

STRATEGIES FOR THE STEREOSELECTIVE SYNTHESIS OF CARBON  
QUATERNARY CENTERS VIA TRANSITION METAL-CATALYZED  
ALKYLATION OF ENOLATE COMPOUNDS

Thesis by

Corey Michael Reeves

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2015

(Defended May 13, 2015)

© 2015

Corey Michael Reeves

All Rights Reserved

*To Debbie Elaine Ehlers,  
My mom.*

## ACKNOWLEDGMENTS

All of this started with a car accident. A bad car accident. After spending a week in the hospital, and undergoing a few surgeries, I had a salvaged hand and a tremendous impression of my surgeon, Dr. Michael Mara. I was so impressed, in fact, that I decided to go to college with the intention of one day going to medical school. So, I'd like to start by thanking him.

During his office hour for sophomore organic chemistry, I asked Prof. Tristan Lambert how it was that electrons passed through a nodal plane during an  $S_N2$  displacement if the nodal plane is defined as a space in which there is zero electron density. Years later, Tristan would tell me that at this point he thought, “who is this surfer...is he serious?” For introducing me to organic chemistry, for being my first mentor in chemistry, for taking me into his lab, for always being supportive, for giving me my own project after just a month of tutelage, for teaching me the value inherent in and process of the scientific method, for steering me away from medical school and encouraging me to pursue the graduate education in chemistry that I have now nearly completed, I offer a heartfelt thank you to Tristan. I am also indebted to all of the people who populated the Lambert lab during my tenure there. In particular, Ethan Fisher, my mentor, who is a very talented teacher and chemist, and who was extremely patient with me as I learned the basics of laboratory chemistry. Thank you, as well, to Rocky, Brendan, Julia, Bandar, Elnaz, Tim, and Lisa all of whom were excellent labmates and friends and made the Lambert lab a fun and highly educational place.

Caltech is a truly wonderful place filled with outstanding people. I owe many thanks to Agnes Tong, Lynne Martinez and Anne Penney for their assistance over the years and for always kindly pointing me in the right direction when I had no idea which forms were due or when. Silva Virgil and Vicky Brennan were both so helpful in facilitating teaching assistant responsibilities. Dr. David VanderVelde, although I have had little personal interaction with him, keeps Caltech's NMR facility in first-rate working order and that has been an invaluable asset that I have both taken advantage of and, due to the apparent smoothness of its functioning, taken for granted. Joe Drew is as friendly as they come, helpful to fault and never too shy to say hello in passing. Larrisa Charnsangavej, Dorothy Pan, Beau Pritchett and Swarnima Manohar have all been outstanding co-workers who take pride in what they do as RAs and RLC and show a tremendous amount of character and resilience through difficult times and affairs.

I owe a massive debt of gratitude to Felicia Hunt. Felicia has been an indefatigable source of support to me. I have counted on her in times of personal crisis, poured my heart out to her with no appointment, asked her (repeatedly) for money, and been met with no rebuke upon showing up to meetings with her completely out of it from exhaustion. She does it all, solves all problems, cares tremendously about all of Caltech's students, executes every duty of her position with warmth and a smile, and makes it all look easy. She is much more than the associate dean of students and title IX coordinator at Caltech: she is tirelessly and quietly ensuring that all students here succeed and are as happy as they can possibly be. She is an indispensable pillar of Caltech and she deserves a hug from everyone.

Each member of my thesis committee deserves a hearty thank you. Prof. Linda Hsieh-Wilson has consistently and pleasantly tolerated my last minute scheduling efforts and offered valuable advice and criticisms. She is also an excellent teacher and I sincerely hope that I remember some of what I learned in her class on modern methods in chemical biology as I start my new job. Prof. Peter Dervan was a pleasure to TA for and has done an admirable job in organizing my various meetings, candidacy, proposal defense and thesis defense. More than this, Peter has given me crucial advice and guidance with respect to my career, and has offered me a handful of exceptionally meaningful pieces of support and encouragement. Prof. Sarah Reisman has also been much more than an outstanding committee member to me. Her class, which I both took and TA'd, provided me with an invaluable background in the storied history of chemical research, opened my eyes to the state of the art in synthesis and laid a foundation for mechanistic thinking, stereochemical analysis, synthetic storytelling and scientific writing – tools upon which I have relied throughout my graduate career. Her door is always opened, and I have taken advantage of this on numerous occasions. Sarah has very much been a second advisor to me, as she is to many students in the Stoltz group.

My doctoral advisor, Prof. Brian Stoltz, is truly the best boss one could hope to have and I owe the lion's share of my development as a scientist to him. In research, Brian is unfailingly patient, encouraging, didactic, enthusiastic, and lighthearted. He gave me the freedom to try a bunch of ideas that were longshots at best, the freedom to fail in trying, and the guidance to learn from my failure. He pushed me when I needed to be pushed, and always acted in my best interest. His ability to consolidate the best

interest of the individual and the best interest of the group is truly admirable. I have learned so much from Brian not only in chemistry, but also with respect to being a leader, being a good educator, being a professional colleague, and being a generally good scientist. On a personal level, Brian has been an incredibly understanding and dependable. I've walked into his office on countless occasions and completely blindsided him with an unexpected, non-science conversation to which he has, without fail, stopped what he was doing and listened. And through this all, he has been respectful, supportive and amiable. He has become one of my foremost role models, and with a heavy heart I will leave his lab and try my best to emulate his manner of engaging in science and in my profession life.

Over the years, I have had the privilege of working with and around some of the most talented and entertaining individuals one could hope to encounter. Pioneers of the Reisman lab, Jay Codeli and Roger Nani were particularly helpful to me in my early years at Caltech. Former and current members of the Reisman lab including but not limited to Maddi, Kangway, Alan, Haoxuan, Nat, Lindsay, Raul, Yeoman and Jake are all tremendous chemists and people and it was my pleasure to work across the hall from them. Many thanks to Myles from the Grubbs Lab, Ian and the Sattlers in the Bercaw Lab, and the entirety of the chemistry division at Caltech. All of the students in the CCE neck of campus make the experience here what it is and, for each of their individual contributions, I am appreciative.

Thank you to the members of the Stoltz lab with whom I overlapped during my first, second, third year; in particular, Doug Behenna, Florian Vogt, Chris Henry, Chris Gilmore, Hosea Nelson, Pam Tadross, Allen Hong, Russell Smith, Alex Goldberg,

Jonny Gordon, Hendrik Klare, Jeff Holder, Kathrin Höferl-Prantz, Alex Marziale, Kim Petersen, Hideki Shimizu, Kristy Tran, Max Loewinger and the one and only Nat Sherden, all of whom took myself and the other members of my class in with open arms, patiently taught us basic laboratory technique, at least appeared not to be annoyed by our collective unending stream of questions and provided a vision of what to strive for in our respective graduate careers.

Doug Duquette was my first hoodmate and probably the single biggest personal influence I've had with respect to dance moves. Doug is sincere friend, a terrific chemist and generally bright and interesting person. Our conversations often tended toward the obscure, our music toward loud, and for tolerating that I thank Alex Goldberg, Kristy Tran, Chung Wan Lee, and Doug Behenna, who collectively make up the remaining members of the bogie bay. As well, Christopher Haley, Kelly Kim, Alex Marziale, Yoshitaka Numajiri, Sam Shockley and Max Klatte, who have all been terrific baymates. Neighbors of the bogie bay, Chris Gilmore, Florian Vogt Chris Henry and Maxwell Loewinger rounded out the lab microclimate in the early years, and I learned much from each of them. I feel perhaps most connected in the lab to the other members of my class, them being Rob, Chris Bro, Yiyang, Dougie, and Chung Wan, and I owe them all a sincere thank you and congratulations. I look forward to what the "superclass" gets up to in the future as each goes his own way – expect big things from this very talented bunch.

I owe a huge thanks to Big Doug Behenna. Doug was my mentor and collaborator in the early years in the lab and I learned the majority of my practical laboratory skills from him. Doug is an outstanding scientist and much of the research I

conducted in my time in the Stoltz lab built on discoveries he made years ago. Beyond all of that Big Doug is a great leader and a thoughtful friend.

I have been extremely fortunate to work with a number of talented, motivated and bright collaborators. Doug Behenna is a very difficult act to follow in that regard, but Jimin Kim and Christian Eidamshaus, who initiated and helped finish the cyclobutanones project, respectively, did admirably and I learned a lot from them both. Scott Virgil is a veritable wellspring of useful information, keenly interested in chemistry, runs a first-rate catalysis center and is always available to talk science. Wen-Bo (Boger) Liu is as good a project partner for which one could hope. He is highly motivated, has read and remembers every paper on catalysis ever written, has a ton of great ideas, is thorough, patient and perpetually good-natured. I have no doubt that he will be highly successful as a principal investigator, and very much look forward to reading reports from his lab.

In the spring of 2010, Robert Allen Craig II, and myself beat Sarah Reisman and Roger Nani in a game of beerpong, at which point Sarah was obliged to do a kegstand. And I took a picture of her doing it. This may have been the moment I decided to come to Caltech. Since orientation and the G0 days, Rob Craig has been a great friend and colleague. We went through classes together, TA'd chem1A together and started out in the Stoltz lab together. This series of events that would have been considerably more dull, depressing and challenging, respectively, had it not been for that tall, loveable, goofball that was born Mr. Baby. Tiny Mr. Baby has been an invaluable compatriot and companion throughout graduate school. One who pushed me to work way too late into the evening and was pushed back for years. Who was

always eager to talk chemistry, never too busy to help me with some advanced NMR techniques, or show me how to perform some mindless task. Who kept me endlessly entertained with his terrible country music and one dance move. Who was always ready to wash away the long, hard work-week with a cold beer, a laugh and meal. Rob is a great person and a great friend and he will no doubt be the person to whom I come begging for a job one day.

I have also had the pleasure of forming friendships with younger members of the lab, many of whom have stepped up to take the reigns of the lab as my class departs. Beau Pritchett, Katerina Korch, Nick O'Connor, Kelly Kim and Sam Shockley are all terrific chemists and in their hands the lab will surely continue to flourish. To the newest members of the lab: while you are working hard, don't forget to enjoy yourself.

During the first couple of years of research, in particular, I was quite often a very tired, frustrated version of myself, and I certainly would not have made it to this point without the support of friends and family outside of the lab. To the closest thing the Stoltz lab has to an honorary member, John Steeves, a huge thanks. Sleevie has become a very close friend during the last five years and his patience for my blathering on about chemistry on the way to or from surfing, his patience in painstakingly explaining his own research to me on the way to or from surfing, his companionship during late nights in Sherman Fairchild Library, his enthusiasm for Frisbee golf and generally cheerful comportment have all been indispensible. Sleevie is very much the embodiment of a good-natured Canadian. As a case in point: he didn't complain after getting hit in the face with a surfboard, or when the doctor sewing him back together

from said incident remarked that the inside of his mouth “looked like hamburger meat” for the third time. I have for years been quietly, if slowly, learning to be a more good-natured, thoughtful and considerate person by following his example.

My dad, Brian Reeves, provided me with instrumental encouragement at the beginning of my academic career – words that really set the course of the path I have been on for years, and he has been there ever since, always eager to sit down for breakfast or dinner and to talk. For his encouragement and advice I am grateful. My darling girlfriend, Elizabeth Levin, has been incredibly patient with me, as I have struggled to finish out this degree program. She has seemingly unlimited drive, extremely high standards for herself and talent to spare – all of which make her the perfect person to try to keep pace with. And in doing so, I learn so much from her about the world and about myself. Her love, support, patience and comic relief have made these last months bearable and for that I am very thankful.

My mom, Debbie Ehlers, has been my mom. The best mom. She has been the rock on which I rely no matter what is happening in my life, graduate school related or otherwise. She has been my perpetual cheerleader and is ever ready to tell me what I need to hear to keep going. She has been a constant inspiration, source of love and point of light in my life. Our weekly phone conversations have kept me grounded and she has been unfailingly excited to share in what has been one of the most challenging, exciting, fulfilling, trying and rewarding periods of my life. I am indebted to her for so many things, things that extend well beyond the realm of graduate school and well beyond the scope of these acknowledgements, so to wrap things up I will simply say: thanks, mom, this is for you.

The Stoltz lab really has become like a home to me. I feel at home at my hood, and at home at my desk. That is a pretty amazing thing to be able to say and it stems from the general air about the lab, which arises from the people who show up day after day to populate it. To every member of the Stoltz group past and present who has done so – thank you for making the group the welcoming, exciting, engaging, enlightening, fun place that is. To the very capable younger members of the lab that will carry it into the future, I am confident that you will keep that up. Brian says that his goal is for the Stoltz lab to be the best synthetic chemistry lab in the world: in my opinion, it very much is.

*– Corey M. Reeves, April 29<sup>th</sup>, 2015*

## ABSTRACT

Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.

The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective  $\alpha$ -alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all-carbon  $\alpha$ -quaternary cyclobutanones in good to excellent yields and enantioselectivities.

Next is described our development of a (trimethylsilyl)ethyl  $\beta$ -ketoester class of enolate precursors, and their application in palladium-catalyzed asymmetric allylic alkylation to yield a variety of  $\alpha$ -quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl  $\beta$ -ketoester substrates; highly functionalized  $\alpha$ -quaternary ketones generated by the union of our fluoride-triggered  $\beta$ -ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic  $\beta$ -ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic  $\beta$ -ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with *N*-aryl-phosphoramidite ligands.

## TABLE OF CONTENTS

|                             |       |
|-----------------------------|-------|
| Dedication .....            | iii   |
| Acknowledgements.....       | iv    |
| Abstract .....              | xiii  |
| Table of Contents.....      | xiv   |
| List of Figures .....       | xxi   |
| List of Schemes .....       | xxiv  |
| List of Tables .....        | xxxvi |
| List of Abbreviations ..... | xxxix |

### **CHAPTER 1** 1

#### *Enantioselective Construction of $\alpha$ -Quaternary Cyclobutanones by Catalytic Asymmetric Allylic Alkylation*

|                                                                                                                           |    |
|---------------------------------------------------------------------------------------------------------------------------|----|
| 1.1 Introduction .....                                                                                                    | 1  |
| 1.1.1 Palladium catalyzed allylic alkylation .....                                                                        | 1  |
| 1.1.2 Palladium catalyzed allylic alkylation of cyclobutanones.....                                                       | 5  |
| 1.2 Preparation of cyclobutanones $\beta$ -ketoester substrates and reaction optimization.....                            | 7  |
| 1.2.1 Cyclobutanones $\beta$ -ketoester substrates synthesis .....                                                        | 7  |
| 1.2.2 Optimization of cyclobutanones allylic alkylation .....                                                             | 9  |
| 1.3 Exploration of the reaction scope .....                                                                               | 11 |
| 1.3.1 Reaction scope with respect to enolate $\alpha$ -substitution .....                                                 | 11 |
| 1.3.2 Reaction scope with respect to allyl substitution .....                                                             | 13 |
| 1.4 Derivatization of reaction products.....                                                                              | 14 |
| 1.5 Concluding remarks .....                                                                                              | 15 |
| 1.6 Experimental section .....                                                                                            | 16 |
| 1.6.1 Materials and methods .....                                                                                         | 16 |
| 1.6.2 Representative procedures for the synthesis of 2-oxocyclobutanecarboxylates ..                                      | 18 |
| 1.6.3 Representative procedures for the synthesis of 2-H-2-oxocyclobutane- carboxylates.....                              | 19 |
| 1.6.4 Spectroscopic data for novel cyclobutanone $\beta$ -ketoester substrates .....                                      | 20 |
| 1.6.5 Representative procedure for the asymmetric decarboxylative allylic alkylation of 2-oxocyclobutanecarboxylates..... | 31 |
| 1.6.6 Spectroscopic data for novel $\alpha$ -quaternary cyclobutanone products.....                                       | 32 |

|       |                                                                                                                                       |    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.6.7 | Procedures for derivatization of $\alpha$ -quaternary cyclobutanones and determination of absolute stereochemical configuration ..... | 42 |
| 1.6.8 | Determination of enantiomeric excess .....                                                                                            | 49 |
| 1.7   | References and Notes .....                                                                                                            | 51 |

**APPENDIX 1** **60**

Spectra Relevant to Chapter 1

**CHAPTER 2** **137**

*Development of (Trimethylsilyl)Ethyl Ester Protected Enolates and Applications in Palladium–Catalyzed Enantioselective Allylic Alkylation: Intermolecular Cross-Coupling of Functionalized Electrophiles*

|       |                                                                                                 |     |
|-------|-------------------------------------------------------------------------------------------------|-----|
| 2.1   | Introduction .....                                                                              | 137 |
| 2.1.1 | Latent enolates: silyl enol ethers.....                                                         | 137 |
| 2.1.2 | Latent enolates: $\beta$ -ketoesters.....                                                       | 138 |
| 2.1.3 | Latent enolates: TMSE $\beta$ -ketoesters.....                                                  | 139 |
| 2.2   | Synthesis of and Reaction Optimization with TMSE $\beta$ -ketoesters .....                      | 141 |
| 2.2.1 | Substrate synthesis .....                                                                       | 141 |
| 2.2.2 | TMSE- $\beta$ -ketoester allylic alkylation optimization .....                                  | 142 |
| 2.3   | Palladium-Catalyzed Allylic Alkylation with TMSE $\beta$ -Ketoesters .....                      | 146 |
| 2.3.1 | Reaction scope with respect to nucleophile .....                                                | 146 |
| 2.3.2 | Reaction scope with respect to electrophile .....                                               | 148 |
| 2.4   | Coupling of TMSE $\beta$ -Ketoesters with Functionally Complex Electrophilic Partners .....     | 149 |
| 2.5   | Concluding Remarks.....                                                                         | 152 |
| 2.6   | Experimental Section .....                                                                      | 154 |
| 2.6.1 | Materials and Methods.....                                                                      | 154 |
| 2.6.2 | General Procedure for TMSE $\beta$ -Ketoester Substrate Synthesis .....                         | 156 |
| 2.6.3 | Procedures for the syntheses of TMSE $\beta$ -ketoester intermediate 88 and ketoester 77b ..... | 157 |
| 2.6.4 | Spectroscopic data for TMSE $\beta$ -ketoester substrates .....                                 | 159 |
| 2.6.5 | General procedure for allyl carbonate substrate syntheses .....                                 | 164 |
| 2.6.6 | Spectroscopic data for allyl carbonate substrates.....                                          | 165 |
| 2.6.7 | Procedure for the synthesis allyl carbonate 82 .....                                            | 167 |

|        |                                                                      |     |
|--------|----------------------------------------------------------------------|-----|
| 2.6.8  | Optimization of reaction parameters .....                            | 169 |
| 2.6.9  | General procedure for Pd-catalyzed allylic alkylation .....          | 170 |
| 2.6.10 | Spectroscopic data for Pd-catalyzed allylic alkylation products..... | 172 |
| 2.6.11 | Determination of enantiomeric excess and optical rotations .....     | 179 |
| 2.7    | References and Notes .....                                           | 180 |

**APPENDIX 2** **183**

Spectra Related to Chapter 2

**CHAPTER 3** **226**

*Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters via Ir-Catalyzed Regio-, Diastereo-, and Enantioselective Allylic Alkylation and Applications in Sequential Pd-Catalysis*

|       |                                                                                                                                    |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.1   | Introduction .....                                                                                                                 | 226 |
| 3.1.1 | State of the art in the asymmetric construction of vicinal quaternary and tertiary carbon centers .....                            | 226 |
| 3.2   | Reaction Optimization and Development .....                                                                                        | 228 |
| 3.2.1 | Discovery and optimization of iridium catalyzed regio-, diastereo- and enantioselective allylic alkylation of cyclic ketones ..... | 228 |
| 3.2.2 | Further development of the reaction conditions .....                                                                               | 231 |
| 3.3   | Survey of Reaction Scope.....                                                                                                      | 231 |
| 3.3.1 | Exploration of the reaction scope with respect to allyl electrophile .....                                                         | 231 |
| 3.3.2 | Exploration of the reaction scope with respect to ketoester nucleophile .....                                                      | 232 |
| 3.4   | Employment of TMSE $\beta$ -Ketoester to Enable Sequential Catalysis.....                                                          | 233 |
| 3.5   | Concluding Remarks.....                                                                                                            | 236 |
| 3.6   | Experimental Section .....                                                                                                         | 237 |
| 3.6.1 | Materials and Methods.....                                                                                                         | 237 |
| 3.6.2 | Optimization of reaction parameters .....                                                                                          | 239 |
| 3.6.3 | General procedure for the Ir-catalyzed asymmetric allylic alkylation of $\beta$ -ketoesters .....                                  | 240 |
| 3.6.4 | Spectroscopic data for Ir-catalyzed allylic alkylation products .....                                                              | 242 |
| 3.6.5 | General procedure for Pd-catalyzed allylic alkylation .....                                                                        | 256 |
| 3.6.6 | Determination of the relative configuration of compound 106a .....                                                                 | 259 |
| 3.6.7 | Spectroscopic data for new phosphinooxazoline ligands .....                                                                        | 260 |

|       |                                            |     |
|-------|--------------------------------------------|-----|
| 3.6.8 | Determination of enantiomeric excess ..... | 263 |
| 3.7   | References and Notes .....                 | 265 |

**APPENDIX 3** **272**

## Spectra Related to Chapter 3

**APPENDIX 4** **319**

## X-Ray Crystallography Reports Relevant to Appendix 3

**CHAPTER 4** **330***Enantio-, Diastereo- and Regioselective Iridium-Catalyzed Asymmetric Allylic Alkylation of Acyclic  $\beta$ -Ketoesters*

|       |                                                                                                                                            |     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.1   | Introduction .....                                                                                                                         | 330 |
| 4.1.1 | State of the art in the asymmetric construction of vicinal quaternary and tertiary carbon centers .....                                    | 330 |
| 4.2   | Development and Optimization of an Iridium-Catalyzed Allylic Alkylation of Linear $\beta$ -Ketoesters .....                                | 332 |
| 4.3   | Exploration of the Reaction Scope and Substituent Effects .....                                                                            | 334 |
| 4.3.1 | Exploration of the iridium-catalyzed allylic alkylation of linear $\beta$ -ketoesters with respect to allyl electrophile .....             | 334 |
| 4.3.2 | Investigation of allyl electrophile substituent effects on reaction selectivity .....                                                      | 336 |
| 4.3.3 | Exploration of the iridium-catalyzed allylic alkylation of linear $\beta$ -ketoesters with respect to $\beta$ -ketoester nucleophile ..... | 337 |
| 4.4   | Elaboration of the Allylic Alkylation Products .....                                                                                       | 339 |
| 4.5   | Concluding Remarks .....                                                                                                                   | 340 |
| 4.6   | Experimental Section .....                                                                                                                 | 341 |
| 4.6.1 | Materials and Methods .....                                                                                                                | 341 |
| 4.6.2 | Optimization of reaction parameters .....                                                                                                  | 343 |
| 4.6.3 | General procedure for the Ir-catalyzed asymmetric allylic alkylation of acyclic $\beta$ -ketoesters .....                                  | 345 |
| 4.6.4 | Spectroscopic data for Ir-catalyzed allylic alkylation products .....                                                                      | 374 |

|       |                                                                                                          |     |
|-------|----------------------------------------------------------------------------------------------------------|-----|
| 4.6.5 | Procedures for derivatization of allylic alkylation products and spectroscopic data of derivatives ..... | 373 |
| 4.6.6 | Determination of the absolute confirmation of compound 112f .....                                        | 376 |
| 4.6.7 | Determination of enantiomeric excess .....                                                               | 378 |
| 4.7   | References and Notes .....                                                                               | 382 |

**APPENDIX 5 384**

*Stereochemical Model and Mechanistic Discussion for Iridium Catalyzed Allylic Alkylation*

|      |                                                                                             |     |
|------|---------------------------------------------------------------------------------------------|-----|
| A5.1 | Introduction .....                                                                          | 384 |
| A5.2 | Stereochemical Model for Diastereoselectivity in Iridium-Catalyzed Allylic Alkylation ..... | 385 |
| A5.3 | References and Notes .....                                                                  | 388 |

**APPENDIX 6 390**

Spectra Related to Chapter 4

**APPENDIX 7 466**

X-Ray Crystallography Reports Relevant to Chapter 4

**APPENDIX 8 480**

*Development of an  $\alpha$ -Arylation Reaction of TMSE  $\beta$ -Ketoesters*

|        |                                                                                                             |     |
|--------|-------------------------------------------------------------------------------------------------------------|-----|
| A8.1   | Introduction.....                                                                                           | 480 |
| A8.1.1 | Background and state of the art in the $\alpha$ -arylation of cyclic ketones .....                          | 480 |
| A8.1.2 | State of the art in the asymmetric $\alpha$ -arylation of cyclic ketones .....                              | 482 |
| A8.2   | Background: Extension of Carboxylate Protected Enolate Cross Coupling Strategy to $\alpha$ -Arylation ..... | 484 |
| A8.2.1 | Use of allyl $\beta$ -ketoester protected enolates in non-allylic alkylation processes. ....                | 484 |
| A8.2.2 | New pathways into catalysis via a carboxylate protected prochiral enolate strategy .....                    | 487 |
| A8.3   | Initial Evaluation of TMSE $\beta$ -Ketoester in $\alpha$ -Arylation .....                                  | 489 |
| A8.3.1 | Symyx assisted reaction development: early experiments .....                                                | 489 |

|        |                                                                                               |     |
|--------|-----------------------------------------------------------------------------------------------|-----|
| A8.3.2 | Symyx assisted reaction development: beyond the initial experiments .....                     | 491 |
| A8.4   | Optimization of The Palladium catalyzed $\alpha$ -Arylation of TMSE $\beta$ -Ketoesters ..... | 493 |
| A8.5   | Outlook and Future Directions for carboxylate protected enolates in $\alpha$ -Arylation.....  | 499 |
| A8.5.1 | Hypotheses that remain to be tested in $\alpha$ -arylation of TMSE $\beta$ -ketoesters .....  | 499 |
| A8.5.2 | Deacylative in situ access to prochiral enolates .....                                        | 500 |
| A8.6   | Concluding Remarks .....                                                                      | 502 |
| A8.7   | Experimental Section.....                                                                     | 503 |
| A8.7.1 | Materials and Methods.....                                                                    | 503 |
| A8.6.2 | Procedure for Symyx assisted screening of $\alpha$ -arylation .....                           | 504 |
| A8.6.3 | Procedure for manual screening of $\alpha$ -arylation.....                                    | 508 |
| A8.7   | References and Notes .....                                                                    | 509 |

## **APPENDIX 9** 511

### *Studies Toward the Enantioselective Total Synthesis of (+)-Lingzhiol*

|        |                                                                                                      |     |
|--------|------------------------------------------------------------------------------------------------------|-----|
| A9.1   | Introduction.....                                                                                    | 511 |
| A9.1.1 | Isolation studies of the lingzhiols .....                                                            | 511 |
| A9.1.2 | Biological studies on and bioactivity profile of lingzhiol .....                                     | 512 |
| A9.2   | Retrosynthetic Analysis of (+)-Lingzhiol .....                                                       | 513 |
| A9.3   | Model Studies to Investigate Key (3+2) Cycloaddition in the Synthesis of (+)-Lingzhiol....           | 514 |
| A9.3.1 | Retrosynthetic plan for lingzhiol model system .....                                                 | 514 |
| A9.3.2 | Synthesis of lingzhiol model system and testing of key (3+2) cycloaddition ....                      | 515 |
| A9.4   | Revised Model Studies to Investigate Key (3+2) Cycloaddition in the Synthesis of (+)-Lingzhiol ..... | 519 |
| A9.4.1 | Rationale and revised plan for (+)-lingzhiol model system .....                                      | 519 |
| A9.4.2 | Synthesis of the revised model system for (+)-lingzhiol.....                                         | 520 |
| A9.5   | Revised Strategy for the Synthesis of (+)-Lingzhiol .....                                            | 523 |
| A9.6   | Concluding Remarks .....                                                                             | 525 |
| A9.7   | Experimental Section .....                                                                           | 525 |
| A9.7.1 | Materials and Methods.....                                                                           | 525 |
| A9.7.2 | Procedures for the preparation of and spectroscopic data for compounds in scheme A9.3.2.1 .....      | 526 |
| A9.7.3 | Procedures for the preparation of and spectroscopic data for compounds in scheme A9.3.2.2 .....      | 528 |
| A9.7.4 | Procedures for the preparation of and spectroscopic data for compounds in                            |     |

|                                                                                                           |     |
|-----------------------------------------------------------------------------------------------------------|-----|
| scheme A9.3.2.3 .....                                                                                     | 530 |
| A9.7.5 Procedures for the preparation of and spectroscopic data for compounds in<br>scheme A9.3.2.4.....  | 532 |
| A9.7.6 Procedures for the preparation of and spectroscopic data for compounds in<br>scheme A9.4.2.1.....  | 533 |
| A9.7.7 Procedures for the preparation of and spectroscopic data for compounds in<br>scheme A9.4.2.2 ..... | 537 |
| A9.8 References and Notes .....                                                                           | 541 |

**APPENDIX 10** **544****Spectra Related to Appendix 9**

|                                  |     |
|----------------------------------|-----|
| Comprehensive Bibliography ..... | 567 |
| Index .....                      | 587 |
| About the Author .....           | 590 |

## LIST OF FIGURES

### CHAPTER 1

|                |                                                                                                                                |    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.1.2.1 | (A) Representative cycbutanoid natural products; (B) ring, conformational and torsional strain in cyclobutanone enolates ..... | 6  |
| Figure 1.2.1.1 | Construction of allyl 1-benzyl-2-oxocyclobutane-carboxylate (36) .....                                                         | 9  |
| Figure 1.2.2.1 | General initial reaction parameters and select ligands .....                                                                   | 10 |
| Figure 1.2.2.2 | Solvent and temperature optimization of the palladium catalyzed allylic alkylation reaction.....                               | 11 |
| Figure 1.3.1.1 | Reaction scope with respect to $\alpha$ -quaternary substitution ( $R^1$ ).....                                                | 13 |
| Figure 1.3.2.1 | Reaction scope with respect to allyl substitution ( $R^2$ ) .....                                                              | 14 |
| Figure 1.4.1   | Derivatization of $\alpha$ -quaternary cyclobutanones .....                                                                    | 15 |

### APPENDIX 1

|              |                                                                 |    |
|--------------|-----------------------------------------------------------------|----|
| Figure A1.1  | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>48</b> .....      | 61 |
| Figure A1.2  | Infrared spectrum (thin film/NaCl) of compound <b>48</b> .....  | 62 |
| Figure A1.3  | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>48</b> .....   | 62 |
| Figure A1.4  | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>39a</b> .....     | 63 |
| Figure A1.5  | Infrared spectrum (thin film/NaCl) of compound <b>39a</b> ..... | 64 |
| Figure A1.6  | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>39a</b> .....  | 64 |
| Figure A1.7  | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>39b</b> .....     | 65 |
| Figure A1.8  | Infrared spectrum (thin film/NaCl) of compound <b>39b</b> ..... | 66 |
| Figure A1.9  | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>39b</b> .....  | 66 |
| Figure A1.10 | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>39c</b> .....     | 67 |
| Figure A1.11 | Infrared spectrum (thin film/NaCl) of compound <b>39c</b> ..... | 68 |
| Figure A1.12 | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>39c</b> .....  | 68 |
| Figure A1.13 | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>39d</b> .....     | 69 |
| Figure A1.14 | Infrared spectrum (thin film/NaCl) of compound <b>39d</b> ..... | 70 |
| Figure A1.15 | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>39d</b> .....  | 70 |
| Figure A1.16 | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>39e</b> .....     | 71 |
| Figure A1.17 | Infrared spectrum (thin film/NaCl) of compound <b>39e</b> ..... | 72 |
| Figure A1.18 | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>39e</b> .....  | 72 |
| Figure A1.19 | $^1H$ NMR (500 MHz, $CDCl_3$ ) of compound <b>39f</b> .....     | 73 |
| Figure A1.20 | Infrared spectrum (thin film/NaCl) of compound <b>39f</b> ..... | 74 |
| Figure A1.21 | $^{13}C$ NMR (125 MHz, $CDCl_3$ ) of compound <b>39f</b> .....  | 74 |

|              |                                                                              |    |
|--------------|------------------------------------------------------------------------------|----|
| Figure A1.22 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>39g</b> .....    | 75 |
| Figure A1.23 | Infrared spectrum (thin film/NaCl) of compound <b>39g</b> .....              | 76 |
| Figure A1.24 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>39g</b> ..... | 76 |
| Figure A1.25 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>39h</b> .....    | 77 |
| Figure A1.26 | Infrared spectrum (thin film/NaCl) of compound <b>39h</b> .....              | 78 |
| Figure A1.27 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>39h</b> ..... | 78 |
| Figure A1.28 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>41a</b> .....    | 79 |
| Figure A1.29 | Infrared spectrum (thin film/NaCl) of compound <b>41a</b> .....              | 80 |
| Figure A1.30 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>41a</b> ..... | 80 |
| Figure A1.31 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>41b</b> .....    | 81 |
| Figure A1.32 | Infrared spectrum (thin film/NaCl) of compound <b>41b</b> .....              | 82 |
| Figure A1.33 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>41b</b> ..... | 82 |
| Figure A1.34 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>41c</b> .....    | 83 |
| Figure A1.35 | Infrared spectrum (thin film/NaCl) of compound <b>41c</b> .....              | 84 |
| Figure A1.36 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>41c</b> ..... | 84 |
| Figure A1.37 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>36</b> .....     | 85 |
| Figure A1.38 | Infrared spectrum (thin film/NaCl) of compound <b>36</b> .....               | 86 |
| Figure A1.39 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>36</b> .....  | 86 |
| Figure A1.40 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>41d</b> .....    | 87 |
| Figure A1.41 | Infrared spectrum (thin film/NaCl) of compound <b>41d</b> .....              | 88 |
| Figure A1.42 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>41d</b> ..... | 88 |
| Figure A1.43 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>41e</b> .....    | 89 |
| Figure A1.44 | Infrared spectrum (thin film/NaCl) of compound <b>41e</b> .....              | 90 |
| Figure A1.45 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>41e</b> ..... | 90 |
| Figure A1.46 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>41f</b> .....    | 91 |
| Figure A1.47 | Infrared spectrum (thin film/NaCl) of compound <b>41f</b> .....              | 92 |
| Figure A1.48 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>41f</b> ..... | 92 |
| Figure A1.49 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40a</b> .....    | 93 |
| Figure A1.50 | Infrared spectrum (thin film/NaCl) of compound <b>40a</b> .....              | 94 |
| Figure A1.51 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40a</b> ..... | 94 |
| Figure A1.52 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40b</b> .....    | 95 |
| Figure A1.53 | Infrared spectrum (thin film/NaCl) of compound <b>40b</b> .....              | 96 |
| Figure A1.54 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40b</b> ..... | 96 |
| Figure A1.55 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40c</b> .....    | 97 |
| Figure A1.56 | Infrared spectrum (thin film/NaCl) of compound <b>40c</b> .....              | 97 |

|              |                                                                              |     |
|--------------|------------------------------------------------------------------------------|-----|
| Figure A1.57 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40c</b> ..... | 98  |
| Figure A1.58 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40d</b> .....    | 99  |
| Figure A1.59 | Infrared spectrum (thin film/NaCl) of compound <b>40d</b> .....              | 100 |
| Figure A1.60 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40d</b> ..... | 100 |
| Figure A1.61 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40e</b> .....    | 101 |
| Figure A1.62 | Infrared spectrum (thin film/NaCl) of compound <b>40e</b> .....              | 102 |
| Figure A1.63 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40e</b> ..... | 102 |
| Figure A1.64 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40f</b> .....    | 103 |
| Figure A1.65 | Infrared spectrum (thin film/NaCl) of compound <b>40f</b> .....              | 104 |
| Figure A1.66 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40f</b> ..... | 104 |
| Figure A1.67 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40g</b> .....    | 105 |
| Figure A1.68 | Infrared spectrum (thin film/NaCl) of compound <b>40g</b> .....              | 106 |
| Figure A1.69 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40g</b> ..... | 106 |
| Figure A1.70 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>40h</b> .....    | 107 |
| Figure A1.71 | Infrared spectrum (thin film/NaCl) of compound <b>40h</b> .....              | 108 |
| Figure A1.72 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>40h</b> ..... | 108 |
| Figure A1.73 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>42a</b> .....    | 109 |
| Figure A1.74 | Infrared spectrum (thin film/NaCl) of compound <b>42a</b> .....              | 110 |
| Figure A1.75 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>42a</b> ..... | 110 |
| Figure A1.76 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>42b</b> .....    | 111 |
| Figure A1.77 | Infrared spectrum (thin film/NaCl) of compound <b>42b</b> .....              | 112 |
| Figure A1.78 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>42b</b> ..... | 112 |
| Figure A1.79 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>42c</b> .....    | 113 |
| Figure A1.80 | Infrared spectrum (thin film/NaCl) of compound <b>42c</b> .....              | 114 |
| Figure A1.81 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>42c</b> ..... | 114 |
| Figure A1.82 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>38</b> .....     | 115 |
| Figure A1.83 | Infrared spectrum (thin film/NaCl) of compound <b>38</b> .....               | 116 |
| Figure A1.84 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>38</b> .....  | 116 |
| Figure A1.85 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>42d</b> .....    | 117 |
| Figure A1.86 | Infrared spectrum (thin film/NaCl) of compound <b>42d</b> .....              | 118 |
| Figure A1.87 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>42d</b> ..... | 118 |
| Figure A1.88 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>49</b> .....     | 119 |
| Figure A1.89 | Infrared spectrum (thin film/NaCl) of compound <b>49</b> .....               | 120 |
| Figure A1.90 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>49</b> .....  | 120 |
| Figure A1.91 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>42e</b> .....    | 121 |

|               |                                                                              |     |
|---------------|------------------------------------------------------------------------------|-----|
| Figure A1.92  | Infrared spectrum (thin film/NaCl) of compound <b>42e</b> .....              | 122 |
| Figure A1.93  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>42e</b> ..... | 122 |
| Figure A1.94  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>42f</b> .....    | 123 |
| Figure A1.95  | Infrared spectrum (thin film/NaCl) of compound <b>42f</b> .....              | 124 |
| Figure A1.96  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>42f</b> ..... | 124 |
| Figure A1.97  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>44</b> .....     | 125 |
| Figure A1.98  | Infrared spectrum (thin film/NaCl) of compound <b>44</b> .....               | 126 |
| Figure A1.99  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>44</b> .....  | 126 |
| Figure A1.100 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>45</b> .....     | 127 |
| Figure A1.101 | Infrared spectrum (thin film/NaCl) of compound <b>45</b> .....               | 128 |
| Figure A1.102 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>45</b> .....  | 128 |
| Figure A1.103 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>46</b> .....     | 129 |
| Figure A1.104 | Infrared spectrum (thin film/NaCl) of compound <b>46</b> .....               | 130 |
| Figure A1.105 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>46</b> .....  | 130 |
| Figure A1.106 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>47</b> .....     | 131 |
| Figure A1.107 | Infrared spectrum (thin film/NaCl) of compound <b>47</b> .....               | 132 |
| Figure A1.108 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>47</b> .....  | 132 |
| Figure A1.109 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>51</b> .....     | 133 |
| Figure A1.110 | Infrared spectrum (thin film/NaCl) of compound <b>51</b> .....               | 134 |
| Figure A1.111 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>51</b> .....  | 134 |
| Figure A1.112 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>52</b> .....     | 135 |
| Figure A1.113 | Infrared spectrum (thin film/NaCl) of compound <b>52</b> .....               | 136 |
| Figure A1.114 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>52</b> .....  | 136 |

## CHAPTER 2

|                |                                                                                                                                                                     |     |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2.1.1.1 | Drawbacks of silyl enol ether synthesis .....                                                                                                                       | 138 |
| Figure 2.1.2.1 | Allyl $\beta$ -ketoester approach to latent enolate chemistry .....                                                                                                 | 139 |
| Figure 2.1.3.1 | Non-allyl $\beta$ -ketoester approach to latent enolate chemistry.....                                                                                              | 140 |
| Figure 2.1.3.2 | TMSE $\beta$ -ketoester approach to latent enolate chemistry .....                                                                                                  | 141 |
| Figure 2.3.1.1 | Exploration of functional group and scaffold diversity in the fluoride triggered palladium-catalyzed allylic alkylation reaction with respect to nucleophile. 148   |     |
| Figure 2.3.2.1 | Exploration of functional group and scaffold diversity in the fluoride triggered palladium-catalyzed allylic alkylation reaction with respect to electrophile... 14 |     |
| Figure 2.4.1   | Complex allyl architectures .....                                                                                                                                   | 150 |
| Figure 2.4.2   | Union of complex fragments by asymmetric allylic alkylation .....                                                                                                   | 153 |

## APPENDIX 2

|              |                                                                              |     |
|--------------|------------------------------------------------------------------------------|-----|
| Figure A2.1  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>74</b> .....     | 184 |
| Figure A2.2  | Infrared spectrum (thin film/NaCl) of compound <b>74</b> .....               | 185 |
| Figure A2.3  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>74</b> .....  | 185 |
| Figure A2.4  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>88</b> .....     | 186 |
| Figure A2.5  | Infrared spectrum (thin film/NaCl) of compound <b>88</b> .....               | 187 |
| Figure A2.6  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>88</b> .....  | 187 |
| Figure A2.7  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77b</b> .....    | 188 |
| Figure A2.8  | Infrared spectrum (thin film/NaCl) of compound <b>77b</b> .....              | 189 |
| Figure A2.9  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77b</b> ..... | 189 |
| Figure A2.10 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77a</b> .....    | 190 |
| Figure A2.11 | Infrared spectrum (thin film/NaCl) of compound <b>77a</b> .....              | 191 |
| Figure A2.12 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77a</b> ..... | 191 |
| Figure A2.13 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77c</b> .....    | 192 |
| Figure A2.14 | Infrared spectrum (thin film/NaCl) of compound <b>77c</b> .....              | 193 |
| Figure A2.15 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77c</b> ..... | 193 |
| Figure A2.16 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77d</b> .....    | 194 |
| Figure A2.17 | Infrared spectrum (thin film/NaCl) of compound <b>77d</b> .....              | 195 |
| Figure A2.18 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77d</b> ..... | 195 |
| Figure A2.19 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77e</b> .....    | 196 |
| Figure A2.20 | Infrared spectrum (thin film/NaCl) of compound <b>77e</b> .....              | 197 |
| Figure A2.21 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77e</b> ..... | 197 |
| Figure A2.22 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77f</b> .....    | 198 |
| Figure A2.23 | Infrared spectrum (thin film/NaCl) of compound <b>77f</b> .....              | 199 |
| Figure A2.24 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77f</b> ..... | 199 |
| Figure A2.25 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>77g</b> .....    | 200 |
| Figure A2.26 | Infrared spectrum (thin film/NaCl) of compound <b>77g</b> .....              | 201 |
| Figure A2.27 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>77g</b> ..... | 201 |
| Figure A2.28 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>80b</b> .....    | 202 |
| Figure A2.29 | Infrared spectrum (thin film/NaCl) of compound <b>80b</b> .....              | 203 |
| Figure A2.30 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>80b</b> ..... | 203 |
| Figure A2.31 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>80d</b> .....    | 204 |
| Figure A2.32 | Infrared spectrum (thin film/NaCl) of compound <b>80d</b> .....              | 205 |
| Figure A2.33 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>80d</b> ..... | 205 |
| Figure A2.34 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>83</b> .....     | 206 |

|              |                                                                              |     |
|--------------|------------------------------------------------------------------------------|-----|
| Figure A2.35 | Infrared spectrum (thin film/NaCl) of compound <b>83</b> .....               | 206 |
| Figure A2.36 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>83</b> .....  | 206 |
| Figure A2.37 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>92</b> .....     | 206 |
| Figure A2.38 | Infrared spectrum (thin film/NaCl) of compound <b>92</b> .....               | 207 |
| Figure A2.39 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>92</b> .....  | 207 |
| Figure A2.40 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>82</b> .....     | 208 |
| Figure A2.41 | Infrared spectrum (thin film/NaCl) of compound <b>82</b> .....               | 209 |
| Figure A2.42 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>82</b> .....  | 209 |
| Figure A2.43 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>81a</b> .....    | 210 |
| Figure A2.44 | Infrared spectrum (thin film/NaCl) of compound <b>81a</b> .....              | 211 |
| Figure A2.45 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>81a</b> ..... | 211 |
| Figure A2.46 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>79g</b> .....    | 212 |
| Figure A2.47 | Infrared spectrum (thin film/NaCl) of compound <b>79g</b> .....              | 213 |
| Figure A2.48 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>79g</b> ..... | 213 |
| Figure A2.49 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>81b</b> .....    | 214 |
| Figure A2.50 | Infrared spectrum (thin film/NaCl) of compound <b>81b</b> .....              | 215 |
| Figure A2.51 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>81b</b> ..... | 215 |
| Figure A2.52 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>81d</b> .....    | 216 |
| Figure A2.53 | Infrared spectrum (thin film/NaCl) of compound <b>81d</b> .....              | 217 |
| Figure A2.54 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>81d</b> ..... | 217 |
| Figure A2.55 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>84</b> .....     | 218 |
| Figure A2.56 | Infrared spectrum (thin film/NaCl) of compound <b>84</b> .....               | 219 |
| Figure A2.57 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>84</b> .....  | 219 |
| Figure A2.58 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>85</b> .....     | 220 |
| Figure A2.59 | Infrared spectrum (thin film/NaCl) of compound <b>85</b> .....               | 221 |
| Figure A2.60 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>85</b> .....  | 221 |
| Figure A2.61 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>86</b> .....     | 222 |
| Figure A2.62 | Infrared spectrum (thin film/NaCl) of compound <b>86</b> .....               | 223 |
| Figure A2.63 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>86</b> .....  | 223 |
| Figure A2.61 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>87</b> .....     | 222 |
| Figure A2.62 | Infrared spectrum (thin film/NaCl) of compound <b>87</b> .....               | 223 |
| Figure A2.63 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>87</b> .....  | 223 |

## CHAPTER 3

|                |                                        |     |
|----------------|----------------------------------------|-----|
| Figure 3.1.1.1 | Ir-catalyzed allylic substitution..... | 228 |
|----------------|----------------------------------------|-----|

|                |                                                                                                                      |     |
|----------------|----------------------------------------------------------------------------------------------------------------------|-----|
| Figure 3.2.1.1 | Selected phosphoramidite and PHOX ligands.....                                                                       | 229 |
| Figure 3.3.1.1 | Substrate scope of Ir-catalyzed allylic alkylation of $\beta$ -aetoesters.....                                       | 232 |
| Figure 3.3.2.1 | Substrate scope of Ir-catalyzed allylic alkylation of $\beta$ -ketoesters.....                                       | 233 |
| Figure 3.4.1   | Conceptualization of sequential catalysis.....                                                                       | 234 |
| Figure 3.4.2   | Development of Pd-catalyzed diastereoselective decarboxylative allylic alkylation of TMSE- $\beta$ -ketoesters ..... | 236 |

## APPENDIX 3

|              |                                                                               |     |
|--------------|-------------------------------------------------------------------------------|-----|
| Figure A3.1  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100a</b> .....    | 273 |
| Figure A3.2  | Infrared spectrum (thin film/NaCl) of compound <b>100a</b> .....              | 274 |
| Figure A3.3  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100a</b> ..... | 274 |
| Figure A3.4  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100b</b> .....    | 275 |
| Figure A3.5  | Infrared spectrum (thin film/NaCl) of compound <b>100b</b> .....              | 276 |
| Figure A3.6  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100b</b> ..... | 276 |
| Figure A3.7  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100c</b> .....    | 277 |
| Figure A3.8  | Infrared spectrum (thin film/NaCl) of compound <b>100c</b> .....              | 278 |
| Figure A3.9  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100c</b> ..... | 278 |
| Figure A3.10 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100d</b> .....    | 279 |
| Figure A3.11 | Infrared spectrum (thin film/NaCl) of compound <b>100d</b> .....              | 280 |
| Figure A3.12 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100d</b> ..... | 280 |
| Figure A3.13 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100e</b> .....    | 281 |
| Figure A3.14 | Infrared spectrum (thin film/NaCl) of compound <b>100e</b> .....              | 282 |
| Figure A3.15 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100e</b> ..... | 282 |
| Figure A3.16 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100f</b> .....    | 283 |
| Figure A3.17 | Infrared spectrum (thin film/NaCl) of compound <b>100f</b> .....              | 284 |
| Figure A3.18 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100f</b> ..... | 284 |
| Figure A3.19 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100g</b> .....    | 285 |
| Figure A3.20 | Infrared spectrum (thin film/NaCl) of compound <b>100g</b> .....              | 286 |
| Figure A3.21 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100g</b> ..... | 286 |
| Figure A3.22 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100h</b> .....    | 287 |
| Figure A3.23 | Infrared spectrum (thin film/NaCl) of compound <b>100h</b> .....              | 288 |
| Figure A3.24 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100h</b> ..... | 288 |
| Figure A3.25 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>100i</b> .....    | 289 |
| Figure A3.26 | Infrared spectrum (thin film/NaCl) of compound <b>100i</b> .....              | 290 |
| Figure A3.27 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>100i</b> ..... | 290 |

|              |                                                                                        |     |
|--------------|----------------------------------------------------------------------------------------|-----|
| Figure A3.28 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>103a</b> .....             | 291 |
| Figure A3.29 | Infrared spectrum (thin film/NaCl) of compound <b>103a</b> .....                       | 292 |
| Figure A3.30 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>103a</b> .....          | 292 |
| Figure A3.31 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>103b</b> .....             | 293 |
| Figure A3.32 | Infrared spectrum (thin film/NaCl) of compound <b>103b</b> .....                       | 294 |
| Figure A3.33 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>103b</b> .....          | 294 |
| Figure A3.34 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>103c</b> .....             | 295 |
| Figure A3.35 | Infrared spectrum (thin film/NaCl) of compound <b>103c</b> .....                       | 296 |
| Figure A3.36 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>103c</b> .....          | 296 |
| Figure A3.37 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>103d</b> .....             | 297 |
| Figure A3.38 | Infrared spectrum (thin film/NaCl) of compound <b>103d</b> .....                       | 298 |
| Figure A3.39 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>103d</b> .....          | 298 |
| Figure A3.40 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>103e</b> .....             | 299 |
| Figure A3.41 | Infrared spectrum (thin film/NaCl) of compound <b>103e</b> .....                       | 300 |
| Figure A3.42 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>103e</b> .....          | 300 |
| Figure A3.43 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>103f</b> .....             | 301 |
| Figure A3.44 | Infrared spectrum (thin film/NaCl) of compound <b>103f</b> .....                       | 302 |
| Figure A3.45 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>103f</b> .....          | 302 |
| Figure A3.46 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>106a and 107a</b> .....    | 303 |
| Figure A3.47 | Infrared spectrum (thin film/NaCl) of compound <b>106a and 107a</b> .....              | 304 |
| Figure A3.48 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>106a and 107a</b> ..... | 304 |
| Figure A3.49 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>106b</b> .....             | 305 |
| Figure A3.50 | Infrared spectrum (thin film/NaCl) of compound <b>106b</b> .....                       | 306 |
| Figure A3.51 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>106b</b> .....          | 306 |
| Figure A3.52 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>106c</b> .....             | 307 |
| Figure A3.53 | Infrared spectrum (thin film/NaCl) of compound <b>106c</b> .....                       | 308 |
| Figure A3.54 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>106c</b> .....          | 308 |
| Figure A3.55 | $^1\text{H}$ NOESY (600 MHz, $\text{CDCl}_3$ ) of compound <b>108</b> .....            | 309 |
| Figure A3.56 | Infrared spectrum (thin film/NaCl) of compound <b>108</b> .....                        | 310 |
| Figure A3.57 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>108</b> .....           | 310 |
| Figure A3.58 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>L14</b> .....              | 311 |
| Figure A3.59 | Infrared spectrum (thin film/NaCl) of compound <b>L14</b> .....                        | 312 |
| Figure A3.60 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>L14</b> .....           | 312 |
| Figure A3.61 | $^{19}\text{F}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>L14</b> .....           | 313 |
| Figure A3.62 | $^{31}\text{P}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>L14</b> .....           | 314 |

|              |                                                                              |     |
|--------------|------------------------------------------------------------------------------|-----|
| Figure A3.63 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>L14</b> .....    | 315 |
| Figure A3.64 | Infrared spectrum (thin film/NaCl) of compound <b>L15</b> .....              | 316 |
| Figure A3.65 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>L15</b> ..... | 316 |
| Figure A3.65 | $^{19}\text{F}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>L15</b> ..... | 317 |
| Figure A3.67 | $^{31}\text{P}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>L15</b> ..... | 318 |

## ADDENDIX 4

|                |                                    |     |
|----------------|------------------------------------|-----|
| Figure A4.1.1. | ORTEP drawing of <b>100f</b> ..... | 320 |
|----------------|------------------------------------|-----|

## CHAPTER 4

|                |                                                                                                       |     |
|----------------|-------------------------------------------------------------------------------------------------------|-----|
| Figure 4.1.1.1 | Representative Ir-catalyzed asymmetric allylic alkylation .....                                       | 331 |
| Figure 4.3.2.1 | Hammett plot of the log of product ratios (112:113) from Table 2 versus Hammett $\sigma$ -values..... | 337 |

## APPENDIX 5

|               |                                                                                                                                                                  |     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure A5.2.1 | Selected iridium-phosphoramidite complexes: 118 Feringa type; 119 N-arylphosphoramidite (or You) type; 120 ( $\pi$ -allyl)-Ir complex with You type ligand ..... | 385 |
| Figure A5.2.2 | Approach of the enolate nucleophile in the Ir-catalyzed allylic alkylation ...                                                                                   | 387 |
| Figure A5.2.3 | Proposed catalytic cycle for iridium-N-arylphosphoramidite complex catalyzed allylic alkylation .....                                                            | 388 |

## APPENDIX 6

|             |                                                                               |     |
|-------------|-------------------------------------------------------------------------------|-----|
| Figure A6.1 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112a</b> .....    | 391 |
| Figure A6.2 | Infrared spectrum (thin film/NaCl) of compound <b>112a</b> .....              | 392 |
| Figure A6.3 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112a</b> ..... | 392 |
| Figure A6.4 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112b</b> .....    | 393 |
| Figure A6.5 | Infrared spectrum (thin film/NaCl) of compound <b>112b</b> .....              | 394 |
| Figure A6.6 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112b</b> ..... | 394 |
| Figure A6.7 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112c</b> .....    | 395 |
| Figure A6.8 | Infrared spectrum (thin film/NaCl) of compound <b>112c</b> .....              | 396 |
| Figure A6.9 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112c</b> ..... | 396 |

|              |                                                                               |     |
|--------------|-------------------------------------------------------------------------------|-----|
| Figure A6.10 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112d</b> .....    | 397 |
| Figure A6.11 | Infrared spectrum (thin film/NaCl) of compound <b>112d</b> .....              | 398 |
| Figure A6.12 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112d</b> ..... | 398 |
| Figure A6.13 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112e</b> .....    | 399 |
| Figure A6.14 | Infrared spectrum (thin film/NaCl) of compound <b>112e</b> .....              | 400 |
| Figure A6.15 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112e</b> ..... | 400 |
| Figure A6.16 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112f</b> .....    | 401 |
| Figure A6.17 | Infrared spectrum (thin film/NaCl) of compound <b>112f</b> .....              | 402 |
| Figure A6.18 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112f</b> ..... | 402 |
| Figure A6.19 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112g</b> .....    | 403 |
| Figure A6.20 | Infrared spectrum (thin film/NaCl) of compound <b>112g</b> .....              | 404 |
| Figure A6.21 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112g</b> ..... | 404 |
| Figure A6.22 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112h</b> .....    | 405 |
| Figure A6.23 | Infrared spectrum (thin film/NaCl) of compound <b>112h</b> .....              | 406 |
| Figure A6.24 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112h</b> ..... | 406 |
| Figure A6.25 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>113h</b> .....    | 407 |
| Figure A6.26 | Infrared spectrum (thin film/NaCl) of compound <b>113h</b> .....              | 408 |
| Figure A6.27 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>113h</b> ..... | 408 |
| Figure A6.28 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112i</b> .....    | 409 |
| Figure A6.29 | Infrared spectrum (thin film/NaCl) of compound <b>112i</b> .....              | 410 |
| Figure A6.30 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112i</b> ..... | 410 |
| Figure A6.31 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112j</b> .....    | 411 |
| Figure A6.32 | Infrared spectrum (thin film/NaCl) of compound <b>112j</b> .....              | 412 |
| Figure A6.33 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112j</b> ..... | 412 |
| Figure A6.34 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112k</b> .....    | 413 |
| Figure A6.35 | Infrared spectrum (thin film/NaCl) of compound <b>112k</b> .....              | 414 |
| Figure A6.36 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112k</b> ..... | 414 |
| Figure A6.37 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112l</b> .....    | 415 |
| Figure A6.38 | Infrared spectrum (thin film/NaCl) of compound <b>112l</b> .....              | 416 |
| Figure A6.39 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112l</b> ..... | 416 |
| Figure A6.40 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112m</b> .....    | 417 |
| Figure A6.41 | Infrared spectrum (thin film/NaCl) of compound <b>112m</b> .....              | 418 |
| Figure A6.42 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112m</b> ..... | 418 |
| Figure A6.43 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112n</b> .....    | 419 |
| Figure A6.44 | Infrared spectrum (thin film/NaCl) of compound <b>112n</b> .....              | 420 |

|              |                                                                                |     |
|--------------|--------------------------------------------------------------------------------|-----|
| Figure A6.45 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112n</b> .....  | 420 |
| Figure A6.46 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112o</b> .....     | 421 |
| Figure A6.47 | Infrared spectrum (thin film/NaCl) of compound <b>112o</b> .....               | 422 |
| Figure A6.48 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112o</b> .....  | 422 |
| Figure A6.49 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112p</b> .....     | 423 |
| Figure A6.50 | Infrared spectrum (thin film/NaCl) of compound <b>112p</b> .....               | 424 |
| Figure A6.51 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112p</b> .....  | 424 |
| Figure A6.52 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112q</b> .....     | 425 |
| Figure A6.53 | Infrared spectrum (thin film/NaCl) of compound <b>112q</b> .....               | 426 |
| Figure A6.54 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112q</b> .....  | 426 |
| Figure A6.55 | $^1\text{H}$ NOESY (600 MHz, $\text{CDCl}_3$ ) of compound <b>113q</b> .....   | 427 |
| Figure A6.56 | Infrared spectrum (thin film/NaCl) of compound <b>113q</b> .....               | 428 |
| Figure A6.57 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>113q</b> .....  | 428 |
| Figure A6.58 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112r</b> .....     | 429 |
| Figure A6.59 | Infrared spectrum (thin film/NaCl) of compound <b>112r</b> .....               | 430 |
| Figure A6.60 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112r</b> .....  | 430 |
| Figure A6.61 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112s</b> .....     | 431 |
| Figure A6.61 | Infrared spectrum (thin film/NaCl) of compound <b>112s</b> .....               | 432 |
| Figure A6.63 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112s</b> .....  | 432 |
| Figure A6.64 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112t</b> .....     | 433 |
| Figure A6.65 | Infrared spectrum (thin film/NaCl) of compound <b>112t</b> .....               | 434 |
| Figure A6.66 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112t</b> .....  | 434 |
| Figure A6.67 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112t'</b> .....    | 435 |
| Figure A6.68 | Infrared spectrum (thin film/NaCl) of compound <b>112t'</b> .....              | 436 |
| Figure A6.69 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112t'</b> ..... | 436 |
| Figure A6.70 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112u</b> .....     | 437 |
| Figure A6.71 | Infrared spectrum (thin film/NaCl) of compound <b>112u</b> .....               | 438 |
| Figure A6.72 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112u</b> .....  | 438 |
| Figure A6.73 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112v</b> .....     | 439 |
| Figure A6.74 | Infrared spectrum (thin film/NaCl) of compound <b>112v</b> .....               | 440 |
| Figure A6.75 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112v</b> .....  | 440 |
| Figure A6.76 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112w</b> .....     | 441 |
| Figure A6.77 | Infrared spectrum (thin film/NaCl) of compound <b>112w</b> .....               | 442 |
| Figure A6.78 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112w</b> .....  | 442 |
| Figure A6.79 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112x</b> .....     | 443 |

|               |                                                                                 |     |
|---------------|---------------------------------------------------------------------------------|-----|
| Figure A6.80  | Infrared spectrum (thin film/NaCl) of compound <b>112x</b> .....                | 444 |
| Figure A6.81  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112x</b> .....   | 444 |
| Figure A6.82  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112y</b> .....      | 445 |
| Figure A6.83  | Infrared spectrum (thin film/NaCl) of compound <b>112y</b> .....                | 446 |
| Figure A6.84  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112y</b> .....   | 446 |
| Figure A6.85  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112y'</b> .....     | 447 |
| Figure A6.86  | Infrared spectrum (thin film/NaCl) of compound <b>112y'</b> .....               | 448 |
| Figure A6.87  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112y'</b> .....  | 448 |
| Figure A6.88  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>112z</b> .....      | 449 |
| Figure A6.89  | Infrared spectrum (thin film/NaCl) of compound <b>112z</b> .....                | 450 |
| Figure A6.90  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>112z</b> .....   | 450 |
| Figure A6.91  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>113z</b> .....      | 451 |
| Figure A6.92  | Infrared spectrum (thin film/NaCl) of compound <b>113z</b> .....                | 452 |
| Figure A6.93  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>113z</b> .....   | 452 |
| Figure A6.94  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>114</b> .....       | 453 |
| Figure A6.95  | Infrared spectrum (thin film/NaCl) of compound <b>114</b> .....                 | 454 |
| Figure A6.96  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>114</b> .....    | 454 |
| Figure A6.97  | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>116</b> .....       | 455 |
| Figure A6.98  | Infrared spectrum (thin film/NaCl) of compound <b>116</b> .....                 | 456 |
| Figure A6.99  | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>116</b> .....    | 456 |
| Figure A6.100 | HSQC NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>116</b> .....               | 457 |
| Figure A6.101 | GCOSY NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>116</b> .....              | 458 |
| Figure A6.102 | $^1\text{H}$ NOESY NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>116</b> ..... | 459 |
| Figure A6.103 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>115</b> .....       | 460 |
| Figure A6.104 | Infrared spectrum (thin film/NaCl) of compound <b>115</b> .....                 | 461 |
| Figure A6.105 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>115</b> .....    | 461 |
| Figure A6.106 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>117a</b> .....      | 462 |
| Figure A6.107 | Infrared spectrum (thin film/NaCl) of compound <b>117a</b> .....                | 463 |
| Figure A6.108 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>117a</b> .....   | 463 |
| Figure A6.109 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>117b</b> .....      | 464 |
| Figure A6.110 | Infrared spectrum (thin film/NaCl) of compound <b>117b</b> .....                | 465 |
| Figure A6.111 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>117b</b> .....   | 465 |

**ADDENDIX 7**

|                                                  |     |
|--------------------------------------------------|-----|
| Figure A7.1.1. ORTEP drawing of <b>117</b> ..... | 467 |
|--------------------------------------------------|-----|

**APPENDIX 8**

|                                                                                                                              |     |
|------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure A8.1.1.1 Natural products containing benzylic quaternary stereocenters .....                                          | 480 |
| Figure A8.2.2.1 Proposed catalytic cycle for the $\alpha$ -arylation of cyclic ketones using in situ generated enolates..... | 488 |
| Figure A8.2.2.2 Proposed catalytic cycle for the $\alpha$ -arylation of cyclic ketones using in situ generated enolates..... | 489 |
| Figure A8.3.1.1 Summarized results of screen 1 at 60 °C.....                                                                 | 491 |
| Figure A8.3.2.1 Summarized results of screen 2 at 60 °C.....                                                                 | 493 |
| Figure A8.4.1 Elaborated ligand search.....                                                                                  | 495 |
| Figure A8.4.2 Optimization of fluoride donor, reaction time and temperature .....                                            | 496 |
| Figure A8.4.3 Further optimization of ligand, solvent and temperature .....                                                  | 497 |
| Figure A8.4.4 Further optimization of ligand, solvent and temperature .....                                                  | 498 |
| Figure A8.4.5 Importance of metal source to ligand ratio.....                                                                | 499 |

**APPENDIX 9**

|                                                                                             |     |
|---------------------------------------------------------------------------------------------|-----|
| Figure A9.1.1.1 The structures of (+)-lingzhiol and (–)-lingzhiol.....                      | 512 |
| Figure A9.4.1.1 A hypothesis regarding the electronics of exocyclic olefin <b>182</b> ..... | 520 |

**APPENDIX 10**

|                                                                                           |     |
|-------------------------------------------------------------------------------------------|-----|
| Figure A10.1 $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>181</b> .....    | 545 |
| Figure A10.2 $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>181</b> ..... | 546 |
| Figure A10.3 $^1\text{H}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>174</b> .....    | 547 |
| Figure A10.4 $^1\text{H}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>173</b> .....    | 548 |
| Figure A10.5 $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>172</b> .....    | 549 |
| Figure A10.6 $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>172</b> ..... | 550 |
| Figure A10.7 $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>183</b> .....    | 551 |
| Figure A10.8 $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>183</b> ..... | 552 |
| Figure A10.9 $^1\text{H}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>187</b> .....    | 553 |

|               |                                                                              |     |
|---------------|------------------------------------------------------------------------------|-----|
| Figure A10.10 | $^1\text{H}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>188'</b> .....   | 554 |
| Figure A10.11 | $^1\text{H}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>189</b> .....    | 555 |
| Figure A10.12 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>190</b> .....    | 556 |
| Figure A10.13 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>191</b> .....    | 557 |
| Figure A10.14 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>191</b> ..... | 558 |
| Figure A10.15 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>192</b> .....    | 559 |
| Figure A10.16 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>193</b> .....    | 560 |
| Figure A10.17 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>193</b> ..... | 561 |
| Figure A10.18 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>194</b> .....    | 562 |
| Figure A10.19 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>194</b> ..... | 563 |
| Figure A10.20 | $^1\text{H}$ NMR (500 MHz, $\text{CDCl}_3$ ) of compound <b>195</b> .....    | 564 |
| Figure A10.21 | $^{13}\text{C}$ NMR (125 MHz, $\text{CDCl}_3$ ) of compound <b>195</b> ..... | 565 |
| Figure A10.22 | $^1\text{H}$ NMR (300 MHz, $\text{CDCl}_3$ ) of compound <b>196</b> .....    | 566 |

## LIST OF SCHEMES

### CHAPTER 1

|                |                                                                                                                         |   |
|----------------|-------------------------------------------------------------------------------------------------------------------------|---|
| Scheme 1.1.1.1 | Palladium catalyzed allylic alkylation pioneered by Tsuji and coworkers .....                                           | 2 |
| Scheme 1.1.1.2 | State of the art in asymmetric alkylation of prochiral enolates, 2003 .....                                             | 3 |
| Scheme 1.1.1.3 | Stoltz and coworkers approach to asymmetric allylic alkylation .....                                                    | 4 |
| Scheme 1.1.1.4 | Asymmetric allylic alkylation by Trost (A) and Jacobsen (B) .....                                                       | 5 |
| Scheme 1.1.2.1 | Selected modern methods for the synthesis of cycbutanoids according to (A) Baudoïn, (B) Toste, and (C) Echavarren ..... | 7 |

### CHAPTER 2

|                |                                                                            |     |
|----------------|----------------------------------------------------------------------------|-----|
| Scheme 2.2.1.1 | TMSE $\beta$ -ketoester substrate synthesis.....                           | 142 |
| Scheme 2.2.1.2 | Fluoride-triggered deprotection of TMSE $\beta$ -ketoester substrate ..... | 142 |

### CHAPTER 4

|              |                                                                                                        |     |
|--------------|--------------------------------------------------------------------------------------------------------|-----|
| Scheme 4.4.1 | Rapid generation of molecular and stereochemical complexity employing allylic alkylation products..... | 340 |
|--------------|--------------------------------------------------------------------------------------------------------|-----|

## APPENDIX 8

|                 |                                                                                                                                                                                                                         |     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme A8.1.1.1 | Initial Reports of Direct $\alpha$ -Arylation of Ketones by Buchwald (A) and Hartwig (B).....                                                                                                                           | 481 |
| Scheme A8.1.1.2 | Improved Catalyst Systems for $\alpha$ -Arylation by Hartwig (A) and Buchwald (B).....                                                                                                                                  | 482 |
| Scheme A8.1.2.1 | Current State of the Art in Catalytic Asymmetric $\alpha$ -Arylation to Form $\alpha$ -Quaternary Ketones .....                                                                                                         | 484 |
| Scheme A8.2.1.1 | Proposed catalytic cycle of asymmetric allylic alkylation.....                                                                                                                                                          | 486 |
| Scheme A8.2.1.2 | A. Asymmetric protonation of allyl $\beta$ -ketoesters; B. Stereoselective conjugate addition–allylation cascade reaction.....                                                                                          | 487 |
| Scheme A8.3.1.1 | Initial screens for $\alpha$ -arylation reactivity .....                                                                                                                                                                | 490 |
| Scheme A8.3.2.1 | Revised screens for $\alpha$ -arylation reactivity .....                                                                                                                                                                | 492 |
| Scheme A8.5.2.1 | Conceptual schemes for deacylative enolate formation: A. previous research by Tunge and coworkers; B. proposed allylic alkylation via deacylative pathway; C. proposed $\alpha$ -arylation via deacylative pathway..... | 501 |

## APPENDIX 9

|                 |                                                                                                                                  |     |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme A9.2.1   | First-generation retrosynthetic analysis for (+)-lingzhiol .....                                                                 | 514 |
| Scheme A9.3.1.1 | First-generation retrosynthetic analysis for (+)-lingzhiol model system .....                                                    | 515 |
| Scheme A9.3.2.1 | A. Foreseeable difficulties in advancing methyl Grignard addition to ketone <b>176</b> ; B. Synthesis of olefin <b>181</b> ..... | 516 |
| Scheme A9.3.2.2 | Optimization studies for the tandem hydroboration/oxidation elimination of <b>181</b> .....                                      | 517 |
| Scheme A9.3.2.3 | Synthesis of oxime <b>172</b> and attempts at (3+2) cycloaddition .....                                                          | 518 |

|                                                                                                                   |     |
|-------------------------------------------------------------------------------------------------------------------|-----|
| Scheme A9.3.2.4. The intramolecular (3+2) cycloaddition of nitrone <b>182</b> to form tetracycle <b>183</b> ..... | 519 |
| Scheme A9.4.2.1 Synthesis of revised model for (3+2) cycloaddition studies.....                                   | 521 |
| Scheme A9.4.2.2 Synthesis of revised model for (3+2) cycloaddition studies.....                                   | 522 |
| Scheme A9.4.2.3 Studies toward the dehydration of tertiary alcohol <b>196</b> .....                               | 523 |
| Scheme A9.5.1 Second-generation retrosynthetic analysis toward the synthesis of (+)-lingzhiol.....                | 524 |
| Scheme A9.5.2 Second-generation retrosynthetic analysis toward the synthesis of (+)-lingzhiol.....                | 525 |

## LIST OF TABLES

### CHAPTER 1

|                                                                                                |     |
|------------------------------------------------------------------------------------------------|-----|
| Table 1.2.2.1 Initial optimization of the palladium catalyzed allylic alkylation reaction..... | 10  |
| Table 1.6.8.1 Determination of enantiomeric excess .....                                       | 149 |

### CHAPTER 2

|                                                                                                      |     |
|------------------------------------------------------------------------------------------------------|-----|
| Table 2.2.2.1 TMSE $\beta$ -ketoester allylic alkylation initial optimization experiments .....      | 144 |
| Table 2.2.2.2 TMSE $\beta$ -ketoester allylic alkylation solvent effects on reaction yield .....     | 145 |
| Table 2.2.2.3 TMSE $\beta$ -ketoester allylic alkylation solvent effects on reaction selectivity.... | 146 |
| Table 2.6.8.1 Optimization of reaction parameters.....                                               | 169 |
| Table 2.6.11.1 Determination of enantiomeric excess and optical rotations .....                      | 179 |

### CHAPTER 3

|                                                          |     |
|----------------------------------------------------------|-----|
| Table 3.2.1.1 Optimization of reaction parameters.....   | 230 |
| Table 3.6.2.1 Optimization of reaction parameters.....   | 239 |
| Table 3.6.8.1 Determination of enantiomeric excess ..... | 263 |

### APPENDIX 4

|            |                                                                                                                                                                                                                               |     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table A4.1 | Crystal Data and Structure Analysis Details for allylation ketoester <b>100f</b> .....                                                                                                                                        | 320 |
| Table A4.2 | Atomic coordinates ( $\times 10^4$ ) and equivalent isotropic displacement parameters ( $\text{\AA}^2 \times 10^3$ ) for <b>100f</b> . U(eq) is defined as one third of the trace of the orthogonalized $U^{ij}$ tensor ..... | 322 |
| Table A4.3 | Bond lengths [ $\text{\AA}$ ] and angles [ $^\circ$ ] for <b>100f</b> .....                                                                                                                                                   | 323 |
| Table A4.4 | Anisotropic displacement parameters ( $\text{\AA}^2 \times 104$ ) for <b>100f</b> . The anisotropic displacement factor exponent takes the form: $-2\pi^2 [ h_2 a^*2U_{11} + \dots + 2 h_k a^* b^* U_{12} ]$ .....            | 327 |
| Table A4.5 | Hydrogen coordinates ( $\times 103$ ) and isotropic displacement parameters ( $\text{\AA}^2 \times 103$ ) for <b>100f</b> .....                                                                                               | 328 |
| Table A4.6 | Hydrogen bonds for <b>100f</b> [ $\text{\AA}$ and $^\circ$ ].....                                                                                                                                                             | 328 |

## CHAPTER 4

|               |                                                                                      |     |
|---------------|--------------------------------------------------------------------------------------|-----|
| Table 4.2.1   | Optimization of the Ir-catalyzed asymmetric allylic alkylation.....                  | 334 |
| Table 4.3.1.1 | Exploration of the reaction scope with respect to allyl electrophile .....           | 336 |
| Table 4.3.3.1 | Exploration of the reaction scope with respect to $\beta$ -ketoester nucleophile.... | 339 |
| Table 4.6.2.1 | Optimization of reaction parameters.....                                             | 343 |
| Table 4.6.7.1 | Determination of enantiomeric excess.....                                            | 378 |

## APPENDIX 7

|            |                                                                                                                                                                                                                              |     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table A7.1 | Crystal Data and Structure Analysis Details for diol <b>117</b> .....                                                                                                                                                        | 464 |
| Table A7.2 | Atomic coordinates ( $\times 10^4$ ) and equivalent isotropic displacement parameters ( $\text{\AA}^2 \times 10^3$ ) for <b>117</b> . U(eq) is defined as one third of the trace of the orthogonalized $U^{ij}$ tensor ..... | 469 |
| Table A7.3 | Bond lengths [ $\text{\AA}$ ] and angles [ $^\circ$ ] for <b>117</b> .....                                                                                                                                                   | 470 |
| Table A7.4 | Anisotropic displacement parameters ( $\text{\AA}^2 \times 104$ ) for <b>117</b> . The anisotropic displacement factor exponent takes the form: $-2\pi^2 [ h_2 a^*2U_{11} + \dots + 2 h_k a^* b^* U_{12} ]$ .....            | 474 |
| Table A7.5 | Hydrogen coordinates ( $\times 103$ ) and isotropic displacement parameters ( $\text{\AA}^2 \times 103$ ) for <b>117</b> .....                                                                                               | 474 |

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| 103) for <b>117</b> .....                                          | 475 |
| Table A7.6      Hydrogen bonds for <b>117</b> [Å and °].....       | 476 |
| Table A7.7      Torsion angles [°] for <b>117</b> [Å and °]. ..... | 478 |

## LIST OF ABBREVIATIONS

|                |                                                             |
|----------------|-------------------------------------------------------------|
| $[\alpha]_D$   | angle of optical rotation of plane-polarized light          |
| $\text{\AA}$   | angstrom(s)                                                 |
| <i>p</i> -ABSA | <i>para</i> -acetamidobenzenesulfonyl azide                 |
| Ac             | acetyl                                                      |
| AIBN           | azobisisobutyronitrile                                      |
| APCI           | atmospheric pressure chemical ionization                    |
| app            | apparent                                                    |
| aq             | aqueous                                                     |
| Ar             | aryl group                                                  |
| At             | benztriazolyl                                               |
| atm            | atmosphere(s)                                               |
| BINAP          | 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl                 |
| Bn             | benzyl                                                      |
| Boc            | <i>tert</i> -butoxycarbonyl                                 |
| bp             | boiling point                                               |
| br             | broad                                                       |
| Bu             | butyl                                                       |
| <i>n</i> -Bu   | butyl or <i>norm</i> -butyl                                 |
| <i>t</i> -Bu   | <i>tert</i> -butyl                                          |
| Bz             | benzoyl                                                     |
| <i>c</i>       | concentration of sample for measurement of optical rotation |

|                  |                                               |
|------------------|-----------------------------------------------|
| <sup>13</sup> C  | carbon-13 isotope                             |
| /C               | supported on activated carbon charcoal        |
| °C               | degrees Celcius                               |
| ca.              | approximately (Latin: <i>circum</i> )         |
| calc'd           | calculated                                    |
| Cbz              | benzyloxycarbonyl                             |
| CCDC             | Cambridge Crystallographic Data Centre        |
| CDI              | 1,1'-carbonyldiimidazole                      |
| cf.              | consult or compare to (Latin: <i>confer</i> ) |
| cm <sup>-1</sup> | wavenumber(s)                                 |
| cod              | 1,5-cyclooctadiene                            |
| comp             | complex                                       |
| conc.            | concentrated                                  |
| Cy               | cyclohexyl                                    |
| CSA              | camphor sulfonic acid                         |
| d                | doublet                                       |
| <i>d</i>         | dextrorotatory                                |
| DABCO            | 1,4-diazabicyclo[2.2.2]octane                 |
| dba              | dibenzylideneacetone                          |
| DBU              | 1,8-diazabicyclo[5.4.0]undec-7-ene            |
| DCE              | 1,2-dichloroethane                            |
| <i>de</i>        | diastereomeric excess                         |
| DIAD             | diisopropyl azodicarboxylate                  |

|               |                                                 |
|---------------|-------------------------------------------------|
| DIBAL         | diisobutyl aluminum hydride                     |
| DMAP          | 4-dimethylaminopyridine                         |
| DME           | 1,2-dimethoxyethane                             |
| DMF           | <i>N,N</i> -dimethylformamide                   |
| DMSO          | dimethylsulfoxide                               |
| dppb          | 1,3-bis(diphenylphosphino)butane                |
| dppf          | 1,3-bis(diphenylphosphino)ferrocene             |
| dppe          | 1,3-bis(diphenylphosphino)ethane                |
| dppp          | 1,3-bis(diphenylphosphino)propane               |
| dr            | diastereomeric ratio                            |
| ee            | enantiomeric excess                             |
| E             | methyl carboxylate ( $\text{CO}_2\text{CH}_3$ ) |
| $\text{E}^+$  | electrophile                                    |
| <i>E</i>      | trans (entgegen) olefin geometry                |
| e.g.          | for example (Latin: <i>exempli gratia</i> )     |
| EI            | electron impact                                 |
| eq            | equation                                        |
| ESI           | electrospray ionization                         |
| Et            | ethyl                                           |
| <i>et al.</i> | and others (Latin: <i>et alii</i> )             |
| EtOAc         | ethyl acetate                                   |
| FAB           | fast atom bombardment                           |
| g             | gram(s)                                         |

|                  |                                             |
|------------------|---------------------------------------------|
| h                | hour(s)                                     |
| <sup>1</sup> H   | proton                                      |
| <i>hν</i>        | light                                       |
| HPLC             | high performance liquid chromatography      |
| HRMS             | high resolution mass spectrometry           |
| Hz               | hertz                                       |
| IBX              | 2-iodoxybenzoic acid                        |
| IC <sub>50</sub> | half maximal inhibitory concentration (50%) |
| i.e.             | that is (Latin: <i>id est</i> )             |
| iNOS             | human-inducible nitric oxide synthase       |
| IR               | infrared spectroscopy                       |
| <i>J</i>         | coupling constant                           |
| <i>k</i>         | rate constant                               |
| kcal             | kilocalorie(s)                              |
| kg               | kilogram(s)                                 |
| KHMDS            | potassium bis(trimethylsilyl)amide          |
| L                | liter or neutral ligand                     |
| <i>l</i>         | levorotatory                                |
| LDA              | lithium diisopropylamide                    |
| LHMDS            | lithium bis(trimethylsilyl)amide            |
| LTMP             | lithium 2,2,6,6-tetramethylpiperidide       |
| m                | multiplet or meter(s)                       |
| M                | molar or molecular ion                      |

|                 |                                             |
|-----------------|---------------------------------------------|
| <i>m</i>        | meta                                        |
| $\mu$           | micro                                       |
| <i>m</i> -CPBA  | <i>meta</i> -chloroperbenzoic acid          |
| Me              | methyl                                      |
| mg              | milligram(s)                                |
| MHz             | megahertz                                   |
| min             | minute(s)                                   |
| mL              | milliliter(s)                               |
| MM              | mixed method                                |
| mol             | mole(s)                                     |
| MOM             | methoxymethyl                               |
| mp              | melting point                               |
| Ms              | methanesulfonyl (mesyl)                     |
| MS              | molecular seives                            |
| <i>m/z</i>      | mass-to-charge ratio                        |
| N               | normal or molar                             |
| NBS             | <i>N</i> -bromosuccinimide                  |
| nm              | nanometer(s)                                |
| NMR             | nuclear magnetic resonance                  |
| NOE             | nuclear Overhauser effect                   |
| NOESY           | nuclear Overhauser enhancement spectroscopy |
| Nu <sup>-</sup> | nucleophile                                 |
| <i>o</i>        | ortho                                       |

|              |                                                                                    |
|--------------|------------------------------------------------------------------------------------|
| [O]          | oxidation                                                                          |
| OAc          | Acetate                                                                            |
| <i>p</i>     | para                                                                               |
| Ph           | phenyl                                                                             |
| pH           | hydrogen ion concentration in aqueous solution                                     |
| $pK_a$       | acid dissociation constant                                                         |
| PMB          | <i>para</i> -methoxybenzyl                                                         |
| ppm          | parts per million                                                                  |
| Pr           | propyl                                                                             |
| <i>i</i> -Pr | isopropyl                                                                          |
| py           | pyridine                                                                           |
| q            | quartet                                                                            |
| R            | alkyl group                                                                        |
| <i>R</i>     | rectus                                                                             |
| RCM          | ring-closing metathesis                                                            |
| ref          | reference                                                                          |
| $R_f$        | retention factor                                                                   |
| RNA          | ribonucleic acid                                                                   |
| s            | singlet or seconds                                                                 |
| <i>S</i>     | sinister                                                                           |
| sat.         | saturated                                                                          |
| Selectfluor  | 1-Chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane<br>bis(tetrafluoroborate) |

|                |                                                          |
|----------------|----------------------------------------------------------|
| SFC            | supercritical fluid chromatography                       |
| t              | triplet                                                  |
| TBAF           | tetra- <i>n</i> -butylammonium fluoride                  |
| TBAT           | tetra- <i>n</i> -butylammonium difluorotriphenylsilicate |
| TBD            | 1,5,7-triazabicyclo[4.4.0]dec-5-ene                      |
| TBHP           | <i>tert</i> -butyl hydroperoxide                         |
| TBS            | <i>tert</i> -butyldimethylsilyl                          |
| temp           | temperature                                              |
| Tf             | trifluoromethanesulfonyl                                 |
| t <sub>R</sub> | retention time                                           |
| THF            | tetrahydrofuran                                          |
| TLC            | thin layer chromatography                                |
| TMP            | 2,2,6,6-tetramethylpiperidine                            |
| TMS            | trimethylsilyl                                           |
| TMSE           | 2(trimethylsilyl)ethyl                                   |
| TOF            | time-of-flight                                           |
| tol            | tolyl                                                    |
| Ts             | <i>para</i> -toluenesulfonyl (tosyl)                     |
| UV             | ultraviolet                                              |
| w/v            | weight per volume                                        |
| v/v            | volume per volume                                        |
| X              | anionic ligand or halide                                 |
| Z              | cis (zusammen) olefin geometry                           |