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Abstract

The rate of electron transport between distant sites was studied. The rate
depends crucially on the chemical details of the donor, acceptor, and surround-
ing medium. These reactions involve electron tunneling through the intervening
medium and are, therefore, profoundly influenced by the geometry and energetics
of the intervening molecules. The dependence of rate on distance was considered
for several rigid donor-acceptor “linkers” of experimental importance. Interpre-
tation of existing experiments and predictions for new experiments were made.

The electronic and nuclear motion in molecules is correlated. A Born-
Oppenheimer separation is usually employed in quantum chemistry to separate
this motion. Long distance electron transfer rate calculations require the total
donor wave function when the electron is very far from its binding nuclei. The
Born-Oppenheimer wave functions at large electronic distance are shown to be
qualitatively wrong. A model which correctly treats the coupling was proposed.
The distance and energy dependence of the electron tra.nsfer_ rate was determined

for such a model .
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Chapter 1

Overview



I.A. Introduction
Electron transfer reactions, reactions which involve the exchange of a sin-
gle electron between a donor and acceptor, are the subject of this thesis. The

prototypical reaction is

DA™ X, prtigm-1, (I.1)

Electron transfer may occur between atoms or molecules in solids, liquids, gases
or heterogeneous media [1]. The reactions discussed in this thesis involve elec-
tron exchange when the D — A distance is relatively large (> 5 A). The idealized
reaction occurs at fized D — A separation and orientation; no bond breakage or
formation accompanies transport. The goal of theory is to calculate k and its
dependence on the chemical properties of D, A, and the medium between and
around D and A. Solvent, temperature, donor-acceptor separation, orientation,
energetics, and molecular structure influence the electron transfer rate [2]. This
thesis focuses on the dependence of the reaction rates on the donor-acceptor dis-
tance and the molecular structure of the bridging medium. Two main topics are
considered. First, the electron transfer rate dependence on separation distance,
bridge geometry, and energetics is discussed [3] Long distance electron trans-
fer involves electron tunneling, so the rate is quite sensitive to the molecular
structure of the bridge. Second, the complications which arise in the calculation
of long distance transfer rates when the electronic and nuclear motions are not
separable are considered. Unusual dependence of rate on distance and exother-
micity may result because D™ A™ develops some A"t1D™~! character during
the transfer event [4].

Electron transfer reactions are ubiquitous. The reactions immediately fol-

lowing light absorption by photosynthetic plants and bacteria involve electron
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translocation across a membrane. ATP synthesis in animals relies on electron
transport reactions in the oxidative phosphorylation cycle [5]. Numerous in-
organic, organic, and electrochemical reactions are dominated by an electron

transport step [1].

Electron transport rates span a tremendous range. Some light induced pho-
tosynthetic electron transfers occur with ¥ = 10'2sec™! while other biological
electron transfer reactions are many orders of magnitude slower [5]. Long dis-
tance (5-15 A) electron transfer reactions are especially important in biological
systems. The formal theoretical framework of electron transfer reactions has
existed for some time. One of the crucial quantities in the theory is the tunnel-
ing matrix element (7T,3) or electronic exchange interaction between donor and
acceptor [2]. This term differentiates the electron transfer reaction from more
typical chemical reactions. In more common reactions the electronic motion fol-
lows the nuclear motion smoothly and the rate is determined by the nuclear
activation barrier. An electron is classically forbidden to be more than a few
Angstroms from its binding nuclei. Long distance thermally stimulated electron
transfer involves interactions between non-stationary donor or acceptor localized
states which interact via their non-classical exponentially decaying wave function
“tails.” The general goal of this work was to calculate donor and acceptor wave
functions in their asymptotic regions far from the nuclei which bind the electrons.
Predictions were made of the dependence of donor-acceptor interaction on dis-
tance and on the details of the intervening medium. Because the square of this
exponentially decaying interaction energy enters the expression for the transfer
rate, it is crucial that the factors influencing it be understood. Prior to this

work other groups had estimated the tunneling matrix element in specific sys-
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tems [2,3]. Some included molecular details of the reactants and others employed
barrier penetration models. Here, more general considerations of the problem are
made which allow quantitative predictions of changes in T;; as molecular details
of donor, acceptor, and bridge are varied. Section B of this chapter presents
the rudiments and vocabulary of electron transfer theory. The second chapter
provides some pedagogical examples showing calculations of wave function and
tunneling matrix element decay with distance. The calculation of T,; in specific
molecules of experimental interest follows in Chapter III. Chapter IV discusses
the fa.i]ﬁre of the Born-Oppenheimer approximation for the calculation of T,
when the donor-acceptor distance is very large. A simple model is exactly solved
which illustrates the effect. A more realistic model which uses techniques de-
veloped in Chapter III is presented and the circumstances when this effect may

become important are discussed.
I.B. General Aspects of the Electron Transfer Problem

Experimental and theoretical interest in electron fransfer reactions has blos-
somed in the last 30 years. Excellent reviews of progress in theoretical and
experimental areas are abundant [1]. In this section the quantum mechanical
description of distant electron transfer leading to the golden rule formulation for
the rate is briefly reviewed. The approximations and variable separations used

throughout this thesis are highlighted.

The long distance charge transfer problem is usually modeled as a two-state
problem. The electron is localized on the donor (D) prior to transfer and on
the acceptor (A) following transfer. Neither of these “states” is an eigenstate
of the complete Hamiltonian, so transitions from one state to another occur. In

real systems one might, for example, prepare a donor localized state by photon
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absorption. The complete Hamiltonian for the problem is [2b,6]:

H = HD 4+ HA 4 BB 4 yDABr | e (I.2a)
where

HP? =T(Qp)+ T(¢p) +V(4p,Qp) (1.2b)

H* =T(Q4) + T(g4) +V(44,Q4) (7-2¢)

HP" =T(Qs,) + T(4nr) +V(g8r, QBr) (1.2d)

YEOAEE = Vign galinrs @0 Qu. @or) (1.2¢)

H* =T* +VA(e -— qA,QA) +VBr(e -QBr‘QBr) +VD(314D1QD)- (I.Zf)

Upper and lower case q’s represent the many nuclei and electrons, respectively.
V( , ) represents all electron-electron, electron-nucleus, and nucleus-nucleus in-
teractions on the site of interest between the quantities in parentheses. V24,87
is understood not to repeat interactions included in the previous three equa-
tions. “e” corresponds to the transferable electron. The terms donor, acceptor,
and bridge mean all species in those regions coupled in any way to the electron
transfer event. A dash between elements represents interactions only between
the two sets of terms in parentheses. This Hamiltonian is obviously rather com-
plicated. Although some calculations do actually include many electron effects
directly [3h,i], the usual approach to the electron tunneling problem is to assume
that all electrons except one create a pseudo-potential in which the transferring
electron and all nuclei move (“one-electron” approximation). The total pseudo-

Hamiltonian may then be written



Hy=[T*+V'(e—Qp)+V'(e—QB:) +V'(QD, Q4. @Br)
+T(QA)+T(QB,-) +T(QD)]+V’(6—QA) (I3)

where primes represent pseudo rather than true potentials. The total Hamilto-

nian for the simplified problem is
HP=Hb+B,+VA(G—QA). (1.4)

Hp,, g, is the operator enclosed in square brackets in Eq. I.3. In the case of
well localized donor and acceptor states, the Hamiltonian for the donor localized
(initial) state is

H; = H})+Br' (Is)
Vi(e—Q4) is the perturbation which mixes eigenfunctions of the acceptor local-

ized eigenstate of H; where
Hy =H; -V'(e-Qp)+V'(e - Q4). (1.6)
The problem has been reduced to solving the two Schrodinger equations
H;¥;, = E; ¥, (I.7a)
H; Y, =E;¥,; (1.7b)

for all initial and final states. To the extent that eigenfunctions of the total
pseudo-Hamiltonian (Eq. I.3) can be expanded as a linear combination of the
eigenfunctions of Eqs. I.7a and b, the transfer rate is calculable. Since one may,
in principle, find all eigenstates of these two equations, including continuum

states, an expansion of the form

U(e,Q,t) =D aWi+ ) br¥ (1.8)
i 7
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describes the time dependent solution of I.3. Neglecting the Born-Oppenheimer

breakdown operator one arrives at the golden rule expression [7]
2T
= ?[ <Up|V'(e,Qa)|¥as > |?6(Ep — Ea). (1.9)

This is a first-order perturbation theory result where ¥p = ¥; and ¥4 = ¥;. It
assumes only a small depletion of the initially prepared donor state and is valid
at short times after preparation of the initial state [7]. In Eq. J.9 ¥p and ¥4 in-
clude both electronic and nuclear coordinates. The golden rule approach requires
that ¥p and ¥4 solve zeroth-order Hamiltonians and that V', the perturbation,
induces transitions between zeroth-order states. V' is the difference between the
total Hamiltonian and the Hamiltonian of the donor localized state. Equation .9
neglects corrections due to the non-orthogonality of the zeroth-order eigenfunc-
tions. These corrections are usually small in the long distance electron transfer
problem [6]. The Dirac delta function in 1.9 is understood to be broadened due to
coupling of the acceptor to a continuum of medium modes [8]. Two final approxi-
mations are commonly applied to Eq. I.9, the Born-Oppenheimer separation and
the Franck-Condon approximation [9]. The Born-Oppenheimer approximation
allows the construction of nuclear potential energy surfaces for the donor and
acceptor states before and after transfer. Such a diagram is shown in Fig. I.1.
All nuclear degrees of freedom except one on each site are often suppressed. The
nuclear coordinate might correspond to a solvent or ligand vibrational or rota-
tional mode sensitive to the presence of the electron. If the interaction splitting
between donor and acceptor calcuated with the total Hamiltonian is 2|T,:(Q)],
the zeroth-order nuclear potential energy surfaces at the crossing point are dis-
torted by this amount. 2|T},;| is the symmetric/anti-symmetric splitting between

donor and acceptor at the crossing point of the zeroth-order surface(see Fig. 1.2)



(b)

EYQ) + VM (Q)

(c)

Q = nuclear (reaction) coordinate

Figure L.1a. A slice through the many-dimensional nuclear potential energy sur-
face is shown. This is the Born-Oppenheimer representation of the
problem so U = E(Q) + V"~"(Q). These surfaces correspond to
the isolated non-interacting donor and acceptor states. Wave func-
tions calculated on these two surfaces are generally used to calculate

the long distance electron transfer rate.



(b)

E4Q) + V" (Q)

(c)

@ = nuclear (reaction) coordinate

Figure I.1b. When the surfaces are calculated using the total Hamiltonian, a

splitting occurs at the crossing point (b) of the surfaces for the

isolated donor and acceptor molecules.
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E4(Q) -

(a) (b) (c)

Figure 1.2. The electronic energies for the non-interacting donor and acceptor molecules
at fized nuclear geometries are shown. The horizontal coordinate is the elec-

tronic position. A small exchange splitting of 2T, occurs in configuration

(b).
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[31,10]. The Born-dppenheimer approximation is generally applied to the donor
and acceptor zeroth-order wave functions (Fig I.1a, 1.2). This approximation
presumes that the electronic motion follows the donor (acceptor) nuclei adiabat-
ically in these unmixed states. This separation should be understood as yielding
adiabatic motion on the isolated donor or acceptor energy surfaces. Motion along
the reaction coordinate of the surfaces for the total Hamiltonian (Fig. I.1b) is
termed non-adiabatic because electron transfer does not occur each time the
nuclei cross (in classical language) the intersection of the reagent and product
potential energy surfaces. Non-adiabatic motion along the reaction coordinate is
the hallmark of long distance electron transfer. The splitting is usually calculated

from the integral in I.9 at fixed Q (Franck-Condon approximation).

Instead of measuring a thermally stimulated electron transfer rate one some-
times finds a charge transfer or intervalence optical absorption which promotes
an electron from a donor (HOMO) to acceptor (LUMO) at fixed nuclear geom-
etry [1g,11]. The extinction coefficient of this band is proportional to |Tys|%.
Since the transition occurs at a different nuclear geometry relative to the ther-
mally stimulated transfer, the optical and thermal tunneling matrix elements

may differ.

In summary, many approximations are made to reach a useful theoretical
expression for the electron transfer rate. A many-body problem is usually re-
duced to a one-electron two-state problem. The electron interacts with donor
plus bridge or acceptor plus bridge in the zeroth order problems. A first-order
perturbation expression is used to find the transition rate between donor and
acceptor localized states. The donor-acceptor matrix element can be separated

into an electronic tunneling matrix element and a nuclear Franck-Condon factor.
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The distance dependence of the electron transfer rate is essentially contained in

the electronic tunneling matrix element which is the subject of Chapter II.
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Chapter 11

Tunneling Matrix Elements

in Model Systems
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II.A. Introduction

The essence of the long distance electron transfer problem is contained in
the matrix element < ¥p|V4|¥4 >. The standard variable separations (see
Chap. IV) isolate the electronic and nuclear parts of the problem [1]. The
electronic tunneling matrix element retains a parametric dependence on nuclear
configuration related to the vibronic coupling on donor and acceptor.

Calculations of tunneling matrix elements are replete with hidden approx-
imations which are usually manifest in the expansion of a wave function in an
incomplete or asymptotically incorrect basis set. Any expansion in a less than
complete basis falsifies the wave functions and causes them and the tunneling
matrix elements to err in benign or pathological ways. It is especially crucial
that the donor state far from the donor nuclei or the symmetric-antisymmetric
splitting between donor and acceptor be calculated with great accuracy. The one

electron, electronic Hamiltonians of interest (see Chapter I) are:

Hp =T*+Vym+Vp (IT.1a)
Hy=T°+Vp+Vy (Iflb)
HCI=HD+VA=HA+VD. (II.IC)

For several model potentials T,; is now calculated. The difference between tun-
neling through a bridge of constant potential as opposed to a bridge of spatially
varying potential is discussed. A molecular orbital approach to the problem is
introduced in the context of donors and acceptors interacting with an infinite
periodic one-dimensional molecular bridge. It is shown that for long-distance
transfer the finite nature of the bridge does not substantially alter the nature of

the wave functions and matrix elements found for the infinite potentials.
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II.B. Tunneling Between Dirac Delta Function Potential Wells

Consider Eq. I.1 when (see Fig. II.1)

Vig =0 (II.20)

Vp = —A6(z — a) (11.2b)
Va=—Aé(z+a) (I1.2¢)
Top =< Wa|Va| U > . (I1.3)

This problem [2] is chosen to illustrate the fact that in a simple system the
tunneling matrix element (or splitting) cannot usually be calculated exactly. It
also shows that < Wp|V,4|W,4 > gives the same value and distance dependence (to
first order) for T,; as the value obtained from the calculation of the symmetric-
antisymmetric splitting. Since V = 0, except at z = =*a, the even (+) and odd

(-) wave functions are:

¥; =asezp(—K17) (I7.4a)
W1 = byleap(—k4|2]) £ exp(ri|z])] (11.4b)
Vi1 = tagezp(—ki|z|). (I1.4c)

The unperturbed donor and acceptor states are:

¥p = ezxp(—k|z — al) (I1.5a)
¥4 = exp(—k|z + al) (11.5b)
where
2m|E|
=
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Figure II.1. The electronic potential corresponding to Eq. II.2 is shown.
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and E < 0. The continuity of the wave function at z = +a and the discontinuity
of its first derivative gives the transcendental expression for the energies of the

two bound states:

Ky = ;—T[l + ezp(—2k4a)] (I1.6)

/—2m Ey
K4 = —hlz l

The eigenvalues are E4 and E_. The energy splitting (AE = E, — E_) is
exactly

A2m
AE = - o {2[ezp(—2n+a) + ezp(—2k_a)]

+[exp(—4x+a) — exp(—4k_a)] } (I1.7)

Defining an energy Eo midway between E, and E_, E, = E; + p ard E_ =
Ey —p. pis small in the problems of interest compared to E,. As the separation
becomes large, E, converges to the binding energy of a single delta well and p

converges to zero. Expanding « around g = 0 we find

AMm
AE = -—5 ezp|—2a\/ —2m E; [h?) (I1.8)

T,, ~ AE/2. (I1.9)

The first correction to this expression is of the order

2
(i 2
E—oezp[—Za\/ —2mE, [h® |. (I1.10)

The second order correction is of the order

\/::_Oezp[-—fla\/ —2mE, [h? |. (IT.11)

For large ki1a and small u%/E, the tunneling matrix element decays exponen-

tially with the distance (2a in this'model) to the extent that at large separation
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distance the average energy of the symmetric and antisymmetric states is dis-
tance independent. At large distance this is indeed the case as the even and odd
states converge to the energy of an isolated single well state. E; in general is
several electron volts and u is many (> 3) orders of magnitude smaller.

The perturbation matrix element is

mA? 2mal
< Up|Va|¥a >=— 58 ezxp(— e ) (11.12)
since
¥p = \/ g—ggexp[‘mz\h”hz] (11.13)
and
Va = —A6(2). (I1.14)

These results are identical if Eo = —mA? /(2h?), the energy of an isolated Dirac
well state. When the donor-acceptor interaction is small this is expected to be
nearly the case. T, is calculated well with both methods if distance changes
do not affect the energies of the bound states very much (on a percent basis).
This result for T,; can also be obtained from the Bardeen transition current
between the wells [2b]. Writing Ty = To ezp(—aR), a = \/2m|Eo|/h*. This is
the dependence of T,; on E expected for one-dimensional tunneling tl:rough a
square barrier. For thermal electron transfer between two wells of non-zero width,
it is not essential that the electronic potentials on the two sites be identical, just
that the two isolated sites each support a states with equal electronic energy.
II.C. Kronig-Penney Models

Electron tunneling through a protein or other molecular bridge involves
propagation through a spatially varying potential. A model for a bound elec-

tron weakly mixed with a bridging medium is now considered. The simplest
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such model is the modified Kronig-Penney potential. This is an infinite periodic
potential with a single well deeper than all others. Periodic potentials are useful
because the wave function decay is purely exponential away from the trap. Tun-
neling matrix elements calculated for finite bridges do not differ substantially
from results for infinite periodic potentials when the transfer distance is large.
The decay of the donor localized state in the bridge region can be written, as
before, as a function of its energy. The matrix element, and hence the distance
dependence of T,}, is known from the decay of ¥p.

Delta potentials eigenstates obviously are not useful for modeling details of
wave functions near nuclei. However, if the right parameters are chosen, they give
the correct asymptotic behavior (ezp[—«|z||) to the states far from the nuclei.
Using Dirac potentials may alter the absolute value of T, compared to its value
for a more realistic potential, but does not change its distance dependence if the
parameters are chosen appropriately. The wells support only one bound state.
When chains of equally spaced delta wells are assembled, a single “band” of bound
states results. The mixing between donor and acceptor depends on the details
of the potential between sites. The splitting calculation tacitly assumes that the
change in the average of the donor and acceptor energies with distance is small
on the scale of the average energy. The golden rule rate expression includes
only first-order perturbation terms. These approximations are certainly valid
when the interaction is small but neglect subtle details of the donor-acceptor
interaction.

Consider a donor site at # = 0 and an infinite periodic one-dimensional chain

of Dirac delta function potential wells elsewhere [3]. The potential is

Vm = -2 f: 6(z — na) (IT.15)

n=—0oo

n#Z0
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on the bridge and
Vp = —Ab(z) (I1.186)

on the donor. In region I (see Fig. II.2) the wave function is
¥; = aezp(—kz)+b exp(kz). (I1.17)
Since the potential away from the donor is periodic [4],
W =e¥; (I1.18)

V=€V =¥

The donor eigenstate is symmetric with respect to the origin. The continuity

of the wave function and discontinuity of its derivative at each bridging well

connects € with E [4]:

e+ 7 =" (1-2) +e T (1+)) (I1.19)

Vi mA?
f=ylit, BT,
E]” * 2m?

€ may be real or imaginary. It is determined by the boundary and continuity
condition of the donor at z = 0. If A = X one finds € = ¢'** and |¢| = 1. These
are the delocalized Bloch states. If A >> X a single localized state is found
in addition to the delocalized states. The energy of the localized state depends
principally on the electron trapping site which is weakly perturbed by the chain.
The energy of the localized state determines its decay with distance. All excited
states are completely delocalized. At higher energy lie the continuum states. In

the absence of the bridge (V; = 0) the wave function decay is dictated purely by
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Figure II.2. Vp + Vi is shown for a donor site surrounded by a one-dimensional

chain of equally spaced Dirac delta function potential wells.
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the binding energy of the electronr(energetic proximity of the continuum states).
In the presence of a molecular bridge, both the energetic distance of the contin-
uum states and the unperturbed bridge states influence the electronic tunneling.
Proposition 1 and Ref. 5 discuss the circumstances under which one of the two
sets of states may dominate the charge mediation process. Decay with distance
is exponential, but the energy dependence is rather more complicated than in the
case of two delta wells. It appears that, for rigid saturated hydrocarbon bridges,
donor interactions with the bridge states enhance the tunneling matrix element
considerably more than mixing with the continuum states. Eq. I1.19 is exact,
including bridge and continuum mediated tunneling as well as non-nearest neigh-
bor bridge unit interactions. Since the donor wave function decays with distance
as €/, the tunneling matrix element when the donor and acceptor are separated
by N bridge groups is proportional to ¢V. It will next be shown that when bridge
mediated transfer dominates,  ~ —(1/a) In|8/E| where T = Tyezp(—aR). B
in this case is the exchange interaction between neighboring delta wells. E is
the energy of the electron relative to the energy of the center of the band of
unperturbed bridging states. a is the separation between bridging units.

To the extent that bonded interactions dominate, it is useful to stndy elec-
tron transfer with a molecular orbital approach. Consider the molecular orbital
analogue of the delta function potential bridge. This is an infinite chain of identi-
cal orbitals with one different orbital at z = 0 (Fig. II.3). Including only nearest
neighbor interactions the Hamiltonian is [6]:

H =GZG,TG;‘+AGEGO + ﬂ/2Z(GjG:‘+1 +ajai~1) (11.20a)
i#0 i
B =< ¢i|H|piz1 > (11.208)

a =< ¢;|H|p: >. (I1.20¢)
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Figure I1.3. Each circle represents a basis function on the i** site interacting

with a nearest neighbor.
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The fermion operator a; (aj) creates (annihilates) an electron on the i** atomic

orbital. Since a chain of identical orbitals was chosen,
U =cx(%) + Y g, (7 - ja). (I1.21)
J

The wave function is symmetric with respect to the trapping site. Multiplying
the Schrodinger equation by the complex conjugate of an orbital with j > 1 and
integrating one finds [6]

E-a

1
ehp =22 (11.22)

For a given E there are two solutions for e. One corresponds to the localized (|¢| <

1) state. The perturbation which promotes electron transfer is the additional
potential on the acceptor site due to the presence of the acceptor, AaLaN. The
wave function decays by the factor € =~ 8/(E — a) per repeating unit (if e << 1)
so the tunneling matrix element decreases by the factor 8/(E — a) per unit
inserted between donor and acceptor. (E — a) is the energetic distance between
the donor state and the center of the single band of states created by the bridging
atoms. In the orbital model the interaction decays with distance as T, ezp(—aR)
where @ = —(1/a)in|8/(E — a)| and a is the spacing between bridge units. The
nearest neighbor approximation is reliable for calculating donor wave function

decay to the extent that
N

ﬁf
3o () << £ (I1.23)
€" €
n=2
B(») is the non-nearest neighbor interaction (< ¢;|H|#i+n >)between bridge sites
n units apart and ﬂ{n) is on the order of the orbital overlap, < ¢;|di4n >.
Two additional aspects of the donor-bridge—acceptor assembly must be con-

sidered in order to make quantitative predictions using theoretical E —e¢ relations.
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Realistic systems possess as many bands of states as there are unique basis func-
tions in each repeating chain unit. The multi-band aspect of the problem has
been neglected so far. Also, real bridges are of finite length. A more complicated
“unit cell” is all that is required to obtain a multi-band problem. Consider, for

example, a two orbital per cell model (Fig. II.4) [7]:

< o{"|H|p\" >=+ (I1.24a)
<oV|H|o), >= =< ¢"|H|s{, > . (I1.24b)

All other matrix elements are assumed to be zero.

H=a Z a:rai + 8 Z [(aS')Taf;)_l + af-l”afr_)l) + c.c.]

+ 4 Z(af'”asl) +ec.c.) + Aagao (I1.25)

t

¥ =) [Mo(F - nd) + A0 (£ - nad)|e" + ex(2) (I1.26)

nto
(((f + ﬂ?) ((7E+—ﬁ£§) ) (;t ) =0 (11.27)

or

e+%=-—————. (I1.28)

States in the shaded region of Fig. II.5a have |¢| < 1 and correspond to decay-
ing wave functions localized on a trap. In the limit of very weak trap-bridge
interactions, E =~ A. The two bands of states correspond to bonding (valence)
and antibonding (conduction) states of the linker. Proximity of E to either
band enhances transfer compared to £ midway between the bands. Introduc-

tion of more complicated repeating units adds more bands. The donor orbital
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Figure II.4. A two basis function per site (or “unit cell”) model is shown.
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Figure I1.5a. With § = —8.47eV and ¥ = —1.85 eV the two-band model produces

this ¢ — E relation. The band gap is shaded.
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Figure II.5b. The energetic ordering of bridge and trap states is shown.
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Figure IL.5c. |¢| < 1 for states with energies in the band gap(s). Other states are

delocalized with |¢| = 1.
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interactions with all bands contribute to the bridge éssisted exchange interaction.
More complicated multi-band E — ¢ relations can usually be emulated with the
two-band approximation if § and v are chosen appropriately. The additional
band gives € + 1/¢ a parabolic shape in the band gap. If €2 << 1, € = [(E -
a)?/(87) = (7/8) = (8/+)] " rather than the one band result € ~ §/(E — a).
II.D. Edge Effects

Although some crystal potentials can be approximated as being infinite in
extent, molecular bridges are characteristically finite. Donor states interacting
with finite length bridges decay in a somewhat more complicated manner a.ldng
the bridge, but the general nature of the long distance electron transport problem
is unchanged. As in the two delta well example the donor wave function in the
intermediate region now may have both growing and decaying parts. Consider
the potential (Fig. II.6):

Vo, i 0<z<d

1% 0, if d<z<R }. (I1.29)

o0, otherwise
The trapping “molecule” is between 0 and d. The bridge is between d and R.

The wave function is

sinkz, if O0<z<d
@ = (I1.30)
A exp(—kz) + B ezp(kz), if d<z<R

|2m(E + Vo)
=NTwe
-2mE
K= PO

B = —A ezp(—2kR). (I71.31)

Since ¥(R) =0,
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Figure II.8. This is the potential useful as a model for a localized state interact-

ing with a bridge of finite length.
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A is determined by normalization and is R independent if ezp(—2xR)
<< ezp(—2kd). The wave function near R (at ¢ = R — ¢) has the value
Ae "R(e¢ — ¢=%¢). As R increases, A(e®® — e~*¢) is constant to the extent
that increasing the bridge size does not alter the energy of the trap localized
state or the relative amount of wave function amplitude in the two regions (see
Sect. II.B). For long linkers this approximation is reasonable and can certainly
be tested. For distant transfer, the donor wave function amplitude arriving at
R — ¢ decays exponentially with R even though the wave function in region II is
not a purely decaying exponential. Taking < Wp|V4|¥4 > for Typ and V4 well
localized in region II near z = R, the matrix element decays exponentially with

distance even when the bridge is finite, providing it is long compared to the well

width.

Consider now the edge effects which arise in the molecular orbital picture for
a donor connected to N identical equally spaced orbitals. The orbital coefficient
of the donor wave function on the j** bridge site is (C; = ae’ + be’¥ ~7%1) since
the system may have growing and decaying parts in the linker region. Again,
the finite length of the bridge does not alter the distance decay of the wave
function from its behavior in the infinite constant or periodic bridge case; only
a distance independent prefactor enters the wave function. It is necessary that
the eigenvalue E change slowly with N, a condition which certainly obtains for

large N.

The tunneling matrix element calculated from the molecular orbital picture
(Fig. II.7) with both the splitting and the golden rule gives the same ¢ dependence
to the matrix element for a finite bridge. Consider again the one orbital per site

model with donor atom at j = 0 and acceptor at j = N. Multiplying the
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Figure II.7. The basis functions of a one orbital per site model of finite length

are shown.
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Schrodinger equation by ¢; and integrating:
<0|: Blac+bel)=(E-A)

<1]: B'+ (ae? +beV"1)8 = E(ac +be")
< 2| : B(ae + be™) + B(ae® + beN~?) = E(ae® + beV 1)
< N|: B(ae" ! +be?) = E(ae® + be)
and §' =< ¢o|H|o) > .
Combining (d) with € + 1/e = E/§ (from c):

- _EL—N(_G'_E/L)
b 1/le-E/B

~1=N

= —¢€

Since

=0o+A) Cio;
5

where C; = ae’ + beV —7+1,

) 2N+2
CJ' = Gé" - ac 3
€J
Therefore,
Cn =aeVt(1/e —¢)
E-A
a= (ﬁ'e+ ﬁrE2N—l)
and

< Up|Va ¥4 >x (1€ — e)eN

because the donor occupies the Nt site.

(I71.32a)

(I1.32b)
(171.32¢)
(I1.32d)

(I71.32¢)

(I1.33)

(I1.34)

(I1.35)

(I1.36)

(I1.37)

(I1.38)



38

The energies of the symmetric and antisymmetric states are (traps at sites 0 and

N)
ex e
Ey - A) =" . I11.39
e A o AT L -
Expansion of this to first order in €V gives
24"
AE =~ 5 e (e — 1/e), (I1.40)

the same ¢ dependence of the tunneling matrix element as in the golden rule
expression. When ¢ = ezp(—k¢) the square well result obtains, as expected.

We have seen that: (1) Tunneling matrix elements may be calculated by
either an exchange splitting or via first order perturbation theory; (2) Molecular
orbital approaches differ from square barrier models in the functional dependence
of Typ on the energy of the transferring electron; (3) Edge effects provide very
small corrections to the infinite Kronig-Penney models in the long distance trans-
fer problem if €2V << 1. When linker length significantly alters the localized

state energy, it is unlikely that a golden rule picture for the rate will be relevant.
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Chapter III

Tunneling Matrix Elements in Systems of

Experimental Interest
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III.A Introduction

In Chapter II several examples were given of tunneling matrix element cal-
culations for model potentials. The barrier to a quantitative understanding of
experimentally measured tunneling matrix elements (understanding means pre-
dictive ability too!) is the connection between the simple models and the real sys-
tems. Square barrier models do not directly incorporate the symmetry and topo-
logical properties of the bridging medium. One electron orbital models can not
describe the detailed molecular structure of complicated donors and acceptors.
Ab initio calculations may be rather basis set dependent and rely on variational
techniques which can be insensitive to wave function errors in low amplitude

regions. A compromise between these methods must be reached.

Although scarce, experimental measures of the distance dependence of T,;
suggest 0.55 < a < 0.75 A7 where Tus = Toezp(—a R). This value suggests an
electron energy below the “barrier” between wells of ~ 1-2 eV [1]. This energy is
clearly too small to correspond to a true electron binding energy and more likely
indicates bond assisted transport. As such, the molecular orbital approach to

the problem is justified.

The most useful electron transfer experiments, in light of the theoretical ex-
amples presented earlier, are experiments which vary the bridge length, keeeping
donor-acceptor orientations, energetics, solvent, and temperature constant. It is
crucial that the molecules be rigid so that electron transfer, not conformational
motion, is rate limiting. Also, bridge interaction must not be too large or the
reaction may become adiabatic. Although improvements in experimental design
are rapid, only fwo electron transfer systems in the literature fulfill these require-

ments. One set is the spiroalkane bridged mixed-valence pentaamineruthenium
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molecules of Stein, Lewis, Seitz, and Taube [2]. The other set is the one of Jo-
ran, Leland, Geller, Hopfield and Dervan consisting of porphyrins and quinones
linked with bicyclo[2.2.2] or bisbicyclo[2.2.2]Joctane [3]. Other experiments car-
ried out in rigid random glasses (e.g., Miller, Beitz and Huddleston [4] and Guarr,
McGuire and McLendon [5]) are also of interest but somewhat harder to interpret
due to the random nature of the intermolecular interactions. The charge trans-
fer (intervalence) band was observed in the spiroalkane bridged systems. The
extinction coefficient and shape of this band allow the calculation of |T,5(R)| [6].
Thermally stimualted transfer from a porphyrin excited state quenches porphyrin

fluorescence in the bicyclo[2.2.2]octane bridged systems (see Sect. III.C).

The strategy for calculating the dependence of T,; on the number of linker

units in spiroalkane was:

(1) Calculate the E — € relation for the linker. Since Ty x € the band
structure provides a quick estimate of the distance dependence of T,; at a given
electron tunneling energy. The only necessary assumption, which has not already
been discussed, is that the central potential is dominated by the potential of the
atoms fixed in that region and is not strongly perturbed by the nearby donor,

acceptor, and solvent.

(2) Find the donor and acceptor state Coulomb energies required to place
these localized states in the proper positions in the linker band gap. This was
accomplished by applying boundary conditions so the energies of the metal-ligand
and intervalence bands would be correct. This procedure led to a connection
between trap site redox potential and the standard Hiickel exchange parameters

for hydrocarbons.

(3) Find the wave functions for the two, three, and four ring systems, as-
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suming a periodic potential in the linker region. The finite nature of the bridges
was included in the calculation.

(4) From the wave functions, find the optical tunneling matrix elements

(where a(Ru*?) # a(Rut?)) and energy splittings (a(Rut?) = a(Rut3)).
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III.B “Calculation of Electron Tunneling Matrix Elements
in Rigid Systems:
Mixed-Valence Dithiaspirocyclobutane Molecules”
J. Am. Chem. Soc. 106, 1584(1984)



45

Reprinted from the Journal of the American Chemical Society, 1984, 106, 1584.
Copyright © 1984 by the American Chemical Society and reprinted by permission of the copyright owner.

Calculation of Electron Tunneling Matrix Elements in Rigid
Systems: Mixed-Valence Dithiaspirocyclobutane

Molecules

David N. Beratan® and J. J. Hopfield'
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Abstract: A semiempirical model is presented which predicts photoassisted electron-transfer rate dependence on distance for
redox groups connected by rigid polymeric linkers. The model approximately reproduces the observed decay of the optical
tunneling matrix element with distance found for the rigid ruthenium dithiaspiro mixed-valence complexes of Stein, Lewis,
Seitz, and Taube.'? The method calculates the through-bond propagation of the wave function tail, by a method which emphasizes
obtaining the correct distance dependence of the tunneling matrix element for these weakly interacting donor—acceptor complexes.
The method also allows prediction of the magnitude of the matrix element, the importance of hole or electron tunneling in
the transport process, the effect of donor and acceptor redox potential on the matrix element, and the thermal tunneling matrix

element for these and other compounds.

Introduction

Electron-transfer theory predicts an approximately exponential
decrease in clectron-transfer rate with distance when the donor
and acceptor weakly interact.** Only recently, however, have
rigid molecules with weakly interacting electron donor and ac-
ceptor groups become available.'>™® Predictions of transfer rates,
qualitative in the past, must be refined to treat this new class of
compounds. A series of mixed-valence ruthenium molecules (I,
11, II1) was recently synthesized and studied by Stein, Lewis, Seitz,
and Taube.™?

Interaction between the metal ions is believed to be rather weak
and to involve through-bond rather than through-space interac-
tions.2*® If the interaction between donor and acceptor is indeed
weak, one may imagine that relaxation of vibrational modes in
the molecule and of the solvent around the odd electron (vibronic
coupling) stabilizes the localization. This relaxation provides a
deeper well for the electron on one side of the molecule compared
to the otherwise equivalent site. Hence one finds, for a short time
at least, a ground state for the odd electron localized on one relaxed

A
(NH;];RU—<>‘\'/§S— RulNH3)s >

. @

e »
(NHs)sRu—S D : S5 _RuiNHys >*
.)\\' » \'/
o

(NH:);RU—S\ }\'/ l\\/ ,,S—Ru(NH;),

(1) Taube, H. In “Tunneling in Biological Systems”, Chance. B., DeVauit,
D. C., Frauenfelder, H., Marcus. R. A., Schreiffer, J. R., Sutin. N, Eds.;

" Also California Institute of Technolcgy. Division of Biology, and Bell
Laboratories, Murray Hill, NJ 07974,

Acad Press: New York. 1979, pp 173-199.
(2) Stein, C. A,; Taube, H. J. Am. Chem. Soc. 1981, /03, 693-695
(3) Stein, C. A; Lewis, N. A_; Seitz, G. J. Am. Chem. Soc. 1982. 104,
2596-2599.



Electron Tunneling through Rigid Pathways

metal-ligand group. An unoccupied excited state for an electron
localized on the unrelaxed site also exists.'® Therefore. a
charge-transfer optical absorption between these states can be
found. For I, II. and III a charge-transfer band was found (¢ =
43,9, 2.3 M™' em™, respectively). The extinction coefficient of
this band is related to the tunneling matrix element in the Gaussian
approximation when the donor and acceptor are identical as shown
ineq 1.'9

«(Eo) = {([Twl*/ Eo)(a*/0)G

£ = [2n/(n? + 1)](2%2/3)(No/2300)(* / Ac)(1 /2x) /2 =
4.60 X 10'* M~' ¢em™ when n = 1.53

G = exp[—E, - A)*/24%]

E, is the energy of the photon, e is the charge on the electron,
a is the donor acceptor distance, T, is the optical tunneling matrix
clement, n is the index of refraction of the sample, N, is Avogadro’s
number, A is Planck’s constant/2x, ¢ is the speed of light, A is
the reorganizational energy, and o is the half-width of the
charge-transfer band at 0.61 maximum. A first-order perturbation
treatment of weakly interacting donor and acceptor groups predicts
the electric dipole matrix element of the charge-transfer band is
given by!?

(1)

(VeleTWa) = eaTo/(E, - Ea) )

¥, and Y., are the ground- and excited-state wave functions,
respectively. X is the position operator. Equation 1 allows the
calculation of [T,u|, the optical tunneling matrix element, from
the experimentally determined extinction coefficient. [T,y contains
the distance dependence of the clectron-transfer rate. Fermi's
“golden rule” predicts that the transfer rate depends on the square
of [T,y."" We develop a method of finding the appropriate ground-
and excited-state wave functions which allows the independent
prediction of T,,. The most important capability of this method
is its ability to predict the distance dependence of T,, for donors
and acceptors of given redox energy. The relevance of this method
to electron transfer in proteins is also considered.

Theoretical Section

The problem of electron exchange between traps at fixed dis-
tance has been discussed recently by several authors.'*'? Un-
derstanding how electron-transfer rates depend on molecular
structure is essential for an understanding of biological elec-
tron-transfer reactions. This interest in the structure—function
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The choice of orbital basis set may severely alter the size of T,
Traditional variational methods, which optimize the energy of a
state, are rather insensitive to the form of the small amplitude
wave function tail. Variational methods can tolerate errors in the
long-range behavior of the function because changes of these tails
cause little change in the total energy of the state. We have chosen
a semiempirical approach which assures the proper behavior of
the wave function in the region between the electron traps where
the wave function decay is rapid.

Periodic Approximation. The fundamental assumption which
we make is that within the central region of the hydrocarbon linker
the potential is periodic; i.e., at corresponding points of different
rings the potential is equal. This assumption neglects the per-
turbing effects of the Coulombic potentials centered on the ru-
thenium atoms. As the experiments were performed in aqueous
DCl, the dielectric screening is expected to shield the central atoms
(at least 2.5 A away) from this potential. The terminal sulfur
orbitals perturb the potentials of the neighboring carbon atoms,
causing them to differ somewhat from other secondary carbons
in the center of the spiro ligand. This effect is expected to be small.
Within the standard extended-Hickel theory, our periodic ap-
proximation is equivalent to choosing the same orbital exponents
for each orbital of the same type.

Let us investigate the form of the wave function for a long chain
of spiroalkane rings. Because the potential is periodic along this
chain, the translation operator T commutes with the Hamiltonian
7 of the system in this region:

[#.T] =0 3)

The wave function can then be chosen to be an eigenfunction of
the translation operator, so:

Ty = (v
™ =(%,...

where ¢ is some number. We may solve the Schrodinger equation
to find a relationship between ¢ and the energy of the states.'®
Truncating one end of the chain and adding special end orbitals
does not change the energy—¢ relationship since the potential in
the central region is not changed by the truncation. Moreover,
one can instead truncate the opposite end, add a different group
here, and solve a different single “impurity” problem. Finally,
one may truncate these single impurity wave functions and form
a linear combination of these two single impurity chains. One
is assured (within the LCAQO approximation) of having a wave

(4)

relationship forces us to first understand electron-transfer processes function with the correct behavior in the central region. The
in “model compounds”. T,, depends critically on the overlap of energy—e relation true for the infinite spiro chain is also true for
the two localized wave functions and is difficult to calculate. These the finite molecule. This approach is equivalent to writing the

matrix clements depend on the details of what is usually an un-
interesting chemical aspect of the electronic wave function, its
tail. The wave-function tail decay can be significantly altered
by changing the atoms between donor and acceptor. The problem
of calculating tunneling matrix elements is, as yet, intractable using
traditional ab initio methods for molecular structure determination.

(4) Hopfield, J. J. Proc. Nail. Acad. Sci. US.A. 1974, 71, 3640-3644.

(5) Jortner, J. J. Chem. Phys. 1976, 64, 4860—4867.

(6) Eyning, H.; Walter, J.; Kimball, G. E. *Quantum Chemistry”™; Wiley:
New York, 1944; Chapter XI.

(7) Calcaterra, L. T.; Closs, G. L.; Miller, J. R. J. Am. Chem. Soc. 1983,
105, 670-671.

(8) Pasman, P.; Koper, N. W.; Verhoeven, J. W. Rech. Trav. Chim.
Pays-Bas 1982, 101, 163-364.

(9) Stein, C. A_; Lewis, N. A_; Seitz, G.; Baker, A. D. /norg. Chem. 1983,
22, 1124-1228.

(10) Hopfield, J. J. Biophys. J. 1977, 18, 311-321.
l97((;”MmL her, E. "Qn Mechanics™, 2nd ed., Wiley: New York,

(12) DeVault, D. Q. Rev. Biophys. 1980, 3, 187-564.

(13) Jortner, J. Biochim. Biophys. Acta 1980, 594, 193-230.

(14) Day, P. Int. Rev. Phys. Chem. 1981, |, 149-193.

(15) Chance, B., DeVault, D. C., Fr felder, H., . R.
SchriefTer, J. R., Sutin. N., Eds. T, ling in Biological Sy ", Acad

M

A.

Press: New York, 1979

(16) Lippard, S. J., Ed. “Progress in Inorganic Chemistry™; Wiley:
York, 1983; Vol 30.

(17) Larsson. S. J. Am. Chem. Soc. 1981, 103, 4034—4040.

Bloch states for a crystal in terms of some wave vector. Only after
the conditions of the crystal are considered, be they cyclic
or not, do we obtain explicit values for the wave vector.

The problem of interactions between “special™ groups embedded
in otherwise normal solvent or crystal pervades chemistry. For
example, theories of electronic excitation transfer parallel very
closely the central ideas of electron transfer theory.*!%¥ Koster
and Slater studied the energetics of impurity levels in solids long
2go.'2 Semiconductors doped with impurities are known to trap
excitons (electron hole pairs) on these impurities or on neighboring
impurities. Faulkner and Hopfield developed a theory of the
optical properties for a class of these doped semiconductors.?-2¢
These problems are cousins of the photoassisted electron-transfer
problem.'%%-77 A treatment of wave function propagation similar

(18) In the limit of a long chain or orbitals, we discover Bloch’s theorem
and allowed “bands” of energy eigenvalues for the very large number of
eigenstates. See ref 33.

(19) Robinson, G. W.; Frasch, R. P. J. Chem. Phys. 1962, 37, 1962-1973.

(20) Robinson, G. W.; Frosch, R. P. J. Chem. Phys. 1963, 38, 1187-1203.

(21) Koster, G. F.; Slater, J. C. Phys. Rev. 1954, 95, 1167-1176

(22) Koster, G. F.; Slater, J. C. Phys. Rev. 1954, 96, 1208-1223.

(23) Faulkner, R. A. Phys. Rev. 1968, 175, 991-1009.

(24) Faulkner, R. A.: Hopfield, J. J. In “Localized Excitations in Solids™;

New wallis, R. F., Ed.; Plenum Press: New York, 1968; pp 218-238.

(25) Redi, M.; Hopfield, J. J. J Chem. Phys. 1980, 72, 6651-6660
(26) Hush, N. S. Electrochim. Acta 1968, |3, 1005-1023.
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Figure 1. (a) The 16 orbitals of the unit cell are shown. Orbitals with
equal integers are ined Lo form sy rized orbitals. The orbital
interactions are aiso shown. (b) The six symmetrized basis orbitals that
comprise the unit cell are shown.

to ours was used by McConnell to model intramolecular thermally
activated charge transfer between aromatic free radicals separated
by flexible methylene bridges.?* Morton—Blake recently used a
related perturbational method to study defect states in polymers.®
Koiller, Brandi, and Ferreira have studied simple impurity
problems using a Green's function formulation.’®?' Larsson has
compared the distance dependnece of ¢- and »-mediated transfer
rates between metals.’?> Most of these methods are adaptations
of the tight-binding method of calculating the band structure for
crystalline solids.> They differ in their description of the
“periodic” part and the boundary conditions of the problem.

Because we have already made severe restrictions on the form
of the wave-function decay, we choose the most simple model of
the Hamiltonian in the central region and of the unit cell. We
select the one-electron Hamiltonian

#H = Ta aa+ ZZﬁu (a*a; + a*a) +
i i

:’: Z‘Yi-(al+a— * aﬂl’al) (5)

k>m m

where a* and a are the clectron creation and annihilation oper-
ators, respectively.* i sums over all basis functions in the wave

(27) Richardson, D. E_; Taube, H. J. Am. Chem Soc. 1983, 105, 40-51.

(28) McConnell. H. M. J. Chem. Phys. 1961, 35, 508-515.

(29) Morton-Blake, D. A. Theor. Chim. Acta 1979, 51, 85-95: 1980, 56,
93-112: 1981, 59, 213-227; 1982, 61. 193-202.

(30) Koiller, B.; Brandi. H. S. Theor. Chim. Acta 1981, 60, 11-17.

(31) Brandi, H. S.; Kailler, B.. Ferreira, R. Theor. Chim. Acta 1981, 60,
89-96

(32) Larsson, S. Discuss. Faraday Soc. 1982 74, 390-392.

(33) Ashcroft. N. W., Mermin, N. D. “Solid State Physics”, Saunders:
Philadeiphia, 1976; Chapters 8, 10, and 28.

(34) Taylor. P. L. "A Quantum Approach to the Solid State™: Prentice
Hall: Englewood Cliffs, N.J., 1970; Chapter 2.
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Figure 2. This shows the (¢ + 1/¢) dependence on £ resulting from eq

7. The band gap falls between —6.6 and +4.2 eV. The eigenstates of the
infinite problem fall between the dashed lines.

function. i and j are nearest-neighbor orbitals on adjacent nuclei.
k and m are orbitals on the same nucleus. There are 12 sp’ carbon
orbitals and 4 hydrogen orbitals per spiroalkane unit cell. As-
suming that the Ru atoms lie on the line of the sulfur atoms and
quaternary carbons, the molecule has two mirror planes containing
the metal atoms.® This assumption is reasonable if there is = or
5 binding between sulfur and ruthenium. Because the effective
metal orbitals lie in mirror planes and there must be nonzero
orbital coefficients on the intervening atoms to allow electron
transfer to occur, the “transferred” electron must occupy an even
orbital with respect to these planes. A d. like orbital, for example,
would suffice. Nonzero coefficients in both planes are required
by the form of our Hamiltonian and the assumption of only
nearest-neighbor interaction. This restriction causes the following
sets of orbitals (shown in Figure 1) to have equal amplititude:
(@10 @ 10l (D2, D20h [030.@ 30} [Puas ) [Dsar Pspe Pscy Pegls | Poar Dete
e Peal- Because of the symmetry, there are only six unique basis
functions per unit cell. The complete 16-orbital and symmetrized
6-orbital unit cells are shown in Figure 1. The wave function is
assumed to be of the form (according to the above recipe)

V= ;[(am + boy + coy + doy + [ + gdg)d + W(ag, +
by + copy + déy + fos + goe)e¥] Aoy + Qog (6)

where ¢, is the symmetric combination of ¢,, and ,,, etc. For
the central region of the molecule there are three exchange pa-
rameters and one Coulomb interaction parameter (a): 8, v, Bcu,
and ay. Figure la shows the interactions related to these pa-
rameters. The carbon sp’ Coulomb energy is chosen as the energy
zero. Zero overlap is assumed between orbitals on neighboring
atoms. The special relationship between the energy and the decay
constant, ¢, holds in the infinite spiroalkane as well as in the
mixed-valence dithiaspiro complexes. It is determined by inte-
grating the Schrédinger equation for the infinite spiroalkane over
the six symmetrized orbitals in the unit cell. Other unit cell choices
are possible and should give identical wave functions.

One integrates the Schrodinger equation for the infinite chain
(W=0,A=0,2=0ineq 6) or the finite problem. Assuming
zero overlap the matrix equation (eq 7) must hold. The deter-
minant of the matrix must equal zero. This gives the energy—e
relationship that is carried into the finite problem due to the

-E 4 0O a 2y 0 a
¥ -E 3 0 2y 0 b
0 B8 y=LE 2ve 0 0 ¢ =0 %
B 0 2ye y-E O 0 Jd|- i
vy 0 0 v—£& Bcu J
00 0 0 Jen au-£|] e
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periodic potential in the molecule’s central region. Neighboring
unit cells only communicate with other cells via orbitals 3 and
4. Therefore, factors of ¢ and 1/¢ appear in eq 7 only once. It
is useful to write this equation in the form (¢ + 1/¢) = x(E)/y(E).
x(E) is a sixth degree polynomial. y(E) is a second degree
polynomial. x(£) arises from the carbon backbone. The C-H
bonds split the energies associated with the backbone, giving rise
to the second degree y(E). A plot of this equation is shown in
Figure 2 for specific choices of the parameters. Points on these
curves correspond to eigenstates for molecules containing spiro-
alkane unit cells. The exact positions of the allowed states for
a given problem are determined by the boundary conditions im-
posed on the linker. ¢ may have real and imaginary parts. De-
localized states (Bloch states) correspond to ¢ = exp(ik-R) and
lef = 1.2 These are the states between the dashed lines (+2) and
correspond to allowed energies for the one-dimensional “crystal”
comprised of spiroalkane unit cells. Other states (J¢] < 1) cor-
respond to localized states.

One must select Coulomb and exchange parameters corre-
sponding to the traditional extended-Hickel parameters. Because
we are interested in carbon interactions in periodic networks, we
use the tight-binding parameters fit to diamond structure calcu-
lations which in turn fit the known band structure and optical
properties of diamond.” We are interested first in getting the
E-¢ relationship of the system correct rather than calculating
experimental energies. Toward this end the diamond paameters
are more appropriate than the standard extended Hickel pa-
rameters. In this calculation carbon sp® hybrid orbitals are chosen
as the carbon basis orbitals. It is never necessary to explicitly
write these orbitals in terms of Slater or Gaussian functions
because the interaction parameters are available from the diamond
calculation.’”

A form of the extended-Hiickel exchange parameter in general
use iS 3839

Hyp = K(E, + Ey)S/2 ®)

K is set by the theorist, £, and E,, are orbital ionization energies,
and S is the overlap between atomic orbitals. If E, and E, are
the orbital ionization energies of sp’ carbon orbitals (available
from tables) and § =~ 0.65, then K = 1.0 to fit the diamond
parameters 10 eq 8.°%4' The orbital ionization energy of hydrogen
compared to a carbon 2s orbital is 5.9 eV based on the standard
tables.® y = !/,(ag - ap). From the diamond calculation, the
sp’ Coulomb ensrgy of carbon is 5.55 eV relative to carbon 2s.
The carbon sp’ Cou'omb integral was chosen as the energy zero.
Hence, ay is 0.35 eV. A carbon-hydrogen overlap of 0.69,
Coulomb energies from the orbital ionization energy tables, and
the above K factor gives Scy = —9.14 eV.}*% These values were
used in eq 7 to generate Figure 2. The orbital interactions are
summarized in Table I.

Boundary Conditions. Now that the energy—decay constant
relationship is determined for the spiroalkane linker, we must find
where on Figure 2 the ruthenium localized states appear. The
infinite spiroalkane has a band gap from —6.7 to +4.4 eV.
Calculations of the solid-state properties of crystalline materials
containing impurities suggest that localized states will occur in
the gap regions.’®** Just where these states occur and what their
decay constant is depend critically on how we choose the terminal
orbitals. We model each metal-pentaammine with a single ef-
fective orbital. The important Ru effective orbital must be even
with respect to reflection through the two mirror planes which
include the metals. Sulfur-ruthenium interactions are probably

(35) k is a purely real vector in this case.

(36) Chadi. D. J.; Cohen, M. L. Phys. Status Solidi. B 1975, 68, 405—419.

(37) One could also have used the work of footnotes 2 and 13 in Chadi and
Cohen's work (ref 36 in this paper).

(38) Daudel. R.. Sandorfy, C. “Semiempirical Wave-mechanical Calcu-
lations on Polyatomic Molecules™; Yale University Press: New Haven, 1971,

(39) Yaies. K. “Hickel Molecular Orbital Theory™; Academic Press: New
York, 1978.
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Table I. C and H Parameter Values
parameter cnergy (eV)
' -8.47
Y -1.85
BcH -9.14
ay 0.35
ac(sp?) 0.00
Table II.  Suifur Parameter Values
parameter energy (eV)
Bsc -5.11
s -3.00
ag -0.75

mediated by several orbitals.®*?#* [t is known that the car-
bon-sulfur—carbon bond angle in the spiro ring is ~78° 4
Strained bonds such as these prefer an increased p electron content.
Yet, for this model we choose to place sp? orbitals on the sulfur.
This provides ruthenium with an orbital even with respect to the
two mirror planes with which to interact. One might have chosen
more complex combinations of orbitals. The energy-e relationship
shown in Figure 2, however, is independent of these choices. The
choice of sulfur orbitals weakly contributes to the position on the
plot where the localized states fall. The most critical parameters
are the metal Coulomb energies. The sulfur parameters are shown
in Table II. They were obtained for sp® orbitals using K = 1.0,
Ssc = 0.37, and the same orbital ionization energy table.*04!

One now integrates the Schrodinger equation over the six unique
boundary orbitals and their nearest neighbors. Simultaneously
satisfying these equations (eq 9) and the energy—e equation (eq
7) determines the eigenvalues and eigenfunctions of the system.
The first four lines in the determinant result from integrating the
Schrodinger equation over the orbitals near Ru(1I). The last four
lines result from the orbitals near Ru(III). Ineq 9 4’ = b/a and
S = f/a. where b and a represent the coefficients in eq 6. The
effective metal-sulfur resonance integrals, 8y5 and 8,5, were
calculated by the method of Harrison and Froyen.*’** We find
Bs = -2.14 eV and 835 = -1.57 eV. The Coulomb energies of
the two effective ruthenium orbitals were determined uniquely
based on two requirements. First, the energy of the intervalence
charge-transfer band must match the experimental energy.
Second, the energy of the sulfur to Ru(III) ligand to metal
charge-transfer band (LMCT) must match the experimental
energy. For the mixed-valence molecules these LMCT energies
are 2.74, 2.68, and 2.70 eV for the two-, three-, and four-ring
systems. The two “effective™ metal pentaammine orbitals each
represent 21 atoms by only one orbital. Therefore, the actual
Coulomb energy (a; or a3) of this “orbital™ is not, of itself,
physically meaningful.

With these assumptions the wave functions are uniquely de-
termined for [, 11, and I1I. Computationally, we examined a large
number of energies, calculated ¢ from eq 7, and evaluated the
determinant in eq 9. For each energy these are two roots of e.
By convention we choose the value of ¢ less than 1. The energy
of the highest occupied bridge state was determined from an
extended-Hickel calculation on the two- and three-ring mixed-
valence compounds to be about =7.0 eV. This energy was assumed
to remain the same for the four-ring system.

The tunneling matrix element is calculated from the dipole
matrix clement (eq 2). We calculated the two metal localized
wave functions of the system in the band gap and approximated

(42) Kuehn, C. G.; Taube, H. J. Am. Chem. Soc. 1976, 98, 689-702.
(43) Stein, C. A.; Taube. H. /. Am. Chem. Soc. 1978, /00, 1635-1637.
(44) Stein, C. A ; Taube. H. Inorg. Chem. 1979, /8, 1168-1170.
(45) Stein, C. A Taube. H. Inorg. Chem. 1979, 18, 2212-2216
(46) Tagaki, W In "Organic Chemistry of Sulfur®; Oae, S., Ed.. Plenum:

(40) Ballhausen. C. J.. Gray. H. B. "Molecular Orbital Theory™. Benja- New York, 1977. p 247

min/Cummings: London, 1964; p 122.
(41) Mulliken, R. S. J. Am. Chem. Soc. 1950, 72, 4493-4503.

(47) Harnson, W. A; Froyen, S. Phys. Rer. B 1980, 2/, 3214-3221.
(48) Froyen, S. Phys. Rev. B 1980, 22, 3119-3121.
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the dipole matrix element between these states with the formula
(WyleSVa) = €LC CalXi (10)

where C* = coefficient of ith ground-state atomic orbital, C,,
= coefficient of ith excited-state atomic orbital, and X; = X
coordinate of ith atom. This formula is reliable to the extent that
orbital overlap is small and the x coordinate changes slowly as
one moves between metal atoms.**>? The dipole matrix element
involves only the position along the axis joining the metal atoms.
The y and z components of the matrix element cancel because
of the inversion symmetry of the four-member rings. Ineq 1 and
2 a is the through-space distance.

Though semiempirical in approach, this adapted tight-binding
method for calculating localized states in mixed-valence molecules
offers many benefits. A fairly simple calculation allows the
prediction of the rate of decay (¢) of a localized wave function
with distance as a function of redox energy. The band-structure
determination is not complicated. Even simple models of n-alkane
and spiroalkane produce «—E relationships in the gap region (see
Figure 3a and 3b) very similar to the more complex models. We
are able to separate the calculation of the tunneling matrix ele-
ments into two parts. First the band structure of the rigid bridge
is determined. This structure sets limits on the decay of the wave
function with distance. Second we impose boundary conditions
on the problem dependent on the redox properties of the electron
donor and acceptor. Together these properties determine the
electronic tunneling matrix element. The band structures for
several other unit cell choices are shown in Figures 4a—d. The
validity of the form of the wave function in eq 6 was confirmed
by finding the eigenvalues and eigenvectors of the full extend-
ed-Huckel problem (a 16 X 16 matrix in the case of the two-ring
system). For the two-ring system the wave functions found by
the two approaches were consistent.

In the case of long-distance electron transfer between well-
localized states, the wave functions may be approximated. For
an arbitrary unit cell the two localized wave functions are given
approximately by

Ve = wog+ b + 62+ ..+ ¥ on + ¢Von + one
and

Ve = 3o + "0 + ™8 + ...+ PO + oy + 10N
For the optical problem at hand ¢, > ¢, because the ground state
is closer to the bonding states than the excited states (both are
very far from the antibonding states); 0 < ¢ < 1,8 =~ 0, and {

=~ 0. The optical tunneling matrix element between the localized
states is

To™ = (ZXAfB™)AE /a = (AX/a)(AE)ee,V = 6™

(lla)
N is the number of atoms in the linker backbone, and we have
ignored all terms in ¢/ for j > 1. A, and B, are orbital coefTicients.
¢; and ¢, represent the wave-function decay per unit cell but may
be converted to the decay per carbon atom. In the thermal
electron-transfer reactions, ¢, = ¢, in the activated complex (by

(49) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10,
247-422.

(50) Mulliken, R. S. J. Chem. Phys. 1939, 7, 14-20, 20~34.

(51) Mulliken, R. S.; Person, W. B. "Molecular Complexes™: Wiley: New
York, 1969

(52) Hoijuink. G. J. In *Molecular Orbitals in Chemistry, Physics. and
Biology™. Academic Press: New York, 1964.
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Figure 3. (8) The e + 1/¢ dependence on energy for a two orbital per
site n-alkane model (marked 2) and the full four symmetrized orbital per
site n-alkane (marked 4) is shown. Parameters are taken t_‘ro_m Table I.
The two orbital per site model makes relatively gopd predictions of ¢ +
1/e. (b) Asin (a), comparing the full six symmetrized orbitals per unit
cell spiroalkane (marked 6) with the four symmetrized orbital per unit
cell (no C-H bonds) spircalkane (marked 4). Parameters are taken from
Table 1. )
energy conservation). Rather than relating the thqrmal matrix
clement to a splitting between even and odd electronic states (see
later section), we may use the above zeroth-order wave funcuogs
(when & = { = 0) to calculate the electronic Hamiltonian matnx
clement between the states. In the thermal-transfer problem E,
= E_. ¢ = ¢, n=w { =3 and the part of the Ha’mlltoman
omitted in writing ¥, is H' = (@neitan + axtane))B

(YelH Wea) = B'ne®
T,® = &

Thus, addition of an extra unit cell to the linker changes the
donor-acceptor matrix element by approximately a factor of e
Tables VI and VII verify that these simple arguments are valid
for the spiro molecules. The thermal tunneling matrix element
is frequently expressed as

T = A exp(-aR)

(l1b)

(12)

for long-distance charge transfer. eis simply related to a. R is



Electron Tunneling through Rigid Pathways 50

20

—

14

€ +l/€

L 1
-60 10
ENERGY (eV)

80

20

-10
-20

-60
ENERGY (eV)

10

J. Am. Chem. Soc., Vol. 106, No. 6, 1984
20
b
14l
8L
e
A IS N /]
_4_- )
T O -
-10 . 1 1 1
-20 -13 80 1.0 80 15
ENERGY (V)
20
d
14
8l
w
=
& V-4 A [SS——. (R W—
-4
- -"Q,
T,
"
-10 n L L L
-20 -13 -60 10 80 1S
ENERGY (eV)

Figure 4. Band structures for several units cell choices are shown. Interaction parameters are chosen from Table I. ¢ + 1/e = %2 is marked with
dashed lines. (a) The one orbital per site model. (b) The two orbital per site model. (c) The four symmetrized orbital per site n-alkane model. (d)

The four symmetrized orbital per site model of spircalkane. Shaded orbitals indicate corresp

Table Ul. Comparison of Decay Constants € and «

distance  carbon
measured  atoms
unit cell through?® traversed a(A™)
n-alkane bond 1 —(In ¢}/ 1.54
n-alkane space 2 —(lne¥2.4
spiroalkane bond 2 —(In €)/3.08
spiroalkane space 2 —(ln€)/2.22

9 Through-space distance is the shorted distance between ends
of a “taut™ molecule. All calculations assume bond-mediated
transfer. Through-space distances are given for comparison al-
though the transfer is still calculated through bond.

sometimes chosen as a through-bond distance and sometimes as
a through-space distance. Table III shows the expressions relating
a 10 ¢ for spiroalkane and n-alkane for both through-bond and
through-space distance measurements. The actual calculations
on the spiroalkanes do not use the approximation of eq 11a and
11b.

Table IV. Calculated Optical Tunneling Matrix Elements®

unit cells.

ding orbitals of adj

Comparison with Experiment

Photoassisted Charge Transfer. Varying the end orbital pa-
rameters for fixed metal-sulfur interaction parameters we found
metal localized states in the band gap region of Figure 2. We
varied the Coulomb integrals of Ru(III) and Ru(II) to fit the
energy of the intervalence charge-transfer band and the ligand
to Ru(III) charge-transfer band. The localized states are very
near the valence band. This result suggests that, in these mole-
cules, charge transfer is mediated by hole transfer through the
bonding states of the linker. The energies, decay constants, and
Coulomb parameters resulting from the fit are given in Table IV.
The dipole matrix elements were calculated with eq 2 assuming
a distance of 1.11 A between all nonmetal nuclei (measured along
the metal-metal axis). The metal-sulfur distances were taken
from ref 3. The calculation of |T,,| from experiment (ref 3)
assumed the appropriate distance to be used in eq 1 was the
through-bond distance. In the optical charge-transfer formalism,
however, the through-space distance is required when calculating
with eq 1 and 2. Corrected values of |T,,| determined from the

no.of rings  a, ay Ey e Eex o (WX 1Y ax) Tab
2 -54 -4.0 -5.7 0.20 -4.3 W1l -49x10? -7.2%x107?
k] -5.6 -4.0 -59 0.22 -43 1 =l.oxim? -1.3x1n?
4 -59 -4.0 —6.1 0.27 -4.3 n.11 =3.1 %107 4.1 xIn*
5 -5.9 -4.0 -6.1 0.27 -43 0.11 -84 x 10 -9.5%x107®
6 -5.9 —-4.0 -6.1 0.27 -43 0.11 =23 x10™ -23x 10

2 Position matrix element in A ull other values are eV
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Table V. Corrected Experimental T,p's

metal-metal
through-space
no. of rings E°P (eV) distance (A) ITap! (eV)
2 1.36 9.3 2.1x107?
3 1.54 11.5 8.5 x107?
4 1.80 13.7 4.0 x107?

experiments are given in Table V.

The comproportionation constants for these molecules are not
known. Since no separation was observed between the two waves
in the cyclic voltammetry experiments, it is reasonable to assume
that the metals are oxidized in a statistical fashion with Kn, =
4.27 1f the metals were oxidized in a statistical fashion with no
regard for the oxidation state of the other end of the molecule,
the assumed concentrations of mixed-valence species would be
a factor of 2 too large. The calculated values for T,p, in turn,
would be too small by the factor (1/+v/2). The experimentally
determined |T,,| is roughly 0.62 exp(—0.37R), where R is the
through-space metal-metal distance in A.

Both the magnitude and decay of the calculated T,, fit the
experimentally determined values fairly well with respect to decay
length and prefactor (eq 12). T,, for the four-ring system is
calculated to be 0.31 of the three-ring value. The change cor-
responds to a through-space a of 0.53 A™'. The calculated
through-space prefactor (A) for the four-ring system is —0.58 eV.
The average change of T,, upon addition of a unit cell is a factor
of 0.25; thus the average through-space calculated a is found to
be ~0.63. This calculation can be performed for an arbitrary
number of linkers. T, is predicted for the five- and six-ring
systems (see Table IV).

The value ¢ in spiroalkane is roughly the factor by which the
wave function decays upon moving between any two corresponding
orbitals in adjacent unit cells. In the case of spiroalkane there
are two carbon atoms between the corresponding carbon orbitals
on adjacent unit cells. For the purpose of comparing wave-function
decays per carbon atom, we define ¢ = ¢'/2. Thus, a mostly
localized electron mixing weakly with a spiroalkane chain has an
amplitude which decays by a factor of ¢ per carbon atom in the
spiro backbone. Seitz and Taube report an exinction coefficient
of 5 M™' em™ for IV.2 This is a nonrigid molecule, but since

(NHa)sRu—S S—RuiNH3)s >"

~

the intervalence band extinction coefficient is so small and the
Coulombic repulsion between metals favors a large through-space
ruthenium distance, it is likely that direct Ru—Ru through-space
interactions are small. The extinction coefficient varies as the
square of the tunneling matrix element. According to eq 11a
T(alkane)/T(spiro) = (0.25/0.33)(0.33/0.45)". Thus T*(al-
kane)/T¥(spiro) =~ 0.17. Hence, the extinction coefficient for [V
is expected to be (0.17)(43) or 7.3 M~' cm™!, very close to the
experimental value. The values of € used here are decay per carbon
atom (¢') and are taken from Table IV and Figure 5b. N equals
2. Figures 5a and 5b compare n-alkane and spiroalkane in the
band gap region.

Predictions for Related Experiments. Taube and Stein have
prepared the mixed-valence rrans-isnoctaammine complex of the
two-ring ligand (isn = isonicotinamide). Little change in extinction
coefficient was found. Since there is a fair amount of uncertainty
in the choice of the sulfur-metal interactions in our method, we
can best compare the decrease of T,, with distance for different
redox energy electron traps. It is harder to calculate the exact
change in rate for a fixed number of rings due to ligand or metal
substitution because such changes effect the boundary conditions
in subtle ways. The redox potential of Ru(NH;)4isn is changed
by +0.2 V compared to Ru(NH,)s in the spiro molecules.’
Changing ay and a, by —0.2 eV from their values in Table IV
causes (¥ ¥|¥e) to change by a factor of 0.23 in going from two
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Figure 5. (a) The ¢ + 1 /¢ dependence on energy for - and spiroalkanes
is shown. The sign of ¢ + 1 /¢ for n-alkane is reversed from its true value.
The horizontal line represents the edge of the band gap. The parameters
were chosen from Table I. Figure 6b can be obtained from this by solving
a quadratic in e. (b) The ¢ (decay per carbon atom) dependence on
electron energy for spiro- and n-alkanes in the band gap. The decay
constant for spiro- is everywhere greater than for the n-alkane. Param-
eters are taken from Table I. In both figures “S™ marks the spiroalkane
curves and “n-" the n-alkane curves.

to three rings. T,, according to eq 2, is predicted to change by
a factor of 0.21 on going from the two-ring isn to the three-ring
isn system. The pentaammine system was calculated to change
T, by a factor of 0.15 on going from the two- to three-ring system.
A smaller distance from the valence band was indeed expected
to make the isn-localized state wave functions decay more slowly
compared to the pentaammine states.

Our method allows the prediction of the effect of altered electron
donor and acceptor trap depth (redox energy) on ¢ and hence on
T,.°?. We give several illustrations for the spiroalkane system
where the Coulomb energies of the metals are both changed. Such
a change might be induced by ligand or metal substitution, or by
a change of solvent. The values of the parameters, energies of
the localized states, and the tunneling matrix elements are given
in Table VI. Changing the redox levels of the electron traps alters
the decay of T,, with distance. This decay constant is, therefore,
not a “universal” parameter. Because of uncertainties in 3(S-Ru).
direct comparison of (¥, |X|¢.,) for different redox levels but
constant number of rings is discouraged.

Thermally activated electron exchange may also be an im-
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Table VI. Optical Ty, for Altered Trap Depths®
no. of rings a, a, Eg €g Eex €ox (y z.'f},,“) Tab

3 -4.9 -34 -5.3 0.16 -3.8 0.10 -44x10? =-7.1x107?
3 -4.9 -34 -53 0.16 -3.8 0.10 -74x107? -9.7x10™*
4 —4.9 -34 -53 0.16 -3.8 0.10 -1.2x107? -13x10*
2 -5.6 -4.2 -59 0.22 —-4.5 0.12 -5.2 X107 -7.8x107?
3 -5.8 -4.2 —6.0 0.25 -4.5 0.12 -1.2x107? -1.6 X 107?
4 -6.1 -4.2 -6.3 0.33 -4.5 0.12 -4.9x107? —-6.4 x10°*
2 —-6.3 -4.8 -6.4 043 -5.0 0.14 -7.0x10? =1.1x10"?
3 -6.3 -4.8 -6.4 0.43 -5.0 0.14 -2.8x107? -34x10?
& -6.3 —4.8 -6.4 0.43 =-5.0 0.14 -1.2%x107? -1.2x10°?
2 -6.5 -5.0 —-6.6 0.72 -5.2 0.15 —-8.6 Xx10°? -1.2x10"?
3 -6.5 -5.0 —6.6 0.69 -5.2 0.15 -4.7 x 1072 -5.7x107?
4 -6.5 -5.0 —-6.6 0.68 -5.2 0.15 -2.9x107? -30x107?

%3;5=-2.14,8,5=—1.57, all energies in eV.

b The second set of values corresponds roughly to the isn analogues of

the pentaammine

mixed-valence complexes.

Table VII
no. of a,=
nngs s Ex €y Ea € Tab
A Calculated Thermal Tunncling Matrix Elements®
2 —4.7 -5.06 0.14 -504 0.14 7.5x107
3 —-4.8 =5.14 0.15 =5.14 0.15 1.1 x107*
4 -495 -5.27 0.15 =527 0.15 1.8x10™*
5 -495 =527 0.15 =527 0.15 28x10°*
B. Thermal T,y for Altered Trap Depths®
2 -4.2 -46 0.12 -46 0.12 73x107?
3 —4.2 -46 0.12 -4.6 0.12 9.1x10*
4 —-4.2 -4.6 0.12 —4.6 0.12 1.1 x10™*
¢ -49 -5.2 0.15 =5.2 0.15 7.7x107?
3 -5.0 =53 0.16 =53 0.16 1.2x107?
4 -5.15 =54 0.17 =54 0.17 2.2x10™"
2 -5.5 -5.8 0.20 -=5.7 0.20 9.1x107?
3 -55 -5.7 0.20 -5.7 0.20 1.8x107?
4 -3.5 -5.7 0.20 -=5.7 0.20 3.5x10™
2 -6.4 —-6.5 0.50 -6.5 0.50 1.7x107?
3 -6.4 =6.5 050 =6.5 0.50 7.8x107?
4 —-6.4 =6.5 0.50 -6.5 0.50 3.7x10?
98y =By5=—1.86: Tap=1/3(Ey — Ep): all energies in eV.

b3 g=8,5=-1.86, all energiesineV. € The second set of
values corresponds roughly to the isn analogues of the penta-
ammine mixed-valence complexes.

portant process in these mixed-valence molecules. The thermal
electron-tunneling matrix element is just half the symmetric an-
tisymmetric splitting when a3 = a, and 8,5 = 8;5. Choosing these
parameters to be equal to the averages of the parameters used
in the optical charge-transfer process yields predictions of the
thermal tunneling matrix elements for the pentaammine complexes
(Table VIIA).** We find the distance dependence of T, to be
similar to the distance dependence found for the optical process.
Table VIIB shows the energy splitting for a; = a; and B = ;5
= —1.86 at several points in the band gap.

For the case corresponding roughly to isn-substituted systems
(a3 = a; =-49 ¢V, B35 = 5 = -1.86 eV, tworings), T,, = 7.7
X 107 eV. For three rings a; = a; = =5.0 eV, 35 = B = -1.86
eV, and T,, = 1.2 X 107? eV. T,, (thermal) has changed by a
factor of only ~0.16. Compare this to the values in Table VA
(~0.15) per linker cell). More drastic effects will be seen on the
thermal matrix element by considerably changing the redox level
of the coordinated metals.

General Discussion

Geometric Effects on T,,. The considerable difference in
electron mediation properties of n-alkane compared to spiroalkane
linker arises from the two equivalent electronic pathways in each
unit cell of spirocalkane. In the spiro molecules the ¢lectrons have
twice the number of transfer routes, and the wave function am-
plitude essentially adds at each quaternary center before decaying
into the next ring.

The energy—e relationship for an n-alkane where the carbon
orbtials are represented by a single orbital and there are two atoms
per unit cell is

(53) This argument is justified by electron-hole symmetry.

Table VIII. Comparison of Decay Constants for
Spiro- and n-Alkane?
alkane spiroalkane
energy,
(eV) e+ /e iel e+ 1/e lel le'!
4.0 -3.0 0.38 2.9 0.40 0.63
3.0 -3.7 0.30 53 0.20 0.44
2.0 —4.2 0.25 75 0.14 0.40
1.0 —4.6 0.23 9.4 0.11 0.33
0.0 -4.9 0.22 10.7 0.09 0.31
-1.0 -5.0 0.21 11.5 0.09 0.30
=20 =5.0 0.21 11.5 0.09 0.30
-3.0 —4.8 0.22 10.9 0.09 0.30
-4.0 —4.4 0.23 9.4 0.11 0.33
-5.0 -39 0.28 73 0.14 0.37
—-6.0 =29 0.39 4.4 0.24 0.48

@ € is the decay per unit cell. ¢ is the decay per carbon atom.

(e+1/6) = E?/B? -
For spiroalkane represented with one orbital per carbon atom

(e+ 1/ = (E? /28" -2

and there are three atoms per unit cell (this equation results from
the case even with respect to the mirror planes). Hydrogen atoms
were ignored in both cases. We see that the spiro linkage is
equivalent to replacing g in the linear problem with v'23. The
thermal matrix element in the one orbital per atom linear problem
is proportional to (8/A)", where 8 is the exchange integral, A is
energy of the clectron traps, and N is the number of unit cells
in the bridge.?® Thus, even the most simple model for the spiro
unit cell indicates its enhanced electron mediation properties
compared to a linear chain.

For long chains, the amplititude of the wave function in the
interior of the molecule changes by the factor ¢ on moving one
unit cell in the chain. In spiroalkanes there are two carbon atoms
between equivalent points in adjacent unit cells. To first order
we can calculate the change in optical or thermal matrix element
between donor and acceptor wave functions for any groups con-
nected by the linkers using this fact. For example, when £ = -5.0,
the donor—acceptor overlap changes by a factor of about 0.28 upon
adding another CH, group to the n-alkane. At the same energy
the overlap between spiro wave functions changes by a factor of
0.14 upon adding an extra spiro unit. This is an average decay
factor of only 0.37 per carbon atom for the spiro linker. The
significant difference in decay per carbon atom is a unique feature
of the spiro linkage and accounts for the “surprisingly rapid”™
charge transfer observed by Stein, Lewis, Seitz, and Taube. Table
VIII highlights this difference for several energies.

We can use this sort of analysis to compare the attenuation of
T,y with distance for a specific linker simply by studying the ¢
vs. E plot. Figure 5a compares the band region in the ¢ + 1 /¢
plots for n-alkane and spiroalkane. e is the decay per unit cell.
Figure 5b shows the ¢ vs. E plot for the band gap where ¢ is the
decay per carbon atom. Such a divergence from the alkane decay
should not occur to such a large degree in the parallel but not
frequently intersecting electron-transfer pathways of the steroid
derivatives prepared by Calcaterra, Closs, and Miller, for example.’
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Comparison with Previous Estimates of a. The constant ¢ is
related to the decay constant a as shown in Table III. Previous
estimations of the energy of the “transferring” electron relative
to the medium in which it tunnels have been made. For example,
Hopfield estimated a =~0.72 A~' while Jortner suggested a ==
1.3 A~! for electron transfer in proteins. It is now clear that this
decay depends critically on both the energy of the transferred
electron and the detailed structure of the barrier between donor
and acceptor. Hopfield’s original model assumed a 2-e¢V barrier
height to tunneling. Within our model that means the localized
states are 2 ¢V from either the conduction or valence band (see
Figure 5b). In the n-alkane model the states 2 eV from the band
edges have ¢ ~ 0.21-0.23 or a = 0.98 A"! (through bond) and
a = 1.3 A7 (through space; notice comment below Table III).

Redi and Hopfield compared the optical and thermal tunneling
matrix elements for two model potentials.?* They found T >
T8, especially at large electron-transfer distances. Their wave

functions decay with energy and distance as exp(=v/|£|R). In
our calculation (¢ + 1/¢) =~ 1/eso |E] = 1/e near the band edges.
Thus, from eq 12 and Table III the wave function decays with
distance and energy as

exp(-|(In E)|R)

For given E the wave-function decay is always more rapid in the
square well or & well models of Redi and Hopfield. Also,
wave-function decay is more sensitive to energy changes in the
Redi and Hopfield model. Because of the different dependence
of decay on energy, the vibrational relaxation of the localized state
produces a greater change in matrix element in the Redi-Hopfield
model than in the current model. This serves to decrease the
optical matrix with distance more slowly than the thermal matrix
element in their model. In the model described here, the optical
and thermal tunneling matrix elements are not very different in
magnitude (see Tables [V, VI, and VII).

Quantum Chemical Considerations. Our modified tight binding
calculation has predicted that electron transfer between ruthenium
ions proceeds via hole transfer through the bonding bridge orbitals.
Wave function decay is slow for donor and acceptor eigenstates
near the band edges. The two actual exchange mechanisms,
double exchange (electron transfer via conduction band) and
superexchange (hole transfer through the valence band), involve
mixing of trap states with linker states.**** Since this mixing
involves energy denominators (in first-order perturbation theory)
of E(trap) — E(bridge), the strength of the mixing between
localized states and linker states is enhanced by their energetic
proximity.

An infinite or cyclic chain of spiroalkane orbitals satisfies
Bloch's theorem so € = exp(ik-R) where k is a real reciprocal lattice
vector and R is a translation vector. In this case =2 < (e + 1/¢)
=< 2. We expect (except, perhaps, at points of special symmetry)
as many energy roots as basis functions in the unit cell. The six
unique orbitals in the spiroalkane give rise to the six bands for
-2 =< (e+ 1/¢) < 2 in Figure 2. When the linear molecule is
truncated, many eigenstates still fall in the range =2 < (e + 1/¢)
< 2 and are well delocalized. Others have ¢ real and correspond
to localized states. The singularities in these band-structure plots
arise from energy splittings due to orbitals not contributing to C-C
bonds.

One could have formulated the boundary conditions of the spiro
problem in many other ways. For example, several orbitals on
the metals and sulfurs were ignored. Also, a particular geometry
was assumed. As long as the position of the sulfur orbitals which
participate in the electron transfer do not drastically change in
energy. we will be forced to place the localized ruthenium ei-
genstates very near the valence states and will find similar falloff
of T,, with distance. The ability to find this characteristic decay
and its dependence on linker geometry is the principal success of
this method.

1f one believes that the optical absorption reported in the ex-
perimental studies promotes an electron between localized states,

(54) Halpern, J.; Orgel. L. Discuss. Faraday Soc. 1960, 29, 32-41.
(55) Ratner, M. A.; Ondrechen. M. J. Mol. Phys. 1976, 32, 1233-1245.
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Figure 6. The traditional view of the potential energy surface relevant
to electron transfer is shown. The nuclear coordinate represents the
metal-ligand and solvent coordinates.

B = 2|Tap|

F-“ob
Figure 7. The total energy of the two states, bonding (B) and antibonding
(A), formed by a linear combination of two atomic orbitals is shown.

one must build the ability to adopt local character into the wave
functions from the very start. The CNDO/2 method that Stein,
Lewis, Seitz, and Baker used to analyze only the linker will not
predict the exponential dependence of the charge transfer band
extinction coefficient on distance found in these molecules.
The thermal tunneling matrix element represents the splitting
between nuclear potential energy surfaces at the crossing point
between reagents and products (Figure 6).*¢  The nuclear co-
ordinate in this figure symbolically represents the many metal-
ligand and metal-solvent coordinates. The size of T,, varies with
the metal-metal distance in a fashion shown in Figure 7. We
notice from Table VII that the thermal tunneling matrix element
decreases with distance but never changes sign. In a two-orbital,
one-electron model of electron transfer this energy splitting must
not change sign with distance. A sign change implies a crossing
of the bonding and antibonding energy surfaces (Figure 7). Such
a crossing is forbidden by the nodal theorem.’” That is, since
the ground state is nodeless and since higher states have nodes,
E, < E,, for any internuclear separation. When intervening
orbitals between donor and acceptor are introduced, the sign of
T,, may vary with transfer distance. For example, in Figure 4¢
we see that ¢ for n-alkane is negative so the sign of T, alternates
as the number of bridging carbon atoms is increased. However,
within our model [T,|? is still a monotonically decreasing function
of donor acceptor separation, which may only be changed in
integral steps. Newton has calculated the tunneling matrix element
for electron exchange between hexaquo Fe(II) and Fe(l11) using
ab initio quantum mechanical methods.*® He finds a node in T,
for an internuclear iron distance of 7.6 A. Thus, either there is
an unusual many-body effect at work or his method incorrectly

(56) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, |5, 155-196

(57) Messiah, A. “Quantum Mechanics™; Wiley: New York. 1958: Vol.
1 pp 109-110.

(58) Newton, M. D. Int. J. Quantum Chem.. Quantum Chem. Symp.
1980, /4, 363-391
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calculates the long-range wave function decay.

Our method does have severe limitations. It is a one-clectron
approximation and has the flaws of the standard Hiickel tech-
niques.’%*2*"  Transition and dipole moments calculated from
Hiickel wave functions are not always reliable. However, to the
extent that the “odd™ electron in the electron-transfer calculation
is in a very different eigenstate compared with the other electrons
in the molecule, this approximation may be better than expected.
The omnipresent problem of selecting appropriate, consistent
parameters is obvious in this calculation. Particularly annoying
is the difficulty of treating transition metals within the one-electron
approximation.

Biological Applications of This Theory. The techniques de-
scribed in this paper are applicable to electron-transfer processes
where the through-bond rather than through-space electron-
transfer pathway dominates. The method requires knowledge of
the energy of the “transferred” electron relative to the bridge states.
The question of through-bond vs. through-space pathways in
metal-labeled proteins is an important one.**' Qur method allows
prediction of the changes in electron-transfer rate as a function
of redox energy and through-bond distance. To study through-
bond effects on long-distance electron transfer in proteins, one
would like to roughly fix the through-space distance between donor
and acceptor and vary only the number of through-bond links
between the centers. Perhaps binding of metals to the surface
of a roughly spherical protein with a redox group in its center
would be appropriate. Such an experiment would show the im-
portance of through-bond interactions (and the usefulness of this
theory) in electron transfer through proteins.

For the mixed-valence spiro molecules the experimental value
of e for Ru?* is ~0.4-0.47 or € ~ 0.65 (recall ¢ = ¢!/2). This
value of € corresponds to £ = —6.5 ¢V. The redox potentials of
these molecules are ~+0.5V vs. NHE; however, the redox energy
corresponds to thermal charge transfer so we also have ~0.75
eV of relaxation energy to include. Using these facts we may
correlate the redox potential and decay constant for spiro and other
saturated linkers. By changing the sign of the energy scale in
Figure 5b, placing the redox energy of +0.5V vs. NHE at -5.75
eV (-6.5 + 0.75) eV on that figure, and converting from ¢ to «
we find Figures 8a and 8b. These describe the decay constant
as a function of redox energy for the n-alkane. Now if we consider
the alkane backbone to be a fair model for the protein backbone,
we may calculate a for a given number of peptide unit cells.

Electron transfer between native and modified proteins occurs
in an activated complex with clectronic energy E®' =~ (Eq + E,)/2
where £°' is the energy appropriate for use in Figure 8. E4and
E, are the redox energies of the separated ligated metals.

Assuming two redox centers are known to be separated by X
A. a “taut” alkane chain between the center and the chain would
contain N = (2X)/(2.4) carbon atoms. The tunneling matrix
element for this linkage would be

exp[—a(E*')N(1.54)] (13)

a(E*") is the through-bond decay constant appropriate to the
activated complex (read from Figure 8a). This should be the
upper limit of the bond-mediated tunneling matrix element.
Calculation of matrix elements through longer chains requires
only knowledge of NV and E®'. For example, in the pentaammine
ruthenium(I1I) (histidine-33)~ferricytochrome prepared by Gray
and co-workers, E¥' = 0.21 Vvs. NHE, X = 15 KaN =12.5s0
T,,™* ~ exp[-(0.69)(12.5)(1.54)] =~ 1.7 X 10 eV. Since the
transfer probably does not occur through such a taut structure
and T,, decreases by a factor of exp[—(0.69)(1.54)(3)] =~ 0.04
per amino acid residue, it is unlikely that the dominant pathway
in this protein with this choice of metals is a purely bond-mediated
one. However, if the more favorable energetic regions (near the

(39) Sinanoglu, O.; Wiberg, K. B, “Sigma Molecular Orbital Theory™:
Yale University Press: New Haven, 1970.

(60) Margalit. R.; Pecht, L; Gray, H. B. J. Am. Chem. Soc. 1983, (05,
301-302.

(61) Winkler, ] R.. Nocera, D. G.: Yocom, K. M_; Bordignon, E.; Gray.
H. B. J. 4m Chem Soc 1982. 104, 5798-5800.
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Figure 8. The dependence of thermal matrix element decay constant (a)
as a function of the redox energy of the activated complex is shown: (a)
when distance is measured through bond for an alkane chain, (b) when
distance is measured through space for a “taut™ alkane chain.

band edges) are accessible, a through-bond pathway may become
more important.

Calculations exploiting the periodic nature of other saturated
rigid linkers are now being carried out. Similar calculations on
polypeptide backbone are also underway. With this method we
hope to achieve a better understanding of the role of bridge ge-
ometry and donor/acceptor energetics on the electronic tunneling
matrix element.

T.» and “Inverted Behavior™. In this paper we have considered
only the elecrronic contribution to the electron-transfer rate. The
actual rate is, within the Franck—Condon and Born—Oppenheimer
approximations, a product of nuclear and electronic factors. In
[-1V the nuclear factors should be approximately equal so a
comparison of [T,|* may be used to predict ratios of transfer rates.

Both the optical and thermal tunneling matrix elements are
quite sensitive to the energies of the donor and acceptor localized
states with respect to the bridge states. Therefore, when comparing
transfer rate as a function of reaction driving force, one must
realize that changing reaction energetics may in fact change the
size of T,, (depending on the position of the localized states in
the band gap). For this reason, when looking for the “inverted
region” in families of molecules, one must also consider the change
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in the electronic contribution to the rate with driving force 5253
Depending on the energy of the localized states, a misinterpretation
of the data may result if T, is assumed constant. Future work
will attempt to include a model for nuclear motion.

Conclusions

) We have shown that semiempirical quantum chemical tech-
niques predict the dependence of tunneling matrix element on
distance and linker geometry. The localized states used in these
calculations must have the proper exponential decay in order to
calculate meaningful rates. To the extent that the linkers create
periodic potentials for the electrons, we are assured of obtaining

(62) Marcus, R. A ; Siders, P. J. Phys. Chem. 1982, 86, 622-630.
(63) Beitz, J. V.; Miller, J. R. J. Chem. Phys. 1979, 71, 4579-4595.

proper wave-function decay in these calculations. There are two
major qualities of the method that make it especially appealing.
It allows direct study of the effect of linker geometry on the
electronic tunneling matrix element. The method also allows
systematic study of the effect of donor and acceptor redox level
on the electronic tunnelling matrix element. It is hoped that the
synthesis of other rigidly linked, weakly interacting electron do-
nor-acceptor molecules will provide further tests of this theory.
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This paper has shown that order of magnitude estimates of the tunneling
matrix element can be made using a one-electron theory. Since € varies approx-
imately linearly with E near a band edge, errors in the tunneling energy cause
errors in ¢ (linear) and in @ = —In ¢/a. Using standard parameters we calculated
o = 0.5387" for the mixed valence compounds. Although the experimentally
measured matrix element decay is not purely exponential in distance, it can be
fit with 0.35 < a < 0.40 A~!. Confirmation was given to the idea that ¢V (E) at
the appropriate tunneling energy gives an excellent approximation for the decay
of T, with distance. The predictive value of this study comes fronﬁ the establish-
ment of a connection between ¢ and the experimentally measured redox potentials
of the donor and acceptor. Predictions of changes in T,; with distance for elec-
tron tunneling through spiroalkane (and other linkers) with different donors and
acceptors can now be made. This link is used in the following manuscript to pre-
dict the decay of rate with distance in the photosynthetic model compounds [3].
The optical tunneling matrix element was found to be approximately equal to the
thermal tunneling matrix element for these compounds. This similarity results
from the multi-band nature of the problem as well as the logarithmic rather than
square root dependence of « on E. Parameters in a square or delta well model
for electron tunneling could be chosen to give similar optical and thermal matrix
elements. A previous study predicted a significant difference between the two, in

part due to the choice of parameters [6b)].
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III.C. Electron Tunneling Through Rigid Molecular Bridges:

Bicyclo[2.2.2]octane

David N. Beratan
Contribution from the Division of Chemistry and and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Abstract
Electron tunneling through polymers of bicyclyo|2.2.2]octane is studied. The
repeating nature of the linker allows prediction of the dependence of tunneling
matrix element on distance and energy by a semi-empirical method exploiting
the translational symmetry of the linker. Specific predictions of the dependence
of rate on distance are made for recently synthesized photosynthetic model com-

pounds containing porphyrins and quinones linked by this bridge.
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INTRODUCTION
Electron transfer reactions between distant weakly interacting sites are of
interest in many fields of chemistry [1]. The electronic interaction between donor
and acceptor together with the nuclear activation barrier determines the transfer
rate. The quantum mechanical expression for the rate when the donor and

acceptor weakly interact is [2]
k = (21/h) |Tu(E,R)P (F.C.). (1)

The tunneling matrix element, T,;, is the electronic exchange interaction
energy between donor and acceptor in the activated complex. (F.C.) is the ther-
mally weighted Franck-Condon factor discussed elsewhere [2-4]. T,, depends
on the distance between donor and acceptor (R) and on the energy (E) of the
electron in the activated complex relative to the energy eigenstates of the (unper-
turbed) intervening material [2-12]. When the donor-acceptor distance is large
and the mediating bridge is linear with repeating units, T, decays approximately
exponentially with distance. T,3(E, R) critically depends on the geomatry and
energetics of the linker [4]. Recent synthesis and measurements of the electron
transfer kinetics in 1 and 2 now make theoretical studies of wave function decay
in bicyclo[2.2.2]octane linkers ([2.2.2]) timely [13,14].

THEORETICAL SECTION
A. General Aspects

Recently, a method was developed to predict the electronic energy and bridg-
ing ligand effects on the distance dependence of non-adiabatic electron transfer
reactions [7]. The method guarantees proper wave function tail decay in the
linker region, exploiting the fact that within the linker the electron effectively

propagates in a one-dimensional periodic potential. A scale linking the redox
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potential (E°) of the transferring electron with the distance decay [3-12] of T
was established for several bridging groups [7]. This method is now extended
to predict the decay of electron transfer rate with distance between 7* orbitals
connected by oligomers of the rigid bicyclo[2.2.2Joctane unit. The electron medi-
ation properties of this bridge are compared with those of linear and spiro-cyclic
alkanes. Predictions are made for the distance dependence of forward and re-
verse electron transfers‘in the rigid porphyrin-linker-quinone compounds recently
synthesized [13]. The appeal of this method is that a single calculation predicts
the decay of T,, with distance for any set of donors and acceptors connected by

these linkers.

Neglect of non-nearest neighbor interactions between orbitals and formula-
tion of the problem in a one-electron (extended Hiickel or tight binding) frame-
work provides donor and acceptor wave functions. The decay of the donor lo-
calized states in the linker is parametric in E. Once found, this wave function
decay yields the distance dependence of the electron transfer rate. The analysis
of [2.2.2] closely follows the previous study of electron mediation by spiroalkane
linkers. The critical assumption is that oligomers of the linker create a periodic
potential in which the well-localized electron propagates in its low probability
“tail.” One can use a periodic potential representation because the propagation
of a wave function in a region does not depend on the potential outside of that

region.

The dependence of the tunneling matrix element on distance in thermal
electron transport reactions has been found in related systems by calculating
the symmetric/antisymmetric splitting of the electronic states at the crossing

point of the reagent and product nuclear potential energy surfaces. A golden-
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rule/perturbation approach assuming donor interaction with acceptor only via
the atomic orbitals in the bridge closest to the acceptor and a periodic linker
potential also gives the proper distance dependence of the rate. Indeed for the
spiroalkanes the distance dependence of the rate determined by the two methods
is nearly identical. The latter formulation is more convenient at present.
B. Formal expresssions for the wave functions and matrix elements

Wave functions in finsite one-dimensional structures with translational sym-

metry and unit cells of size |@| are of the form

ve(z) = Y _{bee(E) + cpe(E)¥ 71} (Z — na). (2)

n=1
The wave function involves growing and decaying contributions for the same
reason that the wave function in a constant potential region between two square
wells includes growing and decaying parts regardless of the relative depths of the
wells. ¢(E) may be real or complex depending on the energy of the state. To the
extent that electron traps perturb this otherwise periodic system in a localized
region and edge effects are not large (valid when €2V << 1), the functional form
of ¥(donor+bridge) becomes
N
U= 94+ 1) €(E)"pn(Z — na). (3)
n=1
Corrections to the coefficients due to edge effects are of the order 2. Edge
effects are especially small if the electron has a small probability of residing near
the “wrong” trap in the initially prepared state. In any case, the E-¢ relation
true for the infinite one-dimensional chain is valid for the finite system to the
extent that the potential in the linker region is not much perturbed by the donor
and acceptor. Due to the small value of € for [2.2.2] (see Table 4) this technique

is useful even in the one and two linker systems.
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At this point a divergence between this method and other perturbational ap-
proaches is apparent. Here the requirements of Bloch’s theorem are built into the
wave functions. Perturbational approaches form the donor wave function from a
linear combination of ground and excited bridge states and donor orbital(s) and
find the orbital coefficients by energy minimization [9)].

The golden rule tunneling matrix element within the Born-Oppenheimer

separation is calculated for the electronic states which solve the two Schrodinger

equations:
HS‘I’D =EeDl\I’D’ Hg =T¢+Vbridge+v_p (40)
HiW,=E{W,; Hy=T. +VPri¥e v, (4b)

T, is the electronic kinetic energy operator. Neglecting overlap,
Tap =< ¥p|Va|¥a > . (5)

|[V4¥,4 > is localized in the acceptor region and is, to an excellent approximation,
transfer distance independent. The distance dependent part of this matrix ele-
ment is proportional to e(E)N. N is the number of repeating units in the bridge.
In the extended Hiickel approach, the perturbation which promotes transfer is
ﬂ'(aTNaacm,go,- + aIcccptO,aN) and the ¢V decay of T,, with distance is nearly
exact.

The value of E at the crossing point (E¥) of the nuclear potential energy
surfaces is some value between E, and E,, the electronic energies of the unper-
turbed traps. Et is the average of these energies if the vibronic couplings on
the donor and acceptor are identical. This is likely a good approximation when
the transfer occurs between structurally similar molecules. However, since both

inner and outer sphere reorganization energies scale with molecular size, E¥ need



62
not be proportional to the average of the donor and acceptor redox potentials
when the molecules are structurally different [7,12].

C. Wave function symmetry and decay in bicyclo[2.2.2]octane

Following Ref. 7 the dependence of the wave function decay on energy
is found for propagation through bicyclo[2.2.2]octane chains. It was shown for
linear chain and spiroalkanes that the decay constant may, to an excellent ap-
proximation, be found by considering the carbon backbone orbitals only. Within
the weak donor-bridge interaction approximation the amplitude of the transfer-
able electron on the bridge is determined by the mixing of the “terminal” donor
(atomic) orbital with the neighboring bridging (atomic) orbital and the inter-
actions of the terminal bridging orbital with its neighbors in the bridge. The
porphyrin-linker interaction is determined by the # symmetry of the electron
donor. There is a symmetry axis joining the two quaternary carbons in each
[2.2.2] unit. If the terminal donor orbital were even with respect to rotations
about this axis (e.g.,s or d,a atomic orbitals), it would mix directly with the sp®
carbon orbital of the [2.2.2] bridgehead and electron mediation would proceed
with equal amplitude and sign along the three pathways of the linker (see Ap-
pendix 3). However the porphyrin excited state is not cylindrically symmetric
and mixing of the donor with the three parallel pathways is not equal. In the
coordinate system shown in Fig. 1 the donor p orbital may mix only with the two
p orbitals at the bridgehead orthogonal to the axis between quaternary carbons.
It is simpler to speak of the associated sp® hybrid bridge orbitals. These bridge
orbitals in turn interact with adjacent sp® backbone orbitals. The size of the
p-(donor)—sp®(bridge) interaction varies with the angle between the bridgehead

orbitals and the donor orbital according to Eq. Al.
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Little mixing of the porphyrin excited donor state occurs with the sigma
bond joining linker to porphyrin. Hence little direct sigma interaction between
bridgeheads occurs. Such a bridgehead to bridgehead pathway may be important

with sigma symmetry donors and acceptors joined by similar linkers [12].

The distance dependence of the rate is the quantity of interest. The size
of the donor (and acceptor)-bridge interaction affects the absolute rate but not
its distance dependence. This interaction is constant in the family of systems
studied and enters the rate of all transfers only as a prefactor. Delocalization of
the excited porphyrin electron into the meso phenyl group is also independent of
linker length. The appendices show that decay with distance is identica’ in both

the staggered and eclipsed chains of [2.2.2].

Analysis of experimentally measured electron transfer rates as a function
of distance requires that the data first be corrected for effects due to a change
in reaction energetics with distance. Outer sphere reorganization energies and
donor-acceptor Coulombic interactions are transfer distance dependent. Direct
comparisons of transfer rate measured from the singlet excited state may not be
immediately compared to a transfer rate from the triplet excited state without
correcting for the rate difference arising from the different reaction free energies.
Using the connection between the Hiickel parameters and the redox potentials
[7], the donor state wave function decay per linker unit (¢(E)) in the activated

complex is predicted.

The redox properties of the donors and acceptors have been measured [14].
The outer sphere reorganization energy arising from solvent reorientation near
a trap scales with the reciprocal of the trap’s radius if Coulombic interactions

are neglected. The inner sphere reorganization energy scales as the reciprocal
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of the number of bonds over which the electron is delocalized. The smaller the
reorganization the closer the energy of transfer will be to the redox potential of
that isolated species. Table 1 shows the redox properties of the model compounds
in various solvents.

At room temperature the solvent coupling to the charge transfer process
can be treated classically. Inner sphere reorganization involves vibrational levels
with spacing much larger than k,7T. Nuclear tunneling must occur along the
inner sphere coordinate even at room temperature. The spectral function for
electron removal from the donor in such a two-mode case ié

D, (E) x (270?)~1/? Z[ezp(—S)S“/n!]ezp[—(E —E, + A, —nhw)?|/(20%) (6)
n

where S = A;,/hw. Assuming that the Gaussian and Poisson parts of this

function are peaked at approximately the same nuclear position determined by

the molecular size (nhw << A.), the maximum overlap between electron insertion

and removal spectral functions occurs at

Ei _ AEg + NE,
Aa + Ad

~ ZE°(P*) + 3 E°(Q). (7)

The Franck-Condon approximation suggests that e(Et) be used in Eq. 3.
The first excited singlet porphyrin state is ~ 2.15 eV above the ground state.
The lowest triplet state is ~ 1.8 eV above the ground state [13]. The values of et
(Eq. 7) and ¢(E) (Figs. A4 and A5) for the four solvents, two excited porphyrin
states, and forward and reverse electron transfers are shown in Tables 2 and 3.
Table 4 shows the corresponding rate predictions.

€(E) for electron transport from singlet or triplet states of other porphyrins

to quinones are readily found. E? is first calculated using Eq. 7 and E, ;2 (P*)

estimated as E,;(P) + hv where hv is estimated from the porphyrin optical
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absorption spectrum. For the Zn porphyrin, the decay of T,; with distance is

not drastically different for the singlet and triplet transfers.

DISCUSSION

Electron tunneling following porphyrin excitation is mediated principally by
the bonding states of the linker. This situation results because the porphyrin is
excited with a quantum of energy small compared to the HOMO-LUMO energy
gap of saturated alkane. In this case, as in the case of the intervalence and
thermal transfer between bridged metallic species [16-18], the transfer mechanism
is expected to be “hole tunneling” or superexchange via the occupied binding
levels of the bridge [19,20]. This prediction can be tested experimentally. Raising
the energy of the excited porphyrin moves the energy of the tunneling electron
away from the linker bonding states and is expected to cause T, to decay more
gquickly with distance. The absolute rate, however, may be quite different due to a
change in the reaction exothermicity. This prediction runs counter to the notion
that the more excited a state is the more “loosely” bound is its electron. Here
“looseness” arises only from favorable orbital interaction with the bridge and is
decreased by an increase in the energy of S;. The reverse rate (@~ to P*) is
predicted to decay more slowly with distance than the forward rate for the same
reason. An alternative test of hole tunneling would involve initially reducing
the quinone and measuring the back transfer from @~ to P* by fluorescence or

phosphorescence quenching following a light flash.

Only staggered or eclipsed geometries of the # cloud with one of the three
electron transfer pathways of the bridge were considered. Decay with distance is
identical in each case. Any donor configuration may be decomposed into a linear

combination of these geometries. Thus, the decay with distance of the donor
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state along the linker obeys the same E-¢ relation independent of donor-acceptor
orientation. No interference effects occur. Aside from the jumps between bridg-
head orbitals, the parallel pathways assist transfer compared to a purely linear
network.

A direct comparison with tunneling predictions for spherically symmetric
donors is not meaningful because pure p orbitals are introduced to the unit
cell and shift the energy of the HOMO-LUMO gap center. Fig. A7 shows a
calculation for n-alkane, spiroalkane, and bicyclo[2.2.2]octane linkers where only
even symmetry (with respect to all mirror planes) donors and acceptors were
considered. Appendix 3 gives the secular equation relating E to ¢ in that case.
This is not the case of current interest. A heuristic rule for the relative values of
€' (decay per C atom in the unit cell) might have been as shown in Eq.8 based

on the topology of the unit cells.

€' (alkane) = z
¢ (spiroalkane) = zv/2 (8)
¢'(bicyclo[2.2.2]octane) = z /3

These relationships are true only in the center of the band gap for the sigma
symmetry donors. However, the relative values of €' for spiro and [2.2.2] hold
throughout the gap (Fig. A6). Comparison is not made between the even sym-
metry alkane and spiroalkane chains and the odd symmetry [2.2.2] system because
the inter-unit cell interactions are qualitatively different (the band gap edges are
shifted). A test of the relative & mediation by these linkers awaits construction

of rigid systems with & symmetry donors and acceptors.
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CONCLUSIONS

Predictions of the decay of the tunneling matrix element with distance for
electron mediation by bicyclo[2.2.2]octane have been made assuming that the
linker creates a periodic potential between donor and acceptor. Mediation by CH
bonds and non-nearest neighbor interactions was neglected. Predictions of the
thermal electron transfer rate dependence on the number of bicyclo[2.2.2Joctane
linkers were madé. Hole transfer is predicted to dominate in these systems,
suggesting that the reverse transfer will decrease more slowly with distance than
the forward transfer. Porphyrins with higher energy excited states are expected
to have more rapid wave function decay with distance in the linker. Writing
T.p = Toezp(—a R) and distance measured through space, a/°" ~ .9A and
a’™’ =~ 51A for ZnPL,Q single transfer. No drastic effect of solvent on a is
predicted. A slowing of the forward rate from S), by a factor of 1500 per [2.2.2]
unit is expected. The reverse rate is expected to slow only by a factor of about
60 per linker unit. Preliminary results show a slowing of the forward rate in the
two linker system by a factor of 500-1600 compared to the rate in the one linker

system.
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APPENDIX 1: Interaction of Porphyrin and Quinone with [2.2.2]

Mixing of the porphyrin and quinone states with the bridge is presumed to
occur via the adjacent quaternary carbon orbitals. The interaction between the
four sp® orbitals at the center of a tetrahedron pointed in the (1,1,1), (-1,1,-1),
(-1,-1,1), and (1,-1,-1) directions (a, b, ¢, and d, respectively) with a p orbital

(p.) at (1,1,1) normal to hybrid a is given by:

<pil|sp*(a) >=0

< p.1|sp®(b) >= —(2/1/6) sind

< pi|sp’(c) >= —(1/V/2) cosb + (1/1/6) sin#@

< pilsp®(d) >= (1/V2) cos8 + (1/+/6) siné. (A1)

0 is the angle between the axes of cylindrical symmetry of the transformed p
orbital and one of the p orbitals on the central site normal to the C-C axis. These
results were obtained by transforming the hybrid orbitals into s orbitals and p

orbitals perpendicular or parallel to the (0,0,0)-(1,1,1) axis. The transformation

equations are:

Dq 1/v3 1/v2 1/V6 Po
p: 1/v3 0o -2/v/6) \pa
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APPENDIX 2: Propagation in the Linker

The donor(acceptor) p orbital adjacent to the linker may be converted to a
linear combination of p orbitals staggered and eclipsed with the ring. Considering
only the two geometries in Fig. Al the wave function of the donor plus bridge
must be odd with respect to the nodal plane of the donor p orbital (see also Eq.
A1l). Propagation between neighboring [2.2.2] units is identical when the neigh-
boring rings are fully eclipsed or fully staggered (recall that the only bridgehead
orbitals contributing to the wave function are the p orbitals perpendicular to the
bridgehead axis).

The secular equation in both cases which gives the E — € relation is:

-E 4 0 0 0 8
~ -E 8 0 0 0
0 8 —-E ~n 0 0 _
det 0o 0 T g 0 = 0. (A3)
o 0 o0 B -y—-E (B'-8")e
g 0 0 0 (F-p8"))e -~-E

The relation is identical for the even and odd wave functions as cau be seen
in Fig. A3. Writing the orbitals on the lower half of the unit cell as symmetrized
combinations shows this.

From previous calculations [7] the parameters were chosen as:
B =—84T¢€V

~r=—1.85eV
Bor = B' — B" = —1.325 ¢V.

« is the energy difference between a p and sp® orbital.
The E-€!/* relation corresponding to Eq. A3 is plotted in Fig.A4. The

E-¢!/4 relation shows the average decay of the donor wave function per carbon
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atom in the linker. The result is compared to the spiroalkane and n-alkane results
of Ref. 4. Fig. A5 shows an expanded view of the [2.2.2] plot in the region of
experimental interest. The corresponding redox scale was determined in [7]. The

expanded secular equation relating E to € + 1/¢ (Eq. A3) is:
(e +1/e)8°+*Br = +E° + E®(27) + E*(-38% - 82 - +*
+E®(—48%y — 47°) + E*(8° 87 + A*+* + 263" + 38" — +Y)
+E(28%° +26%y + 27°) — f24* - 8% +1°. (44)
The p orbital of the donor (or acceptor) may be decomposed into two p
orbitals, one staggered and one eclipsed with respect to the bridge. At fixed

donor and acceptor orientations the decay of T,, with linker number is known

from Fig. A4. Only the prefactor is orientation dependent.

APPENDIX 3: Sigma symmetry donors

The e-E relation for donors interacting equally with all three bridges is:

-E ~y 0 0 0 8 0 0
n -E 8 0 0 0 0 0
0 A -E ~ 0 0 0 o0
0 0 ~ -E 8 0 0 0
det 0 0 0 8 (2v-E) 0 0 ’Y =0. (A5)

B 0 0 0 0 (2v-E) ~ 0
0 0 0 0 0 3y -E BJe

K 0 0 0 0 3y 0 Be -—-E

Fig.A6 shows the corresponding E — €!/* relation which might be of some use
with o symmetry donors and acceptors linked by [2.2.2]. Fig. A7 compares

propagation through such a linker with propagation through other linkers.
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Table 1. Redox potentials for model porphyrins and quinones*.

Solvent E,;; (Q/Q™) NHE* E,/; (P/P*) NHE*
acetonitrile -.341V +.792V
butyronitrile -.271 +.867

MTHF -.463 +.906

benzene -.708 +.842

* Calculated from model porphyrins and quinones measured in these sol-
vents vs. Ag/AgCl(aq) for the first three and vs. Pt° pseudoreference electrode
in benzene.

* Data kindly provided by A.D.Joran.

Table 2. Redox potentials for model porphyrins and quinones®.

Solvent AGIer (Sy) eV EY (5,) NHE AGLe" (Ty) eV E¥ (T)) NHE
acetonitrile -1.02 -1.0V -.69 79V
butyronitrile -1.00 -.93 -.67 =72

MTHF -.781 -.97 -.45 =75

benzene -.528 -1.1 -.20 -.88

* Calculated from Table 1 and Eq. 6. G neglects electrostatic interactions

between donor and acceptor.
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Table 3. Energies of reverse electron transfers.

Solvent AGISY eV EY NHE
acetonitrile -1.13 41V
butyronitrile -1.14 .48
MTHF -1.37 | 44
benzene -1.55 .32

Table 4. Decay constants for forward and reverse electron transfers.

Parameter (S)ES, = -1ov (m)E}, = —18v EhL, = +a1v
e/t 40 A2 .60
& =kyp [k (1500)~1 (1000)~1 (59)1

Sang (A~ 01 .87 51
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Figure Captions

Figure 1. The carbon backbond orbitals participating in electron transfer are
shown.
Figure Al. The view along the donor-linker bond is shown for the staggered
and eclipsed linker geometries.
Figure A2. These two geometries of adjacent repeating [2.2.2] units were con-
sidered. |
Figure A3. (a) Even symmetry and (b) odd symmetry with respect to a plane
containing one of the three parallel pathways of the linker.
Figure A4. € xane, e:ﬁm, and 6[12/_;_2] are shown as a function of energy. The
calculation is relevant to odd symmetry donors and acceptors for [2.2.2] but even
symmetry donors and acceptors for the other linkers. The center of the band
gap for [2.2.2] is different from that of the other linkers.
Figure A5. The E-¢!/4 relation for [2.2.2] in the range of experimental interest
is shown. The energies of forward transfer from the singlet and triplet P* states
are shown with the energy for Q- to P** transfer. kry /kr o [¢!/4]5.
Figure A6. For even symmetry donors and acceptors the E-¢ relation is com-
pared for alkane, spiroalkane, and [2.2.2].

Figure A7. For even symmetry donors the heuristic rule of Eq. 8 is tested.
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Figure A3.
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III.D. Further Comments on the Influence of the Bridging Medium on
Electron Transfer Rates

Now that the utility of the E — ¢ relation has been established some general
comments regarding electron mediation are in order. Fig. III.1 shows the picture
which has been presented. |¢| = 1 when the donor state lies in any of the shaded
bands. In this multiband picture, of course, the presence of donor and acceptor
anywhere but between the HOMO and LUMO would lead to spontaneous oxida-
tion or reduction of the linker. The influence of bridge geometry on ¢ has been
discussed. All of the systems considered so far are saturated. This method is also
useful for systems with unsaturated substituents. Consider the E — ¢ relation in
systems with some delocalized aromatic repeating units compared to the relation
for saturated linkers. This is a topic relevant to charge transport in native and
modified protein [7].

For the chains of orbitals shown in Fig. III.2 The corresponding secular

equations are:

ay—E 28 0 v/e
B ap— FE g 0 _
det 0 8 ap—E P =0 (I11.1a)
o3 0 28 ap — E
and
d.pa — El ’7, + ﬂ'/f' _
det ( Y+ B aps —E' )" 0 (I11.1d)

considering only the states even with respect to the plane containing carbon

atoms of adjacent unit cells. The characteristic polynomials are

(e+7) = goz [E* ~5E* 8" + 8% ~ E*7* +48']; ;=0  (II1.20)
and
[ 1 1 2 ”2 2
(6 +E_l)=ﬂ_'.-'r_'E - -8 ]; Qgps =0, (IIIZb)
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A
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/€027 NN\ Bridge States
o
.

Figure ITI.1. The shaded bars are bands of linker states with |¢] = 1. Localized
states can occur if E falls between bands. In the orbital model, if
the intersite interaction goes to zero the tunneling matrix element
vanishes. In this case, however, the non-infinite potential between

donor and acceptor may allow direct donor-acceptor interaction.
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(a) (b)

Figure III.2 (a) Repeating chain of phenyl rings. (b) Repeating chain of n-alkane

(two-orbital model).
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respectively. In most cases # >> v and #' >> 4'. The smallest values of ¢ and

€ occur at E =0 and E' = 0. At these points

v, 28
€+-=—+—
28~
and
1 4 #
€'+E=F—?. A (IIISb)

Since 8’ >> 4, >> 7, 1/e >> e and 1/¢' >> ¢':

€min = 7/(29) = —.38% (I11.4a)
€min = —7'/8' = .22 (II1.4b)
given
B =—13eV
B' = —8.5¢V
7' = —1.9V.

€ is the wave function decay associated with traversing a phenyl group and ¢’ is
the decay upon traversing a saturated C-C bond. Comparing transfer through
ten C-C bonds (for E in the center of the gap) to transfer across three phenyl

groups
kakane _ (-22)%°Y  3.3x 107! N (5)
kphenyl - (-387)6N B '76 )

At this tunneling energy the rates are comparable if v =~ 0.017 eV. Three
phenyl groups spaced by 3.3A span 15A. If the interaction between rings
is > 0.017 eV, ring-ring interactions can dominate backbone interactions. This

approximation is not exact because an electron energy in the center of the gap for
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phenyl assisted transfer will be shifted 1-2 eV from the gap center for backbone
tunneling. However, since the E — ¢ curve is rather broad and flat for n-alkane
in the gap center, the approximation is probably not too bad. A comparison of
rates at many tunneling energies is needed and can easily be performed. Since the
band structures have different gap energies and origins, the relative importance
of phenyl and alkyl mediation will shift with donor and acceptor redox energy in
a predictable way. Experimental and theoretical estimates of 4 and its distance
dependence are needed. Extensions of this particular calculation may be of rel-
evance to electron tunneling in ruthenium modified proteins and other electron
transfer model compounds [7]. Calculations exploiting the periodic nature of the

protein backbone have been reported by others [8].
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Chapter IV

Calculation of Wave Functions with Correctly
Coupled Nuclear and Electronic Motion:
Breakdown of the Born-Oppenheimer Approach

for the Long Distance Tunneling Problem
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IV.A Introduction
Within the golden rule formulation of non-adiabatic electron transfer theory,
the quantity of interest is < Wp|V,4|W 4 > where ¥p and W4 represent accessible
donor and acceptor states. In the previous sections the electronic and nuclear

coordinates in ¥p and ¥, were separated:
< ¥p(z,yp,ya)|Va|¥a(z,up,ya) >

B.O.
~ < VW (z;9p,ya)0i(up, va)|[VE |94 (2 yp, ya) 07 (D, ya) >
B.O./F.C.

> < Wp (200, 04) VS WL (20D, 94) >< biles > . (1va)
z is the electronic coordinate and y is the donor or acceptor nuclear coordinate.
V£ ®e > is, as usual, well localized near the acceptor site. Many nuclear degrees
of freedom (e.g., inner sphere ligand vibrations and outer sphere solvent motion)
are coupled to the electronic coordinate. Bond lengths and angles are dependent
upon whether the electron is present or absent. Wp(z,y) should reflect this
coupling because the electronic and nuclear motion is correlated. The Born-
Oppenheimer separation limits the functional dependence which the correlation
may take. The Franck-Condon approximation requires selection of yp and g4,
choices which are not obvious because < ¥$(z; Jp, §4)|Va|¥%(2; 9D, §4) > may
be eztremely small at the maximum of ¢,*¢; and may vary rapidly with both g
and distance.

Because of these many issues, a model problem was solved exactly. The
model allows the nuclei to move smoothly between the equilibrium geometries
of D™ and D™1! as the electron is removed. It is this flexibility in ¥p which
is necessary to estimate the importance of Born-Oppenheimer breakdown in the

value of < ¥p|V,4|¥,4 >.
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Another way of stating the problem is to ask to what extent states on more
than one nuclear potential energy surface need be added to ¥p. These other
states may have different equilibrium bond lengths, for example. The difficulty
with this approach is that one does not know how many terms to include in
the wave function expansion because the wave function decay related to mixing
of excited states is ezponentially larger than decay from the ground states. A
perturbational approach to this problem requires careful consideration of the
convergence of the result to the analytically correct result. A wave function
which gives the correct nucler geometry for the neutral molecule and for the ion
(z — o0) is necessary.

Many effects of molecular structure on electron transfer rate have been stud-
ied using simple electronic potential models with limited numbers (one or two) of
nuclear coordinates. Approximately exponential decay of rate with distance and
an “inverted” region is predicted from the simplest models as well as from the
more complex multi-dimensional ones. Because of this generality and the impor-
tance of an analytically correct wave function, a simple model was first chosen to

investigate non-Born-Oppenheimer/Franck-Condon effects on the transfer rate.
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Franck—Condon Approximations for
for Long Distance Electron
Transfer Rate Calculations?
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Failure of the Born-Oppenheimer and Franck-Condon approximations
for long distance electron transfer rate calculations

David N. Beratan and J. J. Hopfield®

Division of Chemistry and Chemical Engineering,® California Institute of Technology, Pasadena, California

91125

(Received 2 August 1984; accepted 14 September 1984)

Quantum mechanical and semiclassical formulations of nonadiabatic electron transfer theory are
usually implemented within a Born—-Oppenheimer regime. Calculations on real weakly
interacting systems are so difficult that this approximation is rarely questioned. The Born—
Oppenheimer approximation becomes qualitatively wrong for electron transfers at very large
distances. A model vibronic problem is exactly solved and compared with the Born—-
Oppenheimer result. Rate expressions are derived from the wave functions using the “golden
rule” approximation. Electron propagation is intimately correlated with nuclear motion so that
the vibrational energy left on the donor critically affects the electronic decay length. Several
deviations from the usual predictions appear for transfers over very large distances.

I. INTRODUCTION

Many aspects of the long distance nonadiabatic elec-
tron transfer reaction distinguish it from other (adiabatic)
chemical reactions.'™ Biologically important electron trans-
port occurs over large distances, typically ~5-15 A.* Be-
cause these distances are so large the electron donor nuclei
coupled to the transfer event may react to the absence of the
electron even before it has been trapped by the acceptor. If
so, wave functions which explicitly and correctly couple the
electronic and nuclear motion must be found. The need to
properly treat coupling in the wave functions and rate calcu-
lation when the transfer distance is large leads one to ques-
tion the utility of the most common quantum chemical ap-
proximations, the Born—Oppenheimer (BO) and Franck-
Condon (FC) approximations.

Ionizing H, to H," causes a bond length change of 0.31
A. It is apparent that the electronic and nuclear motion is
coupled. Yet, a typical bound state BO wave function for H,
is found for a single nuclear geometry and does not suggest
that the nuclear wave function should change as an electron
wanders far from the bond. Using bound state theory one
usually solves the equilibrium geometry H, and H;" prob-
lems separately and there is no natural way of passing to a
limit in the H, problem and obtaining the H;* states (or vice
versa). Yet, this intermediate region where the molecule is
not quite an ion and not quite a neutral is the region impor-
tant to long distance electron transfer reactions. The detailed
answer to the question ““What are the nuclei doing when the
electron is far from bur still bound o the donor?” is the one
relevant to electron transfer theory. Three limiting situa-
tions exist for a molecule with electronic-nuclear coupling:
(1) The electron is mostly near its bond and the sluggish
nuclei populate a Boltzmann average of the nuclear states
available to the neutral molecule. In this limit the BO ap-
proximation is probably quite reliable. (2) The electron do-
nor molecule is ionized and the formerly bound electron is
very far away. The nuclei populate a Boltzmann average of
the ion’s final nuclear states which are different from the

*' Also California Institute of Technology, Division of Biology, and AT&T
Bell Laboratories, Murray Hill, NJ 07974.
* Contribution No. 7041.
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neutral’s. The equilibrium displacement and force constant
of the bond may be different from the neutral. (3) The elec-
tron is far from the donor which is neither neutral nor fully
ionized. The details of the electronic-nuclear coupling
strongly influence the molecular behavior in this region. The
nuclei may be in some linear combination of neutral and
ionic molecular vibrational states. The spatial extent of this
region depends on the strength of the coupling.

" A model “molecule” which has both nuclear and elec-
tronic coordinates (and coupling between the two) but which
can be solved with no assumptions concerning the separabil-
ity of motion is developed. Electron transfer rates berween
two such sites are calculated. The BO solution of the prob-
lem is also found. In a second paper this model will be ex-
tended to include a more realistic treatment of the donor-
acceptor bridging medium. In some cases this model which
correctly treats the long distance behavior of the wave func-
tions better explains the distance dependence of experimen-
tal electron transfer rates. Several predictions, at odds with
standard electron transfer theory, will also be presented
there.’ Explicit numerical comparison with experiment is
avoided here because only a model problem for which it is
not easy to choose meaningful parameters is solved. The aim
of this paper is to clarify the influence of the vibronic interac-
tion on the long distance behavior of a wave function by
studying a simple example.

Il. MODEL FOR A BOUND ELECTRON COUPLED TO A
MOLECULAR VIBRATION

The many assumptions and limitations of the usual
nonadiabatic electron transfer theories are discussed in sev-
eral excellent recent reviews.!>® Recently Hopfield, Sarai
and DeVault, and Day raised serious questions concerning
the separability of nuclear and electronic motion in the wave
functions used to calculate long distance electron transfer
rates.””® Lee and de Pristo recently studied the H,-H;" sys-
tem within the BO regime and evaluated the quality of the
FC approximation.'® It will be shown that the electronic-
nuclear interaction couples the amount of vibrational energy
left on the electron donor molecule after the transfer with the
ability of the electron to tunnel between donor and acceptor.

@© 1984 American Institute of Physics 5753
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This behavior appears because the coupling introduces
terms related to nuclear motion to what in the uncoupled
problem was a purely electronic long distance decay con-
stant. The electronic decay with distance is no longer just
related to a static electronic potential barrier between donor
and acceptor, but is also influenced by details of the nuclear
motion.

The simplest two molecule system involving electron
exchange between the interacting molecules is H,-H;".
Each molecular wave function should be found without any
assumptions about the separability of the motions of the par-
ticles. Analytical solutions (wave functions), however, do not
exist even for these simple molecules.'®'" It is more instruc-
tive to set up a simpler one electron problem in which an
electron in a contrived potential well is coupled to one nu-
clear degree of freedom. Such a system is the “small po-
laron,” ubiquitous in electron transfer theory though often
not identified by name.'*'* This model establishes an elec-
tronic potential well and simple harmonic oscillator at a site
with linear (usually) coupling between the electron and vi-
bration. The role of the coupling is to shift the equilibrium
position of the oscillator, our bond, when the electron is
between the nuclei comprising the bond. A similarly coupled
acceptor without an electron is then added. Since distant
electron transport is being investigated the Hamiltonian ma-
trix element between these sites required for the Golden
Rule calculation of the transfer rate will be found. The func-
tional forms of the initial and final states ¥, and ¥, critically
influence the calculated rate. The Golden Rule expression
for the rate is

k= {2#/#}%3, (¥, |H'|¥)) "o AE,). (1)

B, is the Boltzmann population of the initial state i. p/(E, ) is
the density of final states at energy E,. H ' is the perturbation
which couples the donor and acceptor. The matrix elements
between BO states will be found using the FC approxima-
tion. For the exact wave functions no assumptions about the
separability of the matrix elements will be made.

The electron donor (small polaron) Hamiltonian K, is

H,=H"+H™ +H", (2)
H" = — (#/2m,)3/dx* — ubix), 3)
H™ = (b"b + 1/21hw, @)
He= +ASx)b" +b). (5)

band b" are the Boson annihilation and creation operators,
respectively.'? A Dirac delta function potential — ud (x)
binds the electron (u > 0).'* More complicated electronic
potential models are also soluble. One such model will be
described in a second paper. The coupling term is positive
(4> 0) so that the equilibrium nuclear displacement is de-
creased when the electron is between the nuclei. The nuclei
are treated as a single reduced mass. (b" + b )is proportional
to y, the nuclear coordinate, so 4° produces an energy shift
and equilibrium displacement for the oscillator when x = 0.
Only local modes are coupled to the transfer. No donor—
acceptor vibrational coordinate is presumed to be coupled to
the transfer event.'*

D. N. Beratan and J. J. Hopfield: Long distance electron transfer

Exact solution
Any function of two variables may be written

¥ixy) =3¢, XY, (¥ =3 /X XYy (6)
o, .

No assumptions about the separability of the function have
been made. The X /(x) and Y, ( ) form complete orthonormal
sets. The actual basis functions (X, = Z ¢, X /) are not or-
thogonal. Surprisingly, this simplifies the calculation. Since
the harmonic oscillator eigenstates span a complete set each
nuclear basis function may be expanded as a linear combina-
tion of these eigenstates (@, ) centered at y = 0:

Y.(y) =344,y (7)
/

The oscillator states chosen are the vibrational eigenstates of
the uncoupled ionized molecule. Substituting Eq. (71into Eq.
(6):

¥i(xy) = 3g.X (x)d,(y). (8)

For the range x 5 0 the Schrodinger equation for the donor is
[ = 7 /2m, 0% /0x* + H™™ | ¥ (xp) = ET*'¥(x,) (9)
but
H™",(y)=(n+ 1/2/fwd,(y)=E, b,y
Thus
— (F/2m, )3 /3x ¥ (x )

(101

=J(ET™ - E g X (x)d,(p), x#O. (1

Multiplying the Schrodinger equation by @ % and integrat-
ing over the nuclear coordinate gives

— (#/2m, )8 /0x° X, (x) = (ET* — E,_ \X,, [x) (12)

or

X, (x)=exp[ —x.,|x]],

2, =02m /) —E™ + (m+ 1/2)ffw], m= 0,1,2.‘,.3.
(13)

ET™! s the total energy of the coupled state. The decay
length of the electron is intimately coupled to the nuclear
motion by the (m + 1/2/iw term in «,,,. The probability of
finding an electron far from the donor bond (large xj is cou-
pled to the vibrational state of the developing 1on.

As in the standard one dimensional Dirac delta well
problem the Schrodinger equation is integrated across the
electronic origin to find the eigenvalues'®

Iﬂ[ f "' = #/2m, )3 /65 — pbix)
+ B+ 1721w + A (b" + b)(x))
X 38, expl — «, |x[)d, ( y)dx

-
=E™| %, expl—«,|x|}d,(yidx). (14)
Integration over the electronic coordinate followed by mul-
tiplication by & *( y) and integration over the nuclear coordi-

nate gives the recursion relation

J Chem. Phys.. Vol. 81, No. 12, Pt. |, 15 December 1984
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8.1 = — [1/A T+ )] [(#/m,, —u]g, tional energy is left behind is reasonable since particles tun-
—_— nel better at higher energies.'’
—\JAJ+ “&,- 1
Ji=01,., g_,=0: (15) Product wave functions and the BO solution to the
ation
The normalized coupled wave function is coupleg Schrodinges eax
The simplest approximate solution to a coupled Schro-
W= Nz:g_ expl — x, |x!)}d,( ¥), (16) dinger equation is derived using the “crude adiabatic ap-
" proximation™.?** The solution is a product wave function
where

IN?=5 gi/x,.

Equation (15) is a recursion expression connecting the wave
function mixing amplitudes with the energy eigenvalues.
Any energy determines a set of g,'s and, potentially, a wave
function. Wave functions must be square integrable so the
g.'s must remain finite for any i. This occurs only when the
8. 's are evaluated for an energy “‘guess” which is in fact an
eigenvalue of the problem. The simplest way to find the
eigenvalues is to guess a range of energies, calculate a large
number (~ 20) of the g,’s for each guess and watch for sign
changesin g, for large /. The g, 's diverge with different signs
on the opposite sides of the eigenvalue. The energy eigenval-
ues may be approximated by solving the electronic delta well
and nuclear oscillator problems separately (ignoring A~ ) and
then treatng H° as a perturbation [the second order term
must be considered, see Eq. (29)].

One way to see the correlation aspects of the wave func-
tion is to calculate the probability of simultaneously finding
an electron at x = R and nuclear motion corresponding to
the nth vibrational state. This quantity is the square of the
coefficients of 4, in Eq. (16) evaluated at x = R. This scales
with distance and number of vibrations left on the donor as

g exp[ — J2m /M[ET™ +(n+ 172/] |R|], (17)

since ET™* < 0. The electron propagates away from its bond
with the slowest falloff with distance when it leaves no vibra-
tional excitation behind.

These correct donor states behave properly in al/l three
of the distance domains. For the small |x| the exponential
terms are approximately one and do not depend strongly on
n. If |x| were always equal to zero the problem would be
separable and the g7 would reduce to the overlap functions
known for shifted harmonic oscillators.”'® For the ground
state wave function the |g?] would reduce to a Poisson dis-
tribution in /. An excellent approximation is apparent be-
cause the |g, | are distance independent. It is shown in the
Appendix that to first order in the energy of the vibrations
left behind plus the coupling energy, the g* are Poisson dis-
tributed in the ground state coupled wave function. Exact
calculations show that this approximation is quite reliable.
Because many terms contribute to the wave function sum for
small (x| the oscillator is in a mixture of the unshifted (ion)
vibrational states. For large |x|, however, the exponential
terms are quite small and only terms with small values of n
contribute to the wave function. Therefore, the more energy
the electron is able to carry away the further it can tunnel.
The nuclei are preferentially left in the lower vibrational
states of the unshifted oscillator when the electron is far from
the donor. That the electron tunnels best when little vibra-

where the electronic state is determined using the BO ap-
proximation but the parametric nuclear dependence of the
electronic state is removed by fixing the nuclei at the equilib-
rium position of the total nuclear potential energy surface y,.
Even the parametric dependence on the nuclear coordinate,
which is not itself adequate, is removed from the electronic
state. These wave functions are of the form

¥, (xy) = xpol ¥ 3% p). (18)
¥*! (x ) in our problem is a Dirac well electronic wave func-
tion. The coupling is reintroduced to the problem by assum-
ing a different nuclear geometry for the ion and independent-
ly solving the corresponding eigenvalue problem. Most
approximations of the runneling matrix element tacitly as-
sume that the “crude adiabatic” approximation is ade-
quate.'s1?

A correct adiabatic BO solution to the Schrodinger
equation is obtained in the usual manner: (1) freeze the nuclei
and solve the electronic problem parametrically in the nu-
clear position and (2) solve the nuclear problem. This meth-
od neglects the “adiabatic™ matnx elements of the nuclear
kinetic energy operator with the electronic wave functions
and is questionable when the electronic states are closely
spaced.’®® The electronic Schrodinger equation is

H "'y xy) = E“v(xy), (19)
where
HY= — (#/2m,)0%/3x*) + (—pu + A4 )blx)  (20)

and the A is a given nuclear position (times a constant). The
electronic solution is analogous to the purely electronic
Dirac delta well eigenvalue problem with an altered strength
parameter'*:

ixy) = Jm, L /Fexpl — m,§ [x|/#), (21)
where{ =(—AA4 +p)and E® = — £3m,/(2#°). The nu-

clear Schradinger equation is i " @ = E™ @, where
H™ =(b'b+ 1/2/hw — [u—A b+ b)]°m, /(2. (22)

This Hamiltonian is more easily interpreted in the coordi-
nate representation. Recall that

b+ b)=v2Mw/f y. (23)

Define A ' = A y2Mw/#. The force constant for the oscilla-
tor of the ionized molecule is k = Mw?. Defining

k'=k—2A1"m,/#,
€= puid'm,/(2#7),
4 =py’m, /27,
and completing a square in the Hamiltonian gives
H™ = — (F/2M\F /3y + (1/2k 'y + €/k ')
—A-€E/12k"). (24)

J. Chem. Phys_, Vol. 81, No. 12, Pt. |, 15 December 1984
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The nuclear eigenfunctions @, ( ¥ — y,) are harmonic eigen-
states with shifted origin and frequency compared to the
uncoupled (or ion) problem. The BO states are thus

¥, (xp) = N(y) exp[ — (m /F) g — A y)|x| )L, (¥ + ¥o).

(25)
The electronic wave function depends parametrically on the
nuclear position. The vibronic coupling (H*) shifted the fre-
quency of the oscillator and shortened its equilibrium dis-
placement compared to the ion. The nuclear wave function is
sensitive to the presence of the “transferable” electron in an
average sense when the electron is nearby. The nuclear wave
functions are products of the form

exp( — (Mo/25)( y + yo)*|H, [VMaw/R( y + yo)],

where H, is a Hermite polynomial. The term exp(m, 4 ‘y|x|/
#i) in the electronic wave function may be combined with the
Gaussian part of the nuclear wave function. This term shifts
the Gaussian envelope of the oscillator by an amount pro-
portional to the electron’s distance from the bond! This shift
corresponds to a bond length increasing in proportion to the
distance of the electron from the bond. Such behavior is rea-
sonable to the extent that the bond length increases as the
molecule becomes ionized. However, the coupling increases
the bond length without limit in an amount proportional to
the electronic position. The bond expansion is not “turned
off”" at the length appropriate to the ion. The electronic wave
fucntion itself decays incorrectly with distance. Setting
fi=m, =u=A'=1:

¥ (xy) ~exp{ y|x|) X exp( — |x|). (26)
Large bond lengthenings beyond the equilibrium separation
for the ion increase the long distance electron amplitude in
conflict with the exact result which showed that stretching
the nuclei too far past the equilibrium separation for the ion
(large n) decreases the ability of the electron to surmount its
barrier.

The nonadiabatic correction to the energy of a BO wave
function is often used as a measure of the quality of that state.
This quantity is proportional to matrix elements of the nu-
clear kinetic energy operator with the BO states. The energy
is usually trivially small compared to the binding energy of
the electron but is not indicative of the kind of wave function
errors which seriously affect electron transfer rate calcula-
tions. The BO states fail in the low probability regions of the
wave functions which do not contribute much to the state’s
energy but critically affect the calculated long distance elec-
tron transfer rate.

The total nuclear potential energy is defined as
U(y)=E"(y)+(1/2)ky*>. U(y) has zero derivative at
y =A'u/(k — A '?)(atomic units). This point is the minimum
of a parabolic energy curve if k > A '>. Howeverif k <4 '* no
energy minimum exists and the linear coupling model itself
is inadequate.

IIl. RATE CALCULATIONS

Although by no means the only (or necessarily best) way
to calculate electron transfer rates, the Golden Rule formu-
lation is the most often chosen for problems of weak interac-
tion. A small perturbation is assumed to mix the donor and

acceptor states. The nature of this perturbation is model de-
pendent. The assumption of weak interaction i1s probably
reasonable for long distance transfers. Marcus, Siders. and
Cave verified the validity of some aspects of the Golden Rule
approximation for distant electron transfer.’®*' For the
model problem at hand two sticky questions remain. What
“perturbation” allows the electron transport? How can we
conserve energy during a transfer process if the donor and
acceptor have anything but identical energy level spacing?

This donor-acceptor problem is solved in three steps.
The coupled donor (here the “left” molecule) is solved and a
simple harmonic oscillator (without electron) on the accep-
tor (the right “molecule”) is the initial state. The vibronic
coupling on the acceptor A x 8(x — R,, )(b x + bg)has nosig-
nificant effect on the initial state / assuming weak overlap.
R,, is the donor—acceptor separation and is held fixed dur-
ing the transfer event. The initial wave function is

¥, (xyroe) = VP x L) X dp( yr)- 27)
The coupled acceptor (right) problem is solved similarly as-
suming a simple harmonic oscillator (without electron) on
the left. This gives the final wave function

VAxyLor) = &L (YL ) XD x yp). (28)
The part of the total Hamiltonian omitted when solving the
Schrodinger equation for the initial state s
H'= —upbix—R,,).

Before calculating transfer rates, Eq. (1) must be exam-
ined in more detail. Electron transfer reactions must con-
serve energy. By solving a “‘molecular’ eigenvalue problem
only discrete energies were found. Real donors and accep-
tors are not necessarily identical and may have properties
corresponding to unequal values of 4, A, and fiw. Treating
the coupling [Eq. (5)] as a perturbation on the electronic and
nuclear Hamiltonians the donor energy to second order is

E, = —mul/2%) + (n + 1/2/hw,
- [m /Ry, A ), (29)

This estimate of the donor energy shows that if the acceptor
has a slightly different electronic well depth, vibronic cou-
pling, or vibrational frequency the donor and acceptor will
have only accidentally aligned energy levels, if any. Align-
ment is required for strict energy conservation if the initial
and final states are infinitely narrow. The standard escape
from this predicament follows from the realization that the
density of states is not a sum of delta functions but should be
broadened. The finite lifetimes (homogeneous broadening)
of the acceptor states or coupling the acceptor to a contin-
uum of medium modes may provide this broadening.’*** A
Lorentzian function is usually chosen for the density of
states:

PAE) =T /[(E, — E;} + I'*/4]. (301

When the energy mismatch is much less than I~ the calcula-
tions are insensitive to the degree of broadening (/" ). This is
the limit in which we are working. Now

k=@2r/RASB (¥ H ¥ XT/[(E —E)f + /4],
wS
(31
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The exact matrix elements in Eq. (31) will be found for
the exact eigenfunctions. The matrix elements between the
BO states will be found using the FC separation. Finally, the
matrix elements between the crude adiabatic wave functions
will be calculated. The multiplicative constants (u, and
normalization constants) which should appear in the matrix
elements are omitted. In all cases zero temperature is as-
sumed. Generalizations to higher temperatures are simple
but need not be considered at this time.

1. Exact wave functions
The initial and final states are

V, = [NLZx,xflxw,‘ty‘)]x [¢5()]. (32)

XHix) = expl — x, x]),

¥, = [8105*)] x[.v.;m:cx-n..u:m].
(33)

The g's (A 's) are the mixing constants for the donor (accep-
tor). For allowed & ‘ (energy ‘‘conserving’):

(W, |H'|¥) e r oL “z‘e' exp( — xi-R IX3ho. (34)

The upper index on g (A ) is the quantum number of the cou-
pled initial (final) state. The lower index on g (4 ) identifies the
term’s origin in the wave function expansion. Thisindexon g
is the number of vibrational quanta left on the electron donor
after the transfer event. i=AE /fiw — k' (assuming
#Aw, = fiwy ). Since zero temperature was assumed only one
initial state contributes to the sum. All final states, however,
must be included in Eq. (34). Some of the experiments which
will ultimately be analyzed were performed at low tempera-
ture so these matrix elements are indeed useful. Approxi-
mate values for the g’s and 4 's are found in the Appendix, but
they are also readily found numerically. The rate decays
with distance as the square of a linear combination of terms
each proportional to exp{ — «x, R, ) where

K& = [const. + (n + 1/2/Aw](2m, /#). (35)

n is the number of vibrations left on the donor after transfer.
Terms in the sum which correspond to leaving few vibration-
al quanta on the donor are exponentially emphasized in long
distance transfers. At short transfer distances all terms in the
matrix element sum contribute to the rate. This suggests that
k (R ), the distance dependent rate of electron transfer, does
not decay in a simple exponential manner. If one could study
nonadiabatic electron transfer in the same class of molecules
over a range of distances one would expect a rapid falloff of
the rate with distance at short distance and a somewhat
slower drop of rate with distance at longer distance. Decay of
rate with distance should become exponential with distance
at large distance as only a single exponential dominates the
sum. It is sometimes useful to formulate electron transfer
theory in terms of spectral functions for electron removal
and insertion.? In this case the spectral functions for elec-
tron removal are transfer distance dependent and become
narrower as the transfer distance increases (see Fig. 1).
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FIG. 1. Probability of finding electrons at x A and the nuclei in the nth
vibrational state of the ion. P(x.n) = exp( — 2x, |x,jexpi — xix" /n! (al Ener-
gy = — 5.0 eV (E™*) coupling energy = 0.8 eV [im,Au/# */Av). and
#Aw = 0.2 eV. The probability values are not normalized but the curves are
scaled by factorsof 1, 1.8 x 10%, and 2.5 x 10'* for the electron fixed at 1. 10,
and 20 A, respectively. (b) Energy = — 1.5 eV, other parameters the same
as (a). Since the states are closer to the continuum (E = 0) the electronic
effects are more important. The tendency to leave fewer vibrations behind 1s
stronger here than in (a) despite the equally unfavorable exp | — xix" /n!
factor. The curves are scaled by factors of 1, 4.0 10, and 2.3 x 10"

2. BO wave functions

The BO donor states show slower decay of electronic
amplitude with distance when the donor bond is stretched
(ion like), but the propagation incorrectly increases without
bound as y increases. This result conflicts with the exact
model. The failure of the BO model is not surprising in light
of the notion that neutral and ionic potential surfaces (BO
surfaces) for the same molecular skeleton should be calculat-
ed independently. The natural approximation for simplify-
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ing matrix elements between separable wave functions, the
FC approximation, will be used. The perturbing matrix ele-
ment is simplified by choosing a constant nuclear position in
¥* (x,y) before integrating over electronic and nuclear co-
ordinates. A single value for y must be chosen for substitu-
tion in the electronic wave function [Eq. (21)]. The choice of
this parameter is not obvious but a first guess might be the
value of y at the crossing point of the nuclear potential ener-
gy surfaces (e.g., — /2 for thermoneutral reactions).? Call-
ing this point y:

He (47 (x5, )|6(x — R, )| VR (xFr ) (P 0x |6, P ),
(36)
The @ refer to shifted oscillators and the ¢ to unshified oscil-
lators. The BO-FC matrix element is of the form

exp( — const. X R, ) X exp(F, X R, IFC_FCgr). (37)

There is now no special contribution to the matrix element
related to the fact that the acceptor site nuclear and elec-
tronic motions were coupled except through the somewhat
arbitrary and incorrectly signed (for large nuclear displace-
ment) ¥, . The rate decays exponentially with donor-accep-
tor separation for any given 7, .

3. Product wave functions

The crude adiabatic wave function for the donor is
Yoz y) = ¥ (x )b, (). Exact matrix elements of the
perturbing operator have the same functional form as those
in the BO-FC treatment of the coupled problem when
Y. =¥, [Eq. (37)]. The matrix element is exactly separable
into nuclear and electronic parts. The electronic part decays
exponentially with distance. The nuclear part of the donor
wave function is a harmonic oscillator eigenstate. In this
approximation the three curves in Fig. 1(a) or 1(b) superim-
pose.

IV. DISCUSSION

The quality of a bound state wave function is usually
Judged by comparing its calculated energy to an experimen-
tal energy or reference calculation. Long distance electron
transfer occurs between bound states but the molecular in-
teractions which promote electron exchange occur between
the miniscule wave function “‘tails”. For this reason wave
functions which produce quite acceptable eigenvalues must
be carefully considered before use in an electron transfer rate
calculation. One also makes assumptions about the relative
time scales of motions (e.g., the FC approximation) based on
intuition gained from bound state problems or optical pro-
cesses. The answer to the question “How far can an electron
stray before the nuclei react to the fact that the molecule is
becoming an ion?"” is not obvious without fully examining
the range of coupling parameters which determine the long
distance wave function behavior. The transfer distance and
the nature of the coupling determine which motions (elec-
tronic or nuclear) should be treated as slow. If the nuclei
really adjust their displacements on the time scale of the
electron transfer it is conceivable that some electron trans-
fers may be nonadiabatic in the electronic rather than the
nuclear motion. Sethna has addressed related solid state tun-

D. N Beratan and J. J. Hopfieid: Long distance electron transter

neling problems in a general manner and also suggests such a
distance-time regime.**

Sarai and DeVault studied the breakdown of the BO
approximation by calculating the size of “nonadiabatic™ ma-
trix elements between donors and acceptors in a simple mod-
¢l.® They evaluated matrix elements of the operator

H" = 2( — #/IM, (P 18/3Y, W SHY3/3Y,, (38)

where k sums over the normal modes of the molecule.” This
is the larger of the two nonadiabatic operators. They com-
pared the matrix elements of this operator with the elec-
tronic tunneling matrix elements. The nonadiabatic matrix
elements are much smaller than the electronic tunneling ma-
trix elements. One should not misinterpret this result to
mean that the BO approximation is adequate. This tech-
nique does not probe the error in the functional forms of the
BO wave functions.

If one had to rank the danger of the BO and FC approxi-
mations when applied to a Golden Rule formulation of elec-
tron transfer theory one should put the BO approximation at
the top of the list because of its incorrect functional form at
large electronic distance. Within the BO framework the FC
approximation improves with transfer distance based on the
work of Lee and DePristo. But ironically, as one approxima-
tion improves the other fails.

The probability of simultaneously finding an electron at
|x| and the donor nuclei in the (ion) vibrational state » illus-
trates the nature of the true wave functions. Figure 1 shows
the dependence of this distribution on electronic position.
An understanding of the quantitative importance of such
shifts with distance—absent in elementary theories—must
come from a model in which the choice of parameters can be
more directly related to expennments. Although more com-
plete models will be dealt with elsewhere,® we draw five con-
clusions from this model study:

(1) BO wave functions are not necessarily reliable eigen-
states to use should ab inirio quantum chemical methods
ever become practical for long distance electron transport
calculations.?’

(2) At different distances the dependence of rate on do-
nor-acceptor energy difference may not be identical.

(3) Comperition between the ability of a molecule to
have a favorable nuclear overlap factor (FC factor in conven-
tional theory) and a favorable tunneling matrix element may
distort the predicted dependence of rate on donor-acceptor
energy difference. The sensitivity of the rate to these effects
will be determined by the position of the donor and acceptor
redox levels in the “band gap™.'*

(4) Nonexponential decay of rate with distance may oc-
cur.

(5) The energy of the optical charge transfer band
should decrease at very large donor-acceptor distance if the
spectral functions for electron removal (or insertion| are dis-
tance dependent.'®
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APPENDIX: APPROXIMATION OF g,

A Poisson distributed variable x has the probability dis-
tribution

Pl(x) = exp( — x}x"/n!, (A1)

where P, is the probability amplitude. By substituting n + 1
or n — 1 for n in this formula and separating the P, part we
find

P, .,=PNx/in+1), (A2)
P,_,=Pn/x. (A3)

Multiplying both sides of Eq. (A3) by yn/(n + 1) and adding
the corresponding sides with Eq. (A2) we find

Po.y=—=Vn/ln+1P,_, + Nx + n/Vx)P,(1/yn + 1).
(A4)

Equation (15) in atomic units (fi=m, = 1} is
8uur = — [VAR 1))k, — plg, —Vn7in + T)g, _,.

K, =V2[ —ET* 4+ (n+1/21w]. (AS)
For the ground state
K, =\p” + 2nfiw + 2u°A /A, (A6)

where E7°* was approximated by Eq. (29). Consider the
coefficient of g, (F):

F= — (1A W\ In+0)Wa™+ 2nkw + 2274 VAo — p).
(A7)
Compared to the “electronic” energy ( u7), nfiw and u*A */fw

are small. Expanding the radical to first order about
2nfiw + P4 /hw:

Fx=(—1/(n+ 1)[nfiw/( uAd ) + ui /A]. (A8)
Thus, if Vx = pd /Aw, Eg. (AS5) becomes
8= —(1/Nn+ 18, (Vx + n/\Vx)=Jn/ln + 1)g, _,.
(A9)

The sign of A 1s arbitrary. Any sign causes an energy stabili-
zation of A4 “u?/#Aw so we may also write

oy = (AR + 18, (X +n/x) = Jn7ln + 1)g, _,-

(A10)

This is exactly Eq. (A4) withx = ( ud /Aw)’ = E, /fw, where

E. isthe coupling energy. This is also the form that x takes in
the simple Franck—Condon factor [Eq. (A1)] for transitions
from the n = O unshifted vibrational state to the n’ shifted
state.'® There is, therefore, a direct correspondence (to first
order) between the mixing constants of the ground state cou-
pled wave function and the Poisson factors.
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We have shown that at particularly large transfer distances changes in the
distance and AG dependence of the electron transfer rate may occur. The pa-
rameters used in the previous paper were chosen roughly to correspond to the
experimental data of Miller, Beitz and Huddleston [4]. Quantitative predictions
and interpretations of experiment come more readily from a more “molecular”
model. The preliminary results from such a model are presented in the next

section.
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IV.C. Correctly Coupled Wave Functions in Bridged Systems

Abstract

The probability of finding a bound electron far from the nuclei which bind it
is correlated with the motion of the nuclei. This coupling is improperly treated in
the Born-Oppenhéimer/Fra.nck—Condon approach to the electron trans’er prob-
lem [1]. Electron propagation through a model molecular linker is studied with-
out decoupling electronic and nuclear motion. The correctly coupled doaor wave
function correlates the equilibrium internuclear geometry of a bond (or normal
mode) with the electronic position. Non-exponential dependence of thc¢ rate on
distance and deviations from the “inverted” dependence of rate on exothermic-
ity may occur. Radiolysis initiated electron transfers in glasses show unusual
AG and distance dependences. These reactions are candidates for quantitative
analysis with this method.

Introduction

The calculation of electron transfer rates between reactants at a given dis-
tance is rather involved and many assumptions are invariably made [2]. Some ap-
proximations can be tested theoretically. One fundamental approximation, that
the nuclear and electronic motion is separable, has not been adequately investi-
gated. In fact, it has been suggested that the Born-Oppenheimer approximation
may be inappropriate when calculating rates of long distance electron transfer re-
actions [3]. In a previous paper the analytically correct form of the long distance
wave function “tail” was presented and contrasted to the Born-Oppenheimer
result. The classical, semi-classical, and quantum mechanical electron transfer
theories were developed assuming separability of nuclear and electronic motion

[2]. This section extends the study of wave functions with analytically correct
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long distance behavior to more relevant models with accessible parameters. A
qualitatively different dependence of the rate on exothermicity and distance is
found when the donor and acceptor energies are in critical ranges. This unusual
behavior may appear in some recent experiments [4,5,6]. In particular, some

results of Miller, Beitz, and Huddleston [4] may be explained with the model.

The aim of this chapter is to show that the previous correctly coupled vi-
bronic model wave function may be extended using methods developed to study
‘bridge mediated electron transfer. The model includes bridging groups in an
explicit way and can be compared more directly with experiments. The parame-
ters are available from the experiments: AE (the exothermicity), Aw (the energy
of the mode coupled to the transfer), A (the reorganization energy), and # (the

exchange interaction discussed in Chapter II). No new constants are necessary.

Theoretical Section

The “golden rule” for transitions between initital state (i) and final state

(/) gives

k= (2x/R) 3| <ilH'|S > "oy (E)Bs. (1v.2)

i.f
k is the unimolecular electron transfer rate between the donor and acceptor at
a single fixed geometry and distance. B, is the thermal distribution of imitial
states. p; is the density of acceptor states. The Hamiltonians for the donor,
acceptor and bridge are adapted from Refs. 1, 7, and 8. As before, donor and
acceptor are treated as small polarons. A single effective orbital is placed on

each of these traps [7]. A periodic one orbital per bridging group Hamiltonian is
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used for the intervening medium.

Hy = hwp(blbr +1/2) + AL(b] +br)atas + agalar (IV.3)
Hp = hwg(bhbr +1/2) + Ap(bl, + br)akar + aralar (IV.4)
Hypidge = Za?ai +(8/2) E(aj_l_la.- + aj_la,-) (IV.5)

The a’s are fermion operators and the b’s are boson operators. All bridge orbitals
are identical and interact only with nearest neighbors. i sums over a large number
of sites which continue (in one dimension) to the left and right of both traps.
The unperturbed bridging states span the energy range from 28 to —28. The
small polaron electron trapping sites are adjacent to sites 0 and N of the chain.
The interactions between the trapping “molecules” and the bridge are described
by the Hamiltonians:

Hp = ﬂL(aIao + alaL) (IV.6)
Hl = fr(ahay +alar). (Iv.7)

The vibronic interaction is turned on to the extent that the electron occupies the
donor or acceptor molecular orbital. The Hamiltonians for the initial and final

states are

Hinit = HL + Hr + Hp + Hpridge (IvV.8)

and

Hyinai=Hrp + Hp + Hg + Hpridge. (1v.9)

Fig. IV.1 shows the arrangement of groups and the interactions. The exact

initial (donor) wave function is ¢ ¥ where

¥ = Zg,'xfl(z)Q"-L(yL). (IV.10)
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Figure IV.1. Arrangement of the donor, acceptor, and bridging orbitals.
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gi is a mixing constant, x;(z) is a function of the electronic position, ®L(y)
is a function of donor nuclear coordinate, and ¢r(yr) is the acceptor initial
vibrational state. Each set of functions in Eq. IV.10 is complete, although
the electronic functions are not orthogonal [1]. The basis functions are to be
determined.

Two Schrodinger equations must now be solved in order to calculate a rate:
(Hinit — Hr)¥L =Hp¥; = Ep¥, (Iv.11)

and

(Hyfinat — HL)¥r = HyWg = E5Vp. (Iv.12)

¥; and ¥R are correctly coupled donor or acceptor wave functions. ¢; and
¢r are the vibrational wave functions corresponding to the site without the
transferable electron and are considered independently because the variables are
separable. In each case there is nearly unit probability of finding the electron
on the polaron site (L or R) and small but non-zero probability of finding it on
the bridge. The probability of finding it on the other trap is zero since only H}
(or Hy) is included in the Hamiltonian for the localized state. It is convenient
to write the donor Hamiltonian in terms of delocalized Bloch states rather than

localized (Wannier) orbitals [8]. Defining

1 .
Ak = ﬁ En e'k”“a,, (IV13)
1 —tkna
= — E thna 4 IV.14
Gy '\/N - € k ( )

the initial Hamiltonian is rewritten as

Hp=Hy + 3 lexA] Ax + Vi (K)o} Ax + V7 (k) Alar] (IV.15)
k
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where

Vi(k) = BL_g-ikNoa, (Iv.16)

- VN
This transformation is equivalent to changing the basis functions on the chain
from the atomic orbitals to the delocalized Bloch wave functions. Capital A's
denote operators for delocalized orbitals and lower case a’s denote operators for
local orbitals. N, is the number of the bridge orbital with which the donor
interacts and was set equal to zero. Assuming cyclic boundary conditions on the

chain the eigenvalues of H®%49¢ are

27k
ex = a + 28 cos( e (rv.aT)

- )
where there is a total of P orbitals in the bridge. a establishes an energy reference
point in the center of the band of bridge states and is set equal to zero. The nu-
clear wave function basis set can be chosen as harmonic oscillator eigenstates [1].
Multiplying the Schrédinger equation for the initial state by ‘D;(yL)Tf“"’h'(i')
and integrating over the nuclear and electronic coordinates one finds the donor

electronic states

xi = ufp, To(2) + 3 ul) TPloch(Z). (IV.18)
k

Y. (Z) is the unperturbed donor orbital, and Y2!°"(Z) are the delocalized chain
orbitals. Z is the electronic coordinate and i corresponds to a particular vibra-
tional state in Eq. IV.10. Multiplication of the donor state Schrodinger equation

by ®}.(y.) and integration over the nuclear coordinate gives

ALG'I,G'L(QJ’IR--'I\/E Xm-1 == gm+1yvm + 1 Xi’ﬂ-l-l.)

t A + V(K)o 7 (k)AL
+marLa ar Xm + gm Z[ek.4,;.4k +VL(k)a, Ak + V] (k)AkaL}\m
k
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= gmxm[EtOtal — (m - 1/2)hu]. (W.lg)

This equation when multiplied by T;(Z) and integrated over the electronic co-

ordinate gives the ratio between mixing constants

ug:?:iz (Em = ek)
u = Vi)

(IV.20)

where E,, = Ef9%! — (m + 1/2)hw. Multiplying Eq. 7V.19 by T.*, integrating

over the electronic coordinate, using Eq. IV.20, and the defining h; = g,uﬁ,}w

gives the recursion relation

h; [aL = = Z: -E; }
+AL(h41Vi + 1+ hi_1V/5) =0. (1v.21)
The initial wave function (not normalized) is
V*k TBlach z S i
(2.05) = hnlT(2) + T LOL D ygree (v2)
m

k
Passing to the long chain limit the sum on k in Eq. IV.21 becomes

_"92__ (IV.23)

Using the Wannier (localized) basis the wave function in the long chain limit is

WL(aur) = Y {hm®e(T(2) + \/T—;L—Tﬁinje"men(f- na)] }. (1v:24)

m

0, (Z — na) is the localized orbital at the n'? bridge site and

Em=E—m:i: (E_”‘

25 25 )2-1; lel <1. (IV.25)
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The wave function decays by the factor ¢,, per linker unit and the decay depends
explicitly upon m, the number of vibrations left in the donor “bond.” This form
for the electronic decay is analogous to that found by McConnell [9] or Davydov
(8] except that the wave function amplitude far from the donor is coupled to
the vibrational state of the donor. For small €,,, € =~ #/E,,. For given m the
electronic amplitude propagating along the chain decreases by the factor ¢,, every
repeating unit. This result is qualitatively similar to the result obtained with the
coupled isolated Dirac delta function potential well. The wave function decay
length here has a logarithmic rather than square root dependence on E,,. This
is the expected difference for electron propagation through a periodic (spatially
varying) potential [7].

Fig. IV.2 shows the E,, — ¢, relationship for several values of 3. The wave
function and recursion relation are the analogues of Eqs. 15 and 16 of Ref. 1.
To the extent that the electron density on the donor is approximately unity in
the initial state and |3r| << \/E? — 45? the h;’s are Poisson-distributed in the
ground state coupled wave function [1]. The normalization constant for the wave

function is approximately 1/1/(}_,, h2,). Using the appropriate parameters for

the acceptor, the coupled final state may also be found.

The Perturbing Hamiltonian

The initial and final states correspond to a well-localized electron slightly
delocalized onto a very long chain of orbitals. The part of the total Hamiltonian
which was neglected in writing the initial state Hamiltonian and which allows

electron transfer is

. + + ,
= ﬂR(GNGR +aRaN). (I'V.26)
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Figure IV.2. Dependence of ¢ on E as a function of distance from the band edge

(at £28).
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There is no electronic amplitude on the acceptor in the initial state. The final

N—n

ms — where n is the bridge orbital

state decays from the acceptor orbital as ¢

number and NV is the total number of bridging units between the donor and ac-

ceptor. In general, the electronic energy (ar ), polaron coupling energy (A% /hw),

and vibrational energy (hw) need not be identical for the donor and acceptor.

Because the acceptor-chain interaction is small, most of the final state amplitude
t

is on the acceptor. Therefore, the operator Sragpany dominates the H' matrix

element in Eq. 1.

Low Temperature Limit

Some unusual effects are predicted with this model and can be demonstrated
by considering the low temperature limit of the rate. This temperature limit is
also of experimental interest. At low temperature only the ground initial state
is populated and the mixing constants h? are approximately Poisson-distributed
in v = Ereorg/hw = (Ar/hw)?. The acceptor oscillator is also initially in its
ground vibrational state. Considering only terms which introduce rate changes
with distance and exothermicity

koY | < @|H %, > (Iv.27)
34

\I’i = ‘I’L(z’ yL)¢;:ocund(yR)

Oy, = 0" (yr) ¥y (2, yr)

8—1/27"’-/2 3—7/21(1\’!—1)/2

<W|H'|U; > o Y [byel 7 =i (IV.28)
.
M b2V
Ink=MIinvy+In Z[J'(—AJ/I]—_T)T] + const.(8L, Br, 7, B, p) (I'V.29)

3=0
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where

b; =1/\/E? — 482.

€; is defined in Eq. IV.25. For convenience the case of Ay = Ag and hwy = hwg
was studied. N + 1 is the number of units of the chain between donor and accep-
tor, M = AE/hw, and j is the number of vibrational quanta left on the donor
after transfer. In the Born-Oppenheimer/Franck-Condon treatment a single ¢
enters the sum. The Franck-Condon-like term in the sum is a maximum for
a single value of AE but ¢; is modulated by the vibrational coupling. In the
Born-Oppenheimer /Franck-Condon treatments this € independent sum gives the
energy gap law dependence of rate on AE. However, in Eq. IV.29 the sum
couples the distance and energetic dependence of the rate. One can anticipate
long distance transfers where N is so large that efN is negligible except for a
limited number of j’s. Although the Franck-Condon-like term may be unfavor-
able at that value of j, competition between the factors may yield a qualitatively
different In k-AFE relations at different transfer distances.

Previous studies of bridge mediated electron transport suggested tnat elec-
tron propagation along the bridge depends critically on the relative energies of
the bridge and trap orbitals [7,8,9]. The donor energy may be close to the linker
HOMO (hole transfer) or LUMO (electron transfer) energy of the unperturbed
bridge. In either case there is a strong dependence of ¢; on the energy difference
between the trap orbitals and the energetically closest bridging orbitals. Alterna-
tively, the traps may be in the center of the HOMO-LUMO gap. In this case ¢; is
a slowly varying function of the trap energies (see Fig. IV.2, large |E;| - 2|3|). In
the former case large qualitative changes from the Born-Oppenheimer/Franck-

Condon results occur in the AG — In k relation at a fixed transfer distance.
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However, the energies of typical biological and other organometallic redox cen-
ters apparently lie in the region near the band where ¢ is quite sensitive to E.
In k can also have a non-exponential distance dependence due to the sum of

exponential terms in the rate expression.

The variation in experimentally accessible coupling energies, vibrational fre-
quencies, and donor-acceptor energy positions is quite large although the actual
number of experiments studying electron transfer over both a range of distances
and AG’s is quite limited. Many common electron transport active metal ions
are energetically close to common hydrocarbon HOMO'’s. This suggests “hole”
transport as the dominant charge mediation mechanism. The redox potentials of
many organic species [4,5] also suggest that this mechanism may dominate. In
the current model only one orbital was placed on each linker site. This means

only one “band” of electronic states exists for the isolated linker.

As a concrete example consider electron transfer through saturated n-alkane
le.g., see Ref. 10]. The mixing of the orbital on a redox site with bridging states
depends on |E|—2|3|, the energy of the trap relative to the band edge (Fig.IV.2).
Fig. IV.3 compares the energy dependence of ¢ in this one orbital model with the
energy dependence of ¢ in a more complete model for n-alkane (Ref. 8, Figs. 4b,
5b). 3 in the one orbital per site model was chosen so that the curves coincide at
the minimum € for the alkane. Inclusion of only one band in this model makes it
impossible to precisely model n-alkane chains both near and far from the band of
bridge states. Qualitatively, however, the representation is quite adequate. The

curve is fit with 3 = —1.6eV. hw and X are taken from the radiolysis experiments
[4].

The sum in Eq. IV.28 includes contributions of decay constants between
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Figure IV.3. Dashed line: dependence of € on E for n-alkane (Fig. 5b, Ref. 7).
Solid line: one orbital per site model with # = —1.6eV chosen to

coincide with the alkane model at the band center.
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e(E?°"°T) and e(E®°°*Pt°"). Fig. IV.4 shows the In k dependence on N for
different AE’s when the traps are near the band. Calculations for different AE's
correspond to moving the acceptor energy closer to the band at fixed donor
energy. Fig. IV.5 shows similar calculations when the traps are further from the
band. At short distance the ef” term does not cause any single element in the
sum of Eq. IV.29 to dominate so the decay of rate with distance is not purely
exponential. However, as the transfer distance becomes very large only terms
in the sum with largest |¢;| contribute to the rate and the decay again becomes
exponential with distance. Far from the band edge, ¢ varies slowly with j and

the rate decays exponentially with distance in all distance ranges.

The other qualitatively unusual behavior of the rate arises from the intrinsic
coupling of the electronic decay (¢;) with the energetic dependence of the rate,
e~ 2IyAE/he [ N(AE [hw — j)!]. In the old theory, since ¢ is j independent the
change of rate with AE is determined solely by this nuclear overlap term. In
the correctly coupled solution the smallness of e?N for particular values of j may
strongly skew the k—AFE relation from the distance independent, inverted form
predicted by the standard classical, semiclassical, and quantum formulations of
non-adiabatic electron transfer theory. The strong dependence of ¢, on E near
the band edge makes transfers between donors and acceptors in this energetic
region especially sensitive to non-Born-Oppenheimer effects. Calculations of the
dependence of rate on AE are shown in Figs. IV.6a and IV.6b for donors and
acceptors in different energetic regions and at different transfer distances. The
shapes and locations of the peaks of the curves are distance and band donor

energy dependent.

Examples of redox centers at fixed distance bound to hydrocarbon linkers
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(a)
(b)

In(K)+ C
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O 7 14 2l 23 25

DISTANCE (N)

Figure IV.4. In k — N plot for 8 = —1.6eV, hw = .2¢V, v = E™*" [hw = 4,
AE =8 hw. Ep(E4) = distance of donor (acceptor) from band.
(a) Ep=21, E,=.5
(b) Ep=Es=.5
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Figure IV.5. As in Fig. IV.4 with 8 = —1.6eV, hw = .26V, v =4
(a) Ep =E4 =2.1eV
(b) Ep = 5.6, E4 = 4.0
(¢) Ep=E4 =586
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In(K)+C

-19f

%0 04 08 .2 6 20
-AE V)
Figure IV.B8a. The In k — AE dependence is shown for donor and acceptor con-
nected by 5 bridging atoms when:
(1) Ep = TeV (“far”)
(2) Ep = 4¢V (“med”)
(3) Ep = 2.3¢V (“near”)
and 8 = —1.6, hw = .2, v = 2. E4 is varied by moving it closer to

the band.
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In(K)+C

00 04 08 1.2 1.6 20
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Figure IV.6b As in Fig IV.6a for a 15 atom separation between donor and accep-

tor.
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actually span a range of energies. Ruthenium pentaamine modified alkane trap
states may be only a few eV from the valence band. Electronic traps bound
to modified steroids lie consideraly higher in energy, perhaps 45 eV above the
valence band [10]. Since hole transport appears to be the dominant process in
most cases, increasing the reaction exothermicity by lowering the acceptor state
energy should increase the rate considerably more than by raising the donor

electronic energy an equal amount (especially at long distance).
Connections with experiment

The pulse radiolysis studies [4] measure the distance and AG dependence of
long distance electron transfer reactions between randomly distributed organic
species frozen in organic glasses. This technique allows study of the distance
dependence of the rate. The results of these studies are in conflict with the

standard electron transfer theories in two respects:

(a) For small —AG the reactions are considerably slower than expected and
behave as if the distance decay of the tunneling matrix element is different from

other reactions at the same distance with different —AG.

(b) The maximum of the experimental rate vs. —AG curve moves to larger

—AG for transfers over longer distances (Fig. IV.7).

The latter effect was explained with an untested time dependent solvent relax-
ation model (it can be tested by performing lower temperature experiments).
That model adds a new completely independent parameter to the analysis. The
non-Born-Oppenheimer/Franck-Condon calculations predict both of these effect

(Figs IV.5 and 6). Future work will attempt to quantify this link.

Other experiments where less is known about the reorganization energies

and coupled frequencies include studies by Guarr, McGuire, and McLendon [5]
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RELATIVE F-C FACTOR

-AG (eV)

Figure IV.7 The dependence of the apparent Franck-Condon factor on AG for
transfers occurring at 10~® and 10? seconds after radiolysisis shown.
At 10° sec. transfer occurs over about 15-20 A and over 30-40 A
at 10? sec. for typical acceptors. The shift in the peak of this curve
may be explained by a time dependent solvent stabilization of the
charge on the donor or by a breakdown of the Born-Oppenheimer

approximation (see Fig. IV.6).
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and Dutton, Gunner, Prince, Woodbury, and Parson [6].
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