

Capturing Protein Dynamics with Time-Resolved Luminescence Spectroscopy

Thesis by

Nicole Bouley Ford

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 1, 2013)

© 2013

Nicole Bouley Ford

All Rights Reserved

Abstract

The presented doctoral research utilizes time-resolved spectroscopy to characterize protein dynamics and folding mechanisms. We resolve millisecond-timescale folding by coupling time-resolved fluorescence energy transfer (trFRET) to a continuous flow microfluidic mixer to obtain intramolecular distance distributions throughout the folding process. We have elucidated the folding mechanisms of two cytochromes—one that exhibits two-state folding (cytochrome cb_{562}) and one that has both a kinetic refolding intermediate ensemble and a distinct equilibrium unfolding intermediate (cytochrome c_{552}). Our data reveal that the distinct structural features of cytochrome c_{552} contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome cb_{562} by monitoring electron transfer, which occurs as the heme collides with a ruthenium photosensitizer, covalently bound to residues along the polypeptide. Intrachain diffusion for chemically denatured proteins proceeds on the microsecond timescale with an upper limit of $0.1 \mu\text{s}$. The power-law dependence (slope = -1.5) of the rate constants on the number of peptide bonds between the heme and Ru complex indicate that cytochrome cb_{562} is minimally frustrated.

In addition, we have explored the pathway dependence of electron tunneling rates between metal sites in proteins. Our research group has converted cytochrome b_{562} to a *c*-type cytochrome with the porphyrin covalently bound to cysteine sidechains. We have investigated the effects of the changes to the protein structure (i.e., increased rigidity and potential new equatorial tunneling pathways) on the electron transfer rates, measured by transient absorption, in a series of ruthenium photosensitizer-modified proteins.

Acknowledgements

When I think back on my time in graduate school, I remember how my friends, coworkers, and family have been there to support me when times were tough. So I wanted to say "thanks" to anyone and everyone who has ever been a part of my support network.

First and foremost, I could not have asked for a more supportive advisor than Harry Gray. My graduate school experience has been defined by being a member of the Gray Nation. Harry keeps an open door and a smile on his face. He cares about the people in his group, not just results. Thanks also, Harry, for giving me the opportunity to go to conferences and to Japan. I appreciate your mentoring during group meetings, while writing papers, and in professional matters.

Jay Winkler has been an excellent advisor in all things technical, from lasers to paper-writing. Discussions with Jay about my results have influenced how I think about biophysical problems. Thanks, Jay, for welcoming me into the group when I became interested in the protein folding projects.

I have been fortunate to have all of my committee members at my candidacy exam, fourth-year meeting, proposal exam, and thesis defense. Jackie Barton, my committee chair, has given me focus and helpful advice. Tom Miller has given

my research and proposals considerable thought and always has an insightful, complex physical question to ask. Douglas Rees has been helpful in discussions of protein dynamics.

My work with Sony has really broadened my graduate school experience. Seiji Yamada is a good friend of mine with whom I enjoyed collaborating. Thank you, Seiji, for inviting me to experience Japan with you and your family. I would like to thank Tokita-san for supporting me while I worked in his group at Sony. Discussions with Goto-san about science and culture contributed to my experience at Sony. I also appreciate the rest of the biomaterial research group who welcomed me into their group. Arigatou gozaimasu. I would also like to acknowledge my collaborator on the electron tunneling project, Tatiana Prytkova.

I have been fortunate to work with the wonderful members of the Gray Group, and especially closely with the bio subgroup: Bert, Tetsu, Melanie, Heather, Keiko, Crystal, Gretchen, Charlotte, Kyle, Maraia, Lionel, Matt, Jeff, Astrid, Peter, Oliver, and Kana. We had great times, in and out of lab. Bert recruited me into the group and taught me how to get around lab, express proteins, and think about life after graduate school. Tetsu taught me how to use the microfluidic mixer. Melanie has been a good friend, exercise buddy, and fellow biotech enthusiast. Heather was a great roommate and is my favorite person to talk to about cats, then science, and then cats. Gretchen was my partner in learning the intricacies of the picosecond laser system, and Kana has been a fun laser buddy. I appreciate the feedback while writing my proposals from my labmates: Peter, Maraia, Kana, Melanie, Heather,

Bert, and Gretchen. I would also like to acknowledge the hard work of the two undergraduate researchers whom I have mentored—Dong Woo Shin and Yuehan Huang.

My friends outside of lab have been a great support group for me. Andrea, Alma, Eldar, and Artur were great fun and helped me to relax at the end of the week. I love catching up with Lisa, Caitlin, Chethana, Amanda, Leslie, and Linhda (my link to Los Angeles). The Miller group has always welcomed me into their fun troupe: Artur, Nick, Jason, Josh, and Connie. My fellow classmates, the "first years," helped in the transition to Caltech—to Long, you are missed. Involvement with the Caltech Y has been a source of great enjoyment and a productive break from work; I would like to thank the Y employees (Greg, Athena, Liz), my fellow Y Outdoor Committee members, especially Deva and Avni, and the students who planned cultural and service events.

Many people in my past have believed in me and helped me make it to Caltech. My mom has always been supportive of me and shows her love through the little things, like letters, homemade pie, and chocolate. My dad has shown me how important it is to keep learning throughout life and was influential in my decision to go to college at Trinity, where there were many opportunities for me. My sisters, Regina and Daphne, were always excited about me doing cool science. They have grown up from "PIGs" to be smart, beautiful ladies. My brother-in-law David has been a wonderful addition to the family. My friends Elizabeth and Rebecca "dreamed big" with me during the difficult years of high school. My college

roommates Lauren, Christie, and Sarah are amazing people and my closest friends. Trinity University chemistry professors (Drs. Urbach, Bachrach, Pursell, and Mills) are great teachers and scientists who inspired me to go to graduate school.

And most importantly, I do not know where I would be without Will, my love and partner who believes in me. He helped me get through candidacy and has shared with me his knowledge of kinetics, data fitting, and biology. He has emotionally supported me throughout. Life is more enjoyable with Will, and Caltech would not have been what it is for me without him.

Contents

Abstract	iii
Acknowledgements	v
List of Figures	xvi
List of Tables	xvii
1 Background	1
1.1 Our Approach	1
1.2 Protein Dynamics	2
1.2.1 Protein Folding	2
1.2.2 Intrachain Diffusion	4
1.2.3 Electron Tunneling	5
1.3 Techniques to Probe Protein Dynamics	7
1.3.1 Time-Resolved FRET	7
1.3.2 Continuous Flow Mixing to Trigger Folding	10
1.3.3 Photochemical Triggers of Electron Transfer	12
1.4 Proteins of Interest	14

1.4.1	Cytochrome cb_{562} , a Four-Helix Bundle Cytochrome	14
1.4.2	Cytochrome c_{552} , a Class I C-Type Cytochrome	17
1.5	Thesis Overview	19
2	Methods	20
2.1	General	20
2.2	Protein Preparation	20
2.2.1	Cytochrome cb_{562} Expression and Purification	20
2.2.2	Cytochrome c_{552} Expression and Purification	22
2.2.3	Covalent Labeling with Photosensitizers	23
2.3	Protein Characterization	24
2.4	Picosecond Laser System	26
2.5	Continuous Flow Mixer	28
2.6	Nanosecond Laser System	30
3	Biophysical Characterization of Cytochrome cb_{562}	33
3.1	Introduction	33
3.2	Protein Purification and Characterization	34
3.3	Stability of Labeled Mutants to Denaturation	34
3.4	Steady-State trFRET Measurements	41
3.5	Heme Environment	46
3.6	Conclusions	49
3.7	Acknowledgments	49

4 Tertiary Contact Dynamics in Unfolded Cytochrome cb_{562} by Electron Transfer	50
4.1 Introduction	50
4.2 Contact Quenching	52
4.3 Ruthenium-Labeled Variants	53
4.4 Transient Contact Formation Rates	53
4.5 Dynamics within a Constrained Loop	59
4.6 Conclusions	64
4.7 Acknowledgments	64
5 Resolving the Fast Folding of Cytochrome cb_{562} with Microfluidic Mixing	65
5.1 Introduction	65
5.2 Dansyl-D66C: Folding of Helices 3-4	68
5.3 Dansyl-K19C: Folding of Helices 1-4	71
5.4 Folding Mechanism of Cytochrome cb_{562}	75
5.5 Conclusions	78
5.6 Acknowledgments	78
6 An Unfolding Intermediate of Cytochrome c_{552} Revealed with trFRET	79
6.1 Introduction	79
6.2 Stability of Labeled Mutants to Denaturation	80
6.3 Steady-State trFRET Measurements	83
6.4 Cytochrome c_{552} 's Distinct Structural Features	91
6.5 Conclusions	93

CONTENTS

6.6 Acknowledgments	93
7 Characterization of Cytochrome c_{552}'s Folding Intermediate	94
7.1 Introduction	94
7.2 Folding Kinetics	95
7.3 Conclusions	101
7.4 Acknowledgments	101
8 Protein Folding Summary	102
9 Electron Tunneling Kinetics in Cytochrome cb_{562}	104
9.1 Introduction	104
9.1.1 Long-Range Electron Transfer in Proteins	104
9.1.2 Electron Tunneling in Cytochromes b_{562} and cb_{562}	107
9.1.3 Photochemical Triggers	109
9.2 Difference Absorption Spectrum	111
9.3 Kinetic Data	111
9.4 Conclusions	120
9.5 Acknowledgments	121
References (Chapters 1–9)	122

List of Figures

1.1	Contact quenching to probe intrachain diffusion.	5
1.2	Electron tunneling in ruthenium-modified protein variants.	6
1.3	Time-resolved fluorescence energy transfer.	8
1.4	Dansyl fluorophore used in FRET studies.	9
1.5	Spectral overlap of dansyl fluorescence and heme absorbance.	9
1.6	Continuous flow mixer diagram.	11
1.7	Ruthenium photosensitizer.	12
1.8	Absorption spectrum of ruthenium photosensitizer.	13
1.9	Triggering electron transfer with a ruthenium photosensitizer.	13
1.10	Structures of four-helix bundle cytochromes, including cytochrome b_{562} . .	15
1.11	Structures of cytochromes c_{552} and c	17
2.1	Dansyl labeling reaction.	23
2.2	Schematic of the picosecond laser system at the Beckman Institute. . .	26
2.3	Schematic of the nanosecond laser system at the Beckman Institute. . .	32
3.1	Purification of dansyl-labeled cytochrome cb_{562}	35
3.2	Mass spectrum of dansyl-labeled cytochrome cb_{562}	36
3.3	Mass spectrum of Ru-labeled cytochrome cb_{562}	37

3.4	Circular dichroism spectrum of Dns92-cytochrome cb_{562}	38
3.5	Chemical denaturation of Dns-cytochrome cb_{562} (CD spectroscopy). . .	39
3.6	Chemical denaturation of Dns-cytochrome cb_{562} (UV-Vis spectroscopy). .	39
3.7	Chemical denaturation curve of Dns-cytochrome cb_{562}	40
3.8	Temperature denaturation of Dns-cytochrome cb_{562}	41
3.9	Denaturant-dependence of integrated dansyl fluorescence decays. . .	42
3.10	Distance distributions of Dns92-cytochrome cb_{562} by trFRET.	43
3.11	Distance distributions of Dns66-cytochrome cb_{562} by trFRET.	44
3.12	Distance distributions of Dns19-cytochrome cb_{562} by trFRET.	45
3.13	Heme environment of cytochrome cb_{562}	47
3.14	UV-visible spectra of cytochrome cb_{562}	47
3.15	pH dependence of unfolded distance distributions (Dns66).	48
4.1	Ru-Fe photochemistry (contact quenching by electron transfer).	51
4.2	Stern-Volmer plot for contact quenching reaction.	52
4.3	Sequence of cytochrome cb_{562} .	53
4.4	Circular dichroism spectra of Ru-cytochrome cb_{562}	54
4.5	Luminescence decays of denatured Ru-cytochrome cb_{562}	55
4.6	Contact formation time constants for denatured protein variants. . . .	56
4.7	Power-law dependence of contact formation rate constants.	58
4.8	Schematic of long-lived loop formed by heme misligation at pH > 4. .	60
4.9	Biexponential fit of luminescence decay of Ru66 at pH 5	61
4.10	Luminescence decays of Ru66 at pH 4, 5, and 7.	61

4.11	Extended fit of contact formation rate constants to an asymptotic limit.	63
5.1	Cytochrome cb_{562} dansyl-labeling positions.	67
5.2	Dns66 fluorescence decays.	68
5.3	Conformational changes of Dns19-cytochrome cb_{562} during folding.	69
5.4	Moment analysis of Dns66-heme folding kinetics.	70
5.5	Dns19 fluorescence decays.	72
5.6	Conformational changes of Dns19-cytochrome cb_{562} during folding.	73
5.7	Moment analysis of Dns19-heme folding kinetics.	74
5.8	Sequences of cytochromes cb_{562} and c' .	75
5.9	Frustrated contacts in cytochromes cb_{562} and c' .	76
6.1	Cytochrome c_{552} dansyl-labeling positions.	80
6.2	Circular dichroism spectra of dansyl-labeled cytochrome c_{552} variants.	81
6.3	Denaturation curves of dansyl-labeled cytochrome c_{552} variants.	82
6.4	Time-resolved fluorescence energy transfer raw data.	85
6.5	Denaturation-induced changes in structural conformations.	86
6.6	Two-state and three-state equilibrium unfolding transitions.	88
6.7	Absorption spectra of folded and unfolded cytochrome c_{552} at pH 3.	89
6.8	Schematic of proposed equilibrium unfolding intermediate.	90
6.9	Hydrogen bonding in the crystal structure of cytochrome c_{552} .	92
7.1	Conformational changes of cytochrome c_{552} during folding.	96
7.2	Folding kinetics of cytochrome c_{552} .	97

7.3	Moment analysis of the folding kinetics.	100
9.1	Electron tunneling timetable for proteins.	106
9.2	Ru-labeling positions for electron tunneling studies.	108
9.3	Ru–Fe photochemistry (electron transfer).	109
9.4	Absorption spectrum of ferri- and ferrocytocrome cb_{562}	110
9.5	Difference absorption spectrum of cytochrome cb_{562}	110
9.6	Luminescence decays of Ru-modified cytochrome cb_{562} variants. . . .	112
9.7	Transient absorption spectra of Ru32 (424 and 409 nm).	114
9.8	Transient absorption spectra of Ru92 (424 and 409 nm).	115
9.9	Transient absorption spectra of Ru51 (424 and 409 nm).	116
9.10	Transient absorption spectra of Ru19 (424 and 409 nm).	117
9.11	Additional transient absorption spectra of Ru19 (460 and 370 nm). . .	118
9.12	Transient absorption spectra of Ru66 (424 and 409 nm).	119

List of Tables

3.1	Denaturation parameters for dansyl-labeled cytochrome cb_{562} variants.	40
3.2	Donor-acceptor distances for cytochrome cb_{562}	42
4.1	Fitted rate constants for tertiary contact formation at pH 4.	56
4.2	pH dependence of contact formation rate constants for Ru66.	60
6.1	Denaturation parameters for dansyl-labeled cytochrome c_{552} variants.	84
6.2	Native-state donor-acceptor distances for cytochrome c_{552}	87
9.1	Electron tunneling rates in Ru-modified cytochrome cb_{562} variants. . .	113