

Electron Flow through Cytochrome P450

Thesis by
Maraia Emily Ener

In Partial Fulfillment of the Requirements for the
degree of
Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2014

(Defended December 16th, 2013)

© [2014]

Maraia Emily Ener

All Rights Reserved

for my aunt Mine, who first inspired me to pursue a PhD

ACKNOWLEDGMENTS

First I would like to thank my doctoral advisor, Harry Gray. Harry's charisma, irreverence, enthusiasm for life, and passion for chemistry are unparalleled, and I am honored to be a part of the extensive Gray Nation. I have greatly benefitted from the supportive, collaborative environment that Harry fosters in the group, and I am grateful for all of the opportunities he has given me to present my research to the bioinorganic community, including a number of international conferences. This Thesis, Harry, is for you. I love it!!!!!!

I would also like to thank Jay Winkler, who (whether he intended or not) has been every bit as much a mentor. I am constantly amazed by Jay's brilliance, wealth of knowledge, and ability to build almost anything. The work in this Thesis would not have been possible without his guidance and expertise, and I continue to strive to be a more thorough, more rigorous, (and sometimes more skeptical!) scientist because of it. *Don't panic. Just think.*

Many thanks also go out to my other committee members: Professors Mitchio Okumura, Theodor Agapie, and Doug Rees. I am lucky to have such a supportive team, and have benefitted from our conversations at my candidacy exam, 4th year meeting, props exam, and thesis defense. Extra thanks to Mitchio for being my committee chair, and for the five pounds of delicious green grapes that Kana and I picked at his home.

My graduate experience, scientific and personal, has greatly benefitted from interaction with a number of colleagues and friends. I want to begin by giving my heartfelt thanks to the trio who has been with me to the end: Jeff Warren, Oliver Shafaat, and Kana Takematsu. Somewhere along the line, Jeff became my big brother in lab. No one brings the ridiculous like Professor Dr. Jeffrey J. Warren

(PhD), *no one*. From tinfoil hands in the cold, dark laser room, to “what-to-do-with-my-life” morning discussions over coffee, Jeff has made me laugh, infuriated me, inspired me, and reminded me countless times that “it’s going to be okay.” No one else has so consistently and so vocally expressed confidence in my scientific abilities; for that, I am ever grateful. Oliver has been my little brother counterpart (this is *my* table quadrant, keep your feet out!). He is always around to lend a hand, share a drink (or five), enjoy a laugh, and has obligingly agreed to take over all of my BILRC duties - I am confident that they are in good hands (p.s. Oliver, you still owe me a beer). Kana has been a fantastic office mate, confidante, and friend. She has patiently fielded my questions in physical chemistry, laser operation, and diplomacy, has read numerous iterations of my research proposals, and has watered my plants when I’m not in town. Thanks, Kana!

And now, from the end... back to be beginning. Before I even joined the group, Nicole Bouley Ford, Gretchen Keller, and Bert Lai convinced me that Caltech was the place to be. Bert Lai became my office mate, and instantly made me feel I was part of the subbasement/bio crew. His advice that “there will *always* be one more experiment” has never felt more relevant than now, as I write this Thesis.

I am deeply grateful to Lionel Cheruzel, who, in his last few months at Caltech, was a patient and effective teacher, trained me on everything P450, and handed me a working project just as things were starting to get really interesting. I continue to benefit from communication and collaboration with The Frenchman.

I was incredibly fortunate to have a wonderful team of Ch153 TA/laser GLAs to jump-start my journey in the worlds of ligand field theory and nanosecond transient absorption. Jillian Dempsey is a fantastic teacher and role model. She gives me hope that there can be life, joy, and sanity in academia. Alec Durrell is also a wonderful

teacher and mentor. Our conversations across the BI hallway always made me think more deeply about fundamental aspects of inorganic chemistry. It was incredibly rewarding to teach Ch153 side-by-side. I still find myself trying to fill Jillian and Alec's enormous shoes.

In the realm of Ch153, Alexis Komor has been a wonderful Co-TA for Ch153 for the past two years, and Bryan Hunter has done a fantastic job taking up the reins. You got this, guys!

When I joined the Gray group, the BioInorganic subbasement was a particularly rockin' place to be. Special thanks go to Kyle Lancaster, Charlotte Whited, Nicole Bouley Ford, and Gretchen Keller for bringing, the class, the sass, the fast-talking and the shit-talking. Charlotte founded our two-person Team Subgroup for heme enzymes, and taught me that grad school is a balance between collaboration and independence: "It's *your* Thesis, you figure it out!" Through the chaos and darkness, Gretchen Keller reminds me that there is a world outside of grad school. Her creativity, artistry, and insights are an inspiration. It was fantastic to have another partner in crime in the world of heme enzymes (go Team Haem Team!), and I'm honored to have become her friend. In the twilight of the subbasement days, Peter Agbo's quiet presence, dry humor, and sharp intellect have been a comfort.

James McKone and Judith Lattimer have been amazing year-mates from the very beginning. Judy and I met on visit weekend, and she has consistently gone out of her way to include me in social gatherings. It's been sometimes difficult to feel connected to the Caltech community when I commute 30 miles (each direction), and this has made a huge difference. Judy is AWESOME!!! James and I joined the Gray group within a few weeks of each other (in the summer before grad school), not knowing that we had spent four years of college across the river from each other,

in a tiny town in Minnesota. I could never dream of being as cool as James. I've forgiven him for being a St. Olaf student, and he has shown himself to be a calm and patient teacher, and reliable resource to turn to. The farmers market trips and Saturday brunches with James, Judy and Co. made Caltech feel more like home my first year in California. Speaking of brunches, I also want to thank the other members of Team House: Alex Goldberg (and his delicious cardamom coffee) and Ethan Van Arnam.

I have had the opportunity to work with a number of talented undergraduate students, including Katja Luxem, Megan Jackson, Rocio Mercado. They continue to inspire me, and remind me that sometimes otter pops are the answer to everything. Special thanks to Katja Luxem for being my and Jeff's first SURF (a modicum of the data she collected is in this Thesis). Based on her record of international escapades thus far, I'm pretty sure Katja will take over the world - way to go, lady! Extra special thanks to Megan for the chocolate birthday cheesecake.

I've been fortunate to work closely with some fantastic postdocs in the Gray group. First, I want to thank Wes Sattler, who is rarely found without a smile on his face, and who has come through a number of lab dramas with optimism and resolve. I may never end up being an organometallic chemist, but it's not due to any lack of effort on his part! By extension, I want to thank his biological clone, Aaron Sattler. In particular, Aaron's collection of antique Macbook Pro dongles has saved me more than once. James Blakemore has been another wonderful addition to the Group, and I have benefitted immensely from our conversations on electrochemistry.

I have also benefitted from interactions with a number of other Gray group members, including (but not limited to): Morgan Cable, Tania Darnton, Paul

Bracher, Smaranda Marinescu, Hema Karunadasa, Tetsu Kimura, Bryan Stubbert, Astrid Mueller, Matt Hartings, Josh Palmer, Paul Oblad, Heather Williamson, Yan Choi, Melanie Yen, Carl Blumenfeld, Mike Rose, Mike Licherman, Kate Pletneva. Seiji Yamada's time in our group is now the stuff of legend.

My graduate experience wouldn't have been complete without other members of the Caltech staff, and Chemistry Department. Catherine May, Rick Jackson, and Pat Anderson keep the world spinning. I will never forget Catherine's welcome on my first day "who are *you*?". Rick's magical cabinet stocked with tea and pick-me-up candies, and Pat's immaculate fashion sense. Joe Drew and Steve Gould keep us supplied, and a fantastic team keeps the BI sparkling. It goes without saying that the Caltech faculty are amazing. I'm giving John Bercaw a special shout-out here for knowing where Carleton is, and for saying hi to me in the hallway. A number of non-Gray group researchers have also made important contributions to my graduate experience, including (but again, not limited to): Leslie O'Leary, Ian Tonks, Samantha MacMillan, Rachel Klet, and Maddy Radlauer.

I also want to thank a number of collaborators in Frances Arnold's group. Pete Heinzelman was very helpful in my first few months at Caltech, Eric Brustad is a P450 BM3-crystallizing genius, and one of my proudest achievements in grad school (zero to reproducible air-sensitive redox titrations in < 30 days) came about because of collaborations with Eric, Pedro Coelho, and Jane Wang. Frances Arnold herself is an inspiration, and has been supportive of my efforts.

Last, but by no means least, I would like to thank my family and friends who have stood by me and waited patiently through the madness of graduate school. First, I must thank my parents, Ruth and Oran Ener, who have always supported education,

creative thought, the pursuit of knowledge, and the development of character (oh, the character...). Because of them, I have made it to the end of my PhD; because of them, I never considered that I couldn't. I have two phenomenal siblings, Cjuneyt and Amir Ener, who make me proud every day. Their beautiful and brilliant lady friends, Eloise Galligan and Lydia Larson, have been a wonderful addition to our family, and Eloise is now officially my sister-in-law! To my BFFs Jess Wenstrom and Erica Hoaglund – can't wait to see you again!

Finally, I want to thank Adam Goetz, my spouse and partner who moved across the country to be with me. Adam, for you, I try every day to be stronger, kinder and more forgiving. Thank you for being here for me all the way through my Thesis (and all the way through yours). I'm so excited for us to be real people again!

ABSTRACT

The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze the metabolism of xenobiotics and the biosynthesis of signaling molecules. Controlled electron flow into the thiolate-ligated heme active site allows P450s to activate molecular oxygen and hydroxylate aliphatic C–H bonds via the formation of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive nature and short lifetimes of these intermediates, many of the fundamental steps in catalysis have not been observed directly. The Gray group and others have developed photochemical methods, known as “flash-quench,” for triggering electron transfer (ET) and generating redox intermediates in proteins in the absence of native ET partners. Photo-triggering affords a high degree of temporal precision for the gating of an ET event; the initial ET and subsequent reactions can be monitored on the nanosecond-to-second timescale using transient absorption (TA) spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and mechanism, including the native pathway for formation of compound I, and outlines the development of photochemical processes that can be used to artificially trigger ET in proteins. Chapters 2 and 3 describe the development of these photochemical methods to establish electronic communication between a photosensitizer and the buried P450 heme. Chapter 2 describes the design and characterization of a Ru-P450-BM3 conjugate containing a ruthenium photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second kinetics of the photo-triggered ET event are presented. By analyzing data at multiple wavelengths, we have identified the formation of multiple ET intermediates, including the catalytically relevant compound II; this intermediate is generated by oxidation of a bound water molecule in the ferric resting state enzyme. The work in Chapter 3 probes the role of a tryptophan residue situated between the

photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate. Replacement of this tryptophan with histidine does not perturb the P450 structure, yet it completely eliminates the ET reactivity described in Chapter 2. The presence of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a basic description of the theoretical underpinnings required to analyze ET. Single-step ET theory is first presented, followed by extensions to multistep ET: electron “hopping.” The generation of “hopping maps” and use of a hopping map program to analyze the rate advantage of hopping over single-step ET is described, beginning with an established rhenium-tryptophan-azurin hopping system. This ET analysis is then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5 explores the implementation of flash-quench and other phototriggered methods to examine the native reductive ET and gas binding events that activate molecular oxygen. In particular, TA kinetics that demonstrate heme reduction on the microsecond timescale for four Ru-P450 conjugates are presented. In addition, we implement laser flash-photolysis of P450 ferrous-CO to study the rates of CO rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6 describes the development and implementation of air-sensitive potentiometric redox titrations to determine the solution reduction potentials of a series of P450 BM3 mutants, which were designed for non-native cyclopropanation of styrene *in vivo*. An important conclusion from this work is that substitution of the axial cysteine for serine shifts the wild type reduction potential positive by 130 mV, facilitating reduction by biological redox cofactors in the presence of poorly-bound substrates. While this mutation abolishes oxygenation activity, these mutants are capable of catalyzing the cyclopropanation of styrene, even within the confines of an *E. coli* cell. Four appendices are also provided, including photochemical heme

oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts used for data analysis (Appendix D).

TABLE OF CONTENTS

Acknowledgments	iv
Abstract.....	x
Table of Contents	xiii
List of Figures.....	xix
List of Tables	xxv
Chapter 1: Cytochrome P450: From pursuit of reactive intermediates to engineering novel reactivity	1
1.1 Cytochrome P450: a remarkable metabolic enzyme.....	2
1.2 P450: structural features that direct function.....	4
1.3 P450 activity: reactions and mechanisms	9
<i>Oxygen activation.....</i>	10
<i>P450 active hydroxylating agents: ferryl compounds I and II</i>	14
1.4 Photo-triggered electron transfer in proteins	15
<i>Photosensitizers</i>	18
<i>Small molecule quenchers</i>	21
1.5 Photo-triggered ET in P450: two pathways toward reactive heme species.....	23
<i>Precedence for photochemical heme oxidation</i>	24
<i>P450 considerations: the buried heme</i>	26
1.6 New Frontiers: Novel P450 Active Species for Non-Native Catalysis ..	26
1.7 Conclusions	30
1.8 References	31
Chapter 2: Photo-triggered oxidation of Ru-modified cytochrome P450 ..	35
2.1 Background: Toward high-valent P450 intermediates.....	36
2.2 Motivation and selection of the photochemical system	40
<i>Photosensitizer.....</i>	40
<i>Exogenous oxidative quencher</i>	41
<i>P450 mutants.....</i>	41
2.3 Results	43
2.3.1 Characterization.....	43
<i>UV-visible absorbance</i>	43
<i>Steady-state luminescence</i>	44
<i>X-ray crystal structure analysis</i>	45
2.3.2 Laser flash-quench experiments.....	49
<i>Time-resolved luminescence</i>	49
<i>Transient absorption</i>	52
<i>Kinetics analysis of TA data</i>	57
2.4 Discussion	59
2.4.1 Kinetics Model	60

2.5 Concluding Remarks.....	65
2.6 Acknowledgments	65
2.7 Materials and Methods	66
<i>Chemicals</i>	66
<i>Procedures</i>	66
2.7.1 Ru photosensitizer	66
<i>Synthesis</i>	66
<i>Characterization</i>	67
2.7.2 Mutagenesis and expression of P450 BM3 mutants	67
<i>Plasmid</i>	67
<i>Mutagenesis</i>	67
<i>Expression</i>	68
<i>Extraction and purification</i>	68
2.7.3 Ru-P450 conjugation	69
2.7.4 Crystallization and structure determination.....	69
2.7.5 Preparation of laser samples	70
2.8 References	71
Chapter 3: Photo-triggered electron transfer through tryptophan in Ru-P450 systems	74
3.1 Background: Light to ET	75
3.1.1 P450 systems: Motivation and selection	80
3.2 Results and Analysis	84
3.2.1 Characterization of mutants	84
<i>UV-visible absorbance</i>	84
<i>X-ray crystal structure analysis of C97-BM3(_{wH})</i>	85
3.2.2 Ru-P450 luminescence.....	88
3.2.3 Ru-P450 transient absorption.....	92
<i>P450-BM3 mutants: effect of tryptophan</i> 96	92
<i>ET reactivity of CYP119 mutants</i>	94
<i>Temperature dependence</i>	97
<i>Search for the tryptophan radical cation</i>	98
3.3 Discussion	99
<i>Final thoughts and avenues for future work</i>	101
3.4 Conclusions	102
3.5 Acknowledgments	102
3.6 Materials and Methods	102
<i>Materials</i>	102
<i>Procedures</i>	103
3.6.1 Photosensitizer synthesis.....	103
<i>Synthesis</i>	103
<i>Characterization</i>	104
3.6.2 Protein mutagenesis, expression and purification	104
<i>Plasmid</i>	104

<i>Mutagenesis</i>	104
<i>Overexpression in E. coli</i>	104
3.6.3 Conjugation of the Ru-photosensitizer.....	105
3.6.4 Crystallization and structure determination.....	105
3.6.5 Preparation of laser samples	106
3.7 References	107
Chapter 4: Multistep electron transfer: “hopping maps” tutorial and application.....	109
4.1 Electron transfer through proteins.....	110
<i>Method for examining photochemical ET in proteins: photochemical triggering</i>	112
4.2 Single step electron tunneling: semiclassical theory	114
<i>Experimental measurements</i>	118
4.3 Multistep electron transfer	119
4.4 Construction of hopping maps: an example for Re-azurin	124
4.5 ET parameters: selection process, effects, and limitations	129
<i>Temperature</i>	130
<i>Distance</i>	131
<i>Tunneling decay constant, β</i>	133
<i>Reorganization energy, λ</i>	134
<i>Driving forces</i>	136
4.6 Hopping map limitations	137
4.7 Application to the Ru-W-P450 system	138
<i>Estimates and challenges</i>	139
<i>Single-step tunneling</i>	141
<i>Hopping analysis</i>	142
<i>Varying distance</i>	143
<i>Varying β and λ</i>	145
4.8 Conclusions	147
4.9 Acknowledgments	147
4.10 References	148
Chapter 5: Photochemical heme reduction and gas binding in cytochrome P450	152
5.1 Background: reductive activation of dioxygen	153
5.2 Results and Analysis	159
5.2.1 Reductive flash-quench.....	159
<i>Luminescence</i>	159
<i>Single wavelength transient absorption</i>	161
<i>Assignment of intermediates</i>	163
<i>Fitting</i>	165
5.2.2 Reductive ET in the presence of CO.....	168
5.2.3 CO photolysis and rebinding.....	170
<i>Power dependence and yield of CO escape</i>	174

<i>Temperature dependence (substrate free)</i>	175
<i>Temperature dependence in the presence of laurate</i>	176
<i>Picosecond transient absorption measurements</i>	178
<i>Non-negative least squares fitting</i>	179
<i>Eyring analysis</i>	185
5.3 Discussion, conclusions, and future work.....	186
5.4 Acknowledgments	187
5.5 Materials and Methods	187
<i>Chemicals</i>	187
<i>Ru-P450 conjugates</i>	188
<i>Synthesis/purification of reductive quencher</i>	188
<i>Preparation of samples for flash-quench heme reduction</i>	188
<i>Preparation of samples for CO photolysis and rebinding</i>	189
5.6 References	191
Chapter 6: Axial-ligand influence on P450 reduction potentials: implications for catalysis	194
6.1 Background: Controlled electron flow through P450.....	195
<i>Enzymes</i>	200
6.2 Methods development for redox titrations.....	202
<i>Spectrophotometric titration</i>	202
<i>Electrochemical titration</i>	205
<i>Potentiometric titration</i>	209
<i>Test: Wild-type P450 BM3</i>	210
6.3 Results.....	213
6.3.1 Wild-type Enzymes: P450 BM3 and CYP119	213
<i>Wild Type P450 BM3</i>	213
<i>Wild Type CYP119</i>	214
6.3.2 Potentiometric titration of mutants for <i>in vivo</i> cyclopropanation...	216
<i>C400S axial mutation</i>	217
<i>Engineered cyclopropanation mutants</i>	218
6.3.3 Additional axial mutants	219
6.4 Discussion	223
6.5 Conclusions and future work.....	224
6.6 Acknowledgments	225
6.7 Materials and Methods	225
<i>Chemicals</i>	225
<i>Instrumentation</i>	226
<i>Procedures</i>	226
<i>Preparation of samples for redox titration</i>	226
<i>Potentiometric redox titration</i>	227
6.8 References	228
Appendix A: Photochemical oxidation of nitric oxide synthase.....	230
A.1 Introduction to nitric oxide synthase	231

	xvii
A.2 Results	235
A.2.1 Ru-photosensitizer conjugation	235
<i>Selection of NOS mutant and Ru photosensitizer</i>	235
<i>Characterization of RuNOS</i>	237
A.2.2 Ru-NOS Luminescence	239
<i>Luminescence quenching</i>	242
A.2.3 Transient Absorption.....	244
A.3 Discussion	247
A.4 Conclusion	249
A.5 Acknowledgments	250
A.6 Materials and Methods	250
<i>Expression protocols</i>	250
<i>Extraction and purification</i>	250
<i>Ru-NOS conjugation and purification</i>	251
A.7 References.....	253
Appendix B: Common Protocols	254
B.1 Instrumentation.....	255
B.2 Site-directed mutagenesis	255
B.3 Transformation protocol	256
B.4. Amplification and purification of plasmid DNA.....	256
B.5 P450 overexpression in <i>E. coli</i> , extraction and purification.....	257
<i>Expression</i>	257
<i>Extraction and purification</i>	257
B.6 Ru-P450 conjugation	258
B.7 Preparation of laser samples.....	259
B.8 Laser details	260
<i>Nanosecond-to-second transient spectroscopies</i>	260
<i>Picosecond-to-nanosecond transient spectroscopy</i>	263
B.9 Data workup.....	265
Appendix C: Chapter-specific notes	266
C.1 Notes for Chapter 2	267
<i>Ru-P450 luminescence: dependence on concentration</i>	267
<i>Low temperature experiments</i>	267
C.2 Notes for Chapter 3	269
<i>Search for the tryptophan radical cation intermediate</i>	269
C.3 Notes for Chapter 5	271
<i>Selection of probe wavelength for CO rebinding kinetics</i>	271
<i>Overlay of PSI and NSI kinetics traces</i>	272
<i>Nonlinear least squares fitting of CO rebinding kinetics at various temperatures</i>	273
C.4 Notes for Chapter 6	275
<i>Determination of ferrous/ferric ratios</i>	275
<i>Reproducibility</i>	275

	xviii
Appendix D: Matlab programs	277
D.1 Plotting x,y data: MEplotter	278
D.2 Time resolved single-wavelength data workup	279
D.2.1 Time-zero adjustment	279
<i>xadjuster</i>	279
D.2.2 Log-compression	281
<i>compress</i>	281
<i>logtimej</i>	283
D.3 Data splicing	285
<i>overlayer</i>	285
<i>combine</i>	288
D.4 Singular Value Decomposition	291
<i>svder1</i>	291
<i>svderMulti</i>	292
D.5 Multiexponential fitting	293
<i>nonlinear_fitter4</i>	293
<i>autoresider</i>	295
<i>MExpGFitter</i>	296
<i>MExpG</i>	297
<i>MExpGvalues</i>	298
D.6 Nonnegative least squares analysis	299
<i>nnls_prep</i>	299
<i>nnls_grad_reg_r2_KT</i>	301
<i>Panalyzer</i>	310
<i>Pmoments</i>	312
D.7 Hopping Maps	313
<i>MapMaker</i>	313
<i>MapPlotter</i>	315
<i>MapValues</i>	316
<i>tauM</i>	318
<i>tauETM</i>	319
D.8 Ferric/ferrous deconvolution	320
<i>SpectralDeconvoluter</i>	320

LIST OF FIGURES

Number	Page
Figure 1.1 Structures of P450 BM3 heme domain from <i>Bacillus megaterium</i> and CYP119 from <i>Sulfolobus acidocaldarius</i>	5
Figure 1.2 P450 BM3 active site	6
Figure 1.3 CYP119 active site	7
Figure 1.4 Overlay of substrate-free and substrate-bound forms of P450 BM3	8
Figure 1.5 Various reactions catalyzed by cytochrome P450.....	10
Figure 1.6 Canonical P450 catalytic cycle	11
Figure 1.7 Structure of P450 BM3 oxygenase and reductase domains.....	13
Figure 1.8 $[\text{Ru}(\text{bpy})_3]^{2+}$ absorption and emission spectra in water, at room temperature	16
Figure 1.9 $[\text{Ru}(\text{bpy})_3]^{2+}$ photochemistry.....	17
Figure 1.10 Redox active model proteins	18
Figure 1.11 An example of a perfluorinated ruthenium wire.....	19
Figure 1.12 Photosensitizers for site-specific surface labeling at amino acids	20
Figure 1.13 Flash-quench ET cycles.....	22
Figure 1.14 Paths for formation of high-valent CI and CII	24
Figure 1.15 Flash-quench oxidation of a heme protein active site.....	25
Figure 1.16 Histidine-ligated hemes	25
Figure 1.17 P450-catalyzed cyclopropanation of styrene	28
Figure 1.18 Native and engineered P450 catalytic schemes	28
Figure 2.1 Catalytic cycle for P450-catalyzed hydroxylation reactions.....	36
Figure 2.2 $[\text{Ru}^{\text{II}}(\text{bpy})_3]^{2+}$ flash-quench and oxidation of the a heme protein active site.....	39
Figure 2.3 $[\text{Ru}(\text{bpy})_2(\text{IAphen})]^{2+}$ tethering to cysteine, to form the conjugate Cys- $[\text{Ru}(\text{bpy})_2(\text{Aphen})]$	40
Figure 2.4 K97 labeling site.....	42
Figure 2.5 Absorption spectra of $[\text{Ru}(\text{bpy})_2(\text{IAphen})]^{2+}$, P450-BM3 C62A/C156S/K97C, $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ at approximately equal concentrations	44
Figure 2.6 Steady-state luminescence spectra of Ru photosensitizers in deoxygenated water	45
Figure 2.7 The $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ structure.	47
Figure 2.8 Overlay of $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ with wild type substrate-free and substrate-bound forms	47
Figure 2.9 Stacking of $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ with an adjacent crystal unit	48

Figure 2.10 Time resolved 630 nm luminescence decays in the absence of quencher.....	50
Figure 2.11 Luminescence decays of $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ (pH 8) at various concentrations of $[\text{Ru}(\text{NH}_3)_6]^{3+}$ quencher.....	51
Figure 2.12 Stern-Volmer quenching of $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ with $[\text{Ru}(\text{NH}_3)_6]^{3+}$ at three pH values.....	52
Figure 2.13 Single-wavelength transient absorption of $\text{Ru}^{\text{II}}_{\text{K97C}}\text{-Fe}^{\text{III}}_{\text{P450}}$ in the absence of quencher	53
Figure 2.14 Transient Absorption data for flash-quench of $[\text{Ru}(\text{bpy})_2(\text{IAphen})]^{2+}$ with 17 mM $[\text{Ru}(\text{NH}_3)_6]^{3+}$	54
Figure 2.15 Single-wavelength transient absorption following flash-quench ($\lambda_{\text{ex}} = 480$ nm) of $\text{Ru}^{\text{II}}_{\text{K97C}}\text{-Fe}^{\text{III}}_{\text{P450}}$ at pH 8	55
Figure 2.16 pH dependence of $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ transient absorption features.....	56
Figure 2.17 tgSVD of TA data for $\text{Ru}^{\text{II}}_{\text{K97C}}\text{-Fe}^{\text{III}}_{\text{P450}}$ with $[\text{Ru}(\text{NH}_3)_6]^{3+}$ at six wavelengths	57
Figure 2.18 Global fitting of $\text{Ru}^{\text{II}}_{\text{K97C}}\text{-Fe}^{\text{III}}_{\text{P450}}$ TA data at pH 8.....	59
Figure 2.19 Scheme for photochemical oxidation of cytochrome P450 ...	60
Figure 2.20 Extracted difference spectra of intermediate species	61
Figure 2.21 Photo-triggered cycle for flash-quench oxidation of $\text{Ru}^{\text{III}}_{\text{K97C}}\text{-Fe}^{\text{III}}_{\text{P450}}$	64
Figure 3.1 Photo-excitation of P680 chromophores in Photosystem II triggers oxidation of the oxygen evolving complex (OEC).....	75
Figure 3.2 Photo-excitation of the tethered ruthenium complex triggers oxidation of the P450 heme active site	76
Figure 3.3 Formation of high-valent CI and CII.....	77
Figure 3.4 Multistep ET in rhenium-labeled azurin.....	79
Figure 3.5 Multistep ET in ruthenium-labeled cytochrome P450	80
Figure 3.6 Putative multistep ET pathway in $\text{Ru}_{\text{C97}}\text{-BM3(W)}$	81
Figure 3.7 Structures of P450 BM3 and CYP119	83
Figure 3.8 Photosensitizer conjugation sites in P450-BM3 and CYP119 ..	84
Figure 3.9 UV-visible absorbance spectra of P450 mutants.....	85
Figure 3.10 Overlay of C97-BM3(_{wH}) (purple) with open and closed WT BM3 structures	86
Figure 3.11 C97-BM3(_{wH}) active site.....	87
Figure 3.12 Time-resolved luminescence decays of Ru-BM3 conjugates in the presence and absence of 17 mM $[\text{Ru}(\text{NH}_3)_6]^{3+}$ quencher	89
Figure 3.13 Time-resolved luminescence decays of Ru-CYP119 conjugates in the presence and absence of 17 mM $[\text{Ru}(\text{NH}_3)_6]^{3+}$ quencher.....	90
Figure 3.14 Overlay of luminescence decays for four Ru-P450 conjugates...	91
Figure 3.15 Single wavelength TA traces of $\text{Ru}_{\text{K97C}}\text{-P450}_{\text{BM3}}$ conjugates in the presence of $[\text{Ru}(\text{NH}_3)_6]^{3+}$, following excitation at 480 nm	93

Figure 3.16 Flash-quench schemes.....	94
Figure 3.17 Single wavelength transient absorption traces of Ru-CYP119 conjugates in the presence of $[\text{Ru}(\text{NH}_3)_6]^{3+}$, following excitation at 480 nm	96
Figure 3.18 TA data of $\text{Ru}_{\text{C}77}\text{-CYP119}(\text{H}\text{W})$ at variable temperature	97
Figure 3.19 UV-visible absorbance spectra P450, Ru photosensitizer	99
Figure 4.1 Multistep ET in biological energy conversion systems.	110
Figure 4.2 Sequential ET steps in the photo-triggered oxidation of Ru-P450 conjugates	112
Figure 4.3 Photosensitizers and metallo-proteins.....	113
Figure 4.4 Ribonucleotide reductase from <i>E. coli</i>	114
Figure 4.5 Energy diagram illustrating thermodynamic parameters for an ET reaction	115
Figure 4.6 Energy diagram illustrating diabatic and adiabatic states, and the coupling parameter H_{AB}	116
Figure 4.7 Tunneling timetables for driving force optimized ET reactions.	118
Figure 4.8 The $\text{Re}_{\text{H}124}\text{-W}122\text{-Azurin}$ hopping system.....	124
Figure 4.9 Prompt #1: ET parameters.....	125
Figure 4.10 Prompt #2: Hopping Map parameters	126
Figure 4.11 Sample hopping map for $\text{Re}_{\text{H}124}\text{-W}122\text{-Azurin}$	127
Figure 4.12 Temperature dependence of the $\text{Re}_{\text{H}124}\text{-W}122\text{-Azurin}$ hopping map	130
Figure 4.13 Hopping maps for $\text{Re}_{\text{H}124}\text{-W}122\text{-Azurin}$ with differing distance formulations.....	132
Figure 4.14 Hopping maps for $\text{Re}_{\text{H}124}\text{-W}122\text{-Azurin}$ with differing values of β	133
Figure 4.15 Hopping maps for $\text{Re}_{\text{H}124}\text{-W}122\text{-Azurin}$ with differing values of λ	135
Figure 4.16 Square scheme for tryptophan and tyrosine, including relevant reduction potentials and acid dissociation constants	137
Figure 4.17 Hopping system in $\text{Ru}_{\text{K}97\text{C}}\text{-W}96\text{-P}450_{\text{BM}3}$	139
Figure 4.18 Model of the Ru-P450 surface.....	140
Figure 4.19 Hopping maps for $\text{Ru}_{\text{C}97}\text{-W}96\text{-P}450_{\text{BM}3}$ heme oxidation: Distance formulations	144
Figure 4.20 Hopping maps for $\text{Ru}_{\text{K}97\text{C}}\text{-P}450_{\text{BM}3}$ photochemical heme oxidation: Altering β and λ	145
Figure 4.21 Hopping maps for $\text{Ru}_{\text{K}97\text{C}}\text{-P}450_{\text{BM}3}$ photochemical heme oxidation: Worst case hopping scenario	146
Figure 5.1 Canonical P450 catalytic scheme, highlighting the reductive ET events that activate dioxygen.....	153
Figure 5.2 Structure of the $\text{Ru-P}450_{\text{BM}3}$ conjugate	155
Figure 5.3 Flash-quench cycles for ET with the heme active site	156

Figure 5.4 Cartoon of CO photolysis and rebinding.....	157
Figure 5.5 Luminescence decay at 630 nm of four Ru-P450 conjugates in the presence and absence of <i>p</i> OMeDMA.....	160
Figure 5.6 Single-wavelength transient absorption data of Ru-P450 at various wavelengths	162
Figure 5.7 Single wavelength transient absorption data for flash-quench of four Ru-P450 mutants.....	163
Figure 5.8 Spectra of ferric and ferrous wild-type P450-BM3, and the ferrous – ferric difference spectrum.....	165
Figure 5.9 Normalized overlay of TA for the four Ru-P450 systems	167
Figure 5.10 Flash-quench scheme for heme reduction.....	168
Figure 5.11 UV-visible absorbance spectra of Fe ^{III} -P450 BM3 under argon, or CO before and after laser excitation.....	169
Figure 5.12 UV-visible absorbance spectra of five-coordinate, dithionite-reduced WT CYP119 and the corresponding six-coordinate ferrous CO species.....	171
Figure 5.13 Transient difference spectra following flash-photolysis of WT CYP119 ferrous-CO.....	172
Figure 5.14 Single-wavelength TA following flash-photolysis of WT CYP119	173
Figure 5.15 Power dependence of CO escape, 460 nm excitation	174
Figure 5.16 Temperature dependence of CO rebinding (no substrate)...	175
Figure 5.17 UV-visible absorption spectra of WT CYP119 with and without laurate.....	176
Figure 5.18 Temperature dependence of CO rebinding in the presence of laurate.....	177
Figure 5.19 Comparison of laurate-free and laurate-bound CO rebinding kinetics	178
Figure 5.20 Picosecond-to-millisecond TA data for CO rebinding in substrate-free CYP119 at various temperaures	179
Figure 5.21 Amplitude coefficients derived from nonnegative least squares fitting of CYP119 CO rebinding kinetics	180
Figure 5.22 Integration of rate constant amplitudes at varying temperature (substrate free)	181
Figure 5.23 First moment of populations at varying temperature (substrate free).....	181
Figure 5.24 Second centered moment of populations at varying temperature (substrate free)	182
Figure 5.25 Comparison of amplitude integrations for the slow population in substrate free and laurate-bound CYP119	183
Figure 5.26 Comparison of slow population first moment in substrate-free and laurate-bound CYP119	184

Figure 5.27 Comparison of slow population second centered moment (variance) in substrate-free and laurate-bound CYP119.....	184
Figure 5.28 Eyring plot for rebinding of escaped CO in CYP119	186
Figure 6.1 Structure of P450 BM3	195
Figure 6.2 P450-catalyzed cyclopropanation of styrene	196
Figure 6.3 Schemes for native and engineered P450 catalysis	197
Figure 6.4 P411 ₁₃ —Ser structure and activity	199
Figure 6.5 Structure of P450 ₁₃ -Cys, highlighting mutations in blue.....	201
Figure 6.6 Absorption spectrum of the methyl viologen radical cation...203	203
Figure 6.7 Chemical titration of WT P450 BM3 with reduced MV	204
Figure 6.8 Spectroelectrochemical setup	205
Figure 6.9 Electron relay between the working electrode and the P450 heme	206
Figure 6.10 Absorption spectra taken during the spectroelectrochemical reduction of WT BM3	207
Figure 6.11 Absorption spectra taken during the spectroelectrochemical oxidation of dithionite-reduced WT BM3.....	207
Figure 6.12 Plot of the electrochemical titration of WT BM3	208
Figure 6.13 Absorption spectra of WT BM3 during reductive potentiometric titration.....	210
Figure 6.14 Absorption spectrum of WT BM3 during oxidative potentiometric titration.....	211
Figure 6.15 Open circuit potential measurements of WT BM3 during potentiometric titration.....	212
Figure 6.16 Redox titration plot of wild-type P450 BM3	213
Figure 6.17 Titration curve of WT P450 BM3	214
Figure 6.18 Absorbance spectra of WT CYP119 during potentiometric titration with dithionite.....	215
Figure 6.19 Open circuit potential measurements for WT CYP119	215
Figure 6.20 Potentiometric titration of WT CYP119 with overlayed Nernst function.....	216
Figure 6.21 Absorption spectra of P450 BM3 C400S.....	217
Figure 6.22 Redox titration curves of C400S and WT BM3 overlayed by one-electron Nernst functions	218
Figure 6.23 Titration curves for four mutants.....	219
Figure 6.24 Redox titration curve of C400M	220
Figure 6.25 Reduction of C400Y shows loss of isosbestic points	221
Figure 6.26 Spectra of C400A during potentiometric titration	222
Figure 6.27 Loss of isosbestic points in C400A absorption during titration	222
Figure 6.28 Spectra of C400H during potentiometric titration.....	223
Figure A1 Cartoon of the NOS homodimeric structure.....	231

Figure A.2 Dimeric structure of NOS from <i>Geobacillus stearothermophilus</i>	232
Figure A.3 NOS-catalyzed production of nitric oxide from L-arginine ..	233
Figure A.4 Proposed catalytic cycle for NOS.....	233
Figure A.5 Flash-quench cycle for oxidizing the heme active site	234
Figure A.6 Location of the photosensitizer tethering site.....	236
Figure A.7 UV-visible absorption of unlabeled and labeled Ru-NOS and free photosensitizer	237
Figure A.8 Structure of Ru-NOS.....	238
Figure A.9 Tryptophan 243 is located between the photosensitizer and heme in Ru-NOS	238
Figure A.10 Luminescence decay of Ru-NOS with fits	240
Figure A.11 Luminescence lifetimes of Ru-NOS at varying ionic strength	242
Figure A.12 ET quenching of Ru-NOS with $[\text{Ru}^{\text{III}}(\text{NH}_3)_6]^{3+}$	243
Figure A.13 Relative amplitudes of the major and minor decay components.....	243
Figure A.14 Transient absorption data at six wavelengths.....	245
Figure A.15 tgSVD of TA data for flash-quench of Ru-NOS	246
Figure A.16 Global fitting of TA data at six wavelengths	247
Figure A.17 Scheme for photochemical oxidation of the NOs heme.....	249
Figure B.1 Specialized cuvette for laser studies	259
Figure B.2 Nanosecond-pulsed single-wavelength transient luminescence and absorption setup: NSI	260
Figure B.3 Nanosecond-pulsed multi-wavelength transient absorption setup: NSII	261
Figure B.4 NSI instrument response to scattered laser light.....	262
Figure B.5 Picosecond-pulsed transient absorption setup: PSI.....	263
Figure B.6 PSI instrument response to scattered laser light.....	264
Figure C.1 Luminescence decays of RuK97C-BM3, varied conc.....	267
Figure C.2 Luminescence decays at variable temperature.....	268
Figure C.3 TA at variable temperature	269
Figure C.4 Transient difference spectra of photosensitizers and Ru-P450 conjugates	270
Figure C.5 406 nm narrow band pass filter.....	272
Figure C.6 Overlay of PSI and NSI data for CO rebinding kinetics	273
Figure C.7 Rate constant amplitudes from nnls fitting.....	274
Figure C.8 Deconvolution of a spectrum into ferric and ferrous components using the script: spectraldeconvoluter.m	275
Figure C.9 Two separate potentiometric titrations of WT P450 BM3	276

LIST OF TABLES

<i>Number</i>	<i>Page</i>
Table 1.1 Relevant reduction potentials of wild type P450s and redox cofactors	12
Table 1.2 Parameters for a selection of oxidative quenchers	23
Table 2.1 X-ray crystallographic data collection, refinement statistics, and validation	46
Table 2.2 Observed rate constants (γ_{1-5} , s^{-1}) extracted from global fitting of single-wavelength TA at six wavelengths (390-440 nm)	59
Table 2.3 Extracted kinetics parameters	62
Table 3.1 Excited state lifetimes of four Ru-P450 conjugates in the absence and presence of 17 mM $[Ru(NH_3)_6]^{3+}$ quencher	91
Table 4.1 Experimentally-determined reorganization energies for various proteins	135
Table 4.2 Calculated single-step tunneling times for porphyrin oxidation, using a variety of ET parameters	141
Table 4.3 Minimum driving forces necessary to obtain an ET time of 1.3 μ s for each hopping map	142
Table 5.1 Luminescence lifetimes, taken from biexponential (unquenched) and monoexponential (quenched) fits	160
Table 5.2 Rates of heme reduction extracted from global fitting of transient absorption data	166
Table 5.3 Thermodynamic activation parameters for CO rebinding in CYP119 and various heme enzymes	186
Table 6.1 Reduction potentials of ferric P450 and redox active cofactors	224
Table A.1 Luminescence lifetimes of Ru-NOS in 50 mM borate buffer, pH 8	241
Table A.2 Luminescence lifetimes of Ru-NOS in 500 mM sodium chloride, 50 mM borate buffer, pH 8	241
Table A.3 Rate constants extracted from global fitting of TA data	246