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Chapter 2 

Efforts in Our Laboratory‡ 
 

2.1 RETROSYNTHETIC ANALYSIS 

Given that conditions for pyrazine formation have been established in prior 

synthetic reports by Shair and Fuchs,2,6,8,9 ritterazine B was retrosynthetically 

simplified to the western (36) and eastern (37) fragments (Scheme 9). From here, our 

proposed retrosynthesis involves two key reactions, which can be employed for both 

halves of the natural product. We envision forming the 5/6 spiroketal of the western 

half and the 5/5 spiroketal of the eastern fragment using a metal-catalyzed alkyne 

spiroketalization reaction with intermediates 38 and 39, respectively. These 

compounds can be produced from an alkyne conjugate addition between 40 and 41 

for the western fragment, and between 42 and 43 for the eastern half. It is anticipated 

that for the western fragment, cyclization of the less hindered primary alcohol will 

occur to produce the 5/6 spirocycle. Enones 40 and 42 can be formed from 

commercially available steroid trans-androsterone (24). Specific issues that need to 

be addressed include improving upon existing methods to oxidize the C12 position, 

which is relevant for both halves of ritterazine B. In addition, for the western 
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fragment, new strategies to oxidize carbons C7 and C17 and install the C14–C15 

olefin are required. 

 

Scheme 9. Retrosynthetic analysis of ritterazine B. 
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2.2 SYNTHESIS OF THE EASTERN FRAGMENT 

Initial studies in our laboratory were conducted by Anton Dubrovskiy and 

focused on the synthesis of the eastern fragment of ritterazine B beginning from 

commercially available trans-androsterone (24). The sequence begins with a 

Mitsunobu reaction between trans-androsterone (24) and 3-iodobenzoic acid to 

provide ester 44 with inversion of stereochemistry at C3 (Scheme 10). Directed C–H 

chlorination following the protocol developed by Davitishvili et al. furnished chloride 

44 in 61% yield over two steps.11 Subsequent elimination of the chloride to yield the 

C9–C11 olefin occurs with concomitant deprotection of the C3 alcohol, which upon 

Wittig olefination with EtPPh3Br produces olefin 45 in 68% yield over two steps. 

Protection of the alcohol as the pivalate ester followed by allylic oxidation with SeO2 

provided the C16–alcohol, which was oxidized with MnO2 to provide enone 46. After 

considerable experimentation, it was determined that addition of the alkynyl 

trifluoroborate salt to enone 46 in the presence of BF3•OEt2 furnished alkyne 47 in 

77% yield.12,13  
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Scheme 10. Initial steps of our synthesis of ritterazine B eastern fragment.  

 

 

 To prepare the spiroketalization precursor, silyl ether 47 was deprotected and 

the ketone was reduced to the desired β-configured alcohol to give diol 48 (Scheme 

11). We were pleased to find that spiroketalization of 48 proceeded smoothly with 

catalytic AuCl to provide 49 with the correct stereochemistry at C20 and C22.14 

Notably, under the reaction conditions, C20 epimerizes to give the correct 

configuration. An allylic oxidation of 49 using catalytic Rh2(cap)4, K2CO3, and TBHP 

under argon or O2 furnished enone 50.15 Hydrogenation of the C9–C11 olefin with 

Pd(OH)2/C produced 51 in 68% yield.  
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subsequent closure via a BF3•OEt2-mediated ene reaction provided intermediate 52.2 

Correction of the configuration of the C12 hydroxyl was achieved through 

oxidation/reduction. Following acetylation of the free hydroxyl group, hydrogenation 

produced the desired trans junction, completing the synthesis of the eastern fragment 

(54) in 15 steps from trans-androsterone. 

 

Scheme 11. Completion of our synthesis of the eastern fragment of ritterazine B. 
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2.3 SYNTHESIS OF THE WESTERN FRAGMENT 

2.3.1 Plan 1 – Alkyne Conjugate Addition 

 Given our success in preparing the eastern fragment of ritterazine B, my 

objective was to develop a synthesis of western fragment 38. The initial goal was to 

investigate the conjugate addition reaction of alkyne 41, as this is the first key step in 

our retrosynthesis (repeated in Scheme 12). Although alkyne 41 bears an additional 

hydroxyl group compared to the alkyne 43 (see Scheme 9), we anticipated using a 

similar sequence to that employed for the preparation of 47 (see Scheme 10).  

 

Scheme 12. Retrosynthetic analysis of first key reaction of the western fragment. 
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Scheme 13. Initial synthesis of alkyne fragment. 

 

 

 The benefit of intermediate 61 is that several protecting group schemes could 

be investigated to find the optimal substrate for the conjugate addition reaction. 

Whereas treatment of 62a (R = MOM) or 62b (R = TES) with n-BuLi, B(OMe)3, then 

KHF2 provided the corresponding trifluoroborates (Table 2, entries 1 and 2), we were 

surprised to find that no reaction occurred under the same conditions with 62c (R = 

TBS). The origin of this difference in reactivity is unclear, however it is possible that 

the increased steric hindrance of TBS is responsible for the lack of reactivity. 

 

Table 2. Initial attempts to form alkynyl trifluoroborate salt. 
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 With trifluoroborates 63a and 63b in hand, the key conjugate addition reaction 

was investigated. Woodward et al. have shown that conjugate additions of alkynyl 

trifluoroborates to enones proceed through a closed transition state (Scheme 14).13  In 

the presence of BF3, the trifluoroborate salt is in equilibrium with the more active 

alkynyl BF2 species, which forms a chair–like closed transition state that facilitates 

alkyne addition in a 1,4 fashion.13 Unfortunately, under the previously optimized 

conditions, treatment of enone 64 with either trifluoroborate salts 63a or 63b gave 

only 1,2–addition product 65a and 65b (Scheme 15). Interestingly, the tertiary 

alcohol in the product was deprotected under the reaction conditions in both cases. A 

possible mechanism to produce 65 involves activation of the ketone with BF3, 

followed by nucleophilic attack of the trifluoroborate salt at the carbonyl carbon.   

 

Scheme 14. Mechanism and transition state of alkyne conjugate addition using 

trifluoroborate salts. 
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Scheme 15. First attempt at conjugate addition. 
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Scheme 16. Improved synthesis of alkyne fragment. 

 

 

 After protection of the tertiary alcohol of 69 as the TBS ether, this compound 
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to change the identity of the tertiary alcohol protecting group of 69 were 

unsuccessful. Therefore, we turned our attention to altering the primary alcohol 

protecting group. Disappointingly, efforts to convert the bis-silyl ethers 70b and 70c 

to their corresponding trifluoroborates were also unsuccessful (entries 2 and 3). 

 

Table 3. Attempts to form the desired trifluoroborate salt.  

 

 

Me
OH

O

Me
OTIPS

OTIPSCl, Imidazole, 
DMF

HO Me
TIPSO

(95% yield)

(69% yield)

·
B

O

O

(S)-Cl2-BINOL, µwave

66 67

69

68

R1O
R2O Me

Entry 

1

2

3

R2

TBS

TIPS

TBS

Result 

SM

SM

SM

1) n-BuLi, THF 
2) B(OMe)3

3) KHF2
R1O

R2O Me BF3K

70 71

71 

71a

71b

71c

R1

TIPS

TBS

TBS



Chapter 2 – Efforts in Our Laboratory 27 

 Concomittant to my own efforts, my co-workers were also preparing alkynyl 

trifluoroborates with varying protecting groups. This collective effort determined that 

alkynyl trifluoroborates 71a and 71b can be prepared, and that these compounds will 

undergo the desired conjugate addition reactions in 25% and 56% yield respectively. 

 

Table 4. Most current results with the conjugate addition reaction.  
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74 (Scheme 17). This type of reaction has been developed using a variety of allenyl 

metal species, including tin,17 magnesium,18 lithium,19 titanium,20 boron,21 and zinc,22 

as well as others. Most allenyl metal reagents are unstable, and are therefore 

generated in situ.17a A complicating factor is that these reagents are often in 

equilibrium with the propargylic species, however sufficient research has been done 

to favor the propargylic adduct.17a Although the diastereoselectivity of the 

transformation was initially uncertain, this route is attractive in that the C17 alcohol 

would be installed directly during the propargylation reaction.  

 

Scheme 17. Revised retrosynthesis of intermediate 38 using propargylation. 

 

 

 In order to investigate this reaction, model steroid trans-androsterone (24) was 

oxidized α to the carbonyl using the two-step procedure reported by Ridley et al. 

(Scheme 18).23 Treatment of 24 with isopropenyl acetate and catalytic sulfuric acid at 

reflux produced protected enolate 75, which upon subsequent oxidation with lead(IV) 

acetate provided α-acetoxy ketone 76 in 52% yield (61% yield b.r.s.m.). We were 

pleased to find that exposure of 76 at –78 °C to allenylmagnesium bromide (77), 

generated in situ from propargyl bromide, produced homopropargyl alcohol 78 in 

78% yield. Moreover, alcohol 78 was produced as a single diastereomer.  

 

Me

Me
PGO

PGO OPG

Me
OPG

O

OH
•

OH

Me

M

OHMe

Me
PGO

Me

PGO OPG

HO
Me
OPG

PGO
propargylation

H

H

H

H

HH

38 73 74



Chapter 2 – Efforts in Our Laboratory 29 

Scheme 18. Initial hit in propargylation studies with model ketone. 
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Table 5. Reaction of allenyl Grignard with directing protecting groups. 
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Scheme 19. Propargylation with α-configuration at C16. 
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Scheme 20. Propargylation with TiCl4 to form the desired stereochemistry at 

C17. 
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Scheme 21. Initial attempts at propargylation with methylated allenyl Grignard 

86. 
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Scheme 22. Propargylation with chiral allenyl zinc reagent. 

 

 

Figure 4. X-ray structure of alcohol 87. 
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reaction developed by Trost et al. that forms chiral propargyl alcohols 95 from 

acetaldehyde (93) and terminal alkynes 94 (Scheme 23a).27 Using our previously 

established conditions to form the protected alkyne fragment 98, the desired chiral 

homopropargyl alcohol 99 can be synthesized in four steps (Scheme 23b).  

 

Scheme 23. (a) Formation of chiral propargyl alcohols by Trost et al. (b) Plan to 

form desired propargyl alcohol using Trost’s method. 
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alkyne 98 delivers R-alcohol 103, which will undergo an SN2 reaction to form 

bromide 104 as a precursor to the chiral allenyl Grignard 105 (Scheme 24b). 

Treatment of steroid 84 with in situ-generated Grignard 105 should produce the 

desired homopropargyl alcohol 102. 

 

Scheme 24. Plans to produce homopropargyl alcohol 102 (a) using a chiral 

allenyl zinc mesylate or (b) using a chiral allenyl Grignard. 
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 In order to utilize the propargylation reaction in the synthesis of the western 

fragment of ritterazine B, the steroid substrate needs to be oxidized at C7 and C12 

prior to the propargylation reaction. trans-Dehydroandrosterone 103 will be oxidized 

at C12 using Shair’s two-step procedure to provide 104,2 followed by ketone 

protection, oxidation at C7, hydrogenation, and ketone deprotection to deliver 

compound 105 (Scheme 25). To access propargylation substrate 106, intermediate 

105 undergoes α-bromination and SN2 displacement, and treatment of 106 with a 

chiral allene 107 will produce homopropargyl alcohol 108. To install the double bond 

at C14–C15, the tertiary alcohol is protected, C16 MOM ether is deprotected, 

oxidized, and a Mukaiyama reaction will provide enone 109. Reduction at C16 to 

alcohol 110, followed by primary alcohol deprotection and alkyne spiroketalization 

should produce ritterazine B western fragment 111. This substrate can be coupled 

with the eastern half of ritterazine B via pyrazine formation to complete the total 

synthesis of ritterazine B. 
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Scheme 25. Plans to complete the synthesis of ritterazine B western fragment. 

 

 
 

Me

Me

PGO

OMOM

106
H

H

H

OPG

PGO O

H

•
M

H
Me

107

Me

OPGPGO
+

7

12

Me

Me

HO

O

H H

H

trans-dehydroandrosterone (103)

12

Me

Me

PGO

O

H H

H

104

12

PGO

Me

Me

PGO

105
H

H

H

OPG

PGO O

H77

Me

Me

PGO

OMOM

OH

108
H

H

H

Me

OPG

Me OPG

OPG

PGO

H

Me

Me

PGO

PGO

109
H

H

H

Me

OPG

Me OPG

OPG

PGO

O
14 15

Me

Me

PGO

PGO

110
H

H

H

Me

OPG

Me OPG

OPG

PGO

OH16 O
O

Me

OPG

PGO
MeHO

Me

PGO

OPG
Me

H

H

H

111


