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Abstract

We present a theoretical study of electronic states in topological insulators with impurities.

Chiral edge states in 2d topological insulators and helical surface states in 3d topologi-

cal insulators show a robust transport against nonmagnetic impurities. Such a nontrivial

character inspired physicists to come up with applications such as spintronic devices [1],

thermoelectric materials [2], photovoltaics [3], and quantum computation [4]. Not only has

it provided new opportunities from a practical point of view, but its theoretical study has

deepened the understanding of the topological nature of condensed matter systems. How-

ever, experimental realizations of topological insulators have been challenging. For example,

a 2d topological insulator fabricated in a HeTe quantum well structure by Konig et al. [5]

shows a longitudinal conductance which is not well quantized and varies with temperature.

3d topological insulators such as Bi2Se3 and Bi2Te3 exhibit not only a signature of surface

states, but they also show a bulk conduction [6]. The series of experiments motivated us to

study the effects of impurities and coexisting bulk Fermi surface in topological insulators.

We first address a single impurity problem in a topological insulator using a semiclassical

approach. Then we study the conductance behavior of a disordered topological-metal strip

where bulk modes are associated with the transport of edge modes via impurity scattering.

We verify that the conduction through a chiral edge channel retains its topological signa-

ture, and we discovered that the transmission can be succinctly expressed in a closed form

as a ratio of determinants of the bulk Green’s function and impurity potentials. We fur-
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ther study the transport of 1d systems which can be decomposed in terms of chiral modes.

Lastly, the surface impurity effect on the local density of surface states over layers into the

bulk is studied between weak and strong disorder strength limits.
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Chapter 1

Introduction

Condensed matter in nature and laboratories shows rich phenomena that has intrigued

generations of physicists. In the introduction, a non-technical survey of the field is intro-

duced to invite general readers of physical science to experience its beauty and challenge.

First, the main concept of a topological insulator and its exotic phenomena are introduced.

Then, experimental probes identifying the signatures of topological insulators are surveyed

in section 1.2. Furthermore, fascinating impurity-related behavior in physics is discussed in

section 1.3 and the Green’s function methods to deal with random potentials is presented

in section 1.4. Lastly, we provide an overview of the thesis.

1.1 Insulators classified by Chern invariants

The purpose of this section is to introduce a topological insulator that has attracted enor-

mous attention in the condensed matter community in the last decade. The important

and inspiring concepts for understanding the specific studies presented in later chapters are

explained in a qualitative manner, mainly in order to attract people in the field of physi-

cal science outside of condensed matter theory. Those who are more interested in further

details are referred to the original papers cited in the bibliography.
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(a) (b) (c)

Figure 1.1: Vacuum as described by Dirac continuum Hamiltonian (a), Eq.(1.1), and band
model on 2d lattice (b), Eq.(1.2) with B > 0. To generate the particle-antiparticle pair,
a minimum energy 2mc2 is required corresponding to the energy gap between bands. The
other insulating phase is described using the same 2d lattice model with B < 0 in (c).

1.1.1 ‘Topologically’ different insulators

An insulator is a medium that cannot conduct charged particles. A vacuum is perhaps

most the well-known insulator. The celebrated Dirac Hamiltonian describes the particle-

antiparticle excitation in continuum space. For concreteness, let us consider the two-spatial

dimension and spinless particle:

H =

 mc2 ~c(kx − iky)

~c(kx + iky) −mc2

 (1.1)

The vacuum is after all a two band model, as shown in Fig.1.1a. The minimum energy

needed to create the particle and anti-particle pair is 2mc2, which is the energy gap between

two bands. Let us put the vacuum on the lattice. A Hamiltonian of electrons on the 2d

square lattice that can hop around the nearest neighbor sites is:

H =

m+ 2B[2− cos(kxa)− cos(kya)] A[sin(kxa)− isin(kya)]

A[sin(kxa) + isin(kya)] −m− 2B[2− cos(kxa)− cos(kya)].

 (1.2)
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Here the vacuum Hamiltonian acquired a little more structure in momentum space and

regularized by introducing the lattice spacing a, which is the minimal step electrons can take

on the lattice. For positive parameter A and B, we can see that the above two Hamiltonians

essentially share the same feature of gapped bands up to microscopic details. The lattice

Hamiltonian is more convenient to play with, since the discretization of the space enables

us to use computational power. But the basis used here is electron-hole instead of particle-

antiparticle in Dirac Hamiltonian. In fact, this shows one of the advantages of condensed

matter systems: we can create a system that retains the same physics in nature but that has

a different basis. This allows us to explore the fundemental physics in table-top experiments.

Examples of such realizations include Majorana fermion [4], Dyon [7], magnetic mopole [8],

and axions [9]. Recent developments of cold atom experiments offer other opportunities to

probe more exotic phenomena in laboratories [10].

Figure 1.2: Two insulators on the 2d lattice model are positioned to interface each other.
Interestingly, a single gapless mode appears within the energy gap at the interface.

A surprising behavior takes place when we put two insulators together with different

signs of parameter B: one with H(B > 0) and the other with H(B < 0) (Fig.1.1b and

Fig.1.1c). Each Hamiltonian maintains well-defined energy gaps. But when two are next

to each other, a single gapless mode appears at the boundary. In other words, near the

boundary it takes infinitesimally small amount of energy to create an electron-hole pair,
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and therefore the system becomes metallic at the interface. Also, the appearance of the

single chiral mode suggests that the electronic transport within the energy gap is robust

against impurity scattering; an electron on that chiral mode has no other eigenstates to

scatter into but itself. This is indeed the central interest of studying conduction through

disordered topological insulator in Chapter 3. Lastly, such an appearance of the single chiral

mode breaks time reversal symmetry: imagine we reverse the direction of time flow. Then

the electron will flow in opposite direction and the original system will not be recovered

under this symmetry transformation. This type of band insulator that exhibits a nonzero

Hall conductance but preserves the lattice translational symmetry is called a Chern insu-

lator. The topological insulator, which will be introduced soon, preserves the time-reversal

symmetry, and retains a pair of chiral modes with different momentum and spins at the

boundary.

(a) (b)

Figure 1.3: Mass terms in the diagonal in Eq. (1.2) are plotted for B > 0 (left) and B < 0
(right) to explain the appearance of the gapless mode between two insulators.

Qualitative understanding of the appearance of the gapless chiral mode is followed by

the band inversion model. Even though both systems are gapped with non-zero mass term

in the diagonal parts of Hamiltonian, the sign of mass, m + 2B[2 − cos(kxa) − cos(kya)],

differs for a range of momentum when B < 0 (see Fig.1.5b). Imagine that we bring the

Hamiltonian from the left to right across the interface. The transition of Hamiltonian always

accompanies the closing of the energy gap as the sign of mass term changes in the range

4



of momenta. For a more complete analysis from a similar perspective, see the study by

Roger et al. [11]. This example introduces the topologically equivalent class of insulators:

if one insulator can be transformed into the other insulator without closing the energy gap

by local modification of the Hamiltonian, then we say the two insulators are topologically

equivalent. If not, just as the example described above, they are topologically distinct.

Directly following questions are, i) how many distinct topological insulators exist, and ii)

whether we can look at the bulk instead of boundary to classify the topological character.

Figure 1.4: A two level system in 2d has a simpler interpretation of Chern invariants. Two
complex components of a wave function can be parametrized by two angles, θ and φ. The
torus on the left represents the Hilbert space where wave functions reside. The Chern
invariant measures how many times the wave function vector wraps around the sphere as
it moves over the whole surface of the torus.

The Chern invariant quantifies the concept of topology in the insulators. For a system

with translation invariance, the Chern invariant of the jth band is expressed in terms of the

Bloch wave function, uj = uj(kx, ky), of jth band derivatives with respect to momentum kx

and ky:

nj =

∫
BZ

d2k

(2π)2
Ω

(j)
kxky

=

∫
BZ

d2k

(2π)2

[
〈∂uj
∂kx
|∂uj
∂ky
〉 − 〈∂uj

∂ky
|∂uj
∂kx
〉
]
. (1.3)

The integrand of the right side is the local curvature of the Bloch wave function parametrized
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by two momenta. For a spinless two level system, the wave function has two complex orbital

components and it can be mapped on to a sphere up to an overall phase, just like a vector

with three components (Figure 1.4). Then, the Chern invariant describes how many times

the Bloch wave function vector wraps around the sphere as it is being integrated out in

Brillouin zone, which is a torus for the 2-dimensional case. According to the remarkable

relation made by Gauss and Bonnet, the integration of local curvature over a closed surface is

always quantized, and this ensures that the Chern invariants are integer. For two insulators

with different Chern invariants n1 and n2, there are |n1 − n2| gapless chiral modes that

appear at the boundary between them. This is called the bulk-boundary correspondence.

We can figure out the Chern invariants of bulks by looking at the chiral modes at the

boundary. This classification of insulator according to the integration of local curvature

of Bloch wave function reminds us of our previous two-band toy model with B > 0 and

B < 0. The sign change of mass term corresponds to the direction change of ψ(θ, φ) on the

sphere. This allows wave function to explore the whole surface of the sphere and the Chern

invariant becomes nonzero for B < 0.

1.1.2 Z2 classification of topological insulator

In 2005 Kane and Mele suggested a theoretical model of a topologically non-trivial insulator

preserving the time-reversal symmetry [12]. They introduced a spin orbit coupling to the

honeycomb graphene model to open an energy gap such that the Chern invariants of each

spin section of the Hamiltonian are nonzero, but their sum is zero as required by the time

reversal symmetry [13]. As a result, the Kane-Mele model abutted to a trivial insulator

harbors two chiral gapless modes, one for each of the spins. Instead of the quantized charge

Hall conductance, now the system possesses the quantized spin Hall conductance, and
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physicists found its potential applications in spintronic devices [1], thermoelectric materials

[2], photovoltaics [3], etc.

(a) (b) (c)

(d) (e)

Figure 1.5: Z2 classification of the topological insulator can be understood from the bulk-
boundary correspondence. (a) shows the four Kammer pairs where the degeneracy of a
state and its time-reversal copy are guaranteed. (b) Due to the spin-orbit coupling, two
states split into different energies away from kx = 0 and kx = π. (c) One way to connect
the states across the Brillouin zone is to connect pairwise. (d) The other way is to choose
different partners, in this case the edge state is gapless. (e) There could be other pairings,
but the pairing described is susceptible to local perturbation in respect to time-reversal
symmetry and it is reduced to type (c) band.

The topological insulator has two inequivalent classes. Following Kane and Mele [14], we

can find its explanation by appealing to the bulk-boundary correspondence: if we look what

are possible configurations of edge states at the boundary, we know which are topologically

distinct non-trivial bulk insulating phases. To proceed, consider an open boundary of the 2d

topological insulator along x-direction and recall that in the projected band structure (kx, E)

the momentum kx = 0 and kx = π/a are time reversal symmetric points in the Brillouin

zone, so that a Bloch wave function and its time-reversal partner must be degenerated in
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energy at the momenta 1.5. Away from those points, the energy bands are in general split

due to the spin-orbit coupling. Now we have two options to connect a series of degenerated

points at kx = 0 and kx = π/a: one is a zigzag type of connection from the valence

to conduction band, Figure 1.5d, so that at every energy within the gap there is an odd

number of pairs of time-reversal edge modes. The other option is to connect the Kramers

degenerated points in pairwise manner so that there is an even number of time-reversal

pairs at any energy within the gap. The first case yields a non-trivial spin Chern number

and the second case corresponds to the trivial insulating phase. These two cases exhaust

the inequivalent topological insulator classes in a 2d system, and therefore we say the

classification is even or odd Z2.

In the 3d case, we have more room to play as the number of time reversal symmetric

points in the Brillouin zone is eight: (kx, ky, kz) = (π/2a±π/2a, π/2a±π/2a, π/2a±π/2a).

Again, by appealing to the bulk-boundary correspondence, we can list what types of distinct

connections of surface states are possible within the energy gap on the surface perpendicular

to the z-axis, for example. Four time-reversal symmetric points are (kx, ky) = (π/2a ±

π/2a, π/2a ± π/2a), and Z2 classification depends on the odd or even number of time-

reversal pairs of surface states. The discovery of the 3d topological insulator came to

physicists’ surprise because its parents system, quantum Hall effect, was limited to the 2d

system. Not only that, but the 3d topological insulator shows interesting phenomena not

seen in its 2d counterpart that we will introduce in the following section.

1.1.3 Topological insulator phenomena

In this section, a few examples which have generated excitement and inspiration across the

condensed matter community regarding the topological insulator are introduced.

8



(a) (b) (c)

Figure 1.6: Z2 classification of the 3d topological insulator can be understood in a similar
manner to the bulk-boundary correspondence. Imagine we have an open boundary per-
pendicular to the z-axis, then surface states will be described in terms of (kx, ky) in clean
system. (a) shows four points where a state and its time-reversal copy must be degenerated.
Now we connect those four points to come up with different possibilities. (b) is the way we
obtained the gapless edge state in the 2d system, and (c) leads trivial insulating phase in
2d. For 3d, we need to connect both directions along kx and ky. For example, if (b) and (c)
are combined, we obtain a weak topological insulating phase where two Dirac surface states
are present within the energy gap. If a (b)-type of connection is used for both directions,
we get a strong topological insulator where a single Dirac surface state appears. A trivial
insulating phase occurs when a (c)-type connection is used for both directions.

1. Magnetoelectric polarization: In solids, nuclear and bound electrons form an elec-

tric polarization under an external electric field to minimize electrostatic energy. Similarly,

the effect of an external magnetic field applied to the orbital motion of bound electrons

and magnetic polarization is induced. Surprisingly, in 3d the topological insulator the

cross-correlated response occurs: the external electric field induces magnetization, while

the external magnetic field leads electric polarization. This strange magnetoelectric re-

sponse on the external fields takes place on the surface of the 3d topological insulator, and

Essin et al.[15] clarified the relation of the magnetoelectric polarization and the non-trivial

topological character of the system. Explicitly, they provided an alternative derivation of

the Axion electrodynamics, ∆LEM = (θe2/2πh) ~E · ~B, as a contribution to magnetoelectric

polarizability from extended orbitals.

2. Magnetic monopole: Paul Dirac showed that to have quantized electric charges,
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magnetic monopoles should exist in the universe [16]. Here, the magnetic monopole which

is not yet discovered is the source of the magnetic field, as the electric field is produced

by electric charges. Qi, Li, et al. [17] suggested a system composed of a 3d topological

insulator showing the effect of the image magnetic monopole. They considered a charge

placed near the surface of the 3d topological insulator coated with thin magnetic film which

gaps out surface states. Then, an image magnetic monopole as well as electric charge are

induced to satisfy the boundary condition on the surface, when the effective field is observed

outside the topological insulator. This phenomenon can be understood as magnetoelectric

polarization: provided that the gapless surface states on the surface are gapped out so that

the surface dynamics are dominated by the magnetoelectric coupling term, the electric field

produced from the externally placed charge induces the Hall currents on the topological

insulator surface in a circulating manner (see the inset of Figure 1.7a). As a result, the

profile of the magnetic field just looks like a field generated from the point source in the

topological insulator.

(a) (b)

Figure 1.7: An effective magnetic monopole is induced in a 3d topological insulator with a
ferromagnetic coating on the surface. An external charge near the surface induces the Hall
surface current that generates a magnetic field outside the topological insulator identical to
the one generated by a magnetic monopole.

3. Witten effect: The exotic behavior of the topological insulator is also connected to
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the fractionalization of charge. The Witten effect occurs when a unit magnetic monopole

placed inside a topologically nontrivial medium with θ 6= 0 is bound to a fractional electric

charge −e(θ/2π + n) with integer n. The strong topological insulator serves as a medium

of θ = π. Rosenberg and Franz [9] prepared a magnetic monopole associate with a vortex

in the exciton condensate emerging from the thin film of topological insulator with external

bias. The fraction electric charge Q = e/2 associated with a magnetic monopole is observed

using the exact diagonalization method in the lattice toy model. The other scheme of the

charge fractionalization on graphene with a gap-opening term is proposed by Hou et al.

[18].

4. Thermoelectric materials and photovoltaics: The applications of topological insula-

tors to renewable energy research are particularly interesting since they may provide oppor-

tunities to break the limit of conventional materials. First, the topological insulators may

be good thermoelectric materials [2] because non-magnetic impurities provide resistance to

thermal transport in the system while electronic transport of edge states is not affected.

Indeed, potential candidates for 3d topological insulators such as Bi2Se3 and Bi2Te3 have

been used for thermoelectric engineering near room temperature for a long time [19]. On

the other hand, solar cell application is another possibility where topological insulator can

be useful. Lindner et al. [3] recently proposed to use topological insulator thin flims to

harvest the infrared spectrum of the sun, which is unused in conventional band gap photo-

volataics. They pointed out that the observed surface photocurrent on topological insulator

is low due to two symmetries: time-reversal and rotational symmetry. The time-reversal

symmetry limits the system to absorbing circularly polarized light only, while the rotational

symmetry means that the induced photocurrent has no preferred direction and therefore

the net current is zero. Lindner et al. [3] proposed to put magnetic patterns on the surface
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to break the two symmetries and computationally found the drastic increment of surface

photocurrent.

Figure 1.8: Lindner et al. [3] suggested putting a magnetic grating on the top of the
topological insulator to produce a photocurrent by breaking the rotational symmetry and
the time-reversal symmetry.

1.1.4 Physics at the edge

At the interface of a Chern insulator with Chern invariant n and a trivial insulator, n gapless

modes appears according to the bulk-boundary correspondence. We say the chiral gapless

edge modes at the boundary are robust against impurity scattering for a simple reason:

every mode available to scatter into is propagating in the same direction. The relation

between the quantized Hall conductance ne2/h and the Chern invariant n of the system is

established by Thouless, Kohmoto, Nightingale, and den Nijs in their seminal paper [20]

in 1982 (see also section 1.3.2). This impurity-insensitive nature of transport along the

boundary has captured physicists’ interest, because it shows the universal quantization of

conductance independent of microscopic details of devices. For the topological insulator,

which is two copies of Chern insulators in time-reversal relation, there are two edge states

within the energy gap and they are also time-reversal copies each other; if one edge mode

is spin-up with momentum k, the other edge mode is spin-down with momentum −k.
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Therefore, the transport is still robust against non-magnetic impurity, but a mobility gap

appears in the presence of magnetic impurity. For the case of helical surface states in the

3d topological insulator, backscattering is not still allowed by non-magnetic impurities, but

scatterings that deflect the direction of electron propagation lower its conductance. The

transport of Dirac surface states with (non-)magnetic impurities is still an ongoing research

topic [21, 22].

(a) (b)

Figure 1.9: (a) a Chern insulator with a single gapless mode is shown. The edge mode is
robust against impurity scatterings because there is only a single conducting mode which
its own mode electrons can scatter into.(b) a topological insulator has two gapless modes
in time-reversal relation. Two edge states cannot be coupled by non-magnetic impurities,
while magnetic impurities can open a mobility gap.

The physics of chiral edge modes in quantum Hall systems and 2d topological insula-

tors goes back to Tomonaga [23] and Luttinger [24], who suggested a quantum 1d model

that cannot be explained by Landau’s Fermi liquid theory, meaning that the picture of

independent quasiparticles, which is in one-to-one correspondence with the bare electrons

does not hold any longer. Significant progress has been made and the exact solution of a

1d system with interaction is found using bosonization (for the history of development, see

Haldane [25]). The idea is to describe a fermion excitation in terms of bosonic languages for

a system with a linear dispersion relation, E(k) = vk. By the Bogoliubov transformation,
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1d interacting fermionic system is exactly mapped into a 1d free bosonic system for which

we can derive physical observables using standard techniques. When the dispersion relation

of Fermion system is not linear, it induces the coupling between bosonic excitation and

mapped into interacting bosonic system [25]. The application of these theories successfully

describes the dynamics of the edge excitation in fractional quantum Hall systems [26]. The

tunneling conductance across an impurity in Luttinger liquid especially shows a power law

scaling with temperature [27], as well as an analogous realization of Luttinger liquid in

quantum Hall system with constrictions to allow scatterings between chiral modes, exhibits

the universal behavior described by filling factors [26].

Figure 1.10: A quantum Hall interferometer suggested by Das Sarma et al. [28] is shown.
Region 1 and 2 contain a number of quasiparticles that provide non-Abelian statistics for
chiral edge states surrounding and tunneling between them. Three constrictions where top
and bottom chiral edge states are brought close enough so that they can tunnel through
are introduced to verify the braiding statistics in ν = 5/2 quantum Hall system.

In practice, physicists manipulate and detect edge states in the quantum Hall system

to identify the topological nature of bulks (recall the bulk-boundary correspondence). For

instance, it has been theoretically suggested that the ν = 5/2 quantum Hall phase contains

non-Abelian statistics of quasiparticles, which makes it a strong candidate to realize a

quantum computer using topologically protected qubits [29]. Das Sarma et al. [28] came

up with a experimental scheme to verify the braiding statistics of ν = 5/2 system through

quasiparticle tunneling between chiral edge states. Here, the quasiparticle is an excitation
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of the ground state. Though the Pfaffian state is assumed as a ground state in their

proposal, its particle-hole conjugate state anti-Pfaffian is the other possible ground state

possessing different types of quasiparticles as suggested by Lee et al. [30]. To resolve

the confusion, Bishara et al. [31] et al. proposed other experiments predicting strikingly

different interference patterns of edge modes depending on its ground state. Lastly, the

effect of coupling between edge and bulk mode is considered by Halperin et al. [32] in

the Febry-Perot quantum Hall interferometer to clarify the effect of fractional statistics as

well as coulomb interactions and the Aharonov-Bohm effect. All these theoretical proposals

show how edge states of exotic phases can be employed to characterize its topological nature

and to build the units of unitary operations required for quantum computation.

1.2 Experimental probes of topological insulators

In this section, experimental methods to identify the signature of topological insulators are

introduced, and it is impressive to follow how physicists came up with idea to identify the

signature of topological insulator.

1.2.1 Transport measurements

1. Longitudinal and Hall (transverse) conductance measurement: As topological insula-

tor harbors gapless excitations along the boundary with trivial insulator, the most direct

identification of topological insulator will be the measurement of conductance with differ-

ent sizes of systems. For a 2d system, the conductance through the chiral edge channel

does not scale the with system width, while the conductance through the bulk channel, if

present, does. Also, the presence of an energy gap can be probed by sweeping the chemical

potential. The carrier of charges switches from hole to electron, so the Hall conductance
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measurement will probe this change, and we can see if the system is insulating. Though this

sounds straightforward, physicists have found it hard to see clear evidence of topological

insulators from the longitudinal and Hall measurements. For instance, Konig et al. [5]

performed the transport measurement on HgTe quantum wells, which is engineered to be

2d topological insulator, but the longitudinal conductance data shows not well-quantized

and large temperature-dependent behavior. 3d topological insulators are no exception: the

transport seems to be dominated by bulk conduction in Bi2Te3 and Bi2Se3 [6] due to the

doping to place the Fermi level within the energy gap.

Figure 1.11: The longitudinal resistance [5] of not inverted (I) and inverted (II,III,IV)
quantum well structures for different device sizes as a function of chemical potential is
plotted. Though sample III shows relatively nice quantization of conductance at 2e2/h, it
shows temperature-dependence behavior (inset).

2 Shubnikov-de-Haas oscillations measurement: In 3d topological insulator, as the trans-

port is dominated by the bulk conduction channels, the direct longitudinal conductance

measurement does not provide the definite signature of surface states. To circumvent the

problem, physicists applied a strong magnetic field to the system and observed the oscillation

of resistance with varying field strength. This behavior is due to the Landau quantization

of electron energy levels under magnetic field. From the semiclassical point of view, free
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electrons in the system undergo a circular orbiting motion and behave like simple harmonic

oscillators. Their energy levels are now quantized by cyclotron frequency, and they form

highly degenerate energy bands at En = (n + 1/2)~wc. As the magnetic field increases,

the greater number of states that occupy a single Landau level, while at the same time

the spacing between Landau levels widens. The conductance shows an oscillatory behavior

as each Landau level passes through the Fermi level. Once all electrons are degenerated

in the lowest Landau level, the conductance shows no more oscillations. This is why the

area of the Fermi surface S is directly related to the oscillation of conductance. This is the

famous Onsager’s relation: ∆(1/B) = 2πe/~cS. Analytis and his colleagues [33] fabricated

a sample which shows relatively weak oscillation, meaning that the bulk Fermi surface is

small, and they measured the longitudinal and Hall resistance at different angles between

the magnetic field and the surface of the sample. Any change of conductance as changing

the angle is the signature of surface states because bulk electrons are not sensitive to the

direction of the magnetic field.

3. Aharonov-Bohm interference: Another clever way to bypass the influence of bulk

conduction is suggested by Peng and his colleagues [34], and uses magnetic flux through

the 3d topological insulator wire. When an electron completes a closed orbit enclosing a

magnetic flux Φ, it picks up a phase ∆φ = (e/~)Φ . The phase can be shown in conduction

measurement by preparing a pair of coherent electrons going through different paths that

meet at the end. The electrons may constructively or destructively interfere depending

on the magnetic flux enclosed by their paths. The superconducting quantum interference

device is indeed the device to measure a very small change of magnetic flux change through

the ring of superconductors [35]. The same concept is employed to see the signature of

surface states in 3d topological insulators. Imagine a magnetic flux is inserted through a

17



wire for which we want to check whether surface states exist along the boundary of the

wire. For bulk states which most likely coexist with surface states, the resistance will show

aperiodic behavior with the magnetic field since the bulk electrons do not have a well-

defined cross section of the closed path perpendicular to the magnetic field. On the other

hand, the surface states enclose the cross section of the wire since they always move on the

boundary of the wire, and therefore their contribution to resistance will be periodic with

varying magnetic field strength. Indeed, Peng et al. observed the oscillation of resistance

with period of magnetic field ∆B = h/eA, where A is the cross-section of the wire. The

corresponding magnetic flux change ∆Φ = h/e confirms the interference of surface states

around the boundary of the wire.

Figure 1.12: Surface states on 3d topological insulator wire enclose magnetic flux of a
fixed cross-sectional area [34]. Therefore, it shows a periodic conductance change upon the
change of magnetic field strength according to the Aharonov-Bohm interference effect. On
the other hand, bulk states show aperiodic behavior as the cross-section is not well defined.

1.2.2 Local density of states measurements

1. Spin Angle-resolved photoemission spectroscopy (spin-ARPES): An observation of the

local density of states near the surface is one of the most direct confirmations of the presence

of helical surface states and the identification of topological insulators. As opposed to the

transport measurement where Fermi energy should be placed within the energy gap, this
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photoemission technique can probe the system and map its local density of states without

doping first. Therefore, it has advantages at probing potential candidates of topological

insulators regardless of its initial chemical potential. ARPES can measure the momentum

vector of photo-excited electrons and therefore the reconstruction of local density of states

in momentum space is available, which provides a unique opportunity to verify the Dirac

dispersion relation of surface states. Furthermore, spin-ARPES [36] can resolve the spin

texture of the Dirac dispersion curve, and it allows us to identify the topological nature of

the system. This advanced technique certainly helped our understanding of the family of

3d topological insulators, but in the presence of impurities the local density of state is not

straightforwardly translated into the conductance through surface channels. For instance,

weak magnetic impurities that locally couple the time-reversal states may open the mobility

gap, but not the spectral energy gap. And the transition of transport nature between the

mott insulating phase and the ballistic conducting phase is not obvious from ARPES data.

This is our motivation to study in Chapter 5 the surface impurity effect on surface states.

Figure 1.13: ARPES data by Wray et al. [37] showing Dirac surface states modified by
the deposition of iron on the surface. Incident photon energy is changed so that it probes
a cross-section of dispersion at different kz along Γ point to Z point in the Brillouin zone.
As the spectrum shows no dispersive relation along kz, the series of ARPES shows the
verification of the surface states.
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2. Scanning tunneling microscope (STM): STM provides the counterpart of the local

density of states in real space instead of in momentum space. This sophisticated apparatus

has a very sharp nano-scale tip that can carry a current to a system in atomic resolution

through quantum tunneling. By measuring the local current as a function of chemical

potential over the surface of the sample, for example, Zhang et al.[38] obtained beautiful

pictures of the local density of surface states in 3d topological insulator, Bi2Te3. On the

other hand, STM can characterize scattering channels near impurities from the Fourier

transformation of the local density of surface states in real space. Zhang and his colleagues

introduced non-magnetic Ag trimmers, which sit right on the top of Te sites of Bi2Te3, and

then they observed that the momentum transfer spectrum carried by the impurity shows

anisotropic behavior: Among three dominant channels of warped Fermi surface, only one

is visible, implying that the backscattering channel and the other channel are suppressed.

Although the suppression of the latter channel needs more analysis[39], the disappearance of

backscattering momentum transfer is consistent with the time-reversal protection of surface

states in topological insulator.

1.3 Impurity related novel physics: Phenomena

Impurities are always present in condensed matter systems, and in most cases experimental-

ists have only limited control over the type of unwanted impurities and their concentration.

This is one practical reason for why we want to develop theoretical frameworks predicting

the effect of impurities. On the other hand, physicists discovered novel phenomena emerging

through the scatterings due to impurities in systems (Examples include the Kondo effect,

the quantum Hall effect, the universal conductance fluctuation, the impurity-induced phase

transition, etc.). In this section, to attract readers’ interest towards impurity-induced phe-
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nomena, we will briefly discuss the role of impurities in the selected examples.

1.3.1 The Kondo effect

From the classical point of view, the motion of free electrons in metal is altered by the ther-

mal vibration of the lattice. Thus, one would expect a system at lower temperature to show

smaller electrical resistivity. Therefore, a strange behavior of resistivity was observed in the

presence of magnetic impurities: the resistance of gold increases with lowering temperature

[40]. Later, this non-trivial behavior was first explained by Kondo in 1964 [41]. Kondo ex-

plained that the interaction between conduction electrons and an electron localized around

magnetic impurity forms a resonant scattering channel, which becomes stronger at lower

temperatures as thermal fluctuation is reduced. Such a magnetic impurity resonant scatter-

ing channel provides conduction electrons another option to backscatter, and the resistance

of the system increases with lowering temperature.

How can conduction electrons at Fermi energy interact with magnetic impurity bound

state at different energy? The resonant scattering is made possible through the exchange

process and Heisenberg’s uncertainty principle. Imagine that a bound electron in the mag-

netic impurity jumps out to the conduction band. Though such a process is not allowed

in a classical viewpoint, as it violates conservation of energy, if an electron in the conduc-

tion band jumps into the bound state within a short time, then the exchange process is

possible within the uncertainty of energy. The state between the transition is called the

virtual state. A remarkable scaling behavior [42] follows that the resistance normalized

by the resistance at zero temperature is a function of the ratio of temperature normalized

by the Kondo temperature, which is the onset of the Kondo effect. This scaling behavior,

R/R0 = f(T/TK), was first suggested by Anderson [43] and then confirmed by Wilson in
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1974 [44] by the numerical renormalization group method.

Figure 1.14: Using a scanning tunneling microscope, Manoharan et al. [45] constructed
a quantum mirage made out of Cu atoms following the circumference of the ellipse and a
magnetic impurity, Cobalt atom, is placed at one focal point. They observed the Kondo
resonance not only at the Cobalt atom, but also at the other focal point, as shown in picture
(c) and (d) above. The appearance of the image resonance confirms the interaction between
conduction electrons and a magnetic bound electron.

Significant advances in nano-scale fabrication in the 1990s gave physicists extensive capa-

bilities to control quantum tunneling strength, electron interaction in the magnetic impurity,

magnetic bound state energy, etc. Quantum mirage [46] is one interesting example show-

ing the Kondo effect and demonstrating its underlying mechanism of interaction between

conduction electrons and a magnetic impurity bound state. Using a scanning tunneling

microscope, Manoharan et al. [45] placed non-magnetic impurities on the circumference of

ellipse 1.14, and put a (magnetic) Cobalt atom on one of the ellipse focal points. Interest-

ingly, they found the Kondo resonance at the second ellipse focal point as well as at the

Cobalt atom. The conduction electrons emitted from the STM tip at the second focal point

are gathered on the Cobalt atom after being scattered at the circumference on the ellipse.

Therefore, the Kondo resonance at the second focal point occurs through the magnetic im-
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purity at the first focal point, and this directly supports the role of the conduction electron

and the magnetic impurity discussed above.

1.3.2 Integer quantum Hall effect

Extremely well-quantized values of Hall conductance were observed under a strong magnetic

field in a 2d electron gas system in 1981 by von Klitzing [47]. This robust phenomenon is

independent of microscopic details including device size, precise location of Hall voltage

probes, purity of the sample, value of the magnetic field, etc. This observation intrigued

and inspired physicists to develop a new paradigm in condensed matter physics, topological

order of matter. The robustness is in one sense related to the scaling of the resistance,

R = ρL2−d, where ρ is resistivity, L is system size, and d is dimension. Resistance R

becomes independent of system size for d = 2. But there are other players necessary in

order to see the quantized values.

Imagine a translationally invariant system under magnetic field. One can find that the

Hall resistivity of the system has to be linearly proportional to the magnetic field. This is

from the following reason: consider a frame moving with a relative velocity v with respect to

the original lab frame. In this moving frame, the electric field is present by Einstein’s special

relativity ( ~E = ~B × ~v/c), and the rest of the electrons in the lab frame carry a current.

Therefore, one directly discovers a Hall resistivity linearly proportional to the B-field. This

is the first reason why we need disorders in the system to break the translational invariant.

More strikingly, without disorder we cannot observe energy gaps in thermodynamic

limit as the external magnetic field is what we change in the actual experiments. Here is

a simple argument: the number of edge modes between Landau levels is proportional to

system dimension L, since the number of lattice points along the edge is what the edge state
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is made out of. On the other hand, the number of bulk states is proportional to L2. This

means that whenever you try to observe some states as varying magnetic fields, the chance

to observe edge states converges to zero relatively. This is why we need disorders localizing

bulk states, so that they fill the energy gap between Landau levels. For a relatively clean

system, one can find more plateaus at fractional filling factors. This unexpected energy gap

opening due to electron-electron interaction at rational filling factor is called the fraction

quantum Hall effect.

From the linear response theory, the Hall conductivity of a system is a velocity-velocity

correlation. This is because the external electric field Ex can be represented as a velocity

vx, as it induces the flow of particles in a parallel direction, and the Hall current Jy, which

we want to measure, is represented as a velocity vy.

σxy =
ie2

~A
∑

n<0,m>0

(vx)nm(vy)mn − (vy)mn(vx)nm
(En − Em)2

(1.4)

where A is the area of the system, and we assume the Fermi energy EF = 0. (vx)nm =

〈ψn|v̂x|ψm〉 is the velocity operator along x is sandwiched by eigenstate n and m. Though

the above expression is commonly manipulated in momentum space (kx, ky) leading to a

local curvature of Bloch wave functions parametrized by two momenta in the Brillouin zone,

such an approach simply neglects the presence of disorders breaking translational invariance,

and therefore it does not accurately describe the quantum Hall system. Niu, Thouless, and

Wu [48] came up with a similar line of thinking that supports the quantization of Hall

conductivity robust in the presence of disorders and particle interactions. Let us directly

get to the essence of their argument.

Imagine a Hamiltonian containing disorders, periodic potentials, and coulomb interac-
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tion:

Ĥ =
N∑
i=1

[
1

2mi
(−i~∂xi)

2 +
1

2mi
(−i~∂yi − eBxi)

2

]
+
∑
i

U(xi, yi) +
∑
i,j

V (|~ri − ~rj |) (1.5)

where the terms in the square bracket account for kinetic energy under the magnetic field,

the third term, U(xi, yi) is random onsite potential, and the last term is coulomb interaction.

Consider a many-body eigenstate ψn = ψn(x1, · · · , xN , y1, · · · , yN ) with eigenenergy En. To

compute Hall conductance, we need a (n,m) component of velocity operator 〈ψn|v̂x|ψm〉 in

many-body eigenstates basis. For a clean system with translational invariance, we can use

the Bloch wave function un,k(x, y) = e−i(kxx+kyy)ψn(x, y). Then we compute the velocity

operator v̂x = ∂H̃
∂kx

for a transformed Hamiltonian H̃ = e−i
~k·~rĤke

i~k·~r. An exactly identical

operation is repeated for the system with disorder and particle interaction, but this time

we introduce a twisted boundary condition to the many-body wave function instead of

momenta:

Φn = e−iθ(x1+···+xN )/Lx−iφ(y1+···+yN )/Lyψn (1.6)

H̃θ,φ = e−iθ
∑
j xj/Lx−iφ

∑
j yj/LyĤeiθ

∑
j xj/Lx+iφ

∑
j yj/Ly (1.7)

where Lx and Ly are system dimensions, and θ and φ are parameters determining the

boundary condition. Note that the wave function Φn is periodic upon the change of θ and

φ by 2π. The velocity operators are the derivatives of the transformed Hamiltonian with

respect to θ and φ, just like they are obtained from kx and ky in a clean system: v̂x = Lx
∂H̃
∂θ

and v̂y = Ly
∂H̃
∂φ . Next, using the relation 〈Φn|∂H̃∂θ |Φm〉 = (Em − En)〈∂Φm

∂θ |Φn〉, the Hall
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conductivity relation is reduced:

σxy =
ie2

~
∑
n

[
〈∂Φn

∂θ
|∂Φn

∂φ
〉 − 〈∂Φn

∂φ
|∂Φn

∂θ
〉
]

(1.8)

Finally, we argue that the Hall conductivity which is bulk property is insensitive to the

choice of boundary condition characterized by θ and φ. As a result, we come up with the

Hall conductance expression which is geometrically quantized by averaging out the above

Hall conductivity for a different boundary condition θ and φ :

σxy =
e2

h

∑
n

∫ 2π

0
dθ

∫ 2π

0
dφ

1

2πi

[
〈∂Φn

∂φ
|∂Φn

∂θ
〉 − 〈∂Φn

∂θ
|∂Φn

∂φ
〉
]
, (1.9)

which is an integer multiple of conductance unit e2/h (see Eq. (1.3)). The integrand on the

right side is the local curvature of the many-body wave function parametrized by θ and φ,

and the integration is over the torus as before.

1.3.3 Metal-insulator transition

When an electron is moving through a lattice, from the classical mechanical point of view

it encounters “moguls” of atomic potentials. It seems that the mean free path along which

the electron can propagate without collision is in the scale of lattice spacing. Undergoing

so many collisions through the lattice, how a metallic phase where electrons are treated as

free and independent can be possible. Felix Bloch in 1928 discovered that electron wave

function in periodic potential can be expressed just like a plane wave in free space, but

with periodic modulation of its amplitude. This is called Bloch wave function. Now a

qualitatively opposite question arises: what is the origin of the electronic resistance? This

is the starting point of the classical theory of electronic transport that accounts for the
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thermal vibration of lattice and impurities scatterings.

A genuinely remarkable phenomenon happens when the electronic coherence length is

maintained over many mean free paths. The conductance of 1d and 2d systems drops to

zero as soon as impurities are introduced on the lattice in the thermodynamic limit at zero

temperature. In 3d, an analogous electronic localization takes place, but at a finite critical

impurity strength at which the conductance of system is e2/h. In the classical transport

viewpoint, weak impurities do not change the electronic density of states, and therefore

the tranport of electrons in a diffusive manner should allow non-zero conductivity. Since

Philip Anderson [43] first numerically showed this puzzling behavior in 1958, physicists took

this challenge and made extensive progress from analytical and computational perspectives.

This is called Anderson localization.

Figure 1.15: The scaling of conductance [49] with a system size for different spatial di-
mensions is shown. A negative β = d(lng)/d(lnL) means the conductance decreases with
increasing system size: insulating phase. While a positive β means increasing conductance
with system size, and a system ends up into metallic phase in the thermodynamic limit.
Strikingly, the above scaling picture suggests a system in dimension d = 1, 2 is always
insulating.

To understand how this is possible, we can appeal to the wave-like nature of electrons

on lattice. Suppose we want to compute the probability of an electron moving from one to
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another. We simply sum up the amplitude of all possible paths, and then take the square of

the magnitude. In the presence of impurity, the phase correlation between different paths

is not maintained due to the impurity scatterings, and the summation of those amplitudes

vanishes on average. However, consider the probability of an electron coming back to

its original location. One path and its time-reversal copy will maintain the same phase,

provided that impurity potentials respect the time-reversal symmetry, nonmagnetic. As

a result, we obtain double the chance of observing the electron in its original location,

as opposed to the probability computed from the classical point of view which ignores

the quantum interference effect. Though the field theoretic path integral approach provides

qualitative hints, the summation of relevant diagrams shows divergence and the perturbative

approach does not work. To this end, a self-consistent treatment is suggested by [50]

that solves the problem in the thermodynamics limit. Impurity-related phenomena pose

challenges, and it is truly inspiring to observe the development of analytical approaches

by physicists to study impurity-related phenomena. Examples include the random matrix

theory [51], the non-linear sigma model [22], supersymmetric approach [52], etc.

(a) (b)

Figure 1.16: A propagation of electrons from the location r1 to r2 through impurity scat-
terings. (a) When r1 6= r2, different routes have an uncorrelated phase relationship and
the summation of amplitudes is zero on average. (b) When the time-reversal symmetry is
preserved in the system, a route and its time-reversal path pick up the same phase and it
enhances the probability for electron to stay at the same location.
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In connection to topological insulator possessing chiral edge states or surface states

without backscatterings, it is one of the central questions that how these topologically

protected states behave in the presence of non-magnetic and magnetic impurities. Moreover,

as 3d topological insulators may contain unexpected bulk modes [53] from doping to shift

the Fermi energy, how the conventional picture of the Anderson localization applies to

the system with helical surface states as well as bulk modes and impurities is a question

awaiting resolution. Lastly, physicists numerically found that a trivial insulator can undergo

a phase transition into a topological insulator by introducing impurities that renormalize

the chemical potential as well as the mass term of the Hamiltonian. The Landauer-Buttiker

type conductance calculation shows a well-quantized chiral edge transport in 2d system

[54], and for the 3d case by Guo, Resenberg et al.[55] the appearance of a strong topological

insulating phase is verified in terms of quantized conductance and the Witten effect.

1.4 How to study disordered systems: Theory

In this section, we survey the Green’s function formulation to describe the evolution wave

functions in the presence of disorder potentials. The Green’s function directly provides

physically relevant quantities such as the density of states and the correlation functions.

The self-consistent treatment of Green’s function is discussed in section 1.4.1, as well as its

application to an isotropic impurity, for which the exact analytic expression is available in

section 1.4.2. Lastly, disorder averaging technique that allows us to evaluate thermodynamic

quantities by sampling all possible configurations of impurities is introduced in section 1.4.3

.
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1.4.1 Propagator of wave function: Green’s function

Imagine an eigenstate |x, t〉 in a system characterized by Hamiltonian Ĥ = Ĥ0 + V̂ :

[
i~
∂

∂t
− Ĥ0 − V̂

]
|x, t〉 = 0. (1.10)

For our purpose, we can think of Ĥ0 as a Hamiltonian of a clean condensed matter system

and V̂ as an impurity potential operator. A wave function ψ(x′, t′) = 〈x′, t′|ψ〉 at time

t and location x can be related to the other wave function ψ(x, t) = 〈x, t|ψ〉 at different

coordinate by inserting the identity operator Î =
∫
dx|x, t〉〈x, t| :

〈x′, t′|ψ〉 =

∫
dx〈x′, t′|x, t〉〈x, t|ψ〉 (1.11)

=

∫
dxG(x′, t′;x, t)〈x, t|ψ〉, (1.12)

where the propagator or the Green’s function G(x′, t′;x, t) = 〈x′, t′|x, t〉 is introduced, and

which propagates the wave function in space and time. As we are interested in the physics

of time in one direction, we assume t′ > t. In this case, the propagator is called a retarded

Green’s function, and describes the physics in accordance with causality.

Evolution operator in time, Û(t′, t), is:

〈x′, t′|x, t〉 = 〈x′|Û(t′, t)|x〉 (1.13)

The expression of evolution operator in terms of Hamiltonian can be obtained by solving
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the Schrodinger equation perturbatively:

|ψ(t′)〉 = Û(t′, t)|ψ(t)〉

=
∞∑
n=0

(
1

i~

)n ∫ t′

t
dtn

∫ tn

t
dtn−1 · · ·

∫ t2

t
dt1Ĥ(tn) · · · Ĥ(t1)|ψ(t)〉

=

∞∑
n=0

1

n!

(
1

i~

)n ∫ t′

t
dtn

∫ t′

t
dtn−1 · · ·

∫ t′

t
dt1T̂

[
Ĥ(tn) · · · Ĥ(t1)

]
|ψ(t)〉

= T̂

[
exp

(
1

i~

∫ t′

t
dt̄Ĥ(t̄)

)]
|ψ(t)〉 (1.14)

where the summation of all orders of Hamiltonian is captured by the exponential function,

with time-ordering operator T̂ ensuring the operator at earlier time to be applied first to

the wave function. This is a very nice formulation, but most of the time we know what the

eigenstates of a clean Hamiltonian Ĥ0 are, and our main interest is to figure out corrections

caused by disorder potential V̂ .

In the same spirit of the Bloch theorem, the unitary transformation of eigenstates can

eliminate the clean Hamiltonian Ĥ0. Consider the same Schrodinger equation relation, but

using a different basis: |x, t〉 = exp
(

1
i~Ĥ0t

)
|x, t〉0:

0 =

[
i~
∂

∂t
− Ĥ0 − V̂

]
e

1
i~ Ĥ0t|x, t〉0 (1.15)

= e
1
i~ Ĥ0t

[
i~
∂

∂t
− V̂I

]
|x, t〉0 (1.16)

where we introduce V̂I = e−
1
i~ Ĥ0tV̂ e

1
i~ Ĥ0t, and the notation |〉0 indicates that we are in

the eigenbasis of a clean Hamiltonian Ĥ0. In this new basis, we immediately find that the

clean Hamiltonian is absent and that instead the unitary transformed disorder potential V̂I

is the only term present. This is called an interaction picture. This reminds us that the

Bloch theorem eliminates the periodic potential in the crystal momentum basis, and that
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the Bloch wave function is simply plane waves with the modulation of amplitude. We can

repeat the previous perturbation approach to evaluate the evolution operator in a clean

eigenstate basis. As a result:

|ψ(t′)〉0 = T̂

[
exp

(
1

i~

∫ t′

t
dt̄V̂I(t̄)

)]
|ψ(t)〉0, (1.17)

which provides the perturbative corrections due to disorder potential in the basis of clean

system eigenstates.

Equipped as we are with the evolution operator, now let us go back to the Green’s

function and see how it changes by disorder potential:

G(x′, t′;x, t) = 〈x′|T̂

[
exp

(
1

i~

∫ t′

t
dt̄Ĥ(t̄)

)]
|x〉, (1.18)

= 0〈x′, t′|T̂

[
exp

(
1

i~

∫ t′

t
dt̄V̂I(t̄)

)]
|x, t〉0. (1.19)

By expanding the exponential function term by term, we come up with the following self-

consistent expression:

G(x′, t′;x, t) = G0(x′, t′;x, t) +
1

~

∫
dx̄

∫
dt̄G0(x′, t′; x̄, t̄)V (x̄, t̄)G(x̄, t̄;x, t). (1.20)

where G0(x′, t′;x, t) is the Green’s function in clean system Ĥ0, and all orders of corrections

can be obtained recursively.

Lastly, let us discuss the Green’s function in momentum and energy space. The rep-

resentation in space and time provides the propagation of a particle picture more familiar

to our intuition. However, when the Hamiltonian is independent of time and preserves the

(discrete) translational invariance, the momentum-energy representation is a better option,
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as it simplifies the analytic manipulation of the Green’s function. Imagine the Schrodinger

equation of a clean Hamiltonian with a delta function source, δ(x − x′)δ(t − t′). Its solu-

tion is the Green’s function. In energy-momentum space the expression of Green’s function

becomes simpler for time-independent and translationally invariant system:

G0(p′, p;E) =
1

E − εp + i0
δp′,p, (1.21)

= G0(p;E)δp′,p (1.22)

where the infinitesimally small positive imaginary number i0 ensures that t′ > t in time

domain, as we assumed throughout this section. For time-independent disorder potential,

the energy is a good quantum number since only the time difference, t′ − t, matters in the

Green’s function. On the other hand, the potential can carry non-zero transfer, as its Fourier

component in momentum space is non-zero. We can similarly repeat the perturbation

analysis and come up with the self-consistent relation of Green’s function:

G(p′, p;E) = G0(p′, p;E) +G0(p′;E)

∫
dp′′V (p′, p′′)G(p′′, p;E), (1.23)

meaning that the amplitude of transition from a state (p,E) scattered into a state (p′, E)

through disorder potential V (p′, p′′) and its higher orders. We will come back to this ex-

pression in later sections to introduce a more specific recipe of studying disordered systems.

1.4.2 T-matrix formulation

In the last section, we deduced the self-consistent expression of Green’s function or propa-

gator in the presence of disordered potential in terms of clean system Green’s function G0.

It will be convenient if we can collect all multiple impurity scattering effects into a single
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term. This effective impurity potential is called T-matrix, T (p′, p;E):

G(p′, p;E) = G0(p;E)δp′,p +G0(p′;E)

∫
dp′′T (p′, p′′;E)G0(p′′, p;E), (1.24)

Note that the right-most Green’s function is replaced by the clean propagator, and that the

T-matrix is solely responsible for the impurity effect. The previous self-consistent relation

is now embedded in the T-matrix itself:

T (p′, p;E) = V (p′, p;E) +

∫
dp′′V (p′, p′′;E)G0(p′′;E)T (p′′, p;E). (1.25)

Note that combining (1.24) and (1.26) recovers (1.23). Because spatially uncorrelated im-

purities in the system are local objects, their scattering potentials are independent of mo-

mentum transfer. Especially if the concentration of impurities is dilute so that we only need

to take into account a single impurity, then the self-consistent expression of the T-matrix

is significantly simplified:

T (E) =
I

I − V (E)
∫
dp′′G0(p′′;E)

V (E). (1.26)

The poles of Green’s function correspond to on-shell electrons, as shown in (1.21). The

poles of the T-matrix are new eigenstates created due to the impurity scatterings. In other

words, bound states associated with impurities can be found by looking at the poles of the

T-matrix, and their local density of state by taking the imaginary part.

Its application to the impurity effect on superconducting phase is one of the fields

where T-matrix formulation has been productive (the Kondo problem in quantum mirage

is an interesting application of multiple impurities[46]). First, the pairing in a conventional
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superconductor is between time-reversal copies: electrons at opposite momentum with op-

posite spin are paired. Therefore, non-magnetic impurities cannot break the pairing and

the superconducting state should be maintained. This is called Anderson’s theorem, and

Ma and Lee [56] proved it using T-matrix formulation. On the other hand, an unconven-

tional superconductor with a higher-orbital momentum state (d-wave) pairing is susceptible

to non-magnetic impurities, as they scatter electrons isotropically and do not respect the

pairing symmetry. Balatsky and his colleagues extensively studied resonance bound states

induced by either magnetic or non-magnetic impurities [57], and their local density of states

profile with respect to the direction of nodes. All these signatures can be verified using a

scanning tunneling microscope or the nuclear magnetic resonance technique.

1.4.3 Disorder averaging technique

Even though the T-matrix approach provides an analytic tool of studying physical quantities

such as the local density of states renormalized by an impurity, when one is interested

in thermodynamic quantities such as a critical temperature at phase transition or global

density of states measured in planar junctions, we want to describe them in terms of the

average impurity strength and its distribution. To achieve this goal in an analytical manner,

physicists [58] came up with a technique called disorder averaging, which considers many

different realizations of impurities from the same distribution, and computes the average of

physical quantities such as conductivity or magnetic susceptibility. In this section, we will

show the disorder averaging of the previously discussed Green’s function, which will serve

as a basic building block of physically more relevant quantities.

Imagine we have N-identical static impurities, Vimp, at location r1, · · · , rN . As we want

to know the Green’s function in momentum and energy representation, Eq.(1.23), Fourier
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transformed momentum space expression is necessary:

V (p, p′) = Vimp(p− p′)
N∑
i=1

e−
i
h

(p−p′)·ri (1.27)

= V (p− p′) (1.28)

What we mean by disorder averaging is to average the value in interest over all possible

configurations of impurity locations in the system. For example, the disorder averaging of

the potential is:

〈V (p− p′)〉dis =

∫ N∏
i=1

dri
V

[
Vimp(p− p′)

N∑
i=1

e−
i
h

(p−p′)·ri

]
(1.29)

= niVimp(0)δp,p′ (1.30)

where ni = N/V is impurity concentration. Vimp(0) is the spatial average of the impurity

potential, which simply acts as a constant added to the Hamiltonian. The first order

of the Green’s function is GR(1)(p
′, p) = GR0 (p,E) [niVimp(p = 0)]GR0 (p,E)δp′,p. This term

simply gives a shift of the whole Hamiltonian, and such a term is not important in physical

quantities as it can be eliminated by adding a constant value to the Hamiltonian. The next

order of the Green’s function contains two scattering events in momentum space:

〈G(2)(p
′, p, E)〉dis = G0(p′, E)

1

V

∑
p′′

〈Vimp(p′ − p′′)G0(p′′, E)Vimp(p
′′ − p)〉disG0(p,E)

= δp,p′n
2
i [Vimp(p = 0)]2[G0(p,E)]3

+ δp,p′ni[G0(p,E)]2
1

V

∑
p′′

|Vimp(p− p′′)|2G0(p′′, E). (1.31)

The interpretation of the disorder-averaged Green’s function is not hard once we understand
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(a) (b) (c)

Figure 1.17: The disorder averaged impurity scattering process described in real and mo-
mentum space. (a) The first order correction shows a single scattering off from the impurity
potential. Disorder averaging sums up all possible impurity configurations, which means
that the coordinate (x1, t1) is integrated out, (1.20). But such a term does not give any
change in momentum space. (b) Two independent impurity scattering events. After disor-
der averaging, each scattering event transfers zero momentum and in momentum space do
not show a meaningful change. (c) A double scattering process from the same impurity is
described. The impurity potential absorbed the momentum p− p′′ first then give out back
in the second scattering. This process produces a momentum-dependent correction, and
the consistent summation of the diagrams in higher orders is crucial.

that the process of disorder averaging recovers the translational invariance by taking all

possible realizations of impurity configurations. The total transferred momentum has to

be zero, which is why δp′,p always follows in each terms. Specifically, the first term is the

case where each impurity potential carries zero momentum transfer from the scattering

events, and thus it is proportional to n2
i and [Vimp(p = 0)]2. Again, this term is featureless

in momentum space and we will not consider it seriously. The second term is the other

possibility of carrying zero momentum transfer by two scatterings exchanging the same

amount of momentum, p− p′′. This process is only possible when an electron hit the same

impurity twice, and therefore it is linearly dependent of the impurity concentration ni.

In this way, we can compute the disorder averaged higher orders of Green’s functions,

and the number of scattering processes explodes when an increased number of scattering

events is allowed. However, physicists wisely came up with a way to sum up the diagrams

consistently, which carries important physical information to physical observables impurity
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scatterings (Figure 1.18a). Multiple scatterings (Figure 1.18c) in which an electron scatters

the same impurity more than two times are ignored, and crossing type of diagrams (Figure

1.18b) in which an electron scatters each impurities twice but in a mixed manner are also

neglected.

(a) (b) (c)

Figure 1.18: The next order corrections of Green’s function due to impurity potential
are described. (a) The similar type of non-crossing diagram with two different impurity
scatterings. (b) Double scattering process, but the scattering order for different impurities
distinguished by color is mixed. The crossing type of diagram limits the phase space volume
over which electrons can explore in the process of scattering, and its contribution is less
than the non-crossing type. (c) Multiple scattering events are also considered. Such an
event is less likely than (a).

1.5 Overview

In the following chapters, we develop analytic tools to study disordered systems in the sin-

gle particle Hamiltonian level. We apply them to topological insulators to study impurity-

induced phenomena, as discussed in the introduction. More specifically, in Chapter 2, we

developed a semiclassical approach obtaining bound states associated with a single impurity

in topological insulators in 2d or higher dimensions. Though it is numerically straightfor-

ward to compute eigenenergies of bound states, we discovered the mapping of the 2d system

with a delta-function-like single impurity to an effective 1d Hamiltonian with renormalized

impurity potential. In Chapter 3, we studied the transport behavior of a topological-metal
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strip. The coexistence of helical surface states and bulk states is experimentally observed

[6]. Therefore, the transport through surface states in the presence of bulk modes and

impurities is of interest for both experimental and theoretical perspectives. We studied the

nature of transport in a 2d version of the analogous system. In the course of constructing

the toy model of a topological-metal strip, we discovered a closed form of chiral edge mode

Green’s function coupled to bulk modes by impurities. In Chapter 4, we applied the ex-

pression to 1d disordered wire, and demonstrate its usage and advantages over conventional

methods. In Chapter 5, the surface impurity effect on surface states in a topological insu-

lator is discussed. In particular, the profile of local density of states due to the moderate

to strong surface impurities is studied in a framework which is equally applicable to the

arbitrary strength of impurities.
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Chapter 2

Single impurity problem: Plane
wave approach†

2.1 Background and Motivation

The presence of disorder is often considered a nuisance that degrades the quality of samples

and obscures the behavior of clean physical systems. In small amounts, however, impurities

may induce new phases which are interesting in their own right, and do not have a clean-

system analog. Prominent examples are the metal-insulator transition induced by random

on-site potential [43, 60, 61, 62], Cooper-pair breaking transition in conventional s-wave

superconductors by magnetic [63, 64, 58, 65] and non-magnetic [66, 67, 56] impurities,

impurity-induced spin quantum-hall effect [54, 68, 55], and the Kondo effect [69, 70].

Understanding the single impurity problem often provides strong intuition for the be-

havior of a disordered system with a finite impurity density. Using this as motivation, we

study the problem of bound states of a single narrow impurity in a variety of host systems.

For a narrow impurity, bound states could be found most straightforwardly by solving the

Schrödinger equation outside and inside the impurity-affected region, and matching the

wave functions at the boundary. In 1d, with a delta-function impurity potential, this is

†This chapter is published in [59]
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particularly simple. It is also quite straightforward when dealing with 2d systems and a 1d

perturbation such as an edge. However, for point-like impurities in 2d, a more complicated

consideration is required.

Nevertheless, in this work we show that a 2d system with a point-like impurity could be

reduced to a 1d problem on a straight trajectory, in which wavefunction matching can be

applied. Furthermore, in spatially anisotropic systems (namely, lacking rotational symmetry

about the impurity), we show that using a small number of incoming and outgoing beams

and straight trajectories allows a remarkably accurate estimate of bound state energies.

The semiclassical approach has been instrumental in providing insightful physical pic-

tures in terms of classical trajectories in complicated quantum systems, especially when

impurity scatterers or confining potentials are involved. Examples of such applications in-

clude quasiparticle states near extended scatterers in d-wave superconductors [71], bound

states in multidimensional systems with Fermi resonance [72], the low-energy spectrum

of charge carriers in graphene [73], and the Berry phase in graphene [74]. The standard

semiclassical methods which map complicated multidimensional quantum problems onto 1d

quantum problem on simple classical trajectories, however, are approximations, and suffer

from limitations that need to be addressed with more sophisticated methods [73, 75].

In the following sections we derive the mapping from 2d to an effective 1d impurity

Hamiltonian, and then use it to find the bound state energies in several examples of in-

creasing complexity. This mapping should be thought of as a semi-classical description of

the 2d impurity problem, where the bound-state energies are obtained by considering a small

number of classical incoming and outgoing beams. The mapping from 2d to 1d relies on the

Green’s function of the clean system, which indicates which ’classical’ paths are necessary.

Our method also approximates the bulk Hamiltonian by its form in the vicinity of minima
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in momentum space, assuming a parabolic or Dirac-like dispersion. We find that with the

introduction of appropriate cutoffs using the Pauli-Villars regulators, this approximation

remains relatively precise.

The organization of the manuscript is as follows. In Sec. II we show how the 2d impurity

problem can be reduced to a 1d problem for an isotropic Hamiltonian system. In Sec. III,

the method is extended to an anisotropic Hamiltonian and then in Sec. IV to a band

structure with multiple minima. While the extension of our method to any odd dimension

is straightforward, the extension to even dimensions is not. In Sec. V we show how to

generalize our method to all even dimensional systems.

2.2 Wave-matching for single isotropic minimum continuum

band

Figure 2.1: A 2d system with a point-like impurity (a) is reduced to the 1d system with
a modified impurity strength. Thus, a simple picture of wavefunction matching can be
applied to the 2d system to obtain a bound state energy associated with a single impurity
in 2d.

Our goal in this section is to derive a method equivalent to the 1d wavefunction matching

technique, for finding the bound states of an impurity in an isotropic 2d system. For this

purpose, let us briefly review how a bound state associated with a single point-impurity is
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obtained in a 1d system. The Schrödinger equation in this case is simply:

[E −H(∂x)]ψ(x) = αδ(x)ψ(x), (2.1)

where Hamiltonian H is responsible for kinetic part only, and the impurity scattering

strength is α. The Green’s function of the operator E −H(∂x) is given by:

G(x) =

∞∫
−∞

dk

2π

eikx

E − H̃(k)
, (2.2)

where H̃(k) is the Hamiltonian in momentum representation. The Green’s function G(x)

is understood as the amplitude of the propagator at x, originating from the source at

x = 0. Eq.(2.2) can be computed using contour integration around the upper (lower) half

of complex k-plane for positive (negative) x. If the energy, E, is within the band, the

(real-axis) poles of the integrand each correspond to a plane wave, and the combination of

these waves makes up the Green’s function. If the energy is outside the band, as would

be the case for a bound state, the poles are not on the real axis and therefore the wave

function decays exponentially with distance. We can still think of such a Green’s function

as a combination of plane waves, but with complex wave vectors.

To obtain a bound state energy associated with the impurity, we could take two paths.

Formally, we use the fact that the Green’s function is the solution of Eq.(5.1), omitting

αψ(x) on the right side of the equality. Therefore:

ψ(x) = G(x)αψ(0), (2.3)
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and we obtain for a scalar Hamiltonian :

1

α
= G(0) =

∞∫
−∞

dk

2π

1

E − H̃(k)
, (2.4)

consistent with the T-matrix formulation [76].

For a Hamiltonian with internal structure such as sublattice or spin, the Green’s function

and the impurity potential are matrices. The impurity potential matrix, α, may not be

invertible. In this case, for ~ψ(0) to have a non-trivial solution at x = 0, the following

condition is required:

Det[I−G(0)α] = 0. (2.5)

For simplicity of presentation, in most of this manuscript we consider only scalar problems.

In Sec. IV, along with extending our method to the case of host systems with multiple

low-gap valleys, we also assume a multi-component wave function.

An alternative to the above method is to solve the 1d equation as Eq.(5.1) simply by

matching a freely propagating plane-wave solution at x > 0 with a different plane-wave

solution at x < 0. Integrating the Schrödinger equation over the impurity position gives:

αψ(0)−
∫ ε

−ε
(E −H)ψ(x)dx = 0. (2.6)

Indeed, the same bound energy relation as Eq.(2.4) or Eq.(2.5) is obtained from this wave

function-matching approach by inserting Eq.(2.3) to the above equation.

Could we use the same notion of ‘wave-function matching’ in the context of a bound
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state in 2d? Let us start with 2d Schrödinger equation:

[E −H2d(~r)]Ψ(~r) = αδ2(~r)Ψ(~r). (2.7)

To solve for a bound state at energy E, we can still use Eq.(2.3), adapted to 2d with

G(x) =

∫ ∞
−∞

d2k

(2π)2

eikx

E − H̃(k)
, (2.8)

and

1

α
= G(0) =

∫
d2~k

(2π)2

1

E − H̃2d(~k)
, (2.9)

where H̃2d(~k) is the 2d Hamiltonian in momentum representation. For this section, we

assume an isotropic Hamiltonian H̃2d(~k) = H̃2d(k). Hence we can write Eq.(2.9) as:

1

α
= G(0) =

∫
dθ

2π

∞∫
0

kdk

2π

1

E − H̃2d(k)
. (2.10)

Eq.(2.10) cannot simply be interpreted in terms of plane wave matching as its 1d coun-

terpart since contour integration over a complex k can not be used: the integration range

is 0 ≤ k <∞. Nevertheless, we can proceed using the Kramers-Kronig relation along with

the symmetry of the imaginary part of the integrand and obtain an expression analogous

to Eq.(2.4).

The Kramers-Kronig relation connects the imaginary and real parts of a complex func-

tion, f(s), which is analytical in the upper half plane, Im(s) > 0, and falls off faster than
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1/|s|. To apply it here, we define:

F (s) =

∞∫
0

kdk

2π

eiks

E − H̃2d(k)
. (2.11)

Note that this function is not the Green’s function in real space, since there is no angular

dependence taken into account in the exponent. However, F (0) = G(0). Furthermore, we

see that only Re[G(0)] plays a role in determining the bound-state energy of an impurity

state. We use the Kramers-Kronig relation to write:

Re[F(0)] =

∞∫
−∞

ds′

πs′
Im[F(s′)]. (2.12)

This is helpful since the imaginary part of F (s) for Im(s) = 0 obeys:

Im[F(s)] =
1

2

∞∫
−∞

kdk

2π

eiks

E− H̃2d(k)
, (2.13)

with the k integral now stretching over the entire real axis. It is assumed that the Hamil-

tonian H̃2d(k) is an even function of k.

After these steps we can rewrite the bound state energy condition as:

1

α
=

1

π

∫ ∞
−∞

ds

s
Im

[∫ ∞
0

kdk

2π

eiks

E − H̃2d(k)

]
, (2.14)

=
1

π

∫ ∞
0

ds

is

[∫ ∞
−∞

kdk

2π

eiks

E − H̃2d(k)

]
. (2.15)

Finally, we also eliminate the factor of k in the integrand using a derivative with respect to
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s, to yield our final expression:

1

α
=
−1

π

∫ ∞
0

ds

s

∂

∂s

[∫ ∞
−∞

dk

2π

eiks

E − H̃2d(k)

]
. (2.16)

The term in the square brackets in Eq.(2.16) is completely analogous to the expression

used to find the bound state energy of a 1d solution of a point-impurity (Eq.(2.2)) and we

therefore define:

G1d(s) =

∫ ∞
−∞

dk

2π

eiks

E − H̃2d(k)
, (2.17)

which can be viewed as the Green’s function of a 1-d Hamiltonian H1d(s) ≡ H̃2d(k → ∂
i∂s)

in real space. Qualitatively, the effective real-space 1-d Hamiltonian, H1d, describes a single

direction of the 2-d momentum-space Hamiltonian H̃2d.

The final result of this reasoning is that the bound-state energy E for a 2d point impurity

can be obtained by solving a 1d impurity problem with a modified potential. Provided that

G1d(x) is the solution of the 1-d Hamiltonian H1d(x), the wave function ψ1d(x) = G1d(x) up

to an overall normalization factor for a scalar Hamiltonian. From Eq.(2.16) and Eq.(2.17)

the effective 1-d Schrödinger equation can be written with a modified impurity potential:

[E −H1d(x)]ψ1d(x) = δ(x)α′ψ1d(0), (2.18)

with α′ given by:

α′ = −α
[

1

π

∫ ∞
0

ds

s

∂ψ1d(s)

∂s

]
1

ψ1d(0)
. (2.19)

ψ1d(s) on the right hand side of Eq.(2.19) emerges as the solution of the effective 1d problem,
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but does not appear to have any physical significance.

The first example for our method is the free particle with quadratic dispersion. We

demonstrate the method by finding the 1d effective Hamiltonian in real space, and solving

it in the spirit of the wavefunction matching method. The free particle example in 2d

is a bit pathological, however, since a high energy cutoff is required, and the bound state

energies of point impurities depend on it. This is seen by inspecting Eq.(2.9): the momentum

integration diverges, unless a cutoff is imposed. This introduces a technical challenge for our

quest to use momentum integration over the entire real-axis. We resolve it by introducing

the cutoff using the Pauli-Villars regularization technique [77].

Starting with the free Hamiltonian and an impurity potential,

H2d = −∇
2

2m
, (2.20)

Vimp = αδ(2)(~x). (2.21)

We write the Green’s function condition for an impurity bound state, and include the

Pauli-Villars regulators W 2/(k2 +W 2):

1

α
=

∫
d2~k

(2π)2

1

E − H̃2d(k)

(
W 2

W 2 + k2

)
. (2.22)

According to our recipe, this is equivalent to finding bound states of the following 1-d

effective Hamiltonian:

H̃1d(k) =
k2

2m
−
(
E − k2

2m

)
k2

W 2
. (2.23)

It is interesting to consider the effective 1d Hamiltonian, Eq.(2.23) and the effect that
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the Pauli-Villars regulator has. H̃1d preserves the original dispersion relation, and a k2/2m

pole is reflected in the Green’s function. In addition, the Green’s function acquires an

additional pair of poles at kp = ±iW .

Now we can treat the problem just like a 1-d problem with a plane wave solution,

but with multiple plane waves corresponding to all solutions of Eψ1d = H̃1dψ1d (which

correspond to the poles of the Green’s function). The solution must satisfy continuity

conditions at x = 0 of the derivatives:

[
∂mψ(x)

∂xm

]0+

0−
= 0, (2.24)

for m = 0, 1, 2, which provides enough conditions to fix the weights of the plane waves up

to an overall factor on x < 0 and x > 0:

ψ(x > 0) =
1

λ1
e−λ1x − 1

λ2
e−λ2x, (2.25)

ψ(x < 0) =
1

λ1
eλ1x − 1

λ2
eλ2x. (2.26)

The exponents are λ1 =
√
−2mE and λ2 = W , which are the poles of the Green’s function.

Now we use Eq.(2.18) to find the bound state energy for a given impurity potential strength.

First, we carry out the integration that yields the effective α′ using Eq.(2.19):

α′ =
α

π

λ1λ2

λ2 − λ1
log

(
λ2

λ1

)
. (2.27)

With this modified impurity potential and the 1d effective Hamiltonian Eq.(2.23) in real
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Figure 2.2: Bound energy Eb of the free particle model with mass m and cutoff W for the
regularization is plotted as a function of impurity strength α. The bound energy decreases
as the impurity strength negatively increases. In the limit of zero impurity strength, the
bound energy converges to zero.

space, one can solve the 1d problem and get:

1

α
=

−m/π
1 + 2mE/W 2

log

(
W√
−2mE

)
. (2.28)

As seen from Eq.(2.28), the bound state energy is renormalized by the cutoff and mass, but

its qualitative behavior as a function of the impurity potential strength is unchanged. This

is depicted in Fig. 2.2.

Let us study one more isotropic Hamiltonian - a Mexican hat-shaped energy band:

H̃2d(k) = J(k2 − k2
0)2, (2.29)

where J is a constant with units of length cubed. The band covers all positive energies and

therefore the energy of any bound state should be negative.

The Mexican hat Hamiltonian does not have a UV divergence problems as the free-

particle Hamiltonian, and therefore does not require a Pauli-Villars regulator. Thus H̃1d(k) =
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H̃2d(k) in this case. Incidentally, it also has the same order of derivatives as the regularized

free particle Hamiltonian, Eq.(2.23). Therefore, it obeys the same number of continuity

relations and we may simply use the same functional form ansatz as in Eq.(2.25)-(2.26),

with the wave numbers given by:

k1 = iλ1 = k0

(
1 + i

√
−E
Jk4

0

)1/2

, (2.30)

k2 = iλ2 = k0

(
1− i

√
−E
Jk4

0

)1/2

, (2.31)

which is the result of setting E = H̃1d(k). Carrying out the same steps as in the free-particle

case, we obtain that the relation between the bound state energy and the impurity strength

is:

1

α
=

1

2πJ

log(λ2/λ1)

λ2
2 − λ2

1

, (2.32)

=
−1

4πJ

tan−1
√
−E/Jk4

0√
−E/J

, (2.33)

where it follows from the above expression that the bound state exists only for attractive

potential. The result is plotted in Fig. 2.3 with renormalized axes.

2.3 Wavefunction matching for Anisotropic bands

When the impurity problem is anisotropic, we can no longer solve for the bound-state

energies exactly using only a small number of incoming and outgoing beams. Instead,

we can still consider simple 1d wave-functions for the radial part of the problem, and then

consider a superposition over all angles. Here we extend the wavefunction matching method

to such anisotropic systems.
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Figure 2.3: Bound energy Eb of the Mexican hat model is plotted as a function of impurity
strength α. The general behavior is similar to that of the free particle model except that
the bound state appears when α < −1/4πJk2

0.

We begin by writing the Hamiltonian in polar momentum coordinates: H̃2d(~k) = H̃θ
2d(k),

with θ being the momentum direction. Now, when going from Eq.(2.9) to Eq.(2.10), the

angular integration must be kept:

1

α
=

∫
dθ

2π

∫ ∞
0

kdk

2π

1

E − H̃θ
2d(k)

. (2.34)

Following exactly the same steps, we introduce a 1-d wave function along momentum angle

θ:

Gθ1d(s) =

∫ ∞
−∞

dk

2π

eiks

E − H̃θ
2d(k)

, (2.35)

which is the Green’s function of 1-d Hamiltonian Hθ
1d(s) ≡ H̃θ

2d(k →
∂
i∂s). The modified

relation between potential strength and associated bound state energy is:

1

α
=

∫
dθ

2π

1

αθ
, (2.36)
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where 1/αθ, just as in the right hand side of Eq.(2.16) , is:

1

αθ
= − 1

π

∫ ∞
0

ds

s

∂Gθ1d(s)

∂s
. (2.37)

As pointed out above, the Green’s function Gθ1d(s) is constructed using plane wave solutions

of H̃θ
2d(

∂
i∂s) , treated as a 1d Hamiltonian. For a general anisotropic system, the above

prescription requires infinitely many directions of 1-d solutions.

A more direct formulation of the αθ in terms of a 1d Schrödinger equation for each θ

direction is as follows. We construct for each θ a solution of the 1d bound state equation:

[
E − H̃θ

(
∂

i∂s

)]
ψθ(s) = α′θδ(s)ψθ(s), (2.38)

and find α′θ in terms of E by requiring that the 1d problem has a bound state at energy

E. The integrand in the right-hand-side of Eq.(2.36), αθ, is given in terms α′θ and the

impurity-state wave function, ψθ(s), as:

1

αθ
= − 1

α′θ
1

π

∫ ∞
0

ds

s

∂ψθ(s)

∂s

1

ψθ(0)
. (2.39)

As a simple example, we consider impurity states in a band described by a parabolic

dispersion with an anisotropic mass:

H̃(~k) =
k2
x

2mx
+

k2
y

2my
≡ k2

2m(θ)
, (2.40)

where

1

m(θ)
=
cos2θ

mx
+
sin2θ

my
. (2.41)
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This problem can be simply solved by rescaling x relative to y, and obtaining the isotropic

solution. Therefore this calculation should just be a demonstration of using our method. For

more complicated band structures (e.g., bands with multiple minima, as discussed below)

this will not be possible.

Let us now construct Gθ1d and αθ. For a given direction we can make use of the relation

we obtained before for a free particle, using m(θ) instead of m. Using Eq.(2.28), with

α→ αθ, we obtain:

1

αθ
=

−m(θ)/π

1 + 2m(θ)E/W 2
log

(
W√

−2m(θ)E

)
. (2.42)

The last step in this consideration should be the integration of Eq.(2.42) over all momentum

directions. However, we find that in this case it is enough to consider a pair of perpendicular

directions – the extrema of αθ which occur at θ = 0, π and θ = π/2, 3π/2 . This is

shown in Fig. 2.4 where the dash-dot (black) line shows the result of the integration over

all directions, and the other lines show two different directions (solid, dotted) and their

combination (dashed). As evident from the graph, the combination of two perpendicular

directions is very similar to the integrated expression. This is equivalent to evaluating the θ

integral using a discrete sum, which could be used to reduce the number of beams necessary

in a 2d problem to a finite and small number.

2.4 A band with multiple minima

Perhaps the most interesting application of our method is to dispersion relations which

contain several gap minima. The qualitative picture of a bound state consisting of a simple

superposition of several 1d beams each coming from the vicinity of one particular gap mini-
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Figure 2.4: Bound energy associated with a single impurity for two-mass anisotropic band
model (my/mx = 2). The exact bound state energy is obtained by integrating over all
momentum angle θ, while taking a straight “1d” path with a certain momentum angle
yields slightly deviated bound state energy. Nevertheless, the consideration of only two
momentum angle θ = 0 and π/2 gives a fair agreement with the exact result.

mum is rather intuitive and appealing. Our method allows making this picture quantitative

even for complicated band structures.

So far we have identified the single minimum of the band and used an approximated

version of the Hamiltonian around the minimum. Then, according to Eq.(2.9), the Green’s

function is obtained and integrated with an appropriate cutoff W introduced through the

Pauli Villars regulator. The generalization to more than one band minimum is dividing

the integration in Eq.(2.9) into the summation of multiple integrations with different local

Hamiltonians, which are the expansions of the Hamiltonian around each minimum. In many

cases where multiple valleys need to be considered, the wavefunction is a multidimensional

spinor. Therefore, we need to represent the impurity strength α by a matrix and use the

determinant condition for bound states, Eq.(2.5).

∫
d2~k

(2π)2

1

E − H̃2d(~k)
≈
∑
l

∫
d2~kl

(2π)2

1

E − H̃l(~kl)
. (2.43)
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Where l goes over the band minima and Hl is the expansion of the Hamiltonian around

the lth minimum with the appropriate Pauli-Villars regularization included. The origin of

each ~kl is set to the center of the minima such that the ‘valley’ Hamiltonian H̃l(~kl) has

maximum symmetry. Thus, the condition for a bound state is:

det

(
1−

∑
l

∫
d2~kl

(2π)2

1

E − H̃l(~kl)
α

)
= 0. (2.44)

Applying the Kramers-Kronig trick here as well as in the anisotropic construction, we

write the potential strength as a sum:

det

(
1−

∑
l

∫
dθ

2π

1

αθl
α

)
= 0, (2.45)

where
(
αθl
)−1

is a matrix, given by:

1

αθl
= − 1

π

∫ ∞
0

ds

s

∂Gθl (s)

∂s
, (2.46)

with

Gθl (s) =

∫ ∞
−∞

dk

2π

eiks

E − H̃θ
l (k)

,

the Green’s function for the Hamiltonian H̃θ
l = H̃l(kx̂ cos θ + kŷ sin θ).

As described in Sec. 2.3, Eq.(2.46) can also be interpreted in terms of individual 1d

plane waves in each direction and valley. This is made a bit more complicated by taking

into account a spinor index. Denoting the spinor indices with σ, σ′, we have

(
αθl

)−1

σσ′
= − 1

bθ, σ
′

l

1

π

∫ ∞
0

ds

s

∂[ψθ, σ
′

l ]σ(s)

∂s

1

[ψθ, σ
′

l ]σ′(0)
, (2.47)
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where bθ, σ
′

l and [ψθ, σ
′

l ]σ(s) are obtained by solving the 1d impurity problem of a particle

with the Hamiltonian H̃θ
l (k → ∂

i∂s) , which is the original 2d Hamiltonian for a particular

momentum direction, θ, and with momentum in the vicinity of the bottom of valley l. Let

us clarify these symbols further, and state the impurity problem that needs to be solved:

[(E − H̃θ
l )ψθ,σ

′

l ] σ(s) = δσ σ′δ(s)b
θ, σ′

l [ψθ, σ
′

l ]σ(s). (2.48)

The index σ′ indicates to which component the impurity couples, and bθ, σ
′

l is the impurity

strength required to induce an impurity state with energy E in the specified valley, direction,

and component of the spinor involved. Accordingly, [ψθ, σ
′

l ]σ(s), is the σ component at point

s of the (valley l and momentum angle θ) wave function of a bound state of an impurity

that couples to the σ′ component. Note that the impurity strength is multiplied by the σ′

component of the wave function.

As an example of an anisotropic system with multiple minima, we consider an impurity

problem in the Kane-Mele model[12]. This model describes electrons hopping on a honey-

comb lattice with mirror-symmetric spin-orbit coupling. It was the first model theorized to

display a time reversal symmetric topological phase, i.e., the quantum spin Hall phase. The

two sublattices of the honeycomb lattice are encoded in two-dimensional spinors, and its

band structure has two massive Dirac points in the Brillouin zone. For simplicity, but with-

out loss of generality, we focus on a non-magnetic impurity and consider spinless fermions.

The Hamiltonian[14] is:

H = t
∑
〈ij〉

c†icj + iλSO
∑
〈〈ij〉〉

νijc
†
is
zcj . (2.49)

The first term is a nearest neighbor hopping, and the second term is spin-orbit interaction.
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sz is a Pauli matrix which acts in the spin space. νij = (2/
√

3)(d̂1 × d̂2)z = ±1, where d̂1

and d̂2 are unit vectors along the two bonds the electron traverses going from site j to its

next nearest neighbor i. The effective Hamiltonian near the valley K can be expressed by

a 2× 2 matrix in the pseudospin basis:

H̃K(q) =

 m qe−iθ

qeiθ −m

 , (2.50)

where q is the momentum measured fromK. Since the linear spectrum is not well behaved in

the presence of a δ-function potential, we employ the Pauli-Villars regularization procedure

as before. The regularized Hamiltonian reads:

H̃ ′K(q) = H̃K(q)−
[
E − H̃K(q)

] q2

W 2
. (2.51)

The impurity is also described by a 2 × 2 potential matrix and we choose to put it on the

A site.

α = α0

1 0

0 0

 . (2.52)

To work this Hamiltonian in the sprit of 1d wave function matching method, we ought to

solve the real space 1d Hamiltonian H ′K(s) = H̃ ′K(q → ∂
i∂s). Instead, let us work with real

space Green’s function and then make use of Eq.(2.5) to find an associate bound energy of
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a single impurity. We follow the matrix version of Eq.(2.35):

GθK(s) =

∫
dk

2π

eiks

E − H̃ ′K(k)
, (2.53)

=
∑
j=1,2

(−1)je−λjs/2

|λj |(1 + E2−m2

W 2 )

E +m iλje
−iθ

iλje
iθ E −m

 , (2.54)

where the poles of Green’s function are λ1 =
√
m2 − E2, and λ2 = W for s > 0, and it is

understood that (−1)j=1 = −1 and (−1)j=2 = 1. The diagonal elements of the solution are

symmetric of s, while the off-diagonal elements are asymmetric. This is the wavefunction for

the two sublattice system. For the other Dirac valley, K’, the calculation is similar except

that the sign of the spin orbit coupling is opposite. Following Eq.(2.37) for anisotropic

Hamiltonians:

1

αθK,K′
=
−1

π

∫ ∞
0

ds

s

∂GθK,K′(s)

∂s
. (2.55)

The only remaining step is to consider the determinant from Eq. (2.5) and (2.44), in order

to connect the potential strength and bound state energy:

Det

I2 +
∑

m=K,K′

∫
dθ

2π

1

αθm
· α

 = 0. (2.56)

As a result, we obtain the relation between the bound state energy and the potential strength

α0 in the Kane-Mele model:

1

α0
=

E

2π2(W 2 −m2 + E2)
log

(
W√

m2 − E2

)
. (2.57)

This is plotted in Fig. 2.5, in which we show both positive and negative impurity strengths
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and the associated positive and negative bound state energy. We compare our results for

an exact diagonalization solution for the bound-state energy,

Figure 2.5: The Kane and Mele model is employed as an example of multiple minima band
with W/m = 1.6. The band gap appears near zero energy and its size is proportional to
the spin-orbit coupling. The bound state energy associated with a single impurity is always
within the gap, and they converge to zero energy at infinite impurity strength. The exact
diagonalization result of the Kane-Mele model on the honeycomb lattice of 20×20 unit cells
is overlaid for comparison with λSO = m/6

√
3 (open circles) so that the band gap of lattice

model ∆SO = 6
√

3λSO = m. The cutoff W is chosen such that the dispersion relation of
continuum model is a good approximation of that of the lattice model.
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2.5 Generalization to higher dimensions

We have studied how to obtain the bound energy associated with a single impurity and

found that the Green’s function at the impurity potential is a crucial quantity to find:

G(~0) =

∫
dΩ

(2π)d−1

∫ ∞
0

kd−1dk

2π

1

E − H̃d(~k)
. (2.58)

Although we have only discussed 2d systems, our method has a straightforward extension

to higher dimensions. For odd dimensional cases, the wave function can be expressed

by the summation of plane waves with certain momentum angles, since the k-integrals in

Eq.(2.58) could be extended to the entire real k range. Then poles of the effective oriented

Green’s function combine to produce the solution, and the “wave function matching” picture

straightforwardly follows when relating to the impurity strength.

In this section let us consider a Hamiltonian in an even dimensional space. For simplicity

we assume an isotropic Hamiltonian without any spinor structure. Then the bound state

energy associated with the single impurity potential, V (~x) = αδ2n(~x), is expressed similarly

to Eq.(2.9) by:

1

α
=

∫
d2n~k

(2π)2n

1

E − H̃2n(k)
, (2.59)

=

∫
k2n−1dk

2π

1

E − H̃2n(k)
, (2.60)

where the difficulty lies in the integration in polar coordinates; as in the 2d case, the

contour integration is not readily possible, and therefore any connection to a semi-classical

beam analysis is not possible. Nevertheless, to overcome this hurdle we may use the same

prescription as in 2d. We use the Kramers-Kronig relation to make use of the symmetric
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imaginary part of the integrand and obtain the generalized relation:

1

α
=
−1

π

∫ ∞
0

ds

s

∂2n−1

∂s2n−1

[∫ ∞
−∞

dk

2π

eiks

E − H̃2n(k)

]
. (2.61)

For isotropic and single-minimum band type problems, the above relation can be translated

to finding an impurity state in a renormalized-strength impurity potential in the 1-d effective

Schrödinger equation:

[E −H1d(∂x)]ψ1d(x) = δ(x)

[
−α
π

∫ ∞
0

ds

s

∂2n−1

∂s2n−1
ψ1d(s)

]
, (2.62)

where H1d(∂x) = H̃2n(k → ∂
i∂x) , and the solution is the sum of plane waves with complex

wave numbers:

ψ1d(x) =

∫ ∞
−∞

dk

2π

eiks

E − H̃2n(k)
. (2.63)

2.6 Conclusions and summary

Finding impurity bound states in 1d is quite intuitive, and is carried out by combining

plane-wave states into a consistent solution. The plane-wave approach to solving impurity

problems in 1d arises naturally when considering the T-matrix approach, or, equivalently,

the Green’s function expression of Eq.(2.4). The contour integration of the 1d Green’s

function results in a discrete sum of pole-contributions, each of which is associated with

a plane-wave eigenstate of the uniform Hamiltonian. In 1d, the Schrödinger equation can

be used directly to obtain impurity states, and such a calculation would involve satisfying

matching conditions at the impurity location of plane-wave solutions – the same that arise
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from the poles of the Green’s function - belonging to either side. The intuitive interpretation

of impurity states as a simple combination of plane-waves is completely lost at higher (even)

dimensions, which is seen technically by not being able to reduce Eq.(2.4) to the sum of

residues of the Green’s function.

In this manuscript we presented a new approach for finding bound states, which re-

duces the impurity problem in any dimension to 1d impurity problems, and thus allows

an interpretation in terms of a small set of incoming and outgoing plane waves on a linear

trajectory.

We demonstrated that the method could be efficiently used to find impurity bound

states in a general band structure where the gap could have multiple minima, and a spinor

structure. Our method relied on the use of the Kramers-Kronig relation, which maps the

Green’s function formula at any dimension, to an expression which is given again by a sum

of residues corresponding to plane-wave solutions of the pure model.

Presenting a few examples, we demonstrated how our method easily lends itself to ap-

proximating lattice Hamiltonians in terms of a discrete sum of separate valley Hamiltonians.

As we show, when Pauli-Villars regulators are used to provide a cut-off for valley Hamilto-

nians, we can still use the Kramers-Kronig relation to connect bound states with a discrete

sum of plane waves. The Pauli-Villars regulators, however, add additional poles to the

Green’s function of the pure system, which also need to be included in the plane-wave

superposition.

While we only demonstrated the method in 2d, the wavefunction matching method can

be extended to any dimension. All odd dimensional systems are analogous to the 1d case

with additional angular variables, and all even dimensional systems are analogous to the 2d

case. This is because the wavefunction matching method is closely connected to the contour
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integration, which reduces the problem to finding poles of the Green’s function; the contour

integration applies in odd dimensions but not in even ones. For most systems without

rotational symmetry of local Hamiltonians, only a few momentum angles are necessary to

complete the semiclassical interpretation of a bound state.
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Chapter 3

Transport through a disordered
topological-metal strip†

3.1 Background and Motivation

To date, topological behavior has been observed in many systems in zero magnetic field,

usually by identifying topologically induced edge states. Much of the theoretical attention

has been given to topological insulators, [12, 14, 78, 79, 13, 80, 81] while many of the

experimental observations are of systems that are metallic, due to either doping, or midgap

states [82, 83, 84, 85]. It is natural then to ask – what kind of topological behavior can a

metal, or a gapless system, exhibit?

Several groups have studied the so-called topological conductor. Ref. [86] used a 2d

Kane-Mele (or Haldane) topological insulator, with interstitial sites in each hexagon form-

ing an additional trivial band to realize a topological conductor (see Fig. 3.1 for illustration).

The ‘parasitic’ metallic band was made to overlap with the topological-band edge states.

Hybridization between the topological and parasitic metallic bands changed the edge-state

spectrum in a peculiar way. Edge states which overlapped in both energy and parallel

momentum with bulk metallic states not only did not disappear when hybridization was in-

†This chapter is published in [119]
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troduced, but rather, they doubled: exact edge states emerged at energies above and below

the metallic band, and a finite width spectral resonance remained where the unhybridized

topological edge state used to be. An additional topological conductor system was stud-

ied by Bergman[87] and Barkeshli and Qi.[88] They showed that a magneto-electric axion

response (with time-reversal broken at the surface) persists even when the 3d topological

insulator is doped, and Fermi-surfaces appear in its bulk, although it is no longer quantized.

Similarly, Ref. [89] shows that a 3d topological metal still supports a special surface plasmon

mode.

The transport properties of a topological conductor, especially in the presence of dis-

order, are the focus of this paper. These aspects of the topological conductor were so far

mostly ignored. Several groups, however, have investigated the effects of disorder on topo-

logical insulators. It was clearly shown that a sufficient amount of disorder will close a

topological gap, resulting in a metal [90, 91, 92, 93, 94, 95, 22, 21, 96]. Furthermore, it was

found that disorder could even induce topological behavior in trivial semiconductors with

spin-orbit coupling [54, 97, 55]. Only Ref. [98] so far also considered disorder effects in a

topological-metal regime, and found that it does not qualitatively affect the non-universal

magneto-electric effects found by Refs. [88, 87].

Our study concentrates on the ‘parasitic metal’ flavor of the topological conductor which

was described above [86]. Specifically, we investigate the conductance of a topological con-

ductor strip as a function of disorder, with its chemical potential in the energy range where

edge states and the parasitic metallic band coexist. Increasing disorder will eventually lo-

calize the bulk states, and then we expect there to be rather little mixing between the bulk

states and the edge states, since the wavefunction overlaps are exponentially small. In con-

trast, for weak disorder, where the bulk states are still mostly delocalized, the wavefunction
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overlaps are much more significant, and we expect that no state will be distinguishable as

an edge state.

Our results, however, are quite surprising. The edge states appear to retain their sig-

nificance for essentially all disorder strengths. Their presence and distinction is manifested

in the persistence of a single highly conducting channel which survives until the disorder

is sufficiently strong and the topological band associated with the honeycomb subsystem is

destroyed. The distinct feature of this effect is the appearance of a conductance minimum

for the most conducting channel at some finite disorder (see Fig. 3.4). We characterize this

conductance minimum in systems of varying width and length, as well as for several values

of the model parameters.

The organization of the paper is as follows. In Sec. 3.2 we describe in detail the parasitic

metal model we study. We describe the transfer-matrix method we use in Sec. 3.3. Our

results, demonstrating the conductance minimum, as well as its dependence on the system

parameters, are recounted in Sec. 3.4. A qualitative understanding of the effect can be

obtained using a simple model, which we describe and analyze in Sec. 3.5, before making

our concluding remarks in Sec. 3.7.

3.2 The Kane-Mele parasitic band model for topological con-

ductor

We perform the disorder and transport analysis on a specific model for the topological con-

ductor. We expect that the qualitative behavior will be independent of the specific model

we employ. As mentioned in the introduction, we will use the Haldane model with intersti-

tial sites added. We will also consider the full Kane-Mele model with Rashba interaction
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Figure 3.1: A 2d lattice model of a topological conductor. The model is based on the
Kane-Mele model [12, 14] on the honeycomb lattice, which is denoted by dashed lines. The
Kane-Mele model consists of nearest-neighbor hopping t1 (green) between the two (A,B)
sublattices of the honeycomb lattice (denoted by empty and filled circles, respectively), and
a complex second-nearest-neighbor hopping (a spin orbit coupling term) with opposite sign
when clockwise (+iλ, red) and counterclockwise (−iλ, blue), as indicated by the curved
arrows in the figure. In addition to sites of the honeycomb lattice, we include a new set
of sites (C) at the centers of the hexagonal plaquettes of the honeycomb lattice (denoted
by cross marks). The C-sites form a triangular sublattice, and nearest-neighbor hopping
between them t2 (brown) forms a metallic band. To explore the interplay between the topo-
logical insulators’ helical surface states and the bulk metallic band, we mix the two systems
by allowing hopping between the C-sites and the honeycomb lattice sites, t3 (purple).

included and find a similar behavior as for the Haldane model.

The Haldane model [99] consists of spinless electrons on the honeycomb lattice, with

nearest-neighbor hopping, which gives the band structure of Graphene, and imaginary

second-nearest-neighbor hopping, which opens a gap, induces a non-zero integer Chern

number in the conduction and valence bands, and produces chiral edge states. To this we

add a parasitic metallic band, formed by an overlayed triangular lattice of sites, which oc-

cupy the center of the honeycomb hexagons (see Fig. 3.1). Hopping between the interstitial

triangular lattice sites produces a single topologically-trivial band, which overlaps in energy

with the edge states of the Haldane model. We then allow the two subsystems to hybridize.
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The Hamiltonian describing the combined model is

H = HHaldane +Hmet +Hhyb +Hdis

HHaldane = −t1
∑
〈ij〉

a†ibj − iλ
∑
〈〈ij〉〉

[
a†iajνij + (a→ b)

]
+ h.c

Hmet = −t2
∑
〈ij〉

[
c†icj + h.c.

]
Hhyb = −t3

∑
〈ij〉

[
c†iaj + c†ibj + h.c.

]
Hdis =

∑
i,x∈{a,b,c}

Vix
†
ixi , (3.1)

where i, j denote the sites of the composite honeycomb and interstitials lattice. The opera-

tors a, b denote the fermion annihilation operators on the two honeycomb sublattices (A and

B), and c is the fermion annihilation operator on the triangular lattice sites C at the centers

of the honeycomb plaquettes. The coefficients νij = ±1 determine the sign of the imaginary

second-nearest-neighbor hoppings, and are defined in Refs. [12, 14], as νij = 2√
3
ẑ ·(d̂jk×d̂ki),

where d̂kj is the unit vector pointing from site j to k, and k is the intermediate site between

j and i. The parameter t1 denotes the nearest-neighbor hopping on the honeycomb lattice,

while t2 denotes the nearest-neighbor hopping on the triangular lattice. Finally, t3 is the

hybridization hopping between the honeycomb and triangular lattice sites. The random

on-site potential Vi on every site of the lattice (honeycomb and triangular lattice sites) has

a uniform distribution between [−W,W ].

The single spin system we analyzed consisted of zig-zag strips of the topological con-

ductor with the Hamiltonian (3.1). Its generic band structure is shown in Fig. 3.2. Indeed

we see that the metallic band intervenes between the conduction and valence bands of the

Haldane portion of the band structure. We see regions in the spectrum where in a single

value of the momentum parallel to the edge, there are two edge states at energy above and
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Figure 3.2: (a) Energy spectrum of the topological conductor without disorder. Bands at
the top and bottom are the bulk states of the honeycomb lattice. The band in the middle
is the metallic bulk from the interstitial sites. The parameters in units of t1 are λ = 0.1,
t2 = 0.1, t3 = 0.1, and the width of the strip is M = 30 zig-zag lines. (b) Zoom of the band
structure in (a). Different Fermi-energy regimes are indicated. The region between (II) and
(III) has the same properties as region (I).

below the metallic band. This is a manifestation of the exiling effect pointed out in Ref.

[86], and indicates that the metallic band appeared on top of the edge-states branch in this

region, and hybridization expelled the edge states while doubling them.

3.2.1 Rashba coupling

We have also studied the effect of adding a Rashba type spin-orbit coupling on the honey-

comb lattice to our model (3.1), with the electron spin−1
2 restored. The Rashba interaction

mixes between the two spin flavors as follows:

HR = iλR
∑
〈ij〉αβ

a†iα(ŝαβ × d̂ij)zbjβ + h.c., (3.2)

where ŝ is the vector of Pauli matrices for the electron spin, d̂ij is the unit vector pointing

from site j to i, and α, β are spin indices.

Even with Rashba interaction included, we find the same qualitative behavior as in the

spinless case described above.
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3.2.2 Fermi-energy regimes

The systems’ transport properties depend closely on its Fermi energy. The range of Fermi

energies between the conduction and valence bands of the topological subsystem can be split

into three important regions. Region I denotes the case where the edge states and metallic

bands overlap in energy but not in momentum, and therefore coexist in the clean limit.

Region II denotes the energy range of the parasitic metal where no edge states appear.

Region III is the energy range that has only edge states. These regions are indicated in

Fig. 3.2(b) for the spinless model.

3.3 Landauer formalism for the strip

In order to analyze the two-terminal transport through the topological conductor, we use

the Landauer-Büttiker formalism.[100, 101, 102] We envision our system as consisting of a

long strip of the topological conductor, which is disordered in a finite region (Fig. 3.3). The

regions to the left and right of the disordered region form the ballistic leads, with several

transverse modes. The Landauer-Büttiker formalism gives the following formula for the

current flowing through the system in a two-terminal device:[103]

G =
e2

h

∑
n,m

|TLRnm (EF )|2, (3.3)

where TLRnm (EF ) is the transmission coefficient for going from modem in the left lead to mode

n in the right lead at the Fermi energy, EF . To ensure probability current conservation, it

is important to note that the current associated with a scattered wave is proportional to

the square of the wavefunction multiplied by the velocity. Therefore Tnm is given by the

outgoing current amplitude, i.e., the wave amplitude times the square root of the velocity of
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Figure 3.3: Lattice system with a width of M zig-zag lines. The disordered region of length
L is the conductor which is connected to a lead on either side. Dashed rectangles show the
unit cells of the strip geometry.

an electron leaving the device in mode n through one lead if the incoming current amplitude

in mode m in the other lead is set to unity.

Eq. (3.3) can also be written as the sum of conductances per channel gm:

G =
e2

h

∑
m

gm, (3.4)

where gm =
∑

n |TLRnm |2 is the conductance of channel m, given by the probability that an

electron entering the system in mode m is transmitted through the conductor. We find

the transmission coefficients TLRnm (EF ) using the transfer-matrix method, as described in

Appendix 3.8. We note that this method, particularly when disorder is concerned, has

an instability which restricts the system size possible. This instability arises due to the

existence of imaginary momentum modes at the desired energy range which appear because

we are exploring the conductance of the topological conductor for energies in the bulk gap

of the honeycomb lattice. Indeed, the number of imaginary momentum modes due to the

honeycomb subsystem increases linearly with the number of zig-zag lines in the strip, thus

restricting the accessible system size.† Nevertheless, the transfer-matrix method provides

reliable results for a range of strip sizes. These results could, in principle, be improved upon

†We have 2M − 1 imaginary momentum modes due to the honeycomb system for a strip with M zig-zag
lines.
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by using S-matrix methods [104].

3.4 Results

We investigated the conductance of the topological conductor strip for different Fermi-

energy regimes and analyzed its dependence on system and model parameters. For Fermi

energies where metallic bulk and edge states coexist (region I), we find a distinct minimum in

the conductance of the most conducting channel as a function of disorder strength, followed

by a revival towards ballistic transport in this channel. This is a surprising feature given

the mixing between bulk and edge.

3.4.1 Region I

The conductance for each channel for a Fermi energy in region I is shown in Fig. 3.4. The

generic feature we find in this regime is a single highly conducting channel that persists up

to large disorder and decays when disorder is presumably strong enough to close the gap

of the honeycomb subsystem. For small disorder there is a sharp dip in the conductance

followed by a broad maximum

3.4.1.1 Dependence on system size

In general, increasing the width of our strip has two opposing effects. One, the overlap of

edge states on opposite sides of the strip is reduced and thereby the conductance should

increase. Two, a wider strip hosts more bulk channels, and leakage from the edge into

the bulk is increased, which reduces the conductance. Increasing the length of our strip

increases the probability of electrons inside the wire being backscattered or leaking into the

bulk since they travel a longer distance inside the disordered region. This should decrease
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Figure 3.4: Illustration of the ‘dip and recovery’ feature of the edge channel conductance.
Conductance gn of different channels is plotted as a function of disorder strength W . The
edge channel conductance shows a sharp minimum gmin at finite disorder W0 and a broad
maximum gmax. Parameters are EF = 0.1, λ = t3 = 0.1, and M = L = 20. The inset shows
the total conductance. The dip is no longer visible but one can see that the conductance
remains at a value different from zero for a large range of disorder strengths. The dashed
line marks the conductance e2/h of a single channel.

the conductance while the net effect of changing the system width is not apparent.

The dependencies of the characteristic values of the conductance, the minimum gmin,

the maximum gmax at higher disorder, and the disorder strength at the minimum W0 (cf.

Fig 3.4) on the system size are given in Fig. 3.5. We find that these quantities have a rather

different dependence on the system dimensions. gmin shows an exponential decay with

increasing system length and a small increase with increasing width. The disorder strength

W0 at the minimum seems to be independent of the system width but shifts to smaller

disorder values with increasing system length. gmin, gmax, and W0 are (nearly) independent

of the strip width, which shows that either the two opposing effects of changing the width

are not very significant or that they (nearly) cancel each other for the studied parameter

region.

Rather importantly, it appears that the most conducting channel recovers at high dis-

order and becomes effectively ballistic. The conductance maximum gmax seems to be in-

74



Figure 3.5: Dependence of the conductance dip and maximum on system size (Region I).
(a)-(c) Dependence on length L of the system for M = 20. Note the log-scale on the y-axis
in (a); the dashed line is a guide to the eye to emphasize the exponential dependence. (d)-(f)
Dependence on system width for (d), (e) L = 40 and (f) L = 20. Parameters: EF = 0.1,
λ = t3 = 0.1. While the observed feature is nearly independent of the system width, the
conductance minimum decreases exponentially with system length. The maximum conduc-
tance is nearly independent of the system length, and the deviation from the quantized
value presumably results from backscattering at the interface between leads and disordered
region.

dependent of the system length. Its deviation from the quantized value is presumably the

result of backscattering at the interface between leads and disordered wire rather than from

effects inside the disordered region.

3.4.1.2 Dependence on system parameters

An increase in the coupling t3 between the honeycomb subsystem and the triangular lattice

increases the probability of electrons leaking from the edge into the localized metallic bulk

states, which should reduce the conductance of the chiral edge states. Imaginary second-

nearest-neighbor hopping λ is the essential ingredient for a topological phase as it opens a

gap and produces chiral edge states. An increase in λ widens the gap and thereby makes

the system more robust against disorder [12], which should increase the conductance and

broaden the maximum.
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Figure 3.6: Region I. Dependence of the edge channel conductance on system parameters.
Dependence on (a) hybridization t3 (λ = 0.1, M = 20) and (b) second-nearest-neighbor
hopping λ (t3 = 0.1, M = 10) for EF = 0.1 and L = 20. (c) Dependence on Fermi
energy with λ = t3 = 0.1, M = 10, and L = 20; (d) indicates the energy range from
E = 0.1 to E = −0.3. Decreasing the hybridization t3 and increasing the second-nearest-
neighbor hopping λ increases the conductance over the entire disorder range. Moving the
Fermi energy away from the metallic bulk has the same effect until EF is too close to the
honeycomb valence band when the characteristic feature is starting to vanish.

The dependence of the edge channel conductance on the hopping parameters λ and t3 is

illustrated in Fig. 3.6(a) and (b). We find that the characteristic shape of the conductance

is left unaffected by changes in the hopping parameters of over a wide range of values. As

expected, an increase in the hybridization t3 decreases the conductance, while an increase in

the second-nearest-neighbor hopping λ increases it and leads to a broader maximum due to

the larger bulk gap of the honeycomb subsystem. One might think that the dependence of

the conductance maximum on the hybridization t3 contradicts our earlier conclusion that the

deviation of the conductance maximum from the quantized value results from backscattering

effects at the interface between conductor and leads. This is, however, not the case since, an

increased coupling between the triangular and honeycomb lattices increases backscattering

everywhere, including at the interface between conductor and leads, leading to the observed
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Figure 3.7: Region II. Conductance of the most conducting channel for a Fermi energy
deep within the metallic band. (a) Dependence on disorder strength for different hopping
strengths t3. EF = 0.2, λ = 0.1, M = 20, and L = 20. (b) Conductance of each channel at
different Fermi energies. For Fermi energies between E = 0.21 and E = 0.22 a single highly
conducting channel exists which is possibly connected to surface resonances. Parameters
are W = 1.3, λ = t3 = 0.1, M = 10 and L = 20. (c) Conductance as a function of disorder
at EF = 0.21 for λ = t3 = 0.1, M = 10 and L = 20. A single channel stands out which is
highly conducting at finite disorder. Dashed line indicates the disorder strength taken in
(b). (c) shows the energy range from E = 0.18 to E = 0.23.

behavior.

When varying the Fermi energy within region I to values away from the metallic band

(see Fig. 3.6(c)), first the conductance of the most conducting channel increases over the

entire disorder range because of a decreasing number of metallic states, but the characteristic

shape is unaffected. However, for Fermi energies too close to the bulk of the honeycomb

lattice, the conductance starts to lose its shape. Even small disorder can in this case destroy

to topological bands through partial closing of the bulk gap of the honeycomb subsystem.
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3.4.2 Region II

In this region, the Fermi energy lies deep within the (trivial) metallic band. Without hy-

bridization between the honeycomb and the triangular lattice, the edge states would traverse

the bulk gap unhindered through the metallic band. For finite hybridization, however, the

edge states are expelled out of the metallic band region to higher and lower energies (cf.

Fig. 3.2). We would therefore expect the conductance in this regime to show bulk state

behavior, i.e., rapid decay with increasing disorder. Decreasing the hybridization should

recover the characteristic edge state behavior. We find, however, that even for strong hy-

bridization t3 = 0.1, for a certain range of parameters there is a conducting channel which

shows the characteristic behavior of the edge channel (Fig. 3.7). This highly conducting

channel exists only for a range of Fermi energies within the metallic band.

The explanation of the highly conducting channel in this regime is consistent with the

notion of leftover spectral resonances of the edge states, once they are absorbed by the bulk.

When the surface bands are pushed away from the metallic band they leave behind a finite

lifetime surface resonance in place of the original surface states (these are referred to as

‘ghosts’ in Ref. [86]).

3.4.3 Region III

In this region the Fermi energy lies above the metallic band and below the conduction band

of the honeycomb subsystem. The conductance is only determined by the edge states and

we would expect a quantized value up to a certain critical disorder strength as in the case

without a metallic band. However, for Fermi energies very close to the metallic band there

is a residual effect from the metallic bulk states and the conductance shows a small dip in

the otherwise quantized conductance (Fig. 3.8).
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Figure 3.8: Region III. Conductance of the edge state for different Fermi energies. Param-
eters are λ = t3 = 0.1 and M = L = 20. Inlet indicates the energy range form E = 0.35 to
E = 0.45. At Fermi energies close to the metallic bulk (EF = 0.35), disorder induced states
above the bulk band still lead to a dip in the conductance. The closing of the honeycomb
bulk gap due to disorder quickly decreases the conductance in the entire energy range.

Figure 3.9: Band structure with Rashba coupling (a) λR = 0.1 and (b) λR = 0.3. Parameters
are λ = t3 = 0.1, and M = 30. Rashba coupling reduces the band gap of the honeycomb
subsystem.

Disorder closes the bulk gap of the honeycomb subsystem by creating new bulk states

above the valence and below the conduction band, and the conductance decreases rapidly

with disorder for larger Fermi energies. In addition, disorder also creates new metallic states

above the metallic band. These new states then coexist with edge states as in region I which

explains the observed small dip at small disorder.
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Figure 3.10: Region I with Rashba coupling. Conductance of one edge channel for (a)
t3 = 0.05 and (b) t3 = 0.1 for different Rashba coupling strengths λR. Parameters are
EF = 0.05, λ = 0.1, M = 10, and L = 20. We plotted only a single spin orientation for
readability. Rashba coupling overall reduces the conductance. The effect is enhanced for
larger hybridization between the honeycomb and metallic subsystems.

3.4.4 Rashba coupling (Region I)

We also considered a spinful version of (3.1) with Rashba type spin-orbit coupling included

between nearest-neighbor sites of the honeycomb subsystem (3.2). We considered the effects

of spin-independent disorder only. As shown in Fig. 3.9, aside from the doubling of the

bands, small Rashba coupling does not change the band structure dramatically. For large

Rashba coupling the edge bands are clearly separated in momentum and the structure

of the metallic band changes significantly. The bulk gap of the honeycomb subsystem is

reduced such that region III vanishes. However, we find that Rashba coupling does not affect

the characteristic shape of the edge channel conductance as seen in Fig. 3.10. Increasing

Rashba coupling decreases the conductance over the entire disorder range but leaves the

distinct ‘dip and recovery’ behavior of the conductance intact. As for the model without

Rashba coupling, decreasing the hybridization t3 between honeycomb and triangular lattice

increases the conductance.
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3.5 Interpretation and toy model

The nature of the conductance dip found in the previous section can be qualitatively un-

derstood using a simple toy model. Our toy model consists of a single chiral mode that is

mixed, due to disorder, with multiple bulk modes. This model neglects inter-edge scatter-

ing. We further approximate the most conducting channel from one side to the other as the

sum of two incoherent contributions: edge-to-edge ge−e = e2

h |Te,e|
2 (through just the edge

channel) and bulk-to-edge ge−b = e2

h

∑
m6=e |Te,m|2 transport.

The transmission coefficient between mode m in the left lead to mode n in the right

lead, can be computed from the retarded Green’s function connecting these two modes [103]

Tnm = i~
√
vnvmGnm , (3.5)

where vn is the electron velocity in mode n at the Fermi energy. For the sake of brevity we

will take ~ ≡ 1 from this point forward.

Indeed, since this system has a chiral mode, strictly speaking, it will always have a total

conductance bigger than the single channel, e2/h. Nevertheless, we will only be interested

in the conductance involving the bare chiral edge states. So if the chiral mode manages

to wander deep into the bulk due to the disorder, we will ignore its conductance. This is

consistent with the numerics, since under these circumstances one would no longer be able

to separate the system into two independent parts, each involving a single chiral mode.

The main findings in this section are the following. Coupling between edge and bulk

channels in general leads to a distinct ‘dip and recovery’ feature with increasing disorder

strength. Even for the simple model of a single bulk mode coupled to the edge mode via

a single contact, this behavior can be observed (cf. Fig. 3.12). Near the minimum, the
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main contribution to the conductance stems from the bulk-to-edge channel. As a result,

this channel is largely responsible for the dependence on the system size of the conductance

minimum. For the case of multiple bulk modes we find a good agreement with the results

from the numerical analysis in Sec. 3.4. gmin is found to decrease exponentially with the

system length and to be roughly independent of the system width (cf. Figs. 3.13, 3.14).

Nevertheless, the toy model is limited. It does not capture reflection within a mode or

the closing of the bulk gap with increasing disorder because it assumes a fixed number of

bulk and edge modes at a certain Fermi level. The non-quantized conductance plateau and

subsequent decrease of the conductance can thus not be analyzed within this model. The

toy model is also not suitable to describe the region II calculation where edge and bulk

modes are coupled already in the clean limit, and as such are not well separated contrary

to what we assume in the model.

In the following we study the toy model in detail, explicitly calculate the conductance

for different system lengths and widths, and use the results to explain the origin of the

conductance dip.

3.5.1 Toy model and Green’s functions

Consider a system with a single chiral edge mode and multiple bulk modes. We assume

that the chiral edge mode can only hybridize with the bulk when impurities are introduced.

The hybridization strength will serve as a proxy for disorder strength.
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We describe our system with the action

S =

∫
dω

2π
dxdx′

[
χ†(x)G−1(x− x′)χ(x′)

+ ψ†n(x)F−1
nm(x− x′)ψm(x′)

−
[
χ†(x)Vn (x)ψn(x) + h.c.

] ]
,

(3.6)

where the field χ(x) represents an electron at position x in the bare edge mode, and the fields

ψn(x) represent an electron at x in bulk mode n. In addition, G and F denote the bare edge

and bulk state propagators, respectively, and V denotes the random potential scattering

between the edge state and bulk channels. We will adopt the uniform distribution of random

potential strength. The bare propagators are translationally invariant in the direction

through the length of the strip (hence the dependence only on the relative coordinate x−x′),

while the impurity scattering V (x) is completely local. All terms depend on frequency ω,

which for the sake of brevity has been kept implicit. The Einstein summation convention

has been used for the bulk channel indices n,m. In momentum space the form of the

propagators is

G−1(k, ω) = ω + iη − vek

F−1
n,m(k, ω) = δn,m

[
ω + iη − k2

2Mn
+ µn

]
,

(3.7)

where η > 0 is infinitesimal and positive, and Mn and µn are the effective mass and the

chemical potential, respectively, in bulk mode n. Fourier transforming from momentum
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space to real space we find

G(x,EF ) =

∫ +∞

−∞
G(k,EF )eikx = − i

ve
eikexθ(x)

Fn,m(x,EF ) =

∫ +∞

−∞
Fn,m(k,EF )eikx

=
−i
vb,n

eikb,n|x|δn,m ,

(3.8)

where vb,n = kb,n/Mn, and kb,n =
√

2Mn(EF + µn) is the Fermi momentum in the bulk

mode n, and ke = EF
ve

. The chiral mode propagator G reflects a single propagation direction.

G(x) is zero when x < 0, and this reverses when we take η < 0 for the advanced propagator.

For the bulk modes, we assume F is diagonal, neglecting the mixing of different bulk

conduction channels.

The quantity V (x) is not the bare random potential, but rather matrix elements between

bulk modes and the edge state, due to disorder scattering, and we therefore assume they are

uncorrelated random complex variables. The random phase captures the random location

of the focal points of impurity induced edge-bulk scattering, and makes sure our results are

not affected by momentum conservation. In this manner we take into account the diffusive

nature of the bulk, while still using the translationally invariant form of the bulk propagator

F .

We discretize the x coordinate into i = 1 . . . N , as illustrated in Fig. 3.11, and set

Vn(i = 1) = Vn(i = N) = 0 to represent clean leads so that we can still separate in

our calculations the edge conduction channel from all the others. For i 6= 1, N we take

Vn(j) = tj,ne
φj,n . Now G and F are both square matrices with sizes N×N and NM×NM ,

respectively, where M is the number of channels (and the width of the lattice model of our

strip). In contrast, Vn is a non-square matrix of dimensions N × NM . Discretizing x
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requires one subtle change to the chiral propagator G in (3.8)

G(xi − xj , EF ) = − i

ve
eike(xi−xj)θ(xi − xj)

Fn,m(xi − xj , EF ) = − i

vb,n
eikb,|xi−xj |δn,m ,

(3.9)

where the step function θ(x) at x = 0 is defined to be 1/2. To find the transmission

coefficients we seek, we will need to calculate the Green’s function for electrons starting out

at the left lead i = 1 and coming out at the right lead i = N , at the Fermi energy

Ge,e(x = N, x′ = 1) = 〈χ†i=Nχi=1〉

Ge,m(x = N, x′ = 1) = 〈χ†i=Nψm,i=1〉 .
(3.10)

where we specified two contributions: electron from edge to edge mode, Ge,e, and electron

from bulk mode m to edge mode, Ge,m. With the position index suppressed for the sake of

brevity, our action is of the form

S =

∫
dω

(χ† ψ†

)G−1 −V

−V † F−1


χ
ψ


 . (3.11)

Next we want to invert the matrix, in order to find the components of the full Green’s

85



Figure 3.11: Illustration of the toy model. Bulk modes are independent of each other since
we assume that the bulk channels describe the eigenmodes of the diffusive bulk. The edge
mode couples to the bulk through (N−2) scattering sites, giving in total (N−2)M couplings
Vn(j). The coupling strength and phase are uniformly distributed.

function G =

G−1 −V

−V † F−1


−1

. We find

Ge,e =
1

G−1 − V FV †

Ge,m = Ge,eVnFnm = Ge,eV F

Gm,e = Gm,nV ∗nG

Gn,m =

(
1

F−1 − V †GV

)
n,m

,

(3.12)

where we have used the Einstein summation convention. The non-square matrices Ge,m and

Gm,e are the Green’s function elements that capture the bulk-edge and edge-bulk mixing,

respectively; Ge,e and Gn,m are the renormalized Green’s functions for the edge and bulk

modes, respectively.

As we will see in what follows, the simple toy model already affords us a qualitative

understanding of the conductance dip, and its dependence on the system dimensions.
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3.6 Conductance dip of different system size

3.6.0.1 Single contact with single bulk case

It is instructive to first consider the case of a single bulk mode m = b and a single impurity.

In this case we take N = 3 and M = 1, and for simplicity we take ke = kb = kF , and

V = teiφ. From Eqs. (4.1,3.12), we can show that

Gb,b(N, 1) =
eikFL

vb

1

1 + t′2/2

Ge,e(N, 1) =
eikFL

ve

1− t′2/2
1 + t′2/2

Gb,e(N, 1) =
eikFL
√
vevb

t′

1 + t′2/2

Ge,b(1, N) =
eikFL
√
vevb

t′

1 + t′2/2
,

(3.13)

where L = (N − 1)a = 2a, a is the lattice spacing, and t′ = t/
√
vevb is a dimensionless

coupling strength. From these we find the conductances

ge−e =
e2

h

[
1− t′2/2
1 + t′2/2

]2

ge−b =
e2

h

[
t′

1 + t′2/2

]2

.

(3.14)

We can now easily see that ge−e = e2

h for both the clean limit t′ = 0 and the infinite disorder

limit t′ →∞. In between there is a minimum of ge−e = 0 at t′ =
√

2. In contrast, ge−b starts

at zero for t′ = 0, and rises to a maximum value of ge−b = 1
2
e2

h at t′ =
√

2, before decaying

back down to zero. Note that the Fermi velocities only rescale the disorder strength, and

did not otherwise influence the conductance behavior.

Finally using Eq. (3.5) we find all the different contributions to the conductance

(edge/bulk-edge/bulk), as plotted in Fig. 3.12. Fig. 3.12(a) shows the conductance of
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Figure 3.12: Conductance contribution via different channels as a function of coupling
strength (x-axis) for the system of a single chiral and bulk mode with a single coupling:
from edge to edge ge−e, edge to bulk gb−e, bulk to edge ge−b, and bulk to bulk gb−b. The edge
to edge conductance has a minimum at finite disorder before recovering to the quantized
value. The conductance is in units of e2

h .

the strip, consisting of adding up the edge-to-edge and bulk-to-edge channels. Fig. 3.12(b)

shows the possible individual conductances. Two points are noteworthy: (i) In the strong

disorder limit, the conductance of edge-to-edge channel converges to unity. (ii) At the

conductance dip minimum, the biggest contribution to the conductance comes from the

bulk-edge channel. In other words, at strong disorder, the edge-edge channel conductance

recovers to unity even without accounting for the localization of the bulk, and the size de-

pendence of the conductance near the dip will arise from the bulk-edge channel contribution,

and will be rather independent of the edge-edge channel behavior.

3.6.0.2 Multiple bulk modes and impurities

Consider now a general system of length N (i.e., having N − 2 scattering sites), and width

(bulk mode number) M . The Green’s function components we need to calculate to find the

transmission coefficient G(N, 1) can be found in closed form. In particular, the edge-edge
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Green’s function is found to be

Ge,e(N, 1) = − i

ve
eike(N−1)det(G

T
0 − VFV†)

det(G0 + VFV†)
, (3.15)

where G0 = G(kb = 0) in Eq. (4.1) and Vn(xj) = (−1)jeikexjVn(xj)/2ve, such that

(VFV†)i,j =
∑

n,m Vn(i)Fn,m(i, j)Vm(j)∗. The derivation of this result is somewhat in-

volved, and so we defer its details to a future publication.[105] More generally, for j 6= 1,

we can show that

Ge,e(N, j) = i
(−1)j

2ve
eike(N−j)

det(GT0 − VFV†)jth
det(G0 + VFV†)

(3.16)

where (A)jth indicates the jth row of the matrix is replaced by a vector (a)j = − i
ve

(1 −

δ1,j − δN,j) = − i
ve

(0, 1, 1, . . . , 1, 0). Concomitantly, the Green’s function bulk-edge mixing

component is

Ge,m(N, 1) =
∑
n

N−1∑
j=2

Ge,e(N, j)Vn(j)Fn,m(j, 1), (3.17)

which is the sum of the (N − 2) Green’s functions from clean bulk to renormalized chiral

mode.

3.6.0.3 Length dependence

The conductance minimum gmin is expected to drop exponentially with the system’s length,

as shown in Fig. 3.5(a). The toy model’s results are shown in Fig.3.13. Within our toy

model, the length dependence of gmin is attributed to the mixed edge-bulk contribution to

the conductance ge−b. Indeed, we approximate the edge-related conduction as an incoherent
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Figure 3.13: (a) Sum of the conductances of chiral-to-chiral (b) and bulk-to-chiral (c)
channels for M=4 and N=5 (blue), 7 (green), 9 (red), and 11 (cyan) for ke = 1.4π

a and
kb = 1.2π

a . The inset in (a) shows the exponential decay of the minimum conductance with
system length in agreement with the numerical calculation in Fig. 3.5(a). The conductance

is in units of e2

h .

sum of two contributions: conductance of electrons entering and leaving the strip in an edge

state, ge−e, and entering as bulk states, but leaving the strip as edge electrons, ge−b. Even

with multiple scatterers, ge−e behaves as Eq. (3.15) indicates: it drops down from unity (in

units of e2

h ) to zero at moderate disorder, then rises back to unity at strong disorder. In

Fig. 3.13(b) we see that the minimum ge−e is independent of the system length. Therefore,

the only possible source of the gmin dependence on the system length must come from ge−b,

which starts at zero for the clean limit, rises for moderate disorder, then peaks and decays

as we go to strong disorder (see Fig. 3.13(c)). The inset in Fig. 3.13(a) shows that the

conductance ge−b depends exponentially on the number of scattering points, and hence on

the length of the system.
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Figure 3.14: (a) Sum of conductance of chiral-to-chiral (b) and bulk-to-chiral (c) channels
for N=5 and M=4 (blue), 7 (green), 10 (red) for ke = 1.4π

a and kb = 1.2π
a . The conductance

minimum is unaffected by changes is the system width in agreement with the results of
the numerical calculation. c) Renormalizing the disorder strength by

√
M , ge−b, which

is the dominant contribution to the conductance in the region of the minimum, becomes
independent of the system width. The conductance is in units of e2

h .

3.6.0.4 Width dependence

We now explore the width dependence of the conductance through the edge states. To this

end, we can use a simple approximation VFV† ≈
〈
VFV†

〉
. This stems from the fact that〈(

VFV†
)n〉

/
(〈
VFV†

〉)n → 1 when the number of bulk modes goes to infinity M → ∞.

This holds as long as the distribution of the random matrix elements Vn(j) has a finite

variance. Our approximation is therefore good when there is a large number of bulk modes

M � 1, and we can then write

〈Ge,e(N, 1)〉 ' − i

ve
eike(N−1)det(G

T −
〈
VFV†

〉
)

det(G+ 〈VFV†〉)
. (3.18)

A similar expression holds for Ge,e(N, j 6= 1) as well.
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The width dependence of the conductance can now be deduced from

(〈
VFV†

〉)
ij

=
(−1)i+j

4v2
e

eike(xi−xj)
∑
nm

Fn,m(i, j) 〈Vn(i)Vm(j)∗〉 (3.19)

=
(−1)i+j

4v2
e

eike(xi−xj)
∑
nm

Fn,m(i, j)δijδnmW
2 (3.20)

=
1

4v2
e

δijW
2
∑
n

Fn,n(i, i) ∼MδijW
2 , (3.21)

where the variance of the disorder is the disorder strength W squared. From this we see

that the dependence on M can be absorbed into W ,

Weff =
√
MW . (3.22)

As a consequence we expect that increasing the width (increasing M) only shifts the mini-

mum to different disorder strength W0, and does not change gmin.

This simple dependence on M turns out to work quite well when applied to the toy

model. Fig. 3.14(a) shows the conductance through the chiral mode for different system

widths, M . The minimum conductances in the plots are indeed all similar, consistent with

the numerical results shown in Fig. 3.5(d). The conductance is dominated by the bulk-

to-chiral channel (Fig. 3.14(b)). Furthermore, scaling the disorder strength by
√
M , the

three lines of Fig. 3.14(b) collapse onto a single line in Fig. 3.14(c). Only the width of the

minimum, and not its depth, is affected by the channel number.

3.7 Conclusions and summary

In this manuscript we explored the transport signatures in a topological conductor phase.

The particular realization of a 2d topological conductor we considered here had an edge
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state originating in the high-energy bands, overlapping in energy (but not in momentum)

with a trivial band at the Fermi energy (see the spectrum in Fig. 3.2). This model should

suffice to capture the generic qualitative features of the non-protected topological aspects

of topological conductors.

To find topological signatures, we calculated the two-terminal conductance through a

topological conductor strip in the presence of disorder in the form of a random on-site

chemical potential. Our results clearly show that even when a bulk gap is absent, the

edge states, which are no longer protected, maintain their individuality and dominate the

transport in the strip. Inspecting the effects of disorder on all the conducting channels

of the topological conductor, a single channel clearly stands out (see Fig. 3.4). The most

conducting channel in the strip has a conductance which initially decays rapidly as we

increase disorder strength, but then reaches a minimum, and then recovers to a value

consistent with ballistic transport through the disordered region. The dip and recovery

features single out the topological edge channel, and show that even when the system is

gapless, its capacity for nearly dissipationless transport is restored once disorder suppresses

transport through the bulk.

The origin of the ‘dip and recovery’ features (Fig. 3.4) presumably has to do with lo-

calization effects in the bulk. Intuitively, as the bulk states become less transparent, the

edge state, which cannot localize since it is chiral, reemerges to dominate transport. To

gain a better qualitative understanding of the main features in our numerics, we developed

a simple toy model, consisting of a single chiral mode that can randomly scatter to several

regular channels. The model assumes that the bulk is diffusive, and does not invoke local-

ization explicitly. Disorder strength is encoded in the random scattering strength between

the chiral edge and the bulk. The diffusive nature of the bulk is taken into account by using
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random phases in the edge-bulk scattering elements. Despite its simplifications, this model

demonstrates that generically the edge-edge scattering contribution to the conductance ge−e

shows the ‘dip and recovery’ behavior (see Figs. 3.12, 3.13).

Thus it appears that the full-fledged Anderson localization, which is necessary to elimi-

nate conductivity in the bulk, is not necessary for the revival of the edge state conductance.

Rather, the dip and recovery feature appears to be guaranteed once a separate chiral mode

is present, assuming it is unable to scatter to its counter-propagating partner. In the nu-

merics, we do have both edge channels, but because their wave functions essentially do not

overlap, disorder can not produce direct scattering between them. Note, however, that it

appears that the ‘dip and recovery’ feature may not occur when the edge state overlaps in

energy, and therefore can hybridize with the bulk states of its progenitor topological band.

The unique transport features in topological conductor strips will have additional signa-

tures. First, we note that the results we presented here, when applied to a spinful electron

system, rely on time-reversal invariance, and require that no scattering occurs between the

counter-propagating, opposite-spin modes on the same edge. Therefore, when moderate

disorder is present, and the strip conductance is dominated by the descendant of the edge

channel, the conductance of the strip would be strongly suppressed by a magnetic (Zee-

man) field normal to the Rashba spin direction. Such a Zeeman field opens up a gap in

the edge states, pushing them away from the Fermi energy, in which case the edge state

no longer contributes to transport. The highly conducting mode we found would then no

longer contribute to the overall conductance through the strip, which will now be purely

diffusive, with no remnant of ballistic transport. Magnetic impurities at the edge would

have a similar destructive effect. Second, probing the current density in the sample would

disclose that in moderate disorder the conduction is dominated by regions near the edge.
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Probing these effects experimentally would rely on materials or quantum wells having a

band structure similar to the one considered here: a metallic band coexisting at the same

energy with the edge states of a different band.

The ‘dip and recovery’ feature arising in transport due to disorder was shown here to

appear in a non-interacting 2d system. It is interesting to ask how these features would

change when considering Coulomb interactions. This could also be explored within the toy

model we presented, by promoting the electronic modes to Luttinger liquids with interaction

between the various modes. We could then also consider a more complete model containing

the chiral modes on both sides of the strip, and follow the mixing between them explic-

itly. Similarly, one could ask about similar resurgence of edge physics in a 3d topological

conductor. Instead of conductance, however, the appropriate topological signatures in 3d

should be the Kerr effect rotation angle, which encodes the unique response of topological

edge states to an oscillating electro-magnetic field (see also Ref. [21]).

The work presented in this manuscript adds to the notion that topological behavior

has distinct and strong signatures even in the absence of protection due to a band gap.

This observation, as articulated also in Refs. [87, 88, 95], significantly extends the class of

systems (and materials) in which topological effects can be found.

3.8 Appendix: Transfer-matrix method

In this section, we will demonstrate a way to calculate the transmission coefficients TLRnm of

our system using the transfer-matrix method.[106]

Naively, all we have to do to calculate the transmission coefficients through our system is

first find the basis of modes in the clean limit (the modes in the leads) ψn(x), then starting

with an electron in just one of the (clean-limit) modes in the left lead ψn(x = au) (cf.
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Fig. 3.3), propagate the wavefunction through the dirty sample, and calculate its weight

in the various modes of the (clean) right lead ψ(x = aw) =
∑

m T
LR
nmψm(x = aw). These

weights are precisely the transmission coefficients.

In practice, we run into some difficulties. Namely, the calculated ψ(x = aw) contains

weight in some unphysical exponentially growing modes ∼ e+|κ|x, not just in the propagating

modes. As a consequence, we have to perform a more complicated numerical procedure.

The main steps of the calculation are the following: After determining the transfer

matrix, we calculate the eigenvalues and -vectors of the transfer matrix which correspond to

the possible modes and wavefunctions in the leads. For computational convenience we start

the calculation in lead R. Propagating one of these wavefunctions backwards through the

system using the transfer matrix gives us a wavefunction in lead L which is a superposition

of all possible wavefunctions in the leads, i.e., a superposition of all eigenvectors of the

transfer matrix including unphysical (exponentially increasing) modes. Next, in order to

determine the transmission coefficients, we need to find a superposition of only physical

modes in lead L which, after propagation through the system, leads to a superposition

of one right-moving mode with weight one and decaying modes in lead R (cf. Fig. 3.15).

To find the necessary coefficients of the modes in lead L, we propagate a superposition of

one right-moving mode with weight one and all decaying modes backwards through the

system and choose the coefficients of the decaying modes such that the unphysical modes

in lead L are canceled by destructive interference. Doing this for all right-moving modes

gives us information about all transmission channels and we can determine the transmission

coefficients TLRnm for arbitrary modes n and m using probability current conservation.

The lattice model of the topological conductor is illustrated in Fig. 3.3. The system

is a honeycomb strip with a width of M zig-zag lines with an overlayed triangular lattice
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with sites that occupy the centers of the honeycomb hexagons. The unit cell is chosen as

explained in Fig. 3.3 with dashed rectangles indicating the unit cells. A region with a

length of L unit cells constitutes the disordered topological conductor. It is connected to

two perfect ballistic leads, one on each side.

In order to determine the transfer matrix, the Hamiltonian given by Eq. (3.1), which

only connects sites within neighboring unit cells (cf. Fig. 3.3), can be written as

H =
∑
u

c†u(Hu,u−1cu−1 + Hu,ucu + Hu,u+1cu+1), (3.23)

where

c†u =

(
(au,1)† (bu,1)† (cu,1)† ... (bu,M )†

)

is the vector of all electron creation operators in unit cell u, as indicated in Fig. 3.3. The

matrices Hu,w describe hopping from unit cell w to unit cell u.

Starting with the Schrödinger equation one can find a recursive relation for the wave-

functions as

Mu ·

Ψu+1

Ψu

 =

 Ψu

Ψu−1

 , (3.24)

with the transfer matrix

Mu =

 0 I

Au Bu

 , (3.25)
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where

Au =− (Hu,u−1)−1 Hu,u+1,

Bu = (Hu,u−1)−1 (EF I−Hu,u) .

Ψu =

(
ψAu,1 ψBu,1 ψCu,1 ... ψBu,M

)T
is a vector of the amplitudes on all sites in

one unit cell and EF our chosen Fermi energy. Using appropriate initial wavefunctions and

Eq. (3.24), we can calculate the wavefunction in every unit cell of our system. Our initial

condition is an incoming right-moving wave in lead L such that there are only transmitted

waves in lead R and the initial and reflected waves in lead L. Once we have the wavefunctions

in both leads we can determine the transmission matrix. For computational convenience

we calculate backwards through the system starting in lead R.

The first step is therefore to determine the eigenmodes of lead R which are given by

the eigenvalues λn and eigenvectors Ψn of the transfer matrix Mw for w in lead R. For

propagating modes λn = eikna and the eigenvalue is a root of unity, while otherwise the

amplitude is increasing or decaying. Depending on the energy level we choose, we get p

pairs of propagating modes (left and right moving) with eigenvalues e±ikna (a is the length

scale of our system and will be set to 1) and eigenvectors Ψ±kn and q pairs of exponentially

increasing or decaying modes (resulting from imaginary momentum modes) with eigenvalues

e±κna and eigenvectors Ψ±κn . The physical eigenmodes of lead R are the starting points

for Eq. (3.24). Taking w to be a unit cell in lead R and u a unit cell in lead L, as illustrated

in Fig. 3.3, we can determine 2p+ q physical wavefunctions in lead L using

ΨL
kn =

Ψu+1

Ψu

 = Mu+1 · ... ·Mw−1 ·Mw ·ΨR
kn (3.26)
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and analogously for ΨL
κn . These wavefunctions have to be a superposition of all possible

eigenvectors of M in the leads and can be written as

ΨL
kn =

2p∑
m=1

αkm,knΨR
kme

iNkm +

2q∑
m=1

ακm,knΨR
κme

Nκm (3.27)

and analogously for ΨL
κn with N = w − u and kp+n = −kn, κq+n = −κn for brevity.

αqm,q′n ∈ C is the coefficient of mode qm in lead L when mode q′n was propagated from lead

R to lead L.

Since we know that the eigenvalues of the transfer matrix are of the form e±ik and e±κ,

the momenta km and κm can be calculated from the eigenvalues of Mw. Eq. (3.27) forms

a linear system of equations with a unique solution for the variables αqm,q′n . In general

all the coefficients αqm,q′n will be nonzero, that includes the coefficients of the unphysical

modes. Although we now essentially have corresponding incoming flux amplitudes in the

left lead and outgoing flux amplitudes in the right lead, we cannot calculate the transmission

coefficients from those because the picture is not physical. The wavefunction in the left lead

contains exponentially increasing contributions. Instead of choosing a single outgoing mode

in the right lead (which by itself gives us unphysical contributions in the left lead) we take

a superposition of physical modes, i.e., propagating and exponentially decaying modes, in

the right lead. The coefficients of this superposition have to be chosen such that (after

propagating backwards through the strip) the unphysical modes in the left lead cancel each

other. However this cancellation only works for a superposition of one propagating mode

with all the exponentially decaying modes. This procedure is illustrated in Fig. 3.15. We

are not interested in the left-going modes in the right lead since we are looking at the case

of an incoming wave from the left. To cancel the unphysical modes in the left lead we need
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Figure 3.15: Considering a superposition of physical modes in lead R, one can cancel the
unphysical modes in lead L by destructive interference. The coefficients βkm,n have to be
chosen such that, after backwards propagation, the exponentially increasing modes in lead
L have zero weight. The coefficients βkm,n are given by Eq. (3.28). The coefficients γqn,q′m
of the resulting superposition (of only physical modes) in lead L are given by Eq. (3.29).

to solve p systems of equations like (cf. Fig. 3.15)


ακ1,km ακ1,κ1 · · · ακ1,κq

...
...

...
...

ακq ,km ακq ,κ1 · · · ακq ,κq





βkm,0

βkm,1

...

βkm,q


=


0

...

0

 , (3.28)

one for each km corresponding to a mode propagating to the right. The βkm,n are the

coefficients of the superposition in lead R that we want to determine. The index km denotes

which propagating mode is part of the superposition. The index n shows which mode

belongs to this coefficient, 0 for the propagating mode and n = 1...q for the q decaying

modes. The αqn,q′m are calculated from Eq. (3.27) and are the coefficients of the unphysical

modes that we want to cancel. ακ1,km is the coefficient of the (exponentially increasing)

mode κ1 in the lead L when the (propagating) mode km was propagated from lead R

backwards through the system. The set of linear equations (3.28) is under determined and

we can therefore choose βkm,0 = 1 without loss of generality. The coefficients βkm,0 and βkm,n

give us a superposition of physical modes in lead R which is caused by a superposition of
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only physical modes in lead L. This is illustrated in Fig. 3.15 where the entire system is now

made up out of only physical modes. In order to determine the transmission coefficients, we

are interested in the coefficients γ of the propagating modes in lead L. Taking into account

the necessary superpositions, the coefficients for the right-moving modes are given by

γkn,km = 1 · αkn,km +

q∑
l=1

βkm,κlαkn,κl (3.29)

γkn,km is the coefficient of mode kn in the left lead when the outgoing mode in the right lead

is km. The transmission coefficients can now be calculated by requiring probability current

conservation. This leads to the following system of equations:



TLR11 TLR12 . . . TLR1p

TLR21
. . .

...
...

TLRp1 . . . TLRpp


· Γ = V, (3.30)

with Γnm = γkn,km
√
|vkn | and Vnm =

√
|vkn | δnm. vkn = 1

~
∂E
∂k |k=kn is the velocity of mode

kn. The Tnm are the transmission coefficients with |TLRnm |2 the probability that an electron

coming in through mode km is transmitted through the conductor into mode kn.
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Chapter 4

Non-perturbative expression of
leaky chiral mode †

4.1 Background and Motivation

Interest in the behavior of chiral modes on the boundary of 2d insulating systems has been

growing in past years. In particular, such modes are always present on the boundaries

of topological states such as topological insulators [12, 107, 108, 109, 81, 110, 111], and

quantum Hall samples [26, 112, 113, 114]. For example, an important consequence is that

zero-temperature electron transport along an edge of a topological insulator will have a

quantized conductance, if time-reversal symmetry is not broken. To describe realistic sys-

tems, however, it is always necessary to take into account imperfections, such as potential

disorder or impurity scattering [115, 116, 117], or even the presence of a bulk states. Inter-

estingly, chiral edge states might even be the result of adding disorder to trivial spin-orbit

coupled semiconductors, and the appearance of the so-called Anderson topological insula-

tor [54, 68, 55]. In the course of such a disorder-induced transition, the system necessarily

carries extended bulk states as well as chiral modes. Such topological metal systems show

a non-trivial behavior of transport properties[118, 119].

†This chapter is published in [105]
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Disorder effects in non-chiral 1d systems, e.g., localization phenomena due to the in-

troduction of random potential, were also studied theoretically and computationally for

many years (for a review see, e.g. [120]). While it is computationally straightforward to

confirm localization of wave functions in 1d single particle systems, the theoretical studies

of localization properties and transitions in 1d and higher have proven challenging. A scal-

ing theory suggested in [49] shows the localization of 1d and 2d at any weak disorder in

the system. For a given distribution of random disorder, an upper bound on localization

length was found in [121]. Powerful disorder averaging techniques are available, such as

the supersymmetry approach [122] and the replica trick [123], which induces an effective

non-linear sigma field theory. Also, in strongly disordered systems such as random spin

chains, trap models, and random polymers, the role of quenched disorder on quantum and

thermal fluctuations has been studied by the strong disorder renormalization group method

(for a review see, e.g. [124]).

Considerable advances, however, can be made by simple and, arguably, more reliable

algebraic methods, when considering a 1d chiral mode connected to a bulk. Such an ap-

proach could apply to intrinsic chiral edge modes, and even to localization in non-chiral 1d

systems. An example of such a simplification is the subject of the present paper.

In this manuscript, we present a closed-form Green’s function of a chiral mode coupled

to a bulk and its applications. In section 4.2, the Green’s function is expressed as a ratio

of determinants, and involving in the Green’s function of the bulk and arbitrary couplings

between the chiral mode and bulk. An application to disordered strict 1d wire is introduced

in section 4.3. The 1d wire is modeled in terms of two chiral modes, and the “det-formula”

is applied in the presence of onsite impurities. The disorder averaging of transmission

coefficient, the log of transmission coefficient, and the reflection coefficient are worked out

103



Figure 4.1: A chiral mode is coupled to a bulk that may contain localized and propagating
modes. The chiral Green’s function from site i = 1 to i = N is found for a given coupling
between the chiral and bulk modes expressed in matrix T in real space, and bulk Green’s
function GB in section 4.2.

in the subsections. In section 4.4, the phase picked up by the chiral mode in quantum hall

fluid system is studied. We conclude in section 4.5. Additional details of disorder averaging

of the log of transmission coefficient are worked out in Appendix 4.6.

4.2 Green’s function of a leaky chiral mode

In this section, we derive an analytic expression for the Green’s function between the two

ends of a chiral mode. Throughout the paper, we assume that the scattering happens at

discrete locations, allowing us to turn the problem into a matrix problem. We therefore

only need the Green’s function of the right-moving chiral mode at the scattering positions:

(GR)nm =
1

ivF
eik|n−m|aθ(n−m), (4.1)

which in real-space basis is a left lower triangular matrix. We define θ(0) = 1/2, and

n,m = 1, · · · , N are indices of scattering sites. We assume that the scattering centers are

equally spaced. This assumption can be lifted by modifying the translational operator Ût

introduced later. The chiral Green’s function renormalized by the coupling with the bulk

modes represented by GB can be obtained by writing the Hamiltonian of the system in
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block form and using standard block inversion, with the result:

G =
1

G−1
R − V GBV †

. (4.2)

For convenience, we pull out phase factors from the Green’s function, writing it as:

GR = Û †tGR0Ût. (4.3)

Here Ût = e−ikan̂, where n̂ is the position operator along the wire, n̂nm = δmnn, and GR0 is

a Green’s function with zero wave number in Eq.(4.1), which can be thought of the chiral

Green’s function with the phase factors gauged out and without coupling to bulk modes.

Due to the particular form of GR0, we can write its inverse explicitly, finding that:

G−1
R0 = −4v2

F ÛsGR0Û
†
s , (4.4)

where a sign operator Ûs = eiπn̂ is introduced. We note that GR, as well as its inverse G−1
R ,

are lower triangular matrices. With these definitions, we now have:

G =
1

4v2
F

Ûst
1

−GR0 − T GBT †
Û †st, (4.5)

where Ûst = ÛsÛt, and T = ÛstV/2vF .

Our main interest in this paper is to get the Green’s function between two ends, described

by GN1. To do so, we use Cramer’s rule, i.e., C−1
ij = (−1)i+jMjidet(C)−1, where Mji is the
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ji’th minor of the matrix C, together with Eq.(4.5), and find:

GN1 = (−1)N
ei(N−1)ka

4v2
F

(
1

GR0 + T GBT †

)
N1

(4.6)

= (−1)N
ei(N−1)ka

4v2
F

(−1)N+1M1N

Det[GR0 + T GBT †]
. (4.7)

where (1,N)’th minor of the matrix is:

M1N = minor1N [GR0 + T GBT †] (4.8)

= 4ivF (−1)NDet[−GTR0 + T GBT †] (4.9)

= 4ivFDet[G
T
R0 − T GBT †]. (4.10)

Here, we manage to express the minor in the symmetric form of the denominator in Eq.(4.7).

The derivation is detailed in Fig.4.2. As a result, the renormalized Green’s function is

expressed in terms of the ratio of two determinants:

GN1 = G(0)
N1

Det[GL0 − T GBT †]
Det[GR0 + T GBT †]

, (4.11)

where G(0)
N1 = ei(N−1)ka/ivF , and GTR0 is replaced by GL0, which is the Green’s function of

a left-moving chiral mode: (GL0)mn = (GR0)nm. Note that T is essentially the coupling

matrix between the chiral and bulk modes, but rescaled by the Fermi velocity and multiplied

by the sign and translational matrices. We thus obtained the renormalized chiral Green’s

function coupled with bulk modes in a compact and closed form. The additional factor is

expressed as a ratio of two determinants, and we find it particularly advantageous to perform

disorder averaging. We continue the detailed calculation of transmission of disordered 1d
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Figure 4.2: The derivation of Eq.(4.10) is detailed with diagrams using w = 1/ivF , for
simplicity. Note that T GBT † has no element in the outer part of the matrix since there is
no coupling at site i = 1 and i = N . The (1,N)’th minor of matrix (a) is the same with
that of matrix (b), which is obtained by subtracting the last row of (a) from all other rows.
Then, consider matrix (c) which has the outer elements of −GTR0. Its determinant is the
same with the (1,N)’th minor of matrix (b) up to a constant as expressed in (d).

wire in the following section.

4.3 Example: disordered 1d wire

Our first example is a 1d wire with random onsite potentials first considered by Anderson[43].

The physical quantity of interest is the transmission coefficient of the system, as it is the

most relevant for 1d and quasi 1d wires connected to leads[125], rather than the conductance

of system, which is the ratio of the transmission and reflection coefficients. Our expression

for the Green’s function is not directly applicable to this problem, since the 1d wire does not

contain a chiral mode explicitly. Nevertheless, we show in section 4.3.1 that the disordered

1d wire can be equivalently modeled by two chiral modes with the couplings through quan-
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Figure 4.3: (a) 1d wire with random onsite impurities. (b) An equivalent model of (a). The
1d clean bulk mode is described by two chiral modes, and random impurities are modeled by
the coupling between two chiral modes through quantum dots with random onsite potentials
(see Eq.(4.17)).

tum dots. We then apply the det-formula in section III.B to find the transmission coefficient

for a given realization of random impurities. In section III.C, the disorder averaging of the

transmission coefficient T , as well as of log(T ), and 1/T are computed. We also show that

our approach to computing the transport quantities provides a clear picture for why the log

of the transmission is a well behaved statistical quantity. Plus, it simplifies the process of

disorder averaging.

4.3.1 Alternative model of disordered 1d wire

In this section we consider an ordinary 1d wire, which, using the results of the previous

section, we decompose into two chiral modes coupled through a series of quantum dots. The

system contains (N − 2) impurities with random strengths which is expressed by matrix α

in real space (see Fig.5.2):

(α)nm = δnmαn, (4.12)
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where index n is for the scattering sites. The first site, n = 1, and the last site, n = N ,

play the role of leads connected to the disordered wire from both ends.

The Green’s function through the disordered 1d wire can be cast in a T-matrix formu-

lation as:

GN1 =

(
G+G

1

I − αG
αG

)
N1

, (4.13)

where G is the free Green’s function on the wire. We consider a system with N scattering

points and placed at intervals of length a. Only positions on the wire at which scatter-

ing occurs contribute in a non trivial way in Eq.(4.13), and therefore we can replace the

continuous G by a N ×N matrix with elements:

(G)nm =
1

ivF
eik|n−m|a. (4.14)

Now consider chiral Green’s functions with left and right moving modes. One can relate

them to the non-chiral Green’s function by:

G = GR +GL. (4.15)

where the left-moving chiral Green’s function is similar to Eq.(4.1) with m and n exchanged

in the step function, so that (GL)mn = (GR)nm. Next, we express the Green’s function

through the disordered 1d system, Eq.(4.13), in terms of the chiral modes:

GN1 =

(
GR +GR

1

I − α(GR +GL)
αGR

)
N1

. (4.16)

Note that except for the Green’s function in the T-matrix, the Green’s function G on the
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left and on the right have been replaced by GR, which is justified since (G)nm = (GR)nm

for n > m, while αn is nonzero only at the points N − 1 > n > 1.

Finally, we obtain a model of a disordered 1d wire by introducing quantum dots replacing

random onsite potentials, and the two chiral modes are connected to the dots through a

coupling matrix V :

α = V GQV
†, (4.17)

where GQ is Green’s function of quantum dots possessing random chemical potentials. By

substituting the random potential matrix α in Eq.(4.16), GN1 now describes the Green’s

function of the right-moving chiral mode, as in Fig.2 (b).

Note that all of our following analysis is performed in the parameter range where the

dispersion relation can be treated as linear. More specifically, consider a dispersion relation

at some momentum:

E(k) = E(k0) + vF (k − k0) + u2(k − k0)2

+ u3(k − k0)3 +O(k4). (4.18)

To justify the validity of the det-formula, which is based on the linear dispersion of a

chiral mode, we must have k − k0 � ∆kc = Min(vF /u2,
√
vF /u3). Therefore, the impurity

strength should be less then vF∆kc. On the other hand, we introduce the limit of weak and

strong impurity strength by the expansion parameters and the number of impurities:

α � vF
N

(weak disorder) (4.19)

vF
N
� α � vF∆kc (strong disorder). (4.20)
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In the following sections, we refer to the weak and strong limits of impurity strength ac-

cording to the above determination. For some systems with vF /N ≥ vF∆kc, we disregard

the strong disorder regime.

4.3.2 Green’s function through disordered 1d wire

Consider a 1d wire with a particular disorder realization, Fig.5.2(b). We would like to

compute the transmission through the wire from site i = 1 to i = N , and therefore the bulk

corresponding to the one in Fig.4.1 is the quantum dots coupled with a left-moving chiral

mode. The Green’s function of the bulk is:

GB =
1

G−1
Q + V †GLV

(4.21)

where the left-moving chiral Green’s function renormalizes the Green’s function of quantum

dots. Note the hopping matrix V has now a different order compared to Eq.(4.2). For our

purpose, it is convenient to consider with a simplified form:

GL = − 1

4v2
F

Û †stG
−1
L0 Ûst (4.22)

Define T2 = Û †stV/2vF , plug in the left-moving chiral Green’s function back to the bulk

Green’s function expression:

GB =
1

G−1
Q + T †2 G

−1
L0T2

(4.23)

111



Next, let us work with the renormalized Green’s function for this bulk system. Eq.(4.11) is

reduced to:

GN1

G(0)
N1

=
Det[GL0 − T GBT †]
Det[GR0 + T GBT †]

(4.24)

=
det[GL0(T GBT †)−1 − I]

det[GR0(T GBT †)−1 + I]
(4.25)

=
Det[GL0 − (I −GL0Û

2
t G
−1
L0 Û

†2
t )T GQT †]

Det[GR0 + (I +GR0Û2
t G
−1
L0 Û

†2
t )T GQT †]

(4.26)

=
Det[G′L0 −RT GQT †]
Det[G′R0 + T GQT †]

(4.27)

where in the second equality the determinant with lower case is designated as the determi-

nant of matrix excluding the boundary elements. Next, the inverse of T GBT † is expressed

using the relation T2T −1 = Û †2t = ei2kan̂ and T GQT † recovering a determinant of a whole

matrix. In the last equality, new Green’s functions have been defined:

G′R0 =
1

G−1
R0 + Û2

t G
−1
L0 Û

†2
t

(4.28)

= − 1

4v2
F

Ûst
1

GR +GL
Û †st (4.29)

where GR+GL is the Green’s function of a clean 1d wire Hamiltonian with nearest neighbor

hopping, and therefore the inverse is a tridiagonal matrix. On the other hand,

G′L0 =
1

I +GR0Û2
t G
−1
L0 Û

†2
t

GL0 (4.30)

= G′R0G
−1
R0GL0 (4.31)
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and

R =
1

I +GR0Û2
t G
−1
L0 Û

†2
t

(I +GL0Û
2
t G
−1
L0 Û

†2
t ) (4.32)

= I −G′R0(I +G−1
R0GL0)Û2

t G
−1
L0 Û

†2
t . (4.33)

Studying the second term on the right side of Eq.(4.33), equal to (I − R), we find that,

(I − R)nm = 0 for n > 1, and (I − R)11 = 1. As a result, we find that (R)11 = 0 and

(R)nn = 1 for n 6= 1. Finally, one can verify that:

(G′L0 +RG′R0)nm =
1

4i
δn,1δm,N , (4.34)

and the renormalized Green’s function is reduced to:

GN1

G(0)
N1

= Det
[
(G′L0 +RG′R0)

/
(G′R0 + T GQT †)−R

]
=

1

Det[I + T GQT †G
′−1
R0 ]

=
1

Det[I − α(GR +GL)]
(4.35)

using the notation previously defined in the alternative model. A Green’s function of a

similar form was discovered by Thouless[126], and used to obtain the density of state. Once

the transmission of a 1d disordered system for particular disorder realization is written in

this way, the analytic manipulation becomes easier and the disorder averaging is rendered

accessible as we present in the next sections.
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4.3.3 Disorder averaging

The ability to analytically perform disorder averaging for observable quantities can provide

vital insights to the behavior of disordered systems. Although a purely 1d system is not

experimentally accessible (with the exception, perhaps, of cold atoms[127]), there have

been numerous theoretical studies of disorder in 1d due to its relative simplicity compared

to quasi 1d and higher dimensional systems. For example, the disorder averaged resistance

is most interesting and many works have been focused on the scaling behavior with respect

to system size [128, 129, 130, 131, 132]. The log of the transmission was also a focus of much

study, as it is a statistically well behaved quantity, which follows the central limit theorem

[129, 133, 134, 135, 136]. Previous approaches [137, 138, 136], however, are mostly limited

to weak disorder. With our reduced determinant expression for the transmission, we can

simply show why the log of the transmission has a well defined probability distribution, and

we also painlessly obtain the next order correction of log(T ) in the appendix so that the

localization length can be estimated at moderate disorder strength.

Finally, we computed the disorder averaged transmission coefficient of system; few stud-

ies of this quantity exist, as it is difficult to obtain its disorder average[138]. For a system

without leads, a conductance is a transmission over resistance. But, as discussed earlier,

the transmission coefficient is an experimentally more relevant quantity since one cannot

measure the conductance without leads [125]. The disorder-averaged transmission will be

particularly interesting for a quasi 1d system due to its universal conductance fluctuations

[139, 140]. In the following subsections we perform disorder averaging of transmission, its

log, and resistance.
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4.3.3.1 Transmission coefficient: T

In this section we find an analytic expression for the transmission coefficient of a disordered

wire in the weak disorder limit, and then perform disorder averaging. The explicit expression

of the transmission obtained here will be used in later sections. Note that the conductance

measured in experiments also involves the connected leads, and therefore the transmission

considered here is directly relevant to conductance even for a strict 1d system [125]. One

can express the transmission for a particular disorder realization using transfer matrix

methods. The resistance is related to a product of transfer matrices, and is thus relatively

easy to disorder average, while the transmission is its inverse, which is harder to average.

Group-theoretical approaches [141, 138] were suggested to perform the disorder average

of the transmission, with some success in the weak disorder limit. We present here an

approach that enables obtaining disorder averaging in a simpler fashion, and can possibly

be generalized to spatially correlated disorder distribution.

In the weak disorder limit we make use of the Green’s function(Eq.(4.35)) to obtain

the transmission coefficient through the disordered wire, T = |GN1|2. The determinant can

be perturbatively expanded using det(I + O) = exp(Tr(O − O2/2 + · · · ). In our case, the

matrix O is simply −α(GR +GL). We now consider the traces:

(O)nn = − αn
ivF

(4.36)

(O2)nn = −
∑
m

αnαm
v2
F

e2ika|n−m|. (4.37)

We see that the diagonal elements of O are purely imaginary, and therefore the TrO term

just provides a phase to the Green’s function and the transmission coefficient is unchanged

by the first order term. In contrast, the diagonal elements of O2 possess a non-vanishing
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real part, and therefore the leading order contribution in the weak impurity limit.

For a given realization of impurity strengths {α}, we have the transmission coefficient:

T ({α}) = e
−Tr

[∑Mup
m=1

(−1)m+1

m
(Om+O∗m)

]
, (4.38)

' 1

exp(−Tr(O2 +O∗2)/2)
, (4.39)

=
1

exp(
∑

n,m αnαmcos(2ka|n−m|)/v2
F )
, (4.40)

where the upper bound of sum in the exponent of Eq.(4.38), Mup = 2 is taken in the second

equality. The indices n and m run over the lattice positions between n = 2 to n = N − 1.

The bilinear summation over impurity strengths is particularly useful for analytic disorder

averaging if the αi are given by a Gaussian distribution:

T =

∫
T ({α})

N−1∏
i=2

e−α
2
i /2σ

2

√
2πσ

dαi (4.41)

=
1√

det(K)
(4.42)

where the matrix K is:

(K)nm = δnm + 2σ2cos(2ka|n−m|)/v2
F . (4.43)

K can also be written in the form

K = IN−2 +
2σ2

v2
F

(|v〉〈v|+ |v∗〉〈v∗|), (4.44)

where |v〉 is a vector with elements (v)n = einka with the index n = 1, · · · , N − 2. This

form shows that K is a rank 2 matrix, and the determinant of K is as easy as taking a
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determinant of a 2× 2 matrix. As a result:

det(K) =

[
1− (N − 2)

σ2

v2
F

]2

− σ4

v4
F

|ΣN−2
n=1 e

inka|2. (4.45)

In the weak disorder regime, the first term gives the dominant contribution to the transmis-

sion coefficient. Fig.4.4 shows a surprisingly good agreement between numerics that take

into account all orders and the analytics within 2nd order for different system size N. The

perturbation theory works only when the expansion parameter is smaller than unity. For

our case, from the expansion parameter, Tr(O2) in Eq.(4.37), the condition is

λ =
σ2N

v2
F

< 1. (4.46)

The horizontal axis of the plot is σ2/v2
F , and therefore the analytic expression is valid for

σ2/v2
F < 1/N . For the largest system size N = 100 in the plot, we can see the deviation as

early as σ2/v2
F ' 0.01, consistent with the discussion.

A natural question is how will the estimates improve if higher order terms in the matrix

O are taken into account. We found that the improvement is negligibly small, as shown

in Fig.4.5 which shows the comparison for the inclusion of different orders. This is an in-

teresting point to discuss. The random variables, i.e., the strengths of the impurities, αn,

appear in the exponent of exponential function. Therefore, the average transmission coeffi-

cient is dominated by the realizations with very small impurity strengths, the contribution

of other realizations is exponentially suppressed. Because at small impurity strengths the

contribution of higher order terms in Eq.(4.38) are also small, we find that the leading

order actually gives a good estimate of all orders. Note that for systems with a spatially

correlated disorder distribution, we can simply introduce a spatially correlated Gaussian
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Figure 4.4: log T of a disordered 1d wire with ka = 0.45π is plotted. 1000 different disorder
realizations are numerically performed (dots) and compared with the analytic expression
within the perturbative regime (solid lines) and non-perturbative regime (dashed lines) for
different system size N=20, 50, 100. The perturbative regime is determined by λ = σ2/v2

F <
1/N according to Eq.(4.46).

distribution in Eq.(4.41), which allows the averaging to follow along the same lines as for

systems with non-correlated distributions.

4.3.3.2 Localization length: log(T )

As shown in the last section, the disorder-average of the transmission is dominated by a

few rare realizations with a set of very weak impurities. On the other hand, it is found

that the log of the transmission is statistically well behaved [129, 133, 134, 135, 136]. In

the weak disorder limit, the explicit expression of the inverse localization length was found

using a perturbative approach to first orderin disorder [136, 137, 138]. In this section, we

present the expression of logT , which includes all terms linearly proportional to system size

for W/vF < 1. We also obtain the terms which are not linearly proportional to system size

in the appendix. They may have a non-trivial effect on the inverse localization when the

electron’s wavelength is commensurate with the lattice spacing [136]. We show, using our

formalism, why (logT )/L obeys the central limit theorem. Also, we discuss the behavior of
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Figure 4.5: log T with ka = 0.45π is numerically computed (lines) considering different
upper bound Mup of summation in the exponent of Eq.(4.38), and compared with exact
numerical results (dots) for a system of N = 30. The improvement by including the higher
order correction is slight.

logT in the strong disorder limit.

Let us first consider the disorder strength within perturbation regime, W/vF < 1, where

the W is the cutoff of uniform disorder distribution. Here we employ the uniform distri-

bution instead of a Gaussian distribution, ensuring all moments are bounded. Working in

the perturbation regime validates the expansion of log(I+O) for the terms linearly propor-

tional to system size considered below. We consider the terms with even order of O in the

expansion, since they are the only non-vanishing terms after disorder averaging. The term

with even mth order of O is:

1

m
Tr [Om +O∗m] = (4.47)

2

m

∑
n1,··· ,nm

(
m∏
i=1

αni
vF

)
cos

(
ka

m∑
i=1

|ni+1 − ni|

)
(4.48)

where ni = 2, · · · , N − 1 is index of impurity site, and nm+1 ≡ n1. Though the exact

summation over indices seems tricky, we find the dominant contribution by summing terms
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with zero argument of the cosine function: ni+1 = ni for all i. Retaining such terms, we

find that the average of the log transmission is given by:

log(T ) ' −L
a

∞∑
m=1

∫ W

−W
(−1)m+1 1

m

(
α

vF

)2m dα

2W

= −L
a

∞∑
m=1

(−1)m+1

m(2m+ 1)

(
W

vF

)2m

(4.49)

= −L/lloc. (4.50)

where L = (N − 2)a is the length of disordered regime in the wire. The next dominant

correction with non-zero argument of the cosine function is discussed in the appendix. Such

rotating terms could be important for the wavelength commensurate with lattice spacing,

otherwise the sum of rotating terms will average out to zero in general. The localization

length of system is found as:

lloc/a =

[
Log

(
1 +

W 2

v2
F

)
− vF
iW

log

(
1 + iW/vF
1− iW/vF

)
− 2

]−1

, (4.51)

which is plotted in Fig.4.6 compared with computational results that take into account

all non-zero arguments of cosine function, showing reasonably good matching for different

system sizes. The very first term of the inverse localization length a/lloc ' W 2/3v2
F and

this is consistent with previous findings using perturbation approaches [137, 136].

It is worthwhile to compute the variance of the inverse localization length, in order to

check if (logT )/L is really statistically well behaved. Numerically [133], and analytically

[136], it was found that the variance is proportional to the inverse square root of system

size. The first leading contribution for the variance comes from the m = 1 term, Eq.(4.48),

and the computation is directly following:
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Figure 4.6: log(T ) for different system sizes, N=20, 50, 100 with ka = 0.25π using uniform
distribution [−W,W ] is numerically computed (dots) and compared with the analytic results
(lines), Eq.(4.50). Despite ignoring multiple scatterings from different impurities, as a
leading order approximation the analytic result works well beyond its pertrubative regime
W 2/v2

F < 1/N . The disorder averaging with 1000 realizations is performed.

(
logT

L

)2

=

(
2

L

N−1∑
i=2

αi
vF

)2

+O

(
W 4

L

)
(4.52)

=
4

L

a

lloc
+O

(
W 4

L

)
. (4.53)

where a/lloc = W 2/3v2
F up to the order of W 2. Therefore, we obtain the previously known

relation[136, 133]:

var
(
l−1
loc

)
l−1
loc

=
4

L/a
+O

(
W 4

L

)
(4.54)

confirming that the logT/L a variable following the central limit theorem.

Let us end this section with the disorder averaging of opposite limit. For ‘strong’ disorder

strength, we take vF /W as a perturbation expansion parameter. We are careful to use the
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Figure 4.7: log(T ) in strong disorder strength limit with ka = 0.25π is numerically computed
(dots) and compared with analytic approximation (lines) according to Eq.(4.57). They
match well in the strong disorder regime, while in the weak disorder regime a deviation is
present since the perturbation parameter is now λ = v2

F /W
2, and the range of impurity

strength is [−W,W ] instead of [−1/W, 1/W ]. The disorder averaging with 1000 realizations
is performed.

term ‘strong’, since our expression based on the picture of two chiral modes would not be

valid as the energy scale brought by impurities is comparable or larger than energy band

width of a clean wire. For more discussion of ‘strong’ disorder limit, we refer to section

III.A. Having the elements of matrix 1αG large, the transmission is:

T =

∣∣∣∣ 1

det[I + αG]

∣∣∣∣2 ' ∣∣∣∣ 1

det[αG]

∣∣∣∣2 (4.55)

log(T ) = C +
N−1∑
i=2

log

(
v2
F

α2
i

)
(4.56)

where C = −2log|det[vFG]|. Therefore, the average of the log T in the uniform distribution

of disorder is straightforward:
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log(T ) ' C − 2(N − 2)

[
log

(
W

vF

)
− 1

]
, (4.57)

which is plotted in the Fig.4.7 for different system size and shows a good agreement. This

is also consistent with a previous study by Stone et al.[136] in the strong disorder limit. It

is also interesting to compare this strong disorder limit expression to the weak disorder one

that the second term of Eq.(4.57) is obtained from Eq.(4.51) in W/vF � 1 limt.

4.3.3.3 Resistance: R = 1/T

There have been many studies of the resistance of disordered 1d wires [128, 129, 130, 131,

132]. Like the transmission, which was discussed earlier, the resistance is not a statistically

well behaved quantity since its fluctuations increase faster than its average with system size.

Nevertheless, various approaches have been used to compute the moments of the resistance

[134, 130, 131, 142], and the scaling behavior of resistance with system size attracted lots of

attention [133, 129, 131]. Our formalism does not offer significant advantages for computing

the disorder average of the resistance; nonetheless, we carry out the calculation for the sake

of completeness of the formulation developed in this manuscript.

The resistance of 1d wire is proportional to the inverse transmission 1/T. Thus, let us

focus on the disorder averaging of 1/T for simplicity. Directly from Eq.(4.35) the inverse

transmission can be expressed by the determinant of the matrices:

1/T =
1

GN1G∗N1

(4.58)

=
det[G−1G∗−1 − αG∗−1 −G−1α+ αα]

det[G−1G∗−1]
, (4.59)
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with G−1 = 1/(GR + GL), which is the Hamiltonian of clean 1d wire and therefore a

tridiagonal matrix. Hence, the matrix inside the determinant in the numerator in Eq.(4.59)

is essentially an extended version of a tridiagonal matrix which has five non-zero elements

along the diagonal element instead of three as in Eq.(4.35), with the elements:

Dn,n = (αn − E)2 + 2t2 (4.60)

Dn+1,n = Dn,n+1 = t(αn + αn+1)− 2tE (4.61)

Dn+2,n = Dn,n+2 = t2. (4.62)

HereD1,1 = DN,N = 2t2, α1 = αN = te−ika, and we place impurities at i = 6, 10, 14, · · · , N−

5 so that transfer matrices are not impurity correlated. As a result, the recursion relation

involving a transfer matrix can be written using six elements:



d4(m+1)+1

d4(m+1)+2

d4(m+1)+3

d4(m+1)+4

X4(m+1)+2

X4(m+1)+3



= Tm6×6



d4m+1

d4m+2

d4m+3

d4m+4

X4m+2

X4m+3



where d4m+j is the determinant of the upper left square matrix of D up to the (4m+ 1)th

row and column. Xn are also the determinants of a similar matrix which is required to

construct the transfer matrix (see Fig.4.8):
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Figure 4.8: Describing the elements of the determinant in Eq.(4.63). (a) dn is the determi-
nant of Green’s square block up to element Dnn. (b) Xn is the determinant of the Green’s
blocks collection.

Xn = Dn,n+1dn−1 −Dn−1,n+1Dn,n−1dn−2 (4.63)

−Dn−1,n+1Dn−2,nXn−2 (4.64)

From this recursion relation one can build the train of transfer matrices and perform disorder

averaging for each transfer matrix separately.

To have an analytic description, we look for the exponents of the 1/T , which are re-

lated to the eigenvalues of the transfer matrix. The characteristic equation of the disorder

averaged transfer matrix Tm6×6 has one trivial eigenvalue, unity, and the others are from

a quintic equation whose general solution is not analytically available. Here we show the

computation of “analytic” and numeric results in Fig.4.9. The plot shows the exponential

increase of the resistance of disordered wire with the system size.

4.4 Example: Quantum Hall fluid

Another natural application for the det-formula is the quantum Hall system. The appli-

cation of the det-formula is rather straightforward as it contains an explicit chiral model
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Figure 4.9: log 1/T for different system sizes, N=18, 30, and 42 with ka = 0.45π is computed
numerically (dots) by disorder averaging of 2000 realization. And, the analytic disorder
averaging (lines) is performed exactly using transfer matrix, though its eigenvalues cannot
be expressed in a closed form.

along the boundary. Consider the system described in Fig.4.10, where impurities near the

boundary may scatter the chiral mode, and impurities are also connected with each other

in a random fashion. In the single particle picture, the conductance of the chiral mode is

expected to be quantize; however, the Green’s function will possess a system specific phase

factor due to the scattering from the impurities. These non-trivial phase factors in quantum

Hall systems can be probed by different types of interferometers [143, 144, 145, 146, 147].

Our purpose in this section is to estimate the accumulated phase throughout the system.

Figure 4.10: A chiral mode in a quantum Hall system with an insulating bulk. Multiple
impurities with random couplings near the edge are encountered by the chiral mode, and
the accumulated phase is estimated with the det-formula.
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Let us introduce the Green’s function, GB, of quantum dots with random coupling, the

coupling matrix T between chiral mode and quantum dots, and T = ÛstV/2vF , as is done

in section 4.2. The direct application of the det-formula gives:

GN1 =
ei(N−1)ka

ivF

det[I −G−1
L0T GBT †]

det[I + T GBT †G−1
R0]

(4.65)

=
ei(N−1)ka

ivF

eTrLog[I−G
−1
L0T GBT

†]

eTrLog[I−(G−1
L0T G

†
BT †)†]

, (4.66)

where in the first equality the order of matrix multiplication is changed within the deter-

minant of denominator, then in the second equality (G−1
R0)† = −G−1

L0 is used. Having a

symmetric form, diagonalization helps to further simplify:

G−1
L0T GBT

† = U−1ΛU (4.67)

The bulk Green’s function GB may, in general, not be a hermitian matrix in an open, lossy

system. However, when the bulk states are insulating and do not contain propagating states

to the exterior, the bulk Green’s function becomes real and symmetric, G†B = GB. As a

result, the renormalized Green’s function is now reduced to:

GN1 =
ei(N−1)ka

ivF
e
∑
n Log

[
1−λn
1−λ∗n

]
(4.68)

which gives a succinct expression for the accumulated phase due to random impurity scat-

terings in terms of the eigenvalues of the matrix Eq.(4.67). We expect this expression to be

useful in similar systems.
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4.5 Conclusion and summary

In this manuscript we introduced a closed form expression for the propagator of a chiral

mode coupled to a bulk. For a given bulk Green’s function and coupling matrix to the

chiral mode, we were able to express the renormalized chiral Green’s function by the ratio

of determinants. No assumption is made on the bulk Green’s function, therefore, the formula

is applicable to a system with and without non-localized bulk modes.

Using a disordered 1d quantum wire as example, we demonstrated how non-chiral 1d

systems can be modeled in terms of chiral modes, and computed the average transmission

coefficient, its inverse, and log. The det-formula was shown to be especially powerful in

performing disorder averaging for different transport quantities. A similar trick is expected

to work for quasi 1d and topological metal systems.

As a second example, the phase accumulated by the chiral mode is conveniently esti-

mated in a quantum hall system with random impurities. This formula may be used to

describe the interference pattern in quantum hall interferometers as a function of chemical

potential of the bulk and other system characteristics.

4.6 Appendix: Localization length of the next order

Localization length was computed by averaging the log of transmission coefficient for dif-

ferent disorder realizations. We computed the main contribution in Eq.(4.50) after ignoring

the rotating terms. Up to the second order in disorder strength, the analytics and numer-

ical results are in good agreement(Fig.4.6) in weak disorder regime. However, as soon as

the fourth and higher orders get important at moderate disorder strength, the contribution

from the rotating term should be taken into account. In this appendix we compute the
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leading correction of the rotating term by allowing the indices ni to be different.

In section 4.3.3.2, we obtained the leading order of disorder averaged log(T ), assuming

all indices in Eq.(4.48) are the same: n1 = n2 = · · · = nm. For the next leading correction,

we allow the indices to be two different indices: n1, · · · , nm ∈ ni, nj with i 6= j. Then all

possible terms of order m can be expressed by the help of a 2× 2 transfer matrix form for

even m :

∑
n1,··· ,nm

(∏m
i=1

αni
vF

)
Re[eika

∑m
i=1 |ni+1−ni|],

=
∑

n1,n2
Re Tr


 αn1 αn1e

ik∆

αn2e
−ik∆ αn2


m

−

αmn1
0

0 αmn2


 ,

where ∆ = |n1 − n2|a is the distance between two impurity sites. Now the problem is

reduced to finding eigenvalue of the transfer matrix:

λ± =
αn1 + αn2

2
±
√

(αn1 − αn2)2

4
+ αn1αn2e

2ik∆ (4.69)

By using the prefactor in Eq.(4.48) and inserting the eigenvalues:

log(T(m)) =
∑
n1,n2

(−1)m

mvmF
2Re[λm+ + λm− − αmn1

− αmn2
]

= 2Re
∑
n1,n2

log

[
(1 + λ+

vF
)(1 + λ−

vF
)

(1 +
αn1
vF

)(1 +
αn2
vF

)

]

= 2Re
∑
n1,n2

log

[
1−

αn1αn2e
2ik∆/v2

F

(1 +
αn1
vF

)(1 +
αn2
vF

)

]

which is the generating function for the correction of two indices to all orders for a particular

disorder realization. For example, the first correction appears in the fourth order with non-

zero argument of cosine function. By expanding the log in series of αi/vF , then disorder
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averaging:

log(T(4)) = Re
∑
n1,n2

α2
n1
α2
n2

(4e2ik∆ + 2e4ik∆)

−2v2
F

=

〈
α2
〉2

−v4
F

L/a−1∑
∆/a=1

L−∆

a
[2cos(2k∆) + cos(4k∆)]

=

〈
α2
〉2

v4
F

[
3L

2a
− sin2(kL)

sin2(ka)
− sin2(2kL)

2sin2(2ka)

]
(4.70)

where L = (N − 2)a is the length of disordered regime. One can see that the term in the

square bracket may not be small depending on the wavenumber k, but the term goes to zero

upon the integration over k. This is the case for all higher order corrections. By carefully

performing the expansion of the generating function, the general expression for mth order

correction of two indices can be deduced:

log(T(m)) =
1

m

m−2∑
n=2,even

lup∑
l=1

1

n+ 1

(−1)m/2+1

m− n+ 1

(
W

vF

)m
×
(
m− n
l

)(
n

l

)
l

(
1

n
+

1

m− n

)[
L

a
− sin2(kLl)

sin2(kal)

]
(4.71)

where lup = min(n,m − n) and indices m and n are even integers. Fig.4.11 shows the

contribution of log(T(m)) in addition to the leading order with single index (Eq.(4.50), solid

line). The dots are from the numerical result averaged over 4000 disorder realizations. The

difference between dotted lines and the solid line are corrections made by double index

terms for different wave numbers. logT is independent of wave number in weak disorder

limit and they converge to a single line(Eq.(4.50)).
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Figure 4.11: Disorder averaged log T is plotted using the exact expression (dots) from
Eq.(4.35), the single index contribution (solid line) from Eq.(4.50), and the result which
includes the double-index correction (dotted line) from Eq.(4.71). At moderate disorder the
single-index contribution fails to reproduce the exact results for the various wave numbers.
The double-index correction, however, does manage to account for wave-number dependence
except for the smallest wave number.
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Chapter 5

Effects of surface impurity
potentials on surface states in
topological insulators

5.1 Background and introduction

A study of systems with a disorder potential is a tricky subject in analytic manners, even

for a single particle Hamiltonian. A perturbative approach provides solutions at weak or

strong disorder strength limits, but we often want to know the transition electronic behavior

solutions between weak and strong disorder strengths. Furthermore, naive applications of

perturbation approach can lead to an incorrect interpretation. In this chapter, we present a

non-perturbative approach to the local density of surface states in the presence of disorders

on a system surface in any dimensions.

In relation to the surface states and impurities in a 3d topological insulator, Schubert

and his colleagues [21] conducted an exact diagonalization study to see how the local density

of states behaves as a function of surface impurity strength. In the strong impurity limit,

surprisingly, they found that the system maintains clean surface states underneath the

disordered top layer. At a moderate impurity strength comparable to the bandwidth of the

system, the local density of states shows larger fluctuations in the first few layers and they
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do not have a well-defined local density of states in momentum space, implying a diffusive

metallic behavior of surface states.

In this chapter, our aim is to understand the two non-trivial behaviors of local density of

states in an analytically oriented manner. We will introduce a general framework to study

local density of states in section 5.2 which is applicable to any systems with layered structure.

In section 5.3, a toy model of 2d topological insulator is employed to demonstrate the

approach introduced earlier with a concrete example. Lastly, in section 5.4 the conductance

of the same system with different magnetic and non-magnetic impurity strength are present

to complement the local density of states data.

Figure 5.1: A pictorial description of 2d lattice model. Along x-direction we have a periodic
boundary condition that x1 = xN+1, and along y-direction there are N-layers and the
subscript n indicates the nth layer along y-direction. Different colors and sizes of dots on
the top layer indicate random on-site impurity potentials. We study how the top random
surface impurities propagate down into the bulk layers.

5.2 General framework: transfer matrix of layered wave func-

tions

Numerically, the local density of states at a certain energy within the gap is obtained

by finding eigenstates of a Hamiltonian with surface impurities. One repeats the process
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for different realizations of impurities, then the statistics of the local density of states is

computed. In this section, we suggest a different approach: the ansatz of a wave function

in the first layer will be assumed to reflect the surface impurity strength, then the transfer

matrix between layered wave functions will be employed to discover an overall behavior of

the local density of states. To proceed, the analytic expression of the transfer matrix is

essential to offering further insight. We come up with a disorder-free transfer matrix, which

is the key result of this chapter.

5.2.1 Transfer matrix from Schrodinger equation

The Schrodinger equation along the layers provides the most direct way of getting the

transfer matrix between in-layer wave functions.

Bψn−1 + [H|| + Uδn,1 − E]ψn +B†ψn+1 = 0, (5.1)

where ψn is a wave function on nth layer, H|| is an in-layer Hamiltonian, U is an impurity

potential on the first layer, B and B† are hopping terms between layers, a layer index n is

a positive integer, and ψ0 = 0 (see Fig.5.1). For n = 1 case, we obtain the relation between

the first and second layer wave functions:

ψ2 = B†−1[E −H|| − U ]ψ1. (5.2)

To get the relation between the second and third layer wave functions, put ψ1 in (5.2) to

(5.1) with n=2. One can repeat this process to get the relation between ψn and ψn−1:

ψn = V −1
(n)Bψn−1, (5.3)
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where we introduced a nth layer effective potential V(n):

V(n) = B[E −H|| − V(n−1)]
−1B†, (5.4)

The first layer effective potential is the actual surface impurity potential, V(1) = U . One

can think of Bψn−1 in (5.1) as a contribution from the first to (n − 1)th layer integrated,

and therefore V(n) multiplied to ψn in (5.3) can be thought of as an effective potential on

nth layer from all previous layers.

Now the transfer matrix between ψn and ψ1 is obtained by multiplying a series of the

transfer matrices:

ψn = [V −1
(n)B][V −1

(n−1)B] · · · [V −1
(2) B]ψ1. (5.5)

This is the conventional formulation using the transfer matrix. Though this is exact, the

actual analytic expression is impossible, since the surface impurity potential breaks trans-

lational and the recursion relation (5.4) is highly non-linear.

5.2.2 Holographic mapping of effective potentials

We can make a significant progress to simplify the transfer matrix in (5.5) by introducing

a wave function like object M(n) on nth layer and make a correspondence with V(n):

V(n) = BM(n−1)M
−1
(n). (5.6)
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We assume that M(n) is invertible and satisfies the same Schrodinger equation along the

layers:

BM(n−1) + [H|| − E]M(n) +B†M(n+1) = 0. (5.7)

One can straightforwardly verify that (5.7) and (5.4) are identical if the mapping (5.6) is

made. The transfer matrix connecting the first and nth layer wave function is now simplified:

ψn = M(n)M
−1
(1)ψ1. (5.8)

This expression offers a convenient picture of how wave function behaves over the layers.

The propagation is simply governed by the bulk property of clean system as M(n) is the

solution of the Schrodinger equation without impurity potentials. However, it is still tricky

to compute M(n) in the analytical manner, because the boundary condition involves the

surface impurities:

U = BM(0)M
−1
(1) . (5.9)

This tells us that the surface impurities are doing nothing but setting the initial amplitudes

of M(0), then the propagation of wave functions over the layers depends only on the clean

bulk properties. This interpretation is not so obvious from (5.5).

5.2.3 Disorder-free transfer matrix

We discuss our main finding of the chapter that the transfer matrix discussed so far((5.5)

and (5.8)) can be written in a disorder-free format. For a system with a finite width, we
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Figure 5.2: A diagram describing the transfer matrix methods as discussed in section 5.2.3.
Instead of using the product of the transfer matrix, V −1

(j) B, to connect ψ1 and ψn, we bring
the bottom wave function ψN in the middle to make use of the disorder-free transfer matrix,
M c

(n)M
c−1
(1) .

can think of the similar relation between the bottom-most layer wave function and the nth

layer wave function. For instance,

ψN = [E −H||]−1BψN−1. (5.10)

Alternatively, using the Schrodinger equation (5.1),

ψn+1 = [B†−1Σ(n)]ψn (5.11)

where we define the effective potential on nth layer due to the bottom layers:

Σ(n) = B†[E −H|| − Σ(n+1)]
−1B. (5.12)
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This is the recursion relation between the bottom in-layer potentials. The previously intro-

duced mapping applies to this recursion relation similarly:

Σ(n) = B†M c
(n+1)M

c−1
(n) . (5.13)

To connect ψ1 and ψn, imagine the propagation from the bottom-most wave function ψN

to ψ1 and ψn. As a result,

ψn = [B†−1Σ(n−1)][B
†−1Σ(n−2)] · · · [B†−1Σ(1)]ψ1

= [M c
(n)M

c−1
(1) ]ψ1. (5.14)

where M c
(n) is disorder-free, and therefore it is diagonal in the momentum space. It is

strictly determined by the clean bulk without surface impurity potentials, and finally the

analytic expression of the transfer matrix is at hand. Explicit computation will be shown

for 2d topological insulator system with edge impurities.

5.3 Application to 2d topological insulator

In the previous section, we introduced a general framework of how to compute a transfer

matrix between in-layer wave functions. We have succeeded in expressing it in a disorder-

free and analytically computable form. The formulation is applicable to any system with a

layer structure. In this section, a 2d topological insulator model is employed to explicitly

show how the local density of states can be estimated in a system with edge impurities.
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5.3.1 Model Hamiltonian

Consider the toy model of a 2d topological insulator. In momentum space,

H(~k) = [m− 2b(2− coskx − cosky)]τz

+A[τxszsinkx + τysinky] (5.15)

where τi is a pauli matrix in orbital basis, si a pauli matrix in spin basis. Momenta kx and

ky are normalized by a lattice spacing a. To introduce an edge state, the open boundary

condition is introduced in the y-direction, and the periodic boundary condition is applied

to the x-direction. An in-layer Hamiltonian and a hopping term between layers in Eq. (5.1)

are:

H|| = [m− 2b(2− coskx)]τz + τxszAsinkx, (5.16)

B = bτz − iAτy. (5.17)

The system is in the topological phase if the inversion of band takes place for some range of

momentum: sign(mB) > 0. For this case, the dispersion of the top and bottom edge states

are E = ±Asinkx.

5.3.2 Disorder-free Transfer matrix

Using the above Hamiltonian, we can build the transfer matrix, Eq. (5.14). The computa-

tion is not hard as it is diagonal in momentum space, but there are three cases which require

different derivations: i) (kx, E) = (0, 0) case, ii) (kx, E) = (2πl/Nx,±Asin(2πl/Nx)), where

l is an integer and Nx is the system size along the edge, and iii) cases neither type i) nor
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ii) . For each cases, the detailed derivations of the transfer matrix expression are given in

appendix 5.6. We argue that case iii) is most relevant to the local density of states of the

top edge state in the presence of top edge impurities. This is because the case i) and ii) are

only possible for a clean system with an infinitely long width.

The elements of transfer matrix of case iii) for a given momentum and energy (kx, E)

in the basis of |+〉 = (1, 1)T /
√

2 and |−〉 = (1,−1)T /
√

2 are:

〈+|S(n+1)
(1) |+〉 =

1

r1 − r3

[
ρ−n1 r1 − ρ−n3 r3

]
(5.18)

〈+|S(n+1)
(1) |−〉 =

r1r3

r1 − r3

[
ρ−n3 − ρ−n1

]
(5.19)

〈−|S(n+1)
(1) |+〉 =

1

r1 − r3

[
ρ−n1 − ρ−n3

]
(5.20)

〈−|S(n+1)
(1) |−〉 =

1

r1 − r3

[
ρ−n3 r1 − ρ−n1 r3

]
(5.21)

where ρ1 and ρ3 are eigenvalues of the Schrodinger equation (5.7) whose magnitudes are

larger than unity. r1 and r3 are the ratio of coefficients of Schmidt decomposition of eigen-

vectors into |+〉 and |−〉 (see appendix). r1 is zero if eigenvector |ρ1〉 is parallel to |+〉, and

it is infinite if they are orthogonal. Note that 〈−|S(n+1)
(1) |+〉 could be very large among other

elements when (k,E) is very close to case i) and ii). This element is indeed responsible for

the flipping from |+〉 to |−〉 state, and it essentially allows the system to behave like a clean

one in the strong edge impurity limit, as will be shown in the next section.

5.3.3 Simulating the local density of states

We simulate the behavior of local density of states by constructing the ansatz of the first

layer wave function to reflect the impurity strength on the top edge. Then the ansatz will be

propagated down to layers into the bulk using the disorder-free transfer matrix obtained in

140



Figure 5.3: (a) A band structure of the 2d topological insulator from which we can deduce
the local density of state in momentum space within the energy window [−W/2,W/2]. (b)
f(kx,W ) is plotted for disorder strength W = 0.01, 1, 3, 5, 7, 10, 14, 20, 50, 100. The first
layer wave function ansatz Eq.(5.22) has a single non-zero value in momentum space in the
clean limit, while more momentum states are accessible with increasing impurity strength.

the previous section. Lastly, the whole wave function will be normalized to unity. Without

exactly solving the Schrodinger equation with edge impurities, we show the same generic

behaviors of the local density of states: i) returning to the clean edge state in the strong

disorder limit, and ii) a large fluctuation of the local density of states for the first few layers

at moderate impurity strength.

The choice of the first layer wave function ansatz can be arbitrary, but we try to build

a reasonable and minimal ansatz so that it reflects the strength of edge impurities. Our

choice is:

ψ1(kx,W ) = f(kx,W )

 1√
2

1

1

+
r(W )√

2

 1

−1


 . (5.22)

where a function f(kx,W ) measures the spread of wave function in momentum space with

impurity strength W . In the clean limit near zero energy, the wave function will be concen-
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trated at kx = 0, therefore f(kx) = δkx,0. As we turn on the impurity strength, more states

at different momenta will be accessible. Fig.5.3 (a) shows the actual distribution (y-axis)

of the first layer wave function in the momentum space as a function of impurity strength

(x-axis). The accessible momentum state as a function of impurity strength can be guessed

from the band structure of the clean system, as impurities allow the state near Fermi energy

to scatter into the eigenstates within the energy range [EF −W/2, EF +W/2]. This is why

in Fig.5.3 (a) we can see that all momentum states are accessed with relatively uniform

distribution when impurity strength can cover the whole band, W = 14. We will use this

distribution for f(kx,W ) in our ansatz (5.22).

The second part of the ansatz is its spin-orbital parts. In clean limit, the orbital is

parallel to |+〉, while with increasing disorder strength the orbital begins to pick up its

orthogonal parts. In (5.22), a parameter r(W ) is used to reflect this behavior. The orbital

part of ansatz is also dependent of the momentum kx, but we do not include such details,

since only on-shell electrons are important to consider for the qualitative change of the local

density of states with impurities.

Using this ansats, the local density of state in momentum space (y-axis) along the

layers (x-axis) is simulated in Fig.5.4. Though our model includes certain arbitrariness,

the general behavior of local density of state is robust. First, at strong impurity strength

all momentum states are equally accessible in the first layer, while the kx = 0 state singly

stands out in the second layer when the wave function is at near zero energy (see Fig.5.4

(d)). As a result, the wave function behaves like a clean edge state with one layer shifted

downward. This phenomenon always occurs as long as the portion of |−〉, mixed in the first

layer wave function increases with the impurity strength. |−〉 in the first layer is flipped

into |+〉 in the second layer with a large amplitude according to (5.20). For smaller values
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Figure 5.4: Local density of states in momentum space kx over layers into the bulk at
different edge impurity strength are obtained from the simulated first layer wave function
according to (5.22). At weak (a) and strong (d) disorder, the wave functions in momentum
space are well localized at kx = 0, indicating that a system with strongly disordered edge
impurities has edge modes of a clean system. Systems with the moderate strength, (b) and
(c), of edge impurity show the transition between two limits: the LDOS is distributed in
a broader range of momentum and shows a large fluctuation for different r(W ) (see also
Fig.5.5).

of r, local density of states at moderate impurity strength are simulated in Fig.5.4 (b) and

(c) with r = 0.005 and r = 0.05, respectively. We can see that the first layer wave function

is fairly disordered as it has nonzero elements for a wide range of momentum, and the wave

function shows the longest tail at kx = 0. This implies that the nth layer wave function

away from the top edge impurities behaves more like the eigenstates in clean system at zero

energy. Because the moderate impurity strength is between the clean and strong impurity

limit, its local density of states shows a larger fluctuation for the first few layers. Fig.5.5

shows the local density of states over the layers and integrated in momentum.
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Figure 5.5: Simulated local density of states over the layers is shown for different impurity
strength repsented by f(kx,W ) and r(W ). For four impurity strengths, W = 0.01, 3, 10, 100,
corresponding f(kx,W ) in Eq. (5.22) is employed from Fig. 5.3 and an increasing proportion
of |−〉 in the first layer wave function r(W ) = 0.002, 0.005, 0.05, 0.2 are used. This plot is a
momentum-integrated version of Fig.5.4.

5.4 Transport behavior

The local density of state discussed in the last section can be probed by the angle-resolved

photoemission spectroscopy [37],but, the transport along the edge states is another set

of information independent from the local density of states. For instance, non-magnetic

impurities cannot backscatter the edge mode and its conductance remains quantized to the

value of clean system, though its local density of state still shows the similar transition

discussed in the previous sections. To clarify the transport nature of the system with

magnetic and non-magnetic impurities along the edge, in this section we study conductance

of the systems using the Landauer-Buttiker method.

Imagine a system where two semi-infinite leads are connected to a disordered region at

both ends. Landauer and Buttiker [100, 101, 102] made a relation between the conductance
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and the transmission coefficient through the disordered region: g = e2

h TN1, where g is

conductance, TN1 is a transmission coefficient through the disordered region from site 1 to

site N. By appealing to the linear response theorem, Fisher and Lee [103] expressed the

transmission coefficient in terms of Green’s functions:

g =
e2

h
Tr
[
ΓLGN1ΓRG

†
N1

]
(5.23)

where ΓL = i(ΣL − Σ†L), GN1 is a Green’s function from site 1 to N renormalized by

the presence of the leads, and ΣL is a self-energy of the semi-finite left lead. Each term

is computed recursively so that the conductance of a long system can be obtained with

a reasonable computing power. A good review of the detailed calculation can be found

elsewhere [148].

5.4.1 Non-magnetic impurity case

Consider the 2d topological insulator system introduced earlier with non-magnetic impuri-

ties along the top edge. Because the Hamiltonian is diagonal in spin basis without magnetic

impurities, we can consider one spin section only for its transport behavior. Imagine an

incoming electron from the left lead following top edge. If the chemical potential is located

within the energy gap, the backscattering is improbable since the electron needs to scatter

into the bottom edge mode. Therefore, we naturally expect an almost quantized value of

conductance within the energy gap. This is shown in Fig.5.6 at different impurity strength

W.
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Figure 5.6: Conductance near zero energy for different magnetic impurity strengths. For
all strengths, the conductance is well quantized within the energy gap since backscattering
is not allowed.

5.4.2 Magnetic impurity case

Two chiral edge modes with opposite spins are coupled as soon as magnetic impurities are

introduced. As a result, the transport through the disordered edge is suppressed, while the

transport through the other clean edge remains unaffected. Therefore, the total conductance

rapidly approaches to e2/h with the increasing magnetic impurity strength. However, in

the strong impurity limit, W > 500, we found that the conductance comes back up to

its clean system value. This is because such impurities are strongly bound to electrons at

energies far away from the Fermi energy, and they play negligible roles in the transport

at the Fermi energy. Fig.5.7a shows the conductance behavior with chemical potentials

for different impurity strength, and we can see how the conductance changes within the

energy gap between one and two units of e2/h conductance. The behavior is clearer in

Fig.5.7b, which shows the conductance with the strength of impurities in the log-scale for

different chemical potentials. We can see in the intermediate range of impurity strength,
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the conduction through the disordered top edge is significantly suppressed due to magnetic

impurities, while the conductance comes back up to two units of e2/h value in the strong

impurity limit.

(a) (b)

Figure 5.7: (a) A similar conductance plot is shown for magnetic impurities. In the weak
and strong impurity limit the conductance is close to two units of e2/h, while at moderate
strength case one edge channel is completely suppressed and the conductance is reduced to
one unit of e2/h. (b) Conductance is plotted in the log-scale of impurity strength (x-axis)
for different chemical potentials. One can see the change of conductance with magnetic
impurity strength more clearly for different chemical potential.

5.5 Conclusion and Summary

We have developed a framework to study surface impurity of a system with a layered

structure. Using a mapping of effective potentials in terms of a wave function like object

M(n), we are able to express the transfer matrix from a disordered first layer wave function

to nth layer wave function. In this way, the general behavior of the local density of state over

the layers at different impurity strength is studied and it shows the consistent picture with

the result from the exact diagonalization approach by Schubert et al. [21]. Furthermore,

we complement the conductance calculation using the Landauer-Buttiker formulation that
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helps to identify the difference between magnetic and non-magnetic impurity cases.

5.6 Appendix: the derivation of transfer matrix

In this appendix, we show explicitly how to build the wave function like object M-matrix in

a clean system satisfying the boundary condition. We divide the problem into three cases:

i) (k,E) is not on the dispersion, ii) (k,E) is on the dispersion at nonzero energy, and iii)

(k,E) is on the dispersion at zero energy. We solve the following Schrodinger equation:

B
1

ρ
ψn + [H||(kx)− E]ψn +B†ρψn = 0, (5.24)

where we put ψn−1 = 1
ρψn and ψn+1 = ρψn. We will solve this Schrodinger equation for a

specific momentum and energy, and in this way we keep our approach analytically tractable.

5.6.1 Case (iii): (k,E) 6= (kx,±Asin(kxa))

We want to build an invertible 2 × 2 matrix which satisfies the Schrodinger equation and

meets the vanishing boundary condition at the clean edge. For a particular momentum k

and energy E, not in the relation of E = Asin(kxa), we will first find the eigenvectors and

eigenvalues. Then M c
(n) will be constructed out of the eigenvectors so that it automatically

satisfies the Schrodinger equation. To impose the vanishing boundary condition at n = N ,

we combine the four eigenvectors in a certain way such that M c
(n) is invertible. Explicitly,

for 2×2 one spin section solution, let us assume that the four eigenvectors are the following:

ψ1 =

α1

β1

 , ψ2 =

α2

β2

 , ψ3 =

α3

β3

 , ψ4 =

α4

β4

 (5.25)
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with eigenvalues ρ1, ρ2, ρ3, and ρ4, respectively. Note that αi and βi are functions of Hamil-

tonian parameters given in section 5.3 and i = 1, 2, 3, 4 is not the layer index. Here we

have four eigenvectors that are not parallel to each other. Then we can combine ψ1,2 to

build |+〉 =

(
1 1

)T
/
√

2 and |−〉 =

(
1 −1

)T
/
√

2 vectors, and combine ψ3,4 to build an-

other set of |+〉 and |−〉, which are convenient choices for further manipulations. Explicitly,

consider the following Schmidt decomposition:

ψj =

αj
βj

 =
A+,j√

2

1

1

+
A−,j√

2

 1

−1

 (5.26)

and define γj = A+,j/A−,j , which is a measure of how much a eigenvector ψj is close to |+〉.

Through similar decompositions of other eigenvectors, we get the two ways of building the

|+〉 and |−〉:

1√
2

1

1

 =
1

γ1 − γ2

(
1

A−,1
ψ1 −

1

A−,2
ψ2

)
(5.27)

=
1

γ3 − γ4

(
1

A−,3
ψ3 −

1

A−,4
ψ4

)
(5.28)

and,

1√
2

 1

−1

 =
1

1/γ1 − 1/γ2

(
1

A+,1
ψ1 −

1

A+,2
ψ2

)
(5.29)

=
1

1/γ3 − 1/γ4

(
1

A+,3
ψ3 −

1

A+,4
ψ4

)
(5.30)
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Now, we are ready to construct M c
(n=N+1) at the last layer, which is zero 2× 2 matrix :

M c
(n=N+1) =


1

1

−
1

1


(1 1

)
+


 1

−1

−
 1

−1


(1 −1

)
. (5.31)

We put (5.27)-(5.28) in the first square bracket of (5.31), and put (5.29)-(5.30) in the second

bracket. In this way, we construct the M c
(n)-matrix with the vanishing boundary condition

and invertible in the subsequent layers (n ≤ N). Since each eigenvector propagates over the

layers in a straightforward manner, ψj(n) = ρn−Nj ψj(N), by propagating each eigenvector

and plugging them into (5.26) back, we get the expression of nth layer M c
(n)-matrix in |±〉〈±|

basis:

M c
(N+1−n) =


r1ρn1−r2ρn2
r1−r2 − r3ρn3−r4ρn4

r3−r4
ρn1−ρn2
r1−r2 −

ρn3−ρn4
r3−r4

ρn1−ρn2
1/r1−1/r2

− ρn3−ρn4
1/r3−1/r4

ρn1 /r1−ρn2 /r2
1/r1−1/r2

− ρn3 /r3−ρn4 /r4
1/r3−1/r4


±

. (5.32)

where the index n is used to indicate the distance from the (N + 1)th layer. In turn, we

can obtain the transfer matrix following (5.14). Though the exact expression is available,

some terms are negligible for a large width of system. Assuming eigenvalue ρ1 and ρ3 are

larger than unity, we obtain a reduced expression for the transfer matrix between the first

and nth layer:

S(n+1)←1 =
1

(r1 − r3)

 ρ−n1 r1 − ρ−n3 r3 (ρ−n1 − ρ−n3 )

r1r3(ρ−n3 − ρ−n1 ) ρ−n3 r1 − ρ−n1 r3


±

, (5.33)

which is reproduced in section 5.3.2. We want to emphasize that among three classified

cases, the case (iii) (k,E) not on the dispersion is most relevant because in the presence

of surface impurities, eigenenergies of the surface state are not identical to the ones of the
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clean system.

5.6.2 Case (ii): (k,E 6= 0) = (kx,±Asin(kxa))

For this case we have the following set of eigenvectors in general for E = Asin(kxa):

ψ1 =

α1

β1

 , ψ2 =

α2

β2

 , ψ3 =
1√
2

1

1

 , ψ4 =
1√
2

1

1

 (5.34)

where the eigenvalues ρ3 and ρ4 are less than unity. To construct a M c
(n)-matrix with the

vanishing boundary condition, we do Schmidt decompositions of ψ1 and ψ2 and construct

|−〉 in two different ways:

1√
2

 1

−1

 =

(
1

A−,1
ψ1 −

A+,1

A−,1
ψ3

)
(5.35)

=

(
1

A−,2
ψ2 −

A+,2

A−,2
ψ4

)
(5.36)

where A±,j is defined in (5.26). Next, we construct the M c
(n)-matrix in the same way as

before:

M c
(N+1−n) =

 ρn3 − ρn4 0

r1(ρn1 − ρn3 )− r2(ρn2 − ρn4 ) ρn1 − ρn2


±

. (5.37)
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Note that when n = 0, we get zero matrix M c
(N+1), as required from the boundary condition.

The transfer matrix in the limit of large width N is:

S(n)←(m) = M c
(n)

/
M c

(m)

=


ρn3−ρn4
ρm3 −ρm4

0

(ρn3−ρn4 )(−r1ρm1 +r2ρm2 )+(ρm3 −ρm4 )(r1ρn1−r2ρn2 )
(ρm1 −ρm2 )(ρm3 −ρm4 )

ρn1−ρn2
ρm1 −ρm2


±

. (5.38)

If (kx, E) are on the other edge dispersion relation E = −Asin(kxa), we have the fol-

lowing four eigenvectors:

ψ1 =

α1

β1

 , ψ2 =

α2

β2

 , ψ3 =
1√
2

 1

−1

 , ψ4 =
1√
2

 1

−1

 (5.39)

where eigenvalues ρ3 and ρ4 are less then unity. We construct the vector |−〉 in two different

ways using ψ1 and ψ2. Explicitly,

1√
2

1

1

 =

(
1

A+,1
ψ1 −

A−,1
A+,1

ψ3

)
(5.40)

=

(
1

A+,2
ψ2 −

A−,2
A+,2

ψ4

)
(5.41)

The M c
(n)-matrix satisfying the vanishing boundary condition at n = N + 1 is:

M c
(N+1−n) =

ρn1 − ρn2 (ρn1 − ρn3 )/r1 − (ρn2 − ρn4 )/r2

0 ρn3 − ρn4


±

. (5.42)
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Finally, the transfer matrix that connects the wavefunctions on layer n and m is:

S(n)←(m) = Mn

/
Mm

=


ρn1−ρn2
ρm1 −ρm2

(ρn3−ρn4 )(−ρm1 /r1+ρm2 /r2)+(ρm3 −ρm4 )(ρn1 /r1−ρn2 /r2)
(ρm1 −ρm2 )(ρm3 −ρm4 )

0
ρn3−ρn4
ρm3 −ρm4


±

. (5.43)

5.6.3 Case (i): (k,E) = (0, 0)

At zero energy, the top and bottom edge states share the same momentum kx = 0 and the

four eigenvectors of the Schrodinger equation are:

ψ1 =
1√
2

 1

−1

 , ψ2 =
1√
2

 1

−1

 , ψ3 =
1√
2

1

1

 , ψ4 =
1√
2

1

1

 (5.44)

The eigenvalues are ρ1 = ρeiθ with ρ > 1, ρ2 = ρ∗1, ρ3 = 1/ρ1, and ρ4 = 1/ρ∗1. In this case

we can directly construct the M c
(n)-matrix satisfying the vanishing boundary condition at

n = N + 1:

M c
(N+1−n) = (ρn1 − ρn3 )

1

2

1 1

1 1

− (ρn2 − ρn4 )
1

2

 1 −1

−1 1

 (5.45)

And the following transfer matrix is:

S(n)←(N) =
sin(nθ)

2sin(Nθ)

ρn−N
1 0

0 0


±

+ ρ−n+N

0 0

0 1


±

 (5.46)

which diverges in the N →∞ limit.
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