108

Appendix C

Algorithm for Peptide Clustering

109

C.1 INTRODUCTION

The one-bead-one-compound in situ click screening approach often yields a
number of peptide “hits.” Rather than synthesizing and vetting each individual
sequence, it can be useful to group the results into clusters of peptides based on
physical properties, and then to choose a representative peptide from each cluster to
scale up and test. This appendix provides an example clustering algorithm that uses the
concept of persistence homology to group peptides by hydrophobicity, isoelectric point,

and residue weight. The grouping is amino acid order dependent.

C.2 PERSISTENCE CLUSTERING

Persistence states that structures that persist at multiple scales are most likely to
be real. For example, if an image is sampled by using a small number of points,
persistence can be used to determine properties of the original shape. The points are
grouped by drawing a disc of radius € around each point. Each collection of overlapping
discs is considered a cluster. These clusters provide one possible interpretation of the
original data.

To obtain a more complete analysis of the data, € is continuously varied and the
clusters tracked as the discs grow around the points. As discs from one cluster begin to
overlap with discs from another cluster, the two initial clusters “die” and a new merged
cluster is “born.” The lifetime of a cluster is the time between a cluster’s birth and
death. Thus, groups of points that are far from other points will have a long lifetime,

which indicates that they are more meaningful clusters.

110

Figure C.1. Discs formed around points with growing radius €. As the discs around
points overlap, new clusters form that include points rooting the newly touching discs.
Eventually all the discs will touch, and the cluster containing all points will continue for

infinite “time.” Adapted from [1].

111

C.3 ALGORITHM DESCRIPTION

The MatLab function BasicParam takes as input text files that contain a list of
sequences and the number n of amino acids per sequence. It then uses hydrophobicity,
isoelectric point, and residue weight to construct a point in 3n dimensional for each
sequence. To prevent any of the physical parameters from overly contributing to the
clustering based on their absolute amounts, they are all scaled by the inverse of their
average. Once each sequence is represented by a point, the Euclidian pair wise
distances between the points are computed. Initially, each point is its own cluster.
Then, the two points with the smallest pair wise distance are merged. The time of death
of the initial point clusters, and the time of birth of the new merged cluster, is set to the
distance between those two points (see Figure B.2). Clusters containing points with the
next least distance continue to iteratively merge until all points in the data set exist as a
single cluster. Additionally, a covariance matrix was constructed and diagonalized to

find the eigenvectors and eigenvalues that characterize the sequence space.

C.4 OUTPUT

The function outputs a list of clusters and their associated lifetimes, along with a
plot of the input sequences projected onto the top two eigenvectors. The complete list
of eigenvectors is also plotted against the associated eigenvalues, and the top four
eigenvectors are decomposed into their individual components as charts. The output
from clustering the hits obtained in the A22/4B3 screen described in Chapter 2 is shown

in Table B.1 and Figures B.3 — B.5.

112

Cluster Lifetime 3
a 3 a ‘\
b 3 d
C 8 b
ab 8-3=5 8
L J
d o —
c
[J f .
e

Figure C.2. lllustrative example of how lifetimes of clusters are computed. The lifetimes
of clusters “a” and “b” are 3, because they are closer to each other than any other point
and that is the distance between them. 3 then becomes the birth time for cluster “ab,”

and the lifetime of “ab” is 5 because it dies at time 8, when the cluster “abc” is born.

113

2.908
2.418
2.331

3.153 ffftk

qpidg
vgeit
qspwl
gsdwl
ltsry
aapsl
kysfq
gndwk
eqtfd
kqdtq
tgnek
kidrv
kwtkf
diksp
eihny
diksp
diksp
qspwl
kqdtq
Itsry
gndwk
gndwk
Itsry
gndwk
qndwk
gndwk
diksp
gndwk
gndwk

eihny kidrv kwtkf
eihny

qsdwl

tgnek

diksp eihny kidrv
eqtfd kqdtq tgnek
ltsry diksp eihny
aapsl

eqtfd kqdtq tgnek
gspwl qsdwl eqtfd
ltsry diksp eihny
eihny kwtkf

eqtfd

eqtfd kqdtq tgnek

aapsl kwtkf
kysfq vgeit
qpidq kidrv qspwl gqsdwl eqtfd aapsl kqdtq kwtkf tgnek kysfq vgeit

kysfq
kqdtq tgnek kysfq vgeit
kidrv qgspwl gsdwl eqtfd aapsl kqdtq kwtkf tgnek kysfq vgeit

Table C.1. List of clusters and their associated lifetimes calculated for the hits resulting

from the A22/4B3 screen. The peptides input to the algorithm were qndwk, Itsry, diksp,

eihny, gpidg, kidrv, gspwl, gsdwl, eqtfd, aapsl, kqdtq, kwtkf, tgnek, kysfq, ffftk, and

vgeit.

114

25

1.5F

o
(3}
T

I

e

)
T

Figure C.3. Projection of the peptide “points” onto the top two eigenvectors taken from
the diagonalization of the covariance matrix. The clusters containing more than one

point with the three longest lifetimes from Table B.1 are circled.

115

40 - .

30 1

201 7

Eigenvalue

15

10

o
.
o
o
3
b
]

Eigenvector

Figure C.4. Plot of eigenvectors vs. their associated eigenvalues. This allows users to

know how many relevant eigenvectors describe the set of input peptides.

116

Eigenvector 1 Eigenvector 2

)

Hydrophobici'ry1
Hydrophobicity2

Hydrophobicity5

pl,
ol,
RW,
Hydrophobicity,
pl,
RW,
2
FlW4
Hydrophobicity Hydrophobicity,
pl, AW, Hydrophobicity,,
Eigenvector 3 Py Hlgenvector
e
o o HW5 pI5
Hydrophobicity, Hydrophobicity

Hydrophobic'rty1
Hydrophobicity5

Hydrophobicity2

Hydrophobicity
RW, RW, 4
pl,
Hyl:irophoblclty2 pI4 RW

Hydrophobicity4
o,
Hydrophobicity, &~ "}; Hydrophabicity,
@

Figure C.5. Visual representation of the components of the top four eigenvectors. This
shows what physical characteristics are dominant when describing the list of input
peptides. The order of the amino acids is preserved during clustering, so
Hydrophobicity; refers to the hydrophobicity of the N-terminal amino acid of the
peptides. For this set, the top four eigenvectors have large hydrophobicity components,

though not all from the same amino acid index.

117
C.5 FUNCTION CODE

function BasicParam(filename, pepLength)

$Feb 8, 2013

%$Physical parameters come from the wwHydrophobicity scale, Sigma PI
values,

%and resudue weight.

%Note: hydrophobicities are at pH 7 except for proline, which was
estimated

$from an InDi (or AN SD) measurement

%Note: the number of traits is hard coded in, so that has to be changed
%every time you mess with the parameters.

$http://www.sigmaaldrich.com/life-science/metabolomics/learning-
center/amin
%o-acid-reference-chart.html

Hydr =
1/((41+49455+31+100+0+8+99+23+97+74+28+50+10+14+5+13+76+97+63)/20) ;
PI =
1/((6+5.0742.77+3.22+5.48+5.97+7.594+46.02+9.74+5.98+5.74+5.414+46.3+5.56+1
0.7645.68+5.64+45.96+5.89+45.66) /20) ;

RW =
1/((71.08+103.154+4115.09+129.12+147.18+57.05+137.14+113.164+4128.18+113.16
+131.2+114.11+97.12+128.13+156.19+87.07+101.11499.134186.224+4163.18)/20)
scaling = [Hydr PI RW];

%$scaling = 1;

% [Hydrophobicity pI ResidueWeight]

[41 6.00 71.08].*scaling;
[49 5.07 103.15].*scaling;
[-55 2.77 115.09].*scaling;
[-31 3.22 129.12].*scaling;
[100 5.48 147.18].*scaling;
[0 5.97 57.05].*scaling;
[8 7.59 137.14].*scaling;
[99 6.02 113.16].*scaling;
[-23 9.74 128.18].*scaling;
= [97 5.98 113.16].*scaling;
[74 5.74 131.20].*scaling;
[-28 5.41 114.11].*scaling;
[50 6.30 97.12].*scaling;
[-10 5.56 128.13].*scaling;
[-14 10.76 156.19].*scaling;
[.68 87.07].*scaling;
[.60 101.11].*scaling;
[.96 99.13].*scaling;
[.89 186.22].*scaling;
[.66 163.18].*scaling;

K S<HOWWOUWZ2IERHAHIDOMREDAOQ P
Il

[e))
(G2 NG BN INE) INE)]

%Read in sequences from text file function argument, and determine the

118

gnumberof sequences
sequences = textread(filename, '$s', -1);
nseq = length (sequences) ;

%$Initialize matrix to hold each sequence vector

ntrait = 3;

Z=zeros (nseq, peplength*ntrait) ;

%For each individual sequence assign a vector based on Grantham Values

for j = l:nseq
= sequences{]J};
[

for i=1l:1length (seq)

switch seq(i)
S]

case '

o [o S1;
case 'r'

o = [o R];
case '1'

o = [o L];
case 'p'

o = [o P];
case 't'

o= [o T];
case 'a'

o = [o A];
case 'v'

o = [o V];
case 'g'

o = [o G];
case 'i'

o= [o I];
case 'f'

o = [o F];
case 'y'

o= [o Y];
case 'c'

o = [o C];
case 'h'

o = [o H];
case 'q'

o = [o Ql];
case 'n'

o = [o NJ];
case 'k'

o = [o K];
case 'd'

o = [o D];
case 'e'

o = [o E];
case 'm'

o = [o M];
case 'w'

o= [o W];

119

end
end
Z2(j,:) = o;

end

$Compute pairwise distances between each "sequence point" given by

%a row in the Z matrix and put in array n. Also, create a 2x#pairs
matrix
$cataloging pair indices to go along with distances.
n=[];
Idx=[];
k=1;
for i = l:nseqg
for j = i+l:nseqg
n(k) = norm(Z(i,:)-Z(j,:));
Idx(1,k) = i;
Idx(2,k) = 3J;
k=k+1;
end
end

$Sort the array of distances from smallest to largest and use returned
$permutation to analogously sort pair indices.

[N,0] = sort(n);

Idx = Idx(:,0);

%$Create array of parents of "sequence points"
p = [l:nseq];

%$Create an array of cluster birth
tb = zeros(1l,nseq);

oo

%Union the points with distance smaller than 200
for k = 1l:1length (N)
if (N (k)>= 200)
$sprintf ('stopping at distance %$f\n', N(k))
break;
end
$sprintf ('Unioning %f and %f with distance
f\n',Idx (1,k),Idx(2,k),N(k))
p = Union(Idx(1l,k),Idx(2,k),p);
end

o° o

o° oo

d° 0P o° oe

oo

oo

$'Find' all points to see which ones share a root after Union and put
nto
%array 'root'

[

o° o

for i = l:nseq
5 J = Find(i,p);
% root (i) = 3j;
% end
% [R,0_r] = sort(root);

oo

sequences (0O_r) ;

$Itteratively 'Union'
%$least distance

sets = {}
ages = []
birth = [
death [
for 1 =1

120

3Find roots of the two sets being joined

rl = Find(Idx(1,1i),p);
r2 = Find(Idx(2,1),p);

clusters containing the points with the next

%$Set the current time to the distance between the two merging

clusters
t = N(1);

%Check if the two sequences are already in the same cluster

if rl ~= r2

%$Save the sequences in the two merging clusters

3disp ('=====================
= MkSet (rl,nseq, p, sequences) ;

setl

set2 = MkSet (r2,nseq, p, sequences) ;

sets (end+1)
sets (end+1) =

{setl};
{set2};

3Compute and save the ages of the merging clusters

agel = t - tb(rl);
age2 = t - tb(r2);
ages = [ages agel];

ages = [ages ageZl];

%$Keep running tally of birth/death times for persistence barcode

birth = [birth tb(rl)];
birth = [birth tb(r2)];
death = [birth t];
death = [birth t];

$Union the two clusters

p = Union(Idx(1l,i),Idx(2,1),p);

$Save birth time for new cluster

tb(r2) = t;
end

end

birth;

death;

%$Sort ages from largest to smallest,

%Sequence names

accordingly

rearrainge sets of

121

[Ages, 0 A] = sort(ages, 'descend');
Sets = sets(0_A);

%Read out vectors of ages and sets

%disp('-=-=====—————— ")
%DispSet (sets, ages);

% disp('-=-m==—- ")
DispSet (Sets, Ages);
disp('-———=—""""""""""""—"—"“="—"—"“—"—"—"—~"—~"—~"—~"—(—— -~ ———— ")

3Plot "persistence barcode" to see if any clustering is actually
present

3Do PCA analysis to see if there exist any major axes along which the
%$sequence data falls.

m = size(Z);

$Center data

center = zeros(l,m(2));
for i = l:nseq

center = center + Z(i,:);
end

center = center/nseq;

Zc = zeros(m);

for i = l:nseq

Zc(i,:) = Z(i,:) - center;
end

$Create covarience matrix
covar = zeros(m(2), m(2));
CoVar = zeros(m(2), m(2));
for i = l:nseq
covar = Zc(i,:)'"*Zc(i,:);
CoVar = CoVar + covar;
end

%$Diagonalize covarience matrix to find largest eigenvalues and
%corresponding eigenvectors

[vec,val] = eig(CoVar);

CoVar*vec - vec*val;

%Plot eigenvalues and display eigenvectors associated with two largest
%values. Also label eigenvectors with next two largest eigenvalues to
%decompose into pie charts to examine components.

Diagval = diag(val);

[Val,O0 _val] = sort(Diagval, 'descend');

Vec = vec(:,0 val);

plot(val, '.k', 'MarkerSize',10);

eigl = Vec(:,1); eig2 = Vec(:,2); eig3 = Vec(:,3); eigd = Vec(:,4);

%$Project sequence points onto the two largest eigenvectors and plot
Projection(Vec(:,1), Vec(:,2), Zc, sequences, nseq);

122

%Create pie chart to examine the components of the four eigenvectors
with
%the largest eigenvalues
labels = {'Hydrophobicity 1', 'pI 1', 'RW 1', '"Hydrophobicity 2',
'pI 2", ...

'RW 2', 'Hydrophobicity 3', 'pI 3', 'RW 3', 'Hydrophobicity 4',
'pI 4", ...

'RW 4', '"Hydrophobicity 5', 'pI 5', 'RW 5'};
figure
pie(abs(eigl), labels)
title('Eigenvector 1'")

figure
pie(abs(eig2), labels)
title('Eigenvector 2'")

figure
pie(abs(eig3), labels)
title('Eigenvector 3'")

figure
pie(abs(eigd), labels)
title('Eigenvector 4'")

end

function y = Find(x,p)

y = X;
while (p (y)~=Yy)

y = p(y);
end

end

function p = Union(x1l,x2,p)
rl = Find(x1l,p);
r2 = Find(x2,p);
p(rl) = r2;

end

function Set = MkSet (rl,nseq,p,seq)
Set = {};
for i = l:nseq
r = Find(i,p):;
if r == rl
Set (end+1) = seq(i);
end
end
end

function DispSet (Sets, Ages)

123

for i = 1l:length(Sets)
Si = Sets{i};
str = sprintf('$f\t',Ages (1)) ;
for j=1l:1length(Si)

str = sprintf('%$s %$s\t', str, char(Si{j}));

end
disp(str);

end

end

function Projection(eigl, eig2, Zc, sequences, nseq)
x = [];
y = [1;
for i l:nseq
X [x Zc(i,:)*eigl];
y = ly Zc(i,:)*eig2];

end

figure;

plot(x, y, '"*")

dx = .2; dy = 0.2;

text (x+dx, y+dy, sequences);
end

C.6 CONCLUSION

This appendix describes a clustering algorithm designed to help characterize
groups of peptide hits from in situ click screens. The objective is to provide guidance
about which peptides are useful to scale up and assay, and give information about the
physical characteristics that predominately describe the differences between input

peptides.

C.7 ACKNOWLEGDEMENTS
| would like to thank Keenan Crane for introducing me to the concept of
persistent homology, and for his incredibly helpful guidance while developing this

algorithm.

124

C.8 REFERENCES

1. Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American

Mathematical Society 45: 61-75.

