277

Appendix D

MATLAB SCRIPTS

278

D.1. Plotting x,y data: MEplotter

The script MEplotter plots x and y data, including steady-state absorption spectra

and single-wavelength transient absorption kinetics.

MEplotter

% TO PLOT WORKED-UP TRACES

i=1;

while i ~= 0

% READ DATAFILE
[file,dirpath]=uigetfile('*.*");

if isequal(file,0) || isequal(dirpath,0)
disp('no more')
i=0;
return

end

filet=[dirpath file];
data=dlmread(filet);
% EXTRACT X AND Y
xx=data(:,1);
yy=data(:,2);
% PLOT
a=rand(3);
plot(xx,yy, 'color',a(l:3));
$semilogx(xx,yy, 'color',a(l:3));

end
disp('voila!"')

279

D.2. Time-resolved single-wavelength data workup

Raw data collected on the nsl (nanosecond pulsed, single-wavelength) system are
saved into a “ *.nsl1” file. This must first be converted to intensity vs. time
(luminescence) or AOD vs. time (transient absorption) using the nsl_read.m
script provided by Dr. Jay Winkler (available on the bilrc.caltech.edu website.) The
nsl_read.m script saves the new, two column data as a .txt file, with time in the

first column and intensity/AOD in the second.

D.2.1. Time-zero adjustment

The NSI instrumentation designates a “time-zero”. However, this designated time
point is not always accurate, and can fluctuate by as much as 30 ns over the course
of several months. All of the kinetics data in this Thesis are time-adjusted using
xadjuster so that time-zero corresponds to the beginning of the rise in signal

(within a few data points).

xadjuster

o

xadjuster
% To adjust x data to time=0

i=1;
while i ~= 0

% READ DATAFILE
[file,dirpath]=uigetfile('*.*");

if isequal(file,0) || isequal(dirpath,0)
disp('no more')
i=0;
return

end

filet=[dirpath file];
data=dlmread(filet);

3DETERMINE FILE PROPERTIES

data=dlmread(filet); $read raw file to var data
len=length(filet); $measure length of file name
filel=filet(l:1len-4); $remove the .dat

look=find(filel=='/"); $find all the / in the file

280

name
maxf=max(look)+1; $find the last / and index 1
value past it (file name)
file2=filel(maxf:end); $this was the file name
file3=double(file2); $file name converted to ascii

% EXTRACT X AND Y
xx=data(:,1);
yy=data(:,2);

% PLOT
a=rand(3);
plot(xx,yy,'b');
hold

% ASK FOR X-ADJUST
adjfactor=input('input the x offset (in seconds): ');
disp(adjfactor)
xnew=xx+adjfactor;
plot(xnew,yy, 'r'")
hold

SWRITE DATA TO FILE

corcmp=[xXnew yy];

filecmpl=[file3, 100 46 116 120 116]; $Adds 'd.txt' to
the end of the file name

filecmp2=char(filecmpl);

dlmwrite(filecmp2,corcmp, 'precision',14); swrite a file
of the adjusted xy data
disp(filecmp2); $tell you the

name of the new file

end

281

D.2.2. Log-compression

Data that would be subjected to (multi)exponential fitting protocols were log-
compressed, to avoid weighting of longer timepoints. The compress script was
written to streamline this process. The function logtimej was modified from a
script provided by Dr. Jay Winkler. In this case, compress sets the number of
points per decade (ppd) to 600; the TA data in Chapters 2, 3, and most of Chapter
5 used this compression. Picosecond TA data (psl), and picosecond-to-
millisecond data overlays (Chapter 5 CO rebinding studies) were compressed to

200 ppd.

compress

$COMPRESSES WORKED UP DATA, AND WRITES A NEW FILE
clear

ans=input('how many traces do you want to compress? -->');
xi=[1];
yi=[1;

for i=l:ans
SREAD DATAFILE
[file,dirpath]=uigetfile('/Users/Maraia/MATLAB/OAhora/.dat');
% -> CHANGE THIS TO YOUR DIRECTORY
if isequal(file,0) || isequal(dirpath,0)
% So it doesn't give an error if you press cancel
disp('cancelled!")
i=0;
return
end
$file=input('enter file path','s');
filet=[dirpath file];

3DETERMINE FILE PROPERTIES

data=dlmread(filet); $read raw file to var data

len=length(filet); gmeasure length of file
name

filel=filet(l:1len-4); $remove the .dat

look=find(filel=="'/"); $find all the / in the
file name

maxf=max(look)+1; $find the last / and index
1 value past it (file name)

file2=filel(maxf:end); $this was the file name

file3=double(file2); $file name converted to

ascii

282

$EXTRACT X AND Y

t=data(:,1); $read the time data out to
var xx

y=data(:,2); $read intensity out to yy

ppd=600; $points per decade

[tout,yout,wt] = logtimej(t,y,ppd);
tout=tout';
yout=yout';

SWRITE DATA TO FILE
corcmp=[tout yout];
filecmpl=[file3, 99 46 116 120 1167]; $Adds 'c.txt'
to the end of the file name
filecmp2=char(filecmpl);

dlmwrite(filecmp2,corcmp, 'precision',14); swrite a file
of the adjusted xy data

disp(filecmp2); $tell you the
name of the new file

end
disp('compressed!');

283

logtimej

function [tout,yout,wt]=logtimej(t,y,ppd)

function to convert y=f(t) data from linear in time
to logarithmic in time

SYNTAX:
[tout,yout,wt]=logtime(t,y,ppd)

t is the input time vector, linearly spaced
y is the input y vector
ppd is the number of points per decade for the output

00 00 00 00 o° 0P o° o° 0P o°

vectors

% tout is the new time vector space logarithmically

yout is the new time vector space logarithmically

wt is vector of weights giving the number of points averaged
to get the new yout value

o0 00 oo

$Cut out time<0 data, which can't be plotted on a log scale
ncount=1;
while t(ncount)<=0
ncount=ncount+1;
end
t=t(ncount:end);
y=y(ncount:end);

zt=length(t);
zy=length(y);
$
$
if zt ~= zy
fprintf('ERROR: y and t vectors are different lengths')
else

tmin=min(t);
tmax=max(t);

$
ltmin=1o0gl0(tmin);
ltmax=1logl0 (tmax);

$
tt=1ltmin:(1./(2.*ppd)):1ltmax;
tt=10."tt;
ztt=length(tt);

$

$

icount=1;
jcount=1;
for i=2:2:ztt
tout (jcount)=0;
yout (jcount)=0;
wt (jcount)=0;
while (icount < zt) & t(icount) < tt(i)
tout (jcount)=tout(jcount)+t(icount);
yout (jcount)=yout (jcount)+y(icount);

o° (D

o

o

nd

end

wt (jcount)=wt (jcount)+1;
icount=icount+1;

end

if wt(jcount) ~= 0

tout (jcount)=tout (jcount)./wt(jcount)
yout (jcount)=yout (jcount)./wt(jcount)
jcount=jcount+1;

end

.
4
.

4

284

285

D.3. Data-splicing

In order to cover the (sub)nanosecond-to-second time range, log-compressed data
taken at multiple timescales were spliced together to generate a complete trace.
The script overlayer was used to import data for three timescales and
multiplicatively scale at the users discretion. The function combine was used to
designate splicing points between timescales, and generate the final combined

data.

overlayer

SOVERLAYER

¢plots fastamp, slowamp, and no-stirring traces, and asks
¢$for multiplyers to adjust the fast and no-stirring traces
%so that they overlay better

tscale=input('To splice 2us, 100us, and 10ms data, enter 1. \n To
splice 100us, 10ms, 500ms data, enter 2. \n To splice 5ns, 50ns, and
2us-500ms data, enter 3 ->');

% READ DATAFILES
disp('select the fastest trace');

[file,dirpath]=uigetfile('*.txt'); %opens a window to pick my file

if isequal(file,0) || isequal(dirpath,O0)
disp('cancelled!")
hold
i=0;
return
end

filet=[dirpath file];
datal=dlmread(filet);

disp('select the corresponding middle trace-->');

[file,dirpath]=uigetfile('*.txt'); %opens a window to pick my file

if isequal(file,0) || isequal(dirpath,0)
disp('cancelled!")
hold
i=0;
return
end

filet=[dirpath file];
data2=dlmread(filet);

disp('select the corresponding longest trace-->'");

286

[file,dirpath]=uigetfile('*.txt'); %opens a window to pick my file

if isequal(file,0) || isequal(dirpath,0)
disp('cancelled!")
hold
i=0;
return
end

filet=[dirpath file];
data3=dlmread(filet);

% EXTRACT DATA X and Y DATA

xl=datal(:,1);
yl=datal(:,2);
x2=data2(:,1);
y2=data2(:,2);
x3=data3(:,1);
y3=data3(:,2);

% FIRST OVERLAY OF DATA
semilogx(xl,yl, 'r');
hold
semilogx(x3,y3,"'
semilogx(x2,y2,"'
hold

b');
g');

mult2=1;
mult3=1;

seguir=input('does it need adjustment? (y/n)
if seguir == 'n'
yladj=yl;
y2adj=y2;
y3adj=y3;

end

while segquir == 'y';

multl=input('select a new first trace multiplier (default 1)->");

if multl <= 0

multl=1;

disp('defaulting multf=1");
end

mult2=input('select a new second trace multiplier (default 1)->');

if mult2 <=0

mult2=1;

disp('defaulting mults=1");
end

mult3=input('select a new third trace multiplier (default 1)->");

if mult3 <= 0

mult3=1;

disp('defaulting multL=1");
end

yladj=multl.*yl;
y2adj=mult2.*y2;
y3adj=mult3.*y3;

287

semilogx(xl,yladj, 'r');
hold
semilogx(x3,y3adj, 'b');
semilogx(x2,y2adj, 'g');
hold

seguir=input('does it need adjustment? (y/n)’',
end
disp(multl);
disp(mult2);
disp(mult3);

datac=combine(tscale,x1l,yladj,x2,y2adj,x3,y3adj);

T=datac(:,1);
Y=datac(:,2);
TY=[T,Y];

keep=input('do you want to keep this combined trace? (y/n)->', 's');

if keep == 'y';
[Savefile,Savedirpath,Savefilter]=uiputfile([dirpath, '*.txt"'], 'Save
overlayed traces',[dirpath,file]);
eval(['save ''',Savedirpath,Savefile, ''' TY -ASCII -DOUBLE']);

end

288

combine

function datac=combine(tscale,x1l,yladj,x2,y2adj,x3,y3adj)

$function datac=combine(xf,yfadj,xs,ys)

%TO CREATE A SINGLE DATA SET COMBINING DATA FOR THREE TIMESCALES

% INPUTS

vectors containing time (x) and delta OD (y) data

key:f,s & L are fast amp, slow amp, and no stirring.
yf and yL are adjusted (hence yfadj, yLadj) by a multiplier to
remove dicontinuities between the data from the three time ranges

OUTPUTS
datac is a matrix with the combined time values in the first
column, and delta OD values in the second column

o0 o0 00 0P o° o° o o

$Timescales for different purposes
if tscale ==

$For combining the 2us, 100us, 10ms data
timell = le-9;

timelu = 1.5e-6;

time2l=1.5e-6;
time2u=0.5e-4; %used to be 0.7e-4/0.4e-4

time31=0.5e-4;
elseif tscale ==
$For combining the 400us, 10ms, 500ms data

timell = le-9;
timelu 5e-5;

time2l1=5e-5;
time2u=le-3;

time3l=1le-3; S%SUSED to be 2.5e-3

elseif tscale ==

$For combining the 5ns, 50ns, 2us-500ms data
timell = le-12;

timelu = 3.5e-9;

time21=3.5e-9;
time2u=35e-9;

time31=35e-9;

end

289

SADJUSTING FIRST TRACE
$cycles to find indexes of the lower and upper bound times

xli=1;

while x1(x1li) <= timell
xli=x1i+1;

end

xui=x1li;

while x1(xui) <=timelu
Xui=xui+l;

end

newxl=x1(1l:xui);
newyl=yladj(l:xui);
newxl=newxl';
newyl=newyl';

% ADJUSTING SECOND TRACE

$cycles to find indexes of the lower and upper bound times
xli=1;
while x2(x1li) <= time2l
xli=x1i+1;
end

xui=x1li;

while x2(xui) <=time2u
Xui=xui+l;

end

newx2=x2(xli:xui);
newy2=y2adj(xli:xui);
newx2=newx2';
newy2=newy2';

% ADJUSTING THIRD TRACE

%cycles to find indexes of the lower bound times
xli=1;
while x3(x1li) <= time3l
xli=x1i+1;
end

newx3=x3(xli:(end));
newy3=y3adj(xli:(end));
newx3=newx3';
newy3=newy3';

$creates the combined trace
combx=[newxl newx2 newx3];
comby=[newyl newy2 newy3];

combx=combx '
comby=comby "'

~e ~o

hold
semilogx (combx, comby,
hold

datac=[];
datac(:,1)=combx;
datac(:,2)=comby;
end

v'):

290

291

D.4. Singular Value Decomposition

These scripts use truncated, generalized singular value decomposition (from
Regularization Tools, Per Christian Hansen) to determine the number of kinetic
components in single-wavelength transient absorption kinetics traces. This can be
done for a single kinetics trace using svder1, or accomplished and overlayed for six

wavelengths using svderMulti.

svderl

logkspace=0:10g10(2):10;
kspace=10."logkspace;
t=input('define the time vector ');
logAspace=-t*kspace;
Aspace=exp(logAspace);

Adata=input('define the absorbance data vector ');

L=get 1(34,1);
[UU sm XX]=cgsvd(Aspace,L);

figure

trunc=input('enter the truncation value (<34) ');
X L=tgsvd(UU,sm,XX,Adata,trunc);
bar(logl0(kspace),X L);

Bcalc=Aspace*X L;
figure
semilogx(t,Adata, 'b',t,Bcalc,'r")

292

svderMulti

$svderMulti
%Does SVD for 6 wavelengths

logkspace=0:10g10(2):10;
kspace=10."logkspace;
t=input('define the time vector ');
logAspace=-t*kspace;
Aspace=exp(logAspace);

Adata=input('define the absorbance data MATRIX ');

L=get 1(34,1);
[UU sm XX]=cgsvd(Aspace,L);

len=length(kspace);
X LMat=zeros(len,6);
trunc=input('enter the truncation value (<34) ');

for icount = 1:6
X L=tgsvd(UU, sm,XX,Adata(:,icount),trunc);
X LMat(:,icount)=X L; $put it back in a big matrix

end

gmultiplotting

col(l)="'k";

col(2)='b';

col(3)='c';

col(4)="'g";

col(5)="y";

col(6)="'r'";

col=col(:);

figure

hold

for ocount=1:30;
barx(:,1)=X LMat(ocount,:);
barx(:,2)=[1; 2; 3; 4; 5; 6;1;
barx(:,3)=abs(barx(:,1));
barz=sortrows (barx,-3);
for incount=1:6;
ind=barz(incount,2);
bar(logl0(kspace(ocount)),barz(incount,1),0.25,col(ind));
%pause(1l)
end
end

293

D.5. Multiexponential fitting

A number of scripts are used to fit TA data to a sum of multiexponentials.
nonlinear_fitter4 fits data to a sum of three and four exponentials, to compare
fits. It uses the function autoresider to plot residuals and autocorrelation of
residuals; these are used to determine whether deviations between data and fit are
random or systematic (an additional exponent is indicated). MExpG_Fitter is
used to globally fit data at multiple wavelengths to a sum of exponentials (defined
by MExpG), using defined upper and lower bounds and initial guesses
(MExpGvalues).

nonlinear_fitter4

$fitting kinetics data to a sum of exponentials

%getting data

xdata=input('define the x data:\n');

ydata=input('define the y data:\n');

figure

semilogx(xdata,ydata, 'c');

hold

$defining fitting & parameters

disp('we will be fitting to a sum of 3, 4 exponentials');

ft=fittype('a.*exp(-x.*2.2e7)+tb.*exp(-x.*k2)+c.*exp(-x.*k3)+f");

% a b c f k2 k3

pu=[0.1, 0.3, 1, 1, 1le7, 5e6];
pl=[(-0.1, -0.4, -1, -1, 1le5, 5e2];
st=[-0.02, -0.15, 0.1, 0, 1le6, 5e3];

opts=fitoptions(ft);
opts=fitoptions(opts, 'lower',pl, 'upper',pu, 'startpoint’',st);
[f,go0f]=fit(xdata,ydata,ft,opts);

disp(f);

xcalc=xdata;

ycalc=feval (f,xcalc);

plot(xcalc,ycalc, 'r');

gused for all wavelengths
ft2=fittype('a.*exp(-x.*2.2e7)+b.*exp(-x.*k2)+c.*exp(-x.*k3)+d.*exp(-
x.*kd)+£');

% a b c d f k2 k3 k4

pu2=[0.1, 0.3, 1, 1, 1, 5e6, 5e5 led];

pl2=[-0.1], -0.4, -1, -1, -1, 5e5, 5e4 lel];

st2=[-0.02, -0.15, 0.1, 0, 0, le6, 1le5
$pu=input('define upper bounds for a-e,k2-k5:
$pl=input('define lower bounds for a-e,k2-k5:

le3];
10 parameters\n');
10 parameters\n');

¢st=input('define starting values for a-e,k2-k5: 10 parameters\n');

opts=fitoptions(ft2);

opts=fitoptions(opts, 'lower',pl2, 'upper',pu2,’

[f,gof]=fit(xdata,ydata,ft2,opts);
disp(f);

gnumpts=length(xdata);
gnumpts=1000;
$xmin=1ogl0(min(xdata));
gxmax=logl0 (max(xdata));
$xcalc=logspace(xmin,xmax,numpts) ;
ycalc2=feval (f,xcalc);
plot(xcalc,ycalc2,'b');

hold
autoresider(ydata,ycalc,ycalc2);

startpoint',st2);

294

295

autoresider

function [AC_resid,AC_resid2]=autoresider(y,ycalc,ycalc2)

o0 oo

o

Calculate and plot the autocorrelation of the residuals between

ycalc and y
% Syntax: [AC_resid]=autoresid(y,ycalc);
y=y(:);

ycalc=ycalc(:);
ycalc2=ycalc2(:);

°

len=length(y);
jlen=floor(len./1.1);

%

resid=y-ycalc;
resid2=y-ycalc2;

°

acorrin=zeros(len, jlen);
acorrin2=zeros(len,jlen);

%

for aij=1l:jlen
acorrin(l:len-aij,aij)=resid(aij+l:len); %
acorrin2(l:len-aij,aij)=resid2(aij+l:1len);
end
mvect=len-1l:-1l:1len-jlen;
autoc=(resid'*acorrin)./mvect;
autoc2=(resid2'*acorrin2)./mvect;
AC_resid=autoc./((resid'*resid)./len);
AC_resid2=autoc2./((resid2'*resid2)./len);

%

)
S

figure
subplot(2,1,1)
plot(y-ycalc, 'r'")
hold
plot(y-ycalc2,'b'")
subplot(2,1,2)
plot(AC_resid, 'r')
hold
plot(AC_resid2, 'b")

return

296

MExpGFitter

$MultiExponential Global Fitter (fits to 6 wavelengths)
%asking for data

tvector=input('define the time vector -> ");
dODdata=input('define the matrix of absorbance data -> ');

x=tvector;
¢defining initial values and bounds
[values,ubound, lbound] = MExpGvalues;

$defining fit parameters

fxn=@ (values,x) MExpG(values,x);
optm=optimset('lsqgcurvefit');
optm=optimset(optm, 'Display', 'iter');
optm=optimset(optm, 'TolFun',le-14);
optm=optimset (optm, 'TolX',le-14);

bfit=1sqcurvefit(fxn,values,tvector,dODdata, lbound,ubound, optm);
bfite=bfit';

ks=bfite(25:end);

display(bfite)

¢display(ks)

A=MExpG(bfit,tvector);

for icount = 1:6

subplot (2, 3,icount)

semilogx(tvector,dODdata(:,icount), 'b',tvector,A(:,icount), 'r');
end

297

MExpG

function [A]=MExpG(values,tvector)

$UNTITLED Summary of this function goes here
% Detailed explanation goes here
a=values(1:6);

b=values(7:12);

c=values(13:18);

f=values(19:24);

k=values(25:27);

x=tvector;

$lumdec=2.7e7;

Al=(a(l).*exp(-x.*k(1l))+b(1l).*exp(-x.*k(2))+c(l).*exp(-x.*k(3))+£(1));
A2=(a(2).*exp(-x.*k(1l))+b(2).*exp(-x.*k(2))+c(2).*exp(-x.*k(3))+£(2));
A3=(a(3).*exp(-x.*k(1))+b(3).*exp(-x.*k(2))+c(3).*exp(-x.*k(3))+£(3));
Ad=(a(4).*exp(-x.*k(1l))+b(4).*exp(-xX.*k(2))+c(4).*exp(-x.*k(3))+£(4));
A5=(a(5).*exp(-x.*k(1))+b(5).*exp(-x.*k(2))+c(5).*exp(-x.*k(3))+£(5));
A6=(a(6).*exp(-x.*k(1))+b(6).*exp(-x.*k(2))+c(6).*exp(-x.*k(3))+£(6));

A=[Al, A2, A3, A4, A5, A6];
end

298

MExpGvalues

function [values,ubound,lbound] = MExpGvalues
$UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

¢defining initial values and bounds

$'a' defines six pre-exponential terms corresponding to the first rate
$constant, 'b' defines those pre-exponentials for the second rate
constant,

%and the same for 'c
a=[-0.2, -0.2, -0.2, -0.2, -0.2, -0.2];

b=[-0.15, -0.15, -0.15, -0.15, -0.15, -0.157];

c=(0.1, 0.1, 0.1, 0.1, 0.1, 0.1,];

f=r0.01, 0.01, 0.01, 0.01, 0.01, 0.01];

k=[2e7, 6e4, le3]; $these are the three exponential terms

values=[a b ¢ f k];

gupper bounds
uva=[1l, 1, 1,
ub=[1, 1, 1,
uc=[1, 1, 1,
uf=[1, 1, 1,
uk=[3e8, 5e6, 1led

~ N~

N

ubound=[ua ub uc uf uk];

%lower bounds

la:[_ll _11 _11 _11 _ll _1];
lb:[_ll _11 _11 _11 _ll _1];
le=[-1, -1, -1, -1, -1, -1];
lf:[_ll _11 _11 _11 _ll _1];
lk=[1le6, 5e3, 5e0];

lbound=[la lb 1lc 1f 1k];

end

299

D.6. Nonnegative least squares analysis

Multiexponential kinetics data (with all positive magnitudes), such as fluorescence
decays or CO rebinding in substrate-free P450 CYP119, can be examined using
nonnegative least squares (nnls) fitting. This procedure requires that the data be
log-compressed, and that the first time point be exactly zero. The nnls_prep script
sets the initial time to zero and can be used to normalize data; the script
nnls_grad_reg r2_ KT (written by Jay Winkler and modified by Kana Takematsu)
does the fitting analysis. To further analyze the nnls outputs, the script Panalyzer
and function Pmoments allow the user to define populations within the nnls
histogram of rate constants and amplitude, and determine statistics (integrated
amplitudes, first moment, and second and third centered moments) for each

population.

nnls_prep

nnls prep

This script selects the maximum absorbance data point from x,y TA
ata, sets that time point to t=0, and

normalizes Y (absorbance) data

o0 O, 00 o°

i=1;
while i ~= 0

% READ DATAFILE
[file,dirpath]=uigetfile('*.*");

if isequal(file,0) || isequal(dirpath,0)
disp('no more')
i=0;
return

end

filet=[dirpath file];

3DETERMINE FILE PROPERTIES

data=dlmread(filet); $read raw file to var data

len=length(filet); gmeasure length of file name

filel=filet(l:1len-4); $remove the .dat

look=find(filel=='/"); $find all the / in the file
name

maxf=max(look)+1; $find the last / and index 1

value past it (file name)
file2=filel (maxf:end); $this was the file name

300

file3=double(file2); $file name converted to ascii
% EXTRACT X AND Y

xx=data(:,1);

yy=data(:,2);

% DATA ADJUSTMENTS

% [myy, indmyy]=max(yy) ; $find value and index of max
Y-data point
indmyy=21;
xadj=xx(indmyy) ; $find time value of max Y-data
point
xtrunc=xx(indmyy:end); $truncating rise from X-data
ytrunc=yy(indmyy:end) ; $truncating rise from Y-data
xnew=xtrunc-xadj; $setting first data point as
time zero
% ynorm=ytrunc/myy; $normalizing Y-data to max Y-

data point

% PLOT
plot(xx,yy,'r")
plot(xnew,ytrunc, 'b');

SWRITE DATA TO FILE
corcmp=[xnew ytrunc];
filecmpl=[file3, 95 116 48 110 46 116 120 1167];
$Adds ' tOn.txt' to the end of the file name
filecmp2=char(filecmpl);

dlmwrite(filecmp2,corcmp, 'precision’',14); swrite a file
of the adjusted xy data
disp(filecmp2); $tell you the

name of the new file

end

301
nnls_grad_reg r2 KT

% Script to read [t,y] data from a file

% Fit using chisq and first derivative constraint

% with lsgnonneg and scan lambda to maximize breadth.
%
%

clear all
close all
$
$lambda min def=0.001;
$lambda max def=10;
lambda min def=0.01;
lambda_max def=50;
lambda_inc_def=1.5;
k_inc _def=1.5;
$
HO=figure;
$

[FileName,PathName] = uigetfile('*.txt') ;
filet=[PathName FileName];
xy=dlmread(filet);
$la,bl=size(xy);
$if (a~=2)&(b~=2)

% return

$elseif (a==2)

% xy=xy';

%end

$
x=xy(:,1);
y=xy(:,2);
warning off
wt=1./sqrt(y);
wttest=isfinite(wt);
wttest=isinf(l./wttest);
sgrt(y+wttest);
wt=1./sgrt(abs(y+wttest));
wt=[wt(1:214); 3*wt(215:1length(y))]1;
$kana: add abs and define new wt
$MUST REMEMBER TO change this value for each data set!!!
warning on

%

%

chk3=-1;

while chk3 < 0
chk=-1;

prompt={'Enter the minimum value for \lambda',
'"Enter the maximum value for \lambda',
'"Enter the ratio of adjacent \lambda values',
'Enter the ratio of adjacent rate constants'};
dlg_title='Fitting Parameters (enter ? for help)';
numlines=1;
options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';
helpstrl=['The program minimizes the sum of the squared deviations

302

between calculated and experimental intensities (chi-squared) AND the
sum of the squared gradient of the P(k) function. The weighting factor
between these two functions is lambda. Small \lambda values give more
weight to chi-squared minimization. Large lambda values give more
weight to P(k) gradient minimization. The program will scan from a
minimum to a maximum value of lambda. The scanned lambda values are
logarithmically spaced. This query asks for the maximum and minimum
values of lambda as well as the ratio of adjacent lambda values.'];
helpstr2=['The k-space vector is logarithmically spaced. This query

asks for the raio of adjacent k values.]'];
helpl=' ';
help2=' ';

while chk < 0

defanswer={num2str(lambda min def),num2str(lambda max def),num2str(lamb
da_inc_def),num2str(k_inc_def),};
answer=inputdlg(prompt,dlg title,numlines,defanswer,options);
ansl=cell2mat(answer(l));
ans2=cell2mat (answer(2));
ans3=cell2mat (answer(3));
ans4=cell2mat (answer(4));

%

chk=1;

hepl=0;

hep2=0;

if ishandle(helpl)==
close(helpl);

end

if ishandle(help2)==
close(help2);

end

%

if (isempty(ansl))
chk=-1;
elseif ansl(l) == "'?'
hepl=1;
chk=-1;
else
lambda min=str2num(ansl);
if isempty(lambda min)
chk=-1
else
lambda min def=lambda min;
end
end

%

if (isempty(ans2))
chk=-1;
elseif ans2(1l) == "'?'
hepl=1;
chk=-1;
else
lambda max=str2num(ans2);
if isempty(lambda max)
chk=-1
else
lambda max_ def=lambda max;
end

end

o
o

if (isempty(ans3))
chk=-1;

elseif ans3(1l) == "'?'
hepl=1;
chk=-1;

else

lambda_inc=str2num(ans3);
if isempty(lambda inc)

chk=-1
else

lambda_inc_ def=lambda_ inc;

end
end

o
o

if (isempty(ans4))
chk=-1;

elseif ans4(l) == "'?'
hep2=1;
chk=-1;

else

k_inc=str2num(ansé);

if isempty(k_inc)

chk=-1
else
k_inc_def=k_inc;
end
end
if (hepl == 1)

helpl=helpdlg(helpstrl, 'Lambda Values')

hposl=get (helpl, 'Position');

set(helpl, 'Position',[hposl(1)+0.5.*hposl(3),
hpos1(2)+0.5.*hposl(4), hposl(3), hposl(4)]);

end

)
)

if (hep2 == 1)

help2=helpdlg(helpstr2, 'k-ratio')

hpos2=get (help2, 'Position');

set(help2, 'Position',[hpos2(1)+0.5.*hpos2(3),
hpos2(2)+0.5.*hpos2(4), hpos2(3), hpos2(4)]);

end

)
)

end

o
)

%lambda_max
$lambda min
$lambda inc
$k_inc

o

O

loglambda=1logl0(lambda min)
lambda=10."loglambda;
lenlam=length(lambda);

o

o

Off set=0;

:logl0(lambda inc):1logl0(lambda max);

303

304

chk=-1;

menprompt='0ffset Rate Constant';

menoptl='YES';

menopt2="'NO"';

menopt3='Help';

helpstr3='If the data do not decay to zero, a slow rate constant can be
added to the k-space vector to produce an offset in the data. This
query asks if you want to include that offset rate constant.';

help3=' ';

while chk < 0
%
choice=menu(menprompt,menoptl, menopt2,menopt3);
%

if ishandle(help3)==
close(help3);

end

if choice ==
Off set=1;
chk=1;

elseif choice ==
Off set=0;
chk=1;

elseif choice ==
help3=helpdlg(helpstr3, 'Weighting');

end
end
%
%
iwt=0;
chk=-1;
menprompt='Data Weighting';
menoptl='No weighting';
menopt2='Weight y(i) values by 1/sqgrt(yi)';
menopt3='Weight y(i) values by 1/yi';
menopté4="'Help';
helpstrd4='No weighting minimizes sum of {yi(exp)-yi(calc)}”"2; higher
intensity values carry more weight. The uncertainty in each yi(exp)

value is approximately sqrt(yi(exp)). The sum of {[yi(exp)-
yi(calc)]/sqgrt(yi(exp))}"2 is used to generate reduced chi-squared
values. The optimum result is reduced chi-squared = 1. The sum of

{[yi(exp)-yi(calc)]/yi(exp)}"2 minimizes the fractional deviations of

experiment from calculated values.';

help4=' ';

while chk < 0
%
choice=menu(menprompt,menoptl,menopt2,menopt3,menopt4d);
%

if ishandle(help4d)==
close(help4);

end

%

if choice ==
WT=eye(length(y));
chk=1;

elseif choice == 2
WT=diag(wt);
chk=1;

elseif choice == 3

305

WT=diag(wt);
WT=WT."2;
chk=1;
elseif choice ==
help4=helpdlg(helpstr4, 'Weighting');
end
end

3

chk=-1;

menprompt='Gradient Method';

menoptl='Two-point';

menopt2='Three-point';

menopt3='Help';

helpstr5='The two-point gradient for P(ki) is [P(k(i+l))-
P(k(i))]/delta. The three-point gradient for P(ki) is calculated by
fitting the three points, [P(k(i-1)), P(k(i)), P(k(i+l))] to a second
order polynomial and calculaing the gradient from the polynomial
coefficients.';
help5=' ';

while chk < 0

3

choice=menu(menprompt,menoptl, menopt2,menopt3);

3

if ishandle(help5)==
close(help5);
end

3

if choice ==
grad=1;
chk=1;
elseif choice == 2
grad=2;
chk=1;
elseif choice == 3
help5=helpdlg(helpstr5, 'Weighting');
end

)

)

end

3

$kana: what is the appropriate kmax?
len=length(y);
kmax=5./(x(2)-x(1)
kmax=min(kmax,lel2
kmin=0.2./x(len);
kmin=1.0./x(len);

)7
)7

o

o

lkmin=10gl0 (kmin);
lkmax=1loglO0 (kmax) ;
incr=1logl0(k_inc);

)

lkmin=floor(lkmin);
lkmax=ceil (lkmax) ;
logk=lkmin:incr:lkmax;
k=10."logk;

if (Off set == 1)

306

k=[k(1)./100,k];
nd

o° (D

O

lenk=length(k);
jlen=floor(len./2);

oe

o

A=x*k;
A=exp(-3);

o

if (grad == 1)
P _reg=2.*ones(lenk,1);
P reg(l,1)=1;
P reg(lenk,1)=1;
P reg 3=zeros(lenk,1);
AA=diag(P_reg);
P reg 2=-1l.*ones(lenk-1,1);
AAl=diag(P_reg 2,1);
AA2=diag(P_reg 2,-1);

else
P _reg=2.*ones(lenk,1);
P reg(l,1)=1;
P reg(lenk,1l)=1;
P reg 3=zeros(lenk,1);
AA=diag(P_reg);
P reg 2=-1l.*ones(lenk-2,1);
AAl=diag(P_reg 2,2);
AA2=diag(P_reg 2,-2);

end

o
)

AA=AA+AA1+AA2;

oe

for ijk=l:lenlam

o

AA lam=lambda(ijk).*AA;

)
)

AwW=WT*A;
AAA=[Aw; AA lam];
yw=WT*y;

yy=[yw; P_reg_3];

)

o

Pr=1sgnonneg(AAA,VY);
gradsq(ijk)=(AA*Pr)'*(AA*Pr);

o

chisq(ijk)=(yw-Aw*Pr) '* (yw-Aw*Pr);

chisqg(ijk)=chisqg(ijk)./(length(y)-length(Pr)-1);

%kana: deleted as necessary?

ycalc(:,ijk)=A*Pr;

resid(:,ijk)=y-ycalc(:,ijk);

resid(:,ijk)=resid(:,ijk).*wt;

$kana: wt is okay sometimes? the autocorrelation makes more sense
if it

%is weighted?

)
)

acorrin=zeros(len,jlen);
for aij=1l:jlen
acorrin(l:len-aij,aij)=resid(aij+l:1len,ijk); %",ijk" added

4/27/2010 jrw

end

mvect=len-1l:-1l:1len-jlen;
autoc(ijk,:)=(resid(:,ijk) ' *acorrin)./mvect;

autoc(ijk, :)=autoc(ijk,:)./((resid(:,ijk) '*resid(:,ijk))./len);

°

Pok(:,ijk)=Pr;

subplot(3,2,1)

semilogx(x,y-ycalc(:,ijk), 'r',[min(x) max(x)]1,[0 0], 'k")
$semilogx(x,resid(:,ijk), 'r',[min(x) max(x)],[0 0],'k")
%kana replace

A331l=axis;

axis([min(x) max(x) A331(3) A331(4)1);

xlabel('time');

ylabel('y {obsd}-y {calc}');

title(['Residuals: {\chi}"2 = ',num2str(chisq(ijk), '%4g9'),"';
(grad(P))”"2 = ',num2str(gradsq(ijk), '%4g')1);
subplot(3,2,3)

end

%

[aa,bb]l=size(autoc(ijk,:));
plot([l:bb],autoc(ijk,:), 'r',[1,bb],[0 0], 'k")
xlabel('Correlation Channel');
ylabel('Cr(j)");

title('Autocorrelation of Residuals');

2

subplot(3,2,5)

semilogx([min(x) max(x)],[0 0], 'k',x,y,'r',x,ycalc(:,ijk), k")
xlabel('time');

ylabel('Intensity');

title(['{\lambda} = ',num2str(lambda(ijk), '%4g9')1);
subplot(3,2,4)
HH=loglog(lambda(l:ijk),chisq(l:ijk), 'ro-");
xlabel('\lambda');

ylabel('{\chi}"2");

title('{\chi}"2 vs. \lambda');

subplot(3,2,2)

bar(logl0O(k),Pr,'r")

axis([min(loglO(k)), max(loglO(k)), 0, 1.025.*max(Pr)])
xlabel('log(k)");

ylabel('P(k)"');

title(['{\lambda} = ',num2str(lambda(ijk), '%4g9')1);

)

°

subplot(3,2,6)

loglog(chisqg(l:ijk),gradsq(l:ijk), 'ro-")

xlabel('{\chi}"2");

ylabel (' (grad(P))"2");

title(['L-curve: {\lambda} = ',num2str(lambda(ijk), '%4g9')1);

%

drawnow

subplot(3,2,4)

307

title('LEFT-CLICK on a point to see its fit, residual, and
distribution.', 'Fontsize',12, 'Color','b', 'FontWeight', 'Bold"');
drawnow

%

chk2=-1;
menprompt='Select an Option';
menoptl='Chose a different point';
menopt2='Refit the data';
menopt3="EXIT THE PROGRAM';
while chk2 < 0

[xtest,ytest, button]=ginput(l);

%

while (button == 1)

%

[lambdatest,ijktest]=min(abs(lambda-xtest));
%
subplot(3,2,1)
semilogx(x,y-ycalc(:,ijktest), 'r',[min(x) max(x)],[0 0], 'k")
$semilogx(x,resid(:,ijktest), ' 'r',[min(x) max(x)],[0 0],'k")
%kana
A33l=axis;
$axis([min(x) max(x) A331(3) A331(4)1);
axis([x(450) x(length(y)) -0.005 0.005])
$kana: manually adjust0.1 to 0.005.
xlabel('time');
ylabel('y {obsd}-y {calc}');
title(['Residuals: {\chi}"2 =
",num2str (chisq(ijktest), '%4g'),"'; (grad(P))"2 =
',num2str (gradsq(ijktest), '%4g9')1);
%
subplot(3,2,3)
plot([l:bb],autoc(ijktest,:), 'r',[1,bb],[0 0], 'k")
%axis ([1 bb -0.1 0.17])
%kana
xlabel('Correlation Channel');
ylabel('Cr(j)");
title('Autocorrelation of Residuals');

[

subplot(3,2,5)
semilogx([min(x) max(x)],[0
01,'k"'",x,y,'r',x,ycalc(:,ijktest), 'k")
xlabel('time');
ylabel('Intensity');

title(['{\lambda} = ',num2str(lambda(ijktest), '%4g9')]);
%

subplot(3,2,4)

loglog(lambda(l:ijk),chisq(1l:ijk), 'ro-")

hold on

hl=loglog(lambda(ijktest),chisq(ijktest), 'bo');

set(hl, 'MarkerFaceColor', 'b");

hold off

xlabel('\lambda');

ylabel('{\chi}"2");

title('LEFT-CLICK on a point to see its fit, residual, and
distribution; RIGHT-CLICK to
proceed.', 'Fontsize',12, 'Color','b', 'FontWeight', 'Bold');

drawnow

%

308

309

subplot(3,2,2)

bar(logl0(k),Pok(:,ijktest), 'r")

axis([min(loglO(k)), max(loglO(k)), O,
1.025.*max(Pok(:,ijktest))])

xlabel('log(k)");

ylabel('P(k)"');

title(['{\lambda} = ',num2str(lambda(ijktest), '%4g9')]);
subplot(3,2,6)

loglog(chisqg(l:ijk),gradsq(l:ijk), 'ro-")

hold on

h2=loglog(chisqg(ijktest),gradsq(ijktest), 'bo');

set(h2, 'MarkerFaceColor','b');

hold off

xlabel('{\chi}"2");

ylabel (' (grad(P))"2"');

title(['L-curve: {\lambda} = ',num2str(lambda(ijk), '%4g9')1);

)

°

drawnow

)

[xtest,ytest, button]=ginput(l);

)

o\

o

end

o

choice=menu(menprompt,menoptl,menopt2,menopt3);

%

if choice ==
chk2=-1;
elseif choice == 2
chk2=1;
chk3=-1;
elseif choice == 3
chk2=1;
chk3=1;
end
close(H1);
close(H2);
close(H3);
$kana
end

%

o0 oo

o

end

$kana: insert saving

pause(3)

[filename2,PathName2] = uiputfile('*.txt', 'choose directory', 'bozo');
[pathstrl,namel,extl] = fileparts(filet);

filet2=[PathName2,namel];

dlmwrite(strcat(strcat(filet2,' kPok'),'.dat'),[loglO(k)',Pok])
dlmwrite(strcat(strcat(filet2,' residual'),'.dat'),[x,repmat(y,1l,size(y
calc,2))-ycalc])

dlmwrite(strcat(strcat(filet2,' lambda'),'.dat'),[lambda'])
dlmwrite(strcat(strcat(filet2,' autoc'),'.dat'),[autoc'])

close all hidden

o

o

Panalyzer

Written to determine population statistics, given a histogram (such as

population distributions from fitting of CO rebinding data, Chapter 5).
%Panalyzer

% READ DATAFILE
[file,dirpath]=uigetfile('*.*");

if isequal(file,0) || isequal(dirpath,0)
disp('no more')
i=0;
return

end

filet=[dirpath file];
data=dlmread(filet);

o

EXTRACT X AND Y
ks=data(:,1);
Poks=data(:,2:end);

o

GET INDEX
%ind=17;
ind=input('what is the index for the desired P values? ');
desPoks=Poks(:,ind);

o

PLOT
ga=rand(3);
figure
bar (ks,desPoks, 'r');
hold
¢semilogx (xx,yy, 'color',a(l:3));

% SELECT POPULATIONS
klen=length(ks)
n=0;

seguir=input('would you like to analyze a population? (y/n):
r'sh);

col(l)="y';
col(2)="g";
col(3)='c';
col(4)='b"';
col(5)="m';
col(6)="k';

while seguir=='y'
redo='y';
n=n+1;
while redo=='y'

310

the

311

hold

bar (ks,desPoks, 'r');

hold

Plow(n)=input('enter the lower k(index) for the population:

Pup(n)=input('enter the upper k(index) for the population:

bar (ks (Plow(n):Pup(n)),desPoks(Plow(n):Pup(n)),col(n))
redo=input('would you like to select a different region for
this population? (y/n): ','s');
end
seguir=input('would you like to select another population?
;'s');

(y/n):
end

SDETERMINE STATISTICS (MOMENTS)
for m=1:n

[tempint, tempcentro, tempcmoms]=Pmoments (desPoks (Plow(m) :Pup(m)), ks (Plow
(m) :Pup(m)));

Pint(m)=tempint;

Pcentro(m)=tempcentro;

Pcmoms (: ,m)=tempcmoms ;

end

Pint
Pcentro
Pcmoms

312

Pmoments

function [Plint,centro,cmoms] = Pmoments (Ps,ks)
$UNTITLED Summary of this function goes here
% Detailed explanation goes here

$Ps are the populations
¢ks are the logl0 of the rate constants

centro=sum(Ps.*ks)./sum(Ps);
centks=ks-centro;

Plint=trapz(Ps); $Integrating the population distribution

guncentered moments
% for n=1:4

% moms (n)=sum(Ps.*(ks.”"n))./sum(Ps);
% moms=moms ' ;
% end

%centered moments

for n=1:4
cmoms (n)=sum(Ps.*(centks.”n))./sum(Ps);
cmoms=cmoms ' ;

end

end

313

D.7. Hopping Maps

The script MapMaker generates Hopping Maps using MapPlotter, MapValues,
tauM, and tauETM.

MapMaker

%¥MapMaker - A GUI

$MapMaker takes user input for various electron transfer parameters,
$and a desired map range, and runs the hopping mapper programs
(MapValues,MapPlotter)

numlines=1;
haltl1=0;
halt2=0;

$Acquiring Electron Transfer Parameters

promptl={'temperature (K)','A-I distance (A)', '\beta step 1
(1/A2)"','\lambda step 1 (eV)','I-B distance (A)', '\beta step 2
(1/A2)"','\lambda step 2 (eV)', 'A-B distance (A)', '\beta single step
(1/A) ', '\lambda single step (eV)'};
defaultsl={'298','8.1','1.1','0.8',"'12.8',"'1.1"','0.8","'"19.4",'1.1"','0.8
i

options.Interpreter='tex';
ETparams=inputdlg(promptl, 'ET Parameters',numlines,defaultsl,options);

$Acquiring the Hopping Map Range

prompt2={'\Delta G(total) min (eV)','\Delta G(total) max

(ev)','\Delta G(1"s"t step) min (eV)','\Delta G(1"s"t step) max

(eV)', 'resolution (eV)', 'contour interval (-log(sec))'};
defaults2={'-1.5','0','-0.4"','0.3"','0.005",'0.2"};
options.Interpreter='tex';

mapRange=inputdlg(prompt2, 'Map Parameters',numlines,defaults2,options);

$THE LOOP - repeats until the user presses 'cancel'
while haltl~= 1 && halt2-~=1

$converting user input values to useable numbers
convl=char (ETparams);
convETparams=str2num(convl);

conv2=char (mapRange) ;
convmapRange=str2num(conv2);

$Making the HoppingMap

[dGT,dGl,taoslog]=MapValues (convETparams,convmapRange);
%generates map values

MapPlotter (dGT,dGl,taoslog,convETparams,convmapRange) ;
%plots the map

314

%Repeating the cycle
ETparams=inputdlg(promptl, 'ET Parameters',numlines,ETparams,options);

haltl=isempty(ETparams) ;
mapRange=inputdlg(prompt2, 'Map Parameters',numlines,mapRange,options);

halt2=isempty(mapRange) ;

end

315

MapPlotter

function MapPlotter (dGT,dGl,taoslog,convETparams,convmapRange)
%Mapper3 Plots the hopping map
% Detailed explanation goes here

etvalues={'"', '\bfET Parameters','',['\rmT =

', num2str (convETparams(1l)),"' K'],"',['r (A-I) =
,num2str (convETparams(2)),' A'],['\beta (A-I) =
,hum2str (convETparams(3)),' A"-"1"]1,['\lambda (A-I)
,num2str (convETparams(4)), ' eV "', ['r (I-B) =

I
',num2str (convETparams(5)),"' A'],[" '\beta (I-B) =
',num2str (convETparams(6)),"' A"-"1'],['\lambda (I-B) =
', num2str (convETparams(7)),' ev'],"'',['r (A-B) =
',num2str(convETparams(8)),"' A'],[' '\beta (A-B) =

A
roan

,hum2str (convETparams(9)),
', num2str (convETparams(10)),"' eV’
contourSpacing=convmapRange(6);

1,['\lambda (A-B)

loglines=(1l:contourSpacing:15); %defines the position and spacing of
contour lines

scrsz = get(0, 'ScreenSize');
figurel=figure('Position',[scrsz(3)/1.8 scrsz(4)/4 scrsz(3)/2.3
scrsz(4)/21);

annotation(figurel, 'textbox',[0.81 0.3 0.187

0.53], 'FitBoxToText', 'on', 'Interpreter', 'tex', 'String',etValues, 'Backgr
oundColor',[1,1,1])

axesl=axes('Parent',6figurel, 'XDir', 'reverse', 'Position',[0.13
0.122249388753056 0.68
0.8027506112469441"', 'Layer', 'top', 'FontSize',12);
xlim(axesl,[-1.5 0]);

ylim(axesl,[-0.4 0.3]);

box(axesl, 'on')

hold(axesl, 'all');

contour (dGT,dGl,taoslog,loglines, 'LineColor',[0 O

0], 'Fill','on', 'Parent',6axesl);

ylabel('\Delta G"0 1 s t s t e p (eV)', 'FontSize',14);
colorbar('peer',axesl);

annotation(figurel, 'textbox',[0.72 0 0.187

0.1]1, 'FitBoxToText', 'on', 'Interpreter', 'tex', 'String', '\bf-
log(\tau)', 'Edgecolor', 'none', 'Fontsize',11l)

end

Map Values

function [dGT,dG1l,taosNEWlog]=MapValues (ETparams,mapRange)

%$MapValues - CALCULATES HOPPING MAP VALUES

%General parameters
temp=ETparams(1l);

$First step (A->I) parameters
rl=ETparams(2);
betal=ETparams(3);
lamdal=ETparams(4);

$Second step (I->B) parameters
r3=ETparams(5);
beta2=ETparams(6);
lamda2=ETparams(7);

$Single step (A->B) parameters
rT=ETparams(8);
betaT=ETparams(9);
lamdaT=ETparams(10);

$The range for the x axis (dGT)
dGTmin=mapRange(1l);
dGTmax=mapRange(2);

$The range and step for the y axis (dG1l)
dGlmin=mapRange(3);
dGlmax=mapRange(4);

$The map resolution
dGstep=mapRange(5);

$creates vectors for x (dGT) and y (dGl) axes of the Hopping Map

dGT=(dGTmin:dGstep:dGTmax) ;
dG1l=(dGlmin:dGstep:dGlmax) ;
lenx=length (dGT);
leny=length(dGl);

$GENERATING THE VALUES OF TAO: THE "Z" AXIS OF THE PLOT

$Creates the matrix taos of dimensions lenx & leny which holds the

values for the Hopping Map, at
$each (dG1l,dGT) point

taos=zeros(leny,lenx); ¢defines the empty matrix taos of

appropriate size
ycount=1;
while ycount<=leny
xcount=1;
dGlnow=dGl (ycount);
while xcount<=lenx
dGTnow=dGT (xcount) ;

$this if statement defines the "sink" region

316

Z

317

if dGlnow < dGTnow
taovVal=1el00;
else

taovVal=tauM(dGTnow,dGlnow,rl,r3,betal,beta2,lamdal,lamda2,temp);
end

taos (ycount,xcount)=taoval;
xcount=xcount+1;
end
ycount=ycount+1;
end

$Creates a vector taosET with length lenx holding values of taoET at
%each dGT and dGl1
taosET=zeros(lenx); ¢defines the empty matrix taosET of appropriate
size
tcount=1;
while tcount<=lenx
dGTnow=dGT (tcount) ;
taoETVal=tauETM(dGTnow,rT,betaT,lamdaT, temp);
taosET (tcount)=taoETVal;
tcount=tcount+1;
end

tHOPPING ADVANTAGE

$Where taoET/tao > 1, two step hopping is faster than single-step
tunneling.

$The values of a new matrix taoNEW are set to 1 if there is

¢no advantage - otherwise the values are transfered, untouched.

taosNEW=zeros(leny, lenx);
rcount=1;
while rcount<=leny
ccount=1;
while ccount<=lenx
taoETC=taosET (ccount);
taoC=taos(rcount,ccount);
advantage=taoETC/taoC;
if advantage<l
taosNEW(rcount,ccount)=1; $0nly displays hopping areas
else
taosNEW(rcount,ccount)=taoC;
end
ccount=ccount+1;
end
rcount=rcount+1;
end

$Puts tao values on a log scale to make things easier
taosNEWlog=-10gl0(taosNEW) ;

tauM

function [tauval] = tauM(dGT,dGl,rl,r3,B1,B3,laml,lam3,T)

%this function

%$Values for the constants
h=4.13574*10"-15; ¢planck's constant (eV*s)

R=8.61733*10"-5; %gas constant (eV/K)
Habr02=0.0005323; %Hab(r0)"2 (eVv 2)
r0=3; gr0 (A)

dG3=dGT-dG1l;

eBl=exp(-Bl.*(rl-r0));
eB3=exp(-B3.*(r3-r0));
eGll=exp((-(dGl+laml)”2)/(4.*laml.*R.*T));
eG3l=exp((-(dG3+lam3)"2)/(4.*lam3.*R.*T));
eGl=exp(dGl/(R.*T));

eG3=exp(dG3/(R.*T));

eGT=exp (dGT/(R.*T));

cl0a=(((4*pi()"3)/((h"2).*laml.*R.*T))"
cOb=(((4*pi()"3)/((h"2).*1lam3.*R.*T))"

5)*Habr02;

0.
0.5)*Habr02;

taunum=cOa*eBl*eGll* (1+eGl)+cO0b*eB3*eG31l*(1l+eG3);
tauden=cO0a*cOb* (eBl*eGll*eB3*eG31l*(1l+eG3+eGT));

tauVal=taunum/tauden;

318

319

tauETM
function [tauETval] = tauETM(dGT,rT,BT,lamT,T)
$Returns taovVal - the value of tao, for a given dGl and dGT

%Values for the constants
h=4.13574*10"-15; $planck's constant (eV*s)

R=8.61733*10"-5; %gas constant (eV/K)
Habr02=0.0005323; $Hab(r0)"2 (ev"2)
r0=3; 3r0 (A)

$values for recurring sets of constants
cO0=sqrt((4*pi”3)/((h"2)*1lamT*R*T))*Habr02; $the constants in front
of the exponents in tao

$piece by piece putting together the function taoET(dGT)

$the denominator...
tl=exp(-BT*(rT-xr0));

t2=exp(-((dGT+1lamT)"2)/(4*1lamT*R*T));
t3=exp(-((dGT-1lamT)"2)/(4*1lamT*R*T));
tauETden=cO*tl*(t2+t3);

%taoET!
tauETVal=1/tauETden;

320

D.8. Ferric/ferrous deconvolution

The SpectralDeconvoluter script is used to deconvolute a two-component
absorption spectrum and determine the percent of each parent component (e.g.,
ferric and ferrous components during potentiometric titration). Each spectrum

must use the same wavelength data (and have the same number of points).

SpectralDeconvoluter

%SpectralDeconvoluter

%Ask for data

xInt=input('Enter the wavelength data (must be the same for all
spectra) ');

yInt=input('Enter the intermediate spectrum to deconvolute ');
yFe3=input('Enter the parent FeIII spectrum data ');
yFe2=input('Enter the parent Fell spectrum data ');

%Compare FeIII to data
errorl=yInt-yFe3;
errorl=errorl."2;
errorl tot=sum(errorl);

$Make the midpoint n=0.5, compare to data
n=0.4;
yMid=n.*yFe2+(n-1).*yFe3;

gcompare to data
error2=yInt-yMid;
error2=error2.”2;
error2 tot=sum(error?);

nInc=n;

nNew=n;

lastError_ tot=errorl tot;
errorTest tot=error2 tot;
rebound=0;

turn=1;

counter=0;

vals=[1];

%iterate to find deconvolution
while nInc > 0.001 && rebound < 20

if errorTest tot > lastError_ tot
turn=-1*turn;
nInc=nInc/2;

end

lastError_ tot=errorTest tot;

nNew=nNew+turn.*nInc;
if nNew < 0
nNew=0;
disp('lbounded!")
rebound=rebound+1;
turn=-1*turn;
nInc=nInc/2;
end

if nNew > 1
nNew=1;
disp('ubounded! ")
rebound=rebound+1;
turn=-1*turn;

end

[errorTestl,errorTest tot,yTestNew]=errorTester (nNew,yFe2,yFe3,yInt);

%optimization visualization
counter=counter+1;
vals(1l,counter)=lastError_ tot;
vals(2,counter)=nNew;
vals(3,counter)=errorTest tot;

end

¢display optimization
xvals=1l:1:counter;

%0utput answers
disp(nNew)

figure

hold

¢plot final residuals
plot(xInt,errorTestl, 'k'")
plot(xInt,yInt, 'b")
plot(xInt,yTestNew, 'r')
hold

figure
plot(xvals,vals(l,:),'r")
figure
plot(xvals,vals(2,:),'b")
figure
plot(xvals,vals(3,:),'qg")

321

