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1.1. Introduction 

The hasubanan alkaloids comprise a large class of natural products isolated from the 

Menispermaceae family of plants, which have long been used in traditional Chinese 

medicine for the treatment of pain, arthritis, fever, and many other illnesses.1 Since their 

initial discovery in the 1920s, over 80 members of this collection of alkaloids have been 

isolated to date.1,2 Each of these compounds can be structurally characterized by the 

presence of a densely functionalized  [4.4.3] propellane framework (3, Figure 1); and can 

be further organized based on the oxidation pattern that adorns their propellane core. For 

example, cepharamine (1) and 8-demethoxyrunanine (2) constitute the least oxidized 

hasubanan alkaloids, due to their lack of a functional group at the C8 carbon. Introduction 

of a C8 oxygen functionality leads to natural products bearing the hasubanonine 

oxidation pattern, such as hasubanonine (4), aknadinine (5), runanine (6), and delavayine 

(7). Additional oxidation at the C10 carbon is characteristic of the oxo-bridged propellane 
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alkaloids, including metaphanine (8), longanine (9), periglaucine A (10), and 

stephabenine (11). 

Since their initial structural elucidation in the 1960s, the hasubanan alkaloids have 

garnered considerable attention from the synthetic community in part due to their 

resemblance to morphine. Indeed, the hasubanan and morphinan frameworks differ 

primarily in their D ring composition: whereas 3 contains a C14-N bond to form a 

pyrrolidine, the morphine backbone presents the analogous C9-N-linked piperidine ring. 

Additionally, these natural products are of opposite enantiomeric series; as a result, it has 

been speculated that the unnatural enantiomers of the hasubanan alkaloids might exhibit 

analgesic activity.1 Although studies aimed at assessing this hypothesis have yet to be 

reported, several naturally occurring hasubanans display promising biological properties. 

For instance, the oxo-bridged propellanes periglaucine A (10) and longanine (9) were 

found to demonstrate anti-hepatitis B virus activity and selective δ-opioid receptor 

binding affinity, respectively.3  

As a result of their unique molecular architecture and potential biological 

applications, the hasubanans have been the subject of numerous synthetic endeavors over 

the last 50 years. Herein, the diverse array of strategies employed to target their 

propellane framework are discussed. Preceding the discussion of these reports, a brief 

history of the hasubanan family of natural products is presented, including their isolation 

and biosynthetic origins. 



Chapter 1 – An Introduction to the Hasubanan Alkaloids 3 

 

Figure 1. Representative members of the hasubanan alkaloids. 

 

1.2. Isolation 

In 1924, Kondo and coworkers described the isolation of metaphanine (8), an oxo-

bridged hasubanan alkaloid.4 Its structure was not elucidated until 1964, when Takeda 

and coworkers characterized the new compound by IR and 1D NMR spectroscopy, as 

well as a number of derivitazation studies.5 Specifically, degradation of 8 under reducing 

conditions delivered anthracene derivative 12, a structural motif observed to arise from 

the degradation of morphine alkaloids (Figure 2). In addition, sequential reduction of 8 

afforded hasubanan 13, a known compound whose enantiomer has been prepared from a 

codeinone intermediate. Using these structural techniques, Tomita and coworkers 

disclosed the structures of cepharamine (1)6 and hasubanonine (4).7 These structural 
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assignments were validated in 1968, when Kupchan and coworkers obtained an X-ray 

crystal structure of the brosylate derivative of aknadinine (5).8 As novel hasubanan 

alkaloids began to emerge, 2D NMR techniques and mass spectrometry became 

important tools for more efficient structural determination. For example, the structure of 

runanine (6) was ascertained by extensive NOE experiments. Additionally, the most 

abundant ion peak observed in the mass spectrum of 6 was m/z = 315, which corresponds 

to loss of its ethylamine chain.9 This type of fragmentation is characteristic of propellane 

alkaloids bearing the hasubanonine framework.10 Taken together, these pioneering 

studies laid the foundation for the characterization of subsequently discovered hasubanan 

alkaloids.  

 

 

Figure 2. Structural elucidation of metaphanine (8).  

 

In more recent years, a significant number of natural products comprising the 

metaphanine oxidation pattern have been discovered: over 20 oxo-bridged hasubanans 
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limited, elegant studies that shed light on their biosynthesis have been conducted and are 

presented below. 

 

1.3. Biosynthesis 

The structural similarities between the morphinan and hasubanan alkaloids have been 

exploited to examine the biosynthesis of hasubanonine. Specifically, it is known that 

morphine is derived from the coupling of two tyrosine building blocks, which initially 

generates an isoquinoline intermediate.12 With these considerations in mind, Battersby 

and coworkers conducted feeding experiments with 14C-labeled tyrosine and isoquinoline 

derivatives bearing an array of arene oxidation patterns.13 These investigations revealed 

that the hasubanan framework is indeed derived from two different tyrosine-based 

building blocks. Moreover, the authors concluded that the C ring of 5 originates from 

trioxygenated intermediate 14 (Figure 3). Importantly, the oxidation of tyrosine occurs 

prior to isoquinoline formation: a number of analogous mono- and dioxygenated 

isoquinolines were not incorporated into the natural product. 

 

 

Figure 3. Proposed biosynthesis of the hasubanan alkaloids. 
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Based on these findings, 14 is believed to undergo a condensation reaction with a 

tyrosine derivative to deliver 15, which upon oxidation affords 16.10 In analogy to 

morphinan biosynthesis, an intramolecular oxidative coupling between the C12-C13 

carbons is believed to deliver piperidine 17. At this point, the propellane backbone is 

hypothesized to arise from an initial intramolecular conjugate addition of the basic amine 

into the enone system, giving rise to aziridinium ion 18. Reduction of this intermediate 

generates the corresponding pyrrolidine, which can then undergo isomerization of the C 

ring to give 5.  

 

 

Figure 4. Conversion of morphinans to propellane intermediates. 
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in 68% yield.15 While these examples remain limited, they provide credence for the 

biosynthetic relationship between the hasubanan and morphinan family of alkaloids. 

 

1.4. Previous Synthetic Studies 

Over the last five decades, the hasubanan alkaloids have been the subject of numerous 

synthetic studies. While a number of racemic syntheses of the hasubanan core have been 

described, there exist few reports that details their enantioselective total synthesis. 

Nevertheless, these collective studies highlight the diverse array of strategies that can be 

implemented to prepare the hasubanan framework. The discussion below is intended to 

highlight the key features of these synthetic endeavors, and is divided into two sections: 

core syntheses and total syntheses. 

 

1.4.1. Core Syntheses 

Of the existing synthetic studies toward the hasubanan framework, the most common 

relies on a late-stage intramolecular aminocyclization reaction to establish the D ring of 

the natural product (see 3, Figure 1). The earliest example of this strategy was presented 

by Ibuka and Kitano in 1966.16 Benzylic oxidation of sinomenine-derived alkaloid 23 

gave ketone 24 after protecting group manipulations (Figure 5). Reductive cleavage of 

the C9-N bond of 24 with zinc dust, followed by exposure to bromine, provided the 

corresponding α-bromo ketone. Exposure of the bromide to LiCl and Li2CO3 in DMF at 

120 °C promoted the formation of enone 25, which spontaneously undergoes cyclization 

by the pendant amine to yield propellane 26, albeit in poor yield.  
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Figure 5. Synthesis of 26 from a sinomenine derivative. 
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Figure 6. Bristol–Myers’ and Kometani’s aminocyclization approaches. 

 

The most recent core synthesis involving an aminocyclization reaction stems from 

work by the Mulzer group. Their synthetic endeavors commenced with tricyclic enone 

32, which is available in 3 steps from commercially available 4-(3,4-

dimethoxyphenyl)butyric acid (Figure 7).20 Vinylcuprate addition to the enone yields 

olefin 33, which in eight steps can be elaborated to azide 34. To facilitate formation of 

the requisite pyrrolidine ring, a thermal (3+2) dipolar cycloaddition reaction of 34 was 

conducted to access triazene 35 in good yield. Decomposition of the triazene can then be 

achieved by heating 35 in refluxing pyridine to give propellane 36.  

 

 

Figure 7. Mulzer’s (3+2) cycloaddition approach to the propellane alkaloids. 
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Another approach for propellane synthesis exploits the reactivity of 

tetrahydrobenzindoles. In 1969, Evans and Tahk independently disclosed the Robinson 

annulation of enamine 38 with methyl vinyl ketone (Figure 8).21,22 However, this reaction 

promotes the formation of 37 in only modest yield.23 Evans observed in improvement in 

the yield of this reaction when methyl pentadienoate (39) was used as the electrophile, 

thereby furnishing 40 in 50% yield.24  

 

 

Figure 8. Preparation of the hasubanan core via enamine 38. 
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N
Me

N

O

Me

MeCN, 40 °C

(50% yield)

N
Me

CO2Me

Me

O

MeCN, 80 °C
AcOH

(32% yield)

CO2Me

3837 40

39



Chapter 1 – An Introduction to the Hasubanan Alkaloids 11 

 

Figure 9. Synthesis of 45 from cyclohexanone 41. 
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Figure 10. Kobayashi’s synthesis of hasubanan congener 51. 
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Figure 11. Ibuka’s synthesis of tetracycle 56. 
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oxidation of the C8 alcohol provides the corresponding ketone, which spontaneously 

undergoes intramolecular ketalization after deprotection of the THP group to furnish oxo-

bridged compound 63. To complete the synthesis, the amide functionality of 63 was 

reduced utilizing Meerwein’s salt and NaBH4, and the ketal was hydrolyzed under acidic 

conditions. 

 

 

Figure 12. Ibuka’s syntheses of hasubanan alkaloids. 
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catalyst to access intermediate 65. In the key step in their synthesis, photoexcitation of 65 

with a mercury lamp promoted an intramolecular biaryl coupling to afford dienone 66. 

Hydrolysis of the trifluoroacetamide group under basic conditions facilitated cyclization 

of the amine into the more electron poor enone to selectively give tetracycle 67. Acid-

mediated isomerization of the methoxyenone then delivered the natural product (1). More 

recently, Schwartz and Wallace described the direct oxidative coupling of 68 in the 

presence of thallium (III) trifluoroacetate, thereby completing a formal synthesis of 

cepharamine.35  

 

 

Figure 13. Kametani’s preparation of cepharamine (1). 
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excellent yield and as a single diastereomer (Figure 14). In an additional 6 steps, the 

authors could access lactone 72. Exposure of 72 to AIBN and Bu3SnH in refluxing 

benzene facilitated an intramolecular radical cyclization, thereby delivering 

hydrophenanthrene 73 after a few protecting group manipulations in 55% yield over 3 

steps. Introduction of the amine was effected under a Hoffman rearrangement to give 

carbamate 74, which upon LAH reduction unveils amide 75 and undergoes cyclization to 

furnish propellane 76.  Finally, oxidation of the alcohol, methyl enol ether formation, and 

ketal hydrolysis yielded the unnatural antipode of the natural product (1). With a longest 

linear sequence of 21 steps, this represents the first enantioselective preparation of any 

member of the hasubanan alkaloids.  

 

 

Figure 14. Schultz’s enantioselective synthesis of (+)-cepharamine (1). 
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In 2011, Herzon and coworkers reported the development of a unified strategy for the 

enantioselective synthesis of several hasubanan alkaloids.37 In contrast to Schultz’s 

report, this synthetic approach relied on the enantioselective installation of the C14 

stereocenter. To achieve this, an oxazaborolidine-catalyzed Diels-Alder reaction between 

quinone 77 and cyclopentadiene 78 afforded enedione 80 in 78% yield and 93% ee 

(Figure 15). Staudinger reduction of 80 then generated the corresponding quinone imine, 

which was activated toward nucleophilic attack by treatment with methyl triflate to give 

iminium salt 81. Addition of an alkynyl lithium reagent (e.g., 82) then gives pyrrolidine 

83 in good yield. Using this 1,2-addition strategy, the authors can access an array of 

hasubanan frameworks by modifying the nature of the alkynyllithium nucleophile 

employed.  

 

 

Figure 15. Herzon’s general approach to the hasubanans. 
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with Crabtree’s catalyst provides dienone 85, an intermediate found to undergo a triflic 

acid-mediated intramolecular conjugate addition to give the propellane core. Finally, 

hydrogenation of the resulting olefin with Wilkinson’s catalyst generates 6. Using a 

similar reaction sequence, the authors could also access (–)-hasubanonine (4) and (–)-

delavayine (7). Alternatively, hydration of alkene 89 with Co(acac)2 under an atmosphere 

of oxygen followed by addition of formic acid gave periglaucine B (90) in 55% yield.  

 

 

Figure 16. Herzon’s synthesis of hasubanan alkaloids. 
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chemists’ interest in their biological properties and structural complexity. The studies 

discussed above serve as a testament to this growing interest: a number of elegant 

approaches that target the hasubanan core have been developed, and enantioselective 

syntheses of their unique molecular architecture have begun to emerge. The further 

development of new, enantioselective approaches to the hasubanans will ultimately allow 

researchers to further characterize their biological properties, as well as contribute novel 

reactions for complex molecule synthesis.   
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