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Abstract

Partial differential equations (PDEs) with multiscale coefficients are very difficult to

solve due to the wide range of scales in the solutions. In the thesis, we propose some

efficient numerical methods for both deterministic and stochastic PDEs based on the

model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an ef-

fective equation for the multiscale problem. An essential ingredient is to decompose

the harmonic coordinate into a smooth part and a highly oscillatory part of which

the magnitude is small. Such a decomposition plays a key role in our construction of

the effective equation. We show that the solution to the effective equation is smooth,

and could be resolved on a regular coarse mesh grid. Furthermore, we provide error

analysis and show that the solution to the effective equation plus a correction term

is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven s-

tochastic method and multilevel Monte Carlo method. In the multiquery, setting

and on the assumption that the ratio of the smallest scale and largest scale is not

too small, we propose the multiscale data-driven stochastic method. We construct

a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain

the solutions. For the tougher problems, we propose the multiscale multilevel Monte

Carlo method. We apply the multilevel scheme to the effective equations and assem-

ble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the

Karhunen-Loève expansion plays an important role in extracting the main parts of

some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are present-

ed to demonstrate the accuracy and robustness of the methods. We also show the
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computational time cost reduction in the numerical examples.



vii

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Deterministic case . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Stochastic case with data-driven stochastic method . . . . . . 10

1.3.3 Stochastic case with multilevel Monte Carlo method . . . . . . 11

2 Multiscale model reduction method for elliptic PDEs 14

2.1 Derivation of effective equations . . . . . . . . . . . . . . . . . . . . . 14

2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The one-dimensional case . . . . . . . . . . . . . . . . . . . . 16

2.2.2 An error estimate for the general case . . . . . . . . . . . . . . 17

2.3 Comparison with the homogenization method . . . . . . . . . . . . . 22

2.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Decomposition of the harmonic coordinates . . . . . . . . . . 24

2.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Multiscale model reduction method for time-dependent PDEs 35

3.1 Effective equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Parabolic equation . . . . . . . . . . . . . . . . . . . . . . . . 35



viii

3.1.2 Convection-diffusion equation . . . . . . . . . . . . . . . . . . 36

3.1.3 Hyperbolic equation . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Modified multiscale model reduction method for deterministic PDEs

with locally degenerate coefficients 49

4.1 Difficulties with locally degenerate coefficients . . . . . . . . . . . . . 49

4.2 Analysis for one-dimensional elliptic PDEs . . . . . . . . . . . . . . . 50

4.3 Generalization to parabolic equations . . . . . . . . . . . . . . . . . . 53

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Model reduction based multiscale data-driven stochastic method for

elliptic PDEs with random coefficients 58
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Chapter 1

Introduction

1.1 Background

A broad range of scientific and engineering problems involve partial differential e-

quations (PDEs) with multiple scales. Such disparities appear in virtually all areas

of modern science and engineering: composite materials, porous media, turbulence

transport in high Reynolds number flows, atmosphere/ocean science, finance, and so

on. Also, in recent years, there has been an increasing interest in the simulation

of systems with uncertainties. Many physical and engineering applications involving

uncertainty quantification can be described by stochastic partial differential equa-

tions (SPDEs), and another challenge in uncertainty quantification is solving SPDEs

involving multiple scales.

For example, the difficulty in analyzing groundwater transport is mainly caused

by the heterogeneity of subsurface formations spanning over many scales, and there

is no apparent scale separation. We need to solve PDEs to perform some reliable

simulations. Consider the following PDE

∇ · (a(x)∇u(x)) = f(x). (1.1)

Such a steady-state heterogeneous diffusion equation governs the pressure u(x) in the

porous media with permeability a(x) and with source term f(x). The heterogeneity

is often represented by the multiscale fluctuations in the permeability a(x). We

often need to solve the equation (1.1) many times for different source terms, which

is known to be the multiquery setting. Also, due to lack of knowledge of the media
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flow, the media properties often contain uncertainties. These uncertainties are usually

parameterized, and one deals with a large set of permeability fields with a multiscale

nature. We are interested in some expected quantities of the solutions, and need to

solve the corresponding SPDEs.

Due to the wide range of scales in these solutions, it is extremely challenging to

resolve the small scales of the solutions by direct numerical simulation. Tremendous

computational resources are required to solve for the small scales of the solution,

which makes it prohibitively expensive to solve such problems. Even for today’s

computing resources, it is easy to exceed the limit of computer memory or CPU

time. Sometimes, from an application perspective, it is often sufficient to predict

the macroscopic properties of the multiscale systems, and therefore, we are interested

in the large scale solutions. Furthermore, if we want to find out the information at

all scales, we can construct the small scale solutions from the large scale solutions

by exploring the coupling between them. Thus, finding an effective equation that

governs the large scale solution is very important. It is very difficult to derive an

effective equation since the coupling between the small scale solution and the large

scale solution is in general nonlinear and nonlocal. SPDEs involving multiple scales

become more complicated. We not only need to use a very fine mesh to resolve the

small scales of the solution in the physical space, but also need to approximate the

solution in the stochastic space of which the dimension could be high. Thus, we need

to seek accurate numerical methods for PDEs and SPDEs with multiple scales, and

reduce the computational cost.

1.2 Literature review

Many multiscale methods have been developed in the literature to solve deterministic

and stochastic PDEs. We will discuss some existing numerical methods that are

relevant to our model reduction method.

In the fields of control theory, electrical engineering and mechanical engineering,

model reduction is a technique to simplify the simulation of dynamical systems de-

scribed by differential equations. The idea is to project the original, high-dimensional,
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state-space onto a properly chosen low-dimensional subspace to arrive at a smaller

system that has properties similar to the original system. Complex systems can thus

be approximated by simpler systems involving fewer equations and unknown vari-

ables, which can be solved much more quickly than the original problem. Here, we

borrow the term ‘model reduction’ and apply it to the multiscale PDEs/SPDEs. Our

idea is to construct an effective equation that is similar to the original equation. The

new equation governs the large scale information of the solution, and a correction

term is easily computed from the large scale solution. Thus, the new equation could

be solved by the standard finite element method on a coarse mesh grid. We could

use a low-dimensional finite element space to resolve the solution instead of a high-

dimensional one, which achieves the purpose of model reduction. Since the solution to

the new equation is smooth, we call it the effective equation. However, in general, the

coefficients of the effective equations are not as smooth as the solutions. Although the

coefficients still have small scale information, we can still solve the effective equation

by the finite element method on a coarse mesh grid. In fact, we take the average of

the coefficients on the coarse mesh grid when we do integrations through the finite

element basis functions. We will see it clearly in Chapter 2.2.

Homogenization (see e.g. [10]) is a powerful tool in understanding the large s-

cale behaviour of the system under the assumption of scale separation and periodic

structures. When the coefficients have scale separation and are periodic with respect

to the fast variable, we can construct the homogenized coefficients. The large scale

solution will satisfy the same kind of equation with the new homogenized coefficients.

However, this method is strongly restricted by the assumptions of scale separation

and periodic structures, which is not always satisfied in the applications. Also, to

capture the small scale information, the construction of the correction term is not

feasible for numerical implementation, since it requires the same computational cost

as the original problem; see [48]. In our method, we seek to find the new ‘homoge-

nized’ coefficients without scale separation or periodic structures, and the correction

terms are easily computed from the large scale solutions.

In [8, 6], Babuška et al. propose the use of multiscale basis functions for elliptic

equations with a special multiscale coefficient that is the product of one-dimensional
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fields. This approach is extended by Hou and Wu [37] to general heterogeneities. They

construct the multiscale basis functions that satisfy the local multiscale equations, and

every solution can be expressed as a linear combination of the local basic functions.

They also show that boundary conditions for constructing such basic functions are

important for the accuracy of the method. Further techniques are explored to improve

the accuracy and efficiency of the method, including the oversampling technique,

nonconformal basis, local-global information exchange, special boundary conditions

for high contrast problems, spectrum decomposition of the space, and so on; see

[38, 27, 14, 24, 25, 18, 22] for reference. As we mentioned, the boundary conditions

for the basis functions are essential in the methods, and also become a constraint

for some problems. The basis functions are local, so the boundary conditions are

not easily determined beforehand. Unlike their methods, we use global harmonic

coordinates which can be approximated on a fine mesh grid whose computational

cost is no more than constructing the local basis functions.

Another method that uses the concept of basis functions is the multiscale finite

volume method proposed by Jenny et al. [40, 33]. It is based on the finite volume

method rather than the finite element method. They also introduce the bubble func-

tion to improve accuracy. We notice that both the multiscale finite element method

and multiscale finite volume method use some kind of basis functions, and the con-

structions are purely numerical. For the model reduction method, we build a new

effective equation without the need for constructing local multiscale basis functions.

We point out that any standard numerical method can be applied to our new equa-

tion. Our method provides both a theoretical and numerical understanding of the

multiscale problem.

The numerical upscaling procedures have also been developed and shown to be

effective in many areas, e.g. the local-global upscaling approach by Chen et al. [13].

The main idea of upscaling techniques is to form coarse scale equations with a pre-

scribed form, and these equations are often formed and solved numerically. Our

method falls to the category of upscaling methods. The upscaled coefficients have an

analytical expression as well as the correction term, and we can prove rigorously that

the approximation is accurate under some assumptions.
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The metric based upscaling method proposed by Owhadi et al. [51, 52] shares

some common features with our model reduction method. They use the harmonic

coordinate to construct a multiscale basis and prove convergence of their multiscale

method under some mild conditions on the coefficients (see also [1, 3] for more discus-

sions on harmonic coordinates). Specifically, they transform a standard linear finite

element basis in the harmonic coordinates to a multiscale basis in the physical coor-

dinates. The solution can be well represented by the multiscale basis. However, this

method requires the harmonic mapping to be invertible. The numerical implementa-

tion of their method is more complicated than ours, since the coarse mesh grid in the

metric based upscaling method is severely deformed due to the transformation of the

harmonic mapping. In our approach, we are interested in deriving a global upscaling

equation. Moreover, we do not require the harmonic mapping to be invertible, and

our effective equation can be solved by the standard finite element method on a reg-

ular coarse mesh grid. This makes our method easier to implement, and also more

efficient.

Among other methods for deterministic PDEs with multiple scales, there are the

following: the variational multiscale method by Hughes et al. [39], the heterogeneous

multiscale method [21] by E et al., the domain decomposition method by Graham et

al. [31, 28], the multiscale finite element method for numerical homogenization by

Allaire et al. [2], the multiscale mortar mixed finite element method by Arbogast et

al. [4], finite point method by Han et al. [34], and so on. We will not list all the

details of the methods; instead, we will switch to reviewing the numerical methods

for SPDEs.

The stochastic finite element method [30, 54] has a lot of applications, and is very

powerful. It uses the spectral expansion of the random functions on some polyno-

mial chaos, for example, Hermite polynomials of independent random variables, and

the Galerkin approach to approximate the expansion in the deterministic space. By

adopting the techniques of the deterministic Galerkin approach, error estimations can

be derived. Furthermore, it enjoys fast convergence when the solution is sufficient-

ly regular. However, a very large algebraic system is typically associated with the

Galerkin approach. When we have multiscale coefficients, the resulting linear sys-
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tem becomes very large. Both computational cost and memory consumption become

prohibitively expensive.

The Wiener chaos expansion or the generalized polynomial chaos (gPC) method

[42, 36, 56, 58, 59, 55, 49, 45] employ truncated expansions on a set of polynomial

chaos basis functions and drive a system of coupled deterministic PDEs. In the

past decade or so, a lot of progress has been made in developing an effective gPC

type of methods to solve SPDEs arising from various applications. However, this

type of methods still suffers from the curse of dimensionality in the sense that the

total number of polynomial chaos basis functions grows quickly as the number of

independent random variables becomes larger and larger.

The stochastic collocation method [57, 7, 44] has been developed from the non-

intrusive deterministic collocation method and sparse grid techniques. In principle,

the stochastic collocation method uses multivariate polynomial interpolations for the

integral in the variational formulation of the stochastic system with respect to prob-

ability space. A deterministic sequence of points resulting from tensor products of

one-dimensional quadrature points is sampled. The exact locations of such points and

weights associated with them depend on underlying probability distributions. More-

over, hierarchical construction of a generalized sparse grid has also been developed

for the application of the stochastic collocation method.

We can see that the so-called curse of dimensionality is one of the essential chal-

lenges in the uncertainty quantification. Recently, a data-driven stochastic method

[15, 60] was proposed by constructing a problem-dependent stochastic basis to solve

these SPDEs. The SPDEs enjoy a compact representation for a broad range of forcing

functions under such a stochastic basis. We will solve a number of coupled deter-

ministic PDEs by projecting the stochastic solution onto the data-driven stochastic

basis and obtain the desired quantities. However, when the coefficients have multiple

scales, fine mesh grids are needed to resolve the small scale information, and the cor-

responding large coupled system makes it very difficult to solve. Thus, we combine

the data-driven basis idea with the model reduction technique, and greatly reduce

the computational cost by considering the effective equations on coarse mesh grids.

The multilevel Monte Carlo method (MLMC) was first introduced by Giles in solv-
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ing SDEs arising in mathematical finance [32]. Similar ideas have been introduced by

Heinrich for finite-dimensional parametric integration and solving integral equations

[35]. Later, the MLMC method was extended to solve elliptic PDEs with random

coefficients; see [9, 19]. The MLMC method is very effective when the solutions to

SPDEs are smooth. However, if the solutions of SPDEs possess multiscale features,

a naive application of MLMC does not give very good performance, since the asymp-

totic variance reduction between two consecutive levels is not valid at the coarse grids

unless we make the coarse grids fine enough to resolve the smallest scale feature of

the solution. In [19], the authors remark that, the optimal choice for the coarsest

level is that the coarsest mesh size should be slightly smaller than the correlation

length of the random field, which becomes a major limitation for the method. We

will apply the multilevel scheme to the effective equations, and design an efficient

numerical method to alleviate the difficulty.

Some other numerical approaches have been proposed to solve SPDEs by explor-

ing the sparse structure of the solutions; e.g., the dynamically bi-orthogonal method

[16, 17] by Cheng et al. Also, Zabaras et al. propose a stochastic variational mul-

tiscale method for diffusion in heterogeneous random media [5, 29]. They combined

the generalized polynomial chaos method with the variational multiscale method to

achieve model reduction. However, when the dimension in stochastic direction is

large, this method is inefficient due to the exponential growth of the number of the

gPC basis elements.

1.3 Model reduction

We will briefly discuss the model reduction methods for different cases and illustrate

our contributions.
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1.3.1 Deterministic case

We use the following elliptic equation as an example to illustrate the main idea of the

model reduction approach:−∇ · (a(x)∇u(x)) = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D,
(1.2)

where D ∈ Rd is a spatial domain. The multiscale information is described by the

coefficient a(x). We assume that f(x) ∈ L2(D) is smooth, and a(x) ∈ L∞(D) is

a symmetric, positive definite matrix satisfying λmin(x) ≥ γ > 0 (λmin(x) is the

smallest eigenvalue of a(x)) for a.e. x ∈ D. For such coefficients, the solutions are

only Hölder continuous. If a has multiple scales, the solution will have multiple scales

as well.

We would like to design an effective equation in the following form−∇ · (a
∗(x)∇u∗(x)) = f(x), x ∈ D,

u∗(x) = 0, x ∈ ∂D.
(1.3)

The key is how to construct an effective coefficient a∗ so that the solution to the above

effective equation approximates the original multiscale solution with some desirable

accuracy. We use the harmonic coordinates as a tool, which satisfy the same governing

equation with homogeneous source term and linear boundary conditions. We know

that the solution in the harmonic coordinates is one order smoother than in the

physical coordinates (see e.g. [51]). An important ingredient of our method is to

design an appropriate decomposition of the harmonic coordinates, denoted as F , into

a smooth component g plus a small component χ, F = g + χ. We will illustrate how

we perform the decomposition and what we mean by smooth component and small

component in Chapter 2. Our method does not require F to be invertible, but to

motivate the derivation of our method, we assume temporarily that F is invertible.

Then, we can express u as a function of F . One important property of the harmonic

coordinates is that u as a function of F is about one order smoother than u as a

function of x (see e.g. [51]). Thus, we can write u(x) = ũ(F ) = ũ(g + χ), and



9

formally expand ũ around g by assuming that χ is small. By taking the leading

order terms and substituting them into the original equation, we obtain an effective

equation of form (1.3) after ignoring the high order terms involving χ. The effective

coefficient a∗ is defined in terms of a, g, and χ as following

a∗(x) = a(x)(I +
∂χ

∂x
(x))

∂x

∂g
(x), (1.4)

where I is the identity matrix.

We can show that the effective equation derived by the above formal analysis

indeed has the desirable smoothness property. Under some conditions, we will show

that the solution to the effective equation is in H2, which is one order smoother than

the original multiscale solution. Thus, we can solve the effective equation on a coarse

mesh. Moreover, we can show that the error term is small in the H1 norm under some

conditions. From our derivation, we can see that the decomposition of the harmonic

coordinates determines the effective coefficient, a∗. An optimal effective coefficient

will determine an optimal decomposition. The relationship between these two terms

helps us to design a nearly optimal decomposition of F .

Our method falls into the category of global upscaling methods. To obtain our

effective equation, we need to first solve for the harmonic coordinates, which amounts

to solving the original equation d times (d is the physical dimension of the problem).

If we just solve the elliptic equation once, our method would not save computational

cost. However, if we consider the multiquery setting, i.e. we need to solve the e-

quation with the same coefficient many times with different source terms, the cost of

constructing the effective coefficient is a small overhead in the offline step. The online

step of solving the effective equation with multiple right hand sides gives consider-

able computational saving, since the effective equation can be solved on a coarse mesh

while the original multiscale problem must be solved on a fine mesh. For time de-

pendent problems such as parabolic, hyperbolic, and convection-diffusion equations,

if the coefficients are time-independent, our method gives considerable computational

savings even for a single forcing, since the overhead of constructing the effective co-

efficient is negligible compared with the cost of solving the time-dependent equations
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on a fine mesh at the subsequent time steps.

1.3.2 Stochastic case with data-driven stochastic method

We propose a multiscale data-driven stochastic method to perform model reduction in

both the stochastic and physical spaces. Our new method consists of offline and online

stages. In the offline stage, we first derive an effective stochastic equation that can

be resolved on a coarse grid. We then construct a data-driven stochastic basis under

which the solutions of the effective stochastic equation have a compact representation

for a broad range of forcing functions. We consider the following elliptic SPDE with

multiscale random coefficients in the multiquery setting−∇ · (a(x, ω)∇u(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D, ω ∈ Ω.
(1.5)

where D ∈ Rd is a spatial domain, and Ω is a sample space. The multiscale informa-

tion is also described by the coefficient matrix a(x, ω). We assume that f(x) ∈ L2(D)

is smooth and a(x, ω) ∈ L∞(D) is a symmetric, positive definite matrix satisfying

λmin(x, ω) ≥ γ > 0 (λmin(x, ω) is the smallest eigenvalue of a(x, ω)) for a.e. x ∈ D,

ω ∈ Ω. We would like to derive a similar effective stochastic equation in the following

form −∇ · (a
∗(x, ω)∇u∗(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u∗(x, ω) = 0, x ∈ ∂D, ω ∈ Ω.
(1.6)

For each fixed sample ω ∈ Ω (ω can be chosen by the Monte Carlo or stochastic

collocation method), the multiscale problem (1.5) becomes deterministic, and we

would obtain the effective coefficient as (1.4). Under some conditions, we can show

that the solution to the effective equation is smooth, and the difference between the

two solutions is small. This is how we perform model reduction in the physical space.

To perform model reduction in the stochastic space, we adopt the Karhunen-Loève

expansion [41, 43] for the stochastic coefficients and solutions. It is well known that

the Karhunen-Loève expansion can generate an optimal basis in the sense that it mini-

mizes the total mean squared error. Our method consists of two essential parts: a com-
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pact parametrization for the effective coefficient a∗(x, ω), and a problem-dependent

compact basis to represent the stochastic solutions to the effective equation (1.6).

In the first part, we compute the truncated Karhunen-Loève expansion of the ma-

trix a∗(x, ω). This compact representation of the effective coefficient enables us to

generate a∗(x, ω) very efficiently in the online stage. In the second part, we construct

a data-driven stochastic basis by applying the data-driven stochastic method [15] to

the effective equation (1.6). We first choose a set of forcing functions and solve (1.6)

with one forcing function. Then, we use the Karhunen-Loève expansion of the solu-

tion to construct the stochastic basis {Bi(ω)}mi=0. An error analysis is used to evaluate

the completeness of the data-driven basis {Bi(ω)}mi=0. A greedy-type algorithm com-

bined with a two-level preconditioning [20] is used to reduce the computational cost.

First, we solve the error equation on the coarse grid for each trial function fk(x),

k = 1, 2, · · · , K. We identify the trial function fk∗ , which gives the maximum error

and solve the error equation again with this trial function on the fine grid. After

that, the Karhunen-Loève expansion of the residual error can be used to enrich the

stochastic basis. This process is repeated until the maximum residual error is be-

low the prescribed threshold ε. When this updating process terminates, we obtain

a compact data-driven basis {Bi(ω)}mi=0 for the effective stochastic equation (1.6),

which applies to all forcing functions. The detailed implementation of this enriching

algorithm depends on specific numerical representation of the stochastic basis, which

will be elaborated in detail in Chapter 5.

In the online stage, we expand the solution of (1.6) in terms of the data-driven

stochastic basis, and solve a set of coupled deterministic PDEs to obtain the solutions.

As in the deterministic case, since we need to solve the equation many times with

different forcing functions but the same coefficients, our method in the online stage

offers considerable computational savings.

1.3.3 Stochastic case with multilevel Monte Carlo method

The multiscale data-driven stochastic method works very well under the assumption

that the ratio of the smallest scale and largest scale is not too small. However, for

tougher problems, the offline computational cost would become more and more ex-
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pensive, and the online coupled system might become bigger and bigger. In this case,

we need to find a more efficient method. We again consider the same elliptic SPDE

(1.5), and we are interested in the expected value of some functional of the solutions,

which could be the mean and high-order moments. In general, we could approximate

the expectations by the standard Monte Carlo method. For the multiscale problems,

we must choose the mesh size to be fine enough to control the bias error. Also, many

realizations are required to reduce sampling errors.

We have already proven that the solution to the effective equation is a good approx-

imation of the original solution. Thus, we could approximate the effective solution

and pick the mesh grid much coarser than the original fine mesh grid, which would

save a large amount of computational time a lot for each realization.

To further reduce the computational cost, we apply the multilevel scheme proposed

in [32] to the effective equation. We first divide the physical domain D into a number

of nested coarse mesh grids, i.e., Dh0 ⊂ . . . ⊂ Dhl−1
⊂ Dhl . . . ⊂ DhL . Here, hl is the

l-th level mesh size (l = 0, 1, . . . , L) and h0 is the coarsest level mesh size. Denote

E[u∗l (x, ω)] = E[u∗hl(x, ω)] to be the mean of the numerical solution on mesh size hl;

linearity of the expectation operator implies that

E[u∗L(x, ω)] = E[u∗0(x, ω)] +
L∑
l=1

E[u∗l (x, ω)− u∗l−1(x, ω)]. (1.7)

The key point is to avoid estimating E[u∗L(x, ω)] on the finest level, but instead to

estimate it on the coarsest level. The reduction in cost associated with the multilevel

Monte Carlo method over the Monte Carlo method is due to the fact that most of

the uncertainty can be captured on the coarse grids (h >> hL), so the number of

realizations needed on the grid (h = hL) is greatly reduced due to the variance reduc-

tion between two consecutive grids. We will show the computational cost reduction

by several numerical examples.

We also design an efficient method in assembling the stiffness matrices on each

coarse mesh grid so that our method would provide significant computational time

reduction. Thus, compared with MLMC, we can perform the multilevel scheme on the

coarse mesh grids instead of fine mesh grids, although the solutions have multiscale
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information. As we can see in Chapter 6, the offline computation cost is cheaper than

the exact solver, and thus, it even works for the SPDE with one forcing term. In the

multiquery setting, we could gain more computational savings. Here, we also need

to mention that the MsMLMC could tackle more difficult problems, but the MsDSM

is more accurate and fast in the online stage when we have enough computational

resources.
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Chapter 2

Multiscale model reduction
method for elliptic PDEs

2.1 Derivation of effective equations

In this chapter, we consider the elliptic equation−∇ · (a(x)∇u(x)) = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D.
(2.1)

Let F (x) = (F1(x), ..., Fd(x)) be the harmonic coordinate associated to (2.1) in d-

dimensional space. Then Fk (k = 1, ..., d) satisfies the following elliptic equation−∇ · (a(x)∇Fk(x)) = 0, x ∈ D

Fk(x) = xk, x ∈ ∂D,
(2.2)

where x = (x1, ..., xd). Write ũ0 = u◦F−1. It is known that the solution u is smooth in

terms of the harmonic coordinates, i.e. ũ0 is in H2. If we could make a decomposition

F = g + χ such that g is smooth and χ is small with zero boundary conditions, then

we obtain by applying a formal Taylor expansion to ũ0 and ignoring the high order

terms,

ũ0(F ) = ũ0(g + χ) ≈ ũ0(g) + χT∇gũ0(g). (2.3)
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Let u0(x) = ũ0(g(x)), then we get

u(x) = ũ0(F ) ≈ u0(x) + χT
∂x

∂g
∇u0(x). (2.4)

Furthermore, we have

∇u(x) ≈ ∇u0(x) +
∂χ

∂x

∂x

∂g
∇u0(x) + χT∇(

∂x

∂g
∇u0(x)). (2.5)

By substituting (2.5) into (2.1) and eliminating the high order terms involving O(χ),

we get a new PDE for u0−∇ · (a(x)(I + ∂χ
∂x

∂x
∂g

)∇u0(x)) = f(x), x ∈ D,

u0(x) = 0, x ∈ ∂D,
(2.6)

where I is the identity matrix.

We will show that u0 is in H2 so that we can solve the effective equation (2.6)

accurately on a coarse mesh. Moreover, we will show that the H1 norm of the error,

u− (u0 + χT ∂x
∂g
∇u0), is small. Thus we can approximate u by u0 + χT ∂x

∂g
∇u0 with a

reasonable accuracy. This suggests the following steps of the model reduction method.

1. Solve the harmonic coordinate (2.2) on a fine mesh to get F .

2. Decompose F = g + χ, here g is smooth and χ is small with χ = 0 on ∂Ω.

3. Solve the effective equation (2.6) on a coarse mesh to get u0.

4. Approximate u by u0 + χT ∂x
∂g
∇u0.

The first and second steps are offline steps. We can store the necessary information

so that we can compute u0 efficiently for different f . The remaining online steps can

be solved very efficiently on a coarse mesh. So far we have not defined what we mean

by g being ‘smooth’ and χ being ‘small’. We will discuss the guideline in defining g

and χ, and give one effective construction in the next sections.

2.2 Analysis

In this section, we will perform error analysis to show that the H1 norm of the

difference between the effective solution and the original solution is small provided



16

that the L∞ norm of χ is small. We will also prove that the solution to the effective

equation is in H2 under some conditions. Before presenting the general analysis, we

will start with the simple 1-dimensional elliptic equation to illustrate the main idea.

2.2.1 The one-dimensional case

Consider the one-dimensional elliptic equation on a unit interval [0, 1](a(x)u′(x))′ = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(2.7)

The corresponding harmonic coordinate F is defined as(a(x)F ′(x))′ = 0, x ∈ (0, 1),

F (0) = 0, F (1) = 1.
(2.8)

Our effective equation is given bya(x)F ′(x)(u′0(x)/g′(x))′ = f(x), x ∈ (0, 1),

u0(0) = u0(1) = 0.
(2.9)

We can solve these equations analytically and get

u(x) = C0

(
F (x)

∫ x

0

f(s)ds−
∫ x

0

F (s)f(s)ds+ C1F (x)

)
, (2.10)

F (x) =
1

C0

∫ x

0

ds

a(s)
, (2.11)

u0(x) = C0

(
g(x)

∫ x

0

f(s)ds−
∫ x

0

g(s)f(s)ds+ C2g(x)

)
, (2.12)
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where

C0 =

∫ 1

0

ds

a(s)
, (2.13)

C1 = −
∫ 1

0

f(s)ds+

∫ 1

0

F (s)f(s)ds, (2.14)

C2 = −
∫ 1

0

f(s)ds+

∫ 1

0

g(s)f(s)ds. (2.15)

Since f ∈ L2 and g is smooth, we can see that u0 is smooth. Let u1 = χu′0/g
′,

direct computations give

(u− u0 − u1)′ = C0 ((C1 − C2)F ′ − χf) . (2.16)

We also have

C1 − C2 =

∫ 1

0

χ(s)f(s)ds, (2.17)

and

F ′ =
1

C0

1

a(x)
. (2.18)

By the assumption a(x) ≥ γ > 0, we know that F ′ is bounded. Thus we can bound

‖u − u0 − u1‖H1 in terms of ‖χ‖L∞ . This implies that as long as we can decompose

F so that the oscillatory part χ is small and g is smooth, then ‖u − u0 − u1‖H1 is

small and we can solve u0 on a coarse grid. In the next section, we will show that

this result is true for general multi-dimensional elliptic equations as well.

2.2.2 An error estimate for the general case

The main result of this section is the following theorem.

Theorem 2.1. Suppose u, F and u0 are weak solutions to (2.1), (2.2) and (2.6)

respectively. Let u1 = χT ∂x
∂g
∇u0, F = g + χ, and χ = 0 on ∂Ω. Then we have

‖u− u0 − u1‖H1(D) ≤ C‖χ‖L∞(D)‖
∂g

∂x
‖L∞(D)‖ det(

∂x

∂g
)‖L∞(D)|ũ0|H2(D), (2.19)

where C is a constant that depends on d, D and a, ũ0 = u0 ◦ g−1.

Our goal is to estimate the H1 norm of z = u − u0 − u1. The zero-boundary
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condition of χ implies the zero-boundary condition of z, i.e. z ∈ H1
0 (Ω). Since a is a

positive definite matrix whose eigenvalues have a positive lower bound, we conclude

that ||z||H1
0 (Ω) is equivalent to the energy norm, < a∇z,∇z >, where < . > is the L2

inner product. Thus, it is sufficient to perform our estimate using the energy norm.

Proof. Define

z = u− u0 − u1 ∈ H1
0 (D),

p = a∇u− a∂F
∂x

∂x

∂g
∇u0,

η = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ.

Then we have

∇ · p = ∇ · (a∇u)−∇ · (a∂F
∂x

∂x

∂g
∇u0) = f − f = 0, (2.20)

and

a∇z − p = a∇u− a∇u0 − a∇u1 − a∇u+ a
∂F

∂x

∂x

∂g
∇u0 = a

∂χ

∂x

∂x

∂g
∇u0 − a∇u1.

Further, we note that

∇u1 =
∂χ

∂x

∂x

∂g
∇u0 +

∂

∂x

(
∂x

∂g
∇u0

)
χ.

As a result, we get

a∇z − p = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ = η.

Thus, we obtain

< a∇z,∇z > =

∫
D

∇z · a∇zdx

=

∫
D

(a∇z − p) · ∇zdx+

∫
D

p · ∇zdx

=

∫
D

η · ∇zdx−
∫
D

(∇ · p)zdx

=

∫
D

η · ∇zdx,
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where we have used (2.20). By using the ellipticity assumption of a, we get

C1‖∇z‖2
L2(D) ≤ < a∇z,∇z > ≤ ‖η‖L2(D)‖∇z‖L2(D),

which implies

C1‖∇z‖L2(D) ≤ ‖η‖L2(D).

Since z vanishes on ∂D, Poincaré’s theorem gives

‖z‖H1
0 (D) ≤ C2‖∇z‖L2(D).

Thus, we get

‖z‖H1
0 (D) ≤ C‖η‖L2(D),

where C is a constant that depends on d, D and a only.

Let y = g(x) and ũ0(y) = ũ0(g(x)) = u0(x), then we have

η = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ

= −a∂g
∂x

∂x

∂g

∂

∂x

(
∂x

∂g
∇u0

)
χ

= −a
(
∂g

∂x
∇2
yũ0

)
χ.

As a result, we obtain

‖η‖L2(D) ≤ C‖a‖L∞(D)‖χ‖L∞(D)‖
∂g

∂x
‖L∞(D)‖ det(

∂x

∂g
)‖L∞(D)|ũ0|H2(D).

The determinant of ∂x
∂g

enters the last step of the above estimate due to a change of

variables from x to y. Combining all the results, we get

‖z‖H1
0 (D) ≤ C‖χ‖L∞(D)‖

∂g

∂x
‖L∞(D)‖ det(

∂x

∂g
)‖L∞(D)|ũ0|H2(D).

This completes the proof of Theorem 2.1.

The error estimate given by Theorem 2.1 provides us with some insight how to

choose our decomposition F = g + χ. If ‖χ‖L∞(D) is small and g is smooth in the
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sense that both ‖ ∂g
∂x
‖L∞(D) and ‖ det(∂x

∂g
)‖L∞(D) are bounded, then the approximation

is accurate provided that |ũ0|H2(D) is bounded. To evaluate |ũ0|H2(D), we make a

change of variables from x to y = g(x) in equation (2.6), which has a non-divergence

form

−
n∑

i,j=1

Bij(y)
∂2ũ0

∂yi∂yj
= f̃(y), (2.21)

where

B(y) =

(
| det(

∂x

∂g
)|(∂g
∂x

)Ta
∂F

∂x

)
◦ g−1(y) (2.22)

and

f̃(y) =

(
| det(

∂x

∂g
)|f
)
◦ g−1(y). (2.23)

Note that the determinant term comes from the change of variables in the integral

since we consider weak solutions.

If the matrix B satisfies the Cordes condition (see e.g. [46]),∑n
i,j=1B

2
ij(y)

(
∑n

i=1Bii(y))2
≤ 1

n− 1 + ε
, (2.24)

for some ε > 0 and M = sup(
∑n

i=1Bii(y)∑n
i,j=1B

2
ij(y)

) < ∞, we can apply Theorem 1.2.1 in [46]

to conclude that

|ũ0|H2(D) ≤
M

1−
√

1− ε
‖f‖L2(D). (2.25)

In general, the condition (2.24) is hard to verify. For d = 2, we have a more

concrete version for ε and M . Suppose λmax(y) and λmin(y) are the maximum and

minimum eigenvalues of B(y), if η1 = sup λmax(y)
λmin(y)

<∞ and η2 = inf λmin(y) > 0, then

we can pick ε = 1
η1

and M = 1
η2

.

Remark 2.1. Theorem 2.1 is an error estimate for the analytical solutions. One

should not use it to study the convergence rate of the numerical method. It does not

imply that the smaller ‖χ‖L∞(D) is, the smaller the numerical error would become.

On one hand, if we choose χ to be 0, in which case g = F , the error is zero in theory.

However, g is no longer smooth and we will have to use a fine mesh to solve the

effective equation, which is not what our method is designed for. Similarly, if we let

χ decay to zero, g will pick up more small scales and the derivative of g increases. In
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this case, we will not be able to obtain a small overall error if we use a coarse mesh.

From a view point of numerical implementation, it is usually the case that F may

become degenerated in some localized region. The ‘smoothness’ of g depends on the

size of the numerical grid. To avoid degeneracy in constructing g, we can use a finer

mesh locally to capture some important information in certain local regions, and use

a coarser mesh in other regions. By doing this, g is smooth when using a non-uniform

mesh, and we can guarantee that χ is small. Choosing an optimal decomposition

which would lead to the smallest overall error requires a delicate balance in our

decomposition of F . We will discuss more about this issue later.

Remark 2.2. In our analysis, we choose the homogeneous boundary condition. We

can still apply our method to nonhomogeneous boundary conditions, as long the the

boundary values are smooth, although we do not have the convergence analysis due to

the technical reason. When we use the finite element method, we can approximate the

boundary values by directly using the finite element basis functions on the boundary.

We do not need to transform the nonhomogeneous problem to the homogeneous one

by subtracting some function which has the given boundary values, since it will make

the new forcing term nonsmooth.

Remark 2.3. The solution in equation (2.6) is in H2, which is one order smoother

than the original solution, and that is why we call it the effective equation. However,

the coefficient a∗ = a∂F
∂x

∂x
∂g

is not smooth in general. For one-dimensional problems,

a∗ = aF ′/g′, and aF ′ is a constant according to our previous analysis. In this case, a∗

is smooth since g is smooth. For high dimensional problems, a∂F
∂x

is no longer constant,

so a∗ is not smooth. By the Cordes condition, we know that the smoothness of u0

comes from the fact that we can rewrite equation (2.6) in a non-divergence form. To

be more specific, the term a∂F
∂x

is divergence free, so we have a non-divergence form

of equation (2.6).

Although the coefficient a∗ is not smooth, we can still solve equation (2.6) by the

standard finite element method on a coarse mesh grid. We need to take the average

of the coefficient over the coarse mesh grid. Thus, the finite element method is a good

tool for us. In fact, taking the average of the coefficient is done implicitly when we
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do integrations through the finite element basis functions.

2.3 Comparison with the homogenization method

In this section, we compare our method with the classical homogenization method.

First we briefly review the homogenization theory [10]. Consider−∇ · (a(x
ε
)∇u(x)) = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D,
(2.26)

where a(y) is a symmetric, positive definite matrix, and f ∈ L2. Furthermore, aij(y)

are periodic smooth functions in y in a unit cube Y .

The homogenized coefficients are given by

a∗ij =
1

|Y |

∫
Y

aik(y)(δkj +
∂

∂yk
χjh)dy, (2.27)

where χjh (we use the notation χjh to distinguish from χj) is the solution to the periodic

cell problem

∇y · (a(y)∇yχ
j
h(y)) = − ∂

∂yi
aij(y) (2.28)

with zero mean, i.e.
∫
Y
χjhdy = 0.

Let u0 be the solution to the homogenized equation−∇ · (a
∗(x)∇u0(x)) = f(x), x ∈ D,

u0(x) = 0, x ∈ ∂D.
(2.29)

Then we have

||u− u0||L2(D) ≤ Cε||u||H2(D). (2.30)

Further, we define

u1(x) = χjh(
x

ε
)
∂u0

∂xj
(x). (2.31)

Note that u0 + εu1 6= 0 on ∂D, so we introduce a first order correction term θε
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satisfying −∇ · (a(x
ε
)∇θε(x)) = 0, x ∈ D,

θε(x) = u1, x ∈ ∂D.
(2.32)

Then it can be shown that (see e.g. [48])

||u− u0 − ε(u1 − θε)||H1(D) ≤ Cε||u0||H2(D). (2.33)

The constant C is independent of u0 and ε.

One important advantage of our method is that we can take care of a continuum

of scales and do not require periodicity on the microstructure while homogenization

theory usually requires scale separation and periodic structures. Moreover, one must

include a boundary correction term θε to achieve H1 convergence in the homoge-

nization method. This correction term must be solved on a fine mesh grid and is

expensive to compute. In comparison, there is no need to compute a correction term

in our method since we require χ = 0 on ∂D.

If only L2 convergence is needed, both methods do not need correction terms,

and the homogenized coefficients are easier to compute (see (2.27) and (2.28)). Our

method requires two global solutions on a fine mesh. However, under the conditions

for homogenization (periodic smooth a(y)), we can modify our method easily so that

we can compute the harmonic coordinates with the same cost as the homogenization

method. Specifically, the harmonic coordinate F satisfies ∇ · (a(x
ε
)∇F (x)) = 0 and

F = g + χ. If we set g = x, we get the equation for χ as follows

∇ · (a(
x

ε
)∇χj(x)) = −1

ε

∂

∂yi
aij(

x

ε
). (2.34)

Now we do not require χ = 0 on the boundary, assume χj to be periodic in Y and

impose the constraint
∫
Y
χj(x)dx = 0. Equation (2.34) is still global, but comparing

(2.34) with (2.28) gives χ(x) = εχh(
x
ε
). So we can solve (2.28) instead of (2.34).

Following the proof in Theorem 2.1, we can obtain the same error estimate as (2.30).
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2.4 Numerical Implementation

2.4.1 Decomposition of the harmonic coordinates

In this section, we discuss how to construct the decomposition of the harmonic coor-

dinates. As we know from the previous sections, the decomposition F = g + χ plays

an essential role in our method. Here we discuss some guidelines in choosing such a

decomposition and how to construct it numerically.

The first criterion in choosing our decomposition is to make sure that g is smooth

and invertible. We need to define what we mean by g being smooth. The smoothness

is relative to the coarse mesh that we will use to solve the effective equation. In our

numerical implementation, we use the standard linear finite element method to solve

the effective equation. Thus, any linear combination of the nodal basis on the coarse

mesh could be considered as a smooth function, and we can choose g in this form.

The second criterion of our decomposition is to make χ small. If we choose the

nodal values of g close to those of F , then we expect that the difference between

the two would be small. This suggests a natural way to define g, i.e. we can choose

the nodal values of g at the coarse mesh points to be the same as F at these coarse

mesh points. We can then interpolate g from the coarse mesh points to the fine mesh

points using the linear interpolation. Once we have defined g globally through linear

interpolation, we have also determined χ = F − g. Since F is linear on the boundary,

such decomposition guarantees that g = F on the boundary, which implies that χ = 0

on ∂D.

We also have another guideline to determine whether the decomposition is effective

or not from the view point of numerical implementation. Note that ug = g solves the

following equation exactly:−∇ · (a(x)(I + ∂χ
∂x

∂x
∂g

)∇ug(x)) = 0, x ∈ D,

ug(x) = x, x ∈ ∂D.
(2.35)

If g is smooth enough, we should be able to solve the above equation (2.35) accurately

on a coarse mesh. Thus, we can use the difference between the numerically computed
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ug and g to determine whether we obtain a good decomposition for F . The smaller

the difference is, the better the method would perform.

2.4.2 Numerical results

We perform several numerical experiments to test our multiscale model reduction

method (MsMRM) for the elliptic equation (2.1). We take D = [0, 1] × [0, 1] in 2-

dimensional space. Since it is difficult to construct a general enough test problem

with an analytic solution, we use well resolved numerical solutions in place of exact

solutions. In our computations, we use the standard linear finite element method

(FEM). We compare the solution on a 256 × 256 mesh and a 512 × 512 mesh. The

L2 relative error is less than 1× 10−3 and the H1 relative error is less than 2× 10−2.

So the numerical solution on the 256 × 256 mesh is well resolved by the mesh and

we can consider it as the reference solution. To implement our method, the coarse

meshes are chosen to be 8× 8, 16× 16 and 32× 32 respectively, and we compare the

results on different meshes. As we mentioned, the forcing terms should be resolved

by the coarse mesh, so we choose f(x, y) ∈ {sin(kiπx+ li) cos(miπy + ni)}i∈J, where

ki, li, mi, and ni are random numbers uniformly distributed over the interval [0, 0.5].

We also choose the FEM as the benchmark and compare our method with it.

Example 2.1. We consider the case when the elliptic coefficient is a scalar defined

by

a(x, y) =
1

2 + 1.6 sin(2π(x− y)/ε1)
+

1

4 + 1.8(sin(2πx/ε2) + sin(2πy/ε2))

+
1

10(2 + 1.8 sin(2π(x− 0.5)/ε3))(2 + 1.8 sin(2π(y − 0.5)/ε3))
,

where ε1 = 1
3
, ε2 = 1

11
, ε3 = 1

19
.

In this example, f(x, y) = sin(0.48πx+ 0.17) cos(0.29πy+ 0.11). In Figure 2.1-2.2,

we plot the coefficient and the decomposition. Relative errors are shown in Tables

2.1 and 2.2. From these figures, we can see that the coefficient oscillates very rapidly,

which generates small scale features in the solution (e.g. ∂F1

∂x1
). The smooth part of

F , g, is a summation of some piecewise linear nodal functions, see Figure 2.2. The

magnitude of χ is indeed small (around 10−2), see Table 2.4. Thus, the conditions of
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Theorem 2.1 are satisfied. We observe convergence in both L2 and H1 norms.
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Figure 2.1: Example 2.1 - The coefficient a and the exact solution ue
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Figure 2.2: Example 2.1 - The derivative of the function F and g (Nc = 16)

Remark 2.4. We remark that Theorem 2.1 does not give a specific rate of con-

vergence. It is worthwhile to make the following observations on the convergence

property of our method. Denote the exact solution as ue, the solution constructed

from the effective equation as um and its numerical approximation as un. Then the

error consists of two parts, i.e. ||ue − um|| + ||um − un||. The first part is controlled

by Theorem 2.1, and it gets smaller as we use a finer size. For fixed um, the second

part converges at order O(h2) (L2 norm) or order O(h1) (H1 norm). However, as

the mesh size h varies, we have different decompositions, so um is not fixed. Thus,
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Table 2.1: Example 2.1 - L2 norm relative errors of the solution

MsMRM FEM
Nc = 8 2.58× 10−2 1.16× 10−1

Nc = 16 7.27× 10−3 6.60× 10−2

Nc = 32 3.45× 10−3 3.58× 10−2

Table 2.2: Example 2.1 - H1 norm relative errors of the solution

MsMRM FEM
Nc = 8 1.67× 10−1 3.31× 10−1

Nc = 16 8.26× 10−2 2.44× 10−1

Nc = 32 4.00× 10−2 1.74× 10−1

the overall rate of convergence is not necessarily O(h2) or O(h1). In all our numer-

ical experiments, we observe different rates of convergence for different mesh sizes,

especially for the L2 norm. On the finest mesh, the error will eventually converge to

zero (if we take the numerical solution on the finest mesh to be the true solution).

However, we want to perform our method on a coarse mesh instead of a fine one. Our

main objective is not to find the optimal convergence rate, but to reduce the error

on a given coarse mesh. So we are more interested in the error itself rather than the

convergence rate. It is important not to be confused with these two issues.

Example 2.2. We choose an anisotropic field a as a(x, y) = |θ(x, y)| + 0.5. Here

θ(x, y) is defined on a 23 × 23 grid over the domain D, and for each grid cell, the

value of θ(x, y) is distributed according to the standard normal distribution (see

Figure 2.3a). The multiscale coefficient, a, is very rough and does not satisfy scale

separation or have any periodic structure. Compared with the first example, both the

coefficient and the solution are more singular. This presents a challenging test problem

for our method. In this example, f(x, y) = sin(0.33πx+ 0.43) cos(0.43πy + 0.38). As

we can see from the error study presented in Table 2.5-2.6, our method still gives a

satisfactory convergence rate and the relative errors are quite small.

Example 2.3. Next, we consider an example that has a discontinuous and high

Table 2.3: Example 2.1 - L∞ norm of the function χ

χ1 χ2

Nc = 8 1.94× 10−2 1.95× 10−2

Nc = 16 1.30× 10−2 1.26× 10−2

Nc = 32 7.31× 10−3 7.12× 10−3
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Table 2.4: Example 2.1 - L2 norm and H1 norm relative errors of the function g (Nc = 16)

L2 norm H1 norm
g1 (Nc = 16) 2.23× 10−4 3.78× 10−3

g2 (Nc = 16) 2.31× 10−4 3.89× 10−3
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Figure 2.3: Example 2.2 - The coefficient a and the exact solution ue
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Figure 2.4: Example 2.2 - The derivative of the function F and g (Nc = 16)

Table 2.5: Example 2.2 - L2 norm relative errors of the solution

MsMRM FEM
Nc = 8 3.02× 10−2 1.06× 10−1

Nc = 16 7.33× 10−3 6.89× 10−2

Nc = 32 3.50× 10−3 3.89× 10−2

Table 2.6: Example 2.2 - H1 norm relative errors of the solution

MsMRM FEM
Nc = 8 1.66× 10−1 3.38× 10−1

Nc = 16 8.47× 10−2 2.67× 10−1

Nc = 32 3.96× 10−2 1.95× 10−1
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Table 2.7: Example 2.2 - L∞ norm of the function χ

χ1 χ2

Nc = 8 2.42× 10−2 2.40× 10−2

Nc = 16 1.52× 10−2 1.36× 10−2

Nc = 32 7.20× 10−3 7.56× 10−3

Table 2.8: Example 2.2 - L2 norm and H1 norm relative errors of the function g (Nc = 16)

L2 norm H1 norm
g1 (Nc = 16) 1.86× 10−4 4.02× 10−3

g2 (Nc = 16) 2.11× 10−4 4.49× 10−3

contrast coefficient (see Figure 2.5a). The contrast in the coefficient is as high as 105.

The channel is 0.02 wide in both x and y directions, and 0.5 long in x direction and

0.3 long in y direction. Inside the channel, the coefficient is very large (= 105), while

the coefficient is small outside the channel (= 1). There has been a lot of interest

in studying multiscale problems with high contrast coefficients in recent years, see

e.g. [18, 23, 22, 31]. This is known to be a very difficult problem. In this example,

f(x, y) = sin(0.33πx + 0.43) cos(0.43πy + 0.38). Even for such a challenging test

problem, our method still captures the important feature of the solution accurately.

As we can see from Table 2.9-2.10, the convergence rate remains to be very robust

and the relative errors are very small.
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Figure 2.6: Example 2.3 - The derivative of the function F and g (Nc = 16)

Table 2.9: Example 2.3 - L2 norm relative errors of the solution

MsMRM FEM
Nc = 8 3.88× 10−2 1.30× 10−1

Nc = 16 9.06× 10−3 8.84× 10−2

Nc = 32 3.99× 10−3 3.59× 10−2

Table 2.10: Example 2.3 - H1 norm relative errors of the solution

MsMRM FEM
Nc = 8 2.09× 10−1 3.04× 10−1

Nc = 16 8.23× 10−2 2.27× 10−1

Nc = 32 3.96× 10−2 1.34× 10−1

Table 2.11: Example 2.3 - L∞ norm of the function χ

χ1 χ2

Nc = 8 1.63× 10−1 1.18× 10−1

Nc = 16 7.26× 10−2 6.58× 10−2

Nc = 32 5.80× 10−2 3.64× 10−2

Table 2.12: Example 2.3 - L2 norm and H1 norm relative errors of the function g (Nc = 16)

L2 norm H1 norm
g1 (Nc = 16) 1.60× 10−3 1.04× 10−2

g2 (Nc = 16) 1.11× 10−3 6.82× 10−3
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Example 2.4. We consider the elliptic PDE with the following coefficient

a(x, y) = exp

(
10∑
i=1

wi(αi sin(2πx/wi) + βi cos(2πx/wi))

)
,

where αi and βi are independent uniform random variables in [−
√

3,
√

3],

and (w1, ..., w10) =
(

1
2
, 1

3
, 1

5
, 1

7
, 1

11
, 1

13
, 1

17
, 1

19
, 1

23
, 1

29

)
. As we can see from Figure 2.7a, the

coefficient varies rapidly in x direction, and it has many layers, which makes the prob-

lem very difficult to solve. In this example, f(x, y) = sin(0.44πx+ 0.46) cos(0.28πy+

0.26). For such a problem, our method works very well and captures the small scales

in x direction. As we can see from Table 2.13-2.14, the relative errors are very small.

We also note that there is no variation in y direction, so the norm of χ2 and the

numerical errors for g2 are 0, as expected (Table 2.15-2.16).
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Figure 2.7: Example 2.4 - The coefficient a and the exact solution ue

Table 2.13: Example 2.4 - L2 norm relative errors of the solution

MsMRM FEM
Nc = 8 2.43× 10−2 1.35× 10−1

Nc = 16 7.29× 10−3 4.91× 10−2

Nc = 32 3.03× 10−3 1.18× 10−2

Example 2.5. Finally, we consider an elliptic problem that also has a discontinuous

coefficient with both channels and many small inclusions (see Figure 2.9a). Inside

these inclusions and channels, the coefficient is 50, while outside them the coefficient

is 1. This is a even harder problem than Example 2.3, since the discontinuities occur
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Figure 2.8: Example 2.4 - The derivative of the function F and g (Nc = 16)

Table 2.14: Example 2.4 - H1 norm relative errors of the solution

MsMRM FEM
Nc = 8 1.95× 10−1 3.90× 10−1

Nc = 16 9.22× 10−2 2.36× 10−1

Nc = 32 4.15× 10−2 1.01× 10−1

Table 2.15: Example 2.4 - L∞ norm of the function χ

χ1 χ2

Nc = 8 3.95× 10−2 0
Nc = 16 2.17× 10−2 0
Nc = 32 6.74× 10−3 0

Table 2.16: Example 2.4 - L2 norm and H1 norm relative errors of the function g (Nc = 16)

L2 norm H1 norm
g1 (Nc = 16) 7.55× 10−4 7.95× 10−3

g2 (Nc = 16) 0 0
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in many regions. In this example, f(x, y) = sin(0.35πx+ 0.23) cos(0.21πy+ 0.06). As

we can see from Table 2.17-2.18, our method still provides satisfactory results and

the errors are small, which shows that our method can be used to solve challenging

multiscale problems without scale separation and with discontinuous coefficients.
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Table 2.17: Example 2.5 - L2 norm relative errors of the solution

MsMRM FEM
Nc = 8 7.29× 10−2 9.84× 10−1

Nc = 16 3.68× 10−2 3.74× 10−1

Nc = 32 1.12× 10−2 1.70× 10−1

Table 2.18: Example 2.5 - H1 norm relative errors of the solution

MsMRM FEM
Nc = 8 1.78× 10−1 9.90× 10−1

Nc = 16 9.16× 10−2 5.38× 10−1

Nc = 32 6.28× 10−2 3.56× 10−1

Table 2.19: Example 2.5 - L∞ norm of the function χ

χ1 χ2

Nc = 8 2.11× 10−1 6.44× 10−2

Nc = 16 1.14× 10−1 3.46× 10−2

Nc = 32 8.68× 10−2 2.19× 10−2

Table 2.20: Example 2.5 - L2 norm and H1 norm relative errors of the function g (Nc = 16)

L2 norm H1 norm
g1 (Nc = 16) 1.43× 10−3 1.03× 10−2

g2 (Nc = 16) 1.59× 10−3 1.45× 10−2



35

Chapter 3

Multiscale model reduction
method for time-dependent PDEs

3.1 Effective equations

We could apply a similar idea to derive effective equations for time-dependent equa-

tions with time-independent coefficients.

3.1.1 Parabolic equation

We first consider a parabolic equation of the form
ut(x, t)−∇ · (a(x)∇u(x, t)) = f(x), x ∈ D, t ∈ (0, T ],

u(x, t) = 0, x ∈ ∂D, t ∈ (0, T ],

u(x, 0) = 0, x ∈ D.

(3.1)

We can define the harmonic coordinates F in exactly the same way as we did for the

elliptic equation. We then decompose F = g + χ and solve the following effective

equation on a coarse mesh
(u0)t(x, t)−∇ · (a(x)(I + ∂χ

∂x
∂x
∂g

)∇u0(x, t)) = f(x), x ∈ D, t ∈ (0, T ],

u0(x, t) = 0, x ∈ ∂D, t ∈ (0, T ],

u0(x, 0) = 0, x ∈ D.

(3.2)

Again, we approximate u by u0 + χT ∂x
∂g
∇u0.



36

3.1.2 Convection-diffusion equation

Next, we consider the convection-diffusion equation with multiscale velocity field (see

also [47]) 
vt(x, t) + u(x) · ∇v(x, t) = ∇ · (α∇v(x, t)) x ∈ D, t ∈ (0, T ],

v(x, t) = 0, x ∈ ∂D, t ∈ (0, T ],

v(x, 0) = φ(x), x ∈ D,

(3.3)

where u(x) is a velocity field that satisfies ∇ · u(x) = 0 and α is a positive diffusion

constant.

We define the corresponding harmonic coordinates as followsu(x) · ∇Fk(x) = ∇ · (α∇Fk(x)), x ∈ D

Fk(x) = xk, x ∈ ∂D.
(3.4)

By decomposing F = g + χ as before, we obtain the following effective equation

(v0)t(x, t) + u(x) · ∇v0(x, t) = ∇ · ((α∂F
∂x
− uχT )∂x

∂g
∇v0(x, t)), x ∈ D, t ∈ (0, T ],

or equivalently

(v0)t =
n∑

i,j,k=1

(α∂F
∂x
− uχT )ij

∂gk
∂xi

∂2v0
∂gj∂gk

in D × (0, T ]

v0(x, t) = 0, x ∈ ∂D, t ∈ (0, T ],

v0(x, 0) = φ(x), x ∈ D.
(3.5)

Finally, v is approximated by v0 + χT ∂x
∂g
∇v0.

3.1.3 Hyperbolic equation

The multiscale model reduction method proposed in this paper can be extended to s-

tudy hyperbolic partial differential equations with multiscale coefficients. Specifically,
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we consider the following hyperbolic equation

utt(x, t)−∇ · (a(x)∇u(x, t)) = f(x), x ∈ D, t ∈ (0, T ],

u = 0, x ∈ ∂D, t ∈ (0, T ],

u = 0, x ∈ D,

ut = 0, x ∈ D.

(3.6)

It is straightforward to generalize the derivation of our effective equation to the hy-

perbolic equation. The effective equation takes the form

(u0)tt(x, t)−∇ · (a(x)(I + ∂χ
∂x

∂x
∂g

)∇u0(x, t)) = f(x), x ∈ D, t ∈ (0, T ],

u0(x, t) = 0, x ∈ ∂D, t ∈ (0, T ],

u0(x, 0) = 0, x ∈ D,

(u0)t(x, 0) = 0, x ∈ D,

(3.7)

where F = g + χ is defined in the same way as before.

3.2 Error estimate

For the parabolic equation, we have the following theorem.

Theorem 3.1. Suppose u, F and u0 are weak solutions to (3.1), (2.2) and (3.2)

respectively. Let u1 = χT ∂x
∂g
∇u0, F = g + χ, and χ = 0 on ∂D. Then we have

max
(0,T ]
‖u− u0 − u1‖L2(D) + ‖u− u0 − u1‖L2(0,T ;H1(D))

≤C‖χ‖L∞(D)‖
∂g

∂x
‖L∞(D)‖ det(

∂x

∂g
)‖L∞(D)(|ũ0|H2,1(0,T ;D) + ‖(ũ0)t‖L2(0,T ;H1(D))), (3.8)

where C is a constant that depends on d, D and a, ũ0(y, t) = ũ0(g(x), t) = u0(x, t) and

‖u‖2
L2(0,T ;H1(D)) :=

∫ T
0

∫
D

(u2+|∇u|2)dxdt, |u|2H2,1(0,T ;D) :=
∫ T

0

∫
D

((ut)
2+|∇∇u|2)dxdt.
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Proof. Let z = u− u0 − u1, then z = 0 at t = 0 and on ∂D. We define

p = a∇u− a∂F
∂x

∂x

∂g
∇u0,

η1 = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ,

η2 = −χT ∂x
∂g
∇(u0)t.

Then we have

a∇z − p =a∇u− a∇u0 − a∇u1 − a∇u+ a
∂F

∂x

∂x

∂g
∇u0

=− a∇u0 − a∇u1 + a
∂F

∂x

∂x

∂g
∇u0

=− a ∂
∂x

(
∂x

∂g
∇u0

)
χ = η1,

and

∇ · p = (ut − f)− ((u0)t − f) = ut − (u0)t = zt + (u1)t = zt − η2.

Then for any τ ∈ (0, T ] we have∫ τ

0

∫
D

∇z · a∇zdxdt

=

∫ τ

0

∫
D

∇z · (a∇z − p)dxdt+

∫ τ

0

∫
D

∇z · pdxdt

=

∫ τ

0

∫
D

∇z · η1dxdt−
∫ τ

0

∫
D

z(∇ · p)dxdt

=

∫ τ

0

∫
D

∇z · η1dxdt−
∫ τ

0

∫
D

(zzt − zη2)dxdt

=

∫ τ

0

∫
D

∇z · η1dxdt−
∫
D

(
z2(τ, x)

2
− z2(0, x)

2

)
dx+

∫ τ

0

∫
D

zη2dxdt

=

∫ τ

0

∫
D

∇z · η1dxdt− 1

2

∫
D

z2(τ, x)dx+

∫ τ

0

∫
D

zη2dxdt.
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Rearranging the above equation, we get

1

2

∫
D

z2(τ, x)dx+

∫ τ

0

∫
D

∇z · a∇zdxdt

=

∫ τ

0

∫
D

∇z · η1dxdt+

∫ τ

0

∫
D

zη2dxdt

≤
∫ τ

0

∫
D

|∇z · η1|dxdt+

∫ τ

0

∫
D

|zη2|dxdt

≤
∫ T

0

∫
D

|∇z · η1|dxdt+

∫ T

0

∫
D

|zη2|dxdt.

Taking the maximum over τ ∈ (0, T ], we have

max
(0,T ]

1

2

∫
D

z2(τ, x)dx+

∫ T

0

∫
D

∇z · a∇zdxdt

≤
∫ T

0

∫
D

|∇z · η1|dxdt+

∫ T

0

∫
D

|zη2|dxdt

≤‖∇z‖L2(0,T ;D)‖η1‖L2(0,T ;D) + ‖z‖L2(0,T ;D)‖η2‖L2(0,T ;D).

where the second inequality is due to the Hölder’s inequality.

Application of the Poincaré’s inequality gives

(
max
(0,T ]
‖z‖L2(D) + ‖z‖L2(0,T ;H1(D))

)2

≤C
(

max
(0,T ]

1

2

∫
D

z2(τ, x)dx+

∫ T

0

∫
D

∇z · a∇zdxdt
)

≤C
(
‖∇z‖L2(0,T ;D)‖η1‖L2(0,T ;D) + ‖z‖L2(0,T ;D)‖η2‖L2(0,T ;D)

)
≤C
(

max
(0,T ]
‖z‖L2(D) + ‖z‖L2(0,T ;H1(D))

)(
‖η1‖L2(0,T ;D) + ‖η2‖L2(0,T ;D)

)
.

Finally we have

max
(0,T ]
‖z‖L2(D) + ‖z‖L2(0,T ;H1(D))

≤C
(
‖η1‖L2(0,T ;D) + ‖η2‖L2(0,T ;D)

)
≤C‖χ‖L∞(D)‖

∂g

∂x
‖L∞(D)‖ det(

∂x

∂g
)‖L∞(D)(|ũ0|H2,1(0,T ;D) + ‖(ũ0)t‖L2(0,T ;H1(D))),

where C is a constant that depends on d, D and a.
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For the convection-diffusion equation, we have the following theorem.

Theorem 3.2. Suppose v, F and v0 are weak solutions to (3.3), (3.4) and (3.5)

respectively. Let v1 = χT ∂x
∂g
∇v0, F = g + χ, and χ = 0 on ∂D. Then we have

max
(0,T ]
‖v − v0 − v1‖L2(D) + ‖v − v0 − v1‖L2(0,T ;H1(D))

≤C‖χ‖L∞(D)‖
∂g

∂x
‖L∞(D)‖ det(

∂x

∂g
)‖L∞(D)(|ṽ0|H2,1(0,T ;D) + ‖(ṽ0)t‖L2(0,T ;H1(D))), (3.9)

where C is a constant that depends on d, D, u, and α, ṽ0(y, t) = ṽ0(g(x), t) = v0(x, t).

The proof of the above theorem is analogous to that of Theorem 3.1. We omit the

proof here.

In Theorems 3.1 and 3.2, the quantities |ũ0|H2,1(0,T ;D) and |ṽ0|H2,1(0,T ;D) could be

bounded since the equations in both cases can be written in non-divergence forms in

variable y = g(x).

For the parabolic equation, the equation has a form similar to that of the elliptic

equation

(ũ0)t −
n∑

i,j=1

Bij(y)
∂2ũ0

∂yi∂yj
= f̃(y), (3.10)

where B and f̃ are the same as those in (2.22) and (2.23).

For the convection-diffusion equation, the effective equation is

(v0)t + u · ∇v0 = ∇ ·
(

(α
∂F

∂x
− uχT )

∂x

∂g
∇v0

)
. (3.11)
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Note that

∇ · ((α∂F
∂x
− uχT )

∂x

∂g
∇v0)

=∇ · ((α∂F
∂x
− uχT ))

∂x

∂g
∇v0 +

n∑
i,j,k=1

(α
∂F

∂x
− uχT )ij

∂gk
∂xi

∂2v0

∂gj∂gk

=(α∆F − u · ∂χ
∂x

)
∂x

∂g
∇v0 +

n∑
i,j,k=1

(α
∂F

∂x
− uχT )ij

∂gk
∂xi

∂2v0

∂gj∂gk

=(u · ∂F
∂x
− u · ∂χ

∂x
)
∂x

∂g
∇v0 +

n∑
i,j,k=1

(α
∂F

∂x
− uχT )ij

∂gk
∂xi

∂2v0

∂gj∂gk

=u · ∂g
∂x

∂x

∂g
∇v0 +

n∑
i,j,k=1

(α
∂F

∂x
− uχT )ij

∂gk
∂xi

∂2v0

∂gj∂gk

=u · ∇v0 +
n∑

i,j,k=1

(α
∂F

∂x
− uχT )ij

∂gk
∂xi

∂2v0

∂gj∂gk
.

So the equation can be written as

(ṽ0)t −
n∑

i,j=1

Bij(y)
∂2ṽ0

∂yi∂yj
= 0, (3.12)

where

B(y) = (| det(
∂x

∂g
)|(α∂F

∂x
− uχT )

∂g

∂x
) ◦ g−1(y). (3.13)

In both cases, if the corresponding coefficient matrix B satisfies∑n
i,j=1B

2
ij + 1

(
∑n

i=1Bii + 1)2
≤ 1

n+ ε
, (3.14)

where n is the dimension and ε is a positive number, we can prove that |ũ0|H2,1(0,T ;D)

(or|ṽ0|H2,1(0,T ;D)) is bounded (see e.g. [46]).

As for the terms ‖(ũ0)t‖L2(0,T ;H1(D)) and ‖(ṽ0)t‖L2(0,T ;H1(D)), we cannot provide an

analytical bound based on the assumptions that we have so far. Since these terms

contain the spacial gradient of (ũ0)t (or (ṽ0)t), we need stronger requirements on the

coefficients as well as the source terms. We will monitor these terms in the numerical

experiments. As we will see in the numerical examples, these terms are bounded in

the examples that we consider.
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The convergence analysis of the effective equation for the hyperbolic equation is

more complicated than that for the equations that we have considered so far. A

straightforward generalization of our previous convergence analysis to the hyperbolic

equation would require a stronger regularity assumption on the effective solution.

However, our numerical results indicate that our effective equation still gives a very

accurate approximation to the multiscale solution of the hyperbolic PDE in both L2

and H1 norms.

3.3 Numerical results

In all the numerical examples for the time-dependent PDEs, the physical domain is

chosen to be D = 8×8, and we choose a 256×256 mesh for the well-resolved solution.

We compute the solutions on 8× 8, 16× 16 and 32× 32 meshes using our multiscale

model reduction method (MsMRM), and compare the results with the traditional

finite element method (FEM).

Example 3.1. A parabolic equation. In this example, a = 2+sin(2πx/ε1)
2+cos(2πy/ε1)

+ 2+cos(2πx/ε2)
2+sin(2πy/ε2)

with ε1 = 1
7
, ε2 = 1

19
and f = 1. We compute the solution until T = 0.1. Table 3.1-3.2

show the errors versus time with different coarse grid meshes. As we can see from

the tables, our method gives qualitatively the same performance as for the case of the

elliptic equation. In Figure 3.3, we show the quantity
∫

Ω
|∇(ũ0)t|2dx as time varies.

Although we do not have an analytical bound for it based on the limited assumptions,

we can see that it remains bounded.
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Figure 3.1: Example 3.1 - The coefficient a
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(a) L2 norm relative errors of the solution at Nc = 8
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(b) L2 norm relative errors of the solution at Nc = 8
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(c) L2 norm relative errors of the solution at Nc = 16
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(d) H1 norm relative errors of the solution at Nc = 16
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(e) L2 norm relative errors of the solution at Nc = 32
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(f) H1 norm relative errors of the solution at Nc = 32

Figure 3.2: Example 3.1 - Relative errors of the solution



44

Table 3.1: Example 3.1 - L2 norm relative errors of the solution at T = 0.1

MsMRM FEM
Nc = 8 2.74× 10−2 9.79× 10−2

Nc = 16 7.94× 10−3 5.83× 10−2

Nc = 32 2.63× 10−3 3.37× 10−2

Table 3.2: Example 3.1 - H1 norm relative errors of the solution at T = 0.1

MsMRM FEM
Nc = 8 1.49× 10−1 3.26× 10−1

Nc = 16 7.23× 10−2 2.48× 10−1

Nc = 32 3.52× 10−2 1.77× 10−1
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Figure 3.3: Example 3.1 -
∫

Ω
|∇(ũ0)t|2dx at Nc = 16
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Example 3.2. A convection-diffusion equation. In this experiment, we choose the

stream function ψ = 1
(2+sin(2πx/ε1))(2+cos(2πy/ε1))

+ 1
(2+cos(2πx/ε2))(2+sin(2πy/ε2))

with ε1 = 1
7

and ε2 = 1
19

to generate the velocity filed. u0 = (ψy,−ψx) and u = 10u0
||u0||L∞

. The initial

condition is φ = xy(1− x)(1− y), and α = 0.05. The end time is T = 0.1. Figure 3.5

shows the errors versus time with different coarse grid meshes. Figure 3.6 shows the

boundedness of
∫

Ω
|∇(ṽ0)t|2dx. Table 3.3-3.4 shows the error at T = 0.1. In this case,

we observe that the errors are larger than those presented in the previous examples

for the elliptic and the parabolic equations. The reason for this behavior is due to

a mild degeneracy of ellipticity since the diffusion coefficient α is relatively small in

this convection diffusion problem. From our convergence analysis, the error will be

amplified by the smallest eigenvalue of the elliptic coefficient. In this case, the smallest

eigenvalue is α, which is smaller than the ones we consider in the previous example.

Given that the convection diffusion equation presents a tougher test problem for our

method, the performance of our method is still quite encouraging.
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(b) u2

Figure 3.4: Example 3.2 - The velocity fields u1 and u2

Table 3.3: Example 3.2 - L2 norm relative errors of the solution at T = 0.1

MsMRM FEM
Nc = 8 3.14× 10−2 3.89× 10−2

Nc = 16 8.51× 10−3 2.78× 10−2

Nc = 32 2.58× 10−3 1.62× 10−2

Example 3.3. A hyperbolic equation. In this example, we choose the coefficient as

a = 5 + sin(2πx/ε1) + cos(2πy/ε1) + cos(2πx/ε2) + sin(2πy/ε2), where ε1 = 1
7
, ε2 = 1

19
,
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Table 3.4: Example 3.2 - H1 norm relative errors of the solution at T = 0.1

MsMRM FEM
Nc = 8 1.52× 10−1 4.53× 10−1

Nc = 16 7.04× 10−2 3.97× 10−1

Nc = 32 3.57× 10−2 3.12× 10−1
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(a) L2 norm relative errors of the solution at Nc = 8
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(b) L2 norm relative errors of the solution at Nc = 8
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(c) L2 norm relative errors of the solution at Nc = 16
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(d) H1 norm relative errors of the solution at Nc = 16
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(e) L2 norm relative errors of the solution at Nc = 32
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(f) H1 norm relative errors of the solution at Nc = 32

Figure 3.5: Example 3.2 - Relative errors of the solution
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Figure 3.6: Example 3.2 -
∫

Ω
|∇(ṽ0)t|2dx at Nc = 16

and f = 1. The end time is T = 0.5. Figure 3.8 shows the errors versus time with

different coarse grid meshes, and Table 3.5-3.6 shows the error at T = 1. As we

can see from Figure 3.8 and Table 3.5-3.6, our method gives first order convergence

in the H1 norm and better than first order of convergence in the L2 norm, which is

consistent with the convergence rates that we observed earlier for elliptic and parabolic

equations.
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Figure 3.7: Example 3.3 - The coefficient a

Table 3.5: Example 3.3 - L2 norm relative errors of the solution at T = 0.5

MsMRM FEM
Nc = 8 7.17× 10−2 1.67× 10−2

Nc = 16 2.93× 10−2 1.25× 10−1

Nc = 32 7.91× 10−3 7.60× 10−2



48

Table 3.6: Example 3.3 - H1 norm relative errors of the solution at T = 0.5

MsMRM FEM
Nc = 8 1.98× 10−1 3.12× 10−1

Nc = 16 1.21× 10−1 2.57× 10−1

Nc = 32 5.47× 10−2 1.77× 10−1
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(b) L2 norm relative errors of the solution at Nc = 8
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(c) L2 norm relative errors of the solution at Nc = 16
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(d) H1 norm relative errors of the solution at Nc = 16
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(e) L2 norm relative errors of the solution at Nc = 32
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(f) H1 norm relative errors of the solution at Nc = 32

Figure 3.8: Example 3.3 - Relative errors of the solution
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Chapter 4

Modified multiscale model
reduction method for deterministic
PDEs with locally degenerate
coefficients

4.1 Difficulties with locally degenerate coefficients

The model reduction method does not apply very well to elliptic problems with de-

generate coefficients. Denote γ = infx∈Ω{λmin(x)} > 0. We can show that the error

produced by the model reduction method is proportional to 1
γ
. In the case γ � 1,

the error will become very large and the model reduction method will not produce

acceptable results. This is an essential difficulty for almost all other multiscale meth-

ods. Thus, upscaling multiscale elliptic problems with degenerate coefficients presents

a considerable challenge.

Our error analysis shows that when γ is small, a major source of error is related

to the harmonic coordinates. To reduce the upscaling error, we propose to use the

harmonic coordinates as a basis to approximate the residual error and perform error

correction. Specifically, we first implement the original model reduction method, and

then use the harmonic coordinates to approximate the residual error to obtain the

improved upscaled solution. We will show that by doing this, the accuracy of the

modified model reduction method is significantly improved.
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4.2 Analysis for one-dimensional elliptic PDEs

Recall that for the one-dimensional case, we have(a(x)u′(x))′ = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(4.1)

The harmonic coordinate F is(a(x)F ′(x))′ = 0, x ∈ (0, 1),

F (0) = 0, F (1) = 1.
(4.2)

The effective equation isa(x)F ′(x)(u′0(x)/g′(x))′ = f(x), x ∈ (0, 1),

u0(0) = u0(1) = 0.
(4.3)

And the solutions are

u(x) = C0

(
F (x)

∫ x

0

f(s)ds−
∫ x

0

F (s)f(s)ds+ C1F (x)

)
, (4.4)

F (x) =
1

C0

∫ x

0

ds

a(s)
, (4.5)

u0(x) = C0

(
g(x)

∫ x

0

f(s)ds−
∫ x

0

g(s)f(s)ds+ C2g(x)

)
, (4.6)

where

C0 =

∫ 1

0

ds

a(s)
, (4.7)

C1 = −
∫ 1

0

f(s)ds+

∫ 1

0

F (s)f(s)ds, (4.8)

C2 = −
∫ 1

0

f(s)ds+

∫ 1

0

g(s)f(s)ds. (4.9)

Denote u1 = χu′0/g
′, we give

(u− u0 − u1)′ = C0 ((C1 − C2)F ′ − χf) . (4.10)
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First of all, since f ∈ L2 and g is smooth, (4.6) implies that u0 is smooth. Next, we

study the error equation (4.10) term by term. Subtracting C2 (4.9) from C1 (4.8) we

get C1−C2 =
∫ 1

0
χ(s)f(s)ds. Since χ is small, we conclude that (C1−C2) and χf are

small. We assume that a(x) is small only in a localized region of D so that
∫ 1

0
ds
a(s)

is

O(1). This is a reasonable assumption in real applications since the degenerate region

is often restricted to some very localized area. Under such an assumption, the term

C0 is bounded. Now we just need to deal with the term involving F ′. Differentiating

(4.5), we obtain

F ′ = (C0a(x))−1. (4.11)

By our assumption, F ′ could be large in some localized regions and thus the L2 norm

of (u − u0 − u1)′ would be large due to the effect of F ′. This is the major source of

error.

In order to control the H1 norm of u− u0 − u1, we need to handle the F ′ term in

(4.10). Note that

(u− u0 − u1 − C0(C1 − C2)F )′

=C0((C1 − C2)F ′ − χf)− C0(C1 − C2)F ′

=− C0χf. (4.12)

This suggests that if we add a suitable multiple of F to our approximate solution

u0 +u1, the error would drop significantly to the desired level. On the other hand, we

require our solution to vanish on ∂D, but F = x 6= 0 on the boundary. To overcome

this difficulty, we use F − x to correct the residual error. This gives rise to

(u− u0 − u1 − C0(C1 − C2)(F − x))′

=C0((C1 − C2)F ′ − χf)− C0(C1 − C2)(F ′ − 1)

=C0((C1 − C2)− χf). (4.13)

Such an approximation is more accurate according to our assumptions. Comparing

(4.13) with (4.10), we can see that after adding a suitable multiple of F − x, the F ′

term appearing in (4.10) is now replaced by x′ = 1 in (4.13). This suggests that we
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use the harmonic coordinates to provide an error correction to the upscaled solution.

In the two-dimensional space, the harmonic coordinates form a basis for the pseudo-

null space. The original model reduction method cannot capture the effect of this

null space since ∇· (a∇F ) = 0. Since the major source of error is proportional to ∇F

which is large in the degenerate regions, we need to correct this error. Luckily the

harmonic coordinates on the boundary (x|∂D) have a natural smooth extension to the

whole domain (x|D). We can use F − x as a good candidate to improve the upscaled

solution. By appropriately choosing a constant vector c, the effect of ∇F in the error

term will be replaced by ∇x = I, which is bounded. This leads to a significant drop

in the error. To summarize, we have the following modified model reduction method:

1. Apply the original model reduction method to get an approximation u∗.

2. Choose a suitable constant vector c ∈ Rd and update the approximation by

u∗ + cT (F − x).

Next we will discuss some implementation issues of the modified model reduction

method. An important question is how to choose c to reduce the residual error. We

can consider F − x as the extra basis functions and substitute u∗ + cT (F − x) into

the original PDE (2.1) to solve for c. We will work on a weak form of (2.1). Suppose

φ is a test function. Multiplying φ to both sides of the equation and rearranging the

equation, we have

cT
∫
∇φTa∇(F − x)dx =

∫
fφdx−

∫
∇φTa∇u∗dx. (4.14)

Since c has two components, we also need two different test functions. A natural

choice for the test functions would be F − x. Note that although the integration is

performed on the whole domain D, the dimension of the linear system is very small,

d = 2. Thus the additional cost of this error correction step is negligible. Substituting

φ = F − x into (4.14) and using ∇ · (a∇F ) = 0, we can further simplify (4.14) as

follows (∫
a(I −∇F )dx

)
c =

∫
(F − x)fdx+

∫
a∇u∗dx. (4.15)

In the next section we will show that such a numerical scheme works very well for

some elliptic problems.
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4.3 Generalization to parabolic equations

We can also apply the modified model reduction method to time-dependent prob-

lems such as parabolic equations. As discussed before, we could obtain the effective

equations and solve for the effective solutions.

For locally degenerate problems, the approximation does not work very well and we

need to fix it. Motivated by the elliptic equations, we introduce an error correction

of the form u∗ + c(t)T (F − x). By using a similar argument, we substitute this

approximation into the PDE, multiply both sides by the test function F − x and

integrate it over the space domain. We would get an ODE for c(t) as follows(∫
(F − x)(F − x)Tdx

)
ct +

(∫
a(I −∇F )dx

)
c

=

∫
(F − x)(f − u∗t )dx+

∫
a∇u∗dx. (4.16)

Multiplying both sides by
(∫

(F − x)(F − x)Tdx
)−1

, equation (4.16) could be written

as

ct +Bc = h(t), (4.17)

where

B =

(∫
(F − x)(F − x)Tdx

)−1(∫
a(I −∇F )dx

)
(4.18)

is a constant matrix and

h(t) =

(∫
(F − x)(F − x)Tdx

)−1(∫
(F − x)(f − u∗t )dx+

∫
a∇u∗dx

)
(4.19)

is a vector function in time.

Note that we can solve the ODE (4.17) analytically, and the solution is

c(t) = e−Bt
∫ t

0

eBsh(s)ds, (4.20)

where the exponential of a matrix M is defined by eM =
∑∞

k=0
Mk

k!
. Thus in the

numerical implementations, we can compute (4.20) numerically and the final approx-

imation would be u∗ + c(t)T (F − x).
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4.4 Numerical results

In this section, we will present several numerical experiments for the two-dimensional

elliptic equations and parabolic equations to demonstrate the effectiveness of our

method. In all the examples, we choose the domain D = [0, 1] × [0, 1] and f =

1. Since it is difficult to construct a general enough test problem with an analytic

solution, we use well-resolved numerical solutions to serve as the ‘exact solutions’. In

our computations, we use the standard linear finite element method, and choose a

256 × 256 mesh to obtain the well-resolved solution for the elliptic equations and a

128 × 128 mesh for the parabolic equations. To implement our method, the coarse

meshes are chosen to be 16 × 16, and we will compare the results obtained by the

original model reduction method with those obtained by the modified model reduction

method.

Example 4.1. In this example, we consider the elliptic equation with a coefficient

that is small only in a narrow channel. The coefficient is chosen to be

a(x, y) =

1× 10−2 inside the channel,

3 + cos(2π(x−0.8)
ε1

) + sin(2π(y−0.3)
ε2

) otherwise,

with ε1 = 1
7

and ε2 = 1
19

. The channel is long and narrow, and lies in the region

{0.2 ≤ x ≤ 0.9, 0.3 ≤ y ≤ 0.31}. The coefficient is very small (a = 0.01) inside the

channel, but it is order O(1) (a = 1 ∼ 5) outside the channel, see Figure 4.1.
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Figure 4.1: Example 4.1 - The coefficient a
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We present the errors in the following table. Here MMsMRM stands for the

modified model reduction method, MsMRM stands for the original model reduction

method and FEM stands for the standard finite element method.

Table 4.1: Example 4.1 - Relative errors of the solution

MMsMRM MsMRM FEM
L2 norm 9.37× 10−3 2.28× 10−2 1.73× 10−1

H1 norm 7.98× 10−2 1.45× 10−1 7.95× 10−1

From Table 4.1, we can see that the errors obtained by MsMRM and MMsMRM are

smaller than those obtained by the finite element method both in L2 and H1 norms.

MsMRM still has some reasonable accuracy, but it is not satisfactory. MMsMRM

gives more desirable accuracy. We observe that the L2 error of MMsMRM drops

about one half of MsMRM, and the H1 error of MMsMRM drops about one third of

MsMRM.

Example 4.2. In this example, we would like to test how the two methods perform

if we remove the degeneracy of the coefficient in the previous example. The purpose

of this test is to show that when there is no degeneracy in the elliptic coefficient, the

modification is not really needed for the original model reduction method. We choose

the coefficient to be

a(x, y) =

1× 102 inside the channel,

3 + cos(2π(x−0.8)
ε1

) + sin(2π(y−0.3)
ε2

) otherwise,

with ε1 = 1
7

and ε2 = 1
19

. The coefficient is uniformly of order O(1) in the whole

domain.

In Table 4.2, we present the relative errors for all the methods. Since the coefficient

has multiscale information, both MMRM and MRM offer better accuracy than the

finite element method. We can see that MRM already gives satisfactory accuracy.

There is almost no improvement in MMRM. This example shows that the modified

model reduction method is only needed when the coefficient is degenerate.

Example 4.3. In this example, we consider a slightly more complicated elliptic ex-

ample in which case the coefficient is small inside a narrow channel and the three
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Table 4.2: Example 4.2 - Relative errors of the solution

MMsMRM MsMRM FEM
L2 norm 9.43× 10−3 9.41× 10−3 7.15× 10−2

H1 norm 7.46× 10−2 7.46× 10−2 2.59× 10−1

small inclusions. The coefficient is given below.

a(x, y) =

0.005 inside the channel and some inclusions,

1 otherwise.

The channel is the same as in Example 4.1, {0.2 ≤ x ≤ 0.9, 0.3 ≤ y ≤ 0.31}. There

are three circular inclusions, {(x−0.5)2 +(y−0.7)2 < 0.012}, {(x−0.2)2 +(y−0.8)2 <

0.012} and {(x − 0.6)2 + (y − 0.9)2 < 0.012}. Inside these regions, the coefficient is

equal to 0.005 while it is equal to 1 outside the regions. See Figure 4.2.
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Figure 4.2: Example 4.3 - The coefficient a

Table 4.3: Example 4.3 - Relative errors of the solution

MMsMRM MsMRM FEM
L2 norm 6.84× 10−3 1.96× 10−2 1.42× 10−1

H1 norm 7.09× 10−2 1.30× 10−1 7.77× 10−1

From Table 4.3, we observe the same qualitative improvement as in Example 4.1.

Both MMRM and MRM improve the accuracy compared with the finite element

method. The L2 error of MMRM drops nearly one half of MRM, and the H1 error

of MMRM drops about one third of MRM, which shows that the modified model

reduction method indeed gives more desirable accuracy when there is a degeneracy



57

in the elliptic coefficients.

Example 4.4. In the last example, we consider the parabolic equation when the

coefficient is small in a narrow channel.

a(x, y) =

0.01 inside the channel,

3 + cos(2π(x−0.8)
ε1

) + sin(2π(y−0.3)
ε2

) otherwise,

with ε1 = 1
5

and ε2 = 1
13

. The channel lies in the region {0.3 ≤ x ≤ 0.7, 0.3 ≤ y ≤

0.32}, which is slightly wider than in Example 4.1. We compute the solution to time

T = 0.1, and exhibit the error at T in the following table.

Table 4.4: Example 4.4 - Relative errors of the solution at T = 0.1

MMsMRM MsMRM FEM
L2 norm 4.92× 10−3 1.61× 10−2 1.04× 10−1

H1 norm 5.74× 10−2 1.15× 10−1 5.74× 10−1

From Table 4.4, we can see that both MMRM and MRM offer improved accura-

cy compared with FEM. Moreover, the improvement of MMRM over MRM is even

better than the elliptic case. The L2 error of MMRM is less than one third of MRM,

and the H1 error of MMRM is about one half of MRM. Compared with the finite

element method, the MMRM or MRM offers even more computational savings since

we only need to compute the harmonic coordinates at t = 0. All subsequent com-

putations can be performed on the coarse grid. This shows that our modified model

reduction method indeed gives improved accuracy for parabolic equations with locally

degenerate coefficients.
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Chapter 5

Model reduction based multiscale
data-driven stochastic method for
elliptic PDEs with random
coefficients

5.1 The Karhunen-Loève expansion

In the theory of stochastic processes, the Karhunen-Loève expansion [41, 43] is a

representation of a stochastic process as an infinite linear combination of orthogonal

functions. The importance of the Karhunen-Loève expansion is that it yields an

optimal basis in the sense that it minimizes the total mean squared error.

Consider a probability space (Ω,F ,P), whose event space is Ω and is equipped

with σ-algebra F and probability measure P. Suppose u(x, ω), defined on a compact

spatial domain D ⊆ Rd, is a second-order stochastic process, i.e. u(x, ω) ∈ L2(D×Ω).

Its Karhunen-Loève expansion reads as

u(x, ω) = ū(x) +
∞∑
i=1

√
λiξi(ω)φi(x), (5.1)

where ū(x) = E[u(x, ω)], {λi, φi(x)}∞i=1 are the eigenpairs of the covariance kernel

C(x, y) and they satisfy ∫
D

C(x, y)φ(y)dy = λφ(x). (5.2)
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The covariance kernel C(x, y) is defined as

C(x, y) = E[(u(x, ω)− ū(x))(u(y, ω)− ū(y))]. (5.3)

The random variables {ξi(ω)}∞i=1 are defined as

ξi(ω) =
1√
λi

∫
D

(u(x, ω)− ū(x))φi(x)dx (5.4)

Moreover, these random variables {ξi(ω)} are of zero mean and are uncorrelated, i.e.

E[ξi] = 0, E[ξiξj] = δij. Generally, the eigenvalues λi’s are sorted in descending order

and cluster at zero, and their decay rate depends on the regularity of the covariance

kernel C(x, y). It has been proven that algebraic decay rate, i.e., λk = O(k−β), is

achieved asymptotically if the covariance kernel is of finite Sobolev regularity or expo-

nential decay, i.e., λk = O(e−βk) for some β > 0, if the covariance kernel is piecewise

analytical [53]. In general, the decay rate depends on the correlation length of the

stochastic solution. Small correlation length results in slow decay of the eigenvalues.

In any case, an m-term truncated Karhunen-Loève expansion converges in L2(D×Ω)

to the original stochastic process u(x, ω) as m tends to infinity. Let εm denote the

truncation error. We have

||εm||2L2(D×Ω) = ||
∞∑

i=m+1

√
λiξi(ω)φi(x)||2L2(D×Ω) =

∞∑
i=m+1

λi → 0, m→∞, (5.5)

where we have used the bi-orthogonality of the Karhunen-Loève expansion.

In practical computations, we truncate the Karhunen-Loève expansion into its first

m terms, and obtain the following truncated Karhunen-Loève expansion

u(x, ω) ≈ ū(x) +
m∑
i=1

√
λiξi(ω)φi(x). (5.6)

The truncation error analysis in (5.6) reveals the most important property of the

expansion. More specifically, given any integer m and orthonormal basis {ψi(x)}mi=1,
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we may approximate the stochastic process u(x, ω) by

um,ψ(x, ω) = ū(x) +
m∑
i=1

ζi(ω)ψi(x), (5.7)

where ζi(ω), i = 1, ...,m, are the expansion coefficients. Among all m-term approxi-

mations using an orthonormal basis, the Karhunen-Loève expansion given by (5.6))

is the one that minimizes the total mean square error. In this sense, we say that the

Karhunen-Loève expansion gives the optimal (or the most compact) basis to repre-

sent the stochastic solution in the energy norm. Due to the bi-orthogonality of the

Karhunen-Loève expansion, we will call the stochastic part of the Karhunen-Loève

expansion the data-driven basis in the rest of the thesis.

5.2 Derivation of model reduction based multiscale data-

driven stochastic method

We consider the stochastic elliptic equation−∇ · (a(x, ω)∇u(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D, ω ∈ Ω.
(5.8)

We will propose a multiscale data-driven stochastic method to reduce the compu-

tational complexity of solving such problems. Our MsDSM consists of offline and

online stages. In the offline stage, we derive an effective stochastic equation that can

be resolved on a coarse grid. We then construct a data-driven stochastic basis that

gives a compact representation for the solutions of the effective stochastic equation

for a broad range of forcing functions. In the online stage, we represent the multi-

scale stochastic solution in terms of this data-driven stochastic basis and we just need

to solve a small number of coupled deterministic PDEs. This leads to considerable

computational savings when we need to solve the multiscale stochastic PDE under

the multiquery settings.
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5.2.1 Effective stochastic equations

It is important to note that the effective coefficient depends only on the multiscale

coefficient and decompositions of the harmonic coordinates, and does not depend

on the forcing term. Therefore, we can apply this idea to upscale the multiscale

stochastic coefficient in equation (5.8). For each fixed sample ω ∈ Ω (ω can be chosen

by Monte Carlo method or stochastic collocation method), the multiscale problem

(5.8) becomes a deterministic PDE. We first solve the corresponding homogeneous

problem with specified boundary conditions to obtain the harmonic coordinates F .

Then, we decompose the harmonic coordinates F into a smooth part g plus a small

part χ, F = g + χ. The effective coefficient can be given in terms of a(x, ω), g, and

χ, i.e.

a∗(x, ω) = a(x, ω)(I +
∂χ

∂x
(x, ω)

∂x

∂g
(x, ω)), (5.9)

where I is the identity matrix. The effective coefficient in equation (5.9) is valid for

each sample ω in the sample space Ω. Looping over the samples, we can obtain an

effective stochastic equation of the following form−∇ · (a
∗(x, ω)∇u∗(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u∗(x, ω) = 0, x ∈ ∂D, ω ∈ Ω.
(5.10)

According to the previous analysis, the solution to the effective equation (5.10) is one

order smoother than the original solution. Thus, we can solve the effective equation

on a coarse mesh.

To save memory, we compute the truncated Karhunen-Loève expansion of each

entry of the a∗(x, ω) in equation (5.10),

a∗(x, ω) ≈ ā(x) +
M∑
m=1

√
λmξm(ω)φm(x). (5.11)

Also, we use the sparse grid based stochastic collocation method in paper [11]. We

need only to save these Karhunen-Loève expansion results instead of a large amount

of samples, which significantly reduces the memory cost.

In addition, we need to compute the correction term (χT ∂x
∂g

)(x, ω) in the offline



62

stage. Actually, this can be done simultaneously when we derive the effective s-

tochastic equation. For each fixed sample ω ∈ Ω, after we decompose the harmonic

coordinates F into a smooth part g and a highly oscillatory part χ, we can compute

the correction vector term (χT ∂x
∂g

)(x, ω). Based on these samples, we can calculate

the truncated Karhunen-Loève expansion of the correction term χT ∂x
∂g

(x, ω), i.e.

χT
∂x

∂g
(x, ω) = c̄(x) +

N∑
n=1

√
λnϑn(ω)ψn(x). (5.12)

5.2.2 Data-driven stochastic basis for the effective stochastic equations

Now we consider the effective equation (5.10). We first note that the coefficien-

t a(x, ω) in equation (5.8) is given in terms of r independent random variables,

a(x, ω) = a(x, ξ(ω)) = a(x, ξ1(ω), ..., ξr(ω)). Therefore, by the Doob Dynkin lemma,

the harmonic coordinates as well as the effective coefficient a∗(x, ω) can still be repre-

sented by these random variables, i.e. a∗(x, ω) = a∗(x, ξ(ω)) = a∗(x, ξ1(ω), ..., ξr(ω)).

We now begin our construction of the data-driven stochastic basis for the effective

stochastic equation (5.10), and we discuss the data-driven stochastic basis in stochas-

tic collocation representation. It consists of two steps, initial leaning and updating

steps. See Figure 5.1 for the general framework. We refer to [15] for more details.

In the initial learning step, we first use the stochastic collocation method to gener-

ate J collocation points zj ∈ Rr according to the distribution of the coefficient a(x, ω)

in equation (5.8) as well as the associated weights wj ∈ R. Then, we solve (5.10)

with the random variable evaluated at the collocation grid points and f0(x) = 1 as

the right-hand side−∇ · (a
∗(x, zj)∇u∗(x, zj)) = f0(x), x ∈ D, j = 1, ..., J,

u(x, zj) = 0, x ∈ ∂D, j = 1, ..., J.
(5.13)

By solving the above equation (5.13), we can obtain the values of the stochastic

solution u∗(x, ω; f0) on the collocation points, i.e., {u∗(x, zj; f0)}Jj=1. The m1-term

Karhunen-Loève expansion of the solution u∗(x, ω; f0) gives the dominant components

in the random space. We use the decaying property of eigenvalues to select parameter
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for fk, k = 1, 2, ...K

{Ai}

Solve SPDE for f0

Construct inital stochastic basis

Terminated‖τk∗‖ < ε

Enrich stochastic basis {Ai}

via KLE of τk∗

Solve for residual τk

C
oarse

G
rid

max residual τk∗

F
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e
G
rid

N

Y

Solve residual τk∗

Figure 5.1: Greedy stochastic basis enriching algorithm on a coarse-fine grid hierarchy.

m1, i.e. the number of stochastic basis m1 can be chosen such that λm1+1/λ1 is smaller

than some pre-defined threshold, say, 10−4. We denote the truncated Karhunen-Loève

expansion as

u∗(x, ω; f0) ≈ ū(x; f0) +

m1∑
i=1

√
λiBi(ω)φi(x; f0). (5.14)

We call the stochastic basis {Bi(ω)}m1
i=0 in equation (5.14) the data-driven stochastic

basis, where B0(ω) = 1. In general, the stochastic basis constructed by using f0

may not be adequate to give an accurate approximation of the SPDE for another

right hand side. We need to supplement the stochastic basis by using multiple trial

functions involving other fk.

In the preconditioning and update step, we propose a greedy-type algorithm, and

adopt a two-level preconditioning strategy [26] to enrich the stochastic basis. First,

we perform an error analysis. Given a new right-hand side f1(x) for some choice of

f , we expand the solution in terms of the stochastic basis, {Bi(ω)}m1
i=0,

u∗(x, ω; f1) ≈ ū(x; f1) +

m1∑
i=1

Bi(ω)ui(x; f1) ≡
m1∑
i=0

Bi(ω)ui(x; f1). (5.15)
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In the rest of this subsection, we also use ui(x) ≡ ui(x; f1) for simplification. We use

the standard stochastic Galerkin method to obtain the coefficient ui(x). Specifically,

we substitute the expansion (5.15) into the effective equation (5.10), multiply both

sides by Bj(ω), and take expectations. This gives rise to a coupled PDE system for

the expansion coefficient ui(x),−∇ · (E[a∗BiBj]∇ui) = f1(x)E[Bj], x ∈ D, j = 0, 1, . . . ,m1,

ui(x) = 0, x ∈ ∂D,
(5.16)

where Einstein summation is assumed. The term E[a∗BiBj] can be calculated by the

stochastic collocation method. Solving the coupled deterministic PDE system (5.16)

by the standard finite element method, we obtain the expansion coefficient {ui(x)}m1
i=0

and an approximate solution for u∗(x, ω; f1) given by (5.15). We know that the exact

solution can be written as

u∗(x, ω; f1) =

m1∑
i=0

Bi(ω)ui(x; f1) + τ(x, ω; f1), (5.17)

where τ(x, ω; f1) is the error. Simple calculations show that the error satisfies the

following equation

−∇ · (a∗(x, ω)∇τ(x, ω; f1)) = f1(x) +

m1∑
i=0

∇ · (a(x, ω)Bi(ω)∇ui(x)). (5.18)

For a different fk, we can obtain a similar error equation for the error τ(x, ω; fk)

by replacing f1 by fk in the above error equation. To verify the effectiveness of the

stochastic basis, we solve the residual equation (5.18) on a coarse grid for each fk(x),

k = 1, ..., K, and obtain the error {τ(x, ω; fk)}Kk=1. If max1≤k≤K ||τ(x, ω; fk)|| < ε0,

then we consider this stochastic basis complete. Here, we choose || · || as the L2 norm

of the variance of the stochastic solution. Otherwise, we identify the maximum error

τk∗ = max1≤k≤K ||τ(x, ω; fk)|| and the corresponding trial function fk∗(x). Subse-

quently, we solve the residual equation (5.18) for this trial function fk∗(x) one more

time on a fine grid. Again, we perform the Karhunen-Loève expansion for the residual

solution τ(x, ω; fk∗), and extract several dominant components in the random space,
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and supplement them to the current stochastic basis. We use {Bi(ω)}m2
i=0 to denote

the updated stochastic basis. This process is repeated until the maximum residual is

below the prescribed threshold ε0.

In the online stage, for each query f(x) in the original equation (5.8), the corre-

sponding stochastic solution u(x, ω) can be approximated by the MsDSM solution

in two steps. First, with our data-driven stochastic basis {Bi(ω)}mi=0, we use the s-

tandard stochastic Galerkin method to solve the effective stochastic equation (5.10)

to obtain u∗(x, ω). Then, we obtain the approximate solution by adding correction

terms into u∗(x, ω), i.e.

u(x, ω) ≈ uMsDSM(x, ω) ≡ u∗(x, ω) + χT
∂x

∂g
(x, ω)∇u∗(x, ω). (5.19)

The construction of the effective stochastic equation (5.10) and the data-driven s-

tochastic basis {Bi(ω)}mi=0 could be expensive. However, in a multiple query prob-

lem, the MsDSM offers considerable computational savings over traditional methods

because of the model reduction in both the physical and stochastic spaces. We will

demonstrate this through several numerical examples.

Remark 5.1. It is important to point out that since our methods involve the com-

putation of global harmonic coordinates, the memory consumption becomes a serious

issue when the number of random variables become very large. We are currently

adopting the multilevel Monte Carlo method to tackle this problem.

5.2.3 Complete algorithm

In this section, we give the complete algorithm of the MsDSM to solve the multiscale

stochastic equation under the multiquery setting. Our method consists of offline and

online stages. Since the online stage is pretty straightforward and has been presented

in a previous section, we state only the offline computation algorithm as follows.

MsDSM offline computation.

• (I) (Derive the effective stochastic equations and calculate the correction terms)

– Loop over all sparse grids, compute harmonic coordinates, and obtain the

effective stochastic equation (5.10).
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– Compute the KL expansion of the effective coefficient (5.11) to obtain a

compact representation.

– Compute the correction term (χT ∂x
∂g

) as well as its Karhunen-Loève expan-

sion (5.12).

• (II) (Construct the MsDSM basis for effective stochastic equation):

– Step II.1 (Initial learning on the fine grid):

∗ Solve the effective equation(5.10) with f0(x) as a forcing function to

obtain u∗(x, ω; f0).

∗ Calculate the truncated Karhunen-Loève expansion of u∗(x, ω; f0), and

use the first m1 terms of the stochastic modes to obtain the current

data-driven basis {Bi(ω)}m1
i=0, where B0(ω) = 1.

– Step II.2 (Preconditioning on the coarse grid):

∗ For each fk(x), solve effective equation (5.10) using the current stochas-

tic basis {Bi(ω)}m1
i=0 and the stochastic Galerkin method to obtain the

solution u∗c(x, ω; fk).

∗ For each fk(x), solve an residual equation (5.18) to obtain the approxi-

mate residual error τk = τ(x, ω; fk).

∗ Let k∗ = argmax0≤k≤K ||τk||. If ||τk∗|| < ε0, goto Step II.4; otherwise ,

and goto Step II.3.

– Step II.3 (Update on fine grid):

∗ Solve the error equation associated with fk∗(x) to obtain the residual

error τk∗ = τ(x, ω; fk∗).

∗ Enrich the current stochastic basis {Bi(ω)}m1
i=0 by the Karhunen-Loève

expansion of τk∗ , and use {Bi(ω)}m2
i=0 to denote the updated stochastic

basis. Goto Step II.2.

– Step II.4 (Termination):

∗ Save the data-driven stochastic basis {Bi(ω)}mi=0 and relevant statistical

quantities.
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• (III) (Save the relevant data):

– Save the data-driven stochastic basis {Bi(ω)}mi=0 and the Karhunen-Loève

expansion of correction term (χT ∂x
∂g

).

5.3 Computational complexity analysis

The computational time of the MsDSM consists of both the offline and online part.

The offline computation can be very expensive if we use a brute force way to construc-

t the data-driven basis. In this section, we will demonstrate through computational

complexity analysis that the overhead time of offline computation is acceptable, and

the online computation is super fast. It is well-known that the stochastic collocation

method is very effective in solving SPDE when the stochastic solution is smooth in

the stochastic space. Therefore, we choose the stochastic collocation finite element

method (SCFEM) as a benchmark, and compare the computational cost of the Ms-

DSM and the SCFEM. We will compare the performance of the MsDSM and the

DSM as well.

In [15], the authors have already done a thorough study, and have explained why

DSM is superior to the traditional methods, such as gPC, SC, and Monte Carlo

method under the multiquery setting. The same property still holds for the MsDSM,

since it is designed with the same technique. In our numerical experiments, we find

that the offline computational costs of the MsDSM and DSM have the same order of

magnitude. However, due to the model reduction in the physical domain, the MsDSM

offers more computational savings in the online stage than the DSM.

We will demonstrate this by solving a model problem (5.8) on D = [0, 1] × [0, 1]

with the coefficient given by

a =0.1 + ξ1(ω)
2 + 1.8 sin(2πx1/ε1)

2 + 1.8 sin(2πx2/ε1)

+ ξ2(ω)
2 + 1.8 sin(2πx2/ε2)

2 + 1.8 cos(2πx1/ε2)
+ ξ3(ω)

2 + 1.8 cos(2πx1/ε3)

2 + 1.8 sin(2πx2/ε3)
,

where {εi}3
i=1 are multiscale parameters, and {ξi}3

i=1 are independent uniform random

variables in [0, 1].
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Table 5.1: Computational time of the linear equation solver for one collocation point. (Time: Sec.)

Nh = 322 Nh = 642 Nh = 1282 Nh = 2562 Nh = 5122 Nh = 10242

0.0065 0.0359 0.2577 1.6490 18.6875 140.0816

Let Nh and J denote the number of the physical grid points and sparse grid points,

respectively. We assume that in all tests level six sparse grids in the SCFEM will

give an accurate result. Therefore, we choose J = 135. All the simulations and

comparisons are conducted on a single computing node with 16 GB memory at the

Caltech Center for Advanced Computing Research (CACR).

5.3.1 Computational cost of the SCFEM solver

We first show the computational cost of solving the Eq.(5.8) once using the stochastic

collocation method in Table 5.1 (the same result can be applied to a Monte Carlo

solver). The SCFEM is very effective if the SPDE solution is smooth in the stochastic

dimension; however, when the SPDE solution has multiscale features in the physical

dimension, the SCFEM becomes very expensive as demonstrated in Table 5.1. For

instance, it takes about 1.89× 104 (135× 140.0816) seconds to obtain a single query

result on a 10242 mesh grid. Let tSCFEM denote the computational time of the

SCFEM solver for one forcing function, then tSCFEM is approximately given by

tSCFEM ≈ 2.45× 10−7JN1.5
h . (5.20)

5.3.2 Computational cost of the MsDSM and the DSM solvers

Both the MsDSM and the DSM consist of offline and online computational cost.

In [15], the authors have performed a complexity analysis for the DSM, and have

compared it with other commonly used methods in the multiquery setting, such as

the gPC, the gSC, and the MC methods. They have adopted the randomized SVD

algorithm and a two-level preconditioning method to reduce the overhead time in

the offline computing. Let nc denote the query number, i.e., the number of forcing

functions. They demonstrated through computational complexity analysis and nu-
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merical examples that with all the cost-saving measures, the DSM is superior to the

traditional method if one needs to solve the elliptic problem (5.8) with a relatively

small number of queries. The MsDSM inherits all these cost-saving measures when we

construct the DSM basis for the effective SPDE. The only extra computational cost

stems from the derivation of the effective SPDE and calculating its correction term.

Roughly speaking, this part of computational cost is equivalent to solving equation

(5.8) with 2 forcing functions. In Table 5.2, we list the offline computational cost of

the MsDSM and the DSM on a different mesh, where we fix the basis number m = 7.

We also list the cost of SCFEM for one forcing function, where the CPU time on one

collocation point is obtained by the time model (5.20) and J = 135. One can see that

the offline computational costs of the MsDSM and the DSM have the same order of

magnitude. In addition, the offline computational cost of the MsDSM or the DSM

is approximately equal to the cost of performing SCFEM for several different forcing

functions.

We assume that the data-driven basis with 7 modes gives sufficient approximation

to the solution space. Let tDSMoff and tMsDSMoff denote the computational time of

DSM and MsDSM in the offline stage, respectively. Then, they are approximately

given by

tDSMoff ≈ 7.65× 10−5N1.5
h ,

tMsDSMoff ≈ 1.52× 10−4N1.5
h . (5.21)

In online stage of the MsDSM or the DSM, we use the standard Galerkin method

to solve equation (5.8). In the multiple query setting, the stiffness matrix S for the

DSM or the MsDSM solver is fixed and the load vector b is different for each query.

We can compute the Cholesky decomposition of S in advance, and the computational

time is decided only by the forward and backward substitutions in solving the linear

equation system. Actually, we can do the Cholesky decomposition of the stiffness

matrix S = LLT in the offline stage, and save only the decomposition result L.

The computational time of Cholesky decomposition is negligible compared with the

training data-driven basis. Thus, we do not consider this part of the cost.
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Table 5.2: Computational time of the offline computation. (Time: Sec.). m=7.

Grid Number Nh = 3362 Nh = 3602 Nh = 3842 Nh = 4082 Nh = 4322 Nh = 4562

DSM 1790.1 2341.8 2640.1 3167.4 3870.5 4522.3

MsDSM 2092.3 2466.6 3188.3 3662.5 4305.8 4960.2

SCFEM 664.3 811.5 978.5 1166.5 1376.7 1610.3

Table 5.3: Computational time of forward/back substitution. (Time: Sec.) m is the basis number.
The data marked with an asterisk is obtained by extrapolation.

Nh = 642 Nh = 1282 Nh = 2562 Nh = 5122 Nh = 10242

m=5 0.0626 0.4102 2.4672 17.0917 (*)114.5388

m=7 0.1281 0.8383 5.4933 (*)37.5849 (*)255.0034

m=9 0.2347 1.5620 10.3214 (*)66.6531 (*) 438.6207

Let tfb denote the time of forward and backward substitutions. In Table 5.3, we

list the computation time of tfb for different mesh grids and basis numbers. If we

choose m = 7, then tfb is approximately by

tfb ≈ 1.27× 10−6N1.4
h . (5.22)

Roughly speaking, if the MsDSM is applied on a coarse grid with a coarsening factor

C in each direction, the speedup would be ∼ (C2)1.4 in the online stage for each query.

For example, if C = 16, the speedup is ∼ 2352 (2561.4). This essentially reveals the

power of the upscaling method.

Remark 5.2. We do not consider the computational time of adding correction terms

into the MsDSM solution here. From numerical results in the next section, we can

find that this part of cost is also very small compared to the SCFEM solver.

Remark 5.3. The stiffness matrix S is a sparse positive definite matrix; however,

the Cholesky decomposition matrix L is not sparse anymore. Before we perform the

Cholesky decomposition, we reorder the matrix S using the approximate minimum

degree (AMD) algorithm to ensure the least fill-in.

5.4 Numerical examples

In this section, we perform numerical experiments to test the performance and accu-

racy of the proposed MsDSM. We also demonstrate the computational efficiency of
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MsDSM over the traditional method, such as the stochastic collocation finite element

method (SCFEM) in solving the multiquery problems with multiscale features. Fi-

nally, we compare the computational cost and accuracy of the MsDSM and the DSM

in solving multiscale problems.

5.4.1 Comparison of the MsDSM and the SCFEM

Example 5.1. We consider the following stochastic elliptic equation with multiple

scales on D = [0, 1]× [0, 1] with the multiscale information described by

a(x, y, ω) = 0.1 +
ξ1(ω)

2 + 1.6 sin(2π(x− y)/ε1)
+

ξ2(ω)

4 + 1.8(sin(2πx/ε2) + sin(2πy/ε2))

+
ξ3(ω)

10(2 + 1.8 sin(2π(x− 0.5)/ε3))(2 + 1.8 sin(2π(y − 0.5)/ε3))
,

where ε1 = 1/3, ε2 = 1/11 and ε3 = 1/19, and {ξi}3
i=1 are independent uniform

random variables in [0, 1]. In Fig. 5.2, we plot four samples of the coefficient a(x, y, ω).

One can see that the coefficient oscillates very rapidly, which will generate small scale

features in the stochastic solution. The forcing terms are f(x, y) ∈ {sin(kiπx +

li) cos(miπx+ni)}, where ki, li, mi, and ni are random numbers, where ki, li, mi and

ni are uniformly distributed over the interval [0, 0.5].

In our computations, we choose a 384 × 384 fine mesh to well resolve the spatial

dimension of the stochastic solution u(x, y, ω). Since the stochastic solution u(x, y, ω)

is smooth in stochastic space, we use the sparse-grid based stochastic collocation

method to discretize the stochastic dimension. First, we conduct a convergence study,

and find that the relative errors of mean and STD between the solutions obtained by

level seven sparse grids in the SCFEM and higher level sparse grids are smaller than

0.1% both in L2 and H1 norm. Therefore, we choose level seven sparse grids with 207

points in the SCFEM and the MsDSM when we compare the computational cost of

these two different methods. The reference solution is obtained by using higher-level

sparse grids.

To implement the MsDSM, the coarse meshes are chosen to be 8 × 8, 16 × 16,

32×32 and 64×64 respectively, and we compare the results on different meshes, and

calculate the convergence rate. We remark that in the MsDSM, the forcing function
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f(x, y) should be well-resolved by the coarse mesh, otherwise the numerical error will

be large. We use this random training strategy to reduce the computational cost.
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Figure 5.2: Example 5.1 - Some samples of the coefficient a

Multiquery results in the online stage. The MsDSM solver using 207 sparse grids

in the computation produces m = 7 modes in the data-driven stochastic basis. In

the online stage, we use them to solve the effective equation of the multiscale SPDE

(5.8). In Table 5.4-5.5, we choose f(x, y) = sin(.47πx+ 0.07) cos(0.03πy + 0.25) and

list the mean of the relative errors on different coarse mesh grids. It can be seen that

the mean and STD of the MsDSM solution match the exact solution very well.

Compare the MsDSM solver with the exact SCFEM solver. For the SCFEM solver

on a 384 × 384 mesh, it will take 1648.38 seconds to solve equation (5.8) with one

specific forcing term f(x, y). Thus in a multiquery problem, if we need to solve

equation (5.8) with n different forcing term f(x, y), the total computational cost will
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Table 5.4: Example 5.1 - L2 and H1 norm relative errors of the mean

L2 norm H1 norm
Nc = 8 5.48× 10−2 1.58× 10−1

Nc = 16 2.20× 10−2 8.79× 10−2

Nc = 32 7.65× 10−3 5.02× 10−2

Nc = 64 3.03× 10−3 2.25× 10−2

Table 5.5: Example 5.1 - L2 and H1 norm relative errors of the STD

L2 norm H1 norm
Nc = 8 7.63× 10−2 6.28× 10−2

Nc = 16 2.30× 10−2 3.18× 10−2

Nc = 32 7.60× 10−3 9.25× 10−3

Nc = 64 3.60× 10−3 4.42× 10−3

be tSCFEM = 1648.38n. If we choose Nc = 64 in the MsDSM solver, the offline

computation will cost 4732.66 seconds, which includes the computational time for

deriving effective SPDE, calculating correction term, and constructing DSM basis

for the effective SPDE. In the online stage of the MsDSM, it takes 1.27 seconds to

compute each query, thus, the total computational cost will be tMsDSM = 4732.66 +

1.27n. We plot the total computational time in Figure 5.3. One can see that the

MsDSM offers considerable computational savings over the SCFEM, if we need to

solve the same stochastic PDE many times with multiple forcing functions. Simple

calculation shows that if we need to solve the original SPDE with more than three

different forcing functions, the MsDSM will be superior to the SCFEM.

Example 5.2. In this example, we consider the SPDE (5.8) on D = [0, 1]× [0, 1] with

the coefficient given by a random linear combination of five fixed coefficient fields plus
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Figure 5.3: Example 5.1 - The computation time comparison
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a constant, i.e.,

a(x, y, ω) =
5∑
i=1

ξi(ω)|θi(x, y)|+ 0.5,

where {ξi}5
i=1 are independent uniform random variables in [0, 1]. θi(x, y), i = 1, ..., 5

are defined on a 3 × 3, 5 × 5, 9 × 9, 17 × 17, and 31 × 31 grids over the domain

D. For each grid cell, the value of θi(x, y) is normally distributed. In Figure 5.4,

we show four samples of the coefficient a(x, y, ω). One can see that the coefficients

are very rough, and do not satisfy scale separation or have any periodic structure.

The implementation of the SCFEM and the MsDSM are exactly the same as in the

previous example.
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Figure 5.4: Example 5.2 - Some samples of the coefficient a

Multiquery results in the online stage. The MsDSM solver using 903 sparse grids
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in the computation produces m = 8 modes in the data-driven stochastic basis. In

the online stage we use them to solve the effective equation of the multiscale SPDE

(5.8). In Table 5.6-5.7, we choose f(x, y) = sin(0.33πx+ 0.15) cos(0.43πy+ 0.22) and

show the relative errors of mean and STD of the MsDSM solution in L2 norm and

H1 norm, respectively.

Compare the MsDSM solver with the SCFEM solver. For the SCFEM solver, it

will take 7626.34 seconds to solve equation (5.8) with one specific forcing term f(x, y).

Thus in a multiquery problem, if we need to solve equation (5.8) with n different

forcing terms, f(x, y), the total computational cost will be tSCFEM = 7626.34n. If

we choose Nc = 64 in the MsDSM solver, the offline computation will cost 21231.56

seconds. In the online stage of the MsDSM, it takes 1.82 seconds to compute one

query, thus the total computational cost will be tMsDSM = 21231.56 + 1.82n. The

MsDSM offers considerable computational savings over the SCFEM if we need to

solve the same SPDE with more than three different forcing functions.

Table 5.6: Example 5.2 - L2 and H1 norm relative errors of the mean

L2 norm H1 norm
Nc = 8 1.09× 10−1 2.53× 10−1

Nc = 16 4.83× 10−2 1.39× 10−1

Nc = 32 1.15× 10−2 8.76× 10−2

Nc = 64 4.22× 10−3 4.15× 10−2

Table 5.7: Example 5.2 - L2 and H1 norm relative errors of the STD

L2 norm H1 norm
Nc = 8 1.13× 10−1 2.77× 10−1

Nc = 16 5.22× 10−2 1.46× 10−1

Nc = 32 1.35× 10−2 9.88× 10−1

Nc = 64 4.99× 10−3 5.00× 10−2

Example 5.3. We consider the SPDE (5.8) on D = [0, 1]× [0, 1] with a high contrast

random coefficient. The elliptic coefficient is given by a random high-contrast field.

Specifically, a(x, y, ω) is a random linear combination of inclusion fields and channel

fields plus a constant, i.e.,

a(x, y, ω) =
3∑
i=1

ξi(ω)κi(x, y) + 1.0,
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where {ξi}3
i=1 are independent uniform random variables in [0, 1], κ1(x, y) is an in-

clusion field, and κ2(x, y) and κ3(x, y) are two channel fields. In Figure 5.5a-5.5c, we

show the inclusion field and channel field, respectively, while in Figure 5.5d-5.5f we

show three samples of the coefficient a(x, y, ω). One can see that the diversity of the

random high-contrast coefficient. This presents a challenging test problem for the

MsDSM. The implementation of the SCFEM and the MsDSM are exactly the same

as in the previous examples.

Multiquery results in the online stage. The MsDSM solver using 207 sparse grids

in the computation produces m = 10 modes in the data-driven stochastic basis. In

the online stage we use them to solve the effective equation of the multiscale SPDE

(5.8). In Table 5.8-5.9, we choose f(x, y) = sin(0.13πx+ 0.12) cos(0.49πy+ 0.44) and

show the relative errors of mean and STD of the MsDSM solution in L2 norm and

H1 norm, respectively. One can observe that the MsDSM solution converges in both

the L2 norm and H1 norm.

Compare the MsDSM solver with the SCFEM solver. For the SCFEM solver, it

will take 1648.04 seconds to solve equation (5.8) with one specific forcing term. Thus

in a multiquery problem, if we need to solve equation (5.8) with n different forcing

terms, the total computational cost will be tSCFEM = 1648.04n. If we choose Nc =

64 in the MsDSM solver, the offline computation will cost 7782.68 seconds, which

includes the computational time for deriving effective SPDE, calculating correction

term and constructing DSM basis for the effective SPDE. In the online stage of the

MsDSM, it takes 2.95 seconds to compute one query, thus the total computational

cost will be tMsDSM = 7782.68 + 2.95n. We plot the total computational time in

Fig.5.6. One can see that the MsDSM offers considerable computational savings over

the SCFEM if we need to solve the same SPDE with more than five different forcing

functions.

Table 5.8: Example 5.3 - L2 and H1 norm relative errors of the mean

L2 norm H1 norm
Nc = 8 1.39× 10−1 2.11× 10−1

Nc = 16 6.31× 10−2 1.58× 10−1

Nc = 32 3.97× 10−2 8.73× 10−2

Nc = 64 1.42× 10−2 4.59× 10−2
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Figure 5.5: Example 5.3 - κ1, κ2, κ3 and some samples of the coefficient a
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Table 5.9: Example 5.3 - L2 and H1 norm relative errors of the STD

L2 norm H1 norm
Nc = 8 1.38× 10−1 5.22× 10−1

Nc = 16 6.52× 10−2 3.13× 10−1

Nc = 32 4.05× 10−2 2.01× 10−2

Nc = 64 2.03× 10−2 8.05× 10−2
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Figure 5.6: Example 5.3 - The computation time comparison

5.4.2 Comparison of the MsDSM and the DSM

Here we compare the computational cost and accuracy of the MsDSM and the DSM

in solving multiscale problems.

Example 5.4. We consider the SPDE (5.8) on D = [0, 1]× [0, 1] with the coefficient

given by

a(x, y, ω) =0.1 + ξ1(ω)
2 + 1.8 sin(2πx/ε1)

2 + 1.8 sin(2πy/ε1)

ξ2(ω)
2 + 1.8 sin(2πy/ε2)

2 + 1.8 cos(2πx/ε2)
+ ξ3(ω)

2 + 1.8 cos(2πx/ε3)

2 + 1.8 sin(2πy/ε3)
,

where ε1 = 1/3, ε2 = 1/11 and ε3 = 1/19, and {ξi}3
i=1 are independent uniform

random variables in [0, 1]. See Figure 5.7.

In our computations, we use the standard FEM to discretize the spatial dimension.

We choose a 384×384 fine mesh to well resolve the spatial dimension of the stochastic

solution u(x, y, ω). We choose level six sparse grids in the discretization of stochastic

dimension, which has 135 points. The reference solution is obtained by using higher-

level sparse grids. The coarse mesh of the MsDSM is chosen to be 64 × 64. We



79

 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

5

10

15

(a)

 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

5

10

15

20

(b)

 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

5

10

15

(c)

 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

(d)

Figure 5.7: Example 5.4 - Some samples of the coefficient a
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implement the DSM on a 384× 384 fine mesh and 64× 64 coarse mesh, respectively.

The MsDSM generates m = 7 modes in the data-driven stochastic basis, while the

DSM generates m = 9 modes. In the online stage we use them to solve the effective

equation of the multiscale SPDE (5.8). In Table 5.10-5.11, we choose f(x, y) =

sin(3.72πx + 0.35) cos(2.74πy + .98) and show the relative errors of mean and STD

of the MsDSM and DSM solution in L2 norm and H1 norm, respectively. Here

DSMf and DSMc denote the DSM solution obtained on the fine and coarse grids,

respectively. We conclude that the accuracy of the MsDSM is comparable with the

one obtained by the DSM on a fine mesh grid. In addition, applying the DSM on

a coarse mesh grid without any numerical upscaling will generate large errors in the

numerical solution.

Table 5.10: Example 5.4 - L2 and H1 norm relative errors of the mean

L2 norm H1 norm
MsDSM 4.32× 10−2 1.45× 10−1

DSMc 7.16× 10−3 4.32× 10−2

DSMf 2.26× 10−3 1.06× 10−2

Table 5.11: Example 5.4 - L2 and H1 norm relative errors of the STD

L2 norm H1 norm
MsDSM 4.51× 10−2 1.56× 10−1

DSMc 1.15× 10−2 4.98× 10−1

DSMf 8.36× 10−3 3.01× 10−1

For the SCFEM solver, it will take 1132.94 seconds to solve equation (5.8) with

one specific forcing term. Thus, in a multiquery problem, if we need to solve equation

(5.8) with n different forcing terms, the total computational cost will be tSCFEM =

1132.94n. The offline computation of the MsDSM and the DSM cost 3254.17 and

2898.32 seconds, respectively. In the online stage of the MsDSM, it takes 1.89 seconds

to compute one query, thus the total computational cost will be tMsDSM = 3254.17 +

1.89n. For the DSM solver on a fine grid, it takes 33.29 seconds to compute one

query, thus the total computational cost will be tMsDSM = 2898.32 + 33.29n.

It turns out that both the MsDSM and the DSM offer considerable computational

savings over the SCFEM, if we need to solve the same SPDE with more than that

of three different forcing functions. The offline cost of the MsDSM is more expensive
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than the DSM, since we have to derive the effective equation. However, the online cost

will be much cheaper than that of the DSM, because we solve the effective equation

on a coarse grid.

Example 5.5. Finally, we consider the SPDE (5.8) on D = [0, 1] × [0, 1] with the

coefficient in the same form as in the last example. However, here we choose ε1 = 1/3,

ε2 = 1/19 and ε3 = 1/65. We choose a 1024×1024 fine mesh to well resolve the spatial

dimension of the stochastic solution u(x, y, ω). We choose level six sparse grids in the

discretization of stochastic dimension, which has 135 points. The reference solution is

obtained by using higher-level sparse grids. In this example, due to memory overflow,

the DSM easily breaks down. However, MsDSM still works owing to the upscaling in

the physical dimension.

The MsDSM solver using 135 sparse grids in the computation produces m = 8

modes in the data-driven stochastic basis. In the online stage we use them to solve

the effective equation of the multiscale SPDE (5.8). In Table 5.12, we choose f(x, y) =

sin(1.37πx+ 0.77) cos(3.91πy + 0.11) and show the relative errors of mean and STD

of the MsDSM solution in L2 norm and H1 norm, respectively.

Table 5.12: Example 5.5 - L2 and H1 norm relative errors of the solution

L2 norm H1 norm
mean 1.25× 10−2 3.24× 10−2

STD 1.52× 10−2 4.66× 10−2

For the SCFEM solver, it will take 18620.01 seconds to solve equation (5.8) with

one specific forcing term f(x, y, θ). Thus in a multiple query problem, if we need to

solve equation (5.8) with n different forcing term f(x, y, θ), the total computational

cost will be tSCFEM = 18620.01n. If we choose Nc = 64 in the MsDSM solver, the

offline computation will cost 49258.59 seconds, which includes the computational time

for deriving effective SPDE, calculating correction term and constructing DSM basis

for the effective SPDE. In the online stage of the MsDSM, it takes 18.25 seconds to

compute one query, thus the total computational cost will be tMsDSM = 49258.59 +

18.25n. MsDSM offers considerable computational savings over the SCFEM, if we

need to solve the same SPDE with more than three different forcing functions. We

conjecture that the time model obtained in Section 5.2 may still be valid for the
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Figure 5.8: Example 5.5 - The computation time comparison

DSM. Actually, due to the fill-in, the real computation time and memory cost will

be larger. The total computational cost for the DSM can be extrapolated as tDSM =

47700.90 + 438.62n. We plot the total computational time in Figure 5.8. One can

observe that the MsDSM offers huge savings over other methods in solving multiscale

problems.
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Chapter 6

Model reduction based multiscale
multilevel Monte Carlo method for
elliptic PDEs with random
coefficients

6.1 Multilevel schemes for the effective stochastic equations

In this chapter, we also consider the following elliptic SPDE−∇ · (a(x, ω)∇u(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D, ω ∈ Ω.
(6.1)

We are interested in the expected value of some functional of the solutions, which

could be the mean and high-order moments. In general, we could approximate the

expectations by the standard Monte Carlo method (MC). For example, the mean of

the solution E[u(x, ω)] could be obtained by

Y =
1

N

N∑
i=1

uh(x, ωi), (6.2)

where ωi is the i-th example in N independently picked samples, and uh is the nu-

merical solution with mesh size h. Thus, we have

E[Y ] = E[uh(x, ω)], (6.3)
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and

Var[Y ] =
1

N
Var[uh(x, ω)]. (6.4)

We define the mean square error of e(Y ) as

e(Y )2 =

∫
E
[
(Y − E[u(x, ω)])2

]
dx

=

∫
E
[
(Y − E[Y ] + E[Y ]− E[u(x, ω)])2

]
dx

=

∫
(E[Y ]− E[u(x, ω)])2dx+

∫
Var[Y ]dx

=

∫
(E[uh(x, ω)]− E[u(x, ω)])2dx+

1

N

∫
Var[uh(x, ω)]dx. (6.5)

The first term in the above equation gives the bias error introduced by the numerical

discretization at mesh size h, while the second represents the sampling errors, and

decay inversely with the number of samples. Thus we must choose the mesh size h to

be fine enough to control the bias error, and many realizations are required to reduce

sampling errors. For the multiscale stochastic problem, it is very time-consuming to

obtain each realization. Therefore, the Monte Carol method is extremely expensive

to obtain accurate results.

However, as we discussed before, we could construct an effective stochastic equation

for each sample ω−∇ · (a
∗(x, ω)∇u∗(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u∗(x, ω) = 0, x ∈ ∂D, ω ∈ Ω.
(6.6)

The effective coefficient is given by

a∗(x, ω) = a(x, ω)(I +
∂χ

∂x
(x, ω)

∂x

∂g
(x, ω)), (6.7)

where F = g + χ and F is the associated harmonic coordinates.

We have already proven that u∗ (or u∗ + χT ∂x
∂g
∇u∗) is a good approximation of u.
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Thus we could use the following estimator Y ∗ instead of Y

Y ∗ =
1

N

N∑
i=1

u∗h(x, ωi). (6.8)

Since u∗ is smooth, we can pick the mesh size h much larger than the original mesh

size, which would save a lot for each realization.

To further reduce the computational cost, we need to accelerate the Monte Carlo

method. The multilevel Monte Carlo (MLMC) method [32] is a novel variance re-

duction technique for the standard Monte Carlo method. It exploits the linearity of

expectation, by expressing the quantity of interest on the finest spatial grid in terms

of the same quantity on a relatively coarse grid and correction terms. We will apply

the multilevel Monte Carlo scheme to the effective equation (6.6).

We first divide the physical domain D into a number of nested coarse mesh grids,

i.e., Dh0 ⊂ . . . ⊂ Dhl−1
⊂ Dhl . . . ⊂ DhL . Here hl = h02−l is the l-th level grid

size (l = 0, 1, . . . , L) and h0 is the coarsest level mesh size. Denote E[u∗l (x, ω)] =

E[u∗hl(x, ω)] to be the mean of the numerical solution on mesh size hl. Linearity of

the expectation operator implies that

E[u∗L(x, ω)] = E[u∗0(x, ω)] +
L∑
l=1

E[u∗l (x, ω)− u∗l−1(x, ω)]. (6.9)

Here E[u∗L(x, ω)] is the expectation of u∗h(x, ω) as in equation (6.8). The key point

is to avoid estimating E[u∗L(x, ω)] on the finest level; instead, we aim to estimate

the expectation on the coarsest level, plus a sum of corrections adding the difference

in expectation between simulations on consecutive levels. The multilevel idea is to

independently estimate each of these expectations such that the overall variance is

minimized for a fixed computational cost. Thus we have

Y ∗ =
L∑
l=0

Y ∗l , (6.10)



86

where

Y ∗l =
1

Nl

Nl∑
i=1

(u∗l (x, ω
(l)
i )− u∗l−1(x, ω

(l)
i )), k = 1, . . . , L, (6.11)

Y ∗0 =
1

N0

N0∑
i=1

u∗0(x, ω
(0)
i ). (6.12)

Here Nl is the number of Monte Carlo simulations at the l-th level. Y ∗0 is the coarsest

level estimator, while Y ∗l (l = 1, . . . , L) measures the fluctuations of l-th and (l−1)-th

level. It is important to note that we have used the same random samples ω
(l)
i to

estimate the quantity Y ∗l .

Simple calculations show that e(Y ∗) satisfies the following equation

e(Y ∗)2 =

∫
E
[
(Y ∗ − E[u(x, ω)])2

]
dx

=

∫
E
[
(Y ∗ − E[Y ∗] + E[Y ∗]− E[u(x, ω)])2

]
dx

=

∫
(E[Y ∗]− E[u(x, ω)])2dx+

∫
Var[Y ∗]dx

=

∫
(E[u∗L(x, ω)]− E[u(x, ω)])2dx

+
L∑
l=1

1

Nl

∫
Var[u∗l (x, ω)− u∗l−1(x, ω)]dx+

1

N0

∫
Var[u∗0(x, ω)]dx. (6.13)

The first term also gives the bias error introduced by the numerical discretization,

and the second represents the sampling errors. As we have already seen, we could

choose the mesh size hL to be coarse and u∗L is still a good approximation of u. If the

variance Var[u∗l (x, ω)− u∗l−1(x, ω)] gets smaller and smaller and the mesh size hl gets

finer and finer, the samples needed for the Monte Carlo simulation are fewer and fewer,

which is just the case for our effective equations. The reduction in cost associated

with the multilevel Monte Carlo method over the Monte Carlo method is due to the

fact that most of the uncertainty can be captured on the coarse grids (h >> hL), so

the number of realizations needed on the grid (h = hL) is greatly reduced. We will

show the computational cost reduction by several numerical examples.
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6.2 Stiffness matrices assembling

Applying multilevel schemes on relatively coarse mesh grids could save us a lot of

time. However, the implementation of such schemes is not so straightforward. As

we mentioned, we must compute the harmonic coordinates to get the effective co-

efficients for one random realization. However, we cannot compute all the effective

coefficients beforehand. First, for the Monte Carlo simulation, we do not know which

random samples will be chosen and thus cannot compute the corresponding harmonic

coordinates. Second, even if we use stochastic collocation points on a certain level, it

would be too time-consuming to compute the harmonic coordinates for all the fixed

points since we need to solve the physical PDE d times on a very fine mesh (d is the

dimension of the physical space).

There is another difficulty in computing the numerical solutions on each mesh grid

level. On mesh grid h = hl, we need to discretize the effective coefficient a∗l (x, ω)

by some numerical method (such as standard finite element method) to obtain the

stiffness matrix A∗l (x, ω). It will take a lot of time if we do it for each random sample.

Hence, to accelerate the online computations, we must come up with some efficient

method to assemble the stiffness matrix A∗l (x, ω) on mesh grid h = hl.

We propose a Karhunen-Loève expansion based offline-online method to conquer

the difficulties. During the offline stage, we choose some random samples ω from

Monte Carlo simulation or stochastic collocation points, and compute the corre-

sponding harmonic coordinates F . Then for each mesh grid hl (l = 0, . . . , L), we

compute the effective coefficients a∗l (x, ω) and the stiffness matrices A∗l (x, ω). Note

that for each mesh grid, hl is relatively large, so the stiffness matrices A∗l (x, ω) are

relatively small in size and they possess the sparse structures. After that, we perform

Karhunen-Loève expansion on A∗l (x, ω) (l = 0, . . . , L) and truncated it at ml terms

A∗l (x, ω) ≈
ml∑
i=0

√
λl,iBl,i(ω)Φl,i(x). (6.14)

During the online stage, when we have a random sample ω̃ (which might be d-

ifferent from any of the samples in the offline stage), we could get Bl,i(ω) by some
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interpolation techniques. The stiffness matrix A∗l (x, ω̃) is easily computed by

A∗l (x, ω̃) ≈
ml∑
i=0

√
λl,iBl,i(ω̃)Φl,i(x). (6.15)

We will show by some numerical examples that the above estimation of the stiffness

matrices is accurate provided that enough random samples are computed during the

offline stage. For example, if we use the 12th-level stochastic collocation points for

3 random variables, 7th-level stochastic collocation points are needed in the offline

stage. If we use 10000 Monte Carlo random samples for 15 random variables, 1000

Monte Carlo random samples are needed.

6.3 Complete algorithm

We provide the complete algorithm of the model reduction based multiscale mutilevel

Monte Carol method as follows.

Algorithm 6.1. Offline Stage

1: Partition the domain D into a number of nested mesh grid blocks, i.e., D0 ⊂

. . . ⊂ Dl−1 ⊂ Dl . . . ⊂ DL. The grid size of l-th level is hl = h02−l, and h0 is the

coarsest level mesh size.

2: Pick Q random samples {ωj}Qj=1.

3: for j = 1→ Q do

4: For each ωi, compute the corresponding harmonic coordinates F .

5: for l = 0→ L do

6: Decompose F = g + χ on mesh grid hl.

7: Compute the effective coefficient a∗l (x, ωj) and the stiffness matrix A∗l (x, ωj).

8: end for

9: end for

10: Make Karhunen-Loève expansion on A∗l (l = 0, . . . , L), truncate it as equation

(6.14) and save the relevant data.

Algorithm 6.2. Online stage

1: for l = 0→ L do
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2: Pick Ql random samples {ωj,l}Ql
j=1.

3: for j = 1→ Ql do

4: Obtain Bl,i(ωj,l) by some interpolation method, i = 1, . . . ,ml.

5: Assemble the stiffness matrix A∗l by equation (6.15).

6: Solve for u∗l (x, ωj,l).

7: end for

8: end for

9: Adopt the multilevel scheme formulation to calculate expected values of a func-

tional of u∗.

6.4 Computational complexity analysis

We consider the standard Monte Carlo method as the benchmark in this section. Sup-

pose we want to solve a two-dimensional multiscale problem, and the computational

domain is D = [0, 1]× [0, 1]. For such a problem, we need a fine mesh grid to resolve

the small scales in physical space. Denote Nf to be the number of points in one

direction, and for the multiscale problems, we usually take Nf = 256, Nf = 384 or

Nf = 512. Let QMC be the number of random samples for Monte Carlo simulations.

We know that the computational time of solving one linear systems with N unknowns

is O(N1.5). So the total time cost for the Monte Carlo method is approximately

tMC ≈ cQMCN
3
f , (6.16)

where c is the constant associated with solving the linear systems.

6.4.1 Offline computational cost

For the offline stage, we have Q random samples as in Algorithm 6.1. For each

sample, we need to solve the linear equation twice on the finest mesh grid Nf to get

the harmonic coordinates. The time cost for this part is

t1 ≈ 2cQN3
f . (6.17)
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In next steps, for each l = 0, . . . , L, we will decompose the harmonic coordinates

and compute the effective coefficients. This part only involves some matrix multipli-

cations and so on, so the time cost is almost negligible. Then we need to generate

the stiffness matrix on the coarse mesh grid Dl. We find that, when the mesh size is

relatively large, it takes almost a constant time t0 to generate the stiffness matrix for

each Dl. The constant time t0 is less than one-fourth of the time of solving for one

solution on the finest mesh grid Nf . So the other significant time cost is

t2 ≈ (L+ 1)t0Q <
L+ 1

4
cQN3

f . (6.18)

If we take L = 3 and Q = βQMC (β < 1), the total offline computation time cost

would be

toffline ≈ t1 + t2 < 3βcQMCN
3
f = 3βctMC . (6.19)

6.4.2 Online computational cost

For the online stage in Algorithm 6.2, the time cost in obtaining the value of Bl,i(ωj,l)

and assembling the stiffness matrix is almost negligible compared with the time cost

in solving for the solutions on the coarse mesh grid Dl. However, the coarse mesh

size hl is much larger than the finest mesh size hf (hl <
1
10
hf ), and the computational

time of solving one linear system with N unknowns is O(N1.5) = O(h−3). So the

online computational time cost is quite small compared with the offline stage or the

standard Monte Carlo method. We will see from the numerical examples that it is

less than 2% of the standard Monte Carlo method.

6.5 Numerical examples

In this section, we perform numerical experiments to test the performance and ac-

curacy of the proposed MsMLMC method. We also demonstrate the computational

efficiency of MsMLMC over the traditional method, such as the Monte Carlo or s-

tochastic collocation finite element method in solving SPDEs with multiscale features.

Example 6.1. We consider the following stochastic elliptic equation with multiple
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scales on D = [0, 1]× [0, 1]. The multiscale coefficient is given by

a(x, y, ω) = 0.1 +
ξ1(ω)

2 + P sin(2π(x− y)/ε1)
+

ξ2(ω)

4 + P (sin(2πx/ε2) + sin(2πy/ε2))

+
ξ3(ω)

10(2 + P sin(2π(x− 0.5)/ε3))(2 + P sin(2π(y − 0.5)/ε3))
,

where P = 1.9, ε1 = 1
3
, ε2 = 1

27
and ε3 = 1

51
, and {ξi}3

i=1 are independent uniform

random variables in [0, 1].

In our computations, we use the standard finite element method. We choose a

512 × 512 fine mesh grid to well resolve the spatial scales of the stochastic solution

u(x, y, ω). In previous sections, we mainly discuss the multilevel idea for variance

reduction in the Monte Carlo method. Actually, the same idea can be applied in the

stochastic collocation method. First, we conduct a convergence study, and find that

the relative errors of mean and STD between the solutions obtained by level 11 sparse

grids in the stochastic collocation method and higher level sparse grids are smaller

than 0.1% both in L2 and H1 norm. Therefore, we choose the solution obtained by

level 11 sparse grids with 1135 points as the reference solution.

To implement the multiscale multilevel stochastic collocation method (MsMLSC),

the coarsest mesh grid of MsMLSC is chosen as 4 × 4, i.e., h0 = 1
4
, and hl = h0

2l
,

l = 0, ..., L0 is the l-th level grid size with the coarsening factor 2. The coarsest grid

expectation solution is obtained by level 11 sparse grids, and the difference of the

expectation solutions between l and l − 1 grids are obtained by level 11 − 2j sparse

grid. In practical computation, one can relocate the sample number according to the

variance decay property, which will be elaborated in the next example.

We choose f(x, y) = sin(0.42πx + 0.11) cos(0.26πy + 0.43). In Table 6.1-6.2, we

show the relative errors of mean and STD of the solution in L2 norm and H1 norm.

The MsMLSC method gives very accurate results.

Table 6.1: Example 6.1 - L2 norm relative errors of the solution

mean STD
Nc = 4 1.15× 10−1 1.46× 10−1

Nc = 8 3.17× 10−2 5.56× 10−2

Nc = 16 1.05× 10−2 4.24× 10−1

Nc = 32 5.11× 10−3 3.96× 10−2
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Table 6.2: Example 6.1 - H1 norm relative errors of the solution

mean STD
Nc = 4 3.95× 10−1 3.27× 10−1

Nc = 8 2.03× 10−1 1.99× 10−1

Nc = 16 9.72× 10−2 1.16× 10−1

Nc = 32 4.79× 10−2 9.22× 10−2

For the stochastic collocation method, it will take 6483.32 seconds to solve the

original equation (6.1) with one specific forcing term. Thus in a multiquery problem,

if we need to solve the equation with n different forcing terms, the total computa-

tional cost will be tSC = 6483.32n. In our MsMLSC method, the offline computa-

tion will cost 2536.21 seconds, which includes the computational time of solving one

cell problem, constructing the reduced basis, and computing the fixed data struc-

ture for the global stiffness matrix. In the online stage of the MsMLMC, it takes

73.55 seconds to compute each query, thus, the total computational cost will be

tMsMLSC = 2536.21 + 73.55n. We can see that the MsMLSC offers considerable

computational savings over the stochastic collocation method if we need to solve the

original SPDE with more than seven different forcing functions. Even for one forcing

term, it is still superior.

Example 6.2. We consider the SPDE (6.1) with high-dimensional stochastic input

and multiscale features on D = [0, 1]× [0, 1]. The coefficient is given by

a(x, y, ω) =
15∑
i=1

ξi(ω)
2 + Pi sin(2πx/εi)

2 +Qi cos(2πy/εi)
,

where {ξi} are independent uniform random variables in [0, 1], Pi, Qi ∈ (1.8, 1.9) are

randomly generated, and (ε1, ..., ε15) = ( 1
n1
, ..., 1

n15
), where the integers 3 ≤ nj ≤ 31

are randomly generated.

The stochastic collocation method is computationally prohibitive due to the curse

of dimensionality. We implement our method in the Monte Carlo method setting.

We use the standard finite element method to discretize the spatial dimension. We

choose a 384×384 fine mesh grid to well resolve the spatial dimension of the stochastic

solution u(x, y, ω). Due to the tremendous computational cost, we use the Monte

Carlo method with 104 samples to calculate the reference solution.
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Figure 6.1: Example 6.2 - Variance decay on the coarse mesh grids

To implement the MsMLMC, the coarsest mesh grid is chosen as 4×4, i.e., h0 = 1
4
,

and hl = h0
2l

, l = 0, ..., L0 is the l-th level grid size with the coarsening factor 2. The

coarsest grid expectation solution is obtained by 104 Monte Carlo samples, and the

difference of the expectation solutions between l and l − 1 grids are obtained by

104 × cl Monte Carlo samples, where cl is a scaling factor obtained by the variance

decay property.

We choose f(x, y) = sin(0.28πx+ 0.21) cos(0.35πy + 0.03). In Table 6.3, we show

the relative errors of mean and STD of the solution in L2 norm and H1 norm. The

MsMLMC method gives very accurate results. Figure 6.1 shows the variance decay

result for the solution.

Table 6.3: Example 6.2 - L2 norm relative errors of the solution

mean STD
Nc = 4 8.23× 10−1 4.77× 10−1

Nc = 8 2.45× 10−1 2.84× 10−1

Nc = 16 6.77× 10−2 1.54× 10−1

Nc = 32 1.70× 10−2 7.32× 10−2

For the stochastic collocation method, it will take 33942.57 seconds to solve the

original equation (6.1) with one specific forcing term. Thus in a multiquery problem, if

we need to solve the equation with n different forcing terms, the total computational

cost will be tMC = 33942.57n. In our MsMLMC method, the offline computation

will cost 13736.21 seconds, which includes the computational time of solving cell

problem, constructing the reduced basis, and computing the fixed data structure
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for the global stiffness matrix. In the online stage of the MsMLMC, it takes 136.16

seconds to compute each query, thus, the total computational cost will be tMsMLMC =

13736.21+136.16n. We can see that the MsMLMC offers considerable computational

savings over the stochastic collocation method if we need to solve the original SPDE

with more than seven different forcing functions.

Example 6.3. In this example, the coefficient does not have the affine form and is

given by

a(x, y, ω) = exp

(
10∑
i=1

ξi(ω)wiφi(x, y)

)
,

where {ξi} are independent uniform random variables in [−
√

3,
√

3],

φi(x, y) = 1
10

(sin(2πx/wi) + cos(2πy/wi))(sin(2πy/wi) + cos(2πx/wi)), and

(w1, ..., w10) =
(

1
2
, 1

3
, 1

5
, 1

7
, 1

11
, 1

13
, 1

17
, 1

19
, 1

23
, 1

29

)
.

We implement our method in the Monte Carlo method setting. We use the stan-

dard finite element method to discretize the spatial dimension. We choose a 256×256

fine mesh grid to well resolve the spatial dimension of the stochastic solution u(x, y, ω).

Due to the tremendous computational cost, we use the Monte Carlo method with 8000

samples to calculate the reference solution.

To implement the MsMLMC, the coarsest mesh grid is chosen as 4×4, i.e., h0 = 1
4
,

and hl = h0
2l

, l = 0, ..., L0 is the l-th level grid size with the coarsening factor 2. The

coarsest grid expectation solution is obtained by 8000 Monte Carlo samples, and the

difference of the expectation solutions between l and l − 1 grids are obtained by

8000× cl Monte Carlo samples, where cl is a scaling factor obtained by the variance

decay property.

We choose f(x, y) = 1. In Table 6.4, we show the relative errors of mean and STD

of the solution in L2 norm and H1 norm. The MsMLMC method gives very accurate

results. Figure 6.2 shows the variance decay result for the solution.

For the stochastic collocation method, it will take 54823.45 seconds to solve the

original equation (6.1) with one specific forcing term. Thus in a multiquery problem, if

we need to solve the equation with n different forcing terms, the total computational

cost will be tMC = 54823.45n. In our MsMLMC method, the offline computation
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Table 6.4: Example 6.3 - L2 norm relative errors of the solution

mean STD
Nc = 4 8.51× 10−2 7.69× 10−1

Nc = 8 2.29× 10−2 3.54× 10−1

Nc = 16 5.76× 10−3 1.48× 10−1

Nc = 32 2.89× 10−3 6.32× 10−2
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Figure 6.2: Example 6.3 - Variance decay on the coarse mesh grids

will cost 13736.21 seconds, which includes the computational time of solving cell

problem, constructing the reduced basis, and computing the fixed data structure

for the global stiffness matrix. In the online stage of the MsMLMC, it takes 179.35

seconds to compute each query, thus, the total computational cost will be tMsMLMC =

13736.21+179.35n. We can see that the MsMLMC offers considerable computational

savings over the stochastic collocation method if we need to solve the original SPDE

with more than seven different forcing functions.
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Chapter 7

Conclusions

Model reduction technique for PDEs. We have proposed a multiscale model

reduction method for several standard types of elliptic, parabolic, hyperbolic, and

convection-diffusion equations. A key ingredient of this method is to decompose the

harmonic coordinate into a smooth part and a high oscillatory part of which the

magnitude is small. The effective equation is derived by taking into the account of

the interaction between the multiscale coefficient of the governing equation and the

decomposition. One advantage of this approach is that we do not require scale sepa-

ration or periodic structures. Another advantage is that our effective equation can be

solved on a regular coarse mesh, and it is easy to implement. An efficient decomposi-

tion method has been proposed to decompose the harmonic coordinate into a smooth

part plus a small remainder. Under some assumptions on the multiscale coefficient,

we analyze the error between the effective solution and the original multiscale solu-

tion, and show that the error is small in the H1 norm. Several numerical examples

have been given to demonstrate the robustness and the accuracy of the proposed

method.

Decomposition of harmonic coordinates. The decomposition method de-

scribed above seems to work very well from our numerical experiments. One advan-

tage of this approach is that it is very easy to implement. However, such decomposi-

tion may not work in all cases, and may not give the optimal result, especially when

the harmonic coordinate, F , is not invertible. To overcome this difficulty, we are

currently investigating an alternative approach based on optimization. More specif-

ically, we would like to find a smooth g that lives in the linear finite element space
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generated by the coarse mesh grid and minimizes the difference between g and F in

some appropriate norm subject to the constraint that g is invertible. Formulating this

problem as a convex optimization problem would be the key to make this method

efficient. We will study this in the future.

Invertibility of harmonic coordinates. There are still some limitations of the

model reduction method. One most challenging issue is how to perform the decom-

position of the harmonic coordinate when the harmonic coordinate is not invertible

due to irregular geometries or three dimensionality. Although our method does not

require the harmonic coordinate, F , to be invertible, finding an optimal decomposi-

tion, F = g + χ, such that g is smooth and invertible while keeping χ small becomes

more challenging when F is not invertible in some local region. One way to overcome

this difficulty is to apply our model reduction method locally instead of globally. By

using a local mesh refinement, we can capture some nearly singular behavior of F by

a locally well-resolved g and still keep the remainder χ small. Another way is to de-

velop an optimization method to generate the optimal g iteratively as we mentioned.

We can also use a residual error correction to further reduce the error if χ is not small

in some localized region due to the degeneracy of F . These issues will be further

investigated in our future work.

Finite difference discretization. The solution to the effective equation is s-

mooth, while the coefficient is not smooth. For numerical implementations of our

method on a coarse mesh grid, we need to take the average of the coefficient. We use

the finite element method to take care of this work, since we are taking the average

of the coefficient when we do integrations on the coarse mesh grid. To implement

our method via other numerical methods, such as the finite difference method, we

need to take the average before directly implementing the method. Recall that the

smoothness of the solution comes from the fact that the effective equation has a non-

divergence form. The coefficient is given by a∗ = a∂F
∂x

∂x
∂g

, and a∂F
∂x

is divergence free.

We must keep the divergence free condition when we take the average. Taking the

average of a∗ is equivalent to taking the average of a∂F
∂x

, since the function g is smooth.

Averaging a∂F
∂x

while keeping its divergence free property is not straightforward, and

we are still investigating how to realize that efficiently, such as by projecting it onto
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some divergence free basis functions.

Two model reduction methods for SPDEs. We combine the data-driven

stochastic basis idea and multilevel Monte Carlo idea with the model reduction tech-

nique, and obtain the MsDSM and MsMLMC. The Karhunen-Loève expansion plays

an important role. Both methods consist of offline and online stages. The offline

computational cost for MsDSM is more expensive than MsMLMC, but the online

computational cost for MsDSM is cheaper than MsMLMC. Also, the MsDSM pro-

vides the results with better accuracy than MsMLMC. It is important to point out

that MsDSM involves the computation of global harmonic coordinates for all sam-

ples (sparse grids); thus, the memory consumption becomes a serious issue when the

number of random variables is large. In this case, we adopt the MsMLMC to tackle

these problems.

Improvement of MsMLMC. The MsMLMC is a robust method that can be

used for many multiscale stochastic problems. We only need to compute the har-

monic coordinates for a small amount of random samples, which makes the offline

computational cost cheap. The interpolation technique used in the online stage makes

the assembling of the stiffness matrices very efficient. However, the small amount of

random samples and the interpolation technique makes MsMLMC less accurate than

MsDSM. We are seeking other stiffness matrix assembling technique to overcome this

difficulty.
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