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ABSTRACT 
 

Notwithstanding advances in modern chemical methods, the selective installation of 

sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, 

remains an unsolved problem in organic chemistry.  The prevalence of all-carbon 

quaternary centers in biologically active natural products and pharmaceutical 

compounds provides a strong impetus to address current limitations in the state of the 

art of their generation.  This thesis presents four related projects, all of which share in 

the goal of constructing highly-congested carbon centers in a stereoselective manner, 

and in the use of transition-metal catalyzed alkylation as a means to address that goal. 

The first research described is an extension of allylic alkylation methodology 

previously developed in the Stoltz group to small, strained rings.  This research 

constitutes the first transition metal-catalyzed enantioselective α-alkylation of 

cyclobutanones.  Under Pd-catalysis, this chemistry affords all–carbon α-quaternary 

cyclobutanones in good to excellent yields and enantioselectivities.   

Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of 

enolate precursors, and their application in palladium–catalyzed asymmetric allylic 

alkylation to yield a variety of α-quaternary ketones and lactams.  Independent 

coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-

ketoester substrates; highly functionalized α-quaternary ketones generated by the union 

of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners 

serve to demonstrate the utility of this method for complex fragment coupling. 

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic 

β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and 

all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is 

detailed.  Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated 

products with pinpoint stereochemical control of both chiral centers.  The chemistry is 

then extended to include acyclic β-ketoesters and similar levels of selective and 

functional group tolerance are observed.  Critical to the successful development of this 

method was the employment of iridium catalysis in concert with N-aryl-

phosphoramidite ligands.   
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