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Abstract 

Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels 

mediating fast synaptic transmission throughout the peripheral and central nervous 

systems. They have been implicated in various processes related to cognitive 

functions, learning and memory, arousal, reward, motor control and analgesia. 

Therefore, these receptors present alluring potential therapeutic targets for the 

treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s disease, Tourette’s 

syndrome, schizophrenia, anxiety, depression and nicotine addiction. The work 

detailed in this thesis focuses on binding studies of neuronal nicotinic receptors 

and aims to further our knowledge of subtype specific functional and structural 

information. 

Chapter 1 is an introductory chapter describing the structure and function 

of nicotinic acetylcholine receptors as well as the methodologies used for the 

dissertation work described herein. There are several different subtypes of 

nicotinic acetylcholine receptors known to date and the subtle variations in their 

structure and function present a challenging area of study. The work presented in 

this thesis deals specifically with the α4β2 subtype of nicotinic acetylcholine 

receptor. This subtype assembles into 2 closely related stoichiometries, termed 

throughout this thesis as A3B2 and A2B3 after their respective subunit 

composition. Chapter 2 describes binding studies of select nicotinic agonists on 

A3B2 and A2B3 receptors determined by whole-cell recording. Three key binding 

interactions, a cation-π and two hydrogen bonds, were probed for four nicotinic 
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agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) 

and the related natural product cytisine.  

Results from the binding studies presented in Chapter 2 show that the major 

difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one 

of the two hydrogen bond interactions where the agonist acts as the hydrogen 

bond acceptor and the backbone NH of a conserved leucine residue in the receptor 

acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of 

modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 

receptor function determined by whole-cell recording. Finally, Chapter 4 describes 

single-channel recording studies of varenicline binding to A2B3 and A3B2 

receptors. 
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1.1 The Brain and the Synapse 
Composed of a hundred billion neurons, two million miles of axons and a 

million billion synapses, the human brain is the most complex natural or artificial 

object known to man.1  Thus, it is not surprising that while many advances in 

neuroscience have been made in the last few decades, we are far from unraveling 

all the intricacies of the structure and function of the human brain. Much work in 

the field of neuroscience has focused on the study of the synapse and membrane 

excitability, since it is generally believed that the regulation of these processes 

underlies much of higher brain function, including memory, learning, and 

cognition.1 Figure 1.1 depicts the relative scale of the synapse and neuroreceptors 

in the central nervous system (CNS). 

 

Figure 1.1 The synapse in the CNS 
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The synapse is defined as the connection between two neurons and can be 

classified into electrical or chemical depending on the type of communication 

between cells. Chemical synapses (Figure 1.2) are capable of producing more 

variable signaling and are associated with the more complex brain functions such 

as memory and learning.2 In a chemical synapse an electrical impulse in a 

presynaptic neuron is converted to a chemical signal mediated by a 

neurotransmitter that diffuses across the space between the two connecting 

neurons (synaptic cleft) to activate ligand-gated ion channels (LGICs). Thus, the 

chemical signal is converted back into an electrical signal at the postsynaptic 

neuron. LGICs are membrane proteins, which upon binding of a ligand molecule 

such as a neurotransmitter, undergo a fast conformational change allowing ions to 

flow across the cell membrane. LGICs mediate fast synaptic transmission that 

occurs on the order of 1-100ms and corresponds to the majority of synaptic 

transmission in the brain.1 Much of the research in the Dougherty lab focuses on 

the study of LGICs and other membrane receptors at the chemical scale. Two 

aspects are of special interest to the group; first, how agonist molecules bind to 

their target receptors and second, how this brings about the conformational 

changes that activate the receptor. The focus of this thesis will be on a specific 

type of LGIC: the nicotinic acetylcholine receptor. 
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Figure 1.2 Schematic of a Chemical Synapse. An electrical signal (1) in the presynaptic neuron 
is converted to a chemical signal (neurotransmitter release, 3) and finally back into an electrical 
signal (7) at the postsynaptic neuron.3  

 

1.2 The Nicotinic Acetylcholine Receptor (nAChR) 
Nicotinic acetylcholine receptors (nAChRs) owe their name to their activation 

by the endogenous ligand acetylcholine (ACh) as well as the alkaloid nicotine 

(Figure 1.3) and are among the most studied neuroreceptors.4 nAChRs belong to 

the superfamily of “Cys-Loop” receptors that are so termed due to the presence of 

a disulfide bond between two conserved cysteine residues separated by 13 amino 

acids. In addition to nAChRs, other members of the Cys-Loop superfamily include 

5-hydroxytryptamine type 3 (5-HT3) receptors, γ-aminobutyric acid type A and type 

C (GABAA and GABAC) receptors, glycine receptors, and invertebrate glutamate 
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and histidine receptors.5 Receptors are further classified into excitatory or 

inhibitory, the former correspond to cation permeable channels (Na+, K+ and Ca2+), 

which promote the firing of an action potential, and the latter conduct anions (Cl- 

and HCO3-), discouraging the firing of an action potential. nAChRs and 5-HT3 

receptors are excitatory, glycine receptors are inhibitory and GABA are mostly 

inhibitory.4 Furthermore, nAChRs mediate fast synaptic transmission and are 

involved in a wide range of physiological and pathophysiological processes.6 

S-Nicotine

N+

H
N N+

O

O

Acetylcholine
(ACh)

N

N
N+

Varenicline
  (Chantix)

N N+

(–)-Cytisine

H

H
H
HO

 

Figure 1.3 nAChR Agonists. These four nicotinic agonists share structural features consisting of 
a cationic nitrogen (blue) and a hydrogen bond acceptor moiety (red). 

 nAChRs are distinguished into muscle or neuronal nAChRs according to 

their localization in the neuromuscular junction or peripheral and central nervous 

systems, respectively. The muscle-type nAChR is found postsynaptically at the 

neuromuscular junction where it mediates the chemical to electrical signal 

transduction resulting in skeletal muscle tone. Neuronal nAChRs have been 

identified in numerous subtypes that reside at presynaptic and postsynaptic 

densities in autonomic ganglia and cholinergic neurons throughout the CNS. 
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These receptors have been implicated in various processes related to cognitive 

functions, learning and memory, arousal, reward, motor control and analgesia.6 

Due to their role regulating the neurotransmission of dopamine (DA), 

norepinephrine (NE), serotonin (5-hydroxytryptamine, 5-HT), glutamate (Glu) and 

γ-aminobutyric acid (GABA), neuronal nAChRs represent potential therapeutic 

targets for the treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s 

disease, Tourette’s syndrome, schizophrenia, anxiety, depression and nicotine 

addiction.6 As such, there is considerable interest in gaining nAChR subtype 

specific structural and functional information. The studies portrayed in this thesis 

aim to further our knowledge in this area. 

 Membrane proteins such as the nAChR are notoriously hard to crystallize, 

and therefore structural information on these proteins is scarce when compared to 

soluble proteins. Despite the fact that membrane proteins represent ~30% of 

genetically encoded proteins and ~60% of pharmaceutical targets, they 

correspond to less than 1% of the structures in the Protein Data Bank (PDB).7 

Presently, structural information on the nAChR stems mainly from two sources, the 

crystal structure of the acetylcholine binding protein (AChBP) at 2.7Å resolution, 

and the 4Å resolved cryo-electron microscopy images of the nAChR from the 

electric organ of Torpedo californica (Pacific electric ray) (Figure 1.4C).8,9 Isolated 

from the snail Lymnaea stagnalis, AChBP is a soluble protein that forms stable 

homopentamers and shares 20-24% sequence homology with the extracellular 

domain (ECD) of nAChRs; thus making it a useful model of the nAChR ECD.8 It is 

worth noting that since AChBP lacks a transmembrane domain (TMD) it is not an 
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ion channel and thus no information on nAChR receptor activation can be obtained 

from this model. However, Unwin et al. solved high resolution cryo-EM images of 

the muscle-type nAChR, revealing structural insights into the TMD of nAChRs. In 

conjunction, these studies depict the architecture of nAChR subunits consisting of 

a large N-terminal extracellular domain comprised mainly of β-sheets, a 

transmembrane domain consisting of 4 membrane spanning α-helices (M1-M4) 

and a small extracellular C-terminal domain (Figure 1.3B). nAChRs are 

pentameric, containing five homologous subunits arranged pseudosymmetrically 

around a central ion conducting pore lined by the M2 α-helices of each subunit.9 

    

 

 

 

 

 

 
 
 

Figure 1.4. nAChR structure. Left: Cartoon depiction of a prototypical pentameric nAChR. 
Middle: Subunit topology showing the pore lining M2 transmembrane domain in green.10 Right: 
Muscle-type nAChR image based on Unwin’s model of the Torpedo receptor (pdb file 2BG9). Red 
star denotes agonist binding site and yellow rhombus indicates channel gate separated by 60Å.9 

 

 The nAChR family shows considerable diversity. To date, seventeen 

different vertebrate nAChR subunits have been identified and cloned: α1-α10, β1-

β4, γ, δ and ε.11 The subunits are divided into muscle-type (α1, β1, γ, δ and ε) and 

neuronal (α2-α10, β2-β4) subunits according to the receptor subtypes that they are 

known to form. The muscle-type subunits make up the two forms of muscle-type 
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receptor; (α1)2β1γδ (embryonic form) and (α1)2β1γε (adult form). Subunits are 

organized clockwise as α1β1γα1δ(or ε) and ACh binds to two orthosteric sites 

located at the α1/γ and α1/δ interfaces (Figure 1.5). A total of two molecules of 

ACh must bind, each occupying one of the two binding sites before the channel 

gate opens and allows the passage of cations, in favor of their electrochemical 

gradient, thereby translating a chemical signal into an electrical one.6 

 In contrast to the precise stoichiometry of the muscle-type nAChR, the 12 

neuronal subunits can form a wide variety of different nAChR subtypes, each of 

which shows different characteristics in terms of ligand pharmacology, activation 

and desensitization kinetics as well as cation permeability.6 Over 20 different 

neuronal nAChR subtypes have been identified throughout the nervous systems 

of various vertebrates and at least 22 neuronal subtypes have been successfully 

expressed in heterologous systems such as Xenopus laevis (African clawed frog) 

oocytes.11 Of the neuronal subunits, subunits α2-α6 and β2-β4 assemble in 

heteropentameric complexes of variable stoichiometry, the prevalent stoichiometry 

being (α)2(β)3 arranged as αβαββ but the (α)3(β)2 stoichiometry has also been 

reported (Figure 1.5).12 ACh and other agonists bind at α/β interfaces thereby 

giving rise to two orthosteric binding sites per receptor. Subunits α3 and α5 are 

considered structural subunits because they lack the amino acid residues critical 

for agonist binding and as such cannot participate in the formation of binding sites. 

It is generally accepted that the more complex neuronal nAChRs are formed by 

two pairs of α(2,3,4,6)/β(2,4) and only one structural subunit, though there may be 

exceptions where two structural subunits are present.6,13 
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Figure 1.5 nAChR Subtypes. The yellow star denotes the agonist binding sites. 

 Higher order nAChR subunits α7 (Figure 1.5), α8 and α9 form 

homopentameric receptors with markedly larger Ca2+ permeabilities and faster 

desensitization kinetics than muscle-type and α/β nAChRs. Whereas the α10 

subunit is unable to form functional homomers, it does form functional receptors of 

unknown stoichiometry in conjunction with α9.6 

The most prevalent neuronal nAChRs in the CNS are α4β2 and α7, with 

α4β2 containing receptors comprising ~90% of CNS nAChRs and showing high 

affinity ACh binding, whereas α7 nAChRs exhibit low affinity ACh binding.6 The 

α4β2 receptor is of particular interest due to its implication in nicotine addiction and 

its therapeutic targeting in smoking cessation.14-16 This thesis focuses on the α4β2 

receptor. 
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1.2.1 Neuronal α4β2 Receptors  

Theoretically, there are six possible pentameric arrangements of α4 with 

β2, one (α4)1(β2)4, two combinations of (α4)2(β2)3, two combinations of (α4)3(β2)2 

and one (α4)4(β2)1. There is now considerable evidence that α4β2 receptors 

assemble into two of those possible six stoichiometries, one (α4)3(β2)2 and one 

(α4)2(β2)3 receptor as shown in Figure 1.5.12,17-20 Throughout this thesis the 

(α4)3(β2)2 stoichiometry will be referred to as A3B2 and the (α4)2(β2)3 as A2B3. 

These two stoichiometries show different pharmacological properties including 

differential permeability to Ca2+ and agonist sensitivity.12,19 Since a higher agonist 

concentration is needed to activate A3B2 receptors than A2B3 receptors, the 

former are often referred to as the low-affinity form and the latter the high affinity 

form. 

Until recently it was thought that each stoichiometry possessed two binding 

sites at select α/β interfaces where the α subunit contributed most of the binding 

residues and was thus termed the principal face and the β subunit was designated 

the complementary face (Figure 1.5). Recent evidence has challenged this view 

by showing the existence of a third binding site present for the A3B2 stoichiometry 

at the α/α interface.21,22 

The α/β and the α/α binding sites as well as the binding sites of other 

subtypes of nAChRs share a common structural architecture. Figure 1.6 shows the 

structure of the agonist binding site based on the AChBP structure and depicts a 

lidless “aromatic box” (Figure 5) formed by five highly conserved aromatic 

residues. Four of the five aromatic residues are part of the principal binding subunit 
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TrpB 

with TyrA forming the bottom of the box and TyrC1, TyrC2 and TrpB forming three 

of the four sides of the box. The final aromatic residue, TrpD forms the fourth side 

of the box and is part of the complementary binding subunit (Figure 1.6).9 The work 

presented in this thesis focuses on studying the chemical scale binding interactions 

of select nicotinic agonists to the α4β2 receptor. 

   

 

 
 
 

Loop A 
Loop B 
Loop C 
Loop D 

Figure 1.6. Representations of the nAChR binding site modeled from AChBP (PDB 1I9B).10,23 
Residues are designated with their corresponding three letter amino acid code followed by A-D 
depending on the loop that contributes the residue. 

 

1.3 Expression of nAChRs in Xenopus Oocytes 

Given the complexity of the human brain, isolating the object of study 

becomes an attractive strategy to explore a certain aspect of neurobiology. As 

afore mentioned, structural information on nAChRs is scarce and while valuable, 

structural imaging techniques such as X-ray crystallography and cryo-EM provide 

a snapshot of the receptor that is static in nature and cannot yield information on 

the dynamic events involved in function. Thus, structural information from these 

sources provides a guide that can be used as a starting point in structure-function 

studies of physiological significance. The work presented herein involves 

structure-function studies of the α4β2 receptor and the expression system used is 
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heterologous protein expression in Xenopus oocytes from the frog Xenopus laevis 

(Figure 1.7). Xenopus oocytes possess a few inherent properties that make them 

an ideal candidate for protein expression. First, the oocytes’ large 1mm diameter 

makes them fairly easy to handle, facilitating not only RNA injection but also 

electrophysiological analysis.24 Second, oocytes are very amenable to 

heterologous protein expression by accepting exogenous RNA then translating, 

assembling and transporting the desired protein to the plasma membrane. Finally, 

after removal of the follicular membrane of stage V/VI Xenopus oocytes, there are 

no endogenous ion channels that significantly interfere with the 

electrophysiological functional assays described in this thesis. 

 

Figure 1.7 Xenopus laevis frog and stage V/VI oocyte 

The Xenopus oocyte expression system certainly lends itself to 

conventional mutagenesis where the codon of the amino acid of interest is mutated 

to the codon of the amino acid introduced as a mutation. However, we are severely 

limited with conventional mutagenesis to the use of the 20 available natural amino 

acids. Subtle structural perturbations are more often than not beyond the reach of 

conventional mutagenesis.  In 1989 Schultz et al. developed a methodology for the 
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in vitro incorporation of unnatural amino acids into proteins, which led to the first 

incorporation of an unnatural amino acid into a protein expressed in a living cell by 

the Lester and Dougherty labs in 1995.25,26 Since then our group has used this 

methodology to incorporate a variety of unnatural amino acids (Figure 1.8) into 

many different receptors and ion channels, allowing us to probe for subtle 

functional effects and employ the tools of physical organic chemistry on the brain.7  

 

Figure 1.8 Some of the unnatural amino acid side chains that have been incorporated by nonsense 
suppression in the Dougherty group. The fluorinated tryptophan series residues are predominant 
throughout this thesis and are shown in the rectangle below the one in the top right-hand corner. 
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1.3.1 Unnatural Amino Acid Mutagenesis 

The methodology for the in-vivo incorporation of unnatural amino acids used 

by the Dougherty group consists of using the nonsense suppression method to 

hijack the ribosome and thus have the cell’s own protein synthesis machinery 

produce, assemble and fold the desired protein (Figure 1.9).27 The nonsense 

suppression method consists of mutating the codon at the site of interest to a stop 

codon (TAG, TGA or TAA), which as its name suggests, does not code for any 

natural amino acids and is instead used to terminate protein synthesis. The desired 

unnatural amino acid is chemically appended to an “orthogonal” suppressor tRNA 

possessing the corresponding anticodon (CUA, UCA or UUA respectively). An 

orthogonal tRNA is not recognized by any of the endogenous aminoacyl-tRNA 

synthetases, the enzymes that append natural amino acids onto their 

corresponding tRNAs. Thus, orthogonality is a key requirement for tRNAs used in 

the nonsense suppression method. If endogenous aminoacyl-tRNA synthetases 

were to recognize the tRNA used for nonsense suppression and append one of 

the natural amino acids (reaminoacylation) then the result would be expression of 

a mixture of proteins, some with the desired unnatural amino acid originally 

appended to the tRNA and others with the natural amino acid resulting from 

reaminoacylation. The Dougherty group uses several different tRNAs and employs 

a reaminoacylation control (see Section 1.3.2) to ensure orthogonality. 
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Figure 1.9 Hijacking the Ribosome. Schematic representation of the nonsense suppression 
methodology used for site-directed incorporation of unnatural amino acids (UAAs) into cells. 
Alternatively, a four-base codon instead of a stop codon can be used at the mutation site in which 
case the methodology is then termed frameshift suppression. The work portrayed in this thesis 
uses exclusively the nonsense suppression methodology. 

 Synthesis of the orthogonal suppressor tRNA involves first the transcription 

of a truncated suppressor tRNA lacking the last two bases in the acceptor stem (C 

and A). Next, a deoxy-C and A (dCA) dinucleotide and the desired unnatural amino 

acid is chemically synthesized and the unnatural amino acid is acylated onto the 

dCA. This complex is then enzymatically ligated onto the acceptor stem of the 

truncated suppressor tRNA to yield aminoacylated tRNA (Figure 1.10).  
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Figure 1.10 Synthesis of suppressor tRNA. Unnatural amino acids are chemically synthesized 
with a protected α-amino group and their carboxylate group is activated as a cyanomethyl ester to 
facilitate acylation onto dCA. This complex is then enzymatically ligated onto the acceptor stem of 
the truncated suppressor tRNA to yield aminoacylated tRNA. The nitroveratryloxycarbonyl (NVOC) 
protecting group (PG) is photolabile and the 4-PO protecting group is removable by treatment with 
I2. α-hydroxy acids are not protected. The red asterisk denotes and unnatural amino acid side chain. 

The orthogonal suppressor tRNA with the desired unnatural amino acid and 

the mRNA containing a stop codon at the site of interest are then coinjected into 

Xenopus oocytes. Following an incubation period of generally 24-48h the oocytes 

then express the protein containing the unnatural amino acid at the site of interest 

(Figure 1.11).  
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Figure 1.11 Schematic of the methodology for site-directed incorporation of unnatural amino acids 
into Xenopus oocytes by nonsense suppression. 

 

1.3.2 Nonsense Suppression Methodology Controls 

The Dougherty group uses mainly three controls to ensure that the 

nonsense suppression methodology is working as envisioned. Given the variability 

of biological systems, these controls essentially make sure that the protein we are 

actually expressing and the protein we intend to express are one and the same or 

at the very least that the readout in our functional assay corresponds 

overwhelmingly to the intended protein. The three controls we use are termed 

reaminoacylation, readthrough and wild type recovery (WTR) controls. 

As previously mentioned, reaminoacylation occurs when endogenous 

aminoacyl-tRNA synthetases are able to “recharge” the suppressor tRNA after it 
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delivers its unnatural tRNA resulting a mixture of proteins. As a control, Xenopus 

oocytes are co-injected with mRNA containing the desired stop codon and 

suppressor tRNA lacking an amino acid, which is obtained by in vitro transcription 

of the tRNA with a complete acceptor stem containing the last C and A bases. This 

complete suppressor tRNA mimics the tRNA present in the cell after an 

aminoacylated suppressor tRNA delivers its unnatural amino acid to the ribosome. 

Control oocytes are then subjected to the same incubation conditions and 

functional assays and ideally no signal is detected for the control oocytes. In the 

case of nAChR expression, the Dougherty group has observed that 

reaminoacylation is site and tRNA dependent, meaning that some suppressor 

tRNAs will work for some sites but not others. In cases where reaminoacylation is 

a problem, using a different suppressor tRNA often solves the issue. Alternatively, 

a four-base codon and its corresponding tRNA can also be used (frameshift 

suppression methodology). 

Readthrough occurs when an endogenous tRNA misreads the stop codon 

in the mRNA resulting in the incorporation of a natural amino acid at the site. In a 

readthrough control only the mRNA with the stop codon mutation is injected into 

the control oocyte and the oocyte is then subjected to the functional assay. 

Similarly to the reaminoacylation control, the readthrough control should yield no 

signal. In cases where there is significant readthrough the only option is to use the 

frameshift suppression methodology instead of the nonsense suppression 

methodology. 
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The fidelity of the nonsense suppression method for the incorporation of 

amino acids can be tested by the wild type recovery (WTR) control. In a WTR 

control the suppressor tRNA is chemically appended with the natural amino acid 

present at that site for the wild type receptor. For example, in the case of TrpB for 

the nAChR, the tRNA would be appended with a Trp residue. The tRNA is then co-

injected with mRNA containing the stop codon into the oocyte and when nonsense 

suppression is working as intended the result should be the expression of wild type 

receptors yielding a signal indistinguishable from that of oocytes injected with wild 

type mRNA. The Dougherty group uses electrophysiology as the functional assay 

to study receptor function. 

1.4 Electrophysiology 

One limitation of the nonsense suppression methodology is that the 

suppressor tRNA used to deliver the unnatural amino acid is a stoichiometric 

reagent and as such limits the amount of protein that can be synthesized by the 

cell. Electrophysiological techniques are sensitive enough to detect the electrical 

signal resulting from the activity of a single ion channel and are thus suitable as a 

functional assay for ion channels expressing unnatural amino acids. 

Electrophysiology is the measurement of the electrical currents in living cells and 

tissues and electrophysiological techniques can be classified as whole-cell or 

singe-channel recording depending the source of the electrical signal being 

measured. In whole-cell recording electrodes are inserted into the cell to measure 

the change in voltage and/or current across the cell surface membrane. Thus, the 

electrical signal being measured arises from all of the receptors present in the cell 
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surface membrane. Section 1.4.1 describes the whole-cell recording method and 

data interpretation used within this thesis. As the name suggests, single-channel 

recording measures the electrical changes across a section of membrane 

containing a sole ion channel and is further detailed in Section 1.4.2. 

1.4.1 Whole-Cell Recording 

The whole-cell recording assays portrayed in this thesis were done using 

the two-electrode voltage clamp (TEVC) method. In TEVC the cell is injected with 

two electrodes, one electrode monitors the potential (voltage) relative to ground, 

while the other passes current in order to maintain the cell’s membrane potential 

at a user-determined potential (voltage clamp) (Figure 1.12). Voltage clamp was 

developed in 1949 by Kenneth Cole to stabilize the membrane potential in neurons 

and was subsequently used by Hodgkin and Huxley in their renowned experiments 

that revealed the mechanism of the action potential.28 

 

Figure 1.12. TEVC and sample current traces. Left: TEVC on a Xenopus oocyte. The scale bar 
represents ~ 1/10th of a typical stage V/VI oocyte‘s diameter (100 μm). Right: Sample traces from 
a TEVC experiment showing the current that must be injected into an oocyte in order to keep the 
oocyte at the preset potential (voltage clamp). Agonist is typically applied for 15 seconds, though 
longer drug applications may be required for low concentrations (nM range), when binding can 
become the rate-limiting activation step. 
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In a typical TEVC whole-cell assay Xenopus oocytes expressing the LGIC 

of interest are subjected to increasing agonist concentrations until further 

increases to agonist concentration do not elicit increases in the whole-cell current 

(Figure 1.12). This maximal current value is termed Imax. The measured current (I) 

at each agonist concentration ([Agonist]) is normalized to the Imax value and this 

normalized current (INorm) is plotted against [Agonist]. The plot is fitted to the Hill 

equation (Equation 1.1) and is termed a dose-response curve (DRC, Figure 1.13).  

 

Figure 1.13 Left: Examples of dose-response curves (DRCs) in which the normalized current 
response (I/Imax) is plotted against the concentration of agonist applied. In each case, the 
concentration needed to reach the half-maximal response, EC50, is denoted with a dotted line. The 
black DRC represents a wild type (WT) ion channel. The green DRC represents a mutation that 
caused less agonist to be needed to activate the channel. More commonly, a mutation produces a 
loss of function, represented by the pink DRC, and corresponding increase in EC50. Fitting the 
dose-response curve to the Hill equation also produces nH, which increases with increasing 
steepness of the DRC. Right: Definition of the fold-shift (FS) parameter.  
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The EC50 value and Hill coefficient (nH) can be obtained from the DRC fit. 

The EC50 value is defined as the effective agonist concentration necessary to elicit 

a half-maximal response and our group as well as others use the EC50 value as a 

measure of receptor function. The relationship between the EC50 of the wild type 

receptor and the mutant receptor is presented throughout this thesis as a fold-shift 

value (FS, Figure 1.13) and is often our final measure of receptor function. When 

a mutation is introduced that is detrimental to receptor function, a higher 

concentration of agonist is needed to achieve half-maximal response. This 

translates as a higher EC50 value and FS>1 and is termed a loss of function 

mutation. The opposite is true for a gain of function mutation where receptor 

function is improved by mutation and less agonist is needed for half-maximal 

response, resulting in a lower EC50 value and FS<1 (Figure 1.13).  

As suggested by the thesis title, this thesis focuses on binding studies at 

the nAChR and it is more often the case that the mutation introduced is designed 

to weaken or functionally eliminate a suspected binding interaction. Thus, the 

results of our whole-cell recording assays are often increased EC50 values (relative 

to wild type) and FS>1. Due to the inherent variability in biological systems such 

as the Xenopus oocyte expression system, our group does not typically consider 

FS<2 as meaningful for loss of function mutations. The work described in Chapters 

2 and 3 of this thesis involves whole-cell recording in TEVC mode. 

1.4.2 Single-Channel Recording 

Single-channel recording offers a significant advantage over other 

electrophysiology measurements, such as TEVC used to determine EC50, in that 
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more specific binding models and receptor activation kinetics can be obtained from 

single-channel data. Since EC50 is a measure of receptor activation, it is a 

composite of the rate at which the agonist associates with the receptor (binding) 

and that agonists’ ability to induce the conformational change resulting in current 

flow through the ion channel (gating). Single-channel recording is achieved by use 

of the patch-clamp technique. The patch-clamp method was developed in the 

decades of 1970 and 1980 by Erwin Neher and Bert Sakmann for which they 

received the Nobel Prize in physiology or medicine in 1991.29-31 

 

Figure 1.14 The patch-clamp technique. Left: Illustration of the patch-clamp technique where a 
micropipette containing an electrode and bath solution with a specific concentration of agonist is 
applied to the membrane forming a gigaohm seal and isolating the electrical signal from a single 
channel for electrophysiological recording. Right: Example of a single-channel recording trace 
(current readings) showing two discrete current levels corresponding to either the closed channel 
state (baseline current) or the open channel state. Adapted from 31. 

The patch-clamp technique consists of applying a micropipette containing a 

chlorinated silver wire electrode and a solution of a receptor agonist to the cell 

membrane. Upon application of suction a high resistance seal termed the gigaohm 

seal is formed, effectively isolating the electrical signal from the channel trapped in 
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the sealed membrane patch (Figure 1.14). Note that, in contrast to whole-cell 

recording methods where the micropipette electrode pierces the cell membrane, in 

single-channel recording the micropipette adheres to the membrane to form the 

gigaohm seal. It is desirable then that the tip of the micropipette be smooth so as 

not to pierce the cell membrane and thus, a common practice for patch-clamping is 

to fire-polish the micropipette tip using a microforge.  A more detailed description of 

single-channel recording parameters and data analysis is provided in Chapter 4 of 

this thesis as well as the results of single-channel experiments on A3B2 and A2B3 

receptors.   

1.5 The Cation-π Interaction 

A common theme throughout this thesis is the study of binding interactions 

of agonists to the nAChR. An ubiquitous binding interaction observed in proteins 

is the cation-π interaction showing a wide-ranging biological significance.32-34 

There is one cation-π interaction for every 77 residues in the PDB, meaning that 

there are over 500,000 cation-π interactions in the PDB today.35 One study 

showed that 25% of all tryptophan residues in the PDB participated in a cation-π 

interaction.36 Research in our group has extensively validated the relevance of the 

cation-π interaction in receptor activation and function for a variety of receptors 

including nAChRs, G-protein coupled receptors (GPCRs), 5-HT3 receptors, GABA 

and glycine receptors.23,37-47 
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Figure 1.15 Left: Schematic of a cation-π interaction. Right: Potential energy surfaces, structures 
and cation-π binding energies (in kcal/mol) of the Trp fluorination series showing the progressive 
deactivation of the aromatic ring. Red denotes negative charge density and blue denotes positive 
charge density. 

The cation-π interaction is defined as the stabilizing interaction between a 

cation and the face of a simple π-system such as the aromatic ring in tryptophan 

(Trp), tyrosine (Tyr) or phenylalanine (Phe) (Figure 1.15). It is comparable in 

strength to a hydrogen bond. The Dougherty group has developed a procedure for 

probing the functional significance of cation-π interactions by site-directed 

incorporation of unnatural amino acids into the receptor of study. The cation-π 

functional assay consists of systematically replacing the wild type amino acid of 

interest with the corresponding monofluoro-, difluoro-, trifluoro- etc derivative and 

measuring the EC50 value for each mutation (Figure 1.15). A cation-π interaction 

is established when a clear correlation between agonist affinity and degree of 

fluorination is observed by the linear fit of the “fluorination plot” shown in Figure 

1.16. 
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Figure 1.16 Fluorination plot at α1TrpB in the fetal, muscle-type nAChR with the agonist 
acetylcholine (ACh). The observed linear correlation establishes that there is a functionally 
significant cation-π interaction between ACh and TrpB. Binding of Na+ to the aromatic ring was 
used as the quantitative measure of cation-π binding ability (in kcal/mol) denoted on the x-axis.48 

 

1.6 Dissertation Work 

To my knowledge, every pharmaceutical drug on the market works by acting 

on some type of receptor. Side-effects arise from the drug binding not only to the 

intended target receptor but to other non-intended and often related receptors. 

When we understand on a chemical scale how molecules bind to their target 

receptors and all the conformational changes giving rise to receptor activation we 

will then be able to design drugs that exclusively target the desired receptor and 

are essentially side-effect free. Today, we are far from attaining that level of insight 

into receptor structure and function, and much like understanding the complexity 
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of the human brain the task seems daunting and nigh unattainable in its immensity. 

However, every journey must start somewhere and every step forward no matter 

how small it might seem brings us one step closer to the end goal. The work 

presented in this thesis focuses on the study of two very closely related receptors, 

A3B2 and A2B3 α4β2 nicotinic receptors in hopes of bringing us one step closer 

to understanding the nuances of receptor selectivity. 

Chapter 2 describes binding studies of select nicotinic agonists on A3B2 

and A2B3 receptors determined by whole-cell recording. Three key binding 

interactions, a cation-π and two hydrogen bonds were probed for four nicotinic 

agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) 

and the related natural product cytisine.  

Results from the binding studies presented in Chapter 2 show that the major 

difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one 

of the two hydrogen bond interactions where the agonist acts as the hydrogen 

bond acceptor and the backbone NH of a conserved leucine residue in the receptor 

acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of 

modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 

receptor function determined by whole-cell recording. 

Finally, Chapter 4 describes single-channel recording studies of varenicline 

binding to A2B3 and A3B2 receptors. 
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2.1 Introduction 

This chapter details the study of three binding interactions, which are 

considered key to agonist binding and receptor activation, between four nicotinic 

agonists (Figure 2.1) and the A3B2 and A2B3 forms of the neuronal α4β2 receptor. 

Recall from Chapter 1 that A3B2 refers to the (α4)3(β2)2 receptor stoichiometry 

and A2B3 to the (α4)2(β2)3 stoichiometry. 
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N N+
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O
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N

N
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Figure 2.1 Nicotinic Agonists Studied. These four agonists share structural features consisting 
of a cationic nitrogen (blue) and a hydrogen bond acceptor moiety (red). 

 

2.1.1 α4β2, Nicotine Addiction and Smoking Cessation Therapies 

The α4β2 receptor has been heavily implicated in nicotine addiction by a 

number of pharmacological studies and by extensive evaluations of knockout 

mice.1-3 Nicotine addiction is the leading cause of mortality in the developed world, 

resulting in over 4,000,000 smoking-related deaths annually.4 In the United States, 

the Centers for Disease Control and Prevention (CDC) report cigarette smoking as 
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the leading cause of preventable death, resulting in over 480,000 annual deaths.5 

To put this number in perspective, this is the equivalent of three jumbo jets crashing 

daily with no survivors every day of the year. Consequently, there is great interest 

in the development of pharmacotherapies to treat nicotine addiction. The highly 

addictive properties of nicotine arise from its ability to stimulate dopamine release 

in the mesolimbic pathway, the reward circuit of the brain. This leads to the feelings 

of pleasure, cognitive sensitization and alertness associated with smoking.3,6,7 

Historically, smoking cessation therapies have primarily been based on 

some form of nicotine replacement, such as nicotine patches or gum.8 An 

alternative strategy is to develop a nicotinic receptor partial agonist that is selective 

for the α4β2 receptor. Partial agonism is a relative term used to describe the 

relationship between the maximal responses (efficacy) elicited by two agonists for 

a certain receptor. The agonist with the highest efficacy is termed a full agonist, 

and the other a partial agonist. Acetylcholine (ACh) is considered the full agonist 

for the α4β2 receptor. In a generalized sense, partial agonism can be interpreted 

as the relative ability of a certain agonist to activate a receptor. In the development 

of novel non-nicotine based smoking cessation therapies, it was hypothesized that 

an effective agent would, through its intrinsic partial activation of the α4β2 receptor, 

elicit a moderate and sustained increase in mesolimbic dopamine levels, 

counteracting the low dopamine levels encountered in the absence of nicotine 

during smoking cessation attempts.9 Low levels of dopamine have been 

associated with craving for and withdrawal from nicotine and are the key 

syndromes that precipitate relapse to smoking behavior.10,11 Additionally, by 
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competitively binding to the α4β2 receptor, a partial agonist will shield the smoker 

from nicotine-induced dopaminergic activation in the event that they smoke.12 In 

theory, without the nicotine-induced elevation in mesolimbic dopamine levels, 

tobacco will not produce a pharmacologic reward.13 Thus, compounds that are 

selective partial agonists of the α4β2 receptor and that out-compete nicotine are 

suitable candidates as smoking cessation drugs. 

2.1.2 Cytisine, Varenicline and Smoking Cessation 

Cytisine is a pyridone alkaloid, which is extracted from the seeds of the tree 

Cytisus laburnum, exhibiting selectivity for α4β2 receptors over other common 

neuronal nAChRs, such as α4β4 and α7.14 Cytisine, a partial agonist with low 

efficacy at α4β2 receptors, has been marketed (Tabex®) as a smoking cessation 

drug in Europe for the last five decades.15-17 With cytisine and morphine as a 

structural starting point, Coe et al. developed the molecule varenicline seeking to 

improve efficacy and potency while maintaining partial agonism properties at α4β2 

(Figure 2.2).9 Varenicline was introduced by Pfizer as Chantix® in 2006 for 

smoking cessation treatment.9,18-20 Clinical studies on over 1000 patients indicated 

that 44% of CHANTIX® users quit smoking versus 18% in the placebo group.21 
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Figure 2.2 Pathway from cytisine (R=H) and morphine substructures to varenicline.22 

 

The work detailed in this chapter addresses two key questions. First, we 

evaluated whether cytisine and varenicline fit the existing agonist binding model. 

Second, we probe the differential pharmacologies of the A2B3 and A3B2 

stoichiometries of the α4β2 receptor, to determine whether the binding interactions 

of Figure 2.3 are responsible for the differences. 

2.2 The Nicotinic Agonist Binding Model 

Nicotine and related compounds adhere to what is termed the nicotinic 

pharmacophore. The essential nicotinic pharmacophore, a cationic N and a 

hydrogen bond acceptor separated by an appropriate distance, has been 

established for some time.23-25 In recent years, the pharmacophore has been 

expanded to include the pyrrolidine N+H of nicotine and similar structures as a 

hydrogen bond donor.  Based on structural studies of the acetylcholine binding 

protein (AChBP)26, a useful model for the agonist binding site of nAChRs, and 
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advanced structure-function studies, a binding model for nicotine has been 

developed (Figure 2.3).  

 

Figure 2.3 Binding model for nicotine at a nAChR 

A cation-π interaction forms between the positive charge of the drug and 

the highly conserved Trp154 27, termed TrpB in a standard model. In addition, the 

N+H of the drug acts as a hydrogen bond donor to the backbone carbonyl of TrpB.  

Generally, drugs that have been developed to target the nAChRs have the 

potential to make this N+H•••O=C hydrogen bond, but, of course, the endogenous 

agonist ACh cannot. The hydrogen bond acceptor component of the 

pharmacophore, the pyridine N of nicotine or the carbonyl O of ACh, makes a 

hydrogen bond to the backbone NH of Leu119 in the β2 subunit. This interaction 

was first revealed in a structure of AChBP with nicotine bound (Figure 2.4), where 

it is mediated by a water molecule.26 In the actual nAChR, structure-function 
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studies of the type described in this chapter and previously by our group clearly 

established a hydrogen bonding interaction to the backbone NH in the α4β2 

nAChR, but did not distinguish whether the water molecule is or is not present.23  

 

Figure 2.4 AChBP bound to nicotine. Red circle represents a water molecule. Adapted from 26. 

 

In the binding model of Figure 2.3, the water molecule is not shown, with 

the understanding that it may be important in some or all nAChRs. An additional 

water-mediated hydrogen bonding interaction to the backbone carbonyl 

corresponding to Asn107 in the β2 subunit is also evident in the AChBP structure, 

but it has not been established to be important in nAChRs.23 Note the interfacial 

nature of the agonist binding site: TrpB is in the α subunit while the Leu119 

backbone NH comes from the β subunit. 

2.2.1 Methodology for Probing Hydrogen Bonds 

In the Dougherty lab, we regularly use unnatural amino acid mutagenesis 

to probe for functionally significant hydrogen bonds.23,27-33 To probe hydrogen 

bonding interactions to the protein backbone, we replace the appropriate amino 
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acid with its α-hydroxy analogue (Figure 2.5). This converts the backbone amide 

to an ester, with predictable consequences.  In the case of the hydrogen bond 

donor interaction to the carbonyl of TrpB, we replace the i+1 residue, Thr155, with 

its α-hydroxy analogue, Tah (threonine, α-hydroxy).27,34 This attenuates the 

hydrogen bond-accepting ability of the backbone carbonyl, as it is an ester 

carbonyl rather than an amide carbonyl. To probe the hydrogen bond acceptor 

interaction, Leu119 of the β2 subunit is replaced by Lah (leucine, α-hydroxy).23 

This removes the backbone NH that participates in the hydrogen bond. For both 

strategies, we and others have seen significant impacts for mutations of this sort 

when a functionally significant hydrogen bond is involved. 25,35 
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Figure 2.5 Backbone ester strategy for modulating hydrogen bonds. 

 

For both hydrogen bonding interactions, simply seeing an impact on 

receptor function from α-hydroxy acid incorporation does not establish the 

existence of the hydrogen bond; some other aspect of receptor function could be 

perturbed by the mutation. At both sites, however, we have control experiments 

that strongly support the hydrogen bonding model. For the hydrogen bond donor 

interaction, we have shown that activation by ACh is not perturbed by the backbone 

mutation in the A2B3 receptor. This establishes that the backbone mutation has 



39 
 

not generically altered receptor function, and that it is indeed the N+H of the agonist 

that is responding to the mutation. For the hydrogen bond acceptor interaction, 

previous studies of nicotine at the A2B3 receptor used a pharmacological approach 

to probe the hydrogen bonding interaction. The nicotine analogue S-MPP lacks the 

pyridine N of nicotine and so cannot participate in the backbone hydrogen bond. It 

responded to the backbone mutation in the A2B3 receptor very differently from 

nicotine, and mutant cycle analysis clearly linked the backbone NH of Leu119 to 

the pyridine N of nicotine.23  The same strategy was applied to the A3B2 form here 

with similar results. 

2.3 The L9’A Mutation 

 

Figure 2.6 Location of the L9' Residue shown for the Muscle-type nAChR based on Unwin’s model 
of the Torpedo receptor (pdb file 2BG9). Note that the L9’ residue is in close prximity to the channel 
gate. 
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In the work presented herein, a known Leu to Ala mutation in the M2 

transmembrane helix of the α4 subunit (shown in Figure 2.6 and referred to as 

L9’A, where 9’ denotes the ninth amino acid from the cytoplasmic end of the 

transmembrane helix) was introduced to improve receptor expression, while 

maintaining pharmacological selectivity of the receptor. 27,36 Mutations of this type 

also increase receptor sensitivity to agonists, and they do so in an additive manner. 

Thus, in the present study, agonists acting at A3B2 receptors, with three L9’A 

mutations, generally show greater potency than at A2B3 receptors, which have 

two L9’A mutations, even though the A2B3 stoichiometry is intrinsically the high 

potency form. Moroni et al. provide a correction factor for this effect allowing for 

direct EC50 value comparison to receptors lacking this mutation.37  

Additionally, the introduction of the L9’A mutation allowed for the studies of 

cytisine at A2B3 presented in this chapter. Absent the L9’A mutation, cytisine is 

generally found to be inactive at the A2B3, essentially acting as a competitive 

antagonist.37 Upon introduction of the L9’A mutation, cytisine does activate the 

A2B3 receptor albeit with very low efficacy (~3% relative to acetylcholine), 

compared to the 50% relative efficacy seen for the A3B2 receptor. Throughout this 

thesis, the term “wild type” applied to either A2B3 or A3B2 receptors denotes 

receptors containing the L9’A mutation. When necessary, receptors lacking the 

L9’A mutation (or any other mutation) will be referred to as “true wild type”. 
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2.4 α4β2 Receptor Stoichiometry Control and Characterization 

The Dougherty lab has established a method for the control and 

characterization of α4β2 receptor stoichiometry.27 As in the case of previous 

studies, we find that the stoichiometry of α4β2 receptors can be controlled by 

altering the ratio of the subunits of mRNA during injection (Table 2.1).27,37,38 

 

Table 2.1 Relationship between mRNA α4L9’A to β2 injection ratios and receptor stoichiometry as 
evidenced by EC50 values and hill coefficients (nH). 

We use three criteria for defining pure populations of either A2B3 or A3B2. 

First, the observed whole-cell dose-response curves must fit to a single component 

and second, we use the fact that A2B3 and A3B2 show markedly different 

rectification behaviors (Figure 2.7). The third criterion only applies to wild type 

receptors and, as shown in Table 2.1, is that a mixed population of receptors 

produces an intermediate EC50 value as well as a lower hill coefficient (nH). Thus, 

observing EC50 values matching the known values for that stoichiometry confirms 

that the desired receptor is expressed. This third criterion was useful in determining 

α4:β2 injection ratios for wild type recovery experiments. All α4:β2 injection ratios 

used for work presented herein are detailed in the materials and methods section 

(see Section 2.8.3)  
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Figure 2.7 Rectification behaviors of A2B3 and A3B2 receptors. Upper: Representative voltage 
traces and current responses for voltage jump experiments. Lower: I-V curves for A2B3 (solid line) 
and A3B2 (dotted line). The inset shows positive voltages, where A2B3 and A3B2 exhibit markedly 
different rectification behavior.27 



43 
 

The rectification behavior of either A3B2 or A2B3 receptors was assessed 

through voltage jump whole-cell electrophysiology assays. In a voltage jump 

experiment, a non-saturating agonist concentration (usually close to the EC50 

value) is applied and the resulting current is measured at a series of incremental 

voltage values, hence the term voltage “jump”. A3B2 and A2B3 receptors respond 

differentially to voltage jump experiments, thus providing a measure of subunit 

composition. A2B3 is significantly more inward rectifying than A3B2 meaning that, 

at positive voltages, A2B3 passes much less outward current than A3B2. This 

effect is evidenced in the shape of the IV relationship curves (Figure 2.7). The 

current value at +70mV is normalized to the measured current at -110mV and used 

as a measure of receptor stoichiometry, a parameter we call Inorm(+70mV). Cells 

exhibiting Inorm(+70mV) values lower than 0.1 are considered to express A2B3, 

whereas cells displaying Inorm(+70mV) values higher than 0.2 are considered to 

express A3B2.27  

2.5 Challenges in working with A3B2 

There were three main issues that arose when working with A3B2. First, we 

found that protein expression was lower for A3B2 than A2B3. Second, we 

observed that varenicline and ACh showed a biphasic behavior not seen for A2B3 

and third, possibly due to the very low concentrations (pM and low nM range) of 

agonists used such that binding events becoming rate limiting, A3B2 shows 

markedly slower activation kinetics. The following sections describe how we 

addressed these challenges. 
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2.5.1 Improving A3B2 Receptor Expression 

Nonsense suppression at A3B2 receptors was challenging, due to the fact 

that expression of α4β2 in Xenopus oocytes is inherently biased toward A2B3 

receptors. For example, a 1:1 α4 to β2 mRNA injection ratio produces exclusively 

A2B3 receptors (Table 2.1). The challenge of expressing A3B2 receptors was 

amplified when unnatural amino acids were incorporated into the α4 subunit, 

because of the consistently lower expression levels seen for subunits incorporating 

unnatural amino acids by nonsense suppression. Several strategies were 

employed to overcome these difficulties. In order to obtain an essentially pure 

population of A3B2, an α4:β2 mRNA injection ratio at or above 100:1 was 

necessary. We also injected larger than usual amounts of mRNA (~100-150ng 

total per oocyte, compared to the ~25 ng used in typical sup-pression experiments) 

and aminoacylated tRNA (up to 125ng total per oocyte), and employed longer 

incubation times (48–72h) as necessary. In especially challenging cases, we 

included a second injection of mRNA and tRNA 24h after the initial injection, and 

allowed the injected oocytes to incubate at room temperature for 2-3h prior to 

electrophysiological recording. 

2.5.2 Biphasic Behavior of Varenicline and ACh at A3B2 

Biphasic behaviors for varenicline and, to a lesser extent, ACh were 

observed at injection ratios that were expected to produce pure populations of 

A3B2. For varenicline, the second component of the dose-response curve shows 

markedly lower binding affinity but does not correspond to the EC50 value of A2B3 

(Figure 2.8). Thus, the second component was not believed to be contamination 
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by the A2B3 receptor. Additionally, very high α4:β2 mRNA injection ratios of 150:1 

and 200:1 for wild type A3B2 (recall that 10:1 is sufficient to express A3B2) failed 

to eliminate the biphasic behavior, further supporting that A2B3 contamination was 

not the problem. In the time since these studies were performed, it has been shown 

that the A3B2 receptor possesses a third binding site at an α/α interface in addition 

to the two equivalent α/β binding sites shared by A2B3 and A3B2.39,40 Thus, it is 

highly likely that the low affinity component corresponds to binding to the α/α site 

of A3B2 and not to contamination by a different receptor stoichiometry. 

 

Figure 2.8 Sample dose-response curve showing the biphasic behavior of varenicline (Var) at 
A3B2 wild type. INormalized corresponds to current values normalized to the current response at 
500nM Var. The high affinity component (1) showed an EC50 = 0.77 ± 0.01nM and nH = 1.45 ± 
0.03, whereas the low affinity component (2) exhibits an EC50 = 85 ± 6nM and nH = 5 ± 2. This last 
EC50 value is markedly different from the EC50 = 2.9 ± 0.1nM of Var at A2B3. 
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Figure 2.9 High affinity component isolated from the dose-response curve in Figure 2.8. INormalized 
corresponds to current values normalized to the current response at 25nM Var (instead of 500nM 
as in Figure 2.8). The resulting EC50 = 0.80 ± 0.01nM (m2) and nH = 1.43 ± 0.02 (m3) values are 
essentially indistinguishable from the values for the biphasic fit of EC50 = 0.77 ± 0.01nM and nH = 
1.45 ± 0.03 shown in Figure 2.8. 

 We decided to isolate the high affinity component corresponding to the α/β 

binding site to allow for equivalent comparison between A3B2 and A2B3. As 

evidenced by the clear plateau in the dose-response curve in Figure 2.8, the EC50 

values of the two components were sufficiently different to allow the response of 

the high affinity component to reach a maximum before the low affinity component 

began to respond. We therefore processed the data from the high affinity 

component as for a monophasic dose response curve by fitting it to the Hill 

equation according to our standard protocol without any loss in accuracy (Figure 
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2.9). It is noted that this biphasic behavior was not observed for either nicotine or 

cytisine, which could be attributed to nicotine and cytisine causing desensitization 

at high agonist concentrations such that the low affinity component is “masked”. 

2.5.3 Overcoming Slow Activation Kinetics at A3B2 

For A2B3 receptors, a 15s drug application time is sufficient for the various 

agonists tested to activate all the possible receptor molecules at that specific 

agonist concentration. In other words, at 15s the observed current for that agonist 

concentration has reached its maximum because all the available agonist 

molecules are bound to a receptor and those receptors are in the open state. A 

saturating agonist concentration is one that causes maximal activation of the 

available receptors on the membrane. At non-saturating drug concentrations, the 

amount of receptors in the active state is dependent on the number of ligand 

molecules available, and once all the ligand molecules are bound, the maximal 

response for that agonist concentration can be attained. However, a 15 sec drug 

application time was not sufficient for the all available agonist to bind and activate 

the A3B2 receptor (Figure 2.10), meaning that the overall activation rate is slower 

for the A3B2 receptor. This could happen for several reasons; first, at very low 

agonist concentrations (pM or low nM range) agonist binding can become diffusion 

limited. We believe that this is the cause of this effect as, due to the additive nature 

of the L9’A mutation, A3B2 shows higher affinity than A2B3. Other possible, but 

less likely, causes are either a slower on-rate of the ligand or a slower activation 

rate (the receptor requiring a longer time to enter the active, open state once the 

ligand is bound) of the A3B2 receptor related to the A2B3 receptor. 
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We modified our standard 15s drug application time at a rate of 4mL/min 

protocol to allow for the slower activation kinetics at A3B2. As shown in Figure 

2.10, several variations on drug application time and rate were pursued. A drug 

application time of 60s at two different rates, 4mL/min for the initial 15s and 

1.25mL/min for the subsequent 45s, produced the desired response where the 

current signal is saturated within the drug application time.  

 

Figure 2.10 Sample traces from A3B2 in response to 0.562nM cytisine at several different drug 
application time intervals and different drug delivery rates. Whereas a drug application time of 60s 
at 4mL/min delivery rate would have been the ideal setup, this would require a total of 4 mL of drug 
solution and the instrument being used was limited to 2mL of drug solution. A 60s drug application 
time at two different rates proved to be the best setup allowing for saturation of the current signal.  
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2.6 Results 

Unnatural amino acid mutagenesis was applied to evaluate four 

compounds, ACh, nicotine, varenicline, and cytisine, at both the A2B3 and A3B2 

receptors. We find many similarities, and some key differences, in the binding 

behaviors of these prototype drugs. Results are summarized below in Table 2.2 

and all measured EC50 values are given in Tables 2.3 – 2.7. Dose-response curves 

for the fluorination series of α4W154 at A3B2 for cytisine and varenicline are shown 

in Figure 2.11.  

  wild type 

EC50 (µM)a 

relative 
efficacyb 

Cation-π 
interactionc 

N+–H•••O=C 
(donor)d 

N–H•••N(O) 
(acceptor)e 

ACh 
A2B3 4.0 [1.0] 69f 1.1 f 6.8 g 

A3B2 87 [1.0] 540 1.1 8.5 

Nicotine 
A2B3 0.76 0.3 (0.3) 53 f 19 f 6.7 g 

A3B2 38 0.6 (0.6) 130 19 5.6 

Varenicline 
A2B3 0.027 0.1 20 14 1.8 

A3B2 3.6 0.3 16 19 1.1 

Cytisine 
A2B3 0.066 0.03 (0) 31 8.8 62 

A3B2 15 0.5 (0.2) 30 27 14 

 

Table 2.2 Evaluation of Binding Interactions in the α4β2 A3B2 and A2B3 receptors. a. Values are 
corrected for the effects of α4L9’A mutation according to the procedure of Moroni et al. (EC50 
value was multiplied by a factor of 456 for A3B2 and 4.18 for A2B3). 37  As such, these are EC50 for 
true wild type receptors.  Measured EC50 values are provided in Tables 2.3 to 2.7. b. Defined as 
the ratio Imax of agonist/ Imax of ACh. Numbers in parentheses represent efficacies for receptors 
that do not contain the L9’A mutation, as reported by Moroni, et al. 37 c. Ratio of EC50 values for 
F4-Trp/Trp at position 154 in α4. d. Ratio of EC50 values for Tah/Thr at position 155 in α4.  e. Ratio 
of EC50 values for Lah/Leu at position 119 in β2.  f. Previously reported in 27.  g. Previously reported 
in 23. 
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Table 2.3 Cation-π at A2B3 EC50 values (nM), fold shift values, Hill coefficients (nH) and current 
size at +70mV (normalized to current size at -110mV). Errors are SEM (standard error from the 
mean). a. Previously reported in 27. 

  

Agonist Mutation Fold Shift

Wild type 420 ± 10 - 1.2 ± 0.1 0.041 ± 0.005

α4W154 Trp 440 ± 30 1.0 1.3 ± 0.1 0.006 ± 0.014

α4W154 F-Trp 1900 ± 100 4.5 1.2 ± 0.1 -0.065 ± 0.047
α4W154 F2-Trp 2000 ± 100 4.8 1.3 ± 0.1 0.032 ± 0.025

α4W154 F3-Trp 13000 ± 1000 31 1.3 ± 0.1 -0.073 ± 0.029
α4W154 F4-Trp 29000 ± 2000 69 1.1 ± 0.1 -0.027 ± 0.023

Wild type 80 ± 10 - 1.2 ± 0.1 0.041 ± 0.005

α4W154 Trp 90 ± 10 1.1 1.5 ± 0.1 0.006 ± 0.014

α4W154 F-Trp 260 ± 20 3.3 1.3 ± 0.1 -0.065 ± 0.047
α4W154 F2-Trp 320 ± 40 4.0 1.3 ± 0.1 0.032 ± 0.025

α4W154 F3-Trp 1200 ± 100 15 1.4 ± 0.2 -0.073 ± 0.029
α4W154 F4-Trp 4200 ± 400 53 1.3 ± 0.2 -0.027 ± 0.023

Wild type 6.9 ± 0.3 - 1.4 ± 0.1 0.05 ± 0.01

α4W154 Trp 11 ± 1 1.6 1.1 ± 0.1 0.03 ± 0.01

α4W154 F-Trp 22 ± 1 3.2 1.1 ± 0.1 0.05 ± 0.01
α4W154 F2-Trp 21 ± 1 3.0 1.1 ± 0.1 0.08 ± 0.01

α4W154 F3-Trp 180 ± 7 26 1.3 ± 0.1 0.05 ± 0.03
α4W154 F4-Trp 212 ± 60 31 0.62 ± 0.08 0.04 ± 0.01

Wild type 2.9 ± 0.1 - 1.4 ± 0.1 0.037 ± 0.007

α4W154 Trp 2.4 ± 0.2 0.8 1.2 ± 0.1 0.043 ± 0.005

α4W154 F-Trp 5.7 ± 0.2 2.0 1.2 ± 0.1 0.040 ± 0.007
α4W154 F2-Trp 9.0 ± 0.4 3.1 1.2 ± 0.1 0.05 ± 0.011

α4W154 F3-Trp 27 ± 1 9.5 1.3 ± 0.1 0.044 ± 0.009
α4W154 F4-Trp 56 ± 5 20 1.1 ± 0.1 0.033 ± 0.008

Cy

Var

A2B3 Receptor
EC50 (nM) nH Inorm (+70mV)

ACha

Nica
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Table 2.4 Cation-π at A3B2 EC50 values (nM), fold shift values, Hill coefficients (nH) and current 
size at +70mV (normalized to current size at -110mV). Errors are SEM (standard error from the 
mean). 

 

  

Agonist Mutation Fold Shift

Wild type 23 ± 1 - 1.3 ± 0.1 0.30 ± 0.04

α4W154 Trp 24 ± 1 1.0 1.6 ± 0.1 0.27 ± 0.01

α4W154 F-Trp 260 ± 8 11 1.2 ± 0.1 0.19 ± 0.01
α4W154 F2-Trp 290 ± 10 13 1.5 ± 0.1 0.26 ± 0.06

α4W154 F3-Trp 8200 ± 100 357 0.63 ± 0.03 0.19 ± 0.01
α4W154 F4-Trp 12400 ± 2000 539 0.63 ± 0.04 0.23 ± 0.02

Wild type 10 ± 1 - 1.7 ± 0.2 0.30 ± 0.04

α4W154 Trp 8.0 ± 1.0 0.80 1.5 ± 0.3 0.27 ± 0.01

α4W154 F-Trp 49 ± 2 4.9 1.5 ± 0.1 0.19 ± 0.01
α4W154 F2-Trp 110 ± 10 11 1.5 ± 0.2 0.26 ± 0.06

α4W154 F3-Trp 510 ± 60 51 1.1 ± 0.1 0.19 ± 0.01
α4W154 F4-Trp 1300 ± 100 130 1.1 ± 0.1 0.23 ± 0.02

Wild type 3.9 ± 0.1 - 2.0 ± 0.1 0.24 ± 0.03

α4W154 Trp 3.8 ± 0.1 1.0 2.1 ± 0.1 0.17 ± 0.02

α4W154 F-Trp 15 ± 1 3.9 1.3 ± 0.1 0.19 ± 0.02
α4W154 F2-Trp 35 ± 2 9.0 1.1 ± 0.1 0.19 ± 0.02

α4W154 F3-Trp 78 ± 5 20 0.95 ± 0.04 0.20 ± 0.02
α4W154 F4-Trp 120 ± 10 31 0.88 ± 0.05 0.18 ± 0.02

Wild type 0.95 ± 0.02 - 1.7 ± 0.05 0.22 ± 0.03

α4W154 Trp 0.73 ± 0.02 0.77 1.4 ± 0.1 0.30 ± 0.03

α4W154 F-Trp 2.0 ± 0.2 2.1 1.1 ± 0.1 0.24 ± 0.01
α4W154 F2-Trp 2.4 ± 0.1 2.5 1.2 ± 0.1 0.21 ± 0.01

α4W154 F3-Trp 11 ± 1 12 1.0 ± 0.1 0.20 ± 0.02
α4W154 F4-Trp 15 ± 2 16 0.64 ± 0.04 0.18 ± 0.02

Cy

Var

ACh

Nic

EC50 (nM) nH Inorm (+70mV)

A3B2 Receptor
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Figure 2.11 Dose-response curves for the fluorination series of α4W154 at A3B2 for cytisine 
(upper) and varenicline (lower). 
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Figure 2.12 Representative traces of voltage-clamp current for a wild type recovery experiment at 
αW154 of the A3B2 receptor. Bars show application of varenicline at concentrations noted. 

2.6.1 The Cation-π Interaction 

Previous work in the group has shown that both ACh and nicotine make a 

cation-π interaction to TrpB (Trp154) in the A2B3 α4β2 receptor. 27 In the present 

work, we establish comparable cation-π interactions for varenicline and cytisine at 

A2B3 and for all four agonists at the A3B2 receptor. Plots of cation-π binding ability 

(which correlates with the degree of fluorination) vs. log EC50 are linear in all cases 

(Figure 2.13). 



54 
 

 

 

Figure 2.13 Fluorination plots for the agonists studied at A2B3 (upper) and A3B2 (lower). Data 
for nicotine and ACh at A2B3 were previously published by Xiu et al. and are reproduced here 
for comparison purposes.27 Nic = nicotine; Cy = cytisine; Var = varenicline. 
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We have previously argued that the magnitude of the perturbation to EC50 

induced by fluorination can be taken as an indicator of the relative strength of a 

cation-π interaction.41 In Table 2.2 we characterize the strength of a cation-π 

interaction by the ratio of EC50 values for the F4-Trp mutant vs. the wild type. The 

F4-Trp residue represents a side chain in which the electrostatic component of the 

cation-π interaction has been completely removed, but other features of the 

residue are essentially intact (Figure 2.14). As shown in Table 2,2, all drug-receptor 

pairings reported here show a significant “cation-π ratio”, thus establishing a 

common anchor point for the binding of all drugs considered here to both 

receptors. 

N
H

a
b

c
d

a,b,c,d = H    Trp
b = F             F1Trp
b,d = F          F2Trp
b,c,d = F       F3Trp
a,b,c,d = F    F4Trp

  

Figure 2.14 Left: Structure of unnatural amino acids in the Trp fluorination series studied herein. 
Middle/Right: Electrostatic potential surfaces of indole (middle) and F4-indole (right), 
corresponding to the aromatic portions of the side chains of Trp and F4-Trp, respectively. Results 
are from HF-6-31G** calculations. Electrostatic potential ranges from -25kcal/mol (red) to 
+25kcal/mol (blue), so that green represents ~0 electrostatic potential. 
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2.6.2 The Hydrogen Bond Donor 

All the agonists that possess an N+H moiety are significantly impacted by 

the Thr155Tah mutation in both stoichiometries, suggesting the hydrogen bond 

donor interaction to the backbone carbonyl of TrpB is significant. ACh is not 

impacted by this mutation, as expected.  To facilitate comparison, we have 

expressed variations as a ratio of EC50 values, comparing the receptor with Tah at 

residue 155 to the wild type Thr (Table 2.2). All agonists except ACh show an EC50 

ratio significantly greater than 1, with only modest variations in magnitude. 

2.6.3 The Hydrogen Bond Acceptor  

In previous studies of the A2B3 receptor, Blum et al. showed that ACh and 

nicotine respond equivalently to the β2 Leu119Lah mutation, with a moderate rise 

in EC50.23 Importantly, it was observed that analogs lacking the hydrogen bond 

acceptor moiety, S-MPP for nicotine and choline for ACh, responded quite 

differently to the β2 Leu119Lah mutation. This established that it is, indeed, the 

pyridine N of nicotine and the carbonyl O of ACh that interact with the backbone 

NH.  We now report parallel results for ACh and nicotine in the A3B2 receptor. 

Again, expressing our results as a ratio of EC50 values for backbone mutant vs. 

wild type receptors, both compounds show moderate increases in EC50 in 

response to the backbone ester in both receptor stoichiometries (Table 2.2). 

However, choline is not impacted by the mutation, and S-MPP is actually gain of 

function in response to the backbone mutation in the A3B2 receptor (Table 2.5). A 

similar result was seen for S-MPP in the A2B3 receptor.23 
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Table 2.5 EC50 values (nM), fold shift values and Hill coefficients (nH) for S-MPP. a. Previously 
reported 23. Errors are SEM. 

  

The results for varenicline are surprising and stand in contrast to those for 

ACh and nicotine. With only a 2-fold shift in A2B3 and no meaningful shift in A3B2, 

it would appear that there is no functionally significant hydrogen bond acceptor 

interaction between a quinoxaline N of varenicline and the backbone NH of β2 

Leu119 in the α4β2 receptor. 

Cytisine also produces intriguing results for the hydrogen bond acceptor 

interaction. A remarkable 62-fold shift is seen for this subtle mutation in the A2B3 

receptor.  A much smaller effect is seen in the A3B2 receptor, although it is still 

larger than seen for any other drug-receptor combination. 

 

 

 

 

 

 

Receptor Mutation Fold Shift
Wild typea 11000 ± 400 - 1.7 ± 0.1

β2L119 Leua 14000 ± 900 1.3 1.5 ± 0.1
β2L119 Laha 1100 ± 40 0.08 1.5 ± 0.1

Wild type 4500 ± 100 - 1.1 ± 0.1
β2L119 Leu 4200 ± 300 0.93 1.6 ± 0.1
β2L119 Lah 130 ± 10 0.03 1.2 ± 0.1

S-MPP

A2B3

A3B2

EC50 (nM) nH
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Table 2.6 Hydrogen bonds at A2B3. EC50 values (nM), fold shift values, Hill coefficients (nH) 
and current size at +70mV (normalized to current size at -110mV). a. Previously reported 27. b. 
Previously reported 23. Errors are SEM. 

 

 

 

 

 

 

Agonist Mutation Fold Shift
α4T155 Thra 410 ± 20 - 1.4 ± 0.1 0.044 ± 0.007
α4T155 Taha 370 ± 20 0.90 1.3 ± 0.1 0.02 ± 0.01
β2L119 Leub 440 ± 20 - 1.3 ± 0.1 0.04 ± 0.01
β2L119 Lahb 3000 ± 100 6.8 1.2 ± 0.1 0.04 ± 0.01
α4T155 Thra 90 ± 10 - 1.6 ± 0.1 0.044 ± 0.007
α4T155 Taha 1700 ± 140 19 1.2 ± 0.2 0.02 ± 0.01
β2L119 Leub 120 ± 3 - 1.5 ± 0.1 0.05 ± 0.01
β2L119 Lahb 800 ± 30 6.7 1.3 ± 0.1 0.06 ± 0.01
α4T155 Thr 15 ± 0.7 - 1.2 ± 0.1 0.026 ± 0.009
α4T155 Tah 130 ± 9 8.7 1.2 ± 0.1 0.03 ± 0.01
β2L119 Leu 8.7 ± 0.5 - 1.2 ± 0.1 0.06 ± 0.02
β2L119 Lah 540 ± 30 62 1.0 ± 0.1 0.06 ± 0.01
α4T155 Thr 2.2 ± 0.1 - 1.3 ± 0.1 0.020 ± 0.002
α4T155 Tah 30 ± 2 14 1.2 ± 0.1 0.029 ± 0.006
β2L119 Leu 2.6 ± 0.2 - 1.3 ± 0.1 0.06 ± 0.01
β2L119 Lah 4.7 ± 0.2 1.8 1.3 ± 0.1 0.05 ± 0.01

A2B3 Receptor

Cy

Var

ACh

Nic

EC50 (nM) nH Inorm (+70mV)
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Table 2.7 Hydrogen bonds at A3B2. EC50 values (nM), fold shift values, Hill coefficients (nH) 
and current size at +70mV (normalized to current size at -110mV). Errors are SEM. 

 

 

  

Agonist Mutation Fold Shift
α4T155 Thr 20 ± 1 - 1.4 ± 0.1 0.20 ± 0.02
α4T155 Tah 25 ± 2 1.3 1.2 ± 0.1 0.22 ± 0.01
β2L119 Leu 26 ± 1 - 1.6 ± 0.1 0.23 ± 0.02
β2L119 Lah 220 ± 10 8.5 1.2 ± 0.1 0.24 ± 0.03
α4T155 Thr 9.9 ± 0.5 - 1.7 ± 0.1 0.20 ± 0.02
α4T155 Tah 210 ± 20 21 1.6 ± 0.2 0.22 ± 0.01
β2L119 Leu 12 ± 0.5 - 1.6 ± 0.1 0.23 ± 0.02
β2L119 Lah 67 ± 3 5.6 1.4 ± 0.1 0.20 ± 0.03
α4T155 Thr 3.6 ± 0.4 - 1.4 ± 0.1 0.20 ± 0.04
α4T155 Tah 96 ± 6 27 1.1 ± 0.1 0.19 ± 0.02
β2L119 Leu 3.6 ± 0.1 - 1.9 ± 0.1 0.32 ± 0.03
β2L119 Lah 51 ± 2 14 1.4 ± 0.1 0.24 ± 0.02
α4T155 Thr 0.47 ± 0.03 - 1.5 ± 0.1 0.27 ± 0.02
α4T155 Tah 8.9 ± 0.3 19 1.2 ± 0.1 0.23 ± 0.04
β2L119 Leu 1.0 ± 0.1 - 1.5 ± 0.1 0.23 ± 0.03
β2L119 Lah 1.1 ± 0.05 1.1 1.2 ± 0.1 0.22 ± 0.01

Var

A3B2 Receptor

Cy

ACh

Nic

EC50 (nM) nH Inorm (+70mV)
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2.7 Discussion 

From a combination of structural and functional studies, strong evidence 

has emerged for an agonist binding model at the nAChR that consists of three 

distinct binding interactions: a cation-π interaction, a hydrogen bond donor 

interaction to a backbone carbonyl, and a hydrogen bond acceptor interaction to a 

backbone NH. In the present work we have evaluated these three interactions for 

four different agonists at two stoichiometries of the α4β2 receptor A2B3 and A3B2.  

A cation-π interaction to TrpB (Trp154) has been found in both 

stoichiometries of the α4β2 receptor for all compounds studied here:  ACh, 

nicotine, varenicline, and cytisine. The data of Table 2.2 suggest mostly modest 

variations, with perhaps two meaningful differences. At both stoichiometries, ACh 

shows the strongest cation-π interaction of the four drugs. Note that intrinsically 

(i.e., in the gas phase) a quaternary ammonium cation as in ACh makes a weaker 

cation-π interaction than a protonated amine.42,43  It would appear that the nAChR 

evolved to optimize this interaction for its natural agonist, ACh. Also, for both ACh 

and nicotine, the A3B2 stoichiometry produces a stronger cation-π interaction than 

the A2B3. No meaningful differences are seen for varenicline or cytisine. 

We have argued that F4-Trp represents a side chain for which the 

electrostatic component of the cation-π interaction has been completely removed, 

while other secondary effects such as dispersion forces and induced dipole 

interactions remain. The EC50 ratios of Table 2.2 thus provide an estimate of the 

magnitude of this effect. For the largest interaction, ACh in A3B2, the ratio of 540 
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corresponds to a ∆G° value of 3.7 kcal/mol. This is consistent with other 

estimations of the cation-π interaction in protein systems.44-46 

The cation-π interaction is a universal feature of ACh binding sites, but 

some variations have been seen. For example, a cation-π interaction is seen for 

ACh but not for nicotine in the muscle-type nAChR ((α1)2)β1γδ), a key feature in 

distinguishing peripheral vs. central nervous system effects of nicotine.27,41 In the 

muscle-type nAChR, the much more potent nicotine analogue epibatidine does 

show a cation-π interaction to TrpB.34 In the α4β4 nAChR (A2B3 stoichiometry), 

both ACh and nicotine make a cation-π interaction to TrpB.32 However, in the 

homopentameric α7 nAChR, the cation-π site moves to an alternative aromatic 

residue in the agonist binding site.32 Similar results are seen for other members of 

Cys-loop (pentameric) superfamily of neurotransmitter-gated ion channels. In the 

5-HT3 (serotonin) receptor 41, the glycine receptor 47, and the GABAA and GABAC 

receptors 48,49, the agonist makes a cation-π interaction to an aromatic residue at 

the agonist binding site.  The analogue to TrpB is the most common cation-π site, 

but some variation is seen across the family.50 For the drug-receptor combinations 

probed here, however, all cation-π interactions are to TrpB. 

Two hydrogen bonding interactions contribute to agonist binding, and we 

have referred to them as the hydrogen bond donor and the hydrogen bond 

acceptor of the drug (Figure 2.3). Of course, ACh cannot participate in the 

hydrogen bond donor interaction, but nicotine shows a strong interaction with the 

backbone carbonyl of TrpB. For ACh and nicotine, both stoichiometries show 

similar behaviors for the hydrogen bond acceptor interaction. 
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The two smoking cessation compounds, varenicline and cytisine, show 

interesting variations with regard to hydrogen bonding interactions. In discussing 

these compounds, we will refer to Figure 2.15, which shows structures and 

electrostatic potential surfaces for ACh, nicotine, cytisine, and varenicline. 

 

Figure 2.15 Structures and electrostatic potential surfaces for the agonists considered here. 
Results are from HF-3-21G* calcula-tions. Electrostatic potential ranges from -4.8 kcal/mol (red) to 
+143 kcal/mol (blue). As such, unlike in Figure 2.14, green does not represent ~0 electrostatic 
potential. As all these molecules are cations, the surfaces are positive over their entirety, except 
for a small negative electrostatic potential at the carbonyl oxygen of cytisine. The light blue line 
represents the “internitrogen distance” for each agonist, the number is that distance in Å. 

Varenicline is similar to nicotine in its participation in the hydrogen bond 

donor interaction.  However, varenicline is qualitatively different from all the other 



63 
 

compounds considered with regard to the hydrogen bond acceptor interaction. 

With less than a 2-fold effect at the A2B3 stoichiometry and no meaningful effect 

at the A3B2 stoichiometry, we conclude that varenicline does not make a 

functionally important hydrogen bond to the backbone NH of Leu119 in the β2 

subunit. Figure 2.15 provides a rationalization. By visual inspection, and from the 

distances shown, is it clear that the quinoxaline nitrogens of varenicline are not 

well aligned with the hydrogen bond acceptor moieties of the other compounds. 

Thus, it may be that the geometry of varenicline makes formation of the hydrogen 

bond impossible. Alternatively, the quinoxaline N is a much poorer hydrogen bond 

acceptor than the pyridine N of nicotine (pKa values for pyridine and quinoxaline 

are 5.2 and 0.8, respectively). It may be that the protein can adjust to the geometry 

of varenicline, but the hydrogen bonding interaction is so weak that it does not 

show up in our assay. 

Cytisine shows an intriguing hydrogen bonding pattern, distinct from the 

other agonists considered here. Recall that, more so than the other drugs, cytisine 

shows a strong distinction between the two stoichiometries of the α4β2 receptor. 

Generally, cytisine is considered to be inactive (an antagonist) at the A2B3 form; 

we are able to record EC50 values because of the L9’A mutations present in our 

system. Cytisine is however efficacious at the A3B2 form. Interestingly, cytisine 

also shows the greatest stoichiometry differences for both hydrogen bonding 

interactions (Table 2.2). Concerning the hydrogen bond donor interaction, cytisine 

shows a stronger than usual hydrogen bond in the A3B2 stoichiometry, but a 

weaker than usual interaction in the A2B3 stoichiometry. The effects are not large, 
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but we feel the systems being compared are similar enough that the differences 

are meaningful. The pattern is reversed in the hydrogen bond acceptor site.  The 

A2B3 stoichiometry shows a remarkable 62-fold rise in EC50 in response to the 

backbone mutation, much larger than anything we have seen previously. The A3B2 

stoichiometry now shows the smaller effect, although it is still larger than what is 

seen with nicotine or ACh. 

We propose a speculative model to rationalize these results. Recall that 

cytisine is efficacious at A3B2 but not at A2B3. Also, A3B2 shows a strong 

hydrogen bond donor interaction and a relatively weaker hydrogen bond acceptor 

interaction, while the reverse pattern holds for A2B3. We propose that cytisine is 

positioned closer to TrpB in the efficacious A3B2 stoichiometry than in the A2B3, 

and that a strong interaction with TrpB is required for receptor gating.  By moving 

closer to TrpB in the A3B2 receptor, cytisine is moving further from Leu119, thus 

explaining the pattern of hydrogen bond strengths. Hydrogen bonding shows a 

fairly steep distance dependence, and so only a slight shift would be required to 

meaningfully strengthen/weaken a hydrogen bond. In contrast, the cation-π 

interaction is much less sensitive to the distance separation between the charge 

and the π-system 44, and so there is no stoichiometry distinction for this interaction. 

As previously noted, for some indications a partial agonist could be preferable to 

a full agonist. If validated by further studies, the present findings could suggest a 

strategy for tuning agonist efficacy.  Maximizing the interaction with TrpB, through 

both the cation-π interaction and the hydrogen bond donor interaction, should 
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maximize efficacy, while biasing the system toward the hydrogen bond acceptor 

interaction could diminish efficacy. 

Another aspect of cytisine’s pharmacology is that the hydrogen bond 

acceptor interaction is stronger for both stoichiometries than for the any of the other 

drug-receptor pairs. We can rationalize this general effect with reference to the 

electrostatic potential plots of Figure 2.15. Visually, the carbonyl oxygen of cytisine 

presents a much stronger negative electrostatic potential than the corresponding 

nitrogen of nicotine.  Quantitative evaluation of the electrostatic potentials at these 

atoms confirms the visual impression. Thus, the amide carbonyl oxygen of cytisine 

should be a better hydrogen bond acceptor than the pyridine nitrogen of nicotine 

or the ester carbonyl of ACh, completely consistent with expectations based on 

known hydrogen bonding propensities. 

In studies such as these, it is typical to acknowledge the ambiguity that a 

change in EC50 could reflect a change in “binding” or a change in “gating”. In the 

present study, we are probing a cation-π interaction and two hydrogen bonds; 

these are unambiguously binding interactions. Structural models and the very 

subtle nature of the mutations we introduce make it clear that we are perturbing a 

binding interaction between the drug and the receptor. A shift in EC50 indicates that 

the interaction probed is strengthened (or weakened) in one or more of the 

equilibria that contribute to EC50. A simple case would be the formation of a key 

hydrogen bond in the drug binding step. However, it could be that the gating 

equilibrium is perturbed, even if the mutation is quite remote to the region of the 

receptor thought to contain the channel gate. This would mean that the drug binds 
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more tightly to the open state than to the closed (or vice versa). Either way, we are 

probing a binding interaction between the drug and the receptor. Certainly, there is 

value in knowing which step of the overall equilibrium is most sensitive to the 

interaction being probed. Single-channel studies with the patch clamp technique 

can provide such information, and we have used this approach in the past to further 

characterize unnatural amino acid mutations we have made (Chapter 4 and 27). In 

the present work we present over 60 EC50 values obtained from multiple dose-

response curves (Tables 2.3 to 2.7). It is not feasible to perform single-channel 

studies on every combination of drug and mutation considered here. More 

importantly, for studies of comparative pharmacology, EC50 is arguably the most 

appropriate measure of receptor function.  

In conclusion, we have evaluated a binding model for ACh, nicotine, and 

two smoking cessation drugs, varenicline and cytisine, at both stoichiometries, 

A2B3 and A3B2, of the α4β2 nAChR, the receptor most associated with nicotine 

addiction. We find a universal cation-π interaction, and a hydrogen bond donor 

interaction to a backbone carbonyl. However, we find that varenicline violates the 

nicotinic binding model and does not make a functionally significant hydrogen bond 

acceptor interaction seen with other agonists. In addition, the differential hydrogen 

bonding interactions for cytisine suggest a structural model to explain the variation 

in efficacy seen for the two receptor stoichiometries. 
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2.8 Materials and Methods 

2.8.1 Mutagenesis and mRNA synthesis  

Rat α4L9’A and β2 subunits were expressed in pAMV vectors. The 

mutations for each subunit were introduced according to the QuikChange 

mutagenesis protocol (Stratagene) and sequencing verified the incorporation of 

desired mutations. Rat α4L9’A and β2 mRNA were prepared from NotI 

linearizations of the circular expression vector pAMV, followed by in vitro 

transcription using the mMessage mMachine T7 kit (Ambion, Austin, TX).  

2.8.2 Ion channel expression  

To express the ion channels with a wild type ligand binding site, α4L9’A 

mRNA was co-injected with β2 mRNA at various ratios to obtain desired receptor 

stoichiometry. Specifically, 20:1 α4L9’A:β2 ratio for A3B2 and 1:3 for A2B3. Total 

mRNA amount for microinjection was 10-50ng/cell in a total volume of 75nL. Stage 

V-VI Xenopus oocytes were microinjected and incubated at 18˚C for 24-48h in 

ND96 buffer (96mM NaCl, 2mM KCl, 1mM MgCl2, 2mM CaCl2, and 5mM HEPES, 

pH 7.5) with 0.005% (w/v) gentamycin and 2% (v/v) horse serum. 

2.8.3 Unnatural amino acid incorporation  

Nitroveratryloxycarbonyl (NVOC) protected cyanomethyl ester forms of 

unnatural amino acids and α-hydroxythreonine cyanomethyl ester were 

synthesized, coupled to the dinucleotide dCA, and enzymatically ligated to either 

74-nucleotide THG73 tRNA (for α4W154 and α4T155 experiments) or 74-

nucleotide TQOpS’ tRNA (for β2L119 experiments) as described previously. 25,27 

The unnatural amino acid-conjugated tRNA was deprotected by photolysis and 
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then immediately co-injected with mRNA containing the UAG mutation (for THG73 

tRNA) or the UGA mutation (TQOpS’ tRNA) at the site of interest. Stage V–VI 

oocytes were injected with ~10-150ng mRNA and 25-125ng tRNA-amino acid or 

tRNA-hydroxy acid in a total volume of 75nL. For unnatural amino acid 

incorporation into the α4 subunit, a 3:1 α4L9’A:β2 mRNA injection ratio yielded 

A2B3 receptors and 100:1 to 150:1 ratios yielded A3B2 receptors. For unnatural 

amino acid incorporation into the β2 subunit, a 1:20 α4L9’A:β2 mRNA injection 

ratio yielded A2B3 receptors and a 10:1 ratio yielded A3B2 receptors. In cases 

where receptor expression needed to be increased, a second microinjection 

(double injection) of the same concentration and volume of α4L9’A:β2 mRNA and 

tRNA was performed after 24h incubation at 18°C. Double injected oocytes were 

incubated for an additional 24-48h for a total of 48-72h. Cells were incubated in 

ND96 buffer, 0.005% (w/v) gentamycin and 2% (v/v) horse serum, and the solution 

was changed at least daily and up to every 6h. The fidelity of unnatural amino acid 

incorporation was confirmed at each site with a “wild type recovery” experiment 

and “readthrough/reaminoacylation” tests (see Section 1.3.2). In the “wild type 

recovery” experiment, UAG mutant mRNA was co-injected with tRNA charged with 

the amino acid that was present at this residue in the wild type protein. Generation 

of receptors that were indistinguishable from the wild type protein indicated that 

the residue carried by the suppressor tRNA was successfully and exclusively 

integrated into the protein. In a “readthrough/reaminoacylation” test, the UAG 

mutant mRNA was introduced with (1) no tRNA, (2)76-nucleotide THG73 tRNA 

that was not charged with any amino acid or (3) tRNA THG73 enzymatically ligated 
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to the dinucleotide dCA. A lack of current in these experiments validated the 

reliability of the nonsense suppression experiments. 

2.8.4 Whole-cell electrophysiological characterizations of the channels  

Oocyte recordings were performed 24h after microinjection for wild type 

receptors and 48 to 72h after microinjection for unnatural amino acids. Agonist-

induced currents were recorded in two-electrode voltage clamp mode using the 

OpusXpress 6000A (Axon Instruments, Union City, CA) at a holding potential of 

−60mV. Oocytes were superfused with Ca2+-free ND96 solution (96mM NaCl, 

2mM KCl, 1mM MgCl2, and 5mM HEPES, pH 7.5) at flow rates of either 1.25 or 

4mL/min during drug application and 3mL/min during wash. For A2B3 

experiments, drug application was 15s in duration at 4mL/min rate (1mL total drug 

volume), while wash duration between each concentration was 116s. For A3B2 

experiments, drug application was 15s in duration at 4mL/min rate immediately 

followed by 45s at 1.25mL/min rate (2mL total drug volume), while wash duration 

between each concentration was 116s.  Data were sampled at 50Hz and filtered 

at 20Hz. Acetylcholine chloride, (−)-nicotine tartrate, and (−)-cytisine were 

purchased from Sigma/Aldrich/RBI (St. Louis, MO). Varenicline tartrate was a 

generous gift from Targacept company. Agonists were prepared in sterile, distilled, 

deionized water for dilution in Ca2+-free ND96 solution. Dose-response data were 

obtained for at least 6 concentrations of agonist and for a minimum of 5 oocytes 

originating from at least two different donor frogs. Mutants with Imax of at least 80nA 

of current were defined as functional. EC50 and Hill coefficients were calculated by 

fitting the dose-response relation to the Hill equation (see Section 1.4.1). The dose-
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responses of individual oocytes were examined to identify outliers. All data are 

reported as mean ± standard error (SE). Voltage jump experiments were used to 

verify the stoichiometry of the mutant and wild type receptors, as described 

previously.27 

2.9 Note on Project Contributions 

The work presented in this chapter was a collaborative effort between 

myself and four other members of the Dougherty group, Dr. Angela P. Blum, Dr. 

Nyssa L. Puskar, Dr. Jai A. P. Shanata and Darren T. Nakamura.51 Angela 

performed all the functional assays pertaining to the β2L119 H-bond for both A3B2 

and A2B3. Nyssa was responsible for probing the cation-π interaction and the H-

bond to the backbone CO of TrpB (α4T155 data) for all agonists at the A2B3 

receptor. I was responsible for probing those last two binding interactions at the 

A3B2 receptor in collaboration with Darren, from whom I took over the project early 

on. Finally, Jai and I performed all the single-channel recording assays and data 

analysis related to this project presented in Chapter 4. 
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Investigating the Effect of Modulating the 
Hydrogen Bond Acceptor of the Nicotinic 

Pharmacophore on the β2L119 Hydrogen Bond of 
the A3B2 α4β2 Receptor 
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3.1 Introduction 

The essential nicotinic pharmacophore, a cationic N and a hydrogen bond 

acceptor separated by an appropriate distance, has been established for some 

time.1-3 The Dougherty group has identified the binding partners for these moieties, 

as well as the nature of the binding interactions, and expanded the nicotinic 

pharmacophore to include an additional hydrogen bond between the cationic N 

and the backbone CO of the receptor (see Section 2.2).1,4-8 The cationic N 

participates in a cation-π interaction to an aromatic residue in the agonist binding 

site (TrpB for α4β2), while the hydrogen bond acceptor engages in a hydrogen 

bond to the backbone NH of a conserved leucine residue (β2L119 for α4β2).  

3.1.1 Hydrogen Bond at β2L119 

 

Table 3.1 Hydrogen bonding of several nicotinic agonists to the backbone NH of a conserved 
leucine residue in the complementary subunit of various types of nicotinic receptors. An amide-to-
ester strategy was used to evaluate the functional significance of the hydrogen bond and the 
numbers represent the ratio of Lah/Leu EC50 values. The higher the ratio, the stronger the hydrogen 
bond. a. Previously reported in 1. b. Previously reported in 6. c. Previously reported in 4. ND: Not 
Determined. 

Of the three binding interactions composing the expanded nicotinic 

pharmacophore, we have observed the most variation at the β2L119 hydrogen 

bond. As described in Section 2.5 of this thesis, we use a backbone amide-to-ester 

Agonist
α4β2        
A2B3

α4β2        
A3B2

Muscle 
(α1)2β1δγ (α4)2(β4)3

ACh 6.8a 8.5b 29c 2.9c

Nicotine 6.7a 5.6b 10c 2.8c

Cytisine 62b 14b ND 14c

Varenicline 1.8b 1.1b ND 0.38c

Epibatidine 5.0a 1.8 1.3c 1.9c

Hydrogen Bond to Backbone NH
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mutation strategy to probe for hydrogen bonds. In this context, we use the α-

hydroxy EC50/wild type EC50 ratio as a metric to evaluate the functional impact of 

the hydrogen bond on receptor activation; the higher the ratio, the more significant 

the hydrogen bond. Typically, we see loss of function for these mutations, and we 

do not interpret ratios of <2 and >1 as significant (for gain of function mutations the 

cut-off is <1 and >0.5).  

As shown in Table 3.1, the agonists showing the weakest hydrogen bonding 

at the β2L119 (or equivalent leucine position for non-β2 receptors) are varenicline 

and epibatidine with the exception being epibatidine at A2B3.  We have 

hypothesized that this is due to the relatively weaker hydrogen bond acceptor 

components present for varenicline and epibatidine. The work presented in this 

chapter aims to test this hypothesis by using a pharmacological approach to 

modulate the hydrogen bond acceptor ability of two agonist pairs: 

epibatidine/deschloroepibatidine and nicotine/chloronicotine (Figure 3.1) 

 

 

 

 

 

Figure 3.1 Agonists studied in this chapter. A single enantiomer of each, Epi and dCl-Epi is shown 
but the respective racemates were used. Cl-Nic and Nic were enantiomerically pure. 
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3.2 Double Mutant Cycle Analysis 

Double mutant cycle analysis is the standard method used to measure the 

strength of intramolecular or intermolecular interactions in proteins or in protein-

ligand complexes.9 EC50-based mutant cycle analyses have been applied by our 

group1,10-13 and others14-16 to investigate several interactions in Cys-loop receptors. 

Herein, double mutant cycle analysis is applied to study protein-agonist type 

interactions involving mutation of an amino acid of the protein and, also, “mutation” 

of the agonist by classical pharmacological strategies. Specifically, we use double 

mutant cycle analysis of protein-agonist interactions to understand the energetic 

effect of modulating the hydrogen bond acceptor component of the β2L119 

hydrogen bond. 

For residues (or residue/agonist pairs) that are considered non-interacting, 

mutation of one site should have no energetic impact on the second site, and so 

the effect of simultaneous mutation at both sites is expected to be multiplicative.9 

In a double mutant cycle analysis, this is evidenced by in a coupling coefficient, Ω 

of 1 (Figure 3.2). If, on the other hand, the two residues (or residue/agonist pairs) 

do interact, then the effect of simultaneous mutation will be greater or less than the 

product of the individual effects. Typically, we consider an interaction significant 

when having an Ω of <0.2 or >5. The coupling coefficient, Ω can be converted into 

a free energy value, ΔΔG° (Figure 3.2), a metric that we consider to be 

approximately equivalent to the strength of the interaction being studied. A 

coupling energy of >1kcal/mol is generally considered indicative of a strong 

noncovalent interaction. 



79 
 

 

Figure 3.2 Schematic of a double mutant cycle analysis showing equations for calculating the 
coupling coefficient, Ω and associated free energy, ΔΔG˚. 

 

3.3 Incremental Dose-Response Protocol 

We found that epibatidine is a very tight binder (slow off rate). This 

presented a problem in that, for the higher doses needed for the dose-response 

curve to turn over (reach its maximum), epibatidine would not wash off and thus 

we were not able to obtain a good turn over using our regular recording protocol 

(Figure 3.3). Longer washes of up to 10 minutes (compared to a 2 minute regular 

wash), not only failed to completely wash off epibatidine but also significantly 

impacted the number of living cells at the end of a run due to the total recording 

time of 1.5 to 2h becoming too long for oocyte viability. 
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Figure 3.3 Sample wild type recovery dose-response curve for epibatidine showing poor turn 
over. EC50 was 0.10 ± 0.02nM and hill coefficient, nH = 2.3 ± 0.6. 

The solution was to implement what we termed an “incremental dose-

response” protocol where no wash was applied between subsequent drug 

applications, while a final wash of 2 minutes was applied after the last drug 

application. The rationale behind this protocol is that, at non-saturating agonist 

concentrations, not all available receptor sites are occupied and thus, increasing 

agonist concentration with subsequent doses would occupy more receptor sites 

until all available receptors are activated (saturating agonist concentration) (Figure 

3.4). The downside of this protocol is a time constraint of approximately 15 minutes 

(for the α4β2 receptor) of total drug application time to avoid severe desensitization 
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that would interfere with our measurements. Naturally, this protocol is not viable 

for receptors, such as α7, exhibiting fast desensitization behavior. While some 

desensitization is observed, we tested the accuracy of the protocol by comparing 

EC50 values obtained with this protocol to EC50 values obtained with our regular 

protocol with no significant loss in accuracy. Interestingly, epibatidine did wash off 

under our regular protocol conditions (2 minute wash between drug applications) 

for the β2L119Lah mutant. We hypothesize that this is due to both the agonist on 

and off rates being similarly affected (impacts binding affinity but not EC50). 

 

Figure 3.4 Sample trace of an incremental dose-response run for wild type recovery (β2L119Leu) 
at A3B2 with the agonist (±)-epibatidine. Bars represent drug application time and concentration is 
given in nM.  
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3.4 Results 

A backbone amide to ester mutation strategy was applied to probe the 

β2L119 hydrogen bond for epibatidine, deschloroepibatidine, chloronicotine and 

nicotine at the A3B2 receptor. Results are summarized below in Table 3.2. Double 

mutant cycle analysis was performed to evaluate the energetic effect of modulating 

the hydrogen bond acceptor component for the relevant agonist pairs, 

nicotine/chloronicotine and epibatidine/deschloroepibatidine (Figures 3.5 and 3.6, 

respectively). Table 3.3 summarizes the results of the double mutant cycle 

analyses.  

 

Table 3.2 β2L119 Hydrogen Bond at A3B2 EC50 values (nM), fold shift values calculated as 
Lah/Leu EC50 ratios, Hill coefficients (nH) and current size at +70mV (normalized to current size at 
-110mV). Errors are SEM (standard error from the mean). a. Previously reported in 6. Abbreviations 
are Cl-Nic for S-6-chloronicotine, Nic for S-nicotine, Epi for (±)-epibatidine and dCl-Epi for (±)-
deschloroepibatidine. 

Agonist Mutation
Fold Shift 
(Lah/Leu)

Wild type 7.1 ± 0.8 - 1.5 ± 0.2 0.09 ± 0.03
β2L119 Leu 7.2 ± 0.7 - 1.4 ± 0.1 0.08 ± 0.01
β2L119 Lah 11.8 ± 0.3 1.6 1.6 ± 0.1 0.12 ± 0.05
Wild type 10 ± 1 - 1.7 ± 0.2 0.30 ± 0.04

β2L119 Leu 12 ± 0.5 - 1.6 ± 0.1 0.23 ± 0.02
β2L119 Lah 67 ± 3 5.6 1.4 ± 0.1 0.20 ± 0.03
Wild type 0.10 ± 0.01 - 1.9 ± 0.2 0.23 ± 0.03

β2L119 Leu 0.094 ± 0.007 - 1.9 ± 0.2 0.18 ± 0.02
β2L119 Lah 0.17 ± 0.01 1.8 2.1 ± 0.2 0.18 ± 0.03
Wild type 0.074 ± 0.005 - 1.6 ± 0.2 0.09 ± 0.03

β2L119 Leu 0.061 ± 0.007 - 1.8 ± 0.2 0.08 ± 0.01
β2L119 Lah 0.29 ± 0.01 4.8 1.9 ± 0.1 0.12 ± 0.05

Cl-Nic

Nica

Epi

dCl-Epi

A3B2 Receptor

EC50 (nM) nH Inorm (+70mV)
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Figure 3.5 Double mutant cycle analysis for nicotine (Nic) and chloronicotine (Cl-Nic) at Leu119 
(wild type recovery at the β2119 position) and Lah119 of the A3B2 stoichiometry of the α4β2 
receptor. 
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Figure 3.6 Double mutant cycle analysis for epibatidine (Epi) and deschloroepibatidine (dCl-Epi) 
at Leu119 (wild type recovery at the β2119 position) and Lah119 of the A3B2 stoichiometry of the 
α4β2 receptor. 

 

 

 

  

Table 3.3 Coupling coefficients (Ω) and ΔΔG° values for mutant cycle analyses at A3B2. a. Is 
included for comparison purposes and was previously reported in 17. Right: structure of S-MPP. 

 

Agonist Pair Ω
ΔΔGo 

(kcal/mol)
Nic/S -MPPa 0.0055 3.1
Nic/Cl-Nic 0.29 0.73
Epi/dCl-Epi 2.8 -0.61 S-MPP

N+

H
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3.5 Discussion 

Previously, we hypothesized that varenicline, in lacking a functionally 

significant hydrogen bond at the β2L119 position, violated the nicotinic 

pharmacophore model by having a much poorer hydrogen bond acceptor 

component than other nicotinic agonists (see Chapter 2).6 We see a similar effect 

for epibatidine at A3B2 and other nicotinic receptors.4 Given the similar pKa values 

of the hydrogen bond acceptor components of varenicline and epibatidine (0.8 for 

quinoaxiline and 0.5 for 2-chloropyridine versus 5.2 for pyridine), we sought to test 

the weaker hydrogen bond acceptor hypothesis via a pharmacological approach 

with two agonist pairs: epibatidine with deschloroepibatidine and chloronicotine 

with nicotine. 

We use the Lah to Leu fold shift as a metric to evaluate the functional 

significance of the β2L119 hydrogen bond, as previously described.1,6 As shown 

in Table 3.2, we observe that the fold shift value goes from 1.8 to 4.8 for epibatidine 

and deschloroepibatidine, respectively. Similarly, we see the fold shift value goes 

from 1.6 to 5.6 for chloronicotine and nicotine, respectively. In structural terms, 

going from epibatidine to deschloroepibatidine and chloronicotine to nicotine 

represents “removal” of the 2-chloropyridine chlorine. As expected, this improves 

the hydrogen bond acceptor ability of the pyridine N, thereby strengthening the 

hydrogen bond to β2L119, an effect which is evidenced by the higher fold shift of 

the deschloro analogues. The double mutant cycle analyses shown in Figures 3.5 

and 3.6 were used to evaluate the energetic impact of either introducing the 

chlorine for nicotine/chloronicotine or removing the chlorine for 
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epibatidine/deschloroepibatidine. As anticipated, we observed that the energetic 

impact is opposite in sign, 0.73kcal/mol for nicotine/chloronicotine and -

0.61kcal/mol for epibatidine/deschloroepibatidine. Also as expected, introducing a 

chlorine, or weakening the β2L119 hydrogen bond was energetically unfavorable 

(ΔΔG˚>0) whereas strengthening the hydrogen bond by removing the chlorine was 

energetically favorable (ΔΔG˚<0). It is worth noting that, while these effects are 

modest in value (we typically consider |ΔΔG˚|>1 as indicative of a strong 

interaction), it is not surprising given the subtle nature of the modification 

introduced, we are not eliminating the hydrogen bond, but attenuating it by 

introduction of the 2-chloropyridine chlorine. In contrast, eliminating the hydrogen 

bond altogether, as is the case for the nicotine/S-MPP pair (Table 3.3), produces 

a strong coupling energy of 3.1kcal/mol, within the expected energy value for a 

hydrogen bond. 

As previously reported in the literature18, we observe that epibatidine and 

deschloroepibatidine are similarly potent. Furthermore, we find that chloronicotine 

and nicotine also exhibit similar potencies. It is possible that this is due to a 

hydrophobic effect of the chlorine substituent, in other words, that the benefit of 

strengthening the hydrogen bond is off-set by the loss of hydrophobicity. Thus, 

removal of the chlorine substituent has competing effects on the resulting EC50 

values (for deschloroepibatine and nicotine); on one hand, it lowers the EC50 by 

strengthening the pyridine hydrogen bond and on the other hand, the EC50 value 

is increased by loss of the hydrophobic effect of chlorine. Since, ΔΔG˚ values are 

calculated based on the coupling coefficient, Ω which is in turn defined based on 
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EC50 values, loss the hydrophobic effect granted by chlorine also explains why the 

observed ΔΔG˚ values are small.     

In conclusion, we have demonstrated that for agonists nicotine, epibatidine 

and by association, varenicline, hydrogen bond acceptor strength has a 

meaningful functional impact on receptor activation for the A3B2 receptor.  

Epibatidine shows a stronger β2L119 hydrogen bond for A2B3 (Lah/Leu fold shift 

of 5.0) than for other receptors (Table 3.1). Further work with the 

epibatidine/deschloroepibatidine and nicotine/chloronicotine pairs on the A2B3 

receptor would therefore be of interest.  

3.6 Materials and Methods 

3.6.1 Mutagenesis and mRNA synthesis  

Rat α4L9’A and β2 subunits were expressed in pAMV vectors. The 

mutations for each subunit were introduced according to the QuikChange 

mutagenesis protocol (Stratagene) and sequencing verified the incorporation of 

desired mutations. Rat α4L9’A and β2 mRNA were prepared from NotI 

linearizations of the circular expression vector pAMV, followed by in vitro 

transcription using the mMessage mMachine T7 kit (Ambion, Austin, TX).  

3.6.2 Ion channel expression  

To express the ion channels with a wild type ligand binding site, α4L9’A 

mRNA was co-injected with β2 mRNA at a ratio of 20:1 α4L9’A:β2 to obtain the 

A3B2 receptor. Total mRNA amount for microinjection was 5-10ng/cell in a total 

volume of 75nL. Stage V-VI Xenopus oocytes were microinjected and incubated 
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at 18˚C for 24h in ND96 buffer (96mM NaCl, 2mM KCl, 1mM MgCl2, 2mM CaCl2, 

and 5mM HEPES, pH 7.5) with 0.005% (w/v) gentamycin and 2% (v/v) horse 

serum. 

3.6.3 Unnatural amino acid incorporation  

Nitroveratryloxycarbonyl (NVOC) protected cyanomethyl ester forms of 

unnatural amino acids and α-hydroxythreonine cyanomethyl ester were 

synthesized, coupled to the dinucleotide dCA, and enzymatically ligated to 74-

nucleotide TQOpS’ tRNA (for β2L119 experiments) as described previously. 3,8 

The unnatural amino acid-conjugated tRNA was deprotected by photolysis and 

then immediately co-injected with mRNA containing the UGA mutation at the site 

of interest. For both α4L9’A and β2 mRNA, the actual stop codon is also UGA. 

Thus, to avoid unwanted incorporation of unnatural aminoacylated tRNA, both 

subunits were mutated at the stop codon from UGA to UAA, a mutation we called 

“opal masking”. Stage V–VI oocytes were injected with ~10-150ng mRNA and 25-

125ng tRNA-amino acid or tRNA-hydroxy acid in a total volume of 75nL at a ratio 

of 10:1 to yield A3B2 receptors. In cases where receptor expression needed to be 

increased, a second microinjection (double injection) of the same concentration 

and volume of α4L9’A:β2 mRNA and tRNA was performed after 24h incubation at 

18°C. Double injected oocytes were incubated for an additional 24-48h for a total 

of 48-72h. Cells were incubated in ND96 buffer, 0.005% (w/v) gentamycin and 2% 

(v/v) horse serum, and the solution was changed at least daily and up to every 6h. 

The fidelity of unnatural amino acid incorporation was confirmed at each site with 
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a “wild type recovery” experiment and “readthrough/reaminoacylation” tests (see 

Section 1.3.2) as described previously.1 

3.6.4 Whole-cell electrophysiological characterizations of the channels  

Oocyte recordings were performed 24h after microinjection for wild type 

receptors and 48 to 72h after microinjection for unnatural amino acids. Agonist-

induced currents were recorded in two-electrode voltage clamp mode using the 

OpusXpress 6000A (Axon Instruments, Union City, CA) at a holding potential of 

−60mV. Oocytes were superfused with Ca2+-free ND96 solution (96mM NaCl, 

2mM KCl, 1mM MgCl2, and 5mM HEPES, pH 7.5) at flow rates of either 1.25 or 

4mL/min during drug application and 3mL/min during wash. For 

deschloroepibatidine experiments, drug application was 15s in duration at 

4mL/min rate immediately followed by 45s at 1.25mL/min rate (2mL total drug 

volume), while wash duration between each concentration was 116s. For 

chloronicotine and (±)-epibatidine at β2L119Lah experiments, drug application 

was 15s in duration at 4mL/min rate immediately followed by 45s at 1.25mL/min 

rate (2mL total drug volume), while wash duration between each concentration 

was 116s for the initial 5 agonist doses and drug application was 15s in duration 

at 4mL/min rate (1mL total drug volume); wash duration between each 

concentration was 116s for the following agonist doses. For (±)-epibatidine wild 

type and wild type recovery (β2L119Leu) experiments, the incremental dose 

response protocol (see Section 3.3) was used where drug application was 30s at 

4mL/min rate followed by a 30s pause with no wash between subsequent drug 

applications but a final wash time (after last drug application) of 120s at 3mL/min.   
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Data were sampled at 50Hz and filtered at 20Hz. (±)-Epibatidine was purchased 

from Tocris Bioscience (Minneapolis, MN), (S)-6-chloronicotine was purchased 

from Toronto Research Chemicals (Toronto, ON, Canada) and (±)-

deschloroepibatidine was synthesized from (±)-epibatidine as described in Section 

3.6.5. Stock solutions of 25mM (±)-epibatidine and 383mM (S)-6-chloronicotine 

were prepared in a 50:50 solution of sterile, distilled, deionized water and ethanol 

for dilution in Ca2+-free ND96 solution. (±)-Deschloroepibatidine was dissolved in 

8% DMSO/water (sterile, distilled and deionized) to a concentration of 0.92mM. 

Dilutions in Ca2+-free ND96 solution were at least 104 fold, so amounts of ethanol 

and DMSO in the final solutions were negligible and did not impact cell health. 

Dose-response data were obtained for at least 8 concentrations of agonist and for 

a minimum of 5 oocytes. Mutants with Imax of at least 200nA of current were defined 

as functional. EC50 and Hill coefficients were calculated by fitting the dose-

response relation to the Hill equation (see Section 1.4.1). The dose-responses of 

individual oocytes were examined to identify outliers. All data are reported as mean 

± standard error. Voltage jump experiments were used to verify the stoichiometry 

of the mutant and wild type receptors, as described previously.8 

3.6.5 Synthesis of Deschloroepibatidine  

(±)-Deschloroepibatidine was synthesized from (±)-epibatidine as described 

in the literature.19 (±)-Epibatidine was dissolved in 1M KOH in methanol followed 

by addition of 10% Pd/C catalyst and exposure to H2  gas at atmospheric pressure 

and RT for 90 min. Catalyst was removed by filtration and product was extracted 

in 2:3 water/chloroform (10mL water and 3x 15mL chloroform extracts) and 
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protonated with 1eq of HCl. Yield was 19%. Product was purified by HPLC and 

verified by LCMS and 1H-NMR in CD3OD.18 
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Chapter 4: 
 

Single-Channel Studies of Varenicline at A3B2 
and A2B3 α4β2 Receptors 
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4.1 Introduction  

We have found that the smoking cessation drug, varenicline, acts on its 

target receptor, α4β2, via two binding interactions. First, a cation-π interaction to 

a conserved tryptophan residue (TrpB, Trp154 in rat α4) and second, a hydrogen 

bond to the backbone CO of TrpB.1 As described in Chapter 2, we established that 

this binding pattern holds for both stoichiometries of the α4β2 receptor, A3B2 and 

A2B3. We also find that varenicline appears to violate the nicotinic pharmacophore 

by failing to make a functionally significant additional hydrogen bond to the 

backbone NH of a conserved leucine residue (L119 in rat β2). We have proposed 

that this is due to varenicline having a weaker hydrogen bond acceptor moiety than 

the other nicotinic agonists studied (acetylcholine, nicotine and cytisine). Studies 

described in Chapter 3 support this claim. The work presented in this chapter is 

aimed at further studying activation by varenicline of wild type and unnatural amino 

acid-expressing forms of A2B3 and A3B2 receptors. Specifically, we used single-

channel recording with varenicline to determine if the gating properties of the 

receptor change upon fluorination of TrpB. Ideally, the best fluorinated TrpB mutant 

to study would be F4W. However, we find that F4W does not incorporate efficiently 

enough to provide the level of expression necessary for single-channel recording. 

Thus, the F3W mutant was studied in single-channel experiments using the cell-

attached configuration as reported in this chapter.  

4.2 Patch-Clamp: Types of Patches 

The patch-clamp technique allows for single-molecule studies of LGICs 

(Ligand-Gated Ion Channels). There are four types of patches that can be used for 
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electrophysiological recording: cell-attached, whole-cell, outside-out and inside-

out (Figure 4.1). Each has its unique advantages and disadvantages, as has been 

summarized previously.2,3  

 

Figure 4.1 Types of patches for patch-clamping. 

All results presented herein were obtained in the cell-attached 

configuration. This configuration better suited our needs because it is relatively 

facile to obtain, is more likely to isolate a single-channel for recording and allows 

for collection of kinetic data. The whole-cell method is not effective in oocytes given 

the electrical components of our electrophysiology rig and the large size of the 

oocytes preventing control of the cytosolic environment; it also loses much kinetic 

information. In addition, recordings with the semi-automated OpusXpress 6000A 

(Axon Instruments) in our lab provide whole-cell data for up to 8 cells 

simultaneously, making this configuration essentially obsolete for our purposes. 
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The inside-out configuration provides access to the intracellular side and is mostly 

used to study the gating of second-messenger-activated channels. The outside-

out patch allows for superfusion of the extracellular side and thus, as in the whole-

cell method, different agonist concentrations can be applied while recording on the 

patch. However, this type of patch is the hardest to obtain.3 

4.3 nAChR Kinetic Model 

Assuming two equivalent binding sites for the nAChR, we can write a 

mechanism for the interrelation of various kinetically, and presumably physically, 

distinct states of the receptor (Model 4.1). 

 

Model 4.1 nAChR four-state kinetic model. Where A represents one agonist molecule, Rc receptor 
in the closed state, Ro receptor in the open state, k1 agonist binding rate, k-1 agonist dissociation 
rate, β receptor opening rate and α receptor closing rate. 

4.3.1 Binding and Gating Components of EC50  

As discussed in Chapter 2, the EC50 is a composite measurement of the 

rate at which the agonist associates with and dissociates from the receptor 

(binding) as well as that agonists’ ability to induce the conformational changes 

resulting in current flow through the ion channel (gating). As with the Hill equation 

(see Section 1.4.1) for whole-cell data, the EC50 can also be related to single-

channel parameters by Equation 4.1.4 

𝐸𝐸𝐸𝐸50 =
𝐾𝐾𝐷𝐷

�(𝛩𝛩 + 2) − 1
 

2k1

k-1
A + Rc A + ARc

k1

2k-1
A2Rc

β

α
A2Ro

Equation 4.1 
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This expression directly relates the macroscopic property of EC50 to microscopic 

rate constants given that: 

𝐾𝐾𝐷𝐷 = 𝑘𝑘−1
𝑘𝑘1

  and, 𝛩𝛩 = 𝛽𝛽
𝛼𝛼
 , 

where, KD is the equilibrium agonist dissociation constant and Θ is the gating 

equilibrium constant. 

At high concentrations (>>EC50) where the binding equilibrium is saturated, 

a measured Popen value would be Popen,max and is an indication of efficacy, the ability 

of the agonist to open the channel. Single-channel recording allows for direct 

determination of this parameter. Furthermore, Popen,max depends solely on gating 

parameters as shown in Equation 4.2. 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝛽𝛽

(𝛽𝛽 + 𝛼𝛼) 

Since Θ = β/α, then Popen,max can also be expressed in terms of Θ:  

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝛩𝛩

(𝛩𝛩 + 1) 

We sought to investigate the impact of fluorination at TrpB on receptor 

gating when the receptor is activated by the agonist, varenicline. We therefore 

performed single-channel recordings of wild type as well as F3W mutant receptors 

at varenicline concentrations of 10 times EC50 for each stoichiometry of the α4β2 

receptor, A3B2 and A2B3. We applied single-channel data analysis, as detailed in 

Equation 4.3 

Equation 4.2 
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the following section, in order to determine Popen,max. As shown in Equation 4.3, 

Popen,max depends solely on Θ and in turn, Θ can be used to determine the impact, 

if any, of the mutation on EC50 (Equation 4.1). Recall from previous chapters that 

fold-shift, FS = (EC50 mutant)/(EC50 wildtype). In order to isolate the component of 

the FS in EC50 corresponding to a change in gating (EC50 FS Gating), Θ of the wild 

type receptor (Θwildtype) and Θ of the mutant receptor (Θmutant) can be related as 

shown in Equation 4.4. Thus, for Θwildtype = Θmutant, the corresponding FS in EC50 

due to gating would be 1, which means that gating is unaltered and therefore, has 

no impact on that particular mutant’s FS in EC50. 

𝐸𝐸𝐸𝐸50 𝐹𝐹𝐹𝐹 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
��𝛩𝛩𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 2� − 1

�(𝛩𝛩𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 2) − 1
 

4.4 Single-Channel Data Analysis: Determining Popen,max 

In our analysis, defining the closed dwell times accurately was essential for 

determination of Popen,max, Thus, we sought a strategy that minimized the number 

of both misdetected channel openings and brief openings that did not reach full 

conductance.  These openings must otherwise be manually rejected.  Data were 

filtered offline (Gaussian, -3 dB, 2-5 kHz) and electrical interference at harmonics 

of 60 Hz or other frequencies was removed as necessary.  Event transitions were 

detected with Clampfit 9.2 (single-channel search).  Analyses were performed at a 

dead time, τd, of 200μs.  The dead time was applied either to all events or to events 

from the baseline only.   

Equation 4.4 
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Open and closed dwell time histograms were generated as described 

previously5 and fitted using the predefined log-transformed exponential probability 

density function in Clampfit 9.2. To delineate clusters (series of events that end in 

desensitization), two critical closed durations based on the long components of the 

closed dwell time histograms were defined. These values (τcrit1 and τcrit2) were 

based on the closed dwell time histograms fitted with multiple components, as 

previously described.6 The longest one or more components of the closed dwell 

time histogram are considered as sojourns in the desensitized state for all of the 

channels in the patch.7 

Closed dwell times longer than the respective τcrit values were excluded 

from further analysis. Sojourns to a subconductance state (<70% of the full 

conductance level) were treated as closed and accounted for <10% of the total 

openings in all records when τd of 200μs was applied from the baseline. The time-

average probability that the channel is open (Popen,max) was calculated as the total 

open time divided by the revised total time. The revised total time corresponds to 

the sum of the total open time (sum total of all the opening events) and the revised 

closed time (sum total of all the closing events shorter than the defined τcrit value). 

It follows then, that Popen,max depends strongly on the value chosen as the critical 

closed duration, τcrit. Thus, we report Popen,max values for τcrit1 and τcrit2 values.  

Only sections of data files that showed no simultaneous activations were 

analyzed.  For each mutant, this was ≥3 patches obtained from oocytes from ≥2 

different donor frogs. Despite these rigorous analysis parameters, some events 

had to be manually rejected or accepted. Rejecting or accepting an event entailed 
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a judgment call by the person analyzing the file. Since this project was a 

collaborative effort between myself and Dr. Jai A.P. Shanata, we sought to ensure 

that our analysis method did not introduce significant variability. Thus, we each 

analyzed the same patch and compared our results. As shown below, in Table 4.1, 

while there was some variability in defining τcrit2, the resulting Popen,max values were 

essentially indistinguishable.  

 

Table 4.1 Determining impact of subjectivity on our single-channel analysis method. The same 
patch was analyzed by two people (XDS and JAPS) to determine single-channel conductance in 
pS, two critical closed duration values, τcrit1 and τcrit2  in ms and the corresponding Popen,max values. 

4.5 Results 

Single-channel recording was performed in the cell-attached configuration 

on the wild type A2B3 and A3B2 receptors as well as A2B3 and A3B2 receptors 

with F3W introduced at TrpB by nonsense suppression.  In each case, data 

reported here are for varenicline applied at 10 times the EC50. Figures 4.2 and 4.3 

show representative single-channel recording traces for the A2B3 and A3B2, 

respectively. Pooled closed dwell time histograms for ≥3 patches are given in 

Figures 4.4. Pooled open-dwell time histograms are shown for A2B3 in Figure 4.5. 

Finally, Table 4.2 summarizes the results showing Popen,max values and 

contributions of the gating equilibrium constant, Θ, to the fold-shift (FS) in EC50.  

Receptor Analysis by:
Conductance 

(pS) τcrit 1 (ms) Popen,max1 τcrit 2 (ms) Popen,max2

XDS 42 238 0.22 9.1 0.98

JAPS 41 228 0.25 7.7 0.98
A2B3 F3W
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Figure 4.2 Single-channel records of A2B3 wild type (conventional expression; Left) and F3-Trp 
introduced at TrpB (nonsense suppression; Right). All recordings are in the cell-attached 
configuration with a pipette potential of +60mV. Data are filtered at 2kHz for display and openings 
are shown as downward deflections. Varenicline concentrations (in the pipette) are: wild type 
(28.5nM) and F3-TrpB (270nM). The single-channel conductances were 43pS and 42pS, 
respectively. Each set of traces represents 10s (upper), 1s (middle) and 50ms (lower). The lower 
traces are expansions of the regions in the middle traces designated with a bar over the trace. 
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Figure 4.3 Single-channel records of A3B2 wild type (conventional expression; Left) and F3-Trp 
introduced at TrpB (nonsense suppression; Right). All recordings are in the cell-attached 
configuration with a pipette potential of +60mV. Data are filtered at 2kHz for display and openings 
are shown as downward deflections. Varenicline concentrations (in the pipette) are: wild type (9nM) 
and F3-TrpB (120nM). The single-channel conductances were slightly variable: wild type A3B2 (50-
55pS), and ~40pS for F3-TrpB. Each set of traces represents 10s (upper), 1s (middle) and 50ms 
(lower). The lower traces are expansions of the regions in the middle traces designated with bar 
over the trace. 
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Figure 4.4 (Above and previous page) Four closed dwell time histograms, each representing 
data from  ≥3 patches for each of the 4 receptors studied in these single-channel experiments.  In 
each case, varenicline is applied at 10 times the respective macroscopic EC50 values. Each 
histogram is fitted to 4 components. These histograms were used to determine the values of τcrit. 
For each A3B2 and A2B3, there is a greater contribution from the long dwell time components in 
the F3-TrpB (red) histogram than the wild type (blue) distribution (see discussion). 
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Figure 4.5 Pooled open dwell time histograms of multiple patches each at 10 times the 
respective macroscopic EC50 values for A2B3 wild type and F3W at TrpB. Overlaying each 
histogram, are shown 2 component fits (red) and 3 component fits (blue). For the 2 component 
fit, the components (% in parenthesis) are as follows: Upper histogram (wild type): 53ms (50%) 
and 3.8ms (50%). Lower histogram (F3-TrpB): 19ms (53%) and 1.2ms (47%).  It is not clear 
what states the two or three open dwell times in the above histogram represent.  However, 
openings of monoliganded receptors could account for at least one additional component (see 
discussion).  
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Table 4.2 Upper: τcrit1 values in ms, corresponding to the longest component of the appropriate 
closed dwell time histogram, for wild type (blue) and F3W at TrpB (red) at A2B3 and A3B2 
receptors. Popen,max1 values and corresponding Θ1 values are shown. The (Θ+2)1/2 -1 term relates, 
Θ to EC50 as shown in Equation 4.1. EC50 FS Gating is the ratio of these terms for WT/F3W and 
denotes how much of the actual fold-shift (FS) in EC50 can be attributed to a change in gating 
introduced by the mutation. The actual EC50 FS is calculated as (EC50 F3W) / (EC50WT). Lower: 
equivalent values based on τcrit2 which corresponds to the second longest component of the 
appropriate closed dwell time histogram (closed dwell times longer than this value are excluded 
from further analysis and from the revised total time used to calculate Popen,max)  

 

4.6 Discussion 

4.6.1 Popen,max and Dwell Time Histograms 

Comparison of Popen,max values under different analysis scenarios shows 

some differences for wild type and F3-TrpB A2B3 and A3B2 (Table 4.2). This holds 

true whether τcrit1 or τcrit2 is used. These different values of τcrit impact which of the 

long components of the closed dwell time histogram is/are excluded from the 

calculation of Popen,max. Regardless, it is clear that Popen,max, which depends only on 

the gating equilibrium constant, Θ, is somewhat altered by incorporation of F3W at 

Receptor τcrit 1 (ms) Popen,max1 Θ1 √(Θ1+2) - 1
EC50 FS 
Gating

Actual EC50 

FS

A2B3 WT 1277 0.36 0.6 0.6 - -

A2B3 F3W 1238 0.06 0.1 0.4 1.4 9.5

A3B2 WT 1695 0.51 1.0 0.7 - -

A3B2 F3W 1062 0.06 0.1 0.4 1.7 12.0

Receptor τcrit 2 (ms) Popen,max2 Θ2 √(Θ2+2) - 1
EC50 FS 
Gating

Actual EC50 

FS

A2B3 WT 44 0.96 26.2 4.3 - -

A2B3 F3W 44 0.88 7.1 2.0 2.1 9.5

A3B2 WT 68 0.96 26.1 4.3 - -

A3B2 F3W 33 0.71 2.4 1.1 3.9 12.0
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TrpB for each stoichiometry. As detailed in Chapter 2, we observe a systematic 

decrease in varenicline’s potency (increase in EC50) with successive fluorination 

of TrpB.  Recognizing that EC50 depends on just two properties: binding and gating 

(Equation 4.1) we need to address how much this variation in Popen,max (and thus 

gating) impacts EC50. Note that EC50 varies directly with KD, the equilibrium agonist 

dissociation constant. However, the impact of Θ on EC50 is lessened by the square 

root term in the relationship given in Equation 4.1. Consider the values for Θ1 at 

A2B3 wild type of 0.6 and A2B3 F3W of 0.1 (Table 4.2). Though at first glance it 

might seem significant, this 6 fold change in the value of Θ accounts for a mere 

1.4 fold-shift (FS) in EC50. Since the observed FS value for F3W at A2B3 is 9.5, we 

can conclude that most of observed effect comes from a change in binding not 

gating. This supports our analysis of whole-cell data to show that varenicline 

makes a cation-π interaction, which is a binding interaction, at TrpB. Similar 

arguments can be made for A3B2 and for values based on τcrit2. 

Interestingly, we have observed that Popen,max is essentially indistinguishable 

between wild type and F3W for nicotine at A2B3 regardless of the value of τcrit.8 

This poses the very interesting question as to why the same mutation slightly 

impacts gating for one agonist, varenicline, but not another, nicotine. One possible 

explanation is that varenicline, lacking nicotine’s hydrogen bond to the backbone 

NH of the receptor, relies more on its cation-π interaction to bring about the 

conformational change that activates the receptor. Further studies to validate this 

assumption would consist of single-channel recording of S-(6)-chloronicotine, 



109 
 

which has a much weaker hydrogen bond to the receptor (similar to varenicline), 

to determine whether Popen,max is affected.     

A more detailed analysis of the dwell time histograms is instructive. Open 

dwell times provide information about the channel closing rate, α. For A2B3, the 

open dwell time histograms and resulting fitted distributions are quite similar for 

wild type and F3W. Consider the open dwell time distributions when fitted to two 

components (red lines in Figure 4.5). Both components of the wild type distribution 

are shifted to ~3 fold longer times than in F3W. Specifically, the longest component 

shifts 2.7 fold from 53ms in wild type to 19ms in F3W and the shorter component 

shifts 3.3 fold from 3.8ms in wild type to 1.6ms in F3W. Since both components 

contribute roughly equally (50% versus 53% and 50% versus 47%; see Figure 4.5), 

we can quantitatively relate these shifts to potency. Based on the quantitative 

relationship between EC50 and θ given in Equation 4.1, the decrease in open dwell 

time for the F3W receptor can account for, at most, a 1.7 fold increase in EC50. This 

is a small amount of the actual 9.5-fold EC50 shift (2.85 nM to 27 nM).   

A similar quantitative analysis of the A2B3 closed dwell time histograms to 

determine kinetic parameters would require recording with varenicline across 

multiple concentrations. However, qualitatively and based on fairly similar τcrit 

values, the closed dwell time histograms do not appear to indicate a significant 

systematic shift in the duration of any of the closed dwell time components. On the 

other hand, there is an increase in the relative contribution of the two longer closed 

components shown in Figure 4.4 from wild type to F3W. The difference in these 

relative contributions to the long closed components is also apparent qualitatively 



110 
 

in some single-channel traces, the raw Popen,max values in some wild type and F3W 

varenicline patches appear significantly different. Although impacting apparent 

Popen,max, these longest closed dwells (usually 1-10s) almost certainly reflect a 

desensitized state for these recordings, since they are performed at 10 times EC50. 

Additionally, the rate of entry into the desensitized state for F3W may be faster than 

for wild type, producing briefer clusters. These changes to desensitization should 

not impact EC50, so they do not factor into the quantitative analysis except for the 

purposes of defining τcrit. 

4.6.2 Nicotine, Varenicline, and Partial Agonism 

Varenicline is a partial agonist, and the single-channel conductance 

(~40pS) does not appear to be significantly lower than what it is for nicotine. 

Therefore, τcrit1, which produces Popen,max values of ~0.1-0.5, is probably a more 

realistic value. In fact, these values concur with other data. Compare Popen values 

in this range to the relative activation achieved by saturating doses of varenicline 

and nicotine shown in Figure 4.6.9 

 

Figure 4.6 The current responses α4β2 receptors to various doses of varenicline and a high dose 
of nicotine. In these experiments in HEK cells, varenicline’s efficacy relative to nicotine was ~45%. 
Adapted from 10. 
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 In further single-channel work characterizing these agonists, it would be 

interesting to elucidate the mechanism of partial agonism for varenicline. This 

could be pursued in the context of recent models of nAChR partial agonism.11,12 

Consistent with some of these models, we observed brief closures in α4β2 single-

channel data. Given that these occur even at low concentrations, nM in these 

experiments, they are probably not due to open channel block.  A more likely 

explanation is that they correspond to the channel re-opening and therefore reflect 

the channel opening rate, β.  Since these are brief closures, β is large.  From the 

closed dwell time histograms in Figure 4.4, there is one component that is <<1ms.   

4.6.3 Other Further Studies 

 For acetylcholine, nicotine, cytisine and varenicline, the agonist potencies 

are markedly different between the A2B3 and A3B2 stoichiometries (see Chapter 

2). Determining the cause of this difference would be of interest.  These further 

studies would be most interesting on wild type receptors without the L9’A mutation, 

which significantly impacts agonist potency. However, given that true α4β2 

receptors lacking the L9’A mutation express at relatively low levels, these studies 

would prove challenging, especially for unnatural amino acid incorporation. 

 In conclusion, we have shown that even though the F3W at TrpB mutation 

mildly impacts gating for both A2B3 and A3B2 in response to varenicline, the 

majority of the observed change in potency (over 75%) can be attributed to an 

impact in binding. This supports our conclusion from Chapter 2 that varenicline 

makes a cation-π interaction at this site. 
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4.7 Materials and Methods 

Mutagenesis and mRNA synthesis, ion channel expression and unnatural 

amino acid incorporation were performed as described in Chapter 2 (see Section 

2.8). Oocyte batches were characterized by whole-cell recording prior to single-

channel recording and sometimes, whole-cell and single-channel recording were 

performed on the same oocyte as described in 13. Whole-cell characterizations of 

the channels were performed as described in Chapter 2. In order to minimize 

reaminoacylation (see Section 1.3.2), all single-channel recording experiments 

were performed within 72h of the last tRNA injection. 

4.7.1 Dougherty Lab Electrophysiology Rig 

The components of the DAD electrophysiology rig used for all single-

channel recordings reported herein are summarized below (Figure 4.7). A detailed 

description of the rig can be found at 13.  

 

Figure 4.7 Schematic showing the components of the DAD electrophysiology rig and their 
connectivity. 
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4.7.2 Single-Channel Recording Solutions 

Oocyte incubation media was prepared as described in Chapter 2. All 

recording solutions were stored at 4°C with parafilm around the cap with the 

exception of drug solutions that were stored up to several months at -20°C; freeze 

thaw cycles were minimized as much as possible. Oocyte stripping solution 

consisted of 196mM NaCl, 2mM KCl, 1mM MgCl2, 5mM HEPES and was pH 

adjusted with either HCl or NaOH to 7.5. Bath solution consisted of 120mM KCl, 

5mM HEPES, 1mM MgCl2, and 2mM CaCl2, pH to 7.4. As reported by Shanata,13, 

this solution gives a reversal potential for agonist-induced currents of devitellinized 

oocytes of ~0mV. Therefore, with an applied pipette potential of +60mV, the 

transmembrane potential of a cell-attached patch is ~-60mV. Pipette solution 

consisted of 100mM KCl, 10mM HEPES, 1mM MgCl2, 10mM K2EGTA, pH = 7.4. 

It is desirable to perform all of a given set of experiments with a given batch of 

pipette solution so that single-channel conductances are more comparable (same 

osmolarity, pH, etc.). All single-channel recordings presented herein were 

performed on a single batch of pipette solution.  

4.7.3 Protocol for Producing Patching Pipettes 

KG-33 glass with I.D. = 0.80mm ± 0.05mm, O.D. = 1.60mm ± 0.05mm, 

length = 75.0mm ± 3 mm (Garner Glass Company; lots: 2544, 5596, 7687, and 

8286) was cleaned by complete submersion in chromic-sulfuric acid (Fisher, 

SC88-1) for ~12-36 hours, followed by rinsing ≥4 times each with alternating water 

and methanol, then bathing ≥16 hours in methanol and drying ≥12 hours at 

~110°C. Cleaned glass was stored for ~6-12 months in an airtight container. 
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Pipettes with final resistances of ~8-25MΩ, were pulled from cleaned KG-

33 glass in two stages using a horizontal Flaming/Brown P-97 electrode puller 

(Sutter Instrument Company, Novato, CA). A crude estimate (bubble number) of 

pipette tip size was regularly made and recorded for each pipette after pulling and 

again after polishing. The tip size was estimated as follows: A 10mL syringe was 

fitted with silicon tubing (the silicon piece from Drummond Microcaps and Tygon 

tubing was used) and the back end of the pipette was placed firmly in the tubing. 

The pipette tip was then submerged in 95-100% ethanol and the plunger 

depressed slowly until bubbles were seen coming from the pipette tip. The syringe 

reading at this time was recorded and is termed the bubble number. Depression 

until the reading is ~4.0 to 4.5mL (i.e. depression of ~5.5 to 6.0mL from the plunger 

set at 10mL) typically corresponded to pipettes of ~10-20MΩ in our recording 

solutions. The size was never directly measured, but based on viewing at high 

magnification and the resistances, the pipette tips in this range were probably ~0.5-

3μm in diameter. 

Sylgard (World Precision Instruments, SYLG184) was then applied to within 

~20-100μm of the pipette tip using the tip of a 23 gauge needle (Becton Dickinson 

& Co) (Figure 4.8). The Sylgard was cured by ~10-20s of gentle rotation of the 

pipette, with freshly coated tip up, in a stream of hot air from a heat gun. Pipettes 

at this stage can be stored for ~14 days in an air-tight container. Pipette tips were 

polished for ~15-30s on a microforge with a compound microscope providing 900x 

magnification (15 x eyepieces, 60 x objective, NA 0.70). Polishing was usually 

done immediately before recording and preferably no more than several hours 
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before use (Figure 4.8). At this magnification, openings in tips of pipettes with 

bubble number ~4.4mL or larger are clearly discernible. After polishing the pipette 

tip, the bubble number was again tested and recorded. The bubble number should 

be measurably lower than it was after being initially pulled; we found that a 

decrease of ~0.2 to 0.5mL best facilitates gigaseal formation. This level of 

decrease in bubble number is often accompanied by a visible change in the pipette 

tip morphology; the tip becomes slightly darker and tapers to a narrower diameter. 

If there was no change in the bubble number or no change in the pipette tip, the 

pipette tip was polished a second time. Pipettes were then stored, coated tip up, 

in a closed plastic box affixed in clay to prevent contamination. The high 

magnification of the microforge allowed for unsuitable pipettes to be identified and 

discarded before attempting to record with them. For example, in some cases, 

sylgard accidentally covered the pipette tip making it unusable. In other cases, dirt 

near the tip was readily visible. 

 

Figure 4.8 Sylgarding (left) and polishing (right) patch pipettes. Adapted from 13. 
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4.7.4 Single-Channel Recording 

One to three oocytes were placed in hypertonic solution (oocyte stripping 

solution) for 15-30 minutes. The vitelline membrane was generally visible as a 

translucent, colorless membrane that was separated from the oocyte membrane 

by up to ~50-100μm. The oocyte’s vitelline membrane was then gently stripped 

using 2 pairs of jeweler’s forceps (Dumont, No. 5). The devitellinized oocyte was 

then transferred to a separate 35mm dish with bath solution for 1-2 minutes, then 

transferred to the recording chamber which was filled with bath solution (~1mL). 

When handling devitellinized oocytes, care was taken to avoid contact with the air-

water interface, which can cause the oocyte membrane to rupture.  

The tips of sylgarded, polished pipettes were filled by submerging them in 

the drug pipette solution and applying suction to the back of the pipette for ~30-

60s. The same 10mL syringe used to test the “bubble number” can be used to 

apply this suction, provided that it is kept dry. During this time, the progress of 

filling the pipette tip was monitored by viewing the pipette against a strong light 

source for contrast. The back end of the pipette was then fire polished for ~3-5s in 

the flame of a small butane torch (~2cm-long flame) until the back end of the 

pipette was visibly smooth and rounded. This step is important to reduce the extent 

to which the pipette scratches chloride off of the AgCl wire when loading the pipette 

into the electrode holder. Once cooled to room temperature, the pipette is then 

back filled with the same drug solution as was used to fill the tip, using a 28 gauge 

syringe needle (World Precision Instruments, MF28G-5) and 1mL syringe with 
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attached 0.2μm nylon filter and flicked until all bubbles have been removed from 

the tip.  

Once prepared, the pipette was loaded into the electrode holder with AgCl 

wire. Ag wire was re-chlorided prior to each recording session and any time that 

silver was visible on the wire (shiny as opposed to dull brown) by submersion in 

household bleach for 15-30 minutes, until dull brown in color. Care was taken not 

to chloride the entire length of the wire, as the non-pipette end must make electrical 

contact with the brass pin that connects to the headstage in the pipette holder. Ag 

wires can generally be re-chlorided 3-5 times. Once the pipette was secured on 

the headstage, positive pressure was applied and the solution level in the chamber 

was reduced to ~1-2mm above the oocyte by gently sucking off the top layer of 

solution with a Pasteur pipette. In our rig, this leaves ~300μL of bath solution in the 

chamber. The application of positive pressure to the pipette and aspiration of the 

top layer of solution are important steps to prevent clogging of the pipette tip before 

a gigaseal is formed with the oocyte. 

The pipette was introduced into the recording bath at a steep angle of 60-

70°. This, in addition to prior reduction of the bath solution volume, minimized the 

length of the pipette in contact with the solution and the resultant noise. The coarse 

and fine manipulators were then adjusted to place the tip of the pipette within 

~200μm of the oocyte without touching it. All unnecessary AC electronics 

(especially lights) were then turned off and the pipette resistance was tested and 

recorded as the solution resistance. Final approach to the oocyte occurred with the 

fine manipulator (Narishige) while applying a 100μV seal test. Contact with the 
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oocyte was recognized as a small baseline deflection on the oscilloscope 

accompanied with a 1.5- to 3-fold increase in the pipette resistance. 

Once the pipette was in contact with the oocyte membrane, data acquisition 

was initiated, then gentle suction was applied by mouth as soon as possible in 

order to minimize channel activity that might be missed as channels desensitize. 

Once a gigaseal of several to hundreds of gΩ was formed (time varied from 

instantaneous to several minutes), the desired pipette potential was applied. Data 

were collected using a GeneClamp 500B amplifier (Axon Instruments) at full 

bandwidth (50kHz; 4-pole Bessel, -3dB) with a CV-5 100GU headstage. The signal 

was then low-pass filtered (Avens Signal Equipment, AP220, 20kHz; 8-pole 

Bessel, -3dB), sampled with a Digidata 1320A (50kHz), and acquired in Clampex 

9.2 (Axon Instruments). Channel openings and closings were observed as nearly 

discrete changes in the measured current when the signal was large enough with 

respect to the noise (usually ~3-10 fold). Once the gigaseal was lost, sufficient data 

(number of events) were collected, or further channel activity seemed unlikely due 

to channel desensitization or inactivation, the data acquisition was stopped.  

4.7.5 Control for Endogenous Mechanosensitive Channels 

Channels that are believed to be endogenous to oocytes were observed in 

some single-channel recordings. These channels generally exhibited kinetics that 

were different from nAChRs kinetics, a different current (at the recording pipette 

potentials), and were often mechanosensitive.14,15 Application of suction to the 

oocyte after a few minutes of recording on the channel of interest allowed for the 

identification of the presence of mechanosensitive channels. When suction is 
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applied, the channel is probably not mechanosensitive if its activity (Popen, τopen, 

conductance, etc.) continues at the same level. The presence of a 

mechanosensitive channel in the patch could often be identified if activity could be 

induced by suction in a record with no activity (or a desensitized channel). Popen for 

these mechanosensitive channels varied with applied suction: ~0.5 with light 

suction and nearly 1 with moderate suction. In addition to this characteristic, these 

channels were generally easy to distinguish from exogenously expressed 

channels due to their raggedy openings and closings. On several occasions, light 

suction was applied during channel openings; nAChRs did not display a 

qualitatively different Popen or conductance when suction was applied in this way.  
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