
	
 108	

	
 	
 	

	

	

	

	

	
 	

	

Appendix	
 C	

Algorithm	
 for	
 Peptide	
 Clustering	

	

	

	

	

	

	

	

	

	
 109	

C.1	
 INTRODUCTION	

	
 The	
 one-­‐bead-­‐one-­‐compound	
 in	
 situ	
 click	
 screening	
 approach	
 often	
 yields	
 a	

number	
 of	
 peptide	
 “hits.”	
 	
 Rather	
 than	
 synthesizing	
 and	
 vetting	
 each	
 individual	

sequence,	
 it	
 can	
 be	
 useful	
 to	
 group	
 the	
 results	
 into	
 clusters	
 of	
 peptides	
 based	
 on	

physical	
 properties,	
 and	
 then	
 to	
 choose	
 a	
 representative	
 peptide	
 from	
 each	
 cluster	
 to	

scale	
 up	
 and	
 test.	
 	
 This	
 appendix	
 provides	
 an	
 example	
 clustering	
 algorithm	
 that	
 uses	
 the	

concept	
 of	
 persistence	
 homology	
 to	
 group	
 peptides	
 by	
 hydrophobicity,	
 isoelectric	
 point,	

and	
 residue	
 weight.	
 	
 The	
 grouping	
 is	
 amino	
 acid	
 order	
 dependent.	

	

C.2	
 PERSISTENCE	
 CLUSTERING	

	
 Persistence	
 states	
 that	
 structures	
 that	
 persist	
 at	
 multiple	
 scales	
 are	
 most	
 likely	
 to	

be	
 real.	
 	
 For	
 example,	
 if	
 an	
 image	
 is	
 sampled	
 by	
 using	
 a	
 small	
 number	
 of	
 points,	

persistence	
 can	
 be	
 used	
 to	
 determine	
 properties	
 of	
 the	
 original	
 shape.	
 	
 The	
 points	
 are	

grouped	
 by	
 drawing	
 a	
 disc	
 of	
 radius	
 ε	
 around	
 each	
 point.	
 	
 Each	
 collection	
 of	
 overlapping	

discs	
 is	
 considered	
 a	
 cluster.	
 	
 These	
 clusters	
 provide	
 one	
 possible	
 interpretation	
 of	
 the	

original	
 data.	

To	
 obtain	
 a	
 more	
 complete	
 analysis	
 of	
 the	
 data,	
 ε	
 is	
 continuously	
 varied	
 and	
 the	

clusters	
 tracked	
 as	
 the	
 discs	
 grow	
 around	
 the	
 points.	
 	
 As	
 discs	
 from	
 one	
 cluster	
 begin	
 to	

overlap	
 with	
 discs	
 from	
 another	
 cluster,	
 the	
 two	
 initial	
 clusters	
 “die”	
 and	
 a	
 new	
 merged	

cluster	
 is	
 “born.”	
 	
 The	
 lifetime	
 of	
 a	
 cluster	
 is	
 the	
 time	
 between	
 a	
 cluster’s	
 birth	
 and	

death.	
 	
 Thus,	
 groups	
 of	
 points	
 that	
 are	
 far	
 from	
 other	
 points	
 will	
 have	
 a	
 long	
 lifetime,	

which	
 indicates	
 that	
 they	
 are	
 more	
 meaningful	
 clusters.	
 	

	
 110	

	

Figure	
 C.1.	
 	
 Discs	
 formed	
 around	
 points	
 with	
 growing	
 radius	
 ε.	
 	
 As	
 the	
 discs	
 around	

points	
 overlap,	
 new	
 clusters	
 form	
 that	
 include	
 points	
 rooting	
 the	
 newly	
 touching	
 discs.	

Eventually	
 all	
 the	
 discs	
 will	
 touch,	
 and	
 the	
 cluster	
 containing	
 all	
 points	
 will	
 continue	
 for	

infinite	
 “time.”	
 Adapted	
 from	
 [1].	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 111	

C.3	
 ALGORITHM	
 DESCRIPTION	

	
 The	
 MatLab	
 function	
 BasicParam	
 takes	
 as	
 input	
 text	
 files	
 that	
 contain	
 a	
 list	
 of	

sequences	
 and	
 the	
 number	
 n	
 of	
 amino	
 acids	
 per	
 sequence.	
 	
 It	
 then	
 uses	
 hydrophobicity,	

isoelectric	
 point,	
 and	
 residue	
 weight	
 to	
 construct	
 a	
 point	
 in	
 3n	
 dimensional	
 for	
 each	

sequence.	
 	
 To	
 prevent	
 any	
 of	
 the	
 physical	
 parameters	
 from	
 overly	
 contributing	
 to	
 the	

clustering	
 based	
 on	
 their	
 absolute	
 amounts,	
 they	
 are	
 all	
 scaled	
 by	
 the	
 inverse	
 of	
 their	

average.	
 	
 Once	
 each	
 sequence	
 is	
 represented	
 by	
 a	
 point,	
 the	
 Euclidian	
 pair	
 wise	

distances	
 between	
 the	
 points	
 are	
 computed.	
 	
 Initially,	
 each	
 point	
 is	
 its	
 own	
 cluster.	
 	

Then,	
 the	
 two	
 points	
 with	
 the	
 smallest	
 pair	
 wise	
 distance	
 are	
 merged.	
 	
 The	
 time	
 of	
 death	

of	
 the	
 initial	
 point	
 clusters,	
 and	
 the	
 time	
 of	
 birth	
 of	
 the	
 new	
 merged	
 cluster,	
 is	
 set	
 to	
 the	

distance	
 between	
 those	
 two	
 points	
 (see	
 Figure	
 B.2).	
 	
 Clusters	
 containing	
 points	
 with	
 the	

next	
 least	
 distance	
 continue	
 to	
 iteratively	
 merge	
 until	
 all	
 points	
 in	
 the	
 data	
 set	
 exist	
 as	
 a	

single	
 cluster.	
 	
 Additionally,	
 a	
 covariance	
 matrix	
 was	
 constructed	
 and	
 diagonalized	
 to	

find	
 the	
 eigenvectors	
 and	
 eigenvalues	
 that	
 characterize	
 the	
 sequence	
 space.	

	

C.4	
 OUTPUT	

	
 The	
 function	
 outputs	
 a	
 list	
 of	
 clusters	
 and	
 their	
 associated	
 lifetimes,	
 along	
 with	
 a	

plot	
 of	
 the	
 input	
 sequences	
 projected	
 onto	
 the	
 top	
 two	
 eigenvectors.	
 	
 The	
 complete	
 list	

of	
 eigenvectors	
 is	
 also	
 plotted	
 against	
 the	
 associated	
 eigenvalues,	
 and	
 the	
 top	
 four	

eigenvectors	
 are	
 decomposed	
 into	
 their	
 individual	
 components	
 as	
 charts.	
 	
 The	
 output	

from	
 clustering	
 the	
 hits	
 obtained	
 in	
 the	
 A22/4B3	
 screen	
 described	
 in	
 Chapter	
 2	
 is	
 shown	

in	
 Table	
 B.1	
 and	
 Figures	
 B.3	
 –	
 B.5.	
 	
 	

	
 112	

	

	

Figure	
 C.2.	
 	
 Illustrative	
 example	
 of	
 how	
 lifetimes	
 of	
 clusters	
 are	
 computed.	
 	
 The	
 lifetimes	

of	
 clusters	
 “a”	
 and	
 “b”	
 are	
 3,	
 because	
 they	
 are	
 closer	
 to	
 each	
 other	
 than	
 any	
 other	
 point	

and	
 that	
 is	
 the	
 distance	
 between	
 them.	
 	
 3	
 then	
 becomes	
 the	
 birth	
 time	
 for	
 cluster	
 “ab,”	

and	
 the	
 lifetime	
 of	
 “ab”	
 is	
 5	
 because	
 it	
 dies	
 at	
 time	
 8,	
 when	
 the	
 cluster	
 “abc”	
 is	
 born.	

	

	
 113	

	

Table	
 C.1.	
 	
 List	
 of	
 clusters	
 and	
 their	
 associated	
 lifetimes	
 calculated	
 for	
 the	
 hits	
 resulting	

from	
 the	
 A22/4B3	
 screen.	
 	
 The	
 peptides	
 input	
 to	
 the	
 algorithm	
 were	
 qndwk,	
 ltsry,	
 diksp,	

eihny,	
 qpidq,	
 kidrv,	
 qspwl,	
 qsdwl,	
 eqtfd,	
 aapsl,	
 kqdtq,	
 kwtkf,	
 tgnek,	
 kysfq,	
 ffftk,	
 and	

vgeit.	

	

	

	

	

	

	

	

	

	
 114	

	

Figure	
 C.3.	
 Projection	
 of	
 the	
 peptide	
 “points”	
 onto	
 the	
 top	
 two	
 eigenvectors	
 taken	
 from	

the	
 diagonalization	
 of	
 the	
 covariance	
 matrix.	
 	
 The	
 clusters	
 containing	
 more	
 than	
 one	

point	
 with	
 the	
 three	
 longest	
 lifetimes	
 from	
 Table	
 B.1	
 are	
 circled.	

	

	
 115	

	

Figure	
 C.4.	
 	
 Plot	
 of	
 eigenvectors	
 vs.	
 their	
 associated	
 eigenvalues.	
 	
 This	
 allows	
 users	
 to	

know	
 how	
 many	
 relevant	
 eigenvectors	
 describe	
 the	
 set	
 of	
 input	
 peptides.	
 	
 	

	

	

	
 116	

	

	

Figure	
 C.5.	
 	
 Visual	
 representation	
 of	
 the	
 components	
 of	
 the	
 top	
 four	
 eigenvectors.	
 	
 This	

shows	
 what	
 physical	
 characteristics	
 are	
 dominant	
 when	
 describing	
 the	
 list	
 of	
 input	

peptides.	
 	
 The	
 order	
 of	
 the	
 amino	
 acids	
 is	
 preserved	
 during	
 clustering,	
 so	

Hydrophobicity1	
 refers	
 to	
 the	
 hydrophobicity	
 of	
 the	
 N-­‐terminal	
 amino	
 acid	
 of	
 the	

peptides.	
 	
 For	
 this	
 set,	
 the	
 top	
 four	
 eigenvectors	
 have	
 large	
 hydrophobicity	
 components,	

though	
 not	
 all	
 from	
 the	
 same	
 amino	
 acid	
 index.	
 	

	
 117	

C.5	
 FUNCTION	
 CODE	

function BasicParam(filename, pepLength)

%Feb 8, 2013
%Physical parameters come from the wwHydrophobicity scale, Sigma PI
values,
%and resudue weight.
%Note: hydrophobicities are at pH 7 except for proline, which was
estimated
%from an InDi (or AN SD) measurement
%Note: the number of traits is hard coded in, so that has to be changed
%every time you mess with the parameters.

%http://www.sigmaaldrich.com/life-science/metabolomics/learning-
center/amin
%o-acid-reference-chart.html

Hydr =
1/((41+49+55+31+100+0+8+99+23+97+74+28+50+10+14+5+13+76+97+63)/20);
PI =
1/((6+5.07+2.77+3.22+5.48+5.97+7.59+6.02+9.74+5.98+5.74+5.41+6.3+5.56+1
0.76+5.68+5.6+5.96+5.89+5.66)/20);
RW =
1/((71.08+103.15+115.09+129.12+147.18+57.05+137.14+113.16+128.18+113.16
+131.2+114.11+97.12+128.13+156.19+87.07+101.11+99.13+186.22+163.18)/20)
;
scaling = [Hydr PI RW];
%scaling = 1;

%[Hydrophobicity pI ResidueWeight]

A = [41 6.00 71.08].*scaling;
C = [49 5.07 103.15].*scaling;
D = [-55 2.77 115.09].*scaling;
E = [-31 3.22 129.12].*scaling;
F = [100 5.48 147.18].*scaling;
G = [0 5.97 57.05].*scaling;
H = [8 7.59 137.14].*scaling;
I = [99 6.02 113.16].*scaling;
K = [-23 9.74 128.18].*scaling;
L = [97 5.98 113.16].*scaling;
M = [74 5.74 131.20].*scaling;
N = [-28 5.41 114.11].*scaling;
P = [50 6.30 97.12].*scaling;
Q = [-10 5.56 128.13].*scaling;
R = [-14 10.76 156.19].*scaling;
S = [-5 5.68 87.07].*scaling;
T = [13 5.60 101.11].*scaling;
V = [76 5.96 99.13].*scaling;
W = [97 5.89 186.22].*scaling;
Y = [63 5.66 163.18].*scaling;

%Read in sequences from text file function argument, and determine the

	
 118	

%numberof sequences
sequences = textread(filename,'%s', -1);
nseq = length(sequences);

%Initialize matrix to hold each sequence vector
ntrait = 3;
Z=zeros(nseq,pepLength*ntrait);

%For each individual sequence assign a vector based on Grantham Values
for j = 1:nseq
 seq = sequences{j};
 o = [];

 for i=1:length(seq)

 switch seq(i)
 case 's'
 o = [o S];
 case 'r'
 o = [o R];
 case 'l'
 o = [o L];
 case 'p'
 o = [o P];
 case 't'
 o = [o T];
 case 'a'
 o = [o A];
 case 'v'
 o = [o V];
 case 'g'
 o = [o G];
 case 'i'
 o = [o I];
 case 'f'
 o = [o F];
 case 'y'
 o = [o Y];
 case 'c'
 o = [o C];
 case 'h'
 o = [o H];
 case 'q'
 o = [o Q];
 case 'n'
 o = [o N];
 case 'k'
 o = [o K];
 case 'd'
 o = [o D];
 case 'e'
 o = [o E];
 case 'm'
 o = [o M];
 case 'w'
 o = [o W];

	
 119	

 end

 end
 Z(j,:) = o;
end

%Compute pairwise distances between each "sequence point" given by
%a row in the Z matrix and put in array n. Also, create a 2x#pairs
matrix
%cataloging pair indices to go along with distances.
n=[];
Idx=[];
k=1;
for i = 1:nseq
 for j = i+1:nseq
 n(k) = norm(Z(i,:)-Z(j,:));
 Idx(1,k) = i;
 Idx(2,k) = j;
 k=k+1;
 end
end

%Sort the array of distances from smallest to largest and use returned
%permutation to analogously sort pair indices.
[N,O] = sort(n);
Idx = Idx(:,O);

%Create array of parents of "sequence points"
p = [1:nseq];

%Create an array of cluster birth
tb = zeros(1,nseq);

% %Union the points with distance smaller than 200
% for k = 1:length(N)
% if(N(k)>= 200)
% %sprintf('stopping at distance %f\n', N(k))
% break;
% end
% %sprintf('Unioning %f and %f with distance
%f\n',Idx(1,k),Idx(2,k),N(k))
% p = Union(Idx(1,k),Idx(2,k),p);
% end

% %'Find' all points to see which ones share a root after Union and put
into
% %array 'root'
% for i = 1:nseq
% j = Find(i,p);
% root(i) = j;
% end

% [R,O_r] = sort(root);
% sequences(O_r);

	
 120	

%Itteratively 'Union' clusters containing the points with the next
%least distance

sets = {};
ages = [];
birth = [];
death = [];
for i = 1:length(N)

 %Find roots of the two sets being joined
 r1 = Find(Idx(1,i),p);
 r2 = Find(Idx(2,i),p);

 %Set the current time to the distance between the two merging
clusters
 t = N(i);

 %Check if the two sequences are already in the same cluster
 if r1 ~= r2

 %Save the sequences in the two merging clusters
 %disp('=====================================');
 set1 = MkSet(r1,nseq,p,sequences);
 set2 = MkSet(r2,nseq,p,sequences);

 sets(end+1) = {set1};
 sets(end+1) = {set2};

 %Compute and save the ages of the merging clusters
 age1 = t - tb(r1);
 age2 = t - tb(r2);

 ages = [ages age1];
 ages = [ages age2];

 %Keep running tally of birth/death times for persistence barcode
 birth = [birth tb(r1)];
 birth = [birth tb(r2)];

 death = [birth t];
 death = [birth t];

 %Union the two clusters
 p = Union(Idx(1,i),Idx(2,i),p);

 %Save birth time for new cluster
 tb(r2) = t;

 end
end
birth;
death;
%Sort ages from largest to smallest, accordingly rearrainge sets of
%sequence names

	
 121	

[Ages,O_A] = sort(ages, 'descend');
Sets = sets(O_A);

%Read out vectors of ages and sets
 %disp('--')
 %DispSet(sets, ages);
% disp('--')
 DispSet(Sets, Ages);
 disp('--')

%Plot "persistence barcode" to see if any clustering is actually
present

%Do PCA analysis to see if there exist any major axes along which the
%sequence data falls.

m = size(Z);

%Center data
center = zeros(1,m(2));
for i = 1:nseq
center = center + Z(i,:);
end
center = center/nseq;
Zc = zeros(m);
for i = 1:nseq
Zc(i,:) = Z(i,:) - center;
end

%Create covarience matrix
covar = zeros(m(2), m(2));
CoVar = zeros(m(2), m(2));
for i = 1:nseq
 covar = Zc(i,:)'*Zc(i,:);
 CoVar = CoVar + covar;
end

%Diagonalize covarience matrix to find largest eigenvalues and
%corresponding eigenvectors
[vec,val] = eig(CoVar);
CoVar*vec - vec*val;

%Plot eigenvalues and display eigenvectors associated with two largest
%values. Also label eigenvectors with next two largest eigenvalues to
%decompose into pie charts to examine components.
Diagval = diag(val);
[Val,O_val] = sort(Diagval, 'descend');
Vec = vec(:,O_val);
plot(Val, '.k', 'MarkerSize',10);
eig1 = Vec(:,1); eig2 = Vec(:,2); eig3 = Vec(:,3); eig4 = Vec(:,4);

%Project sequence points onto the two largest eigenvectors and plot
Projection(Vec(:,1), Vec(:,2), Zc, sequences, nseq);

	
 122	

%Create pie chart to examine the components of the four eigenvectors
with
%the largest eigenvalues
labels = {'Hydrophobicity_1', 'pI_1', 'RW_1','Hydrophobicity_2',
'pI_2',...
 'RW_2', 'Hydrophobicity_3', 'pI_3', 'RW_3', 'Hydrophobicity_4',
'pI_4',...
 'RW_4','Hydrophobicity_5', 'pI_5', 'RW_5'};
figure
pie(abs(eig1), labels)
title('Eigenvector 1')

figure
pie(abs(eig2), labels)
title('Eigenvector 2')

figure
pie(abs(eig3), labels)
title('Eigenvector 3')

figure
pie(abs(eig4), labels)
title('Eigenvector 4')

end

%--
--%

function y = Find(x,p)
 y = x;
 while(p(y)~=y)
 y = p(y);
 end
end

function p = Union(x1,x2,p)
 r1 = Find(x1,p);
 r2 = Find(x2,p);
 p(r1) = r2;
end

function Set = MkSet(r1,nseq,p,seq)
 Set = {};
 for i = 1:nseq
 r = Find(i,p);
 if r == r1
 Set(end+1) = seq(i);
 end
 end
end

function DispSet(Sets, Ages)

	
 123	

 for i = 1:length(Sets)
 Si = Sets{i};
 str = sprintf('%f\t',Ages(i));
 for j=1:length(Si)
 str = sprintf('%s %s\t', str, char(Si{j}));
 end
 disp(str);
 end
end

function Projection(eig1, eig2, Zc, sequences, nseq)
x = [];
y = [];
 for i = 1:nseq
 x = [x Zc(i,:)*eig1];
 y = [y Zc(i,:)*eig2];
 end
 figure;
 plot(x, y, '*')
 dx = .2; dy = 0.2;
 text(x+dx, y+dy, sequences);
end

C.6	
 CONCLUSION	

	
 This	
 appendix	
 describes	
 a	
 clustering	
 algorithm	
 designed	
 to	
 help	
 characterize	

groups	
 of	
 peptide	
 hits	
 from	
 in	
 situ	
 click	
 screens.	
 	
 The	
 objective	
 is	
 to	
 provide	
 guidance	

about	
 which	
 peptides	
 are	
 useful	
 to	
 scale	
 up	
 and	
 assay,	
 and	
 give	
 information	
 about	
 the	

physical	
 characteristics	
 that	
 predominately	
 describe	
 the	
 differences	
 between	
 input	

peptides.	
 	
 	

	

C.7	
 ACKNOWLEGDEMENTS	

	
 I	
 would	
 like	
 to	
 thank	
 Keenan	
 Crane	
 for	
 introducing	
 me	
 to	
 the	
 concept	
 of	

persistent	
 homology,	
 and	
 for	
 his	
 incredibly	
 helpful	
 guidance	
 while	
 developing	
 this	

algorithm.	

	
 124	

C.8	
 REFERENCES	

1.	
 Ghrist	
 R	
 (2008)	
 Barcodes:	
 the	
 persistent	
 topology	
 of	
 data.	
 Bulletin	
 of	
 the	
 American	

Mathematical	
 Society	
 45:	
 61-­‐75.	

	

	

