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ABSTRACT 

 

The changes in internal states, such as fear, hunger and sleep affect behavioral responses in animals. 

In most of the cases, these state-dependent influences are “pleiotropic”: one state affects multiple sensory 

modalities and behaviors; “scalable”: the strengths and choices of such modulations differ depending on the 

intensity and imminence of demands; and “persistent”: once the state is switched on the effects last even after 

the internal demands are off. These prominent features of state-control enable animals to adjust their 

behavioral responses depending on their internal demands. Here, we approached the neuronal mechanisms of 

state-controls by investigating energy-deprived state (hunger state) and social-deprived state of fruit flies, 

Drosophila melanogaster, as prototypic models. 

 

Neuromodulators, such as biogenic amines and neuropeptides, play an important role in encoding or 

mediating internal states with their ability to change response properties of neurons. However, establishing the 

behavioral relevant, circuit level mechanisms of action of neuromodulators remains challenging. In the first 

chapter, I describe a novel, genetically based method to map, in an unbiased and brain-wide manner, sites of 

neuromodulation under different conditions in the Drosophila brain.  This method, and genetic perturbations, 

reveal that the well-known effect of hunger to enhance behavioral sensitivity to sugar is mediated, at least in 

part, by the release of dopamine onto primary gustatory sensory neurons, which enhances sugar-evoked 

calcium influx.  These data introduces a new methodology that can be extended to other neuromodulators and 

model organisms. 

 

Following up the findings in the first chapter, we approached the neuronal circuits modulating 

feeding decision in hungry flies, in the second chapter. For feeding decisions, animals detect both attractive 

and aversive gustatory cues. We found that energy demands, or hunger state, modulates this decision making 

process by tuning sensitivities to sugar and toxic substances in opposite directions in Drosophila 

melanogaster. Moreover, we identified two distinct neuromodulatory pathways that regulate these two 

gustatory modalities during hunger. The neuropeptide F (NPF) – dopamine (DA) pathway increases sugar 
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sensitivity under mild starvation, while the adipokinetic hormone (AKH)- short neuropeptide F (sNPF) 

pathway decreases bitter sensitivity under severe starvation. Effects of both of the pathways are mediated by 

modulation of the gustatory sensory neurons, which reinforce the concept that sensory neurons constitute an 

important locus for state-dependent control of behaviors. These two pathways are recruited under different 

levels of energy demands without any cross interaction. Our data suggests that multiple independent neuronal 

pathways are underlying pleiotropic and scalable effects of the hunger state. Moreover, these findings added 

to a growing body of information indicating that neuromodulators are mediating the state-detection and the 

behavioral changes.  

 

In the last chapter, we sought to approach persistent effects of state control by developing 

optogenetic tools in Drosophila. Optogenetics allows the manipulation of neural activity in freely moving 

animals with millisecond precision, but its application in Drosophila has been limited.  Here we show that a 

recently described Red activatable Channelrhodopsin (ReaChR) permits activation of CNS neurons in 

freely behaving adult flies, at wavelengths that do not interfere with normal visual function.  This tool 

affords the opportunity to control neural activity with millisecond time resolution over a broad dynamic 

range of stimulation intensities.  Using such time-resolved activation, we show that the neural control of 

male courtship song can be separated into probabilistic/biasing, and deterministic/command-like 

components.  The former, but not the latter, neurons are subject to functional modulation by social 

experience, supporting the idea that they constitute a locus of state-dependent influence.  Interestingly, 

moreover, brief activation of the former, but not the latter, neurons trigger persistent behavioral response 

for more than 10 min. Although the mechanism is still unclear, this finding provides a new model system to 

study the neuronal mechanism of persistent activity.  

 

Altogether, these findings and new tools described in this dissertation offer new entry points for 

future researchers to understand the neuronal mechanism of state control. 
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Chapter I  

 

 

VISUALIZING NEUROMODULATION IN VIVO: TANGO-MAPPING OF 
DOPAMINE SIGNALING REVEALS APPETITE CONTROL OF SUGAR SENSING 

 

 

SUMMARY 

 

Behavior cannot be predicted from a “connectome,” because the brain contains a chemical “map” of 

neuromodulation superimposed upon its synaptic connectivity map.  Neuromodulation changes how neural 

circuits process information in different states, such as hunger or arousal.  Here we describe a genetically 

based method to map, in an unbiased and brain-wide manner, sites of neuromodulation under different 

conditions in the Drosophila brain.  This method, and genetic perturbations, reveal that the well-known effect 

of hunger to enhance behavioral sensitivity to sugar is mediated, at least in part, by the release of dopamine 

onto primary gustatory sensory neurons, which enhances sugar-evoked calcium influx.  These data reinforce 

the concept that sensory neurons constitute an important locus for state-dependent gain-control of behavior, 

and introduce a new methodology that can be extended to other neuromodulators and model organisms. 

 

Inagaki HK, Ben-Tabou de-Leon S, Wong AM, Jagadish S, Ishimoto H, Barnea G, Kitamoto T, Axel R, 

Anderson DJ. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals 

appetite control of sugar sensing. Cell. 2012 Feb 3;148(3):583-95. doi: 10.1016/j.cell.2011.12.022. 
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INTRODUCTION 

 

The physiological responses of an animal’s nervous system to sensory stimuli can differ, depending 

on internal states such as hunger or arousal (Chiappe et al., 2010; Dubner, 1988; Maimon et al., 2010; Niell 

and Stryker, 2010; Shea and Margoliash, 2010; Tsuno and Mori, 2009).  Such state-dependent influences 

enable animals to adjust their behavioral response to metabolic, emotional, attentional or other demands.  

Neuromodulators, such as biogenic amines and acetylcholine, as well as neuropeptides, play a major role in 

encoding or mediating internal states (Harris-Warrick and Marder, 1991; Pfaff et al., 2008), by altering the 

input-output properties of specific neural circuits (Birmingham and Tauck, 2003; Marder and Bucher, 2007) .  

Hunger and satiety represent a prototypic model for an internal state(s) that influences behavior.  In 

the vinegar fly Drosophila melanogaster, for example, food deprivation is known to affect olfactory 

sensitivity (Root et al., 2011), formation and expression of food-associated memory (Krashes et al., 2009), the 

extent of feeding (Riemensperger et al., 2011) and locomotor activity (Lee and Park, 2004; Meunier et al., 

2007) .  In addition, in Drosophila (Scheiner et al., 2004) as well as in other species (Berridge, 1991; Dethier, 

1976; Gillette et al., 2000; Moskowitz et al., 1976; Moss and Dethier, 1983; Page et al., 1998) starvation 

changes the consummatory response to tastants, typically by enhancing the acceptance of energy resources 

such as sugar, with an associated increased tolerance for bitter-tasting contaminants.  This dramatic starvation-

dependent shift in sensitivity to sweet vs. unpalatable and potentially toxic energy resources illustrates how 

state-dependent control of behavior is critical for survival.  

Despite the importance of hunger for regulating animal behavior, we know relatively little about the 

circuit-level mechanisms underlying such regulation.  Studies in blowflies and honeybees have demonstrated 

that biogenic amines can modulate feeding-related behaviors (Brookhart et al., 1987; Long et al., 1986; 

Scheiner et al., 2002). Whether such modulators actually mediate the effect of hunger on these behaviors, 

however, has been more difficult to establish in these systems due to the lack of genetic tools.  It has also been 

challenging to identify the circuitry through which such modulators mediate behavioral responses to 

starvation.  Modulatory neurons often exhibit widespread projections throughout the brain (Mao and Davis, 

2009; Monastirioti, 1999) and act via multiple receptors.  Identifying the behaviorally relevant circuitry on 
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which a given modulator acts, and demonstrating that such modulation is required for a specific state-

dependent influence on a specific behavior in vivo, has been achieved in only a few cases (Crocker et al., 

2010; Kong et al., 2010; Krashes et al., 2009; Lebestky et al., 2009; Root et al., 2011) .   

Drosophila provides an attractive system to address the circuit-level mechanisms underlying 

neuromodulation of feeding behavior, because of the availability of powerful genetic tools and our growing 

understanding of the gustatory receptors and neural circuitry that control feeding in this species (Dahanukar et 

al., 2007; Gordon and Scott, 2009; Marella et al., 2006; Montell, 2009; Scott et al., 2001; Thorne et al., 2004; 

Wang et al., 2004; Weiss et al., 2011). Although several neuropeptides, as well as biogenic amines, have been 

implicated in mediating the influence of food-deprivation on feeding behavior in Drosophila  (Nassel and 

Winther, 2010), with few exceptions (Root et al., 2011; Wu et al., 2005) the circuit-level mechanisms 

underlying their influences remains poorly understood.  

Here we have developed and applied a method, called TANGO-map, to detect the release of 

endogenous neuromodulators in vivo, and identify the circuits on which they act.  We have used this method 

to examine the mechanisms that underlie a starvation-induced change in a feeding behavior in Drosophila.  

Our results identify a hunger-dependent, dopamine-mediated gain-control of behavior at the level of primary 

gustatory sensory neurons.  They also provide proof-of-principle for a methodology that may have general 

applicability in the genetic dissection of circuit-level neuromodulatory mechanisms. 
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RESULTS 

 

Design and validation of a Drosophila Dopamine Receptor-Tango system in vitro 

We sought to develop a genetically based tool that reports endogenous neuromodulator release and 

sites of action in vivo, with anatomic specificity.  To do this, we adapted to Drosophila the Tango system 

(Barnea et al., 2008), which transforms a transient ligand/receptor interaction into a stable, anatomical readout 

of reporter gene expression.  The reporter gene is activated by a "private," synthetic signal transduction 

pathway, using a bacterial transcription factor (lexA) that is covalently coupled (via a specific tobacco etch 

virus (TEV) protease-sensitive cleavage site) to the exogenous dopamine receptor expressed in the cells of 

interest (Fig. 1B).  The transcription factor is cleaved from the dopamine receptor following ligand binding, 

by recruitment of an arrestin-TEV protease fusion protein, and translocates to the nucleus where it activates a 

lexAop-driven reporter.  This system was originally developed to detect receptor activation in cultured 

mammalian cell lines (Barnea et al., 2008), but whether it could also be used to detect receptor activation in 

vivo was not clear. 

To adapt this system to identify circuit-level sites of endogenous neuromodulator action in 

Drosophila in vivo, we generated a Tango system for dopamine (DA) (DopR-Tango), using the Drosophila 

DA receptor DopR1 (Gotzes et al., 1994; Sugamori et al., 1995) and Drosophila Arrestin1 (Figure 1A). Here, 

LexA is used as the tethered transcription factor.  Stoichiometric co-expression of the Arrestin-TEV protease 

fusion was achieved using a 2A peptide (Szymczak and Vignali, 2005), which we have shown to permit bi-

cistronic expression in Drosophila (Figure S1A-C).  

To test whether DopR-Tango specifically reports cellular activation by DA, we co-expressed DopR-

Tango in human embryonic kidney (HEK) 293 cells with a lexAop-β-galactosidase (β-gal) reporter. 

Treatment of these cells with DA or a DopR1 agonist (6,7-ADTN) resulted in a dose-dependent increase in 

reporter gene expression (Figure 1C). The EC50 of DopR1-Tango to DA and the D1 agonist are c.a. 1 µM in 
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this experiment, similar to values previously reported in insect cell lines (Sugamori et al., 1995).  In 

contrast, neuromodulators that are not ligands for DopR1, such as 5-HT or Octopamine (OA), did not induce 

reporter gene expression (Figure 1C).  Together, these results indicate that (1) a Drosophila DA receptor and 

arrestin can be successfully used to generate a functional Tango system; (2) Drosophila DopR-Tango can 

activate reporter expression in response to DA receptor ligands, in a dose-dependent manner and (3) DopR-

Tango maintains the ligand specificity of the original DA receptor.  Analogous results in HEK293 cells were 

obtained with a Tango system constructed using a Drosophila OA receptor (OctR-Tango) (data not shown). 

 

DopR-Tango induces reporter expression in a ligand-specific manner in Drosophila in vivo 

We chose Drosophila as a model to test whether the Tango system can report ligand activity in vivo.  

To do this, we generated transgenic flies that express DopR-Tango components under the control of elav-

GeneSwitch (elav-GS), a pan-neuronally expressed, hormone- (RU486) inducible form of GAL4 (GAL4-PR) 

(Osterwalder et al., 2001).  This transgenic line (referred to subsequently as “DopR-Tango flies”), also 

contains a lexAop-mCD2::GFP transgene that encodes a membrane-tethered form of GFP, as the Tango 

reporter. The use of an inducible GAL4 was based on the assumption that background signal would be 

minimized by restricting expression of the DopR-Tango system to a 24 hr period just prior to the experimental 

manipulation, thereby avoiding developmental accumulation of the reporter.   

After feeding with RU486 for 12-24 hrs, widespread expression of DopR-Tango was detected 

throughout the brain by immunostaining with an antibody to an HA epitope-tag present on LexA (Figure 

1D2).  Importantly, widespread brain expression of the GFP Tango reporter was also observed (Figure 1D1), 

beginning at 12 hr and peaking at 36 hrs after the onset of Tango expression (Figure S1E).  The pattern of 

reporter expression was not identical to that of the HA-tag, due to the different subcellular localization of the 

two markers (membrane vs. nuclear; Figure 1D3).  Expression of the GFP reporter was not detected in control 

flies that expressed DopR fused to LexA without the Arrestin-TEV protease fusion protein (Figure S1D). 

These data indicate that GFP expression in DopR-Tango flies is Arrestin-TEV protease-dependent, and not 

due to basal transcription of the lexAop-mCD2::GFP reporter transgene, or TEV-protease independent 

cleavage of  TEVcs-LexA.  
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To investigate if Tango reporter expression in flies can report changes in levels of endogenous 

 DA signaling, we examined expression of the reporter after drug treatments.  Feeding DopR-Tango flies with 

L-dopa, a precursor of DA that is known to increase DA levels in the fly brain (Bainton et al., 2000), for 2 

days after RU486 treatment, caused a statistically significant increase in reporter expression in various neural 

structures including the antennal lobe (AL), the sub-oesophageal ganglion (SOG), and β and γ lobes of the 

mushroom body (MB) ((Figure 2A2-3, 2B1-4, S2E; see Figure S2A-C for details of GFP reporter quantification) 

.  This increase, moreover, was reduced by SCH23390 (Sugamori et al., 1995), a D1 receptor antagonist, to a 

statistically significant extent in the AL (Figure 2B1) and MB β lobe (Figure 2B3), and exhibited a trend to 

reduction that did not reach significance in the SOG (Figure 2B2) and MB γ lobe (Figure 2B4).  The dynamic 

range of this reporter (2-15 fold; Figure 2B1-4) is similar to that of the best currently available genetically 

encoded calcium indicators (GECIs) (Tian et al., 2009), although the signal-to-noise ratio (SNR; c.a. 4) is 

lower (see Supplemental Experimental Procedures).  These data confirm that DopR-Tango can read out a 

statistically significant increase in reporter gene expression in response to an experimentally induced increase 

in DA levels in vivo.   

We also investigated the source of the baseline expression of the Tango reporter observed in un-

manipulated flies (Figure 2A2). Genetic elimination of DA in DopR-Tango flies was not feasible, as null 

mutations in Tyrosine hydroxylase (Th) are embryonic lethal (Riemensperger et al., 2011).  Instead, we fed 

flies with SCH23390, or the DA synthesis inhibitor, 3-iodotyrosine (3IY) (Bainton et al., 2000).  SCH23390 

feeding significantly decreased, but did not abolish, Tango reporter expression in both the AL and SOG 

(Figure 2C1 and 3C1).  3IY feeding also decreased reporter expression in the AL (Figure 2C2) in statistically 

significant manner, but the decrease in the SOG did not reach significance (Figure 3C2). The incomplete 

effects of the antagonist to inhibit basal (as well as L-dopa-induced; Figure 2B1-4) expression of the reporter 

may reflect limits on the effective levels of the drug that can be achieved in vivo, due to instability, non-

specific absorption or toxicity. Alternatively, it may reflect some level of DA-independent expression of the 

Tango reporter, for example due to ligand-independent binding of Arrestin-TEVp to DopR-Tango.  Whatever 

the explanation, these results indicate that the level of baseline GFP reporter expression in DopR-Tango flies 

is, at least in part, a reflection of endogenous DA signaling in the brain.   
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DopR-Tango reporter expression also exhibited ligand specificity in vivo.  When DopR-Tango 

flies were fed with either L-dopa or chlordimeform (CDM), an OA receptor agonist, only L-dopa feeding 

increased expression of the reporter in the SOG (Figure 2D2).  L-dopa feeding also yielded an increase in 

DopR-Tango reporter signal in the AL (Figure 2D1), but in this case a smaller but still significant induction 

was observed using CDM.  This difference may reflect an indirect effect of CDM to increase dopaminergic 

signaling in the AL, given that OA did not activate DopR-Tango in vitro (Figure 1C).  In OctR-Tango flies 

fed with L-dopa or CDM, only CDM increased expression of the GFP reporter in the AL (Figure S2D).  

These data suggest that in vivo, as well as in HEK293 cells, DopR-Tango can specifically report an artificially 

induced increase in DA signaling  

 

DopR-Tango reveals increased dopamine release onto primary gustatory neurons during starvation 

To investigate whether DopR-Tango can identify neural circuits that are targets of modulation by 

endogenous DA, we exposed DopR-Tango flies to various treatments and looked for increases in reporter 

expression.  Wet starvation of DopR-Tango flies for 2 days produced a statistically significant increase in GFP 

expression in the SOG, the primary gustatory center (Figure 3A and 3C1-2), but not in the MB β and γ lobes or 

the AL (Figure 3D1-3).  Inclusion of the DopR antagonist SCH23390, or the DA synthesis inhibitor 3IY, 

abolished the starvation-induced increase in GFP expression in the SOG  (Figure 3C1-2).  Based on the time-

course of Tango reporter expression, we estimate that the enhanced GFP expression likely reflects cumulative 

DopR-Tango activation integrated over the first 24 hrs of food deprivation (Figure S1E).   

Two lines of evidence suggest that the starvation-induced increase in GFP expression in the SOG 

occurs, at least in part, in the terminals of primary gustatory receptor neurons (GRNs). First, the pattern of 

Tango reporter expression in the SOG resembled that of the projections of sugar-sensing GRNs, as visualized 

using a Gr5-GAL4 transgene specifically expressed in these neurons (Wang et al., 2004) to drive mCD8::GFP 

expression (Figure 3B1). Second, surgical removal of the labellum (tip of proboscis, a mouth part of a fly; 

Figure S3A), which contains the cell bodies of GRNs, strongly reduced Tango reporter expression (Figure 

3B2-3).  
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Starvation and L-dopa both increase behavioral sensitivity to sucrose 

The proboscis extension reflex (PER; Figure S3A) (Dethier, 1976), is a simple feeding behavior 

elicited by presentation of sugar to Gr5a-expressing GRNs located in the labella or legs (Gordon and Scott, 

2009; Marella et al., 2006). In Drosophila, the sucrose-sensitivity of the PER (elicited from the legs) has been 

reported to increase with the duration of food-deprivation (Scheiner et al., 2004), although a direct comparison 

to unstarved flies was not performed.  Surprisingly, an effect of starvation to enhance the PER in response to 

activation of labellar sugar receptors has not previously been reported in this species.  Therefore, to identify a 

behavioral correlate of the starvation-induced Tango signal on labellar sugar-sensing GRNs, we first 

investigated whether starvation indeed increases the sensitivity of the PER to sucrose applied to labellar taste 

receptors. 

Wet starvation indeed increased the fraction of flies exhibiting a PER across a broad range of sugar 

concentrations (Figure 4A1), while decreasing sensitivity to bitter tastants (H.K.I. and D.J.A. unpublished 

result).  In addition, the mean acceptance threshold (MAT; the sucrose concentration at which the probability 

of a PER response at the population level is 50%; see Figure S3B-D and Supplemental Experimental 

Procedures) (Long et al., 1986) significantly decreased as the starvation time was increased from 1 to 2 days  

(Figure 4A2; note that the y-axis/ordinate is inverted:  when sensitivity increases the threshold decreases).  

This increase in sugar sensitivity is gradual and reversible (Figure S3E; significant changes observed as early 

as 6 hours of wet starvation).  Thus, Drosophila exhibits a starvation-induced enhancement of PER behavior 

induced by sucrose applied to labellar GRNs, whose magnitude depends on the duration of food-deprivation.  

Because our DopR-Tango results suggested that Gr5a+ GRNs may be a target of dopaminergic 

regulation, we next asked whether experimental elevation of DA levels in fed flies would mimic the effect of 

food-deprivation to enhance the PER.  We performed such an elevation in two ways:  pharmacologically and 

genetically.  After two days of L-dopa feeding, we observed a dose-dependent increase in PER sugar 

sensitivity similar to that produced by starvation (Figure 4B1-2).  The sugar sensitivity of the PER was also 

increased in fed flies by artificial activation of dopaminergic neurons using dTRPA1, a Drosophila 

thermosensitive cation channel (Hamada et al., 2008), expressed under the control of Th-GAL4 (Friggi-Grelin 

et al., 2003) (Figure 4C1-3). This behavioral phenotype was detectable within 10 min of the temperature shift 
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to 27oC.  Together, these data indicate that elevating endogenous levels of DA can increase behavioral 

sensitivity to sucrose in fed flies, mimicking the effect of starvation.  Importantly, DopR-Tango flies also 

showed a starvation-induced increase in the sugar-sensitivity of the PER (Figure S3F1-2), indicating that 

expression of this detector system in GRNs does not impair the physiological function of these neurons in 

feeding behavior.  

 

The DA receptor DopEcR expressed in sugar sensing GRNs mediates the effect of L-dopa feeding to 

enhance the PER 

Given that both starvation and the experimental elevation of endogenous DA levels increase DopR-

Tango reporter levels on sugar-sensing GRNs, and also enhance the PER, we next investigated whether DA 

receptors expressed in GRNs mediate this behavioral effect.  We approached this objective by: 1) identifying 

the DA receptors expressed in sugar-sensing GRNs; 2) testing whether genetic inactivation of any of these 

receptors blocks the effect of L-dopa feeding to enhance the PER; 3) testing whether the same genetic 

manipulations block the effect of starvation to enhance the PER. 

In the absence of immune reagents specific for each of the DA receptor subtypes, we investigated 

whether GRNs normally express any of the 4 known Drosophila DA receptors (Gotzes et al., 1994; Han et al., 

1996; Hearn et al., 2002; Srivastava et al., 2005), by carrying out Q-RTPCR experiments using RNA isolated 

from sugar-sensing GRNs via the “TU-tagging” method (See Supplemental Experimental Procedures;  (Miller 

et al., 2009)). qPCR of cDNA synthesized from this RNA showed a 10-fold enrichment for Gr5a mRNA 

itself, relative to mRNA encoding the bitter sensing receptor, Gr66, which is not expressed in sugar sensing 

neurons (Figure S4A).  This result implied successful synthesis of cDNAs enriched in sugar sensing neurons.  

qPCR analysis of this cDNA revealed that 3 of the 4 Drosophila DA receptors, namely DopR1, D2R and 

DopEcR, are expressed in Gr5a GRNs to varying levels, while DopR2 mRNA was not detectable (Figure 

S4A). 

We next asked whether any of the 3 DA receptors expressed in Gr5a GRNs is required for the effects 

of L-dopa feeding or starvation to enhance sugar sensitivity.  In flies bearing a hypomorphic mutation in 

DopEcR, DopEcRc02142 (Fig. S4B; Ishimoto et al., in prep) (Thibault et al., 2004), L-dopa feeding failed to 
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produce an increase in sugar sensitivity (Figure 5A2-3).  Moreover, expression of a DopEcR RNAi using 

pan-neuronal Gal4 driver, neuronal synaptobrevin (nsyb)-GAL4 (Pauli et al., 2008) (Fig. S4C), similarly 

blocked the effect of L-dopa to enhance the PER (Figure 5B1-4). By contrast, flies bearing a hypomorphic 

mutation in DopR1 (Lebestky et al., 2009) showed a normal L-dopa-dependent increase in sugar sensitivity 

(Figure S4D), as did flies with a pan-neuronal RNAi-mediated knock down of D2R (Figure S4E1-3).   

Importantly, cell-specific knock-down of DopEcR in Gr5a GRNs also prevented the L-dopa feeding-

induced enhancement of the sugar sensitivity of the PER, while control flies expressing either UAS-GFP or 

UAS-DopR2 RNAi showed a statistically significant enhancement of PER behavior by L-dopa (Figure 5C1-4).  

The MAT of vehicle-fed flies of both the DopEcR RNAi and DopEcR mutant genotypes was not significantly 

different from that of the genetic control flies (Figure 5A3, 5B4 and 5C4), indicating that DopEcR is not 

necessary for baseline PER behavior per se, but rather for its enhancement by L-dopa feeding. Taken together, 

these data indicate that DopEcR expressed in Gr5a GRNs is necessary for the effect of L-dopa feeding to 

increase sugar sensitivity. 

 

DopEcR expressed in sugar-sensing GRNs is required for the effect of starvation to enhance PER 

behavior 

Having demonstrated that DopEcR in Gr5a neurons is necessary for the effect of L-dopa feeding to 

enhance the sugar sensitivity of the PER, we next tested whether DopEcR in Gr5a GRNs is also necessary for 

starvation to exert the same behavioral effect.  Indeed, in flies wet-starved for 6 hours, DopEcR mutant flies 

failed to exhibit an increase in sugar sensitivity, in contrast to wild-type controls (Figure 5D1-2).  Importantly, 

this phenotype could be rescued by specific expression in DopEcR mutant flies of a UAS-DopEcR transgene 

in Gr5a neurons (Figure 5D3).  Over-expression of DopEcR, (but not of DopR1) in Gr5a neurons of DopEcR+ 

flies also enhanced the sucrose sensitivity of the PER in starved, but not in fed, animals (Figure S4H1-4 and 

S4I1-3).   

Finally, specific knock-down of DopEcR in sugar sensing neurons using RNAi also strongly 

attenuated the increase in sugar sensitivity caused by 6 hours of starvation (Figure 5E1-3).  Thus, both selective 

rescue of the DopEcR mutant phenotype, and selective expression of RNAi, implicate Gr5a neurons as a site 
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of DopEcR action.  Interestingly, although the DopEcR mutation and RNAi both impaired PER 

enhancement by 48 hrs of L-dopa feeding, they did not do so in flies wet-starved for 24 hrs or more (Figure 

S4F1-3 and S4G1-3).  This observation suggests either a time-dependent recruitment of redundant DA receptors, 

or of DA-independent mechanisms, mediating enhanced sugar sensitivity at later stages of starvation.  Flies 

lacking both DopEcR and DopR1 did not show an impaired PER response after 24 hrs of starvation, 

suggesting the involvement of additional neuromodulators (data not shown).  Whatever the explanation, at 

early times of starvation DA, acting through DopEcR expressed in Gr5a GRNs, is required for enhancement 

of PER behavior. 

 

Cellular mechanism of the starvation-induced increase in behavioral sensitivity to sucrose 

Lastly, we approached the cellular mechanism through which starvation and DA enhance the sugar-

sensitivity of the PER.  As a first step, we asked whether starvation and DA act to modify the activity of 

gustatory receptors (GRs) themselves, or rather on a downstream physiological process.  To do this, we 

bypassed the requirement for GR activation in the PER response using Channelrhodopsin 2 (ChR2), a light 

sensitive cation channel (Zhang et al., 2006), to artificially activate sugar-sensing GRNs (Gr5a-GAL4; UAS-

ChR2) (Zhang et al., 2007).   

Increasing the strength of blue light illumination (from 1.6 to 2.9 mW/cm2) increased the fraction of 

flies exhibiting a PER (Figure 6A1), similar to the effect of stimulating the labellum with increasing sugar 

concentrations.  Strikingly, both wet-starved and L-dopa fed Gr5a-GAL4;UAS-ChR2 flies showed an 

increased light sensitivity of the PER, compared to control non-starved flies (Figure 6A2).  These data suggest 

that both starvation and DA enhance sugar sensitivity by acting downstream of the sugar sensing receptors 

themselves.  Consistent with this idea, extracellular recordings from GRN somata in the labella indicated no 

change in the frequency of sucrose-evoked spiking in wet-starved vs. control fed flies (Figure S5A-B). 

To pin down the physiological mechanism underlying starvation-dependent enhancement of PER 

behavior, we tested whether starvation and DA augment pre-synaptic Ca2+ influx in sugar-sensing GRNs.  For 

this purpose, we performed calcium imaging, using two-photon microscopy, of sugar-sensing GRNs in flies 

expressing a genetically encoded calcium sensor (GCaMP3.0 (Tian et al., 2009)) under the control of Gr5a-
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GAL4.   Delivery of increasing concentrations of sucrose (from 0 mM to 400 mM) to the labellum 

yielded increasing GCaMP 3.0 fluorescence signal in Gr5a-expressing nerve fibers in the SOG (Figure 6B-

D), consistent with a previous report (Marella et al., 2006).  Strikingly, both wet-starved and L-dopa fed flies 

showed a statistically significant enhancement of sucrose-evoked GCaMP fluorescence, compared to non-

starved control flies, at 100 mM sucrose, and a non-significant trend to enhancement at 400 mM sucrose 

(Nusbaum and Beenhakker, 2002) (Figure 6D).    

A scatter-plot of integrated GCaMP fluorescence signal intensity vs. the fraction of flies showing a 

PER response at each sucrose concentration revealed a strong positive correlation between the two measures 

(R2=0.969) (Figure 6E).  The simplest interpretation of this correlation is that the starvation-induced 

enhancement of calcium influx in sugar-sensing GRNs underlies the parallel enhancement of PER behavior. 

Finally, to examine more directly whether DA acts on Gr5a+ GRNs to modulate Ca2+ influx, 

we compared the sugar responses of these GRNs before vs. after exposure to 1mM DA in the bath.  Following 

5 min of such exposure, there was a ~1.2 fold increase in basal Ca2+ influx, and a ~1.3-1.4 fold influx in Ca2+ 

influx caused by 400mM sucrose; the fold increase at 400mM sucrose was significantly higher than at 0mM 

sucrose (p<0.05, Wilcoxon matched pairs test) (Figure 6F1, 6G).  Importantly, RNAi-mediated knockdown of 

DopEcR expression in sugar-sensing GRNs attenuated this increase in Ca2+ influx  (Figure 6F2, and 6G).  

These data indicate that DA acts directly on Gr5a GRNs via DopEcR to enhance both baseline and sucrose-

induced increases in intracellular free Ca2+. 
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DISCUSSION 

 

Drosophila is a potentially powerful model system for understanding how neuromodulators control 

state-dependent changes in behavior.  However establishing the behaviorally relevant, circuit-level 

mechanisms of action of neuromodulators remains challenging.  This is partially because standard methods 

used to measure the release of endogenous neuromodulators in vertebrates, such as fast-scan cyclic 

voltammetry (Phillips et al., 2003) or micro-dialysis (Benveniste and Huttemeier, 1990), are of limited 

applicability in Drosophila.  Moreover, such methods cannot identify the neurons on which released 

neuromodulators act.  The data presented here provide proof-of-principle for the utility of a new method, 

called TANGO-map, to identify, in a brain-wide and relatively unbiased manner, circuit-level substrates of 

neuromodulation relevant to a particular state-dependent influence on behavior.  

 

Starvation regulates gustatory sensitivity in Drosophila and causes DA release onto sugar-sensing 

GRNs 

We show here that sweet taste-sensitivity in the labellum is enhanced with increasing duration of 

food-deprivation in Drosophila.  This observation confirms and extends previous reports in Drosophila 

(Meunier et al., 2007; Scheiner et al., 2004), and is consistent with observations in many other animal species 

(Dethier, 1976; Moskowitz et al., 1976; Page et al., 1998).  We have used this phenomenon as a prototypic 

case of a state-dependent change in behavior, to investigate the ability of TANGO-map to identify underlying 

neuromodulatory mechanisms. 

Our results indicate that starvation enhances endogenous DA release onto primary GRNs, as detected 

by increased expression of the DopR-Tango reporter in vivo.  In contrast, starvation did not increase the 

DopR-Tango reporter in the MB or AL, although L-dopa feeding did so.  These data indicate that DopR-

Tango is capable of revealing selective sites of endogenous DA release in a brain-wide manner, under specific 

behavioral conditions. 
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DA release onto sugar-sensing GRNs is required for the behavioral effect of starvation to enhance 

PER sensitivity 

Our results indicate that a mutation in the DA receptor DopEcR, as well as specific knock-down of 

this receptor in sugar-sensing GRNs, eliminates the effect of starvation to enhance the sucrose-sensitivity of 

the PER.  However, this phenotype was only observed at 6 hr of starvation; after 24 hr of food deprivation 

these genetic manipulations no longer had an effect.  This is not because these manipulations themselves 

became ineffective at later times, since the same manipulations did attenuate the increased PER sensitivity 

caused by L-dopa feeding for 24 hr.  This suggests that at an early stage of starvation, DA is necessary to 

enhance the sugar sensitivity of the PER, while at later stages additional factors come into play (Figure 6H).   

The slow kinetics of Tango reporter accumulation (Supplementary Figure S1E) preclude the 

detection of statistically significant increases in signal as early as 6 hr following an experimental 

manipulation.  However, the level of reporter expression detected in animals examined after 48 hrs of 

treatment likely reflects the integration of increases in dopaminergic signaling occurring throughout the first 

12-24 hr of the treatment period (Supplementary Figure S1E).  Thus, although we detected an increase in 

DopR-Tango signal at a starvation timepoint when genetic reduction of DopEcR levels no longer impaired the 

behavioral effect of starvation, and observed a behavioral phenotype at a time point too early to be evaluated 

directly by the TANGO-map method, this should not be taken to imply that no DA release occurred after 6 hrs 

of starvation. Importantly, given the kinetics of the system, the DopR-Tango signals we detect in vivo are 

likely to reflect primarily changes in tonic levels of DA signaling, rather than brief episodes of phasic DA 

release.  Further improvements of the TANGO-map method are required to increase its temporal resolution.  

Nevertheless, the present methodology provides a powerful method to identify sites where dopaminergic 

modulation of a given behavior may occur, even if it cannot reveal precisely how quickly such regulation is 

exerted.   

 

Mechanism of dopaminergic regulation of GRN sensitivity 

Several lines of evidence suggest that the dopaminergic modulation of sugar-sensing GRNs revealed 

here may involve an enhancement of Ca2+ influx at the nerve terminal.  Both starvation and L-dopa feeding 
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increased sucrose-evoked Ca2+ influx, without changing the frequency of action potentials measured 

extracellularly at GRN somata (Figure S5), despite a previous report to the contrary (Meunier et al., 2007). 

Furthermore, we found that direct exposure of the brain to DA increased Ca2+ influx at the presynaptic 

terminals of sugar-sensing GRNs, in a DopEcR-dependent manner.  A model consistent with these data is that 

starvation leads to increased DA release, which increases calcium influx into sugar-sensing GRNs via 

DopEcR, leading to increased neurotransmitter release.  The fact that DopEcR signals via the cAMP/PKA 

pathway (Srivastava et al., 2005), and that this pathway has been reported to increase Ca2+ channel currents in 

Drosophila (Bhattacharya et al., 1999), is also consistent with this scenario. Nevertheless, our genetic data 

suggest that there are additional pathways through which starvation modulates feeding behavior in this 

system. 

Our finding that DA modulates primary GRNs to control starvation-dependent changes in behavioral 

sensitivity to sugar echoes the observation of a similar influence of food-deprivation on odorant sensitivity in 

Drosophila (Root et al., 2011).  Such neuromodulatory gain control at the level of primary sensory neurons 

has also been reported in variety of other invertebrate, as well as vertebrate, species (Bicker and Menzel, 

1989; Hurley et al., 2004). While we cannot exclude the possibility that hunger also influences PER behavior 

at higher-order synapses in the circuit (Gordon and Scott, 2009), our data add to a growing body of 

information indicating that modulation of primary sensory neurons is a general mechanism for implementing 

state-dependent changes in behavioral responses to the stimuli detected by these neurons. 

 

TANGO-map as a new tool to monitor neuromodulation at the circuit level 

TANGO-map affords a number of unique advantages to study neuronal modulation in the brain (see 

Table S1 for comparison to other methods).  Firstly, and most importantly, it permits the detection of 

increases in endogenous neuromodulator release in vivo, in an organism in which the application of 

conventional methods is not feasible.  Secondly, it provides an anatomical readout of neuromodulation at the 

neural circuit level.  The use of a pan-neuronal GAL4 driver to express the sensor permits, in principle, an 

unbiased survey of potential sites of neuromodulatory activity throughout the brain.  Thirdly, the sensor has 

ligand-specificity.  The modular design of the Tango system (Barnea et al., 2008) affords the ability to 



 

 

I-16 
develop in vivo Tango reporters for other biogenic amines and neuropeptides that work via GPCRs.  

Importantly, because the method employs a synthetic, “private” signal transduction pathway (Barnea et al., 

2008), the readout of the reporter should be relatively insensitive to interference from conventional signal 

transduction pathways activated by other endogenous receptors.  Systematic and comprehensive application of 

this approach could, in principle, provide an overview of anatomic patterns of neuromodulation in the brain in 

a given behavioral setting.  Finally, since the Tango system is transcriptionally based, in principle it permits 

the expression not only of neutral reporters, but also of effectors such as RNAi’s or ion channels, in the 

neurons receiving neuromodulatory input.   

While the TANGO-map system can certainly benefit from improvements in its kinetics and signal-

to-noise ratio, it affords a means of identifying points-of-entry for studying circuit-level mechanisms of 

behaviorally relevant neuromodulation, that are currently difficult to access in any other way.  The extension 

of this methodology to other neuromodulators and model organisms should further our understanding of state-

dependent control of neural activity and behavior.   
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EXPERIMENTAL PROCEDURES 

 

Fly strains 

Adult female Drosophila melanogaster were used for all experiments.  All control genotypes were tested in 

the same genetic background as the experimental genotype. Construction of recombinant DNA, and 

descriptions of transgenic fly strains are described in the Supplemental Experimental Procedures. 

 

TANGO-map 

DopR-Tango flies or OctR-Tango flies were first dry-starved for 4 hr to make sure they consumed any drugs 

provided. Then, flies were moved into a vial containing 0.5 mM RU486 mixed in 89 mM sucrose and allowed 

to feed for 12 or 24 hr (for subsequent drug feeding or starvation experiments, respectively).  After this 

RU486 feeding, flies were moved to either food vials (fed condition), vials containing a wet filter paper (wet-

starved condition), or a drug dissolved in 89 mM sucrose (drug-fed condition).  Two days later, fly brains 

were dissected and immunostained. 

 

PER assays 

For standard PER assays, 3-7 day-old female flies were wet-starved or fed in vials and tested as described 

previously (Shiraiwa and Carlson, 2007).  In brief, 10-20 experimental flies were mounted into pipetman tips. 

After excluding flies that keep responding to water, fly response to stepwise increasing concentration of 

sucrose was tested. The same sets of flies were tested with all concentration of sucrose. For ChR2 

experiments, flies were fed with 200 µM all trans-Retinal and tested for the response to blue light (emitted by 

a standard mercury lamp and filtered by GFP filter: 470/40 nm (center wavelength/ bandwidth)) under a 

fluorescent microscope. For details, see Supplemental Experimental Procedures. 

 

Calcium imaging 

Two-photon imaging was performed on an Ultima two-photon laser scanning microscope (Prairie 

Technology) with an imaging wavelength at 925nm. After a brief anesthesia on ice, flies were mounted on a 
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thin plastic plate with wax as shown in Figure 6B. The top side of the plate contained a well made with 

wax, and the fly head was immersed in saline. In this saline bath, the antennae and cuticle at the anterior side 

of the fly head capsule were surgically removed with sharp forceps, so that the SOG could be imaged. At the 

bottom side of the plate, a glass tube was mounted with the opening facing the proboscis of the mounted fly. 

A piece of twisted Kimwipe was placed just behind the fly.  During imaging, a sucrose solution was delivered 

from the glass tubing to stimulate gustatory neurons in the proboscis and was removed by the Kimwipe.  

Details of the preparation and data processing are described in Supplemental Experimental Procedures.  
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Figure 1. Characterization of DopR-Tango in vitro and in Drosophila 

(A) Design of the DopR-Tango transgene; note HA epitope tag on LexA. 

(B) Schematic illustrating DopR-Tango mechanism.  

(C) DopR-Tango reporter (ß-gal) activity in response to indicated ligands in HEK293 cells co-

transfected with CMV-GAL4, UAS-DopR-Tango and LexAop-β-gal. Increases in β-gal activity 

relative to background are shown. Error bars represent the standard error of mean (SEM). Asterisks 

represent statistically significant increases (p<0.05, t-test with Bonferroni correction, n=3). 

(D) Representative confocal projections of whole-mount brains from DopR-Tango flies visualized with 

GFP native fluorescence (green) and anti-HA immunostaining (magenta).  

See also Figure S1 and Table S1. 
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Figure 2. Characterization of DopR-Tango in transgenic flies 

(A).  Specific activation of DopR-Tango by L-dopa in vivo. (A1) experimental design.  Red line 

represents 24 hr detection window for Tango reporter (see Figure S1E).  (A2-4) pseudocolor images 

of DopR-Tango reporter (GFP) expression; color scale to left.  See Figure S2 for image processing 

details. Neuropils indicated by dashed outlines are: AL, Antennal Lobe (white); SOG, 

suboesophageal ganglion (pink); mushroom body (MB) β and γ lobes (yellow and red, respectively).  

(B-D).  Quantification of reporter expression in the indicated neuropils.  SCH23390, D1 receptor 

antagonist; 3IY (3-iodotyrosine, DA synthesis inhibitor).  Unless otherwise indicated, p values in 

this and subsequent figures represent Kruskal-Wallis one-way ANOVA followed by Mann-Whitney 

U-tests with Bonferroni correction.  n>5 for each experimental group.  Boxplots: lower and upper 

whiskers represent 1.5 interquartile-range (IQR) of the lower and upper quartiles, respectively; 

boxes indicate lower quartile, median and upper quartile, from bottom to top.  

        See also Figure S2. 
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Figure 3. DA release onto GRNs increases during starvation 

(A) Experimental design and normalized Tango reporter (GFP) expression in brains of fed vs. 48-hr wet-

starved flies; color scale to left.  Laser scanning was performed at a higher gain setting to increase 

sensitivity.  Dashed boxes delineate SOG (enlarged in lower panels).  White dashed line in lower 

panels show ROIs used for quantification, based on UAS-DsRed expression in SOG neuropil.  

(B)  Representative confocal projections of sugar-sensing GRNs (B1), and Tango reporter expression 

(B2, B3) in the SOG of normal (B1, B2) or labellum-ablated (B3) flies.  

(C, D) Normalized GFP expression in DopR-Tango flies quantified in the SOG (C1-2), MB β lobe (D1), 

MB γ lobe (D2) and AL (D3).  n >6 for each experimental group. 

 See also Figure S3. 
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Figure 4. Hunger and DA increase the sugar sensitivity of the PER 

(A) Fraction of fed vs. wet-starved (WS) flies showing a PER at different concentrations of sucrose.  

(A1).  Average responses.  Error bars represent S.E.M.  (A2) MAT (mean acceptance threshold; the 

sugar concentration where 50% of the flies show PER), plotted as a function of starvation time.  

One-way ANOVA followed by t-test with Bonferroni correction (n>4 for each experimental group). 

(B) PER responses in non-starved flies fed with the indicated concentrations of L-dopa (n>4 for each 

experimental group). 

(C) Genetic activation of DA neurons increases sugar sensitivity.  PER vs. sugar concentration curves 

are shown for experimental Th-GAL4;UAS-dTRPA1 (C1) and genetic control flies (C2 and C3) at 

the permissive (red) and non-permissive (blue) temperatures for dTRPA1.  Within-genotype 

differences between temperatures were analyzed using a two-way ANOVA with replication 

followed by post-hoc t-tests with the Bonferroni correction at each sugar concentration. *; p<0.05, 

n.s.; not significant (n>4 for each experimental group). 

 See also Figure S3. 

 

 

 

 

 

 

 



 

 

I-31 

 

 

B1 nsyb-GAL4
UAS-DopEcR RNAi

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

empty-GAL4
UAS-DopEcR RNAi

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

nsyb-GAL4
UAS-GFP

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fl

ie
s

 s
ho

w
in

g 
PE

R

Figure 5.

D1 DopEcR mutant

6   hours WS
Sugar fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

Wild type

6   hours WS
Sugar fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fl

ie
s

 s
ho

w
in

g 
PE

R

Gr5a-GAL4
UAS-DopR2 RNAi

6   hours WS
Sugar fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

C1 Gr5a-GAL4
UAS-DopEcR RNAi

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fl

ie
s

 s
ho

w
in

g 
PE

R

Gr5a-GAL4
UAS-DopR2 RNAi

L-dopa fed
Vehicle fed

Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

6.25 12.5 25 50 100 200 400

Gr5a-GAL4
UAS-GFP

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

DopEcR mutant
DopEcR rescue in Gr5a

6   hours WS
Sugar fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

B2 B3

C2 C3

D2

E2

D3

M
AT

 (m
M

)

starvation 0h 6h

Gr5a-GAL4
DopEcR RNAi

0h 6h

Gr5a-GAL4
DopR2 RNAi

50

100

200

n.s. p<0.001

E3

n.s.

n.s p<0.05

M
AT

 (m
M

)

L-dopa - +

nsyb-GAL4
UAS-GFP

+ -- +

100

200

  50

25

400

empty-GAL4
UAS-DopEcR
RNAi

nsyb-GAL4
UAS-DopEcR
RNAi

p<0.05
B4

n.s.

n.s.

M
AT

 (m
M

)

L-dopa - +

Gr5a-GAL4
UAS-GFP

+ -- +

200

400

100

50

Gr5a-GAL4
UAS-DopR2
RNAi

Gr5a-GAL4
UAS-DopEcR
RNAi

p<0.001 p<0.05
C4 n.s.

D4

M
AT

 (m
M

)

starvation 0h 6h
Wild type

0h 6h
DopEcR mutant

200

400

n.s.p<0.001
100

p<0.01

800

*

**
*

*
*

*
*

*

*
*

*
**

E1 Gr5a-GAL4
UAS-DopEcR RNAi

6   hours WS
Sugar fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fl

ie
s

 s
ho

w
in

g 
PE

R

*

*
*

**

n.s.

n.s.

0h 6h
DopEcR rescue

M
AT

 (m
M

)

L-dopa - +
Wild type

- +
DopEcR mutant

50

200

p<0.001 n.s.

A3

800

n.s.

n.s.

A1

Fr
ac

tio
n 

of
 fl

ie
s

 s
ho

w
in

g 
PE

R

Wild type

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

*
* * *

*

*
*

800

DopEcR mutant

*

A2

Fr
ac

tio
n 

of
 fl

ie
s

 s
ho

w
in

g 
PE

R

L-dopa fed
Vehicle fed

6.25 12.5 25 50 100 200 400
Sugar concentration (mM)

0.0

0.2

0.4

0.6

0.8

1.0

800



 

 

I-32 
Figure 5. DopEcR expression in Gr5a GRNs is necessary and sufficient for L-dopa feeding- and 

starvation-induced increases in PER sugar sensitivity 

(A) Sugar sensitivity of wild type, and DopEcR mutant flies after L-dopa (3 mg/ml) feeding. The wild-

type data are identical to Figure 4B1 and are reproduced here for ease of comparison.  

(B-E) Sugar sensitivity of RNAi flies or mutant flies after L-dopa feeding (B, C) or 6 hrs wet-starvation 

(WS; D, E). UAS-DopEcR RNAi and UAS-DopR2 RNAi are in the same genetic background. Note that 

DopR2 is not expressed in a detectable level in sugar-sensing GRNs (Figure S4A).  

 

In PER curves, error bars represent SEM. Boxplots: lower and upper whiskers represent 1.5 interquartile-

range (IQR) of the lower and upper quartiles, respectively; boxes indicate lower quartile, median and 

upper quartile, from bottom to top. The statistical significance of within-genotype differences between 

PER curves, or MAT values, for L-dopa vs. vehicle treatment or feeding vs. wet-starvation was analyzed 

using two-way ANOVA with replication followed by post hoc t-tests with Bonferroni correction. *; 

p<0.05, n.s.; not significant (n>4 for each experimental group).  A significant interaction between 

genotype and feeding manipulation was revealed by a 2-way ANOVA in (A3) p<0.0001; (B4) p<0.005; 

(C4) p<0.01; (D4) p<0.05; and (E3) p<0.005, indicating that the genetic manipulations interfered with the 

effect of wet-starvation or L-dopa feeding.  

See also Figure S4. 
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Figure 6. Starvation or L-dopa feeding enhance calcium transients in sugar sensing GRNs 

(A) Channelrhodopsin-2-evoked PER.  Gr5a-GAL4;UAS-ChR2 or Gr5a-GAL4;UAS-GFP control flies 

were stimulated with blue (470/40 nm: centerwavelength/bandwidth) light at the indicated 

intensities (A1) or at 1.6 mW/cm2 under the indicated conditions (A2). Error bars represent SEM. 

(B) The setup for calcium imaging of sugar-sensing GRNs.  Blue dashed arrow indicates direction of 

flow of sugar solution. 

(C) Responses (∆F/F) to different concentrations of sucrose in the central projections of sugar-sensing 

GRNs in Gr5a-GAL4;UAS-GCaMP3.0 flies. The solid lines represent average trace, and envelopes 

indicate SEM (n>7 for each condition).  

(D) Quantification of fluorescent changes.  ∫ ∆F/F dt, integrated ∆F/F during stimulus period.  Data 

analyzed from (C). Mann-Whitney U-tests with Bonferroni correction. 

(E) Correlation between GCaMP signals (analyzed in B, C) and behavioral responses (PER) of Gr5a-

GAL4;UAS-GCaMP3.0 flies (n>4).  Error bars represent SEM.     

(F)  Responses (∆F/F) to different concentrations of sucrose in the central projections of sugar-sensing 

GRNs before and after 5 min exposure of the brain to saline with or without 1mM DA. The solid 

lines represent average trace, and envelopes indicate SEM (n>7 for each condition). 

(G)  Fold increase in ∫F dt (∫F dt[After DA]/∫F dt[Before DA]) during each stimulus period, calculated from the 

data in (F).  Mann-Whitney U-tests with Bonferroni correction. 

(H) Schematic illustrating mechanisms controlling starvation-induced increases in the sugar sensitivity 

of PER behavior.  

See also Figure S5. 
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Supplemental figure 1.  Bi-cistronic expression using a 2A peptide in Drosophila and kinetics of 

DopR-Tango activation in vivo, related to Figure 1 

(A-B) Characterization of 2A peptide in Drosophila Schneider 2 (S2) cells. nls::GFP (GFP tagged with 

nuclear localization signal; green) and fCherryFP (mCherry tagged with farnesylation signal; red) were 

expressed from two separate co-transfected vectors (UAS-nls::GFP and UAS-fCherryFP; A), or from a 

single vector with a 2A peptide ( UAS-nlsGFP-2A-fCherryFP; B). Actin promoter-Gal4 driver was used 

to induce the expression. The nuclear-cytoplasmic segregation of GFP and fCherry expression, 

respectively, in (B) indicates that the 2A peptide is functional in S2 cells.   

(C) The 2A peptide is functional in the Drosophila brain in vivo.  UAS-nlsGFP-2A-fCherryFP was 

expressed in a giant fiber neuron using the 307-GAL4 driver.  The nuclear-cytoplasmic segregation of 

GFP and fCherry signals implies cleavage of the 2A sequence in vivo.  

(D)  DopR Tango reporter expression is dependent on co-expression of Arrestin-TEVp.  Representative 

confocal projections of a whole mount brain from DopR-Tango flies expressing UAS-DopR-TEVcs-LexA 

without Arrestin1-TEVp co-expression, visualized using GFP native fluorescence (green; D1) and anti-

HA immunostaining (magenta; D2).  Note absence of GFP reporter expression.  

(E) Time course of DopR-Tango and GFP reporter expression in DopR-Tango flies co-expressing elav-

GeneSwitch after RU486 feeding.  X-axis/abcissa (time) represents the time after DopR-Tango 

expression (determined by anti-HA antibody staining) reached steady-state levels (RU486 was fed for 24 

hrs between -12 to 12 hrs).  Fluorescent pixel intensities were quantified in the antennal lobe, and are 

expressed relative to baseline values determined at t= -12hrs.  One-way ANOVA was followed by t-test 

with Bonferroni correction (*: signal is significantly different from that of time point 0). Error bars 

represent standard deviation, n=2-4 for each experimental group.  

 

A time course of DopR-Tango and GFP reporter expression (Figure S1E) indicated that the expression of 

the former starts within 6-12 hrs after the initiation of RU486 feeding, while the level of GFP reporter 

expression reaches a statistically significant increase 36-48 hrs after that time.  This implies that it takes 

>24 hrs for the GFP reporter to accumulate to significant levels after DopR-Tango expression.  This 
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interval likely reflects the sum of the times required for (1) LexA to be cleaved after the expression 

of DopR-Tango, (2) LexA to be transported to the nucleus and activate GFP transcription, and (3) 

translation and transport of GFP to various neuropils.  Therefore, in order to ensure a detectable change in 

GFP reporter expression following experimental manipulations of DopR-Tango flies, such as drug 

feeding, we chose to dissect fly brains 48 hrs after the starting point of manipulation.  The level of GFP 

reporter expression measured at this end-point likely reflects the integration of DA signal over the first 24 

hr of the manipulation (Figure 2A and 3A, red line).  Based on our data, additional signaling in the 

second 24 hr period likely does not yield a sufficient additional increase in reporter expression to 

contribute significantly to the signal detected at the 48 hr end-point.   
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Supplemental figure 2.  Normalization and image processing of DopR-Tango reporter signal in 

vivo, related to Figure 2 

(A) Schematic illustrating the transgenically encoded DopR-Tango signal transduction cascade.  

GeneSwitch (GS)-Gal4 (orange oval) induces the expression of both DsRed and DopR-Tango.  DA-

dependent cleavage of DopR-Tango results in translocation of LexA (purple oval) to the nucleus, where 

it activates expression of the lexAop-GFP Tango reporter.  The level of GFP reporter expression reflects 

not only the ambient level of DA, but also the expression level of the DopR-Tango cassette itself.  Since 

both DsRed and DopR-Tango are under the control of GS, the signal intensity of DsRed should 

proportionately reflect the expression level of DopR-Tango, in a given region of the brain in a given 

specimen.  Therefore, dividing the GFP signal by the DsRed signal on a pixel-to-pixel basis corrects for 

within- or between-specimen variations in the level of DopR-Tango expression, and provides a 

normalized measure of GFP reporter expression that should primarily reflect ambient levels of DA 

activation of the DopR-Tango cassette. Native fluorescence rather than antibody staining was used to 

avoid non-linear signal amplification. This method permitted quantification of the normalized GFP 

signal in various regions of interest (ROIs).   

(B and C) Representative examples of image normalization process.  Single optical sections from a 

whole mount DopR-Tango fly brain (Vehicle fed: B1-3, L-dopa fed: C1-3). Signal intensity of native GFP 

(B2 and C2) and DsRed (B3 and C3) are represented in pseudo color.  After noise filtering using the 

Wiener method (Lim, 1990), DsRed signals were converted into binary data using a threshold that cuts 

off noise outside the brain (B4 and C4).  The GFP signal was multiplied by these binary data (B5 and C5) 

on a pixel-by-pixel basis.  This process eliminates GFP signals in pixels lacking any DsRed signal, 

thereby avoiding division by zero in the subsequent normalization step.  Finally, this processed GFP 

signal was divided by the signal intensity of DsRed (B6 and C6) on a pixel-by-pixel basis.  Note how this 

processing facilitates comparison of GFP signals in many brain areas, such as the dorsal protocereberum 

(indicated by white dashed circle), in which DsRed expression levels are low.  

(D) Specific activation of OctR-Tango by CDM in vivo. Pseudocolor images of OctR-Tango reporter 

(GFP) expression are shown (D1). Quantification of reporter expression in the indicated neuropil 
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structures(D2-3).  p-values in this figure represents the results of Kruskal-Wallis ANOVA followed 

by Mann-Whitney U-test with Bonferroni correction for multiple comparisons.  n>5 for each 

experimental group. 

(E) Dose-response profile of reporter expression in DopR-Tango flies. Reporter expression in the 

antennal lobe (AL) was quantified as described above after feeding with the indicated concentration of 

L-dopa.  p-values in this figure represents the results of Kruskal-Wallis ANOVA followed by a Mann-

Whitney U-test with the Bonferroni correction for multiple comparisons.  n>10 for each experimental 

group. 
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Supplemental figure 3. Analysis of PER, related to Figure 3 and 4 

(A) PER assay. Presentation of sucrose solution to the tip of proboscis (labellum) causes full extension of 

proboscis. 

(B) A response curve to the sugar (PER curve) can be fitted into a sigmoid curve. Representative 

examples of PER curve (3 examples each for sugar fed, 1day wet-starved, and 2 days wet-starved wild-

type flies). Raw data, blue; sigmoid fitting, green. In all cases, fitting of sigmoid to the data was 

confirmed with two-way ANOVA.  See also Supplemental Experimental Procedures. 

(C) αs decreases with two-day wet-starvation or L-dopa feeding. αs is slope of the sigmoid curve (see 

Supplemental Experimental Procedures). One-way ANOVA was followed by t-test with Bonferroni 

correction. 

(D) Average curves of the fitted sigmoid curves (solid lines), fit well to the average curves of the raw data 

(dotted lines. Envelopes indicate SEM). Raw data are pooled from Figure 4A1 and 5D1 (n>4 for each). 

Fitting was confirmed with two-way ANOVA. 

(E) Time course of changes in MAT during starvation.  MATs were measured 0, 3, 6, 12, 18, and 24 hour 

after wet-starvation, and 30 min after sucrose feeding of 24 hr wet-starved flies (n>3, each). While 

increase in sugar-sensitivity during starvation is gradual, the decrease in sugar-sensitivity after feeding is 

abrupt, suggesting different mechanisms controlling sugar-sensitivity under states of starvation and 

satiety. One-way ANOVA was followed by t-test with Bonferroni correction (n.s.: p>0.05). 

(F) Sugar sensitivity of sugar fed and wet starved DopR-Tango flies tested using the PER assay. As in 

wild type flies (Figure 4A1), DopR-Tango flies showed normal PER behavior and starvation-dependent 

increase in sugar sensitivity. (F1) average response. See Figure S4 for the statistical method to test the 

difference between two PER curves. Error bars represent SEM. (F2) MAT. t-test (n>4 for each 

experimental group).  
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Supplemental figure 4. Quantification of DA receptor mRNA expression and validation of RNAi, 

related to Figure 5 

(A) DA receptor expression in RNA isolated from sugar-sensing GRNs by the TU-tagging method (Miller et 

al., 2009) and quantification by qRT-PCR. Error bars represent standard deviation (n=2).  

(B-C) The effect of the DopEcR mutation and DopEcR RNAi on the amount of DopEcR RNA was quantified 

using qRT-PCR. Error bars represent standard deviation (n=3). One-way ANOVA was followed by t-test with 

Bonferroni correction (*: p<0.05).  

(D-E) Sugar sensitivity of DopR1 hypomorph mutant (D), pan-neuronal D2R RNAi (E1) and its genetic 

control flies (E2) with or without L-dopa feeding.  All genotypes exhibited a significant increase in sugar 

sensitivity by feeding L-dopa.  Data in D are directly comparable to wild-type data in Figure 5A1 for the same 

genetic background. 

(F-G) Sugar sensitivity of DopEcR RNAi or mutant after 24 hrs of starvation. 

(H) Over-expression of DopEcR in sugar-sensing GRNs boosts the increase in sugar sensitivity caused by 

food-deprivation. The sugar sensitivity of flies over-expressing DopEcR in sugar-sensing GRNS (Gr5a-

GAL4;UAS-DopEcR; red lines) was compared to the sensitivity of its genetic control flies (Gr5a-GAL4/+; 

blue lines).   

(I) Over-expression of DopR1 in sugar-sensing GRNs did not influence sugar sensitivity.  The sugar 

sensitivity of flies over-expressing DopR1 in sugar GRNs (Gr5a-GAL4;UAS-DopR1; red lines) was compared 

to the sensitivity of its genetic control flies (Gr5a-gal4/+; blue lines).  DopRf02676 was used as UAS-

DopR1(Lebestky et al., 2009).  

       

As in Figure 5, in PER curves, error bars represent SEM. Boxplots: lower and upper whiskers represent 1.5 

interquartile-range (IQR) of the lower and upper quartiles, respectively; boxes indicate lower quartile, median 

and upper quartile, from bottom to top. The difference between PER curves for each pair of experimental 

groups (red vs. blue lines in all panels) was analyzed by two-way ANOVA with replication followed by a post 

hoc t-test with Bonferroni correction. *; p<0.05, n.s.; non-significant (n>4 for each experimental group).  
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Differences between MATs were analyzed by two-way ANOVA with replication followed by post hoc t-

test with Bonferroni correction. Interactions between genotyopes and feeding conditions 

(Genotypes×Conditions), which were calculated by the two-way ANOVA, were not significant for all cases 

listed below, implying that the genetic manipulations (mutation or RNAi) did not interfere the effect of 

feeding manipulations (wet-starvation or L-dopa feeding); p=0.5275 (non significant) (E3), p=0.2876 (F3), 

p=0.3478 (G3).  
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Supplemental figure 5. Extaracellular recording of GRNs in labellum, related to Figure 6 

(A) Sample traces of electrophysiological recordings made from L3 sensilla of fed (A1) and starved flies 

(A2). The electrophysiological responses of labellar sugar-sensing GRNs to 100 mM sucrose were 

recorded extracellularly by using the tip recording method (see Supplemental Experimental 

Procedures). Recording electrode filled with sucrose solution touched the sensilla at the time pointed 

by the arrow. Contact artifacts are observed at the beginning of each trace. 

(B) Effect of starvation on the action potential frequency of sugar-sensing GRNs in response to 100 mM 

sucrose. The spike number in the first 0.25 sec (B1-4) and the first 1.0 sec (data not shown) of the 

response to sucrose was measured. No change in action potential frequency was observed between 

fed and starved flies in any of the sensilla tested (Man-Whitney U-test). In case of the L-type 

sensilla, we observed statistically significant increase in action potential amplitude in starved flies, 

compared to fed flies (data not shown). Since the action potential shape and amplitude, measured by 

extracellular recording, depend on extracellular factors, such as the distance and position of the 

recording electrode and the resistance of the environment around the cell, we could not conclude 

whether this increase in the action potential amplitude is due to a change in the sugar-sensing GRNs 

themselves. 
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Supplemental table1. 

Comparison of TANGO-map with other methods to monitor nueromodulators in vivo, related to Figure 

1 

 

  Direct measurements Indirect measurements  

TANG

O-map 

HPLC, 

ELISA1)  

In vivo 

voltammetry 

IEG Ca2+ 2) cAMP 3) Electro- 

physiology 

Cellular resolution + - - + + + + 

Ligand-specificity + + + - - - - 

Unbiased 4) + N.A. N.A. + - - +/- 5) 

Non-invasive  6) + N.A. - + - - - 

Temporal resolution 12-24 

hrs7) 

N.A. 100 msec   1 hr 100 

msec 

100 msec msec level 

 

1) HPLC or ELISA of homogenized nervous system  (Bainton et al., 2000).  

2) Measured using organic Ca2+ sensor or genetically encoded Ca2+ sensor such as GCaMP (Tian et al., 2009) 

and TN-XXL (Mank et al., 2008).  

3) Measured using genetically encoded cAMP sensor, Epac1-camps (Shafer et al., 2008). 

4) Meaning that the method does not require specific Gal4 lines. 

5) Gal4-UAS system is often used to visualize neurons to record (Wilson et al., 2004). 

6) Non-invasive means the method does not require surgical manipulation before or during the behavior of 

interest, so that there is no interference with the behavior. 

7) By changing the time-point of dissection, in principle, temporal resolution can be improved.  
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Supplemental Experimental Procedures 

 

Recombinant DNA construction 

Plasmids were constructed by standard DNA cloning and PCR methods. All PCR reactions were performed 

using PrimeStar® HS DNA polymerase (Takara).  PCR-amplified DNA fragments were inserted into the 

pCRII Vector (Invitrogen).  After amplification all sequences were verified by DNA sequencing. 

 

Completed vectors for expression in Drosophila (UAS-DopR-Tango, UAS-OctR-Tango, UAS-DopEcR, and 

UAS-ChR2(C128T)) were inserted into either the attP2 site or attP40 site (Pfeiffer et al., 2010) using attB/attP 

and C31-mediated recombination (Genetic Services, Inc.) (Groth et al., 2004; Markstein et al., 2008).  

 

Plasmids containing UAS-DopR-Tango and UAS-OctR-Tango were created in several steps as shown below.  

The “Valium” vector was used as the backbone for all constructions (Ni et al., 2008). 

 

pCRII-2A 

A DNA fragment encoding the F2A peptide (Donnelly et al., 2001) was amplified by PCR using primers 2A-f 

(CCTAGGGAGCAGAAGGGCCCCGGGCTAAGAGATCAGGTTC) and 2A-r 

(GCTAGCGAGCAGGGCCGGCCTGGCCCTGGGTTGGACTCC), and a plasmid generously provided by 

Dr. Pin Wang.  The pCRII vector containing this DNA fragment was named pCRII-2A.  

 

Valium-2A-TEVp 

The DNA fragment encoding TEV protease (TEVp) was amplified by PCR using primers TEVp-f (GAATTC 

CCTAGGGAGCAG GCTAGCTTGTTTAAGGGACCACG) and TEVp-r 

(GTCTAGATCAAGCGTAATCTGGAACATCA), and a vector generously provided by Dr. Kevin J Lee 

(Barnea et al., 2008). This fragment was subcloned into the C-terminal side of 2A in pCRII-2A using AvrII 

and NheI.  Subsequently, the DNA fragment containing both 2A and TEV protease was subcloned into a 

Valium vector (Ni et al., 2008), a vector containing both UAS and attB sequence, using EcoRI and XbaI.   
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Valium-TEVcs-LexA-HAtag-2A-TEVp 

A DNA fragment encoding the TEV cleavage site (TEVcs) and a hemagglutinin (HA) epitope tag sequence 

was created by PCR and inserted into the pCRII vector.  For the initial version of DopR Tango (used only in 

Figure 2D and S2D, E), GGSGGENLYFQLGGSGG was used as a cleavage sequence, where GGSGG at 

both ends are linkers.  Subsequent experiments showed that the S/N in vitro was better using a different 

cleavage sequence with shorter linkers, GENLYFQLG.  Therefore, a modified DopR-Tango containing this 

TEVcs sequence was used for the remainder of the study. The constructed sequence is shown below (the 

TEVcs is GENLYFQLG): 

   

GCCTAGGACGAGTCCGCGGCCGCGGAGAAAATCTCTATTTCCAGCTAGGACCCGGGTTGGTTCC

CATATGATGGACCTGCACCGTGGTGGCGGTCGTATCTTTTATCCGTATGACGTGCCGGACTATG

CCGGCTATCCATACGATGTCCCCGACTACGCTGGATCCTACCCCTACGACGTCCCAGATTATGC

CGCTCATGGCGGAGGGCCCG .  

 

A DNA fragment encoding LexA::VP16 (LexA) (Lai and Lee, 2006) was amplified by PCR using primers 

LexA-f (GCCCGGGAAAGCGTTAACGGCCAGG) and LexA-r 

(GCATATGCCCACCGTACTCGTCAATT), and a plasmid generously provided  by Dr. Tzumin Lee.  This 

DNA fragment was subcloned in between the TEVcs and the HA tag by using XmaI and NdeI, to create a 

fusion sequence, TEVcs-LexA-HAtag.  This DNA fragment was in turn subcloned 5’ to the 2A sequence in 

Valium-2A-TEVp using AvrII and ApaI. This vector was named Valium-TEVcs-LexA-HAtag-2A-TEVp. 

 

Valium-TEVcs-LexA-HAtag-2A-Arrestin-TEVp 

A Drosophila Arrestin1 coding sequence was amplified by PCR using primers Arrestin-f 

(GGGCCGGCCCATGGTGGTCAATTTCAAGGTG) and Arrestin-r 

(GCTAGCGCCTCCGCTGCCACCGTAGGCCTCAATGGAGCCC), and a cDNA template synthesized 
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from the heads of wild-type (Canton-S) flies.  This DNA fragment was subcloned into Valium-TEVcs-

LexA-HAtag-2A-TEVp between the 2A and TEVp sequences using FseI and NheI. 

 

UAS-DopR-Tango (Valium-DopR1- TEVcs-LexA-HAtag-2A-Arrestin-TEVp) 

A Drosophila DopR1 coding sequence was amplified by PCR using primers DopR1-f 

(GCCTAGGCAAAATGTACACACCACACCCATTTG) and DopR1-r 

(GGCGGCCGCCGCAAATCGCAGACACCTGCTC), and a cDNA template synthesized from the heads of 

Canton-S flies. This DNA fragment was subcloned into Valium-TEVcs-LexA-HAtag-2A-Arrestin-TEVp 

using AvrII and NotI, to produce the final product Valium-DopR1-TEVcs-LexA-HAtag-2A-Arrestin-TEVp. 

For simplicity this vector was re-named UAS-DopR-Tango. 

 

UAS-OctR-Tango (Valium-OctR1- TEVcs-LexA-HAtag-2A-Arrestin-TEVp) 

A Drosophila OctR1 coding sequence was amplified by PCR using primers OctR-f 

(CCTAGGCAAAATGAATGAAACAGAGTGCGAGG) and OctR-r 

(GCGGCCGCCCCTGGGGTCGTTGCTCAT), and a cDNA template synthesized from the heads of Canton-

S flies.  This DNA fragment was subcloned into Valium-TEVcs-LexA-HAtag-2A-Arrestin-TEVp using AvrII 

and NotI, to produce Valium-OctR1-TEVcs-LexA-HAtag-2A-Arrestin-TEVp. For simplicity this vector was 

named UAS-OctR-Tango. 

 

UAS-DopEcR 

A Drosophila DopEcR coding sequence was amplified by PCR using primers DopEcR-f 

(GGCGGCCGCCAAAATGCAGGAAATGAGCTACCTAC) and DopEcR-r 

(GTCTAGACTAGTCATCTGGGTCCAACC), and a cDNA template synthesized from the heads of Canton-

S flies. This DNA fragment was subcloned into pJFRC-MUH (Pfeiffer et al., 2010) using NotI and XbaI.  

 

UAS-ChR2(C128T) 
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DNA fragment of ChR2(C128T)::eYFP (Berndt et al., 2009) was amplified by PCR using primers chr2-f 

(AGAGAACTCTGAATAGATCTCACCatggactatggcggcgctttg) and chr2-r 

(TTCCTTCACAAAGATCCTCTAGAttacttgtacagctcgtcca), and a plasmid generously provided by Dr. Karl 

Deisseroth. The amplified PCR products were subcloned into pJFRC-MUH using SLIC cloning (Li and 

Elledge, 2007). 

 

Fly strains 

Th-GAL4 (Friggi-Grelin et al., 2003), Gr5a-GAL4 (Scott et al., 2001), elav-GenesSwitch (Osterwalder et al., 

2001), empty promoter-GAL4 (a GAL4 line with a Drosophila synthetic core promoter but no enhancer 5’ to 

this promoter, which has been shown to have no detectable expression in the adult CNS (Pfeiffer et al., 

2008)), and n-synaptobrevin-GAL4 (nsyb-GAL4) (Pauli et al., 2008) were obtained from Dr. Serge Birman, 

Dr. Kristin Scott, Dr. Haig Keshishian, Barret Pfeiffer and Dr. Gerald M. Rubin, and Dr. Julie Simpson, 

respectively. UAS-mCD8::GFP (pJFRC2 described in (Pfeiffer et al., 2010)), UAS-DsRed (Verkhusha et al., 

2001), UAS-GCaMP3.0  (Tian et al., 2009), UAS-dTRPA1 (Hamada et al., 2008) , UAS-UPRT (Miller et al., 

2009) and LexAop-mCD2::GFP (Lai and Lee, 2006) were generously provided by Dr. Gerald M. Rubin, Dr. 

Kei Ito, Dr. Loren L Looger, Dr. Paul A. Garrity, Dr. Chris Q. Doe, and Dr. Tzumin Lee, respectively.  RNAi 

lines (Dietzl et al., 2007) were generously provided by Dr. Barry J. Dickson via the VDRC stock center (UAS-

DopEcR RNAi (KK 103494), UAS-DopR2 RNAi (KK 105324), UAS-GFP, and UAS-Dicer2 (on X 

chromosome)), or the Drosophila RNAi Screening Center  (UAS-D2R RNAi (JF02025) and UAS-luciferase) 

(Dietzl et al., 2007). UAS-Dicer2 on X chromosome are combined with nsyb-GAL4 and called nsyb-GAL4 in 

this paper. UAS-dTRPA1 on second chromosome and third chromosome are combined to make a fly strain 

with two copies of UAS-dTRPA1, which are described as UAS-dTRPA1 in this paper. For DopEcR rescue in 

Gr5a GRNs in DopEcR mutant (Figure 5D3), Gr5a-GAL4(II); DopEcRc02142(III) and UAS-DopEcR(II); 

DopEcRc02142(III)  were crossed (Loss of DopEcR expression was checked with qRT-PCR). 

 

Cell culture 
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HEK293 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) 

supplemented with 4mM L-glutamate (Invitrogen), 10% fetal bovine serum (Invitrogen), and 100 units/ml 

penicillin and streptomycin.  Cells were grown at 37°C with 5% CO2. Cells in 24 well plates were transfected 

with 0.8 μg each of three plasmids (CMV-Gal4, UAS-DopR-Tango, and LexAop-βgal) by using 

Lipofectamin2000 (Invitrogen). 12 hours after the transfection, the medium was changed into medium 

containing one of the following drugs: Dopamine hydrochloride (Sigma); 6,7-ADTN (Sigma); Serotonin 

hydrochloride (Sigma); or Octopamine hydrochloride (Sigma), and cultured for 24 hours.  Cells were 

harvested and the activity of β-galactosidase was measured using “β-Galactosidase Enzyme Assay System 

with Reporter Lysis Buffer” kit (Promega) . 

 

Schneider cells (S2 cells) were maintained in fresh complete Schneider’s Drosophila Medium (Invitrogen). 

EffecreneTM transfection reagenet (QIAGEN) was used for transfection. 

 

TU-tagging and qPCR 

500 transgenic flies carrying Gr5a-GAL4 and UAS-UPRT were fed with 1mM 4-TU solved in sucrose 

solution for 8 hours.  The proboscis of each fly was excised and collected, and TU-tagged RNA was purified 

from this tissue as described previously (Miller et al., 2009).  cDNA was synthesized using Super Script® 

VILOTM cDNA Synthesis kit (Invitrogen). Real Time PCR was performed using EXPRESS SYBR® 

GreenERTM (Invitrogen) and a 7300 Real Time PCR system (Applied biosystems). Cyclophilin1 (Cyp1), a 

housekeeping gene, was used as a standard (TATA binding protein (tbp) was also used as a standard to give 

similar results; data not shown).  Using melting temperature analysis, each primer pair was confirmed to 

produce a single PCR product.  Primers listed below were used; 

Cyp1-f : AGTCTGGCAAGACCTCCAAG 

Cyp1-r : TTGCATCGCACCTTCTTAAA 

DopR1-f : GAAGTCCATCAAGGCGGTAA 

DopR1-r : AGCCAGGTGAGGATCTTGAA 

DopR2-f : GAGGATCTCTGAGCCACTCG 
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DopR2-r : GCAGGCGTAAATCACAGGAT 

D2R-f : CACAAGGCCTCGAAAAAGAA 

D2R-r : GCGAAACTCGGGATTGAATA 

DopEcR-f : TTTGACCGGAGAATGGATGT 

DopEcR-r : ATGCAAATGTGCGTCATGTT 

Gr5a-f : CCTTCGTGCTGCTGGTAGTT 

Gr5a-r : CTTCTTCGTGGGCAGAAGTC 

Gr66a-f : ATCTGGTTCGCTGTTTCGTT 

Gr66a-r : TTATGCTTCTCGTGCGTGTC 

 

qRT-PCR of mutant or RNAi was performed by synthesizing cDNA from the heads of  >10 flies and 

performing Real Time PCR using the same sets of primers described above. 

 

TANGO-map and confocal imaging 

DopR-Tango flies or OctR-Tango flies (UAS-DsRed (X); LexAop-mCD2::GFP (II); elva-GeneSwitch/ UAS-

DopR-Tango (III; or UAS-OctR-Tango)) were collected using  CO2 anesthesia and allowed to recover for 2 

days.  Flies were first dry-starved for 4 hours to make sure they consumed any drugs provided.  Then, flies 

were moved into a vial containing 0.5 mM RU486 mixed in 89 mM sucrose and allowed to feed for 12 or 24 

hours (for subsequent drug feeding or starvation experiments, respectively).  After this RU486 feeding, flies 

were moved to either food vials (fed condition), vials containing a wet filter paper (wet-starved condition), or 

a drug dissolved in 89 mM sucrose (drug-fed condition).  Two days later, fly brains were dissected and 

immunostained.  Drugs used for feeding were L-dopa precursor (Sigma, 3 mg/ml), Chlordimeform (CDM) 

(Sigma, 0.5 mg/ml), SCH23390 (Sigma, 5 mg/ml), and 3-Iodo-L-tyrosine (3IY) (Sigma, 10mg/ml).  In the 

case of 3IY and SCH23390, feeding was started 5 days before RU486 feeding, or on the day of RU486 

feeding, respectively, to achieve effective levels of the drugs. All food vials containing drugs were freshly 

prepared and drug-fed flies were transferred to fresh drug vials daily for the duration of any feeding period. 
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Dissected brains were fixed in 4% formaldehyde in PEM (0.1M PIPES, pH 6.95, 2mM EGTA, 1mM 

MgSO4) for 2 hours at 4 °C.  After three 15 min rinses with PBS, brains were incubated with primary 

antibodies overnight.  Following three 15 min rinses with PBS, brains were incubated with secondary 

antibody overnight. Following three rinses, brains were incubated in 50% glycerol in PBS for 2 hours and 

cleared with VECTASHIELD® (VECTA).  All procedures were performed in 4 °C. For observation of native 

fluorescence, incubation with primary and secondary antibodies was omitted.  An LSM 510 confocal 

microscope (Carl Zeiss) was used to obtain confocal serial optic sections.  

 The antibodies used were: Rat anti-HA High Affinity monoclonal antibody (Roche Applied Science), Mouse 

Tyrosine Hydroxylase Antibody (ImmunoStar) , CyTM5-conjugated AffiniPure Goat Anti-Mouse IgG (H+L) 

(Jackson ImmunoResearch), and DyLightTM549-conjugated AffiniPure Donkey Anti-Rat IgG (H+L) (Jackson 

ImmunoResearch).  Image processing methos are described in Figure S2.  Fluorender software (Wan et al., 

2009) was used to make 3D reconstructed images of these processed images.  ROIs were identified based on 

the signal of the co-expressed UAS-DsRed; in this way, the expression level of the GFP reporter does not 

affect the size or identification of the ROI.  ROIs were measured in single optical sections in the Z-plane and 

not in the projection images. 

 

For labellum ablation experiments, the labellum (not including other parts of the proboscis) was surgically 

ablated using sharp forceps 24 hour after RU486 feeding.  The brains were dissected two days after this 

manipulation.  

 

Signal-to-Noise ratio of DopR-Tango 

The Signal-to-Noise ratio (SNR) is defined as SNR=μ/σ, where μ is the mean signal (signal in a given 

experimental condition) and σ is the standard deviation of the noise (deviation in signal level of control flies). 

In case of L-dopa feeding (Figure 2B1-4) the measured SNR was 4.1, 4.0, 3.9 and 1.5 in the AL, SOG, MB β 

lobe and MB γ lobe, respectively. The SNR in the γ lobe is low due to one outlier point in the control sample, 

which increased σ.  The relatively low SNR may due to variability among flies in endogenous factors (e.g., 
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differences in levels of endogeneous baseline DA release) and/or exogenous factors (e.g., differences in 

the expression level of DopR-Tango, or the extent of DA-independent cleavage). 

 

 

PER assays 

All PER tests were performed by an experimenter blind to genotype or experimental condition.  All of 

experimental flies were maintained on a 12 hour day-night cycle. Newborn female flies were CO2 

anesthetized and allowed to recover for more than 3-7 days prior to the assay at 25°C (or 10-14 days at 27°C 

in the case of RNAi flies, to boost the effect of RNAi).  For standard PER assays, 10-20 flies were pre-

incubated for the indicated times in a vial containing a piece of filter paper soaked with 1 ml of water, in the 

case of wet-starved flies, or with 1 ml of 89mM sucrose solution in the case of sucrose-fed flies.  For L-dopa 

feeding experiments, L-dopa precursor (Sigma) was dissolved in the sucrose solution, and flies maintained 

with this solution for 2 days (In all experiments with L-dopa feeding, a concentration of 3 mg/ml was used 

unless otherwise indicated.  Higher concentrations of L-dopa was not used because of  side-effects such as 

changes in body coloration or death).  

Prepared 10-20 experimental flies were mounted into 200 µl pipetman tips as described previously 

(Shiraiwa and Carlson, 2007). After mounting, the backs of flies were glued to the pipetman tip to avoid their 

escape.  Flies were allowed 3 min for acclimation prior to testing.  A 10µl pipetman (Gilson) was used to 

present 0.5µl drops of water or sucrose solutions to the labellum of the flies.  All flies were initially checked 

for responses to water.  If flies showed a PER to water, they were allowed to drink until they stopped.  This 

procedure was repeated twice, and flies still responding to water were excluded from subsequent testing.  Next 

we tested the responses to stepwise increasing concentrations of sucrose, ranging from 6.25 mM to 400 mM 

(or 800 mM).  The same sets of flies were tested with all concentrations of sucrose.  We presented the same 

concentration of sucrose twice to each fly, and if they extended their proboscis to either of the two 

presentations, we scored a positive response.  Only full extensions of the proboscis, but not partial extensions, 

were scored as positive.  We withdrew the drop as soon as possible after touching it to the labellum, so that 

flies could not drink the sucrose solution.  The fractions of flies showing a PER response as a function of 
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sucrose concentration was calculated.  For each experimental condition, an experimental trial using 10-20 

flies was repeated independently at least 5 times to perform statistics (the number of repetitions is the n shown 

in legends.  E.g. n=5 means the curve represents data from 5 such independent experiments.  Thus the total 

number of flies used for the curve is 50-100). The standard PER assay was performed at room temperature 

(23±2°C).  Mean Acceptance Thresholds (MATs) (Long et al., 1986) were calculated as described in 

Supplemental Experimental Procedures.   

 

For TrpA1 experiments, flies were raised at 21°C. Flies were mounted at 23°C, and PER assays performed at 

either 23°C or 30°C.  The PER test was performed immediately after transferring the flies to different 

temperature and finished within 10 min. Th-GAL4; UAS-dTRPA1 flies showed partial proboscis extensions 

without sugar stimulation at 30°C, but rarely showed full extensions without the stimulation.  Only full 

extensions were scored as positive responses. 

 

Calculation of MAT  

In order to calculate MAT, sugar concentration where 50% of flies show PER, sigmoid interpolation was 

performed (PER response curves were fitted into sigmoid curves). The sigmoid curves can be described as 

below:  

 

! 

Ss =
1

1+ e
("#s log2

Scon
MAT

)
 

 

Ss : Fraction of flies showing PER on different sugar concentration 

Scon : Sugar concentration (mM) 

MAT: Sugar concentration where 50% of flies show PER 

αs : slope of the sigmoid curve 
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For all experimental data, polynomial curve fitting, which finds the coefficients that fit the data by the 

least squares method, was done with Matlab (MathWorks).  Goodness-of-fit was tested by two-way ANOVA 

between the actual PER response curves, and the sigmoid curve with the calculated coefficients (Figure S3B).  

All wild-type sucrose response data were well-fit by a sigmoid curve (two-way ANOVA). The value of MAT 

decreased with starvation time, while αs shows a statistical significant decrease after 2 days of starvation or L-

dopa feeding (p<0.05 by one-way ANOVA followed by a post hoc t-test with Bonferroni correction; Figure 

S3C). Decrease in MAT indicates the increase in behavioral sugar sensitivity, and decrease in αs implies 

either (1) increase in distinguishability between two sugar concentration or (2) increase sugar sensitivity at 

lower sugar concentration. Since we are interested in the changes in behavioral sugar sensitivity, MAT was 

used for data analysis.  It should be noted that the use of MAT as a metric for comparison does not require that 

the PER response be titrated to saturation for each experimental or control condition, because MAT is a 

probabilistic measure (i.e., it measures the sucrose concentration at which 50% of the flies in a population are 

likely to show a PER response), whose value by definition therefore ranges between 0 and 1 (Long et al., 

1986).  The values of MAT are normally distributed among the data obtained from wild-type flies under the 

same condition of food-deprivation (Lillifors test and Jarque-BARA test, and also checked by linearity in a 

probability plot). Thus parametric statistical tests were used for analysis of MAT data.  With the exception of 

the data from the TH-Gal4; UAS-TrpA1 experiment at 30°C (Figure 4C1), and the DopEcR mutant fed with L-

dopa (Figure 5A2), all of the experimental curves were well-fit by sigmoid curves (two-way ANOVA).  

Therefore, the value of MAT (50% probability of a PER response) was interpolated from the experimental 

data based on the sigmoidal curve-fitting.  In case of the DopEcR mutant fed with L-dopa (Figure 5A2,3), the 

MAT was estimated by linear interpolation between the two nearest data points above and below a 50% 

response.  In addition, to the comparison of MAT values, these experiments were also analyzed using two-

way ANOVA of experimental vs. control curves. 

 

ChR2 assay 

All trans-Retinal powder (Sigma) was stored in -20°C as 20mM solution dissolved in ethanol. After overnight 

wet starvation, Gr5a-GAL4;UAS-ChR2(C128T) flies were transferred into a vial with 200μM all trans-Retinal 
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diluted in 89mM sucrose, and allowed to feed for 24 hours. These vials were maintained in the dark to 

avoid photo-isomerization of all trans-Retinal.  After retinal feeding, flies were either fed or wet-starved for 1 

day, or fed with L-dopa precursor (3 mg/ml) for 2 days.  

Flies were mounted into pipet tips, as in the standard PER assay, and placed under a fluorescent 

microscope (Lecia MZ FLIII Fluorescence Stereomicroscope).  Light emitted by a standard mercury lamp 

(HBO® 100w/2, OSRAM) equipped with a GFP filter (Leica, 470/40nm: centerwavelength/bandwidth) was 

used to stimulate ChR2-expressing flies.  The light was switched on by moving the filter manually.  The 

fraction of flies showing a full proboscis extension in response to light in the first 5 seconds was scored.  The 

intensity of the light was controlled by changing the magnification of the microscope.  The light power 

density at 488nm was measured with Power meter (Model 1931, New port). Each fly was tested only at a 

single intensity of light, because repeated exposure to light decreased the behavioral response. 

 

Calcium imaging 

The protocol for calcium imaging was modified from that described in (Marella et al., 2006).  After a brief 

anesthesia on ice, flies were mounted on a thin plastic plate with wax as shown in Figure 6B. The top side of 

the plate contained a well made with wax, and the fly head was immersed in ice-cold Ca2+ free saline (108mM 

NaCl, 5mM KCl, 8.2mM MgCl2, 4mM NaHCO3, 1mM NaH2PO4, 15mM Ribose, 5mM HEPES, pH 7.5; note 

that Ribose, which does not stimulate Drosophila sugar sensing neurons, is used instead of other sugars).  In 

this saline bath, the antennae and cuticle at the anterior side of the fly head capsule were surgically removed 

with sharp forceps, so that the SOG could be imaged.  The fat body, air sacs, and esophagus were gently 

removed to give a clear view of the brain and to minimize its movement. At the bottom side of the plate, a 

glass tube was mounted with the opening facing the proboscis of the mounted fly. A piece of twisted Kimwipe 

was placed just behind the fly.  During imaging, a sucrose solution was delivered from the glass tubing to 

stimulate gustatory neurons in the proboscis and was removed by the Kimwipe.   

 

Following dissection, the ice-cold Ca2+ free saline was removed and the fly brain was immersed in 1 ml of 

room-temperature imaging saline (108mM NaCl, 5mM KCl, 2mM CaCl2, 8.2mM MgCl2, 4mM NaHCO3, 
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1mM NaH2PO4, 15mM Ribose, 5mM HEPES, pH 7.5). This setup was moved under an Ultima two-

photon laser scanning microscope (Prarie Instruments, Inc) with a 40× 0.8 N.A. objective (Olympus, Inc).  

The glass tubing was connected to four silicon tubes with a plastic manifold (MP-4, Warner Instruments).  

Each silicon tube was connected to 50 ml syringes filled with either 15 ml of 0mM, 25mM, 100mM, or 

400mM sucrose dissolved in the imaging saline solution.  The flow of sucrose solution was controlled using 

electrically triggered pinch valves (ALA-VM8, ALA Scientific Instruments) that compressed the silicon tubes 

between the syringes and the manifold.  The timing of valve opening was controlled by the two-photon 

acquisition system and its software (Prairie view and Trigger Sync, Prairie) so that the timing was linked with 

the image acquisition. ∫ ∆F/F dt, the integral of ∆F/F during the period of exposure to each stimulus, was 

calculated using MatLab (MathWorks).  

 

Since the behavioral effect of L-dopa feeding was smaller in Gr5a-GAL4; UAS-GCaMP3.0 flies compare to 

other flies with different genetic backgrounds, we fed these flies with 5 mg/ml of L-dopa precursor (rather 

than the standard 3 mg/ml) for both imaging and the PER.  PER assays of Gr5a-GAL4; UAS-GCaMP3.0 flies 

were performed as described in the PER assay.  

 

For direct DA exposure during imaging (Figure 6F1-3), firstly the GCaMP response to sugar was measured as 

described above.  Then 10 µl of 100 mM dopamine chloride (dissolved in the imaging saline) was added to 1 

ml of imaging saline in which the fly brain was immersed using a pipetman, so that the final concentration of 

DA became 1mM.  The 100× DA stock solution was prepared freshly just before each experiment to avoid 

oxidation.  After 5 min of incubation, the same brain was scanned before and during stimulation with different 

concentrations of sucrose.  These responses were imaged in the same presynaptic terminals that were imaged 

prior to DA addition, and a comparison of the calcium signal in each condition (0 mM, 25 mM, 100 mM and 

400 mM sucrose) was made pre- vs. post-DA addition. To do this, the average fluorescence signal in the 

absence of sucrose (0 mM), prior to DA addition, was used as F to calculate ∆F/F both before and after DA 

addition (∆F/Fbefore DA=(Ft_before-F0_before)/ F0_before and ∆F/Fafter DA=(Ft_after-F0_before)/ F0_before , where Ft is F at time t).  

From these values, we calculated the fold-increase in F as the ratio of the integrated signals post/pre DA 
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addition (Fig. 6G).  This analysis could be performed because the signals both before and after addition 

of DA were scanned from the same neurons in the same fly.  To eliminate the contribution of motion artifacts, 

we ensured that scans were performed on the same focal plane for each measurement.  To further control for 

non-specific changes in fluorescence due to movement during addition of the concentrated DA solution to the 

imaging bath, we imaged a series of flies in which we added 10 µl of imaging saline (without DA) to the bath.  

 

 

Electrophysiology 

The tip recording method was used for the recording of the electrophysiological responses of labellar 

taste neurons (Hodgson et al., 1955; Weiss et al., 2011). Briefly, the fly was mounted and immobilized for 

recording by inserting a pulled glass capillary (BF150-86-10, Sutter instruments) from the dorsal surface of 

the thorax to the tip of the labellum, passing through the cervical connective and the head. The mounting glass 

capillary was filled with recording solution (7.5 g/L NaCl, 0.35 g/L KCl, 0.279 g/L CaCl2·2H2O and 11.915 

g/L HEPES (Sigma-Aldrich)) and served as indifferent electrode. Another glass capillary, pulled to a tip 

diameter of 10 to 20 micrometers and filled with tastant solution, was used for both introducing the taste 

molecules to the tip of the relevant sensillum and for the recording of the electrophysiological responses of the 

gustatory neurons innervating this sensillum. Sucrose was dissolved in water solution containing 30 mM tri-

choline chloride (TCC; Sigma-Aldrich), as an electrolyte. TCC solution was used as a control to monitor the 

spontaneous activity of the sugar neurons in the absence of sucrose. 

In each recording, the relevant sensillum was exposed to the tastant solution or to the control solution 

for 7 seconds. The recordings were made by using MultiClamp 700B amplifier and Digidata 1440A A/D 

converter (Molecular Devices). The recorded data were sampled at a rate of 10 KHz, filtered (band pass filter 

between 100 Hz and 3 KHz) and stored on a PC hard drive with Clampex 10 software (Molecular Devices). 

The data were analyzed by sorting the action potentials and measuring their frequency in the indicated time 

windows along the trace with Clampfit software (Molecular Devices). Only the first exposure of sensilla that 

responded to high concentrations of sucrose (100 mM) were included in the analysis. In every experiment, 

several sensilla from the same fly were tested. 
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Chapter II  

 

INDEPENDENT NEUROMODULATORY CONTROL OF ATTRACTIVE AND 
AVERSIVE TASTE SENSING IN STARVED DROSOPHILA MELANOGASTER  

 

 

 

 

 

SUMMARY  

 

Adjusting behavioral decisions to internal demands is critical for an animal’s survival. Here, we find that the 

hunger state modulates feeding decisions by reciprocally regulating attractive and aversive gustatory sensing 

in Drosophila melanogaster. Genetic manipulations revealed that two distinct neuromodulatory pathways 

control these two gustatory modalities during hunger: The neuropeptide F (NPF) – dopamine (DA) pathway 

enhances sugar sensitivity under mild starvation, while the adipokinetic hormone (AKH)- short neuropeptide 

F (sNPF) pathway attenuates bitter sensitivity under severe starvation. The influences of these pathways are 

exerted, at least in part, via modulation of peripheral taste sensitivity. Moreover, these two pathways are 

recruited without any detectable crosstalk at all levels of regulation examined, from interoceptive receptors, to 

mediating neuromodulators and target sites of modulation, implying parallel rather than unitary mechanisms 

regulating starvation state. Independent and inverse regulation of bitter and sugar sensing yield adaptive 

feeding-decisions with a high dynamic range at different hunger levels.  
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INTRODUCTION 

 

Changes in internal states, such as defensive arousal, starvation and sleep, affect behavioral choices 

in animals (Blanchard and Blanchard, 1989; Sternson et al., 2013; Taghert and Nitabach, 2012). Typically, 

these state-dependent influences are “multi-dimensional”: one state affects multiple sensory modalities and 

behaviors; “scalable”: the strength of such modulation differs depending on the intensity of the state; and 

time-varying. These prominent features of state-control enable animals to adjust their behavioral responses 

properly according to context or internal demands. However, understanding how these features are 

instantiated is challenging because it requires a comprehensive analysis of state-control pathways, including 

the identification of interoceptive mechanisms, neuromodulatory influences, targets of neuromodulation, and 

consequent behavioral changes. 

The control of feeding in starved Drosophila melanogaster provides an attractive model for state-

dependent control of behavior, because of the organism’s relatively simple nervous system, a quantitative 

feeding response, and our growing understanding of the gustatory, interoceptive, and neuromodulatory 

systems in this species. Drosophila detects gustatory cues in foods with their taste bristles on the labellum and 

other parts of the body (Montell, 2009; Thorne et al., 2004). Sugar, low concentrations of salt, fatty acids and 

other attractive tastants are detected by gustatory receptor 5a (Gr5a)-expressing gustatory receptor neurons 

(GRNs), while toxic compounds, such as bitter substances and high concentrations of salt, are detected by 

Gr66-expressing GRNs (Marella et al., 2006; Masek and Keene, 2013; Scott et al., 2001; Wang et al., 2004; 

Weiss et al., 2011; Zhang et al., 2013). Multiple candidate interoceptive receptors and cells have been also 

identified in Drosophila (Dus et al., 2013; Kim and Rulifson, 2004; Kreneisz et al., 2010; Miyamoto et al., 

2012). As in mammals (Andrews et al., 2008; Luquet et al., 2005; Sternson et al., 2013), some of these 

interoceptive neurons express neuropeptides/neurohormones, such as adipokinetic hormone (AKH) and 

Drosophila insulin-like peptides (DILPs) (Kim and Rulifson, 2004; Kreneisz et al., 2010). In addition, various 

other neuromodulators have been shown to regulate feeding responses in starved adult Drosophila (Itskov and 

Ribeiro, 2013; Nassel and Wegener, 2011; Taghert and Nitabach, 2012). In particular, NPF and sNPF, distinct 

functional orthologues of NPY, modulate multiple feeding related behaviors, including the formation and 
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expression of food-associated memory, enhancement of food-related olfactory sensitivity, and control of 

food intake during starvation (Beshel and Zhong, 2013; Hergarden et al., 2012; Krashes et al., 2009; Lee et al., 

2004; Root et al., 2011). 

Many animal species become less selective in their food choices during periods of energy deficit. 

They do so by enhancing their sensitivity to nutritious resources, such as sugar (Berridge, 1991; Dethier, 

1976; Gillette et al., 2000; Inagaki et al., 2012; Kawai et al., 2000; Moss and Dethier, 1983; Page et al., 1998; 

Sengupta, 2013). In Drosophila, starvation enhances behavioral sensitivity to sugar, at least in part, via 

increased dopamine release onto Gr5a-expressing sugar-sensing GRNs, which increases calcium responses to 

GR activation (Inagaki et al., 2012; Marella et al., 2012). Starvation also decreases sensitivity to unpalatable 

compounds, such as bitter tastants. The prevailing view is that this decrease in bitter sensitivity is not 

independently controlled, but rather is an indirect consequence of the “masking effect” of enhanced sugar 

sensitivity (Figure 1A1) (Moss and Dethier, 1983). Here we identify a pathway in Drosophila controlling the 

reduction of bitter taste sensitivity during starvation that is mechanistically independent of the increase in 

sweet tastant sensitivity. This pathway combines with the masking effect of enhanced sugar sensitivity to 

increase acceptance of resources containing unpalatable contaminants, during periods of energy deficit (Figure 

1A3). Thus the multi-dimensional features of the “hunger” state reflect parallel regulatory mechanisms, rather 

than a unitary control process.  

 

RESULTS 

 

Bitter sensitivity decreases during starvation independently from the change in sugar sensitivity 

To quantify feeding behavior, we presented a drop of solution containing sugar and/or bitter tastants to the 

labellum, where GRNs are located. When sugar is presented, Drosophila extend their proboscis, a reaction 

known as the proboscis extension reflex (PER) (Dethier, 1976). We selected this method over others because 

only this method provides quantification of gustatory sensitivity independently of food intake. As previously 

reported (Inagaki et al., 2012; Meunier et al., 2007), when flies are wet starved (WS; deprived of food but not 

water; see Experimental Procedures), dose-response curve for fraction of flies showing PER to each 
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concentration of sucrose shifted to the left, indicating an increase in sugar sensitivity (Figure 1B1). In 

addition, the mean acceptance threshold to sugar, S50 (the sucrose concentration at which 50% of the flies 

show a PER; see Experimental Procedures) (Inagaki et al., 2012) is decreased (Figure 1B2; note that the y-axis 

is inverted: as sensitivity increases, S50 decreases).  Importantly, the magnitude of both effects increased 

significantly with longer starvation times (1 day vs. 2 days), suggesting a scalable underlying state change 

(Fig. 1B1-2). These analyses confirm that starvation increases behavioral sensitivity to sucrose in Drosophila.  

Next, we tested behavioral sensitivity to unpalatable tastants by presenting a sugar solution mixed 

with various concentrations of bitter substances. Consistent with a previous report (Meunier et al., 2003), the 

admixture of bitter substance (lobeline) suppressed the PER to sugar in a dose dependent manner. We 

quantified this effect by measuring the fraction of flies not showing a PER; thus a higher value of this metric 

reflects a stronger suppression of the PER to a fixed amount of sucrose (Figure 1C1,“Fed”). Genetic silencing 

experiments indicated that Gr66a GRNs are required for the effect of bitter substances to suppress the PER 

(Figure S1A), consistent with earlier studies (Gordon and Scott, 2009; Wang et al., 2004). Interestingly, 

during starvation the dose-response curve for this parameter was shifted to the right, indicating a progressive 

reduction in bitter sensitivity (Figure 1C1,“WS”).  Consistent with this, the mean acceptance threshold to 

bitter, B50 (the bitter concentration required to inhibit the PER in 50% of flies that showed response to sugar: 

Figure S1B), significantly increased with starvation duration (Figure 1C2; note that the y axis is inverted). 

Similarly sensitivity to other bitter substances (caffeine and coumamine) decreased during starvation (data not 

shown). Therefore, during starvation behavioral sensitivity to sugar increases, while sensitivity to bitter 

tastants is reduced (c.f. Fig. 1B2 vs. 1C2). 

Because bitter sensitivity was quantified as the suppression of a behavioral response to sucrose, it 

was possible that when flies are starved, their absolute bitter sensitivity does not change, but is relatively 

reduced due to the increased sugar sensitivity. Studies in the blowfly, Phormia regina, support this idea (Moss 

and Dethier, 1983). Indeed, higher concentrations of sugar shifted the dose-response curve for bitter inhibition 

of the PER to the right (Figure S1C). In order to quantify behavioral sensitivity to bitter independently of the 

increase in sugar sensitivity, we tested the effect of lobeline to suppress PER responses in fed, 1 day WS, 2 

day WS flies, at concentrations of sugar that yielded the same sub-saturating PER responses (50-60 %), i.e. 
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800mM, 300mM and 200mM (see red dotted boxes in Figure 1B1 and 1D1). Using such a “sugar-

normalized PER assay” in starved vs. fed flies, we still observed a statistically significant, albeit smaller 

magnitude, decrease in bitter sensitivity following food deprivation (Figure 1D1,2). 

We next compared the kinetics of these gustatory sensitivity changes. Sugar sensitivity increased 

most strongly during the first 6 hours of starvation and continued more gradually from 6 to 48 hours (Figure 

1E1). In contrast, sugar-normalized PER assays did not reveal any decrease in bitter sensitivity until after 24 

hours of starvation (Figure 1E2).  

Taken together, these data reveal that, in contrast to the prevailing view, bitter sensitivity decreases 

independently from the increase in sugar sensitivity during starvation, at least in Drosophila. Moreover, these 

changes occur at different levels of food deprivation. Different models may explain these results (Fig. 1A1-3). 

In order to distinguish between them, we investigated the cellular and molecular mechanisms underlying these 

changes. 

 

NPF acts upstream of dopamine to control sugar but not bitter sensitivity 

We first asked whether the neuromodulatory pathway that regulates sugar sensitivity also modulates bitter 

sensitivity during starvation. The effect of dopamine to increase sugar sensitivity during mild starvation 

(Inagaki et al., 2012; Marella et al., 2012) is mediated by the receptor DopEcR (Srivastava et al., 2005), 

expressed on Gr5a GRNs (Inagaki et al., 2012). To test whether dopamine reciprocally regulates bitter 

sensitivity, we fed non-starved flies with L-dopa, a precursor of dopamine, that is known to increase dopamine 

levels in the fly brain (Bainton et al., 2000). As previously reported, L-dopa feeding increased sugar 

sensitivity in non-starved wild-type flies, mimicking the effect of starvation (Figure 2A1-2) (Inagaki et al., 

2012). In contrast, L-dopa feeding did not cause a decrease in bitter sensitivity (Figure 2B1-2). Thus, dopamine 

modulates sugar but not bitter sensitivity during starvation.  

NPF, an orthologue of mammalian neuropeptide Y, has been shown to promote ingestion of 

unpalatable foods in both larval and adult Drosophila (Hergarden et al., 2012; Wu et al., 2003; Wu et al., 

2005). To determine whether NPF might directly suppress bitter sensitivity in adult flies, we artificially 

stimulated NPF-expressing neurons using dTrpA1 (Hamada et al., 2008) and performed PER assays at 31 °C. 
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Activation of NPF neurons enhanced the sugar sensitivity of fed flies, as if they were starved, in 

comparison to flies of the same genotype tested at 21oC (Figure 2C1-2). None of the genetic control flies 

exhibited different sugar sensitivities at the permissive and non-permissive temperatures (Figure S2A1-4: Note 

that genetic background has a significant effect on baseline gustatory sensitivities. For genetic manipulations 

using the GAL4-UAS system below, GAL4/UAS-effector, +/ UAS-effector, GAL4/+, and genetic 

background-matched +/+ controls were always performed in parallel to show that the effects were specific to 

the GAL4/ UAS-effector genotype). In contrast, activation of NPF did not affect behavioral bitter sensitivity 

in sugar-normalized PER assay (Figure 2D1-2	
 and S2B1-4). Conversely, genetic silencing of NPF-GAL4 

neurons inhibited the starvation-dependent increase in sugar sensitivity, but it did not interfere with the 

starvation-dependent decrease in bitter sensitivity (Supplementary Figure S2C1-6 and S2D). Thus, as in the 

case of DA, activation of NPF neurons enhances sugar sensitivity, but does not independently influence bitter 

sensitivity.  

Since both NPF neurons and DA enhance sugar sensitivity during starvation, we sought to determine 

whether NPF neurons and DA function in the same or in parallel neuronal pathway(s). Immunostaining 

experiments indicated that NPF and DA neurons are distinct (Figure S2E1-3). We reasoned that if NPF and DA 

act in the same pathway to modulate sugar sensitivity, then NPF neurons would likely function upstream of 

DA neurons because the latter directly modulates sugar-sensing GRNs (Inagaki et al., 2012). To test this idea, 

we combined thermogenetic activation of NPF neurons (NPF-GAL4/UAS-dTrpA1) with a hypomorphic 

mutation in DopEcR, which is expressed in sugar-sensing GRNs and mediates the influence of DA on these 

cells (Inagaki et al., 2012). A homozygous DopEcR mutation completely blocked the increase in sugar 

sensitivity caused by activation of NPF neurons in heterozygous fed flies (Figure 2E1-2). These data suggest 

either that 1) NPF neurons act upstream of DA neurons to increase sugar sensitivity, or that 2) both DA and 

NPF neurons act on the same targets, but DA is somehow permissive for the action of NPF neurons. In either 

case, the results imply that NPF and DA neurons act in an inter-dependent manner to modulate sugar 

sensitivity (Figure 2F). This NPF-DA pathway is necessary and sufficient to enhance sugar sensitivity during 

starvation, but does not affect bitter sensitivity. 
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sNPF is necessary and sufficient to modulate bitter sensitivity during starvation without affecting 

sugar sensitivity 

Next, we sought to identify neuromodulatory systems that mediate the decrease in bitter sensitivity during 

starvation. sNPF, an NPY-related protein in Drosophila, has been implicated in many hunger related 

behaviors (Nassel and Wegener, 2011), including the control of food intake in larvae (Lee et al., 2008; Lee et 

al., 2004) and food-related olfactory sensitivity in adults (Root et al., 2011). To ascertain whether sNPF is also 

involved in starvation-mediated control of gustatory sensitivity, we tested the behavioral sensitivity of sNPF 

mutant flies to sugar and bitter using the PER assay. We used a hypomorphic mutant of sNPF, sNPFc00448 (Lee 

et al., 2008), which has a piggyBac transposon insertion (Thibault et al., 2004) in the first intron of the sNPF 

locus (Figure S3A: These sNPF mutant flies were backcrossed into a wild type background for at least six 

generations). Homozygous sNPF mutant flies did not show any difference from controls in their sugar 

sensitivity, at any starvation time (Figure 3B1 and S3B1-3). In contrast, these homozygous mutants showed an 

attenuated decrease in bitter sensitivity during starvation (Figure 3A2-3 and 3B2, red curves/bars). Interestingly, 

sNPF/+ heterozygotes also showed a similar phenotype (Figure 3B2, green curves/bars), indicating 

haploinsufficiency of this neuropeptide gene. Importantly under fed conditions, sNPF mutant flies did not 

show any change in bitter sensitivity (Figure 3A1). Similar results were obtained with a different sNPF 

hypomorphic PiggyBac insertion allele, sNPFf07577 (Figure S3A and S3C1-2). When we used normalized-sugar 

PER assays to compare the bitter sensitivity between 1-day wet-starved and unstarved flies, homozygous 

sNPF mutant flies showed no change in bitter sensitivity (Figure 3C2), unlike wild type flies (Figure 3C1).  

Flies trans-heterozygous for sNPFc00448 and sNPFf07577 also showed the same loss of bitter sensitivity decrease 

(Figure 3C3). Together, these data suggest that sNPF is necessary for the starvation-induced decrease in bitter 

sensitivity, but not for baseline bitter detection. 

In larvae, sNPF regulates food intake and growth (Lee et al., 2008; Lee et al., 2004). To show that 

the loss of bitter sensitivity change in adult flies is not a developmental byproduct of sNPF function in larvae, 

we rescued the expression of sNPF specifically in the adult nervous system. We expressed sNPF protein in 

neurons of sNPF hypomophic mutant flies using UAS-sNPF under the control of elav-GeneSwitch (elav-GS), 

a pan-neuronally expressed, hormone (RU486) inducible form of GAL4 (Osterwalder et al., 2001). Rescue of 
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sNPF expression by RU486 feeding in adult flies resulted in a recovery of the starvation-induced decrease 

in bitter sensitivity (Figure 3D2 and 3E2), without affecting sugar sensitivity (Figure 3E1 and 3SD2). RU486 

feeding did not affect bitter sensitivity in control flies lacking elav-GS, showing this is not an artifact caused 

by the inducer (Figure 3D1, 3E1-2, and S3D1).  Altogether these results indicate that, 1) sNPF expression is 

necessary for the decrease in bitter sensitivity during starvation, 2) this effect is not due to a developmental 

function, and 3) neuronal sNPF regulates bitter sensitivity. Importantly, none of the genetic manipulations of 

sNPF described above affected sugar sensitivity, suggesting that sNPF independently modulates bitter 

sensitivity (Figure 3H).  

To test whether sNPF-expressing neurons (sNPF neurons) play a role in the control of bitter 

sensitivity, we genetically silenced subsets of sNPF neurons by expressing KIR2.1 under the control of 

different GAL4 lines each driven by different DNA fragments from the sNPF gene (Lee et al., 2009; Pfeiffer 

et al., 2008). Expression of KIR2.1 was restricted to adulthood using Gal80ts, and bitter sensitivity was 

analyzed after 1 day of wet starvation. Among 6 lines tested, only one line, GMR21B10-GAL4, exhibited an 

attenuated change in bitter sensitivity (Figure 3F1 and 3F3). Importantly, silencing of neurons labeled by this 

GAL4 line did not affect sugar sensitivity (Figure 3F2 and S3E). The GMR21B10-GAL4 line does not label 

GRNs in the labellum (Figure S3F), indicating that the behavioral phenotype is not due to silencing of sugar-

sensing or bitter-sensing GRNs. Instead, this line labels a small number of neurons in the central brain (not 

including the optic lobes), some of which also exhibited anti-sNPF immunoreactivity (Figure 3G): 7-9 lateral 

neurosecretory cells (LNCs) and 5-7 S3 interneurons in the SOG (Nassel et al., 2008). Anti-sNPF 

immunocreactivity of these neurons was reduced in sNPF mutant flies (Figure S3G1-2).  

To confirm further that the sNPF-expressing neurons labeled by GMR21B10-GAL4 regulate bitter 

sensitivity, we rescued sNPF expression under the control of GMR21B10-GAL4 in the sNPF hypomorphic 

mutant background. This rescue restored the starvation-dependent decrease in bitter sensitivity (Figure 3C5). 

Driving UAS-sNPF expression in a different subset of neurons using sNPF-GAL4 did not rescue the mutant 

phenotype (Figure 3C4 and S3H). Therefore, while there is a large number of sNPF positive neurons, 

including ~4000 Kenyon cells and c.a. 280 other neurons in the brain (Nassel et al., 2008; Nassel and 

Wegener, 2011), a specific subset (~15 neurons per hemisphere) is necessary and sufficient to regulate bitter 
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sensitivity. Importantly, none of the neurons labeled by GMR21B10-GAL4 co-expressed NPF or DA 

(Figure S3I and S3J). These data, and the lack of any effect of sNPF mutations or neuronal silencing on sugar 

sensitivity, suggests that the NPF-DA sugar-regulating pathway and sNPF bitter-regulating pathway are 

distinct at the neuronal circuit level (Figure 3H). 

 

sNPFR is necessary for bitter sensitivity control 

If sNPF controls the starvation-dependent decrease in bitter sensitivity, one might predict that its receptor 

should have a similar function. sNPF receptor (sNPFR) is the only identified G-protein coupled receptor for 

sNPF in Drosophila (Feng et al., 2003; Mertens et al., 2002; Reale et al., 2004). Over-expression of sNPFR 

using UAS-sNPFR under the control of the pan-neuronal nsyb-GAL4 driver (Pauli et al., 2008) enhanced the 

starvation-dependent decrease in bitter sensitivity (Figure 4A1-2, B2, and S4B1-2). Conversely, pan-neuronal 

knock-down of sNPFR using sNPFR RNAi attenuated the starvation-dependent decrease in bitter sensitivity 

(Figure 4C1-3, and 4D2: these transgenic flies also contained UAS-Dicer2 to enhance the effects of RNAi). 

Importantly, neither of these manipulations affected sugar sensitivity (Figure 4B1, 4D1, S4A1-3 and S4C1-3), nor 

did they affect bitter sensitivity in fed flies (Figure 4A1 and 4C1). Therefore, neuronal expression of sNPFR 1) 

is necessary for the starvation-dependent decrease in bitter sensitivity, 2) does not affect basal bitter sensitivity 

in fed flies, 3) can enhance the starvation-induced decrease in bitter sensitivity, and 4) is independent of the 

control of sugar sensitivity. Given that sNPF and sNPFR are implicated in the regulation of insulin -producing 

cells (IPCs) both in adults and in larvae (Kapan et al., 2012; Lee et al., 2008), we tested whether IPCs may 

constitute a target of modulation by sNFP/sNPFR in the control of bitter sensitivity. However, neither IPC-

specific knock-down of sNPFR expression, using an Ins3P-GAL4  driver (Buch et al., 2008), nor ablation of 

IPCs using UAS-hid (Grether et al., 1995), affected bitter sensitivity in starved flies (Figure S4D1-2 S4E1-4; cell 

ablation was histologically confirmed; see Figure S4F1-2). Therefore IPCs are unlikely to serve as direct targets 

of the modulatory influence of sNPF/sNPFR on bitter sensitivity during starvation. 

Next, we asked whether the sNPF-sNPFR pathway might modulate primary bitter-sensing GRNs. To 

test this hypothesis, we performed functional calcium imaging of bitter-sensing GRNs in wild type and sNPF 

hypomorphic mutant flies. To monitor calcium transients in bitter-sensing GRNs, we expressed a genetically 
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encoded calcium indicator, GCaMP3.0 (Tian et al., 2009), under the control of Gr66-GAL4 (Scott et al., 

2001). Consistent with previous reports (Marella et al., 2006), the axonal terminals of bitter-sensing GRNs in 

the subesophageal ganglion (SOG) exhibited increased GCaMP3.0 fluorescence in response to increasing 

concentrations of lobeline applied to the labellum (Figure 4E and F1, blue line). Strikingly, 2 day wet starved 

wild-type flies showed a statistically significant reduction in GCaMP3.0 fluorescence evoked by application 

of 0.07mM lobeline, and a non-significant decrease at 0.31 mM lobeline (Figure 4F1 and G, red line/box).  

Importantly, this reduction was attenuated in heterozygous sNPFc00448 mutant flies (Figure 4F2 and G), 

consistent with the effect of this mutation to reduce behavioral sensitivity to bitter tastants in starved flies. 

These data indicate that the starvation-dependent decrease in bitter sensitivity is reflected in a decreased 

responsiveness of Gr66 GRNs to bitter tastants, and that sNPF is necessary for this decrease.  However, 

neither overexpression nor knock-down of sNPFR in bitter-sensing GRNs, using Gr66 and Gr33-GAL4 

drivers (Moon et al., 2009) and UAS-Dicer2, affected bitter sensitivity in starved flies (Figure S4G1-2, S4H1-2 

and S4I1-2). Thus, the effect of sNPF to modulate the activity of bitter sensing GRNs during starvation is likely 

indirect (Figure 4H). 

 

AKH interoceptive neuroendocrine cells act with sNPF to control bitter sensitivity 

Since energy demands trigger changes in gustatory sensitivities, we wondered whether any known 

interoceptive neurons are involved in this modulation. The corpora cardiaca (CC) contains interoceptive 

neuroendocrine cells that release the peptide adipokinetic hormone (AKH), a fly analog of glucagon, during 

starvation (Kim and Rulifson, 2004). Genetic ablation of these cells using akh-GAL4 and UAS-hid attenuated 

the starvation-dependent decrease in bitter sensitivity, without affecting sugar sensitivity (Figure 5A1-3, B1-2, 

and S5A1-3; ablation was confirmed; see Figure S5B1-2). Consistent with this result, a hypomorphic mutant in 

the AKH receptor gene (akhr) (Hauser et al., 1998; Staubli et al., 2002), akhrEY11371 (Bharucha et al., 2008) 

(Figure S5C), also attenuated the starvation-dependent decrease in bitter sensitivity relative to genetic 

background-matched controls (Figure 5C1-3, 5D2). In contrast, bitter sensitivity under fed conditions (Figure 

5C1 and 5D2), and sugar sensitivity regardless of starvation level (Figure 5D1 and S5D1-3) were not affected, 

similar to the results obtained in the case of sNPF/sNPFR. Normalized-sugar PER assay comparing 1-day WS 
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flies and unstarved flies revealed that akhrEY11371 flies showed no change in bitter sensitivity (Figure 

S5E1-2), implying that akhr is necessary for the starvation-dependent decrease in bitters sensitivity.   

As an independent approach to investigating the role of AKH cells, we asked whether thermogenetic 

activation of these neuroendocrine cells, using dTrpA1, decreased bitter sensitivity. Because of their low sugar 

sensitivity, it was difficult to detect a decrease in bitter sensitivity in fed flies. After 18 hrs of wet starvation, 

flies show an increase in sugar sensitivity but do not yet show a detectable decrease in bitter sensitivity 

(Figure 1E1-2). We reasoned that such partially starved flies might be sensitized to manipulations expected to 

decrease bitter sensitivity. For this experiment, 18 hr WS flies were pre-incubated at 30 °C for 30 minutes, and 

gustatory sensitivity was tested at 18 °C immediately following the incubation. Indeed, activation of AKH 

cells in this manner significantly decreased bitter sensitivity (Figure 5E2 and 5F2). This temperature-dependent 

decrease in bitter sensitivity was not observed in 18 hr WS genetic control flies (Figure 5E1 and S5F1-4) and 

did not affect sugar sensitivity (Figure 5F1, and S5G1-4). Therefore activation of AKH-expressing 

neuroendocrine cells is sufficient to decrease bitter sensitivity in partially starved flies.  

Because both AKH and sNPF regulate bitter sensitivity in the same direction, without interfering 

with sugar sensitivity, we investigated whether these neuropeptides act in a common pathway. Antibody 

staining experiments have indicated that AKH-expressing neuroendocrine cells in the CC (Kim and Rulifson, 

2004; Lee and Park, 2004) do not co-express sNPF (Kahsai et al., 2010), and expression of sNPF in AKH 

cells did not rescue the sNPF mutant phenotype (Figure S5H). These data suggest that sNPF does not act 

within AKH-expressing cells. Therefore, we performed a genetic epistasis experiment by asking whether an 

sNPF loss-of-function mutation would suppress the effect of thermogenetic activation of AKH cells to 

decrease bitter sensitivity. Indeed, thermogenetic activation after 18 hrs of WS was unable to reduce bitter 

sensitivity in a heterozygous sNPF c00448 background (cf. Figure 5E2 vs. 5E3-4, 5F1-2 and S5F1-6). Thus a partial 

reduction of sNPF function (which is sufficient to prevent the starvation-induced decrease in bitter sensitivity; 

Fig. 3B2, green bars) is epistatic to artificial activation of AKH neuroendocrine cells. This suggests that AKH-

expressing cells act genetically upstream of sNPF-expressing neurons to control bitter sensitivity, although an 

indirect, permissive role for sNPF in AKH action is not excluded by these data (Figure 6).  
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DISCUSSION 

 

Starved animals exhibit an enhanced sensitivity to sweet compounds and a decreased sensitivity to bitter 

compounds, allowing them to accept food resources in a less selective manner.  It has been assumed that the 

decrease in bitter sensitivity is secondary to the enhanced sugar sensitivity (Moss and Dethier, 1983), 

implying a unitary mechanism for altering taste sensitivity in response to food-deprivation. Here, we provide 

genetic evidence for a pathway that contributes to the reduction in bitter sensitivity during starvation, which is 

independent of the increase in sugar sensitivity, and which occurs with different kinetics during food 

deprivation. These data suggest that multiple independent neuromodulatory pathways control different 

physiological responses to food-deprivation in the fly brain, allowing these responses to be implemented at 

different levels of energy deficit (Figure 6). More generally, these data suggest that the multi-dimensional 

features of internal states may reflect parallel rather than unitary mechanisms. 

 

Sugar and bitter sensitivities are independently modulated in starved flies 

Our data identify independent neuromodulatory cascades that control the increase and decrease in sugar vs. 

bitter sensitivity, respectively, during starvation. Previously, we demonstrated that dopamine (DA), whose 

release is increased in starved flies (Inagaki et al., 2012; Marella et al., 2012), acts directly on sugar-sensitive 

GRNs to enhance calcium influx in response to sweet tastants (Inagaki et al., 2012). Here we show that npf-

GAL4 neurons act genetically “upstream” of DA to promote enhanced sugar sensitivity during starvation. 

Importantly, manipulations of the NPF-DA pathway had no effect on bitter sensitivity. Conversely, we 

identified a pathway including the neuropeptides AKH and sNPF and their respective receptors, which 

promoted decreased bitter sensitivity during starvation without affecting sugar sensitivity. Thus, we observed 

an independent control of sugar and bitter sensitivity using manipulations of different neuromodulatory 

systems. Consistent with this genetic independence, we observed a decreased behavioral sensitivity to bitter 

tastants in food-deprived flies, even when sucrose concentrations in the PER assay were reduced to 

compensate for the enhanced sugar sensitivity caused by starvation. We also observed that behavioral 

sensitivity to bitter compounds decreased more slowly than the increase in sugar sensitivity during starvation. 
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Finally, we observed reduced calcium influx in response to bitter compounds in Gr66 GRNs in starved 

flies, in the absence of any sweet compounds. Together these data argue strongly for independent regulation 

of bitter sensitivity during starvation, contrary to the prevailing view. 

While the genetic manipulations performed here allowed a double-dissociation of the control of 

sugar- and bitter-taste sensitivity during starvation, they leave open many questions for future investigation. 

For example, it is not yet clear whether NPF peptides themselves contribute to the DA-dependent regulation 

of sweet GRN sensitivity, nor is it known whether NPF neurons act directly on DA neurons, or indirectly via 

intermediate connections. Similarly, the site at which sNPF reduces the sensitivity of Gr66 GRNs is not clear. 

Given that sNPF has suggested to be an inhibitory modulator (Shang et al., 2013) (but see (Root et al., 2011)), 

one possible scenario is that during starvation sNPF inhibits another population of neurons, which lower the 

activation threshold of Gr66 neurons during the fed state.  

The integration of sugar and bitter information occurs at several levels. First, bitter compounds 

directly inhibit the activation of sugar-sensing GRNs by sweet tastants (Jeong et al., 2013). Second, lateral 

interpapillar inhibition may occur between sugar-sensing GRNs and bitter-sensing GRNs (Su et al., 2012). 

Finally, information from sugar- and bitter-sensing GRNs can be integrated in the brain. Genetic inhibition of 

synaptic transmission from Gr66 GRNs blocked the suppressing effect of bitter in the PER assay (Gordon and 

Scott, 2009), suggesting that integration occurs downstream of these GRNs in this context. It is possible that 

the contribution of different mechanisms may change depending on context, as shown recently (Jeong et al., 

2013). The independent modulation of both sugar and bitter sensitivities during starvation may ensure that 

food acceptance thresholds can be modified under a broad range of conditions. 

 

Cost vs. benefit may determine the order of behavioral changes recruited during food-deprivation 

Animals continuously compare potential gains and risks to determine their behaviors (Dethier, 1976; 

Gillette et al., 2000; Itskov and Ribeiro, 2013). Because the benefits of feeding increase with starvation, it is 

reasonable that the decision to accept or reject a potential food resource is modulated by energy deficit. A 

comparison of fed vs. 2 days starved flies revealed that sugar sensitivity alone changes 4.6 fold (Figure 1B2) 

and bitter sensitivity alone changes 4.8 fold (Figure 1D2), while the relative preference for food containing 
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both sugar and bitter increases 10.2 fold (Figure 1C2). The increased acceptance of unpalatable food 

during starvation reflects both the “masking” effect of increased sugar sensitivity on the detection of bitter 

compounds, and, as shown here, an independent decrease in bitter taste sensitivity. This reciprocal tuning of 

both sugar and bitter sensitivity contributes to a dramatic increase in acceptance of food resources containing 

potentially toxic compounds, in a starving fly. 

Food-deprivation creates a type of “global organismal state change” (LeDoux, 2012) which is multi-

dimensional: it involves multiple physiological and behavioral changes. Interestingly, these different changes 

occur with different kinetics during food deprivation. Some of them, such as the increase in sugar sensitivity 

(6 hours of starvation; present results), feeding amount (6-12 hours of starvation: (Farhadian et al., 2012; 

Hergarden et al., 2012), and food-related olfactory sensitivity (several hours of starvation: (Root et al., 2011)) 

are initiated during mild starvation, while others, such as the decrease in bitter sensitivity (1-2 days of 

starvation; present results) and increase in locomotion (2days of starvation: (Isabel et al., 2005; Lee and Park, 

2004)) are recruited during severe starvation just before death.  

Interestingly, changes occurring during mild starvation seem low-risk, in that their implementation is 

unlikely to kill the animal, whereas changes accompanying severe starvation place the animal at higher-risk 

for damage or death: e.g., the decrease in bitter sensitivity allows intake of potentially toxic substances, while 

the increased locomotor activity may deplete energy stores before food is encountered. These considerations 

may explain why the brain has evolved multiple mechanisms for the adaptive control of behavior in response 

to organismal state changes. One mechanism first activates lower risk responses, when energy demands are 

mild, while the other recruits higher risk responses when energy demands are severe and no other options are 

available.  

Strikingly, both of the high-risk changes--the decrease in bitter sensitivity and increase in 

locomotion--require AKH-producing cells (Isabel et al., 2005; Lee and Park, 2004), while some of the low-

risk changes, such as the increase in sugar sensitivity, feeding amount, and food-related memory, are 

modulated by NPF and DA (Hergarden et al., 2012; Krashes et al., 2009; Riemensperger et al., 2011; Wu et 

al., 2003). This suggests that the two pathways we have identified may define and coordinate an axis of low- 

vs. high- risk behavioral changes.  
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Mechanisms underlying kinetic differences in starvation responses  

The early and late responses to starvation, taken together with our genetic data, suggest that that 

NPF-DA pathway and the AKH-sNPF pathway are engaged with different kinetics. What explains this 

difference? One possible scenario is that the interoceptive receptors that initiate each pathway have different 

sensitivities to the extent of energy deficit. In this scenario, the interoceptive receptor activating the NPF-DA 

pathway would be more sensitive to energy deprivation than that activating the AKH-sNPF pathway. 

Alternatively, other components in these pathways, such as neuromodulators or modulation targets, may have 

different sensitivities to their input signals in these pathways. With its ability to detect hemolymph sugar 

concentration using the ATP-sensitive potassium channels (sur and ir) (Kim and Rulifson, 2004), AKH cells 

are likely to be the interoceptors for the AKH-sNPF pathway. Genetic perturbation of recently identified 

interoceptive receptors (gr43  (Miyamoto et al., 2012) and cupcake (SLC5A11) (Dus et al., 2013)) did not 

affect sugar sensitivity or bitter sensitivity (H.K.I. and D.J.A unpublished results). Therefore, an interoceptive 

receptor for the NPF-DA pathway has not yet been identified. Once interoceptive receptors for the NPF-DA 

and AKH-sNPF pathways are identified, it will be interesting to see whether a differential sensitivity of these 

receptors to energy demands indeed explains the different kinetics of their recruitment during starvation. 

AKH homeostatically regulates hemolymph sugar levels, analogous to mammalian glucagon. AKH 

endocrine cells function as interoceptors to detect a drop in hemolymph sugar during starvation and release 

AKH to compensate for this drop by promoting sugar release into the hemolymph from fat cells (Bharucha et 

al., 2008; Kim and Rulifson, 2004; Lee and Park, 2004). AKH has also been indirectly implicated in the 

increased locomotor activity that accompanies starvation (Isabel et al., 2005; Lee and Park, 2004). Here we 

show that AKH also suppresses bitter sensitivity during food-deprivation. These data suggest that AKH 

coordinates multiple responses to starvation.  

Recently thermogenetic activation of AKH endocrine cells in starved flies has been shown to 

increase levels of sugar in the hemolymph (Gruber et al., 2013). Here we have shown that loss-of-function 

manipulations of the AKH system attenuate the decrease in bitter sensitivity that occurs during food 

deprivation, and that activation of AKH cells in partially starved flies can potentiate this decrease. We think 
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that the taste phenotype is unlikely to be secondary to an experimentally induced increase in hemolymph 

sugar levels, because this increase “pushes” the food-deprived system back towards the fed state, while bitter 

sensitivity is pushed more towards the starved state.  Consistent with this dissociation, loss-of-function 

manipulations of the AKH system lead to a decrease in hemolymph sugar (Kim and Rulifson, 2004), pushing 

the system towards the starved state, while we observe an increase in bitter sensitivity, pushing the system 

towards the fed state, in response to such manipulations. Thus, the homeostatic effects of manipulations of 

AKH signaling are in opposite directions for hemolymph sugar levels and bitter taste sensitivity, suggesting 

that they represent independent effects. 

 

Food deprivation recruits neuromodulatory cascades that modify the sensitivities of primary gustatory 

neurons 

In mammals, how the hunger state changes feeding behavior is incompletely understood (Sternson et 

al., 2013). Our earlier (Inagaki et al., 2012) and present findings suggest that, in Drosophila, hunger 

modulates two classes of primary gustatory neurons to change feeding choices. Modulation of primary 

sensory neurons enables the state-dependent tuning of each sensory modality before the signal is integrated 

with other inputs at higher levels in the brain. Interestingly, in mice, it has been reported that multiple 

neuromodulators and hormones modulate the sensitivity of taste cells (Cai et al., 2013; Elson et al., 2010; 

Kawai et al., 2000), although whether this modulation causes starvation-dependent behavioral changes is not 

clear (Sternson et al., 2013). Our observations strengthen the concept that the modulation of primary sensory 

neurons represents a general mechanism for implementing state-dependent changes in behavioral responses.  

In both vertebrates and invertebrates, the neural circuits mediating homeostatic control of behavior 

remain largely unknown.  Our results outline two parallel pathways that translate energy needs into changes in 

decisions of PER. These data add to a growing body of evidence that neuromodulatory cascades serve as key 

mediators of state-dependent control (Taghert and Nitabach, 2012). The widespread projections of 

neuromodulatory neurons allow them to coordinate the activity of multiple sub-circuits in parallel. This 

property, and the ability of such modulators to alter the response properties of neurons and circuits (Marder 

and Bucher, 2007; Shang et al., 2013) are well-suited to such a mediating function in state control (LeDoux, 
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2012). Cascades of neuromodulators afford multiple regulation points, allowing dynamic state control 

with potential feedback and/or feedforward regulation (Taghert and Nitabach, 2012). Our results may provide 

entry points to study the dynamics of neuromodulatory cascades and their organismal impact in the future.  

  

 

EXPERIMENTAL PROCEDURES 

 

Fly Strains 

Adult female Drosophila melanogaster were used for all experiments.  Since genetic background affects the 

basal sugar and bitter sensitivities, all the comparisons were made within the same genetic background.  Flies 

were backcrossed for at least 6 generations to ensure the same genetic background. Descriptions of detail 

genotypes are in the Supplemental Experimental Procedures. 

 

PER Assays 

For PER assays, 3-7 day-old female flies were wet-starved or fed in vials. Wet starvation was performed by 

keeping flies in a vial with a water-soaked filter paper. PER was tested as described previously (Inagaki et al., 

2012).  In brief, 10-20 experimental flies were mounted into pipetman tips. After excluding flies that 

continually responded to water, fly response to stepwise increasing concentration of sucrose was tested. After 

testing the sugar sensitivity, the same sets of flies were tested for bitter sensitivity by exposing stepwise 

increasing concentration of lobeline mixed into 800mM or other concentrations of sucrose. Only full 

extensions, but not partial extensions, of proboscis were counted. We withdrew the drop as soon as possible 

after touching it to the labellum, so that flies could not drink the sucrose solution. Different concentration 

series of sucrose and lobeline were used depending on the genetic background so that the responses are within 

the dynamic ranges. All the control experiments were performed side by side as blind experiments. 

Description of sigmoid curve fitting is in the Supplemental Experimental Procedures. 

 

Calcium Imaging 
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Two-photon imaging was performed on an Ultima two-photon laser-scanning microscope (Prairie 

Technology) with an imaging wavelength at 940nm. After a brief anesthesia on ice, flies were mounted on a 

thin plastic plate with wax as shown in Figure 4E. The top side of the plate contained a well made with wax, 

and the fly head was immersed in saline. In this saline bath, the antennae and cuticle at the anterior side of the 

fly head capsule were surgically removed with sharp forceps, so that the SOG could be imaged. At the bottom 

side of the plate, a glass tube was mounted with the opening facing the proboscis of the mounted fly. A piece 

of twisted Kimwipe was placed just behind the fly.  During imaging, water or different concentration of 

lobeline solutions were delivered from the glass tubing to stimulate gustatory neurons in the proboscis and 

was removed by the Kimwipe. Detail procedures are in the Supplemental Experimental Procedures. 
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Figure 1. Modulation of Sugar and Bitter Sensitivity During Starvation 

(A) Schematics illustrating different models to explain the reciprocal control of sugar and bitter sensitivity 

during starvation. (B) Fraction of flies showing PER to different concentration of sucrose at different 

starvation levels. (B1) Average responses. Error bars represent SEM. Two-way ANOVA followed by post hoc 

t-test with Bonferroni correction at each sugar concentration. *p<0.05; **p<0.005. n>5 for each experimental 

group. (B2 ) S50 (the sugar concentration at which 50% of flies show PER) plotted as a function of starvation 

duration. One-way ANOVA followed by post hoc t-test with Bonferroni correction (n>9 for each 

experimental group). The same plotting and statistical analysis of PER assay are used throughout this paper. 

Dashed red box indicates the sucrose concentrations that yield the equivalent PER responses at different 

starvation levels. (C, D) Fraction of flies not showing PER to different concentration of lobeline mixed into 

800mM sucrose (C) or different concentrations of sucrose (D). n>5 for each experimental group. (E) S50 and 

B50 measured and plotted as a function of starvation duration. One-way ANOVA followed by post hoc t-test 

with Bonferroni correction (n>5 for each experimental group). Panels B1 and B2 are independent replications 

of results previously reported in (Inagaki et al, 2012) and are presented here for purposes of comparison. See 

also Figure S1. 
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Figure 2. Neuronal Pathway Regulating Sugar Sensitivity During Starvation 

(A-B) Sugar and bitter sensitivity of non-starved wild type flies fed with L-dopa. (C-D) Sugar and bitter 

sensitivity of flies with thermogenetic activation of NPF neurons (w-; npf-GAL4 (II) crossed with w-; UAS-

dTrpA1 (II); UAS-dTrpA1 (III)). For 31 °C experiments, flies were pre-incubated in 31 °C for 30 min. Bitter 

sensitivity was measured using normalized-sugar PER assay (sucrose concentration used: 800 mM for 21 °C 

and 400 mM for 31 °C). Data from non-normalized PER response are shown in Figure S2B1. (E) Sugar 

sensitivity of flies with thermogenetic activation of NPF neurons combined with DopEcR mutation (w-; npf-

GAL4 (II); DopEcRc02142 crossed with w-; UAS-dTrpA1 (E1) or w-; UAS-dTrpA1 (II); DopEcRc02142 (E2)). (F) 

Schematic illustrating neuromodulatory pathway regulating sugar sensitivity but not affecting bitter 

sensitivity. n>5 for all experimental groups. Panels A1-2 are independent replications of results previously 

reported in (Inagaki et al, 2012), and are presented here for purposes of comparison. See also Figure S2.  
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Figure 3. sNPF is Necessary and Sufficient for Bitter Sensitivity Control During Starvation 

(A-B) Sugar and bitter sensitivity of wild type and sNPFc00448 mutant flies in the same genetic background. (C) 

Bitter sensitivity measured with normalized-sugar PER assays in wild type flies (C1),  sNPF mutant flies (w-; 

sNPFc00448 (C2) and w-; sNPFc00448 / sNPFf07577 (C3)) and sNPF mutant flies with genetic rescue of sNPF 

expression in different subsets of neurons (w-; sNPFc00448; UAS-sNPF crossed with  w-; sNPFc00448; sNPF-

GAL4 (C4) or w-; sNPFc00448 ; GMR21B10-GAL4 (C5)). Lobeline was mixed into 800 mM sucrose solution for 

fed flies, or 200 mM sucrose solution for 1-day WS flies. (D-E) Sugar and bitter sensitivity of sNPF mutant 

flies with pan-neuronal, adult rescue of sNPF expression (w-; sNPFc00448; UAS-sNPF crossed with w-; 

sNPFc00448; + (D1) or w-; sNPFc00448 ; elav-GeneSwitch (D2)). Sucrose solution with or wihout 0.5 mM RU486 

was fed to flies for 2days before experiments. (F) Sugar and bitter sensitivity of flies with genetic silencing of 

different subsets of sNPF neurons. For this experiment, w-; UAS-KIR2.1; tub-Gal80ts flies were crossed with 

the indicated GAL4 lines or BDP-GAL4 flies (No-GAL4). Flies were incubated at 31 °C for 2 days to 

inactivate Gal80ts before experiments. Only GMR21B10-GAL4 affected bitter sensitivity (red curve/box) (G) 

Representative confocal projection of whole mount brains of w- ;; GMR21B10-GAL4 / UAS-mCD8::GFP 

flies stained with anti-sNPF precursor antibody. Arrowheads indicate neurons with both GFP and anti-sNPF 

signal. n>5 for all experimental groups. (H) Schematic summarizing results. See also Figure S3. 
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Figure 4. Modulation Target of sNPF Pathway 

(A-B) Sugar and bitter sensitivity of flies with genetic over-expression of sNPFR (w-;; nsyb-GAL4 crossed 

with UAS-mCD8::GFP or UAS-sNPFR. UAS-mCD8::GFP and UAS-sNPFR flies are in the same genetic 

background). (C-D) Sugar and bitter sensitivity of flies with genetic knock-down of sNPFR (UAS-Dicer2 ;; 

nsyb-GAL4 crossed with UAS-mCD8::GFP or UAS-sNPFR RNAi. UAS-mCD8::GFP and UAS-sNPFR RNAi 

flies are in the same genetic background). n>5 for each experimental group in A-D.  (E) The experimental 

setup for calcium imaging of bitter-sensing GRNs. Blue arrow indicates direction of flow of bitter solution. 

The two images below the diagram are representative fields of view showing the GCaMP response of Gr66 

GRNs. The fluorescent intensity of GCaMP3 is shown in pseudo-color (scale bar on left). (F) Responses 

(∆F/F) to different concentrations of lobeline solution in the central projections of bitter sensing GRNs. The 

solid lines represent average traces, and envelopes indicate SEM (n>12 for each condition). w-; Gr66-GAL4; 

UAS-GCaMP3.0 (F1) and w-; Gr66-GAL4 / sNPFc00448; UAS-GCaMP3.0 (F2) were used. (G) Quantification of 

peak fluorescent changes (∆F/F) in response to 0.07 mM lobeline solution. One-way ANOVA followed by 

post hoc t-test with Bonferroni correction. (H) Schematic illustrating neuronal pathway regulating bitter 

sensitivity. See also Figure S4. 
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Figure 5. AKH Acts Genetically Upstream of the sNPF Pathway 

(A-B) Sugar and bitter sensitivity of flies with or without genetic ablation of AKH neuroendocrine cells (w-; 

akh-GAL4 (III) crossed with w-; UAS-nls::GFP or w-;UAS-nls::GFP, UAS-hid). (C-D) Sugar and bitter 

sensitivity of wild type and AKHREY11371 mutant flies in the same genetic background. (E-F) Sugar and bitter 

sensitivity of flies with genetic thermoactivation of AKH-producing cells (w-; +;  akh-GAL4 (III) crossed with 

w-; +; + (E1) or w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) (E2). w-; sNPFc00448; akh-GAL4 (III) crossed with w-; 

+; + (E3) or w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) (E4)). Flies were preincubated in 31 °C or 18 °C for 30 

min and PER was performed in 18 °C. n>5 for all experimental groups. See also Figure S5. 
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Figure 6. Distinct Neuronal Pathways Modulating Sugar and Bitter Sensitivity During Starvation 

Schematic illustrating the two distinct neuronal pathway we identified to control sugar and bitter sensitivity in 

an independent manner. Dashed arrows indicate genetic interactions that we have not shown to be direct. 
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Figure S1. Modulation of Bitter Sensitivity During Starvation 

 (A) Gr66 GRNs is necessary for the bitter-dependent suppression of PER. Fraction of flies not showing PER 

to different concentrations of lobeline mixed into 800mM sucrose are plotted. (B) Multiple representative 

examples of sigmoidal fitting (red curves) of fraction of flies not showing PER (raw data in blue curves). See 

Supplemental Experimental Procedures for sigmoidal fitting. (C) Fraction of flies not showing PER in 

response to bitter mixed into different concentrations of sucrose solution. (A, C) n>4 for all experimental 

groups. 
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Figure S2. Neuronal Pathway Regulating Sugar Sensitivity Does Not Affect Bitter Sensitivity 

(A-B) Sugar (A) and bitter (B) sensitivity of flies with thermogenetic activation of NPF neurons. Genotypes: 

w-; npf-GAL4 (II) flies were crossed with w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) (A1 and B1) or w- flies in 

the same genetic background (A2 and B2);  w- flies were crossed with w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) 

(A3 and B3) or w- flies in the same genetic background (A4 and B4).  A1 is copied from figure 2C1 for purposes 

of comparison. In (B1), note that there is statistically significant difference only when bitter is not mixed into 

sucrose solution (0 mM). Therefore, no difference in bitter sensitivity was observed. (C) Sugar and bitter 

sensitivity of flies with genetic silencing of NPF neurons. UAS-KIR2.1 was crossed with either w-; npf-GAL4 

(II) flies (C2 and C5) or w- flies in the same genetic background (C1 and C4). (D) Comparison of bitter 

sensitivity of 1-day WS npf-GAL4; UAS-KIR flies and +; UAS-KIR flies using the sugar-normalized PER 

assay (200 mM and 100 mM sucrose solution were used, respectively). No difference in bitter sensitivity was 

observed between two genotypes. (E) Representative confocal projections of whole mount brains from npf-

GAL4; UAS-mCD8::GFP flies (gfp in green: E1,3) immunostained with anti-Tyrosine hydroxylase antibody 

(magenta: E2-3), which labels DA neurons. (A-D) n>4 for all experimental groups. 

. 
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Figure S3. Genetic Manipulations of sNPF Do Not Affect Sugar Sensitivity 

(A) Insertion of two piggyBac transposons in sNPF gene locus (top) and relative sNPF mRNA expression 

level of these strains compared to wild type flies in the same genetic background (bottom) measured by qPCR. 

One-way ANOVA followed by post hoc t-test with Bonferroni correction (n=3). (B) Sugar sensitivity of wild 

type and sNPF mutant flies. Data is acquired from the same flies that were used in Figure 3A1-3. S50 of these 

experiments are summarized in Figure 3B1. (C) Sugar and bitter sensitivity of sNPFf07577 flies compared with 

wild type flies in the same genetic background. (D) Sugar sensitivity of flies with pan-neuronal rescue of 

sNPF. Data is acquired from the same flies that were used in Figure 3D1-2. S50 of these experiments are 

summarized in Figure 3E1. (E) Sugar sensitivity of flies with genetic silencing of different subsets of sNPF 

neurons. Data is acquired from the same flies that were used in Figure 3F1. S50 of these experiments are 

summarized in Figure 3F2. (A-E) n>5 for all experimental groups. (F) Representative confocal projections of 

the proboscis from GMR21B10-GAL4; UAS-mCD8::GFP flies (Green: GFP; gray: DIC image of proboscis). 

Note that there are no cells in labellum where GRNs exist. There are two cells in other parts of labellum 

(white arrow head). (G) Representative confocal projections of whole mount brains from wild type (G1) or 

sNPFc00448 (G2) flies immunostained with anti-sNPF antibody. Scale bar to the left represents relative intensity 

of immunostaining in pseudocolor. (H) Representative confocal projections of whole mount brains from snpf-

GAL4; UAS-mCD8::GFP flies (GFP: green) immunostained with anti-sNPF antibody (magenta). Note that 

huge populations of neurons in the brain are labeled by this GAL4. Some of them are sNPF positive. None of 

the S3 cells are labeled and 3-4 LCNs are labeled by this GAL4 line.  (I-J) Representative confocal projections 

of whole mount brains from GMR21B10-GAL4; UAS-mCD8::GFP flies immunostained with anti-Tyrosine 

hydroxylase (TH) (I) or anti-NPF (J) antibodies. Note that neither of LNCs nor S3 cells are TH or NPF 

positive. 
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Figure S4.  Genetic Manipulations of sNPFR Do Not Affect Sugar Sensitivity 

(A-B) Sugar and bitter sensitivity of flies with genetic over-expression of sNPFR. Data is acquired from the 

same flies that were used in Figure 4A1-2. S50 of these experiments are summarized in Figure 4B1. Figure 

S4B1 is a replicate of Figure 4A2 to make comparison easier. (C) Sugar sensitivity of flies with genetic knock-

down of sNPFR. Data is acquired from the same flies that were used in Figure 4C1-3. S50 of these experiments 

are summarized in Figure 4D1. (D) Sugar and bitter sensitivity of flies with genetic knock-down of sNPFR in 

IPCs by using InsP3-GAL4, GAL4 line specifically labeling IPCs, crossed with UAS-sNPFR RNAi or UAS-

mCD8::GFP in the same genetic background. Note that no change was observed in gustatory sensitivities. (E-

F) Sugar and bitter sensitivity of flies with genetic cellular ablation of IPCs by using InsP3-GAL4 (or control 

wild type flies in the same genetic background) crossed with UAS-hid or UAS-nls::GFP in the same genetic 

background. Ablation of IPCs were confirmed as a loss of nls::GFP signal (F). (G-I) Sugar and bitter 

sensitivity of flies with over-expression or genetic knock-down of sNPFR in bitter-sensing GRNs. Both Gr66-

GAL4 and Gr33-GAL4 drivers were tested for RNAi also combined with UAS-Dicer2 (UAS-Dicer2; Gr66-

GAL4 or UAS-Dicer2; Gr33-GAL4 crossed with UAS-sNPFR RNAi or UAS-mCD8::GFP in the same genetic 

background). Similar result (no effect on gustatory sensitivities) was observed for 1-day WS flies (data not 

shown). n>5 for all experimental groups. 
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Figure S5. Genetic Manipulations of AKH Do Not Affect Sugar Sensitivity 

(A-B) Sugar sensitivity of flies with genetic cell-ablation of AKH neuroendocrine cells. Data is acquired from 

the same flies that were used in Figure 5A1-3. S50 of these experiments are summarized in Figure 5B1. Cell 

ablation was confirmed with loss of nls::GFP signal (B1-2). (C) Relative akhr mRNA expression level of 

AKHREY11371 compared to wild type flies in the same genetic background (bottom) measured by qPCR. P-

value represents t-test (n=3). (D) Sugar sensitivity of wild type and AKHREY11371 mutant flies in the same 

genetic background. Data is acquired from the same flies that were used in Figure 5C1-3. S50 of these 

experiments are summarized in Figure 5D1. (E) Results of the sugar-normalized PER assay comparing bitter 

sensitivity between fed and 1-day WS. Wild type flies (E1) and akhrEY11371 mutant flies (E2) in the same genetic 

background were tested. Lobeline was mixed into 800 mM sucrose solution for fed flies, or 200 mM sucrose 

solution for 1-day WS flies. E1 is the same as Figure 3C1 (duplicated for purposes of comparison). (F-G) 

Sugar and bitter sensitivity of flies with genetic thermoactivation of AKH-producing cells (w-; +;  akh-GAL4 

(III) crossed with w-; +; + (F3, G3) or w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) (F4, G4). w-; sNPFc00448; akh-

GAL4 (III) crossed with w-; +; + (F5, G5) or w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) (F6, G6)) and its genetic 

control flies (Wild flies crossed with w-; UAS-dTrpA1 (II); UAS-dTrpA1 (III) (F2, G2) or wild type flies in the 

same genetic background (F1, G1)). Figure S3F3-6 are the same as Figure 5E1-4 (copied for purposes of 

comparison). (H) Bitter sensitivity measured with the normalized-sugar PER assay in sNPF mutant flies with 

genetic rescue of sNPF expression in AKH neuroendocrine cells (w-; sNPFc00448; UAS-sNPF crossed with  w-; 

sNPFc00448; akh-GAL4). Note that rescuing of sNPF expression in AKH neuroendocrine cells does not rescue 

the starvation-dependent decrease in bitter sensitivity. (A, D-H) n>4 for all experimental groups. 
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Supplemental Experimental Procedures 

Fly strains 

sNPF-GAL4, UAS-sNPF, and UAS-sNPFR (Lee et al., 2008) were generously provided by Drs. Kweon Yu 

and Jing W. Wang. npf-GAL4 (Wu et al., 2003), akh-GAL4(Lee and Park, 2004), InsP3-GAL4 (Buch et al., 

2008), Gr66a-GAL4 (Scott et al., 2001), Gr33a-GAL4 (Moon et al., 2009), elav-GenesSwitch (Osterwalder et 

al., 2001) were provided by Drs. Ping Shen,  Jae H. Park, Michael J. Pankratz, Kristin Scott, Craig Montell, 

and Haig Keshishian. BDP-GAL4 (a GAL4 line with a Drosophila synthetic core promoter but no enhancer 5’ 

to this promoter, which has been shown to have no detectable expression in the adult CNS (Pfeiffer et al., 

2008)), and n-synaptobrevin-GAL4 (nsyb-GAL4) (Pauli et al., 2008) were obtained from, Barret Pfeiffer, Drs. 

Gerald M. Rubin, and Julie Simpson, UAS-mCD8::GFP (pJFRC2 described in (Pfeiffer et al., 2010)), UAS-

GCaMP3.0  (Tian et al., 2009), UAS-dTRPA1 (Hamada et al., 2008) were generously provided by Drs. Gerald 

M. Rubin, Dr. Loren L Looger, and Dr. Paul A. Garrity, respectively.  RNAi and related lines (Dietzl et al., 

2007) were generously provided by Dr. Barry J. Dickson via the VDRC stock center (UAS-sNPFR RNAi 

(GD661 v9379), UAS-mCD8::GFP, and UAS-Dicer2 (on X chromosome)). sNPFc00448, sNPFf07577, and 

AKHREY11371 were obtained from the Bloomington stock center and backcrossed for at least six generation into 

our wild type background. GMR GAL4 lines (Jenett et al., 2012) and tub-Gal80ts were also obtained from the 

Bloomington stock center. Other lines used in this research: UAS-eGFP-KIR2.1(Baines et al., 2001), UAS-

TeTxLC.TNT (UAS-TNT), UAS-TeTxLC.IMPTNT (UAS-IMPTNT) (Sweeney et al., 1995).  

 

Immunohistochemistry 

Dissected brains were fixed in 4% formaldehyde in PEM (0.1M PIPES, pH 6.95, 2mM EGTA, 1mM MgSO4) 

for 2 hours at 4 °C. After three 15-min rinses with PBS, brains were incubated with primary antibodies 

overnight. Following three 15-min rinses with PBS, brains were incubated with secondary antibody overnight. 

Following three rinses, brains were incubated in 50% glycerol in PBS for 2 hours and cleared with 

VECTASHIELD® (VECTA). All procedures were performed in 4 °C. A FluoviewTM  FV1000 Confocal laser 

scanning biological microscope (Olympus) with a 30×, 1.05 N.A. silicone oil objective (Olympus) was used 

to obtain confocal serial optical sections. For observation of native fluorescence, incubation with primary and 
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secondary antibodies was omitted. The antibodies used: Rabbit Anti-sNPF precursor (Nassel et al., 

2008) (kind gift by Dr. Dick R Nässel), Rabbit Anti-NPF (RB-19-001: RayBiotech), Mouse Tyrosine 

Hydroxylase Antibody (ImmunoStar), Alexa Fluor® 568 donkey anti Rabbit IgG(H+L), Alexa Fluor® 568 

donkey anti Mouse IgG(H+L) (Invitrogen). Native GFP signal was observed without immunostaining. 

Fluorender software (Wan et al., 2009) was used to make 3D reconstructed images.  

 

 

Sigmoidal fitting of data and statistics 

In order to fit the data into a sigmoidal curve, sigmoid interpolation was performed. The sigmoid curves were 

defined as follows:  

FS =
1

1+ e
(!!s log2

Scon
S50

)
 

 

Where 

FS  : Fraction of flies showing the PER  

Scon : Concentration of sucrose 

S50: Sucrose concentration where 50% of flies show the PER 

αS : slope of the sigmoid curve 

FB = 1! RS( )+ RS

1+ e
(!!B log2

Bcon
B50

)
 

Where 

FB  : Fraction of flies not showing the PER  

RS : Fraction of flies showing PER when bitter is not mixed (The max PER ratio) 

Bcon : Concentration of lobeline 

B50: Bitter concentration required to inhibit the PER in 50% of flies that showed PER to sugar (without bitter) 

αB : slope of the sigmoid curve 
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Based on the experimentally measured quantities (Scon or Bcon and FS or B), S50 or B50 and αS or B were chosen to 

best fit the data. For all experimental data, fitting based on nonlinear regression, which finds the coefficients 

that fit the data by the Levenberg-Marquardt algorithm for nonlinear least squares, was calculated with Matlab 

(MathWorks).  Goodness-of-fit was tested by two-way ANOVA between the sigmoidal curve and the actual 

PER response curve, which indicated a good fit for all cases (p<0.05. two-way ANOVA) (See supplementary 

Fig S1B for examples of fitting). Since we are interested in sugar and bitter sensitivity, we used S50 or B50 for 

data analysis.  

The distribution of values of S50 and B50 were not significantly distinct from normal distribution among the 

data acquired from wild-type flies (null hypothesis that distribution is normally distributed was not rejected by 

Lilliefors test: p=0.5 for fed flies, n=29, and p=0.29 for 1-day WS flies, n=17). Thus parametric tests were 

used for data analysis. 

 

Calcium imaging 

The protocol for calcium imaging was modified from that described in (Inagaki et al., 2012; Marella et al., 

2006).  After a brief anesthesia on ice, flies were mounted on a thin plastic plate with wax as shown in Figure 

4E. The top side of the plate contained a well made with wax, and the fly head was immersed in ice-cold Ca2+ 

free saline (108mM NaCl, 5mM KCl, 8.2mM MgCl2, 4mM NaHCO3, 1mM NaH2PO4, 15mM Ribose, 5mM 

HEPES, pH 7.5; note that Ribose, which does not stimulate Drosophila sugar-sensing GRNs, is used instead 

of other sugars).  In this saline bath, the antennae and cuticle at the anterior side of the fly head capsule were 

surgically removed with sharp forceps, so that the SOG could be imaged.  The fat body, air sacs, and 

esophagus were gently removed to give a clear view of the brain and to minimize its movement. At the bottom 

side of the plate, a glass tube was mounted with the opening facing the proboscis of the mounted fly. A piece 

of twisted Kimwipe was placed just behind the fly.  During imaging, a lobeline solution was delivered from 

the glass tubing to stimulate gustatory neurons in the proboscis and was removed by the Kimwipe.   
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Following dissection, the ice-cold Ca2+ free saline was removed and the fly brain was immersed in 1 ml 

of room-temperature imaging saline (108mM NaCl, 5mM KCl, 2mM CaCl2, 8.2mM MgCl2, 4mM NaHCO3, 

1mM NaH2PO4, 15mM Ribose, 5mM HEPES, pH 7.5). This setup was moved under an Ultima two-photon 

laser scanning microscope (Prarie Instruments, Inc) with a 40× 0.8 N.A. objective (Olympus, Inc).  The glass 

tubing was connected to four silicon tubes with a plastic manifold (MP-4, Warner Instruments).  Each silicon 

tube was connected to 50 ml syringes filled with either 15 ml of 0, 0.07, 0.31 or 1.25mM lobeline dissolved in 

water.  The flow of lobeline solution was controlled using electrically triggered pinch valves (ALA-VM8, 

ALA Scientific Instruments) that compressed the silicon tubes between the syringes and the manifold.  The 

timing of valve opening was controlled by the two-photon acquisition system and its software (Prairie view 

and Trigger Sync, Prairie) so that the timing was linked with the image acquisition. ∆F/F and peak ∆F/F was 

calculated using Matlab (MathWorks).  

 

qPCR 

RNA was extracted from heads of 10 flies (for sNPF) and 4 fly whole bodies (for akhr). cDNA was 

synthesized using Super Script® VILOTM cDNA Synthesis kit (Invitrogen). Real Time PCR was performed 

using EXPRESS SYBR® GreenERTM (Invitrogen) and a 7300 Real Time PCR system (Applied biosystems). 

Rp49 was used as a standard. Using melting temperature analysis, each primer pair was confirmed to produce 

a single PCR product.  Primers listed below were used. 

RP49-f: CCCGAAAACTTTTAGACTCA 

RP49-r: TTTTCAAACATTTCCATCGT 

sNPF-f: AGGGTATCGACAACAGAGTG 

sNPF-r: CACCAGGAACTTCTTGAATC 

AKHR-f: ACAACAATCCGTCGGTGAAC 

AKHR-r: CTTCCATTCAGCAGCGAGTT 
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Chapter III  

 

A NEURAL CORRELATE OF SOCIAL EXPERIENCE REVEALED BY 
OPTOGENETICS IN FREELY BEHAVING ADULT DROSOPHILA MELANOGASTER 

 

SUMMARY 

 

 

Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond 

precision, but its application in Drosophila has been limited.  Here we show that a recently described Red 

activatable Channelrhosopsin (ReaChR) permits activation of CNS neurons in freely behaving adult flies, 

at wavelengths that do not interfere with normal visual function.  This tool affords the opportunity to 

control neural activity with millisecond time resolution over a broad dynamic range of stimulation 

intensities.  Using such time-resolved activation, we show that the neural control of male courtship song 

can be separated into probabilistic/biasing, and deterministic/command-like components.  The former, but 

not the latter, neurons are subject to functional modulation by social experience, supporting the idea that 

they constitute a locus of state-dependent influence.  This separation is not evident using thermogenetic 

tools, underscoring the importance of temporally precise control of neuronal activation in the functional 

dissection of neural circuits in Drosophila. 

Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ. Optogenetic 

control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on 

courtship. Nat Methods. 2013 Dec 22. doi: 10.1038/nmeth.2765.  
 



 

 

III-2 
INTRODUCTION 

 

Drosophila melanogaster is one of the most powerful model organisms available for the genetic 

dissection of neural circuit function (Luo et al., 2008; Venken et al., 2011) Likewise, the use of light-

sensitive microbial opsins, such as channelrhodopsin, has revolutionized the functional dissection of neural 

circuits in behaving animals (Fenno et al., 2011; Yizhar et al., 2011a)	
   .  Unfortunately, with the exception 

of larval neurons and peripheral sensory neurons in adults (Bellmann et al., 2010; de Vries and Clandinin, 

2013; Gordon and Scott, 2009; Inagaki et al., 2012; Pulver et al., 2009; Schroll et al., 2006; Suh et al., 

2007; Zhang et al., 2007; Zimmermann et al., 2009) this powerful technology and model organism have 

been largely incompatible in adult flies (but see refs (de Vries and Clandinin, 2013; Zimmermann et al., 

2009)), due to the light-scattering and absorptive properties of the adult fly cuticle.  Therefore Drosophila 

researchers have, to a large extent, been unable to exploit the rapidly expanding optogenetic toolkit for 

neural circuit manipulation.  Although P2X2, an ionotropic purinergic receptor, has been used as an 

optogenetic tool in adult Drosophila, this technique requires injection of caged ATP into the brains of 

individual anesthetized flies (Lima and Miesenbock, 2005).  This makes it a relatively cumbersome and 

invasive technology that is sub-optimal for many applications, including large-scale screening. 

In the absence of facile optogenetic manipulation, dTRPA1, a thermosensitive cation channel, has 

been the preferred method for neuronal activation in freely behaving adult flies (Hamada et al., 2008; 

Venken et al., 2011). Since this method depends on changes in temperature to control neuronal activity, 

however, it lacks precision in both the temporal and intensity domains, and enables only constitutive 

opening of the ion channel, which may inhibit neurons after several seconds due to depolarization block.  In 

contrast, light-activated microbial opsins enable rapid switching of neural activity, pulsatile activation to 

avoid depolarization block and controlled variation of frequency and intensity parameters.  The use of 

optogenetic tools also avoids the potentially confounding influence of temperature changes on behavior, 

which accompanies the use of thermogenetic effectors. 
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 Here, we demonstrate that expression of ReaChR in adult CNS neurons enables rapid and 

temporally precise neuronal activation in freely moving adult Drosophila. Using this optogenetic control of 

behavior, we have separated the control of wing extension, a male-specific courtship behavior, into 

probabilistic, state-dependent and deterministic, command-like components.  Moreover, by combining 

ReaChR activation with functional calcium imaging, we have also identified a neural correlate of the 

influence of social experience on male courtship behavior. 
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RESULTS 

 

Optogenetic vs. thermogenetic control of peripheral gustatory neurons 

We reasoned that previously described ChR2 variants do not work well in adult Drosophila due, at 

least in part, to low penetrance of blue light through the cuticle.  Indeed, direct measurements in vivo 

indicated that the penetrance of blue light through the cuticle is much weaker (c.a. 1%) than that of longer 

wavelengths such as green or red light (5-10%) (Fig. 1a).  Therefore, we created transgenic flies that 

express the recently developed red-shifted channelrhodopsins, C1V1(T/T)(Yizhar et al., 2011b) and 

ReaChR(Lin J.Y.) under the control of the Gal4-UAS system, to test whether red shifted light can penetrate 

the cuticle sufficiently to activate neurons expressing these channels (Supplementary Table 1 for a listing of 

all transgenic fly strains created).  

We first compared the efficacy with which different opsins elicited the proboscis extension reflex 

(PER), a feeding behavior triggered by activation of sugar-sensing gustatory receptor neurons (GRNs) that 

express the receptor Gr5a (Scott et al., 2001).  Optogenetic activation of Gr5a neurons using 

channelrhodopsin-2 (ChR2) has previously been shown to trigger the PER in Drosophila (Inagaki et al., 

2012; Zhang et al., 2007). All of the blue light-sensitive opsin variants tested (ChR2 (Boyden et al., 2005; 

Nagel et al., 2003), H134R (Nagel et al., 2005) and C128T (Berndt et al., 2009)) induced PER behavior in 

response to photostimulation at 470 nm, although only H134R yielded responses in 100% of flies (Fig. 1b).  

Flies expressing ReaChR in Gr5a GRNs yielded robust PER responses to both red (627 nm) and green (530 

nm) light, although the response to the latter wavelength was slightly stronger.  In contrast, flies expressing 

C1V1(T/T) did not exhibit PERs in response to either red or green light (Fig. 1b).  Instead, they moved 

their probosces slightly, albeit in a manner time-locked to photostimulation, suggesting that C1V1(T/T) has 

only a weak ability to activate Gr5a GRNs. 
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Surprisingly, in flies expressing dTrpA1 in Gr5a GRNs, we did not observe any behavioral 

response at an ambient temperature known to activate the ion channel (32oC) (Hamada et al., 2008; Pulver 

et al., 2009) (Fig. 1b, TrpA1), or during gradual ramping to this temperature from 22oC (data not shown).  

Interestingly, activation of dTrpA1 in Gr5a GRNs using heat pulses from an IR laser (Keene and Masek, 

2012) has been reported to induce a PER.  We reasoned that if Gr5a neurons are continuously or gradually 

activated via TrpA1, they may undergo a rapid depolarization block that prevents PER behavior.  

Consistent with this idea, continuous illumination of Gr5a-ReaChR flies produced only a transient PER 

reaction (half-time for decay=1.5 sec; Fig. 1c1), while pulsatile illumination (1 Hz, 100 msec pulse 

duration) evoked a train of PERs time-locked to each light pulse (Fig. 1c2). 

To investigate more directly whether continuous stimulation of Gr5a GRNs indeed causes a 

depolarization block, we performed electrophysiological recordings from Gr5a GRNs during optogenetic 

activation using ReaChR.  Pulsed light caused continuous bursts of spiking throughout the stimulation 

period (Fig. 1d2, e2 ).  The latency to the onset of the first spike following illumination was short (5.8±0.19 

msec), but increased slightly after successive pulses (12.9±9.5 msec for the 5th pulse; Fig. 1f).  In contrast, 

spiking activity decayed exponentially during continuous light stimulation (half-time for decay, ~1.5 sec; 

Fig. 1d1, e1). The rapid decay of both spiking and PER behavior during continuous activation of ReaChR 

(Fig.1g; Pearson's correlation coefficient: r=0.96), suggests that the former likely accounts for the latter.   

To test whether constitutive opening of TrpA1 might also cause a depolarization block, we 

activated this thermosensitive channel using a local heat source while recording from Gr5a GRNs.  Indeed, 

TrpA1 activation triggered only transient spiking in Gr5a GRNs, with a strong decay after several seconds 

(Fig. 1h), similar to the results obtained using continuous ReaChR activation.  Together, these data may 

explain why PER responses were not induced by constitutive or gradual thermal activation in Gr5a-TrpA1-

expressing flies (Fig. 1b).  They also reconfirm the importance of pulsed activation of neurons to avoid 

depolarization block, as reported previously in other systems (Yizhar et al., 2011a).  
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Activation with ReaChR but not blue light-sensitive opsins in CNS neurons evokes behavioral 

responses 

Only a few studies have reported successful elicitation of behavior in adult Drosophila by 

activating CNS neurons expressing blue light-sensitive opsins (de Vries and Clandinin, 2013; Zimmermann 

et al., 2009).  To determine whether activation using ReaChR would be more effective, we directly 

compared the behavioral responses of flies expressing blue light- vs. red light- sensitive opsins in GAL4 

lines driving expression in different populations of CNS neurons.  These lines included:  HB9-GAL4, a 

motor neuron-specific driver (Odden et al., 2002) whose activation induces side walking and, at higher 

intensities, “knock-out” (loss of postural control and immobility); Corazonin (Crz)-GAL4, which labels 

male-specific peptidergic interneurons in the abdominal ganglion whose activation induces abdominal 

bending and ejaculation (Tayler et al., 2012) ;Fru-GAL4 (Stockinger et al., 2005), which labels ~2,000 

neurons throughout the brain and whose activation in males induces mating behavior	
   including courtship 

song (von Philipsborn et al., 2011), which is detectable as wing extension, and abdominal bending; at 

higher intensities, knock-out is observed; and “P1-GAL4,” a split-GAL4 (Luan et al., 2006; Pfeiffer et al., 

2010) driver generated from parental GAL4 lines(Jenett et al., 2012) identified in a behavioral screen 

(E.D.H. and D.J.A., unpublished), that is specifically expressed in ~16-20 male-specific P1 neurons, 

activation of which elicits wing extension in males (Pan et al., 2012; von Philipsborn et al., 2011). To 

facilitate the control and monitoring of light-induced behaviors in freely moving adult flies in a high-

throughput, cost-effective and flexible manner, we developed a high power LED-based activation system 

(Fig. 2a-c; Supplementary fig. 1 and Supplementary table 2 and Supplemental Methods).  

Strikingly, among all 5 opsins tested using these CNS drivers, ReaChR was the only one whose 

activation yielded robust behavioral phenotypes in a light-dependent manner (Fig. 2d1-4).  The evoked 

behaviors were not due to innate responses to light, because control flies lacking UAS-ReaChR did not 

exhibit them (Fig. 2d1-4, No opsin).  The fact that blue-light activated opsins yielded a behavioral response 

(PER) when expressed in GRNs, but not in the CNS neurons tested here, likely reflects the fact that the 

peripheral GRNs are located close to the cuticle, where blue light may penetrate more easily.  The lack of 
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responses in C1V1(T/T)-expressing flies cannot, however, be explained in this way.  Analysis of 

C1V1(T/T) expression in CNS neurons revealed that this opsin is expressed weakly in cell somata and not 

trafficked to arborizations (Supplementary fig. 2a2), while ReaChR is strongly expressed in somata and 

trafficked to arborizations as well (Supplementary fig. 2a1, d).  This difference likely accounts for the 

different efficacies of the two red-shifted opsins in this system. 

The peak of the ReaChR action spectrum (measured in cultured hippocampal neurons) is ~590 nm	
  

(Lin J.Y.).  The efficacy of ReaChR activation by different wavelengths in freely behaving flies will, 

however, reflect a combination of factors including cuticular penetration and intensity, as well as proximity 

to peak sensitivity.  To empirically determine the optimal wavelength of light for behavioral assays, 

therefore, we compared the ability of blue (470 nm), green (530 nm), amber (590 nm) and red (627 nm) 

light to induce behavior in flies expressing ReaChR under the control of different CNS GAL4 drivers. 

When not normalized for intensity, green LEDs had the strongest capacity to elicit ReaChR-dependent 

behaviors (Fig. 2d1-4, f, g).  Indeed, the efficacy of green light stimulation was so strong that it produced a 

“knock-out” phenotype at all but the lowest stimulation intensity, with both the HB9-GAL4 and Fru-GAL4 

drivers (Fig. 2f, g).  In some cases (pIP10 neurons; see below), robust behavioral responses were detected 

only using green light, and hardly at all using other wavelengths.  Although amber light is closest to the 

peak of the ReaChR action spectrum, commercial LEDs of this wavelength are dimmer than the others and 

therefore did not elicit strong behavioral responses (Fig. 2f, g).  

 Although TrpA1-mediated activation of P1 neurons can elicit wing extension (Pan et al., 2012; 

von Philipsborn et al., 2011), in our direct comparison the fraction of flies showing a wing extension 

phenotype was much higher using ReaChR and green light, than using TrpA1 (Fig. 2d4).  This suggests that 

the intensity of activation obtained using ReaChR (and green light) can be substantially stronger than that 

achieved using dTrpA1, without subjecting flies to the high temperatures necessary to activate the latter.  

Nevertheless, although green LEDs elicited the strongest behavioral responses, flies can see this 

wavelength, whereas their sensitivity to wavelengths > 620 nm is much lower (Stavenga, 2002; Yamaguchi 
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et al., 2010) (see, however, Hanai (2008)(Hanai et al., 2008)).  Therefore we used red LEDs whenever 

possible to avoid behavioral artifacts caused by strong visual stimulation. 

To investigate whether the strength of a given ReaChR-dependent behavioral phenotype can be 

quantitatively tuned, we tested multiple frequencies and intensities of light pulses using the P1-GAL4 

driver.  A pulse width of 5 msec was used for all the frequencies tested (10-90 Hz).  There was a frequency-

dependent increase in the fraction of flies showing wing extension (Fig. 2e1: range ~10-80%), as well as in 

the average number and duration of wing extension bouts per fly (Fig. 2e2, and Supplementary fig. 2e), 

even when correcting for the total duration of illumination (Supplementary fig. 2f1-3).  The fraction of flies 

showing wing extension responses was also increased over a range of different red light stimulation 

intensities (0.23-1.11 mW/mm2), from ~15% to ~80%, (see Fig. 4a and 4c1).  The HB9 and Fru-GAL4 

drivers also yielded an increase in the fraction of flies showing the respective behavioral responses as the 

intensity of red light was increased, albeit over different ranges (Fig. 2f, g, 627 nm).  Together, these data 

indicate that ReaChR can be used to tune behavioral phenotypes by varying the light intensity and/or pulse 

frequency, over a relatively broad dynamic range.   

 

Probabilistic vs. deterministic neural control of courtship song can be discriminated using ReaChR 

 Previous studies of the neural circuitry underlying male courtship behavior in Drosophila have used 

neuronal activation methods, including P2X2 and TrpA1, to identify different neuronal subclasses that 

control courtship song, including those in the central brain and those in the ventral nerve cord (VNC) 

(Clyne and Miesenbock, 2008; Kohatsu et al., 2011; Pan et al., 2012; von Philipsborn et al., 2011).  In 

particular, studies using TrpA1 have described two neuronal classes in the central brain controlling this 

behavior:  one, called P1 or pMP4, constitutes a population of interneurons (Kohatsu et al., 2011; Pan et al., 

2012; von Philipsborn et al., 2011), while the other, called pIP10, constitutes a small group of descending 

neurons that project to the VNC (von Philipsborn et al., 2011) (Fig. 3b).  The pre-synaptic terminals of P1 

neurons overlap the dendrites of pIP10 neurons, suggesting that they may be synaptic partners (von 
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Philipsborn et al., 2011); however the difference, if any, between the roles of these neurons in 

controlling courtship song has not been apparent, as similar behaviors are evoked by TrpA1-mediated 

stimulation of both classes (von Philipsborn et al., 2011). 

We exploited the time-resolved control of neuronal activation afforded by ReaChR to compare the 

temporal patterns of stimulation-evoked behavioral responses in P1 vs. pIP10 neurons. To express ReaChR 

in the latter cells, we used an intersectional strategy combining a specific GAL4 line (VT40556 (von 

Philipsborn et al., 2011)) with Fru-FLP (Yu et al., 2010) and a newly generated UAS>STOP>ReaChR 

transgene (where “>” denotes FRT sites, the target of FLP recombinase; see Supplementary fig. 2b,c and 

Supplementary table 1).  Anatomical analysis using a citrine reporter fused to the C-terminus of ReaChR 

confirmed the restricted expression of ReaChR in flies of the appropriate intersectional genotype 

(Supplementary fig. 2d). 

Surprisingly, we found that the temporal dynamics of wing extension evoked by activation of P1 

vs. pIP10 neurons were strikingly different.  ReaChR-mediated activation of P1 neurons evoked wing 

extension in a probabilistic or stochastic manner: the initiation of wing extension was not time-locked to 

the onset of illumination, but rather occurred with variable latencies throughout the stimulation period 

(17.7±27.5 sec) (Fig. 3a1,c). The average duration of each bout was short (0.99±0.48 sec) relative to the 

duration of photostimulation (30 sec). Finally, the offset of the behavior was not time-locked to the offset 

of stimulation; rather, we observed persistent wing extension bouts in the intervals between 

photostimulation trials (Fig. 3a1, e: Pearson’s correlation coefficient between stimulation pattern and 

behavioral response: r=0.004).  The stochasticity and persistence of ReaChR-evoked wing extensions were 

observed regardless of activation wavelength and intensity (Fig. 4a and Supplementary fig.3a1). 

 In contrast to the results observed with P1 neurons, activation of pIP10 neurons triggered robust 

wing extension in a deterministic manner time-locked to photostimulation at all but the weakest intensities 

(Fig. 3a2, Fig. 5a and Supplementary fig. 3a2).  The onset of the behavior was strongly time-locked to the 

onset of stimulation, with a very short latency (0.08±0.04 sec) (Fig. 3a2, c).  Once initiated, wing extension 

continued throughout the photostimulation period, and co-terminated, with few exceptions, with the offset 
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of photostimulation (Fig. 3a2, d: Pearson’s correlation coefficient between stimulation pattern and 

behavioral response: r=0.993). With weaker intensities of illumination close to threshold (<0.012 

mW/mm2), wing extension responses were less efficiently evoked, but responses were still restricted to the 

photostimulation period and no persistent behavior between trials was observed (Fig. 3e, Fig. 5a and 

Supplementary fig. 3a2).  

Therefore, these differences between P1 and pIP10 neurons in the temporal dynamics of ReaChR 

activation-evoked wing extensions were largely independent of illumination intensity.  They did not reflect 

a higher sensitivity of pIP10 than P1 neurons, because the intensity dependence of pIP10-evoked wing 

extension by green light was almost identical to that of P1 neurons (Fig. 3f).  

 

Social isolation modulates the threshold of ReaChR-activated male courtship behavior 

The probabilistic or biasing nature of the wing extension responses elicited by ReaChR-mediated 

activation of P1 neurons suggested that these neurons might encode, or be modified by, state-dependent 

influences on male courtship behavior.  To investigate this possibility, we sought a manipulation that 

influences courtship behavior in an internal state-like manner.  One such influence is provided by social 

experience.  Whether immature animals are reared together with conspecifics, or in social isolation, has a 

profound and lasting effect on numerous behaviors, including social behaviors such as courtship and 

aggression, in both vertebrates and invertebrates (Dankert et al., 2009; Luciano and Lore, 1975; Matsumoto 

et al., 2005; Ueda and Wu, 2009; Wang et al., 2008).  

Social isolation of male flies for more than several days enhances courtship behavior, including 

singing, towards females (Dankert et al., 2009).  To investigate whether P1 neurons might be modulated by 

such experience, we first determined whether social isolation lowers the threshold for eliciting wing 

extension using ReaChR-mediated stimulation of these neurons.  Indeed, the intensity of red light that 

evoked wing extension in 50% of flies expressing ReaChR in P1 neurons was lower in males that were 

socially isolated for 7 days, than in group-housed males (Fig. 4a-c1).  A similar effect was observed using 
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green light as well (Supplementary fig. 3b).  For each of 3 different parameters measured, socially 

isolated flies exhibited significantly higher values than group housed flies (Fig. 4c1-3).  Thus, social 

isolation effectively “tuned” the response to ReaChR activation of P1 neurons, such that the probability of a 

wing extension response was increased.  These data suggest that the increased sensitivity to ReaChR 

activation of wing extension occurs in P1 neurons themselves, or in a functionally downstream population. 

Because pIP10 neurons are thought to be functionally “downstream” of P1 neurons (von 

Philipsborn et al., 2011) (Fig. 3b), we investigated whether ReaChR activation of wing extension via these 

descending neurons was also sensitive to social experience. Because red light was not strong enough to 

activate wing extension in male flies expressing ReaChR in pIP10 neurons, we used green light to trigger 

wing extension.  Activation of pIP10 neurons using ReaChR did not reveal any differences between single 

vs. group-housed flies in the efficiency with which photostimulation evoked wing extension behavior, even 

at lower intensities that evoked responses in only a subset of flies (Fig. 5a-c).  These data indicate that the 

enhanced sensitivity of ReaChR-evoked wing extension in single-housed flies using the P1-GAL4 driver is 

likely to occur in P1 neurons themselves (or in other downstream neurons), rather than in pIP10 neurons.  

They also indicate that the sensitization of the P1 response by social isolation does not reflect a general 

increase in sensitivity among all neurons involved in wing extension behavior. 

 

Functional calcium imaging reveals a neural correlate of social isolation  

To examine directly whether social isolation enhances the sensitivity of P1 neurons to ReaChR 

activation, we performed calcium imaging experiments using laser-scanning 2-photon microscopy, taking 

advantage of the relative separation of the action spectrum peaks for ReaChR and GCaMP3.0 (Tian et al., 

2009).  Importantly, co-expression of GCaMP3.0 in P1 neurons together with ReaChR did not diminish the 

ability of the latter to mediate light-evoked wing extension in freely moving flies, indicating that the calcium 

buffering effect of GCaMP3.0 does not interfere with this behavior (data not shown). 
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An amber LED (590nm) was used for photostimulation during imaging experiments in order 

to maximize overlap with the peak of the ReaChR action spectrum. Excitation scanning caused an initial 

increase in baseline GCaMP3.0 fluorescence in flies co-expressing ReaChR in P1 neurons, even in the 

absence of amber light excitation of ReaChR (Fig. 6a). These increases were not observed in flies lacking 

UAS-ReaChR (Fig. 6a, green trace), implying that they reflect cross-activation of ReaChR by the GCaMP3.0 

excitation beam (940 nm).  Nevertheless, amber light still evoked a clear increase in the strength of 

GCaMP3.0 emissions over this background (Fig. 6a).  This signal was not observed in flies lacking ReaChR 

(Fig. 6a, green trace), and therefore was not due to cross-activation of GCaMP3.0 by the amber light used to 

activate ReaChR (see Methods for filter settings).  

 

Using these conditions, we compared the GCaMP3.0 response of P1 neurons to ReaChR 

activation of these same neurons, between single-housed (SH) vs. grouped-housed (GH) flies. P1 neurons 

in SH flies showed larger ReaChR-evoked calcium influxes than those in GH flies, at several different 

photostimulation frequencies (Fig. 6a,b). Quantitative analysis of ReaChR-citrine expression in these cells 

indicated that this difference was not due to higher levels of P1-GAL4 expression in SH vs. GH flies (Fig. 

6c).  Together, these combined behavioral and imaging experiments suggest that the excitability of P1 

neurons can be modulated by prior social experience.  
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DISCUSSION 

Here we describe a system for optogenetic activation of behavior in freely moving adult flies using 

ReaChR, a newly described red-shifted opsin (Lin J.Y.). This system affords temporally precise control of 

neuronal activation in vivo to an extent that is difficult to achieve using thermogenetic tools such as dTrpA1 

(but see ref (Keene and Masek, 2012)).  The strength of activation obtained using ReaChR, and the broad 

dynamic range of intensities and frequencies over which stimulation can be delivered, offer a more 

quantitative and temporally controlled approach to investigating the neuronal control of behavior than is 

provided by available thermogenetic tools.  Moreover, optogenetics permits conditional control of behavior 

without the temperature increases required by thermogenetic effectors.  The use of ReaChR with red light 

also reduces the confounding influence of strong visual stimulation that occurs when using blue light-

activated opsins. Finally, the ability to control activation using LEDs, rather than lasers (Keene and Masek, 

2012; Lima and Miesenbock, 2005), permits a relatively inexpensive approach to large-scale, high-

throughput screening of GAL4 lines that drive specific behaviors.  

Several factors may explain why ReaChR was more effective than other channelrhodopsins tested 

in intact adult flies.  First and foremost, longer wavelengths of light have better penetration through the 

cuticle.  Second, ReaChR has slower off-kinetics (137±7 ms) than the most of other ChR2 variants we 

tested (c.a. 10-20 ms) (Mattis et al., 2012) , making the channel more light-sensitive (but note that C128T 

has even longer off-kinetics: 2 sec (Berndt et al., 2009; Yizhar et al., 2011a) ; yet it did not work as well as 

ReaChR).  Finally, the membrane transport or expression of C1V1(T/T) is much lower than that of ReaChR. 

Although it is possible that ReaChR is simply expressed and/or transported more efficiently than the other 

opsins tested, a direct comparison is difficult because they are tagged with different fluorescent proteins.  

Using ReaChR to monitor both behavioral sensitivity and neuronal activation, we discovered that 

1) P1 and pIP10 neurons control male courtship song in a state-like (probabilistic and persistent) vs. 

command-like (deterministic and time-locked) manner, respectively; and 2) the effect of social isolation to 
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increase male courtship behavior is mediated, at least in part, through an increase in the excitability 

of P1 neurons (see Supplementary table 3 for summary).  It has been proposed, based on anatomical data, 

that P1 neurons are part of a circuit integrating multimodal sensory cues that control courtship behavior 

(Yu et al., 2010).  Our observations suggest that P1 neurons also integrate this information with the flies’ 

history of social experience, in a manner that influences the probability that the flies will exhibit courtship 

behavior.  To our knowledge, this represents the first observation of a neural correlate of social experience 

in Drosophila.  The mechanisms underlying the influence of social experience on neuronal excitability are 

not understood, and the identification of P1 neurons as a locus of this influence will facilitate future 

mechanistic studies.  

While ReaChR-based activation of behavior was effective in all the GAL4 lines tested, the 

optogenetic toolkit in Drosophila could benefit from further engineering of red-shifted opsins.  The slow 

off-kinetics of ReaChR may make it difficult to trigger high spiking rates in some neurons.  In addition, the 

action spectrum of ReaChR excitation is broad, creating a non-negligible level of cross-activation by the 

GCaMP excitation beam during experiments to image calcium transients induced by ReaChR activation.  

Variants of red-shifted opsins with a narrower action spectrum and faster off-kinetics may overcome these 

limitations. Finally, the development of red-shifted variants of inhibitory opsins, such as halorhodpsin 

(Gradinaru et al., 2010) or Arch (Chow et al., 2010), should extend the optogenetic control of neuronal 

activity in adult flies from excitation to inhibition. Together, such tools would further enhance the 

applicability of optogenetics to neural circuit dissection in Drosophila. 
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Figure 1 Optogenetic vs. thermogenetic control of Gr5a GRNs.  

(a) Penetrance of light through the cuticle of adult Drosophila. n=3. p-value represents one-way ANOVA 

(p=0.0046) followed by t-test with Bonferroni correction (b) Comparison of fraction of flies showing PER 

triggered by different opsins expressed in Gr5a GRNs (Gr5a-Gal4; UAS-opsins).  Fractions at top indicate 

number of responders/number of flies tested. Activation wavelengths are represented as blue (470 nm), 

green (530 nm), red (627 nm) bars. (c-e) Behavioral (c) and electrophysiological (d, e) responses of flies 

expressing ReaChR in Gr5a GRNs.  Red lines (c-e): photostimulation pattern (627 nm, 1.1 mW/mm2); 

pulsed photostimulation (c2-e2) was delivered at 1 Hz, with a 100 msec pulse width; photostimulation in 

(c1-e1) was continuous.  Raster plots (c): PER bouts.  Blue curves (c): Fraction of flies showing PER (time 

bins: 1sec; n=16).  Raster plots (d): Gr5a GRNs spikes.  Lower plots: Average spiking rate (red lines) based 

on raster plots; spiking rates for individual flies are overlaid (gray lines; time bins: 200 msec; n=6). (e) 

Sample traces from electrophysiological recordings. (f) Latencies to first spike following photostimulation 

onset, from (d1) and (d2).  Boxplots: lower and upper whiskers represent 1.5 inter-quartile range of the 

lower and upper quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from 

bottom to top. (g) Overlay of normalized PER responses and firing frequencies during continuous 

photostimulation (red line) based on data in (c1) and (d1). (h) Top row: Measured temperature change 

caused by a heat source placed near the labellum. Middle row: Raster plots representing spikes in Gr5a 

GRNs expressing dTrpA1. Bottom row: spiking responses plotted as in (d). n=4.  
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Figure 2   ReaChR enables light-dependent activation of the CNS neurons in Drosophila.  

(a-b) Experimental setup for high power LED-based activation system. Each number in the diagram (a) 

corresponds to a number in the photograph (b). See supplementary fig.1 and table 2 for detail. (c) View 

from the CMOS camera. (d) Comparison of behavioral responses of flies expressing different 

channelrhodopsin variants in distinct CNS subpopulations.  Plot properties as in Fig. 1b.  “Fraction of flies 

showing behavior” indicates: (d1) side walking or knock-out phenotype; (d2) ejaculation; (d3) wing 

extension or knock-out; or (d4) wing extension, and was quantified for each GAL4 line. No opsin: empty 

promoter GAL4 (BFP-GAL4. See methods) crossed with UAS-ReaChR. Flies showing any of the 

characteristic behaviors during 1 min of continuous photostimulation were scored as responders. (e) 

ReaChR-mediated activation of P1 neurons using different frequencies of red light pulses (627 nm, 1.1 

mW/mm2, 1 min) (P1-GAL4; UAS-ReaChR (attP40)).   The fraction of flies showing wing extension during 

1 min photostimulation trials was fitted by a sigmoidal function to calculate the 50% point (e1). n=8.  (f-g) 

Fraction of flies exhibiting characteristic behaviors at different photostimulation intensities and 

wavelengths, in animals expressing HB9 GAL4 (f) or Fru GAL4 (g), and UAS-ReaChR. n=8.  
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Figure 3  Probabilistic vs. deterministic optogenetic control of courtship song.  

 (a) Activation of P1 neurons (P1-Gal4; UAS-ReaChR(VK5)) (a1) and pIP10 neurons 

(VT40556/UAS>stop>ReaChR (attP40); fru-FLP) (a2) with green light (530 nm, 0.47 mW/mm2).  Top: 

Raster plot representing wing extension bouts (n=8 flies per genotype). Green bars represent 30 sec 

continuous photostimulation trials with 120 sec inter-trial intervals.  Bottom: Fraction of flies showing 

wing extension (time bins: 5 sec). Note different y-axis scales in (a1) and (a2).  P1 responses during trials 2 

and 3 are more clearly phased to the onset of photostimulation at lower light intensities (Supplementary fig. 

3a1).  (b) Schematic illustrating neuronal circuit control of courtship song, simplified from ref (von 

Philipsborn et al., 2011). (c) Latency to first wing extension after onset of the first photostimulation. (d) 

Total duration of wing extension during photostimulation. (e) Number of wing extension bouts during 30 

sec following photostimulation offset.  Plots in (c-e) are based on data in (a1) and (a2). p-values represent 

Mann-Whitney U tests. (f) Fraction of flies showing wing extension during a single photostimulation trial 

as a function of light intensity (green light: 530 nm, continuous, 30 sec).  The data were fitted by a 

sigmoidal function to calculate the 50% point. n=32 for both P1 neurons, and pIP10 neurons.  
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Figure 4  Social isolation lowers the threshold for ReaChR-activated male courtship behavior. 

(a) Raster plots representing wing extension bouts from group-housed (GH: top row) or single-housed (SH: 

bottom row) flies expressing ReaChR in P1 neurons (P1-GAL4/ UAS-ReaChR (VK5)). Flies were activated 

with different intensities of red light (627 nm).  Light red bars in raster plots indicate photostimulation trials 

(30 sec continuous light), with different intensities indicated above the bars.  n=32 flies per intensity.  (b) 

Fraction of flies showing wing extension based on the raster plots in (a).  Data was binned every 10 sec.  

Time scale is the same in (a) and (b).  In this and in Fig. 5, red or blue points/traces/boxplots represent data 

from single-housed or group-housed flies, respectively. (c1-3) Different parameters were extracted from the 

raster plots in (a). Properties of boxplots in this and in Fig. 5 are as in Fig. 1f; “+” indicates outlier data 

bigger than the upper whisker. *:p<0.05; **:p<0.005. p-values in (c1) represent Friedman’s test comparing 

SH vs. GH (p=6.3 × 10-28) followed by Fisher’s exact test with Bonferroni correction comparing SH vs. GH 

at each intensity of light. p-values in (c2-3) represent Krusukal-Wallis one-way ANOVA followed by Mann-

Whitney U tests with Bonferroni correction. P-values for Krusukal-Wallis one-way ANOVA: (c2) p=6.4 × 

10-11; (c3) p=8.2 × 10-12. 
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Figure 5  Optogenetic activation of pIP10 neurons is not modulated by social isolation.  

(a) Raster plot representing wing extension bouts from group-housed (GH: top row) or single-housed (SH: 

bottom row) flies expressing ReaChR in pIP10 neurons (VT40556-GAL424/ UAS>stop>ReaChR(attP40); 

fru-FLP).  Flies were activated with different intensities of green light (530 nm). Green bars indicate 

photostimulation trials (30sec continuous light), with different intensities indicated above the bars. n=32 

flies per intensity.  (b) Fraction of flies showing wing extension based on the raster plot in (a).  Time scale 

is the same in (a) and (b).  (c1-3) Different parameters extracted from the raster plots in (a).  The GH data in 

(c1) (blue points) are the same as those used in Fig. 3f, and are replotted here for purposes of comparison. 

(c1) Friedman’s test comparing SH vs. GH followed by Fisher’s exact test with Bonferroni correction 

comparing SH vs. GH at each light intensity. (c2-3) Krusukal-Wallis one-way ANOVA followed by Mann-

Whitney U tests with Bonferroni correction.  All statistical tests yielded p-values > 0.05. 
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Figure 6  Functional calcium imaging of P1 neurons.  

(a) Responses of P1 neurons  (∆F/F) to ReaChR activation were monitored using 2-photon LSM. Flies 

expressing both ReaChR and GCaMP3 in P1 neurons (P1-GAL4/ UAS-ReaChR(attP40); UAS-

GCaMP3(VK5) ) were single-housed (SH: red line) or group-housed (GH: blue line) and imaged (n>10 

brains for each curve). Amber light (590 nm, 1.7 mw/mm2) with a 5 msec pulse-width was delivered at the 

indicated frequencies in 30 sec consecutive trials (ornge lines above traces).  GCaMP3.0 emissions were 

monitored in the arborizations of P1 neurons. Flies expressing GCaMP3.0 but not ReaChR in P1 neurons 

(P1-GAL4; UAS-GCaMP3(VK5)) were used as  negative controls (green line) (n=3). Solid red and blue 

lines represent average traces, and envelopes indicate SEMs. (b) Quantification of fluorescent changes. 

∫∆F/Fdt, integrated ∆F/F during 30 sec of light activation. Data were analyzed from (a). (c) Expression 

level of ReaChR at the arborizations and somata of P1 neurons were quantified using a citrine tag fused to 

the C-terminus of ReaChR. P-values represent Mann-Whitney U tests with Bonferroni correction.  
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Supplementary Figure 1 |  Detail of the behavioral experimental setup. 

(a) Design of the behavioral chamber. A top plate with holes to introduce flies into the chambers, and a 

bottom plate, are attached with screws to the behavioral chamber. (b) Alignment of LEDs with the 

behavioral chamber.  Light beams are angled towards the center of the behavioral wells.  Each LED 

delivers light to each well.  (c) Light intensity of the LED and voltage input from the Arduino UNO board 

(Smart Projects, Italy) to the LED driver were simultaneously monitored.  Start-up delay of LED is 0.4 

msec and turn-off delay of LED is approximately 0.7 msec. (d) Relationship of light intensity inside the 

behavioral chamber and voltage input to the LED driver.  Points with different color represent LEDs of 

different wavelengths (Red: 627 nm, Amber: 590 nm, Green: 530 nm, Blue: 470 nm). Dotted lines indicate 

linear dynamic ranges for each type of LED. (e) Electric circuit diagram for the LED controller.  This 

circuit was built on a custom Arduino shield.  With the Arduino program, this electric circuit controls high 

power LEDs.  Intensity, pulse width, pulse frequency, length of pulse train, and the number of and interval 

between  repeated pulse trains are controllable for up to 8 × 700mA LEDs in parallel. 

 

 

 

 



 

 

III-33 

 

 

 

 

 

 

 

 

 



 

 

III-34 
Supplementary Figure 2 |   Expression of ReaChR in the brain and ReaChR-based activation 

of behaviors with different frequencies. (a) Expression and trafficking of ReaChR (a1) and C1V1(T/T) 

(a2) in P1 neurons in adult flies. Note that both opsins are expressed at cell somata (box with a white dotted 

line), but only ReaChR is trafficked to the arborizations. Both of the opsins are visualized with a citrine or 

YFP tag immunostained with anti-GFP antibody. (b) Design of the UAS-frt-mCherry-frt-ReaChR transgene 

(Note that ReaChR is tagged with citrine). (c) Diagram representing the intersectional approach for labeling 

pIP10 neurons. (d) Representative confocal projection of whole-mount brain from VT40556 (GAL4) / 

UAS-frt-mCherry-frt-ReaChR (UAS>stop>ReaChR) (attP40); fru-FLP flies. (e) Relationship between pulse 

stimulation frequencies and total duration of UWEs in flies expressing ReaChR in P1 neurons (P1-GAL4; 

UAS-ReaChR (VK5)). Parameters are extracted from the same data used for Fig. 2e.  Boxplot properties are 

as in Fig.2. (f) Relationships of frequencies of light pulses and behavior in flies expressing ReaChR in P1 

neurons, after normalization for the total amount of light delivered at different frequencies. For 

normalization purpose, behaviors during different durations of light activation were counted (first 60, 30, 

20, 12, 8.57, and 6.67 sec during the activation for 10, 20, 30, 50, 70, 90 Hz, respectively). Parameters are 

extracted from the same data used for Fig. 2e. Boxplot properties are as in Fig. 2.  
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Supplementary Figure 3| ReaChR- based activation of P1 neurons.     

Activation of P1 neurons (P1-Gal4; UAS-ReaChR(VK5) (a1) and pIP10 neurons 

(VT40556/UAS>stop>ReaChR (attP40); fru-FLP) (a2) with green light (530 nm, 0.012 mW/mm2). Top: 

Raster plot representing wing extension bouts (n=8 flies per genotype). Green bars represent 60 sec 

continuous photostimulation with 300 sec inter-trial intervals.  Bottom: Fraction of flies showing wing 

extension (time bins: 5 sec). Note that regardless of photostimulation conditons (see also Fig. 3,4), 

ReaChR-based activation of P1 neurons triggers stochastic and persistent wing extensions. (b) Fraction of 

P1-Gal4; UAS-ReaChR(VK5) flies showing wing extension during a single photostimulation trial as a 

function of light intensity (green light: 530 nm, continuous, 30 sec).  The data were fitted by a sigmoidal 

function to calculate the 50% point. n=32 for each intensity. (blue points) are the same as red point used in 

Fig. 3f, and are replotted here for purposes of comparison *: p<0.05. p-values represent Friedman’s test 

comparing SH vs. GH (p=0.02) followed by Fisher’s exact test with Bonferroni correction comparing SH 

vs. GH at each intensity of light.  
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Supplementary Table 1 |  List of transgenic flies created for this paper 
# Name Opsin tag plasmid attP 

landing 
site 

1 UAS-ReaChR ReaChR Citrine pJFRC2 (10x UAS with 
IVS) 

attP40 
(II) 

2 UAS-ReaChR ReaChR Citrine pJFRC2 (10x UAS with 
IVS) 

attP5 (II) 

3 UAS-ReaChR ReaChR Citrine pJFRC2 (10x UAS with 
IVS) 

VK5 (III) 

4 LexAop-ReaChR ReaChR Citrine pJFRC19 (10x LexAop 
with IVS) 

attP40 
(II) 

5 LexAop-ReaChR ReaChR Citrine pJFRC19 (10x LexAop 
with IVS) 

attP5 (II) 

6 LexAop-ReaChR ReaChR Citrine pJFRC19 (10x LexAop 
with IVS) 

VK5 (III) 

7 UAS-frt-mCherry-frt-
ReaChR 

ReaChR Citrine pJFRC2 (10x UAS with 
IVS) with frt cassette 

attP5 (II) 

8 UAS-frt-mCherry-frt-
ReaChR 

ReaChR Citrine pJFRC2 (10x UAS with 
IVS) with frt cassette ( 

VK5 (III) 

9 LexAop-frt-mCherry-
frt-ReaChR 

ReaChR Citrine pJFRC19 (10x LexAop 
with IVS) with frt 
cassette  

attP5 (II) 

10 LexAop-frt-mCherry-
frt-ReaChR 

ReaChR Citrine pJFRC19 (10x LexAop 
with IVS) with frt 
cassette  

VK5 (III) 

11 UAS-C1V1 C1V1 
(T/T) 

EYFP pJFRC2 (10x UAS with 
IVS) 

attP5 (II) 

12 UAS-C1V1 C1V1 
(T/T) 

EYFP pJFRC2 (10x UAS with 
IVS) 

VK5 (III) 

13 LexAop-C1V1 C1V1 
(T/T) 

EYFP pJFRC19 (10x LexAop 
with IVS) 

attP5 (II) 

14 LexAop-C1V1 C1V1 
(T/T) 

EYFP pJFRC19 (10x LexAop 
with IVS) 

VK5 (III) 

 
# Name X II III 
15 UAS-frt-mCherry-frt-ReaChR ; 

fru-flp 
w- UAS-frt-mCherry-frt-

ReaChR (attP5) 
fru-flp 

16 UAS-ReaChR; UAS-GCaMP3 w- UAS-ReaChR (attP40) UAS-GCaMP3 (VK5) 
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Supplementary Table 2 |  List of materials to build LED-based high-throughput screening system 
This list is provided for the convenience of readers who wish to build similar setups. We are listing the 
company and product names that we used, but alternatives may be used. 
# Category Number  Note (company, ordering info, etc.) 
 
  Camera related (① ,④&⑤  in Fig. 2a,b) 
1 Camera 1 

We used Basler A622FM 2/3" CMOS FireWire.A 

Monchrome Camera (640 x 480 pixels up to 100 fps) 

(Basler Inc. Exton, PA USA. http://www.baslerweb.com/ 

).  
 

2 Lens for camera 1 Varifocal Video Lens 12mm - 36mm 1:2.8 Focal Length 
2/3” C mount (compar) (Edmund Optics, Barrington, NJ 
08007-1380 USA, http://www.edmundoptics.com/) 

 

3 IR filter 1 A long-pass filter on the lens of the camera to remove the  
light from high power LEDs. We used longpass filter 
(pass wavelengths longer than 780nm). LP780-M40.5 
(Midwest Optical Systems, Inc. Palatine, IL USA.  
http://www.midopt.com/) 

 

4 IR backlight 1 Backlight to visualize flies in behavioral chamber. We 
used SOBL-200-150-IR 850nm(Smart Vision Lights. 
Muskegon, MI, USA. http://smartvisionlights.com/) 

5 PC 1  

6 Software and driver to 
record movies from the 
camera 

1 We used CMU 1394 Dedgital camera driver  
(http://www.cs.cmu.edu/~iwan/1394/index.html) with 
gVision (http://gvision-hhmi.sourceforge.net/) or a 
custom made Matlab software (Mathworks). 

7 Bread board, optical, posts 
and connectors to assemble 
the behavioral rig 

N.A. Acquired from Thorlab, Inc (Newton, New Jersey, USA. 
http://www.thorlabs.com/index.cfm). 

 
 
    
  LED related and its controller (② ,③&⑤  in Fig. 1a&b) 
8 High power LED (blue) 8 Blue (470 nm) Rebel LED, mounted on a 10 mm square 

cool base- 70 lm @ 700mA (LUXEON® STAR LEDs: 
SR-05-B0040). Spectral half-width (spectral width at ½ of 
the peak intensity) is 20nm. 
(8-15 are acquired from Quadica Developments Inc. 
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Ontario N3T 5L7 Canada. 
http://www.luxeonstar.com/default.asp) 

9 High power LED (green) 8 Green (530 nm) Rebel LED, mounted on a 10 mm square 
cool base- 161 lm @ 700 mA (LUXEON® STAR LEDs: 
SR-05-M0100). Spectral Half-width is 30nm. 
 

10 High power LED (amber) 8 Amber (590 nm) Rebel LED, mounted on a 10 mm 
square cool base- 77 lm@ 700mA (LUXEON® STAR 
LEDs: SR-05-L0040). Spectral Half-width is 20nm. 

11 High power LED (red) 8 Red (627 nm) Rebel LED, mounted on a 10 mm square 
cool base- 102 lm @ 700 mA (LUXEON® STAR LEDs: 
SR-05-D2050) Spectral Half-width is 20nm. 

12 Optics for LEDs 32 All of the LEDs were used with optics. 29.8° 10mm 
Frosted optic with integrated mounting legs (Carclo) 

13 Heat conductive seal 32 To seal LEDs to the heat sink (LUXEON® STAR LEDs: 
LXT-R-10) 

14 Heat sink for LEDs 16 All the LEDs were attached to heat sinks to avoid 
overheat (LUXEON® STAR LEDs: N50-25B) 

15  LED driver 1 700 mAExternally dimmable, Buckpuck DC driver with 
leads (LUXEON® STAR LEDs: 3023-D-E-700) 

16 Power supply 1 Any power driver that is capable of supplying 700mA 
32V DC.  

17 850nm indicator LED 1 Because IR filter filters out the light from high power 
LEDs, the only way to know when the light is on is 
information from the LED controller. We placed one IR 
LED whose on/off is synchronized to the high power 
LED so that we can easily tell when LEDs are on in the 
movie.  

18 Arduino Uno 1 Microcontroller to control camera and LEDs (Smart 
Projects, Italy. http://www.arduino.cc/) 

19 Electric parts to build an 
Arduino shield to control 
the LEDs 

N.A. See Supplementary fig. 1e for the circuit designs and 
parts. 

20 Code to control Arduino 
UNO board 

1  

21 Behavioral chamber  The design of the chamber and the alignment of chamber 
and LEDs are described in Supplementary Fig. 1a,b. Any 
kind of chamber can be used but it is necessary to 
measure light intensity and to make sure uniform 
illumination. 
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Supplementary Table 3  |   Summary of properties of courtship controlling neuron 
 
  P1 neuron pIP10 neuron 
Probability of response Stochastic Deterministic 
Timing of response variable onset/offset Time-locked to stimulus 

onset/offset 
Modulation by social state Yes No 
Class of neuron State control / Biasing neuron Command neuron 
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METHODS 

 

Construction of transgenic animals 

Plasmids were constructed by standard DNA cloning and PCR methods. All PCR reactions were performed 

using PrimeStar® HS DNA polymerase (Takara). Following 

amplification all sequences were verified by DNA sequencing. 

UAS-ChR2(H134R)::EYFP-2A-ChR2(H134R)::EYFP 

A DNA fragment containing the ChR2(H134R) coding sequence kindly provided by Dr. Karl Deisseroth was 

amplified by PCR and subcloned into pUAST vector in a tandem manner with an intervening F2A 

sequence12,(Donnelly et al., 2001). Several transgenic flies were created with different insertion sites. We 

picked the line that exhibited the strongest induction of PER when crossed to Gr5a-GAL4. 

 

UAS-C1V1(T/T) 

A DNA fragment containing the coding sequence of C1V1(E122T/E162T)-TS-eYFP kindly provided by Dr. 

Karl Deisseroth was amplified by PCR and subcloned into the vector pJFRC229. This vector was injected and 

integrated into attP40 and VK5 sites29.  

 

UAS-ReaChR, LexAop-ReaChR, UAS-frt-mCherry-frt-ReaChR, and LexAop-frt-mCherry-frt-ReaChR 

A DNA fragment containing the ReaChR::citrine coding sequence was amplified by PCR and subcloned into 

pJFRC2 and pJFRC1929 for UAS-, and LexAop-driven versions, respectively. For the version containing an 

frt-mcherry-stop-frt cassette, the frt sequences (GAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC) and 

ReaChR DNA fragments were subcloned into pJFRC2 and pJFRC19 using SLIC cloning (Li and Elledge, 

2007). These vectors were injected and integrated into attP40, attP5 and VK5 sites29. 

 

Fly strains  

UAS-ChR25, UAS-dTrpA115, UAS-GCaMP3.043, Gr5a-GAL418, and BDP-GAL4 (Pfeiffer et al., 2008) 

(empty promoter Gal4: an enhancer-less GAL4 containing a Drosophila basal promoter) were generously 



 

 

III-42 
provided by Dr. André Fiala, Dr. Paul A. Garrity, Dr. Loren L. Looger, Dr. Kristin Scott and Dr. 

Gerald M. Rubin, respectively. Fru-GAL426, Fru-flp37 and VT40556 GAL427 were kindly provided by Dr. 

Barry J. Dickson. HB9-gal4 was obtained from Bloomington Stock Center (BL #32555). Crz-Gal425 and 

UAS-C128T12 were previously created in the lab. All the transgenic flies created for this paper are 

summarized in supplementary table 1. These flies are available on request. 

All experimental flies were maintained on a 12/12 hour day-night cycle. Newly eclosed male flies were CO2 

anesthetized and allowed to recover for more than 3-7 days prior to behavioral tests at 25°C. For dTrpA1 

experiments, flies were raised at 18°C. For experiments with Gr5a-GAL4, female flies were used, and for all 

the other experiments male flies were used.  

 

Feeding of retinal 

All trans-retinal powder (Sigma) was stored in -20°C as a 40 mM stock solution dissolved in DMSO (x100).  

400 µl of sugar-retinal solution (400 μM all trans-retinal diluted in 89mM sucrose) was directly added to 

surface of solid food in food vials when larvae were at the first or second instar stage. After collecting newly 

eclosed flies, they were transferred into a vial containing food with 400 μM all trans-retinal (food was heated 

and liquefied to mix the retinal evenly in the food). 

 

Behavioral setup 

See supplementary table 2 for a list of components used to assemble the behavioral setup. See supplementary 

figure 1 for details of the setup and the behavioral chamber. In brief, high power LEDs mounted on heat sinks 

were placed above the behavioral chamber to provide an illumination source (Fig. 2a and Supplementary fig 

1a,b).  The range of available light intensities in our setup is approximately 0.001 -1 mW/mm2  (note that 

intensity ranges are different for different LEDs; see Supplementary fig 1d). LED units were designed to be 

switchable to facilitate testing of different photostimulation wavelengths. The LEDs were controlled by an 

externally dimmable LED driver (700 mA; Externally dimmable, Buckpuck DC driver with leads) and its 

output was adjusted using custom software controlling an Arduino UNO board (Smart Projects, Italy).  The 

Arduino digital PWM output was converted into analogue voltage using an RC-filter (electronic low-pass 
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filter composed of resistor and capacitor. RC LPF in Fig. 2a) containing a 200 Ω resistor and 1 μF 

capacitor to control the output current of the LED driver.  Fly behavior was monitored using a CMOS camera 

equipped with an IR long-pass filter to avoid detection of light from the high power LEDs.  IR back-light was 

used to visualize the behaving flies.  Video capture and LED control were time-locked using the Arduino 

UNO board. To time-stamp photostimulation trials in the videos, we placed an IR indicator LED, whose 

illumination was synchronized to that of the photostimulation LEDs, in the field of view of the camera. The 

temperature inside the behavioral chamber was minimally affected by the high intensity photostimulation.  

After illumination using the highest available intensities of blue, green or red LEDs (1.1, 0.67 and 1.27 mW/ 

mm2, respectively) for 1 minute, the biggest change in ambient temperature, detected using a thermocouple 

inserted into the chamber, was 0.7 °C.   

 

Behavioral experiments and quantification of behaviors 

For experiments to activate Gr5a-GRNs, flies were mounted into 200 μl pipetman tips as described 

previously12. Mounted flies were placed beneath high power LEDs and PERs were monitored using a 

videocamera. Mounted flies were not placed in the behavioral chamber, but placed at the same location as the 

wells of behavioral chamber in supplementary figure 1b. Bouts of PER were counted manually. Definition of 

bouts: a bout starts when flies start extending their proboscis, and ends when they retract the proboscis.  

Incomplete proboscis extensions were not counted.  LEDs were used at maximum intensities in Figs. 1b, c and 

2d, e (Red: 1.1 mW/mm2, Amber: 0.22 mW/mm2, Green: 0.67 mW/mm2, and Blue: 1.27 mW/mm2). For 

Fig.1b, 100msec  photostimulation trials (1 Hz) were delivered (3 trials) and flies showing more than one PER 

during this activation period were counted as responders. Fly genotype: w-;Gr5a(II);GR5a(III)/UAS-

ReaChR(VK5) (Fig. 1b-g); w-;Gr5a(II)/UAS-dTrpA1(II);GR5a(III)/UAS-dTrpA1 (III) (Fig. 1h). 

 

To activate Crz neurons (Fig. 2 d2), males expressing each opsin in crz-GAL4 neurons were mounted dorsal 

side down on a glass slide as previously described25. Flies were illuminated using the maximum available 

intensity of light for each type of LED, continuously for 1 minute, while monitoring them from the ventral 

side using a video camera.  The number of flies exhibiting ejaculation during light stimulation was manually 
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counted. 

 

For all other behavioral experiments, we used acrylic behavioral chambers (16mm diameter) in a 2 x 4 array 

(Fig. 2 and Supplementary Fig. S1) to monitor fly behavior. Unless otherwise indicated, chambers were 

photostimulated using the maximum intensity available for each LED, for 1 minute using continuous 

illumination, while monitoring them with the camera from above.  The number of flies showing continuous 

side-walking during stimulation using the HB9-GAL4 driver was manually counted (Fig. 2 d1,f). Fru-GAL4 

neurons were activated in the same manner, and flies showing wing extension or knock-out phenotypes were 

counted manually (Fig. 2 d3,g). Knock-out was defined as the cessation of locomotion and loss of postural 

control. Flies that showed a weaker behavioral phenotypes (HB9, side walk; Fru, wing extension) at the onset 

of photostimulation, but that were knocked out before the 1 minute stimulation was terminated, were counted 

as knock-out flies (Fig. 2f, g). 

Wing extension evoked by activation of P1 or pIP10 neurons was manually scored (Fig. 3-5). Grooming 

(rapid wing movements while touching with hind leg) was excluded. Definition of bouts: a bout starts when 

flies begin to increase the wing angle, and ends when they stop decreasing it.  

 

Measurement of light intensity 

A photodiode power sensor (Thorlab, Inc: S130VC) was placed at the location of the behavioral chamber.  

The peak wavelength of each LED (Red: 627 nm, Amber: 590 nm, Green: 530 nm, Blue: 470 nm) was 

measured at different voltage inputs. Measurements were repeated 4 times and averaged.  The baseline 

intensity of each wavelength before LED illumination was subtracted. Note that light intensity can drop 

during stimulation at high input voltages. In this study, intensity after 10 sec of stimulation was measured.  

 

Measurement of penetrance of different wavelengths of light through the fly cuticle  

A 400 μm multimode optic fiber (N.A. 0.48. Thorlab, Inc) was inserted into the fly abdomen. The amount of 

light entering the optic fiber inside or outside the fly was measured using a power meter (Model 1931, New 

port).  Penetrance was calculated as the amount of light that entered the optic fiber inside the fly, divided by 
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the amount of light measured outside the fly. The long axis of the optic fiber was always aligned with 

the light source. Different wavelengths of high power LEDs (470 nm, 530 nm, 590 m, 627 nm) and mercury 

lamp combined with band-pass filters (Leica, 425/40 nm (center wavelength/band width)) were used as light 

sources.  

 

Fly histology 

All fixation and staining procedures were performed at 4 °C in PBS, unless otherwise specified.  Dissected 

brains were fixed in 4% formaldehyde in PEM (0.1M PIPES, pH 6.95, 2mM EGTA, 1mM MgSO4) for 2 

hours.  After three 15 min rinses with PBS, brains were incubated with primary antibodies overnight.  

Following three 15 min rinses with PBS, brains were incubated with secondary antibody overnight.  

Following three 15 min rinses, brains were incubated in 50% glycerol in PBS for 2 hours and cleared with 

VECTASHIELD® (VECTA). All procedures were performed at 4 °C. A FluoviewTM  FV1000 Confocal laser 

scanning biological microscope (Olympus) with a 30×, 1.05 N.A. silicone oil objective (Olympus) was used 

to obtain confocal serial optical sections. The antibodies used for Supplementary fig. 2a,d were: anti-GFP, 

rabbit polyclonal antibody unconjugated (invitrogen) and Alexa Fluor® 488 donkey anti Rabbit IgG(H+L) 

(invitrogen). Both of the antibodies were diluted to 1/300. Expression of mCherry in Supplemental figure 2d 

was monitored using native fluorescence without antibody staining. 

Fluorender software (Wan et al., 2009) (http://www.sci.utah.edu/software/13-software/127-fluorender.html) 

was used to make 3D image reconstructions.  To measure the expression levels of ReaChR::citrine in P1 

neurons in fig. 6c, the native fluorescence of citrine in different specimens was monitored using the same 

intensity of laser power (470 nm) and PMT voltage. Signal intensity was quantified in imageJ 

(http://rsbweb.nih.gov/ij/).  

 

Calcium imaging 

Two-photon imaging was performed on an Ultima two-photon laser scanning microscope (Prairie 

Technology) with an imaging wavelength of 925nm (Fig. 6). To filter out auto-fluorescence of the brain and 

light from the amber stimulation LED (for ReaChR activation), we used a 500/20 nm (center wavelength/band 
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width) band-pass filter (Chroma) in the emission pathway to detect the GCaMP3 fluorescence.  The 

scanning resolution was 128 × 128 pixels, dwell time per pixel was 8 μsec, and the optical zoom was ×4.  The 

scanning speed was ca.10 Hz.  The excitation intensity of the 2-photon laser was varied among samples 

depending on the level of GCaMP3, but always lower than 20 mW/mm2.  

 

In both cases, a 40×, 0.80 N.A. water-immersion objective (Olympus) was used for imaging.  A high power 

amber LED (590 nm) collimated with an optic fiber (Thorlab: M590F1) was used as a light source to activate 

ReaChR. To narrow the band width of the LED output, we connected the optic fiber to a fiber optic filter 

holder (World Precision Instruments) equipped with 589/10 nm (center wavelength/band width) bandpass 

filter (Edmund optics).  A ∅200 µm core multimode optic fiber (N.A. 0.39) (Thorlab: FT200EMT) was used 

to deliver the light from the fiber optic holder to the brain. One side of the optic fiber was custom-made to be 

a bare tip (Thorlab) and was dipped into the saline imaging bath and placed 430 µm away from the brain. A 

10×, 0.30 N.A. water-immersion objective (Olympus) was used to locate the brain and align the optic fiber.  

The distance between brain and the fiber was measured with an objective micrometer (Olympus). We set the 

light intensity to be 170 μW at the tip of optic fiber. Thus, at a distance of 430 μm from the tip of a 0.39 N.A. 

optic fiber, the light power is calculated to be approximately 1.7 mW/mm2 at the brain surface (the size of 

light spot should be approximately 0.10 mm2 at the brain). In addition to the PMT used to monitor GCaMP 

emissions, we used another PMT to monitor the 590 nm ReaChR activation light. This was to ensure that the 

intensities of 590 nm light were comparable between samples. 

To prepare the brain for imaging, an ex-vivo prep was used. After a brief anesthesia on ice, the brain was 

dissected out using a sharp forceps into a 35 mm plastic petri dish (FALCON®, 35 3001) containing 

Drosophila imaging saline (108mM NaCl, 5mM KCl, 2mM CaCl2, 8.2mM MgCl2, 4mM NaHCO3, 1mM 

NaH2PO4, 5mM Trehalose, 10mM Sucrose, 5mM HEPES, pH 7.5)(Wong et al., 2002). The fat body, air 

sacs, and esophagus were gently removed to give a clear view of the brain and to minimize its movement.  

The brains were attached to the bottom of the plate by static. The saline was changed once after dissection to 

remove debris. Calcium imaging was performed within 10-15 minutes after the dissection to ensure that the 

brains were healthy.  
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Electrophysiology 

The tip recording method was used to record the electrophysiological responses of labellar taste neurons 

(Hodgson et al., 1955Hodgson et al., 1955). Briefly, the fly was mounted and immobilized for recording by 

inserting a pulled glass capillary (BF150-86-10, Sutter instruments) from the dorsal surface of the thorax to 

the tip of the labellum, passing through the cervical connective and the head. The mounting glass capillary 

was filled with recording solution (7.5 g/L NaCl, 0.35 g/L KCl, 0.279 g/L CaCl2⋅2H2O and 11.915 g/L 

HEPES (Sigma-Aldrich)) and served as a ground electrode. Another glass capillary, pulled to a tip diameter of 

10 to 20 micrometers and filled with 30 mM tri-choline chloride (TCC; Sigma-Aldrich), as an electrolyte, was 

used for recording the electrophysiological responses of the gustatory neurons innervating this sensillum.  All 

the recordings were obtained from L7 sensilla.  The recordings were made using a MultiClamp 700B 

amplifier and Digidata 1440A A/D converter (Molecular Devices). The recorded data was sampled at a rate of 

10 kHz, filtered (band pass filter between 100 Hz and 3 kHz) and stored on a PC hard drive using Clampex 10 

software (Molecular Devices). The data were analyzed by sorting the action potentials and measuring their 

frequency within the indicated time windows using Clampfit software (Molecular Devices). 

 

For PER activation experiments, a high power amber LED (590 nm) collimated with an optic fiber (Thorlab: 

M590F1) was used as a light source to activate ReaChR. To deliver light to the labellum a ∅200 µm core 

multimode optic fiber with bare end (N.A. 0.39) (Thorlab) was used. The distance of optic fiber from the 

labellum was set to be 540 µm using a micrometer.  The estimated light intensity at the labellum was 

approximately 1.0 mW/mm2. 

To activate TrpA1 (Fig. 1h), a custom-made heat source was used. In brief, the heat source is a small piece of 

thermistor (2K Bead Thermistor, Fenwal), which emits heat in proportion to the electrical current passed 

through it.  The distance of the heat source from the labellum was set to be 540 µm using  micrometer. The 

temperature at this distance was measured using a thermocouple (Omega) (top panel in Fig. 1h). 

 



 

 

III-48 
Donnelly,	
  M.L.,	
  Hughes,	
  L.E.,	
  Luke,	
  G.,	
  Mendoza,	
  H.,	
  ten	
  Dam,	
  E.,	
  Gani,	
  D.,	
  and	
  Ryan,	
  M.D.	
  (2001).	
  
The	
   'cleavage'	
   activities	
   of	
   foot-­‐and-­‐mouth	
   disease	
   virus	
   2A	
   site-­‐directed	
   mutants	
   and	
   naturally	
  
occurring	
  '2A-­‐like'	
  sequences.	
  J	
  Gen	
  Virol	
  82,	
  1027-­‐1041.	
  
	
  
Hodgson,	
   E.S.,	
   Lettvin,	
   J.Y.,	
   and	
   Roeder,	
   K.D.	
   (1955).	
   Physiology	
   of	
   a	
   primary	
   chemoreceptor	
   unit.	
  
Science	
  122,	
  417-­‐418.	
  
	
  
Li,	
   M.Z.,	
   and	
   Elledge,	
   S.J.	
   (2007).	
   Harnessing	
   homologous	
   recombination	
   in	
   vitro	
   to	
   generate	
  
recombinant	
  DNA	
  via	
  SLIC.	
  Nat	
  Methods	
  4,	
  251-­‐256.	
  
	
  
Pfeiffer,	
  B.D.,	
   Jenett,	
  A.,	
  Hammonds,	
  A.S.,	
  Ngo,	
  T.T.,	
  Misra,	
  S.,	
  Murphy,	
  C.,	
   Scully,	
  A.,	
  Carlson,	
   J.W.,	
  Wan,	
  
K.H.,	
   Laverty,	
   T.R.,	
   et	
  al.	
   (2008).	
   Tools	
   for	
   neuroanatomy	
   and	
  neurogenetics	
   in	
  Drosophila.	
   Proc	
  Natl	
  
Acad	
  Sci	
  U	
  S	
  A	
  105,	
  9715-­‐9720.	
  
	
  
Wan,	
   Y.,	
   Otsuna,	
   H.,	
   Chien,	
   C.B.,	
   and	
   Hansen,	
   C.	
   (2009).	
   An	
   Interactive	
   Visualization	
   Tool	
   for	
   Multi-­‐
channel	
  Confocal	
  Microscopy	
  Data	
  in	
  Neurobiology	
  Research.	
  Ieee	
  T	
  Vis	
  Comput	
  Gr	
  15,	
  1489-­‐1496.	
  
	
  
Wong,	
   A.M.,	
   Wang,	
   J.W.,	
   and	
   Axel,	
   R.	
   (2002).	
   Spatial	
   representation	
   of	
   the	
   glomerular	
   map	
   in	
   the	
  
Drosophila	
  protocerebrum.	
  Cell	
  109,	
  229-­‐241.	
  
	
  
 

 

 

 

 

 

 

 

 

 

 

 




