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Abstract

Methods that exploit the intrinsic locality of molecular interactions show significant
promise in making tractable the electronic structure calculation of large-scale sys-
tems. In particular, embedded density functional theory (e-DFT) offers a formally
exact approach to electronic structure calculations in which the interactions between
subsystems are evaluated in terms of their electronic density. In the following disser-
tation, methodological advances of embedded density functional theory are described,
numerically tested, and applied to real chemical systems.

First, we describe an e-DFT protocol in which the non-additive kinetic energy
component of the embedding potential is treated exactly. Then, we present a general
implementation of the exact calculation of the non-additive kinetic potential (NAKP)
and apply it to molecular systems. We demonstrate that the implementation using
the exact NAKP is in excellent agreement with reference Kohn-Sham calculations,
whereas the approximate functionals lead to qualitative failures in the calculated
energies and equilibrium structures.

Next, we introduce density-embedding techniques to enable the accurate and sta-
ble calculation of correlated wavefunction (CW) in complex environments. Embed-
ding potentials calculated using e-DFT introduce the effect of the environment on
a subsystem for CW calculations (WFT-in-DFT). We demonstrate that WFT-in-
DFT calculations are in good agreement with CW calculations performed on the full
complex.

We significantly improve the numerics of the algorithm by enforcing orthogonality

between subsystems by introduction of a projection operator. Utilizing the projection-



vii
based embedding scheme, we rigorously analyze the sources of error in quantum
embedding calculations in which an active subsystem is treated using CWs, and the
remainder using density functional theory. We show that the embedding potential
felt by the electrons in the active subsystem makes only a small contribution to the
error of the method, whereas the error in the nonadditive exchange-correlation energy
dominates. We develop an algorithm which corrects this term and demonstrate the

accuracy of this corrected embedding scheme.
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Summary

Quantum-chemistry calculations invariably feature a compromise between computa-
tional efficiency and accuracy. Kohn-Sham Density Functional Theory (KS-DFT) is
one of the most commonly used methods because it is tractable for systems contain-
ing up to a thousand atoms. However, DFT methods, which generally employ ap-
proximate descriptions of electron correlation, often fail to even qualitatively predict
reaction barriers, which are critical in determining reaction rates and mechanisms.
More rigorous correlated wavefunction (CW) methods can provide an accurate and
systematically improvable description of reaction barriers, but poor scaling of these
methods can lead to impractical computation costs for systems with even tens of
atoms.

Embedded density functional theory (e-DFT), is a formally exact approach to
electronic structure, which exploits the locality of molecular interactions. In the e-
DFT approach, a system is divided into smaller subsystems. Then, the interactions
between subsystems are evaluated in terms of their electronic density. This approach
naturally leads to two different partitioning schemes. One, a large system can be sep-
arated into many smaller subsystems, allowing for significant computational savings
as this leads to a naturally parallelizable algorithm. Two, a large system is sepa-
rated into a ‘high-level’ (accurate) and a ‘low-level” (approximate) regions; therefore,
if higher accuracy is required for a region of system, a higher level of theory can
be seamlessly embedded into a DFT environment and still remain computationally
tractable as only a handful of atoms are treated at the CW level. The objectives of the

e-DFT approach are thus similar to those of more approximate partitioning and frag-
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mentation schemes; however, e-DFT avoids the uncontrolled approximations (such as
link atoms) and errors associated with subsystem interfaces that fundamentally limit
other widely used methods.

This dissertation is focused on the development of new methods that make e-DFT
an accurate, practical, and scalable method for the description of complex systems.
The following key contributions are discussed: (i) the development of numerically
exact methods for obtaining subsystem embedding potentials in e-DFT, which reduce
embedding errors by orders of magnitude in comparison with previously available
approximate methods, (ii) the development of parallelization algorithms that enable
the description of large systems with sub-linear scaling of the required computational
time, (iii) the combination of e-DFT potentials with correlated wavefunction theory
(WFT) methods to enable seamless WFT-in-DFT embedding for general systems,
and (iv) the development of systematically improvable methods for WFT-in-DFT to
allow for a hierarchy of embedding methods with increasing accuracy.

In Chapter 1, we describe an embedded density functional theory (DFT) proto-
col in which the non-additive kinetic energy component of the embedding potential
is treated exactly. At each iteration of the Kohn-Sham equations for constrained
electron density, the Zhao-Morrison-Parr constrained search method for constructing
Kohn-Sham orbitals is combined with the King-Handy expression for the exact kinetic
potential. We use this exact embedding protocol to calculate ionization energies for
a series of 3- and 4-electron systems, and the results are compared to embedded DFT
calculations that utilize the Thomas-Fermi (TF) and the Thomas-Fermi-von Wei-
sacker approximations to the kinetic energy functional. These calculations illustrate
a breakdown due to the TF approximation for the non-additive kinetic potential, with
errors of 30-80% in the calculated ionization energies; by contrast, the exact protocol

is found to be accurate and stable. This work has been published as J. D. Goodpaster,
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N. Ananth, F. R. Manby, and T. F. Miller III, “Exact non-additive kinetic potentials
for embedded density functional theory,” J. Chem. Phys., 133, 084103 (2010).

In Chapter 2, we present a general implementation of the exact calculation of
the non-additive kinetic potential (NAKP). Potential energy curves are computed
for the dissociation of LiT-Be, CHs-CF3, and hydrogen-bonded water clusters, and
e-DF'T results obtained using this exact treatment of the NAKP are compared with
those obtained using approximate kinetic energy functionals. In all cases, the exact
NAKP is in excellent agreement with reference Kohn-Sham calculations, whereas the
approximate functionals lead to qualitative failures in the calculated energies and
equilibrium structures. We also demonstrate an accurate pairwise approximation to
the NAKP that allows for efficient parallelization of the method in large systems;
benchmark calculations on molecular crystals reveal ideal, size-independent scaling
of wall-clock time with increasing system size. This work has been published as J.
D. Goodpaster, T. A. Barnes, and T. F. Miller III, “Embedded density functional
theory for covalently bonded and strongly interacting subsystems,” J. Chem. Phys.,
134, 164108 (2011).

In Chapter 3, we introduce density embedding techniques to enable the accu-
rate and stable calculation of CWs in complex environments. Embedding potentials
calculated using e-DFT introduce the effect of the environment on a subsystem for
wavefunction calculations (WFT-in-DFT). These methods are demonstrated for cal-
culating the potential energy curve of the dispersion-bound ethene-propene dimer
and for the hexaaquairon(Il) ion (HA). The potential energy curve for the ethene-
propene dimer reveals that benchmark CCSD(T) calculations performed over the full
complex can be reproduced within 0.05 kcal /mol using this method, illustrating that
small energy differences can be accurately calculated while embedding across a cova-
lent bond. e-DFT calculations on HA that employ these new techniques demonstrate

that Kohn-Sham (KS-DFT) calculations can be reproduced for both the low-spin and
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the high-spin states. The ability of different exchange-correlation (XC) functionals to
describe the energy differences between the low-spin and the high-spin states (AFELy)
and to describe the ligation energy in HA is studied. KS-DFT calculations of AFEpg
demonstrate a strong dependency on XC functionals where WFT-in-DFT calcula-
tions reveal a significantly diminished dependency and that AEpy is in good agree-
ment with ab initio calculations performed on the full complex. The ligation energies
have a small dependency on the XC functional and are near identical for KS-DFT
and WFT-in-DFT demonstrating that the interactions energies between subsystems
remain at DF'T level accuracy. This work has been published as J. D. Goodpaster, T.
A. Barnes, F. R. Manby, and T. F. Miller III, “Density functional theory embedding
for correlated wavefunctions: Improved methods for open-shell systems and transition
metal complexes,” J. Chem. Phys., 137, 224113 (2012).

In Chapter 4, we present continuing work on projection based embedding. The
original formulation has been published as F. R. Manby, M. Stella, J. D. Goodpaster,
and T. F. Miller III, “A simple, exact density-functional-theory embedding scheme,”
J. Chem. Theory Comput., 8, 2564 (2012) and T. A. Barnes, J. D. Goodpaster,
F. R. Manby, and T. F. Miller III, “Accurate basis set truncation for wavefunction
embedding,” J. Chem. Phys., 139, 024103 (2013). Building upon that work, we
analyze the sources of error in quantum embedding calculations in which an active
subsystem is treated using CW methods, and the remainder using DFT. We show
that the embedding potential felt by the electrons in the active subsystem makes only
a small contribution to the error of the method whereas the error in the nonadditive
exchange-correlation energy dominates. We test an MP2 correction for this term
and demonstrate that the corrected embedding scheme accurately reproduces the

full wavefunction calculations for a series of chemical reactions. This work has been

published as J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III,
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“Accurate and systematically improvable density functional theory embedding for

correlated wavefunctions,” J. Chem. Phys., 140, 18A507 (2014).



Chapter 1

Exact non-additive kinetic potentials for embedded

density functional theory

1.1 Introduction

Orbital-free embedded density functional theory (e-DFT) is an appealing method
for calculating the electronic structure of complex molecular systems. It provides a
formally exact framework for dividing the total electronic density of a system into
subsystem densities that can be separately calculated.! * This feature of e-DFT allows
for the development of multiscale strategies in which the electronic density for regions
of central interest is calculated with high accuracy, while the electronic density for
surrounding regions is obtained using more approximate techniques.®”’

However, in addition to the usual approximations for the basis set and the exchange-
correlation functional that appear in Kohn-Sham (KS) DFT,® e-DFT requires the
evaluation of a non-additive contribution to the kinetic energy from the subsystem
densities.* This term, which is generally largest for cases in which the subsystem
densities are strongly overlapping,? is a significant source of error in many e-DFT
calculations, and it currently limits the method to applications in which the subsys-
tem densities involve non-bonded or weakly interacting molecular groups.*® Although
encouraging progress towards the accurate calculation of the non-additive kinetic en-
ergy contribution have been reported,®%'® more work in this direction is needed.

In this paper, we present an exact protocol for calculating the non-additive kinetic
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energy contribution in e-DFT calculations, and we report calculations in which the

protocol is applied to 3- and 4-electron systems that exhibit strongly overlapping

subsystem densities. Although, in its numerically demonstrated form, this protocol

does not offer any computational speed-up over the KS calculation for the full system,

it suggests new methods to systematically, efficiently, and accurately perform e-DFT

calculations for large systems, which we discuss.

1.2 Orbital-Free Embedded DFT

Suppose that the entire electronic density pap for a closed-shell system is divided

into two subsystems, pa and pg, such that pag = pa + pg. The one-electron orbitals

that give rise to these subsystem electronic densities obey the coupled Kohn-Sham

equations for constrained electron density (KSCED),*

1
=5 V2 Vi o, pii ]

1
=5 V2 Vi P lps, pai 1]

N
R N S S

N,
¢?(I‘) = €?¢?(r)7 1= 17 77]37

where Ny and Np are the number of electrons in the respective subsystems,

tem A embedded in subsystem B,

pa(r) =

pe(r) =

In these coupled equations, VQIEFSCED

Na/2
23 o),
i=1

Ng/2

23 6P

and

(1.1)

(1.2)

[pa, pB; 1] is the KS effective potential for subsys-



V:f(fSCED [0A, PB;T] = Une(T) + U3[paB; ] + Uxc[paB; T] + Unad|pa, pB; 1], (1.5)

and XQI;SCED [pB, pa; 1] is the similarly defined KS effective potential for subsystem B

embedded in subsystem A. The contributions to the KS effective potential include

Nnuc

nlt) = =3 (16)
vslpa;r] = TSB_(rI:)’ dr’, and (1.7)
selowwit] = |54 ), (18)

which are the usual nuclear-electron Coulomb potential, Hartree potential, and exchange-
correlation potential, respectively, and Ny, is the number of nuclei in the system.

The final term in V55“FP[pg, pa; 1] is the non-additive kinetic potential (NAKP)

5Tsnad[pAapB]:| (I‘) — 5Ts[p] 6Ts[p] (I‘), (19)

Una y )=
d[pA po ] [ dpa 0p lp=pas 0p lp=pa

which is obtained from the functional derivative of the non-additive component of the

non-interacting kinetic energy

T pa, ps] = Ti[pan] — Ti[pa] — Ti[ps]. (1.10)

The total energy functional for the embedded system is

Elpas] = Ti[pa] + Tilps] + T2*[pa, pB] + Vaelpas] + J1pas] + Exclpas),  (1.11)
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where the last three terms on the right hand side (RHS) are the nuclear-electron
Coulomb energy, Hartree energy, and exchange-correlation energy for the total den-
sity.

Two aspects of the orbital-free embedding DFT formulation are worth emphasiz-
ing. Firstly, like conventional KS-DF'T, it is a theory that is exact in principle, but
practical calculations must employ an approximate form for the unknown exchange-
correlation functional. Secondly, unlike conventional KS-DFT calculations, the em-
bedding formulation introduces an NAKP because the KS orbitals for subsystem A
are not necessarily orthogonal to those of subsystem B. Without knowledge of the
exact functional for the non-interacting kinetic energy, this creates a second source of
approximation in the e-DFT approach. The significance of the NAKP is system de-
pendent, with the most severe cases including those for which the subsystem densities
pa and pp greatly overlap. %1415

The non-interacting kinetic energy for the density corresponding to a set of N

closed-shell orbitals is

N
1
Tilp] = 2Z<¢i’ - §V2|¢i>- (1.12)
i=1
Standard approximations to this kinetic energy functional include the Thomas-Fermi
(TF) result for the homogenous electron gas,'®'”
Trrlp] = Crr / p**(r)dr (1.13)
3 2\2/3 - ..
where Crp = 1—0(37r )7’?, and the von Weizsdcker (vW) result for the limit of a
one-electron density,
L [|Vp(x)?
Towlo] = —/—dr. (1.14)
8 p(r)

Other approximate kinetic energy functionals can be constructed using the strate-

gies from the development of exchange-correlation functionals. For example, the
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1'% employs the analytical form of the Perdew-

PW91k kinetic energy functiona
Wang (PW91) exchange functional,'® and the TW02 functional®® and the PBE2,
PBE3, and PBE4 functionals® utilizes the form suggested by Becke.?* These func-
tionals have been shown to successfully describe weakly interacting systems and co-
ordination compounds.? Furthermore, kinetic energy functionals that have been de-
veloped using linear response corrections to the homogeneous electron gas and have
been shown to work well for metals.>*'?* However, no approximate kinetic energy

functional has been demonstrated to yield accurate results for embedded subsystems

that are connected by a covalent bond. !>

1.3 The Exact Non-Additive Kinetic Potential

For each iteration of the KSCED equations (Egs. 1.1 and 1.2), {¢*} and {¢P} (and
thus pa and pp) are known from either the previous iteration or the initial guess, and
the NAKP must be calculated. We employ a two-step protocol to obtain the exact
NAKP. In the first step, a Levy constrained search® (LCS) or equivalent method is
used to determine the full set of orthogonal KS orbitals, {(be}, that correspond to

the total density pag. In the second step, the NAKP is calculated from the orbital

sets {¢;"}, {¢2}, and {¢}'}.

1.3.1 Step 1: The Levy Constrained Search

Given a total electron density pap, the fully orthogonal KS orbitals {¢*B} can be
calculated from an LLCS, in which the non-interacting kinetic energy is minimized with
respect to one-electron orbitals that are constrained to yield pagp.?* Alternatively, we

employ the approach of Zhao, Morrison, and Parr (ZMP),?®2® in which the full set
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of KS orbitals are obtained by solving the one-electron equations

1, Zi A ABA/y _ LABA . Nap
2v zz: ‘r—RZ’ +‘/c( ) sz (r)_elgbi (I'), 2_17"'7 2 )
(1.15)
where Nag = Na + Np,
N~ ’
VA(r) :)\/pAB(jr)/_iTB(r)dr’, (1.16)

NAB/2
pap(r) = 2 Z |p2B(r) %, and VM (r) is a potential energy function that restrains

the pap(r) toiﬁle target density pag(r). Solution of Eq. 1.15 in the limit A — oo is
equivalent to performing the LCS.?¢ 28

In practice, Eq. 1.15 is solved for six large, but finite, values of A\, and the KS
orbitals and eigenvalues are obtained via extrapolation.?®?® For each value of ), the
{e)}, {¢2P7Y, and {V2¢P*} are calculated and stored on a spatial grid. For the
orbitals, extrapolation to A — oo is performed via expansion to third order in %

1 1 1
6P (x) = 61%() + 10 () + a7 () + o (), (1.17)

a(r),al? (r), al” (r)}

» [at)

with a linear least-squares fit of the expansion coefficients {¢:*?(r)
at each value of r. The {V?¢*P} are similarly obtained via extrapolation at each value
of r, while each ¢; requires only a single extrapolation. With the {QSZAB} and {V2¢ZAB}
obtained on the spatial grid, the non-interacting kinetic energy for the total system

can be calculated via numerical integration using Eq. 1.12.

1.3.2 Step 2: Exact Kinetic Potentials from KS Orbitals

To calculate the NAKP from the orbital sets {¢*P}, {¢}, and {¢F}, we extend the

approach developed by King and Handy.?’
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Minimization of the electronic energy with respect to the total electron density
pap yields the stationary condition®

T[]

d P=PAB

(r) + Une(r) + v3]pan; ] + vxe[pan; T] = pan (1.18)

where pap is a Lagrange multiplier that imposes the constraint / paB(r)dr = Njg.

Furthermore, rearrangement of the usual KS equations yields

NaB/2

Z (—%cﬁ?B(r)V%fB(r) — 6¢¢?B(r)2> Ve (1) + 03 [pan: ] + Uxe[pan; T] = 0.
| (1.19)

2
paB(r)

Comparison of these two results leads to an exact expression for the total kinetic

potential, 29

5Ts[p] . 2 NaB/2 _1 AB r 2 1AB r) — e AB 1‘2
op p:PAB(r)_pAB(I‘> Z < 2¢z‘ (r)V7¢; " (r) — €¢; ())+MAB- (1.20)

Analogous results can be derived for each of the embedded subsystems. Specifi-

cally, the electron density for subsystem A also obeys a stationary condition,?

dT[p]

0p lp=pa

(r) + Vne(r) + v5[paB; ] + Uxc[PAB: T] + Unad[pa, pB;T] = pa,  (1.21)

where pa is the Lagrange multiplier that imposes the constraint / pa(r)dr = Ny.
Combination of Eq. 1.21 with Eq. 1.1 results in an exact expression for the subsystem

kinetic potential,

0T[p] 2 Pl _lAr 204 (p) _ AgA(r)?
P lp=pa r)_PA(r)zi:< 2(251'(>V @i (r) €i¢i()>+ﬂA> (1.22)

which can be compared with kinetic potential for the total system in Eq. 1.20.

Insertion of Eqgs. 1.18 and 1.21 into Eq. 1.9 yields uap = pa, and since A is an
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arbitrarily chosen subsystem, we likewise obtain puap = ug, or

HA = UB- (1.23)

This result has a simple physical interpretation. In the zero temperature limit, the
Lagrange multipliers ps and ug, are equivalent to the chemical potential for the sub-
system electronic densities.® Solution to the KSCED equations thus yields densities
that are in equilibrium with respect to the number of electrons in each subsystem.

Finally, insertion of Eq. 1.20 and 1.22 into Eq. 1.9 yields the desired expression
for the NAKP,

Nag/2
trealpns it = PAB2(r) Z (_%cbe(r)V%?B(r)—6¢¢?B(r)2)
Na/2
- PA2<I') 2 (_%Qﬁ\(r)v%? (r) = ' (r)2>- (1.24)

Note that the ZMP protocol generally yields a constant shift in the calculated set of
KS eigenenergies, {€}};% in Eq. 1.24, we see that this leads only to a constant shift in
Unad|Pa, pB; T] and causes no change in any calculated observables. Throughout this
study, the NAKP is shifted such that it approaches zero at large distances.

Visscher and coworkers previously observed that the NAKP can be expressed in
terms of the stationary condition for the total system (Eq. 1.18) and a subsystem
(Eq. 1.21).%° They suggested a strategy in which the ZMP method is used to ob-
tain the external potentials for both the full system and the subsystem, so that the
difference between those potentials is equal to the NAKP, but this strategy has not
been implemented to our knowledge. The approach presented here directly expresses
the NAKP in terms of the KS orbitals for the total system and the subsystem (Eq.
1.24); it avoids performing the ZMP method for the subsystem, and it avoids using

the difference between two potentials that are obtained via the ZMP method. It
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is straightforward to show that Eq. 1.24 recovers the limit for weakly overlapping
subsystem densities that is reported in Ref. 30.

In another approach that does not utilize the exact framework of the KSCED
equations, Aguado and coworkers employ an embedding strategy in which the ZMP
formalism is used to constrain the sum of the subsystem densities to that of the total
density. 3132 This approach has been pursued as a useful, but approximate, strategy
for partitioning a total density into subsystems.

Other e-DFT strategies also express the kinetic potential in terms of the KS or-
bitals, as we have done here. For example, Huang and Carter report an explicit
expression for the kinetic potential in terms of the KS orbitals, using the assumption
that the non-interacting kinetic energy is a linear functional of the density; an em-
pirical parameter is included in their result to account for non-linear effects.®® The
approach presented here involves no adjustable parameters and no assumptions about

the linearity of the kinetic energy functional.

1.3.3 Computational Details

Calculations are performed on four atomic systems: Li, Ne’", Q, % and Be, where

Q597 is a model 3-electron atom that has a nuclear charge of +2.5. In all e-DFT
calculations, we take pa to be the density for a single 2s electron, and pg includes
all other electrons. The KSCED equations for each system were solved with pp fixed
at the density obtained from the corresponding orbitals of an unrestricted KS-DFT
calculation on the full system; this is justified for the cases studied here because
solution of the KSCED equations for pa subject to a fixed pg < po (at all r), where
po is the exact ground state density for the full system, ensures the exact calculation
of the ground state energy and ground state density.? All calculations were performed

using in-house codes, and all results are reported in atomic units.
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1.3.3.1 Basis Sets

All calculations were performed using the fully uncontracted cc-pVTZ basis set of
Gaussian-type orbitals (GTOs),?* with only the s-type orbitals included. For calcu-
lations on Q, 97, the Li basis set was used. For Ne'™, the most diffuse s-orbital was
removed to facilitate convergence. Although not reported, all calculations were also
repeated with slater-type orbitals, which led to somewhat improved convergence but

very similar numerical accuracy.

1.3.3.2 DFT Implementation Details

-4
Trer- T, (x107%

Ly s | L
500 1000 3000 5000
Y

Figure 1.1: The difference between the non-interacting kinetic energy T;[p] from
KS-DFT and from the ZMP method, plotted as a function of . The extrapolation is
performed using {\} = {y — j7}, 7 =5,4,...,0, and using 7 of 10 (red), 20 (green),
and 40 (blue). See text for details.

For all applications considered here, pa is an open shell system, and the calcula-
tions were performed using the unrestricted KS formalism. Details for the unrestricted
KSCED equations are given in the Appendix. All calculations employ the Slater ex-
change functional®® and the Vosko, Wilk, and Nusair correlation functional.®® In

VKSCED

calculating V5 [pA, pB; ], a uniform radial grid is used to evaluate the exchange-

correlation functions, {¢*B}, {V2¢*B} | and the NAKP. Upon convergence of the
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KSCED equations, the same radial grid is used to evaluate the exchange-correlation
energy and to numerically integrate the kinetic energy. For Be and Li the grid ex-
tends from r = 0 to 15, while for Q; 27, r = 0 to 20 and Ne’", » = 0 to 2. For Be,

Li and Q the grid density is 2000 points/ag and for Ne™, 20000 points/ag. We note

7 138

that future applications that employ either a non-uniform®’ or variational®® mesh
will require fewer gridpoints to achieve the same level of accuracy. Unless otherwise
stated, the iterative solution of the KSCED equations were deemed converged when
the total energy of the system changed by less than 10~ Hartrees between successive

iterations.

1.3.3.3 ZMP Extrapolation

To examine the extrapolation error associated with the ZMP method, convergence
tests were performed for the Li atom system. The total density for the system, pas,
and the reference value for the non-interacting kinetic energy were calculated from a
full KS calculation. This pap was used to define the restraint potential (Eq. 1.16),
and the ZMP extrapolation was performed using six equally spaced values of A (i.e.,
{A\} = {y —j7}, where j = 5,4,...,0). For a given pair of parameters v and 7,
the non-interacting kinetic energy was numerically integrated, and the extrapolation
error was taken to be the difference between this result and the reference value from
the full KS calculation. Fig. 1.1 presents this calculated error as a function + and
for various values of 7. These results indicate that the extrapolation error decreases
to within 0.1 mH for v > 500, and the spacing parameter 7 has only a small effect.
The error decreases to within 1 uH for larger values of 7. Results reported hereafter
employ v = 600 and 7 = 10. The orbitals from Eq. 1.15 were deemed converged when
all occupied orbital coefficients changed less than 1077 between successive iterations.

The ZMP extrapolation scheme used here does not constrain the normalization of

the orbitals. In general, we found that extrapolation violated normalization by less
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then 0.01%, and it was found that normalizing the orbitals after extrapolation led to
less than 0.1 mH change in the total energy. The results reported here do not include

a posteriori orbital normalization.

1.4 Results

0.5
=04
~>0.3

$0.2

0 2 4 6
r

Figure 1.2: The 2s electron density (pa) for (A) the Q;2° ion, (B) the Li atom,
(C) the Ne*" ion, and (D) the Be atom. Calculations performed using e-DFT with
the non-additive kinetic energy calculated using our exact protocol (red), the TF
functional (blue), and the TFvW functional (green). The black curve, which is nearly
indistinguishable from the exact protocol, presents the results from the full KS-DFT
calculation.

e-DFT was performed for a series of three-electron systems, Q5 (5)'5, Li, and Ne'™,
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as well as the four-electron Be atom. For each application, ps was chosen to include
a single 2s electron, and the remaining electrons were included in pg. In addition
to using the exact embedding protocol described here, the NAKP in the embedding
calculations was treated using the approximate TF kinetic energy functional (Trr[p] ,

Eq. 1.13) and the TFvW functional with the standard 1/9 mixing parameter (Trg[p]+

1

Fig. 1.2 presents the pp obtained in these e-DFT calculations. For reference,
Fig. 1.2 also includes the 2s orbital density from the full KS-DFT calculation. Ab-
solute agreement between the KS-DFT results and the e-DFT results would only
be expected if all results were obtained with the exact exchange-correlation func-
tional. Nonetheless, since all calculations in this study employ the same approximate
exchange-correlation functional, comparison of the e-DFT and KS-DFT results pro-
vides a significant test of the accuracy of the various NAKP descriptions.

Fig. 1.2 clearly demonstrates the sensitivity of e-DFT calculations to the method
of treating the NAKP. In comparison to KS-DFT, the e-DFT results from the approx-
imate TF and TFvW functionals are peaked at significantly shorter radial distances,
and they qualitatively fail to capture the nodal structure. Interestingly, the vW
correction to the TF functional actually worsens the agreement with the KS-DFT
reference. The exact embedding protocol describe here, however, is graphically indis-
tinguishable from the KS-DFT result.

Further evaluation of the e-DFT methods can be obtained by comparing the cal-
culated one-electron ionization energies (IEs) for the various methods. The e-DFT
IE is calculated from the difference between the total electron energy from Eq. 3.6
and the energy from a full KS-DFT calculation performed on the ionized (N-1 elec-
tron) system. These results are presented in Table 1.1, which again illustrates the
qualitative shortcomings of the approximate NAKP treatments. For the approximate

NAKP descriptions, the relative error between the e-DFT result and the KS-DFT
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result for the IEs ranges from 30-60% for 3-electron systems, and up to 80% for Be.
As has been observed previously,? including the vW gradient correction decreases
the accuracy of the IE calculation. The exact embedding protocol almost completely
eliminates these differences with the reference calculation, with errors of less than
0.2% for Q;gﬁ, Li, and Be and with an error of less 4% for Ne'™.

The lower accuracy of our embedding protocol for the case of Ne™™ arises from
the description of the nuclear cusp. The KSCED equations converged slowly for this
case, and the convergence threshold had to be raised to 10™° hartrees. By changing
from GTOs to Slater-type orbitals (results not shown), the convergence problem was
removed, and it was found that for all four applications, the IEs obtained using our
e-DFT protocol were within 1% of the full KS-DFT result. Below, we describe how
the use of a simple switching function for the NAKP in the cusp region also removes
these convergence problems for the GTOs, while preserving the accuracy of the IE
calculation.

We note that the ionization of the closed shell Be atom presents an electronic
structure challenge that is similar to the homolytic cleavage of a covalent bond. From
the perspective of the NAKP, this atomic system is especially challenging since both
electrons in the 2s “bond” are co-localized on a single attractive center. The difficulty
of this particular case is confirmed by the especially poor description provided by the
TF and TFvW functionals for the IE of the Be atom. The excellent accuracy of the
new embedding protocol for this case suggests that the method will allow for accurate
e-DF'T calculations in which the subsystems are linked by covalent bonds.

Fig. 1.3 illustrates the KSCED potentials, V5P [p,, pp; 1], and the correspond-
ing NAKPS, vnaq[pa, pB;r], that are obtained from the exact embedding calculations.
For each system, the similarity between these two potentials illustrates the domi-
nance of the NAKP at short distances. However, the NAKP decays rapidly, and the

KSCED potential is dominated at larger distances by the Coulombic terms (Eq. 1.5).



20

Table 1.1: Total energy (TE) and ionization energy (IE) obtained using KS-DFT
and e-DFT.

Atom Calculation TE IE Error (%)
—05
2.5
KS -4.799405 0.060142 -
TEvW -4.835122 0.095258 59.99
TF -4.819221 0.079357 33.28
Exact Embedding -4.799510 | 0.060247 0.18
Li
KS -7.343870 0.201098 -
TEvW -7.443321 0.300549 49.45
TF -7.408509 0.265737 32.14
* Exact Embedding | -7.344046 0.201274 0.09
Ne ™+
KS -101.964612 | 8.754056 -
TEvW -106.413890 | 13.203334 50.83
TF -105.630042 | 12.419486 41.87
b Exact Embedding | -102.294207 | 9.083650 3.77
Be
KS -14.447017 | 0.331698 -
TEFvW -14.717243 | 0.601924 81.47
TF -14.635950 | 0.520631 56.96

* Exact Embedding | -14.447463 | 0.328900 0.13

% KSCED equations converged to 10~ Hartree
b KSCED equations converged to 10™° Hartree
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Although it is not visible from the scale of the plots in Fig. 1.3, the vp.a[pa, pB; 1]
KSCED

term comprises less than 1% of the Vg [pA, pB; 1] for distances greater than 3 a.u.

for all cases. (For Ne'™, this regime is reached at 0.43 a.u.)
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Figure 1.3: The KSCED effective potential, V.K*“®P[ps, pg;r], for (A) the Q57

€

ion, (B) the Li atom, (C) the Ne'” ion, and (D) the Be atom and the NAKP,
Unad[pa, p; 1], for (E) the Q;2° ion, (F) the Li atom, (G) the Ne™ ion, and (H)
the Be atom using the e-DF'T protocol presented here.

Comparison of the NAKPs in Fig. 1.3E-H with the densities in Fig. 1.2 illustrates
that the nodal structure in the 2s electron density is enforced by the NAKP. For each
system, the large outer peak in the NAKP coincides with the nodal feature in the
2s density. Unlike the KS-DFT results, we note that the densities obtained using
e-DFT in Fig. 1.2 do not exhibit a genuine radial node, since ps corresponds to the
ground-state eigenvector of Eq. 1.1. A large peak in the e-DFT effective potential
is therefore essential to achieve the correct 2s shell structure. The NAKPs obtained

from the approximate TF and TFvW functionals do not exhibit this pronounced peak
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(not shown), which leads to the poor descriptions for the 2s electron density (Fig.
1.2) and the IE (Table 1.1).

In addition to the pronounced outer-most peak for each NAKP in Fig. 1.3E-H,
oscillations at short distances are observed. This oscillatory behavior is sensitive to
the basis set representation. Small changes in the orbital coefficients for regions of low
density give rise to large changes in the kinetic potential (Eq. 1.24), resulting in slow
convergence of the KSCED equations. (These oscillations are not observed when the
density vanishes at large distances since the basis set expansion is dominated by only
the slowest-decaying function in that regime.) Using STOs rather than GTOs, the
NAKP oscillations at short distances were diminished (not shown), and the iterative
convergence was improved. In future applications of the exact embedding protocol
with GTOs, the use of the convergence acceleration algorithms such as DIIS?* may
prove beneficial. However, we now demonstrate that the problems associated with
poor convergence and NAKP oscillations can be alleviated with a simple modification
of Eq. 1.24.

As pa vanishes close to the nucleus, evaluation of the second term in Eq. 1.24 be-
comes unstable, leading to the aforementioned convergence problems. This is avoided
by introducing a switching function that changes from the exact expression for the

kinetic potential of subsystem A to the corresponding TF approximation near the

nucleus,
Unaalpas piit] = : Nf:ﬂ <_1 ?B(r)V%?B(r)—eiﬁB(r)z) (1.25)
pas(r) — 2
9 Na/2 1 . . L 2
NG z; (_§¢i (r) V77 (r) — e ¢y’ (r) ) X (1.26)

(= Slpwx) = (30 AL o),



23

where f[pp;r| is the smooth switching function

1
—pB(r)+pp) 1 1°

Fleix] = - (1.27)

Previous work used a similar function to switch between approximate expressions for
the NAKP in the vicinity of the nuclear cusp.*’ The parameters py; and & determine
the radial distance and the abruptness with which switching occurs, respectively. The
parameter pp was related to the integrated electron density in the cusp region, setting
P = pu(r!), where

§=4dnm /T/ r2pg(r)dr. (1.28)
0

e-DFT results obtained using range of values for x and £ were compared to deter-
mine robust parameters for the switching function. Setting x = 50, we varied £ over
the range from 0.4 to 0.8 for Li and Ne”", which led to changes in the total calculated
energy of less than 0.4 mH and 5 mH, respectively. Similarly, setting & = 0.6 and
varying k over the range from 50 to 500 led to differences of less than 0.1 mH for
both Li and Ne.

Using the NAKP expression in Eq. 1.27 with £ = 0.6 and x = 50, our e-DFT pro-
tocol was applied to all four systems, and the results are presented in Table 1.2. All
calculations reached full 10™® convergence within 80 iterations of the KSCED equa-
tions, in contrast with the calculations using Eq. 1.24, which was difficult to converge
in some cases even with 2000 iterations. Furthermore, the e-DFT calculations with
the modified NAKP expression in Eq. 1.27 yields excellent accuracy in comparison
to the full KS-DFT equations, with less than 1.5% error in the IE for all cases.

For the Li atom, Fig. 1.4 compares the NAKP, the KSCED effective potential,
and the 2s electron density obtained by solving the KSCED equations using either
Eq. 1.24 (black) or Eq. 1.27 (red) for the NAKP. The black curves in this figure are

the same as those for Li in Figs. 1.2 and 1.3. It is clear from Fig. 1.4A that at short
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Table 1.2: Total energy (TE) and ionization energy (IE) obtained using e-DFT with
the NAKP switching function (Eq. 1.27).

Atom TE IE Error (%)
505 | -4.799142 | 0.059879 0.44
Li -7.342720 | 0.199948 0.57

Ne™ | -101.843497 | 8.632941 1.38
Be | -14.443703 | -0.328383 1.00

distances, the switching function produces a relatively featureless, repulsive NAKP
due to the TF approximation; the arrow in this figure indicates the radial distance r’
that corresponds to the parameter £ = 0.6. Fig. 1.4B illustrates that the repulsive
NAKP largely cancels the attractive electron-nuclear Coulomb term in the KSCED
effective potential (Eq. 1.5). As pa vanishes at the nucleus, the KSCED effective
potential must also approach zero.?® The remaining oscillations at radial distances
in Fig. 1.4B are an artifact of the finite basis set. Finally, Fig. 1.4C demonstrates
that the 2s electron density that is obtained using the switching function does not
reproduce the features of the radial node, but it recovers the exact embedding result
for distances beyond 1 a.u. This close agreement at large distances is expected!
from the accuracy of the IE calculations in Table 1.2. In light of the much improved
convergence efficiency, use of the NAKP expression in Eq. 1.27 compares favorably

with exact embedding via Eq. 1.24.

1.5 Extension to Larger Systems

The calculations reported here demonstrate a proof-of-principle for the exact calcula-
tion of the NAKP. However, for applications of e-DFT to large systems, performance
of the ZMP extrapolation at each iteration of the KSCED equations is impractical.
Nonetheless, the short-ranged nature of the NAKP (see Fig. 1.3E-H) suggests several
strategies for employing our e-DFT protocol in larger systems.

For example, suppose that subsystem B is further divided into fragments (By, Bo,
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Figure 1.4: (A) The NAKP, (B) the KSCED effective potential, and (C) the 2s
electron density (pa) for the Li atom, obtained using exact embedding (black) and
using the modified NAKP in Eq. 1.27 (red). The arrow indicates the radial distance
at which switching occurs.

.., By), and consider the sum of the NAKP terms due to the individual fragments,

f

ST.[p] 075[p]
e ] B , 1.2
v d[pA PB I‘] Z( (5p ‘pPA'H)Bi 5'0 ’ppA ( 9)

i=1

This equation is exact in the limit of one fragment, and its implementation with our
protocol will avoid ZMP extrapolation for anything larger than the union of subsystem
A with a single fragment.

The assumption in Eq. 1.29 that the NAKP is additive among the fragments

must be tested. However, any error introduced from this assumption can be partially
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corrected using the TF (or other) approximate kinetic energy functional,

pm)

5T, [ p] (appr)

. N 5T p] (appr)
Unad [pAy PB; I'] ~ N

5P pP=pA+pB 50
- i T3] (appr) - T3] (appr)
i1 op p=pa+pB; op pP=pA
f exac exac
+ Ly _ DGl . (L.30)
i1 5P P=PA+PB; 5P p=pA

Here, the first term on the RHS corresponds to the NAKP obtained from the TF
functional for the full system. In the second term, the contribution due to each of the
fragments using the TF approximation is removed, and in the third term, each of the
fragment contributions is replaced using the exact protocol. The short-ranged nature
of the NAKP suggests that distance-based cutoffs can be employed with summations

in Egs. 1.29 and 1.30, allowing for significant computational savings.

1.6 Conclusions

We have described a general and exact protocol for treating the non-additive kinetic
potential in embedded density functional theory calculations. In applications to a
series of three- and four-electron systems, we have numerically demonstrated the ap-
proach, and we have illustrated the qualitative failures that can arise from the use
of approximate kinetic energy functionals. We have also shown that improved con-
vergence of the KSCED equations can be obtained with appropriate switching of the
NAKP in the vicinity of the nuclear cusps, and we have described possible strategies
for the scalable implementation of our embedding protocol in large systems. Natu-
ral applications of exact embedding include the rigorous calculation of one-electron
pseudopotentials, the calculation of DF'T embedding potentials for use with high-level

5,21,42,43

ab initio calculations on small subsystems, and the accurate implementation
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of the “molecular embedding” strategy in which each molecule of a large system is

assigned to a different embedded subsystem.**

1.7 Appendix: Unrestricted Open-Shell e-DFT

For unrestricted open-shell e-DFT calculations, the density of each subsystem is fur-
ther partitioned into o and f spin densities, such that pap = p} + pi + o5+ pg. This

leads to the KSCED equations

1 A« . a
|:_§V VKSCED[pA7pAa pBa pBa :| gbz 7 (I') = ]-7 ) NA7 (131)
1 ‘
|:_§v VKSCED[pAapAva7pB7 :| ¢ ﬁ - EA quAﬁ( ) = 17 ---aN/fa (132)
1 a « - (67
|:_§v VKSCED[pBapBapAva> :| ¢ = ¢1B7 (I‘) = 17 "'7NB7 (133)
1 .
|:_§V VKSCED[pBavapAMOAa :| = Bﬁ¢Bﬁ( ) v = 17,N1§ (134)
Here, N, is the number of electrons in each subsystem, and p(r Z |8 (

where p € {A,B} and v € {«, 8}. The KSCED effective potential, VKSCED [pA, o s, o],
is
VISP 108, a0, 055 1) = vno(0)+vspan; tl+ose[(08+08), (PA+05); T)+naal o, 05; 7]

(1.35)
where v,0(r) and vy[pap; r] are unchanged from Bq. 1.5, v [(p + %), (04 + p5); 1]
is the usual open-shell exchange-correlation potential for the total system,® and the
NAKP is discussed below.

The kinetic energy functional is separable into two different spin contributions®

Tlpss, o) = Tulply, 0] + TA[0, ), (1.36)
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where
Ng

1
o 01 = D (| = 5 V1ot (1.37)
=1

and likewise for T,[0, p’]. Therefore, the NAKP depends only on spin densities cor-

responding to the same spin, such that

6T3[p*, 0] 0T[p*, 0]
nad [ PX PR L] = — ,and (1.38
naa[p, 5 1] 507 Doy O ™ |, (0 A (138)

8T4[0, p”] 8T4[0, p”]

8 B. _ sLY> _ St P
Unad [pA7 pB7 I'] - 5p6 p’8=pi+pg 5PB P’BZPi (r> (139>

The ZMP extrapolation is used to calculate the KS spin orbitals {¢;"""} and
eigenvalues {E?B’V} for the full system, exactly as is described in the text, except that
the total spin density is employed instead of the total electron density. Finally, our

exact expression for the NAKP for open-shell systems is modified from Eq. 1.24 as

follows:
] NX+N¥ .
vmalpo Airl = > (_§¢?B’V(I‘)V2¢?B’V(r)—G?B’”@AB’”(r)z)
B i
1 - L A A Av A
- o4 (1) Z (_§¢z W(r)v%z‘ Y(r) — € ’V<I')2> . (1.40)

The TF approximation for the non-additive kinetic energy in an open-shell calcu-

lation is

Ti (o o] = 22/3CTF/ (P2 @) = o) = ™)) i, (1.41)

and corresponding result for the TFvW functional is

L[ (IVoe@P Vo @)]?  [Veh(r)?
nad v v] __ gmad[ v vV . AB — A — B
Triwwloa, pe] = T75 (X PB] + 79 / ( P4 (T) P4 (r) P (1) o

(1.42)
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Chapter 2

Embedded density functional theory for covalently

bonded and strongly interacting subsystems

2.1 Introduction

Important methodological challenges in electronic structure theory include the long-
timescale simulation of ab initio molecular dynamics and the seamless combination of
high- and low-level electronic structure methods in complex systems. Methods that
exploit the intrinsic locality of molecular interactions have demonstrated encouraging
progress towards these goals. 7

In particular, orbital-free embedded DFT (e-DFT) offers a formally exact ap-
proach to electronic structure theory in which the interactions between subsystems
are evaluated in terms of their electronic densities.'* Recent work has demonstrated
that constructing the embedded subsystems from individual molecules leads to a
linear-scaling electronic structure approach that maps naturally onto distributed-

13,18 and it provides a systematic framework for calculat-

memory parallel computers,
ing electronic excited states in condensed phase systems.'®?* However, approximate
treatments of the non-additive kinetic potential (NAKP) limit the accuracy of this
approach in applications involving strongly interacting subsystems.?! For example,
severe artifacts in the structure of liquid water, including the complete absence of a

second peak in the oxygen-oxygen radial distribution function, have been predicted

from existing approximations to the NAKP,'® and e-DFT applications involving co-
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valently bonded embedded subsystems have also been shown to qualitatively fail.?! 23
The development of improved methods to address the NAKP problem will open new
doors for on-the-fly, massively parallel electronic structure calculations in general,
condensed-phase systems.

In this paper, we describe progress towards the development of accurate, scalable
treatments for the NAKP in e-DFT. We provide the first molecular applications of
our recently developed Exact Embedding (EE) method,?* demonstrating that it suc-
cessfully describes the breaking of covalent bonds and hydrogen bonds with chemical
accuracy. Additionally, we introduce and numerically demonstrate a pairwise ap-
proximation to the NAKP, which allows for the scalable implementation of the EE
method in large systems. Benchmark calculations are presented for systems with up

to 125 molecules, demonstrating that parallel implementation of the method enables

constant system-size scaling of the wall-clock calculation time.

2.2 Theory

2.2.1 Orbital-Free Embedded DFT

We utilize the orbital-free e-DFT formulation of Cortona' and Wesolowski and cowork-
ers.?? For the case in which the total electronic density pap is partitioned into two
subsystems, pap = pa + pB, the corresponding one-electron orbitals obey the Kohn-

Sham Equations with Constrained Electron Density (KSCED),?

{—%Vﬂ-+1@ﬁmA,pAB;r@ GA(r) = Ao (r) (2.1

1

=57+ vl paai] 0B0) = ). (22)
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where i = 1,...,N* j=1,...,NB and N* and N® are the number of electrons in
the respective subsystems. v.g is the effective potential for the coupled one-electron

equations, such that

Vett[PA, PABT] = Une(T) + vy[paB; ] + Uxc[paB; T]

+ VUnad [PA7 PAB; I'], (23)

where the N, nuclei occupy positions {R;},

Nnuc

Une(T) = —Z‘r_Z—R’ (2.4)

vilpir] = /ﬂdr@ (2.5)

1]
] ] (26)

and Ey.[p] is the exchange-correlation functional. vyaq[pa, pap;r] is the potential due

to the non-additive kinetic energy for non-interacting electrons, such that

0T pa, pu)

sl ), 27)

Unad [PA, PAB; T] = [

where Tsnad[pA, pB] = Tilpas] — Ti[pa] — Ts[ps]. The subsystem densities are con-

NA
structed from the corresponding KS orbitals, using pa(r) = Z | (r)|* and pp(r) =
i=1

NB
Z |qb}3 (r)]%. Egs. 3.1-2.7 are easily generalized for the e-DFT description of multiple
j=1

embedded subsystems. 1'*®

Two aspects of e-DFT are worth emphasizing. Firstly, like conventional Kohn-
Sham (KS)-DFT, it is a theory that is exact in principle, but practical calculations
must employ approximations to the unknown exchange-correlation functional. Sec-

ondly, unlike conventional KS-DFT calculations, the embedding formulation intro-
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duces the NAKP, vyaqlpa, pas; ], since the one-electron orbitals for subsystem A
are not necessarily orthogonal to those of subsystem B. Without knowledge of the
exact functional for the non-interacting kinetic energy, this creates a second source
of approximation in e-DFT calculations. The significance of the NAKP is system-
dependent, with the most severe cases including those for which the subsystem den-
sities greatly overlap; no approximate kinetic energy functional has been previously
demonstrated to yield accurate results for embedded subsystems that are connected

by covalent bonds. 321222526

2.2.2 Exact Calculations of NAKP

We have recently developed the Exact Embedding (EE) method to calculate the
NAKP.?* The general method can be summarized for two embedded subsystems as
follows: A Levy constrained search (LCS)?" or equivalent technique is first used to
determine the full set of orthogonal KS orbitals, {¢*?}, that correspond to the total
density pap from the latest iteration of Eqs. 3.1-2.3. Then, from the KS orbitals
{68}, {9}, and {#P}, the corresponding kinetic potentials are calculated using the

exact result of King and Handy,?®

2?21 (_%@(r)v%i(r)) - €i¢i(r)2)

o) + 1, (2.8)

(% (I‘) =

where n is the number of occupied orbitals, ¢; is the KS eigenvalue corresponding to
orbital ¢;, and pu is a constant. Finally, the NAKP needed for the next iteration of

Egs. 3.1-2.3 is calculated directly from the difference

Vnad|PA, PAB; T] = U?SB(P) - vﬁ(r), (2.9)
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where the superscripts in this equation indicate the orbital set to which each kinetic
potential corresponds.

Rather than explicitly performing the LCS, we use the equivalent protocol of Zhao,
Morrison, and Parr (ZMP)?* 3! to obtain the exact non-interacting kinetic energy and

the KS orbitals {gb?B}. This requires solution of the following one-electron equations
1
57 () + 0200) | 0850) = PR ) (2.10)
in the limit A\ — oo, where i = 1,...,(N* + N®), and

Mr) = )\/Mdr’. (2.11)

‘ v — x|

Vexs (T) corresponds to any well-behaved external potential,>*! and various choices
for this potential are described in Sec. III B. In practice, Eq. 2.10 is solved at several
large, finite values of A, and the KS orbitals and eigenvalues, as well as the final non-
interacting kinetic energy, are obtained via extrapolation.?* 3! In Sec. V, we discuss
a technique to robustly implement the ZMP step for NAKP calculations in large
systems.

The EE method outlined in Eqs. 2.8 - 2.11 is unique in that it allows for the for-
mally exact calculation of the total electronic density within the e-DFT framework,
using integer orbital occupancies and without approximations to the NAKP. The
method was previously demonstrated for atomic systems with strongly overlapping
subsystem densities,?* and the current paper presents its first molecular applications.
We note that several other groups have also used density inversion techniques to cal-
culate the NAKP, assuming that the total electron density is already available from
another electronic structure calculation.?*3%3% In particular, Visscher and coworkers

have applied this approach to molecular systems with the aim of developing improved
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non-additive kinetic energy functionals.?® Furthermore, Partition DFT has been in-
troduced as a formally exact embedding scheme in which subsystem densities are de-
scribed using partially occupied orbitals, and it has been applied to one-dimensional

model systems.®

2.3 Implementation Details

We have implemented e-DFT in the Molpro quantum chemistry package,* allowing
for calculation of the NAKP with either approximate functionals or the EE method.
In this section, methodological and numerical aspects of the implementation are dis-

cussed.

2.3.1 Supermolecular vs. Monomolecular Basis Sets

The atom-centered basis sets used to solve the KSCED (Egs. 3.1 and 3.2) are im-
plemented using two different conventions.?"** In the monomolecular basis set con-
vention, the density for each embedded subsystem is described using only the basis
functions that are centered on atoms belonging to that subsystem. In the super-
molecular basis set convention, the density for each embedded subsystem is described
using the same basis set, which includes functions that are centered on all atoms in
the system. The supermolecular basis set convention provides a closer approximation

to the complete basis set limit, although it is more costly.

2.3.2 7ZMP Step

In our implementation, the ZMP step of the EE method is performed by solving
Eq. 2.10 for six large, finite values of \. The KS orbitals {¢*®} are then obtained
from extrapolation of the atomic orbital coefficients for the {(bf?}, using a third-

order polynomial in A7, and normalization of the extrapolated orbitals is enforced
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a posteriori. The KS eigenvalues {€*} are similarly obtained from extrapolation of
the {ef)]\g}. Ti|pag] is calculated analytically from the extrapolated orbital coefficients,
which ensures that the total energy from the EE method is bound from below by the
KS-DFT energy.
In the limit A — oo, the solutions to Eq. 2.10 are independent of the choice

29-31

of external potential vey(r), although vey(r) does effect the convergence with

increasing A. Various options where thus considered, including

Vext(T) = ne(T), (2.12)
Vext(T) = tpe(r) + (1 — ﬁ) vy[pas; 1], (2.13)
Vext(T) = Une(T) + v3[paB; T] + vxc[paB; 1] (2.14)

At every iteration of the KSCED, these versions of ve(r) are all available without
the need for additional computation. Test calculations have indicated that the exter-
nal potential in Eq. 2.14 leads to the fastest convergence of the extrapolation with

increasing A, and this potential is used in all results for the EE method reported here.

2.3.3 NAKP Numerics for Regions of Weak Density Overlap

Numerical evaluation of the kinetic potential from Eq. 2.8 is unstable in regions
for which the corresponding density vanishes. The problem is exacerbated by the
incorrect distance dependence of the low-density tails obtained from calculations using
Gaussian-type orbitals (GTOs).?® However, these numerically treacherous regions
correspond to weak overlap between subsystem densities, where the magnitude of the
NAKP is necessarily small and easily approximated.? We thus utilize a density-based
criterion to switch from the exact expression for the kinetic potential to a numerically
stable approximation, such as the Thomas-Fermi (TF) kinetic potential. The protocol

used to perform this switching is described below.
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In a first step, we calculate the constant shift that is needed to match the exact re-
sult for each kinetic potential to the corresponding TF result in a prescribed switching
region. Specifically, for each of the kinetic potentials (i.e., vr,( { v vg (r )}
which correspond, respectively, to p(r) € {pas(r), pa(r), pB(r)})7 the average differ-
ence (A € {AAB, AP, AP}) between the results from Eq. 2.8 and from the TF func-
tional is evaluated in the vicinity of the p(r) = p’ density isosurface. Each A is

computed over gridpoints in the region £ < f[p;r] < (1 — &), where

1

f[P;F]:W

AT (2.15)

&, Kk, and p' are parameters that define the switching region, and the relative contri-

bution from each gridpoint is weighted according to
wlp; 1] = e~ (PaB(r)—p(r)) (2.16)

Note that the weighting function in Eq. 2.16 is uniform for the case of p = pap, and
it preferentially selects values which p(r) ~ pap(r) for the cases in which p(r) is one
of the subsystem densities.

In a second step, each kinetic potential is computed on the grid; this is done
by vertically shifting the exact result with the corresponding A and then smoothly
switching to the TF result at densities below p’, using the density-based switching
function fp;r] in Eq. 2.15. Finally, the NAKP is calculated from the smoothly
switched kinetic potentials using Eq. 2.9. The vertical shifts that are applied to
kinetic potentials simply give rise to an additive constant in the final NAKP, which
has no physical effect. Although we find that switching to the TF functional at
low densities is both convenient and accurate, the protocol described above could be

performed using any approximate kinetic energy functional.
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2.4 Results: Small Systems

2.4.1 Calculation Details

In this section, e-DFT calculations are presented for the dissociation curves of (HyO),
and the covalently bound Lit-Be and CH;-CF5 molecules; standard KS-DFT calcula-
tions are included for comparison. All results are obtained using the Molpro quantum
chemistry package,?! with KS-DFT available in the standard version and with the
e-DFT method implemented in our modified version. In the e-DFT calculations,
the NAKP is described using either the EE method or the approximate TF3¢37 and
L.C943® kinetic energy functionals; these approaches will hereafter be referred to as
e-DFT-EE, e-DFT-TF, and e-DFT-LC, respectively.

All calculations in this section are performed using the B88-P86 exchange-correlation
(XC) functional.**** Both the XC functional and the NAKP are evaluated on a grid of
Becke-Voronoi?! cells with resolution to limit the integration error of Slater exchange
to 1072 Hartree; the grid is generated using the Molpro directive GRID=10""2,

The KSCED in Eqgs. 3.1-3.2 are initialized from the gas phase density of each
subsystem, and the eigensolutions for each set of equations are updated at every
iteration. Convergence of these equations is improved with the molecular orbital
(MO) shifting and direct inversion of iterative subspace (DIIS) algorithms.**** For
the water dimer, an MO shift of -0.5 Hartree is employed, whereas a -1.0 Hartree
shift is used for Lit-Be and CHs-CF5. Since the DIIS algorithm leads to slow final
convergence, ** it is discontinued once the root mean squared difference (RMSD) of
total density matrix elements changes by less than 5 x 10™* between two successive
iterations. The KSCED equations are deemed converged when the total energy of the
system changes by less than 107% Hartree and the RMSD in the total density matrix

is smaller than 10™° between two successive iterations.
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For the ZMP step, extrapolation of the solutions to Eq. 2.10 is performed using
A = v+ 74, where 5 = 0,1,...,5. Unless otherwise noted, calculations for the
water dimer and LiT-Be employ v = 5000 and 7 = 100, whereas calculations for
CH;3-CF3 employ v = 100 and 7 = 10. To reach adequate convergence, Eq. 2.10 is
solved in several stages. Firstly, a coarse solution is reached by using an MO shift
of —10° Hartree and a value of A = 100. Subsequently, using this coarse solution as
a starting point, the Eq. 2.10 solved using a smaller MO shift of —84 Hartree and
with A = ~. Finally, solution of Eq. 2.10 for each increasing value of A needed for
extrapolation employs the solution for the prior value of A\ as a starting point. The
DIIS algorithm is used throughout. The orbitals from Eq. 2.10 are deemed converged
when the RMSD in the density matrix was smaller than 107 between two successive
iterations; significantly tighter convergence is needed for the ZMP equations than for
the KSCED, to ensure an accurate extrapolation.

Calculations for the water dimer variously employ the aug-pc-3, aug-pc-2, and
aug-pc-1 basis sets,? in each case using only the s- and p-type functions for the
hydrogen atoms and the s-, p-, and d-type functions for the oxygen atoms. These
water dimer basis sets are hereafter referred to as the modified aug-pc-3, aug-pc-2,
and aug-pc-1 basis sets, respectively. In all calculations for LiT-Be and CHj-CFs,
the Li, Be, and C atoms are described using the s-, p-, and d-type functions of the
combined aug-pc-4 and, for Li and Be, the cc-pVQZ (core/valence), for C, the cc-
pV6Z (core/valence) basis sets,*® and the H and F atoms are described using the full
aug-pc-1 basis set.*® Sensitivity of the e-DFT calculations to the basis set is discussed
in the next section.

Larger basis sets provide a better description of low-density regions, allowing for
the use of smaller values for the parameter p’ in Eqs. 2.15 and 2.16 and providing
robustness with respect to the choice of this parameter. For the water dimer, cal-

culations using aug-pc-3, aug-pc-2, and aug-pc-1 basis sets employ values of p' =



35.0
=120/
300 ¢ 10.0 K"
| 8.0
250} ¢ 6.0

20.0 -

A Energy (kcal/mol
N
o

1501 03 -02 01 00 01 02 03

. A Distance (A)

100F

Energy (kcal/mol)

X
50+
0.0+ u.‘”.'.
2.5 3.0 3.5 ., 4.0 4.5 5.0
Ro.o (A)

Figure 2.1: The water dimer dissociation curve, obtained using e-DFT-EE (red,
dot-dashed), e-DFT-TF (green, dashed) and e-DFT-LC (blue, dotted). Also included
are reference KS-DFT results (black, solid), which are graphically indistinguishable
from the e-DFT-EE results. Total energies are plotted with respect to the KS-DFT
minimum of -152.430722 Hartree. Inset, the curves are shifted vertically to align the
energy minima and horizontally to align the equilibrium distances.

1075,107%, and 5 x 1073, respectively. For Li"-Be and CH;-CF3, calculations employ
o = 107° In each case, the parameter x in Eqs. 2.15 and 2.16 is chosen such that

kp =10 and € = 107

2.4.2 Water Dimer

Fig. 2.1 presents the dissociation curve for the water dimer, a system with a strong
hydrogen bond and significantly overlapping subsystem densities. The curve is ob-
tained using e-DFT-EE (dot-dashed), e-DFT-TF (dashed), and e-DFT-LC (dotted);
KS-DFT results (solid) are also included for reference. The e-DFT calculations were
performed using two embedded subsystems, each corresponding to a different molecule
in the dimer. All calculations presented in the figure utilize the modified aug-pc-3
basis set, with the e-DF'T calculations employing the supermolecular basis set conven-
tion. The dissociation curve is plotted as a function of the oxygen-oxygen distance,

with the equilibrium water dimer geometry obtained from a KS-DFT energy mini-
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mization and with other geometries obtained by displacing the two molecules along
the oxygen-oxygen vector while fixing all other internal coordinates.

The e-DFT-EE results in Fig. 2.1 agree well with KS-DFT throughout the range
of dissociation distances. Numerical results for the two methods are graphically in-
distinguishable, and the calculated total energies differ by less than 0.5 kcal/mol
throughout the entire attractive branch of the curve. Exact numerical agreement
between the e-DFT-EE and KS-DFT descriptions is expected only in the limits of an
exact XC functional and a complete basis set.

The sensitivity of the e-DFT results to approximations in the NAKP is clearly
demonstrated in Fig. 2.1. The curve obtained using e-DFT-TF differs significantly
from the KS-DFT reference, exhibiting a dissociation energy that is underestimated
by 40% (~4 kcal/mol) and an equilibrium bond length that is 0.15 A too long. Calcu-
lations obtained using e-DFT-LC are somewhat improved, although the dissociation
energy is still overestimated by 20% (~2 kcal/mol) and the equilibrium bond length
is underestimated by 0.10 A. In the inset of Fig. 2.1, the curvature of the potential
energy surfaces in the vicinity of the minimum are compared, revealing significant de-
viations of the results obtained using the approximate NAKP treatments (e-DFT-TF
and e-DFT-LC) with respect to the results obtained using KS-DFT and e-DFT-EE.

Tannuzzi and coworkers'® have demonstrated that e-DFT calculations using ap-
proximate treatments of the NAKP, including the TF and LC94 functionals, lead to
qualitative failure in describing the structure of liquid water. Fig. 2.1 illustrates the
origin of this failure in terms of the pairwise interactions among molecules, and it
suggests that e-DFT-EE will enable the accurate, first-principles simulation of liquid
water and aqueous solutions. Critical to this effort, however, is the efficient and par-
allelizable implementation of the EE method for large systems, which is discussed in
Section V.

The sensitivity of the e-DFT calculations to basis set completeness is illustrated in
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Figure 2.2: Basis set dependence of the water dimer dissociation curve, illustrated
for calculations using the (A) modified aug-pc-2 and (B) modified aug-pe-1 basis
sets. Results for the e-DFT-EE, e-DFT-TF, e-DFT-LC, and KS-DFT methods are
reported as in Fig. 2.1. Total energies are plotted with respect to the KS-DFT
minimum energies of -152.953947 Hartree (panel A) and -152.864441 Hartree (panel
B).

Fig. 2.2, in which the water dimer dissociation curves are recalculated using the mod-
ified aug-pc-2 (Fig. 2.2A) and modified aug-pc-1 basis sets (Fig. 2.2B). Comparison of
the KS-DFT results and the e-DFT-EE results reveals that the agreement between the
methods worsens with smaller basis set; of course, both the KS-DFT calculations and
the e-DFT-EE calculations are basis-set dependent. In the e-DFT-EE calculations,
smaller basis sets give rise to numerical artifacts including the oscillatory behavior
in the King-Handy expression for the kinetic potential.?® For the modified aug-pc-1
basis set (Fig. 2.2B), the reasonable agreement between KS-DFT and e-DFT-LC is

due to a fortuitous cancellation of errors from the approximate NAKP functional and

small basis set.

2.4.3 Li"-Be

We now consider the heterolytic cleavage of a weak covalent bond, Li*-Be—Li"+Be,
using KS-DFT and e-DFT. The e-DFT calculations were performed in the super-

molecular basis set convention using two embedded subsystems, one corresponding
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Figure 2.3: The Li™-Be dissociation curve. Results for the e-DFT-EE, e-DFT-TF, e-
DFT-LC, and KS-DFT methods are reported as in Fig. 2.1. The results for e-DFT-EE
and the reference KS-DFT results are graphically indistinguishable. Total energies are
plotted with respect to the KS-DFT minimum energy of -21.962072 Hartree. Inset,

the curves are aligned as in the inset of Fig. 2.1.

to the 2-electron Li ion and the other corresponding to the 4-electron Be atom. The
dissociation curve for Li*-Be is plotted in Fig. 2.3.

As is seen from the main figure, the e-DFT-EE calculations accurately reproduce
the calculated total energies from KS-DFT throughout the entire range of internuclear
distances. The dissociation curves for these two methods, which are graphically in-
distinguishable in Fig. 2.3, deviate by less than 0.2 kcal/mol throughout the range of
separations and the dissociation energy deviates by only 0.07 kcal/mol. In contrast,
the e-DFT-TF results are in qualitative disagreement with the KS-DFT reference
calculations; in addition to dramatically overestimating the dissociation energy of
the molecule by ~12.5 kcal/mol, the method predicts the equilibrium bond length
to be 20% too short. Interestingly, the e-DFT-LC method performs significantly
worse in this application. The calculations based on the approximate LC94 kinetic
energy functional overestimate the dissociation energy by ~16 kcal/mol and predict
the equilibrium bond length to be 25% too short. The inset to Fig. 2.3 illustrates

that both e-DFT methods that use approximate treatments for the NAKP lead to
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an overestimation of the energy surface curvature in the vicinity of the equilibrium
bond distance.

The results in Fig. 2.3 illustrate the well-known breakdown of e-DFT with ap-
proximate treatments of the NAKP for applications involving strongly overlapping
subsystem densities. They further show that our EE method overcomes this large
error, yielding the first numerical demonstration of an e-DFT method to describe
covalent bond-breaking with chemical accuracy. Since e-DFT-EE is a formally exact
method, this result is expected. However demonstration that the level of accuracy in
Fig. 2.3 can be achieved in practical numerical simulations constitutes a non-trivial

validation of the method.

2.4.4 CH;-CF;

In a more challenging application for e-DFT, we consider the heterolytic cleavage of
a strong carbon-carbon o-bond, CH;-CF3 — CHJ + CF;. The e-DFT calculations
were again performed in the supermolecular basis set convention using two embedded
subsystems, one corresponding to the 8-electron CH3 moiety and the other corre-
sponding to the 34-electron CF5 moiety. The geometry for the lowest energy point
along the curve is provided in the supplemental information; the dissociation curve in
Fig. 2.4 is plotted by extending the C-C distance keeping all other internal coordinates
unchanged.

The dissociation curves in Fig. 2.4 are presented only for e-DFT-EE and the refer-
ence KS-DF'T calculations. e-DFT-EE reproduces the KS-DFT reference value for the
total energy for the molecule at the equilibrium bond distance to within 1.5 kecal /mol,
and the embedding method also recovers the reference value for the equilibrium bond
distance. Furthermore, as is clear from the inset, e-DFT-EE accurately reproduces
the curvature of the energy surface in the vicinity of the equilibrium bond distance. In

contrast, the e-DFT-TF and e-DFT-LC descriptions for this system fail dramatically,
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Figure 2.4: The CH3-CFj dissociation curve for heterolytic cleavage of the C-C
bond. Results are presented for the e-DFT-EE (red, dot-dashed) and KS-DFT (black,
solid) methods. Total energies are plotted with respect to the KS-DFT minimum
energy of -377.575687 Hartree. Inset, the curves are aligned as in the inset of Fig. 2.1.

predicting total energies at the equilibrium bond distance that deviate from the KS-
DFT reference by 731 kcal/mol and 981 kcal/mol, respectively. For calculations with
such strongly interacting subsystems, the failure of e-DFT with approximate descrip-
tions for the NAKP methods has been previously observed.? However, the results
for e-DFT-EE in Fig. 2.4 demonstrate significant progress in the accurate description

of covalently interacting subsystems using e-DFT.

2.5 Results: Extension to Larger Systems

2.5.1 Pairwise Treatment of the NAKP

In the previously described implementation of e-DFT-EE, the ZMP step, or an equiv-
alent LCS, is performed on the full system of interest. However, numerical challenges
limit the LCS to systems with less than 10-15 atoms,3?*347% potentially hindering
the applicability of e-DFT-EE in large systems. To avoid this problem, we demon-
strate an pairwise approximation for the NAKP that enables the scalable implemen-

tation of e-DFT-EE.
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For a system composed of Ny, embedded subsystems, {p,}, the non-additive

kinetic energy can be approximated using a pairwise sum,?* such that

Nsub
T {pa}] = Tilp) =) Tlpal (2.17)
a=1
Nsub
~ Z (Ts[pa + psl — Tslpa] — Ti[psl) .
a<f=1
Nsub
where p = Z pa- The NAKP for a given subsystem « is then
a=1
Nsub
Unad[pas {patit] = Y (7] (x) = vg (r). (2.18)
B#a

Applying the EE method to this approximation for the NAKP, a ZMP step is
performed at each iteration of the KSCED to obtain the KS orbitals corresponding
to each pair of subsystems densities, {qb?ﬁ }. Then, using both the subsystem KS
orbitals {¢¢} from the KSCED and the subsystem-pair KS orbitals {¢?’}, the NAKP
is evaluated directly from Eqs. 2.8 and 2.18. In this approach, only the NAKP is
assumed to be pairwise additive; all other interactions in the system are treated
with full generality. Since the ZMP step is applied only to the subsystem pairs, this
approach is numerically feasible if each subsystem is limited to a relatively small
number of atoms, regardless of the total system size. The short-ranged nature of
contributions to the non-additive kinetic energy suggests that distance-based cutoffs
can be employed within the sum over subsystem pairs. !

It was emphasized earlier that the converged results of the ZMP step are inde-

pendent of the choice of external potential, vey(r), in Eq. 2.10. In the pairwise im-

plementation of e-DFT-EE for the water trimer in Sec. V B, we employ the following
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external potential for each pair of densities p, and pg,

Vext (T) = Une(r) + vg[p5 1] + vie[ 5 1]
IL[p]  0T[pa + ps)
5(pa +pﬂ) 5(pa+pﬁ) 7

(2.19)

where T, indicates the approximate TF functional. This external potential approxi-
mates the KSCED effective potential (Eq. 2.3) for the pair of subsystems embedded
within the remainder of the full system; note that the TF functional is used only to
regularize the effective potential for the ZMP step; it does not introduce any addi-
tional approximation into the e-DFT-EE calculation. In Sec. V C, we use a simple
external potential that includes only the electron-nuclear interactions for the subsys-
tem pair.

The following two sections demonstrate the accuracy of this pairwise implemen-
tation of e-DFT-EE (Sec. V B) and the efficiency with which it can be implemented

in parallel (Sec. V C).

2.5.2 Water Trimer Application: Testing Pairwise Additivity
in the NAKP

Fig. 2.5 presents a test of pairwise additivity in the NAKP (Eq. 2.18) for a hydrogen-
bonded trimer of water molecules. e-DFT-EE calculations are performed using three
embedded subsystems, each corresponding to a different molecule in the trimer. In
a first set of results, the symmetric dissociation curve for the trimer is calculated
using no assumptions about the NAKP (solid); in a second set of results, the curve
is calculated using assuming pairwise additivity of the NAKP (dot-dashed). The
equilibrium geometry is provided in the supplemental information; other geometries
along the dissociation curve were then obtained by uniformly stretching the oxygen-

oxygen distances in the cluster, keeping all other internal coordinates unchanged.
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Figure 2.5: Symmetric dissociation curves for the water trimer, illustrating the
pairwise additivity of the NAKP. Calculations are performed using the e-DFT-EE
method, with no approximation to the NAKP (black, solid) and with the pairwise
approximation to NAKP (red, dot-dashed). The curves are plotted as a function of the
sum of the three O-O distances, with details of the molecular geometries provided in
the text. Total energies plotted with respect to the minimum energy of -229.4403073
Hartree for the full NAKP treatment. Inset, the difference between the two curves is
plotted.

The trimer calculations were performed using the modified aug-pc-2 basis set with
the monomolecular basis set convention; all other calculation details are identical to
those described previously for the modified aug-pc-2 calculations of the water dimer.

The agreement between the two curves in Fig. 2.5 indicates that Eqgs. 2.17 and
2.18 are excellent approximations for the non-additive kinetic energy and NAKP,
respectively. Throughout the entire attractive branch of the curve the total energies
differ by less the 0.5 kcal/mol, and the largest deviations appear only in the strongly
repulsive region at short distances. This good agreement is particularly notable, given
that the cyclic trimer geometries might be expected to magnify possible non-additive
contributions to the total energy; even better adherence of the NAKP to pairwise
additivity is expected for linear geometries of the trimer. We have previously noted
that higher-order corrections to Egs. 2.17 and 2.18 are possible,?* although the results
in Fig. 2.5 suggest that the assumption of pairwise additivity will be adequate in many

cases.
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2.5.3 Parallel Scaling of e-DFT-EE

Primary bottlenecks in KS-DFT include calculation of the two-electron integrals and
solution of the eigenvalue problem. In standard implementations, the two-electron
integral calculations scales as M* and the eigenvalue calculation scales at best as
M?, where M is the total number of basis functions.®*? More efficient methods for
computing the two-electron integrals include prescreening,”® Ewald summations,®*
and the fast-multipole method;®® however, solution of the eigenvalue problem remains
a computational bottleneck in most KS-DFT implementations.

As has been noted in previous work,® the monomolecular basis set convention
leads to advantageous scaling properties for e-DFT. In this convention, the number
of basis functions used to solve each KSCED, M, is independent of system size.
Consequently, the total cost of the eigenvalue problem scales linearly with the number
of subsystems, Ng.1,, and it can be trivially parallelized to the subsystem level.

The cost of the two-electron integral calculation is also reduced in the monomolec-
ular basis set convention. Terms arising from orbitals centered on molecules in more
than two different subsystems are exactly zero, such that the total cost of this op-
eration scales with N2, M2, . Furthermore, in this convention, the density for each
subsystem is spatially localized, such that short-ranged contributions to the KSCED
effective potential, including exchange, correlation, short-ranged electrostatic contri-
butions, and pairwise contributions to the NAKP, can be truncated at a cutoff dis-
tance. Long-ranged electrostatic contributions to the KSCED effective potential can
be efficiently treated using Ewald summations or other standard methods.**® Setting
aside these long-ranged terms for the current demonstration, the use of distance-based
cutoffs reduces the scaling of the total two-electron integral calculation to Ny, M2, .

which can be parallelized to yield constant wall-clock time scaling with increasing

system size.
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Figure 2.6: Wall-clock timings for lattices of hydrogen molecules, ranging in size
from 8 to 125 Hy molecules. The dotted blue lines indicate ideal quadratic and linear
scaling, the solid, black curve corresponds to the serial implementation of integral-
prescreened KS-DFT in Molpro, and the dashed, red curve corresponds to e-DFT-EE
using a number of parallel processors equal to the number of molecules in the system.

To illustrate these scaling properties, Fig. 2.6 presents benchmark timings for
simple tetragonal lattices of 8 to 125 Hy molecules, using both e-DFT-EE and the
KS-DFT implementation in Molpro. The Hy molecules are oriented parallel to the z
axis, with a bond length of 0.8 A, and the centers-of-mass for the molecules are spaced
by 3.0 A along the z and y axes and by 3.8 A along the z axis. All calculations employ
the uncontracted STO-3G basis set,?” Slater exchange®® without electron correlation,
and a grid density that ensures an integration error in the exchange energy of less
than 107° Hartree. The e-DFT-EE calculations are performed with each molecule
defined as a different subsystem, using the monomolecular basis set convention, and
using one parallel processor per subsystem. Values for the parameters A, p, x, and
the MO shift are the same as those used for the Li"-Be system. The cutoff for the
calculation of the electrostatics, exchange, and NAKP terms is set to 4.0 A in these
calculations, such that only nearest-neighbor molecules in the lattice contribute to
these terms. All calculations are performed on a cluster of dual, quad-core 2.6 GHz
Xeon Intel processors with Infiniband communication.

The timings in Fig. 2.6 indicate that the e-DFT-EE wall-clock time scales inde-



o4

0.04
[e e -
§ 0.08 |-
]
o
=
£0.02}
©
o
P
~
« 0.01-
(@]
=
L
0.00 L L L L L L
0 50 100 150 200 250 300

pairs

Figure 2.7: Error in the total energy of the e-DFT-EE calculation relative to
KS-DFT for increasing system size, plotted with respect to the number of nearest-
neighbor pairs.

pendently of the system size, with the deviations at small sizes due the boundaries of
the finite crystal. As expected, the KS-DFT results in the serial Molpro implementa-
tion with integral prescreening scales quadratically with the increasing system size. In
Fig. 2.7, relative energy of the e-DFT-EE and the KS-DFT calculations are plotted as
a function of the number nearest-neighbor pairs in the lattice, Npairs = 3(Nsub— Nfu/s ).

The error is small and independent of system size. The integrated error in the density

per molecule was found to behave similarly (not shown).

2.6 Conclusions

We introduce a general implementation of the EE method for calculating NAKP con-
tributions in the e-DFT framework, and we present a range of molecular applications.
The accuracy of e-DFT-EE is demonstrated for systems with covalently bonded and
hydrogen-bonded subsystems. For the dissociation of the water dimer and the covalent
bonds in LiT-Be and CH3-CF3, e-DFT-EE preserves excellent agreement with refer-
ence KS-DFT calculations, whereas approximate treatments for the NAKP, including

those based on the TF or LC94 kinetic energy functionals, lead to known failures.
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Furthermore, pairwise approximation of the NAKP yields excellent accuracy for the
hydrogen-bonded water trimer, and it enables ideal, constant system-size scaling in
applications to molecular clusters with up to hundreds of atoms. These results estab-
lish e-DFT-EE as a promising methodology for performing accurate, first-principles
molecular dynamics and for accurately embedding high-level wavefunction methods

in complex systems.
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Chapter 3

Density functional theory embedding for correlated
wavefunctions: Improved methods for open-shell

systems and transition metal complexes

3.1 Introduction

The demand for accurate and efficient descriptions of complex molecular systems re-
quires development of quantum embedding methods for electronic structure in which
a small subsystem is treated with a high level of theory while the remainder of the
system is treated at a more affordable level. Widely used examples of quantum
embedding include QM /MM, ® ONIOM,"® and fragment molecular orbital (FMO)
approaches,? ! which have led to significant advances in the simulation of condensed-
phase and biomolecular systems. However, such methods generally rely on empirical
models for the subsystem interactions, including link-atom approximations for em-

12-15

bedding across covalent bonds and point-charge electrostatic descriptions of the

environment,»® that are difficult to systematically improve and that can fail in prac-
tical applications. %1617

Density functional theory (DFT) offers an appealing framework for addressing this
challenge.'® *? DFT embedding provides a formulation of electronic structure theory

in which subsystem interactions depend only on their electronic densities, including

non-additive contributions due to the electrostatic, exchange-correlation (XC), and
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kinetic energy terms. In the WEFT-in-DFT embedding approach, the DFT embedding
potential is included as an external potential for WFT calculations, providing a WFT-
level description for one (or more) subsystem while the remaining subsystems and
their interactions are seamlessly treated at the DF'T level of theory.

Several groups, including this one, have recently demonstrated that non-additive
kinetic energy contributions to the embedding potential can be exactly computed 2628333
with the use of optimized effective potential (OEP) methods.** ™ In this paper, we
introduce a simple technique to improve the robustness of OEP calculations in sys-
tems that exhibit small HOMO-LUMO gaps, such as transition metal complexes.
In addition, we derive spin-dependent embedding potentials to enable the accurate
description of open-shell systems in the WFT-in-DFT embedding framework. Nu-
merical applications to the van-der-Waals-bound ethylene-propylene dimer and to
the hexaaquairon(II) transition-metal cation illustrate the applicability of these new
techniques and demonstrate the accuracy of the WFT-in-DFT approach in systems

for which conventional density functional theory methods exhibit substantial errors.

3.2 Theory

Like Kohn-Sham (KS)-DFT, DFT embedding provides a formally exact framework
for the ground-state electronic structure problem. Here, we review DFT-in-DFT

embedding and its basis for WFT-in-DFT calculations.

3.2.1 DFT-in-DFT Embedding

We begin by considering a closed-shell system in which the total electronic density
paB consists of two subsystems, pap = pa + ps. The corresponding one-electron

orbitals for pp and pp obey the Kohn-Sham Equations with Constrained Electron
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Density (KSCED),??

1
57+ vl ]| 02(6) = o), (3.)
1
{—§V2 + Vett[0B; PAB; r]} (r) = €5 (r), (3.2)
where i = 1,...,N* j=1,...,NB and N* and N® are the number of electrons in

the respective subsystems. v.g is the effective potential for the coupled one-electron

equations,

Vest[pa, paB; Y] = USP[pA; T] + Vemn (T), (3.3)

where v [pa; 1] is the standard KS potential for subsystem A, and

Vemb(T) = U (r) + 03[pB; ¥] + Vselpan; T] —
Uxe[pA3 T] + Vnad[pa, pas;T]. (3.4)
Here, v2 (r) is the nuclear-electron Coulomb potential from the nuclei contained in

subsystem B, v; is the Hartree potential, and v, is the XC potential. In addition
to these familiar terms from conventional KS-DFT calculations, DFT embedding
introduces the non-additive kinetic potential (NAKP) which properly enforces Pauli

exclusion between the subsystem densities. It is obtained from

0T *[pa, pu)

5on ](r), (3.5)

Unad [PA7 PAB; I“] = {
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where T™pa, ps] = Ti[pas] — Ti[pa] — Ti[ps], and Ti[p] is the non-interacting kinetic

energy functional. The total energy functional for the full system is then

Elpas] = Tipa] + Ti[ps] + T [pa, pa] +

Vielpas] + Jpas] + Exc[pas], (3.6)

where the last three terms on the right-hand side (RHS) are the nuclear-electron
Coulomb energy, the Hartree energy, and the XC energy computed over the total
density. Enforcing veny(r) to be identical for all subsystems (see Sec. III B) leads to
a unique partitioning in the DFT embedding formulation, such that the specification
of the nuclei and the integer number of electrons in subsystem A and B fully specify
the density partitioning.?® Eqs. 1-3.6 are easily generalized to the description of
multiple embedded subsystems.

We have previously demonstrated that by using OEP methods to calculate the
NAKP, DFT-in-DFT embedding can accurately describe both weakly and strongly

27,28 .14

interacting subsystems, including subsystems connected by covalent bonds;
we have shown that this method is computationally feasible for large systems by way
of localized approximations to the NAKP.?® More recently, we have introduced a
projection approach that completely avoids the NAKP calculation in exact DFT em-
bedding,? which appears worthy of further investigation. The OEP-based approach
employed here is appealing because it provides a local embedding potential that is a
functional of only the subsystem electronic densities.

In practice, the KSCED equations (Eq. 3.1 and Eq. 3.2) are solved by simply mod-

ifying the core Hamiltonian in the self-consistent field (SCF) calculation to include

the additional embedding terms. The embedding potential (Eq. 3.4) can be written
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in the atomic orbital (AO) basis as

Vemb = Vho + J[78] + Vic[vaB] —

Vxe [’YA] + Vnad [/VA7 ’YAB]y (37)

where the various terms on the RHS of this expression correspond to those in Eq. 3.4.
The subsystem and total AO density matrices in Eq. 3.7 satisfy y4 +v5 = yap. It

follows that the Fock matrix for subsystem A can be expressed as

fARE = AP 4 J[ya] + vie[yal, (3.8)

where

h* B —h® v, (3.9)

and h” is the core Hamiltonian for subsystem A (the kinetic energy plus external
potential due to the nuclei in subsystem A). The Fock matrix for subsystem B, £ A

is analogously defined.

3.2.2 WFT-in-DFT Embedding

The embedding potential in Eq. 3.4 describes the subsystem interactions in terms
of their corresponding electronic densities. However, the subsystem densities can be
computed with any level of theory, thus allowing for the description of one subsystem
at the (single- or multi-reference) WFT level, while the remaining environment is
treated at the DFT level.?%2%:34:35,50°54 (gsed-shell WFT-in-DFT embedding simply
involves performing a WFT calculation on a given subsystem using the modified
pAin B

core Hamiltonian, in Eq. 3.9, that contains the embedding terms due to the
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environment of the other subsystem. The WEFT-in-DFT energy is then obtained
by modifying the DF'T energy with respect to subsystem contributions at the WFT

level,*

Etot [PXVFTangT} = EX [R5
- (ERTRT [ v )R )

+ (BT [0 ). (3.10)

This expression is easy to evaluate since the terms in the parentheses are just the
DFT and WFT energies of subsystem A performed using the modified core Hamil-
tonian, h® ™ B Just as DFT-in-DFT embedding is an exact theory for the case of
an exact DF'T XC functional, WFT-in-DFT embedding is an exact theory for the
case of an exact DF'T XC functional and a full configuration interaction (FCI) WFT

description. *

3.3 Methods of Implementation

Here, we describe techniques to improve the accuracy and convergence of both DFT-
in-DFT and WFT-in-DFT calculations. First, a description of open-shell DFT em-
bedding is developed to incorporate the effects of spin-dependence in the embedding
potential. Then, implementation of the OEP calculation is discussed, and an orbital
occupation constraint is introduced to enable robust DFT-in-DFT and WFT-in-DF'T
embedding calculations for systems with low-lying virtual orbitals, such as transition

metal complexes.
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3.3.1 Embedding for Open-Shell Systems

For an open-shell embedded subsystem, the o and [ electrons generally experience
different embedding potentials due to differing non-additive XC and NAKP con-
tributions. Previous WFT-in-DFT implementations for open-shell systems have in
practice neglected this difference, effectively assuming that the spin polarization is
localized within the WFT subsystem.***® In this study, we show that effects due to
spin-dependent potentials are substantial and easily included via separate o and (8
embedding potentials. We develop approaches to utilize both restricted and unre-

stricted open-shell orbital formulations in WF'T calculations.

3.3.1.1 Open-Shell DFT-in-DFT Embedding

We begin by considering an open-shell system for which the total electronic density
is comprised of the o and 3 density of the two subsystems, pap = pi + pi + pR + pBB.

The effective potential for the unrestricted spin orbitals?’ is

a .o o S,ar _a . o
vialoks Pas PR PRt = v “To% o t] + 0 (X), (3.11)

where v59%[p%, p; 1] is the standard K$ effective potential for the unrestricted (U)KS

«
emb

orbitals, and v2 , (r) is a spin-dependent embedding potential applied only to the -

spin electrons,

U(?mb<r> = vr]?e(r) + U3 [va I'] + U}?c [pKBJ pﬁAB7 I'] -

v [P, PR T] + valPh, P 1. (3.12)
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The corresponding quantities for the [-spin electrons are analogously defined. The

total energy functional for the full open-shell system is then

Elpas] = Tpx] + Tlpg] + T2 p%, pi] +
T.[p3] + Tu[pg] + T o4, p] +

Vaelpas] + J[pas] + Exc[pip: pig)- (3.13)

Separate OEP calculations are performed over the o and 3 spin-densities for the exact
calculation of the NAKP, which allows for numerically exact unrestricted open-shell
DFT embedding (U-DFT-in-DFT).

In practice, we solve for the unrestricted spin orbitals by adding the spin-dependent
embedding potentials to the o and § Fock matrices. The « and S embedding potential

can be written in the AO basis as

ngb = VI]?B + J[W/B] + V)E(C [,YXB? ’ygB] -

Ve v, el + vialks vasl, (3.14)

where & € {a, f}, and the corresponding Fock matrices are
FAME = bt 4 I[ya] + vi R, YAl + Vi (3.15)

The unrestricted spin orbitals for subsystem A are then obtained by separately diag-
onalizing f** ™ B and 741 B in the usual way.

Practical implementations for performing OEP calculations using restricted open-
shell orbitals have yet to be developed. We thus introduce a simple, approximate
scheme for restricted open-shell DFT embedding (RO-DFT-in-DFT). In this ap-

proach, a U-DFT-in-DFT calculation is first performed, and the embedding potentials
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o

a,A in B
emb f

fB,A in B

vo o and meb are constructed using Eq. 3.14. Then, and are con-

structed using Eq. 3.15, and the usual RO approach is employed to obtain subsystem
fa,A in B i

orbitals that are spatially identical for the o and [ electrons. Specifically, S

diagonalized to obtain a set of occupied a spin orbitals, {¢%2}, and £ ™ B is then

occ

projected into the space of the occupied « spin orbitals using

flA@mB _ (TgfAinBe (3.16)

a,A

where ¢ is the matrix with columns comprised of the AO coefficients for {¢o.

Finally, the projected Fock matrix, f%* ™ B is diagonalized to obtain the set of RO
orbitals, {¢2 }, with the first N®* orbitals doubly occupied and with orbitals N*4 +
1,...,N* singly occupied, where N®* and N?* indicate the number of o and
B electrons in subsystem A. Although the second and third terms on the RHS of
Eq. 3.15 are updated at each iteration of the RO-DFT-in-DFT calculation, we leave
the embedding potentials unchanged to avoid performing OEP calculations using
restricted open-shell orbitals. The RO-DFT-in-DF'T energy for the total density is
calculated using Eq. 3.13.

Several different schemes have been proposed to calculate the embedding poten-
tial for open-shell subsystems while neglecting its spin-dependence.?#3% These ap-
proaches generally assume that interactions between the subsystems can be described
by a single embedding potential. For example, in systems with an even number of elec-
trons, the embedding potential, Ve, in Eq. 3.7, can be obtained assuming that each

embedded subsystem is closed-shell, and then the open-shell subsystem is calculated

using vo, , = meb = Vemp. In this approach, Eq. 3.15 is solved self-consistently while

«
emb

ve o and meb are held fixed, and the final DFT-in-DFT energy is calculated using
Eq. 3.13. This spin-independent description of the embedding potential can be used

with either an unrestricted treatment of the open-shell subsystem (U-DFT-in-DFT-
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CS) or a restricted treatment of the open-shell subsystem (RO-DFT-in-DFT-CS); we
later employ the approach to compare with the previously described methods (U-
DFT-in-DFT and RO-DFT-in-DFT) that include spin-dependence in the embedding

potential.

3.3.1.2 Open-Shell WFT-in-DFT Embedding

Unrestricted open-shell WFT-in-DFT (U-WFT-in-DFT) calculations are performed
by first computing unrestricted Hartree-Fock (UHF) orbitals in the spin-dependent
embedding potential, and then using these orbitals for a post-HF WF'T calculation.

The o and S Fock matrices for the calculation of the UHF orbitals are

FEARB A 4 I + KRS+ vE (3.17)

emb’

where ¢ € {a,(}, K is the HF exchange matrix, and the embedding potentials
(Eq. 3.14) are obtained from a U-DFT-in-DFT embedding calculation. The total

energy is evaluated using

Etot [ WFT7PEFT] — EDFT [pEgT]
EDFT DFT Z / emb EDFT I')dI‘
ée{a,B}
+ | EYFT[pYFT Z / oS (1) (r)dr | (3.18)
¢e{a,B}

Restricted open-shell WET-in-DFT (RO-WEFT-in-DFT) calculations are performed
by solving for restricted open-shell HF (ROHF) orbitals in the spin-dependent embed-
ding potential. Just as in RO-DFT-in-DFT embedding, a U-DFT-in-DF'T calculation
is first performed, and the embedding potentials v, , and meb are constructed using

Eq. 3.14. Then, the Fock matrices in Eq. 3.17 are constructed and the usual approach
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is employed to obtain RO orbitals; the second and third terms on the RHS of Eq. 3.17
are updated at each iteration while the embedding potential is left unchanged. The
ROHEF orbitals are used in the post-HF WF'T calculation, and the total energy is then
evaluated using Eq. 3.18. We note that for the RO-WFT-in-DFT energy calculation,

the term ERT " [ph 1], is evaluated using the ROKS-DFT energy.

3.3.2 Optimized Effective Potential

As seen in Egs. 3.5 and 3.6, DFT embedding requires computation of both the kinetic
energy, Ti[pag], and its functional derivative. However, since the explicit functional
form for the kinetic energy is unknown, OEP methods are needed to obtain these
terms exactly.

The OEP is the local potential for which solution of the one-electron equations
—QV =+ ’UOEP(I’) ¢l = Ei¢i (319)

yields orbitals that correspond to a given target density while minimizing the non-
interacting kinetic energy. A variety of methods for determining such potentials from
an input target density have been developed.**™® Calculations reported here employ

43,44

the direct optimization procedure developed by Wu and Yang, in which the kinetic

energy is obtained via the unconstrained maximization

T‘S[pin] = nax {WS [qjdety UOEP(r)]} ) (320)

voEP(r)



where
W (W, v0mp(r)] = 2301 = 597160
+ [ (powe(r) = pu(r)) vopr x)d
Ve @) (3.21)
and
vopp(r) = U [pim;T] + va(r). (3.22)

In these equations, vy(r) = Z big:(r), {g:(r)} comprise an auxiliary basis set for the
t

potential, b, are the corresponding expansion coefficients, and ( is a regularization

parameter.*t Maximization of W; utilizes the Newton method for optimization with

a back-tracking line search in the expansion coefficients, >
b+Y = b® 4 TH !g, (3.23)

where 7 is the iteration number, H and g are the Hessian and gradient of W, respec-
tively, and 7 € [0,1] is the step-size in the line search.

In practice, to obtain the embedding potential, we do not explicitly calculate the
NAKP for each subsystem. Instead, for closed shell subsystems, we directly update
the embedding potential (Eq. 3.4) at each iteration of the KSCED equations using?®

v(iH)(r) =0 (r) — Oup(r), (3.24)

emb emb

where 6 € [0,1] is a damping coefficient. By construction, the embedding potential for

each subsystem is identical at every iteration. The KSCED equations are initialized
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using vgb(r) = 0, such that the initial guess for the NAKP for subsystem A exactly
cancels the remaining terms in Eq. 3.4 (and the initial guess for the NAKP for subsys-
tem B likewise cancels the corresponding terms). Upon convergence of the KSCED

(@)

emb

equations, vy(r) = 0, v52 [pap; r] = v5P [pks; 1], and vem,(r) = v., (r). Enforcing the

embedding potential to be identical for all subsystems leads to a unique partitioning
of the subsystem densities.?¢3

For open-shell calculations, we similarly update the spin-dependent embedding

potential (Eq. 3.12); the OEP obtained for a given spin density is

Vomp(T) = VAT (0% + p%), (P + ph);t] + vi(x), (3.25)

3

o (1) at each iteration.

and as in Eq. 3.24, v}(r) is used to update v

Finally, we note that XC functionals that include a fraction of the exact exchange
can be employed in DFT embedding via the OEP calculation. The HF exchange
matrix, K, is evaluated using vorp, the OEP density matrix in the AO basis. For

DFT-in-DFT embedding, the exchange energy is calculated using

Ex [vorp,Ym] = —tr (yorrK[v0EP])

+tr ((voer — 7in)K[y0EP]) , (3.26)

where the second term on the RHS corrects the exchange energy for small numeri-
cal differences between yogp and 7;,. For calculations on the low-spin state of the
hexaaquairon(II) cation, this correction is found to be as large as 20 kcal/mol; how-
ever, the correction is not required for the evaluation of the WFT-in-DFT energy
(Eq. 3.10), since EXg"[phy '] is obtained directly from a KS-DFT calculation on the

full system.
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3.3.3 Orbital-Occupation Freezing

For W to be a concave function of v°FF (r), it is necessary®® that the orbitals used to
construct pogp in Eq. 3.21 correspond to the lowest eigenvalues of Eq. 3.19. However,
this can be problematic for systems with small energy differences between the occupied
and virtual orbitals, where small changes in vogp(r) can alter the relative ordering of
the orbitals.

To illustrate this issue, Fig. 3.1 shows the line search for an illustrative Newton
step in an OEP calculation for the low-spin hexaaquairon(II) cation. Wy is plotted
as a function of 7, where 7 is the step-size in Eq. 3.23. For any step-size larger than
7 = 0.38 in this case, the orbital occupancy changes from one in which only to.-like
d orbitals are occupied to one in which e,-like d orbitals are occupied. In traditional
back-tracking line searches, any step which increases W would be accepted, including
the 7 = 0.5 step indicated with the red arrow. However, this step is problematic since
the Hessian and gradient of W for the next Newton step would be evaluated using a
density that corresponds to the wrong orbitals. The net results are poor convergence
and incorrect solutions for the OEP.

We introduce a simple method to alleviate this problem by modifying the back-
tracking line search. Reference (7=0) orbitals are computed from Eq. 3.19 using
vogp(r) = vgfs [paB; ], and for any proposed step-size 7, the corresponding orbitals
are computed using vogp(r) = v5°[pag; ] + va(r). The proposed step is rejected if
the overlap between these two sets of orbitals is less than 0.5, regardless of the change
in Wg; otherwise, it is subjected to the usual criteria of the back-tracking line search
algorithm. Upon rejection, the step-size 7 is reduced by a factor of 2. This technique
ensures that the correct orbitals remain occupied throughout the maximization of
Ws. In Fig. 3.1, the proposed step indicated by the red arrow is rejected, whereas the

proposed shorter step indicated by the black arrow is accepted; not only is the value
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Figure 3.1: An illustrative Newton step in the OEP calculation for the low-
spin hexaaquairon(II) cation, performed with (black) and without (red) the orbital-
occupation-freezing technique. The technique ensures that correct orbitals remain
occupied throughout the maximization of Wj. See text for details.

of Wy increased, but the correct orbitals remain occupied. By utilizing this technique,
we found that the maximization of Wy typically requires less than 20 Newton steps
for the low spin state of the hexaaquairon(II) cation, whereas the optimization failed

to converge without the use of orbital-occupation freezing.

3.3.4 Computational Details

The DFT embedding methods employed here are all implemented in the development
version of the Molpro software package.’® All calculations employ the supermolecular
basis set convention, in which the molecular orbitals for each subsystem are described
in the AO basis for the full system.®” Calculations on the ethylene-propylene dimer use
the aug-cc-pVT7Z orbital basis set for the carbon atoms and the aug-cc-pVDZ orbital
basis set for the hydrogen atoms. Calculations on the hexaaquairon(II) cation use the
aug-cc-pV'TZ orbital basis set for the iron atom and the aug-cc-pVDZ orbital basis
set for the hydrogen and oxygen atoms. For the auxiliary basis set used in the OEP
calculations, we employ atom-centered Gaussian basis functions (gy(r) = Nye )

where NV, is the normalization constant) for which the coefficient \; assumes values
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of 2", where n = Nyin, Mmin + 2, - -+, Mmax — 2, Mmax- Calculations on the ethylene-
propylene dimer employ the basis set for which the s-type functions for the carbon
and hydrogen atoms span {nmin, "max} = {-4, 4}, and the p-type functions for the
carbon and hydrogen atoms span {-2, 2}. Calculations for the hexaaquairon(II) cation
employ the basis set for which the s-type functions for the iron atom span {-4, 6},
the p-type functions for the iron atom span {-4, 6}, the d-type functions for the iron
atom span {-2, 2}, the s-type functions for the oxygen atoms span {-4, 6}, the p-type
functions for the oxygen atoms span {-2, 4}, the s-type functions for the hydrogen
atoms span {-4, 4}, and the p-type functions for the hydrogen atoms span {-2, 2}. For
all systems, the finite auxiliary basis set for the OEP calculations was confirmed to
introduce a difference of less than 1 kcal/mol between the total energy computed using
KS-DFT and either closed-shell or unrestricted open-shell DFT-in-DFT embedding.
The regularization parameter used in the OEP calculations is set to ¢ = 1072; smaller
values were tested on the ethylene-propylene dimer and the hexaaquairon(II) cation
and were found to have only a small (O(uHartree)) effect on the total DET-in-DFT
energy.

The KSCED equations are initialized with subsystem densities comprised of the
superposition of HF atomic densities and with venp(r) = 0; different initial guesses for
the embedding potential were tested on the hexaaquairon(II) cation and were found
to yield similar final embedding potentials with only small (O(10 uHartree)) changes
in the total DFT-in-DFT energy.
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Figure 3.2: WEFT-in-DFT embedding for the ethylene-propylene dimer. (a) The
ethylene-propylene dissociation curve, obtained using CCSD(T)-in-B3LYP (red) and
KS-DFT with PBE (green), BBLYP (orange), B-LYP (blue) and B88-P86 (cyan) for
the XC functional. Also included are the reference CCSD(T) results (black), which
are graphically indistinguishable from the CCSD(T)-in-B3LYP results. The curves
are vertically shifted to align at infinite separation. (b) Isosurface plots indicate the
subsystem partitioning for the ethene-propene dimer calculations. The red isosurface
indicates the density of the 32 electrons associated with the CoH4-CoHs- moiety, and
the blue isosurface indicates the density of the 8 electrons associated with the -CHj
moiety. The isosurface plot corresponds to an electronic density of 0.05 a.u.
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3.4 Results

3.4.1 The Ethylene-Propylene Dimer: WFT-in-DFT Embed-
ding

The ethylene-propylene dimer is a prototypical system for which quantum embedding
methods, such as QM /MM or ONIOM, may be employed. It exhibits a weak 7 — 7
interaction that is difficult to address with conventional KS-DFT methods, while also
exhibiting a spectator -CH3 moiety that contributes little to the interaction energy
while substantially increasing the cost of the high-level calculation. However, unlike
the QM /MM treatment of subsystems, the interactions between the m — 7 system
and the -CHj3 moiety can be treated seamlessly using WFT-in-DFT embedding, as is
now demonstrated.

Fig. 3.2(a) presents the ethylene-propylene dimer dissociation curve plotted as
a function of the distance between the ethylene and propylene 7 bonds, with the
equilibrium dimer geometry obtained via minimization at the MP2 level of theory.
Other geometries along the curve are obtained by displacing the two molecules along
the vector formed between the midpoints of the two C=C bonds, while fixing all
other internal coordinates. The relative energies are plotted by aligning each curve at
infinite separation. The full CCSD(T) calculation (black) shows a binding energy of
2.0 kcal/mol. KS-DFT calculations using the PBE*** (green), BSLYP® (orange),
B-LYP®%% (blue) and B88-P86°% (cyan) XC functionals illustrate the difficulty in
describing dispersion interactions using KS-DFT. The PBE functional underestimates
the binding energy by 1.3 kcal /mol, while the rest of the XC functionals fail to capture
any of the attractive interactions.

Finally, the red curve in Fig. 3.2(a) presents the results of WFT-in-DFT embed-

ding, using a subsystem partitioning in which the 32 electrons associated with the 7
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system (CoHy-CoHs-, red in Fig. 3.2(b)) are treated at the WFT level of theory and
the remaining 8 electrons in the -CH3 moiety are treated at the DFT level of theory.
We employ CCSD(T) for the WET and the BBLYP XC functional for the DFT (i.e.,
CCSD(T)-in-B3LYP). Fig. 3.2(a) shows excellent agreement between the CCSD(T)
(black) and CCSD(T)-in-B3LYP (red) calculations; these curves, which are graphi-
cally indistinguishable, differ by less than 0.10 kcal/mol through the entire range of
distances. We have confirmed that this level of accuracy is maintained with different
XC functionals used for the DFT; specifically, CCSD(T)-in-(B-LYP) energies differ
from the CCSD(T) results by less than 0.20 kcal/mol throughout the entire curve.
These results illustrate that WEFT-in-DFT embedding can be used to systematically
improve DF'T results and to avoid embedding errors while partitioning across covalent

bonds.

3.4.2 The Hexaaquairon(IT) Cation

We now present DFT-in-DFT and WFT-in-DFT calculations for the high-spin [5T2g :
(tog)*(eg)?] and low-spin [*Aj, : (t2g)%(e,)?] states of the hexaaquairon(Il) cation, a
system that presents challenges due to the presence of low-lying unoccupied orbitals,
the important role of unpaired electrons, and the relatively large number of electrons
(84 €7) in the full system. First, we test the accuracy of DFT-in-DFT embedding for
the various treatments of the open-shell embedding potential described earlier. We
then employ WFT-in-DFT calculations to investigate the low-spin/high-spin energy

splitting and the ligation energy for this transition metal complex.

3.4.2.1 DFT-in-DFT Embedding

Fig. 3.3(a) presents the potential energy curve for the simultaneous dissociation of all
six HyO ligands of the hexaaquairon(II) cation, plotted as a function of the average

iron-oxygen distance. The equilibrium geometries for the low-spin [*Aj, : (t2g)°(eg)°]
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Figure 3.3: DFT-in-DFT embedding for the hexaaquairon(II) cation. (a) The po-
tential energy curve for the simultaneous dissociation of the six HyO ligands. All
curves in the main panel are vertically shifted to share a common minimum energy;
they are not horizontally shifted. The dissociation curves for the low-spin ('A1,) state
obtained using KS-DFT (black) and DFT-in-DFT (red) are graphically indistinguish-
able. The dissociation curves or the high-spin (°Ty,) state obtained using UKS-DFT
(blue), U-DFT-in-DFT (green), ROKS-DFT (magenta), and RO-DFT-in-DFT (or-
ange) are likewise graphically indistinguishable. The inset shows these four high-spin
potential energy curves, with each curve vertically shifted only by the UKS-DFT min-
imum energy of —1721.693423 Hartree. The dashed black dissociation curve in the
main panel is obtained using the RO-DFT-in-DFT-CS method, which neglects spin-
dependence in the embedding potential. (b) Isosurface plots indicate the subsystem
partitioning for the hexaaquairon(II) cation. The red isosurface indicates the density
of the 24 electrons associated with the Fe atom, and the blue isosurface indicates the
density of the 60 electrons associated with the six HoO ligands. The isosurface plot
corresponds to an electronic density of 0.05 a.u.

and high-spin [Ty : (t2g)"(eg)?] states are obtained using KS-DFT energy minimiza-
tion with the BSLYP XC functional; all other geometries are obtained by uniformly

stretching the iron-oxygen distances in the complex, keeping all other internal co-
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ordinates unchanged. All KS-DFT and DFT-in-DFT embedding results reported in
this section are obtained using the B3LYP XC functional. The curves in the main
panel of Fig. 3.3(a) are vertically shifted to share a common minimum value; they are
not horizontally shifted. The high-spin state is lower in energy and exhibits a longer
average iron-oxygen distance than the low-spin state.

We perform DFT-in-DFT embedding using a subsystem partitioning in which
the 24 electrons associated with the iron center comprise one subsystem (red in
Fig. 3.3(b)) and the remaining 60 electrons associated with the six water ligands
comprise a second subsystem (blue in Fig. 3.3(b)). For the low-spin state, Fig. 3.3(a)
demonstrates good numerical agreement between DFT-in-DFT (red) and KS-DFT
(black); the relative energies differ by less than 0.6 kcal/mol throughout the range of
reported internuclear distances.

For the high-spin state of the hexaaquairon(II) cation, Fig. 3.3(a) shows that the
UKS-DFT and ROKS-DFT methods are in good agreement with each other, as well as
with the corresponding U-DFT-in-DFT and RO-DFT-in-DFT embedding approaches
described in Sec. IIT A 1. The U-DFT-in-DFT calculation accurately reproduces the
relative energies obtained from UKS-DFT to within 0.4 kcal/mol throughout the
attractive branch of the curve and to within 0.8 kcal/mol at shorter distances. The
RO-DFT-in-DFT calculation reproduces the relative energy obtained from ROKS-
DFT to within 1.0 kcal/mol throughout the attractive branch of the curve and to
within 2.2 kcal/mol at shorter distances.

The inset of Fig. 3.3(a) shows the various potential energy curves computed for
the high-spin state of the hexaaquairon(II) cation, with each curve vertically shifted
by only the UKS-DFT minimum energy. This inset demonstrates relatively small
differences in the total energies computed with the various embedding and open-shell
treatments.

Finally, the dashed black curve in Fig. 3.3(a) demonstrates the importance of
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including spin-dependence in the embedding potential. This curve corresponds to the
RO-DFT-in-DFT-CS treatment of the high-spin state of the hexaaquairon(II) cation
described in Sec. IIT A 1. It exhibits large relative errors (over 70 kcal/mol) compared
to the other treatments of the high-spin state of the hexaaquairon(II) cation, as
well as qualitatively incorrectly shortening of the equilibrium internuclear distance.
Although this approximation is expected to be more reliable for systems in which the
spin-density is strongly localized with a single subsystem, the result demonstrates that
substantial errors can emerge due to the neglect of spin-dependence in the embedding

potential.

3.4.2.2 WFT-in-DFT Embedding

We now consider WFT-in-DFT embedding for the hexaaquairon(II) cation, employ-
ing the same subsystem partitioning as in the DFT-in-DFT embedding calculations
(Fig. 3.3(b)). The hexaaquairon(II) cation is a benchmark system for spin splittings
in transition metal complexes.® We initially discuss results for MP2 embedding to
compare the U-WFT-in-DFT and RO-WFT-in-DF'T approaches, and we then present
results obtained using CCSD(T) embedding.

Fig. 4.2 presents results for the low-spin/high-spin energy difference (AFEry) ob-
tained using MP2, KS-DFT, and MP2-in-DFT embedding; detailed values are re-
ported in Table 3.1. For KS-DFT calculations of AFEyy, the energy for the high-spin
state of the hexaaquairon(II) cation was obtained at the UKS-DFT level of theory.
The WET-in-DFT embedding energy for the low-spin state of the hexaaquairon(II)
cation is obtained using closed-shell WEFT-in-DFT (Sec. II B), while the high-spin
state is treated using either U-WFT-in-DFT or RO-WFT-in-DFT (Sec. III A 2). The
KS-DFT results (red in Fig. 4.2) exhibit strong dependence on the XC functional,
with hybrid functionals underestimating AFEg to a somewhat lesser degree than the

semi-local functionals.
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Fig. 4.2 clearly illustrates that the RO-MP2-in-DFT results (blue) are in better
agreement with the full MP2 calculation than the corresponding U-MP2-in-DF'T re-
sults (green), particularly for semi-local XC functionals. Removal of spin-contamination
in the WFT calculation reduces the energy of the high-spin state RO-WFT-in-DFT
calculation with respect to that obtained using U-WFT-in-DF'T.

Another important observation from Fig. 4.2 is that the dependence of AFEyy on
the DFT XC functional is greatly reduced in the embedding calculation, even though
only the single transition metal atom is treated at the WFT level. The spread of
values obtained at the KS-DFT level of theory is over 6000 cm ™', which is reduced

by a factor of 3 in the RO-MP2-in-DFT embedding calculations.
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Figure 3.4: MP2-in-DFT embedding for the hexaaquairon(Il) cation. High-
spin/low-spin splitting energies obtained using KS-DFT (red, circles), U-MP2-in-DFT
(green, squares), and RO-MP2-in-DFT (blue, triangles) with a range of different XC
functionals that include B-LYP,%%? PBE,*** PW91,% B3LYP,% and PBE0.% The
black line indicates the reference value of 16439 cm ™! obtained at the RO-MP2 level
of theory; U-MP2 yields a value of 17396 cm ™.

Fig. 3.5(a) presents calculations of the low-spin/high-spin splitting obtained us-
ing WFT-in-DFT calculations at the RO-CCSD(T)-in-DFT level of theory; detailed
values are reported in Table 3.2. For the reference calculation obtained at the full
RO-CCSD(T) level of theory,®” no T2 amplitudes were found to exceed 0.05, indicat-

ing that a single-reference description of the wavefunction is adequate. The general
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Table 3.1: High-spin/low-spin splitting energies in em™" for the hexaaquairon(II)
cation obtained using KS-DFT, U-MP2-in-DFT, and RO-MP2-in-DFT with a range
of different XC functionals.

Functional | KS-DFT | U-MP2-in-DFT | RO-MP2-in-DFT
B-LYP 7828 12604 15294
PBE 9479 11079 13395
PW91 8593 10924 13201
B3LYP 11206 14387 14703
PBEO 14154 13812 13979

RO-MP2 yields 16439 cm ™!
U-MP2 yields 17396 cm ™"

trend for the RO-CCSD(T)-in-DFT calculations is consistent with the results ob-
tained from RO-MP2-in-DFT. It is again seen that the dependence of AFEpy on the
XC functional is substantially reduced using RO-CCSD(T)-in-DFT embedding, and
the accuracy of the KS-DFT results are generally improved by treating the transition
metal atom at the WET level. For this system, the embedded RO-CCSD(T) cal-
culation involves correlating significantly fewer electrons than the full RO-CCSD(T)
calculation, and we found that the WFT step in the RO-CCSD(T)-in-DFT calcula-
tion required approximately 50 times less wall-clock time than the full RO-CCSD(T)
calculation.

Fig. 3.5(b) shows that the LDA functional®% presents an interesting outlier com-
pared to the other results in Fig. 3.5(a). Unlike the semi-local and hybrid functionals,
RO-CCSD(T)-in-LDA calculations do not exhibit a significant improvement with re-
spect to the corresponding KS-DFT result. We now show that this anomalous result
arises from a density-based error in the LDA functional.

Fig. 3.5(c) and Fig. 3.5(d) present the charge on the Fe atom from a Mulliken
population analysis for the low-spin state of the hexaaquairon(II) cation. Fig. 3.5(c)
shows that the semi-local and hybrid functionals all yield a similar charge for the Fe
atom, which is very close to that of the full (relaxed) CCSD density. In contrast,

Fig. 3.5(d) reveals the LDA functional significantly underestimates the Fe atomic
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charge, which indicates a significant error in the calculation of the ground state den-
sity. Although the use of embedded WE'T can be expected to overcome the error in
the contribution to the spin-splitting energy due to the LDA functional, it cannot
overcome this error in the actual ground state density due to LDA.
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Figure 3.5: CCSD(T)-in-DFT embedding for the hexaaquairon(II) cation. (a,b)
High-spin/low-spin splitting energies obtained using KS-DFT (red, circles) and RO-
CCSD(T)-in-DFT (blue, triangles) with a range of different XC functionals. The
B-LYP+LDA result is obtained using the B-LYP XC functional for the density cal-
culation and the LDA XC functional for the energy calculation, as is described in
the text. The black line indicates the reference value of 14149 cm ™' obtained at the
RO-CCSD(T) level of theory. (c,d) The charge on the Fe atom is obtained using the
Mulliken population analysis of the KS-DFT calculation with each functional. The
relaxed CCSD density, indicated by the black line, has an Fe atomic charge of 2.56.

To confirm this interpretation, we show that removing the error in the LDA den-
sity leads to improved WEFT-in-DFT estimates for the spin-splitting energy, even if
the LDA functional is still employed for the DFT contributions to the energy. In
Fig. 3.5(b), the B-LYP+LDA result for WET-in-DFT embedding (blue, triangle) is

obtained by (i) calculating the embedding potential and the subsystem densities us-
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Table 3.2: High-spin/low-spin splitting energies in ecm™" for the hexaaquairon(II)
cation obtained using KS-DFT and RO-CCSD(T)-in-DFT with a range of different
XC functionals.

Functional | KS-DFT | RO-CCSD(T)-in-DFT
B-LYP 7828 12554
PBE 9479 11238
PW91 8593 10712
B3LYP 11206 12634
PBEO 14154 12912

RO-CCSD(T) yields 14149 cm™*.

ing the B-LYP XC functional, (i) performing the embedded WFT calculation at the
CCSD(T) level, and (i) using the LDA functional and CCSD(T) to evaluate the
respective DF'T and WFT contributions to the total energy in Eq. 3.18. The cor-
responding B-LYP+LDA result for KS-DFT (red, circle) is obtained by calculating
the total density using KS-DFT with the B-LYP XC functional and then using the
LDA functional to evaluate the KS-DFT energy. As is seen in Fig. 3.5(d), the B-LYP
treatment of the subsystem densities leads to the expected partial charge for the Fe
atom; it avoids the error in the electronic density that is introduced using LDA. How-
ever, the spin-splitting energy obtained using the B-LYP+LDA result for KS-DFT
is essentially no better than that obtained using KS-DFT with the LDA functional
(Fig.3.5(b)), indicating that simply correcting the LDA error in the density is not
enough to avoid the LDA error in the energies. Finally, Fig. 3.5(b) shows that the
B-LYP+LDA result for WFT-in-DFT does exhibit a substantial improvement over
the corresponding KS-DFT result; this confirms that WE'T embedding is able to over-
come energy-based errors due to the DFT XC functional, although it is less effective
at overcoming density-based errors due to the DFT XC functional.

Although we have shown that WFT-in-DFT embedding with the subsystem par-
titioning shown in Fig. 3.3(b) generally leads to improved estimates for the low-

spin/high-spin splitting energy over KS-DFT, the same does not hold true for calcu-
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lated ligation energies of the hexaaquairon(II) cation. Ligation energies calculated us-
ing RO-CCSD(T)-in-DFT embedding are essentially unchanged from those obtained
using KS-DFT with the corresponding XC functional; indeed, the mean absolute dif-
ference between the computed WFT-in-DFT and KS-DFT ligation energy is only 0.6
kcal/mol per ligand across the set of functionals that includes LDA, B-LYP, PBE,
PW91, B3LYP, and PBEO. Unlike the spin-splitting energy, which is highly sensitive
to the electronic structure of the Fe atom and is thus impacted by the WFT sub-
system description, the ligation energy is dominated by interactions between the Fe
atom and the water ligands; these inter-subsystem interactions are still treated es-
sentially at the DFT level in WET-in-DFT embedding. An improved description for
the ligation energy could be obtained by simply expanding the number of electrons
that are treated at the WEF'T level of theory, or by including two-body correlation

corrections through an embedded many-body expansion description of the system.?’

3.5 Conclusion

In this work, we have introduced and demonstrated improved methods for the imple-
mentation of WEF'T-in-DFT calculations for open-shell systems and systems with low-
lying virtual orbitals. A simple orbital-occupation-freezing technique is introduced to
enable robust OEP calculations on systems with small HOMO-LUMO gaps, leading to
accurate DFT-in-DFT and WEFT-in-DFT embedding calculations on transition-metal
complexes. Furthermore, the use of spin-dependent embedding potentials is shown to
preserve the accuracy of open-shell DFT-in-DFT calculations in both the restricted
and unrestricted orbital formulations, whereas neglect of the spin polarization leads
to significant errors in both computed energies and geometries. WFT-in-DFT calcu-
lations on the hexaaquairon(II) cation reveal that the treatment of only the single

transition metal atom leads to significant improvements in the accuracy of calculated
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spin-splittings, as well as marked reduction in the dependence of results on the DFT
XC functional. Taken together, the exact embedding techniques reported and demon-
strated here offer a promising approach to the robust treatment of systems for which
the accuracy of WFT is required but for which the cost of the full WFT calculation

is not feasible.
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Chapter 4

Accurate and systematically improvable density func-
tional theory embedding for correlated wavefunc-

tions

4.1 Introduction

The observation that many chemical processes are predominately governed by changes
within a localized subsystem has motivated the development of a number of multi-
scale strategies.' ! The success of such methods is contingent on the availability of
a sufficiently accurate description of the environment, as well as a suitable model
for the coupling between subsystems. Density functional theory (DFT) provides an
ideal framework for multiscale embedding.'”2* In these approaches, an electronic
structure calculation on a chemical system is partitioned into calculations on two
subsystems: subsystem A, which is treated using an accurate wavefunction theory
(WFT), and subsystem B, which is treated using the more computationally efficient
DFT method.?* % Our projector-based WFT-in-DFT embedding approach has the
advantage of offering a framework that is both exact for cases in which both subsys-
tems are treated using DFT (DFT-in-DFT embedding) and efficient for calculations
on large systems. %37

Although projector-based embedding is numerically exact for DFT-in-DFT em-

bedding, it is clear that some error is introduced into any practical WET-in-DFT
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embedding calculation. Because the energy of the DFT environment is calculated at
the DFT level, this contribution will be no more accurate than that of a standard DFT
calculation. Evaluation of the interaction between subsystems is also handled using
DFT theory, which introduces errors into both the embedding potential of the WFT
subsystem, and the nonadditive energy between subsystems. We analyze WFT-in-
DFT embedding by decomposing the error into these three contributions, and use the
results to suggest further improvements to projector-based embedding. The analysis
is performed through careful comparison with local coupled-cluster calculations.

We also analyze the errors of a number of embedding calculations on systems that
might be expected to be particularly difficult to treat using projector-based embed-
ding. In particular, we investigate the potential energy surface of a heterolytic bond
cleavage using projector-based embedding. As with other local correlation methods,
our embedding method exhibits discontinuities in the potential energy surface; how-
ever, these discontinuities are small and decrease as the WEF'T subsystem is expanded.
Finally, we consider reactions involving highly conjugated molecules, and find that
projector-based embedding produces reliably accurate results for reactions involving

moderate changes in polarization.

4.2 Projector-Based Embedding

The projector-based embedding method provides a rigorous framework for embedding
a DFT or WFT subsystem description in a DFT environment.*® In this approach,
a Kohn-Sham (KS)-DFT calculation is first performed over the full system. The
resulting occupied molecular orbitals (MOs), {¢;}, are then localized and partitioned
into the sets {¢*} and {¢P}, which correspond to subsystems A and B, respectively.
These two sets of orbitals are used to form the density matrices of subsystems A and

B in the atomic orbital basis, 7" and ~2.
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Next, the subsystem Fock matrix is formed for the embedding calculation, such

that

£ =0 Py 4P 4 g3, (4.1)

where the embedded core Hamiltonian is

hA i Bh/A’,YB] —h+ gh/A + ,_YB] _ g[’yA] + MPB' (42)

Here, h is the standard one-electron core Hamiltonian, g includes all the two-electron
terms, PP is a projection operator, and 4 is a level-shift parameter; 3 is the density
matrix associated with the MO eigenstates of f*, {qz;f} The projection operator is
given by

Pois = (ba {Z |¢?><¢?|} 13), (4.3)

ieB

where «, /3 label the atomic orbital basis functions.®® 5 In the limit of y — oo, the
MOs in {q;f} are constrained to be mutually orthogonal with the MOs of subsystem
B;3637 if in addition the same density functional is used for all calculations, the MOs
{¢} coincide with the original orbitals {¢*}.

A self-consistent field optimization, using the Fock matrix f*, is performed to

obtain 4%, and the final DFT-in-DFT energy is

Eprr[79%, %] =
Eper[7*] + Eper[v®] + BB, 78] (4.4)

+tr [(F* — M) (A" PRA AP —h)]

where Eppr is the standard DFT energy (evaluated with core-Hamiltonian h) and

Epd[v*,9"] is the nonadditive energy between the subsystem densities. The last
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term is a first-order correction to the difference between ER.[4*, ~P] and ERad [54, ~B].3
In the limit of ;1 — 0o, 3* = 4® and the DFT-in-DFT embedding energy is identical
to the energy from the corresponding KS calculation performed over the full system;
as a result, the projector-based approach is numerically exact for DFT-in-DFT em-
bedding calculations.?® In practice, a large finite value of y is used, and an additional
perturbative correction to the energy can performed;3® for appropriate values of p
this correction is typically far smaller than the energy differences discussed in this
paper and is thus neglected throughout. Furthermore, as has been previously em-
phasized, this embedding scheme is exact for any self-consistent field method, such
as Hartree-Fock (HF) theory. 67

nad

The nonadditive contribution to the energy, E2d.[v* ~B], can be decomposed

into electrostatic and exchange-correlation contributions

105 N A I A DU T R Ol O g (4.5)
where
A()~B(2
Jnad[’yA,'YB] — /dTl/d’f’g M (46)
12
and
ERyA 4P = Exo[v* +9°] — Exc[v"] — Ex[Y?]. (4.7)

The electrostatic term, J", is easily evaluated, and although the exact form of Ey,
is unknown, approximate functionals are well established. Since the embedded MOs
{$*} are orthogonal to those in subsystem B, there is no nonadditivity in the kinetic
energy. This removes the requirement of performing optimized effective potential

20,21,23,24,30,31

calculations or using approximate nonadditive kinetic energy functionals.

The projector-based formalism easily allows for WFT-in-DFT embedding, in which
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subsystem A is treated using a WFT-level description and subsystem B is described at
the DFT level.?® This is achieved by replacing the standard one-electron core Hamil-
tonian with the embedded core Hamiltonian of Eq. 4.2. The electronic energy from

the WFT-in-DFT embedding approach is

Ewpr[T4 74, 48] = (T4 HA 2 ByA AB]| oy
—tr [v*(h* " B[y*,4"] — h)]
(4.8)
+ Eprr[y?]

+ E]gal}“dT [’YAa ,}/B] ’

where |U4) is the embedded wavefunction from the WET method, and H* ™ B[y 4P]
is the WFT Hamiltonian resulting from replacing the standard one-electron core
Hamiltonian with the embedded core Hamiltonian. The term tr [7*(h* ™ ®[y*, %] — h)]
is included in the first term of Eq. 4.8 and thus does not show up in the first-order

correction term, as it did in Eq. 4.4.

4.3 Results I: Sources of error in WFT-in-DFT

embedding

4.3.1 Term-By-Term Comparison with LCSSD(T)

We now formulate an approach to compare the individual terms in the energy ex-
pression of a CCSD(T)-in-DFT embedding calculation with the corresponding val-
ues calculated at the CCSD(T) level.*® To do this, we first recognize that the local
(L)CCSD(T) method by Schiitz and Werner*** 5% becomes exactly equivalent to the
canonical CCSD(T) method when all orbital pairs are correlated and all excitation

domains are set to the full virtual basis. The terms in the LCCSD(T) energy expres-
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sion, in turn, can be organized in a way that enables direct comparison to the terms
in the CCSD(T)-in-DFT embedding energy expression.
The LCCSD(T) energy can be decomposed as a function of the amplitudes and

the atomic-orbital density matrices as

Ercoso[Th, To, Ts; v, 7P =
+ Eyp [VA] + E(AS) + E(%) + E(ér) (49)
+ Eur[7P] + E(%) + ES’D) + E?T)
+ By [y, 1) + B + B,

nad

where Eyy is the HF energy and ER24[y*, vP] is the same as Eq. 4.5, except with the
corresponding exchange terms replacing E™4[v* 4®]. When the full virtual space is
included, the singles are additive and thus there is no nonadditive component. The

nonadditive correlation for the double-excitation terms is simply
EfS = Ep) — Ejpy — Ep (4.10)

and likewise for the triple-excitation correlation energy.

The correlation energy from the single excitations within subsystem A is given by

A L
By =2) it (4.11)
icA
where the summation spans the occupied orbitals of subsystem A, f? is the internal-
external part of the Fock matrix in vector form, and t° are the single excitation
47

amplitudes in vector form.

The correlation energy from the double excitations within subsystem A is given
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A Y re
i,le]A

where the summation spans the occupied orbitals of subsystem A, and LY are the
internal coulomb and exchange matrices. The matrix elements of C¥ are given by
CZ,JS = T;]S + t't] where T, ,?JS and t' are the double and single excitation amplitudes,
respectively. *’

Finally, the correlation energy from the triple excitations within subsystem A is

given by

A = Y 2 by a0 (zt:;,srr, (slit) X

i>5>k rstr!
i kEA
+ Yt Sew (ir|kt) X2 (4.13)
rsts’
S S (i) X% 4 Y W:;‘fxzf::) |
rstt’ rst

where the first summation spans the occupied orbitals of subsystem A, the indices
1, 7, k represent occupied orbitals, and the indices r, s, t represent unoccupied orbitals.
Sy is an element of the overlap matrix of the projected atomic orbitals, (ir|js) are

two-electron integrals, and ¢’ are the single amplitudes. X;]sf is defined as Xﬁjsf =

ATHE _ oidk _ oidk _ oidk 4 idk | T;ﬁf where Tﬁgf are the triples amplitudes. The

rst rts tsr srt trs

tensor element W7y contains the double-excitation amplitudes, 774,551

4.3.2 Calculation Details

All geometry optimizations are performed using Gaussian09°® and are provided in the

supplemental information. All other calculations are performed in Molpro 2012.1.%*
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In all calculations the orbitals are localized using Pipek-Mezey localization.®® The
atoms associated with subsystem A for each reaction are given in the supplemental
information. Any localized orbital with a Lowdin charge of 0.4 on an atom associated
with subsystem A is included in the set of orbitals associated with subsystem A. All
calculations employ a level shift parameter i, which is set to 10® au. All KS-DFT
calculations employ a large grid for the exchange-correlation functional evaluation,
achieved by specifying the Molpro option GRID=10"'°. For computational efficiency,
all LCCSD(T) calculations employ density fitting (DF), and the triples are approxi-
mated using the noniterative (T0) procedure.”*!

To enable the rigorous comparison of terms from the LCCSD(T) calculation and
the embedding calculation, some care must be taken. First, all orbital pairs are
correlated to recover the energy from canonical CCSD(T). Second, the choice of or-
bitals must be consistent between the LCCSD(T) and CCSD(T)-in-DFT embedding
calculations.

In the WET-in-DFT embedding method, subsystem B comprises KS MOs, and
thus evaluation of the errors resulting from using the DFT energy of subsystem B
requires the use of KS MOs as the reference MOs. The difference between canonical
CCSD(T) using the HF reference and DF-LCCSD(TO0) using the KS reference is
within 0.3 mFE), for all reactions discussed in this paper, which is smaller than the
errors that will be discussed in the next sections; therefore, in the next section we
will simply refer to terms calculated from DF-LCCSD(T0) as CCSD(T).

Likewise, consistent evaluation of the error arising from the embedding potential
requires that the reference MOs for the embedded CCSD(T) calculation on subsystem
A be obtained from the corresponding DFT calculation. This selection of reference
MOs is used only throughout Sec. III C. In all other sections, the reference MOs
of the embedded CCSD(T) calculation are chosen to be the set of MOs resulting

from an embedded HF calculation. We note that the difference between CCSD(T)-
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in-DFT embedding where the MOs for subsystem A are obtained from an embedded
DFT calculation compared to an embedded HF calculation is within 0.2 mF}, for the
reactions considered in Sec. III C.

Below we analyze the contributions to the embedding error for a set of six energies
associated with different reactions. All of the chosen reactions are large enough
to involve partitioning across a covalent bond, but also small enough to allow for
calculation of the full CCSD(T) reference energy. The reactions considered are given
in Table I.

The data set consists of the following reactions: (1) activation energy for the sym-
metric Sy2 reaction of Cl™ and propyl chloride; (2) acid hydrolysis of dimethylether
to form methanol; (3) deprotonation of the phenol hydroxyl group; (4) ring-closing
isomerization of 3-methylene-1-heptene to form butylcylobutane; (5) the Diels-Alder
reaction of 2-methoxy-1,3-butadiene with methyl vinyl ketone; and (6) the activation
energy for the Diels-Alder reaction. The geometries are provided in the supplemental

information.

reaction E/mEy
1 Sn2 activation barrier 7.8
2 acid hydrolysis 177.8
3 phenol deprotonation 568.8
4 ring closing 10.6
5 Diels-Alder reaction 63.1
6 Diels-Alder barrier 34.0

Table 4.1: CCSD(T) reaction energies and barriers in the test set obtained using
cc-pVTZ with aug-cc-pV(T+d)Z on Cl, and aug-cc-pVTZ for all atoms for reactions
2-4.557 For ease of error analysis, we adopt a sign convention in which all reactions or
activation processes are positive in energy. Geometries were obtained using B3LYP

with 6-311G*++ (reaction 1), def2-TZVP (reactions 2—4), or 6-31G* (reactions 5,
6).55°61
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4.3.3 Sources of Error in WFT-in-DFT embedding

4.3.3.1 Error from the Embedding Potential
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Figure 4.1: The error arising from the embedding potential (blue squares), the DFT
energy of subsystem B (violet triangles), and the nonadditive exchange-correlation
energy (green diamonds) compared to the total CCSD(T)-in-B3LYP embedding error
(black circles). CCSD(T) calculations performed on the full system are used as the
reference. The largest source of error is the nonadditive exchange-correlation energy
functional.

Now we discuss how comparison of terms in the energy expressions for CCSD(T)
and CCSD(T)-in-DFT embedding can be used to determine the error arising from
the embedding potential. The energy of subsystem A from the CCSD(T) calculation
is the sum of the HF energy (using the KS density) and the correlation energy of

subsystem A,

Eé‘CSD(T) = Fur[y*] + E(AS) + Eﬁj) + E(ér). (4.14)

The total energy of subsystem A from a CCSD(T)-in-DFT embedding calculation is

BNy = (DA HA By 48|04

(4.15)
—tr [’yA(hA in B[’YA,’YB] . h)] )
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For an embedding potential that includes all of the CCSD(T) many-body effects, the
energy of EéCSD(T) and E2 . would be identical; therefore, the error arising from the
embedding potential is calculated as

ES = Elb, — Edcspiry- (4.16)

pot emb

The error in the reaction energies arising from the embedding potential is therefore
the change in E ;" between products and reactants, AFEp .

The blue squares in Figure 4.1 show the value of AEFT®" for the data set, compared
to the total CCSD(T)-in-B3LYP embedding error shown in the black circles. For no
system is the error larger than 1.5 mFE),, with the average error being 0.8 mFE),. This

demonstrates a key insight of this paper, which is that the embedding potential

calculated using WET-in-DFT embedding is very accurate.

4.3.3.2 Error from Use of DFT for Subsystem B

Next, we quantify the WFT-in-DFT embedding error resulting from treating subsys-

tem B using DFT. This error is obtained by computing

Eppr® = Eppr[y”] (4.17)

which allows for a direct comparison of the DFT and CCSD(T) energies of subsystem
B.

The values calculated for AELS™ are shown in Figure 4.1 as violet triangles. The
largest error in this data set is 2.5 mFE), and the average error is 1.5 mFEy,. These errors

are larger than those resulting from the embedding potential, but are still relatively

small compared to the total WFT-in-DFT embedding error. Therefore, for this data
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set, DFT does an adequate job describing the energy change localized within the

environment and is not the dominate source of error.

4.3.3.3 Error from the Nonadditive Exchange-Correlation Energy

Finally, we analyze the error that arises from evaluation of the nonadditive exchange-
correlation energy with an approximate functional. The error is obtained by comput-
ing

E)r(lgd,error — EB%dT [,)/A’ ,_YB]

(4.18)
o (EII—II%‘d[VA”YB} + Enad(D) + Enad(T)) ’

corr corr

which allows for the direct comparison of the approximate density functional to the
energy obtained at the CCSD(T) level.

The values for AE™4™" are given in Figure 4.1 as green diamonds. This term
dominates the WFT-in-DFT embedding error, with the largest value of A ERderror
being 14.2 mFEy, and the average value being 7.2 mFE),. It is thus this term that is
responsible for introducing the largest error in the WFT-in-DFT embedding method-

ology.

The sum of AEST, AERSand AE™4mr captures all of the discrepancy
between the CCSD(T)-in-DFT and full CCSD(T) calculations. Due to the use of
density fitting and the noniterative triples approximation used in the CCSD(T) cal-
culation, the sum of these errors is off by an average of 0.4 mFE), compared to the total
CCSD(T)-in-B3LYP embedding error; this makes no difference in the interpretation
of the data.

To confirm that our results are not sensitive to the approximate exchange-correlation

functional, we repeated the analysis using both PBE®? and M06% (not shown). These

conclusions are robust with respect to the approximate exchange-correlation func-
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tional. The nonadditive exchange-correlation energy remains the largest source of
error, followed by the DFT energy of subsystem B. Again, we find that DFT, for all

of the functionals tested, provides very accurate embedding potentials.

4.3.4 Improvement of the Nonadditive Exchange-Correlation

Energy

=
N

=
o
T

brbuyl

Reaction

Figure 4.2: Bar graph of the error in the energy obtained from CCSD(T)-in-B3LYP
embedding (black), MP2-corrected CCSD(T)-in-B3LYP embedding (red), and SOS-
MP2-corrected CCSD(T)-in-B3LYP embedding. CCSD(T) calculations performed on
the full system are used as the reference.

Energy (mEp)
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Having determined the nonadditive exchange-correlation energy to be the dom-
inate source of error, new algorithms can be proposed to calculate this term more
accurately. One approach would be to evaluate the nonadditive exchange exactly and
to use a computationally cheap WFT method, such as MP2,% to evaluate the non-
additive correlation. The resulting correction to the WFT-in-DFT embedding energy

is then
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AMP2 nad § E g B i
Exc EHF IVHF’ + QT] TJ Kr?s
€A rs
jEB

(4.19)
- E]gal:_“dT [’yAa ,YB]

—tr [ — 70" PA ] - b))

where :y{}F is the HF embedded density of subsystem A, T is the MP2 amplitude, and
K" are the exchange two electron integrals.®® For the MP2 calculation the orbitals
{2} U {¢;}p are used, which allows for the direct calculation of the MP2 correlation
between the HF orbitals for A and the KS orbitals of B.

Figure 4.2 compares the CCSD(T)-in-B3LYP embedding error (black) to the MP2-
corrected CCSD(T)-in-B3LYP embedding error (red). The average error of WFT-in-
DFT embedding is 4.6 mFE), which drops to 1.2 mF), when the MP2 correction is
applied. Alternatively, instead of calculating the full MP2 energy in Eq. 4.19, one
could only calculate the scaled opposite spin (SOS)-MP2 correlation energy.® Scaling
the opposite spin MP2 correlation by the usual empirical factor of 1.3 leads to the
SOS-MP2-corrected CCSD(T)-in-B3LYP embedding error shown in blue in Figure
4.2. Applying the SOS-MP2 correction results in an average error of 1.1 mEy, which
is essentially the same error as that of the full MP2 correction, and only requires
computations that scale N* compared to N° for the full MP2 energy.

The average error of standard MP2 calculations on these systems is 6.3 mFE), rel-
ative to CCSD(T); it is thus clear that effectiveness of the MP2 correction does not
rely on the MP2 energy being particularly accurate for the full calculation. Instead,
we observe that MP2 theory accurately represents the correlation energy between
subsystems A and B, while not necessarily representing other correlation terms accu-
rately. This is consistent with other local coupled-cluster methods that treat distant

pairs at the MP2 level.*”
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4.4 Results II: Continuity, Convergence, and Con-

jugation in WFT-in-DFT embedding

4.4.1 Potential Energy Surfaces
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Figure 4.3: (A) Potential energy curves for the dissociation of the C-C bond
in singlet 1-penten-l-one obtained using CCSD(T) (green), KS-DFT with B3LYP
(blue), and CCSD(T)-in-B3LYP embedding (black). The structure was reoptimized
at the HF /cc-pVDZ level of theory for each value of the C-C bond distance.”® The
O=C=CH- moiety was treated at the CCSD(T) level for the CCSD(T)-in-B3LYP
embedding calculations. (B-D) The error in CCSD(T)-in-B3LYP embedding (black)
and MP2-corrected CCSD(T)-in-B3LYP embedding (red) as a function of distance
between the carbon-carbon double bond. The results are shown for three partitionings
of the molecule, with subsystem A corresponding to (B) =C=CH-, (C) O=C=CH-,
or (D) O=C=CH-CH,—.

Next, we examine the potential energy surface for heterolytic bond cleavage. Lo-

cal correlation methods show discontinuities in the potential energy surface for the
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heterolytic bond cleavage of CO dissociation in ketene.®” Here, we study a related
system, CO dissociation in 1-penten-1-one.

Panel A of Figure 4.3 shows potential energy curves calculated using CCSD(T),
B3LYP, and CCSD(T)-in-B3LYP embedding. The cc-pVDZ basis was used for all cal-
culations. Here, BSLYP performs relatively well near equilibrium, but overestimates
the energy by up to 16 mFE} near dissociation. The CCSD(T)-in-B3LYP calcula-
tions are very accurate near equilibrium and slightly underestimate the energy near
the dissociation limit. MP2-corrected CCSD(T)-in-B3LYP were also performed for
this system; the results are not shown in panel A of Figure 4.3, because they are
graphically indistinguishable from the uncorrected CCSD(T)-in-B3LYP results.

Panels B-D show the error in CCSD(T)-in-B3LYP embedding and MP2-corrected
CCSD(T)-in-B3LYP embedding for three different subsystem partitionings of the
molecule. The error and the change of the slope at the derivative discontinuity around
1.5 A decreases by treating more of the system at the CCSD(T) level. Energy dis-
continuities of 50 pFy are seen at short distances, as shown in Figure 4.7 of the
supplemental information. Like other local correlation methods, abrupt changes in
the localized orbitals for different nuclear configurations lead to discontinuities in the
WEFT-in-DFT embedding energy and its derivatives. Here, these defects are small

and can be systematically controlled by increasing the size of subsystem A.

4.4.2 WEFT-in-DFT Embedding of Conjugated Systems

A demanding case for any embedding methodology is the partitioning of a m-conjugated
system. The applicability of WFT-in-DFT embedding to treat such systems is tested
and compared to systems without conjugation.

First, we consider the dissociation of a fluoride anion from both an alkane chain (1-
fluorodecane) and an alkene chain (1-fluoro-1,3,5,7,9-decapentaene). The geometries

for both compounds and their dissociated products were obtained using B3LYP /def2-
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Figure 4.4: (A) The error in CCSD(T)-in-B3LYP embedding (black open circles)
and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles) as a function
of the number of carbons included in subsystem A for the dissociation of the alkane.
The B3LYP energy is given by the black dotted line. (B) Contributions to the WFT-
in-DFT error: embedding potential (blue open circles), DFT for subsystem B (violet
filled circles), and DFT for nonadditive exchange-correlation energy (green squares).
(C) DFT Mulliken population of the density associated with subsystem B on the
atoms in subsystem A, shown for 1-fluorodecane (black open circles) and the dissoci-
ated alkane chain (red filled circles).

TZVP. All CCSD(T) and embedding calculations were performed using the cc-pVDZ
basis, with aug-cc-pVDZ for fluorine. %

Figure 4.4A shows the CCSD(T)-in-B3LYP with and without the MP2 correction
for fluoride anion dissociation from the alkane chain. Results are provided for a num-
ber of different choices of the subsystem partitioning, and the error of both methods

can be seen to rapidly vanish as more atoms are included in the WFT subsystem.

The individual sources of error in the CCSD(T)-in-B3LYP embedding calcula-
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tions, computed in the same way as in Sec. 4.3.3, are shown in Figure 4.4B. Again, it
is observed that the error arising from the embedding potential is small, accounting
for only a small portion of the total error. Unlike previous results, the error arising
from treating subsystem B at the DF'T level is of similar magnitude as the nonadditive
exchange-correlation energy error. As these errors are of opposite sign, evaluating the
nonadditive exchange-correlation energy using DF'T leads to a favorable cancellation
of error. The MP2 correction only increases the accuracy of the subsystem interac-
tion energy, and cannot be expected to correct large errors associated with the DF'T
energy of subsystem B.

Figure 4.4C shows the Mulliken population of the density associated with subsys-
tem B on the atoms associated with subsystem A. In the dissociated product, the
density associated with subsystem B distributes onto the atoms of subsystem A to
stabilize the positive charge. We find that when the difference of this quantity is
large between two configurations, there is typically a favorable cancellation of error
between the error arising from treating subsystem B using DFT and the error arising
from evaluating the nonadditive exchange-correlation energy using DFT. In general,
we note that if the nonadditive exchange-correlation is not the dominant source of
error, the MP2 correction cannot significantly improve the accuracy of the embedding
calculation.

After dissociation of the fluoride anion from 1-fluoro-1,3,5,7,9-decapentaene, the
subsequent geometry optimization leads to an isomerization where the proton on the
second carbon moves to the first. Therefore, the analysis for this reaction begins at
the second carbon. Figure 4.5A shows the error in CCSD(T)-in-B3LYP embedding
(black open circles) and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled
circles) as a function of the number of carbons included in subsystem A for fluoride

anion dissociation from 1-fluoro-1,3,5,7,9-decapentaene. Unlike the alkane case, the
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Figure 4.5: (A) The error in CCSD(T)-in-B3LYP embedding (black open circles)
and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles) as a function
of the number of carbons included in subsystem A for the dissociation of the alkene.
The B3LYP energy is given by the black dotted line. (B) Contributions to the WFT-
in-DFT error: embedding potential (blue open circles), use of DFT for subsystem B
(violet filled circles), nonadditive exchange-correlation energy (green squares). (C)
DFT Mulliken population of the density associated with subsystem B on the atoms
in subsystem A, shown for 1-fluoro-1,3,5,7,9-decapentaene (black open circles) and
the dissociated alkene chain (red filled circles).

alkene case exhibits large errors which slowly decrease once the majority of the system
is treated at the CCSD(T) level.

Figure 4.5B shows the decomposition of the contributions to the error in CCSD(T)-
in-B3LYP embedding. In this calculation, the error arising from treating subsystem
B using DFT is the dominate source of error. This explains why the error remains
large until the majority of the system is treated at the CCSD(T) level, and why the

MP2-correction is insufficient to reduce the error.
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Figure 4.5C shows the Mulliken population of the density associated with subsys-
tem B on the atoms associated with subsystem A for the alkene case. As with the
alkane case, a large difference in this quantity is seen between the fluorinated and
defluorinated compounds. This observation provides insight into why the error from
the DFT energy of B contributes strongly to the error of the embedding calculations.

The magnitude of the change in the dipole moment between the fluorinated and
defluorinated compounds is show in Table 4.2 for KS-DFT with B3LYP and CCSD.
In the alkane dissociation, the change in the dipole moment is large, demonstrating
a small polarizability, and there is good agreement between KS-DFT and CCSD. In
the alkene dissociation, the change in dipole moment is considerably smaller than
the alkane case, demonstrating that the density polarizes to stabilize charge. For
the alkene, there is large disagreement between KS-DFT and CCSD, demonstrating
the known failure of DFT to accurately treat polarizability though a m-conjugated
system. % Therefore, when there are large errors associated with KS-DFT, these large
errors will affect the DFT energy of subsystem B, causing large WFT-in-DFT em-
bedding errors. We emphasize that for cases in which DFT does correctly describe
the polarization of the environment, this large source of error does not arise. The
failure of WFT-in-DFT embedding in Figure 4.5 is not a failure of embedding itself,
but rather a failure of DFT to accurately treat the polarizability of m-conjugated

systems.

method dissociation exchange

alkane B3LYP 7.338 0.781
CCSD 7.539 0.802
alkene B3LYP 1.702 0.551
CCSD 3.034 0.630

Table 4.2: The magnitude of the change in the dipole moment between products
and reactants for the dissociation of F~ from the alkane and alkene chains, as well as
the corresponding magnitudes for the H-F exchange reaction. Values are reported in
atomic units.
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Figure 4.6: The error in CCSD(T)-in-B3LYP embedding (black open circles) and
MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles) as a function of the
number of carbons included in subsystem A for the exchange of fluoride to a hydride
in (a) 1-fluorodecane and (b) 1-fluoro-1,3,5,7,9-decapentaene.

Finally, we consider the reaction of exchanging the fluoride anion from 1-fluorodecane
and 1-fluoro-1,3,5,7,9-decapentaene with a hydride (Figure 4.6). The change in dipole
moment for these reactions is provided in Table 4.2. These reactions exhibit a mod-
erate change in dipole moment, and there is good agreement between CCSD and
KS-DFT.

Figures 4.6A and 4.6B plot the error in the CCSD(T)-in-B3LYP embedding and
MP2-corrected CCSD(T)-in-B3LYP embedding energies for the hydride exchange re-
actions from alkane and alkene chains, respectively, as a function of the number of
carbons included in subsystem A. For every partition, the errors are small. For the

smallest division, the MP2 correction provides a significant improvement in the accu-
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racy of the CCSD(T)-in-B3LYP embedding energy; for larger divisions, the effect of
the MP2 correction is much smaller. Unlike in the case of fluoride anion dissociation,
DFT applied to the hydride exchange reaction accurately represents the change in
dipole. As there are no large errors arising from the DFT energy of subsystem B,
WEFT-in-DFT embedding performs accurately and the MP2 correction further im-
proves the energetics.

The important observation from these calculations is that when there is a large
error in the DFT calculation on the environment, there will be correspondingly large
errors in the WEFT-in-DFT embedding energy. Importantly, this failure is associated
with errors intrinsic to the DFT functionals, and does not arise due to errors in the
embedding potential. When a chemical process involves a large change in the Mulliken
population of subsystem B located on the subsystem A atoms, it is likely that the
embedding error will be dominated by errors arising from the DFT-level treatment

of subsystem B; errors of this sort cannot be reduced by the MP2 correction.

4.5 Conclusions

Projector-based quantum embedding provides a scheme for multiscale descriptions
with the exactness property that DFT-in-DFT is equivalent to DFT on the whole
system.®63” In many tests and applications, we find the accuracy of the scheme to
be excellent, allowing for aggressive partitioning across covalent bonds close to the
reactive center of the system of interest. However, for some applications, the errors
introduced by embedding are larger than would typically be acceptable, and the
principal aims of this paper have been to understand and take steps towards resolving
the errors in such cases.
Careful comparison of CCSD(T)-in-DFT embedding calculations with full CCSD(T)

calculations has led to key insights regarding the sources of error in the embedding
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calculations. First, the embedding potential obtained using approximate density func-
tionals is found to be accurate for all of the cases we have investigated, making a
contribution to the overall error of the embedding calculation that is negligible com-
pared to other sources of error. It was not immediately obvious that this would be
the case, because functionals (particularly in cases where they are parameterized) are
designed with accurate energies in mind.

And second, it is found that in many cases, the primary source of error in
CCSD(T)-in-DFT embedding is the treatment of nonadditive exchange-correlation
effects with an approximate density functional. This is important because it is the
one term in the error for which simple corrections can be developed that conserve the
efficiency of the original method. Here, we found that use of MP2 or SOS-MP2 cor-
rections for this term typically improved the accuracy of the energetics for chemical
reactions, reducing the average error from 4.6 mFEy to 1.2 mFEy with respect to full
CCSD(T) calculations.

To investigate the convergence with respect to the size of subsystem A, we studied
dissociation and exchange events at the terminus of 10-carbon alkyl and conjugated
chains. For the removal of F~, the results of the CCSD(T)-in-DFT embedding cal-
culation for the conjugated system are noticeably worse than for the alkane, and it is
found that the MP2 correction does not reduce this error in the computed reaction
energy. Our analysis shows, however, that these results follow from the fact that
DFT provides a poor description of the polarization of the charged alkene fragment
and that the uncorrected CCSD(T)-in-DFT results benefit from a cancellation of er-
rors in the DFT treatment of subsystem B and in the DFT treatment of nonadditive
exchange-correlation. The MP2 correction improves the description of nonadditive
energy term, but it does not compensate for the inaccuracies in the DFT description
of subsystem B.

For a hydride exchange reaction at the terminus of the alkyl and conjugated chains,
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the CCSD(T)-in-DFT embedding results converge smoothly and rapidly to reference
CCSD(T) calculations performed over the full system, regardless of inclusion of the
MP2 correction and regardless of conjugation in the chain. These results demonstrate
that in the regime where DFT is adequate for the treatment of the environment,
our projector-based embedding scheme can effectively partition the system, even in
conjugated molecules.

The current work demonstrates that projection-based embedding provides both
a rigorous and practical approach to embedding correlated wavefunctions in a DFT
description of the environment. Although the results presented here utilize coupled-
cluster methods for describing the correlated wavefunction, we emphasize that projection-
based embedding can be combined just as easily with multi-reference electronic struc-
ture methods, as well as any mean-field description of the environment. The embed-
ding method is straightforward to employ - requiring only the specification of which
atoms are to be treated at the WF'T and DFT levels of theory - and it is fully imple-

mented and available in the Molpro quantum chemistry package.

4.6 Accurate and Systematically Improvable Den-
sity Functional Theory Embedding for Corre-
lated Wavefunctions: Supplemental Informa-

tion

4.6.1 Potential Energy Surfaces
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Figure 4.7: Graph of the error in CCSD(T)-in-B3LYP (black) and MP2 corrected
CCSD(T)-in-B3LYP (red) as a function of distance between the carbon-carbon dou-
ble bond. The O=C=CH-CH,y~ moiety was treated at the CCSD(T) level for the
CCSD(T)-in-B3LYP embedding calculations. Abrupt changes in the localized or-
bitals for different nuclear configurations lead to discontinuities in the WEFT-in-DFT
energy and its derivatives

4.7 Data Set Computational Details
Molecular geometries are reported in angstrom using Cartesian coordinates.
4.7.1 Symmetric Sn2 Reaction Barrier

Propylchloride
KS-DFT (B3LYP) / 6-311g*++ Optimized Geometry
Subsystem A atoms: C8, H9, H10, Cl11
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C1 -1.823996 -0.717480 0.144292
H2 -2.784508 -0.872856 -0.353495
H3 -1.203709 -1.595688 -0.046137
H4 -2.013376 -0.669699 1.221397
C5 -1.151988 0.559917 -0.359191
H6 -1.810375 1.420026 -0.177162
H7 -1.004107 0.511737 -1.442695
C8 0.173632 0.884185 0.310894
H9 0.573039 1.838983 -0.026992
H10 0.089151 0.898664 1.397499
Cl11 1.468705 -0.346524 -0.067552

Transition State
KS-DFT (B3LYP) / 6-311g*++ Optimized Geometry
Subsystem A atoms: C1, H2, H3, Cl11, CI12

C1 0.000719 -0.388805 0.105519
H2 0.000666 -1.250604 0.746120
H3 0.000734 -0.559306 -0.953281
C4 0.000193 0.996697 0.687217
H5 -0.878266 1.089608 1.331323
H6 0.879535 1.090788 1.329810
Cr -0.001812 2.094992 -0.373882
HS8 -0.005528 3.088594 0.087416
H9 0.887844 2.018883 -1.005190
H10 -0.889460 2.013099 -1.006979
Cl11 2.416740 -0.696767 -0.089570

Cl12 -2.416159 -0.697843 -0.089391
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4.7.2 Acid Hydrolysis Reaction Energy

Dimethyl Ether
KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: C1, O2, H3, H4, H5

C1 -1.173920 0.194451 0.000000
02 -0.000001 -0.586419 0.000000
H3 -1.231875 0.834561 -0.890754
H4 -1.231865 0.834609 0.890722
H5 -2.021089 -0.490198 0.000022
C6 1.173921 0.194451 0.000000
H7 2.021088 -0.490200 0.000005
HS8 1.231861 0.834579 0.890742
H9 1.231879 0.834589 -0.890736
Methanol

KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: 02, H6

C1 0.665448 -0.020220 0.000000

02 -0.748210 0.122194 0.000000

H3 1.028648 -0.544325 -0.891167

H4 1.028648 -0.544324 0.891167

Hb5 1.083163 0.985675 0.000000

H6 -1.147468 -0.753259 0.000000
CH3*

KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: C1, H2, H3, H4

C1 0.000000 -0.000001 0.000000
H2 0.945569 -0.545889 -0.000001
H3 -0.945544 -0.545931 -0.000001

H4 -0.000024 1.091829 -0.000001




121

4.7.3 Phenol Deprotonation

Phenol
KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: O1, H6

C1 0.218552 -1.219283 0.000014
C2 -1.168651 -1.184791 -0.000069
C3 -1.850797 0.028852 -0.000109
C4 -1.127187 1.214896 -0.000067
C5 0.263118 1.193734 0.000013
C6 0.936484 -0.025561 0.000056
H1 0.758987 -2.15667 0.00005
H2 -1.721496 -2.115963 -0.000101
H3 -2.932538 0.048567 -0.000172
H4 -1.643317 2.16685 -0.000098
H5 0.823932 2.12249 0.00004
01 2.300596 -0.110893 0.000128
H6 2.680547 0.774789 0.000232
Phenolate

KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: O1

C1 1.077309 0.000000 -0.000014
C2 0.286113 1.209101 -0.000003
C3 -1.097619 1.196760 0.000012
C4 -1.823396 0.000000 0.000013
Ch -1.097619 -1.196759 0.000010
C6 0.286113 -1.209102 -0.000005
H1 0.829304 2.149743 -0.000005
H2 -1.634545 2.143825 0.000017
H3 -2.907447 0.000000 0.000035
H4 -1.634545 -2.143825 0.000013
H5 0.829303 -2.149744 -0.000009

01 2.341566 0.000000 -0.000016
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4.7.4 Ring Closing

Ring Open
KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: C12,C15,C16,H17,H18,C19,H20,H21,H22

C1 -3.545023 0.629867 -0.421139
C2 -2.506770 -0.227213 0.300475
H3 -3.361405 1.694576 -0.256667
H4 -4.555825 0.409794 -0.071888
H5 -3.521013 0.454536 -1.499548
C6 -1.075186 0.045717 -0.160699
H7 -2.739265 -1.286652 0.148181
HS8 -2.577664 -0.054295 1.379802
C9 -0.033543 -0.824403 0.557100
H10 -0.838343 1.103391 -0.006521
H11 -0.998423 -0.127598 -1.239341
C12 1.388709 -0.552578 0.125819
H13 -0.266039 -1.879491 0.392857
H14 -0.114525 -0.651038 1.637376
C15 1.939021 0.764969 0.494120
C16 2.110936 -1.464774 -0.530108
H17 3.144393 -1.286877 -0.798480
H18 1.691125 -2.425795 -0.801128
C19 2.771005 1.502943 -0.237972
H20 1.601127 1.161132 1.449678
H21 3.142039 2.454299 0.121039

H22 3.098937 1.186855 -1.220934
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Ring Closed
KS-DFT (B3LYP) / Def2-TZVP Optimized Geometry
Subsystem A atoms: C12,C15,C16,H17,H18,C19,H20,H21,H22

C1 3.794291 0.519261 0.000003
C2 2.639877 -0.480728 -0.000003
H3 3.758022 1.164438 -0.881470
H4 4.761328 0.012414 -0.000002
H5 3.758024 1.164425 0.881486
C6 1.263955 0.185711 0.000001
H7 2.724185 -1.134284 0.874923
HS8 2.724184 -1.134273 -0.874938
C9 0.107415 -0.813847 -0.000002
H10 1.176665 0.837654 -0.875560
H11 1.176667 0.837647 0.875568
C12 -1.248215 -0.197709 -0.000001
H13 0.192433 -1.477758 0.870558
H14 0.192433 -1.477754 -0.870565
C15 -1.733584 1.050750 -0.000003
C16 -2.624861 -0.841354 0.000003
H17 -2.872972 -1.429596 -0.887456
H18 -2.872969 -1.429592 0.887466
C19 -3.185495 0.621333 0.000000
H20 -1.268168 2.028627 -0.000006
H21 -3.765065 0.888772 -0.886974

H22 -3.765062 0.888776 0.886975
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4.7.5 Diels Alder

Methyl Vinyl Ketone
KS-DFT (B3LYP) / 6-31G* Optimized Geometry
Subsystem A atoms: C1,H1,C2,H2,H3,C3,01

C1 0.876535 -0.634977 -0.000004
H1 0.993976 -1.716638 0.000005
C2 1.942550 0.172493 0.000004
H2 2.953994 -0.224441 0.000020
H3 1.852200 1.255508 -0.000004
C3 -0.544547 -0.189222 -0.000028
01 -1.435445 -1.025231 0.000011
C4 -0.858775 1.298350 0.000004
H4 -0.434414 1.789750 0.883609
H5 -0.434444 1.789780 -0.883599
H6 -1.942326 1.428021 0.000024

2-methoxy-1,3-butadiene
KS-DFT (B3LYP) / 6-31G* Optimized Geometry
Subsystem A atoms: C1,C4,C2,H3,C3,H4,H5 H1,H2

C1 0.617061 1.646444 -0.000018
H1 1.694859 1.746315 -0.000110
H2 0.038603 2.562692 0.000138
C2 -1.487945 0.367430 0.000047
C3 -2.185049 -0.774091 0.000042
H3 -2.005313 1.324367 0.000116
H4 -3.270785 -0.767429 0.000099
Hb5 -1.692300 -1.740640 -0.000031
01 0.579814 -0.762164 -0.000208
C4 -0.023554 0.461802 -0.000068
Ch 1.997125 -0.795343 0.000129
H6 2.407626 -0.307484 -0.893910
H7 2.407176 -0.307121 0.894173

HS8 2.275794 -1.850840 0.000397
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Transition State
KS-DFT (B3LYP) / 6-31G* Optimized Geometry
Subsystem A atoms: C1,C2,C3,C4,C5,C6,H1,H2,H3,H4,H5,H6,H7,H8,C7,01

C1 1.068810 -0.812570 0.719810
C2 -0.339230 -1.188850 -0.695950
C3 -1.266210 -0.148460 -0.876330
C4 -0.304900 1.715430 0.605970
C5 1.004030 1.590610 0.231600
C6 1.712240 0.368160 0.321740
H1 -1.130060 0.556110 -1.689640
H2 0.355970 -1.381110 -1.508990
H3 -0.678730 -2.097060 -0.202640
H4 1.635290 -1.737950 0.762130
H5 -0.866540 2.614980 0.375910
H6 -0.764700 1.054020 1.327930
H7 1.487360 2.384380 -0.333520
HS8 0.347890 -0.721890 1.524310
C7 -2.592740 -0.095470 -0.255940
01 -3.435810 0.724000 -0.615230
C8 -2.932550 -1.097300 0.849810
H9 -3.061010 -2.104130 0.432560
H10 -2.148450 -1.163030 1.614860
H11 -3.870750 -0.793220 1.318090
02 2.936890 0.401990 -0.277740
C9 3.765940 -0.749750 -0.211570
H12 4.727800 -0.448890 -0.630610
H13 3.904990 -1.083200 0.824760

H14 3.359950 -1.577760 -0.806160
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Product
KS-DFT (B3LYP) / 6-31G* Optimized Geometry
Subsystem A atoms: C3,C8,C2,C1,C4,C5,H7,H6,H8,H5,H2,H3,H1,C6,01

C1 -1.097853 -0.009400 0.307622
H1 -0.934291 -0.461527 1.296642
C2 -0.395447 -0.905157 -0.741185
H2 -0.861748 -1.897406 -0.785253
H3 -0.527828 -0.444533 -1.727887
C3 1.101813 -1.049944 -0.432388
H4 1.246067 -1.766230 0.390560
H5 1.616769 -1.478343 -1.302945
C4 -0.485038 1.400083 0.279829
H6 -0.903187 1.945611 -0.577138
H7 -0.808110 1.957516 1.170221
C5 1.019771 1.371473 0.219750
HS8 1.558008 2.294164 0.423611
C6 -2.601257 0.012621 0.023153
01 -3.092155 0.811145 -0.753610
Ccr -3.449014 -1.027538 0.734995
H9 -3.495173 -0.790941 1.806419
H10 -4.460915 -1.032016 0.324814
H11 -3.005536 -2.027088 0.650795
02 3.102253 0.393352 -0.206064
C8 1.730467 0.282418 -0.094316
C9 3.875760 -0.623808 0.415869
H12 3.702491 -1.613323 -0.027993
H13 4.921497 -0.349057 0.259886

H14 3.675958 -0.677301 1.495684
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Outlook

This work shows the significant progress contributed by this thesis to the development
of embedded density functional theory for the treatment of correlated wavefunctions.
We started with a simple single electron embedded in an atomic system, progressed
to covalent bonded molecular systems, and advanced to transition metals and large
complex chemical systems. The methodology has not only advanced the size and
complexity of systems which can be treated, but also the accuracy and robustness.
However, significant challenges remain to be addressed and are discussed briefly here.

Chapter 4 discussed the use of computationally inexpensive wavefunction methods
to evaluate the nonadditive exchange-correlation energy. In those cases we applied the
use of MP2 theory, and it proved very accurate. However, there are many systems in
which MP2 theory will give qualitatively inaccurate results, such as transition metal
complexes and complexes with near degeneracies. Therefore, alternative inexpensive
wavefunction methods, such as the random phase approximation, should be explored
to determine the accuracy of those methods in the context of WFT-in-DF'T.

The methodology used in chapter 4 employs the KS-DFT density for subsystem
B, which was obtained from performing a KS-DFT calculation on the full system.
However, in some systems the density in subsystem A may change significantly from
KS-DFT to wavefunction theory. Therefore, the next challenge to the field is how to
relax the density of subsystem B, after one obtains the density of subsystem A. This
self-consistent minimization allows for the two subsystems to be correctly polarized.

This self-consistent procedure will allow for the total systems orbitals to be at the

absolute minimum, which has several advantages. First, it allows for the treatment of
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excited states. If an excited-state wavefunction calculation is performed on subsystem
A, subsystem B can polarize to the excited state and should be significantly more
accurate than frozen density embedding.

A self-consistent procedure would also allow for the calculation of atomic forces
through the use of the Hellmann-Feynman theorem. This would allow for geometry
optimizations at the WFT-in-DFT level of theory. Previous experience has shown
that geometries obtained at the KS-DF'T level of theory can be inaccurate compared
to experimental geometries, particularly for transition metal complexes. However,
this requires the use of WF'T methods with computationally tractable gradients. For
many WFT methods, geometry optimization is too costly for all but the smallest of
systems, and this remains a great challenge to the WFT community.

Although several challenges remain in the WFT-in-DFT methodology, it is im-
portant to emphasize how breakthroughs in both WFT and DFT can be seamlessly
and effortlessly integrated into the field. In this sense, this work will remain compli-

mentary to the work being done in both the WE'T and DFT scientific communities.



