs. (4.6)—(4.9) of [42]. The general approach to find the
transformation is to use flge) to remove the transverse-traceless part of the IRG metric, and then
use ft(e) and &(e) to annul the transverse metric coefficients. After a short calculation, it is possible

to express the generator as

) _
ft(e) §R{ —r?[Pa? — diw(M — r*w)] d 2Rim

:2u2r2a4 dr,

+ [Pra® +iwr?pa (u — 2) — drMw*r?*(3r — TM) — 4iw3r4]2le} Ylme_i“’t} (9.1004)

1 [ 5 2 2 . 2 2 d
¢ :W%{ _7" [a®p” (4 2) + diw(r — 3M) — 4r°w ]dr* _oRim
+ {—rp2a®(u +2)(2ra® + irw) — 2r% (u + 2) — 2iwr[(p? + p — 2)1r2 + 2Mr(u — 8) + 24M?]
+ 4w?r® (4r — 9M) + 4iw37"5}_2le} Ylmei“t} (9.100b)
e -1 d .
/(1 ) — \/5044%{ [(iwrQ - M) ar —o Ry — [31°0® —iw(=3r + TM) — rQwQ]Qle] ij{”e_“’t} ,

(9.100c)

where we used Eq. (9.59) to reduce second-order radial derivatives to first-order ones.
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To confirm that this gauge-change generator does bring the IR-gauge metric to the RWZ metric,
we again use the relation between the Zerilli function and the radial Teukolsky function encoded in
Eq. (319) of Ch. 4 of [30]:

1

d
Z = {2r[iwr2(u2r+6M) + (u?r? = 3u* Mr — 6M?)]

—2Rim,
r2a(D + 12iMw)(u2r + 6 M) dr, >

+ {a?(ur + 6M)? + 2(3a® + iwr) [u?r® — 3u? Mr — 6 M? + iwr? (1% + GM)}}_Qle} . (9.101)

This allows us to confirm that the IR metric was brought to RWZ gauge through the transformation
vector E (),

With this expression, we can also compare the frame-drag fields in the two gauges for the (2,2)
mode. By expressing the radial functions for the frame-drag field of a (2,2), electric-parity mode
in RWZ gauge [Bi()(r) and Bye)(r) of Eqgs. (9.42d) and (9.42¢)] in terms of the radial Teukolsky

function _sRos, we find

V3
2roat\/2r(r + 2M)

Bi(e)(r) =Bre)(r) + {[—47"@2 — 2iw(2r? — 5Mr + 6M?) + 3r2w3(r — 3M)

d
+ 7;7“4w3]_2R22 — r2a2(r2w2 + 3 Mw — Q)dr_QRQQ} R (91023)

*

By (e)(r) =Be)(r) , (9.102D)

where By)(r) and Biy)(r) are the equivalent radial functions of the IR-gauge frame-drag field in
Egs. (9.92). Because the functions Bj)(r) and By)(r) determine the radial dependence of the
transverse part of the frame-drag field (and By (r) and Biye)(r) do the same for the transverse-
traceless part), we see a particular illustration of the result of Eq. (9.18) of Section 9.2.3.2: namely,
a change in slicing from an electric-parity gauge change will induce a change in the longitudinal-

transverse components of the frame-drag field (but not the longitudinal or transverse-traceless parts).

9.E Horizon Tendicity and Vorticity Calculated from the
Weyl Scalar ¥,

In this appendix, we modify a calculation by Hartle [6] to compute the horizon tendicity and vorticity
by applying differential operators of the background spacetime to a perturbation of ¥y = 15 (where
19 satisfies Teukolsky’s equation; see Appendix 9.B). Using this result, we derive the duality between
the horizon vorticity and tendicity of opposite-parity perturbation mentioned in Section 9.3.1, for
both Schwarzschild and Kerr black holes. We also relate the horizon quantities to the complex

curvature and show that they are proportional for Schwarzschild holes and differ only by the product
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of spin coefficients A(©)g()) for Kerr holes. This proves these claims made in Section 9.1.2.

9.E.1 Constructing a Hypersurface-Orthogonal Tetrad on the Horizon

As in Hartle’s calculation, we must work in a NP tetrad in which the null vector [is tangent to
the horizon, 7 is normal to the horizon, and 7 and its complex conjugate lie in the instantaneous
horizon (constant v = ¢ + r for Hartle, though we will use constant £). This NP tetrad must also

satisfy additional constraints

i=—(+1), ﬁ:ﬁ(f—ﬁ), mzﬁ@ﬂgg), (9.103a)

[with the associated non-null tetrad given by Eqs. (9.9a) and (9.11)], which ensure that the slicing
vector @ associated with this NP tetrad is hypersurface-orthogonal on the horizon and the spatial
basis vectors are tied to our coordinate system in the desired way.

To describe the unperturbed NP tetrad, it is useful to first construct Hartle’s tetrad, which can
be obtained from Kinnersley’s tetrad (9.55), by a boost followed by a null rotation about I (also

called class IIT and I transformations, respectively):

. A -
ln = o555 9.104
7o) ™ ( a)

tasind -

My = Mg — —=——————lu, 9.104b
" : V2(r +iacos ) " ( )

2(r% +a?) iasinf iasin@ a’sin® 6 -

iy = fik + mK — My + lig . 9.104c

" A « V2(r +iacos ) * V2(r + iacosf) K 2y M ( )

The quantites A and ¥ are defined in Eq. (9.56). Then, we can construct an unperturbed tetrad

from Hartle’s tetrad using the following spin-boost transformation (also called class III):

l_EO) = NZTH , Tﬁ(o) = eieTﬁH , ﬁ(o) = Nl_lﬁH , (9.105a)
where
Y+ 2Mr o T +iacosf
Ny =\ —— s, .105b
l 25 ) € \/i (9 05 )

One can verify that the resulting orthonormal tetrad

1 - . 1 -
70— (I 4 NO =0 _ —_ 7 7 9.106
U (o) , =é; (oY) , .106a
\/5( ) + 7)) ﬂ( ©) — T(0)) ( )
_(0) 1 . * ~(0) _ 1 - -
€ = 75( (0) + m(o)), € = —iﬁ(m(o) m(o)), (9.106b)

is exactly the ingoing-Kerr tetrad (9.9a), when evaluated on the horizon, though away from the

horizon it is not.
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For the NP null tetrad to correspond, on the horizon, to the hypersurface-orthogonal {i, €;, €;, € 43}

of Egs. (9.9a) and (9.11) via Egs. (9.103), we must choose the perturbative corrections to the tetrad

to satisfy
. 1 ~ e p N
lay = 72\/5[(’10@%) — hi&”) — 2hg;€(0) — 2 4€00)] (9.107a)
= 1 o _(0) i A
mn:2¢§mem+MWf)—W@qm+2mﬂ%ﬂ, (9.107b)
- 1 S(0) | o (0 (0
m(l) = *72\/5[(}19@65 ) + Zh$$€¢§ )) -+ 2héq§6(§5 )] . (9107(’,)

Because €; is normal to surfaces of constant 7 in slices of constant ¢ through perturbative order, we
will need to choose our gauge so that the coordinate position of the horizon does not move from the
constant value r = . Although Poisson [44] has shown that there are a wide class of gauges that
satisfy this property (horizon-locking gauges), for our calculation, we find it convenient to work in

an ingoing radiation gauge based on the unperturbed tetrad vector l_Eo),
hul(oy =0, ¢"hu, =0. (9.108)
On the horizon, these gauge conditions imply that
hoo = hie = —hgs (9.109a)
and that the null vector | undergoes a perturbative boost,

- 1. -

[To derive this, one should split —2h6;é’(20) into a sum of two terms —2(h@fé'(%) + hOAé'(’g)) and use
the relation in Eq. (9.103).] In addition to keeping the horizon at a constant coordinate position
r =ry (see [44]), using this gauge condition allows us to calculate the perturbation to ¥y in a much

simpler way, as we describe in the next subsection.

9.E.2 Computing the Horizon Tendicity and Vorticity from ¥,

Although the explicit expressions for spin coefficients in this tetrad are somewhat lengthy (and, as

a result, we do not give them here), through a direct calculation we can verify that on the horizon

Po) = 0(0) = k) =0, €o) €R. (9.110a)
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Moreover, because in this ingoing radiation gauge the perturbation to the vector [ can be obtained
by applying a boost (Class III) transformation to the tetrad, the perturbed value of x will also
vanish,

H(l) =0. (9.110b)

From Eq. (310a) of Ch. 1 of [30] (which describes the components of the Riemann tensor in the
Newman-Penrose formalism), we see that the perturbation to the spin-coefficient p satisfies an
equation

D)pa) = 2€0)P) 5

where €9y > 0. If p(1) is not zero, then the separated solution to this equation, p1y = f(r, G)e’i(‘*’f’m‘g),
implies the constraint that 2¢y 4 iNi(w — mw,) = 0 [here wy = a/(2Mr, ) is the horizon angular
velocity]. This condition is not satisfied for constant frequencies w, so the perturbation to the spin
coefficient must vanish:

pa1y = 0. (9.110c)

From these conditions on the spin coefficients, and the fact that \Il(()o) = \I/(lo) = 0, we can write

the Bianchi identities (see, e.g., Egs. (321a) and (321b) of Ch. 1 of [30]) as

(D —26)¥; = (6" + 7 —4a) Ty, (9.111a)

DU = (6 + 27 — 20) Ty, (9.111D)

where we have dropped the superscripts indicating perturbative orders on all differential operators
and spin coeffients (because they are all background quantities) and the Weyl scalars ¥ and ¥y
(because they are strictly perturbative quantities). Note that we do not need the term of the form
D(l)\Iléo), because on the horizon the differential operator D ;) contains only time and azimuthal-
angle derivatives, but the background Weyl scalar \Iléo) is only a function of r and 6.

By applying the differential operator (D — 2¢) to the second Bianchi identity and using the
identity (valid on the horizon) that §*D — D§* = (a + 3* — 7)D, we find that

(D —2)DUY = [6* + 3(1 — a) — B5)|(6" + 7 — 4a) Ty — (D — 26)(ATy) . (9.112)

Using Geroch-Held-Penrose [45] notation, and the equation for a component of the Riemann tensor

(Eq. (310g) of Ch. 1 of [30]) restricted to the horizon

DX —d0"n = 2eA+n(n+a—p"), (9.113)
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we find that
pbO) = (&9 + 470’ + 272 — Ap) Ty (9.114)

Note that the Wy here is related to that which satisfies Teukolsky’s equation in the Kinnersley

tetrad by
N22O A2

K _ K

Starting from a modal solution for the Kinnersley ¥, (denoted by W&, ) then we see that the

0lmw

corresponding perturbation to ¥y is given by

o 0’0 + 470 + 2% + A(iN;2 + 4e)

= AT 11
2 lmw NIQ(QiG o NlQ) ( ) ’ (9 6)

0lmw

where = w — mw.., and where we have used the fact that D = N;(0; + w4+0;) on the horizon.

A Weyl scalar, ¥g, formed from the superposition of modes ¥, —+ (—1)"¥K with

0 lmew 0l—m—w*>
radial functions that obey o R;_p—o+ = £(—1)"2R},, ,, transforms under parity as ¥y — +(—1)1s.
The perturbation of Wy formed from superimposing Eq. (9.116) for the individual modes of W&
above also transforms under parity as ¥y — i(—l)l\llg. Using the relation 2¥s = Exn + iByn
and taking the real and imaginary parts of Wy, it becomes clear that Exn and Byy have definite

parity. Moreover, it is not difficult to see that Eyn of an electric-parity mode is equal to iByy of a

magnetic-parity mode of iUk,

SpK
mode of 1¥,,. .

and &y of a magnetic-parity mode is —iBy of an electric-parity

This demonstrates a perfect duality between electric-parity modes and magnetic-parity modes, on

the horizon of a Kerr black hole.

9.E.3 Relationship Between ¥, and the Complex Curvature

As a final part of this appendix, we discuss how the relationship between the complex curvature and
\1127

1

Z(R—i—iX) =—Vy+ pup — Ao, (9.117)

simplifies for perturbations of Schwarzschild and Kerr black holes in the tetrad and gauge discussed in
the sections of this appendix above. First, we note that the spin coefficient A has as its unperturbed

value on the horizon

Mriw? sin? fe—2®

N;(r —iacosf)3

Aoy = — [AMry + (ry — M)(ry —iacosf)], (9.118)

where we have made use of the fact that on the horizon r3 +a? = 2Mr,.. For a Schwarzschild black

hole w4 vanishes, and, therefore, the background values of all four spin coefficients u, p, A, and o
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all vanish. Through first-order in perturbation theory, therefore,
R = —2EnN X = —2Byy . (9.119)

[We briefly digress here to note that for Schwarzschild black hole, the spin coefficient 7 also
vanishes, and Eq. (9.114) reduces to
pbOs) = a0’ T, . (9.120)

For a modal solution, Eq. (9.116) also simplifies to

U = m235m3ﬁm6im ; (9.121)
where a? =1 —2M/r, D = (1 +2)!/(I = 2)!, w = Q (because wy = 0), and the radial function of
Y, 9 Rym, is evaluated at the horizon r = 2M. We have also used the fact that e = 1/(8M) in this
tetrad. Because the spin coefficients vanish in Eq. (9.117) for this perturbed Schwarzschild hole, the
above expression is equivalent to minus one quarter of the complex curvature.]

For a Kerr black hole Ay # 0, and we must compute the perturbation to o. It satisfies the

differential equation

(D - 26)0’(1) = ‘I’O (9.122)

[Eq. (310b) of Ch. 1 of [30] specialized to our tetrad and gauge]. For a modal solution of o), we

can solve this to find

Yo
91 = TINQ+ 2¢ (9.123)
which implies that the perturbation to o does not vanish. Thus, for a Kerr black hole,
YRy + X)) = —0) — » 9.124
1 (Ray +ia) 2’ — A1) (9-124)

so the horizon tendicity and vorticity are no longer exactly equal to the horizon’s intrinsic and

extrinsic scalar curvatures.

9.F Vortex and Tendex Lines of (2,2) Perturbations of
Schwarzschild and Kerr Black Holes with the Background
Frame-Drag and Tidal Fields

In this appendix, we show the tendex and vortex lines of Schwarzschild and Kerr black holes when

we plot a small (2,2) perturbation of either electric or magnetic parity on top of the background
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Figure 9.26: Tendex and vortex lines of Schwarzschild and Kerr black holes (of spin a/M = 0.945)
perturbed by a (2,2) mode of either electric or magnetic parity, without removing the background
tidal or frame-drag fields. The tendex lines and vortex lines are colored by the signs of their
respective tendicities and vorticities (blue [dark gray] for positive and red [light gray] for negative).
The horizons are colored and shaded by their vorticities or tendicities, and the transparent spheres
have no physical significance, but they help to add perspective to the figures. The top panels are
electric-parity perturbations and the bottom panels are magnetic-parity ones. Left column: Tendex
lines of Schwarzschild black holes. Middle column: Tendex lines of Kerr black holes. Right column:
Vortex lines of Kerr black holes.
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tidal or frame-drag fields in Figure 9.26. Specifically, we plot the vortex and tendex lines of
E=EV 1™ B=BO 4f8BY, (9.125)

where £©) and B are the stationary, unperturbed background fields (visualized in Paper II), £ M
and BY are the perturbations (visualized by themselves in Figure 9.14), and e is a constant that
sets the scale of the perturbation. To describe the strength of the perturbation, we will compare the
perturbative horizon tendicity or vorticity to the background tendicity (for Schwarzschild holes) and
the tendicity or vorticity (for Kerr black holes). For the Schwarzschild black holes in Figure 9.26,
we chose 5](\,1])\,/5](\?])\, ~ 2 x 10~ for the electric-parity perturbations and 85\2\, 51(\?1)\[ ~ 2 x 1074
for the magnetic-parity perturbations. For electric-parity perturbations of Kerr holes, we chose
51(\31)\,/5](\?])\, ~ 3.5 x 1072 and B%%/Bg\%\, ~ 3 x 1073, and for the magnetic-parity perturbations the
ratios we selected were 51(\}1)\,/81(\?])\, ~ 2.5x 1073 and Bﬁ}v/sﬂv ~ 5x 1073. We anticipate that these
images may be useful for comparing with the results of numerical-relativity simulations, for which it
is more difficult to separate a spacetime into a stationary background and dynamical perturbations.

In the top panels of Figure 9.26 are electric-parity perturbations, and the bottom panels are
magnetic-parity perturbations. The left column of images are tendex lines of Schwarzschild black
holes, the center column are tendex lines of Kerr black holes of spin a/M = 0.945, and the right
column are the corresponding vortex lines of the perturbed Kerr black holes. The lines are colored by
the sign of their tendicity or vorticity (blue [dark gray] for positive and red [light gray] for negative)
and the horizons are colored by their tendicity or vorticity. The transparent spheres are placed in
the figures to help guide the eye, and do not indicate any feature of the vortexes or tendexes.

In these figures, we must choose an amplitude for the perturbation (described in the first para-
graph above). For the all the black holes, we make the perturbation sufficiently small that one
cannot see the effect of the perturbation in either the horizon tendicity, or the red (light gray) radial
tendex lines. For the Kerr holes, we also require that the amplitude of the perturbation is less than
the difference of the tendicities of the two non-radial tendex lines at the equatorial plane and around
the radius at which the angular lines reach closest to the horizon. With this choice, the angular
tendex lines will retain some features of the unperturbed lines before they become more distorted
by the perturbation in the regions near the poles.

First, we will describe the tendex lines of the Schwarzschild black holes. An unperturbed
Schwarzschild black hole is spherically symmetric, the tendicity on a sphere of constant radius is
constant, and, therefore, any direction tangent to the sphere is a valid tendex line. For a weakly per-
turbed Schwarzschild black hole, although the perturbation may be small, the perturbation restricted
to a sphere of constant r completely determines the variation in the tendicity, and, furthermore, it

will determine the directions of the tendex lines. This is analogous to degenerate perturbation the-
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ory in quantum mechanics, in which the eigenstates of the perturbing Hamiltonian restricted to the
subspace spanned by the degenerate eigenstates are treated as the unperturbed states within the
degenerate subspace. In directions that are not degenerate, however, its effects are negligible.

We can now use these facts about degeneracy to understand the tendex lines in the angular
direction. The tidal field in the strictly angular directions, Eq. (9.89¢) will determine the structure
of the tendex lines on the sphere. The angular dependence is determined by the transverse-traceless,
electric-parity tensor harmonic (for the top-left panel), because the trace term in Eq. (9.89c) is
proportional to the identity and will not lift the degeneracy of the tendex lines. We would expect,
therefore, that the tendex lines in the angular direction would resemble those of transverse-traceless,
l = 2, m = 2, gravitational waves generated by a time-dependent mass quadrupole. These were
shown in [2, 17], and the pattern of the lines is nearly identical. The tendicity along the lines is
quite different from those of a gravitational wave, because for the perturbed Schwarzschild black hole,
the tendicity is primarily determined by the constant unperturbed value on the sphere. Nevertheless,
the tendex lines on the sphere show a striking similarity to those of gravitational waves at infinity.

For the magnetic-parity perturbation (the bottom-left panel), the tendex lines are determined
by an | = 2, m = 2, magnetic-parity tensor harmonic; consequently, we would expect that the lines
would resemble those of transverse-traceless gravitational waves at infinity, produced by a time-
dependent, current-quadrupole source. Those lines were shown in [17], and they appear identical.
Once more, though, the value of the tendicity along the lines is set by the background Schwarzschild
black hole for the lines in bottom-left panel of Figure 9.26 (unlike the tendicity of the lines studied
in [17]).

The degeneracy between the angular tendex and vortex lines can also be used to explain the
tendex and vortex lines in the middle and right columns of Figure 9.26, respectively. For both
the tendex and vortex lines, when the lines are near the equatorial plane (6 = 7/2) they resemble
the unperturbed lines, but as they head toward the poles, they begin to become perturbed. This
happens because the perturbation is small compared to the difference in the eigenvalues near the
equatorial plane, and the perturbations have little effect on the tendex or vortex lines. Near the poles,
however, the background vorticities and tendicities in the angular directions become degenerate (see
the discussion at the end of Appendices A and B of Paper II), and the perturbation restricted to
the degenerate subspace controls the lines’ directions. In the vicinity of the poles, the degenerate
subspace is a plane parallel to the equatorial plane, and the perturbative tendex lines must form
a regular grid around these points. When we combine this observation with the parity of the
perturbation, we see that the lines at the opposite poles must be either parallel or orthogonal. Thus,
these few simple constraints combine to explain the relatively simple pattern of the vortex and

tendex lines of the perturbation plus the background frame-drag and tidal fields.
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