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Abstract

How powerful are Quantum Computers? Despite the prevailing belief that Quantum Computers are
more powerful than their classical counterparts, this remains a conjecture backed by little formal
evidence. Shor’s famous factoring algorithm [Sho94] gives an example of a problem that can be
solved efficiently on a quantum computer with no known efficient classical algorithm. Factoring,
however, is unlikely to be NP-Hard, meaning that few unexpected formal consequences would
arise, should such a classical algorithm be discovered. Could it then be the case that any quantum
algorithm can be simulated efficiently classically? Likewise, could it be the case that Quantum
Computers can quickly solve problems much harder than factoring? If so, where does this power
come from, and what classical computational resources do we need to solve the hardest problems

for which there exist efficient quantum algorithms?

We make progress toward understanding these questions through studying the relationship be-
tween classical nondeterminism and quantum computing. In particular, is there a problem that can
be solved efficiently on a Quantum Computer that cannot be efficiently solved using nondetermin-
ism? In this thesis we address this problem from the perspective of sampling problems. Namely,
we give evidence that approximately sampling the Quantum Fourier Transform of an efficiently
computable function, while easy quantumly, is hard for any classical machine in the Polynomial
Time Hierarchy. In particular, we prove the existence of a class of distributions that can be sampled
efficiently by a Quantum Computer, that likely cannot be approximately sampled in randomized

polynomial time with an oracle for the Polynomial Time Hierarchy.

Our work complements and generalizes the evidence given in Aaronson and Arkhipov’s work



[AA13] where a different distribution with the same computational properties was given. Our

result is more general than theirs, but requires a more powerful quantum sampler.

Vi
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Chapter 1

Introduction

1.1 Background

Nearly twenty years after the discovery of Shor’s factoring algorithm [Sho94] that caused an ex-
plosion of interest in quantum computation, the complexity theoretic classification of quantum

computation remains embarrassingly unsettled.

The foundational results of Bernstein and Vazirani [BV97], and Bennett, Bernstein, Brassard and
Vazarani [BBBV97] laid the groundwork for quantum complexity theory by defining BQP as the
class of problems solvable with a quantum computer in polynomial time, and established the upper

bound, BQP C P#F which hasn’t been improved since.

In particular, given that BPP C BQP, so quantum computers are surely no less powerful than
their classical counterparts, it is natural to compare the power of efficient quantum computation to
the power of efficient classical verification. Can every problem with an efficient quantum algorithm
be verified efficiently? Likewise can every problem whose solution can be verified efficiently
be solved quantumly? In complexity theoretic terms, is BQP C NP, and is NP C BQP?
Factoring is contained in NP N coNP, and so cannot be NP-hard unless NP = coNP and the
PH collapses. Thus, while being a problem of profound practical importance, Shor’s algorithm

does not give evidence that NP C BQP.



Even progress towards oracle separations has been agonizingly slow. These same works that de-
fined BQP established an oracle for which NP ¢ BQP [BBBV97] and BQP ¢ NP [BV97].
This last result can be improved to show an oracle relative to which BQP ¢ MA [BV97], but
even finding an oracle relative to which BQP ¢ AM is still wide open. This is particularly trou-
bling given that, under widely believed complexity assumptions, NP = MA = AM [KvMO2].
Thus, our failure to provide an oracle relative to which BQP ¢ AM indicates a massive lack of

understanding of the classical power of quantum computation.

Recently, two candidate oracle problems with quantum algorithms have been proven to not be
contained in the PH, assuming plausible complexity theoretic conjectures [Aar10a, FU11].! These

advances remain at the forefront of progress on these questions.

A line of work initiated by Bremner, Jozsa and Shepherd [BJS10], and Aaronson and Arkhipov
[AA13] asks whether we can provide a theoretical basis for quantum superiority by looking at
distribution sampling problems. In particular, Aaronson and Arkhipov show a distribution that
can be sampled efficiently by a particular limited form of quantum computation, that assuming
the validity of two feasible conjectures, cannot be approximately sampled classically (even by a
randomized algorithm with a PH oracle), unless the PH collapses. The equivalent result for
decision problems, establishing BQP ¢ BPP unless the PH collapses, would be a crowning
achievement in quantum complexity theory. In addition, this research has been very popular not
only with the theoretical community, but also with experimentalists who hope to perform this task,

“Boson Sampling”, in their labs.

Interestingly, it is also known that if we can find such a quantumly sampleable distribution for
which no classical approximate sampler exists, there exists a “search” problem that can be solved
by a quantum computer that cannot be solved classically [Aar10c]. In a search problem we are
given an input x € {0,1}", and our goal is to output an element in a nonempty set, A, C
{0, 1}P°w() with high probability. This would be one of the strongest pieces of evidence to date

that quantum computers can outperform their classical counterparts.

! Although the “Generalized Linial-Nisan” conjecture proposed in [Aar10a] is now known to be false [Aar10b].



In this work we use the same general algorithmic framework used in Shor’s algorithm, which we
refer to as “Quantum Fourier Sampling”, to demonstrate the existence of a general class of distri-
butions that can be sampled exactly by a quantum computer. We then argue that these distributions
shouldn’t be able to be approximately sampled classically, unless the PH collapses. Perhaps
surprisingly, we obtain and generalize many of the same conclusions as Aaronson and Arkhipov

[AA13] with a completely different class of distributions.

1.2 Overview

We begin the thesis in Chapter 2 with a discussion of upper bounds for BQP. In Section 2.3 we
review the proof that BQP C P#P, a result that hasn’t been significantly improved for nearly
two decades. Then, motivated by the relation between BQP and PH, we give a nontrivial class
of quantum circuits that can be simulated classically with an NP oracle. In particular, in Section
2.4 we prove that if a quantum circuit is composed of small, fixed angle rotation gates and Toffoli
gates, we can classically compute the success probability using an NP oracle. The running time is
c” where r is the number of rotation gates in the circuit and the base of the exponent, ¢, gets closer
to 1 as the angle of the rotation gate gets closer to 0. Thus, these circuits can be simulated with

faster and faster classical time complexity.

In Chapter 3, we discuss the complexity of counting the number of satisfying assignments to a
Boolean formula and review Valiant’s result that computing the Permanent of a matrix with binary
entries is #P-complete [Val79]. We then focus on demonstrating several ways in which this
hardness result is robust. In Section 3.2 we show that even outputting a multiplicative estimate to
the Permanent of a matrix with integer entries is #P-hard. We show in Section 3.3 that computing
the Permanent of matrices with entries from a sufficiently large finite field on average is #P-hard.
We then extend this result to show a class of distributions over R called “autocorrelatable”, from

which computing the Permanent on average is #P-hard.

In Chapter 4 we give a simple example of a distribution that can be sampled exactly on a quantum



computer that cannot be sampled exactly classically unless the PH collapses. This chapter uses

the hardness results proven in Section 3.2.

We then discuss the power of approximate quantum sampling, which is our main topic of interest.
In Section 5.2 we define a general class of distributions that can be sampled exactly on a quantum
computer. The probabilities in these distributions are proportional to each different {+1}" evalua-
tion of a particular Efficiently Specifiable polynomial (see Definition 40) with n variables. We then
show in Section 5.3 that the existence of an approximate classical sampler for these distributions
implies the existence of an additive approximate average-case solution to the Efficiently Specifi-
able polynomial. We generalize this in Section 5.4 to prove that quantum computers can sample
from a class of distributions in which each probability is proportional to polynomially bounded

integer evaluations of an Efficiently Specifiable polynomial.

In Section 6 we give two examples of Efficiently Specifiable polynomials. We prove in Section 6.1
that the Permanent polynomial is Efficiently Specifiable and in Section 6.2 that the Hamiltonian

Cycle polynomial is Efficiently Specifiable.

We then attempt to extend this result to quantumly sample from a distribution with probabilities
proportional to exponentially bounded integer evaluations of Efficiently Specifiable polynomials.
To do this, in Section 7.1, we introduce a variant of the Quantum Fourier Transform which we
call the “Squashed QFT”. We explicitly construct this unitary operator, and show how to use it
in our quantum sampling framework. We leave as an open question whether this unitary can be
realized by an efficient quantum circuit. We then prove in Section 7.4, using a similar argument
to Section 5.3, that if we had a classical approximate sampler for this distribution we’d have an
additive approximate average-case solution to the Efficiently Specifiable polynomial with respect

to the binomial distribution over exponentially bounded integers.

In Section 8 we conclude with conjectures needed to establish the intractability of approximate
classical sampling from any of our quantumly sampleable distributions. As shown in Sections 5.3
and 5.4 it suffices to prove that an additive approximate average-case solution to any Efficiently

Specifiable polynomial is #P-hard, and we conjecture that this is possible. We also propose an

4



“Anti-concentration conjecture” relative to an Efficiently Specifiable polynomial over the binomial
distribution, which allows us to reduce the hardness of an additive approximate average-case so-
lution to a multiplicative approximate average-case solution. Assuming this second conjecture,
we can then base our first conjecture around the hardness of multiplicative, rather than additive

approximate average-case solutions to an Efficiently Specifiable polynomial.

These two conjectures generalize conjectures in Aaronson and Arkhipov’s results [AA13]. They
conjecture that an additive approximate average-case solution to the Permanent with respect to
the Gaussian distribution with mean 0 and variance 1 is #P-hard. They further propose an
“Anti-concentration” conjecture which allows them to reduce the hardness of additive approxi-
mate average-case solutions to the Permanent over the Gaussian distribution to the hardness of
multiplicative average case solutions to the Permanent over the Gaussian distribution. The param-
eters of our conjectures match the parameters of theirs, but our conjecture is broader, applying to
any Efficiently Specifiable polynomial, a class which includes the Permanent, and a wider class of

distributions, and thus is formally easier to prove.



Chapter 2

Preliminaries and Basic Definitions

2.1 Computational Complexity Basics

In this section we briefly review some basic topics from Computational Complexity Theory. We
assume the familiarity with basic models of universal computation such as Turing Machines, see

e.g., [AB09].

Recall a “Decision Problem” is a subset of binary strings, denoted £ C {0, 1}*. We say a Decision
Problem £ € P if membership in £ can be decided by a Deterministic Turing machine in time
polynomial in the length of the input. Likewise, we define the class NP to be the set of Decision

Problems £ whose membership can be verified in P, or more formally:

Definition 1 (Nondeterministic Polynomial Time). We say a Decision Problem L € NP if there
exists a polynomial p(n) and a polynomial time Deterministic Turing Machine V', so that for all
z e {0,1}*

re Ll — Fye{0,1}PlV(zy) =1

Next, we define a few natural Decision Problems that are of particular importance in complexity
theory.

Definition 2 (Satisfiability). SAT is the Decision Problem consisting of binary encodings of sat-

6



isfiable Boolean formulas.

It is known that SAT is NP-complete, by which we mean that SAT € NP and SAT is NP-hard,
meaning we can efficiently decide any other Decision Problem in NP using the ability to solve

SAT. This was first established in the classic work of Cook and Levin (see e.g., [AB09]).

In this thesis we are primarily concerned with the Polynomial Time Hierarchy, or PH, a class that
generalizes NP. We first define the class YP — NP. Then define Ef recursively, so that, for
k>0%F, = NP>k, where this notation refers to the class of Decision Problems that can be

decided in NP with the ability to query an oracle that decides any problem in XF. Then:

Definition 3 (PH).
PH= | >}

k>0

Interestingly this class can also be characterized in terms of a variant of Satisfiability. A natural
complete problem for each level of the PH, EE, is QSAT,, or quantified SAT with k alternations
[ABO9]:

Definition 4 (Quantified Satisfiability). QSAT, is the language consisting of all formulas 1), with

variables partitioned into k subsets Sy, S, ..., Sy so that:

¥ € QSAT, <
EISNSQQkSk ’Lb(&?sl,xsw ey l’sk) =1

Where 3S; is notation meaning “there exists an assignment to the variables in S,”, VS; is the

notation meaning “for all assignments to the variables in S;”, and Qy, is the k-th quantifier.

2.2 Quantum Preliminaries

In this next section we cover the basic priciples of quantum computing needed to understand the

content in the thesis. For a much more complete overview there are many references available,
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e.g., [KSV02, NCOO0].

The state of an n-qudit quantum system is described by a unit vector in H = (C%)%®", a d"-
dimensional complex Hilbert space, endowed with the standard Hilbert-Schmidt inner product.
When d=2, we say the system is composed of n qubits. As per the literature we will denote the

standard orthogonal basis vectors of H by {|v)} for v € [d]".

In accordance with the laws of quantum mechanics, transformations of states are described by uni-
tary transformations acting on ‘H, where a unitary transformation over H is a linear transformation
specified by a d* x d" square complex matrix U, such that UU* = I, where U* is the conjugate
transpose. Equivalently, the rows (and columns) of U form an orthonormal basis. A local unitary
is a unitary that operates only on b = O(1) qudits; i.e. after a suitable renaming of the standard
basis by reordering qudits, it is the matrix U ® I s, where U is a d® x d” unitary U. A local
unitary can be applied in a single step of a Quantum Computer. A local decomposition of a unitary
is a factorization into local unitaries. We say a d" x d" unitary is efficiently quantumly computable

if this factorization has at most poly(log(d™)) factors.

We will also need the concept of projective measurement, which given an orthonormal basis O
for H associates a value designated by a real number r; for each basis vector |v;) € O. Suppose
our quantum system is in the state |¢) € H. We define {II,,} to be a collection of projection
operators that project into the subspace spanned by the designated |v;) for all v, associated to the

same output value r;. When we measure our system, we obtain the respective outcome r; with
T )]

probability |IL,, |¢)|* and the resulting state of the system becomes

As an example, suppose our Hilbert space H can be decomposed into orthogonal subspaces H =
S1 @ S;. When we measure {II, II,} which project into the orthogonal subspaces S; and Ss,
it causes the system to collapse to I1;|¢) /|I1;|¢)| or Tz|¢) /|IT5|¢)| with probability |IT;|¢)|* and
ITT5|¢)|? respectively.

An efficient quantum circuit consists of at most poly(n) local unitaries, followed by a measure-

ment.



There are universal finite gate sets for which any efficiently quantumly computable unitary can
be realized (up to exponentially small error) by a poly(n)-size quantum circuit [KSV02]. In this

thesis, we will use the Hadamard and Toffoli gate set. The Hadamard is a one qubit gate:

S s
-

Sl-

And the Toffoli is the three qubit gate implementing a Controlled-Controlled-Not, which simply
flips the state of the last qubit iff the first two qubits are 1. Together these are known to be a

universal gate set [Shi03].

2.3 Quantum Complexity and BQP

Definition 5 (Uniform family of quantum circuits). A uniform family of quantum circuits is a set
of efficient quantum circuits {Q,}, so that there exists a polynomial time Deterministic Turing

Machine that, on input x outputs a classical description of the circuit Q).

Definition 6 (BQP). A Decision Problem L € BQP iff there exists a uniform family of quantum
circuits {Q,} so that for all x € {0,1}*:

r € L=Pr[Q.0)=1]>2/3

And
r ¢ L=Pr[Q,]0)=1<1/3

Where implicitly in this definition, the quantum circuit makes a projective measurement on a des-

ignated qubit and accepts (outputs 1) iff it obtains a desired measurement outcome.

Theorem 7 (Bernstein & Vazirani [BV97]). BQP C P#P



Proof. We first prove a lemma that shows the acceptance probability of any uniform family of
quantum circuits can be expressed as the difference of two #P functions. In the proceeding dis-
cussion, we utilize a standard fact of quantum computation (see e.g., [NC00, BBBV97]), which is
we can assume without loss of generality that our quantum circuit has only a single accepting basis
state, which we denoted here by |0). This means that we can obtain the acceptance probability of
the quantum algorithm by looking at a single entry of the unitary matrix realized by the circuit,
(0|Q|0) (the idea of the proof is to use a Controlled-Not gate to “copy” the value of the output

qubit to an ancillary register, and uncompute all work qubits, which we assume were initialized to
0)).

Lemma 8 (Adaptation of Fortnow & Rogers [FR99][DHM™05]). Suppose L € BQP. Then L
can be decided by a uniform family of quantum circuits {C,}. Without loss of generality, we can
assume each C, is composed of at most polynomial number of Toffoli and Hadamard gates, since
this is a universal gate set. We let the number of Hadamard gates in the circuit C, be h(n)'. Then
there exists [, g € #P so that for every x € {0,1}":

f(z) —g(z)

01C=10) = =i

Proof. Fix anz € {0, 1}". Suppose C,, = U,,,U,_1...Uy with m € poly(n) where each Uj is either

a Hadamard gate acting on one qubit or a Toffoli gate which acts on three qubits. Clearly,

(OIC.10) = > (OUnlym) Y| Unm-1]ym—1)--- (|1 |0) (2.1)

y27”93,--~7ym€{071}"

Now consider the value of some term in the product a = (y;|U;_1|yi—1)-

e Suppose U;_; is a Toffoli gate acting on qubits k1, ks, k3, then a = 1 if y;(k1) = y;—1(k1),
Yi(k2) = yici(k2), i = vic1(ks) © yio1(k1)yi1(k2), and yi(k) = y;_1(k), for all k #

k1, ko, k3, and a = 0 otherwise.

'Note that this should technically be a function depending on x. We will use h(n) here because for all practical
purposes the number of Hadamard gates in circuit C,, should be independent of the input, x.

10



e Suppose U;_; is a Hadamard gate acting on qubit & then a = ;—% ify;(k) = y;_1(k) = 1 and
else \/%, if the bits outside & agree (i.e., if ¥;(j) = y;—1(j) for all j # k), or a = 0 if the bits

outside k£ don’t agree.

We refer to any term in the sum of Equation 2.1, corresponding to a setting of s, ..., ¥, € {0,1}",
as a path of the quantum circuit. We define the value of that path to be its contribution to the sum,
and an admissible path as one whose value is non-zero. Note that the absolute value of the value

of each nonzero path is =, and there are 2Mn) different admissible paths in our circuit. Let A

1
V2h(m)
be the set of admissible paths.

Additionally, we can breakup the set of admissible paths A, into the set of positive paths A, in

which the sign of the value of each admissible path y € A, is positive, and A_, in which the sign

of the value of each admissible path y € A_ is negative.

The theorem follows, letting f(z) be the number of admissible paths y so that y € A, and g(x) the
number of admissible paths y so thaty € A_. Since, given any path y, we can determine efficiently

if it belongs to A, or A_, this tells us that both f, g € #P.

Note that this immediately implies BQP C PSPACE, because we can simply compute the
value of each path in the sum of 2.1 using only a poly(n) amount of space. Lemma 8 proves
that BQP C P#&*PP where gapP is the difference of two #P functions. We can appeal to the

bounds (and the characterization of P#¥) proven in [FFK91] to show that this suffices to prove

BQP C P#P.

We will need the concept of quantum evaluation of an efficiently classically computable function

11



f:{0,1}™ — {0, 1}™, which in one quantum query to f maps:

Yo = Y o)z f)

z€{0,1}" z€{0,1}"

Note that this is a unitary map, as applying it again inverts the procedure, and can be done effi-

ciently as long as f is efficiently computable.

Assuming f is {0, 1}-valued, we can use this state together with a simple phase flip unitary gate to

prepare:

Y ) f()

ze{0,1}7
And one more quantum query to f, which “uncomputes” it, allows us to obtain the state > (—1)7@)|z).
ze{0,1}"
Equivalently, if the efficiently computable function is f : {0, 1} — {£1} we can think of this as a

procedure to prepare:

Y. f@)l)

z€{0,1}n

With two quantum queries to the function f.

2.4 Better Classical Algorithms for Simulating BQP using Ap-

proximate Counting?

Note that Theorem 30 tells us that we can approximately count any #P function on n variables to
within multiplicative error € in time poly(n, 1/€) with an NP oracle. We have shown in Lemma 8
that for any quantum circuit C,, the acceptance probability p, can be expressed as the difference
of two #P functions f and g, over a common denominator. A naive strategy towards deciding any

language in BQP is to approximate count f, approximate count g, and subtract the two estimates.

12



We need to ascertain how small we need to set our error tolerance € to approximate count f and g

to determine if p, > 2/3 or p, < 1/3.

We will show that this tolerance depends heavily on the choice of gate set. In particular for £ > 2

and 0 = 3 we define Ry to be the one qubit gate:

cosf) —sind

sinf cos6

Note that the gate set { Ry, 7'} is a universal gate set for quantum computation since we can always

“build” Hadamard gates out of & Ry gates.

Theorem 9. Let £ € BQP, and for any fixed k > 2, let 0 = 7 /2% and let {C,} be a uniform
family of quantum circuits deciding L, composed of {Ry, T} gates. Let |x| = n and let r(n)
be the number of Ry gates in circuit C,. We can decide whether p, > 2/3 or p, < 1/3 in
poly (n, (cos @ + sin G)T(n)> time with an NP oracle.

Proof. As before, any language £ € BQP can be decided by a uniform family of circuits {C., },
with each C, = U,U,,_;...U;, where Uj; is either Ry or T, for some fixed polynomial m &
2

poly(n). The acceptance probability on input x € {0, 1}" is p, = |(0|C,|0)|*. We can express this

probability as the square of the sum of efficiently computable terms and as before, we can write:

2

Pz = Z (O[Unn|Ym ) (Ym|Um—1|Ym—1)---(y2|U1(0) = ( Z U(Z/27-~-;ym)> (2.2)

Y250y yme{ozl}n Y2.-Ym

Define f.(ya, .., Ym) = 0(Y2, - Ym) iff 0(yo, ..., ym) > 0, and g, (Yo, ..., Ym) = —0(y2, ..., Y iff
(Y2, ey Ym) < 0.

Note that:

> v tm) = Y felWztn) = D ge(Y2, - Un)

Y2yeeey Ym Y2,y.eey Ym Y2yeeey Ym

Let D be an integer representing the “precision”, whose value will be set later. Since the value

13



of each path is efficiently computable, we can define two binary valued circuits £}, and GG, in the

following natural way:

Fo(Y2, s ym, 2 € [D]) =1 <= 2z < f.(y2, ..., Ym)D

and

G$(y27‘“7ymaz € [‘DD =1 <=z S gI<y27 7ym)D

Now note that, for all ys, ..., y,, € {0,1}™

fm<y27 7ym>D —1 S Z Fm<y27 ...,ym,Z) S fm<y27 7ym>D (23)
z€[D]
and
9o (Y2 s Ym)D =1 <> GalYa, oo Ymy 2) < Go(Y2, s Ym) D (2.4)
z€[D]
Note also:
Z fo(yas oy ym) D — 27 < Fo(Y2, ooy Ym, 2) < Z fe(y2, s ym)D  (2.5)
Y2,..ey Ym Y2,..0y Ym,Z Y2,..0y Ym
and
Z G (Y2s oy Ym) D — 27 < Z Go(Y2y ooy Ym,y 2) < Z 9z(Y2, -, ym)D  (2.6)
Y2yey Ym Y2y-eey Ym % Y2yeeny Ym

Lines 2.5 and 2.6 follow from lines 2.3 and 2.4, since there are exactly 2"(™) admissible paths in

the sum of line 2.2.

We need to determine the tolerance, ¢, required to decide if p, > 2/3 or p, < 1/3.

14



In the discussion that follows, we’ll use F' and G as shorthand for |F;(1)|, |G, '(1)| and we’1l use

f and g as shorthand for > f.(va2, ..., ym) and > gu(Y2, -, Ym)-

Y2,--ey Ym Y2;--5Ym

Formally, our goal is to find an o, as with the property:

(I1—-eF <a; < (1+4¢F

and

(1-¢eG<as < (146G

So that the quantity 52 allows us to distinguish between p, > 2/3 and p, < 1/3.

Note that:

F G a1 — Q9 F G
= — 7 < < (11— =
(1 E)D (1+6)D < 5 _(1+6)D (1 E)D
N F—G_G(F-'-G)<051—062<F—G+€(F+G>
D D - D - D D
(o o — o 2
g — — < < f —
= fr9-—p —eft9s—Fm—<f-g+—p +elf+y9)

Where the last implication follows from lines 2.5 and 2.6.

or(n)

So, we set D so that =5~ < ¢(f + g) and it follows that:

a1 — Q2

D

f—g9—2e(f+g) < <f-g+2(f+g)

Now setting € = 1 with the inequalities from above, and recalling that (0|C,|0) = f — g we

1
f+9)

have:
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(0[C:|0) —2¢(f +g) <

Then,

1. If p, > 2/3, then (0|C,|0) > \/2/3 or (0|C,|0) < —/2/3 and so:

0.7 < %1522 <0.93,0r —0.93 < 41522 < 0.7

2. If p, < 1/3,then 0 < (0|C,|0) < \/1/3 0or —4/1/3 < (0]|C,|0) < 0 and so:

0.47 < 292 < 0,67, or —0.67 < 21202 < (.47

These cases are distinguishable.

Now, by definition, f + g = > |v(y2,....,ym)|. We note that > |v(yz, ..., ym)| = (cos +
Y2,---Ym Y2,---Ym
sin #)"(™ since we can think of this sum as a binomial expansion in cos 6 and sin 6.

. . o 1 o 1
Now our theorem is proven, setting € = 5719 — Teostismdy ™" Then, for fixed § > 0 we
can simulate a generic quantum circuit with poly(n) Toffoli gates and (n) Ry gate gates, in time

poly(n, 1/€) = poly (n, 18 (cos # + sin G)T(”)> using Theorem 30.
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Chapter 3

The Complexity of Counting and the
Permanent function

3.1 Basic Counting Definitions and Results

In this section we consider the complexity of counting the number of solutions to NP-complete

problems.

Definition 10 (#P). A function f : {0,1}* — Z, is in #P iff there exists a polynomial p(n) and

a polynomial time Deterministic Turing Machine M so that for all x € {0,1}*:

fz) = [{y € {0,130 M(z,y) = 1}

In particular, we define the following #P function, which corresponds to counting the number of

satisfying assignments to a Boolean formula:

Definition 11 (#SAT). We define a function #SAT : {0,1}* — Z, which takes as input a

binary encoding of a formula ) and outputs the number of satisfying assignments to 1.

It is well known that #S AT is #P-complete, and can be proven as an easy extension of the Cook-

Levin theorem establishing the NP-completeness of SAT (see e.g., [AB09]). Due to a theorem
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of Toda, we know that PH is no harder than P#F:

Theorem 12 (Toda [Tod91]). PH C P#P

We also know that computing the Permanent of an n X n matrix with entries in {0, 1} is #P-

complete.

Theorem 13 (Valiant [Val79]). The function Permanent : {0, 1}"*" — Z defined by Permanent[X| =
> I @ioq) is #P-complete.

geSy =1

The fact that Permanent is in #P can be shown by the known equivalence between the Permanent
of a {0, 1} matrix and counting the number of perfect matchings in a bipartite graph. Deciding if
there is perfect matching in a bipartite graph is in NP (and in fact, in P by the Hopcroft-Karp
algorithm [HK73]) and so counting the number of perfect matchings is a #P problem. Valiant
showed that counting the number of perfect matchings in a bipartite graph is also #P hard, and so

itis as hard as #SAT.

3.2 The Hardness of Multiplicative Estimation of the Perma-

nent

In this work we will be interested in the robustness of this hardness result. First we state a famous
result of Jerrum, Sinclair and Vigoda which tells us that we can achieve a multiplicative estimate

to the Permanent of an n X n matrix with positive entries.

Theorem 14 (Jerrum, Sinclair, Vigoda [JSV04]). Given as input a matrix X € Z1*", we can
approximate Permanent[X] to within multiplicative error € = 1/poly(n), so that our output «
is:

(1 — ¢)Permanent[X| < a < (1 + ¢)Permanent[X|

In randomized poly(n) time.
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However, we now show that the hardness result of Valiant is robust to multiplicative polynomial

error, if we allow for matrices with positive and negative integer entries.

Theorem 15 (Aaronson [Aarl1]). Given as input a matrix X € 7", where integer entries are
described by binary values of length poly(n), it is #P-hard to approximate Permanent|X]| to

within multiplicative error € = 1/poly(n), so that our output o is:

(1 — ¢)Permanent[X] < a < (1 + ¢)Permanent|X|

(Proof Sketch following [Aarl1]). We give a sketch of the proof. The full proof uses facts about

linear-optics circuits that are beyond the scope of this thesis, but can be found in [Aar11].

Claim 16. Given as input a description of a classical circuit Cy that computes a function f :

{0,1}" — {0,1}, computing > Cy(x) is #P-hard.

z€{0,1}"
This claim is a simple consequence of the #P-hardness of #SAT, for if we can solve this prob-

lem, we can compute the number of satisfying assignments to an arbitrary n-variate Boolean for-

mula ¢ with at most poly(n) clauses, by allowing C, to be the circuit encoding ) and computing

2. Cy(z).

z€{0,1}"

Corollary 17. Given as input a description of a classical circuit Cy that computes a function

f:{0,1}" — {£1}, computing >, Cy(x) is #P-hard.

z€{0,1}"

Proof. Given the ability to compute this sum for a {£1}-valued circuit, we will show that we can

obtain )  Cy(x), where C, is a circuit that computes g : {0,1}" — {0, 1}. As stated in Claim
ze{0,1}"

16 this is #P-hard.

Note by adding an extra dummy variable, we can ensure without loss of generality that £ =

> Cy(z) < 271, Now we simply produce from C, a {£1} valued circuit C; defined to
ze{0,1}™
be equal to 1 on inputs = for which Cy(z) = 0 and —1 on inputs = for which Cy(z) = 1. Now

note that Y Cy(z) = 2" — 2k and so we can obtain k by simply subtracting 2" and dividing

ze{0,1}™
by —2. O
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We now prove a lemma that is the primary technical hurdle involved in the proof of this theorem.

Lemma 18. Given as input the description of an efficient classical circuit C'y computing a func-
tion f : {0,1}" — {£1} we can efficiently obtain a matrix X so that we can efficiently find

> zefoay Cr(x) given the ability to compute Permanent[X].

Proof. Our sketch proceeds with three Claims which taken together give our proof.

Claim 19. There exists a classical algorithm that takes as input an efficient classical circuit Cy
computing a function f : {0,1}" — {1} and outputs the description of an efficient quantum

circuit (), running in time poly(n, |C|) with the property:

>, Cy(x)

z€{0,1}m

(00...0|Q|00...0) = o

Proof. Consider the following quantum circuit () that is initialized on the all-zeros basis state

|00...0) on n qubits:

1. Prepare the state 51 >,  |z)

ze{0,1}7

2. We can multiply C;(z) into the phases, with two quantum queries to C resulting in: |Cy) =
s 2 Crla)lz)

ze{0,1}m

3. Apply the Hadamard, H®"

Note that H®"|Cy) = & S Y (=)@ (x)|y)

2n
ye{0,1}" z€{0,1}"

The key observation that we are about to use is that (00...0/Q]00..0) = (00...0|H®"|C}) =
> Cy(z)

% and therefore encodes a #P-hard quantity in an exponentially small amplitude. It

is not hard to see (by fixing a universal quantum gate set), that the classical description of such a

quantum circuit can be generated classically. [
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Claim 20. By the quantum universality of “Postselected linear optics”, as shown by [MRW*01],
there exists a polynomial time classical algorithm that converts any quantum circuit () to a Linear-
optics circuit L so that the amplitude to which L maps its initial state to itself is proportional to

(00...0|Q|00...0). In particular, if we know this amplitude we can efficiently obtain (00...0|Q|00...0).

Using the two Claims together allows us to take a classical circuit C'y that computes a function
f 40,1} — {£1} and produce a quantum state generated by a Linear-optics circuit, with
an amplitude proportional to > Cj(z). The next Claim connects this observation to the

ze€{0,1}m
Permanent function.

Claim 21. The amplitude to which an n-photon Linear-optics circuit L maps its initial state to
itself can be expressed as the Permanent of an n x n matrix. This matrix can be efficiently

obtained from the description of the circuit itself.

Putting all the Claims together we prove Lemma 18, and conclude that if we can compute the

Permanent of an arbitrary matrix, we have an efficient classical algorithm that uses this ability

tocompute Y Cj(x) for any efficiently computable f : {0,1}" — {£1}. By Corollary 17 we
ze{0,1}"

conclude that this allows us to solve #P-hard problems. As noted in [Aar11] this gives a reproof

of Valiant’s theorem that computing Permanent exactly is #P-hard. [

We can also use this to show our desired result, namely that computing a multiplicative estimate to
the Permanent is #P-hard. Note that if we can compute the estimate guaranteed in the statement
of the theorem, we can certainly compute the sgn(Permanent[X]) = \PP’E%W' We will
now show that even computing the sgn(Permanent[X]) function is #P-hard. As mentioned
before, the above Claims allow us to construct a matrix whose Permanent is proportional to

> C(z). Thus, if we can compute the sgn(Permanent|[X]) function we can certainly compute

the sgn(>_ C(z)) function. We now prove that this task is #P-hard.

Lemma 22. Given as input a circuit C'y which computes a function f : {0,1}" — {£1}, comput-

ing sgn ( > C’f(x)> is #P-hard.

z€{0,1}"
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Proof. First we note that by adding extra input bits to the circuit C'y we can create a circuit C’](ck) SO

that > C’}k) (x) = ( > f(x)) + k and likewise a circuit C’J(c_k) sothat ) C}_k) (x) =

z€{0,1}" z€{0,1}" z€{0,1}"

ze{0,1}»

> f($)> — k.

Now we give a binary search procedure that exactly computes Y Cy(x) given only the ability
z€{0,1}"

to compute sgn > C f(x)) (which we will refer to in passing as “checking the sign” of the
z€{0,1}"
circuit). The procedure proceeds in phases, using our ability to check the sign once in each phase.

In the first phase, check the sign of C'; and if it’s positive, we know that 0 < Cy(z) < 2™
ze{0,1}"

_on—1 . .
Now we create a new circuit, C'](c ) Ifits negative, we know that —2" < %~ Cf(z) <0
z€{0,1}"

. . gn—1 . . . .
and we create a new circuit CJ(c ). The second phase proceeds with whichever new circuit was

,2)

-2 . . . .. n—2
created, checks the sign, and again creates a new circuit C’J(c 2 if the sign is positive and C](c2 )

if the sign is negative. Repeat this process, each time dividing in half until we have found the true

valueof > Cy(z).

z€{0,1}"

This concludes our proof of the theorem as stated. 0

Now we prove that even computing a multiplicative error estimate to Permanent?[X] is #P-

hard.

Theorem 23. Given as input a matrix X € 7", it is #P-hard to approximate Permanent?[ X

to within multiplicative error € > 1/poly(n), so that our output o is:
(1 — ¢)Permanent’[X] < a < (1 + ¢)Permanent®[X]|

Proof. Note that using the same methodology as in Lemma 18, we have established that, given as

input the description of any classical circuit C'y computing a function f : {0,1}" — {£1} we can
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2
efficiently obtain a matrix X so that we can efficiently find <Zm cioyn C f(x)> given the ability to

compute Permanent?[X]. It is also clear from our discussion above that a multiplicative estimate

2

to Permanent?[X] is also a multiplicative estimate to ( > C'f(x)) . We will show that the
ze{0,1}"

latter problem is #P-hard, which suffices to prove the theorem.

Lemma 24. Given a circuit C'y that computes a function f : {0,1}" — {x1}, it is #P-hard to

2
approximate ( > C'f(x)> to within multiplicative error € > 1/poly(n), so that our output o
z€{0,1}"
is:
2 2

-9 3 @] caca+o| 3 @

ze€{0,1}" ze€{0,1}"

2

Proof. We will show how to compute ( > C f($)> , which we define as f3, exactly using the
ze{0,1}"

ability to compute this multiplicative error estimation.

Let R = 22", We start by finding o, a (1 + }l)—multiplicative estimate to 5. We know that:

. 1/2 p
1. Ifa < iR, then: 33 < o < R,andso, § < 7R = iR.

2. Ifa> iR, then 26 > a > 1R, and so, 8 > 12p — 2R.

Now in either case we have ascertained a bound for 5. In case 1, we know that 5 € [0, %R} In case

2, we know that 3 € [%R, R]. In case 1, we can repeat with procedure with R = 2". In case 2, as

2

in Lemma 22, we can produce a padded circuit, C’} so that 0 < ( > C}) < 2R and repeat
ze{0,1}"

the process with R = 2". Continue dividing R in half, repeating the process until 3 is ascertained

exactly. [
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3.3 The Hardness of Computing the Permanent over [ on Most

Matrices

Now we show that it is also #P-hard to compute Permanent® on most matrices over a suffi-

ciently large finite field. An analogous argument works for the Permanent function.

Theorem 25 (Lipton [Lip91]). If there is a randomized polynomial time algorithm O such that:

P)’(r [O(X) = Permanent®[X]] > 1 —1/(6n+3)

With each element in X chosen uniformly at random from a finite field ¥ of size at least 2n+1, then
we can use O at most a poly(n) number of times to compute Permanent2[X | for any X € F»"

in randomized poly(n) time.

Proof. The proof uses only that the Permanent? function is of degree 2n. We need to compute
the Permanent?[X] for an arbitrary X € F"*". Consider a procedure that chooses a random
Y € F™*™ and then picks an arbitrary subset S C [ of cardinality 2n + 1 which doesn’t include
0. For each s € S, compute the value a; = O(X + sY'). Use Lagrange linear interpolation to
compute the unique polynomial p(s) of degree 2n such that p(s) = a, for all s € S, and output
p(0). First we note that since Y is chosen uniformly at random from F"*", it is clear that, for each

s, X + sY is uniformly distributed over F"*". As a direct consequence of this we know:

Lemma 26. For each X,
P;r [Vs € S': p(s) = Permanent”® [X + sY]] > 2/3
Proof. For each X, invoking a union bound, we have:

f;/r [3s € S : Permanent” [X + sY] # p(s)] < Z Pr [Permanent” [X + sY] # p(s)]
seS
< 2n+1 _
—6n+3

1/3
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Where the last inequality comes from the error probability of O. [l

Now conditioned on p(s) = Permanent” [X + sY] forall s € S it follows that p(0) = Permanent?®[X|
because, for fixed X and Y the univariate polynomial f(s) = Permanent?[X + sY] and p(s) are

of degree 2n and agree on 2n + 1 points. 0

Now we will show that we can prove this hardness result even when the matrix values are Real and

the entries are distributed from an “autocorrelatable” distribution.

Definition 27 (Autocorrelatable distribution). We say a continuous distribution D over R is auto-

correlatable if there exists some constant ¢ > 0 so that for all e > 0 and z € [—1,1]:

/ D(x) = D((1— )z +e2)] d < ce

For example, Aaronson and Arkhipov [AA13] have shown that the Gaussian Distribution with

mean O and variance 1 is autocorrelatable.

Theorem 28 (Generalizing [AA13]). Suppose D is some autocorrelatable distribution over R that

can be sampled efficiently, and we are given an oracle O so that:

. I;rX [O(Y) = Permanent?[Y]] > 3/4+§

for some 6 = 1/poly(n). Then given an X € [—1,1]"*", we can use O at most poly(n) times to

compute Permanent?®[ X .

Proof. First we cite the Berlekamp-Welch algorithm on noisy interpolation of univariate polyno-

mials over arbitrary fields, [F:

Theorem 29 (Berlekamp-Welch [Ber84]). Let q be a univariate polynomial of degree d over any

field F. Suppose we are given m distinct pairs of F-elements (x1,y1), (2, y2)...(Tm, Ym) and are
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m+d

promised that q(x;) = y; for at least ™5 values of i. There exists a deterministic algorithm to

reconstruct q using poly(n, d) field operations.

Given X € [—1,+1]"*", we choose Y ~ D™ and let X(t) = (1 — )Y + tX. Note that
X(1) = X and X (0) = Y. We define the univariate polynomial ¢(¢) of degree at most 2n, so that
q(t) = Permanent[X (t)]°.

We can no longer guarantee that the matrix X (¢) is distributed from D"*™, but for small enough

values of ¢, we can show that the distribution it is drawn from is close in statistical distance.

Now let S = 2 and e = 5-2—. For every s € [S] we define a, = O(X (es)). Our goal is to use the

2cSn?”

Berlekamp-Welch algorithm, Theorem 29, to recover ¢(t), using the noisy evaluations as. Then

we simply return ¢(1) = Permanent®[X] as desired.

We know by definition:

Pr [O(Y) = Permanent[Y]?] > 3/4 +§

Y ~Dnxn

Then if we let Dy be the distribution the matrix X (es) is drawn from, we have:
Pr[O(X(es)) = q(es)] > 3/4+ 5 — | D™ —Dy|| > 3/4+ 6 — ceSn* =3/4+6/2

Where the second inequality follows from the triangle inequality and the fact that D is autocorre-

latable.

Let T be the set of s so that g(es) = as.

By Markov:
Pr ||T| > 1+5 S| >1 le_g>1+5
r f— — J— f— —
—\2 2 - %—g -2 2
Since S = 2n/dJ we have that (% + %) S = % = %1 when the number of sampled points

m = S and the degree d = 2n and so we can use Berlekamp-Welch algorithm from Theorem 29
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to compute Permanent®[X| whenever [T > (3 + §) S.

By repeating O(1/6?) times for different choices of Y and taking the majority vote, we can com-

pute Permanent?[X].

We now summarize these results in a table, which describes known hardness results for the Permanent?

(or equivalently, the Permanent) function.

Approximation | Entries in Matrix | Success Probability #P-hard?
exact {0,1} or Z 1 Yes! Thm. 13
e-multiplicative | Z, 1 Easy [JSV04]
e-multiplicative | Z 1 Yes! Thm. 15
exact F,,p=2n+1 |1—-1/(6n+3) Yes! Thm. 25
exact R 3/4 + 1/poly(n) (over autocorr. dist.) | Yes! Thm. 28
e-multiplicative | R 1 —1/poly(n) ?

We also note that the Lipton result, Theorem 25, is known to be true for much stronger set-

tings of parameters, using more sophisticated interpolation techniques (see [AA13] for a complete

overview.)
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Chapter 4

The Power of Exact Quantum Sampling

In this section we prove that, unless the PH collapses to a finite level, there is a class of distri-
butions that can be sampled efficiently on a Quantum Computer, that cannot be sampled exactly
classically. To do this we (again) cite a theorem by Stockmeyer on the ability to “approximate

count” inside the PH.

Theorem 30 (Stockmeyer [Sto85]). Given as input a function f : {0,1}" — {0,1}™ and y €

{0,1}™, there is a procedure that outputs « such that:

(1—¢ Pr [flz)=yl<a<(l+e Pr [f(z)=y]
z~Uyg 130 z~Uyg 130

In randomized time poly(n, 1/¢) with access to an NP oracle.

Note that as a consequence of Theorem 30, given an efficiently computable f : {0,1}" — {0,1}
f(x)

we can compute a multiplicative approximation to Pry~u, . [f(2) = 1] = % in the PH.

Despite this, we have shown, as a consequence of Theorem 22, that the same multiplicative ap-

proximation becomes #P-hard if f is {#1}-valued.
Now we show the promised class of quantumly sampleable distributions:
Definition 31 (D;). Given f : {0,1}" — {£1}, we define the distribution Dy over {0,1}" as
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follows:

DP;}; ly] = 5o

The fact that this is a distribution will follow from the proceeding discussion.

Theorem 32. For all efficiently computable f : {0,1}" — {£1} we can sample from Dy in

poly(n) time on a Quantum Computer.
Proof. Consider the following quantum algorithm:

1. Prepare the state 525 ». |z)

ze{0,1}m
2. Since by assumption f is efficiently computable, we can apply f to the phases (as discussed

in Section 2.3), with two quantum queries to f resulting in:

N=gp > f@l)

z€{0,1}"

3. Apply the n qubit Hadamard, H®"

4. Measure in the standard basis

Note that H*"|f) = o5& > S>> (=1)@¥ f(z)|y) and therefore the distribution sampled by
ye{0,1}" ze{0,1}™
the above quantum algorithm is Dy. [

2
()
As before, the key observation is that ((00...0( H®"|f))* = ~==%°—~and therefore encodes
a #P-hard quantity in an exponentially small amplitude. We can exploit this hardness classically
if we assume the existence of a classical sampler, which we define to mean an efficient random

algorithm whose output is distributed via this distribution.
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Theorem 33 (Folklore, e.g., [Aarll]). Suppose we have a classical randomized algorithm B,

which given as input 0", samples from Dy in time poly(n), then the PH collapses to BPPNP.

Proof. The proof follows by applying Theorem 30 to obtain an approximate count to the fraction

of random strings  so that B(0",r) = 00..0. Formally, we can output an « so that:

( {Ozl}nfu)) ( {Ozl}nﬂo:))
(1-0 -~ <ax T (1

+€)

In time poly(n, 1/¢) using an NP oracle. Multiplying through by 22" allows us to get a multiplica-

2
tive approximation to ( >oof (a:)) in the PH. This task is #P-hard, as proven in Theorem
ze{0,1}m

23. Since we know by Theorem 12, PH C P#P, we now have that P#P C BPPYF = PH C
BPP™? leading to our theorem. Note that this theorem would hold even under the weaker as-

sumption that the sampler is contained in BPPFH, [

We end this Chapter by noting that Theorem 33 is extremely sensitive to the exactness condition
imposed on the classical sampler, because the amplitude of the quantum state on which we based
our hardness is only exponentially small. Thus it is clear that by weakening our sampler to an
“approximate” setting in which the sampler is free to sample any distribution Y so that the Total
Variation distance ||Y —Dy|| < 1/poly(n) we no longer can guarantee any complexity consequence
using the above construction. Indeed, this observation makes the construction quite weak— for
instance, it may even be unfair to demand that any physical realization of this quantum circuit
itself samples exactly from this distribution! In the proceeding sections we are motivated by this
apparent weakness and discuss the intractability of approximately sampling in this manner from

quantumly sampleable distributions.
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Chapter 5

The Hardness of Approximate Quantum
Sampling

5.1 Approximate Sampling Definitions

In this section we define some simple terms which we will refer to throughout. As discussed in the
prior section, we will be interested in demonstrating the existence of some distribution that can be
sampled exactly by a uniform family of quantum circuits, that cannot be sampled approximately
classically. Approximate here means close in Total Variation distance, where we refer to the Total
Variation distance between two distributions X and Y by || X —Y||. Thus we define the notion of a

Sampler to be a classical algorithm that approximately samples from a given class of distributions:

Definition 34 (Sampler). Let {D,, },~0 be a class of distributions where each D,, is distributed
over C". Let r(n) € poly(n),e(n) € 1/poly(n). We say S is a Sampler with respect to {D,,} if

1S(0", 2 ~ Ug 1yrtm, 0Y/¢(M)) — D, || < e(n) in (classical) polynomial time.

In the next sections we will show a general class of distributions in which the existence of a Sampler
implies the existence of an efficient approximation to an Efficiently Specifiable polynomial in the

following two contexts:

Definition 35 (e—additive J-approximate solution). Given a distribution D over C" and P : C"* —
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Cwe say T : C" — C is an e—additive approximate —average case solution with respect to D,

toP:C"— C, if Prpop||T(x) — P(z)| < ¢ >1-0.

Definition 36 (¢e—multiplicative d-approximate solution). Given a distribution D over C" and a
function P : C* — Cwe say T : C" — C is an e—multiplicative approximate 6—average case

solution with respect to D, if Pr,p[|P(z) — T(x)| < €|P(x)|] > 1 —=4.

These definitions formalize a notion that we will need, in which an efficient algorithm computes
a particular hard function approximately only on most inputs, and can act arbitrarily on a small

fraction of remaining inputs. We conclude the section by giving two more definitions.

Definition 37 (T;). Given { > 0, we define the set T, = {wg, wl}..., wffl} where wy is a primitive

(-th root of unity.

We note that T is just £ evenly spaced points on the unit circle, and Ty = {£1}.

Definition 38 (5(0, k)). For k an even integer, we define the distribution B(0, k) over [—k, k], so

that:

(4)

P — 2
sk y] .

if yiseven

otherwise

5.2 Efficiently Specifiable Polynomial Sampling on a Quantum

Computer

In this section we describe a general class of distributions that can be sampled efficiently on a

Quantum Computer.

Lemma 39. Let h : [m] — {0,1}" be an efficiently computable one-to-one function, and sup-

pose its inverse can also be efficiently computed. Then the superposition \/—% > |h(x)) can be

x€[m)]
efficiently prepared by a quantum algorithm.
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Proof. Our quantum procedure with first register consisting of m qubits and second of n qubits

proceeds as follows:

1. Prepare \/% xe%ﬂ |)]00...0)

2. Query h using the first register as input and the second as output:

«% S [0)lh())

z€[m]

3. Query h~! using the second register as input and the first as output:

1 1
—= > [r @ h7 (@) b)) = —= 3 [00..0)|(x))
vim Vi

z€[m]

4. Discard first register

]

Definition 40 (Efficiently Specifiable Polynomial). We say a multilinear homogenous n-variate
polynomial Q) with coefficients in {0,1} and m monomials is Efficiently Specifiable via an effi-
ciently computable, one-to-one function h : [m| — {0, 1}", with an efficiently computable inverse,
Q(X1, Xy, Xp) = Y X MO XM X, Mo
z€[m]

Definition 41 (Dg, ¢). Suppose () is an Efficiently Specifiable polynomial with m monomials. For
fixed Q and {, we define the class of distributions D¢ 4 over (-ary strings y € [0, — 1] given by:

_1Q(Z,))?
2;zzr,e[y] = i

Where Z, € T} is a vector of complex values encoded by the string y.
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Theorem 42. Given a polynomial, () with m monomials and ¢ < exp(n), Efficiently Specifiable

relative to h, the resulting D¢, can be sampled in poly(n) time on a Quantum Computer.

Proof. Note that h maps from [m] to {0, 1}" and we note that {0,1}" C [0,¢ — 1]".

3k

1. We start in a uniform superposition over qudits of dimension /, —— GZ[:} |2).
zem

2. We then apply Lemma 39 to prepare \/Lfn > |h(2)).

z€[m]
3. Apply Quantum Fourier Transform over Zj to attain

A S E Gy
M 1001 2Em] ¢

Notice that the amplitude of each y basis state in the final state is proportional to the value of

Q(Zy)-

5.3 Classical Hardness of Efficiently Specifiable Polynomial Sam-

pling

In this section we use Stockmeyer’s Theorem 30, together with the assumed existence of a classical

sampler for Dy, , to obtain hardness consequences.

Theorem 43. Given an Efficiently Specifiable polynomial () with n variables and m monomials,
and a Sampler S with respect to Dy, there is a randomized procedure T' : C* — C, an (e -
m)—additive approximate §—average case solution with respect to the uniform distribution over
T?, to the |Q|* function, that runs in randomized time poly(n,1/e,1/5) with access to an NP

oracle.
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Proof. We need to give a procedure that outputs an emn-additive estimate to the |Q|* function eval-
uated at a uniform setting of the variables, with probability 1 — § over choice of setting. Setting
8 = %, suppose S samples from a distribution D’ such that ||Dg, — D'|| < 5. We let p, be

Prp, ,[y] and g, be Prp/[y].

Our procedure picks a uniformly chosen encoding of a setting y € [0, ¢ — 1]™, and outputs an esti-

mate g,. Note that p, = [QEZ)E Thyg our goal will be to output a g, that approximates p, within

mm

_m__ €
Inm 4

additive error ¢ in time polynomial in n, % and %.

We need:

- €
Prlld, — pyl > 5] <0
Yy

First, define for each y, A, = [p, — ¢,|, and so | Do, — D'|| = 5 >_[A,].
Y

Note that:

20
Ey[Ay] = /n - g_n
And applying Markov, V& > 1,
k26 1
].:;I'[Ay > f_n] < E

Setting k = %, 8 = <, we have,
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e 1 é

Pr[A - —
yr[ y>2 E”}<4

Then use approximate counting (with an NP oracle), using Theorem 30 on the randomness of S

to obtain an output g, so that, for all v > 0, in time polynomial in n and %:

- 1
Pr”‘ly - Qy| > Qy] < on

Because we can amplify the failure probability of Stockmeyer’s algorithm to be inverse exponen-

tial. Note that:

>4y
Ey [Qy] S yfn = E_n
Thus,
k 1
P —_

Now, setting 7 = % and applying the union bound:

€ 1 1
G — <
1:;1"“(]3/ Pyl > gn] = P;rHQy Qyl > B gn] +Pr“‘1y Pyl > 5 2 gn]
k e 1
< Prlg, _n] +Pr(|G, —qy| >7v-q)] +Pr[A, > - —]
y 14 y 2 ([
< 1+ 1 n )
—k 2 4
o 1
< -4+ — <4
=5 + on =
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Now, as proven in Section 5.5, we note that the variance of the distribution over C induced by
an Efficiently Specifiable ) with m monomials, evaluated at uniformly distributed entries over
T} is m, and so the preceeding Theorem 43 promised us we can achieve an eVar [Q]-additive
approximation to ), given a Sampler. We now show that, under a conjecture, this approximation
can be used to obtain a good multiplicative estimate to Q*. This conjecture effectively states that

the Chebyshev inequality for this random variable is tight.

Conjecture 1 (Anti-Concentration Conjecture relative to an n-variate polynomial ¢) and distribu-

tion D over C"). There exists a polynomial p such that for all n and § > 0,

Pr ‘Q(X)|2<Var[Q(X>]

o pn1/0) | <°

Theorem 44. Assuming Conjecture 1, relative to an Efficiently Specifiable polynomial () and a
distribution D, a eVar [(Q)]-additive approximate d-average case solution with respect to D, to the
|Q|? function can be used to obtain an €' < poly(n)e-multiplicative approximate §' = 26-average

case solution with respect to D to |Q|*.

2 as

Proof. Suppose A is, with high probability, an eVar [Q]-additive approximation to |Q(X)

guaranteed in the statement of the Theorem. This means:

H)‘ - |Q(X)|2‘ > eVar [Q]] <6

Pr
X~D

Now assuming Conjecture 1 with polynomial p, we will show that A is also a good multiplicative

approximation to |Q(X)|? with high probability over X.

By the union bound,
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A = QX[

ot ep(n,1/6) g |Q(X)|2] =55 [1A = 1QEOF| > evar [Q]] +
eVar [Q)] 9
o5 Lp(n,l/(S) > QX))
<20

Where the second line comes from Conjecture 1. Thus we can achieve any desired multiplicative

error bounds (€', §") by setting § = ¢’/2 and € = €/ /p(n, 1/6).

For the results in this section to be meaningful, we simply need the Anti-Concentration conjecture
to hold for some Efficiently Specifiable polynomial that is #P-hard to compute, relative to any
distribution we can sample from (either U,,, or (0, k)™). We note that Aaronson and Arkhipov
[AA13] conjectures the same statement as Conjecture 1 for the special case of the Permanent
function relative to matrices with entries distributed independently from the complex Gaussian

distribution of mean 0 and variance 1.
Additionally, we acknowledge a result of Tao and Vu who show:

Theorem 45 (Tao & Vu [TVO08]). For all ¢ > 0 and sufficiently large n,

vn! 1
Pr |Permanent[X]| < o —
Xe{£1}nxn nEn no-1

Which comes quite close to our conjecture for the case of the Permanent function and uniformly
distributed {£1}"*" = T3*" matrix. More specifically, for the above purpose of relating the
additive hardness to the multiplicative, we would need an upper bound of any inverse polynomially

large ¢, instead of a fixed n 1.
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5.4 Sampling from Distributions with Probabilities Proportional

to [—k, k| Evaluations of Efficiently Specifiable Polynomials

In the prior sections we discussed quantum sampling from distributions in which the probabilities
are proportional to evaluations of Efficiently Specifiable polynomials evaluated at points in T7.
In this section we show how to generalize this to quantum sampling from distributions in which
the probabilities are proportional to evaluations of Efficiently Specifiable polynomials evaluated at
polynomially bounded integer values. In particular, we show a simple way to take an Efficiently
Specifiable polynomial with n variables and create another Efficiently Specifiable polynomial with
kn variables, in which evaluating this new polynomial at {—1, +1}*" is equivalent to evaluation

of the old polynomial at [k, k|".

Definition 46 (k-valued equivalent polynomial). For every Efficiently Specifiable polynomial ()
with m monomials and every fixed k > 0 consider the polynomial Q), : T5" — R defined by
replacing each variable x; in () with the sum of k new variables xgl) + :L’EQ) + ...+ xz(k). We will
call O}, the k-valued equivalent polynomial with respect to Q).

Theorem 47. Suppose () is an n-variate, homogeneous degree d Efficiently Specifiable polynomial
with m monomials relative to a function h : [m] — {0,1}". Let k < poly(n) and let Q). be the
k-valued equivalent polynomial with respect to (). Then ()}, is Efficiently Specifiable with respect

to an efficiently computable function h' : [m] x [k]? — {0, 1}*".

Proof. We first define and prove that A’ is efficiently computable. We note that if there are m
monomials in (), there are mk? monomials in ()’. As before, we’ll think of the new variables
in O, as indexed by a pair of indices, a “top index” in [k] and a “bottom index” in [n]. We

are labeling each variable in @’ as xgj ), the j-th copy of the i-th variable in (). We are given
x € [m] and y1,ya,...,yqs € [k]. Then, for all : € [n] and j € [k], we define the output, z =

Wz, y1, Y2 -y Ya)ij = L iff:

1. h(z); =1
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2. If h(x); is the ¢ < d-th non-zero element of h(x), then we require y, = j

We will now show that 4'~! is efficiently computable. As before we will think of z € {0, 1}*"
as being indexed by a pair of indices, a ‘top index” in [k] and a “bottom index” in [n]. Then we
compute h'~1(z) by first obtaining from z the bottom indices ji, jo, ..., jq and the corresponding
top indices, i1, i, ..., ig. Then obtain from the bottom indices the string = € {0, 1}" corresponding

to the indices of variables used in @) and output the concatenation of h~*(z) and jy, jo, ..., ja-.

5.5 Computation of the Variance of Efficiently Specifiable Poly-

nomial

In this section we compute the variance of the distribution over C induced by an Efficiently Speci-
fiable polynomial () with assignments to the variables chosen independently from the B(0, k) dis-
tribution. We will denote this throughout the section by Var [(Q)]. Recall, by the definition of
Efficiently Specifiable, we have that () is an n variate homogenous multilinear polynomial with
{0,1} coefficients. Assume () is of degree d and has m monomials. Let each [—k, k] valued

variable X; be independently distributed from B(0, k).

We adopt the notation whereby, for j € [m],l € [d], x, is the I-th variable in the j-th monomial of

Q.

m d

Using the notation we can express Q(X1, ..., X,,) = > [ Xj,. By independence of these random
j=11=1

variables and since they are mean 0, it suffices to compute the variance of each monomial and

multiply by m:
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d

HXJ?‘Z] (5.1)
d d

=mE [HXi] =m][E [X7] (5.2)

—m (E [X2])* (5.3)

Now since these random variables are independent and identically distributed, we can calculate the

variance of an arbitrary X, for any j € [m] and [ € [d]:

X;] :lkzk:[ k= 2i) (kﬂ (5.4)

(5.5)

Thus, the variance of () is:
1 (< SA%
e (3 [0 (1))
i=0

It will be useful to calculate this variance of () in a different way, and obtain a simple closed form.
In this way we will consider the k-valued equivalent polynomial @}, : T%* — C which is a sum of
m’ = mk? multilinear monomials, each of degree d. As before we can write Q) (X1, ..., X,z) =
% [T X}, Note that the uniform distribution over assignments in T4" to @)}, induces B(0, k)™ over
j=1i=1

[—Fk, k]™ assignments to (). By the same argument as above, using symmetry and independence of

random variables, we have:
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Var [Q(X1, X, ..., X)) =Var [Q}, (X1, Xa, ..., Xot)] (5.6)
d
=m'[[E [X7] (5.7)

=1
—m'E [X2] = 1% = m' = k%m (5.8)
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Chapter 6

Examples of Efficiently Specifiable
Polynomials

In this Chapter we give two examples of Efficiently Specifiable polynomials.

6.1 Permanent is Efficiently Specifiable

Theorem 48. Permanent (21, ...,x,2) = > [] %, is Efficiently Specifiable.
0€Sy 1=1

Proof. We note that it will be convenient in this section to index starting from 0. The Theorem
follows from the existence of an hpermanent : [0, 2! — 1] — {0, 1}"2 that efficiently maps the ¢-th

permutation to a string representing its obvious encoding as an n X n permutation matrix. We will

-1

prove that such an efficiently computable /permanent €Xists and prove that its inverse, Npg,manent

is also efficiently computable.

The existence of Apermanent fOllows from the so-called “factorial number system” [Knu73], which
gives an efficient bijection that associates each number in [0, n! — 1] with a permutation in S,,. It
is customary to think of the permutation encoded in the factorial number system as a permuted

sequence of n numbers, so that each permutation is encoded in n log n bits. However, it is clear
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that we can efficiently transform this notation into its permutation matrix (using, for example, the
trivial algorithm that searches for the positions of each of n elements in the n log n bit encoding),

and vice-versa.

To go from an integer j € [0, n! — 1] to its permutation we:

1. Take j to its “factorial representation”, an n number sequence, where the i-th place value is
associated with (7 — 1)!, and the sum of the digits multiplied by the respective place value
is the value of the number itself. We achieve this representation by starting from (n — 1)!,

setting the leftmost value of the representation to j' = | , letting the next value be

(nzl)!J

Ljfj’-(nfl)!

=] | and continuing until 0. Clearly this process can be efficiently achieved and

efficiently inverted, and observe that the largest each value in the i-th place value can be is 1.

2. In each step we maintain a list £ which we think of as originally containing n numbers in

ascending order from 0 ton — 1.

3. Repeat this step n times, once for each number in the factorial representation. Going from
left to right, start with the left-most number in the representation and output the value in that

position in the list, /. Remove that position from /.
4. The resulting n number sequence is the encoding of the permutation, in the standard n log n
bit encoding
To go from a permutation to its factorial representation, we can easily invert the process:
1. In each step we maintain a list £ which we think of as originally containing n numbers in
order from O ton — 1.

2. Repeat this step n times, once for each number in the encoding of the permutation. Going

from left to right, start with the left-most number in the permutation and output the position
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of that number (where we start with the 0-th position) in the list, /. Remove that number

from /.

6.2 The Hamiltonian Cycle Polynomial is Efficiently Specifi-
able

Given a graph GG on n vertices, we say a Hamiltonian Cycle is a path in G that starts at a given

vertex, visits each vertex in the graph exactly once and returns to the start vertex.

Likewise we define an n-cycle to be a Hamiltonian cycle in the complete graph on n vertices. Note

that there are exactly (n — 1)! n-cycles in .S,,.

Theorem 49. HamiltonianCycle (z1,...,x,2) = Y [[ @icq) is Efficiently Specifiable.

o:n—cycle i=1

Proof. We can modify the algorithm for the Permanent above to give us an efficiently computable

hue - [0, (n —1)! — 1] — {0,1}™" with an efficiently computable h7..
To go from a number j € [0, (n — 1)! — 1] to its n-cycle we:
1. Take j to its factorial representation as above. This time it is an n — 1 number sequence

where the i-th place value is associated with (i — 1)!, and the sum of the digits multiplied by

the respective place value is the value of the number itself.

2. In each step we maintain a list / which we think of as originally containing n numbers in

ascending order from 0 to n — 1.

3. Repeat this step n — 1 times, once for each number in the factorial representation. First

remove the smallest element of the list. Then going from left to right, start with the left-most
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number in the representation and output the value in that position in the list, . Remove that

position from /.
4. We output 0 as the n-th value of our n-cycle. The resulting n number sequence z is the
n-cycle, in which the value of each x; indicates the node to which the i-th node is mapped.

To take an n-cycle to a factorial representation, we can easily invert the process:

1. In each step we maintain a list £ which we think of as originally containing n numbers in

order from 0 ton — 1.

2. Repeat this step n — 1 times. Remove the smallest element of the list. Going from left to
right, start with the left-most number in the n-cycle and output the position of that number
in the list ¢ (where we index the list starting with the 0 position). Remove the number at this

position from /.
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Chapter 7

Using the “Squashed” QFT

7.1 Efficient Quantum Sampling

In this section we begin to prove that Quantum Computers can sample efficiently from distributions
with probabilities proportional to evaluations of Efficiently Specifiable polynomials at points in
[—k, k]" for k = exp(n). Note that in the prior quantum algorithm of Chapter 5 we would need
to invoke the QFT over Zi", of dimension doubly-exponential in n. Thus we need to define a
new Polynomial Transform that can be obtained from the standard Quantum Fourier Transform
over Zy, which we refer to as the “Squashed QFT”. Now we describe the unitary matrix which

implements the Squashed QFT.

Consider the 2% x 2% matrix Dj,, whose columns are indexed by all possible 2¥ multilinear monomi-
als of the variables 1, 7, ..., 7 and the rows are indexed by the 2 different {—1, +1} assignments
to the variables. The (7, j)-th entry is then defined to be the evaluation of the j-th monomial on the
i-th assignment. We note in passing that, defining D), to be the matrix whose entries are the entries

in D;, normalized by 1/v/2* gives us the Quantum Fourier Transform matrix over Z5.

Theorem 50. The columns (and rows) in Dy, are pairwise orthogonal.

Proof. Here we will prove that the columns of Dy, are pairwise orthogonal. A symmetric argument
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can be used to prove that the rows of Dj, are pairwise orthogonal. Note that we can equivalently
label the rows and columns of Dy, by strings {0, 1}", so that, for any z,y € {0, 1}", the (z,y)-th
element of Dj, is —1(®¥ . Take any pair of columns ¢y, ¢, in the matrix, which are indexed by the

strings 1, z2 € {0, 1}". Then:

= 3 1l

ye{0,1}»

If c; = cp then (x1 + x9,y) = (221, y) = 2(x1,y) is always even, and so {cy, o) = 2". If ¢; # ¢,
it can be verified that there are as many strings y for which (z; + x5, y) is even as odd, and so

(c1,c2) = 0. O]

Now we define the “Elementary Symmetric Polynomials™:

Definition 51 (Elementary Symmetric Polynomials). We define the j-th Elementary Symmetric

Polynomial on k variables for j € [0, k| to be:

pi(X1, Xo, ooy Xi) = > Xo Xey- X,

1<l << .<li<k

In this work we will care particularly about the first two elementary symmetric polynomials, pg

and p; which are defined as po( X1, Xo, ..., X)) = Land p1 (X1, Xo, ..., X)) = > X,

1<0<k
Consider the (k 4 1) x (k + 1) matrix, Dy, whose columns are indexed by elementary symmetric
polynomials on £ variables and whose rows are indexed by equivalence classes of assignments in

7% under S), symmetry. We obtain D;, from Dy, using two steps.

First obtain a 2F x (k + 1) rectangular matrix D,(Cl) whose rows are indexed by assignments to the

variables 1, o, ..., 7 € {£1}* and columns are the entry-wise sum of the entries in each column

of Dj whose monomial is in each respective elementary symmetric polynomial.

48



Then obtain the final (k+1) x (k4 1) matrix Dy, by taking D,(Cl) and keeping only one representative
row in each equivalence class of assignments under .S;, symmetry. We label the equivalence classes
of assignments under Sy, symmetry o0g, 01, 02, ..., 0, and note that for each i € [k], |o;| = (’:) Ob-
serve that Dy, is precisely the matrix whose (1, 7)-th entry is the evaluation of the j-th symmetric

polynomial evaluated on an assignment in the ¢-th symmetry class.

Theorem 52. The columns in the matrix D,(cl) are pairwise orthogonal.

Proof. Note that each column in the matrix D}ﬁ is the sum of columns in D), each of which are
orthogonal. We can prove this theorem by observing that if we take any two columns in D,gl),
called ¢y, co, Where ¢; is the sum of columns {u;} of Dy, and ¢; is the sum of columns {v;} of Dj.

The inner product, (ci, c2) can be written:

<Z ui,ZUj> = Z(Ui,vj> =0

1,J

]

Theorem 53. Let L be the (k + 1) x (k + 1) diagonal matrix with i-th entry equal to \/o;. Then

the columns of L - Dy, are orthogonal.

Proof. Note that the value of the symmetric polynomial at each assignment in an equivalence class
is the same. We have already concluded the orthogonality of columns in [9,9). Therefore if we let
a and b be any two columns in the matrix Dy, and their respective columns be @, b in f)(l), we can

See:

From this we conclude that the columns of the matrix L - Dk, in which the -th row of [Dk is
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multiplied by ,/0;, are orthogonal. O

Theorem 54. We have just established that the columns in the matrix L - Dy, are orthogonal. Let
the k41 x k+ 1 diagonal matrix R be such that so that the columns in L - Dk - R are orthonormal,
and thus L - Dy, - R is unitary. Then the first two nonzero entries in R, which we call 1o, 11,

corresponding to the normalization of the column pertaining to the zero-th and first elementary

1

5 [(w207]

=0

symmetric polynomial, are 1/ 2F and

Proof. First we calculate ry. Since we wish for a unitary matrix, we want the ¢, norm of the first

column of Dk to be 1, and so need:

And 50 7 is 1/v/2 as desired.

Now we calculate 71, the normalization in the column of Dj, corresponding to the first elemen-
tary symmetric polynomial. Note that in i-th equivalence class of assignments we have exactly
7 negative ones and k — ¢ positive ones. Thus the value of the first symmetric polynomial is the
sum of these values, which for the ¢ — th equivalence class is precisely k£ — 2i. Then we note the

normalization in each row is / (’j) Thus we have
2

r%z;[ (T) (k—%)] =1

7

Thus r; = ———-——— as desired.
(-2

k
=0

50



7.2 A Simple Example of ‘“Squashed” QFT, for i = 2

In this section we explicitly construct the matrix L - D, - R from the QFT over 73. Note that the

matrix we referred to as Ds is:

11 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

Where we can think of the columns as identified with the monomials {1, x;, 22, z122} in this
order (from left to right) and the rows (from top to bottom) as identified with the assignments
{(1,1),(=1,1),(1,—1), (=1, —1)} where the first element in each pair is the assignment to z; and
the second is to x. Note that as desired, the (4, 7)-th element of D, is the evaluation of the j-th

monomial on the i-th assignment.

Now we create f)él) by combining columns of monomials that belong to each elementary sym-

metric polynomial, as described in the prior section. We identify the columns with elementary
symmetric polynomials on variables x1, x5 in order from left to right: 1, x1 4+ x5, x5 and the rows

remain the same. This gives us:

1 2 1
1 0 -1
1 0 -1
1 =2 1

It can easily be verified that the columns are still orthogonal. Now we note that the rows corre-

sponding to assignments (1, —1) and (—1,1) are in the same orbit with respect to Sy symmetry.
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And thus we obtain l~72:

1 2 1
1 0 -1
1 =2 1

Now L is the diagonal matrix whose i-th entry is /0;, the size of the i-th equivalence class of
assignments under S, symmetry. Note that |oo| = /(}) = 1, |o1] = 1/(}) = V2, and |o| =

(g) =1, and so L is:

1 0 0
0 vV2 0
0 0 1
And L - D, =
1 2 1
V2 0 —V2
1 -2 1

And we note that the columns are now orthogonal. As before, this implies there exists a diagonal

matrix R so that L - Dy - R is unitary. It is easily verified that this is the matrix R:

1
3 00
1
0 7 0
1
0 0 3
And the first two elements 7y, 71 can be easily seen to be \/Lfk = % and m = \/Lg, as

=0

claimed in the prior section. Thus the final k 4+ 1 x k + 1 matrix L - D, - R is:
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Sl

I PO =
| IS
N | N =
o
N

Sh ©

Which is unitary, as desired.

7.3 Using our “Squashed QFT” to Quantumly Sample from
Distributions of Efficiently Specifiable Polynomial Evalu-

ations

In this section we use the unitary matrix developed earlier to quantumly sample distributions with
probabilities proportional to evaluations of Efficiently Specifiable polynomials at points in [—k, k]™
for k = exp(n). Here we assume that we have an efficient quantum circuit for this unitary. The

prospects for this efficient decomposition are discussed in Section 8.
For convenience, we’ll define a map ¢ : [—k, k| — [0, k], for k even, with

k+y

y)=4{ %

0 otherwise

1f yiseven

Definition 55. Suppose () is an Efficiently Specifiable polynomial () with n variables and m mono-
mials, and, for k < exp(n), let Q. be its k-valued equivalent polynomial. Let Var [(Q)] be the vari-
ance of the distribution over C induced by () with assignments to the variables distributed over
B(0, k)" (or equivalently, we can talk about Var [Q}.] where each variable in )}, is independently

uniformly chosen from {£1}), as calculated in Section 5.5. Then we define the of distribution Dy,
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over n tuples of even integers in [—k, k] by:

B W= o (¢§;;)V(§§3[g]"' (st3)

Theorem 56. By applying (L - Dy - R)®™ in place of the Quantum Fourier Transform over 7y in

Section 5.2 we can efficiently quantumly sample from Dg, ..

Proof. Since we are assuming () is Efficiently Specifiable, let i : [m] — {0, 1}" be the invertible
function describing the variables in each monomial. We start by producing the state over k£ + 1

dimensional qudits:

%m S Ih(2))

z€[m)|

Which we prepare via the procedure described in Lemma 39.

Instead of thinking of & as mapping an index of a monomial from [m] to the variables in that mono-
mial, we now think of A as taking an index of a monomial in () to a polynomial expressed in the

{1,200 + 2@ + .+ 20" basis.

Now take this state and apply the unitary (which we assume can be realized by an efficient quantum

circuit) (L - Dy, - R)®".

Notice each y € [—F, k| has an associated amplitude:

o _dril@(?ﬂ\/ (o) Cotam) (o)
\/ﬁ

Oéy:
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Letting p, = Prp,,, [y], note that, by plugging in 7o, r, from Section 7.1:

5 Q<y>2(¢<’;>>(wé?z))---(w<’;n>)7“3(”*d)7"?d
m

Q(y)2(w(21>) (w(l;z>)"' <w<’;>)

20 ([ (k- m)d

1=

_ QW) (siy) () () _ Q) (sty) () () _
2kn—hd\ar [Q]2F 2Var Q] Py

7.4 The Hardness of Classical Sampling from the Squashed

Distribution

In this section, as before, we use Stockmeyer’s Theorem (Theorem 30), together with the assumed

existence of a classical sampler for D, ;, to obtain hardness consequences for classical sampling

with k& < exp(n).

Theorem 57. We fix some k < exp(n). Given an Efficiently Specifiable polynomial Q) with n
variables and m monomials, let (). be its k-valued equivalent polynomial. Suppose we have a
Sampler S with respect to our quantumly sampled distribution class, Dg y, and let Var [()] denote
the variance of the distribution over C induced by ) with assignments distributed from B(0, k).
Then we can find a randomized procedure T : R" — R, an eVar [(Q)]-additive approximate §-
average case solution to Q* with respect to B(0, k)™ that runs in time poly(n,1/e,1/3) with access

to an NP oracle.

Proof. Setting § = €0/16, suppose .S samples from a class of distributions D’ so that ||Dg ) —
D'|| < B. Let g, = Prp/[y].
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We define ¢ : {£1}*" — [—Fk, k]" to be the map from each {4-1}*" assignment to its equivalence
class of assignments, which is n blocks of even integral values in the interval [—k, k]. Note that,

given a uniformly random {#1}*" assignment, ¢ induces the B(0, k) distribution over [k, k|".

Our procedure picks a y € [—k, k|™ distributed' via B(0, k)™, and outputs an estimate g,. Equiva-
lently, we analyze this procedure by considering a uniformly distributed z € {£1}*" and then re-
turning an approximate count, Gy (,) t0 ¢y(z). We prove that our procedure runs in time poly(n, 1/¢,1/6)

with the guarantee that:

- |Go@) — Pot) | €

k k k n| =
(w(¢(x)1)) (ww(x)z)) <w(¢(m)n)) 2

And by our above analysis of the quantum sampler:

_ Q(¢(5L’))2 (w((ﬁ?x)l)) (w(qb?x)z)) (w(qﬁl(kw)n))
P () 2knVar [Q)]

Note that: % [ > | Ipy — qy| < [ and thus because we are summing over as many times as the
ye[—k,+k]™
size of its orbit under (.S;)", we know that:

1 3 |Po@) — Gotw)| <5

2 ze{E1}rn (1/1(¢](€$)1)) (1/1(¢](€x)2)) "'(w(¢é€x)n))

"We can do this when k = exp(n) by approximately sampling from the Normal distribution, with only poly(n)
bits of randomness, and using this to approximate B(0, k) to within additive error 1/poly(n) [BM58, Ber41].
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First we define for each z, A, = —2¢@ %@l _apq0 |Dor — D) =53 A,
(w(é(zh))(w(¢(93)2))"'(w(¢(r)n)) x

Note that:

A
LTy,
E.[Ad = S5 = o
And applying Markov, V& > 1,
k20 1
Pr[A -
mr[ . an} <%
Setting k = %, b= i—g, we have,
1 )
Pr[A - —]< =
mr[ 2> 3 an]<4

Then use approximate counting (with an NP oracle), using Theorem 30 on the randomness of S

to obtain an output g, so that, for all v > 0, in time polynomial in n and %:

- 1
PrHQy - Qy| > Qy] < on

Because we can amplify the failure probability of Stockmeyer’s algorithm to be inverse exponen-

tial.

Equivalently in terms of x:

|96(2) — do(a)] _— 4o (a)
k k k k k k n
(uotern) (o) (ecom) (o) o) (ootmn) | 2

Pr
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And we have:

9o ()
zm: ( % k % 1

E g (x) < vioton) (votn)  (wlm) _ L
z k k k — n ~ 9kn
(w(¢(w)1)) (w(¢>(:v)z)) (w(qb(m)n)) 2 2
Thus, by Markov,
o(x) k 1
Pr[— . - > =] < =
* (oot (o)~ (oiotny) 2 K

Now, setting v = % and applying the union bound:

\%(x — P x)l € ]
PI‘ % & > _n
‘ [(¢<¢<:5)1))( e, ( )2 >) (ww( )n >) 2
|Got) — Qo) | e 1 |96(2) — Poia)| e 1
SPI“ % >—'—n + Pr T T % >—-—n
* (ww zm) (ww w)z)) -y e (:c)n)) 2" ’ (ww(zm) (¢(¢(I)2))"'(¢(¢(I)n)) 2 2
() k
<Pr % % E > _n]
’ _(ww(x)l)) (7/)(¢(96)2))"'(¢(¢($)n)) 2
|ds(z) — Qo) Uo(a) 1
+ Pr - - - > - - - - +Pr|A; > o
(w<¢<x>1>) (¢<¢(m>2>)"'(w(¢(w>n>) (ww(cc)l)) (w<¢(a:)2))"'(w(¢(x>n>) ‘ 2 2
1 1 6
< E + 2—n + 4_1
) 1
< 3 + on 0.
O
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Chapter 8

Putting it All Together

In this chapter we put our results in perspective and conclude.

As mentioned before, our goal is to find a class of distributions {D,,},~o that can be sampled
exactly in poly(n) time on a Quantum Computer, with the property that there does not exist a

(classical) Sampler relative to that class of distributions, {D,, },,~0.

Using the results in Sections 5.3 and 5.4 we can quantumly sample from a class of distributions
{Dg.k }n>0, Wwhere k = poly(n) with the property that, if there exists a classical Sampler relative
to this class of distributions, there exists an eVar [Q]-additive d-average case solution to the Q*
function with respect to the B(0, k)™ distribution. If we had an efficient decomposition for the
“Squashed QFT” unitary matrix, we could use the results from Sections 7.3 and 7.4 to make k as

large as exp(n). We would like this to be an infeasible proposition, and so we conjecture:

Conjecture 2. There exists some Efficiently Specifiable polynomial () with n variables, so that
eVar [Q]-additive §-average case solutions with respect to B(0, k)", for any fixed k < exp(n), to

Q?, cannot be computed in (classical) randomized poly(n,1/e, 1/5) time with a PH oracle.

At the moment we don’t know of such a decomposition for the “Squashed QFT”. However, we
do know that we can classically evaluate a related fast (time n log” n) polynomial transform by

a theorem of Driscoll, Healy, and Rockmore [DJR97]. We wonder if there is some way to use
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intuition gained by the existence of this fast polynomial transform to show the existence of an

efficient decomposition for our “Squashed QFT”.

Additionally, if we can prove the Anti-Concentration Conjecture (Conjecture 1) relative to some
Efficiently Specifiable polynomial ) and the B(0, k)" distribution, we appeal to Theorem 44 to

show that it suffices to prove:

Conjecture 3. There exists some Efficiently Specifiable polynomial () with n variables, so that
Q satisfies Conjecture 1 relative to B(0,k)", for k < exp(n), and e-multiplicative §-average

n

case solutions, with respect to B(0, k)", to Q* cannot be computed in (classical) randomized

poly(n,1/e,1/0) time with a PH oracle.

We would be happy to prove that either of these two solutions (additive or multiplicative) are
#P-hard. In this case we can simply invoke Toda’s Theorem (Theorem 12) to show that such a

randomized classical solution would collapse PH to some finite level.

We note that at present, both of these conjectures seem out of reach, because we do not have an
example of a polynomial that is #P-hard to approximate (in either multiplicative or additive) on
average, in the sense that we need. Hopefully this is a consequence of a failure of proof techniques,

and can be addressed in the future with new ideas.
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