
	
 277	

Appendix D

MATLAB SCRIPTS

	
 278	

D.1. Plotting x,y data: MEplotter

The script MEplotter plots x and y data, including steady-state absorption spectra

and single-wavelength transient absorption kinetics.

MEplotter

% TO PLOT WORKED-UP TRACES

i=1;
while i ~= 0
% READ DATAFILE
 [file,dirpath]=uigetfile('*.*');
 if isequal(file,0) || isequal(dirpath,0)
 disp('no more')
 i=0;
 return
 end

 filet=[dirpath file];
 data=dlmread(filet);
% EXTRACT X AND Y
 xx=data(:,1);
 yy=data(:,2);
% PLOT
 a=rand(3);
 plot(xx,yy,'color',a(1:3));
 %semilogx(xx,yy,'color',a(1:3));

end
disp('voila!')

	
 279	

D.2. Time-resolved single-wavelength data workup

Raw data collected on the ns1 (nanosecond pulsed, single-wavelength) system are

saved into a “ *.ns1” file. This must first be converted to intensity vs. time

(luminescence) or ΔOD vs. time (transient absorption) using the ns1_read.m

script provided by Dr. Jay Winkler (available on the bilrc.caltech.edu website.) The

ns1_read.m script saves the new, two column data as a .txt file, with time in the

first column and intensity/ΔOD in the second.

D.2.1. Time-zero adjustment

The NSI instrumentation designates a “time-zero”. However, this designated time

point is not always accurate, and can fluctuate by as much as 30 ns over the course

of several months. All of the kinetics data in this Thesis are time-adjusted using

xadjuster so that time-zero corresponds to the beginning of the rise in signal

(within a few data points).

xadjuster

% xadjuster
% To adjust x data to time=0

i=1;
while i ~= 0

% READ DATAFILE
 [file,dirpath]=uigetfile('*.*');
 if isequal(file,0) || isequal(dirpath,0)
 disp('no more')
 i=0;
 return
 end
 filet=[dirpath file];
 data=dlmread(filet);

%DETERMINE FILE PROPERTIES
 data=dlmread(filet); %read raw file to var data
 len=length(filet); %measure length of file name
 file1=filet(1:len-4); %remove the .dat
 look=find(file1=='/'); %find all the / in the file

	
 280	

name
 maxf=max(look)+1; %find the last / and index 1
value past it (file name)
 file2=file1(maxf:end); %this was the file name
 file3=double(file2); %file name converted to ascii

% EXTRACT X AND Y
 xx=data(:,1);
 yy=data(:,2);
% PLOT
 a=rand(3);
 plot(xx,yy,'b');
 hold

% ASK FOR X-ADJUST
 adjfactor=input('input the x offset (in seconds): ');
 disp(adjfactor)
 xnew=xx+adjfactor;
 plot(xnew,yy,'r')
 hold

%WRITE DATA TO FILE
 corcmp=[xnew yy];
 filecmp1=[file3, 100 46 116 120 116]; %Adds 'd.txt' to
the end of the file name
 filecmp2=char(filecmp1);
 dlmwrite(filecmp2,corcmp,'precision',14); %write a file
of the adjusted xy data
 disp(filecmp2); %tell you the
name of the new file

end

	
 281	

D.2.2. Log-compression

Data that would be subjected to (multi)exponential fitting protocols were log-

compressed, to avoid weighting of longer timepoints. The compress script was

written to streamline this process. The function logtimej was modified from a

script provided by Dr. Jay Winkler. In this case, compress sets the number of

points per decade (ppd) to 600; the TA data in Chapters 2, 3, and most of Chapter

5 used this compression. Picosecond TA data (ps1), and picosecond-to-

millisecond data overlays (Chapter 5 CO rebinding studies) were compressed to

200 ppd.

compress

%COMPRESSES WORKED UP DATA, AND WRITES A NEW FILE
clear

ans=input('how many traces do you want to compress? -->');
xi=[];
yi=[];

for i=1:ans
 %READ DATAFILE
 [file,dirpath]=uigetfile('/Users/Maraia/MATLAB/0Ahora/.dat');
% -> CHANGE THIS TO YOUR DIRECTORY
 if isequal(file,0) || isequal(dirpath,0)
% So it doesn't give an error if you press cancel
 disp('cancelled!')
 i=0;
 return
 end
 %file=input('enter file path','s');
 filet=[dirpath file];

 %DETERMINE FILE PROPERTIES
 data=dlmread(filet); %read raw file to var data
 len=length(filet); %measure length of file
name
 file1=filet(1:len-4); %remove the .dat
 look=find(file1=='/'); %find all the / in the
file name
 maxf=max(look)+1; %find the last / and index
1 value past it (file name)
 file2=file1(maxf:end); %this was the file name
 file3=double(file2); %file name converted to
ascii

	
 282	

 %EXTRACT X AND Y
 t=data(:,1); %read the time data out to
var xx
 y=data(:,2); %read intensity out to yy
 ppd=600; %points per decade

 [tout,yout,wt] = logtimej(t,y,ppd);
 tout=tout';
 yout=yout';

 %WRITE DATA TO FILE
 corcmp=[tout yout];
 filecmp1=[file3, 99 46 116 120 116]; %Adds 'c.txt'
to the end of the file name
 filecmp2=char(filecmp1);
 dlmwrite(filecmp2,corcmp,'precision',14); %write a file
of the adjusted xy data
 disp(filecmp2); %tell you the
name of the new file
end
disp('compressed!');

	
 283	

logtimej

function [tout,yout,wt]=logtimej(t,y,ppd)
%
% function to convert y=f(t) data from linear in time
% to logarithmic in time
%
% SYNTAX:
% [tout,yout,wt]=logtime(t,y,ppd)
%
% t is the input time vector, linearly spaced
% y is the input y vector
% ppd is the number of points per decade for the output
vectors
% tout is the new time vector space logarithmically
% yout is the new time vector space logarithmically
% wt is vector of weights giving the number of points averaged
% to get the new yout value

%Cut out time<0 data, which can't be plotted on a log scale
ncount=1;
while t(ncount)<=0
 ncount=ncount+1;
end
t=t(ncount:end);
y=y(ncount:end);

zt=length(t);
zy=length(y);
%
%
if zt ~= zy
 fprintf('ERROR: y and t vectors are different lengths')
else

 tmin=min(t);
 tmax=max(t);
%
 ltmin=log10(tmin);
 ltmax=log10(tmax);
%
 tt=ltmin:(1./(2.*ppd)):ltmax;
 tt=10.^tt;
 ztt=length(tt);
%
%
 icount=1;
 jcount=1;
 for i=2:2:ztt
 tout(jcount)=0;
 yout(jcount)=0;
 wt(jcount)=0;
 while (icount < zt) & t(icount) < tt(i)
 tout(jcount)=tout(jcount)+t(icount);
 yout(jcount)=yout(jcount)+y(icount);

	
 284	

 wt(jcount)=wt(jcount)+1;
 icount=icount+1;
 end
 if wt(jcount) ~= 0
 tout(jcount)=tout(jcount)./wt(jcount);
 yout(jcount)=yout(jcount)./wt(jcount);
 jcount=jcount+1;
 end
 end
end
%
%
%

	
 285	

D.3. Data-splicing

In order to cover the (sub)nanosecond-to-second time range, log-compressed data

taken at multiple timescales were spliced together to generate a complete trace.

The script overlayer was used to import data for three timescales and

multiplicatively scale at the users discretion. The function combine was used to

designate splicing points between timescales, and generate the final combined

data.

overlayer

%OVERLAYER
%plots fastamp, slowamp, and no-stirring traces, and asks
%for multiplyers to adjust the fast and no-stirring traces
%so that they overlay better

tscale=input('To splice 2us, 100us, and 10ms data, enter 1. \n To
splice 100us, 10ms, 500ms data, enter 2. \n To splice 5ns, 50ns, and
2us-500ms data, enter 3 ->');

% READ DATAFILES
disp('select the fastest trace');

 [file,dirpath]=uigetfile('*.txt'); %opens a window to pick my file
 if isequal(file,0) || isequal(dirpath,0)
 disp('cancelled!')
 hold
 i=0;
 return
 end
 filet=[dirpath file];
 data1=dlmread(filet);

disp('select the corresponding middle trace-->');

 [file,dirpath]=uigetfile('*.txt'); %opens a window to pick my file
 if isequal(file,0) || isequal(dirpath,0)
 disp('cancelled!')
 hold
 i=0;
 return
 end
 filet=[dirpath file];
 data2=dlmread(filet);

disp('select the corresponding longest trace-->');

	
 286	

 [file,dirpath]=uigetfile('*.txt'); %opens a window to pick my file
 if isequal(file,0) || isequal(dirpath,0)
 disp('cancelled!')
 hold
 i=0;
 return
 end
 filet=[dirpath file];
 data3=dlmread(filet);

% EXTRACT DATA X and Y DATA

x1=data1(:,1);
y1=data1(:,2);
x2=data2(:,1);
y2=data2(:,2);
x3=data3(:,1);
y3=data3(:,2);

% FIRST OVERLAY OF DATA
semilogx(x1,y1,'r');
hold
semilogx(x3,y3,'b');
semilogx(x2,y2,'g');
hold

mult2=1;
mult3=1;

seguir=input('does it need adjustment? (y/n) ->', 's');
if seguir == 'n'
 y1adj=y1;
 y2adj=y2;
 y3adj=y3;
end

while seguir == 'y';
 mult1=input('select a new first trace multiplier (default 1)->');
 if mult1 <= 0
 mult1=1;
 disp('defaulting multf=1');
 end
 mult2=input('select a new second trace multiplier (default 1)->');
 if mult2 <= 0
 mult2=1;
 disp('defaulting mults=1');
 end
 mult3=input('select a new third trace multiplier (default 1)->');
 if mult3 <= 0
 mult3=1;
 disp('defaulting multL=1');
 end

 y1adj=mult1.*y1;
 y2adj=mult2.*y2;
 y3adj=mult3.*y3;

	
 287	

 semilogx(x1,y1adj,'r');
 hold
 semilogx(x3,y3adj,'b');
 semilogx(x2,y2adj,'g');
 hold

 seguir=input('does it need adjustment? (y/n)', 's');
end
disp(mult1);
disp(mult2);
disp(mult3);

datac=combine(tscale,x1,y1adj,x2,y2adj,x3,y3adj);

T=datac(:,1);
Y=datac(:,2);
TY=[T,Y];

keep=input('do you want to keep this combined trace? (y/n)->', 's');
if keep == 'y';
 [Savefile,Savedirpath,Savefilter]=uiputfile([dirpath,'*.txt'],'Save
overlayed traces',[dirpath,file]);
 eval(['save ''',Savedirpath,Savefile, ''' TY -ASCII -DOUBLE']);
end

	
 288	

combine

function datac=combine(tscale,x1,y1adj,x2,y2adj,x3,y3adj)
%function datac=combine(xf,yfadj,xs,ys)
%TO CREATE A SINGLE DATA SET COMBINING DATA FOR THREE TIMESCALES
% INPUTS
% vectors containing time (x) and delta OD (y) data
% key:f,s & L are fast amp, slow amp, and no stirring.
% yf and yL are adjusted (hence yfadj, yLadj) by a multiplier to
% remove dicontinuities between the data from the three time ranges
%
% OUTPUTS
% datac is a matrix with the combined time values in the first
% column, and delta OD values in the second column

%Timescales for different purposes
if tscale == 1

%For combining the 2us, 100us, 10ms data
 time1l = 1e-9;
 time1u = 1.5e-6;

 time2l=1.5e-6;
 time2u=0.5e-4; %used to be 0.7e-4/0.4e-4

 time3l=0.5e-4;

elseif tscale == 2

%For combining the 400us, 10ms, 500ms data
 time1l = 1e-9;
 time1u = 5e-5;

 time2l=5e-5;
 time2u=1e-3;

 time3l=1e-3; %USED to be 2.5e-3

elseif tscale == 3

%For combining the 5ns, 50ns, 2us-500ms data
 time1l = 1e-12;
 time1u = 3.5e-9;

 time2l=3.5e-9;
 time2u=35e-9;

 time3l=35e-9;

end

	
 289	

%ADJUSTING FIRST TRACE

 %cycles to find indexes of the lower and upper bound times

 xli=1;
 while x1(xli) <= time1l
 xli=xli+1;
 end

 xui=xli;
 while x1(xui) <=time1u
 xui=xui+1;
 end

 newx1=x1(1:xui);
 newy1=y1adj(1:xui);
 newx1=newx1';
 newy1=newy1';

% ADJUSTING SECOND TRACE

 %cycles to find indexes of the lower and upper bound times
 xli=1;
 while x2(xli) <= time2l
 xli=xli+1;
 end

 xui=xli;
 while x2(xui) <=time2u
 xui=xui+1;
 end

 newx2=x2(xli:xui);
 newy2=y2adj(xli:xui);
 newx2=newx2';
 newy2=newy2';

% ADJUSTING THIRD TRACE

 %cycles to find indexes of the lower bound times
 xli=1;
 while x3(xli) <= time3l
 xli=xli+1;
 end

 newx3=x3(xli:(end));
 newy3=y3adj(xli:(end));
 newx3=newx3';
 newy3=newy3';

%creates the combined trace
combx=[newx1 newx2 newx3];
comby=[newy1 newy2 newy3];

combx=combx';
comby=comby';

	
 290	

hold
semilogx(combx, comby, 'y');
hold

datac=[];
datac(:,1)=combx;
datac(:,2)=comby;
end

	
 291	

D.4. Singular Value Decomposition

These scripts use truncated, generalized singular value decomposition (from

Regularization Tools, Per Christian Hansen) to determine the number of kinetic

components in single-wavelength transient absorption kinetics traces. This can be

done for a single kinetics trace using svder1, or accomplished and overlayed for six

wavelengths using svderMulti.

svder1

logkspace=0:log10(2):10;
kspace=10.^logkspace;
t=input('define the time vector ');
logAspace=-t*kspace;
Aspace=exp(logAspace);

Adata=input('define the absorbance data vector ');

L=get_l(34,1);
[UU sm XX]=cgsvd(Aspace,L);

figure
trunc=input('enter the truncation value (<34) ');
X_L=tgsvd(UU,sm,XX,Adata,trunc);
bar(log10(kspace),X_L);

Bcalc=Aspace*X_L;
figure
semilogx(t,Adata,'b',t,Bcalc,'r')

	
 292	

svderMulti

%svderMulti
%Does SVD for 6 wavelengths

logkspace=0:log10(2):10;
kspace=10.^logkspace;
t=input('define the time vector ');
logAspace=-t*kspace;
Aspace=exp(logAspace);

Adata=input('define the absorbance data MATRIX ');

L=get_l(34,1);
[UU sm XX]=cgsvd(Aspace,L);

len=length(kspace);
X_LMat=zeros(len,6);
trunc=input('enter the truncation value (<34) ');

for icount = 1:6
 X_L=tgsvd(UU,sm,XX,Adata(:,icount),trunc);
 X_LMat(:,icount)=X_L; %put it back in a big matrix
end

%multiplotting
col(1)='k';
col(2)='b';
col(3)='c';
col(4)='g';
col(5)='y';
col(6)='r';
col=col(:);

figure
hold

for ocount=1:30;
 barx(:,1)=X_LMat(ocount,:);
 barx(:,2)=[1; 2; 3; 4; 5; 6;];
 barx(:,3)=abs(barx(:,1));
 barz=sortrows(barx,-3);
 for incount=1:6;
 ind=barz(incount,2);
 bar(log10(kspace(ocount)),barz(incount,1),0.25,col(ind));
 %pause(1)
 end
end

	
 293	

D.5. Multiexponential fitting

A number of scripts are used to fit TA data to a sum of multiexponentials.

nonlinear_fitter4 fits data to a sum of three and four exponentials, to compare

fits. It uses the function autoresider to plot residuals and autocorrelation of

residuals; these are used to determine whether deviations between data and fit are

random or systematic (an additional exponent is indicated). MExpG_Fitter is

used to globally fit data at multiple wavelengths to a sum of exponentials (defined

by MExpG), using defined upper and lower bounds and initial guesses

(MExpGvalues).

nonlinear_fitter4

%fitting kinetics data to a sum of exponentials

%getting data
xdata=input('define the x data:\n');
ydata=input('define the y data:\n');
figure
semilogx(xdata,ydata,'c');
hold
%defining fitting & parameters
disp('we will be fitting to a sum of 3, 4 exponentials');

ft=fittype('a.*exp(-x.*2.2e7)+b.*exp(-x.*k2)+c.*exp(-x.*k3)+f');
% a b c f k2 k3
pu=[0.1, 0.3, 1, 1, 1e7, 5e6];
pl=[-0.1, -0.4, -1, -1, 1e5, 5e2];
st=[-0.02, -0.15, 0.1, 0, 1e6, 5e3];

opts=fitoptions(ft);
opts=fitoptions(opts,'lower',pl,'upper',pu,'startpoint',st);
[f,gof]=fit(xdata,ydata,ft,opts);
disp(f);
xcalc=xdata;
ycalc=feval(f,xcalc);
plot(xcalc,ycalc,'r');

%used for all wavelengths
ft2=fittype('a.*exp(-x.*2.2e7)+b.*exp(-x.*k2)+c.*exp(-x.*k3)+d.*exp(-
x.*k4)+f');
% a b c d f k2 k3 k4
pu2=[0.1, 0.3, 1, 1, 1, 5e6, 5e5 1e4];
pl2=[-0.1, -0.4, -1, -1, -1, 5e5, 5e4 1e1];

	
 294	

st2=[-0.02, -0.15, 0.1, 0, 0, 1e6, 1e5 1e3];
%pu=input('define upper bounds for a-e,k2-k5: 10 parameters\n');
%pl=input('define lower bounds for a-e,k2-k5: 10 parameters\n');
%st=input('define starting values for a-e,k2-k5: 10 parameters\n');

opts=fitoptions(ft2);
opts=fitoptions(opts,'lower',pl2,'upper',pu2,'startpoint',st2);
[f,gof]=fit(xdata,ydata,ft2,opts);
disp(f);

%numpts=length(xdata);
%numpts=1000;
%xmin=log10(min(xdata));
%xmax=log10(max(xdata));
%xcalc=logspace(xmin,xmax,numpts);
ycalc2=feval(f,xcalc);
plot(xcalc,ycalc2,'b');
hold
autoresider(ydata,ycalc,ycalc2);

	
 295	

autoresider

function [AC_resid,AC_resid2]=autoresider(y,ycalc,ycalc2)
%
%
% Calculate and plot the autocorrelation of the residuals between
ycalc and y
%
% Syntax: [AC_resid]=autoresid(y,ycalc);
%
%
y=y(:);
ycalc=ycalc(:);
ycalc2=ycalc2(:);
%
len=length(y);
jlen=floor(len./1.1);
%
resid=y-ycalc;
resid2=y-ycalc2;
%
acorrin=zeros(len,jlen);
acorrin2=zeros(len,jlen);
%
for aij=1:jlen
 acorrin(1:len-aij,aij)=resid(aij+1:len); %
 acorrin2(1:len-aij,aij)=resid2(aij+1:len); %
end
mvect=len-1:-1:len-jlen;
autoc=(resid'*acorrin)./mvect;
autoc2=(resid2'*acorrin2)./mvect;
AC_resid=autoc./((resid'*resid)./len);
AC_resid2=autoc2./((resid2'*resid2)./len);
%
figure
subplot(2,1,1)
plot(y-ycalc,'r')
hold
plot(y-ycalc2,'b')
subplot(2,1,2)
plot(AC_resid,'r')
hold
plot(AC_resid2,'b')

return

	
 296	

MExpGFitter

%MultiExponential Global Fitter (fits to 6 wavelengths)
%asking for data
tvector=input('define the time vector -> ');
dODdata=input('define the matrix of absorbance data -> ');

x=tvector;
%defining initial values and bounds
[values,ubound,lbound] = MExpGvalues;

%defining fit parameters
fxn=@(values,x) MExpG(values,x);
optm=optimset('lsqcurvefit');
optm=optimset(optm,'Display','iter');
optm=optimset(optm,'TolFun',1e-14);
optm=optimset(optm,'TolX',1e-14);

bfit=lsqcurvefit(fxn,values,tvector,dODdata,lbound,ubound,optm);
bfite=bfit';
ks=bfite(25:end);
display(bfite)
%display(ks)

A=MExpG(bfit,tvector);
for icount = 1:6
subplot(2,3,icount)
semilogx(tvector,dODdata(:,icount),'b',tvector,A(:,icount),'r');
end

	
 297	

MExpG

function [A]=MExpG(values,tvector)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
a=values(1:6);
b=values(7:12);
c=values(13:18);
f=values(19:24);
k=values(25:27);
x=tvector;

%lumdec=2.7e7;

A1=(a(1).*exp(-x.*k(1))+b(1).*exp(-x.*k(2))+c(1).*exp(-x.*k(3))+f(1));
A2=(a(2).*exp(-x.*k(1))+b(2).*exp(-x.*k(2))+c(2).*exp(-x.*k(3))+f(2));
A3=(a(3).*exp(-x.*k(1))+b(3).*exp(-x.*k(2))+c(3).*exp(-x.*k(3))+f(3));
A4=(a(4).*exp(-x.*k(1))+b(4).*exp(-x.*k(2))+c(4).*exp(-x.*k(3))+f(4));
A5=(a(5).*exp(-x.*k(1))+b(5).*exp(-x.*k(2))+c(5).*exp(-x.*k(3))+f(5));
A6=(a(6).*exp(-x.*k(1))+b(6).*exp(-x.*k(2))+c(6).*exp(-x.*k(3))+f(6));

A=[A1, A2, A3, A4, A5, A6];
end

	
 298	

MExpGvalues

function [values,ubound,lbound] = MExpGvalues
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

%defining initial values and bounds
%'a' defines six pre-exponential terms corresponding to the first rate
%constant, 'b' defines those pre-exponentials for the second rate
constant,
%and the same for 'c'
a=[-0.2, -0.2, -0.2, -0.2, -0.2, -0.2];
b=[-0.15, -0.15, -0.15, -0.15, -0.15, -0.15];
c=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1,];
f=[0.01, 0.01, 0.01, 0.01, 0.01, 0.01];
k=[2e7, 6e4, 1e3]; %these are the three exponential terms

values=[a b c f k];

%upper bounds
ua=[1, 1, 1, 1, 1, 1];
ub=[1, 1, 1, 1, 1, 1];
uc=[1, 1, 1, 1, 1, 1];
uf=[1, 1, 1, 1, 1, 1];
uk=[3e8, 5e6, 1e4];

ubound=[ua ub uc uf uk];

%lower bounds
la=[-1, -1, -1, -1, -1, -1];
lb=[-1, -1, -1, -1, -1, -1];
lc=[-1, -1, -1, -1, -1, -1];
lf=[-1, -1, -1, -1, -1, -1];
lk=[1e6, 5e3, 5e0];

lbound=[la lb lc lf lk];

end

	
 299	

D.6. Nonnegative least squares analysis

Multiexponential kinetics data (with all positive magnitudes), such as fluorescence

decays or CO rebinding in substrate-free P450 CYP119, can be examined using

nonnegative least squares (nnls) fitting. This procedure requires that the data be

log-compressed, and that the first time point be exactly zero. The nnls_prep script

sets the initial time to zero and can be used to normalize data; the script

nnls_grad_reg_r2_KT (written by Jay Winkler and modified by Kana Takematsu)

does the fitting analysis. To further analyze the nnls outputs, the script Panalyzer

and function Pmoments allow the user to define populations within the nnls

histogram of rate constants and amplitude, and determine statistics (integrated

amplitudes, first moment, and second and third centered moments) for each

population.

nnls_prep

% nnls_prep
% This script selects the maximum absorbance data point from x,y TA
data, sets that time point to t=0, and
% normalizes Y (absorbance) data

i=1;
while i ~= 0

% READ DATAFILE
 [file,dirpath]=uigetfile('*.*');
 if isequal(file,0) || isequal(dirpath,0)
 disp('no more')
 i=0;
 return
 end
 filet=[dirpath file];

%DETERMINE FILE PROPERTIES
 data=dlmread(filet); %read raw file to var data
 len=length(filet); %measure length of file name
 file1=filet(1:len-4); %remove the .dat
 look=find(file1=='/'); %find all the / in the file
name
 maxf=max(look)+1; %find the last / and index 1
value past it (file name)
 file2=file1(maxf:end); %this was the file name

	
 300	

 file3=double(file2); %file name converted to ascii

% EXTRACT X AND Y
 xx=data(:,1);
 yy=data(:,2);

% DATA ADJUSTMENTS
% [myy,indmyy]=max(yy); %find value and index of max
Y-data point
 indmyy=21;
 xadj=xx(indmyy); %find time value of max Y-data
point
 xtrunc=xx(indmyy:end); %truncating rise from X-data
 ytrunc=yy(indmyy:end); %truncating rise from Y-data
 xnew=xtrunc-xadj; %setting first data point as
time zero
% ynorm=ytrunc/myy; %normalizing Y-data to max Y-
data point

% PLOT
 plot(xx,yy,'r')
 plot(xnew,ytrunc,'b');

%WRITE DATA TO FILE
 corcmp=[xnew ytrunc];
 filecmp1=[file3, 95 116 48 110 46 116 120 116];
%Adds '_t0n.txt' to the end of the file name
 filecmp2=char(filecmp1);
 dlmwrite(filecmp2,corcmp,'precision',14); %write a file
of the adjusted xy data
 disp(filecmp2); %tell you the
name of the new file

end

	
 301	

nnls_grad_reg_r2_KT

% Script to read [t,y] data from a file
% Fit using chisq and first derivative constraint
% with lsqnonneg and scan lambda to maximize breadth.
%
%
clear all
close all
%
%lambda_min_def=0.001;
%lambda_max_def=10;
lambda_min_def=0.01;
lambda_max_def=50;
lambda_inc_def=1.5;
k_inc_def=1.5;
%
H0=figure;
%
[FileName,PathName] = uigetfile('*.txt') ;
filet=[PathName FileName];
xy=dlmread(filet);
%[a,b]=size(xy);
%if (a~=2)&(b~=2)
 % return
%elseif (a==2)
 % xy=xy';
%end
%
x=xy(:,1);
y=xy(:,2);
warning off
wt=1./sqrt(y);
wttest=isfinite(wt);
wttest=isinf(1./wttest);
sqrt(y+wttest);
wt=1./sqrt(abs(y+wttest));
wt=[wt(1:214); 3*wt(215:length(y))];
%kana: add abs and define new wt
%MUST REMEMBER TO change this value for each data set!!!
warning on
%
%
chk3=-1;
while chk3 < 0
chk=-1;
prompt={'Enter the minimum value for \lambda',
 'Enter the maximum value for \lambda',
 'Enter the ratio of adjacent \lambda values',
 'Enter the ratio of adjacent rate constants'};
dlg_title='Fitting Parameters (enter ? for help)';
numlines=1;
options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';
helpstr1=['The program minimizes the sum of the squared deviations

	
 302	

between calculated and experimental intensities (chi-squared) AND the
sum of the squared gradient of the P(k) function. The weighting factor
between these two functions is lambda. Small \lambda values give more
weight to chi-squared minimization. Large lambda values give more
weight to P(k) gradient minimization. The program will scan from a
minimum to a maximum value of lambda. The scanned lambda values are
logarithmically spaced. This query asks for the maximum and minimum
values of lambda as well as the ratio of adjacent lambda values.'];
helpstr2=['The k-space vector is logarithmically spaced. This query
asks for the raio of adjacent k values.]'];
help1=' ';
help2=' ';
while chk < 0

defanswer={num2str(lambda_min_def),num2str(lambda_max_def),num2str(lamb
da_inc_def),num2str(k_inc_def),};
 answer=inputdlg(prompt,dlg_title,numlines,defanswer,options);
 ans1=cell2mat(answer(1));
 ans2=cell2mat(answer(2));
 ans3=cell2mat(answer(3));
 ans4=cell2mat(answer(4));
 %
 chk=1;
 hep1=0;
 hep2=0;
 if ishandle(help1)==1
 close(help1);
 end
 if ishandle(help2)==1
 close(help2);
 end
 %
 if (isempty(ans1))
 chk=-1;
 elseif ans1(1) == '?'
 hep1=1;
 chk=-1;
 else
 lambda_min=str2num(ans1);
 if isempty(lambda_min)
 chk=-1
 else
 lambda_min_def=lambda_min;
 end
 end
 %
 if (isempty(ans2))
 chk=-1;
 elseif ans2(1) == '?'
 hep1=1;
 chk=-1;
 else
 lambda_max=str2num(ans2);
 if isempty(lambda_max)
 chk=-1
 else
 lambda_max_def=lambda_max;
 end

	
 303	

 end
 %
 if (isempty(ans3))
 chk=-1;
 elseif ans3(1) == '?'
 hep1=1;
 chk=-1;
 else
 lambda_inc=str2num(ans3);
 if isempty(lambda_inc)
 chk=-1
 else
 lambda_inc_def=lambda_inc;
 end
 end
 %
 if (isempty(ans4))
 chk=-1;
 elseif ans4(1) == '?'
 hep2=1;
 chk=-1;
 else
 k_inc=str2num(ans4);
 if isempty(k_inc)
 chk=-1
 else
 k_inc_def=k_inc;
 end
 end
 %
 if (hep1 == 1)
 help1=helpdlg(helpstr1,'Lambda Values')
 hpos1=get(help1,'Position');
 set(help1,'Position',[hpos1(1)+0.5.*hpos1(3),
hpos1(2)+0.5.*hpos1(4), hpos1(3), hpos1(4)]);
 end
 %
 if (hep2 == 1)
 help2=helpdlg(helpstr2,'k-ratio')
 hpos2=get(help2,'Position');
 set(help2,'Position',[hpos2(1)+0.5.*hpos2(3),
hpos2(2)+0.5.*hpos2(4), hpos2(3), hpos2(4)]);
 end
 %
end
%
%lambda_max
%lambda_min
%lambda_inc
%k_inc
%
%
loglambda=log10(lambda_min):log10(lambda_inc):log10(lambda_max);
lambda=10.^loglambda;
lenlam=length(lambda);
%
%
Off_set=0;

	
 304	

chk=-1;
menprompt='Offset Rate Constant';
menopt1='YES';
menopt2='NO';
menopt3='Help';
helpstr3='If the data do not decay to zero, a slow rate constant can be
added to the k-space vector to produce an offset in the data. This
query asks if you want to include that offset rate constant.';
help3=' ';
while chk < 0
 %
 choice=menu(menprompt,menopt1,menopt2,menopt3);
 %
 if ishandle(help3)==1
 close(help3);
 end
 if choice == 1
 Off_set=1;
 chk=1;
 elseif choice == 2
 Off_set=0;
 chk=1;
 elseif choice ==3
 help3=helpdlg(helpstr3,'Weighting');
 end
end
%
%
iwt=0;
chk=-1;
menprompt='Data Weighting';
menopt1='No weighting';
menopt2='Weight y(i) values by 1/sqrt(yi)';
menopt3='Weight y(i) values by 1/yi';
menopt4='Help';
helpstr4='No weighting minimizes sum of {yi(exp)-yi(calc)}^2; higher
intensity values carry more weight. The uncertainty in each yi(exp)
value is approximately sqrt(yi(exp)). The sum of {[yi(exp)-
yi(calc)]/sqrt(yi(exp))}^2 is used to generate reduced chi-squared
values. The optimum result is reduced chi-squared = 1. The sum of
{[yi(exp)-yi(calc)]/yi(exp)}^2 minimizes the fractional deviations of
experiment from calculated values.';
help4=' ';
while chk < 0
 %
 choice=menu(menprompt,menopt1,menopt2,menopt3,menopt4);
 %
 if ishandle(help4)==1
 close(help4);
 end
 %
 if choice == 1
 WT=eye(length(y));
 chk=1;
 elseif choice == 2
 WT=diag(wt);
 chk=1;
 elseif choice == 3

	
 305	

 WT=diag(wt);
 WT=WT.^2;
 chk=1;
 elseif choice == 4
 help4=helpdlg(helpstr4,'Weighting');
 end
end
%
chk=-1;
menprompt='Gradient Method';
menopt1='Two-point';
menopt2='Three-point';
menopt3='Help';
helpstr5='The two-point gradient for P(ki) is [P(k(i+1))-
P(k(i))]/delta. The three-point gradient for P(ki) is calculated by
fitting the three points, [P(k(i-1)), P(k(i)), P(k(i+1))] to a second
order polynomial and calculaing the gradient from the polynomial
coefficients.';
help5=' ';

while chk < 0
 %
 choice=menu(menprompt,menopt1,menopt2,menopt3);
 %
 if ishandle(help5)==1
 close(help5);
 end
 %
 if choice == 1
 grad=1;
 chk=1;
 elseif choice == 2
 grad=2;
 chk=1;
 elseif choice == 3
 help5=helpdlg(helpstr5,'Weighting');
 end
 %
end
%
%kana: what is the appropriate kmax?
len=length(y);
kmax=5./(x(2)-x(1));
kmax=min(kmax,1e12);
kmin=0.2./x(len);
kmin=1.0./x(len);
%
%
lkmin=log10(kmin);
lkmax=log10(kmax);
incr=log10(k_inc);
%
lkmin=floor(lkmin);
lkmax=ceil(lkmax);
logk=lkmin:incr:lkmax;
%
k=10.^logk;
if (Off_set == 1)

	
 306	

 k=[k(1)./100,k];
end
%
%
lenk=length(k);
jlen=floor(len./2);

%
%
A=x*k;
A=exp(-A);
%
if (grad == 1)
 P_reg=2.*ones(lenk,1);
 P_reg(1,1)=1;
 P_reg(lenk,1)=1;
 P_reg_3=zeros(lenk,1);
 AA=diag(P_reg);
 P_reg_2=-1.*ones(lenk-1,1);
 AA1=diag(P_reg_2,1);
 AA2=diag(P_reg_2,-1);
else
 P_reg=2.*ones(lenk,1);
 P_reg(1,1)=1;
 P_reg(lenk,1)=1;
 P_reg_3=zeros(lenk,1);
 AA=diag(P_reg);
 P_reg_2=-1.*ones(lenk-2,1);
 AA1=diag(P_reg_2,2);
 AA2=diag(P_reg_2,-2);
end
%
AA=AA+AA1+AA2;
%
%
for ijk=1:lenlam
 %
 AA_lam=lambda(ijk).*AA;
 %
 Aw=WT*A;
 AAA=[Aw; AA_lam];
 yw=WT*y;
 yy=[yw; P_reg_3];
 %
 Pr=lsqnonneg(AAA,yy);
 gradsq(ijk)=(AA*Pr)'*(AA*Pr);
 %
 chisq(ijk)=(yw-Aw*Pr)'*(yw-Aw*Pr);
 chisq(ijk)=chisq(ijk)./(length(y)-length(Pr)-1);
 %kana: deleted as necessary?
 ycalc(:,ijk)=A*Pr;
 resid(:,ijk)=y-ycalc(:,ijk);
 resid(:,ijk)=resid(:,ijk).*wt;
 %kana: wt is okay sometimes? the autocorrelation makes more sense
if it
 %is weighted?
 %

	
 307	

 acorrin=zeros(len,jlen);
 for aij=1:jlen
 acorrin(1:len-aij,aij)=resid(aij+1:len,ijk); %",ijk" added
4/27/2010 jrw
 end
 mvect=len-1:-1:len-jlen;
 autoc(ijk,:)=(resid(:,ijk)'*acorrin)./mvect;
 autoc(ijk,:)=autoc(ijk,:)./((resid(:,ijk)'*resid(:,ijk))./len);
 %
 Pok(:,ijk)=Pr;
 %
 subplot(3,2,1)
 semilogx(x,y-ycalc(:,ijk),'r',[min(x) max(x)],[0 0],'k')
 %semilogx(x,resid(:,ijk),'r',[min(x) max(x)],[0 0],'k')
 %kana replace
 A331=axis;
 axis([min(x) max(x) A331(3) A331(4)]);
 xlabel('time');
 ylabel('y_{obsd}-y_{calc}');
 title(['Residuals: {\chi}^2 = ',num2str(chisq(ijk),'%4g'),';
(grad(P))^2 = ',num2str(gradsq(ijk),'%4g')]);
 %
 subplot(3,2,3)
 [aa,bb]=size(autoc(ijk,:));
 plot([1:bb],autoc(ijk,:),'r',[1,bb],[0 0],'k')
 xlabel('Correlation Channel');
 ylabel('Cr(j)');
 title('Autocorrelation of Residuals');
 %
 subplot(3,2,5)
 semilogx([min(x) max(x)],[0 0],'k',x,y,'r',x,ycalc(:,ijk),'k')
 xlabel('time');
 ylabel('Intensity');
 title(['{\lambda} = ',num2str(lambda(ijk),'%4g')]);
 %
 subplot(3,2,4)
 HH=loglog(lambda(1:ijk),chisq(1:ijk),'ro-');
 xlabel('\lambda');
 ylabel('{\chi}^2');
 title('{\chi}^2 vs. \lambda');
 %
 subplot(3,2,2)
 bar(log10(k),Pr,'r')
 axis([min(log10(k)), max(log10(k)), 0, 1.025.*max(Pr)])
 xlabel('log(k)');
 ylabel('P(k)');
 title(['{\lambda} = ',num2str(lambda(ijk),'%4g')]);
 %
 subplot(3,2,6)
 loglog(chisq(1:ijk),gradsq(1:ijk),'ro-')
 xlabel('{\chi}^2');
 ylabel('(grad(P))^2');
 title(['L-curve: {\lambda} = ',num2str(lambda(ijk),'%4g')]);
 %
 drawnow
end
%
subplot(3,2,4)

	
 308	

title('LEFT-CLICK on a point to see its fit, residual, and
distribution.','Fontsize',12,'Color','b','FontWeight','Bold');
drawnow
%
chk2=-1;
menprompt='Select an Option';
menopt1='Chose a different point';
menopt2='Refit the data';
menopt3='EXIT THE PROGRAM';
while chk2 < 0
 [xtest,ytest, button]=ginput(1);
 %
 while (button == 1)
 %
 [lambdatest,ijktest]=min(abs(lambda-xtest));
 %
 subplot(3,2,1)
 semilogx(x,y-ycalc(:,ijktest),'r',[min(x) max(x)],[0 0],'k')
 %semilogx(x,resid(:,ijktest),'r',[min(x) max(x)],[0 0],'k')
 %kana
 A331=axis;
 %axis([min(x) max(x) A331(3) A331(4)]);
 axis([x(450) x(length(y)) -0.005 0.005])
 %kana: manually adjust0.1 to 0.005.
 xlabel('time');
 ylabel('y_{obsd}-y_{calc}');
 title(['Residuals: {\chi}^2 =
',num2str(chisq(ijktest),'%4g'),'; (grad(P))^2 =
',num2str(gradsq(ijktest),'%4g')]);
 %
 subplot(3,2,3)
 plot([1:bb],autoc(ijktest,:),'r',[1,bb],[0 0],'k')
 %axis ([1 bb -0.1 0.1])
 %kana
 xlabel('Correlation Channel');
 ylabel('Cr(j)');
 title('Autocorrelation of Residuals');
 %
 subplot(3,2,5)
 semilogx([min(x) max(x)],[0
0],'k',x,y,'r',x,ycalc(:,ijktest),'k')
 xlabel('time');
 ylabel('Intensity');
 title(['{\lambda} = ',num2str(lambda(ijktest),'%4g')]);
 %
 subplot(3,2,4)
 loglog(lambda(1:ijk),chisq(1:ijk),'ro-')
 hold on
 h1=loglog(lambda(ijktest),chisq(ijktest),'bo');
 set(h1,'MarkerFaceColor','b');
 hold off
 xlabel('\lambda');
 ylabel('{\chi}^2');
 title('LEFT-CLICK on a point to see its fit, residual, and
distribution; RIGHT-CLICK to
proceed.','Fontsize',12,'Color','b','FontWeight','Bold');
 drawnow
 %

	
 309	

 subplot(3,2,2)
 bar(log10(k),Pok(:,ijktest),'r')
 axis([min(log10(k)), max(log10(k)), 0,
1.025.*max(Pok(:,ijktest))])
 xlabel('log(k)');
 ylabel('P(k)');
 title(['{\lambda} = ',num2str(lambda(ijktest),'%4g')]);
 %
 subplot(3,2,6)
 loglog(chisq(1:ijk),gradsq(1:ijk),'ro-')
 hold on
 h2=loglog(chisq(ijktest),gradsq(ijktest),'bo');
 set(h2,'MarkerFaceColor','b');
 hold off
 xlabel('{\chi}^2');
 ylabel('(grad(P))^2');
 title(['L-curve: {\lambda} = ',num2str(lambda(ijk),'%4g')]);
 %
 drawnow
 %
 [xtest,ytest, button]=ginput(1);
 %
 %
 end
%
 choice=menu(menprompt,menopt1,menopt2,menopt3);
 %
 if choice == 1
 chk2=-1;
 elseif choice == 2
 chk2=1;
 chk3=-1;
 elseif choice == 3
 chk2=1;
 chk3=1;
 end
% close(H1);
% close(H2);
% close(H3);
 %kana
end
%
end
%kana: insert saving
pause(3)
[filename2,PathName2] = uiputfile('*.txt','choose directory','bozo');
[pathstr1,name1,ext1] = fileparts(filet);
filet2=[PathName2,name1];
dlmwrite(strcat(strcat(filet2,'_kPok'),'.dat'),[log10(k)',Pok])
dlmwrite(strcat(strcat(filet2,'_residual'),'.dat'),[x,repmat(y,1,size(y
calc,2))-ycalc])
dlmwrite(strcat(strcat(filet2,'_lambda'),'.dat'),[lambda'])
dlmwrite(strcat(strcat(filet2,'_autoc'),'.dat'),[autoc'])
close all hidden
%
%

	
 310	

Panalyzer

Written to determine population statistics, given a histogram (such as the

population distributions from fitting of CO rebinding data, Chapter 5).

%Panalyzer

% READ DATAFILE
 [file,dirpath]=uigetfile('*.*');
 if isequal(file,0) || isequal(dirpath,0)
 disp('no more')
 i=0;
 return
 end
 filet=[dirpath file];
 data=dlmread(filet);

% EXTRACT X AND Y
 ks=data(:,1);
 Poks=data(:,2:end);

% GET INDEX
 %ind=17;
 ind=input('what is the index for the desired P values? ');
 desPoks=Poks(:,ind);

% PLOT
 %a=rand(3);
 figure
 bar(ks,desPoks,'r');
 hold
 %semilogx(xx,yy,'color',a(1:3));

% SELECT POPULATIONS
 klen=length(ks)
 n=0;

 seguir=input('would you like to analyze a population? (y/n):
','s');

 col(1)='y';
 col(2)='g';
 col(3)='c';
 col(4)='b';
 col(5)='m';
 col(6)='k';

 while seguir=='y'
 redo='y';
 n=n+1;
 while redo=='y'

	
 311	

 hold
 bar(ks,desPoks,'r');
 hold
 Plow(n)=input('enter the lower k(index) for the population:
');
 Pup(n)=input('enter the upper k(index) for the population:
');
 bar(ks(Plow(n):Pup(n)),desPoks(Plow(n):Pup(n)),col(n))
 redo=input('would you like to select a different region for
this population? (y/n): ','s');
 end
 seguir=input('would you like to select another population?
(y/n): ','s');
 end

 %DETERMINE STATISTICS (MOMENTS)
 for m=1:n

[tempint,tempcentro,tempcmoms]=Pmoments(desPoks(Plow(m):Pup(m)),ks(Plow
(m):Pup(m)));
 Pint(m)=tempint;
 Pcentro(m)=tempcentro;
 Pcmoms(:,m)=tempcmoms;
 end

 Pint
 Pcentro
 Pcmoms

	
 312	

Pmoments

function [P1int,centro,cmoms] = Pmoments(Ps,ks)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here

%Ps are the populations
%ks are the log10 of the rate constants

centro=sum(Ps.*ks)./sum(Ps);
centks=ks-centro;

P1int=trapz(Ps); %Integrating the population distribution

%uncentered moments
% for n=1:4
% moms(n)=sum(Ps.*(ks.^n))./sum(Ps);
% moms=moms';
% end

%centered moments
for n=1:4
 cmoms(n)=sum(Ps.*(centks.^n))./sum(Ps);
 cmoms=cmoms';
end

end

	
 313	

D.7. Hopping Maps

The script MapMaker generates Hopping Maps using MapPlotter, MapValues,

tauM, and tauETM.

MapMaker

%MapMaker - A GUI

%MapMaker takes user input for various electron transfer parameters,
%and a desired map range, and runs the hopping mapper programs
(MapValues,MapPlotter)

numlines=1;
halt1=0;
halt2=0;

%Acquiring Electron Transfer Parameters
prompt1={'temperature (K)','A-I distance (A)','\beta step 1
(1/A)','\lambda step 1 (eV)','I-B distance (A)','\beta step 2
(1/A)','\lambda step 2 (eV)','A-B distance (A)','\beta single step
(1/A)','\lambda single step (eV)'};
defaults1={'298','8.1','1.1','0.8','12.8','1.1','0.8','19.4','1.1','0.8
'};
options.Interpreter='tex';

ETparams=inputdlg(prompt1,'ET Parameters',numlines,defaults1,options);

%Acquiring the Hopping Map Range
prompt2={'\Delta G(total) min (eV)','\Delta G(total) max
(eV)','\Delta G(1^s^t step) min (eV)','\Delta G(1^s^t step) max
(eV)','resolution (eV)','contour interval (-log(sec))'};
defaults2={'-1.5','0','-0.4','0.3','0.005','0.2'};
options.Interpreter='tex';
mapRange=inputdlg(prompt2,'Map Parameters',numlines,defaults2,options);

%THE LOOP - repeats until the user presses 'cancel'
while halt1~= 1 && halt2~=1

%converting user input values to useable numbers
conv1=char(ETparams);
convETparams=str2num(conv1);
conv2=char(mapRange);
convmapRange=str2num(conv2);

%Making the HoppingMap
[dGT,dG1,taoslog]=MapValues(convETparams,convmapRange);
%generates map values
MapPlotter(dGT,dG1,taoslog,convETparams,convmapRange);
%plots the map

	
 314	

%Repeating the cycle
ETparams=inputdlg(prompt1,'ET Parameters',numlines,ETparams,options);
halt1=isempty(ETparams);

mapRange=inputdlg(prompt2,'Map Parameters',numlines,mapRange,options);
halt2=isempty(mapRange);

end

	
 315	

MapPlotter

function MapPlotter(dGT,dG1,taoslog,convETparams,convmapRange)
%Mapper3 Plots the hopping map
% Detailed explanation goes here

etValues={'','\bfET Parameters','',['\rmT =
',num2str(convETparams(1)),' K'],'',['r (A-I) =
',num2str(convETparams(2)),' A'],['\beta (A-I) =
',num2str(convETparams(3)),' A^-^1'],['\lambda (A-I) =
',num2str(convETparams(4)),' eV'],'',['r (I-B) =
',num2str(convETparams(5)),' A'],['\beta (I-B) =
',num2str(convETparams(6)),' A^-^1'],['\lambda (I-B) =
',num2str(convETparams(7)),' eV'],'',['r (A-B) =
',num2str(convETparams(8)),' A'],['\beta (A-B) =
',num2str(convETparams(9)),' A^-^1'],['\lambda (A-B) =
',num2str(convETparams(10)),' eV']};
contourSpacing=convmapRange(6);

loglines=(1:contourSpacing:15); %defines the position and spacing of
contour lines

scrsz = get(0,'ScreenSize');
figure1=figure('Position',[scrsz(3)/1.8 scrsz(4)/4 scrsz(3)/2.3
scrsz(4)/2]);
annotation(figure1,'textbox',[0.81 0.3 0.187
0.53],'FitBoxToText','on','Interpreter','tex','String',etValues,'Backgr
oundColor',[1,1,1])
axes1=axes('Parent',figure1,'XDir','reverse','Position',[0.13
0.122249388753056 0.68
0.802750611246944]','Layer','top','FontSize',12);
xlim(axes1,[-1.5 0]);
ylim(axes1,[-0.4 0.3]);
box(axes1,'on')
hold(axes1,'all');

contour(dGT,dG1,taoslog,loglines,'LineColor',[0 0
0],'Fill','on','Parent',axes1);
xlabel('\Delta G^0_T_o_t_a_l (eV)','FontSize',14);
ylabel('\Delta G^0_1_s_t _s_t_e_p (eV)','FontSize',14);
colorbar('peer',axes1);
annotation(figure1,'textbox',[0.72 0 0.187
0.1],'FitBoxToText','on','Interpreter','tex','String','\bf-
log(\tau)','Edgecolor','none','Fontsize',11)

end

	
 316	

Map Values

function [dGT,dG1,taosNEWlog]=MapValues(ETparams,mapRange)
%MapValues - CALCULATES HOPPING MAP VALUES

%General parameters
temp=ETparams(1);

%First step (A->I) parameters
r1=ETparams(2);
beta1=ETparams(3);
lamda1=ETparams(4);

%Second step (I->B) parameters
r3=ETparams(5);
beta2=ETparams(6);
lamda2=ETparams(7);

%Single step (A->B) parameters
rT=ETparams(8);
betaT=ETparams(9);
lamdaT=ETparams(10);

%The range for the x axis (dGT)
dGTmin=mapRange(1);
dGTmax=mapRange(2);

%The range and step for the y axis (dG1)
dG1min=mapRange(3);
dG1max=mapRange(4);

%The map resolution
dGstep=mapRange(5);

%creates vectors for x (dGT) and y (dG1) axes of the Hopping Map
dGT=(dGTmin:dGstep:dGTmax);
dG1=(dG1min:dGstep:dG1max);
lenx=length(dGT);
leny=length(dG1);

%GENERATING THE VALUES OF TAO: THE "Z" AXIS OF THE PLOT

%Creates the matrix taos of dimensions lenx & leny which holds the "z"
values for the Hopping Map, at
%each (dG1,dGT) point
taos=zeros(leny,lenx); %defines the empty matrix taos of
appropriate size
ycount=1;
while ycount<=leny
 xcount=1;
 dG1now=dG1(ycount);
 while xcount<=lenx
 dGTnow=dGT(xcount);
 %this if statement defines the "sink" region

	
 317	

 if dG1now < dGTnow
 taoVal=1e100;
 else

taoVal=tauM(dGTnow,dG1now,r1,r3,beta1,beta2,lamda1,lamda2,temp);
 end

 taos(ycount,xcount)=taoVal;
 xcount=xcount+1;
 end
ycount=ycount+1;
end

%Creates a vector taosET with length lenx holding values of taoET at
%each dGT and dG1
taosET=zeros(lenx); %defines the empty matrix taosET of appropriate
size
tcount=1;
while tcount<=lenx
 dGTnow=dGT(tcount);
 taoETVal=tauETM(dGTnow,rT,betaT,lamdaT,temp);
 taosET(tcount)=taoETVal;
 tcount=tcount+1;
end

%HOPPING ADVANTAGE

%Where taoET/tao > 1, two step hopping is faster than single-step
tunneling.
%The values of a new matrix taoNEW are set to 1 if there is
%no advantage - otherwise the values are transfered, untouched.

taosNEW=zeros(leny,lenx);
rcount=1;
while rcount<=leny
 ccount=1;
 while ccount<=lenx
 taoETC=taosET(ccount);
 taoC=taos(rcount,ccount);
 advantage=taoETC/taoC;
 if advantage<1
 taosNEW(rcount,ccount)=1; %Only displays hopping areas
 else
 taosNEW(rcount,ccount)=taoC;
 end
 ccount=ccount+1;
 end
 rcount=rcount+1;
end

%Puts tao values on a log scale to make things easier
taosNEWlog=-log10(taosNEW);

	
 318	

tauM

function [tauVal] = tauM(dGT,dG1,r1,r3,B1,B3,lam1,lam3,T)
%this function

%Values for the constants
h=4.13574*10^-15; %planck's constant (eV*s)
R=8.61733*10^-5; %gas constant (eV/K)
Habr02=0.0005323; %Hab(r0)^2 (eV^2)
r0=3; %r0 (A)

dG3=dGT-dG1;

eB1=exp(-B1.*(r1-r0));
eB3=exp(-B3.*(r3-r0));

eG1l=exp((-(dG1+lam1)^2)/(4.*lam1.*R.*T));
eG3l=exp((-(dG3+lam3)^2)/(4.*lam3.*R.*T));

eG1=exp(dG1/(R.*T));
eG3=exp(dG3/(R.*T));
eGT=exp(dGT/(R.*T));

c0a=(((4*pi()^3)/((h^2).*lam1.*R.*T))^0.5)*Habr02;
c0b=(((4*pi()^3)/((h^2).*lam3.*R.*T))^0.5)*Habr02;

taunum=c0a*eB1*eG1l*(1+eG1)+c0b*eB3*eG3l*(1+eG3);
tauden=c0a*c0b*(eB1*eG1l*eB3*eG3l*(1+eG3+eGT));

tauVal=taunum/tauden;

	
 319	

tauETM

function [tauETVal] = tauETM(dGT,rT,BT,lamT,T)
%Returns taoVal - the value of tao, for a given dG1 and dGT

%Values for the constants
h=4.13574*10^-15; %planck's constant (eV*s)
R=8.61733*10^-5; %gas constant (eV/K)
Habr02=0.0005323; %Hab(r0)^2 (eV^2)
r0=3; %r0 (A)

%values for recurring sets of constants
c0=sqrt((4*pi^3)/((h^2)*lamT*R*T))*Habr02; %the constants in front
of the exponents in tao

%piece by piece putting together the function taoET(dGT)

%the denominator...
t1=exp(-BT*(rT-r0));
t2=exp(-((dGT+lamT)^2)/(4*lamT*R*T));
t3=exp(-((dGT-lamT)^2)/(4*lamT*R*T));
tauETden=c0*t1*(t2+t3);

%taoET!
tauETVal=1/tauETden;

	
 320	

D.8. Ferric/ferrous deconvolution

The SpectralDeconvoluter script is used to deconvolute a two-component

absorption spectrum and determine the percent of each parent component (e.g.,

ferric and ferrous components during potentiometric titration). Each spectrum

must use the same wavelength data (and have the same number of points).

SpectralDeconvoluter

%SpectralDeconvoluter

%Ask for data
xInt=input('Enter the wavelength data (must be the same for all
spectra) ');
yInt=input('Enter the intermediate spectrum to deconvolute ');
yFe3=input('Enter the parent FeIII spectrum data ');
yFe2=input('Enter the parent FeII spectrum data ');

%Compare FeIII to data
error1=yInt-yFe3;
error1=error1.^2;
error1_tot=sum(error1);

%Make the midpoint n=0.5, compare to data
n=0.4;
yMid=n.*yFe2+(n-1).*yFe3;

%compare to data
error2=yInt-yMid;
error2=error2.^2;
error2_tot=sum(error2);

nInc=n;
nNew=n;
lastError_tot=error1_tot;
errorTest_tot=error2_tot;
rebound=0;
turn=1;
counter=0;
vals=[];

%iterate to find deconvolution
while nInc > 0.001 && rebound < 20

if errorTest_tot > lastError_tot
 turn=-1*turn;
 nInc=nInc/2;
end

	
 321	

lastError_tot=errorTest_tot;

nNew=nNew+turn.*nInc;
if nNew < 0
 nNew=0;
 disp('lbounded!')
 rebound=rebound+1;
 turn=-1*turn;
 nInc=nInc/2;
end

if nNew > 1
 nNew=1;
 disp('ubounded!')
 rebound=rebound+1;
 turn=-1*turn;
end

[errorTest1,errorTest_tot,yTestNew]=errorTester(nNew,yFe2,yFe3,yInt);

%optimization visualization
counter=counter+1;
vals(1,counter)=lastError_tot;
vals(2,counter)=nNew;
vals(3,counter)=errorTest_tot;

end

%display optimization
xvals=1:1:counter;

%Output answers
disp(nNew)
figure
hold
%plot final residuals
plot(xInt,errorTest1,'k')
plot(xInt,yInt,'b')
plot(xInt,yTestNew,'r')
hold
figure
plot(xvals,vals(1,:),'r')
figure
plot(xvals,vals(2,:),'b')
figure
plot(xvals,vals(3,:),'g')

