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CHAPTER 1 

Recent Developments in the Catalytic, Enantioselective Construction of 

Pyrroloindolines Bearing All-Carbon Quaternary Stereocenters† 

 

 

1.1 INTRODUCTION 

A large family of structurally diverse natural products is characterized by the 

collective presence of an indoline fused at its 2 and 3 positions to a pyrrolidine, a motif 

commonly known as a pyrroloindoline and more precisely named hexahydropyrrolo[2,3-

b]indole (Figure 1.1.1).1 These alkaloids possess an array of biological properties, 

including cholinesterase (physostigmine (1)),2 cancer (gliocladin C (2)3 and asperazine 

(5)),4 and histone methyltransferase (chaetocin A (3))5  inhibitory activities. Furthermore, 

many pyrroloindoline natural products bear C3a all-carbon quaternary stereocenters and 

the synthetic challenge inherent in these molecules combined with promising medicinal 

value has inspired a myriad of methodologies targeting the enantioenriched framework.6 

                                                
† This chapter was adapted from a mini-review written in collaboration with Professor 
Sarah Reisman.  
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Although numerous strategies involving either chiral auxiliaries or the functionalization 

of L-tryptophan have been developed, this synopsis will offer an introduction to the 

catalytic, enantioselective approaches based on the recent growth of research within this 

field. 

Figure 1.1.1. Representative pyrroloindoline natural products. 

 

Catalytic, enantioselective reactions to prepare pyrroloindolines can be categorized 

primarily into two general approaches: (1) reactions to synthesize 3,3’-disubstituted 

oxindoles, which can be elaborated to the corresponding pyrroloindolines (Approach 

1,Scheme 1.1.1),7 or (2) tandem C3-functionalization/cyclization reactions of 3-

substituted indoles (Approach 2, Scheme 1.1.1). Extensive research has been conducted 

using both approaches, and each possesses distinct advantages. The indole 

functionalization approach permits direct access to pyrroloindolines, whereas the 

oxindoles can serve as intermediates in the synthesis of both pyrroloindoline and 

oxindole-based natural products.8 
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Scheme 1.1.1. General approaches for pyrroloindoline synthesis. 

 

1.2 PYRROLOINDOLINE SYNTHESIS VIA 3,3’-DISUBSTITUTED 

OXINDOLES 

3,3’-Disubstituted oxindoles are available by several methods including α-alkylation, 
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appropriate C2-handle for advancement to diketopiperazine-based alkaloids (e.g. 

chaetocin A (3), Figure 1.1.1). 

Scheme 1.2.1. Organocatalytic α-alkylation of oxindoles. 

 
Conditions: a. 3.0 equiv 16, 10 mol % 15, 4Å MS, ClCH2CH2Cl, –20 ºC, 48 h; b. NaN3, DMSO, 
30 ºC, 24 h; c. TMSCl, MeOH, rt, 96 h; d. Red-Al, PhMe, rt to 100 ºC, 24 h. 
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key finding in this study was that, in addition to the nickel catalyst, a Lewis acid 

(AlMe2Cl) was required to achieve indoline formation. Subsequent C-H oxidation 

furnishes the highly enantioenriched 3,3’-dialkyl (12) and 3-alkyl-3’-aryloxindoles. 

Scheme 1.2.2. Cyclization approaches to 3,3’-disubstituted oxindoles. 

 
Conditions: a. 10 mol % Pd2dba3·CHCl3, 23 mol % (S)-BINAP, 5.1 equiv PMP, DMA, 100 °C, 
1.5 h. b. 3 N HCl, 0 to 23 °C (84 % yield, 2 steps). c. 10 mol % Ni(cod)2, 20 mol % 22, 40 mol % 
AlMe2Cl, DME, 100 ºC, 10 h (88% yield); d. 6.0 equiv PhIO, CH2Cl2, rt, 2.5 h (40% yield). 
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Scheme 1.2.3. Pd-catalyzed allylation of oxindoles with benzyloxyallene (24) (Trost and 

coworkers, 2011). 

 
Conditions: 1.2 equiv 24, 2.5 mol % Pd2(dba)3•CHCl3, 7.5 mol % (R,R)-26, 5 mol % 1-naphthoic 
acid, THF, rt, 41 h. 
 
Scheme 1.2.4. Cu-catalyzed Umpolung alkylation of 3-halooxindoles (Stoltz and coworkers, 2009). 

 
Conditions: a. 20 mol % (S)-PhBOX·Cu(II)·2SbF6, 3.0 equiv dimethyl malonate, 2.0 equiv Et3N, 
3 Å MS, CH2Cl2, –20 °C (76% yield). b. LiCl, H2O, DMSO, 150 ºC, 12 h; c. tBuOK, MeI, THF, 0 
ºC, 1 h; d. AlMe3, MeNH2•HCl, PhMe, 50 ºC, 5 d; d. LAH, THF, 0 ºC, 1 h. 
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following Krapcho dealkoxycarbonylation, N-methylation, aminolysis, and reductive 

cyclization afforded 3-phenylpyrroloindoline 33 in an operationally straightforward 

manner. 

Scheme 1.2.5. Phosphoric acid-catalyzed Umpolung alkylation of 3-indolyloxindoles en route to 

(+)–folicanthine (39) (Gong and coworkers, 2012). 

 
Conditions: a. 1.5 equiv 35, 10 mol % 40, Na2SO4, CH2Cl2, rt, 12-24 h; b. aqueous HBr, EtOH, rt, 
8 h; c. nBu4NHSO4, KOH, THF, 50 ºC, 1 h; then MeI, rt, 2 h; d. NH2OH•HCl, pyridine, EtOH, rt, 
2 d; e. HgCl2, MeCN, 80 ºC, 2 h. 
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to 2-(alkyloxy)acetaldehydes by employing a cinchona alkaloid-derived co-catalyst and 

used this chemistry in a synthesis of gliocladin C (2, Figure 1.1.1). 23 

The polypyrroloindoline alkaloids present a particular synthetic challenge due to the 

presence of vicinal all-carbon quaternary stereocenters and, therefore, the design of 

methodology tailored to these molecules is an important area of research. Shortly 

following Gong’s report of the enamine alkylation reaction described above, Kanai, 

Matsunaga and coworkers also reported a concise synthesis of (+)-folicanthine (39) 

(Scheme 1.2.6).24 In this case, installation of the quaternary stereocenters was 

accomplished by sequential Mn-catalyzed Michael additions of the readily available 

bisoxindole 41 to nitroethylene. Although this transformation proved more practical in 

terms of yield as a two-step process, it is impressive that the one-flask double Michael 

reaction proceeds with exceptional enantioselectivity to successfully generate both 

stereocenters in a single step.  

Scheme 1.2.6. Mn-catalyzed double Michael reaction en route to (+)-folicanthine (39), (Kanai, 

Matsunaga and coworkers, 2012).  

 

Conditions: 1.2 equiv nitroethylene, 18 mol % Mn(4-F-BzO)2/43 (ratio 1:1), PhMe, 5Å 
MS, 50 ºC, 1.5 h; then 2.0 equiv nitroethylene, 1.0 equiv 2,6-di-tert-butylphenol, 50 ºC, 
12 h. 
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group compatible Lewis acid-promoted cyclization reaction.25  These researchers further 

recognized the relevant utility of the planar-chiral ferrocenyl pyridine (45)-catalyzed 

intramolecular acyl O-to-C migration of indolyl carbonates initially disclosed by Fu and 

coworkers.26 Subjection of indolyl trichloro-tert-butylcarbonate 44 to the reported 

migration conditions provided oxindole 46 in high yield and ee (Scheme 1.2.7). 

Intermolecular aldol reaction of further functionalized 2-methoxyindoline 47 with 

trioxopiperazine 48 then installed the necessary nucleophilic amide functionality and 

subsequent exposure to BF3•OEt2 provided didehydropyrroloindoline 49. This cyclization 

product was converted to (+)-gliocladine C (50) in 6 steps,27 which constitutes the first 

total synthesis of an epidithiodiketopiperazine (ETP) natural product incorporating a β-

hydroxy-substituted stereocenter. 

Scheme 1.2.7. First synthesis of a β-hydroxy-ETP natural product (Overman and coworkers, 2011; 

Fu and Hills, 2003). 
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were driven by both the biological activity of 1,2-oxazine natural products30 and the 

prospective conversion to pyrroloindolines. Specifically, Lewis acid-catalyzed [4+2] 

cycloaddition reactions of 3-alkylindoles (51) with nitrosoalkenes generated in situ from 

2-chlorooximes (52) were found to afford the desired oxazines. Notably, Gilchrist and 

Roberts reported a related non-asymmetric NaHCO3-promoted reaction in 1978,31 but this 

recent addition to the literature represents the first catalytic and highly enantioselective 

cycloaddition of nitrosoalkenes for any dienophile.32 Beckmann rearrangement of 1,2-

oxazine 53 furnished 3-allylpyrroloindoline 54, thereby illustrating the utility of this 

strategy for the synthesis of both oxazines and pyrroloindolines. 

Scheme 1.2.8. Nitrosoalkene [4+2]/Beckmann rearrangement approach via a 1,2-oxazine 

intermediate (Larionov and coworkers, 2012). 

 
Conditions: a. 10 mol % CuOTf•1/2PhMe, 10 mol % (S)-DM-BINAP, 3.0 equiv Ag2CO3, 3Å 
MS, CH2Cl2, –15 ºC, 48 h; b. 20 mol % PBr3, C6H5CF3, 50 ºC, 16 h (79% yield). 
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addition/cyclization reaction to deliver the pyrroloindoline framework. The appeal of 

this reaction is that it harnesses the intrinsic C3-nucleophilicity and provides direct access 

to pyrroloindolines from simple, readily available materials. The MacMillan group has 

utilized this organocatalytic reaction as the key step in the total syntheses of three 

structurally distinct pyrroloindoline alkaloids.35 

Scheme 1.3.1. First direct, enantioselective construction of pyrroloindolines from tryptamines 

(MacMillan and coworkers, 2004). 

 

Since this initial disclosure by MacMillan and coworkers, several other methods for 

the direct synthesis of pyrroloindolines from tryptamine and tryptophan derivatives have 
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C6H13 and anthracene-derived phosphine (S,S)-60 proving optimal.  

Scheme 1.3.2. Pd-catalyzed tandem allylic alkylation/cyclization reaction of tryptamines (Trost and 

Quancard, 2006). 

 
 

N

O

85:15 CH2Cl2:H2O  
–85 ºC, 25 h

NN
Allyl BocH

HO

(85% yield)

BocHN

Allyl
55 56  

89% ee

N

N
H

MeO

Me

Me
Me

N
H

57

•TFA

20 mol % 57
(4.0 equiv)

DCM, 4 °C, 20 h

2.5 mol %
 Pd2(dba)3•CHCl3

(87% yield)

N
H

N
BocH

OH

N
H

BocHN

N
H

HN
O

Ph2P

O

PPh2

(S,S)-
60

7.5 mol % (S,S)-60,
1.1 equiv

9-BBN-C6H13

58 59 
72% ee



Chapter 1–Catalytic, Enantioselective Construction of Pyrroloindolines 12 

Antilla and coworkers recently reported chiral phosphoric acid (62)-catalyzed C–N 

and C–C bond formation/cyclization reactions of tryptamine carbamates (61 and 65) 

(Scheme 1.3.3).37 Preliminary NMR investigations suggest a mechanism involving 

electrophile activation by a hydrogen-bonding network (66). Specifically, it is proposed 

that coordination of the tryptamine carbonyl to the catalyst enhances the carbamate 

acidity and results in hydrogen bonding to the electrophile (either 

diethylazodicarboxylate (DEAD) or methyl vinyl ketone). This methodology constitutes 

the first catalytic, asymmetric construction of 3-aminopyrroloindolines, a motif present in 

several naturally occurring alkaloids.38 Furthermore, the utility of the C–C bond forming 

variant has been demonstrated in the concise total synthesis of (–)-debromoflustramine B 

(67). Exposure of (1H)-tryptamine 65 to methyl vinyl ketone resulted in substitution at 

both C3a and N1a to give 66, an intermediate primed for elaboration to 67.  

Scheme 1.3.3. Phosphoric acid (62)-catalyzed preparation of two pyrroloindoline motifs (Antilla 

and Zhang, 2012). 
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reaction of indole acetamides using aryliodonium salts (69, Scheme 1.3.4).39,40 The 

proposed mechanism involves electrophilic C3-metalation of the indole acetamide (68) 

by a Cu(III)-aryl complex, reductive elimination, and cyclization of the resultant 3-

arylindolenine (73). The excellent enantioselectivity likely results from bidentate 

substrate coordination (71) involving both the carboxamide and C2-C3 π-bond of the 

indole. This reaction enables the direct preparation of highly enantioenriched derivatives 

including 3-(bromoaryl)pyrroloindolines (74) that contain a potential handle for 

advancement to the indolyl substitution patterns found in naturally occurring alkaloids 

such as asperazine (5, Figure 1.1.1).  

Scheme 1.3.4. Cu-catalyzed tandem arylation/cyclization reaction of indole acetamides (MacMillan 

and Zhu, 2012).            
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between 3-substituted indoles (75) and 4-aryl-1-sulfonyl-1,2,3-triazoles (76) that 

affords  didehydropyrroloindolines bearing either alkyl (78) or aryl substitution at C3a 

(Scheme 1.3.5).42 These products can be selectively reduced to afford either diastereomer 

of pyrroloindoline 81 depending on the catalyst. The formal cycloaddition to give 78 is 

proposed to occur by cyclopropanation of 75 with the Rh(II)-carbenoid generated in situ 

from 76, followed by cyclopropane ring-opening and cyclization. An alternative formal 

(3 + 2) cycloaddition approach has also been disclosed by Xie, Tang, and coworkers 

involving the Cu(II)-bisoxazoline (85)-catalyzed reaction of achiral pyrroloindole 82 and 

donor-acceptor cyclopropane 83, which furnishes aza-propellane 84 in excellent yield 

and stereoselectivity (Scheme 1.3.6).43  

Scheme 1.3.5. Rh-catalyzed formal (3 + 2) cycloaddition (Davies and Spangler, 2013). 

 

Scheme 1.3.6. Cu-catalyzed formal (3 + 2) cycloaddition (Xie, Tang, and coworkers, 2013). 
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1.4 SYNTHESIS OF ENANTIOENRICHED PYRROLOINDOLINES BY 

DESYMMETRIZATION 

With the exception of the formal cycloaddition reaction, the approaches described 

above all rely on setting the absolute stereochemistry of the pyrroloindoline through a 

key, catalytic, C3-functionalization step. Alternatively, Willis and coworkers pursued a 

conceptually distinct strategy focused on the desymmetrization of readily accessible 

meso-chimonanthine to prepare the related trispyrroloindoline alkaloid (–)-hodgkinsine B 

(88, Scheme 1.4.1).44 Specifically, a Pd-catalyzed N-allylation of the bispyrroloindoline 

86 was achieved using the ligand (R,R)-22, a chiral phosphine developed by Trost and 

coworkers (Scheme 1.2.3).45 This chemistry finds precedent in Taguchi and coworkers’ 

Pd-catalyzed desymmetrization of meso-cyclohexane-1,2-diamides,46 but the substrate 

complexity and  enantioselectivity are unparalleled. In combination with the oxindole α-

arylation methodology also developed by Willis and coworkers,47 this allylic substitution-

desymmetrization reaction enabled remarkably rapid access to 88. 

Scheme 1.4.1. Allylic substitution-desymmetrization reaction en route to (–)-hodgkinsine B (88) 

(Willis and coworkers, 2011). 

 
Conditions: 1.2 equiv allyl acetate, 2.0 equiv Et3N, 3.8 mol % (R,R)-22, (allylPdCl)2 (2.5 mol % 
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1.5 CONCLUDING REMARKS 

The complexity, biological activity, and remarkable variety exhibited by 

pyrroloindolines have long since established this family of natural products as an 

important target for total synthesis. In particular, the past two decades of research 

resulted in enantioselective, catalytic strategies for the synthesis of pyrroloindolines 

bearing C3a all-carbon quaternary stereocenters. Whereas early synthetic methods 

focused on the preparation of 3,3’-disubstituted oxindoles, more recent efforts have 

investigated the initial generation of 1,2-oxazines, desymmetrization, and direct 

functionalization of indoles. Despite the breadth of reported transformations, key 

restrictions exist regarding functional group incorporation and a highly divergent reaction 

remains elusive. These unmet challenges illustrate the demand for new methodologies 

and suggest that the pyrroloindoline scaffold will persist as an inspiration for future 

research in organic synthesis. 
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