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Abstract

Partial differential equations (PDEs) with multiscale coefficients are very difficult to
solve due to the wide range of scales in the solutions. In the thesis, we propose some
efficient numerical methods for both deterministic and stochastic PDEs based on the
model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an ef-
fective equation for the multiscale problem. An essential ingredient is to decompose
the harmonic coordinate into a smooth part and a highly oscillatory part of which
the magnitude is small. Such a decomposition plays a key role in our construction of
the effective equation. We show that the solution to the effective equation is smooth,
and could be resolved on a regular coarse mesh grid. Furthermore, we provide error
analysis and show that the solution to the effective equation plus a correction term
is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven s-
tochastic method and multilevel Monte Carlo method. In the multiquery, setting
and on the assumption that the ratio of the smallest scale and largest scale is not
too small, we propose the multiscale data-driven stochastic method. We construct
a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain
the solutions. For the tougher problems, we propose the multiscale multilevel Monte
Carlo method. We apply the multilevel scheme to the effective equations and assem-
ble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the
Karhunen-Loeéve expansion plays an important role in extracting the main parts of
some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are present-

ed to demonstrate the accuracy and robustness of the methods. We also show the
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computational time cost reduction in the numerical examples.
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Chapter 1

Introduction

1.1 Background

A broad range of scientific and engineering problems involve partial differential e-
quations (PDEs) with multiple scales. Such disparities appear in virtually all areas
of modern science and engineering: composite materials, porous media, turbulence
transport in high Reynolds number flows, atmosphere/ocean science, finance, and so
on. Also, in recent years, there has been an increasing interest in the simulation
of systems with uncertainties. Many physical and engineering applications involving
uncertainty quantification can be described by stochastic partial differential equa-
tions (SPDEs), and another challenge in uncertainty quantification is solving SPDEs
involving multiple scales.

For example, the difficulty in analyzing groundwater transport is mainly caused
by the heterogeneity of subsurface formations spanning over many scales, and there
is no apparent scale separation. We need to solve PDEs to perform some reliable

simulations. Consider the following PDE

V- (a(x)Vu(z)) = f(z). (1.1)

Such a steady-state heterogeneous diffusion equation governs the pressure u(x) in the
porous media with permeability a(z) and with source term f(x). The heterogeneity
is often represented by the multiscale fluctuations in the permeability a(z). We
often need to solve the equation (1.1) many times for different source terms, which

is known to be the multiquery setting. Also, due to lack of knowledge of the media
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flow, the media properties often contain uncertainties. These uncertainties are usually
parameterized, and one deals with a large set of permeability fields with a multiscale
nature. We are interested in some expected quantities of the solutions, and need to
solve the corresponding SPDEs.

Due to the wide range of scales in these solutions, it is extremely challenging to
resolve the small scales of the solutions by direct numerical simulation. Tremendous
computational resources are required to solve for the small scales of the solution,
which makes it prohibitively expensive to solve such problems. Even for today’s
computing resources, it is easy to exceed the limit of computer memory or CPU
time. Sometimes, from an application perspective, it is often sufficient to predict
the macroscopic properties of the multiscale systems, and therefore, we are interested
in the large scale solutions. Furthermore, if we want to find out the information at
all scales, we can construct the small scale solutions from the large scale solutions
by exploring the coupling between them. Thus, finding an effective equation that
governs the large scale solution is very important. It is very difficult to derive an
effective equation since the coupling between the small scale solution and the large
scale solution is in general nonlinear and nonlocal. SPDEs involving multiple scales
become more complicated. We not only need to use a very fine mesh to resolve the
small scales of the solution in the physical space, but also need to approximate the
solution in the stochastic space of which the dimension could be high. Thus, we need
to seek accurate numerical methods for PDEs and SPDEs with multiple scales, and

reduce the computational cost.

1.2 Literature review

Many multiscale methods have been developed in the literature to solve deterministic
and stochastic PDEs. We will discuss some existing numerical methods that are
relevant to our model reduction method.

In the fields of control theory, electrical engineering and mechanical engineering,
model reduction is a technique to simplify the simulation of dynamical systems de-

scribed by differential equations. The idea is to project the original, high-dimensional,
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state-space onto a properly chosen low-dimensional subspace to arrive at a smaller
system that has properties similar to the original system. Complex systems can thus
be approximated by simpler systems involving fewer equations and unknown vari-
ables, which can be solved much more quickly than the original problem. Here, we
borrow the term ‘model reduction’ and apply it to the multiscale PDEs/SPDEs. Our
idea is to construct an effective equation that is similar to the original equation. The
new equation governs the large scale information of the solution, and a correction
term is easily computed from the large scale solution. Thus, the new equation could
be solved by the standard finite element method on a coarse mesh grid. We could
use a low-dimensional finite element space to resolve the solution instead of a high-
dimensional one, which achieves the purpose of model reduction. Since the solution to
the new equation is smooth, we call it the effective equation. However, in general, the
coefficients of the effective equations are not as smooth as the solutions. Although the
coeflicients still have small scale information, we can still solve the effective equation
by the finite element method on a coarse mesh grid. In fact, we take the average of
the coefficients on the coarse mesh grid when we do integrations through the finite
element basis functions. We will see it clearly in Chapter 2.2.

Homogenization (see e.g. [10]) is a powerful tool in understanding the large s-
cale behaviour of the system under the assumption of scale separation and periodic
structures. When the coefficients have scale separation and are periodic with respect
to the fast variable, we can construct the homogenized coefficients. The large scale
solution will satisfy the same kind of equation with the new homogenized coefficients.
However, this method is strongly restricted by the assumptions of scale separation
and periodic structures, which is not always satisfied in the applications. Also, to
capture the small scale information, the construction of the correction term is not
feasible for numerical implementation, since it requires the same computational cost
as the original problem; see [48]. In our method, we seek to find the new ‘homoge-
nized’ coefficients without scale separation or periodic structures, and the correction
terms are easily computed from the large scale solutions.

In [8, 6], Babuska et al. propose the use of multiscale basis functions for elliptic

equations with a special multiscale coefficient that is the product of one-dimensional
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fields. This approach is extended by Hou and Wu [37] to general heterogeneities. They
construct the multiscale basis functions that satisfy the local multiscale equations, and
every solution can be expressed as a linear combination of the local basic functions.
They also show that boundary conditions for constructing such basic functions are
important for the accuracy of the method. Further techniques are explored to improve
the accuracy and efficiency of the method, including the oversampling technique,
nonconformal basis, local-global information exchange, special boundary conditions
for high contrast problems, spectrum decomposition of the space, and so on; see
(38, 27, 14, 24, 25, 18, 22| for reference. As we mentioned, the boundary conditions
for the basis functions are essential in the methods, and also become a constraint
for some problems. The basis functions are local, so the boundary conditions are
not easily determined beforehand. Unlike their methods, we use global harmonic
coordinates which can be approximated on a fine mesh grid whose computational
cost is no more than constructing the local basis functions.

Another method that uses the concept of basis functions is the multiscale finite
volume method proposed by Jenny et al. [40, 33]. Tt is based on the finite volume
method rather than the finite element method. They also introduce the bubble func-
tion to improve accuracy. We notice that both the multiscale finite element method
and multiscale finite volume method use some kind of basis functions, and the con-
structions are purely numerical. For the model reduction method, we build a new
effective equation without the need for constructing local multiscale basis functions.
We point out that any standard numerical method can be applied to our new equa-
tion. Our method provides both a theoretical and numerical understanding of the
multiscale problem.

The numerical upscaling procedures have also been developed and shown to be
effective in many areas, e.g. the local-global upscaling approach by Chen et al. [13].
The main idea of upscaling techniques is to form coarse scale equations with a pre-
scribed form, and these equations are often formed and solved numerically. Our
method falls to the category of upscaling methods. The upscaled coefficients have an
analytical expression as well as the correction term, and we can prove rigorously that

the approximation is accurate under some assumptions.
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The metric based upscaling method proposed by Owhadi et al. [51, 52] shares
some common features with our model reduction method. They use the harmonic
coordinate to construct a multiscale basis and prove convergence of their multiscale
method under some mild conditions on the coefficients (see also [1, 3] for more discus-
sions on harmonic coordinates). Specifically, they transform a standard linear finite
element basis in the harmonic coordinates to a multiscale basis in the physical coor-
dinates. The solution can be well represented by the multiscale basis. However, this
method requires the harmonic mapping to be invertible. The numerical implementa-
tion of their method is more complicated than ours, since the coarse mesh grid in the
metric based upscaling method is severely deformed due to the transformation of the
harmonic mapping. In our approach, we are interested in deriving a global upscaling
equation. Moreover, we do not require the harmonic mapping to be invertible, and
our effective equation can be solved by the standard finite element method on a reg-
ular coarse mesh grid. This makes our method easier to implement, and also more
efficient.

Among other methods for deterministic PDEs with multiple scales, there are the
following: the variational multiscale method by Hughes et al. [39], the heterogeneous
multiscale method [21] by E et al., the domain decomposition method by Graham et
al. [31, 28], the multiscale finite element method for numerical homogenization by
Allaire et al. [2], the multiscale mortar mixed finite element method by Arbogast et
al. [4], finite point method by Han et al. [34], and so on. We will not list all the
details of the methods; instead, we will switch to reviewing the numerical methods
for SPDEs.

The stochastic finite element method [30, 54] has a lot of applications, and is very
powerful. It uses the spectral expansion of the random functions on some polyno-
mial chaos, for example, Hermite polynomials of independent random variables, and
the Galerkin approach to approximate the expansion in the deterministic space. By
adopting the techniques of the deterministic Galerkin approach, error estimations can
be derived. Furthermore, it enjoys fast convergence when the solution is sufficient-
ly regular. However, a very large algebraic system is typically associated with the

Galerkin approach. When we have multiscale coefficients, the resulting linear sys-
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tem becomes very large. Both computational cost and memory consumption become
prohibitively expensive.

The Wiener chaos expansion or the generalized polynomial chaos (gPC) method
[42, 36, 56, 58, 59, 55, 49, 45] employ truncated expansions on a set of polynomial
chaos basis functions and drive a system of coupled deterministic PDEs. In the
past decade or so, a lot of progress has been made in developing an effective gPC
type of methods to solve SPDEs arising from various applications. However, this
type of methods still suffers from the curse of dimensionality in the sense that the
total number of polynomial chaos basis functions grows quickly as the number of
independent random variables becomes larger and larger.

The stochastic collocation method [57, 7, 44] has been developed from the non-
intrusive deterministic collocation method and sparse grid techniques. In principle,
the stochastic collocation method uses multivariate polynomial interpolations for the
integral in the variational formulation of the stochastic system with respect to prob-
ability space. A deterministic sequence of points resulting from tensor products of
one-dimensional quadrature points is sampled. The exact locations of such points and
weights associated with them depend on underlying probability distributions. More-
over, hierarchical construction of a generalized sparse grid has also been developed
for the application of the stochastic collocation method.

We can see that the so-called curse of dimensionality is one of the essential chal-
lenges in the uncertainty quantification. Recently, a data-driven stochastic method
[15, 60] was proposed by constructing a problem-dependent stochastic basis to solve
these SPDEs. The SPDESs enjoy a compact representation for a broad range of forcing
functions under such a stochastic basis. We will solve a number of coupled deter-
ministic PDEs by projecting the stochastic solution onto the data-driven stochastic
basis and obtain the desired quantities. However, when the coefficients have multiple
scales, fine mesh grids are needed to resolve the small scale information, and the cor-
responding large coupled system makes it very difficult to solve. Thus, we combine
the data-driven basis idea with the model reduction technique, and greatly reduce
the computational cost by considering the effective equations on coarse mesh grids.

The multilevel Monte Carlo method (MLMC) was first introduced by Giles in solv-
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ing SDEs arising in mathematical finance [32]. Similar ideas have been introduced by
Heinrich for finite-dimensional parametric integration and solving integral equations
[35]. Later, the MLMC method was extended to solve elliptic PDEs with random
coefficients; see [9, 19]. The MLMC method is very effective when the solutions to
SPDEs are smooth. However, if the solutions of SPDEs possess multiscale features,
a naive application of MLMC does not give very good performance, since the asymp-
totic variance reduction between two consecutive levels is not valid at the coarse grids
unless we make the coarse grids fine enough to resolve the smallest scale feature of
the solution. In [19], the authors remark that, the optimal choice for the coarsest
level is that the coarsest mesh size should be slightly smaller than the correlation
length of the random field, which becomes a major limitation for the method. We
will apply the multilevel scheme to the effective equations, and design an efficient
numerical method to alleviate the difficulty.

Some other numerical approaches have been proposed to solve SPDEs by explor-
ing the sparse structure of the solutions; e.g., the dynamically bi-orthogonal method
[16, 17] by Cheng et al. Also, Zabaras et al. propose a stochastic variational mul-
tiscale method for diffusion in heterogeneous random media [5, 29]. They combined
the generalized polynomial chaos method with the variational multiscale method to
achieve model reduction. However, when the dimension in stochastic direction is
large, this method is inefficient due to the exponential growth of the number of the

gPC basis elements.

1.3 Model reduction

We will briefly discuss the model reduction methods for different cases and illustrate

our contributions.



1.3.1 Deterministic case

We use the following elliptic equation as an example to illustrate the main idea of the

model reduction approach:

—V - (a(z)Vu(z)) = f(z), xeD, (1.2)

u(z) =0, x € 0D,

where D € R is a spatial domain. The multiscale information is described by the
coefficient a(z). We assume that f(xz) € L?*(D) is smooth, and a(z) € L>®(D) is
a symmetric, positive definite matrix satisfying A\pin(z) > 7 > 0 (Apin(x) is the
smallest eigenvalue of a(x)) for a.e. © € D. For such coefficients, the solutions are
only Holder continuous. If @ has multiple scales, the solution will have multiple scales
as well.

We would like to design an effective equation in the following form

~V - (a*(x)Vu*(2)) = f(z), x€ D, (1.3)
w*(x) = 0, x € 0D.

The key is how to construct an effective coefficient a* so that the solution to the above
effective equation approximates the original multiscale solution with some desirable
accuracy. We use the harmonic coordinates as a tool, which satisfy the same governing
equation with homogeneous source term and linear boundary conditions. We know
that the solution in the harmonic coordinates is one order smoother than in the
physical coordinates (see e.g. [51]). An important ingredient of our method is to
design an appropriate decomposition of the harmonic coordinates, denoted as F', into
a smooth component g plus a small component y, F' = g+ x. We will illustrate how
we perform the decomposition and what we mean by smooth component and small
component in Chapter 2. Our method does not require F' to be invertible, but to
motivate the derivation of our method, we assume temporarily that F' is invertible.
Then, we can express u as a function of F. One important property of the harmonic
coordinates is that v as a function of F' is about one order smoother than u as a

function of = (see e.g. [51]). Thus, we can write u(x) = a(F) = u(g + x), and
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formally expand @ around ¢ by assuming that y is small. By taking the leading
order terms and substituting them into the original equation, we obtain an effective
equation of form (1.3) after ignoring the high order terms involving x. The effective

coefficient a* is defined in terms of a, g, and y as following

o*(a) = o)1 + 555 o), (14)
where [ is the identity matrix.

We can show that the effective equation derived by the above formal analysis
indeed has the desirable smoothness property. Under some conditions, we will show
that the solution to the effective equation is in H2, which is one order smoother than
the original multiscale solution. Thus, we can solve the effective equation on a coarse
mesh. Moreover, we can show that the error term is small in the H' norm under some
conditions. From our derivation, we can see that the decomposition of the harmonic
coordinates determines the effective coefficient, a*. An optimal effective coefficient
will determine an optimal decomposition. The relationship between these two terms
helps us to design a nearly optimal decomposition of F'.

Our method falls into the category of global upscaling methods. To obtain our
effective equation, we need to first solve for the harmonic coordinates, which amounts
to solving the original equation d times (d is the physical dimension of the problem).
If we just solve the elliptic equation once, our method would not save computational
cost. However, if we consider the multiquery setting, i.e. we need to solve the e-
quation with the same coefficient many times with different source terms, the cost of
constructing the effective coefficient is a small overhead in the offline step. The online
step of solving the effective equation with multiple right hand sides gives consider-
able computational saving, since the effective equation can be solved on a coarse mesh
while the original multiscale problem must be solved on a fine mesh. For time de-
pendent problems such as parabolic, hyperbolic, and convection-diffusion equations,
if the coefficients are time-independent, our method gives considerable computational
savings even for a single forcing, since the overhead of constructing the effective co-

efficient is negligible compared with the cost of solving the time-dependent equations
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on a fine mesh at the subsequent time steps.

1.3.2 Stochastic case with data-driven stochastic method

We propose a multiscale data-driven stochastic method to perform model reduction in
both the stochastic and physical spaces. Our new method consists of offline and online
stages. In the offline stage, we first derive an effective stochastic equation that can
be resolved on a coarse grid. We then construct a data-driven stochastic basis under
which the solutions of the effective stochastic equation have a compact representation
for a broad range of forcing functions. We consider the following elliptic SPDE with

multiscale random coefficients in the multiquery setting

~V - (a(z,w)Vu(z,w)) = f(z), z€DweQ, (1.5)

u(z,w) =0, xr €0D,w e Q.

where D € R? is a spatial domain, and €2 is a sample space. The multiscale informa-
tion is also described by the coefficient matrix a(z,w). We assume that f(z) € L?(D)
is smooth and a(x,w) € L>(D) is a symmetric, positive definite matrix satisfying
Amin(T,w) > 7 > 0 (Apin(z,w) is the smallest eigenvalue of a(z,w)) for a.e. x € D,
w € . We would like to derive a similar effective stochastic equation in the following

form

V- (0", w) Ve (,w)) = f(z), z€DweER, (16)

u*(z,w) =0, xr e dD,we .

For each fixed sample w € Q (w can be chosen by the Monte Carlo or stochastic
collocation method), the multiscale problem (1.5) becomes deterministic, and we
would obtain the effective coefficient as (1.4). Under some conditions, we can show
that the solution to the effective equation is smooth, and the difference between the
two solutions is small. This is how we perform model reduction in the physical space.

To perform model reduction in the stochastic space, we adopt the Karhunen-Loeve
expansion [41, 43] for the stochastic coefficients and solutions. It is well known that
the Karhunen-Loeve expansion can generate an optimal basis in the sense that it mini-

mizes the total mean squared error. Our method consists of two essential parts: a com-
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pact parametrization for the effective coefficient a*(x,w), and a problem-dependent
compact basis to represent the stochastic solutions to the effective equation (1.6).

In the first part, we compute the truncated Karhunen-Loeve expansion of the ma-
trix a*(x,w). This compact representation of the effective coefficient enables us to
generate a*(x,w) very efficiently in the online stage. In the second part, we construct
a data-driven stochastic basis by applying the data-driven stochastic method [15] to
the effective equation (1.6). We first choose a set of forcing functions and solve (1.6)
with one forcing function. Then, we use the Karhunen-Loeve expansion of the solu-
tion to construct the stochastic basis { B;(w)}™,. An error analysis is used to evaluate
the completeness of the data-driven basis { B;(w)},. A greedy-type algorithm com-
bined with a two-level preconditioning [20] is used to reduce the computational cost.
First, we solve the error equation on the coarse grid for each trial function fi(z),
kE=1,2,--- K. We identify the trial function fy«, which gives the maximum error
and solve the error equation again with this trial function on the fine grid. After
that, the Karhunen-Loeve expansion of the residual error can be used to enrich the
stochastic basis. This process is repeated until the maximum residual error is be-
low the prescribed threshold e. When this updating process terminates, we obtain
a compact data-driven basis {B;(w)}", for the effective stochastic equation (1.6),
which applies to all forcing functions. The detailed implementation of this enriching
algorithm depends on specific numerical representation of the stochastic basis, which
will be elaborated in detail in Chapter 5.

In the online stage, we expand the solution of (1.6) in terms of the data-driven
stochastic basis, and solve a set of coupled deterministic PDEs to obtain the solutions.
As in the deterministic case, since we need to solve the equation many times with
different forcing functions but the same coefficients, our method in the online stage

offers considerable computational savings.

1.3.3 Stochastic case with multilevel Monte Carlo method

The multiscale data-driven stochastic method works very well under the assumption
that the ratio of the smallest scale and largest scale is not too small. However, for

tougher problems, the offline computational cost would become more and more ex-
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pensive, and the online coupled system might become bigger and bigger. In this case,
we need to find a more efficient method. We again consider the same elliptic SPDE
(1.5), and we are interested in the expected value of some functional of the solutions,
which could be the mean and high-order moments. In general, we could approximate
the expectations by the standard Monte Carlo method. For the multiscale problems,
we must choose the mesh size to be fine enough to control the bias error. Also, many
realizations are required to reduce sampling errors.

We have already proven that the solution to the effective equation is a good approx-
imation of the original solution. Thus, we could approximate the effective solution
and pick the mesh grid much coarser than the original fine mesh grid, which would
save a large amount of computational time a lot for each realization.

To further reduce the computational cost, we apply the multilevel scheme proposed
in [32] to the effective equation. We first divide the physical domain D into a number
of nested coarse mesh grids, i.e., D, C ... C Dy,_, C Dy, ... C Dy,,. Here, hy is the
[-th level mesh size (I = 0,1,...,L) and hg is the coarsest level mesh size. Denote
E[uj (z,w)] = E[uj, (z,w)] to be the mean of the numerical solution on mesh size y;

linearity of the expectation operator implies that

Elu} (2, w)] = Eluj(z,w)] + Y Eluj (z,w) — ui_y (z,w)]. (1.7)

=1

The key point is to avoid estimating E[u} (z,w)] on the finest level, but instead to
estimate it on the coarsest level. The reduction in cost associated with the multilevel
Monte Carlo method over the Monte Carlo method is due to the fact that most of
the uncertainty can be captured on the coarse grids (h >> hp), so the number of
realizations needed on the grid (h = hy) is greatly reduced due to the variance reduc-
tion between two consecutive grids. We will show the computational cost reduction
by several numerical examples.

We also design an efficient method in assembling the stiffness matrices on each
coarse mesh grid so that our method would provide significant computational time
reduction. Thus, compared with MLMC, we can perform the multilevel scheme on the

coarse mesh grids instead of fine mesh grids, although the solutions have multiscale
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information. As we can see in Chapter 6, the offline computation cost is cheaper than
the exact solver, and thus, it even works for the SPDE with one forcing term. In the
multiquery setting, we could gain more computational savings. Here, we also need
to mention that the MsMLMC could tackle more difficult problems, but the MsDSM
is more accurate and fast in the online stage when we have enough computational

resources.
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Chapter 2

Multiscale model reduction
method for elliptic PDEs

2.1 Derivation of effective equations

In this chapter, we consider the elliptic equation

—V - (a(z)Vu(z)) = f(z), =€ D, (2.1)

u(z) =0, x € 0D.

Let F(z) = (Fi(x),..., F4(x)) be the harmonic coordinate associated to (2.1) in d-

dimensional space. Then F, (k =1, ...,d) satisfies the following elliptic equation

~V - (a(x)VFy(z)) =0, z€D (2.2)

Fi.(z) = o, xr € 0D,

where x = (11, ..., 14). Write g = uoF~!. It is known that the solution u is smooth in
terms of the harmonic coordinates, i.e. g is in H?. If we could make a decomposition
F = g + x such that g is smooth and x is small with zero boundary conditions, then
we obtain by applying a formal Taylor expansion to g and ignoring the high order

terms,

io(F) = (g + x) ~ tio(g) + x" Viio(g). (2.3)
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Let up(z) = tp(g(z)), then we get

- 0
w(z) = fo(F) =~ uo(x) + XTa—;v%(x). (2.4)
Furthermore, we have
N Ox Ox e O

By substituting (2.5) into (2.1) and eliminating the high order terms involving O(x),

we get a new PDE for u

=V - (a(@)(I + 35 Vuo(z)) = f(z), =€ D,

up(z) =0, x € 0D,

where [ is the identity matrix.

We will show that ug is in H? so that we can solve the effective equation (2.6)
accurately on a coarse mesh. Moreover, we will show that the H' norm of the error,
u— (ug + XT?)—‘;VUO), is small. Thus we can approximate u by ug + XTg—gVuo with a
reasonable accuracy. This suggests the following steps of the model reduction method.
1. Solve the harmonic coordinate (2.2) on a fine mesh to get F.

2. Decompose F' = g + x, here g is smooth and y is small with y = 0 on 0f).
3. Solve the effective equation (2.6) on a coarse mesh to get wy.
4. Approximate u by ug + XTg—gVuo.

The first and second steps are offline steps. We can store the necessary information
so that we can compute uq efficiently for different f. The remaining online steps can
be solved very efficiently on a coarse mesh. So far we have not defined what we mean

by g being ‘smooth’ and x being ‘small’. We will discuss the guideline in defining g

and y, and give one effective construction in the next sections.

2.2 Analysis

In this section, we will perform error analysis to show that the H' norm of the

difference between the effective solution and the original solution is small provided
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that the L* norm of y is small. We will also prove that the solution to the effective

equation is in H? under some conditions. Before presenting the general analysis, we

will start with the simple 1-dimensional elliptic equation to illustrate the main idea.

2.2.1 The one-dimensional case

Consider the one-dimensional elliptic equation on a unit interval [0, 1]

(a(z)u'(x)) = f(z), =€ (0,1),

The corresponding harmonic coordinate F' is defined as

(a(z)F'(x)) =0, z € (0,1),

Our effective equation is given by

a(z) F'(z)(up(z) /g ()" = f(2), = e(01),
up(0) = up(1) = 0.

We can solve these equations analytically and get

ute) =G (Fla) [ reas— [T s6s + W),

F<x>:0i/%

i) = Co (st) [ 5015 = [ o615 + Cagto)).

(2.8)

(2.10)

(2.11)

(2.12)
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where

1
00:/ s (2.13)
0

a(s)
Cy = —/0 f(s)ds+/0 F(s)f(s)ds, (2.14)
Cy = —/0 f(s)ds—l—/o g(s)f(s)ds. (2.15)

Since f € L? and g is smooth, we can see that wg is smooth. Let u; = xuy/q’,

direct computations give

(U—UO —ul)' = C() ((01 —OQ)F/—Xf> (216)
We also have )
C;—Cy = / x(s)f(s)ds, (2.17)
0
and
- C%@ (2.18)

By the assumption a(z) > v > 0, we know that F” is bounded. Thus we can bound
|u — up — uy||gr in terms of ||x||r=. This implies that as long as we can decompose
F so that the oscillatory part y is small and ¢ is smooth, then ||[u — ug — uq||g is
small and we can solve uy on a coarse grid. In the next section, we will show that

this result is true for general multi-dimensional elliptic equations as well.
2.2.2 An error estimate for the general case

The main result of this section is the following theorem.

Theorem 2.1. Suppose u, F and uy are weak solutions to (2.1), (2.2) and (2.6)
respectively. Let uy = XTg—zVuo, F=g+x, and x =0 on 99). Then we have

Jg Ox _
lu=wo =willm ) < Clixllew) 15 eyl det (G ey o]y, (2:19)

where C is a constant that depends on d, D and a, tig = ugo g~ *.

Our goal is to estimate the H' norm of 2z = uw — ug — u;. The zero-boundary
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condition of y implies the zero-boundary condition of z, i.e. 2 € H}(Q). Since a is a
positive definite matrix whose eigenvalues have a positive lower bound, we conclude
that ||2]| () is equivalent to the energy norm, < aVz, Vz >, where < . > is the L”

inner product. Thus, it is sufficient to perform our estimate using the energy norm.

Proof. Define
z=u—uy—u € Hy(D),

OF Ox
p=aVu— a%a—v 0,
0 (0x
U _af)_x <a—gvuo) X
Then we have
OF Ox
and
aVz—p=aVu—aVuy— aVu, —aVu+ aa—F%Vuo = aa—X@Vuo —aVuy.
Oz dg Oz dg
Further, we note that
Ox Ox 0 (0x

As a result, we get

0 (0x
aVz—p= —a% <a—gVu0) X =1

Thus, we obtain

<aVz,Vz > = / Vz-aVzdx
D

:/(aVz—p)-Vzd:U—l—/p-Vzdx
D D

:/n-Vzdx—/(V~p)zdx
D D

= / n - Vzdz,
D
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where we have used (2.20). By using the ellipticity assumption of a, we get
CilIVzlZepy < < aVz, Vz > < Inll2p) I V2l 220y,
which implies
GV 20y < [1nll2p)-

Since z vanishes on 0D, Poincaré’s theorem gives
125 p) < CollVzl| L2y

Thus, we get
121l a2y < Clinllzzo,

where C' is a constant that depends on d, D and a only.
Let y = g(x) and 1o(y) = to(g(x)) = uo(x), then we have

0 (Ox
1= az; (v )

As a result, we obtain

dg Ox .
171l z2(py < CHCLHLw(D)HXHLW(D)H%HLW(D)H det(a—g)HLw(D)!Uo\H%D)-

The determinant of ‘3—; enters the last step of the above estimate due to a change of

variables from x to y. Combining all the results, we get

dg 0w .
12l (p) < Clixllz=) | 5 [l o)l det(a—g)HLw(D)\Ucﬂm(D)-
This completes the proof of Theorem 2.1. O

The error estimate given by Theorem 2.1 provides us with some insight how to

choose our decomposition F' = g + x. If ||x||r=(p) is small and g is smooth in the
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sense that both ||%||LOO(D) and || det(g—E)HLm(D) are bounded, then the approximation
is accurate provided that |to|g2(py is bounded. To evaluate |to|p2(p), we make a

change of variables from z to y = g(x) in equation (2.6), which has a non-divergence

form
- 32: Bij(y)% = f(y), (2.21)
where
5) = (14t GOIGD G ) oo™ ) 222
and
F = (1t 17 ) oo (2.23)

Note that the determinant term comes from the change of variables in the integral
since we consider weak solutions.

If the matrix B satisfies the Cordes condition (see e.g. [46]),

ZZJ‘:1 Bi2j (y) < 1
(> Bi(y)? “n—1+¢€

(2.24)

> i1 Bii(y)

for some € > 0 and M = sup(zn 5.0
i,5=1Dij

) < 00, we can apply Theorem 1.2.1 in [46]

to conclude that
|| < ————|fll (2.25)
Ug| g2 2(D)- .
olm2(p) = 7 T/ (D)

In general, the condition (2.24) is hard to verify. For d = 2, we have a more
concrete version for € and M. Suppose Apax(y) and Apin(y) are the maximum and
Amax (Y)

minimum eigenvalues of B(y), if 71 = sup o=y < oo and 7y = inf Amin(y) > 0, then

we can pick € = 17% and M = niz

Remark 2.1. Theorem 2.1 is an error estimate for the analytical solutions. One
should not use it to study the convergence rate of the numerical method. It does not
imply that the smaller ||x|/z=(p) is, the smaller the numerical error would become.
On one hand, if we choose x to be 0, in which case g = F', the error is zero in theory.
However, ¢ is no longer smooth and we will have to use a fine mesh to solve the
effective equation, which is not what our method is designed for. Similarly, if we let

x decay to zero, g will pick up more small scales and the derivative of g increases. In
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this case, we will not be able to obtain a small overall error if we use a coarse mesh.

From a view point of numerical implementation, it is usually the case that F' may
become degenerated in some localized region. The ‘smoothness’ of g depends on the
size of the numerical grid. To avoid degeneracy in constructing g, we can use a finer
mesh locally to capture some important information in certain local regions, and use
a coarser mesh in other regions. By doing this, ¢ is smooth when using a non-uniform
mesh, and we can guarantee that y is small. Choosing an optimal decomposition
which would lead to the smallest overall error requires a delicate balance in our

decomposition of F'. We will discuss more about this issue later.

Remark 2.2. In our analysis, we choose the homogeneous boundary condition. We
can still apply our method to nonhomogeneous boundary conditions, as long the the
boundary values are smooth, although we do not have the convergence analysis due to
the technical reason. When we use the finite element method, we can approximate the
boundary values by directly using the finite element basis functions on the boundary.
We do not need to transform the nonhomogeneous problem to the homogeneous one
by subtracting some function which has the given boundary values, since it will make

the new forcing term nonsmooth.

Remark 2.3. The solution in equation (2.6) is in H?, which is one order smoother
than the original solution, and that is why we call it the effective equation. However,
the coefficient a* = ag—fg—;’ is not smooth in general. For one-dimensional problems,
a* =al’/¢, and aF" is a constant according to our previous analysis. In this case, a*
is smooth since g is smooth. For high dimensional problems, a‘g—i is no longer constant,
so a* is not smooth. By the Cordes condition, we know that the smoothness of u°
comes from the fact that we can rewrite equation (2.6) in a non-divergence form. To
be more specific, the term a%—i is divergence free, so we have a non-divergence form
of equation (2.6).

Although the coefficient a* is not smooth, we can still solve equation (2.6) by the
standard finite element method on a coarse mesh grid. We need to take the average
of the coefficient over the coarse mesh grid. Thus, the finite element method is a good

tool for us. In fact, taking the average of the coefficient is done implicitly when we
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do integrations through the finite element basis functions.

2.3 Comparison with the homogenization method

In this section, we compare our method with the classical homogenization method.

First we briefly review the homogenization theory [10]. Consider

~V - (a(2)Vu(z)) = f(z), =€ D, (2.26)

u(z) =0, x € 0D,

where a(y) is a symmetric, positive definite matrix, and f € L. Furthermore, a;;(y)
are periodic smooth functions in y in a unit cube Y.

The homogenized coefficients are given by

1 o
f = — | g + —)d 2.2

where 7 (we use the notation x7, to distinguish from y?) is the solution to the periodic

cell problem

Yy - (a(y)Vyxi(y) = gy i) (2.28)

with zero mean, i.e. fY Xfldy = 0.

Let ug be the solution to the homogenized equation

=V (a*(2)Vuo(2)) = f(z), = €D,

(2.29)
up(z) =0, x € 0D.
Then we have

||U—UOHL2(D) < CEHUHHQ(D) (230)

Further, we define

;T Oug

= —)—(x). 2.31
() = (D) goo(a) (231)

Note that ug + eu; # 0 on D, so we introduce a first order correction term 0,
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satisfying
—V - (a(®)Vl.(x)) =0, ze€ D,
(a(2)VOc(x)) (2.32)
96(1‘) = Uy, xr € oD.
Then it can be shown that (see e.g. [48])
||’LL — Uy — E(Ul - 96)||H1(D) S CEHUJOHHQ(D)‘ (233)

The constant C' is independent of ug and e.

One important advantage of our method is that we can take care of a continuum
of scales and do not require periodicity on the microstructure while homogenization
theory usually requires scale separation and periodic structures. Moreover, one must
include a boundary correction term 6, to achieve H! convergence in the homoge-
nization method. This correction term must be solved on a fine mesh grid and is
expensive to compute. In comparison, there is no need to compute a correction term
in our method since we require y = 0 on 9D.

If only L? convergence is needed, both methods do not need correction terms,
and the homogenized coefficients are easier to compute (see (2.27) and (2.28)). Our
method requires two global solutions on a fine mesh. However, under the conditions
for homogenization (periodic smooth a(y)), we can modify our method easily so that
we can compute the harmonic coordinates with the same cost as the homogenization
method. Specifically, the harmonic coordinate F' satisfies V - (a(?)VF(x)) = 0 and

F =g+ x. If we set g =, we get the equation for y as follows

V- @V e) = - (). (2.31)

Now we do not require Y = 0 on the boundary, assume x’ to be periodic in Y and
impose the constraint [, x?(z)dz = 0. Equation (2.34) is still global, but comparing
(2.34) with (2.28) gives x(z) = exn(%). So we can solve (2.28) instead of (2.34).

Following the proof in Theorem 2.1, we can obtain the same error estimate as (2.30).
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2.4 Numerical Implementation

2.4.1 Decomposition of the harmonic coordinates

In this section, we discuss how to construct the decomposition of the harmonic coor-
dinates. As we know from the previous sections, the decomposition F' = g + x plays
an essential role in our method. Here we discuss some guidelines in choosing such a
decomposition and how to construct it numerically.

The first criterion in choosing our decomposition is to make sure that ¢ is smooth
and invertible. We need to define what we mean by ¢ being smooth. The smoothness
is relative to the coarse mesh that we will use to solve the effective equation. In our
numerical implementation, we use the standard linear finite element method to solve
the effective equation. Thus, any linear combination of the nodal basis on the coarse
mesh could be considered as a smooth function, and we can choose ¢ in this form.

The second criterion of our decomposition is to make y small. If we choose the
nodal values of g close to those of F, then we expect that the difference between
the two would be small. This suggests a natural way to define g, i.e. we can choose
the nodal values of g at the coarse mesh points to be the same as F' at these coarse
mesh points. We can then interpolate g from the coarse mesh points to the fine mesh
points using the linear interpolation. Once we have defined g globally through linear
interpolation, we have also determined y = F'— g. Since F' is linear on the boundary,
such decomposition guarantees that ¢ = F’ on the boundary, which implies that y =0
on 0D.

We also have another guideline to determine whether the decomposition is effective
or not from the view point of numerical implementation. Note that u, = g solves the
following equation exactly:

—V - (a(x)(I + X2y, (z)) =0, z€D,

or 09 (2.35)

ug(x) =, x € 0D.

If g is smooth enough, we should be able to solve the above equation (2.35) accurately

on a coarse mesh. Thus, we can use the difference between the numerically computed
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uy and g to determine whether we obtain a good decomposition for F'. The smaller

the difference is, the better the method would perform.

2.4.2 Numerical results

We perform several numerical experiments to test our multiscale model reduction
method (MsMRM) for the elliptic equation (2.1). We take D = [0, 1] x [0, 1] in 2-
dimensional space. Since it is difficult to construct a general enough test problem
with an analytic solution, we use well resolved numerical solutions in place of exact
solutions. In our computations, we use the standard linear finite element method
(FEM). We compare the solution on a 256 x 256 mesh and a 512 x 512 mesh. The
L? relative error is less than 1 x 1073 and the H! relative error is less than 2 x 1072,
So the numerical solution on the 256 x 256 mesh is well resolved by the mesh and
we can consider it as the reference solution. To implement our method, the coarse
meshes are chosen to be 8 x 8, 16 x 16 and 32 x 32 respectively, and we compare the
results on different meshes. As we mentioned, the forcing terms should be resolved
by the coarse mesh, so we choose f(x,y) € {sin(k;7x + ;) cos(m;my + n;) }icy, where
k;, l;, m;, and n; are random numbers uniformly distributed over the interval [0, 0.5].

We also choose the FEM as the benchmark and compare our method with it.

Example 2.1. We consider the case when the elliptic coefficient is a scalar defined

by
1 1
al@,y) 2416 sin(2m(x —y)/e1) * 4 4 1.8(sin(2mzx/e9) + sin(27my/e€2))
1
T T02 T 18sm(27(z — 05)/63))(2 + 18sin(27(y — 0.5)/es))
where ¢, = %, €y = ﬁ, €3 = %.

In this example, f(z,y) = sin(0.487x 4 0.17) cos(0.297y +0.11). In Figure 2.1-2.2,
we plot the coefficient and the decomposition. Relative errors are shown in Tables

2.1 and 2.2. From these figures, we can see that the coefficient oscillates very rapidly,

which generates small scale features in the solution (e.g. g—i). The smooth part of

F, g, is a summation of some piecewise linear nodal functions, see Figure 2.2. The

magnitude of x is indeed small (around 1072), see Table 2.4. Thus, the conditions of



26

Theorem 2.1 are satisfied. We observe convergence in both L? and H! norms.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) a (b) ue

0.8

0.6

0.4

0.2
(a) §E- (N = 16) (b) Z2- (N = 16)

Figure 2.2: Example 2.1 - The derivative of the function F' and g (N. = 16)

Remark 2.4. We remark that Theorem 2.1 does not give a specific rate of con-
vergence. It is worthwhile to make the following observations on the convergence
property of our method. Denote the exact solution as wu., the solution constructed
from the effective equation as u,, and its numerical approximation as u,. Then the
error consists of two parts, i.e. |[ue — Upm|| + ||tm — uy,||. The first part is controlled
by Theorem 2.1, and it gets smaller as we use a finer size. For fixed u,,, the second
part converges at order O(h?) (L? norm) or order O(h') (H' norm). However, as

the mesh size h varies, we have different decompositions, so u,, is not fixed. Thus,



Table 2.1: Example 2.1 - L? norm relative errors of the solution
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MsMRM FEM
N.=8 [ 258x1072 [ 1.16 x 10T
N.=16 | 727 x 1072 | 6.60 x 1072
N.=32]345x1072 | 3.568 x 1072

Table 2.2: Example 2.1 - H' norm re

lative errors of the solution

MsMRM FEM
N,=8 [ 167x10°T [ 331 x10° T
N,=16 | 826 x 1072 | 2.44 x 1071
N.=32]400x10"2 ] 1.74 x 1071

the overall rate of convergence is not necessarily O(h?) or O(h'). In all our numer-
ical experiments, we observe different rates of convergence for different mesh sizes,
especially for the L? norm. On the finest mesh, the error will eventually converge to
zero (if we take the numerical solution on the finest mesh to be the true solution).
However, we want to perform our method on a coarse mesh instead of a fine one. Our
main objective is not to find the optimal convergence rate, but to reduce the error
on a given coarse mesh. So we are more interested in the error itself rather than the

convergence rate. It is important not to be confused with these two issues.

Example 2.2. We choose an anisotropic field a as a(z,y) = |0(z,y)| + 0.5. Here
O(x,y) is defined on a 23 x 23 grid over the domain D, and for each grid cell, the
value of 6(z,y) is distributed according to the standard normal distribution (see
Figure 2.3a). The multiscale coefficient, a, is very rough and does not satisfy scale
separation or have any periodic structure. Compared with the first example, both the
coefficient and the solution are more singular. This presents a challenging test problem
for our method. In this example, f(z,y) = sin(0.337z + 0.43) cos(0.437y + 0.38). As
we can see from the error study presented in Table 2.5-2.6, our method still gives a

satisfactory convergence rate and the relative errors are quite small.

Example 2.3. Next, we consider an example that has a discontinuous and high

Table 2.3: Example 2.1 - L* norm of the function x

X1 X2
N.=8 [ 1.94x1072 | 1.95 x 10?2
N.=16 | 1.30 x 1072 | 1.26 x 1072
N.=32|731x1072% | 7.12x 1073
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Table 2.4: Example 2.1 - L? norm and H! norm relative errors of the function g (N. = 16)

L? norm H'! norm
g1 (N.=16) | 223 x 10~ % [ 3.78 x 107
g2 (N.=16) | 2.31 x 107% | 3.89 x 1073

(a) 55 (N = 16)

0.6 0.8 1

(b) ue

1

(b) 221 (N, = 16)

Figure 2.4: Example 2.2 - The derivative of the function F' and g (N, = 16)

Table 2.5: Example 2.2 - L? norm relative errors of the solution

MsMRM FEM
N.=8 [3.02x1072 | 1.06 x 107!
N.=16 | 7.33 x 1073 | 6.89 x 1072
N.=32]350x1073 | 3.89 x 1072

Table 2.6: Example 2.2 - H' norm relative errors of the solution

MsMRM FEM
N.=8 [1.66x 1071 ] 3.38x 10T
N, =16 | 847 x 1072 | 2.67 x 1071
N,=32]396x10"2 ] 1.95x%x 10~ 1

1.4
13
12
11

0.9
0.8
0.7
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Table 2.7: Example 2.2 - L* norm of the function yx

X1 X2
N.=8 [242x1072 [ 2.40 x 1072
N.=16 | 1.52x 1072 | 1.36 x 102
N.=32|720x10"3 | 7.56 x 1073
Table 2.8: Example 2.2 - L? norm and H'! norm relative errors of the function g (N, = 16)
L? norm H'! norm
g1 (N.=16) | 1.86 x 10~% | 4.02 x 1073
g2 (N.=16) | 211 x 10~% | 4.49 x 1073

contrast coefficient (see Figure 2.5a). The contrast in the coefficient is as high as 10°.
The channel is 0.02 wide in both z and y directions, and 0.5 long in x direction and
0.3 long in y direction. Inside the channel, the coefficient is very large (= 10°), while
the coefficient is small outside the channel (= 1). There has been a lot of interest
in studying multiscale problems with high contrast coefficients in recent years, see
e.g. [18, 23, 22, 31]. This is known to be a very difficult problem. In this example,
fla,y) =

problem, our method still captures the important feature of the solution accurately.

sin(0.337z 4 0.43) cos(0.437y + 0.38). Even for such a challenging test

As we can see from Table 2.9-2.10, the convergence rate remains to be very robust

and the relative errors are very small.

4 -3

0 )180 x 10
0.2 8
0.4 6
0.6 4
0.8 2

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) a (b) ue

Figure 2.5: Example 2.3 - The coeflicient a and the exact solution u.
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Figure 2.6: Example 2.3 - The derivative of the function F' and g (N, = 16)
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Table 2.9: Example 2.3 - L? norm relative errors of the solution

MsMRM FEM
N.=8 [388x1072 | 1.30 x 107!
N.=16 | 9.06 x 1073 | 8.84 x 1072
N.=32 ]399 x 1073 | 3.59 x 1072

Table 2.10: Example 2.3 - H! norm relative errors of the solution

MsMRM FEM
N.=8 | 200x 10T | 3.04 x 10 ¢
N.=16 | 823x 1072 | 22T x 10~ ¢
N.=32 396x10 2| 1.34x 10 ¢

Table 2.11: Example 2.3 - L* norm of the function y

X1 X2
N.=8 [1.63x107 1] 1.18 x 1071
N.=16 | 7.26 x 1072 | 6.58 x 1072
N.=32|580x10"2 | 3.64 x 1072

Table 2.12: Example 2.3 - L? norm and H' norm relative errors of the function g (N. = 16)

L? norm H' norm
g1 (N, =16) | 1.60 x 1073 | 1.04 x 10~
g2 (N.=16) | .11 x 1073 | 6.82 x 1073
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Example 2.4. We consider the elliptic PDE with the following coefficient

a(x,y) = exp (Z w;(a; sin(2mz Jw;) + B cos(27rx/wi))) ,

=1

where a; and f3; are independent uniform random variables in [—v/3, /3],

and (wy, ..., wy0) = (1 il i1l 1ol i). As we can see from Figure 2.7a, the

203157112 137 177 192 237 29

coefficient varies rapidly in x direction, and it has many layers, which makes the prob-
lem very difficult to solve. In this example, f(z,y) = sin(0.447z + 0.46) cos(0.287y +
0.26). For such a problem, our method works very well and captures the small scales
in x direction. As we can see from Table 2.13-2.14, the relative errors are very small.

We also note that there is no variation in y direction, so the norm of y, and the

numerical errors for g, are 0, as expected (Table 2.15-2.16).
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15
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0.8
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0 0.2 0.4 0.6 0.8 1

Figure 2.7: Example 2.4 - The coefficient a and the exact solution u,

Table 2.13: Example 2.4 - L? norm relative errors of the solution

MsMRM FEM

N.=8 [243x1072 ] 1.35 x 1071
N.=16 | 729 x 1073 | 4.91 x 1072
N,

=32 [3.03x107% | 1.18 x 1072

Example 2.5. Finally, we consider an elliptic problem that also has a discontinuous
coefficient with both channels and many small inclusions (see Figure 2.9a). Inside
these inclusions and channels, the coefficient is 50, while outside them the coefficient

is 1. This is a even harder problem than Example 2.3, since the discontinuities occur



32

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(@) 551 (N = 16) (b) G4 (N, = 16)

Figure 2.8: Example 2.4 - The derivative of the function F' and g (N. = 16)

Table 2.14: Example 2.4 - H! norm relative errors of the solution

MsMRM FEM
N, =8 [ 1.95x 10T [ 390 x 10~ T
N,=16]9.22x 1072 | 2.36 x 1071
N, =32]415%x10"2 | 1.0l x 1071

Table 2.15: Example 2.4 - L*> norm of the function y

X1

N.=8 [ 3.95x1072
N.=16 | 2.17 x 1072
N.=32|674x1073

o|o| ol

Table 2.16: Example 2.4 - L? norm and H' norm relative errors of the function g (N. = 16)

L? norm HT norm
g1 (N.=16) | 7.55 x 10~% [ 7.95 x 10~
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in many regions. In this example, f(x,y) = sin(0.357z + 0.23) cos(0.217y 4 0.06). As
we can see from Table 2.17-2.18, our method still provides satisfactory results and
the errors are small, which shows that our method can be used to solve challenging

multiscale problems without scale separation and with discontinuous coefficients.

0 50
0.2 40
0.4 30
0.6 20
0.8 10

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) a (b) ue

Figure 2.9: Example 2.5 - The coefficient a and the exact solution u,

ﬂ

(a) 55 (N = 16) (b) §2 (N. = 16)
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0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 1

Figure 2.10: Example 2.5 - The derivative of the function F' and g (N, = 16)



Table 2.17: Example 2.5 - L? norm relative errors of the solution
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MsMRM FEM
N, =8 [ 729x1072 | 9.84 x 10~ !
N.=16 | 368x 1072 | 3.74 x 1071
N.=32]112x1072 | 1.70 x 1071

Table 2.18: Example 2.5 - H' norm relative errors of the solution

MsMRM FEM

N.=8 [ 1.78x1071 [ 9.90 x 10T
N.=16 | 9.16 x 1072 | 5.38 x 107!
N.=32]628x10"2 | 3.56 x 107!

Table 2.19: Example 2.5 - L norm of the function x

X1 X2
N.=8 [ 211 x1071 ] 6.44 x 1072
N.=16 | 1.14 x 1071 | 3.46 x 1072
N.=32|868x1072 ] 2.19 x 1072

Table 2.20: Example 2.5 - L? norm and H! norm relative errors of the function g (N, = 16)

L? norm HT norm
g1 (N.=16) | 1.43 x 1073 | 1.03 x 1072
g2 (N, =16) | 1.59 x 1073 | 1.45 x 102




35

Chapter 3

Multiscale model reduction
method for time-dependent PDEs

3.1 Effective equations

We could apply a similar idea to derive effective equations for time-dependent equa-

tions with time-independent coefficients.

3.1.1 Parabolic equation

We first consider a parabolic equation of the form

wi(w,t) = V - (a(0)Vu(e, 1) = f(z), @€ D,te(0,T]
u(z,t) =0, x € 0D,t e (0,T], (3.1)
u(z,0) =0, x€D.

We can define the harmonic coordinates F' in exactly the same way as we did for the

elliptic equation. We then decompose F' = g + x and solve the following effective

equation on a coarse mesh

(wo)i(z,t) — V- (alz)(I + g—;‘g—;”)Vuo(x,t)) = f(z), x€ D,te(0,T],
uo(z,t) =0, xedD,te(0,T], (32

up(z,0) =0, reD.

Again, we approximate u by ug + XTg—zVuo.
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3.1.2 Convection-diffusion equation

Next, we consider the convection-diffusion equation with multiscale velocity field (see

also [47])

v(z,t) + u(z) - Vo(x,t) = V- (aVu(z,t)) =€ D,te (0,T],
v(z,t) =0, z e dD,te (0,T) (3.3)

v(x,0) = ¢(), x €D,

where u(x) is a velocity field that satisfies V - u(x) = 0 and « is a positive diffusion
constant.
We define the corresponding harmonic coordinates as follows

u(z) - VFy(r) =V - (aVEF(x)), v€D (3.4)

Fk<I> = Tk, x € 0D.
By decomposing F' = g + x as before, we obtain the following effective equation

;

(vo)¢(x,t) + u(x) - Vog(z,t) =V - ((ag—i — UXT)g—;VUO(m,t)), x € D te(0,T],

or equivalently

n

() = 32 1(@%—5 —ux)y G st in D x (0,7]
1,],K=
vo(x,t) =0, x € 0D, te (0,7T],
L vo(,0) = 6(a), veD.
(3.5)

Finally, v is approximated by vy + XTg—szo.

3.1.3 Hyperbolic equation

The multiscale model reduction method proposed in this paper can be extended to s-

tudy hyperbolic partial differential equations with multiscale coefficients. Specifically,
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we consider the following hyperbolic equation

(
utt(ZE,t>—v((I(ZE)VU([E,t))Zf(ZE), reDte (07T]7
— r€aD,t e (0,T],
(3.6)
u =0, x €D,
\U/t = 0, reD.

It is straightforward to generalize the derivation of our effective equation to the hy-

perbolic equation. The effective equation takes the form

((uo)tt(:c,t) =V (a(z)(I + g—;‘g—;f)Vuo(:c,t)) = f(x), x€ D,te(0,T],

uo(z,t) =0, x € 0D,t e (0,T], (37)
up(z,0) =0, x €D,

K(uo)t(ac,O) =0, x €D,

where F' = g + x is defined in the same way as before.

3.2 EFError estimate

For the parabolic equation, we have the following theorem.

Theorem 3.1. Suppose u, F' and uy are weak solutions to (3.1), (2.2) and (3.2)
respectively. Let uy = XTg—gVuo, F=g+x, and x =0 on dD. Then we have

max lu — uo — w1 | 2y + ||u — uo — usl| 20m:m1(D))
Jdg Ox . .
SCHX\|L°°(D)||%||L°°(D)|| det(a—g)||L°°(D)(\U0|H2’1(0,T;D) + [[(@0)¢l| 20,711 (D)))s (3.8)

where C' is a constant that depends on d, D and a, 1y(y,t) = to(g(x),t) = ug(x,t) and
T T
HUH%Q(QT;H%D)) = [, JpW+|Vul*)dzdt, ’uliﬂvl(o,T;D) = [, [p((w)*+|VVul?)dzdt.
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Proof. Let z = u — ug — uq, then z =0 at t = 0 and on 0D. We define

oF 0x
p=aVu— a%a—gVuo,
0 (0x
m —a% <8_gvu0) X

Then we have

aVz —p=aVu—aVuy— aVu, —aVu+ aa—@Vuo

Oz dg
3
= —aVuy — aVu; + aa—a—xVuo
oz dg

o (0
=—a (a—xVu()) X =",
9

and

Viep=(uw—f)— (o) — f) = w — (o)t = 2z + (1) = 2z — o

Then for any 7 € (0,7 we have

/ / Vz-aVzdxdt
o Jp
:/ /Vz-(aVz— )dxdtJr/ /Vz pdzdt
o Jp
:/ / Vz'mda:dt—/ / (V- p)dzdt
o Jp
:/ / Vz - mdedt —/ /(zzt — zmp)dxdt
o Jp o Jp
T 2 2 T
:/ / Vz-mdxdt—/ (Z (. z) _Z (O’$)> dx—i—/ / znodaxdt
o Jb D 2 D
:/ / Vz-mdadt — —/ (1, z)dx —i—/ / znodadt.
o Jp
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Rearranging the above equation, we get

1
—/ 2(r, x)dx—i—/ /Vz aVzdxdt
/ /Vz mdxdt—i—/ /zmdxdt
S/ /|Vz-n1|dxdt+/ /|z772|dxdt
o Jp o Jp
T T
S/ /|Vz-n1|d:rdt+/ /|zn2]dxdt.
o Jp o Jp

Taking the maximum over 7 € (0,7, we have

1 T
max—/ 22(r, x)d:z:—l—/ /Vz‘aVzda:dt
011 2 Jp o Jb

T T
§/ /|V2-771|dxdt—l—/ /|zn2|dxdt
o Jp o Jp

SHVZ||L2(0,T;D)HThHLQ(o,T;D) + HZHLZ’(O,T;D)||772||L2(0,T;D)-

where the second inequality is due to the Holder’s inequality.

Application of the Poincaré’s inequality gives

2
(maxllellzor + lelisoranon)

1 T
§C<max = / 2(r,2)dx + / / Vz- aVzd:pdt)
0112 Jp o Jp

§C<HVZ||L2(0,T;D) H771 ||L2(0,T;D) + HZ||L2(0,T;D) ||772||L2(0,T;D)>

<C(maxllzllzo + lellzormoy ) (Inllzoro + Inllzors ).

Finally we have
I(%E:%r?]( |zllz2py + |2l 20,7580 (DY)

<C(lImilleze o 72207

Ox . _
<Cllxllze= o H HLoo Hdet(ag)HLoo p)([to|m210.1:0) + [[(@0):l| 20,101 (D))

where C'is a constant that depends on d, D and a.
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For the convection-diffusion equation, we have the following theorem.

Theorem 3.2. Suppose v, F' and vy are weak solutions to (3.3), (3.4) and (3.5)
respectively. Let v| = XTg—gg”VUO, F=g+x, and x =0 on 0D. Then we have

f(%%?]( v —vo — villz2py + ||v — vo — vil| L2071 (D))
dg ox . -
§C||XHL°°(D)H£||L°°(D)|| det(a—g)||L°°(D)(|U0|H2’1(0,T;D) + 1(D0)ell 20,7501 (D)5 (3.9)

where C' is a constant that depends on d, D, u, and o, 0y(y,t) = Vo(g(z),t) = vo(z,1).

The proof of the above theorem is analogous to that of Theorem 3.1. We omit the
proof here.

In Theorems 3.1 and 3.2, the quantities |tg|g2.1(0.7,p) and |To|g21(0,r;p) could be
bounded since the equations in both cases can be written in non-divergence forms in
variable y = g(z).

For the parabolic equation, the equation has a form similar to that of the elliptic

equation
(o)~ > By) 2 — i) (3.10)
U e T gy, |

where B and f are the same as those in (2.22) and (2.23).

For the convection-diffusion equation, the effective equation is

OF 0
(vo)t +u - Vg =V - ((a% — uxT)a—zVU(]) . (3.11)
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Note that

n

I ) OF _ 1 g &v
V(2 )P 3 2 ), 2 P

Ox . Oz u F  Ogr 0%
—(aAF — - 2570 9z _ 99k 9 Vo
(a u x) Vg + Z (cv ux” )ij D; 0,001

i j k=1
. OF Ox . Ox u oOF . Ogr 0%*vg
= Ox 8m)ﬁgvvo * i7§l(a oz X )i Jz; 0g;0gy,
090z = F . Ogr 0%vg

o dg Vo + ijzk;1(a or X Ji dz; 0g;0gy,

o " 8F T agk 821)()

=Uu VUO + ij;ZI(a O —ux )1] axl ag]agk .

So the equation can be written as

(To) _ZH:B..( )%_0
0/t = ij\Y 8%6:% — Y

where
ox. B OF 7y dg

Bly) = (ldet(z)l(ag0 —uxt)g ) e 9 (v)-

In both cases, if the corresponding coefficient matrix B satisfies

S B+l 1

ij=1

(i Bu+1)2 ~ nte€

(3.12)

(3.13)

(3.14)

where n is the dimension and € is a positive number, we can prove that |to|g21(0,7;p)

(or|Do| g21(0,1;,p)) is bounded (see e.g. [46]).

As for the terms ||(o)¢|| 2(0,m;m1(py) and [[(D0)¢|| 2(0,r;11(D)), We cannot provide an

analytical bound based on the assumptions that we have so far. Since these terms

contain the spacial gradient of (ig): (or (79):), we need stronger requirements on the

coeflicients as well as the source terms. We will monitor these terms in the numerical

experiments. As we will see in the numerical examples, these terms are bounded in

the examples that we consider.
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The convergence analysis of the effective equation for the hyperbolic equation is
more complicated than that for the equations that we have considered so far. A
straightforward generalization of our previous convergence analysis to the hyperbolic
equation would require a stronger regularity assumption on the effective solution.
However, our numerical results indicate that our effective equation still gives a very
accurate approximation to the multiscale solution of the hyperbolic PDE in both L2

and H! norms.

3.3 Numerical results

In all the numerical examples for the time-dependent PDEs, the physical domain is
chosen to be D = 8 x 8, and we choose a 256 x 256 mesh for the well-resolved solution.
We compute the solutions on 8 x 8, 16 x 16 and 32 x 32 meshes using our multiscale
model reduction method (MsMRM), and compare the results with the traditional
finite element method (FEM).

2+sin(27wz/€1) 2+cos(2mz/€2)
2+4-cos(27y/e€1) 2+sin(27y/e2)

with €; = %, € = 1—19 and f = 1. We compute the solution until 7" = 0.1. Table 3.1-3.2

Example 3.1. A parabolic equation. In this example, a =

show the errors versus time with different coarse grid meshes. As we can see from
the tables, our method gives qualitatively the same performance as for the case of the
elliptic equation. In Figure 3.3, we show the quantity [, |V (tg)¢|*dz as time varies.
Although we do not have an analytical bound for it based on the limited assumptions,

we can see that it remains bounded.

0.4 4
OI08 00 10000 20N

182 98 269¢ 392 98288 282 |

S N R
838 80 283880 5
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Figure 3.1: Example 3.1 - The coefficient a
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Table 3.1: Example 3.1 - L? norm relative errors of the solution at 7' = 0.1

MsMRM FEM

N,.=8 | 274 x1072 | 9.79 x 102
N, =16 | 794 x 1073 | 5.83 x 102
N, =321]263x10"3 | 3.37x 1072

Table 3.2: Example 3.1 - H' norm relative errors of the solution at 7" = 0.1

MsMRM FEM
N.=8 [ 149x1071 | 326 x 107!
N.=16 | 723 x 1072 | 248 x 10!
N.=32352x10"2 | 1.77 x 1071
6
5H
aty

‘\
2 .
1 ~~~
o . . T S Semmcamaa
0 0.02 0.04 0.06 0.08 0.1

Figure 3.3: Example 3.1 - [, |V(ao):|*dz at N, = 16
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Example 3.2. A convection-diffusion equation. In this experiment, we choose the

. . 1 1 . _1
stream function 1/) " (2+sin(27z/€1))(2+cos(2my/€1)) + (2+cos(2mx/e2))(2+sin(2my/e2)) with €, = 7
and e, = 75 to generate the velocity filed. ug = (¥, —t,) and u = H;OO‘T‘LON . The initial

condition is ¢ = zy(1 —x)(1 —y), and @ = 0.05. The end time is 7' = 0.1. Figure 3.5
shows the errors versus time with different coarse grid meshes. Figure 3.6 shows the
boundedness of [, |V ();|*dz. Table 3.3-3.4 shows the error at 7= 0.1. In this case,
we observe that the errors are larger than those presented in the previous examples
for the elliptic and the parabolic equations. The reason for this behavior is due to
a mild degeneracy of ellipticity since the diffusion coefficient « is relatively small in
this convection diffusion problem. From our convergence analysis, the error will be
amplified by the smallest eigenvalue of the elliptic coefficient. In this case, the smallest
eigenvalue is «, which is smaller than the ones we consider in the previous example.
Given that the convection diffusion equation presents a tougher test problem for our

method, the performance of our method is still quite encouraging.
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Figure 3.4: Example 3.2 - The velocity fields u; and us

Table 3.3: Example 3.2 - L? norm relative errors of the solution at 7= 0.1

MsMRM FEM

N.=8 | 314x10°2 | 3.80 x 102
N.=16 | 851 x 1073 | 2.78 x 102
N.=232 | 258 x 1073 | 1.62 x 1072

Example 3.3. A hyperbolic equation. In this example, we choose the coefficient as

a = 5+sin(2rz/€) 4 cos(2my/e1) + cos(2ma /€2) +sin(2my /€2), where €1 = 1, €3 = 15,
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norm relative errors of the solution at T'

=0.1
MsMRM FEM
N.,=8 | 1.52 x 1071 [ 4.53 x 10T
N.=16 | 7.04 x 1072 | 3.97 x 107!
N,=32 | 3.57 x 1072 [ 3.12x 10T
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Figure 3.5: Example 3.2 - Relative errors of the solution
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norm

Figure 3.6: Example 3.2 - [, |[V(7):|*dz at N, = 16

and f = 1. The end time is T' = 0.5. Figure 3.8 shows the errors versus time with
different coarse grid meshes, and Table 3.5-3.6 shows the error at 7' = 1. As we
can see from Figure 3.8 and Table 3.5-3.6, our method gives first order convergence
in the H' norm and better than first order of convergence in the L? norm, which is

consistent with the convergence rates that we observed earlier for elliptic and parabolic
equations.

N Wb~ OO N 0

Figure 3.7: Example 3.3 - The coefficient a

Table 3.5: Example 3.3 - L? norm relative errors of the solution at 7' = 0.5

MsMRM FEM

N.=8 [ 717x1072 | 1.67 x 102
N, =16 293 x10°2 [ 1.25 x 101
N,=32]791x10"3 | 7.60 x 10~2
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solution at T'= 0.5
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Chapter 4

Modified multiscale model
reduction method for deterministic

PDEs with locally degenerate
coefficients

4.1 Difficulties with locally degenerate coefficients

The model reduction method does not apply very well to elliptic problems with de-
generate coefficients. Denote v = inf eq{Amin(z)} > 0. We can show that the error
produced by the model reduction method is proportional to % In the case v < 1,
the error will become very large and the model reduction method will not produce
acceptable results. This is an essential difficulty for almost all other multiscale meth-
ods. Thus, upscaling multiscale elliptic problems with degenerate coefficients presents
a considerable challenge.

Our error analysis shows that when v is small, a major source of error is related
to the harmonic coordinates. To reduce the upscaling error, we propose to use the
harmonic coordinates as a basis to approximate the residual error and perform error
correction. Specifically, we first implement the original model reduction method, and
then use the harmonic coordinates to approximate the residual error to obtain the
improved upscaled solution. We will show that by doing this, the accuracy of the

modified model reduction method is significantly improved.
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4.2 Analysis for one-dimensional elliptic PDEs

Recall that for the one-dimensional case, we have

The effective equation is

a(x)F'(x)(up(2) /g (x)) = f(z), =< (0,1),

And the solutions are

where

Denote uy; = xug /g, we give

(u—ug —u1) = Co ((Cr = Co) F' — X f).

(4.1)

(4.10)
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First of all, since f € L? and g is smooth, (4.6) implies that ug is smooth. Next, we
study the error equation (4.10) term by term. Subtracting Cy (4.9) from C; (4.8) we
get C1 —Cy = fol X(s)f(s)ds. Since y is small, we conclude that (C; —Cy) and x f are
small. We assume that a(z) is small only in a localized region of D so that fol % is
O(1). This is a reasonable assumption in real applications since the degenerate region
is often restricted to some very localized area. Under such an assumption, the term
Cy is bounded. Now we just need to deal with the term involving F”’. Differentiating

(4.5), we obtain
F' = (Coa(z)) ™t (4.11)

By our assumption, F’ could be large in some localized regions and thus the L? norm
of (u —up — uy)" would be large due to the effect of F’. This is the major source of
error.

In order to control the H' norm of u — uy — uy, we need to handle the F’ term in

(4.10). Note that

(U — Ug — U1 — 00(01 — CQ)F)I
=Co((C1 — Co)F" = xf) = Co(Cy — Co) I

This suggests that if we add a suitable multiple of F' to our approximate solution
ug + u1, the error would drop significantly to the desired level. On the other hand, we
require our solution to vanish on 9D, but F' = z # 0 on the boundary. To overcome

this difficulty, we use F' — x to correct the residual error. This gives rise to

(v — g —uy — Co(Cy — Co)(F —x))
=Co((Cr — C)F" = xf) — Co(C1 — Co)(F" = 1)
=Co((C1 = C2) — xf)- (4.13)
Such an approximation is more accurate according to our assumptions. Comparing

(4.13) with (4.10), we can see that after adding a suitable multiple of F' — z, the F’

term appearing in (4.10) is now replaced by 2’ = 1 in (4.13). This suggests that we
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use the harmonic coordinates to provide an error correction to the upscaled solution.
In the two-dimensional space, the harmonic coordinates form a basis for the pseudo-
null space. The original model reduction method cannot capture the effect of this
null space since V- (aVF) = 0. Since the major source of error is proportional to VF
which is large in the degenerate regions, we need to correct this error. Luckily the
harmonic coordinates on the boundary (z|sp) have a natural smooth extension to the
whole domain (z|p). We can use F' — z as a good candidate to improve the upscaled
solution. By appropriately choosing a constant vector ¢, the effect of VF in the error
term will be replaced by Va = I, which is bounded. This leads to a significant drop
in the error. To summarize, we have the following modified model reduction method:

1. Apply the original model reduction method to get an approximation u*.

2. Choose a suitable constant vector ¢ € R? and update the approximation by
u* + c(F — ).

Next we will discuss some implementation issues of the modified model reduction
method. An important question is how to choose ¢ to reduce the residual error. We
can consider F' — x as the extra basis functions and substitute u* + ¢ (F — ) into
the original PDE (2.1) to solve for ¢. We will work on a weak form of (2.1). Suppose
¢ is a test function. Multiplying ¢ to both sides of the equation and rearranging the

equation, we have

c’ / VoraV(F — z)dx = / fodz — / Vo' aVu*dz. (4.14)

Since ¢ has two components, we also need two different test functions. A natural
choice for the test functions would be F' — x. Note that although the integration is
performed on the whole domain D, the dimension of the linear system is very small,
d = 2. Thus the additional cost of this error correction step is negligible. Substituting
¢ = F — x into (4.14) and using V - (aVF) = 0, we can further simplify (4.14) as
follows

( / ol — VF)dx) - / (F— ) fdz + / aVi'de. (4.15)

In the next section we will show that such a numerical scheme works very well for

some elliptic problems.
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4.3 Generalization to parabolic equations

We can also apply the modified model reduction method to time-dependent prob-
lems such as parabolic equations. As discussed before, we could obtain the effective
equations and solve for the effective solutions.

For locally degenerate problems, the approximation does not work very well and we
need to fix it. Motivated by the elliptic equations, we introduce an error correction
of the form u* + c¢(t)T(F — z). By using a similar argument, we substitute this
approximation into the PDE, multiply both sides by the test function F' — z and

integrate it over the space domain. We would get an ODE for ¢(t) as follows

(/(F —x)(F - :c)Tda:) ¢+ (/ a(l — VF)dx) c

- /(F —2)(f —u})dz + /aVu*da:. (4.16)

Multiplying both sides by ( [(F — z)(F — x)Tdaz)fl, equation (4.16) could be written
as

¢t + Be = h(t), (4.17)

B = ( / (F —x)(F — :1:)de> B ( / a(l — VF)dx) (4.18)

is a constant matrix and

h(t) = (/(F —2)(F — x)de) B (/(F —2)(f —uy)dz + / aVu*dx) (4.19)

is a vector function in time.

where

Note that we can solve the ODE (4.17) analytically, and the solution is

c(t) = e_Bt/O eP*h(s)ds, (4.20)

where the exponential of a matrix M is defined by e = "7, ]‘g—f Thus in the

numerical implementations, we can compute (4.20) numerically and the final approx-

imation would be u* + ¢(t)T(F — z).
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4.4 Numerical results

In this section, we will present several numerical experiments for the two-dimensional
elliptic equations and parabolic equations to demonstrate the effectiveness of our
method. In all the examples, we choose the domain D = [0,1] x [0,1] and f =
1. Since it is difficult to construct a general enough test problem with an analytic
solution, we use well-resolved numerical solutions to serve as the ‘exact solutions’. In
our computations, we use the standard linear finite element method, and choose a
256 x 256 mesh to obtain the well-resolved solution for the elliptic equations and a
128 x 128 mesh for the parabolic equations. To implement our method, the coarse
meshes are chosen to be 16 x 16, and we will compare the results obtained by the
original model reduction method with those obtained by the modified model reduction

method.

Example 4.1. In this example, we consider the elliptic equation with a coefficient

that is small only in a narrow channel. The coefficient is chosen to be

1x 1072 inside the channel,
a(x,y) =
3+ Cos(%:oﬁ)) + sin(%gm)) otherwise,
with ¢, = % and e = L. The channel is long and narrow, and lies in the region
7 19

{0.2 <2 <0.9, 0.3 <y <0.31}. The coefficient is very small (a = 0.01) inside the
channel, but it is order O(1) (a = 1 ~ 5) outside the channel, see Figure 4.1.
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Figure 4.1: Example 4.1 - The coefficient a
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We present the errors in the following table. Here MMsMRM stands for the
modified model reduction method, MsMRM stands for the original model reduction
method and FEM stands for the standard finite element method.

Table 4.1: Example 4.1 - Relative errors of the solution

MMsMRM | MsMRM FEM
LZnorm | 9.37x 1073 [ 228 x 1072 | 1.73 x 1071
H! norm | 798 x 1072 | 1.45 x 107! | 7.95 x 1071

From Table 4.1, we can see that the errors obtained by MsMRM and MMsMRM are
smaller than those obtained by the finite element method both in L? and H' norms.
MsMRM still has some reasonable accuracy, but it is not satisfactory. MMsMRM
gives more desirable accuracy. We observe that the L? error of MMsMRM drops
about one half of MsMRM, and the H! error of MMsMRM drops about one third of
MsMRM.

Example 4.2. In this example, we would like to test how the two methods perform
if we remove the degeneracy of the coefficient in the previous example. The purpose
of this test is to show that when there is no degeneracy in the elliptic coefficient, the
modification is not really needed for the original model reduction method. We choose

the coeflicient to be

@) 1 x 10? inside the channel,
a(z,y) =
3+ cos(%jo&) + sin(%;o'?’)) otherwise,
with ¢ = % and ey = %9' The coefficient is uniformly of order O(1) in the whole

domain.

In Table 4.2, we present the relative errors for all the methods. Since the coefficient
has multiscale information, both MMRM and MRM offer better accuracy than the
finite element method. We can see that MRM already gives satisfactory accuracy.
There is almost no improvement in MMRM. This example shows that the modified

model reduction method is only needed when the coefficient is degenerate.

Example 4.3. In this example, we consider a slightly more complicated elliptic ex-

ample in which case the coefficient is small inside a narrow channel and the three
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MMsMRM | MsMRM FEM
L2 norm | 943 x 1073 [ 9.41 x 1073 | 7.15 x 102
H' norm | 7.46 x 1072 | 7.46 x 1072 | 2.59 x 107!

small inclusions. The coefficient is given below.

0.005 inside the channel and some inclusions,

a(z,y) =
1 otherwise.
The channel is the same as in Example 4.1, {0.2 < 2 < 0.9, 0.3 <y < 0.31}. There
are three circular inclusions, {(z—0.5)*+(y—0.7)? < 0.01%}, {(z—0.2)?+ (y—0.8)* <
0.01?} and {(z — 0.6)®> + (y — 0.9)* < 0.01?}. Inside these regions, the coefficient is
equal to 0.005 while it is equal to 1 outside the regions. See Figure 4.2.

0
0.2
0.4
0.6
0.8

1
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Figure 4.2: Example 4.3 - The coefficient a

Table 4.3: Example 4.3 - Relative errors of the solution

MMsMRM | MsMRM FEM
L? norm | 6.84 x 1073 | 1.96 x 1072 | 1.42 x 10~ !
Hlnorm | 7.09x 1072 [ 1.30 x 10~ [ 7.77 x 1071

From Table 4.3, we observe the same qualitative improvement as in Example 4.1.
Both MMRM and MRM improve the accuracy compared with the finite element
method. The L? error of MMRM drops nearly one half of MRM, and the H! error
of MMRM drops about one third of MRM, which shows that the modified model

reduction method indeed gives more desirable accuracy when there is a degeneracy
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in the elliptic coefficients.

Example 4.4. In the last example, we consider the parabolic equation when the

coefficient is small in a narrow channel.

0.01 inside the channel,
a(z,y) =

3+ Cos(%jo's)) + sin(%;o'?’)) otherwise,

with ¢, = % and €5 = 1—13 The channel lies in the region {0.3 <z < 0.7, 0.3 <y <
0.32}, which is slightly wider than in Example 4.1. We compute the solution to time

T = 0.1, and exhibit the error at T in the following table.

Table 4.4: Example 4.4 - Relative errors of the solution at 7' = 0.1

MMsMRM | MsMRM FEM
LZnorm | 4.92x 1073 [ 1.61 x 1072 | 1.04 x 1071
H norm | 5.74x 1072 | 1.15 x 107! | 5.74 x 1071

From Table 4.4, we can see that both MMRM and MRM offer improved accura-
cy compared with FEM. Moreover, the improvement of MMRM over MRM is even
better than the elliptic case. The L? error of MMRM is less than one third of MRM,
and the H! error of MMRM is about one half of MRM. Compared with the finite
element method, the MMRM or MRM offers even more computational savings since
we only need to compute the harmonic coordinates at ¢ = 0. All subsequent com-
putations can be performed on the coarse grid. This shows that our modified model
reduction method indeed gives improved accuracy for parabolic equations with locally

degenerate coefficients.



Chapter 5

Model reduction based multiscale
data-driven stochastic method for

elliptic PDEs with random
coeflicients

5.1 The Karhunen-Loéve expansion

In the theory of stochastic processes, the Karhunen-Loeve expansion [41, 43| is a
representation of a stochastic process as an infinite linear combination of orthogonal
functions. The importance of the Karhunen-Loeve expansion is that it yields an
optimal basis in the sense that it minimizes the total mean squared error.

Consider a probability space (€2, F,P), whose event space is 2 and is equipped
with o-algebra F and probability measure P. Suppose u(z,w), defined on a compact
spatial domain D C RY, is a second-order stochastic process, i.e. u(z,w) € L?(D x Q).

Its Karhunen-Loeve expansion reads as
u(z,w) = a(z) + Y VA&(w)ei(x), (5.1)
i=1

where u(x) = Elu(z,w)], {\i, ¢:(x)}32, are the eigenpairs of the covariance kernel

C(z,y) and they satisfy
| clemotmis = o), 5.2
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The covariance kernel C'(z,y) is defined as

Cla,y) = El(u(z, w) — a(z))(uly,w) — u(y))]. (5.3)

The random variables {&;(w)}$2, are defined as

) = = / u(,w) — 1)) ¢s(x)dx (5.4)

Moreover, these random variables {&;(w)} are of zero mean and are uncorrelated, i.e.
E[&] =0, E[§€;] = 0;;. Generally, the eigenvalues \;’s are sorted in descending order
and cluster at zero, and their decay rate depends on the regularity of the covariance
kernel C(z,y). It has been proven that algebraic decay rate, i.e., \, = O(k7?), is
achieved asymptotically if the covariance kernel is of finite Sobolev regularity or expo-
nential decay, i.e., Ay = O(e™?*) for some 3 > 0, if the covariance kernel is piecewise
analytical [53]. In general, the decay rate depends on the correlation length of the
stochastic solution. Small correlation length results in slow decay of the eigenvalues.
In any case, an m-term truncated Karhunen-Loeve expansion converges in L?(D x Q)
to the original stochastic process u(z,w) as m tends to infinity. Let €, denote the

truncation error. We have
HEmH%Q(DxQ) | Z VA (w HL2(D><Q Z Ai =0, m—o0, (55)
i=m-+1 i=m-+1

where we have used the bi-orthogonality of the Karhunen-Loeve expansion.
In practical computations, we truncate the Karhunen-Loeve expansion into its first

m terms, and obtain the following truncated Karhunen-Loeve expansion
u(z,w) & a@) + YV Ai&i(w)ei(z). (5.6)
i=1

The truncation error analysis in (5.6) reveals the most important property of the

expansion. More specifically, given any integer m and orthonormal basis {;(z)}7,,
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we may approximate the stochastic process u(z,w) by
(2, w) = W) + D Glw)vila), (5.7)
i=1

where (;(w), i = 1,...,m, are the expansion coefficients. Among all m-term approxi-
mations using an orthonormal basis, the Karhunen-Loeve expansion given by (5.6))
is the one that minimizes the total mean square error. In this sense, we say that the
Karhunen-Loéve expansion gives the optimal (or the most compact) basis to repre-
sent the stochastic solution in the energy norm. Due to the bi-orthogonality of the
Karhunen-Loeve expansion, we will call the stochastic part of the Karhunen-Loeve

expansion the data-driven basis in the rest of the thesis.

5.2 Derivation of model reduction based multiscale data-

driven stochastic method

We consider the stochastic elliptic equation

-V - (a(z,w)Vu(z,w)) = f(x), z€ D,weQ, 58)
u(z,w) =0, r €0D,w € . ‘

We will propose a multiscale data-driven stochastic method to reduce the compu-
tational complexity of solving such problems. Our MsDSM consists of offline and
online stages. In the offline stage, we derive an effective stochastic equation that can
be resolved on a coarse grid. We then construct a data-driven stochastic basis that
gives a compact representation for the solutions of the effective stochastic equation
for a broad range of forcing functions. In the online stage, we represent the multi-
scale stochastic solution in terms of this data-driven stochastic basis and we just need
to solve a small number of coupled deterministic PDEs. This leads to considerable
computational savings when we need to solve the multiscale stochastic PDE under

the multiquery settings.
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5.2.1 Effective stochastic equations

It is important to note that the effective coefficient depends only on the multiscale
coefficient and decompositions of the harmonic coordinates, and does not depend
on the forcing term. Therefore, we can apply this idea to upscale the multiscale
stochastic coefficient in equation (5.8). For each fixed sample w € € (w can be chosen
by Monte Carlo method or stochastic collocation method), the multiscale problem
(5.8) becomes a deterministic PDE. We first solve the corresponding homogeneous
problem with specified boundary conditions to obtain the harmonic coordinates F'.
Then, we decompose the harmonic coordinates F' into a smooth part g plus a small
part x, F' = g + x. The effective coefficient can be given in terms of a(x,w), g, and
X, 1.e.

a*(z,w) = a(z,w)(I + %(m,w)g—z(x,w)), (5.9)

where [ is the identity matrix. The effective coefficient in equation (5.9) is valid for
each sample w in the sample space 2. Looping over the samples, we can obtain an

effective stochastic equation of the following form

=V - (a*(z,w)Vu*(z,w)) = f(z), r€ D,we, (5.10)

u*(z,w) =0, xr e dD,we .

According to the previous analysis, the solution to the effective equation (5.10) is one
order smoother than the original solution. Thus, we can solve the effective equation
on a coarse mesh.

To save memory, we compute the truncated Karhunen-Loeve expansion of each

entry of the a*(z,w) in equation (5.10),

0" (2,0) & a(2) + 3 V(@) (). (5.11)

Also, we use the sparse grid based stochastic collocation method in paper [11]. We
need only to save these Karhunen-Loeve expansion results instead of a large amount
of samples, which significantly reduces the memory cost.

In addition, we need to compute the correction term (XTg—z)(x,w) in the offline
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stage. Actually, this can be done simultaneously when we derive the effective s-
tochastic equation. For each fixed sample w € (), after we decompose the harmonic
coordinates F' into a smooth part g and a highly oscillatory part y, we can compute

the correction vector term (XTg—g)(a:,w). Based on these samples, we can calculate

the truncated Karhunen-Loeve expansion of the correction term XTg—“’;(x, w), ie.

70x

X a—g(ﬂ% w) = @) + >V Al (W)thn (). (5.12)

5.2.2 Data-driven stochastic basis for the effective stochastic equations

Now we consider the effective equation (5.10). We first note that the coefficien-
t a(zr,w) in equation (5.8) is given in terms of r independent random variables,
a(z,w) = a(z,{(w)) = a(z, & (w), ..., & (w)). Therefore, by the Doob Dynkin lemma,
the harmonic coordinates as well as the effective coefficient a*(z,w) can still be repre-
sented by these random variables, i.e. a*(z,w) = a*(x,{(w)) = a*(z, & (W), ..., & (w)).
We now begin our construction of the data-driven stochastic basis for the effective
stochastic equation (5.10), and we discuss the data-driven stochastic basis in stochas-
tic collocation representation. It consists of two steps, initial leaning and updating
steps. See Figure 5.1 for the general framework. We refer to [15] for more details.
In the initial learning step, we first use the stochastic collocation method to gener-
ate J collocation points z; € R" according to the distribution of the coefficient a(z, w)
in equation (5.8) as well as the associated weights w; € R. Then, we solve (5.10)
with the random variable evaluated at the collocation grid points and fy(z) = 1 as

the right-hand side

=V (a"(x, 2)Vu'(z, %)) = folx), ze€D,j=1,..1J, (5.13)

u(z, z;) =0, xedD,j=1,..J

By solving the above equation (5.13), we can obtain the values of the stochastic
solution u*(z,w; fo) on the collocation points, i.e., {u*(z, z; fo)}7—;. The m;-term
Karhunen-Loeéve expansion of the solution u*(z,w; fo) gives the dominant components

in the random space. We use the decaying property of eigenvalues to select parameter
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Solve SPDE for f,
Construct inital stochastic basis

{Ai}

for fr, k=1,2,.. K

Solve for residual 7,

PLID) 9sIR0))

max residual 7+
Terminated
Y

[N

Solve residual 7;-

pLs) ourg

Enrich stochastic basis {A4;}
via KLE of 7+

Figure 5.1: Greedy stochastic basis enriching algorithm on a coarse-fine grid hierarchy.

my, i.e. the number of stochastic basis m; can be chosen such that A, 1/\; is smaller
than some pre-defined threshold, say, 10~*. We denote the truncated Karhunen-Loeve

expansion as

u*(z,w; fo) = u(x; fo) + Zl VB (W) s (3 fo). (5.14)

We call the stochastic basis { B;(w)}"}, in equation (5.14) the data-driven stochastic
basis, where By(w) = 1. In general, the stochastic basis constructed by using fy
may not be adequate to give an accurate approximation of the SPDE for another
right hand side. We need to supplement the stochastic basis by using multiple trial
functions involving other f.

In the preconditioning and update step, we propose a greedy-type algorithm, and
adopt a two-level preconditioning strategy [26] to enrich the stochastic basis. First,
we perform an error analysis. Given a new right-hand side f;(x) for some choice of

f, we expand the solution in terms of the stochastic basis, {B;(w)}i*,

u*(z,w; f1) = ulz; fi) + Z Bi(w)ui(z; f1) = Z Bi(w)u;(z; f1). (5.15)
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In the rest of this subsection, we also use u;(z) = u;(z; f1) for simplification. We use
the standard stochastic Galerkin method to obtain the coefficient u;(x). Specifically,
we substitute the expansion (5.15) into the effective equation (5.10), multiply both
sides by B;(w), and take expectations. This gives rise to a coupled PDE system for

the expansion coefficient u;(x),

—V - (E[e*B;B;]Vu;) = fi(x)E[B;], z€ D,j=0,1,...,my, (5.16)
ui(x) =0, xr € 0D,

where Einstein summation is assumed. The term E[a*B;B;| can be calculated by the
stochastic collocation method. Solving the coupled deterministic PDE system (5.16)
by the standard finite element method, we obtain the expansion coefficient {u;(z)}"
and an approximate solution for u*(x,w; f1) given by (5.15). We know that the exact

solution can be written as
(r,w; f1) = ZB w)ui(x; fr) + 7(x, w; f1), (5.17)

where 7(z,w; f1) is the error. Simple calculations show that the error satisfies the

following equation
—V - (a* (2, w)VT(2,w; f1)) +Zv Bi(w)Vuy(x)). (5.18)

For a different f;, we can obtain a similar error equation for the error 7(x,w; fx)
by replacing f; by fi in the above error equation. To verify the effectiveness of the
stochastic basis, we solve the residual equation (5.18) on a coarse grid for each fi(z),
k =1,.., K, and obtain the error {r(z,w; fi)}r_,. If max;<p<x ||7(x, w; fi)|] < €o,
then we consider this stochastic basis complete. Here, we choose || -|| as the L? norm
of the variance of the stochastic solution. Otherwise, we identify the maximum error
T = MmaxXi<g<r ||7(z,w; fr)|| and the corresponding trial function fi«(x). Subse-
quently, we solve the residual equation (5.18) for this trial function f«(x) one more
time on a fine grid. Again, we perform the Karhunen-Loeve expansion for the residual

solution 7(z,w; fr+), and extract several dominant components in the random space,
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and supplement them to the current stochastic basis. We use {B;(w)}:"% to denote
the updated stochastic basis. This process is repeated until the maximum residual is
below the prescribed threshold ¢.

In the online stage, for each query f(x) in the original equation (5.8), the corre-
sponding stochastic solution u(z,w) can be approximated by the MsDSM solution
in two steps. First, with our data-driven stochastic basis {B;(w)}™,, we use the s-
tandard stochastic Galerkin method to solve the effective stochastic equation (5.10)
to obtain u*(z,w). Then, we obtain the approximate solution by adding correction

terms into u*(x,w), i.e.

u(z,w) ~ upspsm (z,w) = u*(r,w) + XT@(.CE, w)Vu* (z,w). (5.19)

dg

The construction of the effective stochastic equation (5.10) and the data-driven s-
tochastic basis {B;(w)}, could be expensive. However, in a multiple query prob-
lem, the MsDSM offers considerable computational savings over traditional methods
because of the model reduction in both the physical and stochastic spaces. We will

demonstrate this through several numerical examples.

Remark 5.1. It is important to point out that since our methods involve the com-
putation of global harmonic coordinates, the memory consumption becomes a serious
issue when the number of random variables become very large. We are currently

adopting the multilevel Monte Carlo method to tackle this problem.

5.2.3 Complete algorithm

In this section, we give the complete algorithm of the MsDSM to solve the multiscale
stochastic equation under the multiquery setting. Our method consists of offline and
online stages. Since the online stage is pretty straightforward and has been presented
in a previous section, we state only the offline computation algorithm as follows.

MsDSM offline computation.

e (I) (Derive the effective stochastic equations and calculate the correction terms)

— Loop over all sparse grids, compute harmonic coordinates, and obtain the

effective stochastic equation (5.10).
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— Compute the KL expansion of the effective coefficient (5.11) to obtain a
compact representation.

T 9z

ag) as well as its Karhunen-Loeve expan-

— Compute the correction term (x

sion (5.12).
e (II) (Construct the MsDSM basis for effective stochastic equation):

— Step I1.1 (Initial learning on the fine grid):
* Solve the effective equation(5.10) with fo(x) as a forcing function to
obtain u*(x,w; fo).
* Calculate the truncated Karhunen-Loéve expansion of u*(z,w; fo), and

use the first m; terms of the stochastic modes to obtain the current
data-driven basis { B;(w) }i-, where By(w) = 1.
— Step 11.2 (Preconditioning on the coarse grid):

« For each fi(z), solve effective equation (5.10) using the current stochas-
tic basis {B;(w)}i+}, and the stochastic Galerkin method to obtain the
solution u}(z,w; fx).

« For each fi(z), solve an residual equation (5.18) to obtain the approxi-

mate residual error 7, = 7(x, w; fi).

x Let k* = argmaxo<k<r ||7%||- If ||7+|| < €0, goto Step 11.4; otherwise ,

and goto Step I1.3.
— Step IL1.3 (Update on fine grid):
* Solve the error equation associated with fi(z) to obtain the residual
error T+ = 7(x, w; frr ).
« Enrich the current stochastic basis {B;(w)}*}, by the Karhunen-Loeve

expansion of 7+, and use {B;(w)}"% to denote the updated stochastic

basis. Goto Step II.2.
— Step 11.4 (Termination):

* Save the data-driven stochastic basis { B;(w)}, and relevant statistical

quantities.
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e (III) (Save the relevant data):

— Save the data-driven stochastic basis {B;(w)}™, and the Karhunen-Loeve

T@).

expansion of correction term (y B9

5.3 Computational complexity analysis

The computational time of the MsDSM consists of both the offline and online part.
The offline computation can be very expensive if we use a brute force way to construc-
t the data-driven basis. In this section, we will demonstrate through computational
complexity analysis that the overhead time of offline computation is acceptable, and
the online computation is super fast. It is well-known that the stochastic collocation
method is very effective in solving SPDE when the stochastic solution is smooth in
the stochastic space. Therefore, we choose the stochastic collocation finite element
method (SCFEM) as a benchmark, and compare the computational cost of the Ms-
DSM and the SCFEM. We will compare the performance of the MsDSM and the
DSM as well.

In [15], the authors have already done a thorough study, and have explained why
DSM is superior to the traditional methods, such as gPC, SC, and Monte Carlo
method under the multiquery setting. The same property still holds for the MsDSM,
since it is designed with the same technique. In our numerical experiments, we find
that the offline computational costs of the MsDSM and DSM have the same order of
magnitude. However, due to the model reduction in the physical domain, the MsDSM
offers more computational savings in the online stage than the DSM.

We will demonstrate this by solving a model problem (5.8) on D = [0,1] x [0, 1]
with the coefficient given by
2 + 1.8sin(27x /€)

2 4 1.8sin(27mxo/€)

2 + 1.8sin(2mxs/€2)
2 18 cos(@mny ey T HW)

a=0.14+ & (w)

2 + 1.8 cos(2mxy /€3)
2+ 1.8sin(27wx/€3)’

+ &a(w)

where {¢;}3_, are multiscale parameters, and {&;}3_, are independent uniform random

variables in [0, 1].



68

Table 5.1: Computational time of the linear equation solver for one collocation point. (Time: Sec.)

N, =322 N, =642 | N, = 1282 | N, = 2562 | N, = 5122 | N, = 10242
0.0065 0.0359 0.2577 1.6490 18.6875 140.0816

Let Nj and J denote the number of the physical grid points and sparse grid points,
respectively. We assume that in all tests level six sparse grids in the SCFEM will
give an accurate result. Therefore, we choose J = 135. All the simulations and
comparisons are conducted on a single computing node with 16 GB memory at the

Caltech Center for Advanced Computing Research (CACR).

5.3.1 Computational cost of the SCFEM solver

We first show the computational cost of solving the Eq.(5.8) once using the stochastic
collocation method in Table 5.1 (the same result can be applied to a Monte Carlo
solver). The SCFEM is very effective if the SPDE solution is smooth in the stochastic
dimension; however, when the SPDE solution has multiscale features in the physical
dimension, the SCFEM becomes very expensive as demonstrated in Table 5.1. For
instance, it takes about 1.89 x 10* (135 x 140.0816) seconds to obtain a single query
result on a 1024% mesh grid. Let tscpmpy denote the computational time of the

SCFEM solver for one forcing function, then tscppys is approximately given by

tscrpm ~ 2.45 x 107 TN}, (5.20)

5.3.2 Computational cost of the MsDSM and the DSM solvers

Both the MsDSM and the DSM consist of offline and online computational cost.
In [15], the authors have performed a complexity analysis for the DSM, and have
compared it with other commonly used methods in the multiquery setting, such as
the gPC, the gSC, and the MC methods. They have adopted the randomized SVD
algorithm and a two-level preconditioning method to reduce the overhead time in
the offline computing. Let n. denote the query number, i.e., the number of forcing

functions. They demonstrated through computational complexity analysis and nu-
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merical examples that with all the cost-saving measures, the DSM is superior to the
traditional method if one needs to solve the elliptic problem (5.8) with a relatively
small number of queries. The MsDSM inherits all these cost-saving measures when we
construct the DSM basis for the effective SPDE. The only extra computational cost
stems from the derivation of the effective SPDE and calculating its correction term.
Roughly speaking, this part of computational cost is equivalent to solving equation
(5.8) with 2 forcing functions. In Table 5.2, we list the offline computational cost of
the MsDSM and the DSM on a different mesh, where we fix the basis number m = 7.
We also list the cost of SCFEM for one forcing function, where the CPU time on one
collocation point is obtained by the time model (5.20) and J = 135. One can see that
the offline computational costs of the MsDSM and the DSM have the same order of
magnitude. In addition, the offline computational cost of the MsDSM or the DSM
is approximately equal to the cost of performing SCFEM for several different forcing
functions.

We assume that the data-driven basis with 7 modes gives sufficient approximation
to the solution space. Let tpsaofr and taspsaors denote the computational time of
DSM and MsDSM in the offline stage, respectively. Then, they are approximately
given by

tDSMoff ~ 7.65 x 10_5]\/}1'57

trspsarofs = 1.52 x 1074 N5 (5.21)

In online stage of the MsDSM or the DSM, we use the standard Galerkin method
to solve equation (5.8). In the multiple query setting, the stiffness matrix S for the
DSM or the MsDSM solver is fixed and the load vector b is different for each query.
We can compute the Cholesky decomposition of .S in advance, and the computational
time is decided only by the forward and backward substitutions in solving the linear
equation system. Actually, we can do the Cholesky decomposition of the stiffness
matrix S = LL”T in the offline stage, and save only the decomposition result L.
The computational time of Cholesky decomposition is negligible compared with the

training data-driven basis. Thus, we do not consider this part of the cost.
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Table 5.2: Computational time of the offline computation. (Time: Sec.). m=7.

Grid Number | Np = 3362 | N, =360 | N, = 3842 | N, = 4082 | Nj, = 4322 | N, = 4567
DSM 1790.1 2341.8 2640.1 3167.4 3870.5 4522.3
MsDSM 2092.3 2466.6 3188.3 3662.5 4305.8 4960.2
SCFEM 664.3 811.5 978.5 1166.5 1376.7 1610.3

Table 5.3: Computational time of forward/back substitution. (Time: Sec.) m is the basis number.
The data marked with an asterisk is obtained by extrapolation.

N, =647 | N, =128%2 | N, = 2562 | N, = 5122 | N, = 10242
m=5 | 0.0626 0.4102 2.4672 17.0917 (*)114.5388
m=7 | 0.1281 0.8383 5.4933 (*)37.5849 | (*)255.0034
m=9 | 0.2347 1.5620 10.3214 (¥)66.6531 | (*) 438.6207

Let tg, denote the time of forward and backward substitutions. In Table 5.3, we
list the computation time of ¢5, for different mesh grids and basis numbers. If we

choose m = 7, then ty, is approximately by
tpp a0 1.27 x 107N (5.22)

Roughly speaking, if the MsDSM is applied on a coarse grid with a coarsening factor
C in each direction, the speedup would be ~ (C?)14 in the online stage for each query.
For example, if C' = 16, the speedup is ~ 2352 (25614). This essentially reveals the

power of the upscaling method.

Remark 5.2. We do not consider the computational time of adding correction terms
into the MsDSM solution here. From numerical results in the next section, we can

find that this part of cost is also very small compared to the SCFEM solver.

Remark 5.3. The stiffness matrix S is a sparse positive definite matrix; however,
the Cholesky decomposition matrix L is not sparse anymore. Before we perform the
Cholesky decomposition, we reorder the matrix S using the approximate minimum

degree (AMD) algorithm to ensure the least fill-in.

5.4 Numerical examples

In this section, we perform numerical experiments to test the performance and accu-

racy of the proposed MsDSM. We also demonstrate the computational efficiency of
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MsDSM over the traditional method, such as the stochastic collocation finite element
method (SCFEM) in solving the multiquery problems with multiscale features. Fi-
nally, we compare the computational cost and accuracy of the MsDSM and the DSM

in solving multiscale problems.

5.4.1 Comparison of the MsDSM and the SCFEM

Example 5.1. We consider the following stochastic elliptic equation with multiple

scales on D = [0, 1] x [0, 1] with the multiscale information described by

&1 (w) n §2(w)
2+ 1.6sin(2r(x —y)/e1) 4+ 1.8(sin(27x/e2) + sin(2my/€z))
§s(w)
10(2 + 1.8 sin(27w(x — 0.5) /€3))(2 4+ 1.8sin(27(y — 0.5) /€3))’

a(z,y,w) =0.1+

+

where €; = 1/3, o = 1/11 and €3 = 1/19, and {&}3_, are independent uniform
random variables in [0, 1]. In Fig. 5.2, we plot four samples of the coefficient a(zx, y,w).
One can see that the coefficient oscillates very rapidly, which will generate small scale
features in the stochastic solution. The forcing terms are f(x,y) € {sin(k;mz +
l;) cos(m;mx +n;)}, where k;, l;, m;, and n; are random numbers, where k;, {;, m; and
n; are uniformly distributed over the interval [0, 0.5].

In our computations, we choose a 384 x 384 fine mesh to well resolve the spatial
dimension of the stochastic solution u(x,y,w). Since the stochastic solution u(z,y, w)
is smooth in stochastic space, we use the sparse-grid based stochastic collocation
method to discretize the stochastic dimension. First, we conduct a convergence study,
and find that the relative errors of mean and STD between the solutions obtained by
level seven sparse grids in the SCFEM and higher level sparse grids are smaller than
0.1% both in L? and H' norm. Therefore, we choose level seven sparse grids with 207
points in the SCFEM and the MsDSM when we compare the computational cost of
these two different methods. The reference solution is obtained by using higher-level
sparse grids.

To implement the MsDSM, the coarse meshes are chosen to be 8 x 8, 16 x 16,
32 x 32 and 64 x 64 respectively, and we compare the results on different meshes, and

calculate the convergence rate. We remark that in the MsDSM, the forcing function
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f(z,y) should be well-resolved by the coarse mesh, otherwise the numerical error will

be large. We use this random training strategy to reduce the computational cost.
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Figure 5.2: Example 5.1 - Some samples of the coefficient a

Multiquery results in the online stage. The MsDSM solver using 207 sparse grids
in the computation produces m = 7 modes in the data-driven stochastic basis. In
the online stage, we use them to solve the effective equation of the multiscale SPDE
(5.8). In Table 5.4-5.5, we choose f(z,y) = sin(.47mx + 0.07) cos(0.037y + 0.25) and
list the mean of the relative errors on different coarse mesh grids. It can be seen that
the mean and STD of the MsDSM solution match the exact solution very well.

Compare the MsDSM solver with the exact SCFEM solver. For the SCFEM solver
on a 384 x 384 mesh, it will take 1648.38 seconds to solve equation (5.8) with one
specific forcing term f(z,y). Thus in a multiquery problem, if we need to solve

equation (5.8) with n different forcing term f(x,y), the total computational cost will



Table 5.4: Example 5.1 - L? and H' norm relative errors of the mean
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L? norm H! norm
N,=8 [ 548x 1072 [ 1.58 x 10~ T
N.=16 | 220 x 1072 | 8.79 x 1072
N, =32]765x10"3 | 5.02 x 102
N.=64 | 3.03x 1072 | 2.25 x 1072

Table 5.5: Example 5.1 - L? and H! norm relative errors of the STD

L2 norm H! norm
N,=8 | 763 x1072 | 6.28 x 102
N.=16 | 230 x 1072 | 3.18 x 1072
N.=32]760x1073]9.25 x 1073
N.=64 | 3.60x 1073 | 4.42 x 1073

be tscrem = 1648.38n. If we choose N, = 64 in the MsDSM solver, the offline
computation will cost 4732.66 seconds, which includes the computational time for
deriving effective SPDE, calculating correction term, and constructing DSM basis
for the effective SPDE. In the online stage of the MsDSM, it takes 1.27 seconds to
compute each query, thus, the total computational cost will be t,;spsy = 4732.66 +
1.27n. We plot the total computational time in Figure 5.3. One can see that the
MsDSM offers considerable computational savings over the SCFEM, if we need to
solve the same stochastic PDE many times with multiple forcing functions. Simple

calculation shows that if we need to solve the original SPDE with more than three

different forcing functions, the MsDSM will be superior to the SCFEM.

Example 5.2. In this example, we consider the SPDE (5.8) on D = [0, 1] x [0, 1] with

the coefficient given by a random linear combination of five fixed coefficient fields plus
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Figure 5.3: Example 5.1 - The computation time comparison
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a constant, i.e.,

a(z,y,w Z@ )0i(x,y)| + 0.5,

where {¢;}2_; are independent uniform random variables in [0,1]. ;(z,y),i=1,...,5
are defined on a 3 x 3, 5 x5, 9 x 9, 17 x 17, and 31 x 31 grids over the domain
D. For each grid cell, the value of 0;(x,y) is normally distributed. In Figure 5.4,
we show four samples of the coefficient a(z,y,w). One can see that the coefficients
are very rough, and do not satisfy scale separation or have any periodic structure.
The implementation of the SCFEM and the MsDSM are exactly the same as in the

previous example.

Figure 5.4: Example 5.2 - Some samples of the coefficient a

Multiquery results in the online stage. The MsDSM solver using 903 sparse grids
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in the computation produces m = 8 modes in the data-driven stochastic basis. In
the online stage we use them to solve the effective equation of the multiscale SPDE
(5.8). In Table 5.6-5.7, we choose f(z,y) = sin(0.337z + 0.15) cos(0.437y + 0.22) and
show the relative errors of mean and STD of the MsDSM solution in L? norm and
H*' norm, respectively.

Compare the MsDSM solver with the SCFEM solver. For the SCFEM solver, it
will take 7626.34 seconds to solve equation (5.8) with one specific forcing term f(x,y).
Thus in a multiquery problem, if we need to solve equation (5.8) with n different
forcing terms, f(z,y), the total computational cost will be tscrppy = 7626.34n. If
we choose N, = 64 in the MsDSM solver, the offline computation will cost 21231.56
seconds. In the online stage of the MsDSM, it takes 1.82 seconds to compute one
query, thus the total computational cost will be ty;spsyr = 21231.56 4+ 1.82n. The
MsDSM offers considerable computational savings over the SCFEM if we need to

solve the same SPDE with more than three different forcing functions.

Table 5.6: Example 5.2 - L? and H' norm relative errors of the mean

Example 5.3. We consider the SPDE (5.8) on D =

L2 norm H! norm
N.=8 [ 1.09x 107t | 2.53 x 10~ 1
N.=16 | 483 x1072 | 1.39 x 10T
N,=32]115x1072 | 8.76 x 10~2
N.=64|422x1073 | 4.15 x 1072

Table 5.7: Example 5.2 - L? and H! norm relative errors of the STD

L2 norm H! norm
N.=8 [ 1.13x 107t | 277 x 107!
N.=16 | 522x 1072 | 1.46 x 10T
N,=32]135x10"2 | 9.88 x 10~ T
N.=64 499 %1073 | 5.00 x 1072

[0, 1] x

[0, 1] with a high contrast

random coefficient. The elliptic coefficient is given by a random high-contrast field.

Specifically,

fields plus a constant, i.e.,

a(z,y,w

Z@

w)ki(z,y) + 1.0,

a(x,y,w) is a random linear combination of inclusion fields and channel
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where {&}3 | are independent uniform random variables in [0,1], #;(z,y) is an in-
clusion field, and ko(z,y) and k3(z,y) are two channel fields. In Figure 5.5a-5.5¢, we
show the inclusion field and channel field, respectively, while in Figure 5.5d-5.5f we
show three samples of the coefficient a(x,y,w). One can see that the diversity of the
random high-contrast coefficient. This presents a challenging test problem for the
MsDSM. The implementation of the SCFEM and the MsDSM are exactly the same
as in the previous examples.

Multiquery results in the online stage. The MsDSM solver using 207 sparse grids
in the computation produces m = 10 modes in the data-driven stochastic basis. In
the online stage we use them to solve the effective equation of the multiscale SPDE
(5.8). In Table 5.8-5.9, we choose f(x,y) = sin(0.137x + 0.12) cos(0.497y + 0.44) and
show the relative errors of mean and STD of the MsDSM solution in L? norm and
H*' norm, respectively. One can observe that the MsDSM solution converges in both
the L? norm and H*' norm.

Compare the MsDSM solver with the SCFEM solver. For the SCFEM solver, it
will take 1648.04 seconds to solve equation (5.8) with one specific forcing term. Thus
in a multiquery problem, if we need to solve equation (5.8) with n different forcing
terms, the total computational cost will be tscrgy = 1648.04n. If we choose N, =
64 in the MsDSM solver, the offline computation will cost 7782.68 seconds, which
includes the computational time for deriving effective SPDE, calculating correction
term and constructing DSM basis for the effective SPDE. In the online stage of the
MsDSM, it takes 2.95 seconds to compute one query, thus the total computational
cost will be tyspsy = 7782.68 + 2.95n. We plot the total computational time in
Fig.5.6. One can see that the MsDSM offers considerable computational savings over
the SCFEM if we need to solve the same SPDE with more than five different forcing
functions.

Table 5.8: Example 5.3 - L? and H' norm relative errors of the mean

L? norm H' norm

N.=8 [139x 1071 ] 211 x10°1T
N,=16 | 631 x1072 | 1.58 x 10~ T
N.=32[397x10"2 ] 8.73 x 1072
N.=64]142x1072 | 4.59 x 102
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Figure 5.5: Example 5.3 - k1, k2, k3 and some samples of the coefficient a



78

Table 5.9: Example 5.3 - L? and H! norm relative errors of the STD

L? norm H' norm
N,=8 [ 138x10° T [ 522x 10T
N.=16 | 6.52x 1072 | 3.13 x 107!
N, =321]405x10"2 | 2.01 x 102
N.=64]203x10"2 | 8.05x 1072
5x10“ ‘
45| | — — SCFEM ]
MsDSM B
al -
gs.s— 7
3 25 7
é )l - B
§' 15} = ’
| ~ B
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Figure 5.6: Example 5.3 - The computation time comparison

5.4.2 Comparison of the MsDSM and the DSM

Here we compare the computational cost and accuracy of the MsDSM and the DSM

in solving multiscale problems.

Example 5.4. We consider the SPDE (5.8) on D = [0, 1] x [0, 1] with the coefficient
given by

2 + 1.8sin(27x/e;)
2 + 1.8sin(27y/€)

2 + 1.8sin(27y/es)
2 + 1.8 cos(2mx/€r) &(w)

a@,y,w) =0.1+ & (w)

2+ 1.8 cos(2mx/e€3)

So(w) 2+ 1.8sin(2my/e3)’

where €; = 1/3, o = 1/11 and €3 = 1/19, and {}?_, are independent uniform
random variables in [0, 1]. See Figure 5.7.

In our computations, we use the standard FEM to discretize the spatial dimension.
We choose a 384 x 384 fine mesh to well resolve the spatial dimension of the stochastic
solution u(z,y,w). We choose level six sparse grids in the discretization of stochastic
dimension, which has 135 points. The reference solution is obtained by using higher-

level sparse grids. The coarse mesh of the MsDSM is chosen to be 64 x 64. We
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Figure 5.7: Example 5.4 - Some samples of the coefficient a
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implement the DSM on a 384 x 384 fine mesh and 64 x 64 coarse mesh, respectively.

The MsDSM generates m = 7 modes in the data-driven stochastic basis, while the
DSM generates m = 9 modes. In the online stage we use them to solve the effective
equation of the multiscale SPDE (5.8). In Table 5.10-5.11, we choose f(z,y) =
sin(3.72mx + 0.35) cos(2.74my + .98) and show the relative errors of mean and STD
of the MsDSM and DSM solution in L? norm and H! norm, respectively. Here
DSM f and DSMc denote the DSM solution obtained on the fine and coarse grids,
respectively. We conclude that the accuracy of the MsDSM is comparable with the
one obtained by the DSM on a fine mesh grid. In addition, applying the DSM on
a coarse mesh grid without any numerical upscaling will generate large errors in the
numerical solution.

Table 5.10: Example 5.4 - L? and H' norm relative errors of the mean

L? norm H'! norm

MsDSM | 432 x 1072 | 1.45 x 101
DSMc | 7.16 x 1073 | 4.32 x 1072
DSMf | 2.26 x 1072 | 1.06 x 10~ 2

Table 5.11: Example 5.4 - L? and H! norm relative errors of the STD

L2 norm H! norm

MsDSM | 451 x 1072 | 1.56 x 101
DSMc | 1.15x 1072 | 4.98 x 107!

DSMf | 8.36 x 103 | 3.01 x 10~ !

For the SCFEM solver, it will take 1132.94 seconds to solve equation (5.8) with
one specific forcing term. Thus, in a multiquery problem, if we need to solve equation
(5.8) with n different forcing terms, the total computational cost will be tscrppy =
1132.94n. The offline computation of the MsDSM and the DSM cost 3254.17 and
2898.32 seconds, respectively. In the online stage of the MsDSM, it takes 1.89 seconds
to compute one query, thus the total computational cost will be ty;spsyr = 3254.17 +
1.89n. For the DSM solver on a fine grid, it takes 33.29 seconds to compute one
query, thus the total computational cost will be ty;spsy = 2898.32 + 33.29n.

It turns out that both the MsDSM and the DSM offer considerable computational
savings over the SCFEM, if we need to solve the same SPDE with more than that

of three different forcing functions. The offline cost of the MsDSM is more expensive
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than the DSM, since we have to derive the effective equation. However, the online cost
will be much cheaper than that of the DSM, because we solve the effective equation

on a coarse grid.

Example 5.5. Finally, we consider the SPDE (5.8) on D = [0,1] x [0, 1] with the
coefficient in the same form as in the last example. However, here we choose ¢; = 1/3,
€o = 1/19 and e3 = 1/65. We choose a 1024 x 1024 fine mesh to well resolve the spatial
dimension of the stochastic solution u(z,y,w). We choose level six sparse grids in the
discretization of stochastic dimension, which has 135 points. The reference solution is
obtained by using higher-level sparse grids. In this example, due to memory overflow,
the DSM easily breaks down. However, MsDSM still works owing to the upscaling in
the physical dimension.

The MsDSM solver using 135 sparse grids in the computation produces m = 8
modes in the data-driven stochastic basis. In the online stage we use them to solve
the effective equation of the multiscale SPDE (5.8). In Table 5.12; we choose f(z,y) =
sin(1.37mx 4 0.77) cos(3.91my + 0.11) and show the relative errors of mean and STD

of the MsDSM solution in L? norm and H' norm, respectively.

Table 5.12: Example 5.5 - L? and H' norm relative errors of the solution

L2 norm H'! norm
mean | 1.25 x 1072 | 3.24 x 102
STD | 1.52x 1072 | 4.66 x 10~2

For the SCFEM solver, it will take 18620.01 seconds to solve equation (5.8) with
one specific forcing term f(z,y,0). Thus in a multiple query problem, if we need to
solve equation (5.8) with n different forcing term f(z,y,#), the total computational
cost will be tscrepy = 18620.01n. If we choose N, = 64 in the MsDSM solver, the
offline computation will cost 49258.59 seconds, which includes the computational time
for deriving effective SPDE, calculating correction term and constructing DSM basis
for the effective SPDE. In the online stage of the MsDSM, it takes 18.25 seconds to
compute one query, thus the total computational cost will be ty;spsyr = 49258.59 +
18.25n. MsDSM offers considerable computational savings over the SCFEM, if we
need to solve the same SPDE with more than three different forcing functions. We

conjecture that the time model obtained in Section 5.2 may still be valid for the
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Figure 5.8: Example 5.5 - The computation time comparison

DSM. Actually, due to the fill-in, the real computation time and memory cost will
be larger. The total computational cost for the DSM can be extrapolated as tpsy =
47700.90 4 438.62n. We plot the total computational time in Figure 5.8. One can
observe that the MsDSM offers huge savings over other methods in solving multiscale

problems.
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Chapter 6

Model reduction based multiscale
multilevel Monte Carlo method for

elliptic PDEs with random
coeflicients

6.1 Multilevel schemes for the effective stochastic equations

In this chapter, we also consider the following elliptic SPDE

=V (a(z,w)Vu(r,w)) = f(z), =€ D,we, (6.1)

u(z,w) =0, x € 0D,w € .

We are interested in the expected value of some functional of the solutions, which
could be the mean and high-order moments. In general, we could approximate the
expectations by the standard Monte Carlo method (MC). For example, the mean of
the solution Efu(x,w)] could be obtained by

N
1
Y = N;uh(a:,wi), (6.2)

where w; is the i-th example in N independently picked samples, and wu;, is the nu-

merical solution with mesh size h. Thus, we have
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and

vmﬂ:%wmmwn (6.4)

We define the mean square error of e(Y) as

ewvz/ﬁuy—mmﬁwwym

~ B - EY] + EIY] - Bu(o, )] do
= /(E[Y] — Eu(z,w)])*ds + /Var[Y]dx

= /(]E[uh(:z:,w)] — E[u(r,w)])*dx + %/Var[uh(:c,w)]dx. (6.5)

The first term in the above equation gives the bias error introduced by the numerical
discretization at mesh size h, while the second represents the sampling errors, and
decay inversely with the number of samples. Thus we must choose the mesh size h to
be fine enough to control the bias error, and many realizations are required to reduce
sampling errors. For the multiscale stochastic problem, it is very time-consuming to
obtain each realization. Therefore, the Monte Carol method is extremely expensive
to obtain accurate results.

However, as we discussed before, we could construct an effective stochastic equation

for each sample w

-V - (a*(z,w)Vu*(z,w)) = f(x), =€ D,weQ,

(6.6)
u*(z,w) =0, xr € dD,weN.
The effective coefficient is given by
o*(,0) = ale )1 + 55 (z,0) 5 (0) (6.7

where F' = g + x and F is the associated harmonic coordinates.

We have already proven that u* (or u* + XTg—ZVu*) is a good approximation of u.
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Thus we could use the following estimator Y* instead of Y

N
* 1 *
Y* = N ;:1 up (z, w;). (6.8)

Since u* is smooth, we can pick the mesh size h much larger than the original mesh
size, which would save a lot for each realization.

To further reduce the computational cost, we need to accelerate the Monte Carlo
method. The multilevel Monte Carlo (MLMC) method [32] is a novel variance re-
duction technique for the standard Monte Carlo method. It exploits the linearity of
expectation, by expressing the quantity of interest on the finest spatial grid in terms
of the same quantity on a relatively coarse grid and correction terms. We will apply
the multilevel Monte Carlo scheme to the effective equation (6.6).

We first divide the physical domain D into a number of nested coarse mesh grids,
ie, Dy, C ... C Dy,_, C Dy,... C Dy,. Here by = ho2~" is the l-th level grid
size (I = 0,1,...,L) and hq is the coarsest level mesh size. Denote E[u}(z,w)] =
E[uj, (z,w)] to be the mean of the numerical solution on mesh size h;. Linearity of

the expectation operator implies that

Elu} (2, w)] = Eluj(z,w)] + Y Eluj (z,w) — ui_y (z,w)]. (6.9)

=1

Here E[uj (x,w)] is the expectation of u}(z,w) as in equation (6.8). The key point
is to avoid estimating E[u} (z,w)] on the finest level; instead, we aim to estimate
the expectation on the coarsest level, plus a sum of corrections adding the difference
in expectation between simulations on consecutive levels. The multilevel idea is to
independently estimate each of these expectations such that the overall variance is

minimized for a fixed computational cost. Thus we have

SR (6.10)
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where
Y — LZNZ (DY s 0 B
LN, 121(ul (z,w;") —wqg(w,w;7)), k=1,...,L, (6.11)
* 1 al * (0)
YE) = ﬁo ;_1 uo(q:,wi ) (612)

Here N; is the number of Monte Carlo simulations at the 1-th level. Y{ is the coarsest

level estimator, while Y,* (I =1, ..., L) measures the fluctuations of [-th and (I —1)-th
0]

level. It is important to note that we have used the same random samples w;” to
estimate the quantity Y,*.

Simple calculations show that e(Y™*) satisfies the following equation

(V)2 = / E [(V* - Efu(z,w)))?] dz

~ [E[v" ~ B+ EY) - Blu(z,w)])?) do
= /(E[Y*] — E[u(z,w)])*dz + /Var[Y*]dx
— [ Bl .0)) - Blu(e, )Pz

+ ZZI %l /Var[uzk(x,w) —up_ (v, w)]dr + Nio /Var[ug(x,w)]dx. (6.13)

The first term also gives the bias error introduced by the numerical discretization,
and the second represents the sampling errors. As we have already seen, we could
choose the mesh size hy, to be coarse and u] is still a good approximation of w. If the
variance Var[u}(z,w) — u}_;(z,w)] gets smaller and smaller and the mesh size h; gets
finer and finer, the samples needed for the Monte Carlo simulation are fewer and fewer,
which is just the case for our effective equations. The reduction in cost associated
with the multilevel Monte Carlo method over the Monte Carlo method is due to the
fact that most of the uncertainty can be captured on the coarse grids (h >> hr), so
the number of realizations needed on the grid (h = hyp) is greatly reduced. We will

show the computational cost reduction by several numerical examples.



87
6.2 Stiffness matrices assembling

Applying multilevel schemes on relatively coarse mesh grids could save us a lot of
time. However, the implementation of such schemes is not so straightforward. As
we mentioned, we must compute the harmonic coordinates to get the effective co-
efficients for one random realization. However, we cannot compute all the effective
coefficients beforehand. First, for the Monte Carlo simulation, we do not know which
random samples will be chosen and thus cannot compute the corresponding harmonic
coordinates. Second, even if we use stochastic collocation points on a certain level, it
would be too time-consuming to compute the harmonic coordinates for all the fixed
points since we need to solve the physical PDE d times on a very fine mesh (d is the
dimension of the physical space).

There is another difficulty in computing the numerical solutions on each mesh grid
level. On mesh grid h = h;, we need to discretize the effective coefficient a;(z,w)
by some numerical method (such as standard finite element method) to obtain the
stiffness matrix A;(z,w). It will take a lot of time if we do it for each random sample.
Hence, to accelerate the online computations, we must come up with some efficient
method to assemble the stiffness matrix Af(x,w) on mesh grid h = hy.

We propose a Karhunen-Loeve expansion based offline-online method to conquer
the difficulties. During the offline stage, we choose some random samples w from
Monte Carlo simulation or stochastic collocation points, and compute the corre-
sponding harmonic coordinates F'. Then for each mesh grid h; (I = 0,...,L), we
compute the effective coefficients a](z,w) and the stiffness matrices A;(z,w). Note
that for each mesh grid, h; is relatively large, so the stiffness matrices Aj(z,w) are
relatively small in size and they possess the sparse structures. After that, we perform

Karhunen-Loeve expansion on Af(z,w) (I =0,...,L) and truncated it at m; terms

A* .CE UJ Z \/ )\“B“ (I)“ (614)

During the online stage, when we have a random sample @ (which might be d-

ifferent from any of the samples in the offline stage), we could get B;;(w) by some
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interpolation techniques. The stiffness matrix Aj(z, ) is easily computed by

A* ZE w Z \ /\lzBlz CI)“ (615)

We will show by some numerical examples that the above estimation of the stiffness
matrices is accurate provided that enough random samples are computed during the
offline stage. For example, if we use the 12th-level stochastic collocation points for
3 random variables, 7th-level stochastic collocation points are needed in the offline
stage. If we use 10000 Monte Carlo random samples for 15 random variables, 1000

Monte Carlo random samples are needed.

6.3 Complete algorithm

We provide the complete algorithm of the model reduction based multiscale mutilevel

Monte Carol method as follows.

Algorithm 6.1. Offline Stage

1: Partition the domain D into a number of nested mesh grid blocks, i.e., Dy C

.C D,y CD,...C Dy. The grid size of [-th level is h; = ho27, and hg is the
coarsest level mesh size.

2: Pick () random samples {wj}?zl

3 for j=1— (@ do

4:  For each w;, compute the corresponding harmonic coordinates F'.

5 forl=0— Ldo

6: Decompose F' = g 4+ x on mesh grid h;.

7: Compute the effective coeflicient a} (x,w;) and the stiffness matrix A;(z, w;).

8: end for

9: end for

10: Make Karhunen-Loeve expansion on A (I = 0,...,L), truncate it as equation

(6.14) and save the relevant data.

Algorithm 6.2. Online stage
i: for|=0— L do
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2. Pick ); random samples {ij}?:ll.
32 for j=1—Q; do
4: Obtain Bj;(wj;) by some interpolation method, i =1,...,my.
5: Assemble the stiffness matrix A by equation (6.15).
6: Solve for uj(x,w;;).
7. end for
8: end for
9: Adopt the multilevel scheme formulation to calculate expected values of a func-

tional of u*.

6.4 Computational complexity analysis

We consider the standard Monte Carlo method as the benchmark in this section. Sup-
pose we want to solve a two-dimensional multiscale problem, and the computational
domain is D = [0, 1] x [0, 1]. For such a problem, we need a fine mesh grid to resolve
the small scales in physical space. Denote Ny to be the number of points in one
direction, and for the multiscale problems, we usually take N; = 256, Ny = 384 or
Ny =512, Let Quc be the number of random samples for Monte Carlo simulations.
We know that the computational time of solving one linear systems with N unknowns

is O(N'®). So the total time cost for the Monte Carlo method is approximately
tue = cQueNF, (6.16)

where c is the constant associated with solving the linear systems.

6.4.1 Offline computational cost

For the offline stage, we have () random samples as in Algorithm 6.1. For each
sample, we need to solve the linear equation twice on the finest mesh grid Ny to get

the harmonic coordinates. The time cost for this part is

t1 &~ 2cQN7. (6.17)



90

In next steps, for each [ =0, ..., L, we will decompose the harmonic coordinates
and compute the effective coefficients. This part only involves some matrix multipli-
cations and so on, so the time cost is almost negligible. Then we need to generate
the stiffness matrix on the coarse mesh grid D;. We find that, when the mesh size is
relatively large, it takes almost a constant time ¢y to generate the stiffness matrix for
each D;. The constant time t; is less than one-fourth of the time of solving for one
solution on the finest mesh grid Ny. So the other significant time cost is

L+1

ty~ (L+ DtyQ < TCQN}”. (6.18)

If we take L = 3 and Q = 5Qnc¢ (6 < 1), the total offline computation time cost

would be
tofflme = tl -+ tg < 3BCQM0N})) = 3BCtMC- (619)

6.4.2 Online computational cost

For the online stage in Algorithm 6.2, the time cost in obtaining the value of By ;(w;;)
and assembling the stiffness matrix is almost negligible compared with the time cost
in solving for the solutions on the coarse mesh grid D;. However, the coarse mesh
size hy is much larger than the finest mesh size hy (h; < %h ), and the computational
time of solving one linear system with N unknowns is O(N'%) = O(h™3). So the
online computational time cost is quite small compared with the offline stage or the
standard Monte Carlo method. We will see from the numerical examples that it is

less than 2% of the standard Monte Carlo method.

6.5 Numerical examples

In this section, we perform numerical experiments to test the performance and ac-
curacy of the proposed MsMLMC method. We also demonstrate the computational
efficiency of MsMLMC over the traditional method, such as the Monte Carlo or s-

tochastic collocation finite element method in solving SPDEs with multiscale features.

Example 6.1. We consider the following stochastic elliptic equation with multiple
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scales on D = [0, 1] x [0, 1]. The multiscale coefficient is given by

& (w) L §2(w)
24 Psin(2r(x —y)/e1) 4+ P(sin(27x/ey) + sin(2my/ez))
§3(w)
10(2 + Psin(27(z — 0.5)/€3))(2 + Psin(27w(y — 0.5) /€e3))’

a(x,y,w) =0.1+

+

1

=, and {§}?_, are independent uniform

where P = 1.9, ¢; = %, €9 = 2% and e3 =
random variables in [0, 1].

In our computations, we use the standard finite element method. We choose a
512 x 512 fine mesh grid to well resolve the spatial scales of the stochastic solution
u(x,y,w). In previous sections, we mainly discuss the multilevel idea for variance
reduction in the Monte Carlo method. Actually, the same idea can be applied in the
stochastic collocation method. First, we conduct a convergence study, and find that
the relative errors of mean and STD between the solutions obtained by level 11 sparse
grids in the stochastic collocation method and higher level sparse grids are smaller
than 0.1% both in L? and H! norm. Therefore, we choose the solution obtained by
level 11 sparse grids with 1135 points as the reference solution.

To implement the multiscale multilevel stochastic collocation method (MsMLSC),

the coarsest mesh grid of MsMLSC is chosen as 4 x 4, i.e., hg = 1, and h; = %,

1
Il =0,..., Ly is the [-th level grid size with the coarsening factor 2. The coarsest grid
expectation solution is obtained by level 11 sparse grids, and the difference of the
expectation solutions between [ and [ — 1 grids are obtained by level 11 — 25 sparse
grid. In practical computation, one can relocate the sample number according to the
variance decay property, which will be elaborated in the next example.

We choose f(z,y) = sin(0.427z + 0.11) cos(0.26wy + 0.43). In Table 6.1-6.2, we
show the relative errors of mean and STD of the solution in L? norm and H' norm.

The MsMLSC method gives very accurate results.

Table 6.1: Example 6.1 - L? norm relative errors of the solution

mean STD
N,=4 | 1.15x 107t | 1.46 x 107!
N.=8 [317x1072 | 5.56 x 1072
NC
NC

=16 | 1.05x 1072 | 4.24 x 107!
=32 511 x10°2 | 3.96 x 102
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Table 6.2: Example 6.1 - H' norm relative errors of the solution

mean STD

N.=4 [395x107 1 [ 327x10° T
N, = 2.03x 1071 [ 1.99 x 10T
N.=16 | 9.72x 1072 | 1.16 x 10T
N.=32[479%x1072 [ 9.22 x 1072

For the stochastic collocation method, it will take 6483.32 seconds to solve the
original equation (6.1) with one specific forcing term. Thus in a multiquery problem,
if we need to solve the equation with n different forcing terms, the total computa-
tional cost will be tgc = 6483.32n. In our MsMLSC method, the offline computa-
tion will cost 2536.21 seconds, which includes the computational time of solving one
cell problem, constructing the reduced basis, and computing the fixed data struc-
ture for the global stiffness matrix. In the online stage of the MsMLMC, it takes
73.55 seconds to compute each query, thus, the total computational cost will be
tasmnse = 2536.21 + 73.55n. We can see that the MsMLSC offers considerable
computational savings over the stochastic collocation method if we need to solve the
original SPDE with more than seven different forcing functions. Even for one forcing

term, it is still superior.

Example 6.2. We consider the SPDE (6.1) with high-dimensional stochastic input

and multiscale features on D = [0, 1] x [0, 1]. The coefficient is given by

2 + P;sin(2ma/¢;)
2+ Q;cos(2my/e;)’

a(x, y’w> - Z gl(w)

where {{;} are independent uniform random variables in [0, 1], P;, Q; € (1.8,1.9) are
randomly generated, and (e, ..., €15) = (%, s %), where the integers 3 < n; < 31
are randomly generated.

The stochastic collocation method is computationally prohibitive due to the curse
of dimensionality. We implement our method in the Monte Carlo method setting.
We use the standard finite element method to discretize the spatial dimension. We
choose a 384 x 384 fine mesh grid to well resolve the spatial dimension of the stochastic

solution u(z,y,w). Due to the tremendous computational cost, we use the Monte

Carlo method with 10* samples to calculate the reference solution.
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Figure 6.1: Example 6.2 - Variance decay on the coarse mesh grids

To implement the MsMLMC, the coarsest mesh grid is chosen as 4 x 4, i.e., hy = %,

and h; = L

58, 1 =0,..., Lo is the I-th level grid size with the coarsening factor 2. The

coarsest grid expectation solution is obtained by 10* Monte Carlo samples, and the
difference of the expectation solutions between [ and [ — 1 grids are obtained by
10* x ¢; Monte Carlo samples, where ¢; is a scaling factor obtained by the variance
decay property.

We choose f(z,y) = sin(0.287x + 0.21) cos(0.357y + 0.03). In Table 6.3, we show
the relative errors of mean and STD of the solution in L? norm and H'! norm. The
MsMLMC method gives very accurate results. Figure 6.1 shows the variance decay
result for the solution.

Table 6.3: Example 6.2 - L? norm relative errors of the solution

mean STD
N.=4 [823x10° T [ 477 x 10T
N,=8 [ 245x107! | 2.84 x 107!
N.=16 | 6.77x 1072 | 1.564 x 10T
N.=32]170x1072 | 7.32 x 1072

For the stochastic collocation method, it will take 33942.57 seconds to solve the
original equation (6.1) with one specific forcing term. Thus in a multiquery problem, if
we need to solve the equation with n different forcing terms, the total computational
cost will be ty;c = 33942.57n. In our MsMLMC method, the offline computation
will cost 13736.21 seconds, which includes the computational time of solving cell

problem, constructing the reduced basis, and computing the fixed data structure
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for the global stiffness matrix. In the online stage of the MsMLMC, it takes 136.16
seconds to compute each query, thus, the total computational cost will be tyssprvc =
13736.21+136.16n. We can see that the MsMLMC offers considerable computational
savings over the stochastic collocation method if we need to solve the original SPDE

with more than seven different forcing functions.

Example 6.3. In this example, the coefficient does not have the affine form and is

given by
10
a(z,y,w) = exp <Z fi(w)’wi@(%y)) ;
i=1

where {¢;} are independent uniform random variables in [—v/3, v/3],

oi(z,y) = l—lo(sin(27rx/wi) + cos(2my /w;)) (sin(2my /w;) + cos(2mx /w;)), and

(1111 1 1 1 1 1 1
(wla "'7w10) - <§7§a 5079110 13?7 ﬁ?l_g7§72_9)'

We implement our method in the Monte Carlo method setting. We use the stan-
dard finite element method to discretize the spatial dimension. We choose a 256 x 256
fine mesh grid to well resolve the spatial dimension of the stochastic solution u(x, y,w).
Due to the tremendous computational cost, we use the Monte Carlo method with 8000
samples to calculate the reference solution.

To implement the MsMLMC, the coarsest mesh grid is chosen as 4 x4, i.e., hy = %,
and h; = %, [ =0,..., Ly is the [-th level grid size with the coarsening factor 2. The
coarsest grid expectation solution is obtained by 8000 Monte Carlo samples, and the
difference of the expectation solutions between [ and [ — 1 grids are obtained by
8000 x ¢; Monte Carlo samples, where ¢; is a scaling factor obtained by the variance
decay property.

We choose f(z,y) = 1. In Table 6.4, we show the relative errors of mean and STD
of the solution in L? norm and H'! norm. The MsMLMC method gives very accurate
results. Figure 6.2 shows the variance decay result for the solution.

For the stochastic collocation method, it will take 54823.45 seconds to solve the
original equation (6.1) with one specific forcing term. Thus in a multiquery problem, if

we need to solve the equation with n different forcing terms, the total computational

cost will be ty;c = 54823.45n. In our MsMLMC method, the offline computation
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Table 6.4: Example 6.3 - L? norm relative errors of the solution

mean STD

N.=4 [ 851 x1072]7.69x 10T
N, = 229 x 1072 | 3.54 x 107!
N,=16 | 576 x 1072 | 1.48 x 10!
N.=32|289x10"2 | 6.32 x 1072

variance
[
L4

-
-~
-~
-
-~
-
-~
-
~a

Figure 6.2: Example 6.3 - Variance decay on the coarse mesh grids

will cost 13736.21 seconds, which includes the computational time of solving cell
problem, constructing the reduced basis, and computing the fixed data structure
for the global stiffness matrix. In the online stage of the MsMLMC, it takes 179.35
seconds to compute each query, thus, the total computational cost will be ty; e =
13736.21+179.35n. We can see that the MsMLMC offers considerable computational
savings over the stochastic collocation method if we need to solve the original SPDE

with more than seven different forcing functions.
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Chapter 7

Conclusions

Model reduction technique for PDEs. We have proposed a multiscale model
reduction method for several standard types of elliptic, parabolic, hyperbolic, and
convection-diffusion equations. A key ingredient of this method is to decompose the
harmonic coordinate into a smooth part and a high oscillatory part of which the
magnitude is small. The effective equation is derived by taking into the account of
the interaction between the multiscale coefficient of the governing equation and the
decomposition. One advantage of this approach is that we do not require scale sepa-
ration or periodic structures. Another advantage is that our effective equation can be
solved on a regular coarse mesh, and it is easy to implement. An efficient decomposi-
tion method has been proposed to decompose the harmonic coordinate into a smooth
part plus a small remainder. Under some assumptions on the multiscale coefficient,
we analyze the error between the effective solution and the original multiscale solu-
tion, and show that the error is small in the H' norm. Several numerical examples
have been given to demonstrate the robustness and the accuracy of the proposed
method.

Decomposition of harmonic coordinates. The decomposition method de-
scribed above seems to work very well from our numerical experiments. One advan-
tage of this approach is that it is very easy to implement. However, such decomposi-
tion may not work in all cases, and may not give the optimal result, especially when
the harmonic coordinate, F', is not invertible. To overcome this difficulty, we are
currently investigating an alternative approach based on optimization. More specif-

ically, we would like to find a smooth ¢ that lives in the linear finite element space
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generated by the coarse mesh grid and minimizes the difference between g and F' in
some appropriate norm subject to the constraint that g is invertible. Formulating this
problem as a convex optimization problem would be the key to make this method
efficient. We will study this in the future.

Invertibility of harmonic coordinates. There are still some limitations of the
model reduction method. One most challenging issue is how to perform the decom-
position of the harmonic coordinate when the harmonic coordinate is not invertible
due to irregular geometries or three dimensionality. Although our method does not
require the harmonic coordinate, F', to be invertible, finding an optimal decomposi-
tion, ' = g + x, such that g is smooth and invertible while keeping y small becomes
more challenging when F' is not invertible in some local region. One way to overcome
this difficulty is to apply our model reduction method locally instead of globally. By
using a local mesh refinement, we can capture some nearly singular behavior of F' by
a locally well-resolved ¢ and still keep the remainder y small. Another way is to de-
velop an optimization method to generate the optimal g iteratively as we mentioned.
We can also use a residual error correction to further reduce the error if y is not small
in some localized region due to the degeneracy of F. These issues will be further
investigated in our future work.

Finite difference discretization. The solution to the effective equation is s-
mooth, while the coefficient is not smooth. For numerical implementations of our
method on a coarse mesh grid, we need to take the average of the coefficient. We use
the finite element method to take care of this work, since we are taking the average
of the coefficient when we do integrations on the coarse mesh grid. To implement
our method via other numerical methods, such as the finite difference method, we
need to take the average before directly implementing the method. Recall that the

smoothness of the solution comes from the fact that the effective equation has a non-

divergence form. The coefficient is given by a* = a%—fg—z, and a%—i is divergence free.
We must keep the divergence free condition when we take the average. Taking the
average of a* is equivalent to taking the average of ag—i, since the function ¢ is smooth.
Averaging a%—i while keeping its divergence free property is not straightforward, and

we are still investigating how to realize that efficiently, such as by projecting it onto
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some divergence free basis functions.

Two model reduction methods for SPDEs. We combine the data-driven
stochastic basis idea and multilevel Monte Carlo idea with the model reduction tech-
nique, and obtain the MsDSM and MsMLMC. The Karhunen-Loéve expansion plays
an important role. Both methods consist of offline and online stages. The offline
computational cost for MsDSM is more expensive than MsMLMC, but the online
computational cost for MsDSM is cheaper than MsMLMC. Also, the MsDSM pro-
vides the results with better accuracy than MsMLMC. It is important to point out
that MsDSM involves the computation of global harmonic coordinates for all sam-
ples (sparse grids); thus, the memory consumption becomes a serious issue when the
number of random variables is large. In this case, we adopt the MsMLMC to tackle
these problems.

Improvement of MsMLMC. The MsMLMC is a robust method that can be
used for many multiscale stochastic problems. We only need to compute the har-
monic coordinates for a small amount of random samples, which makes the offline
computational cost cheap. The interpolation technique used in the online stage makes
the assembling of the stiffness matrices very efficient. However, the small amount of
random samples and the interpolation technique makes MsMLMC less accurate than
MsDSM. We are seeking other stiffness matrix assembling technique to overcome this

difficulty.
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