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Abstract

A noncommutative 2-torus is one of the main toy models of noncommutative geome-

try, and a noncommutative n-torus is a straightforward generalization of it. In 1980,

Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for

the computation of the K-theory of non-commutative tori. It follows that both even

and odd K-groups of n-dimensional noncommutative tori are free abelian groups on

2n−1 generators. In 1981, the Powers�Rie�el projector was described [19], which,

together with the class of identity, generates the even K-theory of non-commutative

2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups.

According to Rie�el [20], the odd K-theory of a noncommutative n-torus coincides

with the group of connected components of the elements of the algebra. In particu-

lar, generators of K-theory can be chosen to be invertible elements of the algebra. In

Chapter 1, we derive an explicit formula for the �rst non-trivial generator of the odd

K-theory of noncommutative tori. This gives the full set of generators for the odd

K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of di�erential geome-

try to the polynomial subalgebra of the noncommutative torus algebra. We use the

framework of di�erential geometry described in [27], [14], [25], [26]. In order to apply

this framework to noncommutative torus, the notion of the graded-commutative alge-

bra has to be generalized: the �signs� should be allowed to take values in U(1), rather

than just {−1, 1}. Such generalization is well-known (see, e.g., [8] in the context

of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this

extended notion of sign. We show how this framework can be used to construct dif-

ferential operators, di�erential forms, and jet spaces on noncommutative tori. Then,
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we compare the constructed di�erential forms to the ones, obtained from the spec-

tral triple of the noncommutative torus. Sections 2.1�2.3 recall the basic notions

from [27], [14], [25], [26], with the signs (−1)•·• replaced with λ(•, •). In Section

2.4, we apply these notions to the polynomial subalgebra of the noncommutative

torus algebra. This polynomial subalgebra is similar to a free graded-commutative

algebra. We show that, when restricted to the polynomial subalgebra, Connes con-

struction of di�erential forms gives the same answer as the one obtained from the

graded-commutative di�erential geometry. One may try to extend these notions to

the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson�Bloch regulator (for curves) via Fredholm mod-

ules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical

gap; in Chapter 3, we close this gap. More speci�cally, we do this by obtaining

some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4),

which implies that such reformulation is, indeed, possible. The main motivation for

this reformulation is the longer-term goal of �nding possible analogs of K2 and of

the regulators for noncommutative spaces. This work should be seen as a necessary

preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results

from [12], as well as some background material on central extensions and Connes�

Karoubi character.
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Introduction

For any positive integer n, the noncommutative n-tori C∗-algebras A
(n)
θ are a family

of C∗-algebras which generalize the algebra C(Tn,C) of continuous functions on n-

torus. The algebra A
(n)
θ is de�ned as the universal C∗-algebra generated by n unitary

generators U1, U2, . . . , Un subject to relations UlUj = e2πiθljUjUl. Here, θ is an n× n

antisymmetric matrix with elements in R. When θ = 0, we have A
(n)
θ ' C(Tn,C).

The algebra A
(n)
θ only depends on fractional parts of the elements of the matrix θ. One

can de�ne a noncommutative analogue of the (normalized) integral
∫

: C(Tn,C)→ C.

This is a speci�c map τ : A
(n)
θ → C, satisfying τ(1) = 1, and τ(ab) = τ(ba). This map

can be extended to the map τ : Mm

(
A

(n)
θ

)
→ C with τ(a) = τ(Tr(a)). Here, Mm(A)

is the algebra of m×m matrices over an algebra A. The family of noncommutative

tori is the most widely studied class of noncommutative spaces: see, e.g., [9], [19],

[11].

This work consists of 3 independent chapters, related to the notion of noncommu-

tative torus. We will now describe these chapters.

Chapter 1

K-theory of C∗-algebras associates two abelian groups, K0(A) and K1(A), to every

C∗-algebra A. These can be seen as invariants of the algebra A. These groups may

be used to distinguish one algebra from another. The group K0(A) is de�ned in

terms of equivalence classes [p]0 of orthogonal projections p ∈
⋃∞
m=1Mm(A). The

group K1(A) consists of classes [a]1 of invertible elements a ∈
⋃∞
m=1 GLm(A), where

GLm(A) = Inv(Mm(A)) is the group of invertible m×m matrices with elements in A.

These functors, K0 andK1, are analogous to corresponding functors of the topological
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K-theory: when A = C(X,C) is the algebra of continuous functions on a compact

Hausdor� space X, we have isomorphisms K0(A) ' K0(X) and K1(A) ' K1(X) '

K0(SX), where SX ' [0, 1]×X/(0, x) ∼ (0, y), (1, x) ∼ (1, y) is the suspension of X.

For the case of noncommutative tori, these groups were computed by Pimsner and

Voiculescu in [17]: K0

(
A

(n)
θ

)
' K1

(
A

(n)
θ

)
' Z2n−1

.

In [6], [5] (see also the translation [4]), Connes introduced the map Ch: K0

(
A

(n)
θ

)
⊕

K1

(
A

(n)
θ

)
→ R ⊗ ΛG, where G ' Zn. Its 0th component Ch0 : K0

(
A

(n)
θ

)
→ R is a

noncommutative analogue of dimension of a vector bundle: in general Ch0([p]0) =

τ(p), and for θ = 0 one has Ch0([p]0) = Tr(p(x)) for every x ∈ Tn, when p is

interpreted as a projector-valued function in C
(
Tn,Mm

(
A

(n)
θ

))
. The map Ch is

called Chern character or Chern�Connes character.

Unlike the commutative case, Ch0([p]0) = τ(p) is not always an integer. In partic-

ular, for θ12 ∈ (0, 1) Rie�el and Powers [19] constructed a projector Pθ12 ∈ A
(2)
θ such

that τ(Pθ12) = θ12, and the classes [1]0, [Pθ12 ]0 generate K0

(
A

(2)
θ

)
.

Elliott [10] described an isomorphism K0

(
A

(n)
θ

)
⊕K1

(
A

(n)
θ

)
' ΛG, where G ' Zn.

Under this isomorphism Λeven(G) corresponds to K0

(
A

(n)
θ

)
, and Λodd(G) corresponds

toK1

(
A

(n)
θ

)
. Elliott also described an explicit formula for the Chern�Connes character

under this isomorphism. Under the Elliott's isomorphism 1 ∈ Λ0G corresponds to

[1]0 ∈ K0

(
A

(n)
θ

)
, el ∈ Λ1G corresponds to [Ul]1 ∈ K1

(
A

(n)
θ

)
, el∧ ej ∈ Λ2G corresponds

to [Pθlj ]0 ∈ K0

(
A

(n)
θ

)
, and el ∧ ej ∧ ek ∈ Λ3G corresponds to [aljk]1 ∈ K1

(
A

(n)
θ

)
, where

unitary aljk ∈ A(n)
θ is explicitly described by Chapter 1 of this work.

Chapter 1 of this work is devoted to �nding an explicit formula for a unitary

a ∈ A(3)
θ such that classes [U1]1, [U2]1, [U3]1, [a]1 generate K1

(
A

(3)
θ

)
' Z4. In Section

1.2, we �nd one formula for such unitary a. This formula is written in terms of Araki

expansionals [1]. The approach we use relies on using the 6-term exact sequence

described by Pimsner and Voiculescu in [17], and is similar to the one used by Rie�el

in [20, proof of 8.2]. In Section 1.3, we use an ansatz, similar to the one used by

Rie�el and Powers for describing the projector Pθ12 . This method gives a much

simpler formula for such unitary a. Note that unitaries, produced by Sections 1.2 and

1.3, may di�er from each other. They, however, generate the same class in K-theory.
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As a longer-term goal, one would like to have some explicit understanding of all

the generators of the odd K-theory of all the noncommutative tori.

Chapter 2

The noncommutative torus algebra A
(n)
θ has subalgebras A(n)

θ and A
(n),poly
θ . The al-

gebra A(n)
θ is analogous to the algebra C∞(Tn,C) of smooth functions in the commu-

tative case. The algebra A
(n),poly
θ consists of polynomials in U1, . . . , Un with complex

coe�cients.

Given an abelian group Γ with a bilinear antisymmetric map (−1)•·• : Γ × Γ →

{−1, 1}, we say that A is a graded algebra if A =
⊕

g∈ΓAg, and algebra multiplication

satis�es AgAh ⊂ Ag+h. An element a ∈ A is said to be homogeneous if a ∈ Ag

for some g ∈ Γ. In this case we say that g is the grading degree of a, and write

ã = deg a = g. A graded algebra A is said to be graded-commutative if ab = (−1)ã·̃bba

for all homogeneous a, b ∈ A.

Given a graded-commutative algebra A, one can de�ne the jet bundle Jk(A), the

algebra of di�erential forms Λ(A), and other objects of di�erential geometry. The

corresponding framework was developed in [27], [14], [25], [26]. The goal of Chapter

2 is to apply this framework to the algebra A
(n),poly
θ =

⊕
I∈Zn CU I . In order to do

this, we should generalize this di�erential geometry framework to allow more general

signs, which is done by replacing the sign function (−1)•·• with λ : Γ × Γ → U(1),

and applying the Koszul sign rule where appropriate. Such generalization of the

notion of graded-commutative algebra has been considered in [8]. It is relatively

straightforward to extend the mentioned framework to the new sign function. In

Sections 2.1�2.3 we do this for the notions of the jet bundle, derivations, multi-

derivations, and di�erential forms. The main result of Chapter 2 is the explicit

description of the main constructions from this framework of di�erential geometry in

the case of the polynomial algebra A
(n),poly
θ of the noncommutative torus. These are

the module of derivations D
(
A

(n),poly
θ

)
, the jet bundle Jk

(
A

(n),poly
θ

)
, and the algebra

Λ
(
A

(n),poly
θ

)
of di�erential forms.
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There is a well-known algebra of di�erential forms ΩD

(
A(n)
θ

)
on A(n)

θ , constructed

by Connes. In Section 2.5, we get ΩD

(
A

(n),poly
θ

)
by applying this Connes framework to

A
(n),poly
θ , and compare it to the algebra Λ

(
A

(n),poly
θ

)
. It turns out that ΩD

(
A

(n),poly
θ

)
'

Λ
(
A

(n),poly
θ

)
.

As a longer-term goal, one would like to extend these results from the polynomial

subalgebra A
(n),poly
θ to the smooth subalgebra A(n)

θ . One of the goals of developing

notions, such as jet bundles in the context of noncommutative tori, is to obtain

other examples of natural geometric di�erential operators on noncommutative tori,

by mimicking analogous constructions in ordinary di�erential geometry.

Chapter 3

In algebraic K-theory and algebraic geometry, there is a notion of regulator. The

word �regulator� is used for homomorphisms from (algebraic)K-groups to cohomology

groups (see, e.g., [23]). Such maps may be seen as algebraic analogues of the Chern

character from the topological K-theory. In Chapter 3, we consider the Beilinson�

Bloch regulator [2]. While it is de�ned in a more general setting, we will consider it

only in the case of K2(X), where X is a closed Riemann surface. In this case, the

Beilinson�Bloch regulator is a speci�c homomorphism K2(X)→ H1(X,C∗).

The main goal of a long-term project, started by Eugene Ha, is to generalize the

Beilinson�Bloch regulator to the case of noncommutative spaces. Now, we list the

main obstacles towards this goal.

Notion of a space. In the context of the Beilinson�Bloch regulator and K2(X),

space X is understood as a variety. In partular, for every �nite subset S ⊂ X, the

variety X has a ring O(X \ S) of meromorphic functions with no poles outside of S.

One of the main notions of a �space� in noncommutative geometry is the notion of a

spectral triple. It is an analogue of a smooth Riemannian manifold endowed with a

SpinC structure. An even spectral triple (A, H,D, γ) consists of

• a Hilbert space H;

• a self-adjoint unitary γ ∈ B(H);
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• an algebra A ⊂ B(H), such that all a ∈ A satisfy aγ = γa;

• a (potentially unbounded) operator D, satisfying Dγ = −γD, s.t. [D, a] is

bounded for every a ∈ A.

Here, B(H) is the algebra of bounded operators on a Hilbert space H. Noncommu-

tative spectral triple doesn't provide a notion of meromorphic functions. So, the �rst

obstacle is the need to understand a suitable noncommutative analogue of the notion

of a meromorphic function.

Algebraic K-theory. In noncommutative geometry, one uses the notion of K-

theory of C∗-algebras and some generalizations of it. Although one can de�ne Kn(A)

for n > 1, Bott periodicity implies that Kn+2(A) ' Kn(A). This is di�erent from

algebraic K-theory, where K2(R) is rarely isomorphic to K0(R). In order to gener-

alize the Beilinson�Bloch regulator, one needs to devise a suitable noncommutative

analogue of algebraic K-theory.

The de�nition of the Beilinson�Bloch regulator. Beilinon�Bloch regulator

is de�ned in terms of values and integrals of meromorphic functions on X. The

notions of a point and a loop are not de�ned in noncommutative case. Therefore one

needs to reformulate the de�nition of the Beilinson�Bloch regulator to avoid the use

of these notions.

The un�nished manuscript of Eugene Ha [12] partially addresses this obstacle

by proposing an alternative de�nition of the Beilinson�Bloch regulator using the

Connes�Karoubi character on the universal 2-summable Fredholm module. If in

the de�nition of an even spectral triple above we impose 2 additional conditions,

namely that D is bounded, and [D, a] is a Hilbert�Schmidt operator for every a ∈ A,

we get a 2-summable Fredholm module. Although typically the operator D is un-

bounded, Connes [6] �rst introduces the notion of a character for n-summable Fred-

holm modules, and then extends it to deal with a spectral triple, satisfying certain

additional conditions, but having an unbounded operator D. If the Hilbert space H

is separable, any 2-summable Fredholm module can be �embedded� into a universal

2-summable Fredholm module M1. Connes and Karoubi [7] described a homomor-
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phism τCK2 : K2(M1) → C∗. Eugene Ha conjectured a possible alternative de�nition

of the Beilinson�Bloch regulator in his manuscript [12]. Given a loop γ : S1 → X \S,

one has an embedding ργ : O(X \S). The main step in the de�nition of the Beilinson�

Bloch regulator is de�ning the maps rS : K2(O(X \S))→ H1(X \S,C∗). Eugene Ha

suggested doing this using the formula

〈rS(u), [γ]〉 =
(
τCK2 ◦ (ργ)∗

)
(u). (1)

After one writes this formula, it remains to prove that it describes a well-de�ned

regulator, and this regulator coincides with the original Beilinson�Bloch regulator. A

possible strategy for proving this fact was outlined in [12]. We provide a complete

proof in Chapter 3, which is somewhat di�erent from the approach suggested in [12],

though it follows the same main strategy.

The main result of Chapter 3 is that equality (1) holds, where the map rS in its

left hand side comes from the original Beilinson�Bloch regulator. The proof is based

on the computation of the right hand side of (1) on Steinberg symbols, and uses

multiple results from [18]. As explained in Section 3.7, since the original Beilinson�

Bloch regulator is well de�ned, it follows that the equality (1) can be used as an

alternative de�nition of it.
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Chapter 1

4th generators of the odd K-theory of

3-dimensional noncommutative tori

1.1 Introduction

In this section, we describe the notation, de�nitions, and main known results used in

this work and related to it.

1.1.1 Noncommutative tori

Let n be a positive integer, and let θ be an n×n antisymmetric matrix with elements

in R. Let A
(n)
θ be the universal unital C∗-algebra generated by unitaries U1, . . . , Un

subject to relations UlUj = e2πiθljUjUl, where l, j = 1, . . . , n; then, this algebra is

called a noncommutative torus algebra. Now we introduce the following multi-index

notation. Let α be an element of Zn. By de�nition, put

Uα = Uα1
1 Uα2

2 . . . Uαn
n ∈ A

(n)
θ , |α| = |α1|+ |α2|+ · · ·+ |αn| . (1.1)

An element a ∈ A(n)
θ is said to be smooth if

a =
∑
α∈Zn

aαU
α, (1.2)
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where aα ∈ C, and ∀N ∈ N ∃CN ∈ R ∀α ∈ Zn |aα| < CN (1 + |α|)−N . By de�nition,

put

A(n)
θ =

{
a ∈ A(n)

θ

∣∣∣ a is smooth
}
. (1.3)

One might want to write an arbitrary element a ∈ A
(n)
θ in the form 1.2, with

the only condition on the coe�cients that the series converge. Unfortunately, that's

not always possible: e.g., if a = f(U1) for some continuous function f , then the

series above is just the Fourier series for f (with uniform convergence), and there

are continuous functions for which the Fourier series doesn't converge uniformly (see,

e.g., [13, remark after proof of Theorem 2.1]). It is possible to resolve this issue by

constructing a space, analogous to the Hilbert space of square-integrable functions on

S1 in case n = 1, but we don't intend to do that.

1.1.2 Derivations

De�nition 1.1.1. Suppose A is an algebra. A map ξ : A→ A is called a derivation

of A if the following conditions hold:

1. ξ is C-linear;

2. for any a, b such that a, b ∈ A, we have

ξ(ab) = ξ(a)b+ aξ(b). (1.4)

By de�nition, put

δl : A(n)
θ → A

(n)
θ :

∑
α∈Zn

aαU
α 7→

∑
α∈Zn

αlaαU
α. (1.5)

For any integer l ∈ {1, . . . , n} the map δl is a derivation of A(n)
θ .
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1.1.3 Even K-theory

For the convenience of the reader, we brie�y revisit the de�nition of the K-theory of

a C∗-algebra. For every C∗-algebra A, there are two groups: K0(A) and K1(A). One

may de�neKn(A) for arbitrary nonnegative integer n, but due to the Bott periodicity,

they only depend on whether n is even or odd. Thus, K0(A) andK1(A) are sometimes

called even and odd K-theory respectively. The K0(A) is de�ned as follows.

De�nition 1.1.2. Let A be a C∗-algebra and p ∈ A. If p = p2, we say that p is

idempotent. If, in addition, p is self-adjoint, i.e. p = p∗, we say that p is a projector.

If p, q are 2 projectors in A, we say that they are Murray�von Neumann equivalent,

and write p ∼ q if and only if there is an element v ∈ A such that p = v∗v and

q = vv∗.

LetMn(A) be the algebra of n×nmatrices over A. We denote the set of projectors

in Mn(A) with Projn(A). If p ∈ Projn(A), q ∈ Projm(A), de�ne p ⊕ q =
(
p 0
0 q

)
∈

Projn+m(A). By identifying p with
(
p 0
0 0

)
, we embed Projn(A) into Projm(A) for

m ≥ n. De�ne the semigroup KD0(A) by

KD0(A) = lim−→
n

Projn(A)/ ∼0, (1.6)

where p ∼0 q if and only if there exists n s.t. p and q are Murray�von Neumann

equivalent as elements of Projn(A). While operation ⊕, de�ned above, doesn't respect

the inclusions, the class [p ⊕ q] is a well-de�ned element of KD0(A) for any p, q ∈⋃
n Projn(A). This operation induces a commutative and associative operation + on

KD0(A), allowing us to view KD0(A) as a monoid with unit [0].

Then, by de�nition, the group K0(A) is the Grothendieck group of the monoid

KD0(A).

The de�nition of the group K0(A) is stable under minor changes; e.g., one can

consider all idempotents instead of projectors, and replace Murray�von Neumann

equivalence with homotopy, and still construct the same group K0(A).
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1.1.4 Odd K-theory and �unstable� odd K-theory

Here, we de�ne the K-group K1(A) for a C∗-algebra A, and give some additional

notation along the way to explain an important result of Rie�el.

De�nition 1.1.3. Let A be a C∗-algebra. Let Inv(A) denote the group of its invert-

ible elements, and let GLk(A) = Inv(Mk(A)) be the group of invertible k×k matrices

over A (in particular, GL1(A) = Inv(A)). Let GL(A) be the injective limit of GLn(A)

with respect to inclusions a 7→ ( a 0
0 1 ) : GLn(A) → GLn+1(A). Let Inv0(A), GL0

n(A),

and GL0(A) denote the connected components of the identity in these groups, so that

π0 (Inv(A)) = Inv(A)/ Inv0(A), π0 (GLn(A)) = GLn(A)/GL0
n(A), (1.7)

π0 (GL(A)) = GL(A)/GL0(A). (1.8)

By de�nition, K1(A) = π0(GL(A)) = GL(A)/GL0(A).

As in the case of K0, the de�nition of K1 is robust under minor changes. For

example, one could use unitaries instead of generic invertible operators. Also, one

can �rst go to the group of connected components, and then take the direct limit:

K1(A) ' lim−→n
GLn(A)/GL0

n(A).

A natural question is whether the sequence GLn(A)/GL0
n(A) stabilizes, so that

the natural maps

GLn(A)/GL0
n(A)→ GLn+1(A)/GL0

n+1(A), GLn(A)/GL0
n(A)→ K1(A) (1.9)

are bijective starting from some n. In general, the answer is no, and these maps

are neither injective, nor surjective. However, for the case of noncommutative tori,

according to Rie�el [20, Theorems 8.1 and 8.3], we have

Theorem 1.1.4. Let θ ∈ Mn(R) be an anti-symmetric matrix with at least one

component being irrational. Then, for A = A
(n)
θ , all maps in (1.9) for all n ∈ N are

group isomorphisms.
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We want to construct the 4th generator [a]1 of K1

(
A

(3)
θ

)
. In the view of this

theorem, we know that such a exists in Inv
(
A

(3)
θ

)
(at least, when θ has some irra-

tionality). It remains to construct it explicitly. Our �rst construction, described in

1.2, uses some of the ideas from the proof of [20, Proposition 8.2], used by Rie�el to

show the above result.

1.1.5 Trace

Suppose τ is a trace on a C∗-algebra A (that is, bounded positive linear map A→ C,

satisfying τ(ab) = τ(ba)), and a ∈Mk(A); then by de�nition, put

τ(a) =
n∑
l=1

τ(all) = τ(Tr(a)). (1.10)

Lemma 1.1.5. Let A be a C∗-algebra, let τ be a trace on A, and let p, q be projectors

in Mk(A). Suppose that p is Murray�von Neumann equivalent to q, i.e., p ∼ q; then,

τ(p) = τ(q).

Proof. The claim follows from the de�nition of Murray�von Neumann equivalence

and the trace property.

Suppose that [p]0 ∈ K0(A), and let τ([p]0) = τ(p). From Lemma 1.1.5 it follows

that the value τ([p]0) is well de�ned.

There exists a natural trace τ on the C∗-algebra A
(n)
θ such that if a ∈ A(n)

θ is an

element of the form (1.2), then τ(a) = a0. In the rest of the paper, τ will denote this

natural trace on A
(n)
θ and its extension to Mn

(
A

(n)
θ

)
and K0

(
A

(n)
θ

)
.

1.1.6 Chern character

The map τ : K0

(
A

(n)
θ

)
→ C is useful, because it allows us to distinguish between

di�erent classes of projectors. There is an analogous map, serving the same purpose

for the odd K-theory. This map is Ch1 : K1

(
A

(n)
θ

)
→ Cn, de�ned on the classes [a] of
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smooth invertible elements a ∈ Inv
(
A(n)
θ

)
with

Ch1
k([a]) = τ

(
a−1δka

)
, k ∈ {1, . . . , n}. (1.11)

Substituting a = Uj we get

Ch1
k([Uj]) = δkj. (1.12)

This map is a component of the Chern character. In the context of noncommutative

geometry, the Chern character was introduced by Connes; see [5] (see also the English

translation [4]) and [6].

1.1.7 Elliott's paper

Elliott's 1984 paper [10] considers noncommutative tori algebras A
(n)
θ as obtained

from a pair (G, θ), where Zn ' G ⊂ Inv
(
A

(n)
θ

)
/C∗ is the abelian group, generated by

classes of Uk, k = 1, . . . , n. Let Ug for g ∈ G be UI , where g represents the class of

UI . Then, map θ : G ∧ G → R is such that UgUh = e2πiθ(g∧h)UhUg. The data (G, θ)

is indeed su�cient to reconstruct the algebra. In order to do this, one has to choose

α : G2 → T such that

α(g, h)α(h, g) = e2πiθ(g∧h), (1.13)

set

A
(n)
θ = AG,θ = C∗〈{Ug}g∈G | UgUh = α(g, h)Ug+h〉 , (1.14)

and prove that the algebra doesn't depend on the choice of α satisfying (1.13). Here,

C∗〈generators | relations〉 is the universal C∗-algebra, de�ned by the given genera-

tors and relations. Main results from the Elliott's paper can be summarized in the

following theorem.

Theorem 1.1.6. There is a natural isomorphism K∗
(
A

(n)
θ

)
' ΛG. Under this iso-

morphism:

1. K0

(
A

(n)
θ

)
' ΛevenG, K1

(
A

(n)
θ

)
' ΛoddG;
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2. τ = Ch0 : K0

(
A

(n)
θ

)
→ R corresponds to exp∧(θ);

3. Ch1 : K1

(
A

(n)
θ

)
→ G⊗Z R corresponds to 1G ∧ exp∧(θ);

4. Ch: K∗
(
A

(n)
θ

)
→ ΛG⊗Z R corresponds to exp∧(1 ∧ θ).

In particular, it follows from Elliott's paper that

Ch1
(
K1

(
A

(3)
θ

))
= Z3 + Z(θ23,−θ13, θ12). (1.15)

This fact also follows from our construction (see Subsection 1.2.7).

1.1.8 Pimsner�Voiculescu 6-term exact sequence

The main tool in the K-theory of noncommutative tori is the Pimsner�Voiculescu

6-term exact sequence. Let A
(n)
θ be a noncommutative torus algebra, and let A

(n−1)
θ

denote its C∗-subalgebra, generated by U1, . . . , Un−1. Note that only (n−1)× (n−1)

submatrix of θ is actually used as parameters for this subalgebra, so we are slightly

abusing the notation. Let i : A
(n−1)
θ → A

(n)
θ be the standard embedding. It follows

from Pimsner�Voiculescu 6-term exact sequence that there are the following 2 short

exact sequences, relating K-theories of A
(n−1)
θ and A

(n)
θ :

0 // K1

(
A

(n−1)
θ

)K1(i) // K1

(
A

(n)
θ

) δPV1 // K0

(
A

(n−1)
θ

)
// 0, (1.16)

0 // K0

(
A

(n−1)
θ

)K0(i) // K0

(
A

(n)
θ

) δPV0 // K1

(
A

(n−1)
θ

)
// 0, (1.17)

Using induction, it follows that

K0

(
A

(n)
θ

)
' Z2n−1

, K1

(
A

(n)
θ

)
' Z2n−1

. (1.18)
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1.1.9 Rie�el projector

The generators of K1

(
A

(3)
θ

)
can be chosen to be [U1]1, [U2]1, [U3]1, and [a]1 with

a ∈ Inv(A
(3)
θ ). The �rst 3 generators are given by �one-letter� formulas, but describing

the last one explicitly requires some work. A similar situation exists with K0

(
A

(2)
θ

)
:

it is generated by [1]0 and [Pθ]0, where Pθ is the Rie�el�Powers projector, introduced

in [19] (see also its discussion in the textbook [9]). To keep our introduction self-

contained, and to introduce the notation, we provide, following [19] and [9], the

description of the Rie�el projector here. We also note that from the construction

below, it follows that Pθ can be chosen to lie in A(2)
θ . Computations below are done

in A
(2)
θ . The antisymmetric 2 × 2 matrix θ is determined by one number θ12, so for

simplicity, we will write θ instead of θ12. The algebra A
(2)
θ depends only on the class

θ+Z of θ in R/Z, and the Rie�el projector is de�ned for θ ∈ R\Z, so we will assume

θ ∈ (0, 1). We set U = U1, V = U2, so UV = e2πiθV U . Let's search in Aθ for a

projector of the form

Pθ = h(U)V ∗ + f(U) + g(U)V. (1.19)

Here, f, g, h : S1 → C are functions from the unit circle to the set of complex numbers.

By de�nition, Pθ, given by (1.19), is a projector if and only if it satis�es the equalities

Pθ = P ∗θ and P 2
θ − Pθ = 0. Conjugating (1.19), we get

P ∗θ = ḡ(e2πiθU)V ∗ + f̄(U) + h̄(e−2πiθU)V. (1.20)

Therefore, the projector Pθ, given by (1.19), is self-adjoint if and only if

f(z) = f̄(z), (1.21)

h(z) = ḡ(e2πiθz). (1.22)

Thus, we can take a note that f should be real-valued, and replace h with its expres-

sion in (1.19). We get

Pθ = ḡ(e2πiθU)V ∗ + f(U) + g(U)V. (1.23)
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Figure 1.1: f(z) and g(z).

We note that P 2
θ − Pθ is automatically self-adjoint. Therefore, it is enough to

require that terms with non-positive powers of V vanish. We get

P 2
θ − Pθ = ḡ(e2πiθU)ḡ(e4πiθU)(V ∗)2 + ḡ(e2πiθU)

(
f(e2πiθU) + f(U)− 1

)
V ∗+(

ḡ(e2πiθU)g(e2πiθU) + g(U)ḡ(U)− f(U)(1− f(U))
)

+ (. . . )V + (. . . )V 2 (1.24)

Fix any δ ∈ (0,min(θ, 1− θ)). As shown on Figure 1.1, we ask f to be a function

S1 → [0, 1], s.t. f(e2πit) is 0 for t ∈ [−1+θ+δ, 0], 1 for t ∈ [δ, θ], and it changes contin-

uously from 0 to 1 and vice-versa on the rest of the circle. Moreover, we require that

f(e2πi(t+θ)) = 1−f(e2πit) for t ∈ [0, δ]. Then, we set g(e2πit) =
√
f(e2πit)(1− f(e2πit))

for t ∈ [θ, θ+ δ], and 0 otherwise. For such choice of f and g coe�cients of (V ∗)2, V ∗

and 1 vanish in the expression (1.24) for P 2
θ − Pθ. Coe�cients of V and V 2 will then

vanish automatically, since P ∗θ = Pθ.

We compute δUPθ and δV Pθ. We recall that derivations δU = δ1 and δV = δ2 of

Aθ are de�ned by

δUU = U, δUV = 0,

δVU = 0, δV V = V.
(1.25)

Let ġ denote the derivative of g along the circle, so that

ġ
(
e2πiϕ

)
=

1

2πi

∂

∂ϕ
g
(
e2πiϕ

)
, ġ(z) = z

∂g(z)

∂z
, δUg(U) = ġ(U). (1.26)
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Then,

δUPθ = ˙̄g(e2πiθU)V ∗ + ḟ(U) + ġ(U)V,

δV Pθ = −ḡ(e2πiθU)V ∗ + g(U)V.
(1.27)

Later, in Subsection 1.2.5, we will investigate a �twisted� version of this projector,

which still gives the same class in K-theory.

1.2 The 4th generator: semi-explicit formula

In this part, we construct the 4th generator ofK1

(
A

(3)
θ

)
, using the Pimsner�Voiculescu

short exact sequence. A similar approach was used by Rie�el in [20, proof of 8.2].

1.2.1 Pimsner�Voiculescu lemma

In order to construct the 4th generator, we will use the Pimsner�Voiculescu exact

sequence (1.16):

0 // K1

(
A

(n−1)
θ

)K1(i) // K1

(
A

(n)
θ

) δPV1 // K0

(
A

(n−1)
θ

)
// 0. (1.28)

The map δPV1 comes from the index map in the 6-term exact sequence of K-theory,

so we call δPV1 an index map. Since K1

(
A

(n)
θ

)
' Z2n−1

, it has 2n−1 generators. From

this sequence (1.28), we see that in order to list all generators of K1

(
A

(n)
θ

)
, it is

enough to list all 2n−2 generators of K1

(
A

(n−1)
θ

)
and any preimages for each of 2n−2

generators of K0

(
A

(n−1)
θ

)
. If we proceed inductively to compute explicit formulas

for generators of K0

(
A

(n)
θ

)
and K0

(
A

(n)
θ

)
, then on the n-th inductive step, we will

know 2n−2 generators of K1

(
A

(n)
θ

)
: these are images from K1

(
A

(n−1)
θ

)
. It is harder

to �nd explicitly preimages of projectors under the index map. We will soon see

that [Un]1 ∈ −
(
δPV1

)−1
([1]0) (it directly follows from [17]). This gives n out of 2n−1

generators, which solves the problem of �nding all generators for n = 1, 2. The rest of

this section is devoted to the construction of a preimage of the Rie�el projector, i.e.,

of a, satisfying [a]1 ∈
(
δPV1

)−1
[Pθ12 ]0. This will give n +

(
n
3

)
out of 2n−1 generators,

so it will give all generators in the case n = 3, 4. Now we give the key results from
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[17], allowing us to work with the index map.

Lemma 1.2.1. Let F be a projector in Mm

(
A

(n−1)
θ

)
, and let

a = (1− F ) + FxU∗nF ∈Mm

(
A

(n)
θ

)
, (1.29)

where x ∈ Mm
(
A

(n−1)
θ

)
is such that a is unitary. Then, δPV[a]1 = [F ]0. Moreover,

K1

(
A

(n)
θ

)
is generated by classes [a]1 of unitary elements of the form (1.29).

Note that the condition �a given by (1.29) is unitary� is a nontrivial condition on

x and F .

Proof. The last statement, saying that classes of unitary elements of the form (1.29)

generate K1

(
A

(n)
θ

)
, is the lemma 1.2 of [17]. The �rst fact is stated in the proof of

Lemma 2.3. To prove it, one needs to trace the de�nition of the index map δPV1 , and

use the de�nition of the index map from the 6-term exact sequence of K-theory.

1.2.2 Adapting the Pimsner�Voiculescu lemma

Now we will adapt the lemma above to �t our speci�c needs.

Lemma 1.2.2. Let F be an projector, and x be a unitary element in Mm

(
A(n−1)
θ

)
.

Assume that they satisfy U∗nFUn = x∗Fx, and let a be the element of the form (1.29),

constructed from these F and x.

1. a is unitary;

2. δPV1 [a]1 = [F ]0;

3. Ch1
j(a) = τ(δj(x)x∗F ) for j = 1, . . . , n− 1;

4. Ch1
n(a) = −τ(F ).

Note that in the lemma we use A instead of A: we require both x and F to be

smooth.
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Proof. 1. By substituting (1.29), we get that a∗a = (1 − F ) + FF1F and aa∗ =

(1− F ) + FF2F , where

F1 = Unx
∗FxU∗n = UnU

∗
nFUnU

∗
n = F, (1.30)

F2 = xU∗nFUnx
∗ = xx∗Fxx∗ = F, (1.31)

so, indeed, a∗a = aa∗.

2. Follows from the previous lemma.

3. In the computations below, we will use the following properties of the trace τ :

τ(yz) = τ(zy) and τ(δj(y)) = 0 for any y, z ∈ Mm

(
A(n)
θ

)
and any j ∈ {1, . . . , n}.

From these, it follows that τ(F l∂jF ) = 1
l+1
τ(∂j(F

l+1)) = 0. For j ∈ {1, . . . , n − 1},

substituting (1.29) into (1.11), and using a−1 = a∗, we get

Ch1
j(a) = τ (−(1− F )δj(F ) + FUnx

∗Fδj(FxU
∗
nF )) =

τ
(
−(1− F )δj(F ) + FUnx

∗Fδj(F )xU∗nF+

FUnx
∗Fδj(x)U∗nF + FUnx

∗FxU∗nδj(F )
)

=

τ
((
−(1− F ) + xU∗nFUnx

∗F + FUnx
∗FxU∗n

)
δj(F ) + U∗nFUnx

∗Fδj(x)
)
. (1.32)

Now, we use U∗nFUn = x∗Fx to get

Ch1
j(a) = τ

((
−(1− F ) + F + F

)
δj(F ) + x∗Fxx∗Fδj(x)

)
=

τ
(

(−1 + 3F )δj(F ) + x∗Fδj(x)
)

= τ
(
δj(x)x∗F

)
(1.33)

as desired.

4. Similarly,

Ch1
n(a) = τ

(
FUnx

∗Fδn(FxU∗nF )
)

= −τ
(
FUnx

∗FxU∗nF
)

= −τ(F ). (1.34)
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1.2.3 Homotopy and unitary equivalence

Let A be a C∗-algebra, and A ⊂ A� its Fréchet subalgebra, containing the unit of A.

Let {Ft}t∈[0,1] be a family of projectors in A, such that the function t 7→ Ft : [0, 1]→ A

has a continuous derivative. The goal of this subsection is to informally construct

a unitary x ∈ A, s.t. F1 = x∗F0x. In the next subsection, we will formalize the

answer using Araki expansionals (see [1]), and prove that it indeed satis�es the desired

properties and solves the equation F1 = x∗F0x. Our construction is inspired by the

following result from the K-theory of C∗-algebras from [3, Proposition 4.3.2].

Lemma 1.2.3. If e, f are projectors with ‖e − f‖ < 1, then z−1ez = f with z =

(2e− 1)(2f − 1)/2 + 1/2, ‖z − 1‖ ≤ ‖e− f‖.

Naively, one may want to use this lemma with e = F0, f = F1 and take x = z,

where z is given by lemma above. There are two problems with that. First, we don't

know, whether ‖F1−F0‖ < 1 or not, and, second, z given by the formula above may

fail to be unitary. Instead, we will try to construct the family {xt}t∈[0,1] s.t.

Ft = x∗tF0xt, (1.35)

and then take x = x1. Assuming x−1
t = x∗t , we get

Ft+ε = (x−1
t xt+ε)

−1Ftx
−1
t xt+ε. (1.36)

Then, we try to use Lemma 1.2.3 with e = Ft and f = Ft+ε to get an expression for

x−1
t xt+ε, assuming ε is small. We get

x−1
t xt+ε = 1 + (2Ft − 1)∂tFtε+O(ε2). (1.37)

Using the limit ε→ 0, (1.37) gives

∂txt = xt(2Ft − 1)∂tFt. (1.38)
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Together with the initial condition x0 = 1, that should describe xt.

1.2.4 Araki expansionals

The Araki expansional [1] is an object, which is supposed to solve the equations of

the form (1.38). Here, we slightly adjust the de�nition from [1] to �t our purposes.

De�nition 1.2.4. Let A be a Banach algebra, and let f : s 7→ f(s) : [α, β]→ A be a

norm-continuous function. De�ne

Expr

(∫ β

α

; f(s)ds

)
=
∞∑
n=0

∫ β

α

dt1

∫ t1

α

dt2 . . .

∫ tn−1

α

dtnf(tn) . . . f(t1). (1.39)

If f : [α, β]→ A is piece-wise continuous, s.t. it is continuous on [tl, tl+1] for α = t0 ≤

t1 ≤ · · · ≤ tL = β, we de�ne

Expr

(∫ β

α

; f(s)ds

)
= Expr

(∫ t1

t0

; f(s)ds

)
· · ·Expr

(∫ tL

tL−1

; f(s)ds

)
. (1.40)

These two de�nitions agree with each other; i.e., if f is continuous on [α, β], the

second de�nition gives the same result as the �rst one. The integrals are well de�ned,

and the sum in (1.39) converges absolutely. Moreover, (1.39) makes sense and gives

the same result for a piece-wise continuous function, as (1.40).

We are interested in the case when A is a C∗-algebra, and f takes values in its

Fréchet subalgebra. In this case, Expr

(∫ β
α

; f(s)ds
)
is de�ned to be an element of

A, and we want it to be element of A. We have the following lemma.

Lemma 1.2.5. Let A be a C∗-algebra and A be its Fréchet subalgebra, for which

the inclusion A ↪→ A is continuous. Let f : [α, β] → A be a piece-wise continuous

function (with respect to the Fréchet topology on A). Then, Expr

(∫ β
α

; f(s)ds
)
∈ A.

Proof. From the de�nition (1.40), we see that it is enough to show the lemma in the

case when f is continuous. In this case, the integrals in (1.39) are de�ned in A, and

since the inclusion A ↪→ A is continuous, have the same value in A, as they have in

A. Similarly, the sum in (1.39) is absolutely convergent in any of the seminorms on
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A and, by the same argument, converges in A to the same value, as it does in A.

Thus, the result of (1.39) belongs to A.

We also need the following lemma:

Lemma 1.2.6 ([1, Proposition 2]). If f : [α, β]→ A is a piece-wise continuous func-

tion, then for t ∈ (α, β), we have

∂t Expr

(∫ t

α

; f(s)ds

)
= Expr

(∫ t

α

; f(s)ds

)
f(t). (1.41)

Comparing (1.38) and (1.41), we propose the following solution for xt:

xt = Expr

(∫ t

0

; (2Fs − 1)∂sFsds

)
. (1.42)

It remains to show that xt satis�es the desired properties.

Lemma 1.2.7. Let A be a C∗-algebra and A be its Fréchet subalgebra, for which the

inclusion A ↪→ A is continuous, and 1A ∈ A; let Ft ∈ A be projectors for t ∈ [0, 1] s.t.

the function t 7→ Ft : [0, 1] → A is continuous and piece-wise continuously di�eren-

tiable; and let xt be given by (1.42). Then, {xt}t∈[0,1] is a continuously di�erentiable

family of self-adjoint operators in A with x0 = 1, satisfying (1.38) (for all t, where

Ft is di�erentiable) and (1.35) (for all t ∈ [0, 1]).

Proof. It is enough to prove the lemma for the case of continuously di�erentiable

t 7→ Ft: otherwise, we can apply the lemma to each segment.

First, note that xt is di�erentiable with respect to t, and satis�es (1.38), which

follows from (1.42) using [1, prop. 2]. From (1.38), it follows that the derivative ∂txt

is continuous. Equality x0 = 1 follows from the de�nition of Expr.

We then prove that xt is self-adjoint for t ∈ [0, 1]. Let yt = (2Ft − 1)∂tFt. We

claim that y∗t = −yt. Indeed,

(y∗t + yt)/2 = (∂tFt)(2Ft − 1)/2 + (2Ft − 1)∂tFt/2 =

(∂tFt)Ft + Ft∂tFt − ∂tFt = ∂t(F
2
t − Ft) = ∂t(0) = 0. (1.43)
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Let at = x∗txt − 1. We want to know that a0 = 0, and

∂tat = (∂tx
∗
t )xt + x∗t∂txt = y∗t x

∗
txt + x∗txtyt = y∗t at + atyt. (1.44)

at = 0 is a solution of this equation, so it remains to give some argument about

uniqueness of the solution of (1.44). We don't know a suitable reference for that, so

we show directly that (1.44) implies at = 0. Integrating, we get

‖at‖ ≤
∫ t

0

‖y∗sas + asys‖ds ≤
∫ t

0

2‖ys‖‖as‖ds. (1.45)

We know that Ft, xt and ∂tFt are continuous. Therefore, ‖at‖ and ‖yt‖ are continuous

on [0, 1], so there are C1, C2 s.t. ‖at‖ ≤ C1, ‖yt‖ ≤ C2 for all t ∈ [0, 1]. Thus, iterating

(1.45), we get

‖at‖ ≤ C1(2C2t)
k/k!. (1.46)

Thus, at = 0, since the r.h.s. of (1.46) goes to 0 as k →∞.

Now we show that xt satis�es (1.35). Similarly to the above, we let bt = x∗tF0xt−

Ft. We compute

y∗tFt+Ftyt = (∂tFt)(2Ft−1)Ft+Ft(2Ft−1)(∂tFt) = (∂tFt)Ft+Ft(∂tFt) = ∂t(F
2
t ) = ∂tFt.

(1.47)

Therefore,

∂tbt = y∗tF0 + F0yt − ∂tFt = 0. (1.48)

Integrating, and using b0 = 0 we get bt = 0 as desired.

Finally, we have to prove that xt ∈ A. To prove this, we note that the expression

inside the integral in (1.42) is, by assumption, a continuous function [0, 1]→ A, and

Araki exponential of a continuous function with values in a Fréchet subalgebra of a

C∗-algebra lies in that Fréchet subalgebra (because all the integrals and series in the

de�nition of Expr converge in any of the semi-norms; see, e.g., formula (2.2) of [1],

de�ning Expr).
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Note that we can rescale the construction above and starting with a path {Ft}t∈[T0,T1],

get {xt}t∈[T0,T1], given by

xt = Expr

(∫ t

T0

; (2Fs − 1)∂sFsds

)
, (1.49)

and satisfying

Ft = x∗tFT0xt, (1.50)

with the same technical conditions, as in Lemma 1.2.7.

1.2.5 Twisted Rie�el projector

Our next goal is to construct unitary x ∈ A(n−1)
θ , satisfying the conditions of the

lemma 1.2.2 with F = Pθlj , i.e. unitary x, satisfying U∗nPθljUn = x∗Pθljx. All the

computations will be done in the subalgebra of A(n)
θ , generated by Ul, Uj, and Un,

which is isomorphic to A(3)
θ′ for θ′ being the appropriate submatrix of θ. Therefore,

we will assume n = 3, l = 1, j = 2. We denote U = U1, V = U2, and W = U3.

Whenever the arbitrary n have to be restored, we will have to replace U = U1 with

Ul, V = U2 with Uj, and W = U3 with Un. We will now join the Rie�el projector Pθ12

with its �twisted� version W ∗Pθ12W by a piece-wise continuously di�erentiable path,

and obtain xt and x using (1.49) and Lemma 1.2.7.

Let's denote the torus action on A
(2)
θ by β, so that for s, t ∈ R the automorphism

βs,t of the algebra A
(2)
θ satis�es

βs,t(U) = e2πisU, βs,t(V ) = e2πitV. (1.51)

Then, for all a ∈ A(2)
θ ⊂ A

(3)
θ , we have

βθ13,θ23a = W ∗aW. (1.52)

Note that βs,t only depends on the classes of s and t modulo Z, i.e. on the point of the

torus R2/Z2, hence the name �torus action.� It remains to join id = β0,0 with βθ13,θ23
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piece-wise smoothly, apply these automorphisms to Pθ12 , and apply Lemma 1.2.7 to

the obtained path in the space of projectors. This construction works for any path,

but we will choose a speci�c one to obtain a speci�c unitary x. Note that we can

change θ13 and θ23 by any integer without changing the algebra. We will use that to

assume that both θ13 and θ23 are nonnegative, and choose the path {Ft}t∈[0,T ], where

T = θ13 + θ23, Ft = βt,0Pθ12 for t ∈ [0, θ13], Fθ13+t = βθ13,tPθ12 for t ∈ [0, θ23].

(1.53)

Since the formula (1.49), we are planning to use for x = xT , contains ∂tFt, we will

compute it. First, note that for a ∈ A(2)
θ we have

∂s(βs,ta) = 2πiδU(βs,ta) = 2πiβs,t(δUa), ∂t(βs,ta) = 2πiδV (βs,ta) = 2πiβs,t(δV a).

(1.54)

Therefore, using (1.27) and the de�nition of β, we get

∂s(βs,tPθ12) = 2πi
(
e−2πit ˙̄g(e2πi(θ12+s)U)V ∗ + ḟ(e2πisU) + e2πitġ(e2πisU)V

)
, (1.55)

∂t(βs,tPθ12) = 2πi
(
−e−2πitḡ(e2πi(θ12+s)U)V ∗ + e2πitg(e2πisU)V

)
. (1.56)

Also, applying βs,t to the expression (1.23) for Pθ12 , we get

βs,tPθ12 = e−2πitḡ(e2πi(θ12+s)U)V ∗ + f(e2πisU) + e2πitg(e2πisU)V. (1.57)

Given these expressions, the following expression for x, obtained from Lemma 1.2.7,

is somewhat explicit:

x = Expr

(∫ θ13

0

; (2βs,0Pθ12 − 1)∂s(βs,0Pθ12)ds

)
Expr

(∫ θ23

0

; (2βθ13,tPθ12 − 1)∂t(βθ13,tPθ12)dt

)
. (1.58)

Alternatively, choosing a straight-line path, we get another solution x̃ of W ∗Pθ12W =
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x∗Pθ12x:

x̃ = Expr

(∫ 1

0

; (2βsθ13,sθ23Pθ12 − 1)∂s(βsθ13,sθ23Pθ12)ds

)
. (1.59)

Note that one can continuously deform one solution into another (by deforming the

path), where deformation doesn't leave the space of solutions of W ∗Pθ12W = x∗Pθ12x.

1.2.6 The 4th generator

Now, according to Lemma 1.2.2 and the construction above, the 4th generator of

K1

(
A

(3)
θ

)
can be written as [a]1, where

a = (1− Pθ12) + Pθ12xW
∗Pθ12 , (1.60)

where x is given by (1.58). Later, in Section 1.3, we will give a much more simple and

explicit expression. Now, we will compute the value of Ch1([a]1) for this generator.

1.2.7 Chern character

From Lemma 1.2.2, we know that

Ch1
3([a]1) = −τ(Pθ12) = −θ12, (1.61)

and for j = 1, 2,

Ch1
j([a]1) = τ(δj(x)x∗Pθ12). (1.62)

Since replacing x with x̃ in (1.60) doesn't change the homotopy class of a, it doesn't

change the value of the Chern character. Thus,

Ch1
j([a]1) = τ(δj(x̃)x̃∗Pθ12). (1.63)

Consider x̃t, which is given by the same formula (1.59), except for the upper integra-

tion, which is replaced with t. Since x̃0 = 1, we have τ(δj(x̃0)x̃∗0Pθ12) = 0. We let
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F̃t = βtθ13,tθ23Pθ12 , and ỹt = (2F̃t − 1)∂tF̃t, so that ∂x̃t = x̃tỹt and ỹ
∗
t = −ỹt. We get

Ch1
j([a]1) =

∫ 1

0

∂tτ(δj(x̃t)x̃
∗
tPθ12)dt =

∫ 1

0

τ
((
δj(x̃tỹt) + δj(x̃t)ỹ

∗
t

)
x̃∗tPθ12

)
dt =∫ 1

0

τ
(
x̃tδj(ỹt)x̃

∗
tPθ12

)
dt =

∫ 1

0

τ
(
δj(ỹt)F̃t

)
dt =

−
∫ 1

0

τ
(
ỹtδjF̃t

)
dt = −

∫ 1

0

τ
(

(2F̃t − 1)∂tF̃tδjF̃t

)
dt. (1.64)

From (1.54), we know that ∂tF̃t = 2πi
(
θ13δU F̃t + θ23δV F̃t

)
. Let

Ilj = −2πi

∫ 1

0

τ
(

(2F̃t − 1)∂lF̃tδjF̃t

)
dt. (1.65)

Then,

Ch1
j([a]1) = θ13I1j + θ23I2j, (1.66)

so it remains to evaluate Ilj. Note that derivations δU and δV are invariant under

automorphisms βs,t. Therefore, the expression in Ilj doesn't depend on t, and

Ilj = −2πiτ ((2Pθ12 − 1)∂lPθ12δjPθ12) . (1.67)

We have

Ilj = −2πiτ ((2Pθ12 − 1)∂lPθ12δjPθ12) = 2πiτ (∂lPθ12(2Pθ12 − 1)δjPθ12) =

2πiτ ((2Pθ12 − 1)δjPθ12∂lPθ12) = −Ijl. (1.68)

In particular, Ijj = 0. So, it remains to evaluate I12 = −I21. We could use the

explicit expression for Pθ12 , substitute it into the de�nition of I12, and evaluate the

trace. That would involve evaluating 4 integrals of products of functions f and g

from the de�nition of Pθ12 . There is a simpler way to do so. From (1.67), we know

that I12 is a smooth function of θ12 for θ12 ∈ (0, 1) (and doesn't depend on anything

else). So, from now on, we will denote this function with I12 : (0, 1) → C, and write
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I12(θ12) instead of I12. From the above, we know that

Ch1([a]1) = (−θ23I12(θ12), θ13I12(θ12),−θ12). (1.69)

Lemma 1.2.8. I12(θ) = 1 for all θ ∈ (0, 1).

Proof. Let's consider a noncommutative torus with θ12 = −θ13 = θ23 = θ. Then,

noncommutative 3-torus algebra A
(3)
θ has automorphisms, induced by cyclic per-

mutations of U, V,W . Therefore, the image of Ch1 in R3 is symmetric with re-

spect to cyclic permutations of the components. On the other hand, it is equal to

Z3 + Z(−I12(θ)θ,−I12(θ)θ,−θ).

Let's consider the case of irrational θ ∈ (0, 1), and consider the image of Ch1

modulo Z3. This image is generated by e1 = (−I12(θ)θ,−I12(θ)θ,−θ). Let e2 =

(−θ,−I12(θ)θ,−I12(θ)θ) and e3 = (−I12(θ)θ,−θ,−I12(θ)θ) be cyclic permutations of

e1. Due to the symmetry of the algebra with respect to cyclic permutations of θij,

we get e2 ≡ ±e1 (mod Z3). But then, e3 ≡ ±e2 and e1 ≡ ±e3 with the same sign,

so e1 ≡ ±e3 ≡ e2 ≡ ±e1, and therefore, the sign is +. Then, from e2 ≡ e1, we get

e2 − e1 = (n1, n2, n3). The �rst coordinate of this equation gives n1 = I12(θ)θ − θ.

Now, consider function n(θ) = I12(θ)θ− θ de�ned for all θ ∈ (0, 1). Since I12(θ) is

smooth, this function is continuous. From the above, we know that at all irrational

points it takes integer values. This is only possible when n(θ) = n1 is a universal

integer constant. So,

I12(θ) = 1 + n1/θ. (1.70)

To show that n1 = 0, consider a non-commutative 3-torus with arbitrary θ12, θ13, θ23 ∈

(0, 1). For such A
(3)
θ , we have

Ch1
(
K1

(
A

(3)
θ

))
= Z3 + Z(−θ23I12(θ12), θ13I12(θ12),−θ12). (1.71)

By a similar permutation argument, this image should coincide with

Z3 + Z(−θ23, θ13I12(θ23),−θ12I12(θ23)). (1.72)
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Comparing the �rst components, we get

−θ23s+m = −θ23I12(θ12) (1.73)

for some m ∈ Z, s ∈ {−1, 1} (m and s might depend on θij). Substituting I12 from

(1.70), and simplifying, we get

(1− s)θ23 +m+ n1θ23/θ12 = 0. (1.74)

Choosing θ23 and θ12 s.t. 1, θ23 and θ23/θ12 are linearly independent over Q, we get

n1 = 0.

Thus, the values of the �rst component of the Chern character on the 4-th gener-

ator, described above, are

Ch1([a]1) = (−θ23, θ13,−θ12). (1.75)

1.3 The 4th generator: explicit formula

1.3.1 Introduction

As we noted earlier, we can only work with the n = 3, i.e., with noncommutative

3-torus. As earlier, we let U = U1, V = U2, W = U3.

For this construction, we assume θ12, θ13 /∈ Z. This condition is a bit stronger, than

the condition from the previous section, where we required only θ12 to be non-integer.

However, if only θ12 is non-integer, we can choose generators Ũ = U , Ṽ = UV ,

W̃ = W , and perform the construction below. So, when we account for possibility

of a �change of variables� before performing the construction of a generator, both

semi-explicit construction above, and the explicit construction below, only require

one of θ12, θ13, θ23 to be non-integer.

Given θ12, θ13 /∈ Z, we construct an (explicit formula for an) element a ∈ A(3)
θ ,

satisfying (1.75), and such that elements [U ]1, [V ]1, [W ]1, [a]1 generates K1

(
A

(3)
θ

)
as a
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free abelian group (see Theorem 1.3.3).

Since the de�nition of the algebra A
(n)
θ is invariant under changing elements of

the matrix θ by integers, and, as we agreed above, θ12, θ13 are not integers, in the

construction below, we assume that θ12, θ13 ∈ (0, 1).

1.3.2 Ansatz

By analogy with the construction of the Rie�el projector [19] (its nice description

given in [21, Exercise 5.8]), we will try to search for a unitary a of the form

a = f0(U)W ∗ + f1(U)VW ∗ + f2(U)V + f3(U) (1.76)

for some continuous functions f0, f1, f2, f3 : T→ C, where T = {z ∈ C : |z| = 1}. For

such element a to be unitary, it has to satisfy aa∗ = 1 and a∗a = 1. The following

lemma shows that it is enough to check only one of these 2 conditions.

Lemma 1.3.1. Let A be a unital C∗-algebra with a faithful trace, a ∈ A with aa∗ = 1.

Then, a∗a = 1.

Proof. From aa∗ = 1, we know by C∗-algebra theory that a∗a is a projector, too. Let

p = 1− a∗a. Let τ be a faithful trace on A. We have

τ(p) = τ(1− a∗a) = τ(1)− τ(a∗a) = τ(1)− τ(aa∗) = τ(1)− τ(1) = 0.

Since p is a projector, p ≥ 0. Then, since τ is faithful, from τ(p) = 0 we know that

p = 0. Thus, 1 = a∗a.

Let's look at the equation aa∗ = 1. We can write aa∗ in a polynomial-like form

aa∗ =
1∑

l,j=−1

cl,jV
lW j (1.77)

with cl,j being functions of U . Thus, the equality aa
∗ = 1 is equivalent to a system of

9 equations on functions of U . Not all of them are independent: one can see that the
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equation for cl,j is equivalent to the equation for c−l,−j. Since the spectrum of U is T,

we can replace U with a variable z, and require the equations to be satis�ed for any

z ∈ T. We are left with the following system of 5 equations on functions f0, f1, f2, f3:

3∑
l=0

|fl(z)|2 = 1, (1.78)

f3(z)f̄0

(
e−2πiθ13z

)
+ e2πiθ23f2(z)f̄1

(
e−2πiθ13z

)
= 0, (1.79)

f1(z)f̄0

(
e−2πiθ12z

)
+ f2(z)f̄3

(
e−2πiθ12z

)
= 0, (1.80)

f1(z)f̄3

(
e2πi(θ13−θ12)z

)
= 0, (1.81)

f2(z)f̄0

(
e−2πi(θ13+θ12)z

)
= 0. (1.82)

By construction, if functions fl satisfy these equations for any z ∈ T, then aa∗ = 1

and, thus, a is unitary.

1.3.3 Smooth solution

We will now �nd a smooth solution of the system (1.78)�(1.82). We will construct

functions fl : T→ C from functions fl,2 : R→ C via

fl(z) =
∑

t∈R : e2πit=z

fl,2(t). (1.83)

Let's choose 0 = x0 < x1 < x2 < x3 < x4 = 1 s.t. x3 − θ13 = x1, x2 − θ12 = x0. For

example, that can be done with

x1 = θ12(1− θ13), x2 = θ12, x3 = 1− (1− θ12)(1− θ13). (1.84)

As a zeroth approximation to the functions fl,2, we take indicator-like functions

fl,0 : R→ C, de�ned by

fl,0(t) =

 1 if xl ≤ t < xl+1,

0 otherwise.
(1.85)
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If we use fl,0 instead of fl,2, equations (1.78�1.82) will be satis�ed, but these are

not continuous, and, thus, can't be applied to elements of a C∗-algebra. To smoothen

them, we choose ε < minl=0,...,3(xl+1 − xl)/4 and a non-negative smooth function

ω with support in [−ε, ε] and integral equal to 1, denote with ? the convolution

operation, and de�ne

fl,1 =
√
ω ? (fl,0)2. (1.86)

Unfortunately, that will break equations (1.79) and (1.80), for z replaced with

e2πit: equation (1.79) for t ∈ (x3− ε, x3 + ε) and (1.80) � for t ∈ (x4− ε, x4 + ε). To

be more precise, in each of the equations two products will be exactly the same, but

the coe�cients will not add up to 0: 1 + e2πiθ23 6= 0 and 1 + 1 6= 0. To resolve this,

we tweak f3,1 by setting

f3,2(t) = e2πiϕ(t)f3,1(t) (1.87)

with any smooth function ϕ : R→ R, satisfying

e2πiϕ(t) = −e2πiθ23 for t < x3 + ε, (1.88)

e2πiϕ(t) = −1 for t > x4 − ε. (1.89)

That is, ϕ(t) has prede�ned values (up to adding an integer) outside (x3 + ε, x4 − ε)

and has to smoothly interpolate in-between. It follows that ϕ(x4)−ϕ(x3) = −θ23 +nϕ

for some integer nϕ. Moreover, by making an appropriate choice of ϕ we can make

nϕ to be equal to any given integer. In order to �x a speci�c generator a, we will

later �x nϕ = 1. For l = 0, 1, 2 let

fl,2 = fl,1. (1.90)

By construction, functions fl,2 satisfy the following properties.

1. For any t ∈ [−ε, ε], we have

|fl,2(xl − t)| = |fj,2(xj − t)| and |fl,2(xl+1 + t)| = |fj,2(xj+1 + t)| . (1.91)
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2. fl,2(t) = 0 for t /∈ (xl − ε, xl+1 + ε), |fl,2(t)| = 1 for t ∈ [xl + ε, xl+1 − ε].

3. For l 6= 3, we have fl,2(t) ∈ R+ = {r ∈ R : r ≥ 0} for all t ∈ R; f3,2(t)sleft ∈ R+

for t < x3 +ε, f3,2(t)sright ∈ R+ for t > x4−ε, where sleft = −e2πiθ23 , sright = −1.

4. Functions t 7→ |fl,2(t)|2 sum up to 1:

3∑
l=0

∑
k∈Z

|fl,2(t+ k)|2 = 1. (1.92)

Here, the last property follows from linearity of the convolution with ω and equal-

ity ω ? 1 = 1.

Lemma 1.3.2. Let fl,2 for l = 0, 1, 2, 3 be any functions R→ C, satisfying properties

1�4 above, and let functions fl be de�ned by (1.83) from these fl,2. Then, functions

fl satisfy equations (1.78�1.82).

Proof. Equation (1.78) follows from (1.92).

To show (1.79), notice that f3(z) may only be non-zero for z = e2πit with t ∈

(x3 − ε, x4 + ε), while f0(e−2πiθ13z) may only be nonzero for z = e2πit with t ∈

(x0+θ13−ε, x3+ε) (here we've used that x1+θ13 = x3). Also notice that x0+θ13−ε <

x3 − ε < x3 + ε < x4 + ε, and, since θ13 = x3 − x1 > x3 − x2 > 4ε, we have

(x4 + ε)− (x0 + θ13 − ε) < 1. Therefore, we don't deal with two di�erent values of t

giving the same value of z = e2πit, and the �rst term in (1.79) may only be nonzero

for z = e2πit with t ∈ (x3− ε, x3 + ε). A similar argument shows that the same is true

for the second term of (1.79). Then, for t = x3 + t1 ∈ (x3 − ε, x3 + ε) and z = e2πit,

using (1.83), we get

∣∣f3(z)f̄0(e−2πiθ13z)
∣∣ = |f3,2(t)| · |f0,2(t− θ13)| = |f3,2(x3 + t1)| · |f0,2(x1 + t1)| ,

∣∣f2(z)f̄1(e−2πiθ13z)
∣∣ = |f2,2(t)| · |f1,2(t− θ13)| = |f2,2(x3 + t1)| · |f1,2(x1 + t1)| .

However, by Property 1 above, we get |f3,2(x3 + t1)| = |f1,2(x1 + t1)| and |f0,2(x1 + t1)| =

|f2,2(x3 + t1)|. Thus, the terms have the same absolute value, but by Property 3, they
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have opposite signs. So, they cancel each other.

Equation (1.80) is satis�ed by the similar reason.

Let us now show that (1.81) is satis�ed too. Let

a1 = x1 − ε, b1 = x2 + ε,

a2 = x3 − θ13 + θ12 − ε = x1 + θ12 − ε, b2 = x4 − θ13 + θ12 + ε = 1 + x2 − θ13 + ε.

Then, the �rst term in (1.81), f1(z), may only be non-zero for z = e2πit with t ∈

(a1, b1), while the second term f3(e2πi(θ13−θ12)z) � with t ∈ (a2, b2). Notice that

a2 − b1 = x1 − x0 − 2ε > 0 and a1 + 1− b2 = x3 − x2 − 2ε > 0. Thus, a1 < b1 < a2 <

b2 < a1 + 1. So, the product in (1.81) is 0 everywhere.

A similar computation shows that (1.82) is satis�ed, too.

1.3.4 Non-smooth solution

Although we will be working with a smooth solution, described above, one can deform

it to get a similar solution, given by simpler formulas, but lacking smoothness. We

assume x0, . . . , x4, ε and nϕ are chosen as above. In this solution, functions fl for

l = 0, 1, 2 are given by

fl(z) =



√
1/2 + (t− xl)/(2ε) if z = e2πit with t ∈ (xl − ε, xl + ε),

1 if z = e2πit with t ∈ [xl + ε, xl+1 − ε],√
1/2− (t− xl+1)/(2ε) if z = e2πit with t ∈ (xl+1 − ε, xl+1 + ε),

0 otherwise.

(1.93)
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and f3 is given by

f3(z) =



− exp(2πiθ23)
√

1/2 + (t− x3)/(2ε)

if z = e2πit with t ∈ (x3 − ε, x3 + ε),

− exp
(
2πi(θ23 − nϕ)(x4 − ε− t)/(x4 − x3 − 2ε)

)
if z = e2πit with t ∈ [x3 + ε, x4 − ε],

−
√

1/2− (t− x4)/(2ε)

if z = e2πit with t ∈ (x4 − ε, x4 + ε),

0

otherwise.

(1.94)

1.3.5 Chern character

In this section, we compute the value Ch1([a]1) for the element a constructed above.

Note that since unitaries, constructed in 1.3.3 and 1.3.4, are homotopic to each other,

they give the same class [a]1, and, thus, the same value Ch1([a]1). In the computation

below, we will use the smooth version.

Using the trace property of τ and unitarity of a, we get

Ch1
j([a]1) = τ(a−1δja) = τ((δja)a∗). (1.95)

Substituting a from (1.76),

Ch1
2([a]1) = Ch1

V ([a]1) = τ((f1(U)VW ∗ + f2(U)V )·

(f0(U)W ∗ + f1(U)VW ∗ + f2(U)V + f3(U))∗) = τ
(
|f1(U)|2 + |f2(U)|2

)
=∫ 1

0

(∣∣f1(e2πit)
∣∣2 +

∣∣f2(e2πit)
∣∣2) dt = (x2 − x1) + (x3 − x2) = x3 − x1 = θ13. (1.96)
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Similarly,

Ch1
3([a]1) = Ch1

W ([a]1) =

− τ((f0(U)W ∗ + f1(U)VW ∗)(f0(U)W ∗ + f1(U)VW ∗ + f2(U)V + f3(U))∗) =

τ
(
|f0(U)|2 + |f1(U)|2

)
= (x1 − x0) + (x2 − x1) = x2 − x0 = θ12. (1.97)

Finally,

Ch1
1([a]1) = Ch1

U([a]1) = τ
(

(δUf0(U))W ∗ + (δUf1(U))VW ∗+

(δUf2(U))V + (δUf3(U))
)(
f0(U)W ∗ + f1(U)VW ∗ + f2(U)V + f3(U)

)∗)
=

τ

(
3∑
l=0

(
δUfl(U)

)
f̄l(U)

)
=

1

2πi

3∑
l=0

∫
R

(
∂tfl,2(t)

)
f̄l,2(t)dt =

1

2πi

3∑
l=0

∫
R

1

2

((
∂tfl,2(t)

)
f̄l,2(t)−

(
∂tf̄l,2(t)

)
fl,2(t)

)
dt. (1.98)

One can notice that for l 6= 3 expression inside the integral is zero, and for l = 3,

it may only be nonzero for t ∈ (x3 + ε, x4 − ε), where it is equal to 2πi∂tϕ(t) (see

(1.87)). Thus,

Ch1
1([a]1) = Ch1

U([a]1) = ϕ(x4)− ϕ(x3) = −θ23 + nϕ. (1.99)

Thus, we have obtained,

Ch1([a]1) = (−θ23 + nϕ, θ13,−θ12). (1.100)

From now on, let's �x a with nϕ = 0, so that

Ch1([a]1) = (−θ23, θ13,−θ12). (1.101)

Note that if at least one of θ12, θ13 and θ23 is irrational, it follows from (1.101)

that [U ]1, [V ]1, [W ]1, [a]1 generate K1

(
A

(3)
θ

)
as a free abelian group.
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1.3.6 The 4th generator and Pimsner�Voiculescu short exact

sequence

The main goal of this section is the following theorem.

Theorem 1.3.3. Suppose θ /∈ M3(Z). Let a be given by (1.76) with functions fl

satisfying conditions of Lemma 1.3.2. Then,

1. δPV1 ([a]1) = [Pθ12 ]0, where Pθ12 is the Rie�el projector;

2. K1

(
A

(3)
θ

)
is generated by [U ]1, [V ]1, [W ]1, and [a]1.

Note that if θ has at least one irrational element, then Theorem 1.3.3 follows from

the previous section.

Proof. Construction of Pimsner�Voiculescu short exact sequence can be summarized

by the following commutative diagram.

K1(J)
i∗ // K1(T )

p∗ // K1(T /J)

π̃∗ '
��

∂J // K0(J)
i∗ // K0(T )

p∗ // K0(T /J)

π̃∗ '
��

K1(A⊗K)
ψ∗ //

ψ̃∗ '

OO

K1(T )
π∗ // K1(A×α Z)

∂T // K0(A⊗K)
ψ∗ //

ψ̃∗ '

OO

K0(T )
π∗ // K0(A×α Z)

K1(A)
id∗−α(−1)∗//

'

OO

K1(A)
i∗ //

d∗ '

OO

K1(A×α Z) //
δPV1 // K0(A)

id∗−α(−1)∗//

'

OO

K0(A)
i∗ //

d∗ '

OO

K0(A×α Z)

(1.102)

Here, the �rst two rows are 6-term exact sequences, associated with short exact

sequences of C∗-algebras. The last row represents the Pimsner�Voiculescu 6-term

exact sequence. All rows are isomorphic to each other. We use the diagram (1.102)

for A = A
(2)
θ , i.e., the C∗-subalgebra in A

(3)
θ , generated by U and V . Then, A×α Z is

A
(3)
θ . We write a in the form

a = a1W
∗ + a2, (1.103)

where

a1 = f0(U) + f1(U)V, a2 = f2(U)V + f3(U). (1.104)
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Let ã ∈ T be given by

ã = a1W
∗ ⊗ S∗ + a2 ⊗ 1, (1.105)

so that π(ã) = a.

Note that for any b ∈ A(2)
θ we have

(W ⊗ S) · (b⊗ 1) = (WbW ∗ ⊗ 1) · (W ⊗ S), (W ⊗ S)∗ · (W ⊗ S) = 1⊗ 1, (1.106)

(W ⊗ S) · (W ⊗ S)∗ = 1⊗ (1− P ). (1.107)

That is, all commutation relations for W ⊗S are the same, as for W , except (1.107),

where an additional P ⊗ 1 is subtracted. If we have a computation (involving only

expanding products of expressions, polynomial in W and W ∗ with coe�cients in

A
(2)
θ ) in A

(3)
θ , then we have the counterpart computation in T , which is the same up

to replacement W → W ⊗ S, except when we multiply W ⊗ S by (W ⊗ S)∗ (in this

order). In this last case, we should subtract P ⊗ 1 from the result.

We know that aa∗ = 1. Therefore, ãã∗ = 1, so ã∗ is an isometry. We know that

a∗a = 1. Therefore,

ã∗ã = 1− (a1W
∗)∗(a1W

∗)⊗ P = 1−Wa∗1a1W
∗ ⊗ P. (1.108)

Note that in particular from (1.108), it follows that Wa∗1a1W
∗, a∗1a1 and a1a

∗
1 are

projectors. From (1.108), we have

∂T ([a]1) = [ãã∗]0 − [ã∗ã]0 = [1]0 − [1−Wa∗1a1W
∗ ⊗ P ]0 = [Wa∗1a1W

∗ ⊗ P ]0. (1.109)

Thus,

δPV1 ([a]1) = [Wa∗1a1W
∗]0 = [a∗1a1]0 = [a1a

∗
1]0. (1.110)

Now,

a1a
∗
1 = (f0(U) + f1(U)V )(f0(U) + f1(U)V )∗ = V ∗ḡ1(U) + g0(U) + g1(U)V, (1.111)
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where

g1(U) = f̄0

(
e−2πiθ12U

)
f1(U), g0(U) = |f0(U)|2 + |f1(U)|2 . (1.112)

It is easy to see that a1a
∗
1 is the Rie�el projector.

The second claim of the theorem follows from the �rst and the exactness of the

sequence (1.102) in K1(A×α Z).
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Chapter 2

Di�erential calculus on

graded-commutative algebras,

associated with noncommutative tori

2.1 Graded algebras, modules and linear di�erential

operators

We use notation from [27], [14], [25], [26] for the constructions of di�erential geometry.

We also use the notation for the sign rule from [8]. Since our main goal is the

application of the construction to the algebra of noncommutative torus, we restrict all

de�nitions to the case of unital C-algebras, and use signs in U(1) = {z ∈ C : |z| = 1}.

In general, one may use k-algebras for any �eld k, and any signs in k∗ = k \ {0}.

De�nition 2.1.1. A grading group is an abelian group Γ endowed with a bilinear

antisymmetric map λ : Γ× Γ→ U(1). We say that C-algebra A is Γ-graded commu-

tative if and only if it is represented as a direct sum A =
⊕

g∈ΓAg with AfAg ⊂ Af+g

for f, g ∈ G, and ab = λ(f, g)ba for a ∈ Af , b ∈ Ag. If a ∈ Af , we say that a is a

homogeneous element of A of degree f , and denote its degree f with ã = deg a, so

that the commutation relation above can be written as

ab = λ(ã, b̃)ba. (2.1)

The Koszul sign rule allows us, given a de�nition involving commutative algebras,
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to construct a de�nition involving graded-commutative ones. To do that, one has to

take each equality of that de�nition, and choose a �standard� order of terms in prod-

ucts. Then, for every product-like expression, having a di�erent order of terms, one

has to multiply it by a �sign,� corresponding to the permutation we have performed.

For example, if we have variables a, b, c, d, and choose the standard order to be abcd,

then the expression −3dbca have to be replaced with −3λ(ã+ b̃+ c̃, d̃)λ(ã, b̃+ c̃)dbca.

De�nition 2.1.2. Let A be a Γ-graded commutative algebra. We say that M is

a (graded) A-module if and only if M is an A-module, endowed with a grading

M =
⊕

g∈ΓMg, s.t. AfMg ⊂Mf+g.

In this work, all algebras are, by default, assumed to be graded-commutative and

unital, all modules are assumed to be graded. For any (Γ, λ) as above, we can interpret

C as (Γ, λ)-commutative algebra, by de�ning C0 = C and Cg = {0} for g ∈ Γ \ {0}.

De�nition 2.1.3. Let A be an algebra, and let P and Q be A-modules. Then, we

de�ne Hom(P,Q) = HomA(P,Q) to be the module of graded A-linear maps from P

to Q. That is,

HomA(P,Q) =
⊕
g∈Γ

HomA,g(P,Q), (2.2)

HomA,g(P,Q) = {ϕ : P → Q : ϕ(Pf ) ⊂ Qg+f ;

∀p1, p2 ∈ P ϕ(p1 + p2) = ϕ(p1) + ϕ(p2);

∀p ∈ P ∀ homogeneous a ∈ A ϕ(ap) = λ(g, ã)aϕ(p)}. (2.3)

The A-module structure is given by (aϕ)(p) = aϕ(p).

Let again A be an algebra, and P and Q be A-modules. Note that P and Q can

be re-interpreted as C-modules, and, thus, the de�nition above de�nes a C-module

HomC(P,Q). It has two A-module structures: (a · ϕ)(p) = aϕ(p) and (a ·R ϕ)(p) =

λ(ã, ϕ̃)ϕ(ap). We reserve the name HomC(P,Q) for the module with the �rst module

structure (·) and denote the same set, endowed with the second module structure

(·R), by Hom+
C(P,Q).
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Note that HomA(P,Q) can be interpreted as a submodule of both HomC(P,Q)

and Hom+
C(P,Q):

HomA(P,Q) = {ϕ ∈ HomC(P,Q) : ∀a ∈ A a · ϕ = a ·R ϕ}. (2.4)

De�nition 2.1.4. Let ∆,∇ be homogeneous elements of HomC(P, P ). We de�ne

their graded commutator to be

[∆,∇] = ∆ ◦ ∇ − λ(∆̃, ∇̃)∇ ◦∆. (2.5)

The de�nition is extended to non-homogeneous elements by C-linearity.

It satis�es the following properties:

1. bilinearity:

[∆,∇1 +∇2] = [∆,∇1] + [∆,∇2], [∆1 + ∆2,∇] = [∆1,∇] + [∆2,∇], (2.6)

c[∆,∇] = [c∆,∇] = [∆, c∇] for c ∈ C; (2.7)

2. (graded) anti-symmetry:

[∇,∆] = −λ(∇̃, ∆̃)[∆,∇]; (2.8)

3. (graded) version of Jacobi identity:

[∇, [∆,�]] + λ(∇̃+ ∆̃, �̃)[�, [∇,∆]] + λ(∇̃, ∆̃ + �̃)[∆, [�,∇]] = 0. (2.9)

Alternatively, the Jacobi identity can be written as

[∇, [∆,�]] = [[∇,∆],�] + λ(∇̃, ∆̃)[∆, [∇,�]]. (2.10)
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De�nition 2.1.5. Let A be an algebra, let P,Q be A-modules, and let a ∈ A. Note

that a can be interpreted as an operator �multiplication by a� P → P and Q → Q.

De�ne δa : HomC(P,Q)→ HomC(P,Q) with δa∆ = [a,∆] = a◦∆−λ(ã, ∆̃)∆◦a. For

a ∈ A⊗n, we de�ne δna : HomC(P,Q) → HomC(P,Q) with δna1⊗···⊗an = δa1 ◦ · · · ◦ δan .

We de�ne the module of linear di�erential operators from P to Q of order ≤ k with

Diffk(P,Q) = {∆ ∈ HomC(P,Q) : ∀a ∈ A⊗(k+1) δk+1
a ∆ = 0}. (2.11)

De�ne the module Diff+
k (P,Q) by replacing HomC(P,Q) in (2.11) with Hom+

C(P,Q),

so that Diff+
k (P,Q) has the same elements, as Diffk(P,Q), but uses ·R for its A-module

structure.

Note that Diff−1(P,Q) = 0, Diff0(P,Q) = HomA(P,Q), Diff0(A,Q) = Q, and

Diffk+1(P,Q) = {∆ ∈ HomC(P,Q) : ∀a ∈ A δa∆ ∈ Diffk(P,Q)}. (2.12)

Moreover, (2.12) will remain true, if we replace �∀a� with �∀ homogeneous a�.

Lemma 2.1.6. If ∆ ∈ Diffk(P,Q), ∇ ∈ Diff l(Q,R), then ∇ ◦∆ ∈ Diffk+l(P,R).

Proof. It is enough to prove the lemma for homogeneous ∆ and ∇. We use induction

in k + l. If k = −1 or l = −1, then ∇◦∆ = 0 ∈ Diffk+l(P,R). Now, assume k, l ≥ 0,

and let a be a homogeneous element of A. Using the de�nition of δa, we get

δa(∇ ◦∆) = δa(∇) ◦∆ + λ(ã, ∇̃)∇ ◦ δa(∆). (2.13)

By induction hypothesis, the right hand side belongs to Diffk+l−1(P,R), so ∇ ◦∆ ∈

Diffk+l(P,R) by (2.12).

Lemma 2.1.7. If ∆ ∈ Diffk(A,A), ∇ ∈ Diff l(A,A), then [∇,∆] ∈ Diffk+l−1(A,A).

Proof. We prove the statement by induction in k+ l. If l = 0, map ∇ has to coincide

with multiplication by some a ∈ A. We get

[∇,∆] = [a,∆] = δa∆ ∈ Diffk−1(A,A). (2.14)



43

The same argument proves the lemma for k = 0. Now, assume k, l > 0, and notice

that the inductive step follows from the Jacobi identity:

δa([∇,∆]) = [a, [∇,∆]] = [[a,∇],∆] +λ(ã, ∇̃)[∇, [a,∆]] = [δa∇,∆] +λ(ã, ∇̃)[∇, δa∆].

(2.15)

2.2 Jet Spaces

De�nition 2.2.1. Let A be an algebra, and let P be an A-module. De�ne a module

Jk(P ) together with a k-th order di�erential operator jk : P → Jk(P ) to be a repre-

senting object of Diffk(P, •). Thus, if Jk(P ) exists, Diffk(P, •) ' HomA(Jk(P ), •) and

jk is the preimage of the map idJk(P ) ∈ HomA(Jk(P ), Jk(P )). We say jk : P → Jk(P )

is the universal di�erential operator of order ≤ k, acting on the module P .

Jk(P )
∃!ϕ∇

""
P

jk

OO

∇ // Q

(2.16)

As illustrated by the diagram above, the de�nition of (jk, J
k(P )) is equivalent to the

following statement: for any A-module Q and any ∇ ∈ Diffk(P,Q), there is a unique

ϕ∇ ∈ HomA(Jk(P ), Q), satisfying the equality ϕ∇ ◦ jk = ∇.

Lemma 2.2.2. The universal di�erential operator jk : P → Jk(P ) exists for any

algebra A and any A-module P .

Proof. Consider the module J̃k(P ) = A ⊗C P , with the multiplication de�ned by

a(b ⊗ p) = (ab) ⊗ p, and consider a C-linear map j̃k : P → J̃k : p 7→ 1 ⊗ p. Let

I be the submodule of J̃k, generated by {δa(j̃k)(p) : a ∈ A⊗(k+1), p ∈ P}. Then,

let Jk(P ) = J̃k/I with jk induced by j̃k. Note that submodule I introduces only

those restrictions, which are satis�ed by any element ∇ ∈ Diffk(P,Q). Therefore,

(jk, J
k(P )) represents Diffk(P, •).
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Lemma 2.2.3. Functor Diff+
k (•, R) is representable for any A-module R.

Proof. Let Q be an A-module, and consider the map

Diff+
k (Q,R)→ HomA(Q,Diff+

k (A,R)) : ∇ 7→ ϕ∇, (2.17)

where ϕ∇ is given by

ϕ∇(q)(a) = λ(q̃, ã)∇(aq). (2.18)

The following computations check that a 7→ ϕ∇(q)(a) is a di�erential operator, and

that ∇ 7→ ϕ∇ is a homomorphism:

(δb(ϕ∇(q)))(a) = b(ϕ∇(q)(a))− λ(̃b, ∇̃+ q̃)ϕ∇(q)(ba) =

λ(q̃, ã)b(∇(aq))− λ(̃b, ∇̃)λ(q̃, ã)∇(baq) = λ(q̃, ã)(δb∇)(aq) = ϕδb∇(q)(a), (2.19)

ϕ(b ·R ∇)(q)(a) = λ(q̃, ã)(b ·R ∇)(aq) = λ(q̃, ã)λ(̃b, ∇̃)∇(baq) =

λ(̃b, ∇̃+ q̃)ϕ∇(q)(ba) = (b ·R (ϕ∇(q)))(a) = (bϕ∇)(q)(a). (2.20)

We have constructed a well-de�ned natural transformation of functors, given by the

family of maps ∇ 7→ ϕ∇. Its inverse is given by ∇ 7→ ∇ϕ, where

∇ϕ(q) = ϕ(q)(1). (2.21)

Diff+
k (R)

Dk
��
R Q

∇oo

∃!
cc

(2.22)

De�nition 2.2.4. As illustrated by diagram (2.22), we denote the representing object
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of Diff+
k (•, R), given by the lemma above, with (Dk,Diff+

k (R)), so that

Diff+
k (R) = Diff+

k (A,R), Dk ∈ Diffk(Diff+
k (R), R), Dk(∇) = ∇(1), deg(Dk) = 0.

(2.23)

De�nition 2.2.5. Composition Dl ◦Dk : Diff+
k (Diff+

l R) → R is a di�erential oper-

ator of order ≤ k + l. Therefore, by the universal property (2.22), we get a homo-

morphism Diff+
k (Diff+

l R) → Diff+
k+lR. By de�nition, let's call this homomorphism

�universal composition� cl,k.

Universal composition is associative in a certain sense (see [14, page 22]), and

generates a natural transformation of functors Diff+
k (Diff+

l •)→ Diff+
k+l:

Diff+
k (Diff+

l R)
Dk //

cl,k
��

Diff+
l R

Dl

��
Diff+

k+lR
Dk+l // R .

(2.24)

Given any pair of di�erential operators ∇ ∈ Diff+
k (P,Q),∆ ∈ Diff+

l (Q,R), we

have the following commutative diagram:

P

ϕ∇ ##

∇ // Q
∆ //

ϕ∆

''

R

Diff+
k Q

Dk

77

ϕ(ϕ∆◦Dk) ''

Diff+
l R

Dl

88

Diff+
k (Diff+

l R)

Dk

77

cl,k // Diff+
k+lR.

Dk+l

OO (2.25)

Here, maps, generated by the universal property (2.22), are marked with ϕ• or ϕ(•).

One also has

cl,k ◦ ϕ(ϕ∆ ◦Dk) ◦ ϕ∇ = ϕ(∆ ◦ ∇). (2.26)

Finally, we introduce the standard bijections i+− and i−+, changing the module
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structure:

i+−k : Diff+
k (P,Q)→ Diffk(P,Q), i−+

k : Diff+
k (P,Q)→ Diffk(P,Q). (2.27)

We have the following observation.

Lemma 2.2.6. i+−k and i−+
k are di�erential operators of order ≤ k. Operator D−k =

Dk ◦i−+ is a homomorphism.

Proof. The �rst statement can be shown by inductively applying

(δai
+−
k )(∆) = i+−k (δa∆), (δai

−+
k )(∆) = −i−+

k (δa∆). (2.28)

The second one can be obtained by unrolling the de�nitions above, similarly to com-

putations in Lemma 2.2.3.

2.3 Di�erential forms

In this section, we de�ne di�erential forms over a graded-commutative algebras. Es-

sentially, we repeat the de�nitions from [25] and [26], and add necessary signs λ(•, •).

2.3.1 De�nitions

De�nition 2.3.1. Let A be an algebra, and P be an A-module. We let

D(P ) = DA(P ) =
⊕
g∈Γ

(DA(P ))g ⊂ HomC(A,P ), (2.29)

(DA(P ))g =
{
ξ ∈ HomC(A,P ) : ξ(ab) = λ(ξ̃, ã)aξ(b) + λ(ξ̃ + ã, b̃)bξ(a)

}
. (2.30)

We say that DA(A) is the module of derivations of algebra A, and DA(P ) is the

module of P -valued derivations of A. The condition in the right hand side of (2.30)

is called the (graded) Leibniz's rule.
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One can check that DA(P ) = {ξ ∈ Diff1(A,P ) : ξ(1) = 0} = ker(D−1 ). Similarly

to Lemma 2.2.2, one can check that the functor DA is representable. We denote its

representing object with (d,Λ1(A)), and call it �the module of di�erential 1-forms.�

This de�nition can be extended to de�ne higher di�erential forms. To do this, we will

de�ne Dk, and let (d,Λk(A)) to be the corresponding representing objects. Then, the

algebra of di�erential forms will be Λ(A) =
⊕∞

k=0 Λk(A). If A is graded by (Γ, λ),

then Λ(A) is a (Γ ⊕ Z, λ1)-graded-commutative algebra, where λ1(g + n, h + m) =

λ(g, h)(−1)nm. By slightly abusing the notation, we will use letter λ instead of λ1.

De�nition 2.3.2. Let S be any subset of A-module Q. By de�nition, let D(S ⊂

Q) be the set of those derivations ξ : A → Q, for which ξ(A) ⊂ S. Similarly, let

Diff+
k (S ⊂ Q) be {∆ ∈ Diff+

k (Q) : ∆(A) ⊂ S}. We inductively de�ne functors Dk and

P+
k with

D0(Q) = Q, P+
0 (Q) = Q,

Dk+1(Q) = D(Dk(Q) ⊂ P+
k (Q)), P+

k+1(Q) = Diff+
1 (Dk(Q) ⊂ P+

k (Q)).

The module structures on D0(Q) and P+
0 (Q) are inherited from Q. For k ≥ 1 the

module structure on Dk(Q) is given by

(aξ)(b) = a(ξ(b)), (2.31)

where the multiplication on the right-hand side is the one from Dk−1(Q). The module

structure on P+
k (Q) is inherited from Diff+(P+

k−1(Q)). We de�ne the modules Pk(Q).

These modules coincide with P+
k (Q) as abelian groups, and have the module structure,

de�ned by (2.31).

One can check that these modules are well de�ned. The following lemma performs

the least trivial of these checks.

Lemma 2.3.3. Multiplication in Dk(Q) is well de�ned.

Proof. We prove the lemma by induction in k. There is nothing to check for D0(Q) =

Q, so consider the multiplication in Dk+1(Q) for k ≥ 0 and let ξ ∈ Dk+1(Q). We
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have to check that aξ ∈ Dk+1(Q). Note that (aξ)(b) = a(ξ(b)) ∈ Dk(Q). It remains

to check that aξ satis�es the Leibniz's rule. For k = 0, i.e. ξ ∈ D1(Q), the statement

follows from the fact that D0(Q) = Q = P+
0 (Q), so D1(Q) = D(Q). For k ≥ 1, we

have

(aξ)(bc) = a · (ξ(bc)) = a ·
(
λ(ξ̃, b̃)b ·R (ξc) + λ(ξ̃ + b̃, c̃)c ·R (ξb)

)
. (2.32)

In the last expression, · is the multiplication in Dk(Q), and ·R is the multiplication in

P+
k (Q). As follows from their de�nitions, these operations commute with each other

up to the standard sign. That is, for any ∇ ∈ HomC(P,Q) and any homogeneous

a, b ∈ A, one has

a · (b ·R ∇) = λ(ã, b̃)b ·R (a · ∇). (2.33)

Applying this to (2.32), we get

(aξ)(bc) = λ(ξ̃ + ã, b̃)b ·R (a · (ξc)) + λ(ξ̃ + b̃+ ã, c̃)c ·R (a · (ξb)) =

λ(ξ̃ + ã, b̃)b ·R ((aξ)c) + λ(ξ̃ + b̃+ ã, c̃)c ·R ((aξ)b) (2.34)

as desired.

We can iterate the construction above and give the following de�nition.

De�nition 2.3.4. De�ne, inductively in k, functors Dk(Dl ⊂ P+
l ) and P+

k (Dl ⊂ P+
l )

with

D0(Dl ⊂ P+
l ) = Dl, P+

0 (Dl ⊂ P+
l ) = P+

l ,

Dk+1(Dl ⊂ P+
l ) = D

(
Dk(Dl ⊂ P+

l ) ⊂ P+
k (Dl ⊂ P+

l )
)
,

P+
k+1(Dl ⊂ P+

l ) = Diff+
1

(
Dk(Dl ⊂ P+

l ) ⊂ P+
k (Dl ⊂ P+

l )
)
.

Module structures and functors Pk(Dl ⊂ P+
l ) are, then, de�ned in the same way, as

above.
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This de�nition doesn't add anything new, as noted in the following lemma.

Lemma 2.3.5.

Dk(Dl ⊂ P+
l ) ' Dk+l, P+

k (Dl ⊂ P+
l ) ' P+

k+l, Pk(Dl ⊂ P+
l ) ' Pk+l.

Proof. The statement of the lemma follows from the de�nitions above by induction

in k.

Corollary 2.3.5.1. There are natural inclusions

αk : Dk+1(Q) ↪→ Dk(Diff+
1 (Q)), αk,l : Dk+l(Q) ↪→ Dk(Dl(Q)),

where αk is a di�erential operator of order ≤ 1 and αk,l is a homomorphism. Grading

degrees of both inclusions are equal to 0.

Proof. For l = 0, the second inclusion is trivial, so we assume that l ≥ 1. Due to

Lemma 2.3.5, it is enough to �nd the inclusions

α̃k : Dk(D(Q) ⊂ Diff+
1 (Q)) ↪→ Dk(Diff+

1 (Q)), α̃k,l : Dk(Dl(Q) ⊂ P+
l (Q)) ↪→ Dk(Dl(Q)).

For k = 0, we take α̃0 = i−+
1 |D(Q) (see Lemma 2.2.6), and α̃0,l = idDl(Q). Then, de�ne

inductively α̃k and α̃k,l by

α̃k+1ξ = α̃k ◦ ξ, α̃k+1,lξ = α̃k,l ◦ ξ. (2.35)

Note that α̃k is a di�erential operator of order ≤ 1, because

((δaδcα̃k+1)ξ)(b) = (δaδcα̃k)(ξ(b)) = 0. (2.36)

where the last equality follows from induction hypothesis. It remains to check that
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maps α̃k+1,l are well de�ned; i.e., α̃k+1,lξ ∈ Dk+1(Dl(Q)). We have

((α̃k+1,lξ)(ab))(c) = (α̃k,l(ξ(ab))) (c) = (α̃k,l(ξ(ab))) (c)−λ(ξ̃+ã+b̃, c̃)c (α̃k,l(ξ(ab))) (1) =(
α̃k,l(ξ(a) ◦ b+ λ(ã, b̃)ξ(b) ◦ a)

)
(c)−λ(ξ̃+ã+b̃, c̃)c

(
α̃k,l(ξ(a) ◦ b+ λ(ã, b̃)ξ(b) ◦ a)

)
(1) =

α̃k,l(ξ(a))(bc) + λ(ã, b̃)α̃k,l(ξ(b))(ac)− λ(ξ̃ + ã+ b̃, c̃)cα̃k,l(ξ(a))(b)−

λ(ξ̃ + ã+ b̃, c̃)λ(ã, b̃)cα̃k,l(ξ(b))(a). (2.37)

Here, ◦a is the composition with a multiplication operator by a. Note that these

multiplications are de�ned di�erently for k = 0, l ≥ 1 and k ≥ 1. However, the

computation (2.37) works in both cases. By induction hypothesis, α̃k,l(ξ(a)) and

α̃k,l(ξ(b)) satisfy the Leibniz's rule, so the above equality simpli�es to

((α̃k+1,lξ)(ab))(c) = λ(ξ̃ + ã, b̃)bα̃k,l(ξ(a))(c) + λ(ξ̃, ã)aα̃k,l(ξ(b))(c) =(
λ(ξ̃ + ã, b̃)b(α̃k+1,lξ)(a) + λ(ξ̃, ã)a(α̃k+1,lξ)(b)

)
(c)

as desired.

An alternative approach to prove this corollary can be found in [26, page 251,

Corollary 1].

De�nition 2.3.6. By de�nition, let (dk,Λ
k(A)) = (dk,Λ

k) be the representing object

of the functor Dk. Let d : Λk → Λk+1 denote the image of the universal operator

dk+1 ∈ Dk+1Λk+1 under

dk+1 ∈ Dk+1Λk+1 αk
↪→ Dk(Diff+

1 Λk+1) ' HomA(Λk,Diff+
1 Λk+1) ' Diff+

1 (Λk,Λk+1).

(2.38)

The wedge product is the image of dk+l under

dk+l ∈ Dk+l(Λ
k+l)

αk,l
↪→ Dk(Dl(Λ

k+l)) ' HomA(Λk,HomA(Λl,Λk+l)) '

HomA(Λk ⊗ Λl,Λk+l). (2.39)

We introduce Λ =
⊕∞

l=0 Λl with ∧ as the multiplication and Γ⊕Z as the grading
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group. An element a ∈ Λl of grading degree g ∈ Γ is now assigned a new degree

(g, l) ∈ Γ⊕ Z. Let d : Λ→ Λ be the operator, constructed out of operators d : Λk →

Λk+1.

Later, in Theorem 2.3.9, we will prove that d2 = 0.

In the following lemma, for any A-module Q and any nonnegative integer k, let

ψ be the natural isomorphism Dk(Q)→ HomA(Λk, Q). For example, for Q = Λk we

have ψ(dk) = idΛk .

Lemma 2.3.7. For any module R, we have the following commutative diagram:

Dk+1R
αk //

ψ
��

Dk(Diff+
1 R)

ψ
��

HomA(Λk+1, R)
f 7→f◦d // Diff+

1 (Λk, R)
∆ 7→ϕ(∆) //HomA(Λk,Diff+

1 R).
D1 ◦g← [g

nn

(2.40)

Proof. We �rst notice that it is enough to show the commutativity of (2.40) for

R = Λk+1 on element dk+1 ∈ Dk+1Λk+1. Indeed, if ξ ∈ Dk+1R, then ψ(ξ) ∈

HomA(Λk+1, R). Since ψ, αk and other arrows on the diagram are natural trans-

formations of functors, we can obtain (using ψ(ξ)) join each node of the diagram

(2.40) to the corresponding node the same diagram, but with R replaced with Λk+1,

thus obtaining a �cube� diagram. For example, for the vertical arrow ψ on the left of

(2.40), we get a commutative diagram

Dk+1Λk+1

ψ
��

Dk+1(ψ(ξ)) // Dk+1R

ψ
��

HomA(Λk+1,Λk+1)
h7→ψ(ξ)◦h //HomA(Λk+1, R).

(2.41)

From the commutativity of this diagram (and bijectivity of ψ), we get that ξ =

Dk+1(ψ(ξ))(dk+1). In this way, the commutativity of the diagram (2.40) on ξ, indeed,

follows from the commutativity on dk+1 of the same diagram with R = Dk+1Λk+1.

That commutativity on dk+1 ∈ Dk+1Λk+1 is the equality ψ(αk(dk+1)) = ϕ(ψ(dk+1)◦

d), and it follows from the de�nition of d and the equality ψ(dk+1) = idΛk+1 .
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2.3.2 Explicit description of Dl

Take ξ ∈ Dl(Q) and a1, . . . , al ∈ A. De�ne

ξ(a1, . . . , al) := ξ(a1)(a2) . . . (al) ∈ Q. (2.42)

Then, the following lemma holds ([14, page 28]).

Lemma 2.3.8. Let ξ be a homogeneous map An → Q, C-linear in each argument.

Then, ξ ∈ Dl(Q) (in the sense of (2.42)) if and only if it satis�es the following

properties.

1. [skew-symmetry] For each m = 1, . . . , l−1 and homogeneous am, am+1, we have

ξ(a1, . . . , am, am+1, . . . , al) = −λ(ãm, ãm+1)ξ(a1, . . . , am+1, am, . . . , al).

2. [multiderivation] For each m = 1, . . . , l and �xed homogeneous aj (j = 1, . . . , l;

j 6= m) map am 7→ λ(
∑

j>m ãj, ãm)ξ(a1, . . . , al) ∈ Q is a derivation of grading

degree deg(ξ) +
∑

j 6=m deg(aj).

The A-module structure on Dl(Q) is given by (aξ)(a1, . . . , al) = a(ξ(a1, . . . , al)).

Proof. For ξ ∈ Dl(Q) with l ≥ 2, we get 0 = ξ(ab)(1) = ξ(a)(b)+λ(ã, b̃)ξ(b)(a). Thus,

ξ is �skew-symmetric� in the �rst 2 arguments. Applying this fact to ξ(a1) . . . (am−1) ∈

Dl−m+1(Q), we get the (graded) skew-symmetry.

The multi-derivation property form = 1 follows from the de�nition of α1,l−1 : Dl(Q)→

D(Dl−1(Q)). For m > 1, it follows from the skew-symmetry.

The description of the module structure follows by induction from the de�nition

of the module structure of Dl(Q):

(aξ)(a1) . . . (al) = (aξ(a1))(a2) . . . (al) = a(ξ(a1)(a2) . . . (al)).

Finally, assume that ξ satis�es Properties 1 and 2. Using induction in l, we will

prove that ξ ∈ Dl(Q). Cases l = 0 and l = 1 are trivial, so assume l ≥ 2, and let's
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show that ξ ∈ Dl(Q) = D(Dl−1(Q) ⊂ P+
l−1(Q)). If a1 ∈ A, then ξ(a1) ∈ Dl−1(Q) by

induction hypothesis. It remains to show that ξ : A → P+
l−1(Q) is a derivation, i.e.

that

ξ(ab) = λ(ξ̃, ã)a ·R ξ(b) + λ(ξ̃ + ã, b̃)b ·R ξ(a).

This equality is similar to the Leibniz's rule that we have from the multi-derivation

property, but has the usual multiplication replaced with ·R. To show that this modi-

�ed Leibniz's rule is also satis�ed, we apply both sides to a general c ∈ A:

ξ(ab)(c) = λ(ã, b̃)ξ(b)(ac) + ξ(a)(bc).

This equality can be checked by expanding both sides using the multi-derivation

property, and, then, cancelling terms using (graded) skew-symmetry.

2.3.3 Properties

Theorem 2.3.9. Λ and d satisfy the following properties:

1. d2 = 0;

2. Λ is a (Γ + Z)-graded algebra, A = Λ0 is its subalgebra;

3. d ∈ DΛ(Λ) with deg(d) = (0, 1).

Proof. Fix an integer k ≥ 0 and consider operators d(k) : Λk → Λk+1 and d(k+1) : Λk+1 →

Λk+2. Here, we temporarily introduced a lower index (k) to distinguish operators d(k)

from one another, and put the index in brackets to distinguish d(k) from dk ∈ Dk(Λ
k).

We need to prove that d(k+1) ◦ d(k) = 0 or, equivalently, ϕ(d(k+1) ◦ d(k)) = 0. As in

(2.26), this can be rewritten as

c1,1 ◦ ϕ(ϕ(d(k+1)) ◦D1) ◦ ϕ(d(k)) = 0. (2.43)
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We have

dk+2 ∈ Dk+2Λk+2
αk+1

↪→ Dk+1(Diff+
1 Λk+2)

αk
↪→ Dk((Diff+

1 )2Λk+2)
Dk(c1,1)−→ Dk(Diff+

2 Λk+2).

Let ∂2 be the image of dk+2 in Dk(Diff+
2 Λk+2). We observe that ψ(∂2) = c1,1 ◦

ψ(αk(αk+1(dk+2))). Using Lemma 2.3.7 and de�nition of d, we rewrite this to

ψ(∂2) = c1,1 ◦ ϕ(ψ(αk+1(dk+2)) ◦ d(k)) = c1,1 ◦ ϕ(ϕ(d(k+1))) ◦ d(k)).

To check that this coincides with the lhs of (2.43), we notice that left composition

with D1 is the inverse of ϕ and, thus, invertible. We compute

D1 ◦ϕ(ϕ(d(k+1))) ◦ d(k)) = ϕ(d(k+1))) ◦ d(k),

D1 ◦ϕ(ϕ(d(k+1)) ◦D1) ◦ ϕ(d(k)) = ϕ(d(k+1)) ◦D1 ◦ϕ(d(k)) = ϕ(d(k+1)) ◦ d(k).

Therefore, it is enough to prove that ∂2 = 0. Notice that the composition

D(Diff+
1 Λk+2)

α0
↪→ (Diff+

1 )2Λk+2 D1−→ Diff+
1 (Λk+2)

is 0. Thus, (from de�nition of c1,1) we get c1,1◦α0 = 0. Then, from recursive de�nition

of αk we get Dk(c1,1) ◦ αk = 0 and, hence, ∂2 = 0. Therefore, d2 = 0.

Since D0 is the identity functor, it is represented by A; thus, Λ0 = A. Next, we

need to prove that wedge product in Λ0 coincides with the original multiplication.

This follows from the more general fact that the wedge product Λ0 ⊗ Λl → Λl coin-

cides with the standard A-module structure of Λl. This fact, in turn, follows from

�triviality� of most maps in (2.39) for k = 0:

idΛl ∈ HomA(Λl,Λl) ' Dl(Λ
l) = D0(Dl(Λ

l)) ' HomA(A,HomA(Λl,Λl)) '

HomA(A⊗ Λl,Λl). (2.44)

The associativity of the wedge product in Λ follows from the de�nition and corre-
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sponding property of α•,•, i.e.,

αk,l ◦ αk+l,m = Dk(αl,m) ◦ αk,l+m,

which follows from the explicit description of Dk (Lemma 2.3.8).

2.4 Noncommutative torus

2.4.1 Introduction

In this section, we apply the above constructions to the polynomial subalgebra of

n-dimensional noncommutative torus, A
(n),poly
θ . For such algebra, the grading group

is Zn. Given an antisymmetric n× n matrix θ with entries in R, the sign function is

given by

λ(I, J) = e2πiIlθljJj . (2.45)

Note that the only additional restriction on λ, imposed by (2.45), is λ(I, I) = 1

for all I ∈ Zn: in general antisymmetry and bilinearity conditions on λ allow for

λ(I, I) ∈ {−1, 1}. The algebra A
(n),poly
θ is then a free graded-commutative algebra,

generated by invertible elements U1, . . . , Un with degU l = el = (0, . . . , 0, 1, 0, . . . , 0)

with 1 on the l-th place. We don't use any other structures on this algebra. This

de�nition makes each component (A
(n),poly
θ )I be a one dimensional C-vector space

CU I , where, by de�nition, U I =
∏n

l=1(U l)Il . Note that we use the upper indices

for U l to conform with the standard notation, used in the approach to di�erential

geometry we use.

In order to reduce the clutter, we use the following Einstein notation: indices

denoted by j, k, l,m go from 1 to n, indices I, J,K, L go over Zn. If in a product one

of the letters above appears twice as an index, as in aIU
I , then the summation over

this index is understood. However, appearances of indices inside the arguments of

λ(•, •) do not count toward the �appears twice� threshold. When this rule doesn't

work well, we will write the summation sign explicitly. All summations are assumed
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to have only a �nite number of non-zero terms; e.g., when we write aIU
I , only a �nite

number of values aI are allowed to be nonzero. We write l+ I, −l+ I, I+ l, and I− l

to mean that 1 is added or subtracted from the l-th component of I.

We write · in the argument of λ to indicate the sign, needed in

U IUJ = λ(I · J)U I+J . (2.46)

We allow ourselves to use multiple ·-s in the argument of λ, and mix small and big

indices, with the obvious meaning, as illustrated by the following formula:

U lU I(Uk)−1UJ = λ(l · I · (−k) · J)U l+I−k+J (2.47)

2.4.2 Derivations

Using Leibniz's rule, we note that to describe derivation ξ ∈ D(A), it is enough to

give a list of its values on generators U1, . . . , Un of algebra A. It's easy to check that

derivations ∂
∂U l

, returning 1 on U l and 0 on U j when j 6= l, exist. Therefore, D(A) is

a free module, generated by ∂
∂U l

, so general ξ can be written as

ξ = ξlIU
I ∂

∂U l

and its action on a generic element a ∈ A is given by

ξa =

(
ξlIU

I ∂

∂U l

)(
aJU

J
)

=
∑
l,I,J

λ(I · (−l) · J)ξlIaJJlU
I−l+J .

If ξ ∈ D(Q), then coe�cients ξlIU
I are to be replaced with generic elements ξl ∈ Q,

and D(Q) is isomorphic to Q⊕n � direct sum of n copies of Q. Note that ξl are to

be understood as operators �multiplication by ξl,� given in the homogeneous case by

ξla = λ(ξl, a)aξl.
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2.4.3 Di�erential operators

The basic building blocks for di�erential operators are compositions of derivations ∂
∂U l

.

In order to simplify the description of them, we enhance our multi-index notation in

the following way. By de�nition, we let

|I| = I1 + · · ·+ In, I! = I1! · · · In!, (2.48)

I ≥ 0⇔ I1 ≥ 0 & · · · & In ≥ 0, I ≥ J ⇔ I − J ≥ 0, (2.49)

∂|I|

∂U I
=

(
∂

∂Un

)In
◦ · · · ◦

(
∂

∂U1

)I1
. (2.50)

Note that I! in (2.48) and the operator in (2.50) are de�ned only for I ≥ 0. Note

that we use the reverse order, when I is in �lower� position. We have

∂|I|

∂U I
UJ =

J !

(J − I)!
λ((−I) · (J − I))UJ−I . (2.51)

Strictly speaking, this formula is valid when J ≥ 0. To get the formula for J with

negative components, one should replace the coe�cient J !/(J − I)! with its analytic

continuation to avoid the unde�ned expression of the form ∞/∞.

De�ne δl to be δU l , δ
I = (δ1)

I1 ◦ · · · ◦ (δn)In .

Lemma 2.4.1. Let P and Q be graded A
(n),poly
θ -modules. The following descriptions

of Diffk(P,Q) are valid:

1. Diffk(P,Q) = {∆ ∈ HomC(P,Q) : δl∆ ∈ Diffk−1(P,Q) for l = 1, . . . , n};

2. Diffk(P,Q) = {∆ ∈ HomC(P,Q) : ∀I ≥ 0 |I| = k + 1⇒ δI∆ = 0}.

Proof. Using induction in k, we note that the second description follows from the

�rst, i.e., from the fact that ∆ ∈ HomC(P,Q) is a di�erential operator of order ≤ k

if and only if

δl∆ ∈ Diffk−1(P,Q) for l = 1, . . . , n. (2.52)
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From the de�nition of Diffk(P,Q), we know that ∆ is a di�erential operator of order

≤ k if and only if

δa∆ ∈ Diffk−1(P,Q) for all a ∈ A (2.53)

So, it is enough to prove that (2.52) implies (2.53). From de�nition of δa, we know

that

δαa+βb = αδa + βδb for α, β ∈ C, a, b ∈ A. (2.54)

Thus, it is enough to check (2.53) for a = U I . It follows from the Jacobi identity

(2.9) that

δab∆ = a ◦ (δb∆) + λ(b,∆)(δa∆) ◦ b. (2.55)

Substituting a = U I , b = U l we see that conditions (2.53) for a = U I and a = U I+l

are equivalent. Since any multi-index I ∈ Zn can be obtained from 0 by �nite number

of additions and subtractions of 1 to/from its components, (2.53) is indeed satis�ed

for a = U I .

The following lemma shows that Diffk(A,A) is a free A-module, Diffk(A,Q) '

Q⊕N , where N =
(
k+n
n

)
.

Lemma 2.4.2. Any di�erential operator ∆ ∈ Diffk(A,Q) can be uniquely written as

∆ =
∑
|I|≤k

qI
∂|I|

∂U I
. (2.56)

For homogeneous ∆, coe�cients qI ∈ Q are given by

qI = λ(∆, I)
(−1)|I|

I!
(δI∆)(1). (2.57)

Proof. We prove formula (2.56) with coe�cients (2.57) for homogeneous ∆ ∈ Diffk(A,Q)

by induction in k. If k = −1, then both sides of the equation are equal to 0. So,

assume k ≥ 0. Note that by applying both sides of (2.56) to 1, we get ∆(1) = q0,

where q0 is given by (2.57). Thus, it is enough to show that the di�erence of lhs and
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rhs of (2.56) is a homomorphism. To do this, according to Lemma 2.4.1, it is enough

to apply δl to both sides and prove the resulting equality

δl∆ =
∑
|I|≤k

λ(∆, I)λ(l,∆ + I)
(−1)|I|

I!
(δI∆)(1) δl

(
∂

∂U I

)
.

Introducing J = I − l, we compute

∑
|I|≤k

λ(∆, I)λ(l,∆ + I)
(−1)|I|

I!
(δI∆)(1) δl

(
∂|I|

∂U I

)
=

∑
|I|≤k

λ(∆, I)λ(l,∆ + I)
(−1)|I|

I!
(δI∆)(1)Ile

−2πlθ(l·I)(−1)
∂|I|−1

∂U I−l =

∑
|J |≤k−1

λ(∆, J + l)λ(l,∆ + J + l)
(−1)|J |

J !
(δJ+l∆)(1)e−2πlθ(l·(J+l)) ∂

|J |

∂UJ
=

∑
|J |≤k−1

λ(∆, J)
(−1)|J |

J !
(δJδl∆)(1)

∂|J |

∂UJ
= δl∆.

Here, the last equality follows from the induction hypothesis applied to δl∆.

Thus, existence of coe�cients in (2.56) is shown for homogeneous ∆. For non-

homogeneous ∆, it follows from C-linearity of (2.56).

To show uniqueness, assume to the contrary that (2.56) is satis�ed with ∆ = 0

and some qI being di�erent from 0. Fix J with minimal |J | s.t. qJ 6= 0 and apply

both sides of (2.56) to UJ . Then, the left-hand side will be 0, but the right-hand side

will be nonzero. Contradiction.

2.4.4 Jet bundle

It follows from Lemma 2.4.2 that Jk(A) is a free module, generated by vectors

eI =
(−1)|I|

I!
(δIjk)(1) for |I| ≤ k. (2.58)
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For a ∈ A, we can express jk(a) in terms of these basis elements using the formula

equation

jk(a) =
∑
|I|≤k

(
∂|I|

∂U I
a

)
(−1)|I|

I!
(δIjk)(1). (2.59)

Alternatively, we could use basis jk(U
I) for |I| ≤ k.

2.4.5 Multi-derivations

To describe moduleDk(Q), we �rst introduce multi-derivations
(
∂
∂U

)
I
∈ Dk(A). They

are de�ned for multi-index I ∈ {0, 1}n with |I| = k by the following inductive proce-

dure:
(
∂
∂U

)
0

= 1 ∈ A = D0(A). For I with |I| = k ≥ 0 if l stays after all 1s in I, i.e.,

∀j ∈ {1, . . . , n} Ij = 1⇒ l > j, then
(
∂
∂U

)
l+I

is given by

(
∂

∂U

)
I+l

(a0, a1, . . . , ak) =

k∑
l=0

λ(I, al)λ(a0 + a1 + · · ·+ al−1, al)

(
∂

∂U l
al

)(
∂

∂U

)
I

(a0, a1, . . . , al−1, al+1, . . . , ak).

One can show by induction in k and the description of derivations, given in Sub-

section 2.4.2, that the module Dk(Q) can be written as

Dk(Q) =

 ∑
I∈{0,1}n : |I|=k

qI
(
∂

∂U

)
I

: qI ∈ Q

 .

2.4.6 Di�erential forms

Di�erential forms are given by ∑
I

aIdU
I ,

where I ∈ {0, 1}n. If I has 1 in coordinates l1 < l2 < · · · < lk, then

dU I = dU l1 ∧ · · · ∧ dU lk .

Di�erential d is determined by d2 = 0 and the Leibniz's rule in D(ΛA).
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2.4.7 De Rham cohomologies

Since d is a graded derivation of Λ(A) of degree (0, 1), we have a chain complex for

each grading I ∈ Γ. If I 6= 0, say Il 6= 0, then we can construct chain homotopy

between identity and zero maps with:

id(Λ(A))I = h ◦ d+ d ◦ h

for h = 1
Il
U li ∂

∂Ul
. Here, i ∂

∂Ul
is the insertion of vector �eld ∂

∂U l
, i.e., a derivation of

Λ(A) of degree (− degU l,−1), generated by relations i ∂

∂Ul
(dU j) = δjl .

If I = 0, then d acts as 0 on (ΛA)I .

Therefore, cohomologies of ΛA coincide with Hk(ΛA) = (ΛA)(0,k). In other words,

cohomologies are generated by products of (U l)−1dU l, so dim(Hk) =
(
n
k

)
, as in the

case of the commutative torus.

2.5 Comparison with di�erential forms, coming from

the Dirac operator

In [6], Connes has introduced a �avor of di�erential calculus, built from an algebra A

together with a Fredholm module structure, and has shown that one can replace the

requirement for a Fredholm module structure with a representation ρ : A→ B(H) of

algebra A on a Hilbert space H, together with a (potentially unbounded) operator

D, interpreted as a Dirac operator, and satisfying certain properties.

To make long story short, we describe only the ingredients, required to make

the comparison of di�erential forms. These ingredients are taken from [16] and [11].

Where possible, we use the notation from the previous section. Note that most

nontrivial objects of noncommutative tori require at least smooth algebra, and don't

appear in the polynomial algebra we are considering. This leads to quite trivial results

of the comparison below. Also note that the constructions below should be applied

to the smooth subalgebra of the noncommutative tori algebra. We apply the same
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constructions to the polynomial subalgebra to be able to do a comparison with the

constructions above.

2.5.1 Trace, representation, and the Dirac operator

We use the multi-index notation from the previous section. Trace τ is de�ned by

τ(aIU
I) = a0. (2.60)

Involution is given by

(aIU
I)∗ = a∗I(UI)

−1 = λ(I · I)a∗IU
−I . (2.61)

Here, a∗I is the conjugate of the complex number aI . The Hilbert space Hτ is the

completion of A
(n),poly
θ with respect to the norm ‖ • ‖τ , de�ned with

‖a‖2
τ = τ(a∗a) =

∑
I

‖aI‖2. (2.62)

Image of aIU
I ∈ A

(n),poly
θ in Hτ is denoted with aIU

Iξ. In particular, ξ is the image

of 1 ∈ A
(n),poly
θ . Algebra A

(n),poly
θ acts on the Hilbert space Hτ with a(bξ) = (ab)ξ.

The Hilbert space H is de�ned to be Hτ ⊗ Cbn/2c, where A
(n),poly
θ acts only on the

�rst component. The second component is used to represent the Cli�ord algebra Cln

using 2bn/2c × 2bn/2c matrices γj = γ
(n)
j . These matrices are de�ned as follows. For

n = 1, let γ
(1)
1 = 1. For odd n ≥ 3, let

γ
(n)
j =

 0 γ
(n−2)
j

γ
(n−2)
j 0

 , γ
(n)
n−1 =

0 −i

i 0

 , γ(n)
n =

1 0

0 −1

 . (2.63)

For even n, let γ
(n)
j = γ

(n+1)
j (j = 1, . . . , n). These matrices satisfy γlγj + γjγl = 2δlj

and γ∗j = γj.

We de�ne operators U l ∂
∂U l

(no summation), l = 1, . . . , n on Hilbert space H by



63

closing

U l ∂

∂U l
(aξ ⊗ v) =

(
U l ∂

∂U l
a

)
ξ ⊗ v. (2.64)

We let the (unbounded) Dirac operator D, acting on H, to be de�ned by

D = 2π
∑
j

γjU
j ∂

∂U j
. (2.65)

2.5.2 Comparison of di�erential forms

From now on, we abandon the Einstein summation convention, since it's no longer

convenient. Di�erential forms, using the Dirac operator, are de�ned as follows. Let

the bimodule Ω1 be the set of �universal di�erential operators,� i.e., formal sums

∑
l

alδbl (where al, bl ∈ A
(n),poly
θ ) (2.66)

subject to relations

δ(ab) = aδ(b) + δ(a)b, δ(αa+ βb) = αδa+ βδb (where a, b ∈ A
(n),poly
θ , α, β ∈ C).

(2.67)

Then, the bimodule Ωk of k-forms is de�ned with

Ωk = Ω1 ⊗
A

(n),poly
θ

· · · ⊗
A

(n),poly
θ

Ω1︸ ︷︷ ︸
n terms

. (2.68)

Using the Leibniz's rule (2.66), we can write any element a ∈ Ωk as

a0δa1 · · · δak = a0δa1 ⊗ δa2 · · · ⊗ δak. (2.69)

These can be �represented� as operators on H with

π(a0δa1 · · · δak) = a0[D, a1] · · · [D, ak]. (2.70)
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We let Jk0 be the kernel of this map, let J0 =
⊕

k J
k
0 , and let J = J0 + δ(J0) =⊕

k(J
k
0 + δ(Jk−1

0 )). Then, the Connes bimodule of k-forms is de�ned with

Ωk
D = Ωk/(Jk0 + δ(Jk−1

0 )). (2.71)

We follow the computation, done in [16, Section 6.2], to compute Ωl
D for the

algebra A
(n),poly
θ .

• 0-forms.

J0
0 = {0}, Ω0

D ' A
(n),poly
θ ' Λ0, (2.72)

• 1-forms.

Consider the universal 1-forms νl and the corresponding Connes di�erential

1-forms νDl (l = 1, . . . , n), given by

νl = (U l)−1δU l, νDl = π(νl)(U
l)−1dU l = 2πγl. (2.73)

Note that from the explicit expression 2πγl, we see that ν
D
l commutes with all

0-forms, and νl satis�es

π(νlνj + νjνl) = 2δjl. (2.74)

Using the Leibniz's rule (2.66), we can write any 1-form as
∑n

l=1

∑Nl
k=1 ak,lν

D
l bk,l.

Since νDl commutes with all 0-forms, and νDl are linearly independent from each

other, we see that each one form can be uniquely written as

n∑
l=1

alν
D
l . (2.75)

The corresponding component of the ideal J0 + δ(J0) is J1
0 = J1

0 + δ(J0
0 ). As

follows from the computation above, it is generated by aνl − νla, a ∈ A
(n),poly
θ .

• 2-forms and k-forms.

Let's denote the ideal of Ω, generated by J1
0 + δ(J1

0 ), with J̃ . It is generated by
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1-forms aνl − νla (where a ∈ A
(n),poly
θ ) and 2-forms νkνl + νlνk. In particular,

νDl ν
D
l = 0. Relations, imposed by J̃ make Ω/J̃ isomorphic to Λ from Section

2.4. Thus, to show that ΩD ' Λ, it remains to show that J = J̃ . It would

follow, if we show that for any �xed k ∈ {0, 1, . . . , n} the products
∏k

j=1 γlj are

all linearly independent for 1 ≤ l1 ≤ · · · ≤ lk ≤ n (because for every α ∈ Ωk,

operator π(α) can be written as a linear combination with coe�cients in A
(n),poly
θ

of the above matrices up to π(J̃k)). These products are indeed independent.

For even n, that follows from the fact that the representation of Cln is faithful.

For odd n, the kernel is of the form (1 + cω)Cln, where ω is an odd element of

Cln and c ∈ C. Thus, for odd n, this kernel doesn't contain any homogeneous

elements, and linear independence holds, too.

Thus, for the polynomial algebra, the Connes construction of di�erential forms

gives the same answer, as the one coming from graded-commutative di�erential ge-

ometry.
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Chapter 3

Fredholm modules and the

Beilinson�Bloch regulator

3.1 The general strategy for constructing the Beilinson�

Bloch regulator

Let X be a compact Riemann surface. The goal of the paper is to produce an alter-

native construction of the Beilinson�Bloch regulator r : K2(X) → H1(X,C∗) using

the framework of Fredholm modules (see [2] for the original de�nition). Using the

construction, explained in [12], this map can be reconstructed from the corresponding

map rξ on the �eld of fractions F (X) = Oξ, where ξ is the generic point of X. Orig-

inally, this construction is due to Beilinson [2]. The �eld of fractions can be written

as a direct limit of rings of functions on X \ S, where S goes through (increasing)

�nite subsets of X:

F (X) = lim−→S
O(X \ S). (3.1)

Thus, rξ, in its turn, can be reconstructed from the maps rS:

rS : K2(O(X \ S))→ H1(X \ S,C∗), rξ = lim−→S
rS : K2(F (X))→ lim−→

S

H1(X \ S,C∗).

(3.2)

Thus, in the rest of this work, we will mostly concentrate on constructing the maps

rS. We will now recall the de�nition of K2(R) for a ring R, and some related facts
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and de�nitions, used in this work.

3.2 Central extensions and K-theory of rings

Here, we summarize necessary facts, related to the group K2(R) for a unitary ring

R. In this subsection, we omit most of the proofs, which can be found, e.g., in [22,

Chapters 2 and 4].

De�nition 3.2.1. For R a unital (not necessarily commutative) ring, we make the

following de�nitions:

• Inv(R): the group of invertible elements of R;

• Mn(R): the ring of n× n matrices over R;

• GLn(R) = Inv(Mn(R));

• GL(R): the injective limit lim−→GLn(R), where n× n matrix a is identi�ed with

(n+ 1)× (n+ 1) matrix ( a 0
0 1 );

• E(R) = [GL(R),GL(R)]; this group is called �the group of elementary matrices.�

There is an alternative de�nition of E(R):

De�nition 3.2.2. Let eij be the matrix with 1 in the cell (i, j) and 0 in all other

cells; then, E(R) is de�ned to be the subgroup of GL(R), generated by matrices

eij(r)
def
=1 + eijr for r ∈ R.

Lemma 3.2.3. Two de�nitions of E(R) above de�ne the same subgroup of GL(R).

Moreover, we have E(R) = [E(R), E(R)].

Proof. See [22, Prop. 2.1.4].

Here, are the main de�nitions and facts about central extensions.
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De�nition 3.2.4. Let G be a group, and A be an abelian group, both written

multiplicatively. The exact sequence

1→ A→ E
π→ G→ 1 (3.3)

is called a central extension of G by A if the of A is in the center of E. We often refer

to a central extension of the form (3.3) as (E, π) or, simply, π. Central extensions of

a group G form a category, in which morphisms are given as follows. Let (E1, π1),

(E2, π2) be two central extensions of G. A morphism from (E1, π1) to (E2, π2) is a

map ϕ : E1 → E2, making the right square on the following diagram commutative:

1 // A1
//

��

E1
π1 //

ϕ

��

G // 1

1 // A2
// E2

π2 // G // 1.

(3.4)

Here, the map i : A1 → A2 is the unique map, making the left square commutative:

up to identifying kerπk with Ak, map i is the restriction of ϕ to a map kerπ1 →

kerπ2. Universal central extension of G is the initial object of the category of central

extensions of G.

Central extensions of a group G by a �xed abelian group A also form a category.

In that category, morphisms are required to induce (as in (3.4)) the identity map on

A.

Note that the last category (with �xed A) is rather trivial, since all its morphisms

are isomorphisms.

De�nition 3.2.5. Group G is called perfect, if [G,G] = G.

Note that according to 3.2.3, for any ring R, group E(R) is perfect.

De�nition 3.2.6. Let A
i→ E

π→ G be a central extension of the group G. Let

a1, a2 ∈ G, then [π−1a1, π
−1a2] is de�ned as follows: take any ej ∈ π−1(aj) for j = 1, 2;

then [π−1a1, π
−1a2] = [e1, e2] ∈ E. If [a1, a2] = 1 in G, then i−1[π−1(a1), π−1(a2)] is

the only preimage of [e1, e2].
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These are well de�ned. To be more precise, the following lemma holds.

Lemma 3.2.7.

1. In the notation of the De�nition 3.2.6, the value of [π−1a1, π
−1a2] doesn't depend

on the choice of e1, e2; therefore, [π−1a1, π
−1a2] is well de�ned for all a1, a2 ∈ G;

2. [π−1a1, π
−1a2] ∈ i(A) if and only if [a1, a2] = 1; therefore, i−1[π−1a1, π

−1a2] is

well de�ned for all a1, a2 ∈ G, satisfying [a1, a2] = 1.

We will use the properties of central extensions, summarized by the following

theorem.

Theorem 3.2.8.

1. A group G has a universal central extension if and only if G is perfect.

2. If (S, p) is the universal central extension of G, then S is perfect.

3. If (E, π) is a central extension of G, and E is perfect, then G is perfect, and E

is generated by the elements of the form [π−1a, π−1b] for some a, b ∈ G.

4. Let ϕ : (E1, π1)→ (E2, π2) be a morphism of central extensions. If E2 is perfect,

then ϕ is surjective.

5. Homomorphic images of perfect groups are perfect. In particular, let ϕ : (E1, π1)→

(E2, π2) be a morphism of central extensions. If E1 is perfect and ϕ is surjective,

then E2 is perfect. If E1 is perfect but ϕ is not necessarily surjective, we still

have ϕ(E1) = [E2, E2].

6. If (E1, π1), (E2, p2) are central extensions of G and E1 is perfect, then there is

at most one morphism ϕ : (E1, π1)→ (E2, p2). If it exists, it is given by

ϕ([π−1
1 a, π−1

1 b]) = [π−1
2 a, π−1

2 b]. (3.5)

If this formula gives a well-de�ned group homomorphism ϕ : E1 → E2, it is the

morphism of central extensions.
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7. If A is an abelian group, the set of isomorphism classes of central extensions of G

by A can be naturally turned into an abelian group Ext(G,A). If A0 → S
p→ G

is the universal central extension of G, then Ext(G,A) ' Hom(A0, A). This

isomorphism can be described as follows: take an extension A → E
π→ G and

let ϕ be the unique morphism (S, p)→ (E, π). Then, we have the corresponding

diagram

1 // A0
//

f
��

S
p //

ϕ

��

G // 1

1 // A // E
π // G // 1.

(3.6)

The left vertical arrow f on this diagram gives the desired element of Hom(A0, A).

Proof. These facts follow from de�nitions and theorems from [22, Chapter 4]. Items

1 and 2 are stated in the [22, theorem 4.1.3]. To show Item 3, note that by the

de�nition of the perfect group, E = [E,E], so E is generated by elements of the form

e = [e1, e2]. Such e can be written as e = [π−1πe1, π
−1πe2]. Therefore, in Item 4,

E2 is generated by elements of the form e = [π−1
2 a1, π

−1
2 a2] for a1, a2 ∈ G. Take any

preimages ej ∈ π−1
1 (aj). Then, e = [ϕ(e1), ϕ(e2)] = ϕ([e1, e2]). Similarly, in Item 5,

E1 is generated by elements e = [e1, e2], so E2 is generated by ϕ(e) = [ϕ(e1), ϕ(e2)].

To prove the last sentence of 5, note that for e = [e1, e2] ∈ E1 we have ϕ(e) =

[ϕ(e1), ϕ(e2)]. On the other hand, if e = [e1, e2] ∈ E2, then e = ϕ([π−1
1 π2e1, π

−1
1 π2e2]).

In Item 6 for perfect E1, Formula (3.5) determines (possibly ambiguously) the values

of ϕ on commutators, generating E1, and follows from commutativity of the diagram

(3.4) in the de�nition of morphism of central extension. If such ϕ is a well-de�ned

homomorphism, then for e = [π−1
1 a, π−1

1 b], we have π1(e) = [a, b] = π2(ϕ(e)). So, the

diagram (3.4) is commutative.

The �rst sentence in Item 7 is stated in [22, Theorem 4.1.16]. By comparing the

proof of [22, Theorem 4.1.16] with the description of the map in Item 7, one can see

that the map Ext(G,A) → Hom(A0, A) is a homomorphism of abelian groups. To

see that this map is an isomorphism, consider a map f : A0 → A. This gives the

diagram of the form (3.6) without E and 3 arrows, connecting E with other groups
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on the diagram. Group E can be constructed by taking the abelian pushout of the

upper left triangle A
f← A0 → S: if we denote the map A0 → S with i0, then

E = A × S/{(f(a0), i0(a0)−1) : a0 ∈ A0} with π([(a, s)]) = p(s). Finally, pushout is

the only choice for E, since if we had some other E1, then by the universal property of

pushout we will have a map E → E1, which would necessarily be an isomorphism.

De�nition 3.2.9. Let R be a ring. Let

1→ K2(R)
i→ St(R)

π→ E(R)→ 1 (3.7)

be a universal central extension of the group E(R). This exact sequence is well de�ned

up to an isomorphism of central extensions, and for our later purposes any (�xed)

representative of this isomorphism class will su�ce.

Note, that there is an alternative but equivalent way to de�ne St(R) in terms of

generators and relations, and K2(R) as a certain subgroup of St(R) (see [22]).

When a, b ∈ E(R) commute, i−1[π−1a, π−1b] is a well-de�ned element of K2(R)

(see De�nition 3.2.6 and Lemma 3.2.7 above). This observation can be used to con-

struct some elements inK2(R). Often, the following specialization of this construction

is used.

De�nition 3.2.10. Let f, g ∈ Inv(R) be invertible commuting elements of R. Then,

the Steinberg symbol {f, g} ∈ K2(R) is de�ned by

{f, g} = i−1[π−1 diag(f, f−1, 1), π−1 diag(g, 1, g−1)]. (3.8)

3.3 The universal 2-summable Fredholm module

This section, and the following one, are concerned with bounded operators on a

Hilbert space. In this context, we will use both additive and multiplicative commu-

tators of operators on B(H) (the second one can applied to the invertible operators
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only). To distinguish them, we let

[a, b]0 = ab− ba, [a, b]1 = aba−1b−1 (3.9)

Following the Eugene Ha manuscript [12], we give the following de�nitions, which

are originally due to Connes and Karoubi (see [7]).

De�nition 3.3.1. Fix two separable Hilbert spaces H+ and H−, let H = H+ ⊕H−,

and de�ne operator F : H → H with F (x+ + x−) = x+ − x− for x+ ∈ H+, x− ∈ H−.

The algebra

M1 = {a ∈ B(H) : [F, a]0 ∈ L2(H)}, (3.10)

is called the universal 2-summable Fredholm module. Here, L2(H) is the ideal of

Hilbert�Schmidt operators.

The purpose of this section is to give an explicit description of the ring E(M1) of

elementary matrices over M1. The �rst step is to describe the group Inv(M1) and

its connected component of the identity Inv0(M1). In order to do this, we follow [18,

Section 6.2]. First, note that if a ∈ B(H) is a bounded operator on H, then in the

view of decomposition H = H+ ⊕H−, one can interpret it as a matrix

a =

a++ a+−

a−+ a−−

 , (3.11)

where alj is a bounded operator Hj → Hl for l, j ∈ {+,−}. From the de�nition of

M1, such a belongs toM1 if and only if a+− and a−+ are Hilbert�Schmidt.

Lemma 3.3.2. If a ∈M1 is invertible in B(H), then it is invertible inM1.

Proof. If a−1 ∈ B(H), then [F, a−1]0 = −a−1[F, a]0a
−1 ∈ L2(H), so a−1 ∈M1.

The following lemma is analogous to [18, p. 81].
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Lemma 3.3.3. Let x be a bounded operator on H+. Then, there exists

a =

a++ a+−

a−+ a−−

 ∈ Inv(M1)

with a++ = x if and only if x is Fredholm.

Proof. Suppose that x is a Fredholm operator. By de�nition of Fredholm operators,

that, in particular, means that ranx is closed. Let p be the (orthogonal) projector

on kerx and q be the (orthogonal) projector on (ranx)⊥ = kerx∗. Let u : H+ → H−
be an isomorphism of Hilbert spaces.

a =

 x qu∗

up ux∗u∗

 .

By construction, a ∈ M1 and a is a bijection. Therefore, a is invertible by the

bounded inverse theorem. Its inverse lies inM1 by 3.3.3.

On the other hand, let ab = ba = 1 for some a, b ∈ M1. Then, operators a, b can

be written as

a =

a++ a+−

a−+ a−−

 , b =

b++ b+−

b−+ b−−

 .

So, a++b++ = 1 − a+−b−+, b++a++ = 1 − b+−a−+. Thus, a++ is invertible up to

a compact, and, hence, Fredholm.

Kuiper's paper [15] proves that all homotopy groups of Inv(B(H)) vanish. We

will only need the following special case of that.

Lemma 3.3.4. If H is a Hilbert space, then Inv(B(H)) is connected.

Lemma 3.3.5. Let H = l2(N0) be the Hilbert space of sequences N0 = N ∪ {0} → C,

and let S be the standard shift operator on H. If a ∈ B(H) is a Fredholm operator,

then a = b1S
nS∗mb2 for some b1, b2 ∈ Inv(B(H)), n = dim(ran a)⊥, m = dim ker a.
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Proof. Let a1 : (ker a)⊥ → ran a be the restriction of a. a1 is invertible by the Bounded

inverse theorem. The intuitive idea of the proof is that a acts like a1, except that it

kills ker a and maps nothing to (ran a)⊥. So, by using b1 and b2, we can identify ker a

with l2({1, . . . ,m}) and (ran a)⊥ with l2({1, . . . ,m}) in such a way that a in this new

representation coincides with SnS∗m. Below are technical details, describing how to

do this.

Let Nk = {l ∈ Z : l ≥ k}. Using dim(ker a)⊥ = card(N) = dim ran a, take any

isomorphisms c1 : l2(Nn)→ ran a and c̃2 : (ker a)⊥ → l2(Nm). Let s : l2(Nm)→ l2(Nn)

be the restriction of SnS∗m. Note that c1sc̃2 and a1 are invertible operators (ker a)⊥ →

ran a, and de�ne c2 = c̃2(c1sc̃2)−1a1, so that c1sc2 = a1. Then, a = b1S
nS∗mb2, where

b1 : H = l2({0, . . . , n− 1})⊕ l2(Nn)→ (ran a)⊥ ⊕ ran a = H, (3.12)

b2 : H = ker a⊕ (ker a)⊥ → l2({0, . . . ,m− 1})⊕ l2(Nm) = H, (3.13)

and operators b1 and b2 act as c1 and c2 on the second components of the decompo-

sitions above, and as any invertible operator on the �rst ones.

Let Inv0(M1) be the connected component of the identity in Inv(M1). The fol-

lowing lemma is a special case of [18, Prop. 6.2.4]

Lemma 3.3.6. Let a ∈ Inv(M1). Then, a ∈ Inv0(M1) if and only if Index(a++) = 0.

Proof. Note that a 7→ Index(a++) is a continuous function from Inv(M1) to Z, and

that Index(1) = 0. Therefore, for any a ∈ Inv0(M1), we have Index(a++) = 0. It

remains to show that the set I = {a ∈ Inv(M1) | Index(a++) = 0} is connected.

To do this, we take any a ∈ I and multiply it by elements of Inv0(M1) until we

get an element of Inv0(M1). This will ensure that c1ac2 = c3 for some c1, c2, c3 ∈

Inv0(M1), and, thus, a = c−1
1 c3c

−1
2 ∈ Inv0(M1). Consider the operator ã, which is
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the same as a but with removed anti-diagonal components:

ã =

a++ 0

0 a−−

 . (3.14)

Since a is invertible, and ã − a is compact, we have Index ã = Index a = 0. On the

other hand, Index ã = Index(a++) + Index(a−−), so, since Index a++ = 0, we have

Index a−− = 0. Without loss of generality, we can identify both H+ and H− with

l2(N0). By applying 3.3.5, we can �nd diagonal c1, c2 s.t. a1 = c1ac2 is of the form

a1 =

Sn+S∗n+ a+−

a−+ Sn−S∗n−

 (3.15)

for some nonnegative integers n+, n−. Since the set of invertible operators is open,

there is a ball inM1 with the center in a1, s.t. a
−1
1 a2 ∈ Inv0(M1) for all a2 in that

ball. Take

a2 =

 Sn+S∗n+ (1− SnS∗n)a+−(1− SnS∗n)

(1− SnS∗n)a−+(1− SnS∗n) Sn−S∗n−

 . (3.16)

Since a−+ and a+− are compact, limn→∞(1 − SnS∗n)a+−(1 − SnS∗n) = a+− (and

similarly for a−+), so for large enough integer n, operator a2 will lie in the ball

described above. Fix any such n ≥ max(n−, n+).

Note that a2 of the form (3.16) acts nontrivially only on 2n-dimensional subspace

l2({0, . . . , n − 1}) ⊕ l2({0, . . . , n − 1}) of H, and as identity operator on the orthog-

onal complement. Also note that all invertible operators, satisfying this property,

lie inM1: indeed, their anti-diagonal components are �nite-dimensional and, hence,

Hilbert�Schmidt. The space of such operators is isomorphic to GL2n(C), which is

connected. So, a2 ∈ Inv0(M1).

Before we start proving the main lemma of this subsection, we describe one class

of bounded operators, expressible as a multiplicative commutator [•, •]1 in B(H).
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Lemma 3.3.7. Let H = H0⊕H1 be a Hilbert space with dimH1 ≥ max(dimH0,ℵ0).

Then, for any invertible bounded operator a on H0, there are bounded operators c and

d on H s.t. [c, d]1 = cdc−1d−1 = a⊕ 1. Here, a⊕ 1 is the operator, mapping x0 + x1

to ax0 + x1 for any xj ∈ Hj, j = 0, 1.

Proof. It is enough to consider H = H′ = l2(Z,H0) =
⊕

n∈ZH′n, where the decom-

position H = H0 ⊕H1 is given by H0 = H′0, H1 =
⊕

n6=0H′n. Indeed, for general H

by our construction H′0 is isomorphic to H0 and
⊕

n 6=0H′n can be embedded in H1

because dimH1 ≥ max(dimH0,ℵ0) = dim
⊕

n6=0H′n. So, if we construct operators

c and d, acting on H′ and satisfying the conditions of the lemma, then under these

isomorphisms they correspond to operators, acting on some part of H. To get the

lemma for H, continue c and d to the whole H by making them act as identity on the

orthogonal complement of this part.

Every element of H′ can be written as a sequence x = {xj}j∈Z =
∑

j∈Z ejxj, where

ej is the standard isomorphism H0 → H′j, and xj ∈ H0. We de�ne c and d with

cen = en+1, den =

 ena−1 if n ≥ 0,

en otherwise.
(3.17)

Then, by direct computation we get

[c, d]1en =

 ena if n = 0,

en otherwise.
(3.18)

as desired.

Let GL0(M1) be the connected component of the identity in

GL(M1) = lim−→GLn(M1).

Note that GLn(M1) can be interpreted as the group of invertible operators a onHn =

Hn
+⊕Hn

−, satisfying [F⊗1n, a]0 ∈ L2(Hn). Thus, by choosing an isomorphism between

Hn
± and H±, we can identify GLn(M1) with Inv(M1) = GL1(M1). Therefore, we
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can apply to GLn(M1) all the lemmas above.

Lemma 3.3.8. E(M1) = GL0(M1) = {a ∈ GL(M1) : Index(a++) = 0}.

Proof. We start from the second equality. By continuity of the function a 7→ Index(a++),

so GL0(M1) ⊂ {a ∈ GL(M1) : Index(a++) = 0}. To prove the converse inclusion

note, take a ∈ GL(M1) with Index(a++) = 0. Note that a ∈ GLn(M1) for some n.

By using the isomorphism, identifying GLn(M1) with Inv(M1), and applying Lemma

3.3.6, we see that a belongs to the connected component of the identity in GLn(M1)

and, thus, a ∈ GL0(M1).

We know that E(M1) is generated by matrices eij(a) for a ∈ M1. eij(ta) ∈

GL(M1) for t ∈ [0, 1], and, thus, eij(a) lie in the connected component of eij(0) = 1

of GL(M1). Thus, E(M1) ⊂ GL0(M1).

To prove the converse inclusion, note that for any ε > 0 group GL0(M1) is

generated by operators a ∈ GL0(M1) with ‖a − 1‖ < ε. So, we take ε = 1 and

a ∈ GL0(M1) with ‖a− 1‖ < 1. By de�nition of GL(M1), we have a ∈ GLn−1(M1)

for n large enough. We interpret a as 2 × 2 matrix acting on Hn = Hn
+ ⊕ Hn

− (and

acting trivially on the last copy of H), and note that a++ is an invertible operator

Hn
+ → Hn

+. Therefore, we apply the LDU decomposition to such a:

a =

a++ a+−

a−+ a−−

 = LDU, where (3.19)

L =

1 0

x 1

 , D =

s 0

0 t

 , U =

1 y

0 1

 , (3.20)

x = a−1
++a−+, s = a++, t = a−− − a−+a

−1
++a+−, y = a−1

++a+−. (3.21)

Note that s and t act trivially (as identity operators) on the last H± in Hn
±, because

we took a ∈ GLn−1(M1) and interpreted it as an element of GLn(M1). This allows
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us to represent s and t as multiplicative commutators by applying Lemma 3.3.7. So,

D ∈ [GL(M1),GL(M1)]1 = E(M1). Noting that L∗ is the same as U up to replacing

y with x∗, we see that it is enough to show U ∈ E(M1). This is indeed true: one can

check by direct computation that

U =

1 2y

0 1

 ,

1 0

0 2


1

∈ [GL(M1),GL(M1)]1 = E(M1). (3.22)

Note that GL(M1) = lim−→GLn(M1), and GLn(M1) can be interpreted as a subset

of the algebra B(Hn) of bounded operators on Hn. Therefore, elements of GL(M1)

and, in particular, of E(M1) = GL0(M1), can be interpreted as bounded operators

on l2(N0,H). Using this interpretation, we write GL(M1) =
⋃
n GLn(M1). We

summarize the descriptions of GL(M1) and E(M1) from this point of view.

Lemma 3.3.9. Let a ∈ B(l2(N0,H)). Then,

1. a ∈ GL(M1) if and only if all of the following conditions hold:

(a) a is invertible,

(b) [a, 1l2(N0)⊗F ] ∈ L2(l2(N0,H)) (or, equivalently, a+− and a−+ are Hilbert�

Schmidt),

(c) there is n s.t. ax = a∗x = x for any x ∈ l2(N0 ∩ [n,∞),H);

2. if all these conditions hold, then a++ and a−− are Fredholm with Index(a−−) =

− Index(a++);

3. if a ∈ GL(M1), n ∈ N, and the condition (c) holds for this n, then a ∈

GLn(M1);

4. a ∈ E(M1) = GL0(M1) if and only if a ∈ GL(M1) and Index(a++) = 0.

Proof. This directly follows from de�nitions, other lemmas and discussions in this

subsection.
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3.4 Connes�Karoubi character

The general construction of the Connes�Karoubi characters τCKn is written in [7].

Here, we give the explicit description of the map τCK2 . In this section, we de�ne the

Connes�Karoubi character K2(M1) → C∗. According to Part 7 of Theorem 3.2.8,

such a map can be de�ned by describing the corresponding central extension

1→ C∗ → Γ→ E(M1)→ 1. (3.23)

In the rest of this subsection, we describe this extension and its properties.

For a Hilbert space H, let Lp(H) be the ideal of bounded operators a ∈ B(H),

satisfying |a|p ∈ L1(H), where L1(H) is the ideal of trace-class operators. Thus,

Lp(H) coincides with the set of compact operators, whose sequences of singular values

belong to lp(dim(H)); L2(H) is the ideal of Hilbert�Schmidt operators. Following the

Eugene Ha paper, we de�ne E to be the �bre product

E //

��

GL
(
B(H+)

)
s 7→[s]L1

��
GL0(M1)

a7→[a++]L1 // GL0
(
B(H+)/L1(H+)

)
.

(3.24)

Note that bottom and right arrows on this diagram are surjective. In particular, sur-

jectivity of the bottom one is the statement of Lemma 3.3.3. Using the interpretation

of GL(H) as a subgroup in Inv(B(l2(N0,H))), introduced in Lemma 3.3.9, we can

describe E explicitly as

E =
{

(a, s) : a ∈ GL0(H), s ∈ GL(H+), s ≡ a++ (mod L1)
}
. (3.25)

For any Hilbert space H, let T (H) be the group of operators on H with (nonzero)

determinant (i.e., T (H) = (1+L1(H))∩Inv(B(H))), let T = T (l2(N0,H+))∩GL(H+),

and let T1 = {s ∈ T : det s = 1}. Note that (a, s1), (a, s2) ∈ E (with the same a),

then s2s
−1
1 ∈ T . The Connes�Karoubi character τCK2 : K2(M1) → C∗ is de�ned (in
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the sense of 3.2.8) by the central extension

1→ C∗ → E/T1 → GL0(M1)→ 1. (3.26)

Here,

E/T1 =
{

(a, [s]) : (a, s) ∈ E , [s1] = [s2] ⇐⇒ s2s
−1
1 ∈ T1

}
, (3.27)

and the map C∗ → ET1 sends λ ∈ C∗ to (1, [sλ]) with det(sλ) = λ. Note that the

equivalence class [sλ] is determined by λ. Indeed, if det(sλ,j) = λ for j = 1, 2, then

det(sλ,2s
−1
λ,1) = λλ−1 = 1, and [sλ,1] = [sλ,2]. We will later need the following fact.

Lemma 3.4.1. The group E/T1 is perfect.

Proof. By de�nition, we have to show that E/T1 ⊂ [E/T1, E/T1]. Since GL0(M1) =

E(M1) is perfect (see Lemma 3.2.3), we know that the group [E/T1, E/T1] contains

preimage of every g ∈ GL0(M1). It remains to prove that it contains the image of

C∗. Let λ ∈ C∗ and (1, [sλ]) be its image in E/T1. In order to apply Lemma 3.3.7,

choose sλ to act as multiplication by λ on one of the nonzero elements of H+, and as

identity on its orthogonal complement. Then, by Lemma 3.3.7, sλ = [c, d]1 for some

invertible c, d ∈ Inv(H+). Thus, (1, [sλ]) = [(c̃, [c]), (d̃, [d])]1 ∈ [E/T1, E/T1], where

c̃ = c⊕ idH− and d̃ = d⊕ idH− .

3.5 Fredholm structure on loops

Let S be a �nite subset of X, and γ : S1 → X \S be a parametrized smooth loop. In

this section, we give a de�nition of a map ργ : O(X \ S)→M1. This de�nition, and

the proof of its correctness, come from the original manuscript [12].

Let H be the Hilbert space of square-integrable functions on S1: H = L2(S1, dθ).

Interpreting S1 as R/(2πZ), let z ∈ H be the function θ 7→ eiθ, H+ and H− be the

(closed) subspaces of H, generated by zn for n ≥ 0 and n < 0 respectively, so that

H = H+⊕H−. From now on, we interpretM1 to be de�ned using these H, H+ and

H−. Here, variable θ takes values in [0, 2π). For a continuous function h : S1 → C,
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we have a multiplication operator Mh : H → H, de�ned by (Mhξ) (θ) = h(θ)ξ(θ). We

de�ne

ργ : O(X \ S)→M1 : f 7→Mf◦γ. (3.28)

Note that a priori , we only know that Mf◦γ is a bounded operator on H. For ρ to

be well de�ned, we need to know that Mf◦γ ∈ M1. This is, indeed, true, and was

shown in [12, Lemma 1], which is originally [18, Prop. 6.3.1]. Letting g = f ◦ γ, we

see that this statement follows from the statement [F,Mg] ∈ L2. Later, however, we

will need a stronger statement [F,Mg] ∈ L1. Therefore, we repeat and enhance the

proof of [18, Prop. 6.3.1] to get that stronger statement.

Lemma 3.5.1. For any smooth function g : S1 → C one has [F,Mg] ∈ L1. The

Hilbert�Schmidt norm ‖[F,Mg]‖2 satis�es

‖[F,Mg]‖2 ≤ c sup
θ
|g′(θ)| = c‖g′‖∞. (3.29)

for some universal constant c > 0.

Proof. In the realization of the universal 2-summable Fredholm module above, oper-

ator

F : H → H : x+ + x− 7→ x+ − x− (3.30)

can be written as

(Fξ)(θ) = P.V.

∫ 2π

0

K(θ1 − θ)ξ(θ1)
dθ1

2π
, (3.31)

where kernel K is given by

K(θ) = 1− i cot(θ/2). (3.32)

From (3.31) we compute the kernel K1 of [F,Mg]:

K1(θ, θ1) = K(θ1 − θ) (g(θ1)− g(θ)) . (3.33)

Note that this is smooth everywhere, except may be the diagonal θ1 = θ. For θ1 in a
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neighborhood of θ, we have

K1(θ, θ1) = ((θ1 − θ) ·K(θ1 − θ))
g(θ1)− g(θ)

θ1 − θ
(3.34)

with both terms being smooth, so K1 is smooth everywhere on S1×S1. In particular,

this allows to get rid of �P.V..� According to [24, Prop. IV.3.5], every operator with

kernel in C2(S1 × S1) is in L1. By applying this statement to the kernel K1, we get

[F,Mg] ∈ L1.

The second statement of the lemma follows from (3.34) and the fact that the

Hilbert�Schmidt norm of the operator, given by the kernel K1, is equal to

(∫ 2π

0

dθ

2π

∫ 2π

0

dθ1

2π
|K1(θ1, θ)|2

)1/2

≤ sup
θ,θ1

|K1(θ1, θ)| . (3.35)

In what follows, we will be interested in the composition τCK2 ◦ (ργ)∗ : K2(O(X \

S))→ C∗.

3.6 Reparameterization of loops

The goal of this section is to prove that the map τCK2 ◦ (ργ)∗ only depends on the

oriented path, and not on its parametrization.Let γ be a smooth loop S1 → X \ S,

and ϕ : S1 → S1 be a smooth orientation-preserving map. We are going to prove that

ργ = ργ◦ϕ. Following [12] and [18, Section 6.8], we introduce the unitary Uϕ by

(Uϕξ) (θ) = ξ
(
ϕ−1(θ)

) (
(ϕ−1)′(θ)

)1/2
. (3.36)

Its adjoint U∗ϕ = U−1
ϕ is then given by

(
U∗ϕξ

)
(θ) = ξ (ϕ(θ)) ((ϕ)′(θ))

1/2
. (3.37)
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For any invertible operator V , we let

AdV : B(H)→ B(H) : W 7→ VWV −1. (3.38)

By a direct computation, one can check that

AdUϕMf◦γ◦ϕ = Mf◦γ. (3.39)

In order to be able to use this equality, we need to check that AdUϕ can be re-

interpreted as a map M1 → M1. The following lemma is, essentially, [18, Prop.

6.8.2].

Lemma 3.6.1.

1. Uϕ ∈M1, moreover [F,Uϕ] ∈ L1;

2. if a ∈M1, then AdUϕ(a) ∈M1.

Proof. The second statement of the lemma follows from the �rst one. We will show

the �rst one, following a similar strategy to the one used in the proof of 3.5.1. By

Lemma 3.5.1, multiplication by a smooth function g satis�es [F,Mg] ∈ L1. So, it

remains to prove that change of variable operation satis�es the same property. Let

us denote this operation with V , so that

(V ξ)(θ) = ξ(ϕ−1(θ)). (3.40)

Using the same notation, as in the proof of Lemma 3.5.1, we compute the kernel K2

of [F, V ]:

K2(θ, θ1) = K(ϕ(θ1)− θ)ϕ′(θ1)−K(θ1 − ϕ−1(θ)). (3.41)

This can only be non-smooth in the neighborhood of the �modi�ed� diagonal ϕ(θ1) =

θ. We will prove that it is smooth there, too. To do that, we choose a contractible

neighbourhood of a point on that modi�ed diagonal, and study the behavior of K2
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there. We let

K3(θ2, θ1) = K2(ϕ(θ1 + θ2), θ1) = K(ϕ(θ1)− ϕ(θ1 + θ2))ϕ′(θ1)−K(−θ2). (3.42)

Since the function (θ2, θ1) 7→ (ϕ(θ1 +θ2), θ1) is a smooth dif and only ifeomorphism in

the preimage of the chosen neighbourhood, it is enough to prove that K3 is smooth.

By Taylor expansion of ϕ with Peano reminder, for some smooth function ϕ2, we have

ϕ(θ1 + θ2) = ϕ(θ1) + θ2ϕ
′(θ1) + θ2

2 ϕ2(θ2, θ1), (3.43)

Note that K(θ)−(−2i/θ) is smooth, and (3.42) depends linearly on K, so it is enough

to prove the smoothness of the expression in the right-hand side of (3.42) with K(•)

replaced with 1/(•). It is equal to

(ϕ(θ1)− ϕ(θ1 + θ2))−1ϕ′(θ1)− (−θ2)−1 =
1

θ2

(
1− ϕ′(θ1)

ϕ′(θ1) + θ2 ϕ2(θ2, θ1)

)
. (3.44)

Since the expression in the large brackets is smooth near θ2 = 0, and equal to 0 for

θ2 = 0, expression (3.44) is smooth. The statement of the lemma now follows from

[24, Prop. IV.3.5].

Note that the desired equality τCK2 ◦ (ργ)∗ = τCK2 ◦ (ργ◦ϕ)∗ is equivalent to the

commutativity of the diagram

K2(O(X \ S))

(ργ)∗
��

(ργ◦ϕ)∗// K2(M1)

τCK2

��
K2(M1)

τCK2 // C∗ .

(3.45)

Equality (3.39) and lemma (3.6.1) imply that the following diagram, representing the

upper left triangle of (3.45), is well de�ned and commutative.

O(X \ S)

ργ
��

ργ◦ϕ //M1

AdUϕvv
M1

(3.46)
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Thus, to prove the commutativity of (3.45) it remains to show the commutativity of

the following diagram:

K2(M1)
(AdUϕ)∗
vv

τCK2

��
K2(M1)

τCK2 // C∗ .

(3.47)

Lemma 3.6.2. Diagram (3.47) is commutative.

Proof. Using the de�nition of (3.26), we see that it is enough to prove the existence

of a group isomorphism ψ : E/T1 → E/T1, making the diagram

1 // C∗ i // E/T1
π //

ψ

��

GL0(M1) //

AdUϕ
��

1

1 // C∗ i // E/T1
π // GL0(M1) // 1

(3.48)

commutative. In fact, any homomorphism ψ will su�ce, since by 5-lemma it will

automatically be bijective. In order to construct ψ, we will use Item 6 of Theorem

3.2.8 with π1 = AdUϕ ◦π, π2 = π. The group E/T1 is perfect according to Lemma

3.4.1. Therefore, by Item 6 of 3.2.8, it remains to check that the right-hand side of

ψ([x1, x2]) =
[
π−1 AdUϕ πx1, π

−1 AdUϕ πx2

]
(3.49)

depends only on [x1, x2], and not on x1, x2, and that the map ψ thus obtained is a

homomorphism. To prove that, take an arbitrary x = (a, [s]T1) ∈ E/T1, and, using

Lemma 3.4.1, �nd xl = (al, [sl]T1) for l = 1, 2 s.t. x = [x1, x2]. In components, that

means that a = [a1, a2]1 and s ≡ [s1, s2]1 (mod T1), i.e., s−1[s1, s2]1 ∈ T1. Then, let

bl ∈ AdUϕ al, choose any tl ∈ (bl++ + L1) ∩GL(H+), and let b = [b1, b2]1, t = [t1, t2]1.

Right-hand side of (3.49) is, then, (b, [t]T1). We have b = AdUϕ a, and, thus, b is

determined by x. Since anti-diagonal components of Uϕ are in L1, we have

tl
L1

≡ bl++
L1

≡ Uϕ++al++Uϕ
∗
++

L1

≡ Uϕ++slUϕ
∗
++

L1

≡
(
Uϕ(sl ⊕ idH−)Uϕ

−1
)

++
. (3.50)
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We now want to use the fact that once b1, b2 are �xed, t is determined uniquely

(Lemma 3.2.7). Therefore, we can use our freedom of choice of tl ∈ (bl++ + L1) ∩

GL(H+) to simplify the computations. Unfortunately, we can't take tl to be one of the

expressions in (3.50), since these are not necessarily invertible. As a workaround, we

will use the fact that anti-diagonal components of Uϕ belong to L1 (see Lemma 3.6.1).

Let Uϕ,1 be Uϕ with anti-diagonal components replaced with 0. Then, Uϕ ≡ Uϕ,1

(mod L1). Since we can continuously deform ϕ to the identity homeomorphism,

thus continuously deforming Uϕ,1 to the identity operator, the components Uϕ,1++

and Uϕ,1−− have Fredholm index 0. Thus, we can make these components invertible

by adding �nite-dimensional operators to them. Let Ũ be the operator with these

modi�ed (invertible) components. We have Uϕ ≡ Ũ (mod L1) and Ũ−+ = 0, Ũ+− = 0.

Using this and (3.50), we have

bl++
L1

≡
(
Uϕ(sl ⊕ idH−)Uϕ

−1
)

++

L1

≡
(
Ũ(sl ⊕ idH−)Ũ−1

)
++

L1

≡= Ũ++slŨ
−1
++. (3.51)

Therefore, as discussed above, we can take

tl++ = Ũ++slŨ
−1
++. (3.52)

Then, t = [t1++, t2++]1 = Ũ++[s1, s2]1Ũ
−1
++ = Ũ++sŨ

−1
++, so the class [t]T1 is indeed

determined by x, and doesn't depend on x1, x2.

Finally, note that ψ is a homomorphism, because, as we have shown above, it is

given by

ψ((a, [s]T1)) =

(
AdUϕ a,

[
AdŨ++

s
]
T1

)
. (3.53)
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3.7 Moving towards the de�nition of the Beilinson�

Bloch regulator

In this section, following [12], we will discuss the possibility to de�ne the maps rS and

rξ using τ
CK
2 . We will denote our maps with r̃S and r̃ξ, and preserve r without tilde

for the maps in the original de�nition of the Beilinson�Bloch regulator. Since rS is a

map K2(O(X \S))→ H1(X \S,C∗) ' Hom(π1(X \S),C∗), in order to de�ne it, it is

enough to de�ne the pairing of rS(u) with [γ] for u ∈ K2(O(X \S)), [γ] ∈ π1(X \S).

Following [12], we would like to let

〈r̃S(u), [γ]〉 =
(
τCK2 ◦ (ργ)∗

)
(u). (3.54)

In order to discuss the possibility of using this de�nition, we denote its right-hand

side with R̃S(u, γ):

R̃S(u, γ) =
(
τCK2 ◦ (ργ)∗

)
(u) ∈ C∗. (3.55)

Note that, by de�nition, the map u 7→ R̃S(u, γ) is a homomorphism. We would like

to prove the following.

1. R̃S(u, γ) depends only on the class [γ] ∈ π1(X \ S, x0) and not on the loop γ

itself.

2. The map [γ] 7→ R̃S(u, γ) is a homomorphism π1(X \S, x0)→ C∗, i.e., whenever

[γ] = [γ1][γ2] one has R̃S(u, γ) = R̃S(u, γ1)R̃S(u, γ2).

3. Maps R̃S(u, γ1) are compatible with restrictions, i.e., if S1 ⊂ S2 ⊂ X, res2,1 : O(X\

S1)→ O(X\S2) is the corresponding restriction map, x0 ∈ X\S, u ∈ K2(O(X\

S1)), and γ : (S1, 1)→ (X \ S2, x0), one has R̃S1(u, γ) = R̃S2((res2,1)∗(u), γ).

4. R̃S(u, γ) = 〈rS(u), [γ]〉, where rS is the original Beilinson�Bloch regulator.

Properties 1,2 would then imply that (3.54) de�nes well-de�ned homomorphisms

r̃S : K2(O(X \ S))→ H1(X \ S,C∗);
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Property 3 would imply that maps r̃S are compatible with restrictions, so we can

de�ne r̃ξ as in (3.2); Property 4 would imply that r̃S = rS and r̃ξ = rξ. These are

not independent: Property 4 would imply 1�3, since the original Beilinson�Bloch

generator satis�es 1�3.

In the original manuscript, Properties 1�3 are summarized as [12, Lemma 3].

Unfortunately, we were not able to �ll-in all the technical details necessary to �nish

its proof, so we will only be able to show Property 3 above (see Lemma 3.7.1). After

that, in the next section, we will show in Lemma 3.8.1 that Property 4 holds on the

Steinberg symbols (see De�nition 3.2.10):

4'. Property 4 above holds for u in the subgroup of K2(O(X \ S)), generated by

Steinberg symbols. In other words, for any f, g ∈ Inv(O(X \ S)) we have

R̃S({f, g}, γ) = 〈rS({f, g}), [γ]〉 . (3.56)

Note that since both u 7→ R̃S(u, γ) and u 7→ 〈rS(u, [γ]〉 are group homomorphisms, it

is equivalent to ask Property 4 to hold on Steinberg symbols, and on the subgroup,

generated by Steinberg symbols.

Lemma 3.7.1. Let S1, S2 ⊂ X be �nite subsets of X, s.t. S1 ⊂ S2, let res2,1 : O(X \

S1)→ O(X \ S2) be the corresponding restriction map, and let γ : S1 → X \ S2 be a

smooth path. Then,

ργ = ργ ◦ res2,1 (3.57)

as maps O(X \ S1) → M1. In particular, for any u ∈ K2(O(X \ S1)) one has

R̃S1(u, γ) = R̃S2((res2,1)∗u, γ), i.e., Property 3 holds.

Note that in (3.57) on the left-hand side ργ is interpreted as a map O(X \ S1)→

M1, and on the right � as a map O(X \ S2)→M1.

Proof. In the equality (3.57), ργ on the left maps a function f ∈ O(X \ S1) to

an operator Mf◦γ. The restriction map on the right maps f to the same function,
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restricted to X \ S2. This restricted function takes the same values on the loop γ, so

we get the same operator Mf◦γ by applying ργ to it. Thus, equality (3.57) holds.

The second statement then follows directly from the de�nition of RS:

RS1(u, γ) =
(
τCK2 ◦ (ργ)∗

)
(u) =

(
τCK2 ◦ (ργ ◦ res2,1)∗

)
(u) =(

τCK2 ◦ (ργ)∗
)

((res2,1)∗u) = RS2((res2,1)∗u, γ). (3.58)

Lemma 3.7.2. Properties 4', 3 and 1 above imply Property 4.

Proof. Assume that maps RS satisfy 4', 3, 1, let u1 ∈ K2(O(X \S1)), and let's try to

prove 4 for u = u1 and S = S1. Let res1 : O(X \Sj)→ F (X) and resj,k : O(X \Sk)→

O(X \ Sj) be the restriction maps (the �nite sets S2, S3 will be chosen later). It

is well-known that K2 of a �eld is generated by Steinberg symbols (see e.g. [22,

Theorem 4.3.3]). Therefore, (res1)∗(u1) =
∏n

j=1{fj, gj} for some rational functions

fj, gj ∈ F (X)\{0}. Let S2 be the union of S1 with the set of zeros and poles of all fj,

gj (j = 1, . . . , n). Then, ũ2 =
∏n

j=1{fj, gj} is a well-de�ned element of K2(O(X \S)).

Let u2 = (res2,1)∗(u1). Then, (res2)∗(u2) = (res1)∗(u1) =
∏n

j=1{fj, gj} = (res2)∗(ũ2).

Thus, there exists a �nite set S3 ⊃ S2 s.t. (res3,2)∗(u2) = (res3,2)∗(ũ2). Now, choose

arbitrary γ : S1 → X \ S1, and let γ̃ be its deformation, which avoids points of S3.

We have

R̃S1(u1, γ) = R̃S1(u1, γ̃) = R̃S3(u3, γ̃) =

R̃S3

(
n∏
j=1

{fj, gj}, γ̃

)
=

n∏
j=1

R̃S3 ({fj, gj}, γ̃) =
n∏
j=1

〈rS3({fj, gj}), [γ̃]〉 =〈
rS3

(
n∏
j=1

{fj, gj}

)
, [γ̃]

〉
= 〈rS3(u3), [γ̃]〉 = 〈rS1(u1), [γ̃]〉 = 〈rS1(u1), [γ]〉 . (3.59)

Since we didn't prove Property 1, we will try to improve the statement above

to avoid using it. Note that the proof above shows that, given maps RS satisfy 4′
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and 3, for any S1 and u ∈ K2(O(X \ S1)), there is a �nite set S3 ⊃ S1 s.t. 4 holds

for any loop γ, which doesn't intersect with S3. Since such S3 is �nite, �almost all�

paths satisfy this condition. Thus, we may hope to replace Property 1 in the list of

requirements of the lemma with some continuity condition on the map γ 7→ RS(u, γ).

We will do this in Section 3.9.

3.8 Computation of the Beilinson�Bloch regulator

on Steinberg symbols

3.8.1 Notation and general observations

The goal of Section 3.8 is to prove Property 4' of R̃S from Section 3.7. From the

original de�nition of the Beilinson�Bloch regulator [2] we know that the right-hand

side of (3.56) can be written as

〈rS({f, g}), [γ]〉 = exp

(
1

2πi

(∫
γ

ln fd ln g − ln g(x0)

∫
γ

d ln f

))
. (3.60)

Here, x0 is a point on the path γ, chosen as the starting point of the integrations.

Branches of ln f and ln g are chosen at this starting point, and analitically continued

along the path. One can check that the right-hand side doesn't depend on the choice

of x0 and branches of logarithms. For the de�nition of the left-hand side of (3.56),

see (3.55). Thus, both sides can be written in terms of restrictions of f and g on the

circle. To be more precise, let

ρ : C∞(S1)→M1 : h 7→Mh, γ∗ : O(X \ S)→ C∞(S1) : f 7→ f ◦ γ. (3.61)

We let R̃ be the map, analogous to R̃S, but acting on K2 (C∞(S1)). More precisely,

we let

R̃(u) = τCK2 ◦ ρ∗ : K2

(
C∞(S1)

)
→ C∗. (3.62)
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Then, R̃S(u, γ) = R̃((γ∗)∗(u)), and, in particular, R̃S({f, g}, γ) = R̃({f ◦ γ, g ◦ γ}).

To deal similarly with (3.60), for f̃ , g̃ ∈ Inv(C∞(S1)) we let

R(f̃ , g̃) = exp

(
1

2πi

(∫
S1

ln f̃d ln g̃ − ln g̃(1)

∫
S1

d ln f̃

))
(3.63)

with integrals starting at 1 ∈ S1. Using this notation, it remains to prove that for

any f̃ , g̃ ∈ C∞(S1) we have

R̃({f̃ , g̃}) = R(f̃ , g̃). (3.64)

In order to do this, we write f̃ = znef , g̃ = zmeg, where z is the identity function on

the circle, n and m are winding numbers of f̃ and g̃ respectively, f and g are smooth

functions on the circle. We then express both sides of (3.64) in terms of Fourier

coe�cients of f and g, and compare the results.

3.8.2 Algorithm

Let

1 // K2(C∞(S1)) i // St(C∞(S1)) π // E(C∞(S1)) // 1 (3.65)

be the universal central extension ofE(C∞(S1)). Note that E(C∞(S1)) = SL(C∞(S1)) '⋃
nC
∞(S1, SLn(C)) (where SLn(C) is interpreted as a subset in SLn+1(C) using the

embedding a 7→ ( a 0
0 1 )). Given two matrix-valued functions a, b ∈ C∞(S1, SLn(C))

satisfying [a, b]1 = 1, we have i−1[π−1a, π−1b] ∈ K2(C∞(S1)). We observe that we can

unroll the de�nitions, used to de�ne R̃, into the following �algorithm,� which, given

a, b as above, allows us to �compute� R̃(i−1[π−1a, π−1b]):

0. take a, b ∈ C∞(S1, SLn(C));

1. compute corresponding Toeplitz operators Ta, Tb : Hn
+ → Hn

+;

2. �nd invertible sa ≡ Ta (mod L1), sb ≡ Tb (mod L1);
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3. return R̃(i−1[π−1a, π−1b]) = det([sa, sb]1).

The result doesn't depend on the choice of sa, sb. Here, the Toeplitz operator Ta of

a matrix-valued function a ∈ C∞(S1,Mn(C)) is de�ned as follows. Let P+,n : Hn →

Hn
+ be the standard projector. Then, Ta = P+,nMaP

∗
+,n. We recall that, as we agreed

above, H = L2(S1) is the space of square-integrable functions, and H+ is its closed

subspace, generated by zl for l ≥ 0. In order to use this algorithm to compute

R̃({f̃ , g̃}) one has to apply this algorithm with

a = diag(f̃ , f̃−1, 1), b = diag(g̃, 1, g̃−1). (3.66)

3.8.3 Plan

Here, we outline the plan of the computations. Given f̃ = znef and g̃ = zmeg, we

want to compute R̃({f̃ , g̃}). Using the properties of Steinberg symbols, we have

R̃({f̃ , g̃}) = R̃({znef , zmeg}) = R̃
(
{z, z}nm{ef , z}m{eg, z}−n{ef , eg}

)
=

R̃ ({z, z})nm R̃
(
{ef , z}

)m
R̃ ({eg, z})−n R̃

(
{ef , eg}

)
. (3.67)

Since the second and the third term are of the same form, our computation splits

into 4 parts: Term 1, Terms 2 and 3, Term 4 and putting the terms together. Each

of these steps is done in the corresponding subsection. The last subsection is devoted

to writing R(f̃ , g̃) in a similar form (i.e., expressing it using the winding numbers

n,m and Fourier coe�cients of f, g, where f̃ = znef , g̃ = zmeg), and comparing the

results. We use the following Fourier transformation f̂ of f :

f =
∞∑

n=−∞

f̂nz
n. (3.68)

Term 1, i.e., R̃ ({z, z}), will be computed explicitly using the algorithm from
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Subsection 3.8.2. We express Term 2 as

R̃
(
{ef , z}

)
= exp

(
∂

∂t

∣∣∣∣
t=0

R̃
(
{etf , z}

))
, (3.69)

so we will compute this derivative. Similarly, for Term 4, we use

R̃
(
{ef , eg}

)
= exp

(
∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

R̃
(
{et1f , et2g}

))
. (3.70)

3.8.4 Term 1

Here, we compute R̃ ({λz, µz}). We will only need it for λ = µ = 1, but allowing

arbitrary nonzero complex coe�cients doesn't make the computation more complex

and allows us to check it. We have a = diag(λz, λ−1z̄, 1), b = diag(µz, 1, µ−1z̄). Shift

operator notation: Tz = S, S∗S = 1, SS∗ = 1− P , PS = S∗P = 0. We get

Ta = diag(λS, λ−1S∗, 1), Tb = diag(µS, 1, µ−1S∗), (3.71)

sa =


λS P 0

0 λ−1S∗ 0

0 0 1

 , sb =


µS 0 P

0 1 0

0 0 µ−1S∗

 . (3.72)
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[sa, sb]1 =
λS P 0

0 λ−1S∗ 0

0 0 1



µS 0 P

0 1 0

0 0 µ−1S∗



λ−1S∗ 0 0

P λS 0

0 0 1



µ−1S∗ 0 0

0 1 0

P 0 µS

 =


λµS2 P λSP

0 λ−1S∗ 0

0 0 µ−1S∗



λ−1µ−1S∗2 0 0

µ−1PS∗ λS 0

P 0 µS

 =


S2S∗2 + µ−1PS∗ + λSP 0 0

0 1 0

0 0 1

 , (3.73)

det([sa, sb]1) = det(S2S∗2 + µ−1PS∗ + λSP ) = det

0 µ−1

λ 0

 = −λµ−1. (3.74)

Thus, R̃({λz, µz}) = −λµ−1. In particular, R̃({z, z}) = −1, R̃({α, z}) = α.

3.8.5 Terms 2,3

In this subsection, we will compute ∂
∂t

∣∣
t=0

R̃({etf , z}) and, thus, R̃({ef , z}). To de-

scribe R̃({ef , z}), we apply the algorithm from Subsection 3.8.2 to a = diag(ef , e−f , 1),

b = diag(z, 1, z̄). We get

Ta = diag(Tef , Te−f , 1), Tb = diag(S, 1, S∗), (3.75)

sa = Ta =


Tef 0 0

0 Te−f 0

0 0 1

 , sb =


S 0 P

0 1 0

0 0 S∗

 , (3.76)
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[s−1
a , s−1

b ]1 =


Tef
−1 0 0

0 Te−f
−1 0

0 0 1



S∗ 0 0

0 1 0

P 0 S



Tef 0 0

0 Te−f 0

0 0 1



S 0 P

0 1 0

0 0 S∗

 =


Tef
−1S∗ 0 0

0 Te−f
−1 0

P 0 S



TefS 0 TefP

0 Te−f 0

0 0 S∗

 =


1 0 Tef

−1S∗TefP

0 1 0

PTefS 0 PTefP + (1− P )

 .

(3.77)

In the last equality, we used that S∗TefS = Tef . We compute

det([sa, sb]1) = det([s−1
a , s−1

b ]1) = 1 + Tr([s−1
a , s−1

b ]1 − 1) +O(‖f‖2), (3.78)

Tr([s−1
a , s−1

b ]1 − 1) = (1, Tef1)H+ − 1 = (1, ef )H − 1 = (1, f)H +O(‖f‖2). (3.79)

Therefore,

det([sa, sb]1) = 1 + (1, f)H +O(‖f‖2), (3.80)

so

∂

∂t

∣∣∣∣
t=0

R̃({etf , z}) = (1, f)H, R̃({ef , z}) = exp((1, f)H) = exp(f̂0). (3.81)

3.8.6 Term 4

In this subsection, we will compute ∂2

∂t1∂t2

∣∣∣
t1=t2=0

R̃({et1f , et2g}) and, thus, R̃({ef , eg}).

Here, to describe R̃({ef , eg}), we apply the algorithm from Subsection 3.8.2 to a =

diag(ef , e−f , 1), a = diag(eg, 1, e−g).

We have

sa = Ta = diag(Tet1f , Te−t1f , 1), sb = Tb = diag(Tet2g , 1, Te−t2g), (3.82)
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and

[s−1
a , s−1

b ]1 = diag(Tet1f
−1Tet2g

−1Tet1fTet2g , 1, 1). (3.83)

We compute

∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

R̃({et1f , et2g}) =
∂2

∂t1∂t2
det
(
Tet1f

−1Tet2g
−1Tet1fTet2g

)∣∣∣∣
t1=t2=0

=

∂2

∂t1∂t2
det
(
1 + Tet1f

−1Tet2g
−1(Tet1fTet2g − Tet2gTet1f )

)∣∣∣∣
t1=t2=0

=

lim
t1,t2→0

1

t1t2
Tr
(
Tet1f

−1Tet2g
−1(Tet1fTet2g − Tet2gTet1f )

)
= Tr (TfTg − TgTf ) . (3.84)

We will now use the Fourier transforms f̂ , ĝ of f, g, and their holomorphic and anti-

holomorphic parts f+, g+ and f−, g−. For f , these are given by

f =
∞∑

l=−∞

f̂lz
l = f− + f+, f+ =

∞∑
l=0

f̂lz
l, f− =

0∑
l=−∞

f̂lz
l. (3.85)

Using the identities Tf−Tg = Tf−g, TfTg+ = Tfg+ , and the similar ones with f and g

interchanged, we get

∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

R̃({et1f , et2g}) = Tr
(
Tf−Tg+ − Tg+Tf−

)
− Tr

(
Tg−Tf+ − Tf+Tg−

)
.

(3.86)

One can check that k, l ≥ 0, we have

Tr (Tz−lTzk − TzkTz−l) = Tr
(
S∗lSk − SkS∗l

)
= δkl Tr(1− SlS∗l) = l δkl. (3.87)

Therefore, we have

∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

R̃({et1f , et2g}) =
∞∑
l=0

l(f̂−lĝl − ĝ−lf̂l) =
∞∑

l=−∞

lf̂−lĝl =

1

2πi

∫
S1

f(z)(zg′(z))
dz

z
. (3.88)
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3.8.7 Combining terms together

In this subsection we give the answer for values of R̃ on the Steinberg symbols of

K2(C∞(S1)). Let f̃ , g̃ be functions from Inv(C∞(S1)), and let us compute R̃(f̃ , g̃).

We write

f̃ = znef , g̃ = zmeg, (3.89)

where n,m are the winding numbers of f, g. From the above computations, we have

R̃({f̃ , g̃}) = Ω({znef , zmeg}) = (−1)nm exp

(
mf̂0 − nĝ0 +

∞∑
l=−∞

lf̂−lĝl

)
. (3.90)

3.8.8 Comparison with the Beilinson�Bloch regulator

We recall that the goal of this section is to show R̃({f̃ , g̃}) = R(f̃ , g̃), where the

right-hand side is given by (3.63). Using equalities f̃ = znef and g̃ = zmeg, we

rewrite R(f̃ , g̃) in terms of winding numbers n,m and Fourier coe�cients of f and g.

Assuming that integration in (3.63) starts at z = 1 with ln z = 0, we get

R(f̃ , g̃) = exp

(
1

2πi

∫
S1

(f + n ln z) dg +m
1

2πi

∫
S1

(f + n ln z)
dz

z
− ng(1)

)
. (3.91)

We compute these integrals:

1

2πi

∫
S1

ln z
dz

z
=

1

2π

∫ 2π

0

iθdθ = i
1

2π
(2π)2/2 = πi, (3.92)

1

2πi

∫
S1

f
dz

z
= f̂0, (3.93)

1

2πi

∫
S1

ln z dg = g(1)−
∫
S1

g
dz

z
= g(1)− ĝ0, (3.94)

1

2πi

∫
S1

f dg =
1

2πi

∫
S1

f(zg′)
dz

z
=

∞∑
l=−∞

lf̂−lĝl. (3.95)
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Collecting the terms together, we get

R(f, g) = exp

(
∞∑

l=−∞

lf̂−lĝl − nĝ0 +mf̂0 + nmπi

)
=

(−1)nm exp

(
mf̂0 − nĝ0 +

∞∑
l=−∞

lf̂−lĝl

)
= R̃({f̃ , g̃}). (3.96)

The computations of this section give us the following lemma.

Lemma 3.8.1. Property 4' of the map R̃S from Section 3.7 holds.

3.9 Continuity argument and correctness of the def-

inition of the Beilinson�Bloch regulator

We recall our main goals: the �rst one is to show that (3.54) gives a well-de�ned map

r̃S : K2(O(X \ S)) → H1(X \ S,C∗), allowing us to de�ne r̃ξ; the second one is to

show r̃S = rS, i.e., the regulator we are de�ning coincides with the original Beilinson�

Bloch regulator. Both statements would follow if we show Properties 1�4 of the map

R̃S, introduced in Section 3.7. We observed that it is enough to show Property 4, as

1,2,3 would follow from it, because they are satis�ed by the original Beilinson�Bloch

regulator. So far, we've shown Property 3 (Lemma 3.7.1) and 4' (Lemma 3.8.1). We

have also shown that combination of 1, 3, and 4' would imply Property 4 in Lemma

3.7.2. We can't use that directly since we didn't get Property 1. Our plan now is to

show a property weaker than Property 1, so that the proof of Lemma 3.7.2 would give

us the desired Property 4, and, thus, 1,2,3. As we've already alluded in the comment

following Lemma 3.7.2, this property is some sort of continuity of R̃S(u, γ) in γ. To

prove this continuity, we will again look at the exact sequence

1 // C∗ i // E/T1
π // GL0(M1) // 1 . (3.97)
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Following [18, Section 6.6], we introduce the topology on E given by

distE((a, sa), (b, sb))
2 = ‖a− b‖2 + ‖[F, a− b]0‖2

2 + ‖(sa− a++)− (sb− b++)‖2
1. (3.98)

Here, ‖ • ‖p is Lp-norm:

‖a‖p =

(
∞∑
j=0

λ
p/2
j

)1/p

, (3.99)

where λj are eigenvalues of a
∗a. The group operations of E (product and inversion)

are continuous: one can check that by a direct computation. The topology on E/T1

is then induced from E . One can check that the projection E → E/T1 is open.

Topology in GLn(M1) is given by

distM1(a, b)2 = ‖a− b‖2
M1 = ‖a− b‖2 + ‖[F, a− b]0‖2

2. (3.100)

Lemma 3.9.1. Map (GL0
n(M1))2 → E/T1 : (a, b) 7→ [π−1a, π−1b] is continuous.

Proof. Since [π−1a, π−1b] = [π−1b, π−1a]−1, it is enough to prove the continuity in the

�rst argument.

Take a, b ∈ GL0
n(M1), and ε > 0. Fix invertible sa and sb, satisfying sa−a++, sb−

b++ ∈ L1(Hn
+). It is enough to prove that there exists δ > 0, such that if ‖a−ã‖M1 < δ

there exists invertible s̃a, satisfying s̃a − ã++ ∈ L1, such that

distE((c, sc), (c̃, s̃c)) < ε, (3.101)

where c = [a, b]1, c̃ = [ã, b]1, sc = [sa, sb]1, s̃c = [s̃a, sb]1. We will constrain our choices

of δ by δ < ‖s−1
a ‖−1/2, and choose s̃a = sa−a+++ã++. Then, dist((a, sa), (ã, s̃a)) < δ,

so, by continuity of inversion and multiplication in the group E , there indeed exists

δ > 0 satisfying (3.101).

Lemma 3.9.2. The standard topology on C∗ coincides with the one induced by the

inclusion i : C∗ → E/T1.
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Proof. Take any λ ∈ C∗. For sλ ∈ T with det sλ = λ and any r > 0 let

BC∗
r (λ) = {µ ∈ C∗ : |λ− µ| < r}, (3.102)

Bi
r(λ, sλ) = {µ ∈ C∗ : ∃sµ ∈ T : det sµ = µ, ‖sλ − sµ‖1 < r}. (3.103)

By taking sλ = 1 + (λ − 1)P , where P is a one-dimensional projection, we see that

BC∗
r (λ) ⊂ Bi

r(λ, sλ). Therefore, the map i : C∗ → E/T1 is continuous. On the other

hand, det is continuous with respect to the ‖ • ‖1. Therefore, for r > 0 (and �xed sλ)

there exists δ > 0 s.t. ‖sλ − sµ‖1 < δ implies |det sµ − det sλ| < r. Thus, for such δ

we have Bi
δ(λ, sλ) ⊂ BC∗

r (λ).

By combining the discussion and two lemmas above, we get the following obser-

vation.

Lemma 3.9.3. Consider the map

{(aj, bj)}Nj=1 7→ τCK2 (i−1

N∏
j=1

[π−1aj, π
−1bj]) ∈ C∗, (3.104)

acting on collections of 2N operators aj, bj ∈ GL0
n(M1), satisfying

N∏
j=1

[aj, bj]1 = 1. (3.105)

This map is continuous with respect to the topology induced from (Mn(M1))2n.

Theorem 3.9.4. Property 4 holds.

Proof. Fix the set S. Choose u ∈ K2(O(X\S)), and, using the fact that the Steinberg

group is perfect, write it as u = i−1
∏N

j=1[π−1fj, π
−1gj] for some fj, gj ∈ En(O(X \

S)) ⊂ GLn(O(X \ S)) satisfying

N∏
j=1

[fj, gj]1 = 1. (3.106)
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According to the observation, made after Lemma 3.7.2, Property 4 holds for paths

γ which avoid a certain set S1 ⊃ S (which depends on u). So, let γ be a path

S1 → X \ S, which intersects with some points of S1. Because of Lemma 3.5.1,

Mf◦γ depends continuously on γ, where topology in the space of paths γ is given by

dist(γ1, γ2) = supt∈S1 dist(γ1(t), γ2(t)) + supt∈S1 dist(γ′1(t), γ′2(t)), where some �nite

covering of X is used to de�ne distances between points and tangent vectors. In this

metric, every ball near γ contains paths which avoid the �nite set S1. Thus, the

theorem follows from Lemma 3.9.3.
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