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Abstract

The presented doctoral research utilizes time-resolved spectroscopy to char-
acterize protein dynamics and folding mechanisms. We resolve millisecond-
timescale folding by coupling time-resolved fluorescence energy transfer (trFRET)
to a continuous flow microfluidic mixer to obtain intramolecular distance distribu-
tions throughout the folding process. We have elucidated the folding mechanisms
of two cytochromes—one that exhibits two-state folding (cytochrome cbsg;) and
one that has both a kinetic refolding intermediate ensemble and a distinct equilib-
rium unfolding intermediate (cytochrome cs52). Our data reveal that the distinct
structural features of cytochrome cs5, contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome
cbss2 by monitoring electron transfer, which occurs as the heme collides with a
ruthenium photosensitizer, covalently bound to residues along the polypeptide.
Intrachain diffusion for chemically denatured proteins proceeds on the microsec-
ond timescale with an upper limit of 0.1 pis. The power-law dependence (slope =
-1.5) of the rate constants on the number of peptide bonds between the heme and

Ru complex indicate that cytochrome cbsg; is minimally frustrated.
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In addition, we have explored the pathway dependence of electron tunnel-
ing rates between metal sites in proteins. Our research group has converted
cytochrome bs6; to a c-type cytochrome with the porphyrin covalently bound to
cysteine sidechains. We have investigated the effects of the changes to the protein
structure (i.e., increased rigidity and potential new equatorial tunneling pathways)
on the electron transfer rates, measured by transient absorption, in a series of

ruthenium photosensitizer-modified proteins.
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