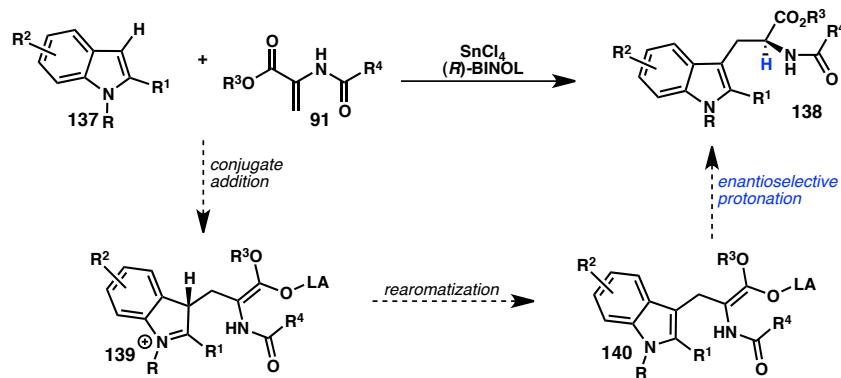


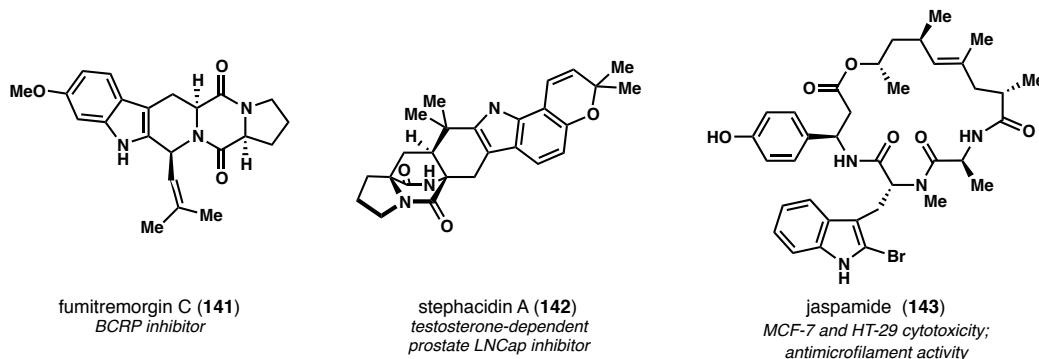
CHAPTER 3

Synthesis of Tryptophan Derivatives by a Tandem Friedel–Crafts

Conjugate Addition/Enantioselective Protonation Reaction[†]


3.1 INTRODUCTION

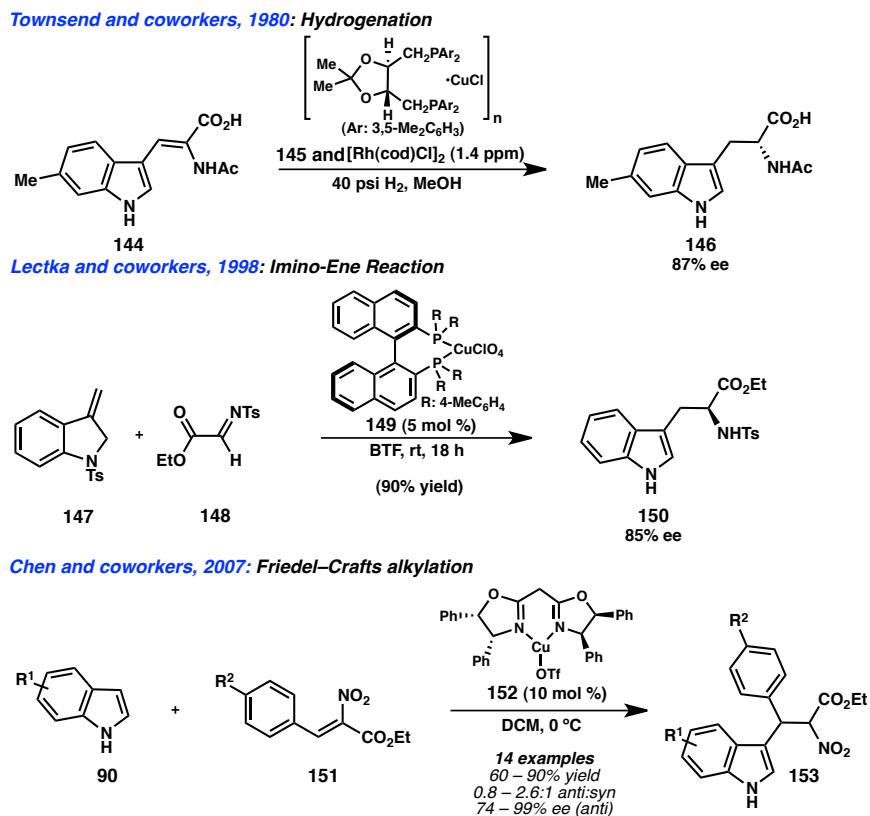
During the development of the formal (3 + 2) cycloaddition approach to pyrroloindolines, epimerization studies were conducted on the diastereomeric products that strongly suggest that enantioinduction occurs via a highly face-selective, (*R*)-BINOL•SnCl₄ controlled protonation event (Chapter 2). We hypothesized that if catalyst-controlled protonation were operative, the related Friedel–Crafts alkylation reaction with C3-unsubstituted indoles should also proceed with high selectivity to provide enantioenriched tryptophan derivatives. Mechanistically, the proposed transformation would involve an initial conjugate addition to generate enolate **139**, which, following rearomatization and asymmetric protonation would give tryptophan derivative **138** (Scheme 3.1.1). This chapter describes the realization of our mechanistic hypothesis in the development of a tandem Friedel–Crafts conjugate addition/enantioselective


[†] Part of this chapter was published as the following article: Kieffer, M. E.; Repka, L. M.; Reisman, S. E. *J. Am. Chem. Soc.* **2012**, *134*, 5131. The research discussed in this chapter was completed in collaboration with Maddi Kieffer, a graduate student in the Reisman lab.

Scheme 3.1.1. Proposed mechanism of enantioselective tryptophan derivative formation.

3.1.1 Synthetic and Biological Applications of Tryptophan Derivatives

Figure 3.1.1. Tryptophan-derived biologically active natural products.

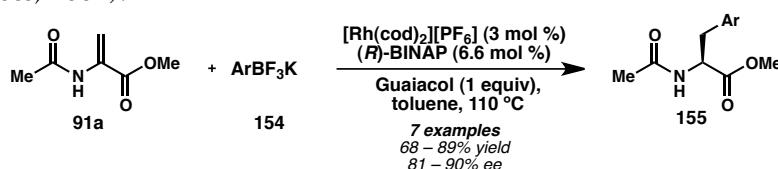


Unnatural tryptophan derivatives constitute an important target for synthetic efforts on the basis of their applications. These derivatives are incorporated into a diverse array of biologically active natural products including fumitremorgin C (141),¹ stephacidin A (142),² and the jaspamide family of cyclodepsipeptides (143);³ in particular, **141** has been extensively studied because of its function as an inhibitor of the breast cancer resistance protein (BCRP) (Figure 3.1.1). Furthermore, tryptophan derivatives have found applications as chiral catalysts⁴ and as biological probes. For example, these molecules have been used in protein detection and design on the basis of their fluorescent

properties,⁵ and in linear free energy relationship studies that have identified a key cation- π binding interaction for acetylcholine and the nicotinic acetylcholine receptors.⁶

3.1.2 Catalytic, Enantioselective Approaches to Tryptophan Derivatives

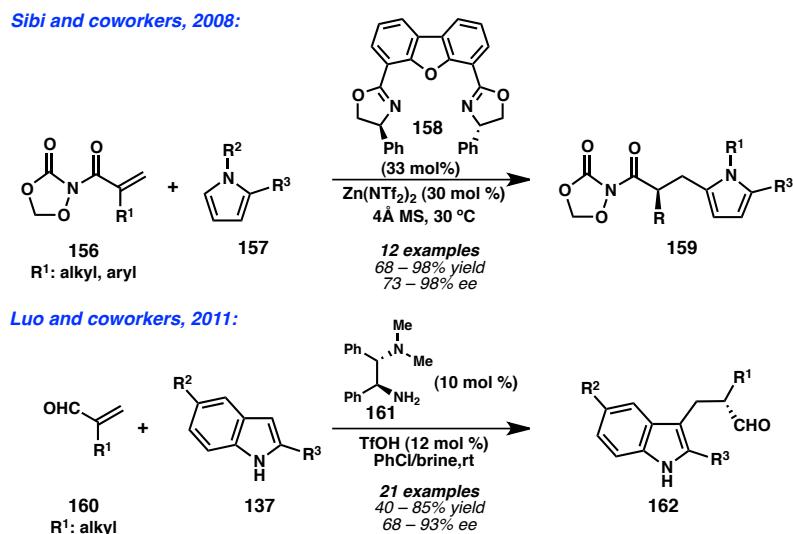
Scheme 3.1.2. Selected enantioselective, catalytic approaches to tryptophan derivatives.


Due to the applications of tryptophan derivatives, the synthesis of these molecules has been the subject of extensive research. However, there are few convergent, enantioselective approaches to tryptophan derivatives (Scheme 3.1.2).⁷ In a seminal 1980 report, Townsend and coworkers disclosed a hydrogenation catalyst prepared from tartrate-derived ligand **145**, $[\text{Rh}(\text{cod})\text{Cl}]_2$, and H_2 that efficiently converts enamide **144** to the corresponding (*R*)-6-methyltryptophan **146** in 87% ee.^{7a} More recently, Lectka and coworkers developed the first enantioselective imino-ene reaction using an (*R*)-BINAP-

derived copper complex (**149**) that enables access to tryptophan **150** in 85% ee from 3-methylideneindole **147** and α -imino ester **148**.^{7b} When we initiated research directed toward tryptophan synthesis, one Friedel–Crafts approach had also been reported; Liu, Chen and coworkers disclosed a Cu-catalyzed enantioselective conjugate addition involving C3-unsubstituted indoles (**90**) and β -aryl-nitroacrylates (**151**) that provides β -substituted tryptophan derivatives (e.g. **153**).^{7d}

3.1.3 Tandem Conjugate Addition/Enantioselective Protonation Reactions

Throughout the past decade, many tandem conjugate addition/enantioselective protonation reactions have been developed for a variety of nucleophiles.⁸ For example, Genet and Darses reported the synthesis of phenylalanine derivatives (**155**) by a Rh-catalyzed reaction of methyl 2-acetamidoacrylate (**91a**) and potassium aryltrifluoroborates (**154**) that employs guaiacol as the stoichiometric proton source (Scheme 3.1.3).^{8h}


Scheme 3.1.3. Access to amino acids by tandem conjugate addition/enantioselective protonation (Genet and Darses, 2004).

Despite considerable research, examples of tandem *Friedel–Crafts* conjugate addition/enantioselective protonation reactions are rare and were first reported in 2008. Sibi and coworkers developed an oxazolidinone-derived acrylamide (**156**) for conjugate addition of pyrroles (**157**) catalyzed by $\text{Zn}(\text{NTf}_2)_2$ and dibenzofuran-derived BOX ligand **158** (Scheme 3.1.4).^{8k} The selectivity is thought to arise by bischelation of the catalyst with

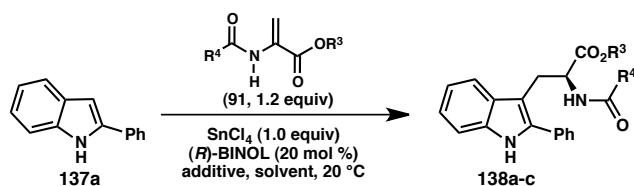
the carbonyls of **156**. The pyrrole products were prepared in excellent yield and ee; however, no examples of this reaction using indole nucleophiles have been reported. Concomitant with our work in this area, Luo and coworkers developed a related diamine **161**-catalyzed tandem conjugate addition/enantioselective protonation reaction involving C2-substituted indoles (**137**) and acrolein derivatives (**160**).⁸¹ However, to our knowledge, the research discussed in this chapter constitutes the only enantioselective protonation approach to tryptophan derivatives.⁹

Scheme 3.1.4. Tandem Friedel–Crafts conjugate addition/enantioselective protonation reactions.

3.2 SnCl₄-PROMOTED ASYMMETRIC PROTONATION APPROACH TO TRYPTOPHAN DERIVATIVES

3.2.1 Optimization Studies

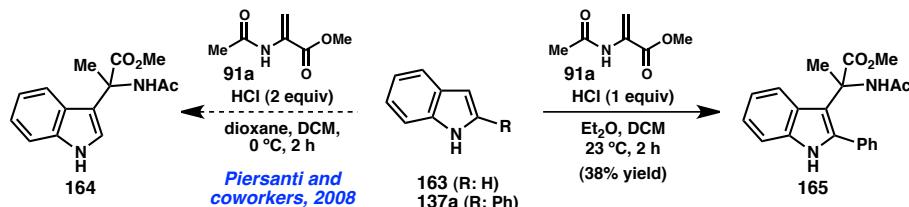
Our studies began with the investigation of 2-phenylindole (**137a**) using our previously optimized conditions for asymmetric pyrroloindoline synthesis. Surprisingly, these conditions resulted in formation of trifluoroacetamido ester **138a** in poor yield and


ee (Table 3.2.1, entry 1). Alternatively, treatment of **137a** and methyl 2-acetamidoacrylate (**91a**) with 1 equivalent SnCl_4 and 20 mol % (*R*)-BINOL in DCM delivers acetamido ester **138c** in 73% yield and 78% ee (entry 3).¹⁰ Importantly, we found it critical to quench these reactions with saturated aqueous NaHCO_3 ; a quench with 1 M aqueous NaOH consistently results in partial racemization and under otherwise identical conditions, **138c** was isolated in 75% ee (entry 6). We also hypothesized that adventitious HCl generated under the reaction conditions might artificially reduce the ee by serving as an achiral proton source for enolate protonation; therefore, a screen of acid and water scavenging additives was conducted. 2,6-lutidine inhibited the reaction, presumably through coordination of SnCl_4 , and no effect was observed with the inorganic bases such as K_2CO_3 (entries 7-8). However, we were pleased to find that in the presence of 4 Å molecular sieves, the reaction of 2-phenylindole (**137a**) furnishes acetamido ester **138c** in an improved 86% yield and 81% ee (entry 9). As observed for pyrroloindoline formation, halogenated solvents are optimal with DCM providing the highest enantioselectivity (entries 9-11).

As observed for the formal (3 + 2) cycloaddition reaction, BINOL significantly increases the rate of the reaction, with SnCl_4 alone providing **138c** in only 13% yield (entry 4).[‡] Likewise, no reaction is observed in the absence of SnCl_4 (entry 5). Although BINOL cannot independently facilitate this transformation, it is notable that exposure to HCl results in a reaction of 2-phenylindole (**137a**) and **91a**; however, in this case **91a** preferentially reacts via the imine tautomer to give quaternary amide **165** in 38% yield (Scheme 3.2.1). By contrast, diphenylphosphate only promotes trace conversion to **165**.

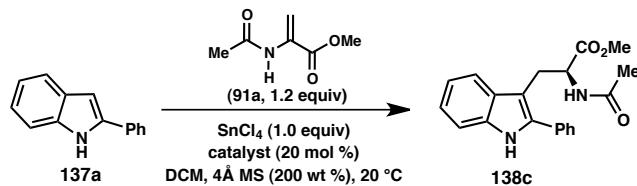
[‡] For kinetics experiments involving in situ monitoring by ^1H NMR spectroscopy, see Section 3.4.10.

The reactivity promoted by HCl appears unique to **137a**; Piersanti and coworkers reported that subjection of indole and **91a** to two equivalents of HCl at 0 °C gave no reaction.^{9b} A possible explanation for this divergent reactivity is the enhanced stability of the imine intermediate resulting from conjugate addition with **137a** that derives from conjugation with the C2-phenyl substituent.


Table 3.2.1. Optimization of reaction parameters.^a

Entry	R ³ , R ⁴	pdt	Solvent	Additive	Yield (%) ^b	ee (%) ^c
1	Bn, CF ₃ (91d)	138a	DCM	--	12	35
2	Me, CF ₃ (91b)	138b	DCM	--	12	42
3	Me, Me (91a)	138c	DCM	--	73	78
4	Me, Me (91a)	138c	DCM	^d	13	--
5	Me, Me (91a)	138c	DCM	^e	0	--
6	Me, Me (91a)	138c	DCM	^f	75	75
7	Me, Me (91a)	138c	DCM	K ₂ CO ₃	73	78
8	Me, Me (91a)	138c	DCM	2,6-lutidine	0	--
9	Me, Me (91a)	138c	DCM	4 Å MS	86	81
10	Me, Me (91a)	138c	DCE	4 Å MS	87	79
11	Me, Me (91a)	138c	CHCl ₃	4 Å MS	80	72

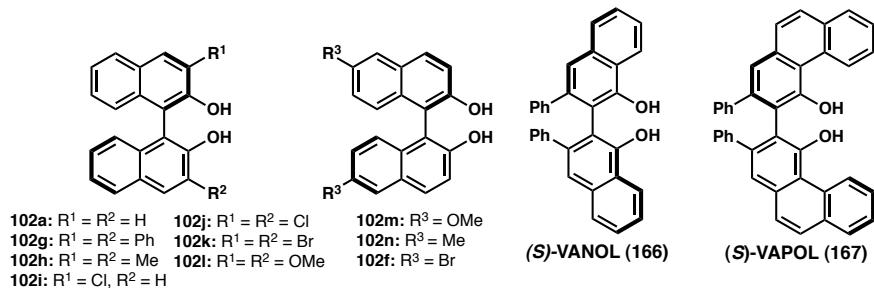
^a Reactions conducted in a glovebox on 0.2 mmol scale for 2 h. Reactions worked up using saturated aqueous NaHCO₃. ^b Isolated yield. ^c Determined by chiral stationary phase SFC. ^d Reaction run without (R)-BINOL. ^e Reaction run without SnCl₄. ^f Reaction worked up using 1 M aqueous NaOH.


Scheme 3.2.1. Bronsted acid-promoted reactivity of 2-phenylindole (**137a**).

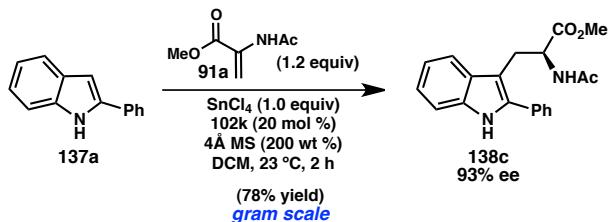
The enantioselectivity of the tandem conjugate addition/enantioselective protonation reaction was further improved through catalyst optimization. Investigation of 6,6'-disubstituted BINOL derivatives did not identify more selective catalysts and indicated

that the selectivity could not be tuned solely based on electronic perturbation (Table 3.2.2, entries 8-10). Sterically hindered *(R)*-3,3'-diphenyl-BINOL (**102g**) provided acetamido ester **138c** in low yield and only 37% ee, while *(R)*-3,3'-dimethoxy-BINOL (**102l**) gave the product as a racemate possibly due to alternate binding modes for SnCl_4 that result in an unselective reaction (entries 1 and 7). We were pleased to find that 3,3'-dihalogenated derivatives of BINOL provided improved selectivity, with *(R)*-3,3'-dibromo-BINOL (**102k**) affording ester **138c** in 76% yield and 93% ee (entry 6). Notably, although our initial screening was conducted in a glovebox, this reaction can be conducted on gram scale on the benchtop without any significant effect on the yield or ee (Scheme 3.2.2).

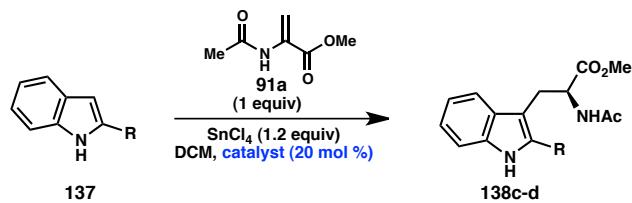
Table 3.2.2. Catalyst optimization.^a


Entry	Catalyst	Loading (mol %)	Yield (%) ^b	ee (%) ^c
1	102a	20	86	81
2	102g	20	17	37
3	102h	20	83	87
4	102i	20	76	84
5	102j	20	85	90
6	102k	20	76	93
7	102l	20	7	1
8	102m	20	86	54
9	102n	20	88	78
10	102f	20	82	78
11	166	20	86	-95
12	167	20	9	-32

^a Reactions conducted in a glovebox on 0.2 mmol scale for 2 h. ^b Isolated yield. ^c Determined by chiral stationary phase SFC.


Interestingly, (*S*)-VANOL (**166**), a vaulted chiral diol developed by Wulff and coworkers,¹¹ provided the highest yield and ee we have observed to date, furnishing **138c** in 86% yield and -95% ee (Table 3.2.2, entry 11). Although 2-phenylindole (**137a**) gave

optimal results with **166**, we elected to use (*R*)-3,3'-dibromo BINOL (**102k**) in the evaluation of substrate scope. While both **102k** and **166** are commercially available, **102k** is much less expensive and readily accessible in three steps from BINOL. Furthermore, although **166** proved optimal for **137a**, this trend was not consistently observed with other indole substrates (Table 3.2.5).


Figure 3.2.1 Catalysts.

Scheme 3.2.2. Gram-scale, benchtop synthesis of tryptophan methyl ester **138c**.

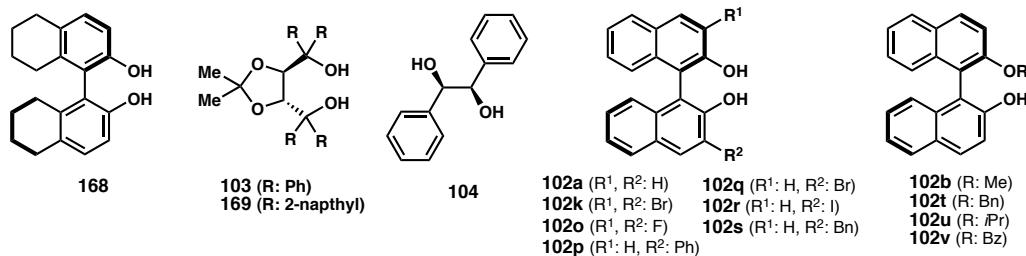
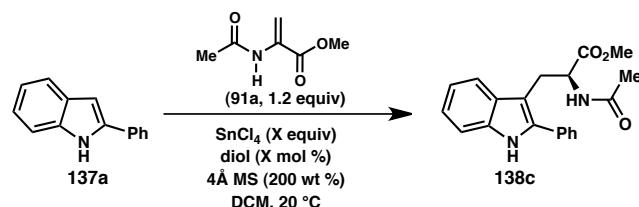

A variety of other chiral diols were also evaluated during the course of our optimization studies (Table 3.2.3). As observed for the formal (3 + 2) cycloaddition reaction, non-BINOL-derived chiral diols, including (*R*)-5,5',6,6',7,7',8,8'-octahydro-BINOL (**168**), TADDOLs **103** and **169**, and hydrobenzoin (**104**) provided tryptophan products either in low ee (entries 2,5,14) or as a racemate (entries 3-4). In addition, (*R*)-2-alkoxy-BINOL derivatives gave reduced ee, which is indicative of the key role played by the hydroxyl protons in the enantioselective protonation (entries 15-18).

Table 3.2.3. Initial catalyst optimization studies.^a

Entry	R	pdt	Catalyst	ee (%) ^b
1 ^c	Me (137b)	138d	102a	71
2 ^{c,d}	Me (137b)	138d	168	2
3 ^c	Me (137b)	138d	103	0
4 ^c	Me (137b)	138d	169	0
5 ^c	Me (137b)	138d	104	9
6 ^c	Ph (137a)	138c	102a	78
7 ^c	Ph (137a)	138c	102k	80
8 ^c	Ph (137a)	138c	102o	85
9 ^c	Ph (137a)	138c	102q	84
10 ^c	Ph (137a)	138c	102r	81
11 ^c	Ph (137a)	138c	102s	86
12 ^e	Ph (137a)	138c	102a	72
13 ^e	Ph (137a)	138c	102p	50
14 ^e	Ph (137a)	138c	168	23
15 ^e	Ph (137a)	138c	102b	20
16 ^e	Ph (137a)	138c	102t	39
17 ^e	Ph (137a)	138c	102u	7
18 ^e	Ph (137a)	138c	102v	1

^a Reactions conducted under inert atmosphere on the benchtop on 0.1 to 0.2 mmol scale. ^b Determined by chiral stationary phase SFC. ^c Reaction worked up using saturated aqueous NaHCO₃. ^d 2.0 equivs SnCl₄ was employed. ^e Reaction worked up using 1M aqueous NaOH.

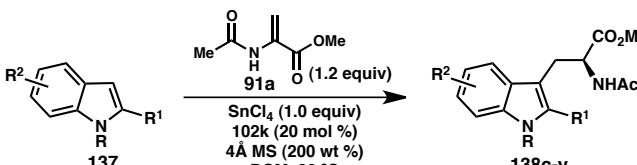

Figure 3.2.2. Catalysts for initial optimization.

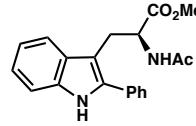
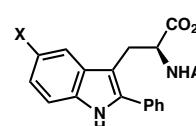
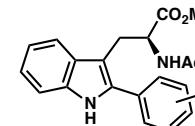
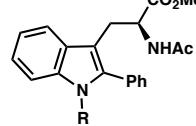
With optimal conditions for tryptophan synthesis in hand, we evaluated the possibility of reducing the loading of both (R)-3,3'-dibromo-BINOL (**102k**) and SnCl₄ (Table 3.2.4). The loading of **102k** can be reduced as low as 10 mol % without significant erosion of ee; **138c** is obtained in reduced ee (88%) when 5 mol % **102k** is employed (entries 4-5).

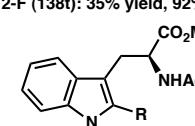
However, it appears that the reaction requires a full equivalent of SnCl_4 . Unlike in the formal (3 + 2) cycloaddition and the EtAlCl_2 -promoted tryptophan synthesis by Piersanti and coworkers wherein the reactions barely proceed with substoichiometric Lewis acid loadings (Chapter 2),^{9b} we observed that the loading of SnCl_4 is directly proportional to yield; for example, use of 0.6 equiv SnCl_4 provides 66% yield of **138c**.

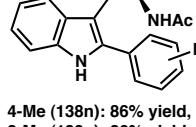
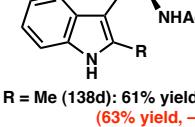
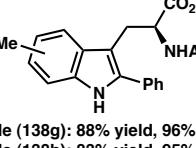
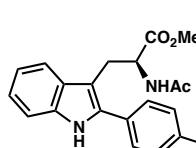
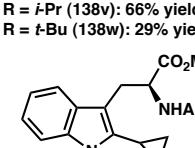
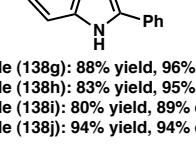
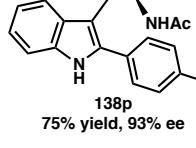
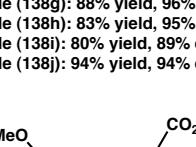
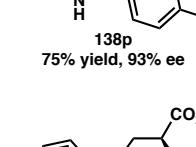
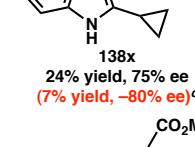
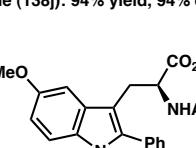
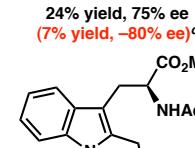
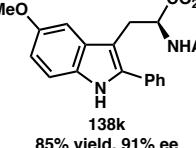
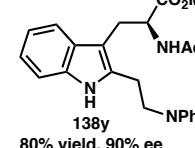
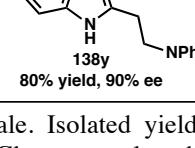
Table 3.2.4. Catalytic loadings of **102k** and SnCl_4 .^a

Entry	Diol	Diol (mol %)	SnCl_4 (equiv)	Yield (%) ^b	ee (%) ^c
1	102k	20	1.0	76	93
2	102k	40	1.0	76	93
3	102k	15	1.0	77	93
4	102k	10	1.0	75	92
5	102k	5	1.0	72	88
6	102a	20	1.0	86	81
7	102a	20	0.8	80	79
8	102a	20	0.6	66	77


^a Reactions conducted in a glovebox on 0.2 mmol scale for 2 h. ^b Isolated yield. ^c Determined by chiral stationary phase SFC.


















3.2.2 Substrate Scope of Tryptophan Synthesis

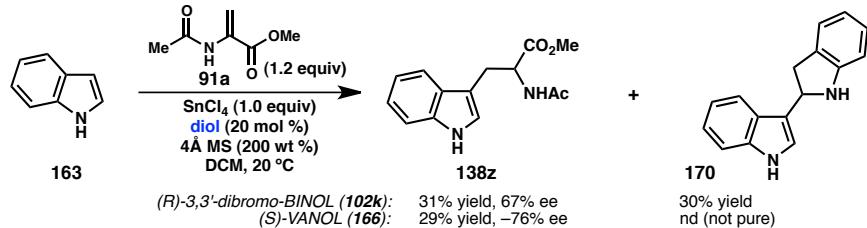
The substrate scope was explored under the optimized conditions using a 20 mol % loading of (*R*)-3,3'-dibromo-BINOL (**102k**) to ensure optimal results for all substrates (Table 3.2.5). In contrast to the trend observed in the formal (3 + 2) cycloaddition reaction (Chapter 2), *N*-alkylated indoles react in lower yield than (*1H*)-derivatives, with tryptophans **138e** and **138f** both accessed in 85% ee (entries 2-3). Electronically diverse indoles functionalized at C4, C5, C6, and C7 provided uniformly high ees; however, electron-poor indoles furnished tryptophan products in lower yields (e.g. **138l**). A variety

of alkyl and aryl substituents were tolerated at C2 of the indole although *ortho*-functionalized aryl substituents (e.g. **138t**) and very small or bulky alkyl substitution resulted in lower yields and ee (entries 18-23).

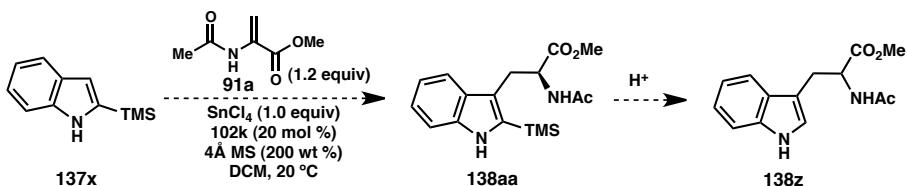
Table 3.2.5. Substrate scope.^a

entry	entry	entry
 1) 76% yield, 93% ee	 9) ^b Br (138i): 60% yield, 93% ee	 15) 4-F (138r): 78% yield, 93% ee
 2) R = Me (138e): 63% yield, 85% ee	 10) ^b F (138m): 63% yield, 92% ee	 16) 3-F (138s): 76% yield, 92% ee
 3) R = allyl (138f): 68% yield, 85% ee	 11) 4-Me (138n): 86% yield, 94% ee	 17) 2-F (138t): 35% yield, 92% ee
 4) 4-Me (138g): 88% yield, 96% ee	 12) 2-Me (138o): 26% yield, 87% ee	 18) R = Me (138d): 61% yield, 85% ee (63% yield, -75% ee) ^c
 5) 5-Me (138h): 83% yield, 95% ee	 13) 75% yield, 93% ee	 19) R = n-Bu (138u): 72% yield, 91% ee
 6) 6-Me (138i): 80% yield, 89% ee	 14) 88% yield, 92% ee	 20) R = i-Pr (138v): 66% yield, 92% ee
 7) 7-Me (138j): 94% yield, 94% ee		 21) R = t-Bu (138w): 29% yield, 84% ee
 8) 85% yield, 91% ee		 22) 24% yield, 75% ee (7% yield, -80% ee) ^c
		 23) 80% yield, 90% ee

^a Reaction conducted in a glovebox for 2 h on 0.1 or 0.2 mmol scale. Isolated yields are reported. Enantiomeric excess determined by chiral SFC analysis. ^b 1.6 equivs SnCl_4 was employed. ^c Reaction run with (S)-VANOL (166).


For a few cases where low yield and ee was observed, the reactions were also conducted using (S)-VANOL (166) as the catalyst (entries 18 and 22). Unfortunately, the trend observed with 2-phenylindole, wherein higher yield and ee was observed with **166**,

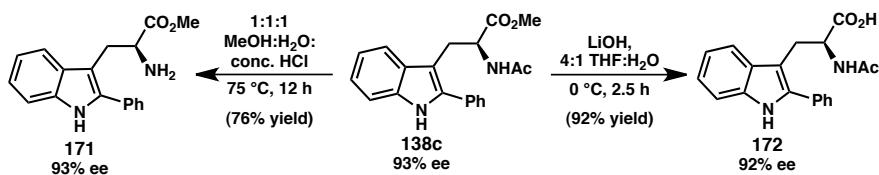
was found to be substrate specific. For example, reaction of 2-cyclopropylindole using **166** as the catalyst gave **138x** in 80% ee, compared to 75% with **102k**; however, the yield was reduced from 24% to 7% using **166** as the catalyst.


Although the tandem conjugate addition/enantioselective protonation reaction is tolerant of diverse functionalization, substitution at C2 of the indole is required to enable a highly enantioselective, efficient transformation. Exposure of indole to the standard reaction conditions results in competitive dimerization, with tryptophan **138z** formed in only 31% yield and 67% ee (Scheme 3.2.3). Unfortunately, low yields are also observed using (*S*)-VANOL (**166**) as the catalyst, although the ee is improved to ~76%. As an alternative approach to C2-unsubstituted tryptophan derivatives, we have investigated the alkylation of 2-(trimethylsilyl)indole (**137x**); however, as experienced with the formal (3 + 2) cycloaddition (Scheme 2.3.1), exposure of **137x** to SnCl_4 on the benchtop resulted in rapid protodesilylation and attempts at this alkylation under strictly anhydrous conditions were unsuccessful.

Scheme 3.2.3. Efforts to access C2-unsubstituted tryptophan derivatives.^a

Direct alkylation of indole (163):

Two-step approach with 2-(trimethylsilyl)indole (137x):

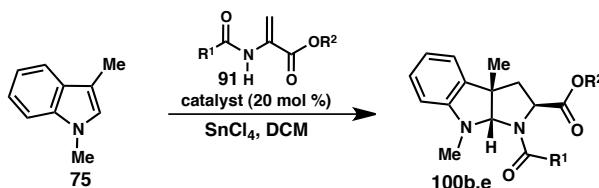


^aReactions conducted in a glovebox on 0.1 or 0.2 mmol scale. Isolated yields are reported. Enantiomeric excess was determined by chiral stationary phase SFC.

3.2.3 Derivatization of Tryptophan Products

Following the development of the tandem conjugate addition/enantioselective protonation reaction, our attention turned to investigating the functionalization of the products. Importantly, both the acetamide and ester functionalities could be selectively hydrolyzed without erosion of ee. Heating of **138c** with methanolic HCl gives primary amine **171**, whereas exposure of **138c** to LiOH cleanly affords carboxylic acid **172** (Scheme 3.2.4). For more information regarding derivatization and the development of an oxidative cyclization reaction of *N*-methyl tryptophan derivative **138e**, refer to Chapter 4.

*Scheme 3.2.4. Selective hydrolysis conditions for acetamide and methyl ester of **138c**.*

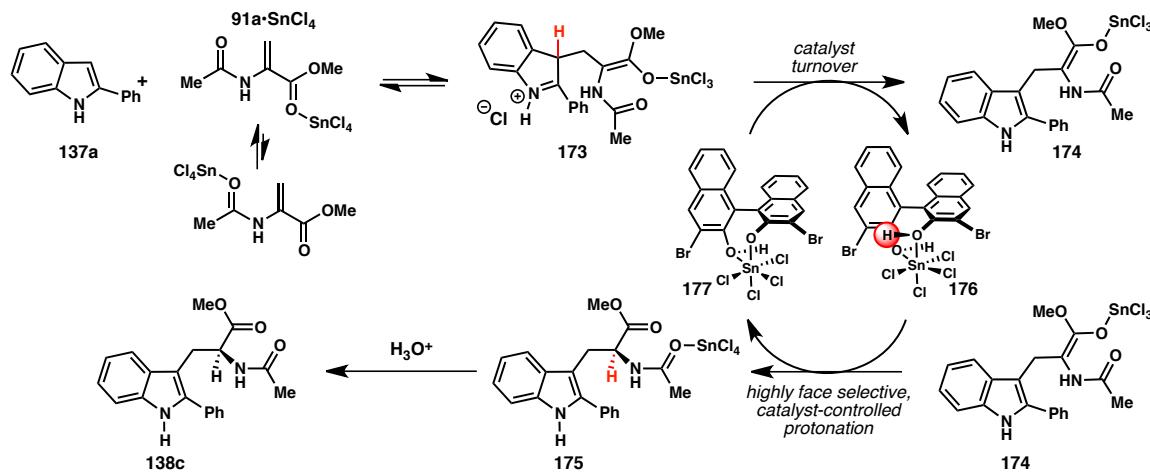


3.2.4 Comparison of New Conditions for Pyrroloindoline Formation

On the basis of mechanistic similarities, we envisioned that the optimal conditions for the tandem conjugate addition/protonation reaction might afford improved yields and selectivities for the formal (3 + 2) cycloaddition reaction. When methyl 2-acetamidoacrylate (**91a**)—the optimal partner for tryptophan synthesis—is employed, 1,3-dimethylindole (**75**) reacts in the presence of (*R*)-BINOL•SnCl₄ to give pyrroloindoline **100b** in 5:1 dr, with the major diastereomer formed in 65% ee (Table 3.2.6, entry 1). Alternatively, exposure of a mixture of **91a** and **75** to (*R*)-3,3'-dibromo-BINOL and 4 Å MS furnished **100b** in an improved 8:1 dr and 87% ee for the *exo* diastereomer, albeit in lower yield (entry 2). We observed a similar trend with the benzyl 2-trifluoroacetamidoacrylate (**91d**)—the optimal partner for pyrroloindoline synthesis. The

reaction of **75** and benzyl 2-trifluoroacetamidoacrylate (**91d**) using (*R*)-3,3'-dibromo-BINOL and 4Å MS gave improved dr and the *exo* diastereomer was formed in an exceptional 98% ee, but the yield was dramatically reduced to only 39% (entry 4). Thus, an appropriate matching of acrylate and catalyst is required to obtain both high yields and selectivities.

Table 3.2.6. Comparison of conditions for pyrroloindoline formation.



Entry	Conditions	R ¹ , R ²	pdt	Yield (%) ^a	dr ^b	ee (%) ^c
1 ^d	102a	Me, Me (91a)	100b	70	5:1	65/80
2 ^e	102k , 4Å MS	Me, Me (91a)	100b	58	8:1	87/85
3 ^d	102a	CF ₃ , Bn (91d)	100e	86	4:1	94/91
4 ^e	102k , 4Å MS	CF ₃ , Bn (91d)	100e	39	7:1	98/92

^a Isolated yield. ^b Determined by ¹H NMR analysis of mixture. ^c Determined by chiral stationary phase SFC. ^d Reaction run with 1.0 equiv acrylate, 1.2 equiv SnCl₄. ^e Reaction run with 1.2 equiv acrylate, 1.0 equiv SnCl₄.

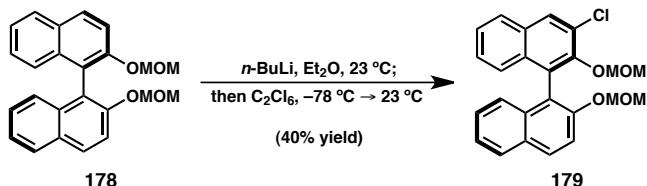
These results are suggestive of subtle mechanistic differences between the tandem conjugate addition/enantioselective protonation reaction and the formal (3 + 2) cycloaddition reaction. For example, in the tryptophan synthesis it is proposed that the stoichiometric proton source required for catalyst turnover derives from C3 of the indole, which is lost during rearomatization (Scheme 3.2.5). In contrast, in the pyrroloindoline formation, the stoichiometric proton is hypothesized to derive from the Lewis acid-coordinated trifluoroacetamide group (Scheme 2.3.2). Unfortunately, deuterium labeling studies aimed at identifying the stoichiometric proton source have been inconclusive, as exposure of deuterated indoles to BINOL•SnCl₄ results in rapid deuterium scrambling (3.4.9).

Scheme 3.2.5. Proposed catalytic cycle for tryptophan synthesis.

3.3 CONCLUDING REMARKS

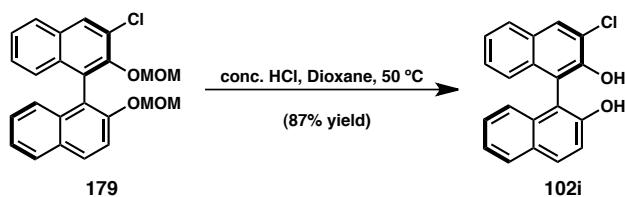
In summary, the first tandem Friedel–Crafts conjugate addition/enantioselective protonation approach to tryptophan derivatives has been developed. This reaction proceeds optimally using SnCl₄•(R)-3,3'-dibromo BINOL as the catalyst and has allowed for the preparation of many C2-substituted tryptophan derivatives in excellent yields and ees. These derivatives have proven amenable to further functionalization, including selective hydrolysis and oxidative cyclization reactions (Chapter 4). In addition to enabling efficient access to tryptophan derivatives, the successful development of this reaction has provided further support for the mechanism of the formal (3 + 2) cycloaddition reaction. However, despite the shared enantiodetermining step for tryptophan and pyrroloindoline syntheses, the contrasting optimal conditions for each is suggestive of subtle differences in their mechanistic pathways. Further research is focused on mechanistic analysis and the application of this asymmetric protonation strategy in the design of new methodologies.

3.4 EXPERIMENTAL SECTION

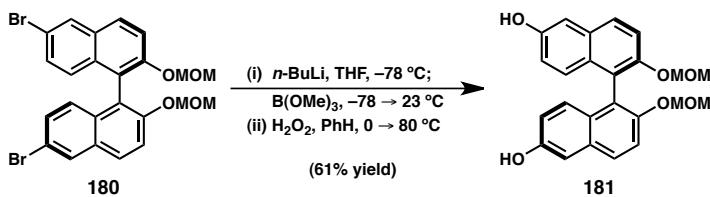

3.4.1 Materials and Methods

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Methylene chloride, deuterated methylene chloride, dioxane, ether, tetrahydrofuran, and toluene were dried by passing through activated alumina. Dichloroethane and chloroform were distilled over calcium hydride. Powdered 4Å molecular sieves were flame-dried under vacuum immediately prior to use. Potassium carbonate was dried for 12 h at 130 °C under vacuum and 2,6-lutidine was distilled over AlCl₃. All other commercially obtained reagents were used as received unless specifically indicated. (R)-BINOL (**102a**), 2-phenylindole (**137a**) and 2-methylindole (**137b**) were purchased from Alfa Aesar, *N*-methyl-2-phenylindole (**137c**) was obtained from Sigma-Aldrich, and 1 M SnCl₄ in DCM was purchased from Acros Organics. (R)-3,3'-diphenyl-BINOL (**102g**),¹² (R)-3,3'-dimethyl-BINOL (**102h**),¹³ (R)-3,3'-dichloro-BINOL (**102j**),¹⁴ (R)-3,3'-dibromo-BINOL (**102k**),¹⁵ (R)-3,3'-dimethoxy-BINOL (**102l**),¹⁵ (R)-6,6'-dimethyl-BINOL (**102n**),¹⁶ (R)-6,6'-dibromo-BINOL (**102f**),¹⁷ (R)-2'-methoxy-[1,1'-binaphthalen]-2-ol (**102b**),¹⁸ (R)-2'-isopropoxy-[1,1'-binaphthalen]-2-ol (**102u**),¹⁹ (R)-3,3'-difluoro-BINOL (**102o**),²⁰ (R)-3-phenyl-BINOL (**102p**),²¹ (R)-5,5',6,6',7,7',8,8'-octahydro-BINOL (**168**)²², (R)-2'-benzoyl-[1,1'-binaphthalen]-2-ol (**102v**),²³ (R)-3-bromo-BINOL (**102q**) and (R)-3-iodo-BINOL (**102r**),²⁴ TADDOL (**103**),²⁵ Napthyl-TADDOL (**169**),²⁶ and 2-(trimethylsilyl)indole (**137x**),²⁷ were prepared according to literature procedures. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm). Silica gel column

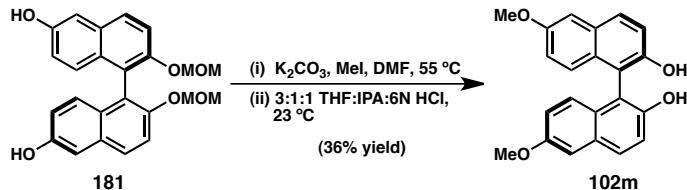
chromatography was performed either as described by Still et al. (W. C. Still, M. Kahn, A. Mitra, *J. Org. Chem.* **1978**, *43*, 2923.) using silica gel (particle size 0.032-0.063) purchased from Silicycle or using pre-packaged RediSep®Rf columns on a CombiSilica gel Rf system (Teledyne ISCO Inc.). ^1H and ^{13}C NMR were recorded on a Varian Inova 500 (at 500 MHz and 125 MHz respectively) or a Varian Inova 600 (at 600 MHz and 150 MHz respectively, and are reported relative to internal chloroform (^1H , δ = 7.26, ^{13}C , δ = 77.0) or internal acetonitrile (^1H , δ = 1.94, ^{13}C , δ = 1.32). Data for ^1H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm^{-1}). Analytical SFC was performed with a Mettler SFC supercritical CO_2 analytical chromatography system with Chiralcel AD-H, OD-H, AS-H, and OB-H columns (4.6 mm x 25 cm). Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. HRMS were acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) or mixed (MM) ionization mode.


3.4.2 *Catalyst and Substrate Preparation*

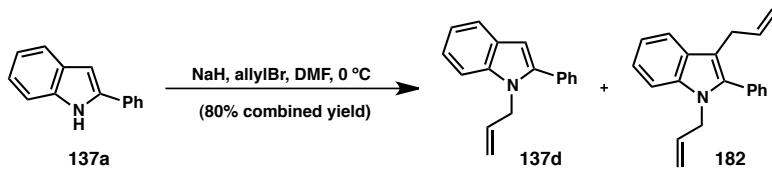
Preparation of (*R*)-3-chloro-BINOL (102i)


To a flame-dried 100 mL flask containing MOM-protected (*R*)-BINOL **178**¹³ (748 mg, 2.00 mmol, 1.00 equiv) was added Et₂O (45 mL), followed by dropwise addition of *n*-BuLi as a solution in hexanes (2.5 M, 960 μ L, 2.40 mmol, 1.20 equiv) at room temperature. The mixture was then stirred at room temperature for 3 h and subsequently cooled to -78 °C, followed by addition of C₂Cl₆ (569 mg, 2.40 mmol, 1.20 equiv) in one portion. The reaction mixture was allowed to warm to room temperature over 3 h, then diluted with EtOAc (15 mL) and washed with saturated aqueous NH₄Cl (50 mL). The aqueous layer was extracted with EtOAc (45 mL) and the combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude yellow oil was purified by silica gel chromatography (0:100 to 12:88 EtOAc:hexanes) to yield 328 mg (40% yield) of **179** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.97 (d, *J* = 9.0 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.59 (d, *J* = 9.1 Hz, 1H), 7.42 (ddd, *J* = 8.1, 6.7, 1.3 Hz, 1H), 7.37 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.28 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.24 (ddd, *J* = 8.5, 6.7, 1.3 Hz, 1H), 7.18 (dddd, *J* = 8.6, 1.3, 0.7, 0.7 Hz, 1H), 7.16 (ddd, *J* = 8.5, 1.8, 0.8 Hz, 1H), 5.15 (d, *J* = 7.0 Hz, 1H), 5.04 (d, *J* = 7.0 Hz, 1H), 4.80 (d, *J* = 5.6 Hz, 1H), 4.75 (d, *J* = 5.6 Hz, 1H), 3.19 (s, 3H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 148.9, 133.8, 132.6, 131.1, 130.0, 129.5, 128.8, 128.0, 127.9, 127.8, 127.0, 126.7, 126.4, 126.1, 125.8, 125.5, 124.2, 119.9, 116.3, 98.8, 94.9, 56.5, 55.9; IR (NaCl/thin film): 2955, 2902, 1594, 1508, 1354, 1241, 1159, 1149, 1034, 1014, 961, 922

cm⁻¹; $[\alpha]_D^{25} = +69.1^\circ$ ($c = 0.90$, CHCl₃). HRMS (FAB+) calc'd for M⁺ 408.1128, found 408.1128.

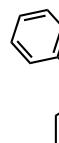

A 10 mL flask was charged with **179** (305 mg, 0.75 mmol, 1.00 equiv), dioxane (3.7 mL) and aqueous HCl (12 M, 130 μ L, 1.58 mmol, 2.10 equiv), then heated to 50 °C for 2 h. The mixture was cooled to room temperature, then diluted with H₂O (30 mL) and extracted with EtOAc (6 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by silica gel chromatography (0:100 to 20:80 EtOAc:hexanes) to yield 210 mg (87% yield) of (*R*)-3-chloro-BINOL (**102i**) as a white foam, which was dried over P₂O₅ under vacuum. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.97 (d, *J* = 8.9 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.34 – 7.28 (m, 2H), 7.16 (d, *J* = 8.5 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 5.60 (s, 1H), 4.94 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 152.1, 148.3, 133.1, 132.4, 131.3, 129.7, 129.32, 129.26, 128.4, 127.7, 127.5, 127.3, 125.1, 124.6, 124.1, 123.9, 122.4, 117.7, 113.6, 111.7; IR (NaCl/thin film): 3503, 3057, 1620, 1596, 1502, 1451, 1379, 1265, 1212, 1184, 1146, 828 cm⁻¹; $[\alpha]_D^{25} = +55.4^\circ$ (*c* = 1.01, CHCl₃). HRMS (MM) calc'd for [M-H]⁻ 319.0531, found 319.0549.

Preparation of (*R*)-6,6'-dimethoxy-BINOL (**102m**)

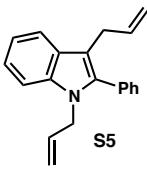

(*R*)-6,6'-dimethoxy-BINOL (**102m**) was prepared following a procedure adapted from a reported synthesis of (*R*)-3,3'-dimethoxy-BINOL (**102l**).¹⁵ To a 25 mL flask containing MOM-protected (*R*)-6,6'-dibromo-BINOL **180**¹⁷ (1.10 g, 2.07 mmol, 1.00 equiv) was added THF (6.3 mL). The flask was cooled to -78 °C, followed by dropwise addition of *n*-BuLi as a solution in hexanes (2.5 M, 2.50 mL, 6.20 mmol, 3.00 equiv). After stirring 1 hour at -78 °C, B(OMe)₃ (645 mg, 6.20 mmol, 3.00 equiv) was added and the reaction was allowed to warm to room temperature. After 14 hours, the reaction mixture was concentrated to give the crude borate intermediate, which was suspended in benzene (7.2 mL) and cooled to 0 °C, followed by dropwise addition of aqueous hydrogen peroxide (30 wt %, 0.61 mL, 5.98 mmol, 2.89 equiv). The suspension was heated to reflux for 4 hours, then cooled to room temperature, poured into ice-cold saturated aqueous NaSO₃ (20 mL), and extracted with EtOAc (3 x 15 mL). The combined organics were washed with brine (30 mL), dried (Na₂SO₄), filtered, and concentrated. The crude residue was purified by silica gel chromatography (0:100 to 50:50 EtOAc:hexanes) to yield 512 mg (61% yield) of **181** as a light yellow foam. ¹H NMR (500 MHz, CD₃CN) δ 7.80 (ddd, *J* = 9.1, 0.8, 0.4 Hz, 2H), 7.51 (d, *J* = 9.1 Hz, 2H), 7.20 (ddd, *J* = 2.5, 0.5, 0.5 Hz, 2H), 7.09 (br s, 2H), 6.93 (ddd, *J* = 9.1, 0.7, 0.7 Hz, 2H), 6.87 (dd, *J* = 9.1, 2.5 Hz, 2H), 5.02 (d, *J* = 6.7 Hz, 2H), 4.94 (d, *J* = 6.7 Hz, 2H), 3.11 (s, 6H); ¹³C NMR (125 MHz, CD₃CN) δ 154.4, 151.6, 132.1, 129.6, 128.4, 127.8, 122.1,

119.6, 118.7, 110.1, 96.0, 56.1; IR (NaCl/thin film): 3368, 2914, 1624, 1599, 1511, 1240, 1196, 1148, 1023 cm^{-1} ; $[\alpha]_D^{25} = +87.1^\circ$ ($c = 1.00$, MeCN). HRMS (MM) calc'd for $[\text{M}-\text{H}]^-$ 405.1344, found 405.1350.

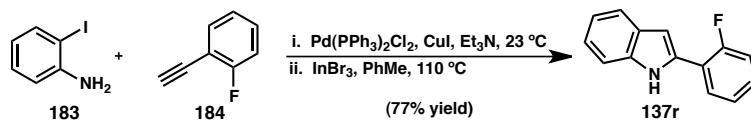
A 15 mL flask was charged with **181** (200 mg, 0.493 mmol, 1.00 equiv) and K_2CO_3 (177 mg, 1.28 mmol, 2.60 equiv). DMF (2 mL) was added, followed by MeI (123 μL , 1.97 mmol, 4.00 equiv) dropwise. The reaction was then heated to 55 $^\circ\text{C}$ for 22 hours, then cooled to room temperature and quenched with saturated aqueous NH_4Cl (2 mL) and Et_3N (3 drops). The mixture was stirred at room temperature for 6 hours, then diluted with H_2O (15 mL) and extracted with EtOAc (3 x 10 mL). The combined organics were washed with brine (15 mL), dried (Na_2SO_4), and concentrated. THF (28 mL) and IPA (9.5 mL) were added to the crude residue, followed by dropwise addition of aqueous HCl (6.0 M, 9.4 mL). The reaction was stirred at room temperature for 3 hours, then diluted with H_2O (70 mL) and extracted with EtOAc (3 x 30 mL). The combined organics were washed with saturated aqueous NaHCO_3 (2 x 45 mL) and brine (45 mL), then dried (Na_2SO_4), filtered, and concentrated. The crude oil was purified by silica gel chromatography (0:100 to 30:70 EtOAc:hexanes) to yield 62 mg (36% yield) of (R)-6,6'-dimethoxy-BINOL (**102m**) as a light brown solid, which was dried over P_2O_5 under high vacuum. Spectral data are in agreement with the literature.²⁸


Preparation of 1-allyl-2-phenylindole (137d)

To a 50 mL flask was added NaH (620 mg, 15.5 mmol, 3.00 equiv) and DMF (8 mL) and the suspension was cooled to 0 °C in an ice bath. A solution of 2-phenylindole **137a** (1.00 g, 5.18 mmol, 1.00 equiv) in DMF (3 mL) was added slowly to the suspension over 15 minutes and the reaction mixture was further stirred at 0 °C for 20 minutes, followed by dropwise addition of allyl bromide (670 µL, 7.77 mmol, 1.50 equiv). The ice bath was then removed and the mixture was stirred for 15 minutes, then quenched by addition of saturated aqueous NH₄Cl (5 mL) and Et₃N (5 drops). After 2 hours, the reaction was diluted with H₂O (40 mL) and extracted with EtOAc (3 x 30 mL). The combined organics were washed with brine (120 mL), dried (Na₂SO₄), filtered, and concentrated. The crude was then purified by reverse phase preparatory HPLC (55:45 to 95:5 MeCN:H₂O) using an Agilent 1200 Series HPLC with an Agilent XDB-C18 5 µM column (9.4 x 250 mm and 21.2 x 150 mm) to yield 687 mg (57% yield) of 1-allyl-2-phenylindole (**137d**) as a yellow solid and 331 mg (23% yield) of 1,3-diallyl-2-phenylindole (**182**) as a yellow oil.

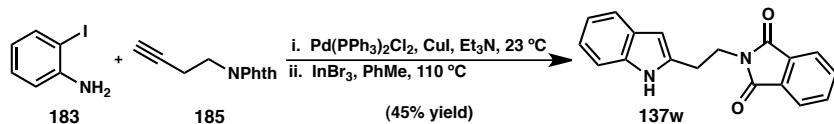

1-allyl-2-phenylindole (137d):

¹H NMR (500 MHz, CDCl₃) δ 7.65 (ddd, *J* = 7.8, 1.2, 0.8 Hz, 1H), 7.55 (m, 2H), 7.51 (m, 2H), 7.48 – 7.43 (m, 2H), 7.42 – 7.38 (m, 1H), 7.33 (br d, *J* = 8.2 Hz, 1H), 7.22 (ddd, *J* = 7.0, 7.0, 1.3 Hz, 1H), 7.15 (ddd, *J* = 7.0, 7.0, 1.0 Hz, 1H), 6.60 (br s, 1H), 6.02 (ddt, *J* = 17.2, 10.5, 4.4 Hz, 1H), 5.22 (dtd, *J* = 10.5, 1.8, 1.1 Hz, 1H).



Hz, 1H), 5.00 (dtd, $J = 17.1, 2.0, 1.2$ Hz, 1H), 4.74 (dt, $J = 4.2, 1.9$ Hz, 2H); ^{13}C NMR (125 MHz, CDCl_3) δ 141.5, 137.8, 133.8, 132.7, 129.1, 128.5, 128.1, 128.0, 121.7, 120.5, 120.0, 116.5, 110.3, 102.0, 46.5; IR (NaCl/thin film): 3055, 2917, 1602, 1462, 1443, 1392, 1345, 1317, 1162 cm^{-1} ; HRMS (APCI) calc'd for $[\text{M}+\text{H}]^+ = 234.1277$, found 234.1284.

1,3-diallyl-2-phenylindole (182):


 ^1H NMR (500 MHz, CDCl_3) δ 7.65 (ddd, $J = 7.8, 1.2, 0.7$ Hz, 1H), 7.50 – 7.40 (m, 5H), 7.33 (ddd, $J = 8.1, 0.9, 0.9$ Hz, 1H), 7.24 (ddd, $J = 7.0, 7.0, 1.2$ Hz, 1H), 7.16 (ddd, $J = 7.0, 7.0, 1.1$ Hz, 1H), 6.05 (ddt, $J = 17.0, 10.1, 5.9$ Hz, 1H), 5.91 (ddt, $J = 17.1, 10.4, 4.7$ Hz, 1H), 5.14 (dtd, $J = 10.4, 1.8, 1.2$ Hz, 1H), 5.08 – 5.02 (m, 2H), 4.92 (dtd, $J = 17.1, 1.9, 1.3$ Hz, 1H), 4.62 (dt, $J = 4.6, 1.9$ Hz, 2H), 3.46 (dt, $J = 6.0, 1.7$ Hz, 2H); ^{13}C NMR (125 MHz, CDCl_3) δ 138.0, 137.9, 136.7, 133.9, 131.8, 130.4, 128.3, 128.2, 128.1, 128.0, 121.7, 119.34, 119.30, 116.2, 114.6, 110.9, 110.1, 46.4, 29.2; IR (NaCl/thin film): 3056, 2915, 1637, 1463, 1443, 1408, 1360, 1340, 1191 cm^{-1} ; HRMS (MM) calc'd for $[\text{M}+\text{H}]^+ = 274.1590$, found 274.1591.

Preparation of 2-(2-fluorophenyl)indole (137r)

2-(2-fluorophenyl)indole (**137r**) was prepared by an analogous procedure to that reported by Sakai et al.²⁹ A flame-dried flask was charged with 2-iodoaniline (**183**, 200 mg, 0.90 mmol, 1.00 equiv), ethynyl-2-fluorobenzene (**184**, 133 mg, 1.10 mmol, 1.20 equiv), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (13 mg, 0.02 mmol, 0.02 equiv), copper (I) iodide (2.0 mg, 0.025 mmol, 0.01 equiv) and Et_3N (4 mL). The mixture was stirred overnight at room temperature, then filtered through a plug of silica, concentrated and redissolved in PhMe (5 mL). InBr_3 (16 mg, 0.05 mmol, 0.05 equiv) was added in one portion and the mixture was heated to 110 °C for 5 h, then cooled to room temperature, filtered through celite, and concentrated. The crude residue was purified by silica gel chromatography (10:90 $\text{EtOAc}:\text{hexanes}$) to yield 148 mg (77% yield) of 2-(2-fluorophenyl)indole (**137r**) as a white solid. ^1H NMR (500 MHz, CDCl_3) δ 8.89 (br s, 1H), 7.80 (ddd, $J = 7.8, 7.8, 1.8$ Hz, 1H), 7.66 (dddd, $J = 2.5, 1.3, 0.8, 0.8$ Hz, 1H), 7.43 (ddd, $J = 8.1, 1.5, 0.8$ Hz, 1H), 7.32 – 7.26 (m, 1H), 7.26 – 7.16 (m, 3H), 7.14 (ddd, $J = 8.0, 7.0, 1.0$ Hz, 1H), 6.97 (d, $J = 1.9$ Hz, 1H); ^{13}C NMR (125 MHz, CDCl_3) δ 159.3 (d, $J_{\text{C-F}} = 246.4$ Hz), 134.6 (d, $J_{\text{C-F}} = 501.8$ Hz), 128.8 (d, $J_{\text{C-F}} = 8.8$ Hz), 128.1, 128.0 (d, $J_{\text{C-F}} = 4.1$ Hz), 124.8 (d, $J_{\text{C-F}} = 3.2$ Hz), 122.7, 120.6, 120.2, 119.9 (d, $J_{\text{C-F}} = 11.0$ Hz), 116.6, 116.4, 111.0, 101.6 (d, $J_{\text{C-F}} = 3.0$ Hz); IR (NaCl/thin film): 3469, 3042, 2918, 2848, 1577, 1472, 1460, 1212, 1178, 1109, 928 cm^{-1} ; HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 212.0870, found 212.0869.

Preparation of 2-(ethylphthalimide)indole (137w)

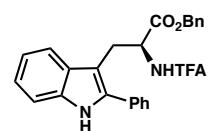
2-(ethylphthalimide)indole (137w) was prepared by an analogous procedure to that reported by Sakai et al.²⁹ A flame-dried flask was charged with 2-iodoaniline (**183**, 500 mg, 2.30 mmol, 1.00 equiv), 2-(but-3-yn-1-yl)isoindoline-1,3-dione (**185**, 550 mg, 2.75 mmol, 1.20 equiv), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (32 mg, 0.05 mmol, 0.02 equiv), copper (I) iodide (4.5 mg, 0.025 mmol, 0.01 equiv) and Et_3N (8 mL). The mixture was stirred overnight at room temperature, then filtered through a plug of silica, concentrated and redissolved in PhMe (10 mL). InBr_3 (40 mg, 0.1 mmol, 0.05 equiv) was added in one portion and the mixture was heated to 110 °C for 5 h, then cooled to room temperature, filtered through celite and concentrated. The crude residue was purified by silica gel chromatography (60:40 EtOAc:hexanes) to yield 302 mg (45% yield) of **2-(ethylphthalimide)indole (137w)** as a light yellow solid. ^1H NMR (500 MHz, CDCl_3) δ 8.26 (br s, 1H), 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.71 (dd, J = 5.5, 3.1 Hz, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.13 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.06 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.33 (d, J = 1.2 Hz, 1H), 4.06 (t, J = 7.5 Hz, 2H), 3.21 (t, J = 7.4 Hz, 2H); ^{13}C NMR (125 MHz, CDCl_3) δ 168.3, 136.1, 134.9, 134.1, 131.9, 128.6, 123.4, 121.4, 120.0, 119.7, 110.6, 101.1, 37.1, 27.4.; IR (NaCl/thin film): 3366, 1772, 1707, 1653, 1617, 1466, 1395, 1363, 1293 cm^{-1} ; HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 291.1128, found 291.1138.

3.4.3 Optimization of Reaction Parameters

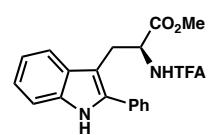
3.4.3.1 General Procedure 1

An oven-dried vial was charged with 2-phenylindole (**137a**, 0.20 mmol, 1.00 equiv), the acrylate (0.24 mmol, 1.20 equiv) and an (*R*)-BINOL derivative and pumped into a glove box. The vial was charged with solvent to an indole concentration of 0.12 M, and SnCl_4 (1.00 equiv, as a 1.0 M solution in DCM) was added. The reaction was stirred at 20 °C for 2 hours, after which time it was removed from the glove box and quenched by dilution with 1 M HCl (5 mL) and MeCN (1 mL). The aqueous layer was extracted with EtOAc (2 x 5 mL) and the combined organic layers were washed with saturated aqueous NaHCO_3 (5 mL), dried (Na_2SO_4), filtered, and concentrated. The crude residue was purified by silica gel chromatography.

Additive screens. Reactions were performed following General Procedure 1 using 0.20 equiv (*R*)-BINOL. After the vial was pumped into the glove box, one of the following additives was added:


- flame-dried powdered 4 Å molecular sieves (200 wt % relative to indole)
- K_2CO_3 (1.00 equiv)
- 2,6-lutidine (1.00 equiv)

Upon addition of the additive, DCM was added to an indole concentration of 0.12 M and the reaction was further conducted as described above.


Catalyst screens. Reactions were performed following General Procedure 1 using flame-dried powdered 4 Å molecular sieves (200 wt % relative to indole) as an additive and DCM as a solvent.

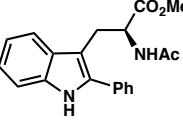
3.4.3.2 Characterization Data

(S)-N_α-Trifluoroacetyl-2-phenyltryptophan benzyl ester (138a)

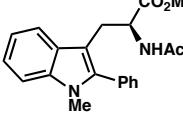
Prepared from benzyl 2-trifluoroacetamidoacrylate³⁰ (**91d**, 65.5 mg, 0.24 mmol) following General Procedure 1. The crude residue was purified by silica gel chromatography (30:70 to 70:30 DCM:hexanes) to yield 11.1 mg (12% yield) of **138a** as a yellow solid. The enantiomeric excess was determined to be 35% by chiral SFC analysis (OB-H, 2.5 mL/min, 15% IPA in CO₂, λ = 254 nm): t_R (major) = 11.0 min, t_R (minor) = 12.9 min. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (br s, 1H), 7.57 (ddd, J = 7.9, 1.8, 0.7 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.50 – 7.45 (m, 2H), 7.42 – 7.36 (m, 2H), 7.34 – 7.29 (m, 3H), 7.24 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.16 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 7.11 – 7.07 (m, 2H), 6.67 (br d, J = 7.6 Hz, 1H), 4.95 (d, J = 12.2 Hz, 1H), 4.88 (dt, J = 7.8, 6.0 Hz, 1H), 4.53 (d, J = 12.2 Hz, 1H), 3.65 – 3.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 156.6 (q, J_{C-F} = 37.8 Hz), 136.3, 135.6, 134.6, 132.4, 129.2, 128.9, 128.5, 128.44, 128.38, 128.2, 128.1, 122.8, 120.3, 118.6, 115.3 (q, J_{C-F} = 287.9 Hz), 111.0, 105.6, 67.5, 53.3, 26.7; IR (NaCl/thin film): 3391, 3061, 2924, 1714, 1542, 1457, 1210, 1173 cm⁻¹; $[\alpha]_D^{25}$ = +3.5° (c = 0.44, CHCl₃). HRMS (MM) calc'd for [M+H]⁺ 467.1577, found 467.1580.

(S)-N_a-Trifluoroacetyl-2-phenyltryptophan methyl ester (138b)

Prepared from methyl 2-trifluoroacetamidoacrylate³¹ (**91b**, 47.3 mg, 0.24 mmol) following General Procedure 1. The crude residue was purified by silica gel chromatography (0:100 to 5:95 EtOAc:toluene, then 0:100 to 20:80 EtOAc:hexanes) to yield 9.0 mg (12% yield) of **138b** as a yellow solid. The enantiomeric excess was determined to be 42% by chiral SFC analysis (AS-H, 2.5 mL/min, 10% IPA in CO₂, λ = 254 nm): t_R (major) = 8.7 min, t_R (minor) = 7.7 min. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (br s, 1H), 7.58 – 7.52 (m, 3H), 7.52 – 7.47 (m, 2H), 7.43 – 7.39 (m, 1H), 7.38 (ddd, J = 8.1, 0.9, 0.9 Hz, 1H), 7.23 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.16 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.65 (br d, J = 7.3 Hz, 1H), 4.83 (dt, J = 7.8, 5.6 Hz, 1H), 3.66 – 3.56 (m, 2H), 3.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 156.6 (q, J_{C-F} = 37.7 Hz), 136.3, 135.6, 132.5, 129.2, 129.0, 128.4, 128.2, 122.8, 120.3, 118.5, 115.3 (q, J_{C-F} = 287.7 Hz), 111.0, 105.5, 53.2, 52.5, 26.4; IR (NaCl/thin film): 3391, 3057, 2917, 2849, 1718, 1542, 1458, 1449, 1211, 1170 cm⁻¹; $[\alpha]_D^{25}$ = +22.3° (c = 0.39, CHCl₃). HRMS (MM) calc'd for [M+H]⁺ 391.1264, found 391.1267.

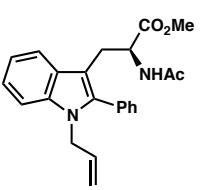

3.4.4 Optimized Conjugate Addition/Asymmetric Protonation**3.4.4.1 General Procedure 2**

An oven-dried vial was charged with the indole (1.00 equiv), methyl 2-acetamidoacrylate (**91a**, 1.20 equiv)³² and (*R*)-3,3'-dibromo-BINOL (**102k**, 0.20 equiv) and pumped into a glove box. To the vial was added flame-dried powdered 4Å molecular sieves (200 wt % relative to indole). The vial was charged with DCM to an indole concentration of 0.12 M, and SnCl₄ (1.00 equiv unless specifically indicated, as a 1 M solution in DCM) was added. The reaction was stirred at 20 °C for 2 hours, after which


time it was removed from the glove box and quenched by dilution with 1 M HCl (5 mL) and MeCN (1 mL). The aqueous layer was extracted with EtOAc (2 x 5 mL) and the combined organic layers were washed with saturated aqueous NaHCO₃ (5 mL), dried (Na₂SO₄), filtered, and concentrated. The crude residue was purified by silica gel chromatography.

3.4.4.2 Characterization Data

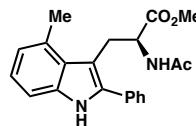
(S)-N_α-Acetyl-2-phenyltryptophan methyl ester (138c)


 Prepared from 2-phenylindole (**137a**, 19.0 mg, 0.10 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 25.6 mg (76% yield) of **138c** as a white foam. The enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO₂, λ = 254 nm). t_R (major) = 5.7 min, t_R (minor) = 6.9 min. $[\alpha]_D^{25} = +37.7^\circ$ (c = 0.94, CHCl₃). Spectral data matches that reported in the literature.³³

(S)-N_α-Acetyl-1-methyl-2-phenyltryptophan methyl ester (138e)

 Prepared from 1-methyl-2-phenylindole (**137c**, 41.4 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (0:100 to 55:45 EtOAc:hexanes) to yield 43.4 mg (63% yield) of **138e** as a yellow solid. The enantiomeric excess was determined to be 85% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO₂, λ = 254 nm): t_R (major) = 4.6 min, t_R (minor) = 3.9 min. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (ddd, J = 7.9, 1.2, 0.7 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.48 – 7.44 (m, 1H), 7.42 – 7.38 (m, 2H), 7.34 (ddd, J = 8.2, 0.9, 0.9

Hz, 1H), 7.26 (ddd, $J = 8.2, 7.0, 1.2$ Hz, 1H), 7.17 (ddd, $J = 8.0, 7.0, 1.1$ Hz, 1H), 5.72 (br d, $J = 7.8$ Hz, 1H), 4.74 (dt, $J = 8.0, 5.6$ Hz, 1H), 3.57 (s, 3H), 3.39 (s, 3H), 3.41 (dd, $J = 14.7, 5.7$ Hz, 1H), 3.34 (dd, $J = 14.8, 5.6$ Hz, 1H), 1.73 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.2, 169.5, 139.2, 136.9, 131.6, 130.7, 128.7, 128.4, 127.9, 122.0, 119.7, 118.7, 109.5, 106.7, 52.8, 52.0, 30.8, 26.6, 23.0.; IR (NaCl/thin film): 3288, 3055, 2950, 1743, 1657, 1539, 1469, 1441, 1368, 1238, 1212 cm^{-1} ; $[\alpha]_D^{25} = +21.3^\circ$ ($c = 0.91$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 351.1703, found 351.1708.

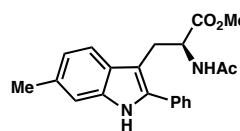

(S)- N_{α} -Acetyl-1-allyl-2-phenyltryptophan methyl ester (138f)

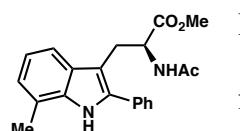
Prepared from 1-allyl-2-phenylindole (**137d**, 46.6 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (0:100 to 55:45 EtOAc:hexanes) to yield 51.3 mg (68% yield) of **138f** as a yellow foam. The enantiomeric excess was determined to be 85% by chiral SFC analysis (AS-H, 2.5 mL/min, 30% IPA in CO_2 , $\lambda = 254$ nm): t_R (major) = 2.9 min, t_R (minor) = 2.4 min. ^1H NMR (500 MHz, CDCl_3) δ 7.62 (ddd, $J = 7.8, 1.0, 1.0$ Hz, 1H), 7.53 – 7.47 (m, 2H), 7.47 – 7.42 (m, 1H), 7.42 – 7.37 (m, 2H), 7.30 (ddd, $J = 8.1, 0.9, 0.9$ Hz, 1H), 7.23 (ddd, $J = 8.2, 7.0, 1.2$ Hz, 1H), 7.17 (ddd, $J = 8.0, 7.0, 1.1$ Hz, 1H), 5.85 (ddt, $J = 17.1, 10.3, 4.7$ Hz, 1H), 5.76 (br d, $J = 7.9$ Hz, 1H), 5.11 (dtd, $J = 10.4, 1.7, 1.2$ Hz, 1H), 4.82 (dtd, $J = 17.1, 1.9, 1.3$ Hz, 1H), 4.76 (dt, $J = 8.0, 5.8$ Hz, 1H), 4.56 (dt, $J = 4.7, 1.8$ Hz, 2H), 3.39 (s, 3H), 3.36 (dd, $J = 14.7, 5.7$ Hz, 1H), 3.29 (dd, $J = 14.7, 5.9$ Hz, 1H), 1.75 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.2, 169.5, 139.0, 136.3, 133.5, 131.5, 130.5, 128.7, 128.5, 128.1, 122.0, 119.8, 118.8, 116.3, 110.2, 107.2, 52.8, 52.0, 46.3, 26.8, 23.0; IR (NaCl/thin film): 3435, 3287, 3056, 2950, 2926,


2851, 1744, 1658, 1538, 1500, 1408, 1367, 1219, 1196, 1134; $[\alpha]_D^{25} = +13.8^\circ$ ($c = 2.96$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 377.1860, found 377.1865.

(S)- N_α -Acetyl-4-methyl-2-phenyltryptophan methyl ester (138g)

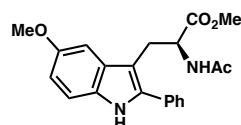
Prepared from 4-methyl-2-phenylindole³⁴ (**137e**, 21.0 mg, 0.10 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 30.8 mg (88% yield) of **138g** as a white foam. The enantiomeric excess was determined to be 96% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO_2 , $\lambda = 254$ nm): t_R (major) = 9.9 min, t_R (minor) = 8.9 min. ^1H NMR (500 MHz, CDCl_3) δ 8.32 (br s, 1H), 7.55 – 7.45 (m, 4H), 7.44 – 7.37 (m, 1H), 7.19 (d, $J = 8.0$ Hz, 1H), 7.08 (m, 1H), 6.91 (m, 1H), 5.44 (br d, $J = 7.6$ Hz, 1H), 4.63 (td, $J = 8.2, 5.0$ Hz, 1H), 3.69 – 3.45 (m, 2H), 3.44 (s, 3H), 2.78 (s, 3H), 1.64 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.3, 169.7, 136.3, 136.1, 133.1, 130.5, 129.2, 128.9, 128.3, 126.9, 122.5, 122.3, 109.0, 107.6, 54.2, 52.1, 27.6, 22.8, 20.5; IR (NaCl/thin film): 3295, 3052, 2952, 1741, 1659, 1602, 1547, 1514, 1492, 1449, 1372, 1218; $[\alpha]_D^{25} = -29.0^\circ$ ($c = 0.63$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 351.1703, found 351.1698.


(S)- N_α -Acetyl-5-methyl-2-phenyltryptophan methyl ester (138h)


Prepared from 5-methyl-2-phenylindole²⁹ (**137f**, 42.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 58.0 mg (83% yield) of **138h** as a white foam. The enantiomeric excess was determined to be 95% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , $\lambda = 254$ nm): t_R (major) =

4.9 min, t_{R} (minor) = 6.4 min. ^1H NMR (500 MHz, CDCl_3) δ 8.12 (br s, 1H), 7.54 (ddd, J = 10.1, 6.1, 4.2 Hz, 2H), 7.50 – 7.43 (m, 2H), 7.40 – 7.33 (m, 2H), 7.24 (d, J = 8.3 Hz, 1H), 7.06 – 7.00 (m, 1H), 5.78 (br d, J = 8.1 Hz, 1H), 4.83 (dt, J = 8.1, 5.4 Hz, 1H), 3.53 – 3.51 (m, 2H), 3.31 (s, 3H), 2.46 (s, 3H), 1.66 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.1, 169.5, 136.1, 134.0, 133.3, 129.7, 129.2, 129.1, 128.2, 128.0, 124.1, 118.6, 110.6, 106.3, 52.7, 51.2, 26.5, 22.8, 21.5; IR (NaCl/thin film): 3379, 3365, 2948, 1737, 1658, 1439, 1372, 1306, 1217 cm^{-1} ; $[\alpha]_{\text{D}}^{25} = +33.8^\circ$ ($c = 0.26$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 351.1703, found 351.1680.

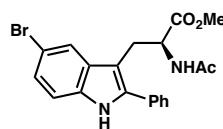
(S)-N_α-Acetyl-6-methyl-2-phenyltryptophan methyl ester (138i)



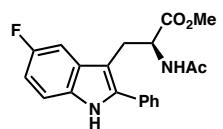
 Prepared from 6-methyl-2-phenylindole³⁴ (**137g**, 21.0 mg, 0.10 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 27.9 mg (80% yield) of **138i** as a colorless oil. The enantiomeric excess was determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO₂, λ = 254 nm): t_R (major) = 9.1 min, t_R (minor) = 10.1 min. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (br s, 1H), 7.55 (ddd, J = 5.8, 4.0, 2.1 Hz, 2H), 7.48 – 7.44 (m, 3H), 7.39 – 7.33 (m, 1H), 7.14 (s, 1H), 6.97 (dd, J = 8.3, 1.5 Hz, 1H), 5.78 (br d, J = 7.8 Hz, 1H), 4.83 (dt, J = 8.0, 5.4 Hz, 1H), 3.55 – 3.49 (m, 2H), 3.30 (s, 3H), 2.47 (s, 3H), 1.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) 172.1, 169.6, 136.1, 135.2, 133.3, 132.4, 129.1, 128.2, 127.9, 127.3, 121.8, 118.5, 110.9, 106.5, 52.7, 52.0, 26.6, 22.9, 21.7; IR (NaCl/thin film): 3292, 3052, 2958, 2908, 1741, 1658, 1545, 1530, 1511, 1446, 1375, 1216; $[\alpha]_D^{25}$ = +39.3° (c = 0.38, CHCl₃). HRMS (MM) calc'd for [M+H]⁺ 351.1703, found 351.1698.

(S)-N_α-Acetyl-7-methyl-2-phenyltryptophan methyl ester (138j)

 Prepared from 7-methyl-2-phenylindole³⁴ (**137h**, 21.0 mg, 0.10 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 33.0 mg (94% yield) of **138j** as a white foam. The enantiomeric excess was determined to be 94% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO₂, λ = 254 nm): t_R (major) = 5.6 min, t_R (minor) = 5.0 min. ¹H NMR (500 MHz, CDCl₃) δ 8.23 (br s, 1H), 7.61 – 7.54 (m, 2H), 7.51 – 7.45 (m, 2H), 7.42 (d, J = 8.1 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.11 – 7.04 (m, 1H),


7.03 – 6.97 (m, 1H), 5.79 (br d, J = 8.1 Hz, 1H), 4.82 (dt, J = 8.1, 5.7 Hz, 1H), 2.55 (dd, J = 12.5, 3.1 Hz, 1H), 3.51 (dd, J = 12.5, 3.1 Hz, 1H), 3.30 (s, 3H), 2.50 (s, 3H), 1.65 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.1, 169.6, 135.8, 135.3, 133.3, 129.1, 128.9, 128.4, 128.0, 123.1, 120.20, 120.18, 116.5, 107.1, 52.7, 51.9, 26.6, 22.8, 16.6; IR (NaCl/thin film): 3283, 3053, 2950, 1736, 1659, 1518, 1438, 1372, 1306, 1266, 1219, 1137, 1043; $[\alpha]_D^{25} = +26.5^\circ$ (c = 0.20, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 351.1703, found 351.1708.

(S)- N_α -Acetyl-5-methoxy-2-phenyltryptophan methyl ester (138k)



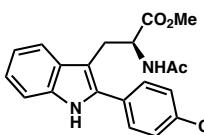
Prepared from 5-methoxy-2-phenylindole³⁴ (**137i**, 45.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 62.0 mg (85% yield) of **138k** as a colorless oil. The enantiomeric excess was determined to be 91% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , λ = 254 nm): t_R (major) = 4.7 min, t_R (minor) = 6.5 min. ^1H NMR (500 MHz, CDCl_3) δ 8.24 (br s, 1H), 7.58 – 7.49 (m, 2H), 7.50 – 7.41 (m, 2H), 7.36 (dd, J = 7.4, 7.4 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.05 (d, J = 2.3 Hz, 1H), 6.90 – 6.80 (m, 1H), 5.82 (br d, J = 7.9 Hz, 1H), 4.82 (td, J = 7.9, 5.4 Hz, 1H), 3.87 (s, 3H), 3.49 (m, 2H), 3.29 (s, 3H), 1.67 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.2, 169.6, 154.4, 136.7, 133.2, 130.8, 129.8, 129.1, 128.2, 128.0, 112.7, 111.7, 106.5, 100.5, 55.9, 52.7, 52.0, 26.6, 22.9; IR (NaCl/thin film): 3291, 3057, 2926, 1739, 1652, 1558, 1539, 1520, 1483, 1455, 1374, 1218, 1178; $[\alpha]_D^{25} = +32.6^\circ$ (c = 0.93, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 367.1652, found 367.1658.

(S)-N_α-Acetyl-5-bromo-2-phenyltryptophan methyl ester (138l)

 Prepared from 5-bromo-2-phenylindole³⁵ (**137j**, 54.0 mg, 0.20 mmol) with 1.6 equiv SnCl_4 following General Procedure 2. The crude residue was purified by silica gel chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 49.5 mg (60% yield) of **138l** as a white foam. The enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , $\lambda = 254$ nm): $t_{\text{R}}(\text{major}) = 5.3$ min, $t_{\text{R}}(\text{minor}) = 7.9$ min. ^1H NMR (500 MHz, CDCl_3) δ 8.42 (br s, 1H), 7.66 (d, $J = 2.0$ Hz, 1H), 7.56 – 7.50 (m, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.34 (m, 1H), 7.28 – 7.24 (m, 1H), 7.22 – 7.18 (m, 1H), 5.75 (br d, $J = 8.1$ Hz, 1H), 4.82 (dt, $J = 8.1, 5.7$ Hz, 1H), 3.53 (dd, $J = 14.9, 5.5$ Hz, 1H), 3.46 (dd, $J = 14.9, 4.8$ Hz, 1H), 3.36 (s, 3H), 1.63 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 171.9, 169.6, 137.2, 134.2, 132.6, 131.1, 129.2, 128.3, 128.2, 125.2, 121.6, 113.1, 112.4, 106.4, 52.6, 52.1, 26.5, 22.8; IR (NaCl/thin film): 3417, 3369, 3282, 1734, 1654, 1521, 1466, 1437, 1374, 1215; $[\alpha]_D^{25} = +47.2^\circ$ ($c = 1.04$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 415.0652, found 415.0653.

(S)-N_α-Acetyl-5-fluoro-2-phenyltryptophan methyl ester (138m)

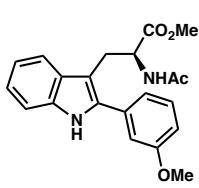
 Prepared from 5-fluoro-2-phenylindole³⁴ (**137k**, 42.0 mg, 0.20 mmol) with 1.6 equiv SnCl_4 following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 44.7 mg (63% yield) of **138m** as a colorless oil. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , $\lambda = 254$ nm): $t_{\text{R}}(\text{major}) = 3.8$ min, $t_{\text{R}}(\text{minor}) = 5.2$ min. ^1H NMR (500 MHz, CDCl_3) δ 8.30 (br s, 1H), 7.60 – 7.52 (m, 2H), 7.50 – 7.43 (m, 2H), 7.42 – 7.34 (m, 1H), 7.27 – 7.24 (m,


1H), 7.21 (dd, $J = 9.8, 2.6$ Hz, 1H), 6.94 (ddd, $J = 9.0, 9.0, 2.6$ Hz, 1H), 5.77 (br d, $J = 7.8$ Hz, 1H), 4.82 (dt, $J = 8.1, 5.4$ Hz, 1H), 3.53 (dd, $J = 14.9, 5.6$ Hz, 1H), 3.47 (dd, $J = 14.9, 5.0$ Hz, 1H), 3.35 (s, 3H), 1.64 (s, 2H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.7, 169.8, 168.3, 135.6, 134.2, 132.5, 131.9, 128.6, 123.5, 121.8, 119.7, 118.2, 110.8, 107.4, 52.9, 52.4, 37.0, 27.0, 25.3, 23.1; IR (NaCl/thin film): 3275, 3062, 2952, 1733, 1652, 1584, 1558, 1539, 1520, 1486, 1456, 1436, 1374, 1266, 1217, 1180; $[\alpha]_D^{25} = +49.9^\circ$ ($c = 1.25$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 355.1452, found 355.1455.

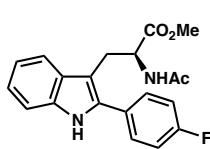
(S)- N_α -Acetyl-2-(4-methylphenyl)tryptophan methyl ester (138n)

Prepared from 2-(4-methylphenyl)indole³⁶ (**137l**, 41.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 60.1 mg (86% yield) of **138n** as a white foam. The enantiomeric excess was determined to be 94% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , $\lambda = 254$ nm). t_R (major) = 6.6 min, t_R (minor) = 8.8 min. ^1H NMR (500 MHz, CDCl_3) δ 8.20 (br s, 1H), 7.56 (d, $J = 8.1$ Hz, 1H), 7.45 (d, $J = 8.1, 2$ H), 7.34 (d, $J = 8.1, 1$ H), 7.28 (d, $J = 8.1, 2$ H), 7.19 (ddd, $J = 7.8, 7.1, 1.2$ Hz, 1H), 7.15 – 7.09 (m, 1H), 5.77 (br d, $J = 8.1, 1$ H), 4.82 (dt, $J = 7.8, 5.5$ Hz, 1H), 3.54 (dd, $J = 13.1, 4.0$ Hz, 1H), 3.50 (dd, $J = 13.1, 3.7$ Hz, 1H), 3.33 (s, 3H), 2.40 (s, 3H), 1.66 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.2, 169.6, 138.0, 136.1, 135.6, 130.2, 129.8, 129.4, 128.1, 122.3, 119.9, 118.7, 110.9, 106.4, 52.8, 52.0, 26.6, 22.8, 21.2; IR (NaCl/thin film): 3365, 3271, 3052, 2951, 1737, 1657, 1519, 1460, 1439, 1375, 1305, 1217 cm^{-1} ; $[\alpha]_D^{25} = -43.2^\circ$ ($c = 0.74$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 351.1703, found 351.1700.

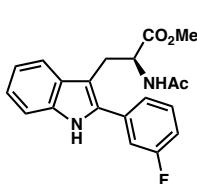
(S)-N_α-Acetyl-2-(2-methylphenyl)tryptophan methyl ester (138o)


Prepared from 2-(2-methylphenyl)indole³⁷ (**137m**, 21.0 mg, 0.1 mmol) following General Procedure 2. The crude residue was purified by flash chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 9.2 mg (26% yield) of **138o**. The enantiomeric excess was determined to be 87% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO₂, λ = 254 nm): t_R (major) = 4.3 min, t_R (minor) = 4.9 min. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (br s, 1H), 7.62 – 7.55 (dd, J = 7.6, 0.9 Hz, 1H), 7.38 – 7.32 (m, 4H), 7.31 – 7.27 (m, 1H), 7.22 (ddd, J = 8.1, 5.6, 2.1 Hz, 1H), 7.16 (ddd, J = 7.1, 5.6, 1.1 Hz, 1H), 5.71 (br d, J = 7.9 Hz, 1H), 4.82 – 4.68 (dt, J = 7.9, 5.4 Hz, 1H), 3.38 – 3.29 (m, 4H), 3.28 – 3.16 (m, 1H), 2.28 (s, 3H), 1.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 169.6, 137.3, 135.8, 135.5, 132.1, 130.9, 130.8, 128.9, 128.7, 126.0, 122.3, 119.9, 118.8, 110.8, 107.6, 52.8, 52.0, 26.6, 23.0, 20.0; IR (NaCl/thin film): 3385, 3271, 3062, 2924, 2853, 1734, 1653, 1559, 1539, 1521, 1457, 1437, 1374; $[\alpha]_D^{25}$ = +21.5° (c = 0.29, CHCl₃). HRMS (MM) calc'd for [M+H]⁺ 351.1703, found 351.1709.

(S)-N_α-Acetyl-2-(4-chlorophenyl)tryptophan methyl ester (138p)

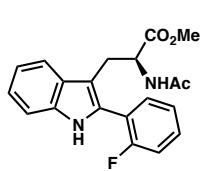

Prepared from 2-(4-chlorophenyl)indole³⁴ (**137n**, 45.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 55.2 mg (75% yield) of **138p** as a colorless oil. The enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO₂, λ = 254 nm): t_R (major) = 6.1 min, t_R (minor) = 7.0 min. ¹H NMR (500 MHz, CDCl₃) δ 8.45 (br s, 1H), 7.56 (d, J = 8.1 Hz,

1H), 7.49 – 7.43 (m, 2H), 7.43 – 7.37 (m, 2H), 7.33 (ddd, J = 8.1, 8.1, 1.0 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.14 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 5.85 (br d, J = 8.1 Hz, 1H), 4.83 (dt, J = 8.1, 5.5 Hz, 1H), 3.55 – 3.38 (m, 2H), 3.34 (s, 3H), 1.69 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.1, 169.6, 135.8, 134.6, 133.9, 131.5, 129.4, 129.3, 122.7, 120.1, 118.9, 111.1, 107.1, 52.8, 52.1, 29.6, 26.7, 22.9; IR (NaCl/thin film): 3280, 3058, 2948, 1737, 1657, 1519, 1487, 1458, 1439, 1373, 1310, 1216, 1093 cm^{-1} ; $[\alpha]_D^{25} = +40.8^\circ$ (c = 0.96, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 371.1157, found 371.1158.


(S)- N_α -Acetyl-2-(3-methoxyphenyl)tryptophan methyl ester (138q)

Prepared from 2-(3-methoxyphenyl)indole³⁸ (**137o**, 45.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 65.0 mg (88% yield) of **138q** as a colorless oil. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , λ = 254 nm): t_R (major) = 5.9 min, t_R (minor) = 7.6 min. ^1H NMR (500 MHz, CDCl_3) δ 8.40 (br s, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.19 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.08 (dd, J = 2.6, 1.6 Hz, 1H), 6.91 (ddd, J = 8.3, 2.6, 0.8 Hz, 1H), 5.82 (br d, J = 7.8 Hz, 1H), 4.83 (dt, J = 7.8, 5.5 Hz, 1H), 3.85 (s, 3H), 3.57 – 3.49 (m, 2H), 3.35 (s, 3H), 1.65 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.2, 169.6, 160.0, 135.8, 135.6, 134.4, 130.2, 129.3, 122.5, 120.6, 119.9, 118.8, 113.8, 113.5, 111.0, 106.7, 55.4, 52.8, 52.0, 26.6, 22.8; IR (NaCl/thin film): 3282, 3058, 2951, 1738, 1658, 1603, 1520, 1462, 1439, 1373, 1218, 1040; $[\alpha]_D^{25} = +40.3^\circ$ (c = 1.16, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 367.1652, found 367.1656.

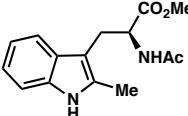
(S)-N_α-Acetyl-2-(4-fluorophenyl)tryptophan methyl ester (138r)

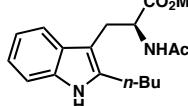

Prepared from 2-(4-fluorophenyl)indole²⁹ (**137p**, 42.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc/hexanes) to yield 55.6 mg (78% yield) of **138r** as a colorless oil. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO₂, λ = 254 nm): t_R (major) = 6.1 min, t_R (minor) = 6.9 min. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 47.9 Hz, 1H), 7.57 (dd, J = 7.9, 1.1 Hz, 1H), 7.54 – 7.51 (m, 2H), 7.36 (ddd, J = 8.1, 8.1, 0.9 Hz, 1H), 7.23 – 7.10 (m, 4H), 5.82 (d, J = 8.1 Hz, 1H), 4.83 (dt, J = 8.1, 5.5 Hz, 1H), 3.55 – 3.40 (m, 2H), 3.34 (s, 3H), 1.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 169.5, 135.6, 135.0, 130.1, 130.1, 129.4, 122.7, 120.2, 118.9, 116.2, 116.1, 110.9, 106.9, 52.8, 52.0, 26.7, 22.9.; IR (NaCl/thin film): 3364, 3271, 3061, 2925, 2853, 1738, 1661, 1553, 1505, 1460, 1440, 1373, 1221, 1158; $[\alpha]_D^{25}$ = +38.2° (c = 0.65, CHCl₃). HRMS (MM) calc'd for [M+H]⁺ 355.1452, found 355.1460.

(S)-N_α-Acetyl-2-(3-fluorophenyl)tryptophan methyl ester (138s)

Prepared from 2-(3-fluorophenyl)indole³⁶ (**137q**, 42.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 ethyl acetate/hexanes) to yield 50.6 mg (76% yield) of **138s** as a white foam. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO₂, λ = 254 nm): t_R (major) = 3.8 min, t_R (minor) = 4.6 min. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (br s, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.33-7.31 (m, 2H), 7.27-7.24

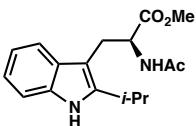
(m, 1H), 7.19 (ddd, $J = 8.2, 7.0, 1.0$ Hz, 1H), 7.13 (ddd, $J = 7.9, 7.0, 1.0$ Hz, 1H), 7.07 – 7.03 (m, 1H), 5.89 (br d, $J = 8.1$ Hz, 1H), 4.84 (dt, $J = 8.1, 5.5$ Hz, 1H), 3.53 (dd, $J = 13.6, 4.7$ Hz, 1H), 3.49 (dd, $J = 13.6, 4.2$ Hz, 1H), 3.34 (s, 3H), 1.69 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.1, 169.7, 162.9 (d, $J_{\text{C-F}} = 246.3$ Hz), 135.8, 135.2 (d, $J_{\text{C-F}} = 7.5$ Hz), 134.5 (d, $J_{\text{C-F}} = 2.5$ Hz), 130.6 (d, $J_{\text{C-F}} = 8.8$ Hz), 129.2, 123.9 (d, $J_{\text{C-F}} = 3.8$ Hz), 122.8, 120.0, 118.9, 115.1 (d, $J_{\text{C-F}} = 21.2$ Hz), 114.7 (d, $J_{\text{C-F}} = 21.2$ Hz), 111.1, 107.3, 52.8, 52.0, 26.7, 22.8; IR (NaCl/thin film): 3370, 3275, 3060, 2952, 1735, 1655, 1614, 1585, 1522, 1438, 1374, 1266, 1200, 1155 cm^{-1} ; $[\alpha]_D^{25} = +37.6^\circ$ ($c = 1.21$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 355.1452, found 355.1450.


(S)- N_{α} -Acetyl-2-(2-fluorophenyl)tryptophan methyl ester (138t)

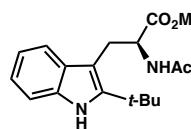

Prepared from 2-(2-fluorophenyl)indole (**137r**, 21.0 mg, 0.10 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 12.4 mg (35% yield) of **138t**. The enantiomeric excesses was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO_2 , $\lambda = 254$ nm): t_R (major) = 9.5 min, t_R (minor) = 8.4 min. ^1H NMR (500 MHz, CDCl_3) δ 8.28 (s, 1H), 7.61 (d, $J = 7.9$ Hz, 1H), 7.55 (ddd, $J = 7.5, 7.5, 1.8$ Hz, 1H), 7.45 – 7.35 (m, 2H), 7.29 (ddd, $J = 7.5, 7.5, 1.2$ Hz, 1H), 7.25 – 7.20 (m, 1H), 7.19 – 7.10 (m, 1H), 5.83 (br d, $J = 7.6$ Hz, 1H), 4.85 (dt, $J = 7.9, 5.5$ Hz, 1H), 3.55 – 3.39 (m, 2H), 3.36 (s, 2H), 1.73 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.2, 169.5, 159.8 (d, $J_{\text{C-F}} = 246.3$ Hz), 135.9, 131.4 (d, $J_{\text{C-F}} = 3.8$ Hz) 130.2 (d, $J_{\text{C-F}} = 8.8$ Hz), 129.73, 128.65, 124.8 (d, $J_{\text{C-F}} = 3.8$ Hz), 122.84, 120.6 (d, $J_{\text{C-F}} = 15.0$ Hz), 120.0, 119.0, 116.4 (d, $J_{\text{C-F}} = 21.3$ Hz), 111.0, 108.8, 52.5, 52.0, 26.8, 26.8, 22.9; IR

(NaCl/thin film): 3275, 3058, 2925, 2853, 1734, 1653, 1523, 1490, 1457, 1437, 1374, 1245, 1216, 1130, 1104; $[\alpha]_D^{25} = +39.8^\circ$ ($c = 0.41$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 355.1452, found 355.1463.

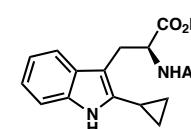
(S)- N_α -Acetyl-2-methyltryptophan methyl ester (138d)


 Prepared from 2-methylindole (**137b**, 26.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (50:50 to 100:0 EtOAc:hexanes) to yield 31.0 mg (61% yield) of **138d** as a white foam. The enantiomeric excess was determined to be 85% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO_2 , $\lambda = 254$ nm): t_R (major) = 3.9 min, t_R (minor) = 2.7 min. $[\alpha]_D^{25} = +25.9^\circ$ ($c = 0.99$, CHCl_3). Spectral data matches that reported in the literature.³³

(S)- N_α -Acetyl-2-butyltryptophan methyl ester (138u)

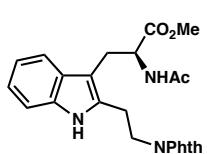

 Prepared from 2-butylindole³⁹ (**137s**, 35.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 45.8 mg (72% yield) of **138u** as a colorless oil. The enantiomeric excess was determined to be 91% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO_2 , $\lambda = 254$ nm): t_R (major) = 5.1 min, t_R (minor) = 4.2 min. ^1H NMR (500 MHz, CDCl_3) δ 8.03 (br s, 1H), 7.46 – 7.40 (m, 1H), 7.31 – 7.24 (m, 1H), 7.15 – 6.99 (m, 2H), 6.00 (br d, $J = 7.8$ Hz, 1H), 4.88 (dt, $J = 8.1$, 5.7 Hz, 1H), 3.65 (s, 3H), 3.26 (dd, $J = 5.7$, 0.9 Hz, 2H), 2.69 (td, $J = 7.8$, 2.2 Hz, 2H), 1.93 (s, 3H), 1.66 – 1.57 (m, 2H), 1.45 – 1.31 (m, 2H), 0.95 (t, $J = 7.3$ Hz, 3H); ^{13}C NMR

(125 MHz, CDCl_3) δ 172.6, 169.6, 137.4, 135.2, 128.8, 121.3, 119.5, 117.9, 110.4, 105.26, 105.29, 53.0, 52.3, 31.8, 26.8, 25.7, 23.2, 22.6, 13.9; IR (NaCl/thin film): 3296, 3058, 2955, 2871, 1737, 1658, 1562, 1530, 1463, 1439, 1376, 1217, 1129; $[\alpha]_D^{25} = -16.3^\circ$ ($c = 0.83$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 317.1860, found 317.1855.


(S)- N_{α} -Acetyl-2-isopropyltryptophan methyl ester (138v)

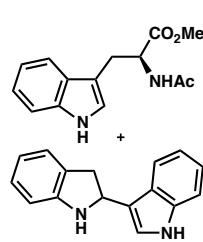
 Prepared from 2-isopropylindole⁴⁰ (**137t**, 32.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 39.6 mg (66% yield) of **138v** as a colorless oil. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 15% IPA in CO_2 , $\lambda = 254$ nm). t_R (major) = 6.4 min, t_R (minor) = 5.6 min. ^1H NMR (500 MHz, CDCl_3) δ 8.16 (br s, 1H), 7.48 – 7.41 (m, 1H), 7.30 – 7.27 (m, 1H), 7.15 – 7.02 (m, 2H), 6.04 (br d, $J = 8.0$ Hz, 1H), 4.89 (dt, $J = 8.1$, 5.7 Hz, 1H), 3.66 (s, 3H), 3.29 (dd, $J = 12.7$, 4.0 Hz, 1H), 3.26 (dd, $J = 12.7$, 3.4 Hz, 1H), 3.18 (m, 1H), 1.93 (s, 3H), 1.31 (d, $J = 3.3$ Hz, 3H), 1.30 (d, $J = 3.3$ Hz, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.6, 169.7, 142.7, 135.2, 128.7, 121.3, 119.5, 117.9, 110.6, 103.6, 53.0, 52.3, 26.7, 25.3, 23.2, 23.0; IR (NaCl/thin film): 3305, 2962, 1734, 1700, 1653, 1559, 1539, 1506, 1457, 1436, 1374, 1299, 1217 cm^{-1} ; $[\alpha]_D^{25} = +22.2^\circ$ ($c = 0.35$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 303.1703, found 303.1709.

(S)-N_α-Acetyl-2-(tert-butyl)tryptophan methyl ester (138w)



 Prepared from 2-(tert-butyl)indole³³ (**137u**, 35.0 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 18.1 mg (29% yield) of **138w** as a yellow oil. The enantiomeric excess was determined to be 84% by chiral SFC analysis (OD-H, 2.5 mL/min, 10% IPA in CO₂, λ = 254 nm): t_R (major) = 12.8 min, t_R (minor) = 14.2 min. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (br s, 1H), 7.47 (dd, J = 14.0, 7.1 Hz, 1H), 7.27 (dd, J = 5.8, 4.8 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.06 (br d, J = 7.4 Hz, 1H), 4.84 (m, 1H), 3.54 (s, 3H), 3.38 – 3.29 (m, 2H), 1.86 (s, 3H), 1.49 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 169.6, 143.4, 133.9, 129.8, 121.3, 119.4, 117.7, 110.4, 104.3, 53.7, 52.2, 33.2, 30.7, 28.6, 23.0; IR (NaCl/thin film): 3326, 3047, 2961, 2918, 2868, 1734, 1653, 1539, 1457, 1436, 1374, 1303, 1254, 1211, 1128; $[\alpha]_D^{25}$ = +12.4° (c = 0.36, CHCl₃). HRMS (MM) calc'd for [M+H]⁺ 317.1860, found 317.1856.

(S)-N_α-Acetyl-2-cyclopropyltryptophan methyl ester (138x)

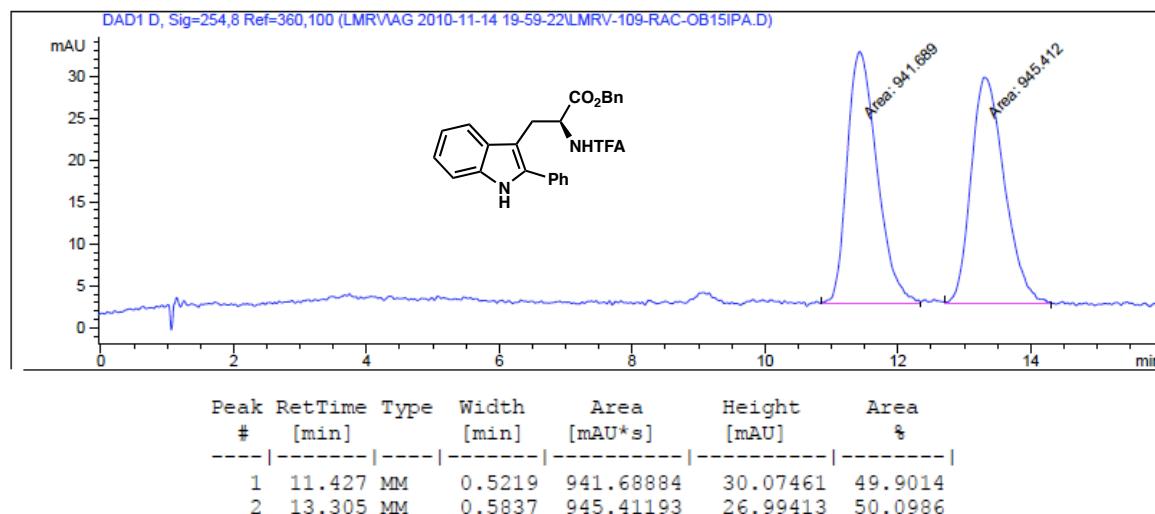


 Prepared from 2-cyclopropylindole⁴¹ (**137v**, 16.0 mg, 0.10 mmol) following General Procedure 2 except that 1.0 equiv methyl 2-acetamidoacrylate (**91a**) was employed. The crude residue was purified by silica gel chromatography (50:50 EtOAc:hexanes) to yield 4.6 mg (24% yield) of **138x** as a colorless oil. The enantiomeric excess was determined to be 75% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO₂, λ = 254 nm). t_R (major) = 2.6 min t_R (minor) = 2.3 min. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (br s, 1H), 7.41 (ddt, J = 7.5, 1.5, 0.7 Hz, 1H), 7.24 (ddd, J = 7.9, 1.3, 0.8 Hz, 1H), 7.10 (ddd, J = 7.9, 7.1, 1.5 Hz, 1H), 7.10 – 7.03 (m,

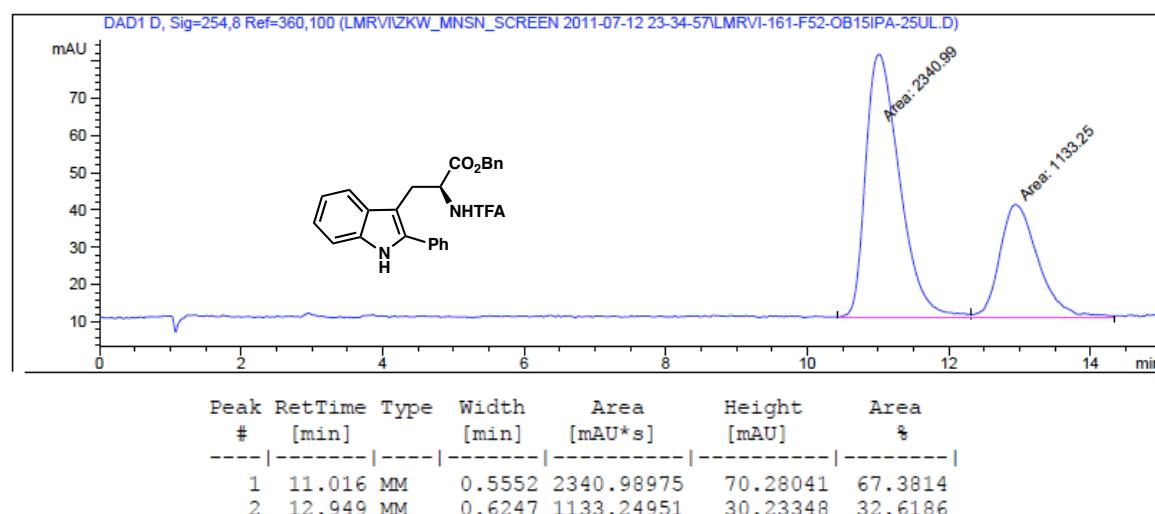
1H), 6.03 (br d, J = 8.0 Hz, 1H), 4.93 (dt, J = 8.0, 5.6 Hz, 1H), 3.67 (s, 3H), 3.36 (d, J = 5.6 Hz, 2H), 2.02 (tt, J = 8.4, 5.3 Hz, 1H), 1.94 (s, 3H), 1.05 – 1.01 (m, 2H), 0.79 – 0.76 (m, 2H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.6, 169.6, 137.6, 134.6, 129.1, 121.5, 119.7, 117.6, 110.4, 106.9, 53.0, 52.4, 26.8, 23.3, 7.4, 7.10, 7.06.; IR (NaCl/thin film): 3297, 3058, 3006, 2952, 2926, 1736, 1654, 1523, 1468, 1439, 1375, 1339, 1309, 1217 cm^{-1} ; HRMS (ESI) calc'd for $[\text{M}+\text{H}]^+$ 301.1547, found 301.1546.

(S)- N_{α} -Acetyl-2-(ethylphthalimide)tryptophan methyl ester (138y)

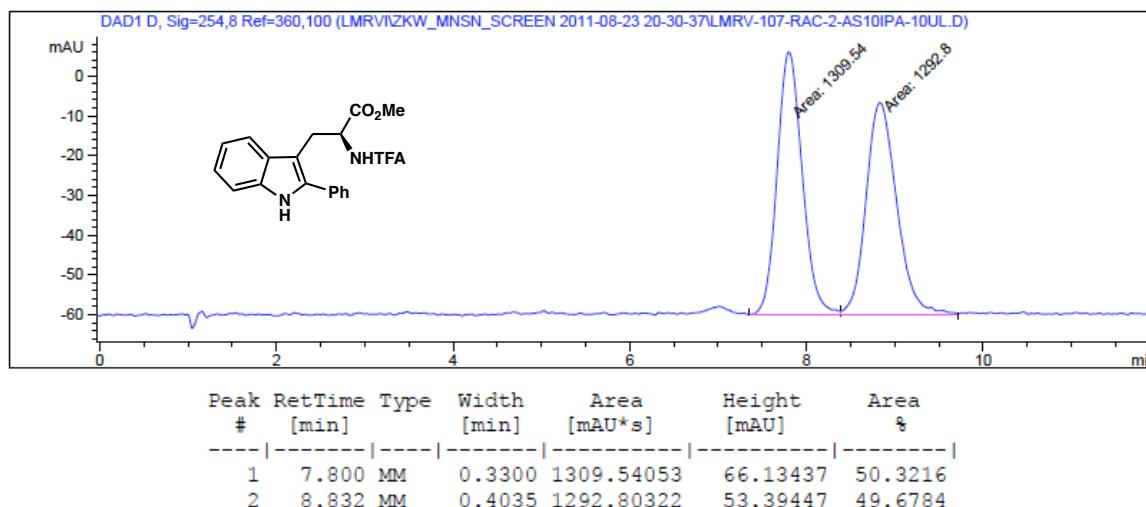
Prepared from 2-(ethylphthalimide)indole (**137w**, 29.0 mg, 0.10 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (70:30 to 100:0 EtOAc:hexanes) to yield 34.6 mg (80% yield) of **138y** as a yellow foam. The enantiomeric excess was determined to be 90% by chiral SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO_2 , λ = 254 nm): t_{R} (major) = 7.3 min, t_{R} (minor) = 6.3 min. ^1H NMR (500 MHz, CDCl_3) δ 8.47 (br s, 1H), 7.83 (dd, J = 5.4, 2.9 Hz, 2H), 7.72 (dd, J = 5.5, 3.1 Hz, 2H), 7.46 (d, J = 8.1 Hz, 1H), 7.31 (ddd, J = 8.1, 8.1, 1.0 Hz, 1H), 7.13 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.07 (ddd, J = 10.5, 5.8, 2.2 Hz, 1H), 6.13 (br d, J = 8.1 Hz, 1H), 4.92 (dt, J = 8.2, 6.0 Hz, 1H), 4.05 – 3.89 (m, 2H), 3.66 (s, 3H), 3.33 – 2.98 (m, 4H), 1.93 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.7, 169.8, 168.3, 135.6, 134.2, 132.5, 131.9, 128.6, 123.5, 121.8, 119.7, 118.2, 110.8, 107.4, 52.9, 52.4, 37.0, 27.0, 25.3, 23.1; IR (NaCl/thin film): 3369, 3280, 3052, 2948, 1770, 1738, 1711, 1659, 1530, 1438, 1397, 1371; $[\alpha]_D^{25} = +14.8^\circ$ (c = 0.96, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 355.1452, found 355.1455.

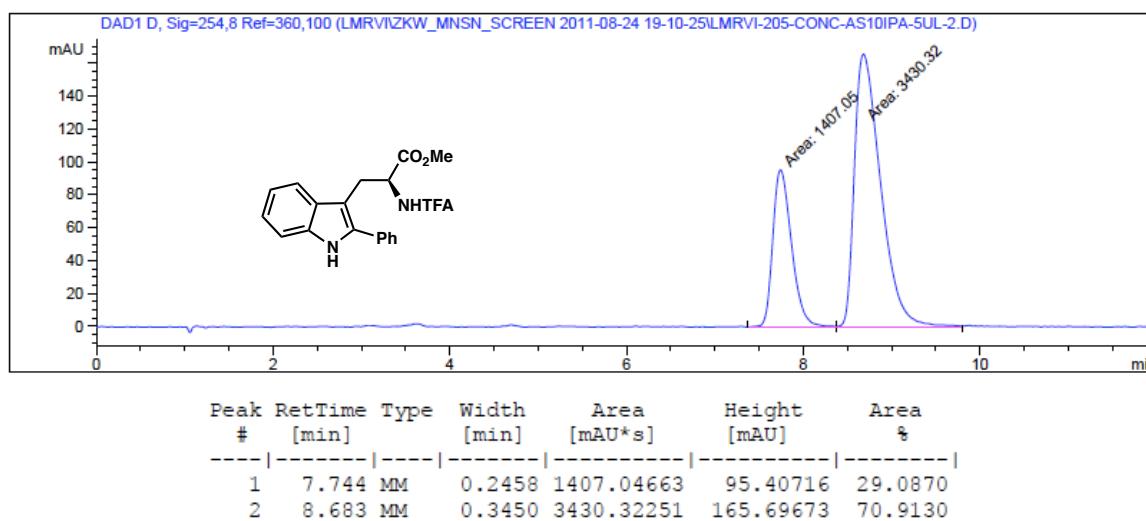

(S)-N_α-Acetyltryptophan methyl ester (138z) and indole dimer (170)

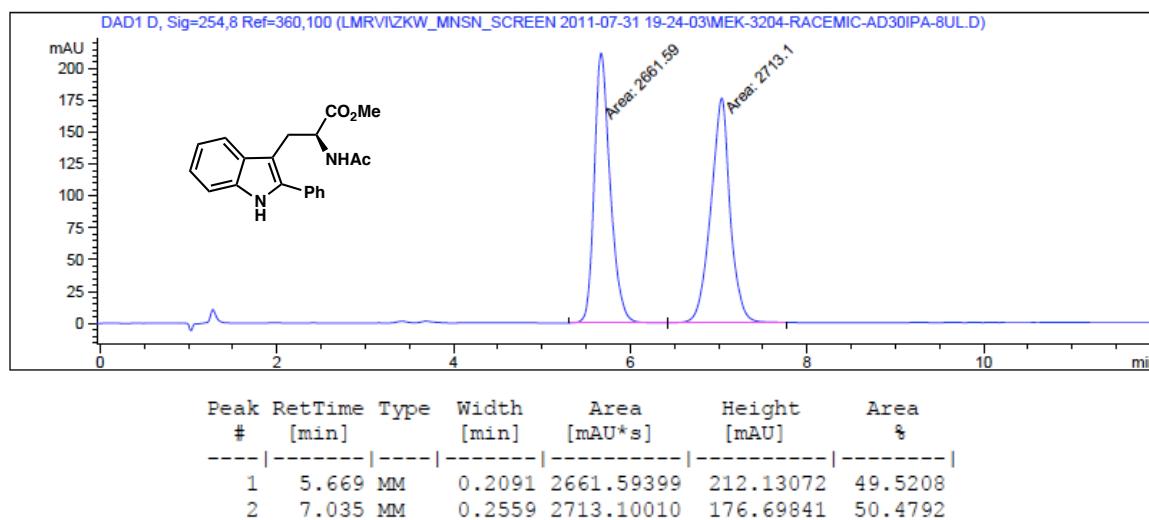
Prepared from indole (**163**, 23.4 mg, 0.20 mmol) following General Procedure 2. The crude residue was purified by silica gel chromatography (0:100 to 100:0 EtOAc:hexanes) to yield 17.9 mg (contains 9 wt % EtOAc, 31% corrected yield) of **138z** as a light pink oil and 7.0 mg (30% yield) of **170** as a light yellow oil. The enantiomeric excess of **138z** was determined to be 67% by chiral SFC analysis (OD-H, 2.5 mL/min, 15% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 11.4 min, t_R (minor) = 10.6 min. $[\alpha]_D^{25} = +39.3^\circ$ ($c = 0.83$, CHCl₃). Spectral data for both (S)-*N*_α-acetyltryptophan methyl ester⁴² and the indole dimer⁴³ are in agreement with the literature.


3.4.5 SFC Traces for Racemic and Enantioenriched Tryptophan Derivatives

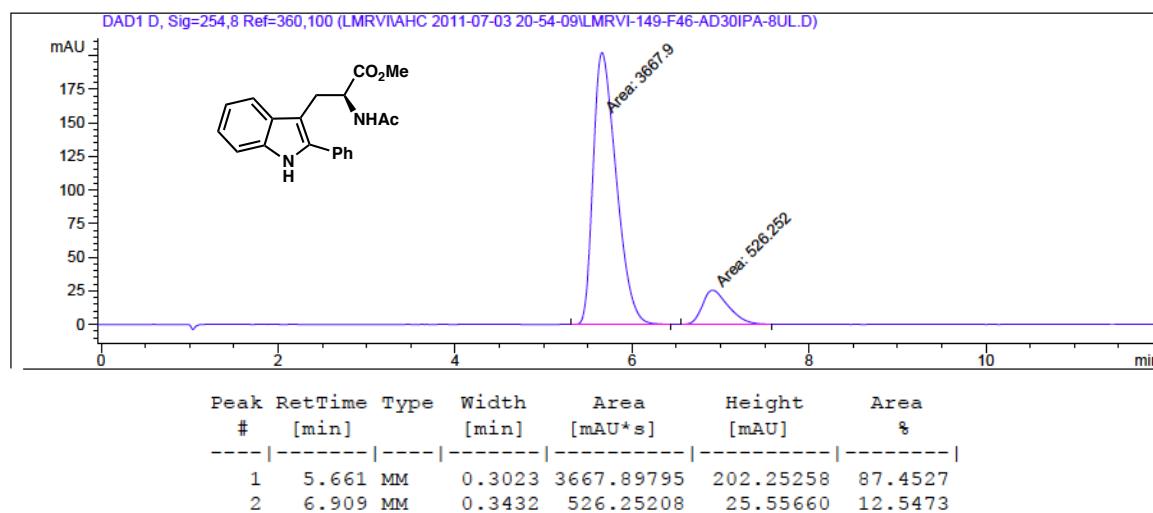
Optimization of Reaction Parameters

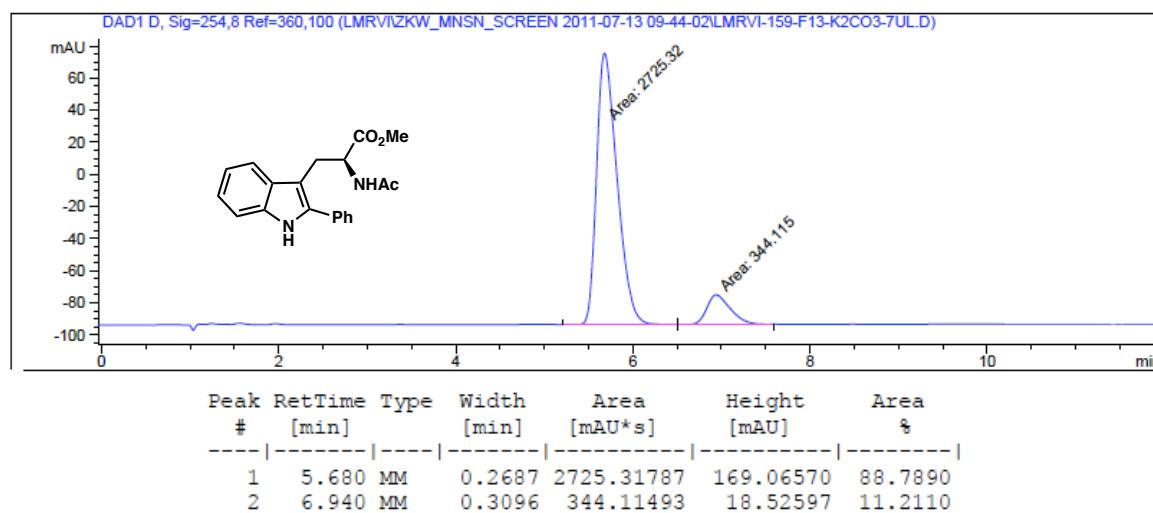

138a (Table 3.2.1, entry 1): racemic

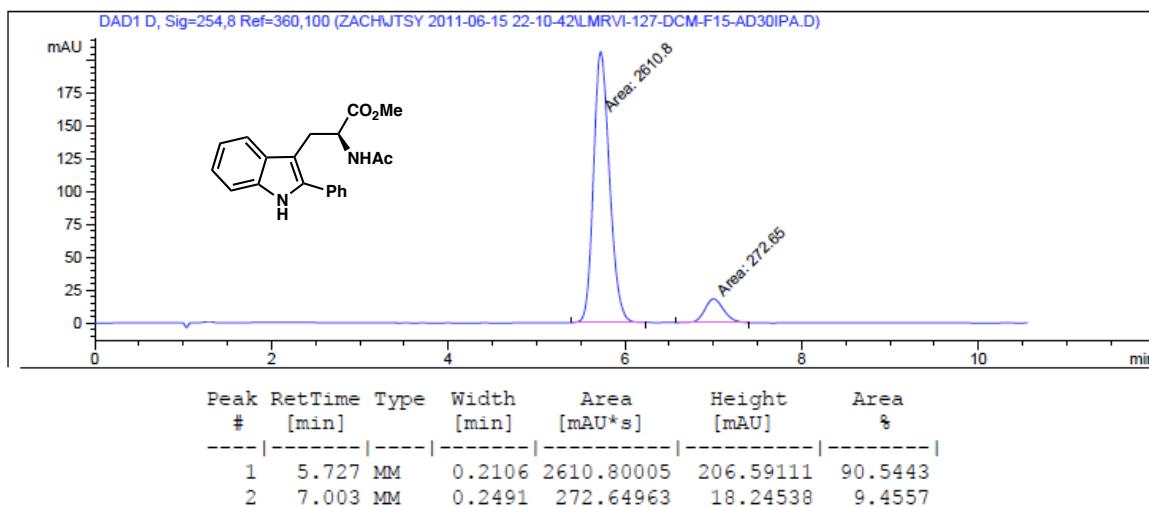

138a (Table 3.2.1, entry 1): enantioenriched, 35% ee

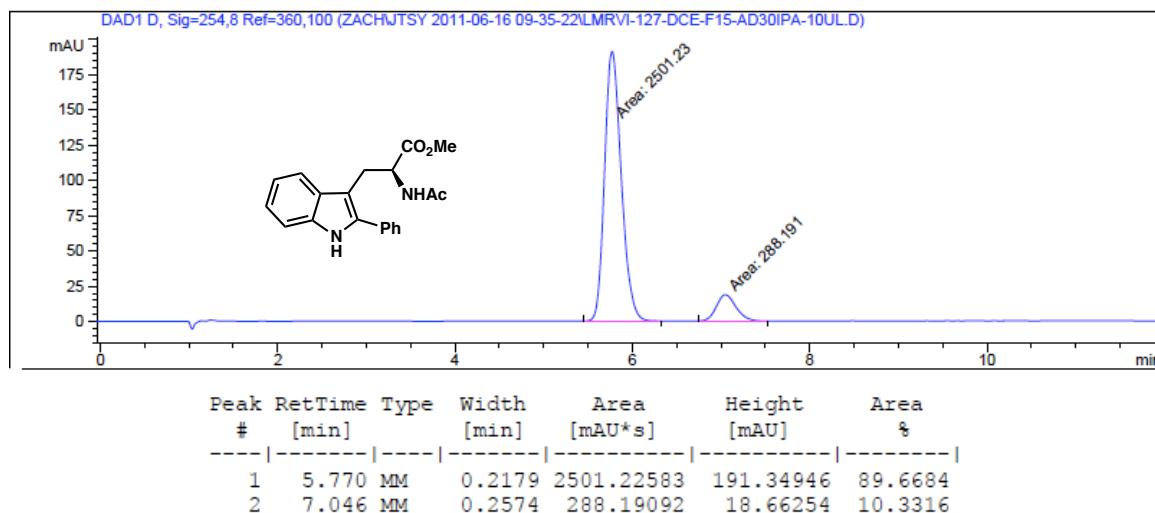

138b (Table 3.2.1, entry 2): racemic

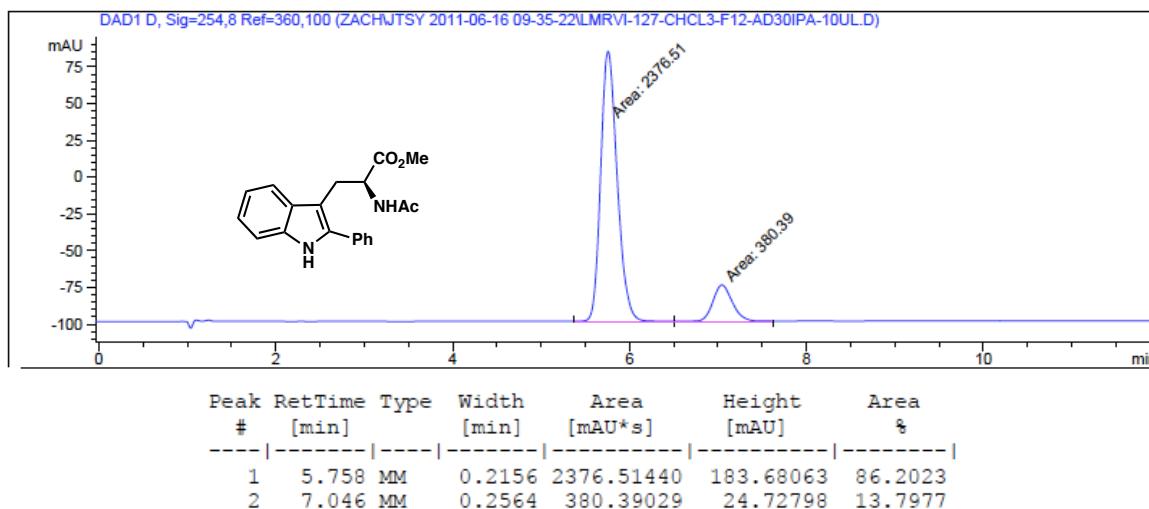

138b (Table 3.2.1, entry 2): enantioenriched, 42% ee

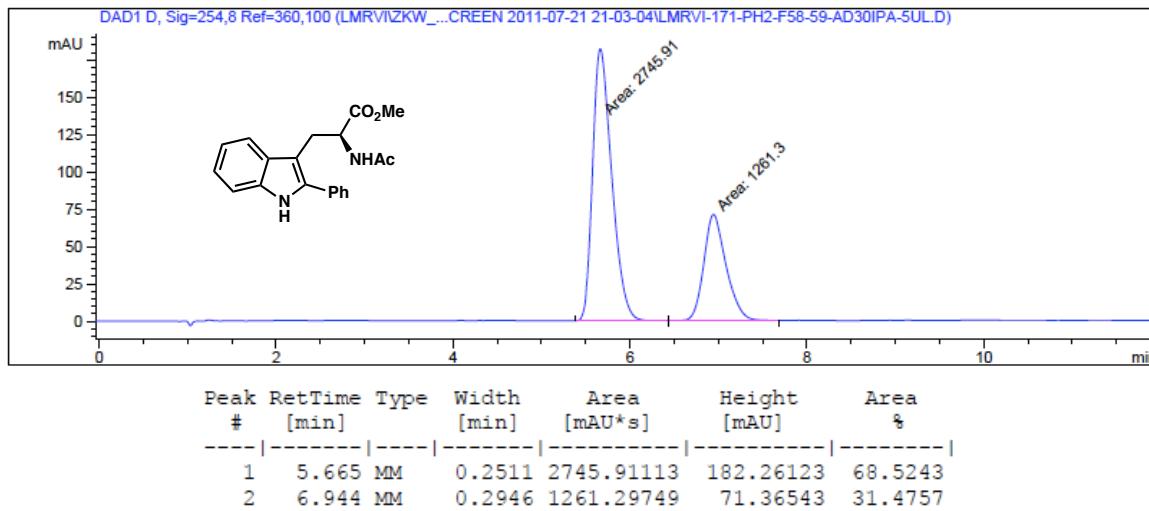

138c: racemic

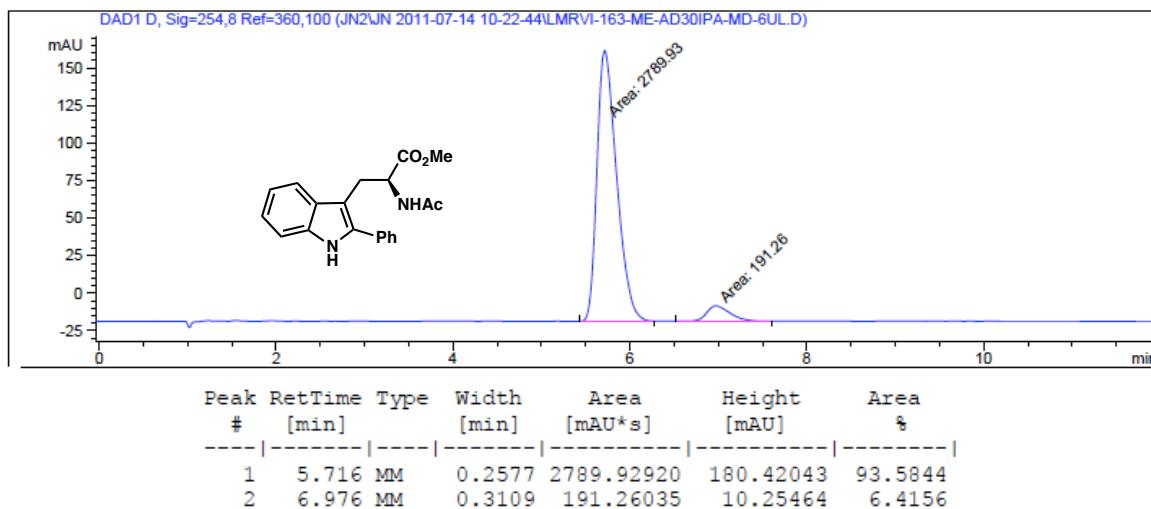

138c (Table 3.2.1, entry 3, no additive, DCM as solvent): enantioenriched, 78% ee

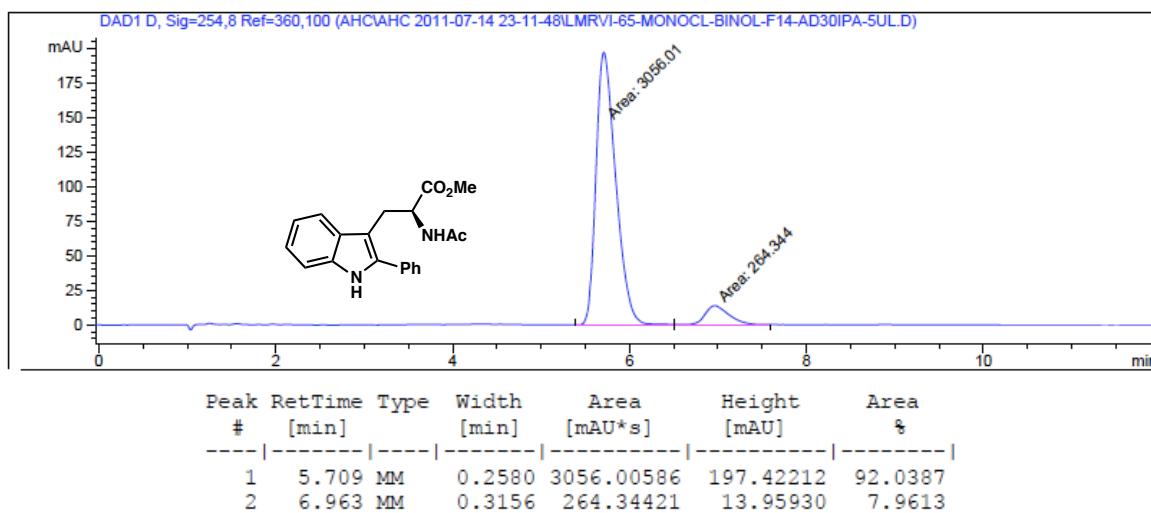

138c (Table 3.2.1, entry 6, no additive, 1M NaOH workup): enantioenriched, 75% ee

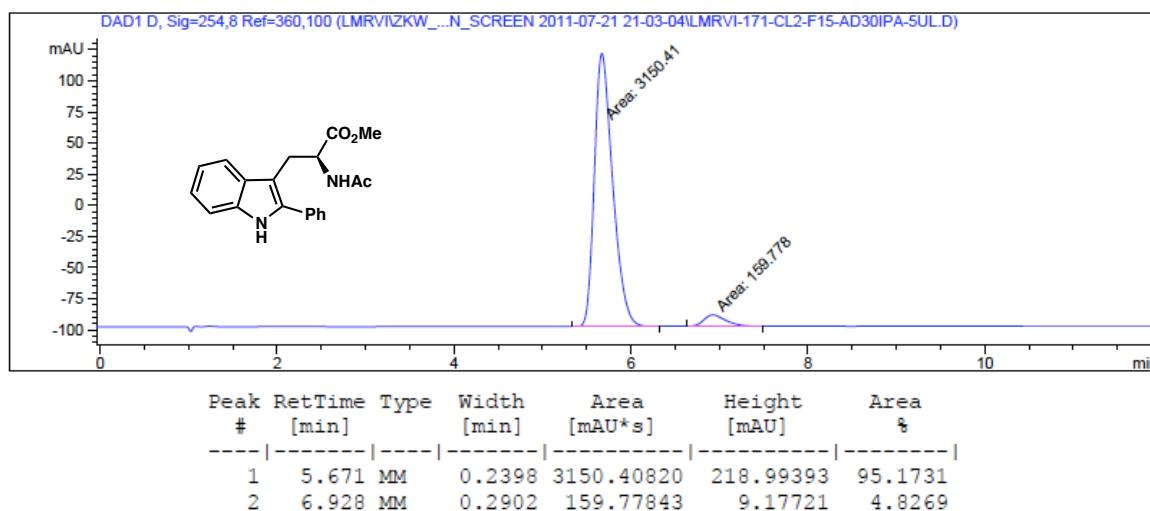

138c (Table 3.2.1, entry 7, with K_2CO_3 , DCM as solvent): enantioenriched, 78% ee

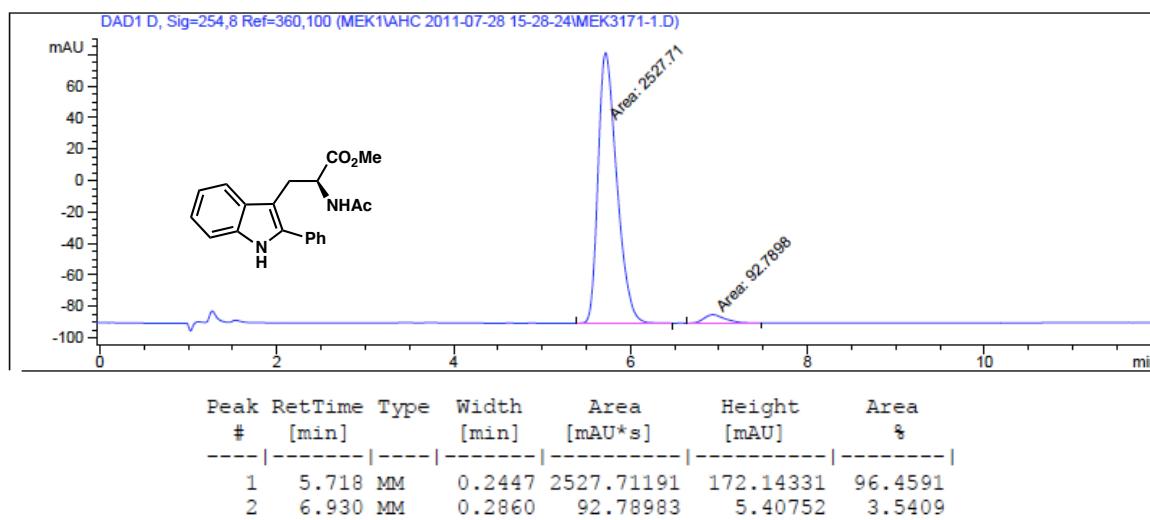

138c (Table 3.2.1, entry 9, with 4Å MS, DCM as solvent): enantioenriched, 81% ee

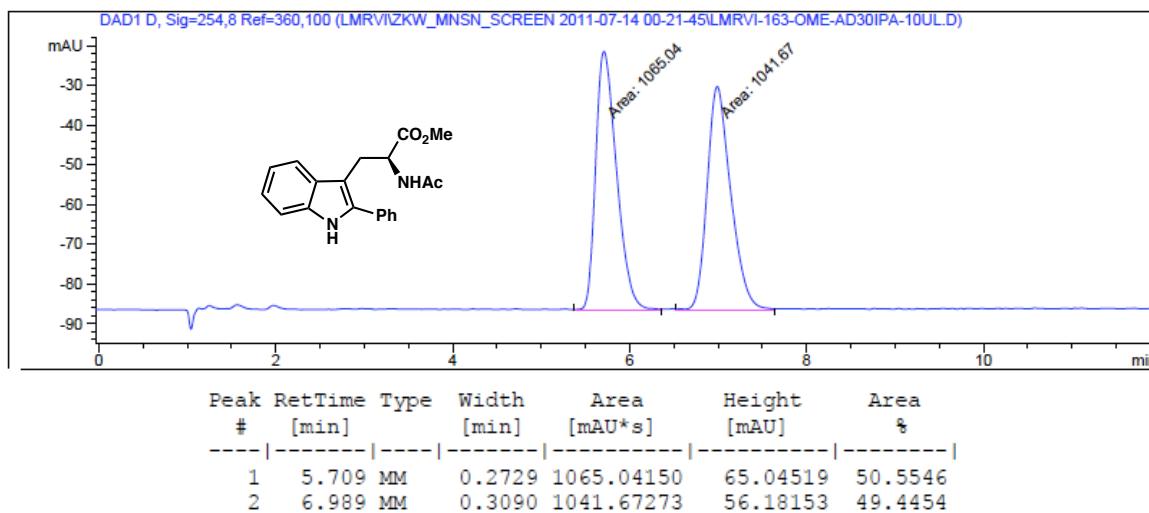

138c (Table 3.2.1, entry 10, with 4Å MS, DCE as solvent): enantioenriched, 79% ee

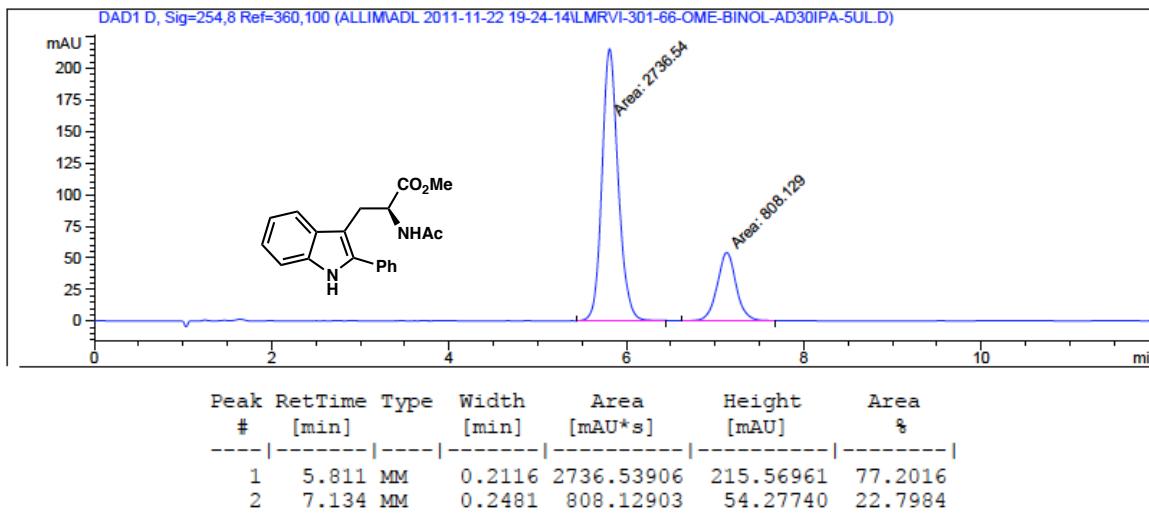

138c (Table 3.2.1, entry 11, with 4Å MS, CHCl₃ as solvent): enantioenriched, 72% ee

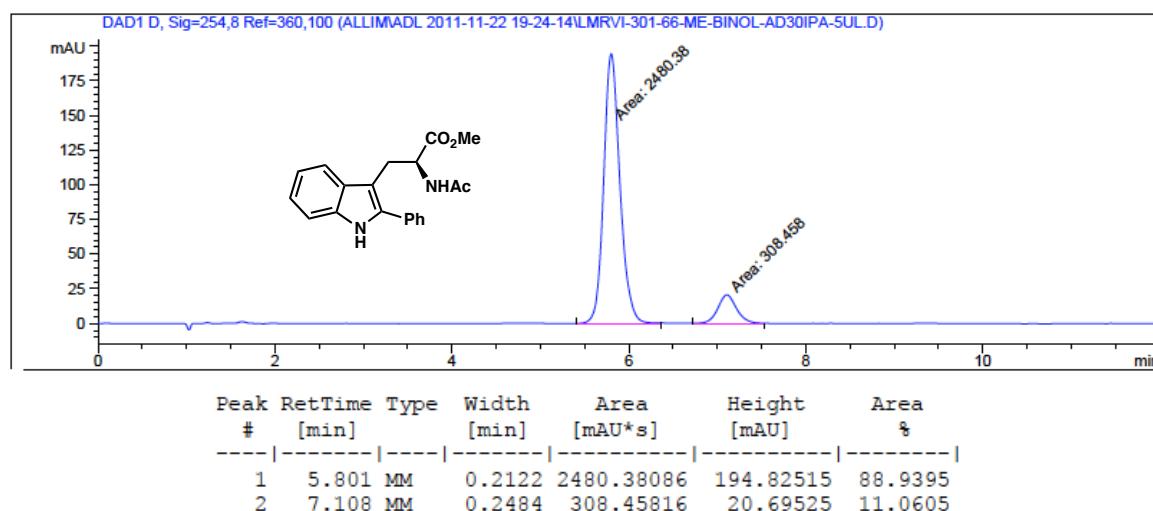

138c (Table 3.2.2, entry 2, (R)-3,3'-diphenyl-BINOL (102g)): enantioenriched, 37% ee

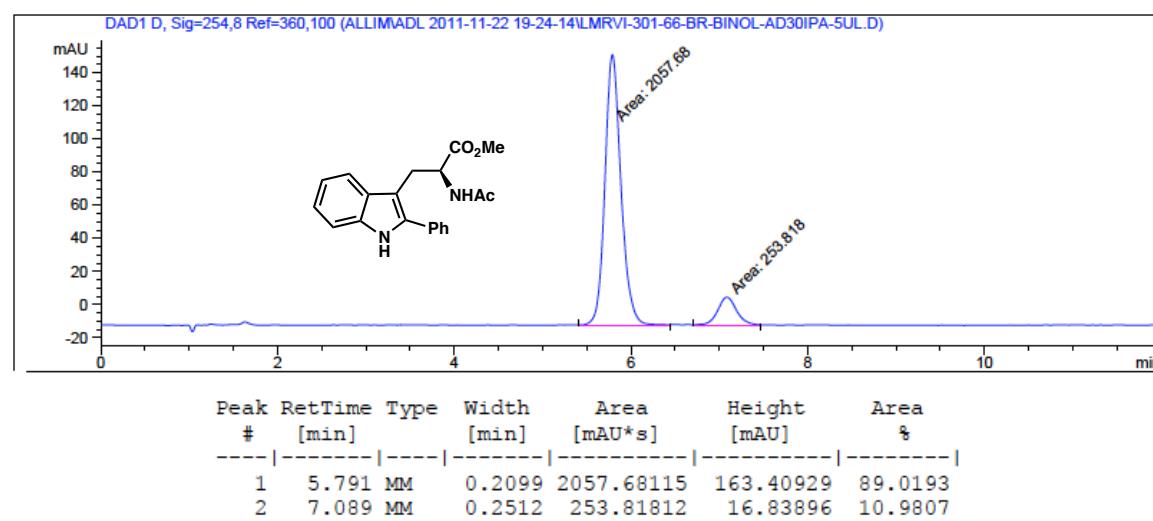

138c (Table 3.2.2, entry 3, (R)-3,3'-dimethyl-BINOL (**102h**)): enantioenriched, 87% ee

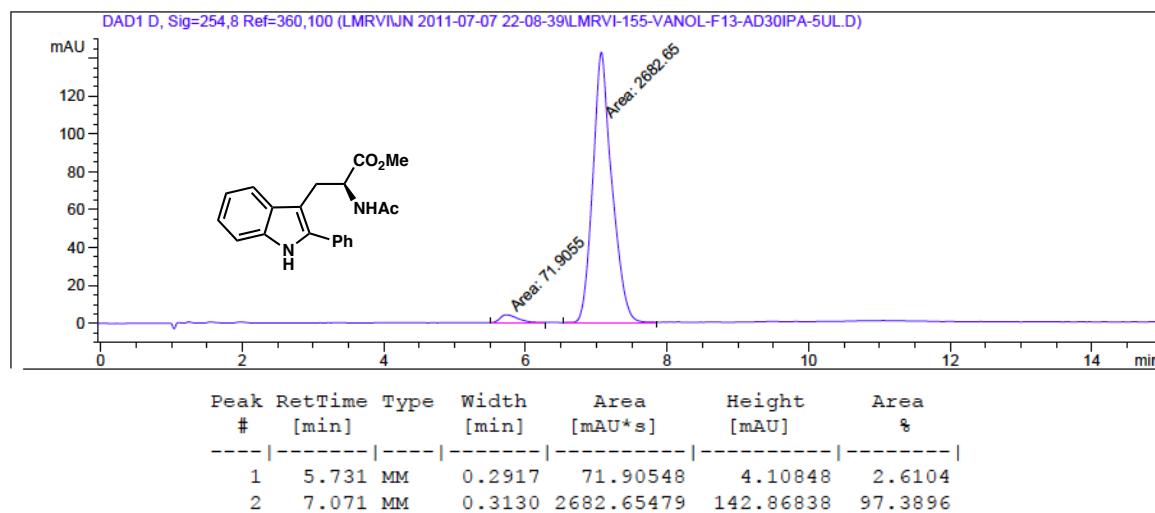

138c (Table 3.2.2, entry 4, (R)-3-chloro-BINOL (**102i**)): enantioenriched, 84% ee

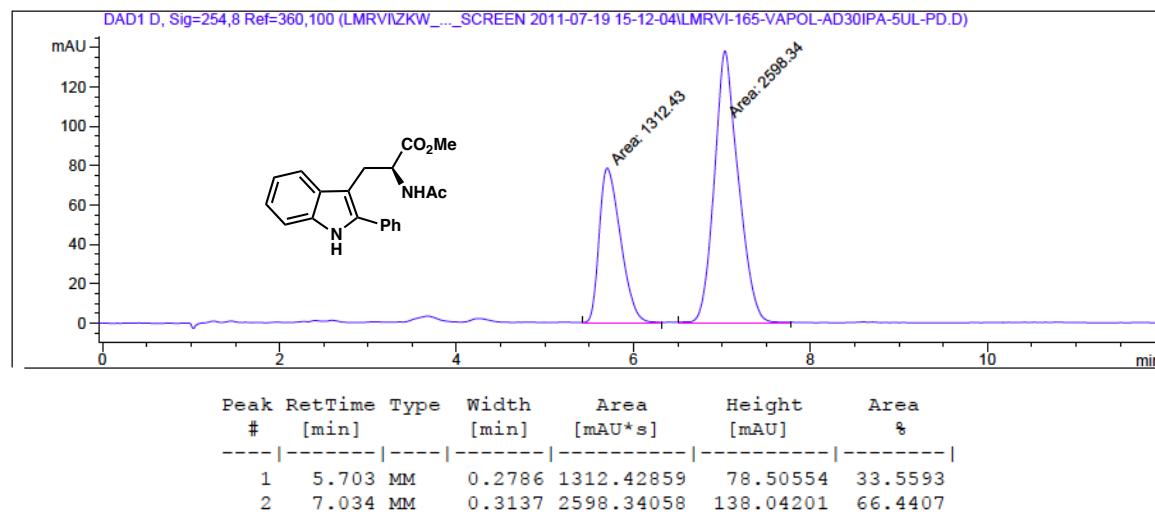

138c (Table 3.2.2, entry 5, (R)-3,3'-dichloro-BINOL (102j)): enantioenriched, 90% ee

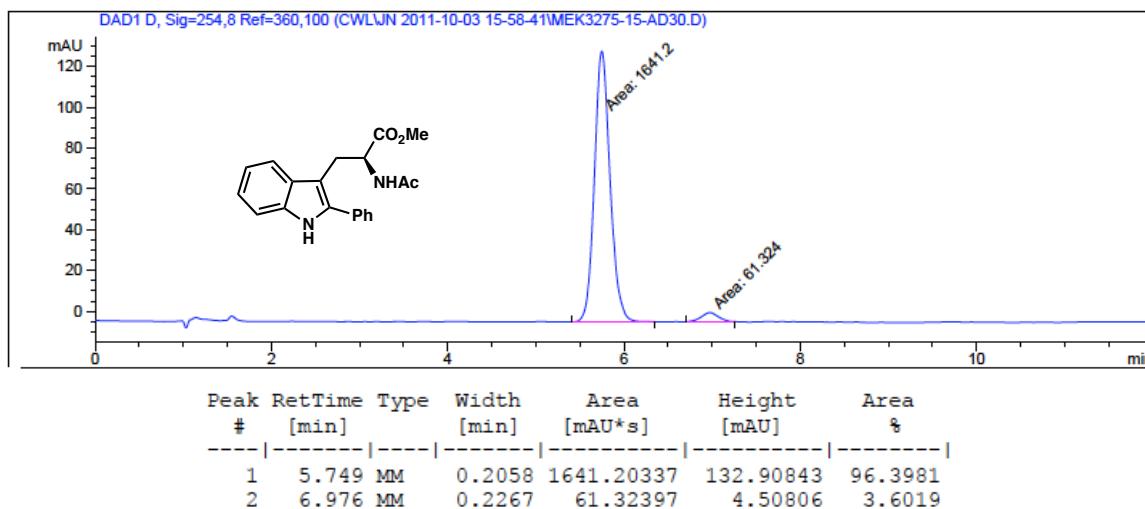

138c (Table 3.2.2, entry 6, (R)-3,3'-dibromo-BINOL (102k)): enantioenriched, 93% ee

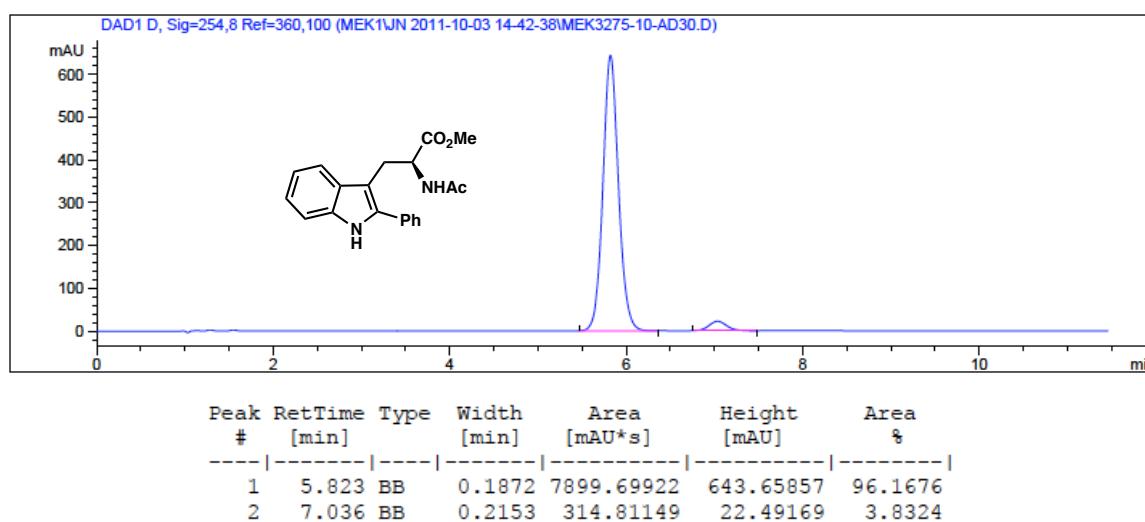

138c (Table 3.2.2, entry 7, (R)-3,3'-dimethoxy-BINOL (102l)): enantioenriched, 1% ee

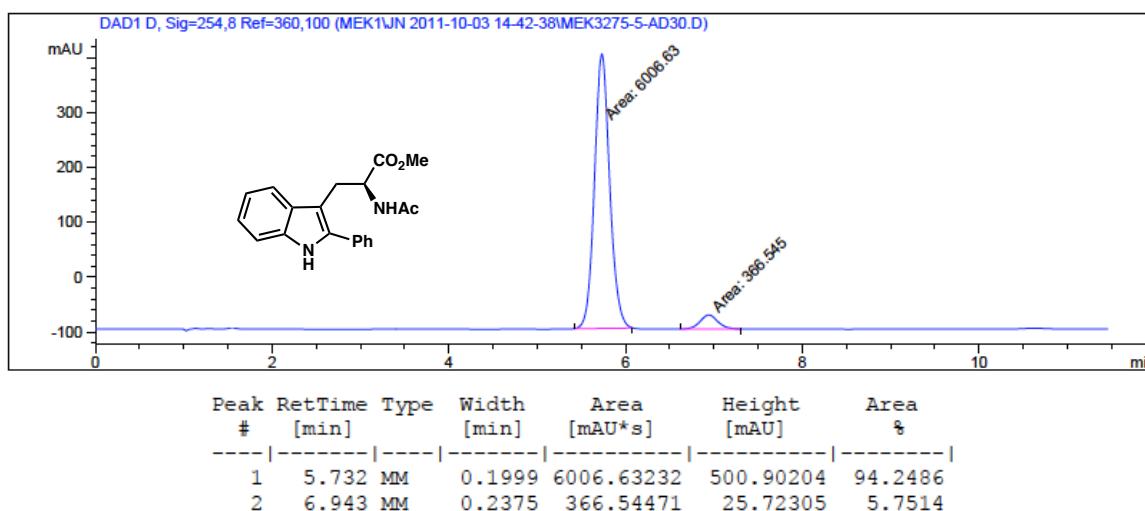

138c (Table 3.2.2, entry 8, (R)-6,6'-dimethoxy-BINOL (102m)): enantioenriched, 54% ee


138c (Table 3.2.2, entry 9, (R)-6,6'-dimethyl-BINOL (**102n**)): enantioenriched, 78% ee

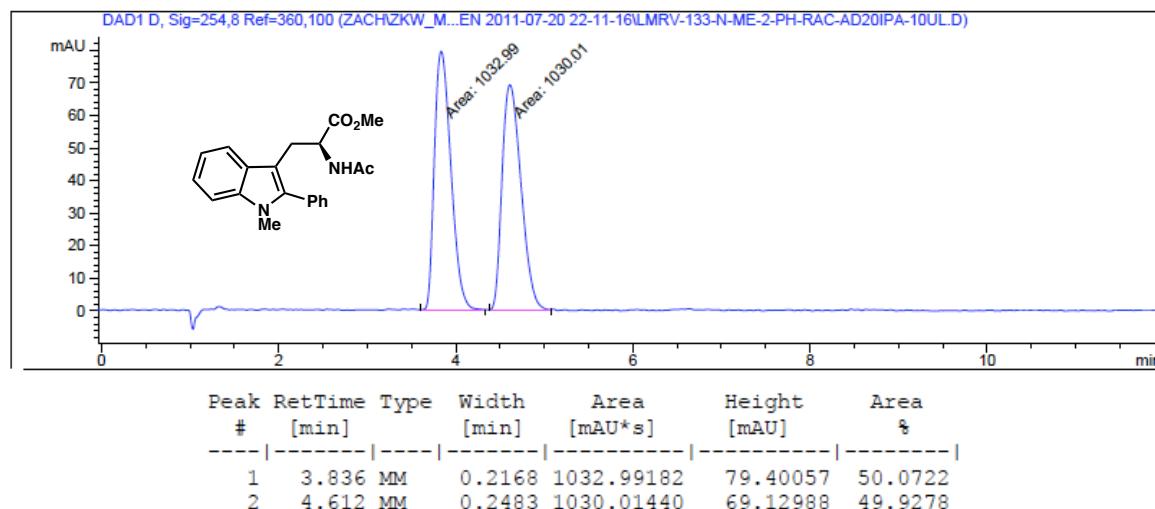

138c (Table 3.2.2, entry 10, (R)-6,6'-dibromo-BINOL (**102f**)): enantioenriched, 78% ee


138c (Table 3.2.2, entry 11, (S)-VANOL (166)): enantioenriched, -95% ee

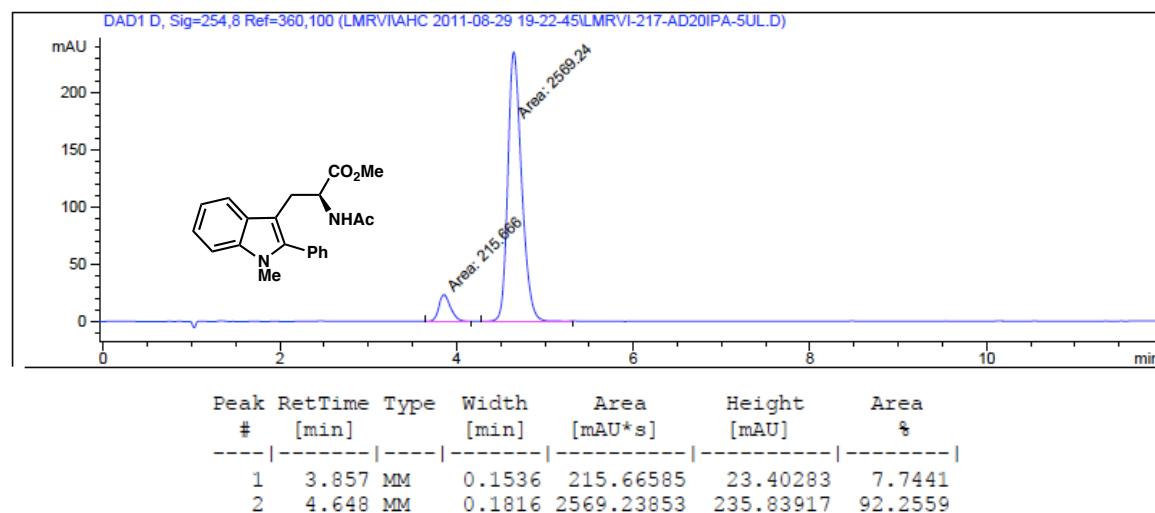

138c (Table 3.2.2, entry 12, (S)-VAPOL (167)): enantioenriched, -33% ee


138c (Table 3.2.4, entry 3, 15 mol % **102k**): enantioenriched, 93% ee

138c (Table 3.2.4, entry 4, 10 mol % **102k**): enantioenriched, 92% ee

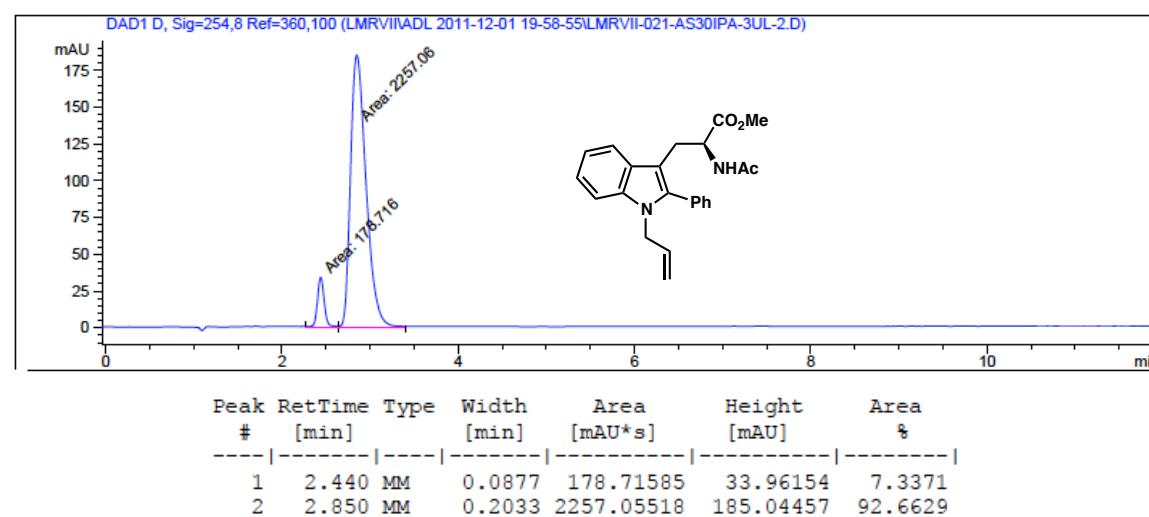


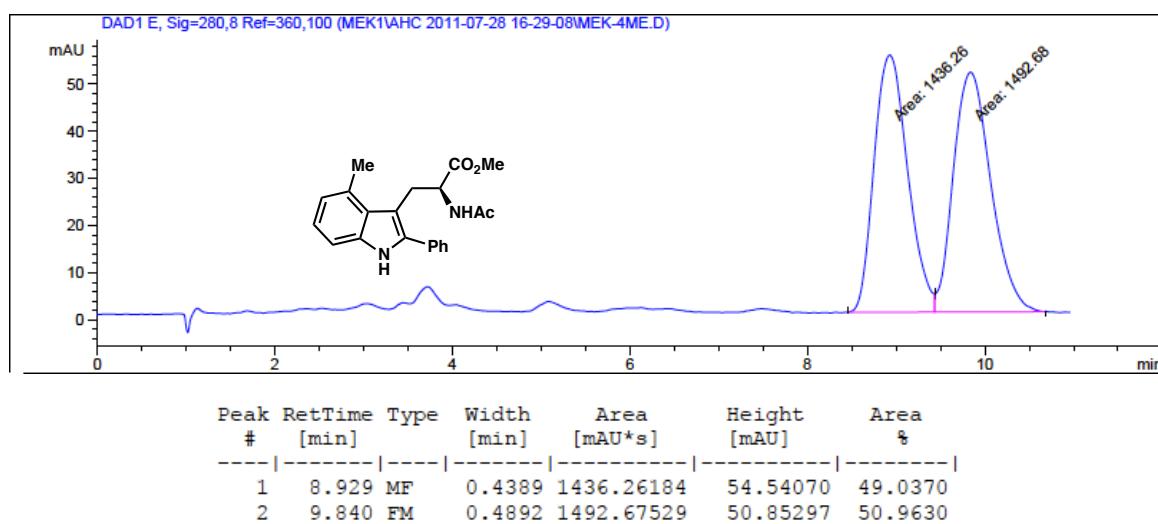
138c (Table 3.2.4, entry **5**, 5 mol % **102k**): enantioenriched, 88% ee

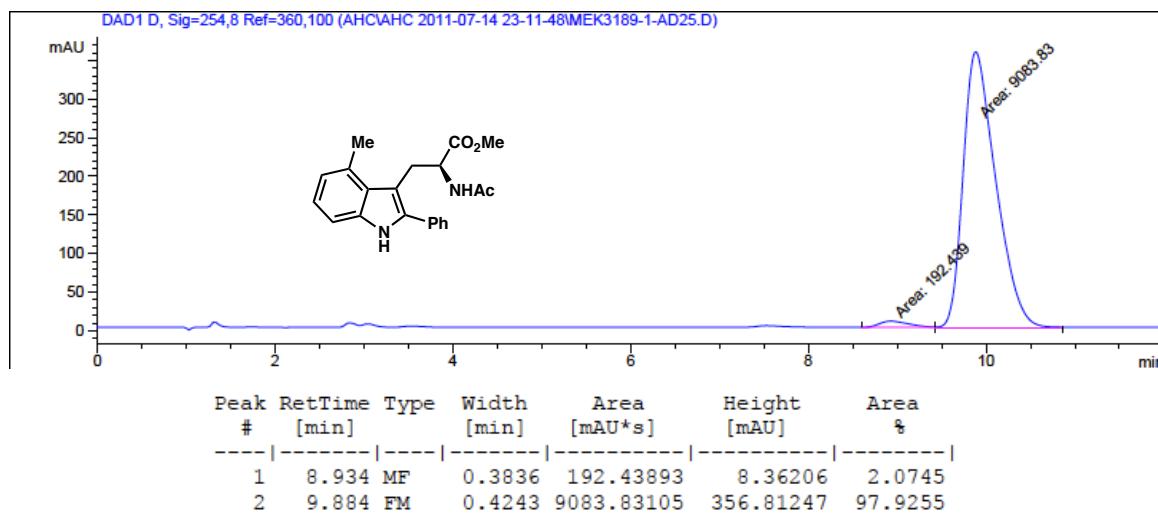


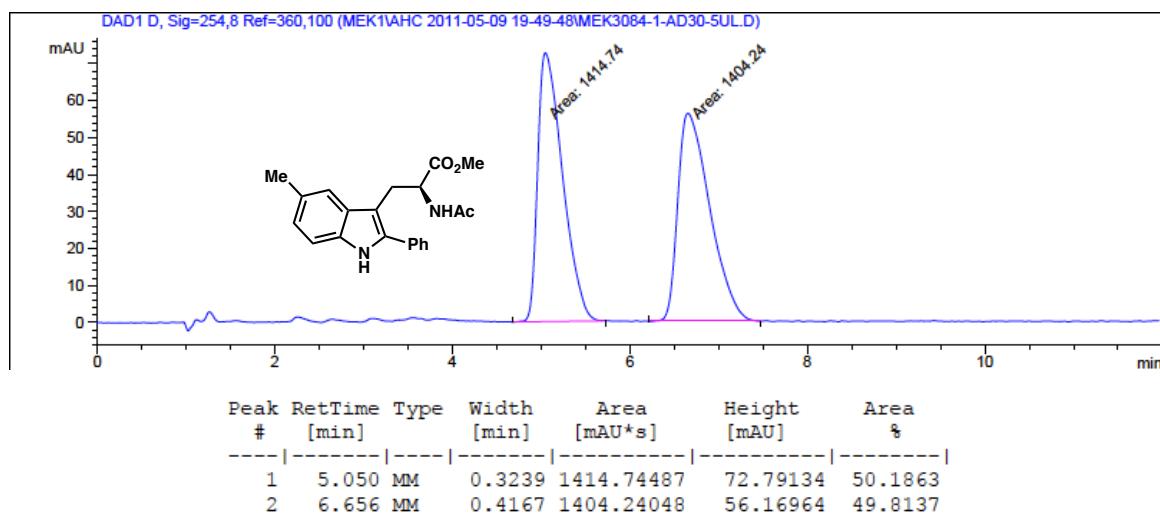
Substrate scope of the conjugate addition/asymmetric protonation

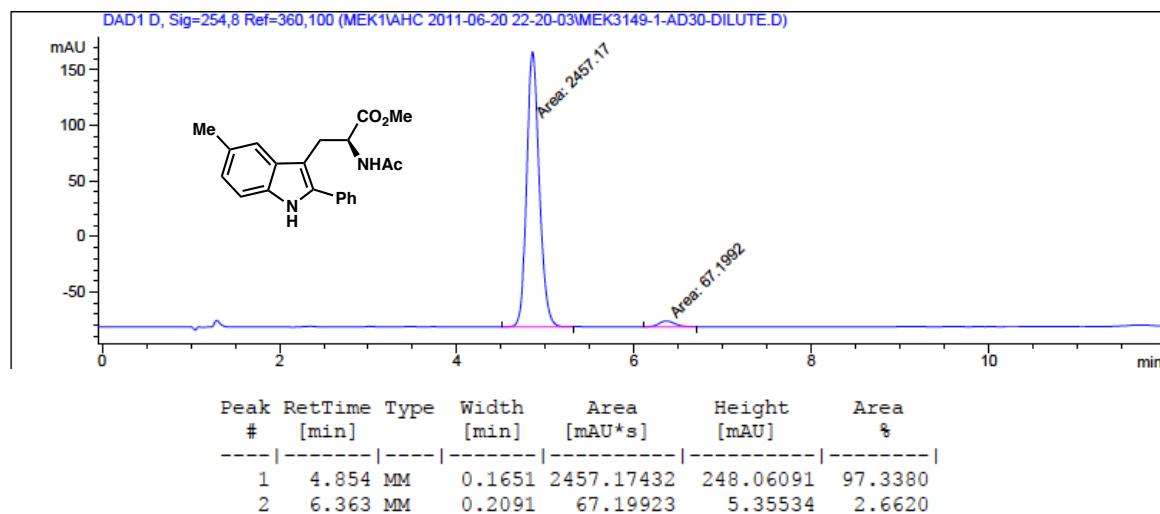

138e (Table 3.2.5, entry 2): racemic

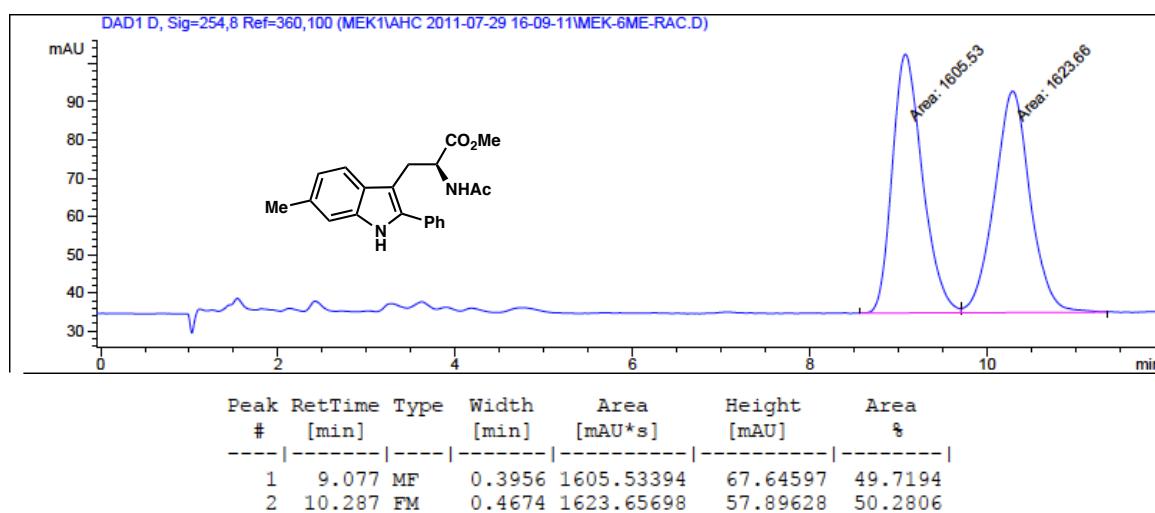

138e (Table 3.2.5, entry 2): enantioenriched, 85% ee

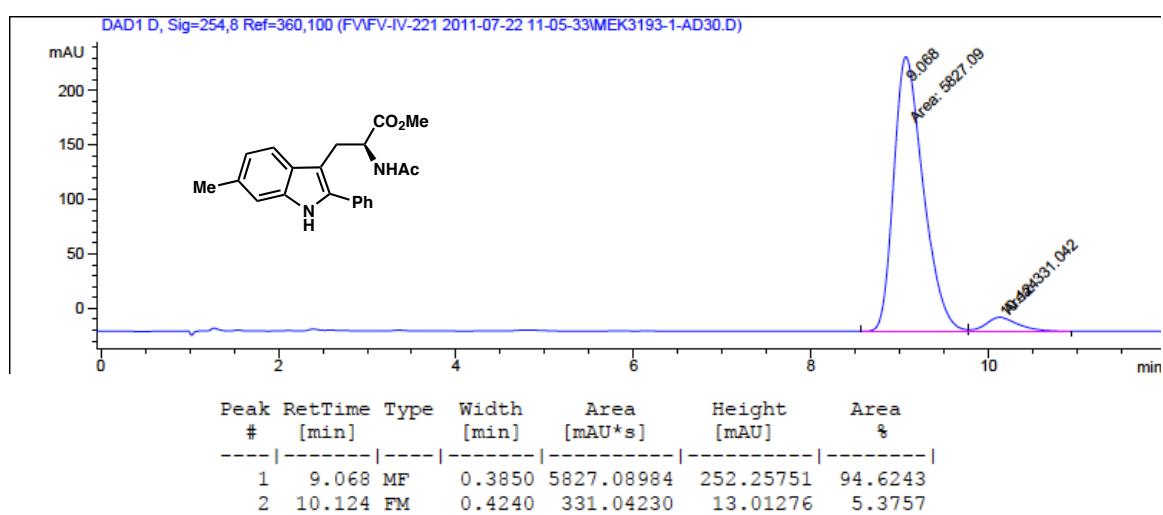

138f (Table 3.2.5, entry 3): racemic

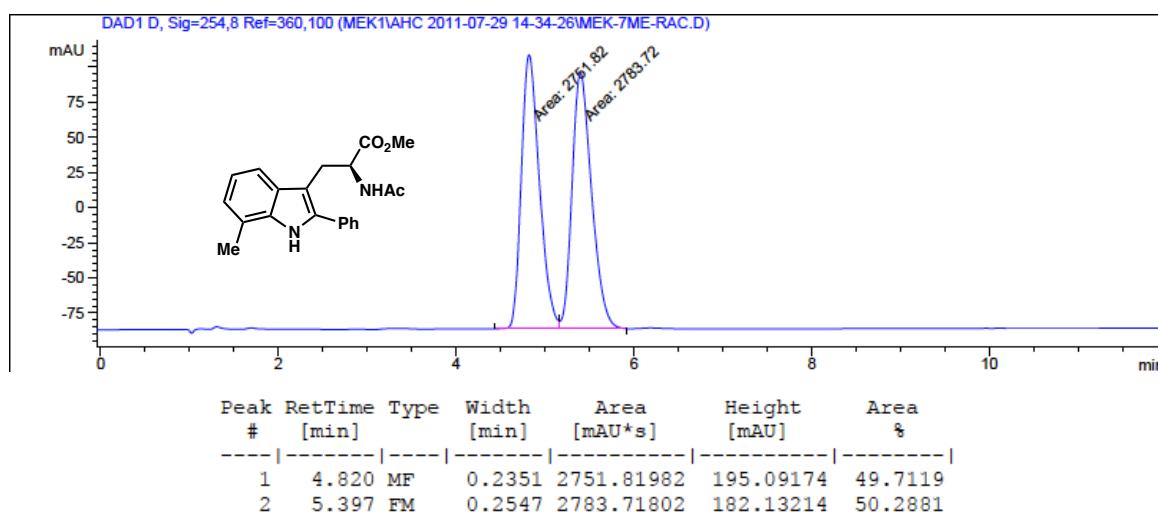

138f (Table 3.2.5, entry 3): enantioenriched, 85% ee

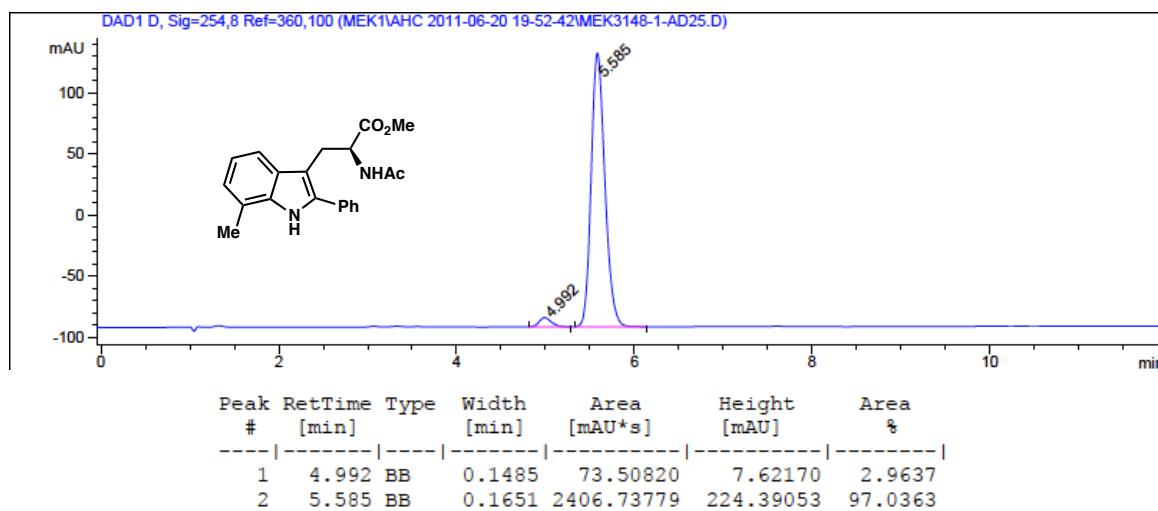

138g (Table 3.2.5, entry 4): racemic

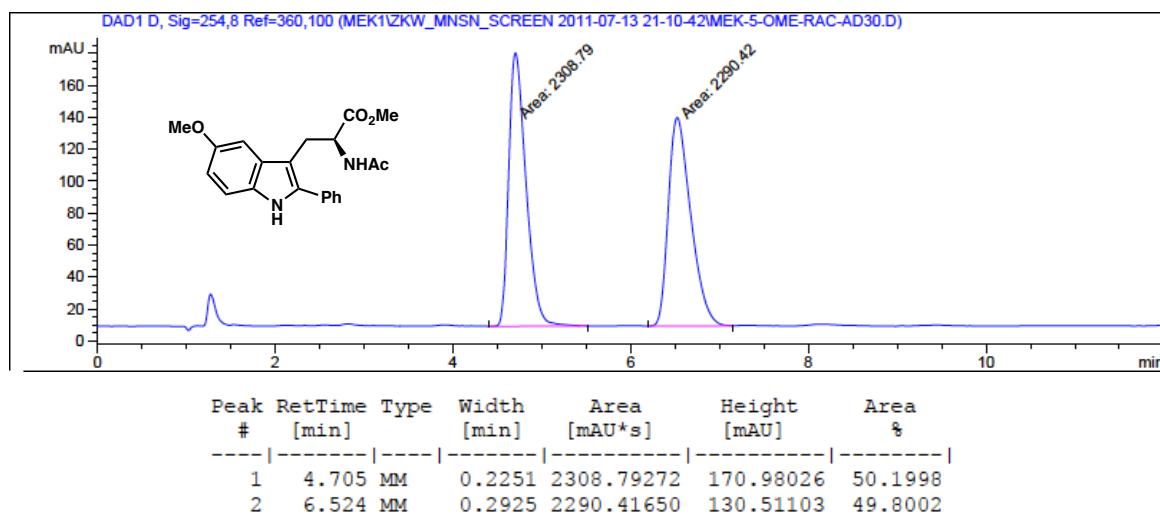
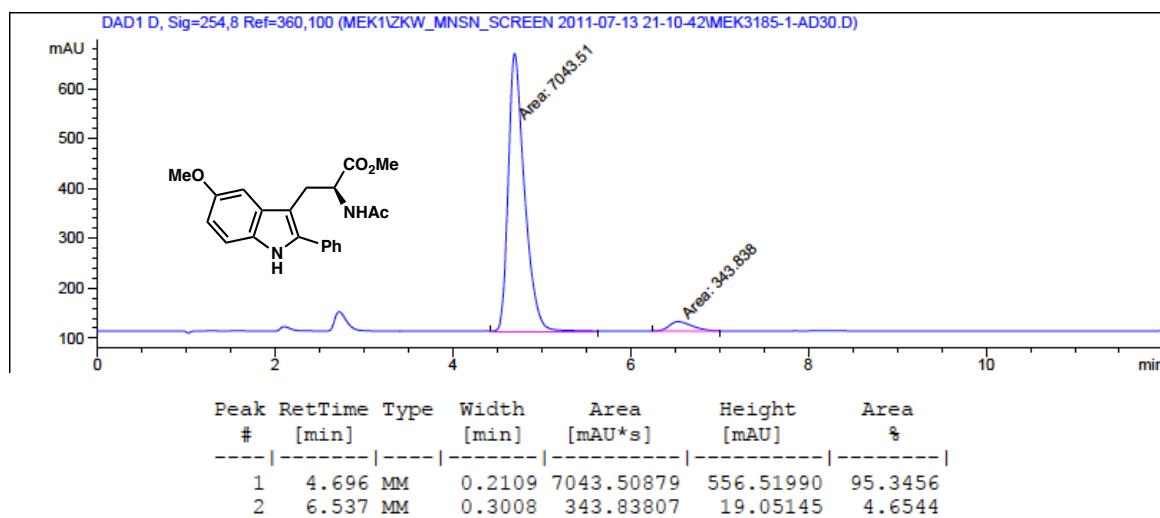

138g (Table 3.2.5, entry 4): enantioenriched, 96% ee


138h (Table 3.2.5, entry 5): racemic

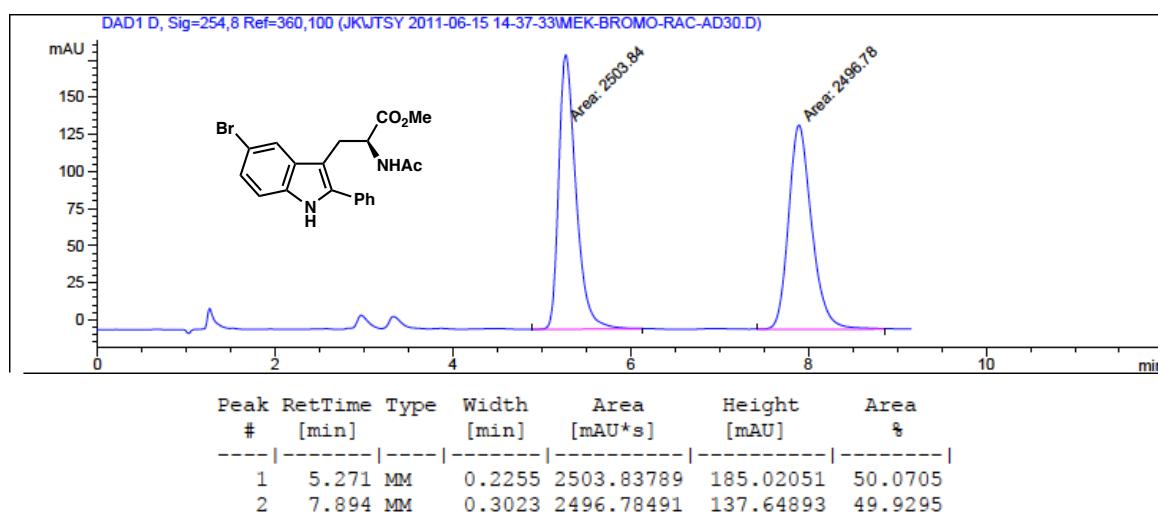

138h (Table 3.2.5, entry 5): enantioenriched, 95% ee


138i (Table 3.2.5, entry 6): racemic

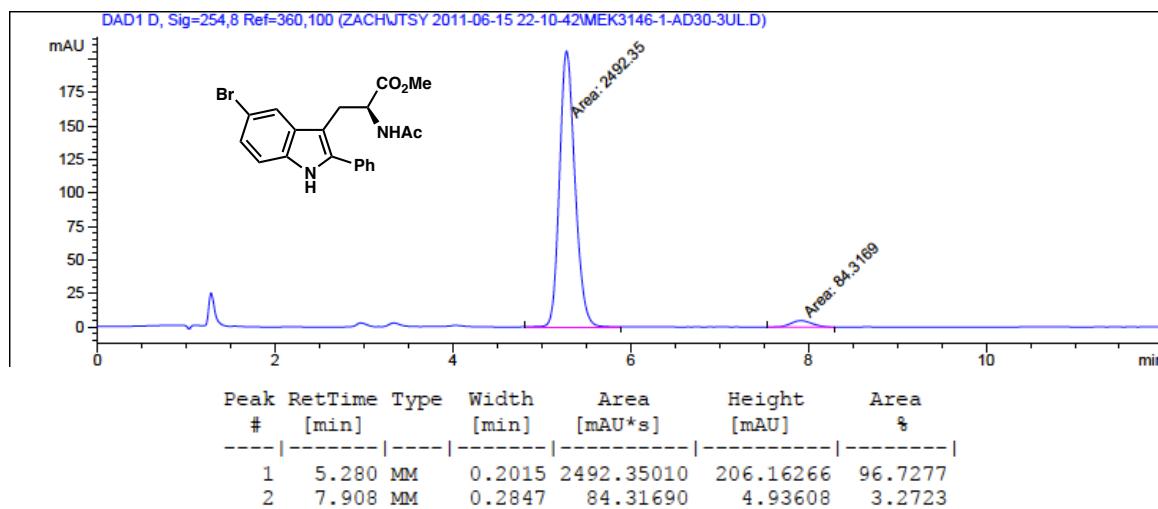

138i (Table 3.2.5, entry 6): enantioenriched, 89% ee

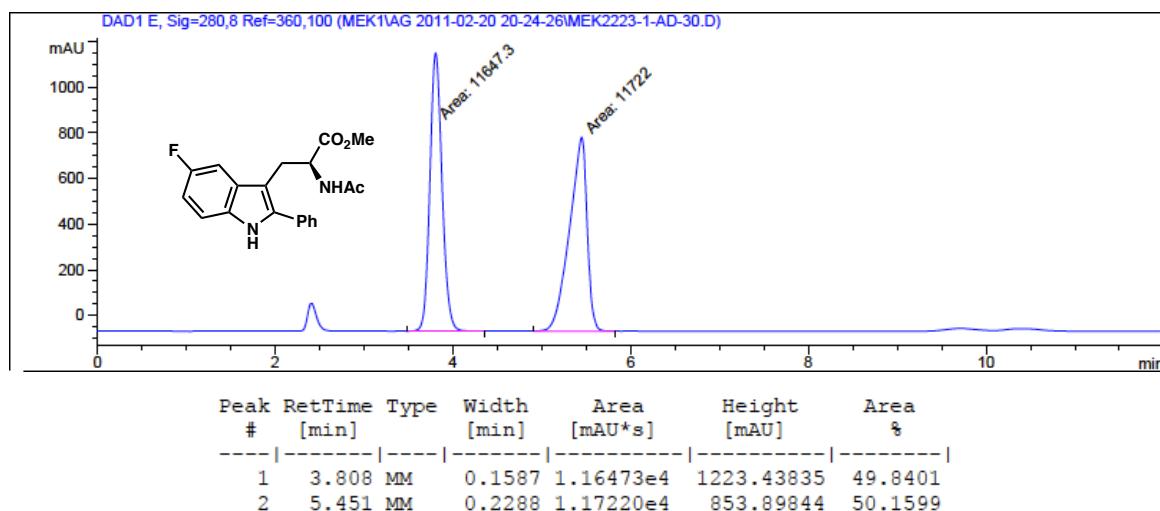
138j (Table 3.2.5, entry 7): racemic

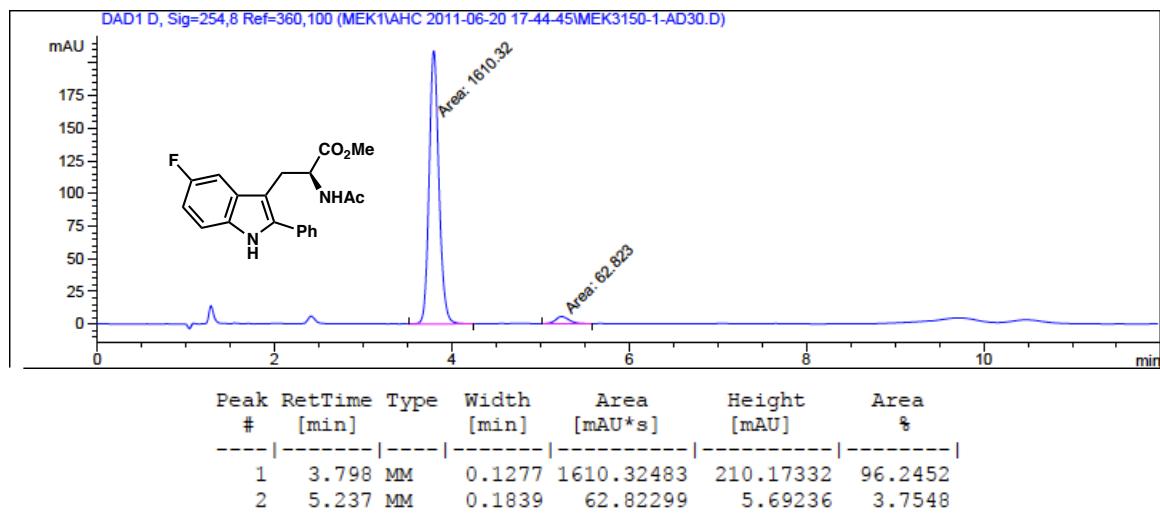


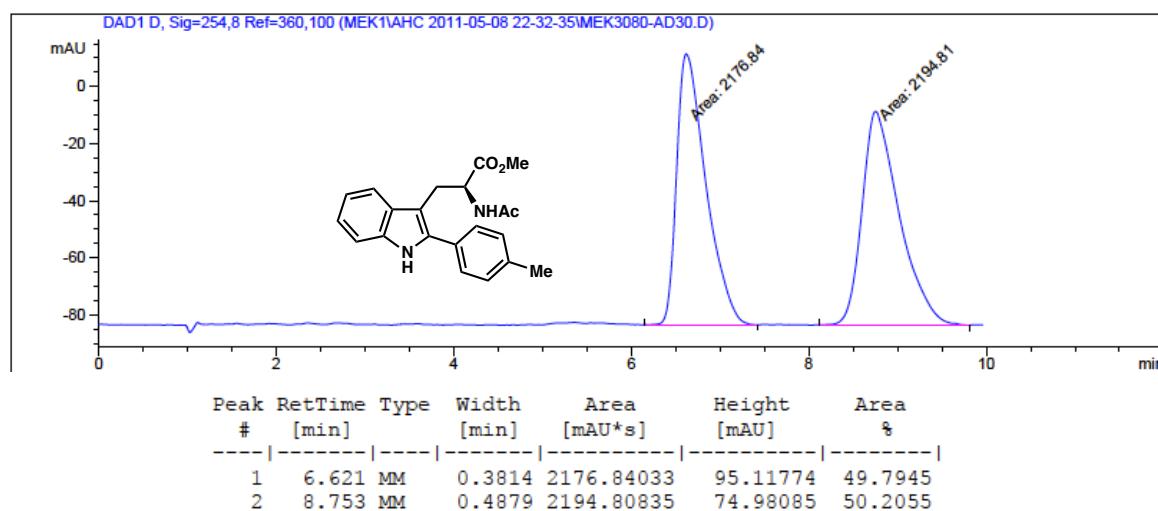
138j (Table 3.2.5, entry 7): enantioenriched, 94% ee

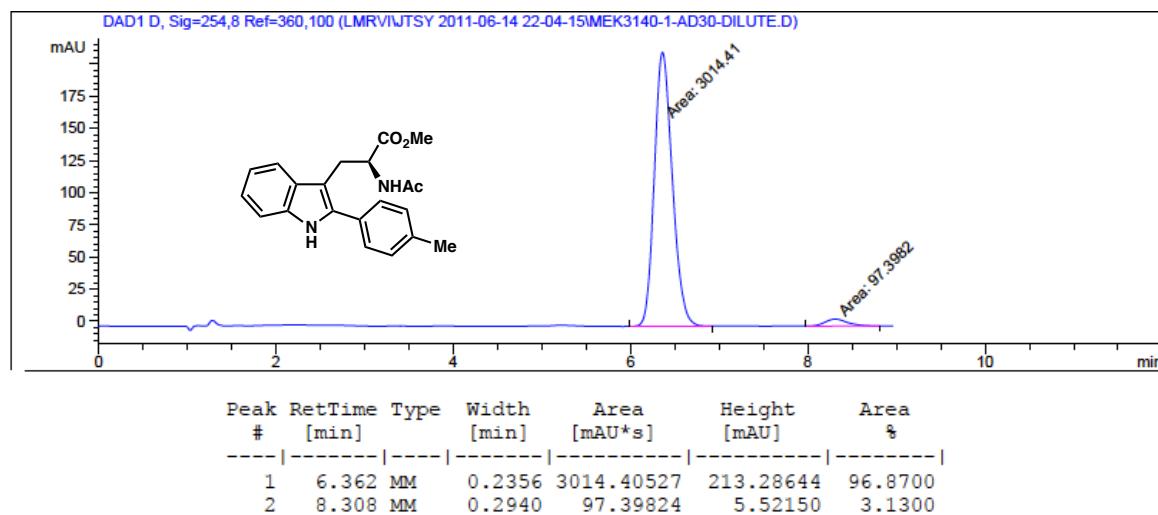


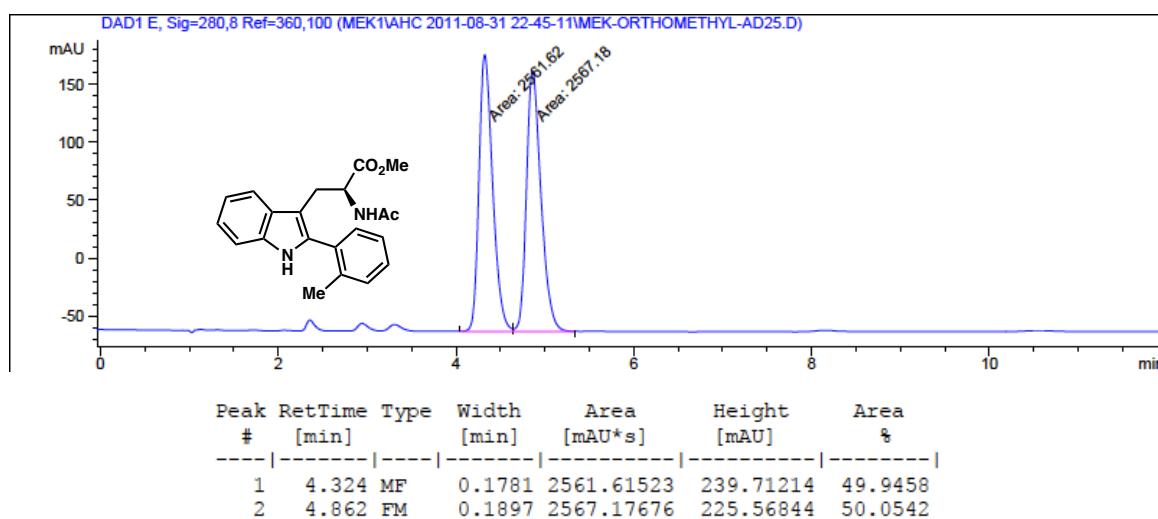
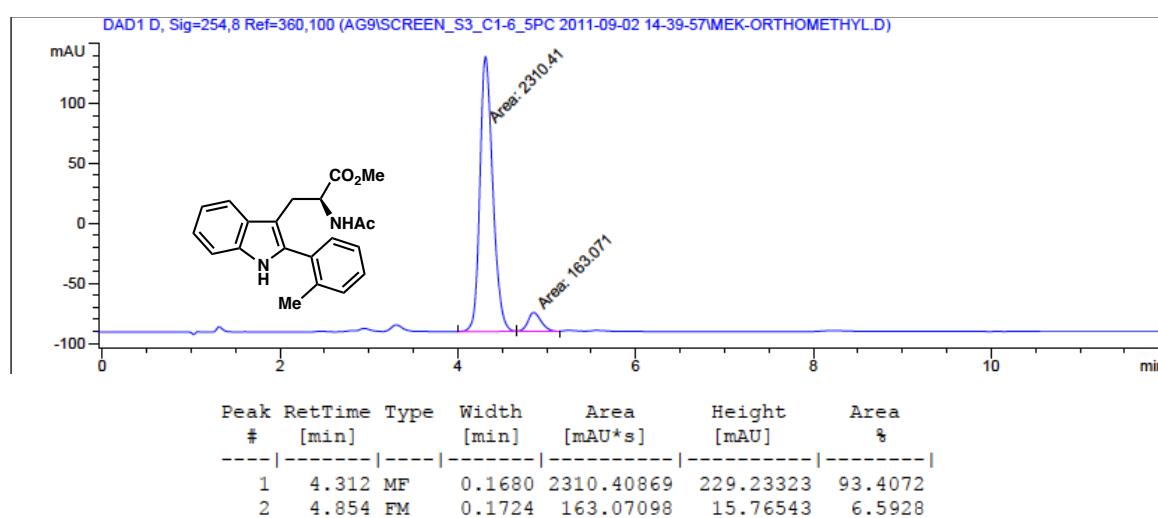
138k (Table 3.2.5, entry 8): racemic**138k** (Table 3.2.5, entry 8): enantioenriched, 91% ee


138I (Table 3.2.5, entry 9): racemic

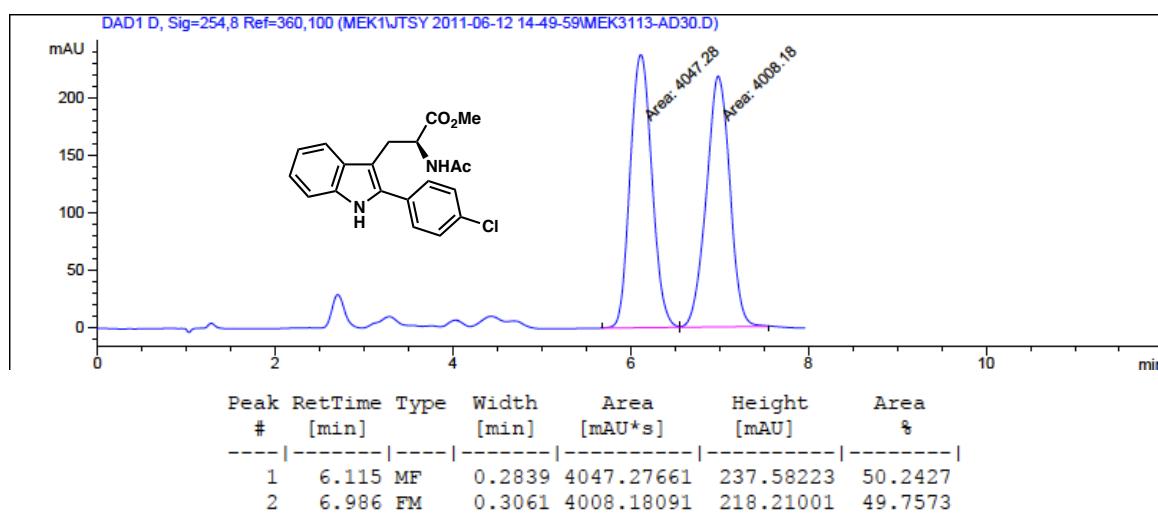

138I (Table 3.2.5, entry 9): enantioenriched, 93% ee


138m (Table 3.2.5, entry 10): racemic

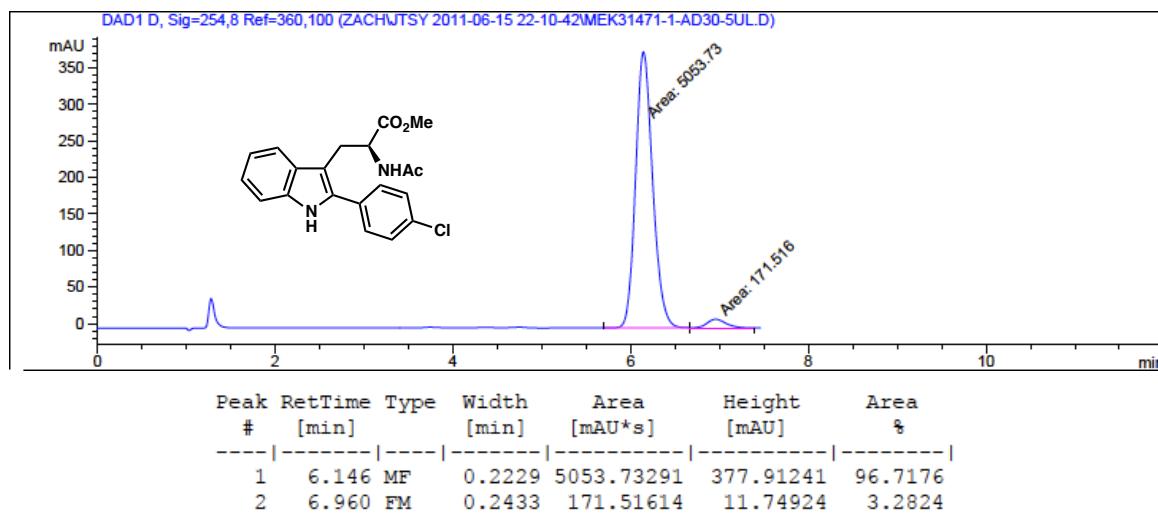

138m (Table 3.2.5, entry 10): enantioenriched, 92% ee

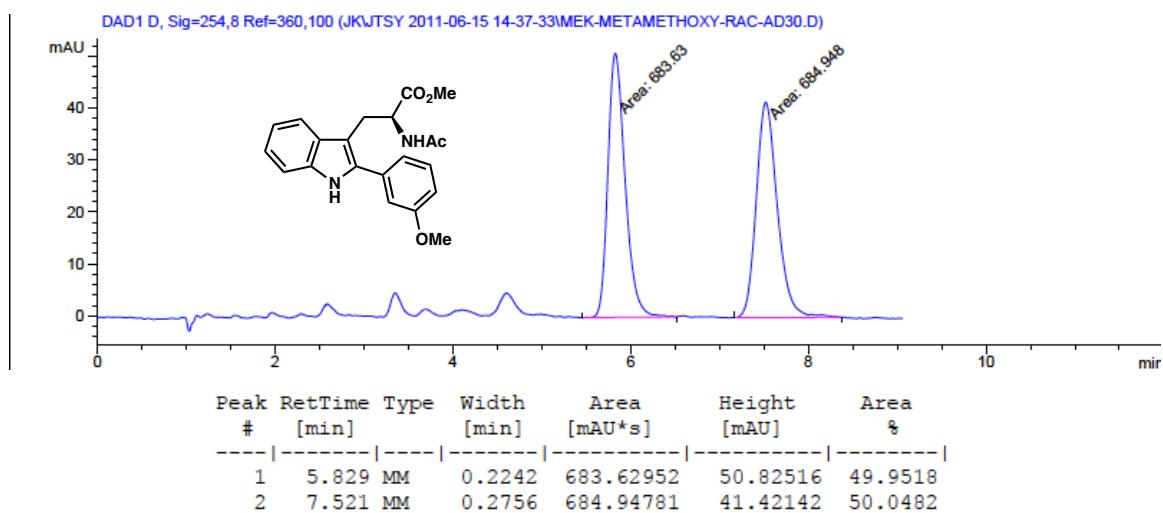
138n (Table 3.2.5, entry 11): racemic

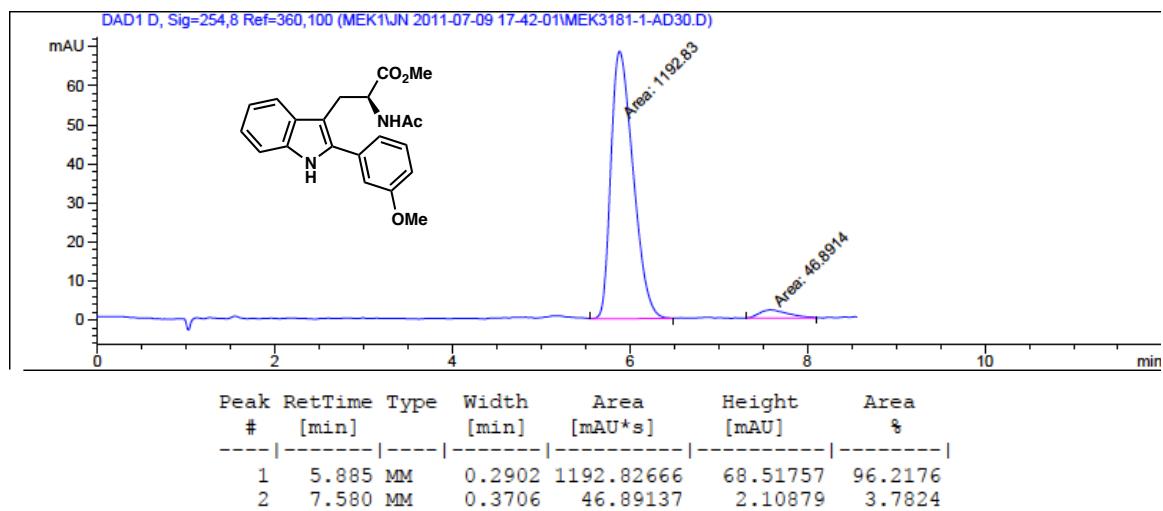


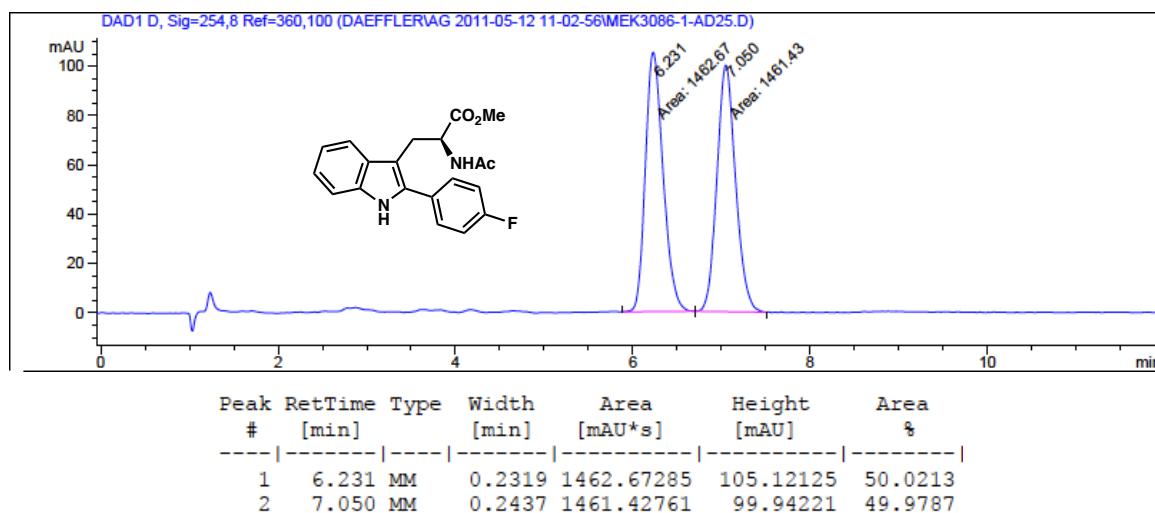
138n (Table 3.2.5, entry 11): enantioenriched, 94% ee

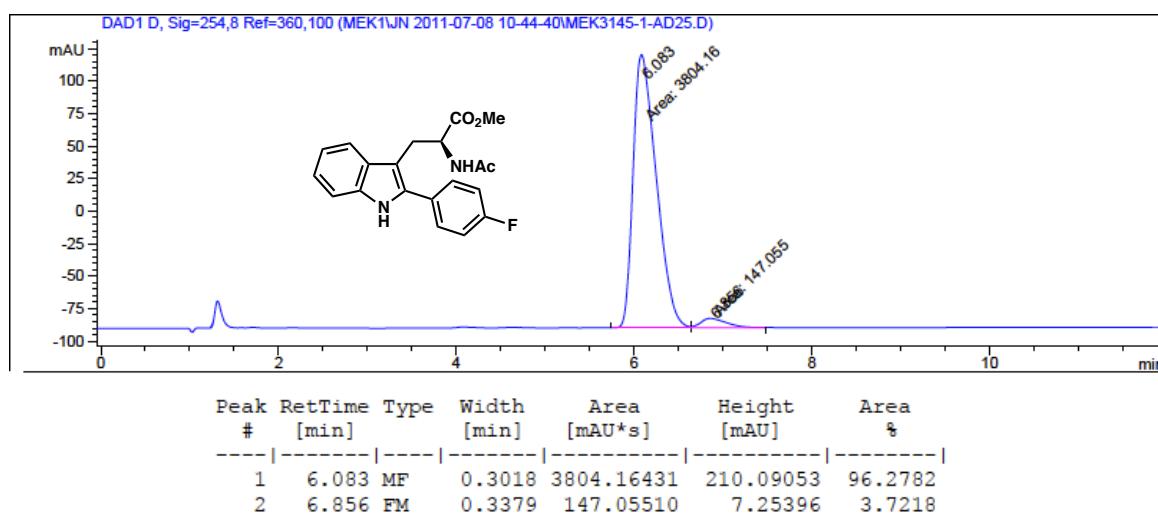


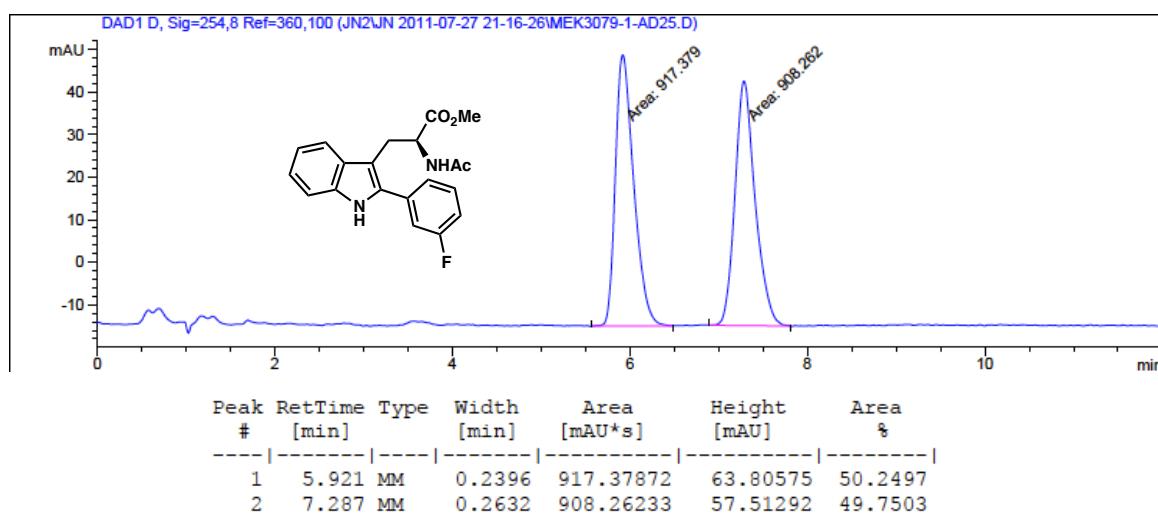
138o (Table 3.2.5, entry 12): racemic**138o** (Table 3.2.5, entry 12): enantioenriched, 87% ee

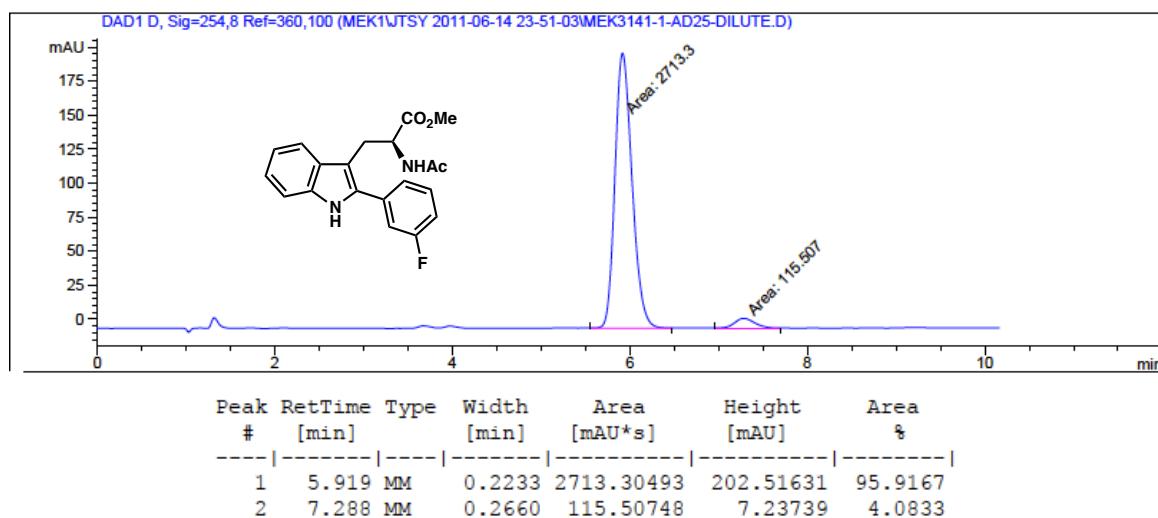

138p (Table 3.2.5, entry 13): racemic

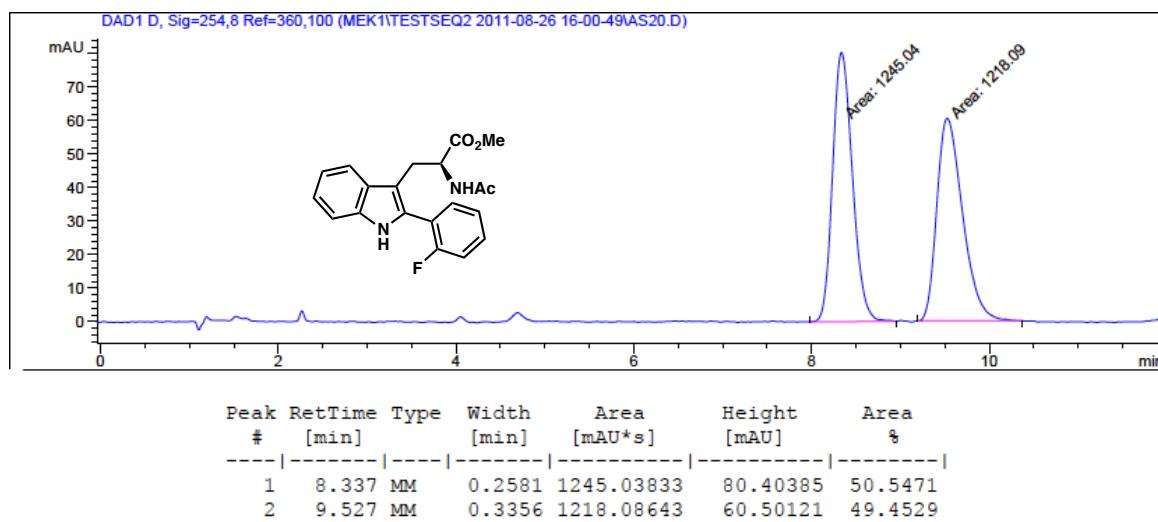

138p (Table 3.2.5, entry 13): enantioenriched, 93% ee

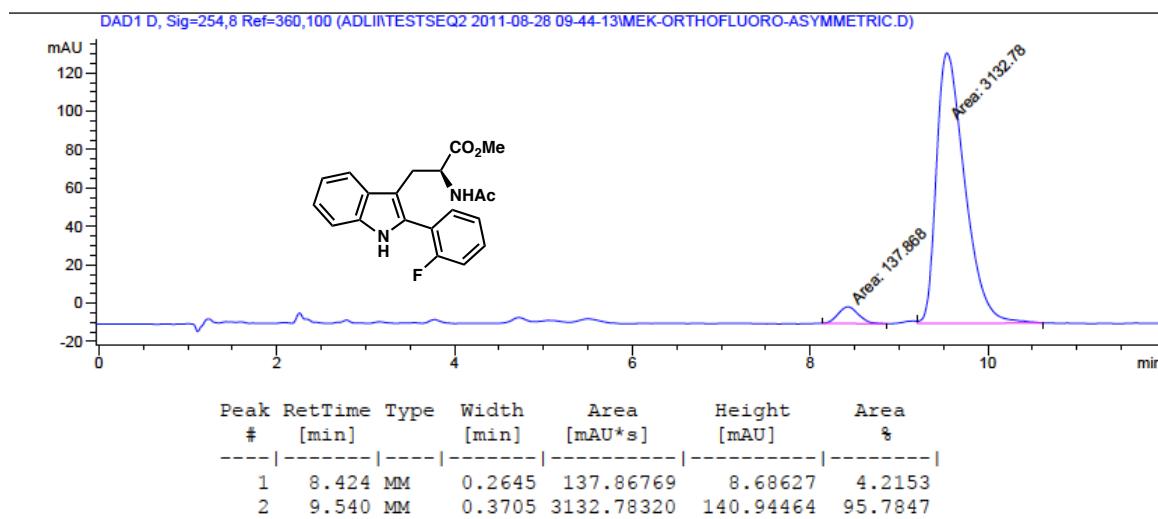

138q (Table 3.2.5, entry 14): racemic

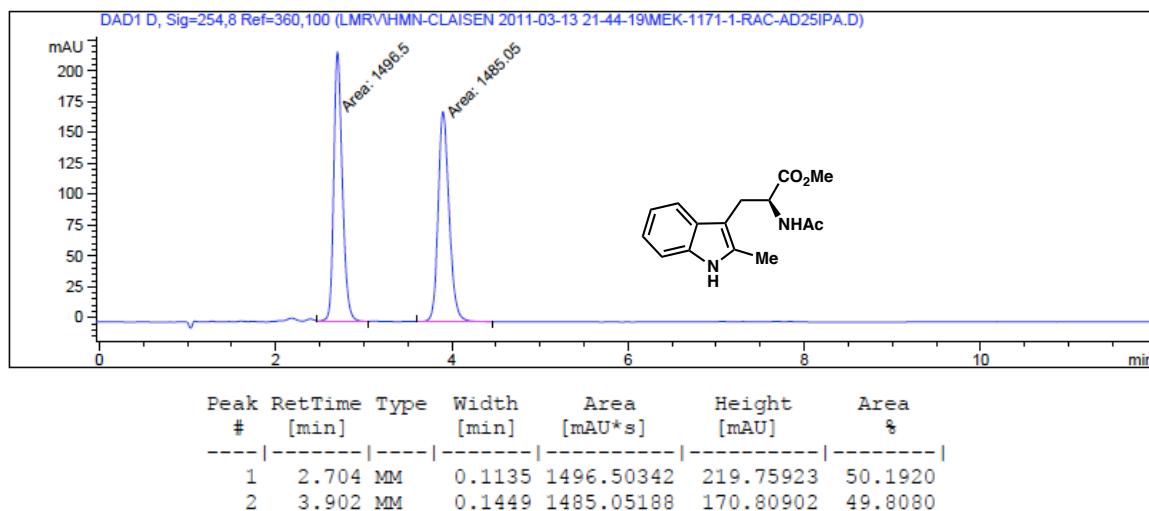

138q (Table 3.2.5, entry 14): enantioenriched, 92% ee

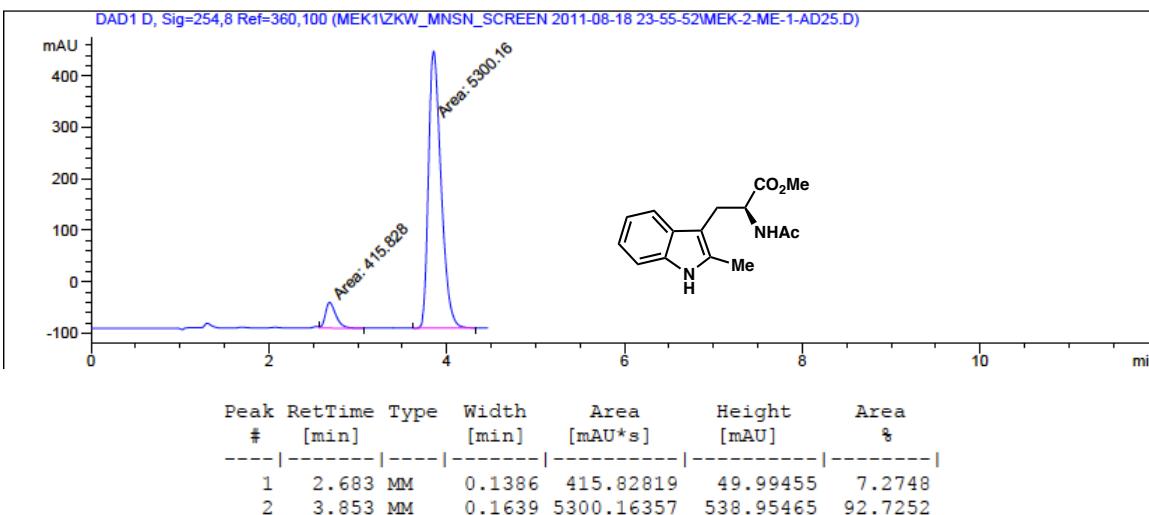

138r (Table 3.2.5, entry 15): racemic

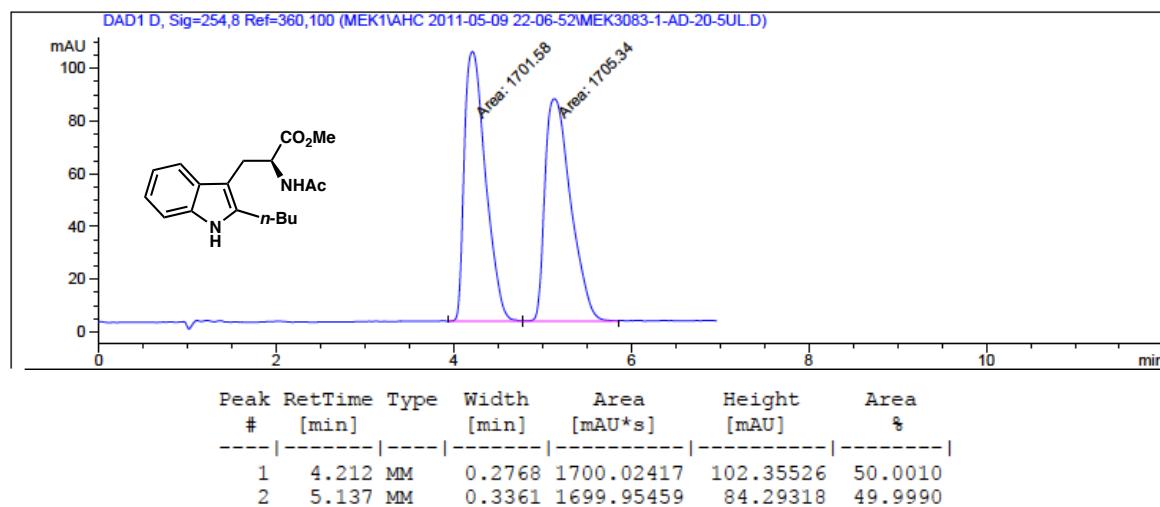

138r (Table 3.2.5, entry 15): enantioenriched, 93% ee

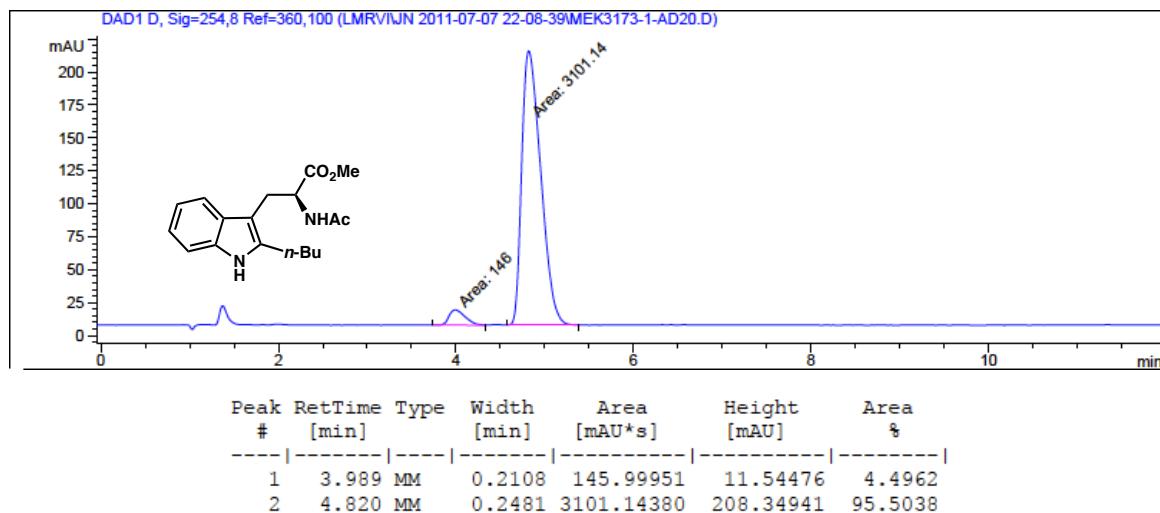

138s (Table 3.2.5, entry 16): racemic

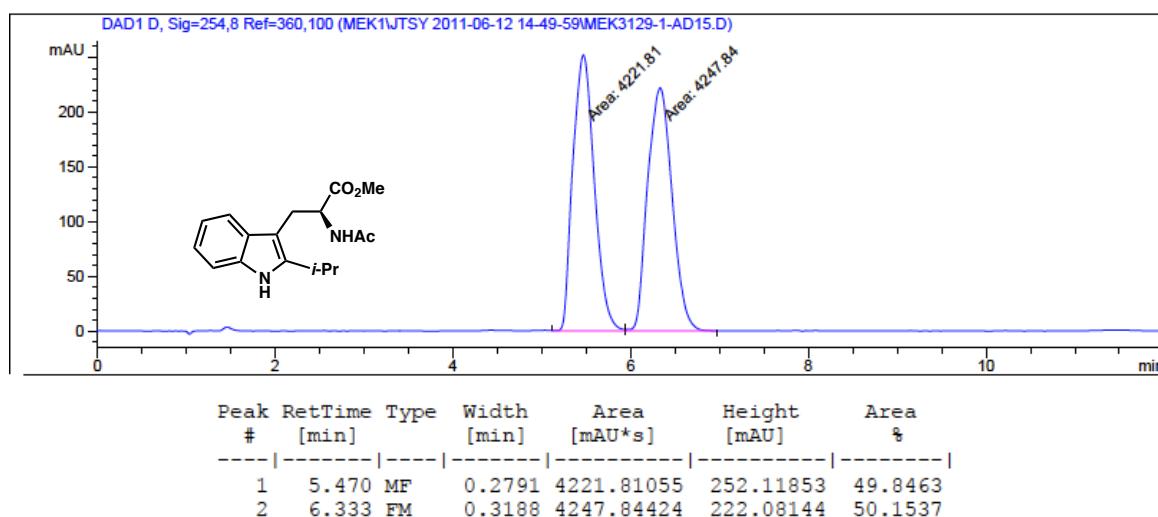

138s (Table 3.2.5, entry 16): enantioenriched, 92% ee

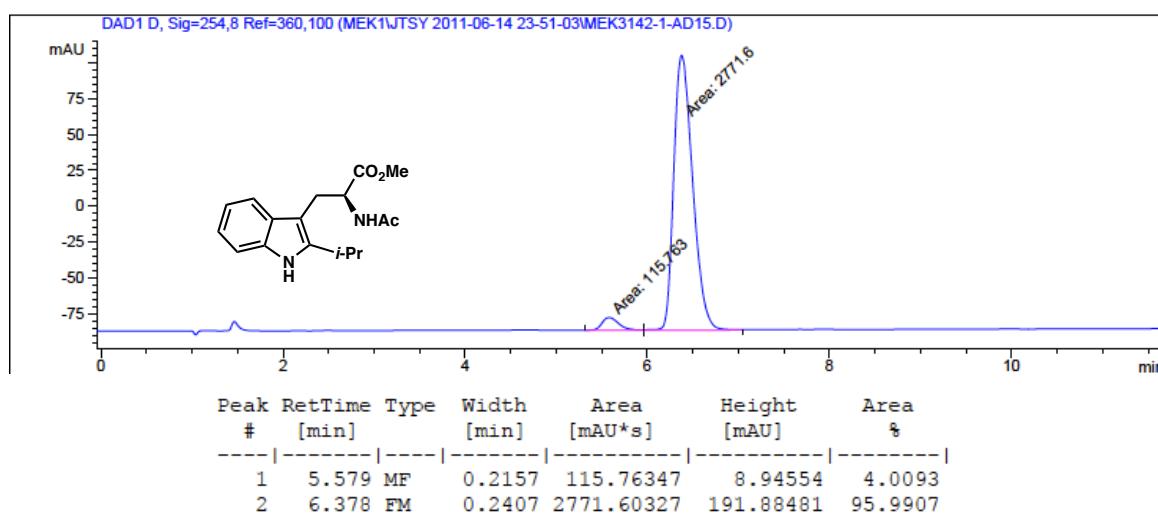

138t (Table 3.2.5, entry 17): racemic

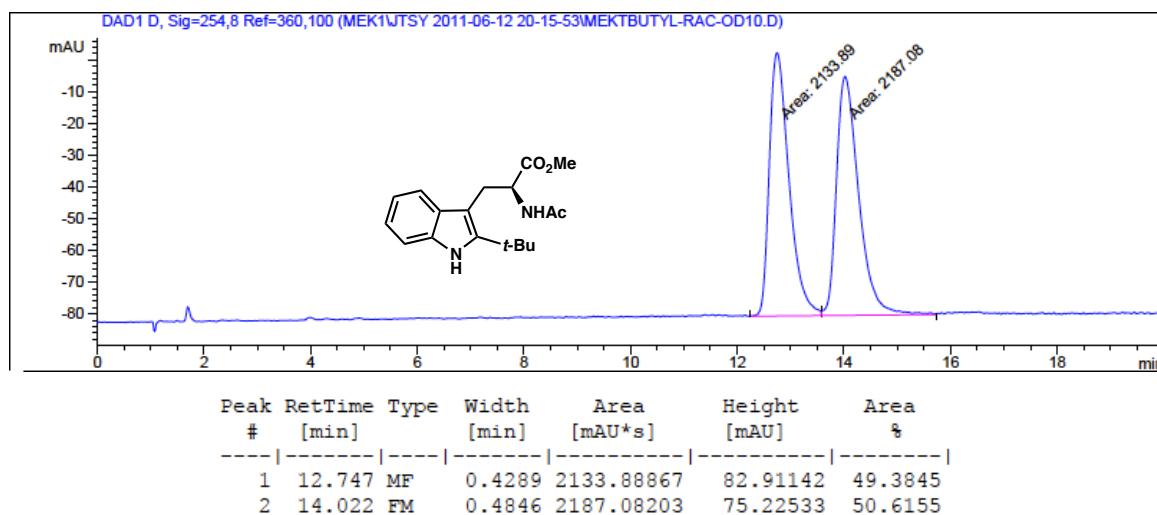

138t (Table 3.2.5, entry 17): enantioenriched, 92% ee

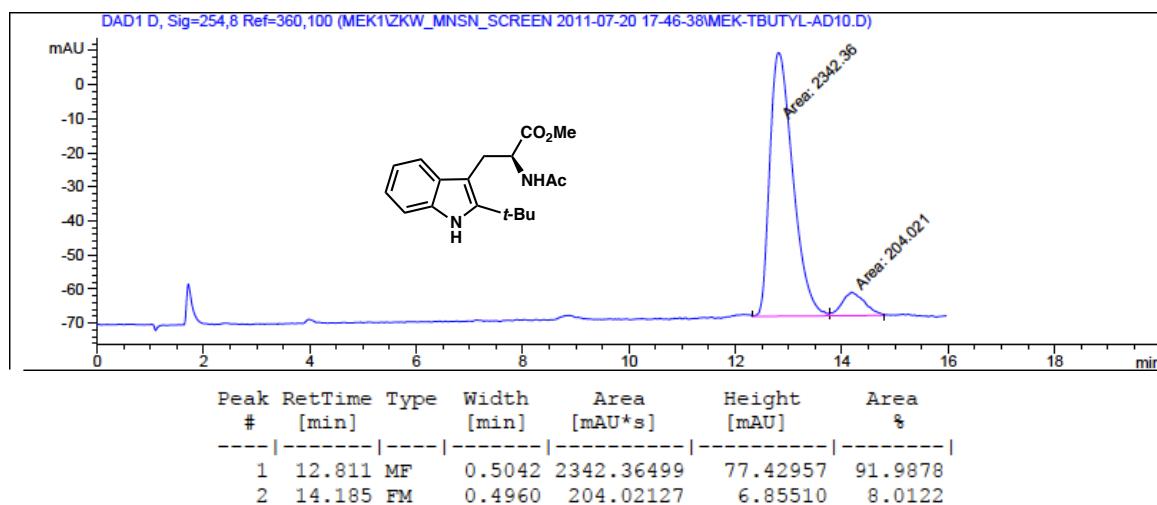

138d (Table 3.2.5, entry 18): racemic

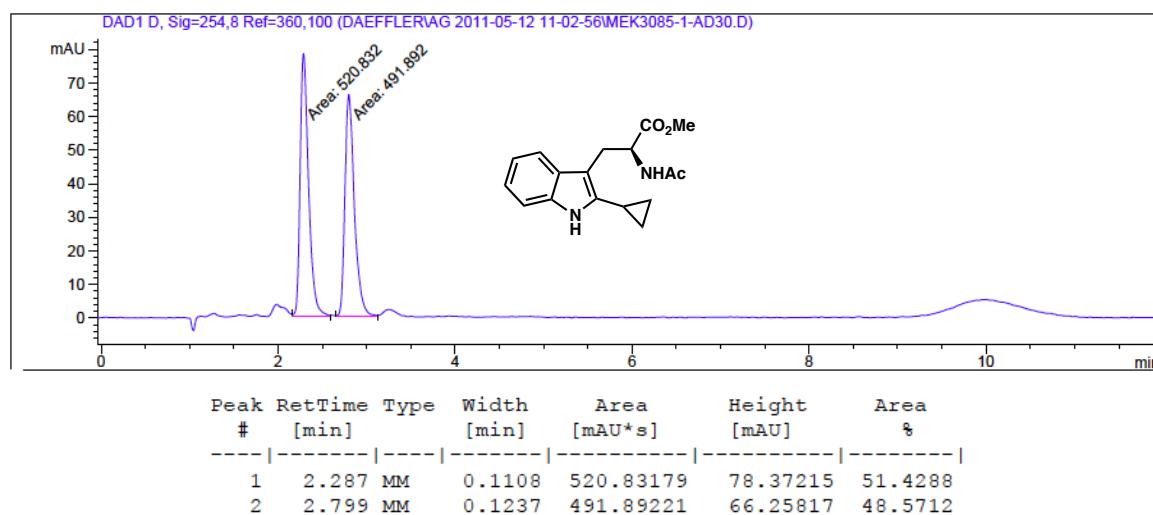

138d (Table 3.2.5, entry 18): enantioenriched, 85% ee

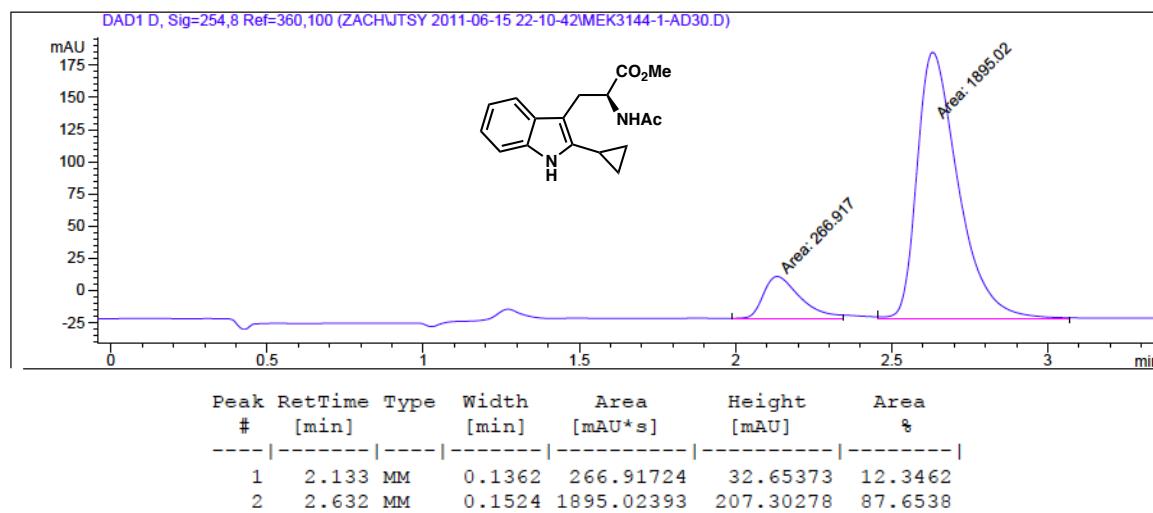

138u (Table 3.2.5, entry 19): racemic

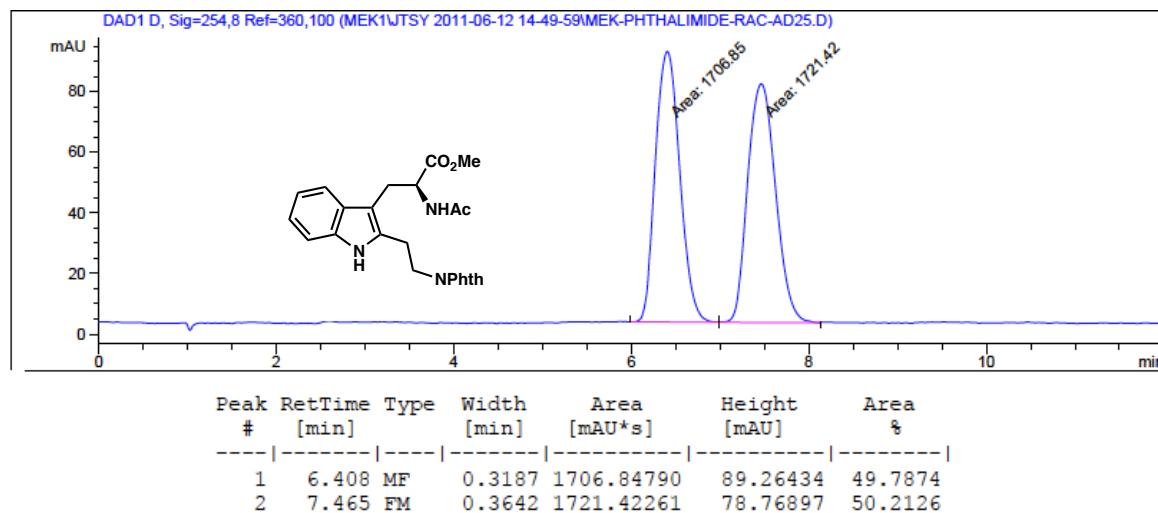

138u (Table 3.2.5, entry 19): enantioenriched, 91% ee

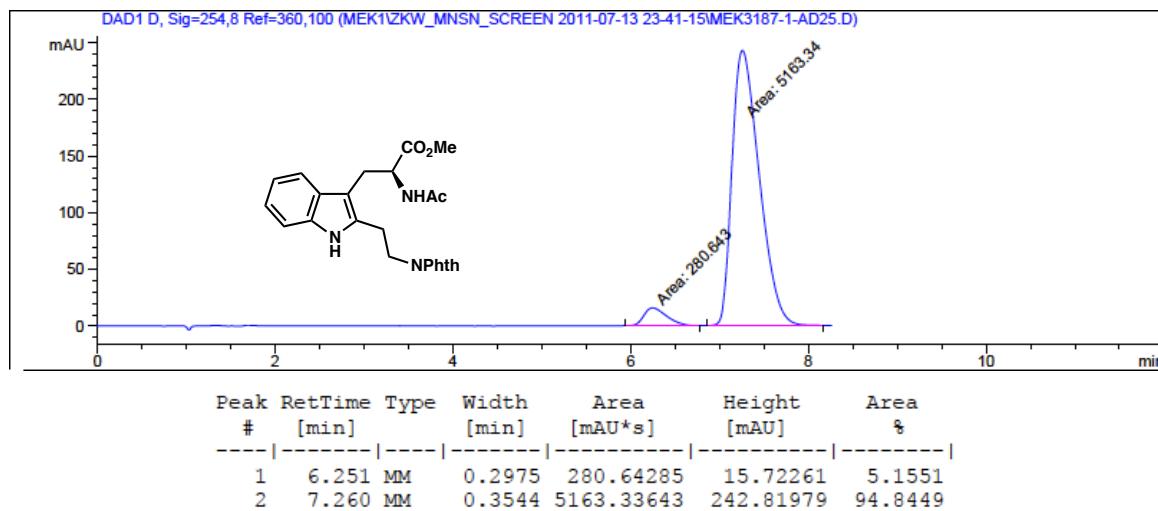

138v (Table 3.2.5, entry 20): racemic

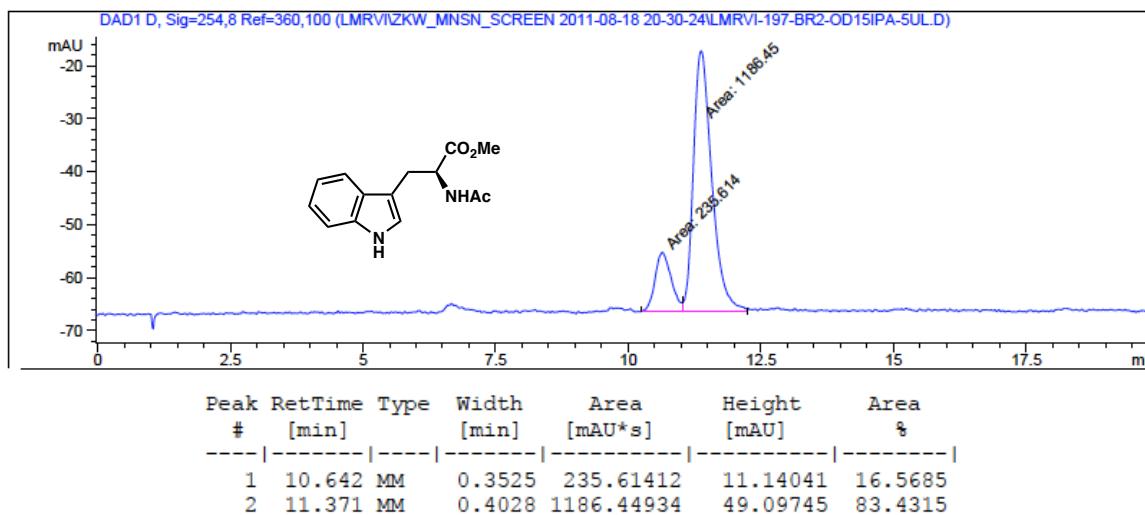

138v (Table 3.2.5, entry 20): enantioenriched, 92% ee


138w (Table 3.2.5, entry 21): racemic

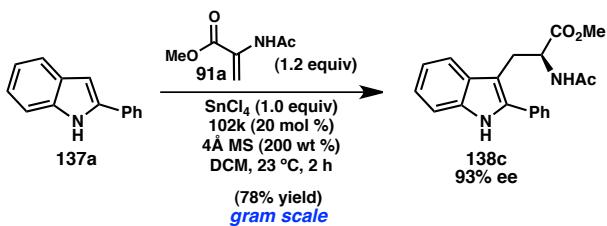

138w (Table 3.2.5, entry 21): enantioenriched, 84% ee


138x (Table 3.2.5, entry 22): racemic

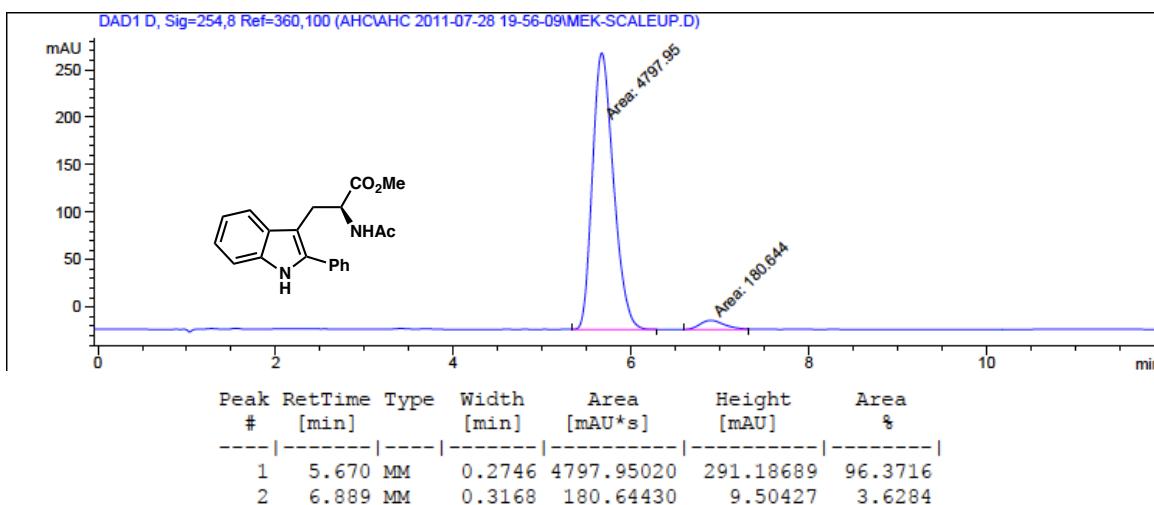

138x (Table 3.2.5, entry 22): enantioenriched, 75% ee



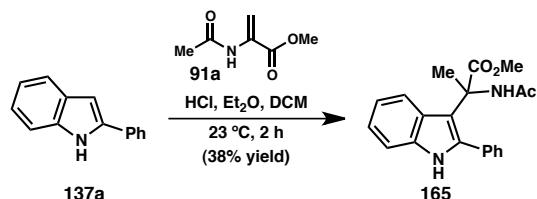
138y (Table 3.2.5, entry 23): racemic



138y (Table 3.2.5, entry 23): enantioenriched, 90% ee

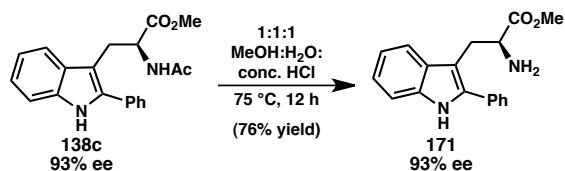


138z (Scheme 3.2.3): racemic**138z** (Scheme 3.2.3): enantioenriched, 67% ee


3.4.6 Scale-up Procedure

To a flame-dried flask under nitrogen containing freshly activated powdered 4Å molecular sieves (200 wt %) was added 2-phenylindole (**137a**, 1.00 g, 5.20 mmol, 1.00 equiv), methyl 2-acetamidoacrylate (**91a**, 890 mg, 6.20 mmol, 1.20 equiv), and (*R*)-3,3'-dibromo-BINOL (**102k**, 457 mg, 1.00 mmol, 0.20 equiv). The flask was charged with DCM (40 mL) and SnCl_4 (1 M in DCM, 5.20 mL, 5.20 mmol, 1.00 equiv) was added. The reaction was stirred at room temperature for 2 hours, then quenched by addition of 1 M HCl (50 mL). The aqueous layer was extracted with EtOAc (2 x 50 mL) and the combined organic layers were washed with saturated aqueous NaHCO_3 (50 mL), dried (Na_2SO_4), filtered and concentrated. The crude residue was purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 1.33 g (77% yield) of **138c** as a pale yellow foam. The enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO_2 , $\lambda = 254$ nm): $t_{\text{R}}(\text{major}) = 5.7$ min, $t_{\text{R}}(\text{minor}) = 6.9$ min.

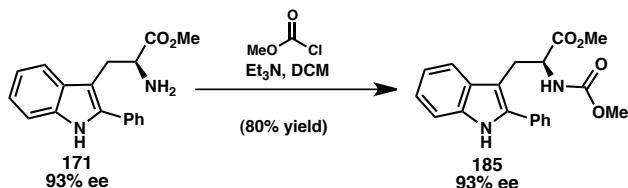
3.4.7 Preparation of Methyl 2-acetamido-2-(2-phenyl-1H-indol-3-yl)propanoate (165)



To a flame-dried flask charged with 2-phenylindole (**137a**, 38.6 mg, 0.200 mmol, 1.00 equiv) and methyl 2-acetamidoacrylate (**91a**, 34.3 mg, 0.240 mmol, 1.20 equiv) was added 1.5 mL DCM, followed by HCl dropwise (2 M in Et₂O, 100 μL, 0.200 mmol, 1.00 equiv). After stirring in the dark 2 hours at room temperature, the dark yellow reaction solution was diluted with 10 mL EtOAc and quenched with 10 mL saturated aqueous NaHCO₃. The aqueous layer was extracted with 10 mL EtOAc and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The crude oil was purified by silica gel column chromatography (gradient, 0:100 to 100:0 EtOAc:hexanes) to yield 25.8 mg (38% yield) of methyl 2-acetamido-2-(2-phenyl-1H-indol-3-yl)propanoate (**165**) as a pale yellow foam. ¹H NMR (500 MHz, CDCl₃) δ 8.37 (br s, 1H), 7.79 (d, *J* = 8.0 Hz,

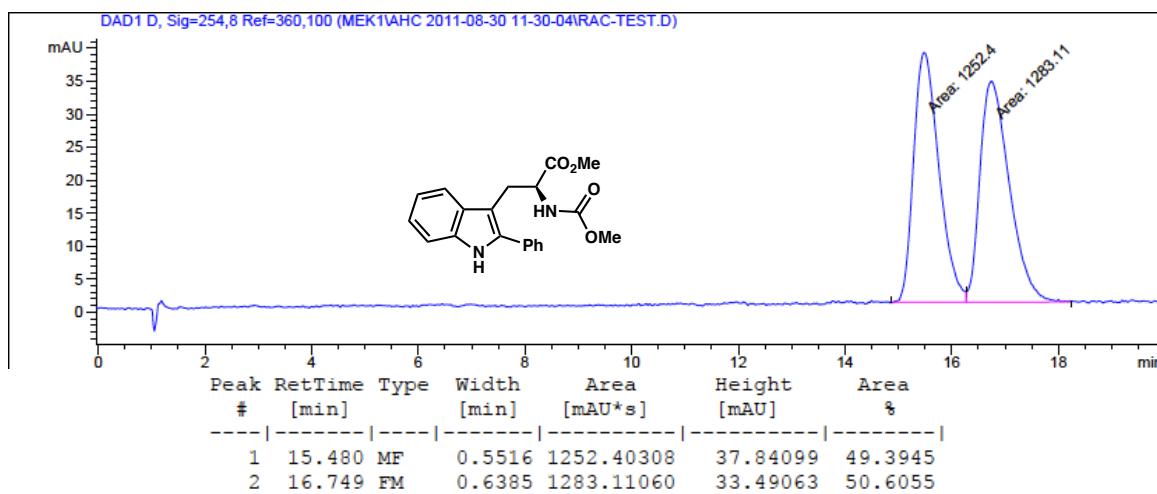
1H), 7.56 – 7.48 (m, 2H), 7.45 – 7.37 (m, 3H), 7.30 (ddd, J = 8.1, 0.9, 0.9 Hz, 1H), 7.20 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.15 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 6.70 (br s, 1H), 3.48 (s, 3H), 1.96 (s, 3H), 1.70 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 173.5, 168.8, 135.5, 135.4, 133.5, 130.6, 128.7, 128.0, 126.1, 122.2, 120.5, 120.1, 111.4, 111.1, 59.8, 52.7, 24.4, 23.3.; FTIR (NaCl/thin film): 3271, 3054, 2948, 1734, 1663, 1507, 1489, 1458, 1445, 1432, 1370, 1295, 1253, 1126 cm^{-1} ; HRMS (MM) calc'd for $\text{C}_{20}\text{H}_{21}\text{N}_2\text{O}_3$ [M+H] $^+$ 337.1547, found 337.1545.

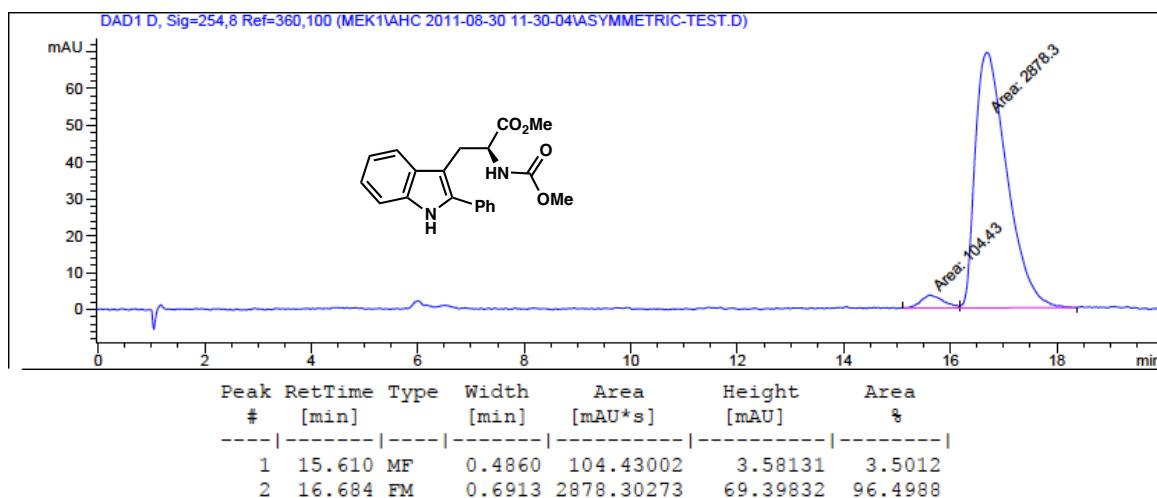
3.4.8 Functionalization of Tryptophan 138c


3.4.8.1 Acetamide Hydrolysis⁴⁴

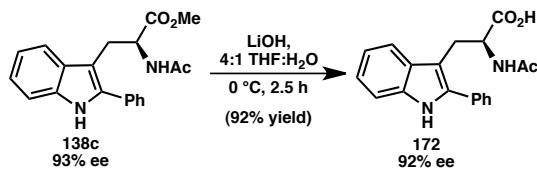
A vial was charged with (S)-N α -acetyl-2-phenyltryptophan methyl ester (**138c**, 30.0 mg, 0.09 mmol), MeOH (1 mL), H₂O (1 mL) and aqueous HCl (12 M, 1 mL). The reaction was heated to 75 °C for 12 hours, then concentrated, redissolved in DCM (10 mL) and washed with saturated aqueous NaHCO₃ (3 X 5 mL). The aqueous layers were combined and extracted with DCM (4 X 5 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by silica gel chromatography (99:1 DCM:MeOH) to yield 20.0 mg (76% yield) of **171** as a light yellow oil. The enantiomeric excess was determined by chiral SFC analysis of the corresponding methylcarbamate **185** (see below). ^1H NMR (500 MHz,

CDCl_3) δ 8.18 (br s, 1H), 7.67 (dd, $J = 7.6, 0.7$ Hz, 1H), 7.62 – 7.60 (m, 2H), 7.50 – 7.43 (m, 2H), 7.41 – 7.34 (m, 2H), 7.22 (ddd, $J = 8.1, 7.1, 1.2$ Hz, 1H), 7.15 (ddd, $J = 7.9, 7.0, 1.0$ Hz, 1H), 3.89 (dd, $J = 8.4, 5.0$ Hz, 1H), 3.56 (s, 3H), 3.47 – 3.38 (m, 1H), 3.27 – 3.14 (m, 1H), 1.69 (br s, 2H); ^{13}C NMR (125 MHz, CDCl_3) δ 175.5, 136.1, 135.8, 132.9, 129.1, 129.0, 128.3, 128.0, 122.5, 119.9, 119.2, 110.9, 108.2, 55.2, 51.9, 30.2; IR (NaCl/thin film): 3367, 3062, 2948, 1732, 1603, 1489, 1457, 1207; $[\alpha]_D^{25} = -12.4^\circ$ ($c = 0.85$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 295.1441, found 295.1446.

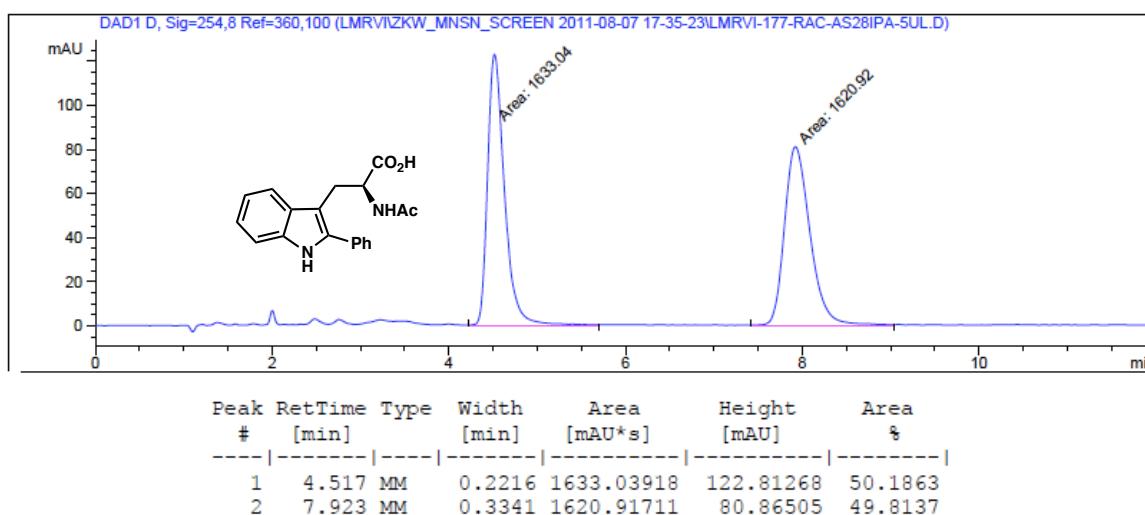

Methylcarbamate Protection


A flame-dried flask was charged with free amine **171** (19.5 mg, 0.70 mmol, 1.00 equiv), Et_3N (19 μL , 0.13 mmol, 2.0 equiv) and DCM (5 mL). Methylchloroformate (6.0 μL , 0.73 mmol, 1.10 equiv) was added and the solution was stirred at room temperature for 3 hours, then quenched with saturated aqueous NH_4Cl (5 mL) and extracted with EtOAc (2 X 5 mL). The combined organic layers were dried (Na_2SO_4), filtered and concentrated. The crude residue was purified by silica gel chromatography (25:75 EtOAc:hexanes) to yield 18.5 mg (80% yield) of methylcarbamate **185** as a colorless oil. The enantiomeric excess was determined to be 93% by chiral SFC analysis (OD-H, 2.5 mL/min, 15% IPA in CO_2 , $\lambda = 254$ nm): t_{R} (major) = 16.7 min, t_{R} (minor) = 15.6 min. ^1H NMR (500 MHz, CDCl_3) δ 8.11 (br s, 1H), 7.61 (d, $J = 7.9$ Hz, 1H), 7.57 – 7.52 (m, 1H), 7.48 – 7.45 (m, 2H), 7.40 – 7.35 (m, 2H), 7.25 – 7.19 (m, 1H), 7.16 (m, 1H), 5.06 (br d, J

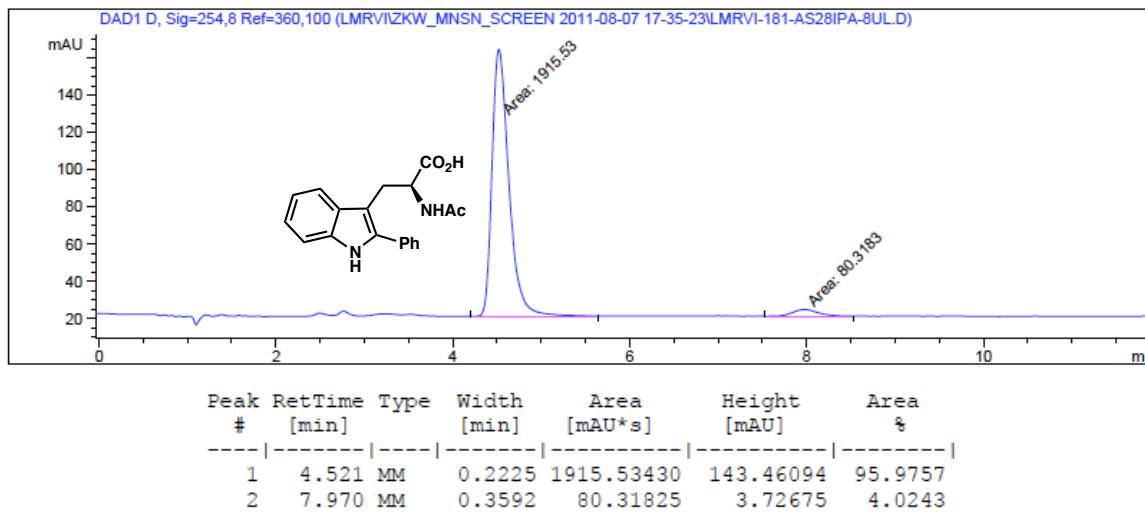
δ = 7.7 Hz, 1H), 4.63 – 4.59 (m, 1H), 3.54 (s, 3H), 3.50 (m, 2H), 3.38 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 172.3, 156.1, 136.2, 135.7, 132.9, 129.2, 129.0, 128.3, 128.0, 122.5, 120.0, 118.9, 110.9, 106.7, 54.5, 52.12, 52.07, 27.1; IR (NaCl/thin film) 3338, 2953, 2923, 2852, 1718, 1701, 1507, 1457, 1363, 1213, 1072 cm^{-1} ; $[\alpha]_D^{25} = +22.6^\circ$ ($c = 0.10$, CHCl_3). HRMS (MM) calc'd for $[\text{M}+\text{H}]^+$ 353.1496, found 353.1497.


Methylcarbamate (185): racemic

Methylcarbamate (185): enantioenriched, 93% ee

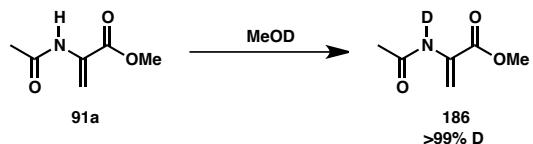


3.4.8.2 *Methyl Ester Hydrolysis*⁴⁵

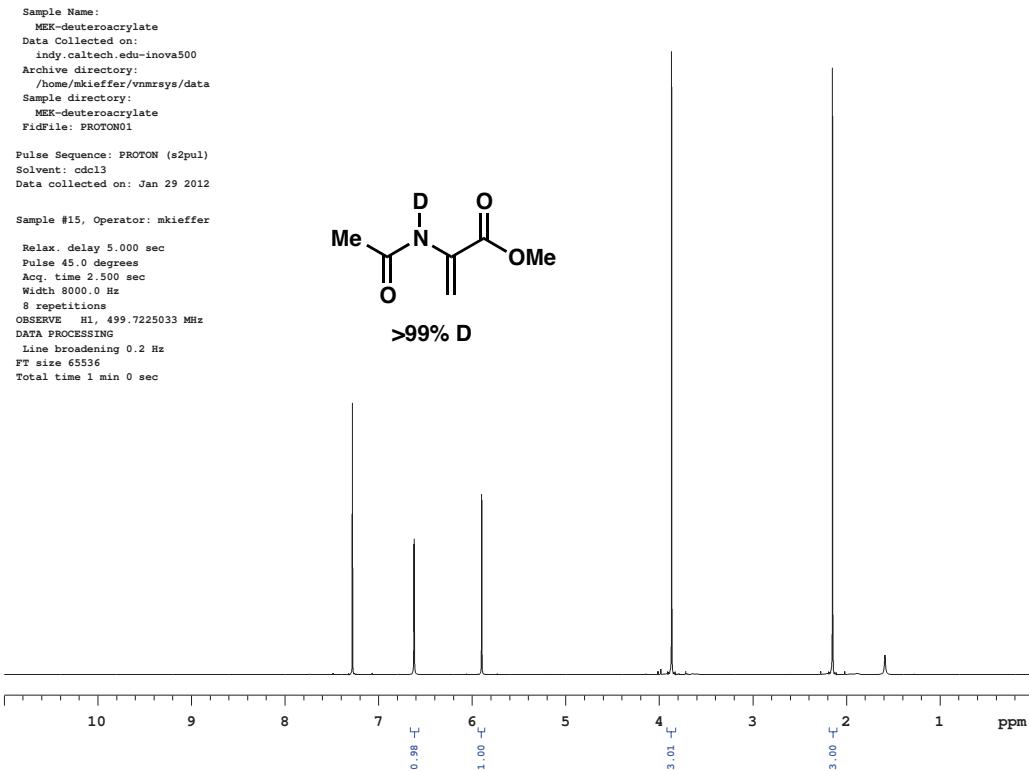


A 10 mL flask was charged with (*S*)-*N*_α-acetyl-2-phenyltryptophan methyl ester **138c** (67.2 mg, 0.20 mmol, 1.00 equiv) and THF (0.9 mL) then cooled to 0 °C, followed by dropwise addition of aqueous LiOH (1.75 M, 230 μL, 0.40 mmol, 2.00 equiv). The reaction was vigorously stirred at 0 °C for 2 hours, then diluted with H₂O (15 mL) and extracted with EtOAc (2 x 10 mL). The aqueous layer was acidified to pH = 1.5 and extracted with EtOAc (5 x 15 mL). The combined organic layers from the acidic aqueous extraction were dried (Na₂SO₄), filtered, and concentrated. The crude residue was purified by silica gel chromatography (0:99:1 to 15:84:1 MeOH:DCM:AcOH) to yield 59.2 mg (92% yield) of carboxylic acid **172** as a pale yellow foam. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AS-H, 2.5 mL/min, 28% IPA in CO₂, λ = 254 nm): *t*_R(major) = 4.5 min, *t*_R(minor) = 8.0 min. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.47 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.40 (m, 1H), 7.37 (ddd, *J* = 8.0, 0.8, 0.8 Hz, 1H), 7.21 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 7.14 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H), 5.72 (br d, *J* = 7.4 Hz, 1H), 4.73 (td, *J* = 7.1, 5.4 Hz, 1H), 3.56 (dd, *J* = 14.9, 5.2 Hz, 1H), 3.49 (dd, *J* = 15.0, 6.9 Hz, 1H), 1.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 170.9, 136.2, 135.7, 132.9, 129.13, 129.05, 128.3, 128.2, 122.6, 120.1, 118.8, 111.0, 106.8, 53.1, 26.2, 22.6; IR (NaCl/thin film): 3391, 3306, 3055, 3011, 2921, 2850, 1717, 1615, 1527, 1457, 1448, 1215 cm⁻¹; [α]_D²⁵ = +9.2° (*c* = 1.05, MeCN). HRMS (MM) calc'd for [M+H]⁺ 323.1390, found 323.1390.

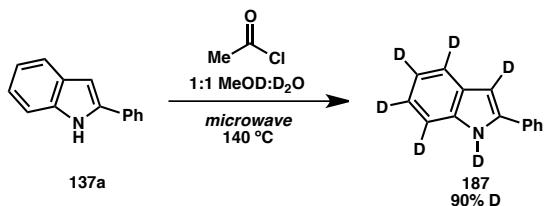
172: racemic

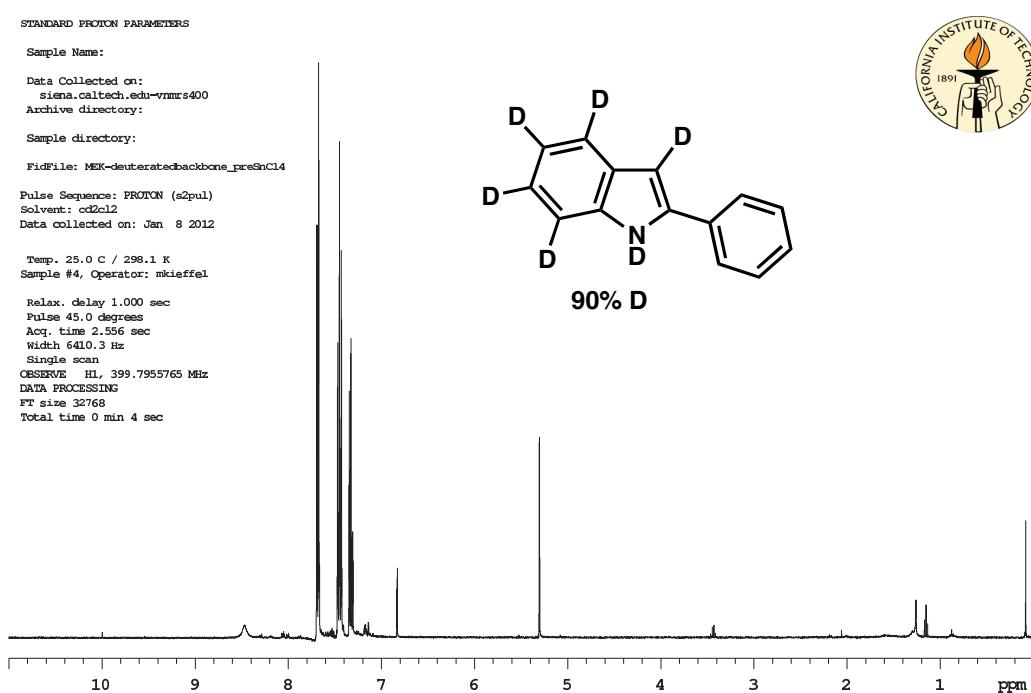


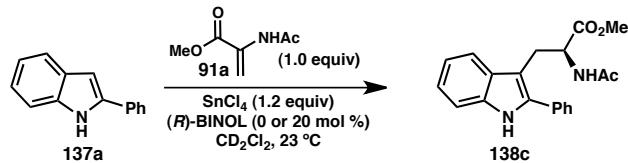
172: enantioenriched, 92% ee



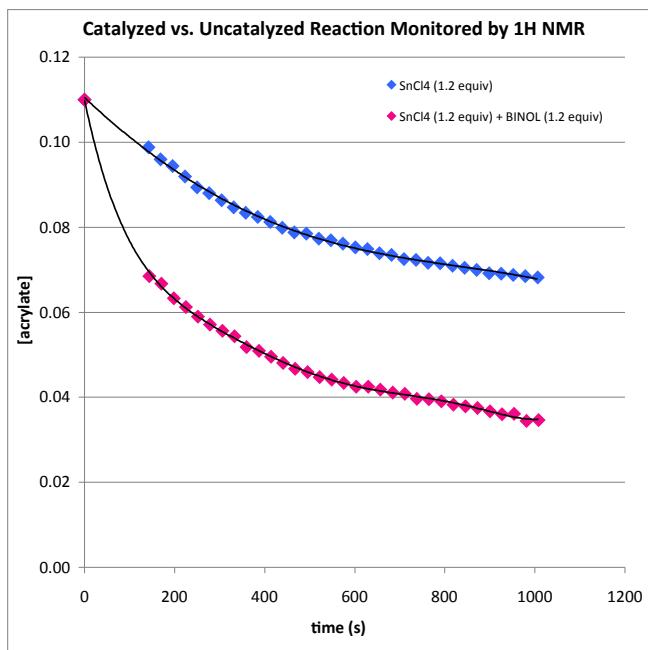
3.4.9 *Deuterium Labeling Studies*


Preparation of *N*-deuteroacrylate (186).

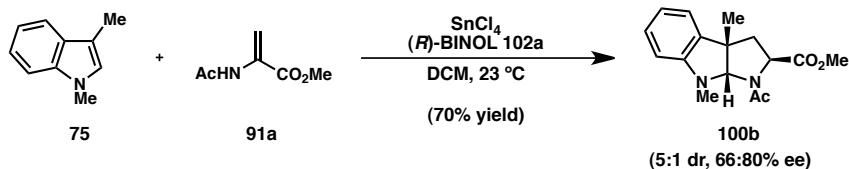

Acrylate **91a** was dissolved in MeOD (1 mL) under nitrogen. After stirring for 1 minute, the solution was concentrated under high vacuum. This procedure was repeated three times to give >99% deuterium incorporation.



Preparation of per-deutero-2-phenylindole (187).


To MeOD (1 mL) in a microwave vial was added acetyl chloride (100 μ L), followed by 2-phenylindole (6a, 50 mg) and D₂O (1 mL). The vial was sealed and heated in a microwave to 140 °C for 1 hour. Upon cooling, the heterogenous solution was diluted with DCM. The phases were separated and the aqueous was extracted with DCM (2 x 5 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated to give per-deutero-2-phenylindole (**187**) with 90% deuterium incorporation.

3.4.10 ^1H NMR Kinetics Experiment for SnCl_4 and (R)-BINOL (102a)• SnCl_4 **Promoted Reaction of 137a and 91a.**


An oven-dried vial was charged with 2-phenylindole (**137a**, 19.0 mg, 0.10 mmol, 1.00 equiv), methyl 2-acetamidoacrylate (**91a**, 14.0 mg, 0.10 mmol, 1.00 equiv), (R)-BINOL if necessary (6.0 mg, 0.02 mmol, 0.20 equiv) and 1,4-diethylbenzene (4.7 μL , 0.03 mmol, 0.30 equiv) as the internal standard. The vial was pumped into a glove box and charged with CD₂Cl₂ (0.75 mL, to an indole concentration of 0.12 M), then transferred to a screw-cap NMR tube. A ^1H NMR spectrum (1 scan) was taken to determine the initial ratio of acrylate and 1,4-diethylbenzene. SnCl₄ (1 M in CD₂Cl₂, 120 μL , 0.12 mmol, 1.20 equiv) was then added through the septum of the screw-cap and the NMR tube was inverted once and quickly inserted into the spectrometer. The concentration of acrylate was monitored by ^1H NMR over 9 hours and was determined by integration of its resonance at 3.83 ppm relative to 1,4-diethylbenzene's resonance at 2.74 ppm.

Kinetics Plot

3.4.11 Comparison of Conditions for Pyrroloindoline Formation.

Table 3.2.6, entry 1:

To a flame-dried 10 mL flask was added 1,3-dimethylindole (**75**, 29.0 mg, 0.20 mmol, 1.00 equiv), acrylate **91a** (28.6 mg, 0.20 mmol, 1.00 equiv), and *(R)*-BINOL (**102a**, 11.4 mg, 0.04 mmol, 0.20 equiv). The flask was charged with DCM (1.5 mL), followed by addition of SnCl_4 (1 M in DCM, 240 μL , 0.24 mmol, 1.20 equiv) and the reaction mixture was stirred at room temperature for 4 hours, then quenched by diluting with MeCN (1 mL) and 1 M HCl (5 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were washed with saturated aqueous NaHCO_3 (15 mL). The aqueous layer was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na_2SO_4), filtered, and concentrated. The product **100b** was formed in a 5:1 ratio of diastereomers favoring the *exo* diastereomer (determined by ^1H NMR analysis of the crude reaction mixture) and purified by silica gel chromatography (0:100 to 100:0 EtOAc:hexanes) to yield 40.1 mg (70% yield) of the combined diastereomers as a yellow oil. The enantiomeric excess of the *exo* diastereomer was determined to be 66% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO_2 , $\lambda = 254$ nm): $t_{\text{R}}(\text{major}) = 9.0$ min, $t_{\text{R}}(\text{minor}) = 5.8$ min. The enantiomeric excess of the *endo* diastereomer was determined to be 80% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO_2 , $\lambda = 254$ nm): $t_{\text{R}}(\text{major}) = 3.8$ min, $t_{\text{R}}(\text{minor}) = 4.5$ min. Spectral data are in agreement with the literature.⁴⁶

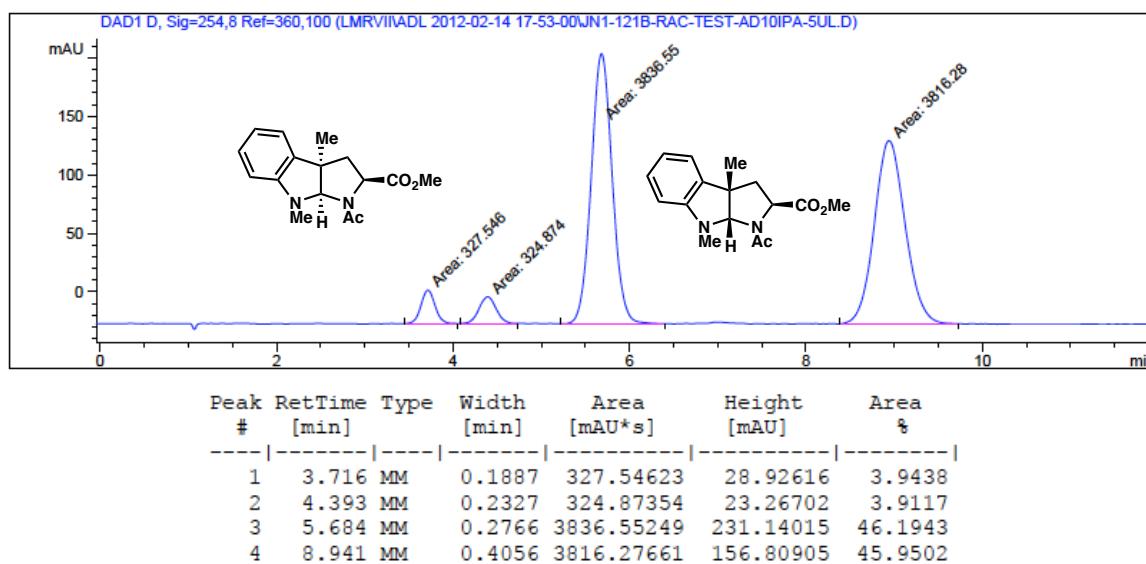
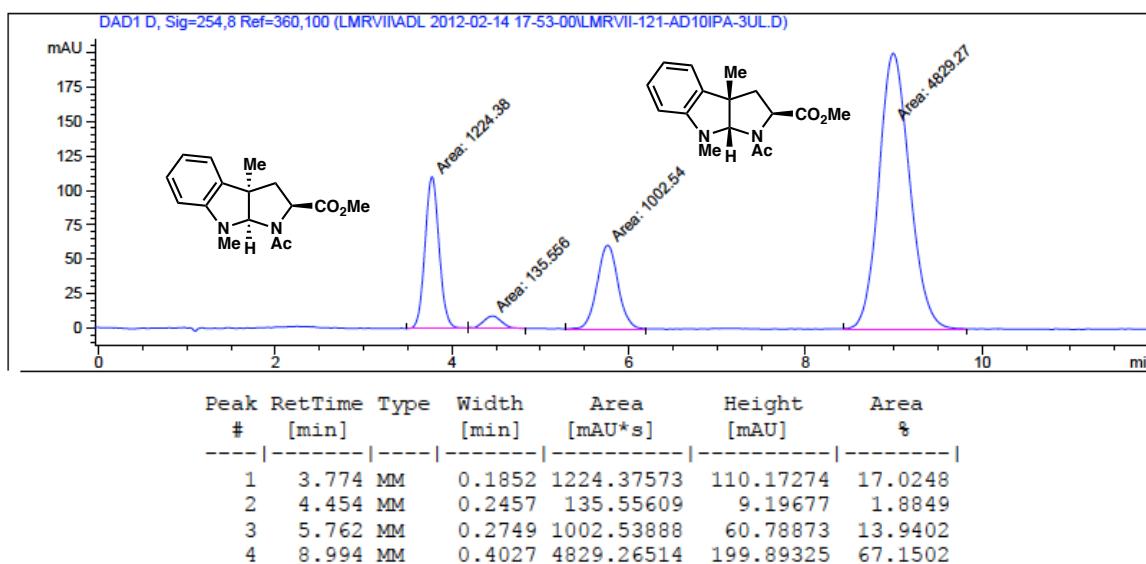
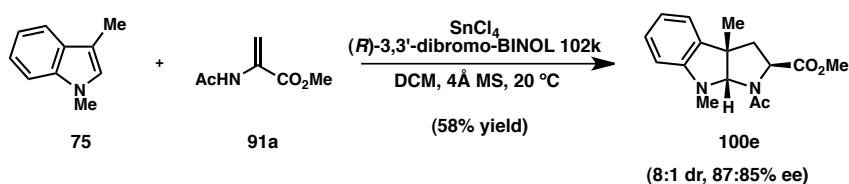
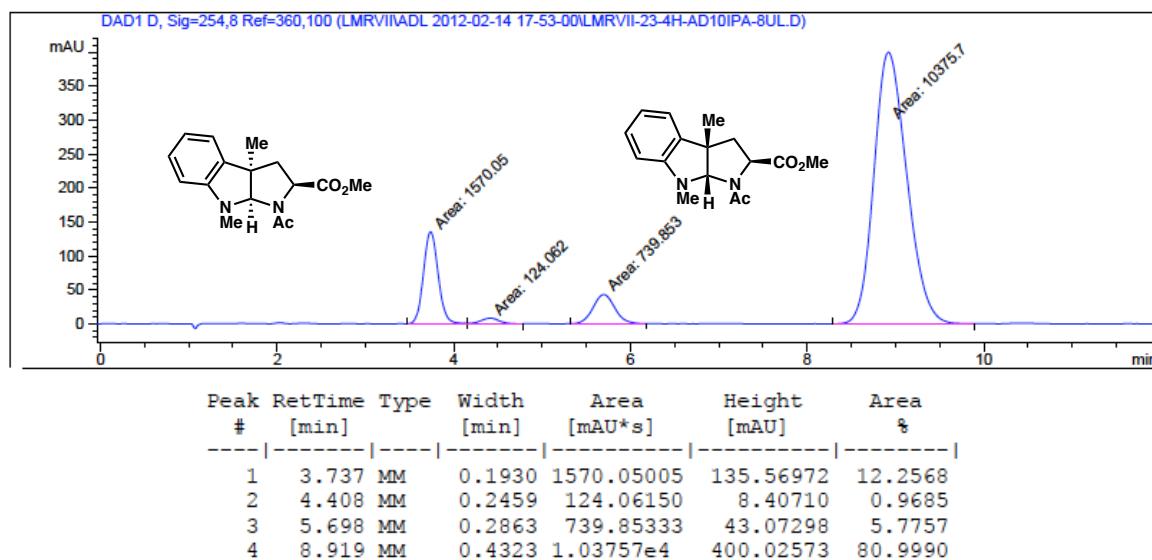
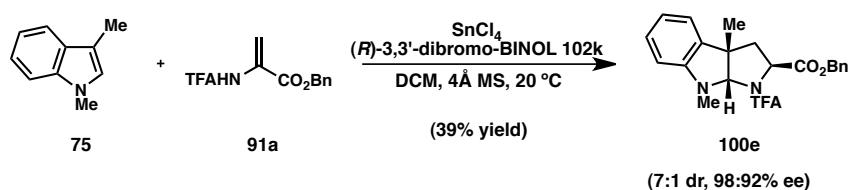



100b (Table 3.2.6, entries 1-2): racemic**100b** (Table 3.2.6, entry 1): enantioenriched, *exo*: 65% ee, *endo*: 80% ee

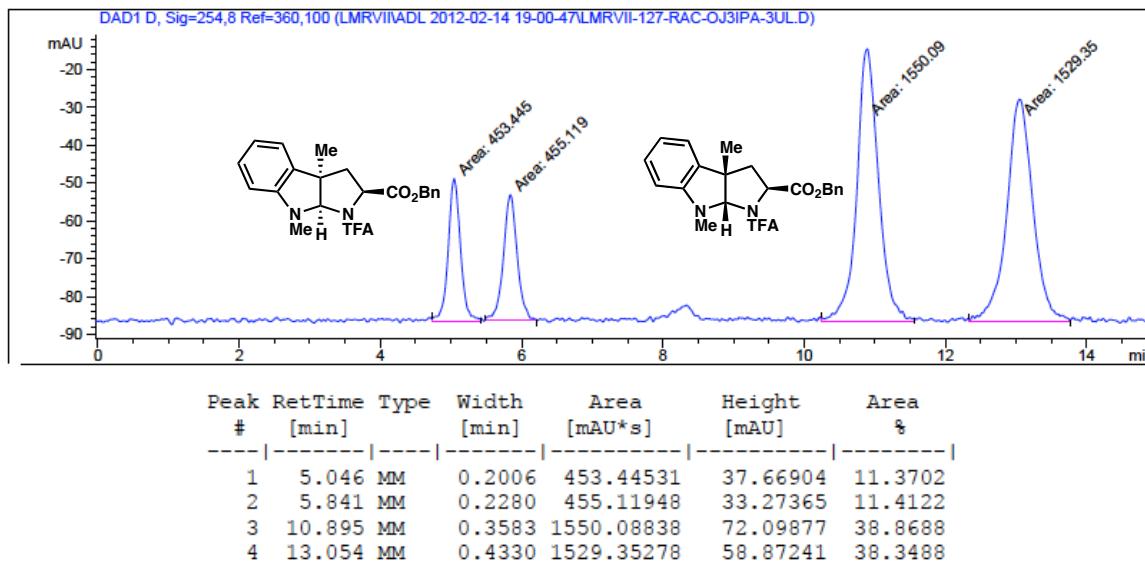
Table 3.2.6, entry 2:

An oven-dried vial was charged with 1,3-dimethylindole (**75**, 29.0 mg, 0.20 mmol, 1.00 equiv), acrylate **91a** (34.3 mg, 0.24 mmol, 1.20 equiv), and (*R*)-3,3'-dibromo-BINOL (**102k**, 17.8 mg, 0.04 mmol, 0.20 equiv) and pumped into a glove box. To the vial was added flame-dried powdered 4Å molecular sieves (200 wt % relative to **75**). The vial was charged with DCM (1.5 mL) and SnCl₄ (1 M in DCM, 200 µL, 0.20 mmol, 1.00 equiv) was added. The reaction was stirred at 20 °C for 4 hours, after which time it was removed from the glove box and quenched by dilution with 1 M HCl (5 mL) and MeCN (1 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were washed with saturated aqueous NaHCO₃ (15 mL). The aqueous was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The product **100b** was formed in a 8:1 ratio of diastereomers favoring the *exo* diastereomer (determined by ¹H NMR analysis of the crude reaction mixture) and purified by silica gel chromatography (0:100 to 100:0 EtOAc:hexanes) to yield 33.5 mg (58% yield) of the combined diastereomers as a yellow oil. The enantiomeric excess of the *exo* diastereomer was determined to be 87% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO₂, λ = 254 nm): t_R (major) = 8.9 min, t_R (minor) = 5.7 min. The enantiomeric excess of the *endo* diastereomer was determined to be 85% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO₂, λ = 254 nm):

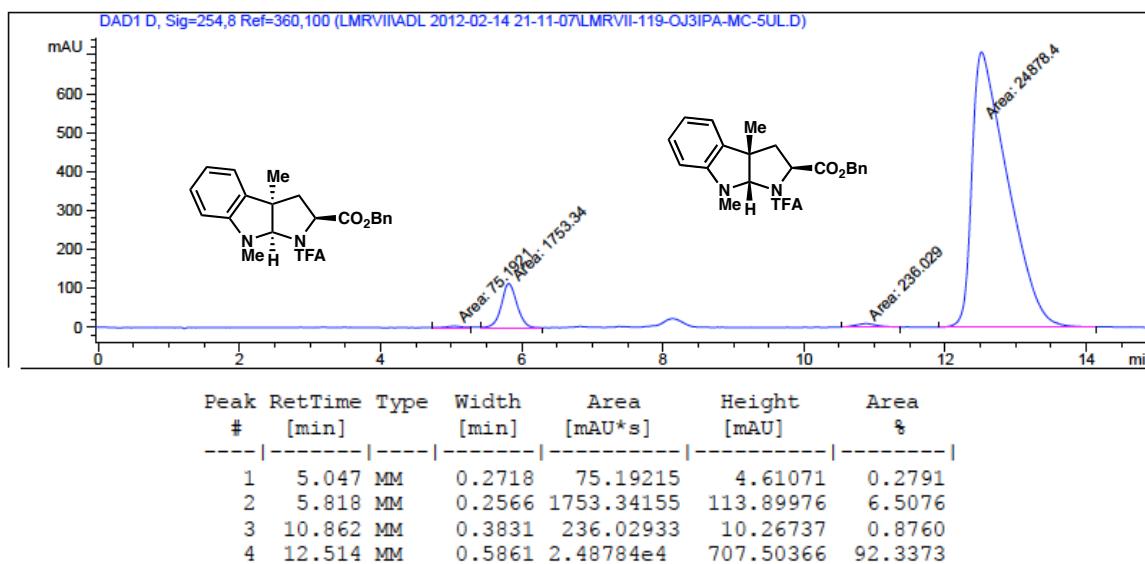
t_R (major) = 3.7 min, t_R (minor) = 4.4 min. Spectral data are in agreement with the literature.⁴⁶

100b (Table 3.2.6, entry 2): enantioenriched, *exo*: 87% ee, *endo*: 85% ee


Table 3.2.6, entry 4:[§]

An oven-dried vial was charged with 1,3-dimethylindole (**75**, 29.0 mg, 0.20 mmol, 1.00 equiv), acrylate **91d** (65.5 mg, 0.24 mmol, 1.20 equiv), and (*R*)-3,3'-dibromo-BINOL (**102k**, 17.8 mg, 0.04 mmol, 0.20 equiv) and pumped into a glove box. To the vial was added flame-dried powdered 4 Å molecular sieves (200 wt % relative to **75**). The vial was charged with DCM (1.5 mL) and SnCl₄ (1 M in DCM, 200 µL, 0.20 mmol, 1.00 equiv) was added. The reaction was stirred at 20 °C for 4 hours, after which time it was removed from the glove box and quenched by dilution with 1 M HCl (5 mL) and MeCN (1 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were washed with saturated aqueous NaHCO₃ (15 mL). The aqueous was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The product **100e** was formed in a 7:1 ratio of diastereomers favoring the *exo* diastereomer (determined by ¹H NMR analysis of the crude reaction mixture) and purified by silica gel chromatography (0:100 to 10:90 EtOAc:hexanes) to yield 32.7 mg (39% yield) of the combined diastereomers as a yellow oil. The enantiomeric excess of the *exo* diastereomer was determined to be 98% by chiral SFC analysis (OJ-H, 2.5 mL/min, 3% IPA in CO₂, λ = 254 nm): *t*_R(major) = 12.5 min, *t*_R(minor) = 10.9 min. The enantiomeric excess of the *endo* diastereomer was determined to be 92% by chiral SFC analysis (OJ-H, 2.5 mL/min, 3% IPA in CO₂, λ = 254 nm):


[§] For information on Table 3.2.6, entry 3, see ref. 45.

t_R (major) = 5.8 min, t_R (minor) = 5.0 min. Spectral data are in agreement with the literature.⁴⁶

100e (Table 3.2.6, entry 4): racemic

100e (Table 3.2.6, entry 4): enantioenriched, *exo*: 98% ee, *endo*: 92% ee

3.5 NOTES AND REFERENCES

- (1) Rabindran, S. K.; Ross, D. D.; Doyle, L. A.; Yang, W.; Greenberger, L. M. *Cancer Res.* **2000**, *60*, 47.
- (2) Qian-Cutrone, J.; Huang, S.; Shu, Y.-Z.; Vyas, D.; Fairchild, C.; Menendez, A.; Krampitz, K.; Dalterio, R.; Klohr, S. E.; Gao, Q. *J. Am. Chem. Soc.* **2002**, *124*, 14556.
- (3) Gala, F.; D'Auria, M. V.; De Marino, S; Zollo, F.; Smith, C. D.; Copper, J. E.; Zampella, A. *Tetrahedron* **2007**, *63*, 5212.
- (4) (a) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C. *Proc. Natl. Acad. Sci. USA* **2004**, *101*, 5482. (b) Ishihara, K.; Fushimi, N.; Akakura, M. *Acc. Chem. Res.* **2007**, *40*, 1049.
- (5) Review: (a) Royer, C. A. *Chem. Rev.* **2006**, *106*, 1769. Selected examples: (b) Kwon, I.; Tirrell, D. A. *J. Am. Chem. Soc.* **2007**, *129*, 10432. (c) Leptien, S.; Hoesl, M. G.; Merkel, L.; Budisa, N. *Proc. Natl. Acad. Sci. USA* **2008**, *105*, 16095.
- (6) Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.; Dougherty, D. A. *Proc. Natl. Acad. Sci., USA* **1998**, *95*, 12088.
- (7) (a) Townsend, J. M.; Blount, J. F.; Sun, R. C.; Zawoiski, S.; Valentine, D., Jr. *J. Org. Chem.* **1980**, *45*, 2995. (b) Drury, W. J.; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. *J. Am. Chem. Soc.* **1998**, *120*, 11006. (c) Castle, S. L.; Srikanth, G. S. *C. Org. Lett.* **2003**, *5*, 3611. (d) Y. Sui, Y.; Liu, L.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. *Tetrahedron* **2007**, *63*, 5173. (e) Zheng, B.-H.; Ding, C.-H.; Hou, X.-L.;

Dai, L.-X. *Org. Lett.*, **2010**, *12*, 1688. (f) Todd, R.; Huisman, M.; Uddin, N.; Oehm, S.; Hossain, M. M. *Synlett* **2012**, *23*, 2687.

(8) (a) Jousseaume, T.; Wurz, N. E.; Glorius, F. *Angew. Chem. Int. Ed.* **2011**, *50*, 1410. (b) Poisson, T.; Yamashita, Y.; Kobayashi, S. *J. Am. Chem. Soc.* **2010**, *132*, 7890. (c) Morita, M.; Drouin, L.; Motoki, R.; Kimura, Y.; Fujimori, I.; Kanai, M.; Shibasaki, M. *J. Am. Chem. Soc.* **2009**, *131*, 3858. (d) Navarre, L.; Martinez, R. M.; Genet, J.-P.; Darses, S. *J. Am. Chem. Soc.* **2008**, *130*, 6159. (e) Leow, D.; Lin, S.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. *Angew. Chem. Int. Ed.* **2008**, *47*, 5641. (f) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. *J. Am. Chem. Soc.* **2007**, *129*, 768. (g) Sibi, M. P.; Tatamidani, H.; Patil, K. *Org. Lett.* **2005**, *7*, 2571. (h) Navarre, L.; Darses, S.; Genet, J.-P. *Angew. Chem. Int. Ed.* **2004**, *43*, 719. (i) Moss, R. J.; Wadsworth, K. J.; Chapman, C. J.; Frost, C. G. *Chem. Commun.* **2004**, 1984. (j) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka, M. *Org. Lett.* **2004**, *6*, 1861. (k) Sibi, M. P.; Coulomb, J.; Stanley, L. M. *Angew. Chem. Int. Ed.* **2008**, *47*, 9913. (l) Fu, N.; Zhang, L.; Li, J.; Luo, S.; Cheng, J.-P. *Angew. Chem., Int. Ed.* **2011**, *50*, 11451.

(9) For Lewis acid-promoted reactions of indoles that afford tryptophan derivatives as racemates, see: (a) Gentilucci, L.; Cerisoli, L.; Marco, R. D.; Tolomelli, A. *Tetrahedron Lett.* **2010**, *51*, 2576. (b) Angelini, E.; Balsamini, C.; Bartoccini, F.; Lucarini, S.; Piersanti, G. *J. Org. Chem.* **2008**, *73*, 5654. (c) Blaser, G.; Sanderson, J. M.; Batsanov, A. S.; Howard, J. A. K. *Tetrahedron Lett.* **2008**, *49*, 2795.

(10) The absolute stereochemistry was determined by comparison of the optical rotation to reported characterization data. See: Ruiz-Rodríguez, J.; Albericio, F.; Lavilla, R. *Chem. Eur. J.* **2010**, *16*, 1124.

(11) Bao, J.; Wulff, W. D.; Rheingold, A. L. *J. Am. Chem. Soc.* **1993**, *115*, 3814.

(12) Zhang, X. *PCT Int. Appl.* WO 2002040491, 2002.

(13) Wu, T. R.; Shen, L.; Chong, J. M. *Org. Lett.* **2004**, *6*, 2701.

(14) Ito, K.; Takahashi, M.; Hoshino, T.; Nishiki, M.; Ohba, Y. *Lett. Org. Chem.* **2006**, *3*, 735.

(15) Ooi, T.; Kameda, M.; Maruoka, K. *J. Am. Chem. Soc.* **2003**, *125*, 5139.

(16) Verga, D.; Percivalle, C.; Doria, F.; Porta, A.; Freccero, M. *J. Org. Chem.* **2011**, *76*, 2319.

(17) Rueping, M.; Sugiono, E.; Steck, A.; Thiessmann, T. *Adv. Synth. Catal.* **2010**, *352*, 281.

(18) (a) Tamai, Y.; Qian, P.; Matsunaga, K.; Miyano, S. *Bull. Chem. Soc. Jpn.* **1992**, *65*, 817. (*R*)-2'-benzyloxy-[1,1'-binaphthalen]-2-ol (**102v**) was prepared according to an analogous procedure using BnBr as the electrophile. For a reported synthesis of **102v**, see: (b) Ihori, Y.; Yamashita, Y.; Ishitani, H.; Kobayashi, S. *J. Am. Chem. Soc.* **2005**, *127*, 15528.

(19) Tamai, Y.; Nakano, T.; Miyano, S. *J. Chem. Soc., Perkin Trans. I* **1994**, 439.

(20) Hrdina, R.; Guénée, L.; Moraleda, D.; Lacour, J. *Organometallics* **2013**, *32*, 473.

(21) Harada, T.; Kanda, K. *Org. Lett.* **2006**, *8*, 3817.

(22) Reetz, M. T.; Merk, C.; Naberfeld, G.; Rudolph, J.; Griebenow, N.; Goddard, R. *Tetrahedron Lett.* **1997**, *38*, 5273.

(23) Reetz, M. T.; Guo, H.; Ma, J.-A.; Goddard, R.; Mynott, R. J. *J. Am. Chem. Soc.* **2009**, *131*, 4136.

(24) Li, Y.; Li, Q. *Org. Lett.* **2012**, *14*, 4362. Br₂ was used as the electrophile bromine source instead of 1,2-dibromotetrachloroethane.

(25) Zheng, S.; Sogah, D. Y. *Tetrahedron* **1997**, *53*, 15469.

(26) Du, H.; Zhao, D.; Ding, K. *Chem. Eur. J.* **2004**, *10*, 5964.

(27) Hartung, C. G.; Fecher, A.; Chapell, B.; Snieckus, V. *Org. Lett.* **2003**, *5*, 1899.

(28) Yu, H.-B.; Hu, Q.-S.; Pu, L. *J. Am. Chem. Soc.* **2000**, *122*, 6500.

(29) Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. *J. Org. Chem.* **2008**, *73*, 4160.

(30) Synthesis of benzyl 2-trifluoroacetamidoacrylate: Crossley, M.; Stamford, A. *Aust. J. Chem.* **1994**, *47*, 1695.

(31) Synthesis of methyl 2-trifluoroacetamidocacrylate: Navarre, L.; Martinez, R.; Genet, J.; Darses, S. *J. Am. Chem. Soc.* **2008**, *130*, 6159.

(32) Methyl 2-acetamidoacrylate is commercially available, or can be prepared according to Crestey, F.; Collot, V.; Steibing, S.; Rault, S. *Synthesis* **2006**, *20*, 3506.

(33) Angelini, E.; Balsamini, C.; Bartoccini, F.; Lucarini, S.; Piersanti, G. *J. Org. Chem.* **2008**, *73*, 5654.

(34) Zhao, J.; Zhang, Y.; Cheng, K. *J. Org. Chem.* **2008**, *73*, 7428.

(35) Prepared from 4-bromo-2-iodoaniline by an analogous procedure to that reported by Sakai et al. (reference 28). Spectral data matches that reported in the literature: Homes, T. P.; Mattner, F.; Keller, P. A.; Katsifis, A. *Bioorg. Med. Chem.* **2006**, *14*, 3938.

(36) Prepared from 2-iodoaniline by an analogous procedure to that reported by Sakai et al. (reference 28). Spectral data matches that reported in the literature: Shen, M.; Leslie, B. E.; Driver, T. G. *Angew. Chem., Int. Ed.* **2008**, *47*, 5056.

(37) Prepared from 2-iodoaniline by an analogous procedure to that reported by Sakai et al. (reference 28). Spectral data matches that reported in the literature: Zhao, J.; Zhang, Y.; Cheng, K. *J. Org. Chem.* **2008**, *73*, 7428.

(38) Prepared from 2-iodoaniline by an analogous procedure to that reported by Sakai et al. (reference 28). Spectral data matches that reported in the literature: Yang, S.-D.; Sun, C. L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. *Angew. Chem., Int. Ed.* **2008**, *47*, 1473.

(39) Prepared from 2-iodoaniline by an analogous procedure to that reported by Sakai et al. (reference 28). Spectral data matches that reported in the literature: Ambrogio, I.; Cacchi, S.; Fabrizi, G.; Prastaro, A. *Tetrahedron* **2009**, *65*, 8916.

(40) Prepared from 2-iodoaniline by an analogous procedure to that reported by Sakai et Al (reference 28). Spectral data matches that reported in the literature: Smith, A. B.; Visnick, M.; Haseltine, J. N.; Sprengeler, P. A. *Tetrahedron* **2007**, *42*, 2957.

(41) Prepared from 2-iodoaniline by an analogous procedure to that reported by Sakai et al (reference 28). Spectral data matches that reported in the literature: Koradim, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. *Tetrahedron* **2003**, *59*, 1571.

(42) Ruis-Rodríguez, J.; Albericio, F.; Lavilla, R. *Chem. Eur. J.* **2010**, *16*, 1124.

(43) Xu, X.-H.; Liu, G.-K.; Azuma, A.; Tokunaga, E.; Shibata, N. *Org. Lett.* **2011**, *13*, 4854.

(44) For an analogous hydrolysis procedure, see: Messina, F.; Botta, M.; Corelli, F.; Schneider, M.; Fazio, F. *J. Org. Chem.* **1999**, *64*, 3767.

(45) For an analogous hydrolysis procedure, see: Morieux, P.; Stables, J.P.; Kohn, H. *Bioorg. Med. Chem.* **2008**, *16*, 8968.

(46) Repka, L. M.; Ni, J.; J. Reisman. S. E. *J. Am. Chem. Soc.* **2010**, *132*, 14418.