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ABSTRACT 

The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze 

the metabolism of xenobiotics and the biosynthesis of signaling molecules. 

Controlled electron flow into the thiolate-ligated heme active site allows P450s to 

activate molecular oxygen and hydroxylate aliphatic C–H bonds via the formation 

of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive 

nature and short lifetimes of these intermediates, many of the fundamental steps in 

catalysis have not been observed directly. The Gray group and others have 

developed photochemical methods, known as “flash-quench,” for triggering electron 

transfer (ET) and generating redox intermediates in proteins in the absence of 

native ET partners. Photo-triggering affords a high degree of temporal precision for 

the gating of an ET event; the initial ET and subsequent reactions can be monitored 

on the nanosecond-to-second timescale using transient absorption (TA) 

spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and 

mechanism, including the native pathway for formation of compound I, and 

outlines the development of photochemical processes that can be used to artificially 

trigger ET in proteins. Chapters 2 and 3 describe the development of these 

photochemical methods to establish electronic communication between a 

photosensitizer and the buried P450 heme. Chapter 2 describes the design and 

characterization of a Ru-P450-BM3 conjugate containing a ruthenium 

photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second 

kinetics of the photo-triggered ET event are presented. By analyzing data at multiple 

wavelengths, we have identified the formation of multiple ET intermediates, 

including the catalytically relevant compound II; this intermediate is generated by 

oxidation of a bound water molecule in the ferric resting state enzyme. The work in 

Chapter 3 probes the role of a tryptophan residue situated between the 
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photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate. 

Replacement of this tryptophan with histidine does not perturb the P450 structure, 

yet it completely eliminates the ET reactivity described in Chapter 2. The presence 

of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for 

observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a 

basic description of the theoretical underpinnings required to analyze ET. Single-

step ET theory is first presented, followed by extensions to multistep ET: electron 

“hopping.” The generation of “hopping maps” and use of a hopping map program 

to analyze the rate advantage of hopping over single-step ET is described, beginning 

with an established rhenium-tryptophan-azurin hopping system. This ET analysis is 

then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this 

strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5 

explores the implementation of flash-quench and other phototriggered methods to 

examine the native reductive ET and gas binding events that activate molecular 

oxygen. In particular, TA kinetics that demonstrate heme reduction on the 

microsecond timescale for four Ru-P450 conjugates are presented. In addition, we 

implement laser flash-photolysis of P450 ferrous–CO to study the rates of CO 

rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6 

describes the development and implementation of air-sensitive potentiometric 

redox titrations to determine the solution reduction potentials of a series of P450 

BM3 mutants, which were designed for non-native cyclopropanation of styrene in 

vivo. An important conclusion from this work is that substitution of the axial 

cysteine for serine shifts the wild type reduction potential positive by 130 mV, 

facilitating reduction by biological redox cofactors in the presence of poorly-bound 

substrates. While this mutation abolishes oxygenation activity, these mutants are 

capable of catalyzing the cyclopropanation of styrene, even within the confines of an 

E. coli cell. Four appendices are also provided, including photochemical heme 
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oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general 

protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts 

used for data analysis (Appendix D). 
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