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C.1	
  INTRODUCTION	
  

	
   The	
   one-­‐bead-­‐one-­‐compound	
   in	
   situ	
   click	
   screening	
   approach	
   often	
   yields	
   a	
  

number	
   of	
   peptide	
   “hits.”	
   	
   Rather	
   than	
   synthesizing	
   and	
   vetting	
   each	
   individual	
  

sequence,	
   it	
   can	
   be	
   useful	
   to	
   group	
   the	
   results	
   into	
   clusters	
   of	
   peptides	
   based	
   on	
  

physical	
  properties,	
  and	
   then	
   to	
  choose	
  a	
   representative	
  peptide	
   from	
  each	
  cluster	
   to	
  

scale	
  up	
  and	
  test.	
  	
  This	
  appendix	
  provides	
  an	
  example	
  clustering	
  algorithm	
  that	
  uses	
  the	
  

concept	
  of	
  persistence	
  homology	
  to	
  group	
  peptides	
  by	
  hydrophobicity,	
  isoelectric	
  point,	
  

and	
  residue	
  weight.	
  	
  The	
  grouping	
  is	
  amino	
  acid	
  order	
  dependent.	
  

	
  

C.2	
  PERSISTENCE	
  CLUSTERING	
  

	
   Persistence	
  states	
  that	
  structures	
  that	
  persist	
  at	
  multiple	
  scales	
  are	
  most	
  likely	
  to	
  

be	
   real.	
   	
   For	
   example,	
   if	
   an	
   image	
   is	
   sampled	
   by	
   using	
   a	
   small	
   number	
   of	
   points,	
  

persistence	
  can	
  be	
  used	
  to	
  determine	
  properties	
  of	
  the	
  original	
  shape.	
   	
  The	
  points	
  are	
  

grouped	
  by	
  drawing	
  a	
  disc	
  of	
  radius	
  ε	
  around	
  each	
  point.	
  	
  Each	
  collection	
  of	
  overlapping	
  

discs	
   is	
  considered	
  a	
  cluster.	
   	
  These	
  clusters	
  provide	
  one	
  possible	
  interpretation	
  of	
  the	
  

original	
  data.	
  

To	
  obtain	
  a	
  more	
  complete	
  analysis	
  of	
  the	
  data,	
  ε	
  is	
  continuously	
  varied	
  and	
  the	
  

clusters	
  tracked	
  as	
  the	
  discs	
  grow	
  around	
  the	
  points.	
  	
  As	
  discs	
  from	
  one	
  cluster	
  begin	
  to	
  

overlap	
  with	
  discs	
  from	
  another	
  cluster,	
  the	
  two	
  initial	
  clusters	
  “die”	
  and	
  a	
  new	
  merged	
  

cluster	
   is	
   “born.”	
   	
   The	
   lifetime	
   of	
   a	
   cluster	
   is	
   the	
   time	
   between	
   a	
   cluster’s	
   birth	
   and	
  

death.	
   	
  Thus,	
  groups	
  of	
  points	
   that	
  are	
   far	
   from	
  other	
  points	
  will	
  have	
  a	
   long	
   lifetime,	
  

which	
  indicates	
  that	
  they	
  are	
  more	
  meaningful	
  clusters.	
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Figure	
   C.1.	
   	
   Discs	
   formed	
   around	
   points	
   with	
   growing	
   radius	
   ε.	
   	
   As	
   the	
   discs	
   around	
  

points	
  overlap,	
  new	
  clusters	
  form	
  that	
  include	
  points	
  rooting	
  the	
  newly	
  touching	
  discs.	
  

Eventually	
  all	
  the	
  discs	
  will	
  touch,	
  and	
  the	
  cluster	
  containing	
  all	
  points	
  will	
  continue	
  for	
  

infinite	
  “time.”	
  Adapted	
  from	
  [1].	
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C.3	
  ALGORITHM	
  DESCRIPTION	
  

	
   The	
  MatLab	
   function	
  BasicParam	
   takes	
   as	
   input	
   text	
   files	
   that	
   contain	
   a	
   list	
   of	
  

sequences	
  and	
  the	
  number	
  n	
  of	
  amino	
  acids	
  per	
  sequence.	
  	
  It	
  then	
  uses	
  hydrophobicity,	
  

isoelectric	
   point,	
   and	
   residue	
  weight	
   to	
   construct	
   a	
   point	
   in	
   3n	
   dimensional	
   for	
   each	
  

sequence.	
   	
  To	
  prevent	
  any	
  of	
   the	
  physical	
  parameters	
   from	
  overly	
  contributing	
   to	
   the	
  

clustering	
  based	
  on	
  their	
  absolute	
  amounts,	
   they	
  are	
  all	
   scaled	
  by	
   the	
   inverse	
  of	
   their	
  

average.	
   	
   Once	
   each	
   sequence	
   is	
   represented	
   by	
   a	
   point,	
   the	
   Euclidian	
   pair	
   wise	
  

distances	
   between	
   the	
   points	
   are	
   computed.	
   	
   Initially,	
   each	
   point	
   is	
   its	
   own	
   cluster.	
  	
  

Then,	
  the	
  two	
  points	
  with	
  the	
  smallest	
  pair	
  wise	
  distance	
  are	
  merged.	
  	
  The	
  time	
  of	
  death	
  

of	
  the	
  initial	
  point	
  clusters,	
  and	
  the	
  time	
  of	
  birth	
  of	
  the	
  new	
  merged	
  cluster,	
  is	
  set	
  to	
  the	
  

distance	
  between	
  those	
  two	
  points	
  (see	
  Figure	
  B.2).	
  	
  Clusters	
  containing	
  points	
  with	
  the	
  

next	
  least	
  distance	
  continue	
  to	
  iteratively	
  merge	
  until	
  all	
  points	
  in	
  the	
  data	
  set	
  exist	
  as	
  a	
  

single	
   cluster.	
   	
   Additionally,	
   a	
   covariance	
  matrix	
  was	
   constructed	
   and	
   diagonalized	
   to	
  

find	
  the	
  eigenvectors	
  and	
  eigenvalues	
  that	
  characterize	
  the	
  sequence	
  space.	
  

	
  

C.4	
  OUTPUT	
  

	
   The	
  function	
  outputs	
  a	
  list	
  of	
  clusters	
  and	
  their	
  associated	
  lifetimes,	
  along	
  with	
  a	
  

plot	
  of	
  the	
  input	
  sequences	
  projected	
  onto	
  the	
  top	
  two	
  eigenvectors.	
  	
  The	
  complete	
  list	
  

of	
   eigenvectors	
   is	
   also	
   plotted	
   against	
   the	
   associated	
   eigenvalues,	
   and	
   the	
   top	
   four	
  

eigenvectors	
  are	
  decomposed	
   into	
   their	
   individual	
   components	
  as	
   charts.	
   	
   The	
  output	
  

from	
  clustering	
  the	
  hits	
  obtained	
  in	
  the	
  A22/4B3	
  screen	
  described	
  in	
  Chapter	
  2	
  is	
  shown	
  

in	
  Table	
  B.1	
  and	
  Figures	
  B.3	
  –	
  B.5.	
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Figure	
  C.2.	
  	
  Illustrative	
  example	
  of	
  how	
  lifetimes	
  of	
  clusters	
  are	
  computed.	
  	
  The	
  lifetimes	
  

of	
  clusters	
  “a”	
  and	
  “b”	
  are	
  3,	
  because	
  they	
  are	
  closer	
  to	
  each	
  other	
  than	
  any	
  other	
  point	
  

and	
  that	
  is	
  the	
  distance	
  between	
  them.	
  	
  3	
  then	
  becomes	
  the	
  birth	
  time	
  for	
  cluster	
  “ab,”	
  

and	
  the	
  lifetime	
  of	
  “ab”	
  is	
  5	
  because	
  it	
  dies	
  at	
  time	
  8,	
  when	
  the	
  cluster	
  “abc”	
  is	
  born.	
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Table	
  C.1.	
  	
  List	
  of	
  clusters	
  and	
  their	
  associated	
  lifetimes	
  calculated	
  for	
  the	
  hits	
  resulting	
  

from	
  the	
  A22/4B3	
  screen.	
  	
  The	
  peptides	
  input	
  to	
  the	
  algorithm	
  were	
  qndwk,	
  ltsry,	
  diksp,	
  

eihny,	
  qpidq,	
  kidrv,	
  qspwl,	
  qsdwl,	
  eqtfd,	
  aapsl,	
  kqdtq,	
  kwtkf,	
  tgnek,	
  kysfq,	
  ffftk,	
  and	
  

vgeit.	
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Figure	
  C.3.	
  Projection	
  of	
  the	
  peptide	
  “points”	
  onto	
  the	
  top	
  two	
  eigenvectors	
  taken	
  from	
  

the	
   diagonalization	
   of	
   the	
   covariance	
  matrix.	
   	
   The	
   clusters	
   containing	
  more	
   than	
   one	
  

point	
  with	
  the	
  three	
  longest	
  lifetimes	
  from	
  Table	
  B.1	
  are	
  circled.	
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Figure	
  C.4.	
   	
  Plot	
  of	
  eigenvectors	
  vs.	
   their	
  associated	
  eigenvalues.	
   	
  This	
  allows	
  users	
   to	
  

know	
  how	
  many	
  relevant	
  eigenvectors	
  describe	
  the	
  set	
  of	
  input	
  peptides.	
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Figure	
  C.5.	
  	
  Visual	
  representation	
  of	
  the	
  components	
  of	
  the	
  top	
  four	
  eigenvectors.	
  	
  This	
  

shows	
   what	
   physical	
   characteristics	
   are	
   dominant	
   when	
   describing	
   the	
   list	
   of	
   input	
  

peptides.	
   	
   The	
   order	
   of	
   the	
   amino	
   acids	
   is	
   preserved	
   during	
   clustering,	
   so	
  

Hydrophobicity1	
   refers	
   to	
   the	
   hydrophobicity	
   of	
   the	
   N-­‐terminal	
   amino	
   acid	
   of	
   the	
  

peptides.	
  	
  For	
  this	
  set,	
  the	
  top	
  four	
  eigenvectors	
  have	
  large	
  hydrophobicity	
  components,	
  

though	
  not	
  all	
  from	
  the	
  same	
  amino	
  acid	
  index.	
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C.5	
  FUNCTION	
  CODE	
  

function BasicParam(filename, pepLength) 
  
%Feb 8, 2013 
%Physical parameters come from the wwHydrophobicity scale, Sigma PI 
values, 
%and resudue weight. 
%Note: hydrophobicities are at pH 7 except for proline, which was 
estimated 
%from an InDi (or AN SD) measurement 
%Note: the number of traits is hard coded in, so that has to be changed 
%every time you mess with the parameters.  
  
%http://www.sigmaaldrich.com/life-science/metabolomics/learning-
center/amin 
%o-acid-reference-chart.html 
  
Hydr = 
1/((41+49+55+31+100+0+8+99+23+97+74+28+50+10+14+5+13+76+97+63)/20); 
PI = 
1/((6+5.07+2.77+3.22+5.48+5.97+7.59+6.02+9.74+5.98+5.74+5.41+6.3+5.56+1
0.76+5.68+5.6+5.96+5.89+5.66)/20); 
RW = 
1/((71.08+103.15+115.09+129.12+147.18+57.05+137.14+113.16+128.18+113.16
+131.2+114.11+97.12+128.13+156.19+87.07+101.11+99.13+186.22+163.18)/20)
; 
scaling = [Hydr PI RW]; 
%scaling = 1; 
  
%[Hydrophobicity pI ResidueWeight] 
  
A = [41 6.00 71.08].*scaling; 
C = [49 5.07 103.15].*scaling; 
D = [-55 2.77 115.09].*scaling; 
E = [-31 3.22 129.12].*scaling; 
F = [100 5.48 147.18].*scaling; 
G = [0 5.97 57.05].*scaling; 
H = [8 7.59 137.14].*scaling; 
I = [99 6.02 113.16].*scaling; 
K = [-23 9.74 128.18].*scaling; 
L = [97 5.98 113.16].*scaling; 
M = [74 5.74 131.20].*scaling; 
N = [-28 5.41 114.11].*scaling; 
P = [50 6.30 97.12].*scaling; 
Q = [-10 5.56 128.13].*scaling; 
R = [-14 10.76 156.19].*scaling; 
S = [-5 5.68 87.07].*scaling; 
T = [13 5.60 101.11].*scaling; 
V = [76 5.96 99.13].*scaling; 
W = [97 5.89 186.22].*scaling; 
Y = [63 5.66 163.18].*scaling; 
  
%Read in sequences from text file function argument, and determine the  
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%numberof sequences 
sequences = textread(filename,'%s', -1); 
nseq = length(sequences); 
  
%Initialize matrix to hold each sequence vector 
ntrait = 3; 
Z=zeros(nseq,pepLength*ntrait); 
  
%For each individual sequence assign a vector based on Grantham Values  
for j = 1:nseq 
    seq = sequences{j}; 
    o = []; 
     
    for i=1:length(seq) 
     
    switch seq(i) 
        case 's' 
            o = [o S]; 
        case 'r' 
            o = [o R]; 
        case 'l' 
            o = [o L]; 
        case 'p' 
            o = [o P]; 
        case 't' 
            o = [o T]; 
        case 'a' 
            o = [o A]; 
        case 'v' 
            o = [o V]; 
        case 'g' 
            o = [o G]; 
        case 'i' 
            o = [o I]; 
        case 'f' 
            o = [o F]; 
        case 'y' 
            o = [o Y]; 
        case 'c' 
            o = [o C]; 
        case 'h' 
            o = [o H]; 
        case 'q' 
            o = [o Q]; 
        case 'n' 
            o = [o N]; 
        case 'k' 
            o = [o K]; 
        case 'd' 
            o = [o D]; 
        case 'e' 
            o = [o E]; 
        case 'm' 
            o = [o M]; 
        case 'w' 
            o = [o W]; 
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    end 
  
    end 
  Z(j,:) = o; 
end 
  
%Compute pairwise distances between each "sequence point" given by  
%a row in the Z matrix and put in array n.  Also, create a 2x#pairs 
matrix 
%cataloging pair indices to go along with distances. 
n=[]; 
Idx=[]; 
k=1; 
for i = 1:nseq 
    for j = i+1:nseq 
        n(k) = norm(Z(i,:)-Z(j,:)); 
        Idx(1,k) = i; 
        Idx(2,k) = j; 
        k=k+1; 
    end 
end 
  
%Sort the array of distances from smallest to largest and use returned 
%permutation to analogously sort pair indices. 
[N,O] = sort(n); 
Idx = Idx(:,O); 
  
%Create array of parents of "sequence points" 
p = [1:nseq]; 
  
%Create an array of cluster birth  
tb = zeros(1,nseq); 
  
% %Union the points with distance smaller than 200 
% for k = 1:length(N) 
%     if(N(k)>= 200) 
%         %sprintf('stopping at distance %f\n', N(k)) 
%         break; 
%     end 
%   %sprintf('Unioning %f and %f with distance 
%f\n',Idx(1,k),Idx(2,k),N(k)) 
%   p = Union(Idx(1,k),Idx(2,k),p); 
% end 
  
% %'Find' all points to see which ones share a root after Union and put 
into  
% %array 'root' 
% for i = 1:nseq 
%     j = Find(i,p); 
%     root(i) = j; 
% end 
  
% [R,O_r] = sort(root); 
% sequences(O_r); 
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%Itteratively 'Union' clusters containing the points with the next  
%least distance 
  
sets = {}; 
ages = []; 
birth = []; 
death = []; 
for i = 1:length(N) 
     
    %Find roots of the two sets being joined 
    r1 = Find(Idx(1,i),p); 
    r2 = Find(Idx(2,i),p);     
     
    %Set the current time to the distance between the two merging 
clusters 
    t = N(i); 
     
    %Check if the two sequences are already in the same cluster 
    if r1 ~= r2 
     
    %Save the sequences in the two merging clusters  
    %disp('====================================='); 
    set1 = MkSet(r1,nseq,p,sequences); 
    set2 = MkSet(r2,nseq,p,sequences); 
    
    sets(end+1) = {set1}; 
    sets(end+1) = {set2}; 
     
    %Compute and save the ages of the merging clusters 
    age1 = t - tb(r1); 
    age2 = t - tb(r2);     
     
    ages = [ages age1]; 
    ages = [ages age2]; 
     
    %Keep running tally of birth/death times for persistence barcode 
    birth = [birth tb(r1)]; 
    birth = [birth tb(r2)]; 
         
    death = [birth t]; 
    death = [birth t]; 
     
    %Union the two clusters 
    p = Union(Idx(1,i),Idx(2,i),p); 
     
    %Save birth time for new cluster 
    tb(r2) = t; 
     
    end     
end 
birth; 
death; 
%Sort ages from largest to smallest, accordingly rearrainge sets of 
%sequence names 
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[Ages,O_A] = sort(ages, 'descend'); 
Sets = sets(O_A); 
  
%Read out vectors of ages and sets 
 %disp('--------------------------------------------------------') 
 %DispSet(sets, ages); 
% disp('--------------------------------------------------------') 
 DispSet(Sets, Ages); 
 disp('--------------------------------------------------------') 
  
%Plot "persistence barcode" to see if any clustering is actually 
present 
  
  
  
%Do PCA analysis to see if there exist any major axes along which the 
%sequence data falls. 
  
m = size(Z); 
  
%Center data 
center = zeros(1,m(2)); 
for i = 1:nseq 
center = center + Z(i,:); 
end 
center = center/nseq; 
Zc = zeros(m); 
for i = 1:nseq 
Zc(i,:) = Z(i,:) - center; 
end 
  
%Create covarience matrix 
covar = zeros(m(2), m(2)); 
CoVar = zeros(m(2), m(2)); 
for i = 1:nseq 
    covar = Zc(i,:)'*Zc(i,:); 
    CoVar = CoVar + covar; 
end 
  
%Diagonalize covarience matrix to find largest eigenvalues and 
%corresponding eigenvectors 
[vec,val] = eig(CoVar); 
CoVar*vec - vec*val; 
  
%Plot eigenvalues and display eigenvectors associated with two largest 
%values.  Also label eigenvectors with next two largest eigenvalues to 
%decompose into pie charts to examine components. 
Diagval = diag(val); 
[Val,O_val] = sort(Diagval, 'descend'); 
Vec = vec(:,O_val); 
plot(Val, '.k', 'MarkerSize',10); 
eig1 = Vec(:,1); eig2 = Vec(:,2); eig3 = Vec(:,3); eig4 = Vec(:,4); 
  
%Project sequence points onto the two largest eigenvectors and plot 
Projection(Vec(:,1), Vec(:,2), Zc, sequences, nseq); 
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%Create pie chart to examine the components of the four eigenvectors 
with 
%the largest eigenvalues 
labels = {'Hydrophobicity_1', 'pI_1', 'RW_1','Hydrophobicity_2', 
'pI_2',... 
    'RW_2', 'Hydrophobicity_3', 'pI_3', 'RW_3', 'Hydrophobicity_4', 
'pI_4',... 
    'RW_4','Hydrophobicity_5', 'pI_5', 'RW_5'}; 
figure 
pie(abs(eig1), labels) 
title('Eigenvector 1') 
  
figure 
pie(abs(eig2), labels) 
title('Eigenvector 2') 
  
figure 
pie(abs(eig3), labels) 
title('Eigenvector 3') 
  
figure 
pie(abs(eig4), labels) 
title('Eigenvector 4') 
  
end 
  
       
%----------------------------------------------------------------------
--% 
  
function y = Find(x,p) 
    y = x; 
    while(p(y)~=y) 
        y = p(y); 
    end 
end 
  
function p = Union(x1,x2,p) 
    r1 = Find(x1,p); 
    r2 = Find(x2,p); 
    p(r1) = r2; 
end 
  
function Set = MkSet(r1,nseq,p,seq) 
    Set = {}; 
    for i = 1:nseq 
        r = Find(i,p); 
        if r == r1 
            Set(end+1) = seq(i); 
        end 
    end 
end 
             
function DispSet(Sets, Ages) 
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    for i = 1:length(Sets) 
        Si = Sets{i}; 
        str = sprintf('%f\t',Ages(i)); 
        for j=1:length(Si) 
            str = sprintf('%s %s\t', str, char(Si{j})); 
        end 
        disp(str); 
    end 
end 
  
function Projection(eig1, eig2, Zc, sequences, nseq) 
x = []; 
y = []; 
    for i = 1:nseq 
        x = [x Zc(i,:)*eig1]; 
        y = [y Zc(i,:)*eig2]; 
    end 
    figure; 
    plot(x, y, '*') 
    dx = .2; dy = 0.2; 
    text(x+dx, y+dy, sequences); 
end 
          
 
 
C.6	
  CONCLUSION	
  

	
   This	
   appendix	
   describes	
   a	
   clustering	
   algorithm	
   designed	
   to	
   help	
   characterize	
  

groups	
  of	
  peptide	
  hits	
   from	
   in	
   situ	
   click	
   screens.	
   	
  The	
  objective	
   is	
   to	
  provide	
  guidance	
  

about	
  which	
  peptides	
  are	
  useful	
  to	
  scale	
  up	
  and	
  assay,	
  and	
  give	
  information	
  about	
  the	
  

physical	
   characteristics	
   that	
   predominately	
   describe	
   the	
   differences	
   between	
   input	
  

peptides.	
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