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Abstract

The presented doctoral research utilizes time-resolved spectroscopy to char-

acterize protein dynamics and folding mechanisms. We resolve millisecond-

timescale folding by coupling time-resolved fluorescence energy transfer (trFRET)

to a continuous flow microfluidic mixer to obtain intramolecular distance distribu-

tions throughout the folding process. We have elucidated the folding mechanisms

of two cytochromes—one that exhibits two-state folding (cytochrome cb562) and

one that has both a kinetic refolding intermediate ensemble and a distinct equilib-

rium unfolding intermediate (cytochrome c552). Our data reveal that the distinct

structural features of cytochrome c552 contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome

cb562 by monitoring electron transfer, which occurs as the heme collides with a

ruthenium photosensitizer, covalently bound to residues along the polypeptide.

Intrachain diffusion for chemically denatured proteins proceeds on the microsec-

ond timescale with an upper limit of 0.1 µs. The power-law dependence (slope =

-1.5) of the rate constants on the number of peptide bonds between the heme and

Ru complex indicate that cytochrome cb562 is minimally frustrated.
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In addition, we have explored the pathway dependence of electron tunnel-

ing rates between metal sites in proteins. Our research group has converted

cytochrome b562 to a c-type cytochrome with the porphyrin covalently bound to

cysteine sidechains. We have investigated the effects of the changes to the protein

structure (i.e., increased rigidity and potential new equatorial tunneling pathways)

on the electron transfer rates, measured by transient absorption, in a series of

ruthenium photosensitizer-modified proteins.
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