Electron Flow through Cytochrome P450

Thesis by

Maraia Emily Ener

In Partial Fulfillment of the Requirements for the
degree of
Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California
2014
(Defended December 16, 2013)



© [2014]
Maraia Emily Ener

All Rights Reserved

ii



for my aunt Mine, who first inspired me to pursue a PhD

iii



ACKNOWLEDGMENTS :
First I would like to thank my doctoral advisor, Harry Gray. Harry’s charisma,
irreverence, enthusiasm for life, and passion for chemistry are unparalleled, and I
am honored to be a part of the extensive Gray Nation. I have greatly benefitted from
the supportive, collaborative environment that Harry fosters in the group, and I am
grateful for all of the opportunities he has given me to present my research to the

bioinorganic community, including a number of international conferences. This

I would also like to thank Jay Winkler, who (whether he intended or not) has been
every bit as much a mentor. I am constantly amazed by Jay’s brilliance, wealth of
knowledge, and ability to build almost anything. The work in this Thesis would not
have been possible without his guidance and expertise, and I continue to strive to be
a more thorough, more rigorous, (and sometimes more skeptical!) scientist because

of it. Don’t panic. Just think.

Many thanks also go out to my other committee members: Professors Mitchio
Okumura, Theodor Agapie, and Doug Rees. I am lucky to have such a supportive
team, and have benefitted from our conversations at my candidacy exam, 4 year
meeting, props exam, and thesis defense. Extra thanks to Mitchio for being my
committee chair, and for the five pounds of delicious green grapes that Kana and I

picked at his home.

My graduate experience, scientific and personal, has greatly benefitted from
interaction with a number of colleagues and friends. I want to begin by giving my
heartfelt thanks to the trio who has been with me to the end: Jeff Warren, Oliver
Shafaat, and Kana Takematsu. Somewhere along the line, Jeff became my big

brother in lab. No one brings the ridiculous like Professor Dr. Jeffrey J. Warren



\%
(PhD), no one. From tinfoil hands in the cold, dark laser room, to “what-to-do-

with-my-life” morning discussions over coffee, Jeff has made me laugh, infuriated
me, inspired me, and reminded me countless times that “it’s going to be okay.” No
one else has so consistently and so vocally expressed confidence in my scientific
abilities; for that, I am ever grateful. Oliver has been my little brother counterpart
(this is my table quadrant, keep your feet out!). He is always around to lend a hand,
share a drink (or five), enjoy a laugh, and has obligingly agreed to take over all of my
BILRC duties - I am confident that they are in good hands (p.s. Oliver, you still owe
me a beer). Kana has been a fantastic office mate, confidante, and friend. She has
patiently fielded my questions in physical chemistry, laser operation, and diplomacy,
has read numerous iterations of my research proposals, and has watered my plants

when I’'m not in town. Thanks, Kana!

And now, from the end... back to be beginning. Before I even joined the group,
Nicole Bouley Ford, Gretchen Keller, and Bert Lai convinced me that Caltech was
the place to be. Bert Lai became my office mate, and instantly made me feel I was
part of the subbasement/bio crew. His advice that “there will always be one more

experiment” has never felt more relevant than now, as I write this Thesis.

I am deeply grateful to Lionel Cheruzel, who, in his last few months at Caltech, was a
patient and effective teacher, trained me on everything P450, and handed me a
working project just as things were starting to get really interesting. I continue to

benefit from communication and collaboration with The Frenchman.

I was incredibly fortunate to have a wonderful team of Ch153 TA/laser GLAs to
jump-start my journey in the worlds of ligand field theory and nanosecond transient
absorption. Jillian Dempsey is a fantastic teacher and role model. She gives me hope

that there can be life, joy, and sanity in academia. Alec Durrell is also a wonderful



vi
teacher and mentor. Our conversations across the BI hallway always made me

think more deeply about fundamental aspects of inorganic chemistry. It was
incredibly rewarding to teach Ch153 side-by-side. I still find myself trying to fill

Jillian and Alec’s enormous shoes.

In the realm of Ch153, Alexis Komor has been a wonderful Co-TA for Ch153 for the
past two years, and Bryan Hunter has done a fantastic job taking up the reins. You

got this, guys!

When I joined the Gray group, the Biolnorganic subbasement was a particularly
rockin’ place to be. Special thanks go to Kyle Lancaster, Charlotte Whited, Nicole
Bouley Ford, and Gretchen Keller for bringing, the class, the sass, the fast-talking
and the shit-talking. Charlotte founded our two-person Team Subgroup for heme
enzymes, and taught me that grad school is a balance between collaboration and
independence: “It’s your Thesis, you figure it out!” Through the chaos and darkness,
Gretchen Keller reminds me that there is a world outside of grad school. Her
creativity, artistry, and insights are an inspiration. It was fantastic to have another
partner in crime in the world of heme enzymes (go Team Haem Team!), and I'm
honored to have become her friend. In the twilight of the subbasement days, Peter

Agbo’s quiet presence, dry humor, and sharp intellect have been a comfort.

James McKone and Judith Lattimer have been amazing year-mates from the very
beginning. Judy and I met on visit weekend, and she has consistently gone out of her
way to include me in social gatherings. It's been sometimes difficult to feel
connected to the Caltech community when I commute 30 miles (each direction),
and this has made a huge difference. Judy is AWESOME!!! James and I joined the
Gray group within a few weeks of each other (in the summer before grad school),

not knowing that we had spent four years of college across the river from each other,



vii
in a tiny town in Minnesota. I could never dream of being as cool as James. I've

forgiven him for being a St. Olaf student, and he has shown himself to be a calm and
patient teacher, and reliable resource to turn to. The farmers market trips and
Saturday brunches with James, Judy and Co. made Caltech feel more like home my
first year in California. Speaking of brunches, I also want to thank the other
members of Team House: Alex Goldberg (and his delicious cardamom coffee) and

Ethan Van Arnam.

I have had the opportunity to work with a number of talented undergraduate
students, including Katja Luxem, Megan Jackson, Rocio Mercado. They continue to
inspire me, and remind me that sometimes otter pops are the answer to everything.
Special thanks to Katja Luxem for being my and Jeft’s first SURF (a modicum of the
data she collected is in this Thesis). Based on her record of international escapades
thus far, 'm pretty sure Katja will take over the world - way to go, lady! Extra special

thanks to Megan for the chocolate birthday cheesecake.

I've been fortunate to work closely with some fantastic postdocs in the Gray group.
First, I want to thank Wes Sattler, who is rarely found without a smile on his face,
and who has come through a number of lab dramas with optimism and resolve. I
may never end up being an organometallic chemist, but it’s not due to any lack of
effort on his part! By extension, I want to thank his biological clone, Aaron Sattler.
In particular, Aaron’s collection of antique Macbook Pro dongles has saved me
more than once. James Blakemore has been another wonderful addition to the
Group, and I have benefitted immensely from our conversations on

electrochemistry.

I have also benefitted from interactions with a number of other Gray group

members, including (but not limited to): Morgan Cable, Tania Darnton, Paul



viii
Bracher, Smaranda Marinescu, Hema Karunadasa, Tetsu Kimura, Bryan

Stubbert, Astrid Mueller, Matt Hartings, Josh Palmer, Paul Oblad, Heather
Williamson, Yan Choi, Melanie Yen, Carl Blumenfeld, Mike Rose, Mike
Lichterman, Kate Pletneva. Seiji Yamada’s time in our group is now the stuff of

legend.

My graduate experience wouldn’t have been complete without other members of the
Caltech staff, and Chemistry Department. Catherine May, Rick Jackson, and Pat
Anderson keep the world spinning. I will never forget Catherine’s welcome on my
first day “who are you?”, Rick’s magical cabinet stocked with tea and pick-me-up
candies, and Pat’s immaculate fashion sense. Joe Drew and Steve Gould keep us
supplied, and a fantastic team keeps the BI sparkling. It goes without saying that the
Caltech faculty are amazing. I'm giving John Bercaw a special shout-out here for
knowing where Carleton is, and for saying hi to me in the hallway. A number of
non-Gray group researchers have also made important contributions to my
graduate experience, including (but again, not limited to): Leslie O’Leary, Ian Tonks,

Samantha MacMillan, Rachel Klet, and Maddy Radlauer.

I also want to thank a number of collaborators in Frances Arnold’s group. Pete
Heinzelman was very helpful in my first few months at Caltech, Eric Brustad is a
P450 BM3-crystallizing genius, and one of my proudest achievements in grad school
(zero to reproducible air-sensitive redox titrations in < 30 days) came about because
of collaborations with Eric, Pedro Coelho, and Jane Wang. Frances Arnold herself is

an inspiration, and has been supportive of my efforts.

Last, but by no means least, I would like to thank my family and friends who have
stood by me and waited patiently through the madness of graduate school. First, I

must thank my parents, Ruth and Oran Ener, who have always supported education,



ix
creative thought, the pursuit of knowledge, and the development of character (oh,

the character...). Because of them, I have made it to the end of my PhD; because of
them, I never considered that I couldn’t. I have two phenomenal siblings, Cjuneyt
and Amir Ener, who make me proud every day. Their beautiful and brilliant lady
friends, Eloise Galligan and Lydia Larson, have been a wonderful addition to our
family, and Eloise is now officially my sister-in-law! To my BFFs Jess Wenstrom and

Erica Hoaglund - can’t wait to see you again!

Finally, I want to thank Adam Goetz, my spouse and partner who moved across the
country to be with me. Adam, for you, I try every day to be stronger, kinder and
more forgiving. Thank you for being here for me all the way through my Thesis

(and all the way through yours). I'm so excited for us to be real people again!



ABSTRACT

The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze
the metabolism of xenobiotics and the biosynthesis of signaling molecules.
Controlled electron flow into the thiolate-ligated heme active site allows P450s to
activate molecular oxygen and hydroxylate aliphatic C-H bonds via the formation
of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive
nature and short lifetimes of these intermediates, many of the fundamental steps in
catalysis have not been observed directly. The Gray group and others have
developed photochemical methods, known as “flash-quench,” for triggering electron
transfer (ET) and generating redox intermediates in proteins in the absence of
native ET partners. Photo-triggering affords a high degree of temporal precision for
the gating of an ET event; the initial ET and subsequent reactions can be monitored
on the nanosecond-to-second timescale using transient absorption (TA)
spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and
mechanism, including the native pathway for formation of compound I, and
outlines the development of photochemical processes that can be used to artificially
trigger ET in proteins. Chapters 2 and 3 describe the development of these
photochemical methods to establish electronic communication between a
photosensitizer and the buried P450 heme. Chapter 2 describes the design and
characterization of a Ru-P450-BM3 conjugate containing a ruthenium
photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second
kinetics of the photo-triggered ET event are presented. By analyzing data at multiple
wavelengths, we have identified the formation of multiple ET intermediates,
including the catalytically relevant compound II; this intermediate is generated by
oxidation of a bound water molecule in the ferric resting state enzyme. The work in

Chapter 3 probes the role of a tryptophan residue situated between the
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photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate.

Replacement of this tryptophan with histidine does not perturb the P450 structure,
yet it completely eliminates the ET reactivity described in Chapter 2. The presence
of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for
observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a
basic description of the theoretical underpinnings required to analyze ET. Single-
step ET theory is first presented, followed by extensions to multistep ET: electron
“hopping.” The generation of “hopping maps” and use of a hopping map program
to analyze the rate advantage of hopping over single-step ET is described, beginning
with an established rhenium-tryptophan-azurin hopping system. This ET analysis is
then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this
strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5
explores the implementation of flash-quench and other phototriggered methods to
examine the native reductive ET and gas binding events that activate molecular
oxygen. In particular, TA kinetics that demonstrate heme reduction on the
microsecond timescale for four Ru-P450 conjugates are presented. In addition, we
implement laser flash-photolysis of P450 ferrous-CO to study the rates of CO
rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6
describes the development and implementation of air-sensitive potentiometric
redox titrations to determine the solution reduction potentials of a series of P450
BM3 mutants, which were designed for non-native cyclopropanation of styrene in
vivo. An important conclusion from this work is that substitution of the axial
cysteine for serine shifts the wild type reduction potential positive by 130 mV,
facilitating reduction by biological redox cofactors in the presence of poorly-bound
substrates. While this mutation abolishes oxygenation activity, these mutants are
capable of catalyzing the cyclopropanation of styrene, even within the confines of an

E. coli cell. Four appendices are also provided, including photochemical heme
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oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general

protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts
used for data analysis (Appendix D).
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