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Abstract

A noncommutative 2-torus is one of the main toy models of noncommutative geome-
try, and a noncommutative n-torus is a straightforward generalization of it. In 1980,
Pimsner and Voiculescu in [I7] described a 6-term exact sequence, which allows for
the computation of the K-theory of non-commutative tori. It follows that both even
and odd K-groups of n-dimensional noncommutative tori are free abelian groups on
271 generators. In 1981, the Powers—Rieffel projector was described [19], which,
together with the class of identity, generates the even K-theory of non-commutative
2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups.
According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides
with the group of connected components of the elements of the algebra. In particu-
lar, generators of K-theory can be chosen to be invertible elements of the algebra. In
Chapter [1 we derive an explicit formula for the first non-trivial generator of the odd
K-theory of noncommutative tori. This gives the full set of generators for the odd
K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2| we apply the graded-commutative framework of differential geome-
try to the polynomial subalgebra of the noncommutative torus algebra. We use the
framework of differential geometry described in [27], [I4], [25], [26]. In order to apply
this framework to noncommutative torus, the notion of the graded-commutative alge-
bra has to be generalized: the “signs” should be allowed to take values in U(1), rather
than just {—1,1}. Such generalization is well-known (see, e.g., [8] in the context
of linear algebra). We reformulate relevant results of [27], [L4], [25], [26] using this
extended notion of sign. We show how this framework can be used to construct dif-

ferential operators, differential forms, and jet spaces on noncommutative tori. Then,
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we compare the constructed differential forms to the ones, obtained from the spec-
tral triple of the noncommutative torus. Sections recall the basic notions
from [27], [14], [25], [26], with the signs (—1)** replaced with A(e,e). In Section
we apply these notions to the polynomial subalgebra of the noncommutative
torus algebra. This polynomial subalgebra is similar to a free graded-commutative
algebra. We show that, when restricted to the polynomial subalgebra, Connes con-
struction of differential forms gives the same answer as the one obtained from the
graded-commutative differential geometry. One may try to extend these notions to
the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm mod-
ules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical
gap; in Chapter |3 we close this gap. More specifically, we do this by obtaining
some technical results, and by proving Property 4 of Section (see Theorem ,
which implies that such reformulation is, indeed, possible. The main motivation for
this reformulation is the longer-term goal of finding possible analogs of Ky and of
the regulators for noncommutative spaces. This work should be seen as a necessary
preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results
from [12], as well as some background material on central extensions and Connes—

Karoubi character.
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Introduction

For any positive integer n, the noncommutative n-tori C*-algebras Aén) are a family
of C*-algebras which generalize the algebra C(T",C) of continuous functions on n-
torus. The algebra Aén) is defined as the universal C*-algebra generated by n unitary
generators Uy, Us, ..., U, subject to relations U;U; = > U;U;. Here, 6 is an n x n
antisymmetric matrix with elements in R. When 6§ = 0, we have Aén) ~ C(T",C).
The algebra Aén) only depends on fractional parts of the elements of the matrix . One
can define a noncommutative analogue of the (normalized) integral [: C(T",C) — C.
This is a specific map 7: Aén) — C, satisfying 7(1) = 1, and 7(ab) = 7(ba). This map
can be extended to the map 7: M,, (A((,n)) — C with 7(a) = 7(Tr(a)). Here, M,,(A)
is the algebra of m x m matrices over an algebra A. The family of noncommutative
tori is the most widely studied class of noncommutative spaces: see, e.g., [9], [19],
[11].

This work consists of 3 independent chapters, related to the notion of noncommu-

tative torus. We will now describe these chapters.

Chapter 1

K-theory of C*-algebras associates two abelian groups, Ko(A) and K;(A), to every
C*-algebra A. These can be seen as invariants of the algebra A. These groups may
be used to distinguish one algebra from another. The group Ky(A) is defined in
terms of equivalence classes [p]o of orthogonal projections p € |J,-_, M,,(A). The
group K;(A) consists of classes [a]; of invertible elements a € |J°_; GL,,(A), where
GL,,(A) = Inv(M,,(A)) is the group of invertible m x m matrices with elements in A.

These functors, Ky and K7, are analogous to corresponding functors of the topological
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K-theory: when A = C(X,C) is the algebra of continuous functions on a compact
Hausdorff space X, we have isomorphisms Ky(A4) ~ K°(X) and K;(A) ~ K'(X) ~
K°(SX), where SX ~ [0,1] x X/(0,2) ~ (0,y), (1,z) ~ (1,y) is the suspension of X.

For the case of noncommutative tori, these groups were computed by Pimsner and
Voiculescu in [17]: Ky (Aé”)) ~ K (Aé")) ~ 72

In [6], [5] (see also the translation [4]), Connes introduced the map Ch: K (A(g")) ®
K, (Aé")) — R ® AG, where G ~ Z". Tts Oth component Ch’: K (Aé")) — Risa
noncommutative analogue of dimension of a vector bundle: in general Ch°([plo) =
7(p), and for # = 0 one has Ch’([p]o) = Tr(p(x)) for every x € T", when p is
interpreted as a projector-valued function in C <T”,]\/[m (Aén))). The map Ch is
called Chern character or Chern—Connes character.

Unlike the commutative case, Ch®([p]o) = 7(p) is not always an integer. In partic-
ular, for 615 € (0,1) Rieffel and Powers [19] constructed a projector Py, € AéQ) such
that 7(Fp,,) = 612, and the classes [1]o, [Py,,]o generate K (Ag)).

Elliott [I0] described an isomorphism K (Aé”)) ® K, (Aé")) ~ AG, where G ~ Z".
Under this isomorphism A®¥"(G) corresponds to K (Aé”)), and A°44(@) corresponds
to K3 (A((,n)). Elliott also described an explicit formula for the Chern—Connes character
under this isomorphism. Under the Elliott’s isomorphism 1 € AYG corresponds to
[1]o € Ko (Aén)), e; € A'G corresponds to [Uj]; € Kl(Aén)), e;Ne; € A*G corresponds
to [Py, Jo € Ko (Aén)), and e; Aej Aex € A*G corresponds to [ajx]1 € K (Aén)), where
unitary a;, € Aé”) is explicitly described by Chapter |1| of this work.

Chapter (1] of this work is devoted to finding an explicit formula for a unitary
a € Aé?’) such that classes [Ui]1, [Us]1, [Us)1, [a]1 generate K (Aég)) ~ 7Z* In Section
we find one formula for such unitary a. This formula is written in terms of Araki
expansionals [I]. The approach we use relies on using the 6-term exact sequence
described by Pimsner and Voiculescu in [I7], and is similar to the one used by Rieffel
in |20, proof of 8.2]. In Section we use an ansatz, similar to the one used by
Rieffel and Powers for describing the projector Fp,,. This method gives a much
simpler formula for such unitary a. Note that unitaries, produced by Sections|l1.2| and

[1.3] may differ from each other. They, however, generate the same class in K-theory.
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As a longer-term goal, one would like to have some explicit understanding of all

the generators of the odd K-theory of all the noncommutative tori.

Chapter 2

The noncommutative torus algebra Aén) has subalgebras Aén) and A((,n)’p()ly. The al-
gebra Afg") is analogous to the algebra C°(T", C) of smooth functions in the commu-

tative case. The algebra Aén)’p(ﬂy

consists of polynomials in Uy, ..., U, with complex
coefficients.

Given an abelian group I' with a bilinear antisymmetric map (—=1)**: ' x I" —
{—1,1}, we say that A is a graded algebra if A = @ A,, and algebra multiplication
satisfies AjA, C Agpn. An element a € A is said to be homogeneous if a € A,
for some g € I'. In this case we say that g is the grading degree of a, and write
a = dega = g. A graded algebra A is said to be graded-commutative if ab = (—l)a'gba
for all homogeneous a,b € A.

Given a graded-commutative algebra A, one can define the jet bundle J*(A), the
algebra of differential forms A(A), and other objects of differential geometry. The
corresponding framework was developed in [27], [14], [25], [26]. The goal of Chapter
is to apply this framework to the algebra Aén)’p()ly = @z CU'. In order to do
this, we should generalize this differential geometry framework to allow more general
signs, which is done by replacing the sign function (—1)*® with A\: I' x I' — U(1),
and applying the Koszul sign rule where appropriate. Such generalization of the
notion of graded-commutative algebra has been considered in [§]. It is relatively
straightforward to extend the mentioned framework to the new sign function. In
Sections [2.1 we do this for the notions of the jet bundle, derivations, multi-
derivations, and differential forms. The main result of Chapter [2| is the explicit
description of the main constructions from this framework of differential geometry in

,pol .
POY of the noncommutative torus. These are

the module of derivations D(Aén)’pdy), the jet bundle J* (Aén)’pdy), and the algebra
A(AGPPOYY of differential forms.

the case of the polynomial algebra Aén)
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There is a well-known algebra of differential forms €2p (Aén)> on Aé”’, constructed
by Connes. In Section we get Qp (Aén)’pdy) by applying this Connes framework to
Aé,n)’p()ly, and compare it to the algebra A(Aén)’pdy). It turns out that Qp (A(en)’p(ﬂy) ~
A(Aénxpoly) '

As a longer-term goal, one would like to extend these results from the polynomial
subalgebra Agn)’pdy to the smooth subalgebra Aé"). One of the goals of developing
notions, such as jet bundles in the context of noncommutative tori, is to obtain
other examples of natural geometric differential operators on noncommutative tori,

by mimicking analogous constructions in ordinary differential geometry.

Chapter 3

In algebraic K-theory and algebraic geometry, there is a notion of regulator. The
word “regulator” is used for homomorphisms from (algebraic) K-groups to cohomology
groups (see, e.g., [23]). Such maps may be seen as algebraic analogues of the Chern
character from the topological K-theory. In Chapter [3) we consider the Beilinson—
Bloch regulator [2]. While it is defined in a more general setting, we will consider it
only in the case of K5(X), where X is a closed Riemann surface. In this case, the
Beilinson-Bloch regulator is a specific homomorphism Ky(X) — H'(X,C*).

The main goal of a long-term project, started by Eugene Ha, is to generalize the
Beilinson—Bloch regulator to the case of noncommutative spaces. Now, we list the
main obstacles towards this goal.

Notion of a space. In the context of the Beilinson—Bloch regulator and Ks(X),
space X is understood as a variety. In partular, for every finite subset S C X, the
variety X has a ring O(X \ ) of meromorphic functions with no poles outside of S.
One of the main notions of a “space” in noncommutative geometry is the notion of a
spectral triple. It is an analogue of a smooth Riemannian manifold endowed with a

Spin® structure. An even spectral triple (A, H, D,~) consists of

e a Hilbert space H;

e a self-adjoint unitary v € B(H);
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e an algebra A C B(H), such that all a € A satisfy ay = va;

e a (potentially unbounded) operator D, satisfying Dy = —vD, s.t. [D,a] is

bounded for every a € A.

Here, B(H) is the algebra of bounded operators on a Hilbert space H. Noncommu-
tative spectral triple doesn’t provide a notion of meromorphic functions. So, the first
obstacle is the need to understand a suitable noncommutative analogue of the notion
of a meromorphic function.

Algebraic K-theory. In noncommutative geometry, one uses the notion of K-
theory of C*-algebras and some generalizations of it. Although one can define K,,(A)
for n > 1, Bott periodicity implies that K, 2(A) ~ K,(A). This is different from
algebraic K-theory, where Ky(R) is rarely isomorphic to Ky(R). In order to gener-
alize the Beilinson—Bloch regulator, one needs to devise a suitable noncommutative
analogue of algebraic K-theory.

The definition of the Beilinson—Bloch regulator. Beilinon-Bloch regulator
is defined in terms of values and integrals of meromorphic functions on X. The
notions of a point and a loop are not defined in noncommutative case. Therefore one
needs to reformulate the definition of the Beilinson-Bloch regulator to avoid the use
of these notions.

The unfinished manuscript of Eugene Ha [12] partially addresses this obstacle
by proposing an alternative definition of the Beilinson—Bloch regulator using the
Connes—Karoubi character on the universal 2-summable Fredholm module. If in
the definition of an even spectral triple above we impose 2 additional conditions,
namely that D is bounded, and [D, a] is a Hilbert—-Schmidt operator for every a € A,
we get a 2-summable Fredholm module. Although typically the operator D is un-
bounded, Connes [0] first introduces the notion of a character for n-summable Fred-
holm modules, and then extends it to deal with a spectral triple, satisfying certain
additional conditions, but having an unbounded operator D. If the Hilbert space H
is separable, any 2-summable Fredholm module can be “embedded” into a universal

2-summable Fredholm module M!. Connes and Karoubi [7] described a homomor-
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phism 75K : Ky(M!') — C*. Eugene Ha conjectured a possible alternative definition
of the Beilinson—Bloch regulator in his manuscript [12]. Given a loop v: S* — X'\ S,
one has an embedding p,: O(X\S). The main step in the definition of the Beilinson—
Bloch regulator is defining the maps rs: Ko(O(X \ S)) = H*(X \ S,C*). Eugene Ha

suggested doing this using the formula

(rs(u), [y]) = (77 © (py)) (w). (1)

After one writes this formula, it remains to prove that it describes a well-defined
regulator, and this regulator coincides with the original Beilinson—Bloch regulator. A
possible strategy for proving this fact was outlined in [12]. We provide a complete
proof in Chapter 3, which is somewhat different from the approach suggested in [12],
though it follows the same main strategy.

The main result of Chapter 3 is that equality holds, where the map rg in its
left hand side comes from the original Beilinson-Bloch regulator. The proof is based
on the computation of the right hand side of on Steinberg symbols, and uses
multiple results from [I8]. As explained in Section [3.7 since the original Beilinson—
Bloch regulator is well defined, it follows that the equality can be used as an

alternative definition of it.



Chapter 1

4th generators of the odd K-theory of
3-dimensional noncommutative tori

1.1 Introduction

In this section, we describe the notation, definitions, and main known results used in

this work and related to it.

1.1.1 Noncommutative tori

Let n be a positive integer, and let # be an n X n antisymmetric matrix with elements
in R. Let Aé”) be the universal unital C*-algebra generated by unitaries Uy,..., U,
subject to relations U;U; = e*™%iU;U;, where [,j = 1,...,n; then, this algebra is
called a noncommutative torus algebra. Now we introduce the following multi-index

notation. Let a be an element of Z". By definition, put
U =Umyse . U e A, o] = |on | + o] + - - + |- (1.1)
An element a € A((,n) is said to be smooth if

a= Z a,U?, (1.2)

aEZ™
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where a, € C, and YN € N3Cy € RVa € Z" |a,| < Cy (1 + |a])™". By definition,

put
Al — {a e A ’ a is smooth} : (1.3)

One might want to write an arbitrary element a € Aén) in the form with
the only condition on the coefficients that the series converge. Unfortunately, that’s
not always possible: e.g., if a = f(U;) for some continuous function f, then the
series above is just the Fourier series for f (with uniform convergence), and there
are continuous functions for which the Fourier series doesn’t converge uniformly (see,
e.g., [13l remark after proof of Theorem 2.1]). Tt is possible to resolve this issue by
constructing a space, analogous to the Hilbert space of square-integrable functions on

St in case n = 1, but we don’t intend to do that.

1.1.2 Derivations

Definition 1.1.1. Suppose A is an algebra. A map £: A — A is called a derivation
of A if the following conditions hold:

1. ¢ is C-linear;

2. for any a, b such that a,b € A, we have

&(ab) = &(a)b+ a&(h). (1.4)
By definition, put
R .Aén) — Aén): Z a U% — Z aga U (1.5)
agZn agZn

For any integer [ € {1,...,n} the map ¢; is a derivation of A(en).



1.1.3 Even K-theory

For the convenience of the reader, we briefly revisit the definition of the K-theory of
a C*-algebra. For every C*-algebra A, there are two groups: Ky(A) and K;(A). One
may define K, (A) for arbitrary nonnegative integer n, but due to the Bott periodicity,
they only depend on whether n is even or odd. Thus, Ky(A) and K;(A) are sometimes
called even and odd K-theory respectively. The K((A) is defined as follows.

Definition 1.1.2. Let A be a C*-algebra and p € A. If p = p?, we say that p is
idempotent. If, in addition, p is self-adjoint, i.e. p = p*, we say that p is a projector.
If p, q are 2 projectors in A, we say that they are Murray—von Neumann equivalent,
and write p ~ ¢ if and only if there is an element v € A such that p = v*v and
q = vvr.

Let M,,(A) be the algebra of n xn matrices over A. We denote the set of projectors
in M,(A) with Proj,(A4). If p € Proj,(A), ¢ € Proj,,(A), define p& g = (}7) €
Proj, ,,(A). By identifying p with (%0), we embed Proj,(A) into Proj,,(A) for
m > n. Define the semigroup K Dy(A) by

K Dy(A) = limg Proj,,(A)/ ~o, (1.6)

where p ~g ¢ if and only if there exists n s.t. p and ¢ are Murray-von Neumann
equivalent as elements of Proj,, (A). While operation &, defined above, doesn’t respect
the inclusions, the class [p @ ¢] is a well-defined element of K Dy(A) for any p,q €
|U,, Proj,,(A). This operation induces a commutative and associative operation + on
K Dy(A), allowing us to view K Dy(A) as a monoid with unit [0].

Then, by definition, the group Ky(A) is the Grothendieck group of the monoid
KDy(A).

The definition of the group Ky(A) is stable under minor changes; e.g., one can
consider all idempotents instead of projectors, and replace Murray—von Neumann

equivalence with homotopy, and still construct the same group Koy(A).
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1.1.4 Odd K-theory and “unstable” odd K-theory

Here, we define the K-group K;(A) for a C*-algebra A, and give some additional

notation along the way to explain an important result of Rieffel.

Definition 1.1.3. Let A be a C*-algebra. Let Inv(A) denote the group of its invert-
ible elements, and let GLj(A) = Inv(Mj(A)) be the group of invertible k£ x k matrices
over A (in particular, GL;(A) = Inv(A)). Let GL(A) be the injective limit of GL,(A)
with respect to inclusions @ — (¢9): GL,(A) — GL,41(A). Let Inv’(A), GL(A),
and GL°(A) denote the connected components of the identity in these groups, so that

o (Inv(A)) = Inv(A)/Inv®(A), 7o (GLu(A)) = GL.(A)/GLY(4),  (1.7)

7 (GL(A)) = GL(A)/ GL°(A). (1.8)
By definition, K(A) = mo(GL(A)) = GL(A)/ GL°(A).

As in the case of Ky, the definition of K7 is robust under minor changes. For
example, one could use unitaries instead of generic invertible operators. Also, one
can first go to the group of connected components, and then take the direct limit:
K;(A) ~ %ﬂn GL,(A)/ GL2(A).

A natural question is whether the sequence GL,(A)/ GLY(A) stabilizes, so that

the natural maps
GL,(A)/ GLy(A) = GLat1(A)/ GLy 1 (4),  GLA(A)/ GLy(A) = Ki(4)  (1.9)

are bijective starting from some n. In general, the answer is no, and these maps
are neither injective, nor surjective. However, for the case of noncommutative tori,

according to Rieffel [20, Theorems 8.1 and 8.3], we have

Theorem 1.1.4. Let 0 € M,(R) be an anti-symmetric matriz with at least one
component being irrational. Then, for A = Agn), all maps in (1.9) for alln € N are

group tsomorphisms.
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We want to construct the 4th generator [a]; of K (A((,g)). In the view of this
theorem, we know that such a exists in Inv (Aé?’)) (at least, when 6 has some irra-
tionality). It remains to construct it explicitly. Our first construction, described in
uses some of the ideas from the proof of |20, Proposition 8.2|, used by Rieffel to

show the above result.

1.1.5 Trace

Suppose 7 is a trace on a C*-algebra A (that is, bounded positive linear map A — C,
satisfying 7(ab) = 7(ba)), and a € My(A); then by definition, put

n

T(a) = ZT(CL”) = 7(Tr(a)). (1.10)

=1

Lemma 1.1.5. Let A be a C*-algebra, let T be a trace on A, and let p, q be projectors
in My(A). Suppose that p is Murray—von Neumann equivalent to q, i.e., p ~ q; then,

7(p) = 7(q).

Proof. The claim follows from the definition of Murray—von Neumann equivalence

and the trace property. O

Suppose that [plo € Ko(A), and let 7([plo) = 7(p). From Lemma it follows
that the value 7([plo) is well defined.

There exists a natural trace 7 on the C*-algebra Aé”) such that if a € Aén) is an
element of the form (.2), then 7(a) = ao. In the rest of the paper, 7 will denote this
natural trace on A" and its extension to M, (A(g")) and K (Aén)).

1.1.6 Chern character

The map 7: K (A(@")) — C is useful, because it allows us to distinguish between
different classes of projectors. There is an analogous map, serving the same purpose

for the odd K-theory. This map is Ch': K; (Aé")) — C", defined on the classes [a] of
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smooth invertible elements a € Inv (A((,n)> with
Chy([a]) :T(a_léka) , ke{l,...,n}. (1.11)

Substituting a = U; we get
Chy,([U;]) = 6. (1.12)

This map is a component of the Chern character. In the context of noncommutative
geometry, the Chern character was introduced by Connes; see [5] (see also the English

translation [4]) and [6].

1.1.7 Elliott’s paper

Elliott’s 1984 paper [10] considers noncommutative tori algebras Aé”) as obtained
from a pair (G, 0), where Z" ~ G C Inv (A(g"))/(C* is the abelian group, generated by
classes of Uy, k = 1,...,n. Let U, for g € G be U;, where g represents the class of
Ur. Then, map 0: G A G — R is such that U,U), = 2@ "W, U,. The data (G,0)
is indeed sufficient to reconstruct the algebra. In order to do this, one has to choose
a: G — T such that

a(g, h)a(h, g) = ¥, (1.13)

set

Aén) = AG’Q = O*<{UQ}QGG | UgUh - Oé(g’ h)Ug+h> ) (114)

and prove that the algebra doesn’t depend on the choice of « satisfying ((1.13]). Here,
C*(generators | relations) is the universal C*-algebra, defined by the given genera-
tors and relations. Main results from the Elliott’s paper can be summarized in the

following theorem.

Theorem 1.1.6. There is a natural isomorphism K, (Aé")) ~ AG. Under this iso-

morphism:

1. Ko(AY) =~ AvnG, Ky (AJY) ~ A*4G;
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2. 7 =Ch': K, (Aé")) — R corresponds to exp,(0);

3. Ch': K, (A(")) — G ®z R corresponds to 1 A exp,(0);
4. Ch: K, (Aén)) — AG ®z R corresponds to exp,(1 A 6).

In particular, it follows from Elliott’s paper that
OB (K1 (A)) = 22 + 202, 015, b12). (1.15)

This fact also follows from our construction (see Subsection [1.2.7)).

1.1.8 Pimsner—Voiculescu 6-term exact sequence

The main tool in the K —theory of noncommutative tori is the Pimsner—Voiculescu
6-term exact sequence. Let A ) be a noncommutative torus algebra, and let A(n Y
denote its C*-subalgebra, generated by Uy, ..., U,_1. Note that only (n—1) x (n—1)
submatrix of 6 is actually used as parameters for this subalgebra, so we are slightly
abusing the notation. Let i: Aé"_l) — Aé") be the standard embedding. It follows

from Pimsner—Voiculescu 6-term exact sequence that there are the following 2 short

exact sequences, relating K-theories of Aé”_l) and Aé"):

00— K, (ATD) 2O e (407) 2 gy (ADD) o, (1.16)
00— Ko (AT ) 0 gy (400) 0 K (A8D) o, (1.17)

Using induction, it follows that

Ko(AY) ~ 72", Ky (A]Y) =72 (1.18)
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1.1.9 Rieffel projector

The generators of K, (Aég)) can be chosen to be [Ui]y, [Us)1, [Us]i, and [a]; with
a € IHV(Aé3)>. The first 3 generators are given by “one-letter” formulas, but describing
the last one explicitly requires some work. A similar situation exists with K (AéQ)):
it is generated by [1]o and [Py, where Py is the Rieffel-Powers projector, introduced
in [I9] (see also its discussion in the textbook [9]). To keep our introduction self-
contained, and to introduce the notation, we provide, following [I9] and [9], the
description of the Rieffel projector here. We also note that from the construction
below, it follows that Py can be chosen to lie in .Aéz). Computations below are done
in Aé2). The antisymmetric 2 x 2 matrix 6 is determined by one number 615, so for
simplicity, we will write 0 instead of #15. The algebra AéQ) depends only on the class
0+7Z of 0 in R/Z, and the Rieffel projector is defined for § € R\ Z, so we will assume
6 € (0,1). Weset U= U, V = U, soUV = e¥™VU. Let’s search in Ay for a
projector of the form

Py = h(U)V* + f(U) + g(U)V. (1.19)

Here, f,g,h: S' — C are functions from the unit circle to the set of complex numbers.
By definition, Py, given by (1.19)), is a projector if and only if it satisfies the equalities
Py = P; and P} — Py = 0. Conjugating (1.19)), we get

Py = g(e¥™U)V* + f(U) + h(e >™U)V. (1.20)
Therefore, the projector Py, given by ([1.19)), is self-adjoint if and only if

fz) = f(2), (1.21)
h(z) = g(e*™z). (1.22)

Thus, we can take a note that f should be real-valued, and replace h with its expres-

sion in ([1.19). We get

Py = g™ U)WV + F(U) + g(U)V. (1.23)
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1 e27r16 (,27”6) @2”’(9+6)

Figure 1.1: f(2) and g(2).

We note that P} — P is automatically self-adjoint. Therefore, it is enough to

require that terms with non-positive powers of V' vanish. We get

P} — By = (e 0)g(e " 0) (V) + gl 00) ((#00) + F(U) = 1) V'
(9(E0)g( ) + g(U)g(U) — FU)(1 = FU)) + (. )V + (. )V (124)

Fix any § € (0, min(#,1 —#)). As shown on Figure we ask f to be a function
St —[0,1], s.t. f(e*™)is0fort € [-1460+0,0], 1 for ¢ € [, 6], and it changes contin-
uously from 0 to 1 and vice-versa on the rest of the circle. Moreover, we require that
f(e2mH0) = 1— f(e*™) for t € [0,0]. Then, we set g(e2™) = /f(e2m)(1 — f(e2mit))
for t € [0,0 + d], and 0 otherwise. For such choice of f and g coefficients of (V*)?, V*
and 1 vanish in the expression for Pf — Pp. Coefficients of V and V? will then

vanish automatically, since Py = Fj.
We compute 6y Py and oy FPy. We recall that derivations oy = 6; and oy = &y of
Ay are defined by

opU =U, oyV =0,
(1.25)
5VU = 07 5‘/‘/ == V

Let ¢ denote the derivative of g along the circle, so that

. - 1 0 : .
g (e’™%) = Q_M%g (e*™%), g(z) =2

oug(U) = g(U).  (1.26)
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Then,
Sy Py = g U)WV + f(U) +4(U)V.
’ (1.27)
Sy Py = —g(e™U)WV* + g(U)V.
Later, in Subsection [1.2.5] we will investigate a “twisted” version of this projector,

which still gives the same class in K-theory.

1.2 The 4th generator: semi-explicit formula

In this part, we construct the 4th generator of K; (Aé?’)), using the Pimsner—Voiculescu

short exact sequence. A similar approach was used by Rieffel in [20], proof of 8.2].

1.2.1 Pimsner—Voiculescu lemma

In order to construct the 4th generator, we will use the Pimsner—Voiculescu exact

sequence (|1.16)):

§PV

0— &y (AS ) B ey (A0Y) 2 Ky (ASY) — o, (1.28)

The map ;" comes from the index map in the 6-term exact sequence of K-theory,
so we call 6TV an index map. Since K, (Aé")) ~ 7Z* ', it has 2"~! generators. From
this sequence , we see that in order to list all generators of K (Aé”)), it is
enough to list all 272 generators of K; (A(g"_l)) and any preimages for each of 272
generators of K| (Aénil)). If we proceed inductively to compute explicit formulas
for generators of K (Aé”)) and K (Aé”)), then on the n-th inductive step, we will
know 2"~2 generators of K, (A(O")): these are images from K, (Aé"_l)). It is harder
to find explicitly preimages of projectors under the index map. We will soon see
that [U,]; € — (5fv)_1 ([1]o) (it directly follows from [I7]). This gives n out of 2"~1
generators, which solves the problem of finding all generators for n = 1,2. The rest of
this section is devoted to the construction of a preimage of the Rieffel projector, i.e.,
of a, satislying [a]; € (5fv)_1 [Pp,,)o. This will give n + (3) out of 2"~ generators,

so it will give all generators in the case n = 3,4. Now we give the key results from



17

[17], allowing us to work with the index map.

Lemma 1.2.1. Let F be a projector in M,, (Aghl)), and let
a=(1-F)+ FaU'F € M, (Ay"), (1.29)
where x € M™ (Aé"fl)) is such that a is unitary. Then, §7V[a], = [F]o. Moreover,

K, (Aén)) is generated by classes [a|; of unitary elements of the form (1.29).

Note that the condition “a given by (1.29)) is unitary” is a nontrivial condition on
x and F.

Proof. The last statement, saying that classes of unitary elements of the form ([1.29))
generate K (Aé”)), is the lemma 1.2 of [I7]. The first fact is stated in the proof of
Lemma 2.3. To prove it, one needs to trace the definition of the index map 67V, and

use the definition of the index map from the 6-term exact sequence of K-theory. [

1.2.2 Adapting the Pimsner—Voiculescu lemma

Now we will adapt the lemma above to fit our specific needs.

Lemma 1.2.2. Let F' be an projector, and x be a unitary element in M, (Aénfl)),
Assume that they satisfy U FU, = x*Fz, and let a be the element of the form (1.29),

constructed from these F' and x.
1. a is unitary;
2. 67 V]aly = [Flo;
3. Chj(a) = 7(0;(x)2*F) for j=1,...,n—1;
4. Ch}(a) = —7(F).

Note that in the lemma we use A instead of A: we require both = and F' to be

smooth.
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Proof. 1. By substituting (1.29), we get that a*a = (1 — F) + FF,F and aa* =
(1 - F)+ FFyF, where

Fy, = Uy FaU = U, U FU,U* = F, (1.30)

Fy = 2UFU,z" = xa* Fax™ = F, (1.31)

so, indeed, a*a = aa*.

2. Follows from the previous lemma.

3. In the computations below, we will use the following properties of the trace 7:
T(yz) = 7(zy) and 7(;(y)) = 0 for any y,z € M, (Aén)> and any j € {1,...,n}.

From these, it follows that 7(F'0;F) = 7577(9;(F™')) = 0. For j € {1,...,n — 1},

substituting (1.29) into (1.11)), and using a=! = a*, we get

Chi(a) = 7(=(1 = F)0;(F) 4+ FU,z*F§;(FaUF)) =
T<—(1 — F)§;(F) + FU,a" F§;(F)zU: F+
FU,a*F8;(x)UF + FUnx*FmU;(Sj(F)) -

T((—(1 — F)+ U FU,a* F + FU,2" FaU?)8;(F) + Ul FU,a" 5, (x)). (1.32)
Now, we use U FU, = 2" Fz to get

W (-0 1+ £+ {8+ e i) -

T((—1 +3F)6,(F) + x*Fdj(x)) = 7(6;(x)2"F) (1.33)

as desired.

4. Similarly,
Ch, (a) = 7(FU2*F6,(FaULF)) = —7(FU,2*FaU}F) = —7(F). (1.34)

]



19

1.2.3 Homotopy and unitary equivalence

Let A be a C*-algebra, and A C A — its Fréchet subalgebra, containing the unit of A.
Let {F} }+cjo1] be a family of projectors in A, such that the function ¢t — F;: [0,1] = A
has a continuous derivative. The goal of this subsection is to informally construct
a unitary z € A, s.t. F; = x*Fyr. In the next subsection, we will formalize the
answer using Araki expansionals (see [I]), and prove that it indeed satisfies the desired
properties and solves the equation F; = x*Fyz. Our construction is inspired by the

following result from the K-theory of C*-algebras from [3, Proposition 4.3.2].

Lemma 1.2.3. If e, f are projectors with ||e — f|| < 1, then z ez = f with z =
(2e = 1)(2f =1)/2+1/2, ||lz = 1| < [le = f]].

Naively, one may want to use this lemma with e = Fy, f = F} and take x = z,
where z is given by lemma above. There are two problems with that. First, we don’t
know, whether ||F} — Fy|| < 1 or not, and, second, z given by the formula above may

fail to be unitary. Instead, we will try to construct the family {z;};cp1] s-t.

Ft = JIIFoiEt, (135)
and then take x = x;. Assuming z; ' = x}, we get
Fre = (0 wye) By oy (1.36)

Then, we try to use Lemma with e = F, and f = F},. to get an expression for

r; 2y, assuming ¢ is small. We get
J,’t_lxt_,_g =1 + (2Ft — 1)8tE5 + 0(52). (137)

Using the limit € — 0, (1.37)) gives
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Together with the initial condition xg = 1, that should describe ;.

1.2.4 Araki expansionals

The Araki expansional [I] is an object, which is supposed to solve the equations of

the form (1.38). Here, we slightly adjust the definition from [I] to fit our purposes.

Definition 1.2.4. Let A be a Banach algebra, and let f: s+— f(s): [a, 5] — A be a

norm-continuous function. Define

Fxp, (/f; f(s)ds) _i/jdtl /: dtz.../;"l dtf(t) . fh).  (1.39)

If f: [a, ] = A is piece-wise continuous, s.t. it is continuous on [t;, ;1] for a =ty <

t; <--- <t =p, we define

Exp, < / " f(s)ds) ~ Bxp, ( / f<s>ds) - Exp, ( / f(s)ds> C o (140)

These two definitions agree with each other; i.e., if f is continuous on [«, /3], the
second definition gives the same result as the first one. The integrals are well defined,
and the sum in converges absolutely. Moreover, makes sense and gives
the same result for a piece-wise continuous function, as .

We are interested in the case when A is a C*-algebra, and f takes values in its
Fréchet subalgebra. In this case, Exp, (ff, f(s)ds) is defined to be an element of

A, and we want it to be element of A. We have the following lemma.

Lemma 1.2.5. Let A be a C*-algebra and A be its Fréchet subalgebra, for which
the inclusion A — A is continuous. Let f: [a, 5] — A be a piece-wise continuous

function (with respect to the Fréchet topology on A). Then, Exp, (ff, f(s)ds) € A.

Proof. From the definition ((1.40)), we see that it is enough to show the lemma in the
case when f is continuous. In this case, the integrals in (1.39)) are defined in A, and
since the inclusion A < A is continuous, have the same value in A, as they have in

A. Similarly, the sum in (1.39)) is absolutely convergent in any of the seminorms on
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A and, by the same argument, converges in A to the same value, as it does in A.

Thus, the result of (1.39) belongs to A. O
We also need the following lemma:

Lemma 1.2.6 ([I, Proposition 2|). If f: [a, 8] = A is a piece-wise continuous func-

tion, then fort € («a, 8), we have

8, Exp, ( / . f(s)ds) — Fxp, ( / . f(S)dS> 7). (1.41)

Comparing (1.38)) and (1.41)), we propose the following solution for x;:
t
xy = Exp, (/ ; (2F — 1)85Fsds> ) (1.42)
0

It remains to show that x; satisfies the desired properties.

Lemma 1.2.7. Let A be a C*-algebra and A be its Fréchet subalgebra, for which the
inclusion A — A is continuous, and 14 € A; let Fy € A be projectors fort € [0,1] s.t.
the function t — Fy: [0,1] — A is continuous and piece-wise continuously differen-
tiable; and let x; be given by . Then, {xt}ico,) @5 a continuously differentiable
family of self-adjoint operators in A with xq = 1, satisfying (for all t, where
F; is differentiable) and (for all t € [0,1]).

Proof. 1t is enough to prove the lemma for the case of continuously differentiable
t — Fj: otherwise, we can apply the lemma to each segment.

First, note that x; is differentiable with respect to ¢, and satisfies , which
follows from ([1.42) using [I, prop. 2|. From (L.38), it follows that the derivative d,z;
is continuous. Equality xo = 1 follows from the definition of Exp,.

We then prove that x; is self-adjoint for ¢t € [0,1]. Let y, = (2F; — 1)0,F;. We

claim that y; = —y;. Indeed,

(yi +yi)/2 = (O Fy)(2F, — 1)/2+ (2F, — 1)0, F1/2 =

(O.F))F, + F,0,F, — O,F, = 0,(F? — F,) = 0,(0) = 0. (1.43)
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Let a; = x;z; — 1. We want to know that ay = 0, and
Oray = (0w} )wy + 2704y = Y7 T[4 + TFTLYr = Y[y + ey (1.44)

a; = 0 is a solution of this equation, so it remains to give some argument about
uniqueness of the solution of (|1.44)). We don’t know a suitable reference for that, so
we show directly that (1.44) implies a; = 0. Integrating, we get

t t
o < [ yza+ alds < [ 2u.llalds (145
0 0

We know that F}, z; and 0, F; are continuous. Therefore, ||la;|| and ||y;|| are continuous
on [0, 1], so there are C, Cy s.t. |la:|| < Cy, [Jye]] < Cy for all t € [0,1]. Thus, iterating
(1.45), we get

la:|| < CL(2C5t)F /k!. (1.46)

Thus, a; = 0, since the r.h.s. of (1.46) goes to 0 as k — oc.
Now we show that x, satisfies (1.35)). Similarly to the above, we let b, = =} Fyx; —
F;. We compute

Y F+Fuy, = (0,F)(2F,—1)F,+F,(2F,—1)(8,F,) = (0,F,)F,+F,(0,F,) = 8,(F?) = O,F,.
(1.47)

Therefore,
by =y Fy + Foyy — 0,F, = 0. (1.48)

Integrating, and using by = 0 we get b; = 0 as desired.

Finally, we have to prove that x; € A. To prove this, we note that the expression
inside the integral in ([1.42)) is, by assumption, a continuous function [0, 1] — A, and
Araki exponential of a continuous function with values in a Fréchet subalgebra of a
C*-algebra lies in that Fréchet subalgebra (because all the integrals and series in the
definition of Exp, converge in any of the semi-norms; see, e.g., formula (2.2) of [,

defining Exp,.). O
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Note that we can rescale the construction above and starting with a path { F; }ieim, 1y
get {¢ }reimy, ), given by

t
x; = Exp, </ : (2F — 1)8SFsds) , (1.49)

To

and satisfying
Ft = x:FTDxt, (150)

with the same technical conditions, as in Lemma [1.2.7]

1.2.5 Twisted Rieffel projector

Our next goal is to construct unitary = € Aénil), satisfying the conditions of the
lemma with F' = Py, , i.e. unitary x, satisfying Uy Py, U, = 2" P x. All the
computations will be done in the subalgebra of Aé"), generated by U;, U;, and U,,
which is isomorphic to Ag,s) for ¢ being the appropriate submatrix of 6. Therefore,
we will assume n = 3,1 = 1,7 = 2. We denote U = U;, V = U,, and W = Us.
Whenever the arbitrary n have to be restored, we will have to replace U = U; with
Ui, V = U, with U;, and W = Us with U,,. We will now join the Rieffel projector F,,
with its “twisted” version W* P, ,W by a piece-wise continuously differentiable path,
and obtain z; and x using and Lemma [1.2.7]

Let’s denote the torus action on Agf) by (, so that for s,¢ € R the automorphism
Bs+ of the algebra A((f) satisfies

Bei(U) = *™U, Bei(V) = >V (1.51)
Then, for all a € AéQ) C A((f), we have
Boys,0050 = W alWV. (1.52)

Note that f3,; only depends on the classes of s and ¢ modulo Z, i.e. on the point of the

torus R?/Z? hence the name “torus action.” Tt remains to join id = By with By, g,
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piece-wise smoothly, apply these automorphisms to F,,, and apply Lemma to
the obtained path in the space of projectors. This construction works for any path,
but we will choose a specific one to obtain a specific unitary . Note that we can
change 613 and 693 by any integer without changing the algebra. We will use that to

assume that both 63 and 6,3 are nonnegative, and choose the path {F;},c(o.77, where

T - 013 + 9237 Ft = 6t,0P912 for t e [07 013]7 F913+t = 6913,15P912 fOI‘ t e [07 023]'
(1.53)

Since the formula (1.49), we are planning to use for x = xp, contains 0,F;, we will

compute it. First, note that for a € Aﬁf) we have

0s(Bsra) = 2midy (Bsa) = 2mifsi(0pa), Ou(Bsia) = 2midy (Bsia) = 2mifs+(dva).
(1.54)

Therefore, using (1.27) and the definition of 3, we get

0y(BssPyy,) = 2mi <e*2”t§(e2”(912+3)U)V* . f'(e2ﬂ'isU> X eQﬂ'itg(eZM'sU)V> . (1.55)

at(ﬁ&tpeu) — 23 (_672Tritg(€27ri(012+8)U)v* + e27ritg<€27risU)V) ) (156)
Also, applying S, to the expression (1.23) for FPp,,, we get
ﬁs,tpé’lz — 6727ritg<e27ri(912+s)U>v* + f(e27risU> + 627Titg(e27risU>V (157)

Given these expressions, the following expression for z, obtained from Lemma [1.2.7]

is somewhat explicit:

013
T = EXpr (/ ) (2B8,0P912 - 1>85(ﬁ5,0P912)d8)
0

023
EXpr (/ ; (25913,15P912 - 1)8t(69137tp912)dt) . (158)
0

Alternatively, choosing a straight-line path, we get another solution z of W*F, ,W =
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x* Py,

1
T = EXpr (/ 3 (263913,5923P012 - 1)68(58613,8923P912)d5) : (159>
0

Note that one can continuously deform one solution into another (by deforming the

path), where deformation doesn’t leave the space of solutions of W* Py ,W = a* Py, z.

1.2.6 The 4th generator

Now, according to Lemma and the construction above, the 4th generator of

K (Aég)) can be written as [a];, where
a = (1 — P912> + P912CL’W*P912, (160)

where z is given by (L.58)). Later, in Section [1.3] we will give a much more simple and

explicit expression. Now, we will compute the value of Ch'([a],) for this generator.

1.2.7 Chern character

From Lemma [1.2.2] we know that
Chy([ali) = —7(Pp,,) = —b1a, (1.61)

and for j =1, 2,
Chi([a],) = 7(0;(z)x" Py,,). (1.62)

Since replacing = with Z in ((1.60) doesn’t change the homotopy class of a, it doesn’t

change the value of the Chern character. Thus,
Chi([a),) = 7(6;(Z)T* P,,)- (1.63)

Consider Z;, which is given by the same formula ([1.59)), except for the upper integra-

tion, which is replaced with ¢. Since Zo = 1, we have 7(0;(Z¢)7(Pp,,) = 0. We let
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ﬁt = Bt@lg,t923P9127 and gt = <2ﬁt — 1)@}7}, SO that aft = 515@ and g;: = —gt. We get
1 1
Ch(aly) = [ 0rr( @ Poit = [ (3G +85(E)7)T: P )t =
1 1 _
/ 7 (3,0,(§)7; Pay, ) dt = / r (5@ F) dt =
0 0
1 . 1 . . .
- / r (o) dt = —/ ™ ((2F, ~ DOF;F,) dt. (1.64)
0 0

From (1.54), we know that (9tﬁ’t = 2mi (0135Uﬁt + 9235Vﬁt>- Let

1
I = —2m’/ T <(2Ft - 1)31E5th> dt. (1.65)
0

Then,
Ch}([a]l) = 01311 + 09315, (1.66)

so it remains to evaluate I;;. Note that derivations dy and dy are invariant under

automorphisms f3, ;. Therefore, the expression in [;; doesn’t depend on ¢, and
Ilj = —2mT ((2P912 - 1)8[P9126jP912) . (167)

We have

]lj = —2mT ((2P912 — 1)8[P9125jP912) = 2miT (81P912(2P912 — 1)5jP@12) =

27T’iT ((2P912 — 1)(5jP91281P912) = _[jl- (168)

In particular, I;; = 0. So, it remains to evaluate I;o = —I5;. We could use the
explicit expression for P, ,, substitute it into the definition of I15, and evaluate the
trace. That would involve evaluating 4 integrals of products of functions f and g
from the definition of P ,. There is a simpler way to do so. From , we know
that I 5 is a smooth function of 05 for 612 € (0,1) (and doesn’t depend on anything

else). So, from now on, we will denote this function with I15: (0,1) — C, and write
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I12(012) instead of I 5. From the above, we know that

Chl([a]l) = (—923]12(912), 913]12(912), —012>. (169)

Lemma 1.2.8. I15(0) =1 for all 6 € (0,1).

Proof. Let’s consider a noncommutative torus with 615, = —613 = 053 = 6. Then,
noncommutative 3-torus algebra Aég) has automorphisms, induced by cyclic per-
mutations of U,V,W. Therefore, the image of Ch' in R? is symmetric with re-
spect to cyclic permutations of the components. On the other hand, it is equal to
73 + 7(—12(0)0, —112(0)0, —0).

Let’s consider the case of irrational § € (0,1), and consider the image of Ch'
modulo Z®. This image is generated by e; = (—I12(0)0, —112(0)0, —0). Let ey =
(=0, —12(0)0, —112(0)0) and ez = (—1I12(0)0, —0, —I12(0)0) be cyclic permutations of
e1. Due to the symmetry of the algebra with respect to cyclic permutations of 0;;,
we get e = +e; (mod Z3). But then, e3 = +ey and e; = +e3 with the same sign,
S0 €1 = te3 = ey = teq, and therefore, the sign is +. Then, from ey = €1, we get
ey — €1 = (ny,n2,n3). The first coordinate of this equation gives ny = I12(6)0 — 0.

Now, consider function n(f) = I15(0)0 — 6 defined for all # € (0,1). Since I15(0) is
smooth, this function is continuous. From the above, we know that at all irrational
points it takes integer values. This is only possible when n(f) = n; is a universal
integer constant. So,

To show that ny = 0, consider a non-commutative 3-torus with arbitrary 65, 613, 023 €

(0,1). For such A((f), we have
Ch! (Kl (Ag3>)) — 73 4 Z—023119(015), 13 110(012), —61s). (1.71)
By a similar permutation argument, this image should coincide with

ZP + Z(—023, 013112(023), —012112(03)). (1.72)
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Comparing the first components, we get
—9238 +m = —923]12(912) (173)

for some m € Z, s € {—1,1} (m and s might depend on 6,;). Substituting I, from
(1.70), and simplifying, we get

(1 — 8)923 +m + n1023/¢912 = 0. (174)

Choosing 63 and 015 s.t. 1, Oo3 and 0a3/0;5 are linearly independent over Q, we get

nlz(). ]

Thus, the values of the first component of the Chern character on the 4-th gener-

ator, described above, are

Ch([a],) = (—Oas, 013, —Or2). (1.75)

1.3 The 4th generator: explicit formula

1.3.1 Introduction

As we noted earlier, we can only work with the n = 3, i.e., with noncommutative
3-torus. As earlier, we let U = Uy, V = Uy, W = Us.

For this construction, we assume 615, 613 ¢ Z. This condition is a bit stronger, than
the condition from the previous section, where we required only 6,5 to be non-integer.
However, if only 0,5 is non-integer, we can choose generators U = U, Vo= Uv,
W= W, and perform the construction below. So, when we account for possibility
of a “change of variables” before performing the construction of a generator, both
semi-explicit construction above, and the explicit construction below, only require
one of 015, 013, 623 to be non-integer.

Given 69,613 ¢ Z, we construct an (explicit formula for an) element a € .Aé?’),

satisfying (1.75), and such that elements [U]y, [V]1, [W]1, [a]1 generates K, (Aé?’)) as a
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free abelian group (see Theorem [1.3.3).
Since the definition of the algebra Aé") is invariant under changing elements of
the matrix 6 by integers, and, as we agreed above, 019, 60,3 are not integers, in the

construction below, we assume that 619,613 € (0,1).

1.3.2 Ansatz

By analogy with the construction of the Rieffel projector [19] (its nice description

given in [21, Exercise 5.8]), we will try to search for a unitary a of the form
a= fo(U)W* + fL{U)VW* + fH(U)V + f3(U) (1.76)

for some continuous functions fy, f1, fo, f3: T — C, where T = {2 € C: |z| = 1}. For
such element a to be unitary, it has to satisfy aa® = 1 and a*a = 1. The following

lemma shows that it is enough to check only one of these 2 conditions.

Lemma 1.3.1. Let A be a unital C*-algebra with a faithful trace, a € A with aa™ = 1.
Then, a*a = 1.

Proof. From aa* = 1, we know by C*-algebra theory that a*a is a projector, too. Let

p=1—a"a. Let 7 be a faithful trace on A. We have
7(p) =7(1 —a*a) =7(1) — 7(a*a) = 7(1) — 7(aa*) = 7(1) — 7(1) = 0.

Since p is a projector, p > 0. Then, since 7 is faithful, from 7(p) = 0 we know that
p = 0. Thus, 1 = a*a. 0
Let’s look at the equation aa® = 1. We can write aa* in a polynomial-like form
1
aa* = Z i VIWI (1.77)

lvjzfl

with ¢;; being functions of U. Thus, the equality aa™ = 1 is equivalent to a system of

9 equations on functions of U. Not all of them are independent: one can see that the
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equation for ¢ ; is equivalent to the equation for c_; _;. Since the spectrum of U is T,
we can replace U with a variable z, and require the equations to be satisfied for any

z € T. We are left with the following system of 5 equations on functions fy, f1, f2, f3:

3
S Ih)IP =1, (1.78)
=0
f3 Py 70 6—27ri9132,) + 627ri923f2(z)f1 (6—2m‘913z) — 0’ 1.79

—~~ o~ o~
—_ =
oo oo
- O

~— O~ O~

e—27‘ri9122) + f2<2)f_‘3 (6_27”:0122) — 07

6271-1‘(0137912)2) =0,

=

— — — —
N

N— N— N— S——
ol

e—27‘r’i(913+912)z) — O

By construction, if functions f; satisfy these equations for any z € T, then aa* = 1

and, thus, a is unitary.

1.3.3 Smooth solution

We will now find a smooth solution of the system (1.78)—(1.82). We will construct

functions f;: T — C from functions fio: R — C via

filz) = Z fi2(2). (1.83)

tER: e2mit=2

Let’s choose 0 = 29 < 71 < 9 < 23 < x4 = 1 8.t. x3 — 013 = 21, 9 — 019 = x9. For

example, that can be done with
I = 912(1 — 613), Ty = 912, T3 — 1-— (1 — 612)<1 — 913). (184)

As a zeroth approximation to the functions f;5, we take indicator-like functions

fio: R = C, defined by

1 if$l§t<l‘l+1,
fro(t) = (1.85)

0 otherwise.
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If we use f;o instead of f;2, equations will be satisfied, but these are
not continuous, and, thus, can’t be applied to elements of a C*-algebra. To smoothen
them, we choose ¢ < min;—__ s(x;11 — 2;)/4 and a non-negative smooth function

w with support in [—e,¢] and integral equal to 1, denote with x the convolution

Jin=Jwx(fio)* (1.86)

Unfortunately, that will break equations (1.79) and (1.80]), for z replaced with
e*™; equation (1.79) for t € (x3 —e,x3+¢) and (1.80) — for t € (x4 — e, 24 +¢). To

be more precise, in each of the equations two products will be exactly the same, but

operation, and define

the coefficients will not add up to 0: 1+ e>™23 £ (0 and 1+ 1 # 0. To resolve this,

we tweak fs5; by setting
faa(t) = ™0 f4 (1) (1.87)

with any smooth function ¢: R — R, satisfying

€2m’<p(t) = _627ri923 for t < T3+ ¢, (188)

e2mie® — for t > x4 —e. (1.89)

That is, ¢(t) has predefined values (up to adding an integer) outside (x5 + &, 24 — €)
and has to smoothly interpolate in-between. It follows that ¢(z4) —@(z3) = —ba3+n,,
for some integer n,. Moreover, by making an appropriate choice of ¢ we can make
n, to be equal to any given integer. In order to fix a specific generator a, we will

later fix n, = 1. For [ = 0,1, 2 let

fi2 = fi1. (1.90)

By construction, functions f; o satisfy the following properties.

1. For any t € [—¢,¢], we have

|fro(z — )] = |fj2(z; — 1) and  |fio(wipn +1)| = [fia(zj +1)] . (1.91)
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2. fiat)=0fort & (x; — e, 2141 +€), | f12(t)| = 1 for t € [z, + €, 2141 — €]

3. For [ # 3, we have fi5(t) e Ry ={reR:r >0} forall t € R; f55(¢)31ers € R

for t < x3+e, f32(t)Sngm € Ry for t > x4 —e, where sjop, = —€2923 g5 = —1.

4. Functions t — | fi.»(t)|”> sum up to 1:

SO lfalt+ k)P =1, (1.92)

=0 keZ

Here, the last property follows from linearity of the convolution with w and equal-

ity wx1=1.

Lemma 1.3.2. Let fio forl =0,1,2,3 be any functions R — C, satisfying properties
1-4 above, and let functions f, be defined by (1.83) from these fio. Then, functions

fi satisfy equations (1.78H1.89).
Proof. Equation (1.78) follows from (|1.92)).

To show (L.79), notice that f3(z) may only be non-zero for z = e*™ with ¢ €
(3 — g,m4 + €), while fo(e ?"9132) may only be nonzero for z = 2™ with ¢t €
(xo+013—e, x3+¢) (here we've used that x1+613 = x3). Also notice that z9+6,3—¢ <
r3 —e < r3+¢e < x4 + ¢, and, since 613 = w3 — 11 > T3 — 9 > 4, we have
(x4 +¢€) — (g + 613 — €) < 1. Therefore, we don’t deal with two different values of ¢

2mit

giving the same value of z = ™ and the first term in (1.79) may only be nonzero

for z = €™ with t € (v3 —¢,23+¢). A similar argument shows that the same is true

for the second term of (1.79). Then, for t = 23+ t; € (3 — &,73 + ¢) and z = 2™,

using (1.83), we get
| f3(2) (e~ 2mifha ’ = [fs2(t)] - [fo2(t = Ow3)| = | fa2(xs + t1)| - [fo2(21 + 1),

‘f2 (e72m1s ’ = |fa2(t)| - | f12(t — O13)| = |foo(xs +t1)| - | fr2(z1 +t1)].

However, by Property 1 above, we get | f32(x3 +t1)| = | fi2(z1 + t1)| and | foo(z1 + 1) =
| fa,2(z3 4+ t1)|. Thus, the terms have the same absolute value, but by Property 3, they
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have opposite signs. So, they cancel each other.
Equation is satisfied by the similar reason.
Let us now show that is satisfied too. Let

a; = x| — €, by = x5 + ¢,

ay=x3—O13+0p—c=a1+bo—¢c, bo=x4—013+01a+ec=1+29—015+¢.

Then, the first term in (L.81)), fi(z), may only be non-zero for z = €™ with ¢ €
(ay,b1), while the second term f3(e?™(013=012)2) — with ¢t € (ag,by). Notice that
as —bi =21 —2x9g—2e>0and a; +1—by =23 — 29— 2 > 0. Thus, a; < b < as <
by < a; + 1. So, the product in (1.81]) is 0 everywhere.

A similar computation shows that is satisfied, too. O

1.3.4 Non-smooth solution

Although we will be working with a smooth solution, described above, one can deform
it to get a similar solution, given by simpler formulas, but lacking smoothness. We
assume o, ..., %4, € and n, are chosen as above. In this solution, functions f; for

[ =0,1,2 are given by

(V124 ( —2)/22)  if 2=t with ¢ € (1 — &, 21 + &),

1 if 2= e*™ with t € [, +¢,2101 — €],
fiz) = | (1.93)
V1/2 = (t —2141)/(26)  if 2 = €*™ with t € (2141 — &, 241 + €),

\ 0 otherwise.
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and f3 is given by

)
— exp(2mify3)\/1/2 + (t — x3)/(2¢)
if z = > with t € (x5 — &, 25+ €),
— exp(2mi(fag — ny) (x4 — € — 1) /(x4 — 33 — 2¢))

if z = e*™" with t € [x3 4+, 24 — €],

f3(2) =

—V1/2 = (t = 24)/(2¢)

if z = e*™ with t € (x4 — &, 24 + €),

otherwise.

(1.94)

1.3.5 Chern character

In this section, we compute the value Ch'([a];) for the element a constructed above.

Note that since unitaries, constructed in [1.3.3|and [L.3.4] are homotopic to each other,

they give the same class [a];, and, thus, the same value Ch'([a],). In the computation
below, we will use the smooth version.

Using the trace property of 7 and unitarity of a, we get

Chi([a),) = T(a'd;a) = 7((§;a)a®). (1.95)

J

Substituting a from (1.76)),

Chy([a]y) = Chi([als) = T((FL(U)VW* + fo(U)V)-
(fo(DW* + FLU)VIW* + L(U)V + [0)) =7 (|AO)] + | LO)]) =

/01 (‘fl(e%it)‘Q + }fg(ezmt)F) dt = (o — 1) + (v3 — 23) = 13 — 21 = O13. (1.96)
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Similarly,

Chy([a]y) = Chyy([a]1) =
= 7((fo(U)W* + fLO)VW) (fo(U)W* + fL{U)VIW + fo(U)V + f3(U))") =
T (‘fo(U)|2 + |f1(U)|2) = (.Tl — Io) + (.7}2 - ZL‘l) = T9 — T = 912. (197)

Finally,

Chi([a)y) = Chi([aly) = 7( (B fo(UDW* + (0w i (U)V W'+

(Ou f(U))V + (5Uf3(U)>) (fo(U)W* + AO)VW* + fo(U)V + fS(U))*) =

T <Z(5Ufl(U))ﬁ(U)> = % Zé(atfl72(t))ﬁ,2(t)dt =

1=0
1
21

ZA%((@fu(ﬂ)ﬁg(ﬂ — (8tﬁ,2(t))fl72(t)>dt, (1.98)

One can notice that for [ # 3 expression inside the integral is zero, and for [ = 3,
it may only be nonzero for t € (z3 + ¢€,x4 — €), where it is equal to 2midup(t) (see

(1.87))). Thus,
Chy([a]1) = Chy(lal1) = (@) — (x3) = —bas + ny. (1.99)
Thus, we have obtained,
Ch'([a]1) = (—bo3 + ng, b13, —b12). (1.100)
From now on, let’s fix a with n, = 0, so that
Ch'([a]1) = (—bo3, 613, —b12). (1.101)

Note that if at least one of 615, 613 and 0s3 is irrational, it follows from ((1.101])

that [U]y, [V]1, W], [a]1 generate K (A(gg)) as a free abelian group.
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1.3.6 The 4th generator and Pimsner—Voiculescu short exact

sequence

The main goal of this section is the following theorem.

Theorem 1.3.3. Suppose 0 ¢ M3(Z). Let a be given by (1.76) with functions f;
satisfying conditions of Lemma[1.3.3. Then,

1. 6FV([a]y) = [Py,,)o0, where Py, is the Rieffel projector;
2. K; (Aég)) is generated by [Uly, [V]1, Wi, and [a];.

Note that if 6 has at least one irrational element, then Theorem follows from

the previous section.

Proof. Construction of Pimsner—Voiculescu short exact sequence can be summarized

by the following commutative diagram.

Here, the first two rows are 6-term exact sequences, associated with short exact
sequences of C*-algebras. The last row represents the Pimsner—Voiculescu 6-term
exact sequence. All rows are isomorphic to each other. We use the diagram (|1.102])
for A = A((f), i.e., the C*-subalgebra in A((f), generated by U and V. Then, A x, Z is
Aég). We write a in the form

a=aW*+ as, (1.103)

where

a = fo(U) + L(U)V, ay = fo(U)V + f3(U). (1.104)
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Let @ € T be given by
a=aW' @S +a,®1, (1.105)

so that 7(a) = a.

Note that for any b € A((f) we have

Was) - bal) =W ®l) - (Was), Was) (Was)=1a1, (1.106)

(W®S) (WeS) =1 (1-P). (1.107)

That is, all commutation relations for W ® S are the same, as for W, except ,
where an additional P ® 1 is subtracted. If we have a computation (involving only
expanding products of expressions, polynomial in W and W* with coefficients in
AéQ)) in Aés), then we have the counterpart computation in 7, which is the same up
to replacement W — W ® S, except when we multiply W ® S by (W ® S)* (in this
order). In this last case, we should subtract P ® 1 from the result.

We know that aa® = 1. Therefore, aa* = 1, so a* is an isometry. We know that

a*a = 1. Therefore,
aa=1— (W) (a W)@ P=1-WajaW*® P. (1.108)

Note that in particular from ([1.108), it follows that Waja;W*, aja; and aja] are
projectors. From ([1.108]), we have

or([a]y) = [a@o — [@a = [o — [l - Wa'a;W* @ Plo = [Wata,W* @ Plo. (1.109)

Thus,
&1V ([aly) = [Waiar W]y = [aja1]o = [aralo. (1.110)

Now,

arai = (fo(U) + L)V)(fo(U) + HL)V) =V g (U) + go(U) + ¢:(U)V, (1.111)
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where

a(U) = fo (e72™"2U) f,(U), 90(U) = fo(U)]” + |AU)*. (1.112)

It is easy to see that ajaj is the Rieffel projector.
The second claim of the theorem follows from the first and the exactness of the

sequence ([1.102)) in K71(A x4 Z). ]
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Chapter 2

Differential calculus on
graded-commutative algebras,
assocliated with noncommutative tori

2.1 Graded algebras, modules and linear differential
operators

We use notation from [27], [14], [25], [26] for the constructions of differential geometry.
We also use the notation for the sign rule from [§]. Since our main goal is the
application of the construction to the algebra of noncommutative torus, we restrict all
definitions to the case of unital C-algebras, and use signs in U(1) = {z € C: |z| = 1}.

In general, one may use k-algebras for any field k, and any signs in £* = &\ {0}.

Definition 2.1.1. A grading group is an abelian group I' endowed with a bilinear
antisymmetric map A\: I' x I' — U(1). We say that C-algebra A is I-graded commu-
tative if and only if it is represented as a direct sum A = P, A, with Ay A, C Ay
for f,.g € G, and ab = A(f,g)ba for a € Ay,b € A,. If a € Ay, we say that a is a
homogeneous element of A of degree f, and denote its degree f with a = dega, so

that the commutation relation above can be written as

ab = \(a, b)ba. (2.1)

The Koszul sign rule allows us, given a definition involving commutative algebras,
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to construct a definition involving graded-commutative ones. To do that, one has to
take each equality of that definition, and choose a “standard” order of terms in prod-
ucts. Then, for every product-like expression, having a different order of terms, one
has to multiply it by a “sign,” corresponding to the permutation we have performed.
For example, if we have variables a, b, ¢, d, and choose the standard order to be abcd,

then the expression —3dbca have to be replaced with —3\(a@+ b+ ¢, d)A(@, b+ ¢)dbca.

Definition 2.1.2. Let A be a I'-graded commutative algebra. We say that M is
a (graded) A-module if and only if M is an A-module, endowed with a grading
M = @gef‘ Mg, s.t. AfMg C Mf+g.

In this work, all algebras are, by default, assumed to be graded-commutative and
unital, all modules are assumed to be graded. For any (I", \) as above, we can interpret

C as (I', A)-commutative algebra, by defining Cy = C and C, = {0} for g € I"\ {0}.

Definition 2.1.3. Let A be an algebra, and let P and Q be A-modules. Then, we
define Hom (P, Q) = Hom (P, Q) to be the module of graded A-linear maps from P
to (). That is,

Hom (P, Q) = @HomAyg(P,Q), (2.2)

gel’

Homay(P,Q) ={¢: P = Q: ¢(Pf) C Qq+r;
Vp1,p2 € P o(p1+ p2) = @(p1) + ©(p2);
Vp € P ¥V homogeneous a € A p(ap) = A(g,a)ap(p)}. (2.3)

The A-module structure is given by (ap)(p) = ap(p).

Let again A be an algebra, and P and () be A-modules. Note that P and () can
be re-interpreted as C-modules, and, thus, the definition above defines a C-module
Home(P, Q). It has two A-module structures: (a-¢)(p) = ap(p) and (a ‘g ¢)(p) =
M@, p)e(ap). We reserve the name Home (P, Q) for the module with the first module

structure (-) and denote the same set, endowed with the second module structure

('R): by HOszr(Pv Q)
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Note that Hom (P, Q) can be interpreted as a submodule of both Homc(P, Q)

and Hom (P, Q):

Homa(P,Q) = {p € Homc(P,Q) :Ya €A a-p=a-gp}.

(2.4)

Definition 2.1.4. Let A,V be homogeneous elements of Homc(P, P). We define

their graded commutator to be
[A,V]=AoV - XA, V)VoA.

The definition is extended to non-homogeneous elements by C-linearity.
It satisfies the following properties:

1. bilinearity:

A, V1 + Vo] =[A V1] 4+ [A, V], [A1+ Ay, V] =[A1, V] + [Ay, V],

c[A, V] = [cA, V] =[A,cV] for ¢ € C;
2. (graded) anti-symmetry:

[V, A] = —=A\(V,A)A, V];

3. (graded) version of Jacobi identity:

[V, [A, O] + MV + A, DO, [V, Al + MV, A + D)[A, [0, V]] = 0.

Alternatively, the Jacobi identity can be written as

(V. [A, O] = [[V,A],O] + AV, A)A, [V, 0.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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Definition 2.1.5. Let A be an algebra, let P, Q) be A-modules, and let a € A. Note

that a can be interpreted as an operator “multiplication by «” P — P and @ — Q.
Define d,: Home (P, Q) — Home(P, Q) with §,A = [a, A] = ao A—\(@, A)Aoa. For
a € A®", we define 0] : Home(P, Q) — Home(P, Q) with 6] o..o0 = 0a, 004,

We define the module of linear differential operators from P to @) of order < k with
Diff, (P, Q) = {A € Home(P,Q): Ya € AP*HD gE+HIA — 0} (2.11)

Define the module Diff; (P, Q) by replacing Home (P, Q) in (2.11)) with Hom& (P, Q),
so that Diff; (P, Q) has the same elements, as Diff, (P, Q), but uses - for its A-module

structure.

Note that Diff_;(P, Q) = 0, Diffo(P, Q) = Hom (P, Q), Diffy(A, Q) = @, and
Diffk+1(P, Q) = {A S HOTTL(C(P7Q)I Ya € Ad,A € lefk(P, Q)} (212)

Moreover, (2.12)) will remain true, if we replace “Va” with “¥ homogeneous a”.
Lemma 2.1.6. If A € Diffy(P,Q), V € Diff)(Q, R), then V o A € Diff; (P, R).

Proof. 1t is enough to prove the lemma for homogeneous A and V. We use induction
ink+1. If k=—1orl=—1, then VoA =0 € Diff,,;(P, R). Now, assume k,l > 0,

and let a be a homogeneous element of A. Using the definition of J,, we get
5.(V o A)=6,(V)o A+ A@, V)V od,(A). (2.13)

By induction hypothesis, the right hand side belongs to Diff,; (P, R), so Vo A €
Diﬁk+l(P, R) by " ]
Lemma 2.1.7. If A € Diffy(A, A), V € Diff;(A, A), then [V, A] € Diffyr_1 (A, A).

Proof. We prove the statement by induction in £+ 1. If [ = 0, map V has to coincide
with multiplication by some a € A. We get

[V, A] = [0, A] = 6,A € Diff,_ (A, A). (2.14)
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The same argument proves the lemma for £ = 0. Now, assume k,[ > 0, and notice

that the inductive step follows from the Jacobi identity:

5.([V,A]) = [a, [V, A]] = [[a, V], Al + M@, V)[V, [a, A]] = [0.V, Al + A(@, V)[V, 6,A].
(2.15)
Il

2.2 Jet Spaces

Definition 2.2.1. Let A be an algebra, and let P be an A-module. Define a module
J¥(P) together with a k-th order differential operator j,: P — J*(P) to be a repre-
senting object of Diff;,(P, ). Thus, if J*(P) exists, Diffy (P, ®) ~ Hom 4(J*(P),e) and
Ji is the preimage of the map id . py € Homa(J"(P), J*(P)). We say ji: P — J*(P)

is the universal differential operator of order < k, acting on the module P.

JE(P) (2.16)
P Q

As illustrated by the diagram above, the definition of (ji, J*(P)) is equivalent to the
following statement: for any A-module ) and any V € Diff(P, @), there is a unique
oy € Homa(J*(P),Q), satisfying the equality ¢y o jr = V.

Lemma 2.2.2. The universal differential operator ji: P — J¥(P) exists for any

algebra A and any A-module P.

Proof. Consider the module j’“(P) = A ®c P, with the multiplication defined by
a(b® p) = (ab) ® p, and consider a C-linear map Gt P> J*:p > 1®p. Let
I be the submodule of J*, generated by {8,(jx)(p) : a € A®*+D p € P}. Then,
let J*(P) = jk/[ with ji induced by jr. Note that submodule I introduces only
those restrictions, which are satisfied by any element V € Diff, (P, Q). Therefore,
(j, J¥(P)) represents Diff; (P, ). O
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Lemma 2.2.3. Functor Diff] (e, R) is representable for any A-module R.

Proof. Let ) be an A-module, and consider the map

where @y is given by

ov(q)(a) = (g, a)V(aq). (2.18)

The following computations check that a — ¢v(¢)(a) is a differential operator, and

that V — @y is a homomorphism:

(5 (2)))(a) = blev(g)(a)) — Ab, V + @) pv(q)(ba) =
NG @)b(V(aq)) — A(b, VING, @)V (bag) = A7, @) (5,V)(aq) = ps,v(q)(a), (2.19)

(b1 V)(@)(@) = A(@ @) (b-r V)(ag) = A(@ D)A(D, V)V (bag) =
AB, YV + Dev(a)(ba) = (b-r (pv(9)(a) = (bpv)(@)(a). (2:20)

We have constructed a well-defined natural transformation of functors, given by the

family of maps V — ¢y. Its inverse is given by V — V,, where

V() = ¢(g)(1). (2.21)

0

Diff;’ (1) (2.22)
AR

Definition 2.2.4. Asillustrated by diagram ([2.22]), we denote the representing object
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of Diff{ (e, R), given by the lemma above, with (Dy, Diff} (R)), so that

Diff{ (R) = Diff{ (A, R), D, € Diff,(Diff{ (R), R), Dy(V)=V(1), deg(D;) = 0.
(2.23)

Definition 2.2.5. Composition D; o Dy,: Diff} (Diff;” R) — R is a differential oper-
ator of order < k 4 [. Therefore, by the universal property (2.22), we get a homo-
morphism Diff} (Diff” R) — Diff;, R. By definition, let’s call this homomorphism

“universal composition” ¢ .

Universal composition is associative in a certain sense (see [14, page 22]), and

generates a natural transformation of functors Diff; (Diff;” e) — Diff; ;:

Diff; (Diff;” R) —=~ Diff; R (2.24)
Cz,kl JDZ
s+ Dk+l
Diff , R R

Given any pair of differential operators V € Diff{ (P,Q),A € Diff/ (Q, R), we

have the following commutative diagram:

\ / \ / o
lefJr lefJr Dy
leer Dlﬂ?Jr Diff;rl R.

Here, maps, generated by the universal property (2.22)), are marked with ¢, or ¢(e).

One also has

Cl7k‘ O (p((pA O Dk‘) @) (IDV = (IO(A ©) V) (226)

Finally, we introduce the standard bijections i*~ and ¢, changing the module
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structure:
i~ : Diff; (P, Q) — Diffy(P,Q), i, ": Diff} (P, Q) — Diffx(P, Q). (2.27)

We have the following observation.

Lemma 2.2.6. i}~ and i, " are differential operators of order < k. Operator D; =

Dy, 0i™" is a homomorphism.

Proof. The first statement can be shown by inductively applying
(6az_k‘__)(A) = ili__ <5aA)a (5azlz+)(A) = _Z.I;—i_((saA)' (2'28>

The second one can be obtained by unrolling the definitions above, similarly to com-

putations in Lemma [2.2.3 ]

2.3 Differential forms

In this section, we define differential forms over a graded-commutative algebras. Es-

sentially, we repeat the definitions from [25] and [26], and add necessary signs (e, e).

2.3.1 Definitions

Definition 2.3.1. Let A be an algebra, and P be an A-module. We let

D(P) = Da(P) = @(Da(P)), C Home(A, P), (2.29)

gerl

(Da(P))y = {€ € Home (A, P): €(ab) = A& @)ag(b) + A€ +a,b)be(a) } . (2.30)

We say that Da(A) is the module of derivations of algebra A, and D4(P) is the
module of P-valued derivations of A. The condition in the right hand side of (2.30)
is called the (graded) Leibniz’s rule.
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One can check that Da(P) = {£ € Diff1 (A, P): £(1) = 0} = ker(Dy). Similarly
to Lemma [2.2.2] one can check that the functor D, is representable. We denote its
representing object with (d, A'(A)), and call it “the module of differential 1-forms.”
This definition can be extended to define higher differential forms. To do this, we will
define Dy, and let (d, A¥(A)) to be the corresponding representing objects. Then, the
algebra of differential forms will be A(A) = @), A*(A). If A is graded by (', \),
then A(A) is a (I' ® Z, \y)-graded-commutative algebra, where \i(g + n,h +m) =
A(g, h)(=1)"™. By slightly abusing the notation, we will use letter \ instead of A;.

Definition 2.3.2. Let S be any subset of A-module Q). By definition, let D(S C
Q) be the set of those derivations £: A — @Q, for which £(A) C S. Similarly, let
Diff (S € Q) be {A € Diff{ (Q): A(A) C S}. We inductively define functors Dy and
P with

Do(Q) = @, Pr(Q) =Q,
D (Q) = D(Di(Q) C P (Q)), Pi(Q) = Diff] (Dy(Q) € PL(Q))-

The module structures on Dy(Q) and Pg(Q) are inherited from Q. For k > 1 the

module structure on Dy(Q) is given by

(ag)(b) = a(&(0)), (2.31)

where the multiplication on the right-hand side is the one from Dj_1(Q). The module
structure on P} (Q) is inherited from Diff *(P} ,(Q)). We define the modules Px(Q).

These modules coincide with P} (Q) as abelian groups, and have the module structure,
defined by (2.31).

One can check that these modules are well defined. The following lemma performs

the least trivial of these checks.
Lemma 2.3.3. Multiplication in Dy(Q) is well defined.

Proof. We prove the lemma by induction in k. There is nothing to check for Dy(Q) =
@, so consider the multiplication in Dy 1(Q) for £ > 0 and let £ € Dy1(Q). We
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have to check that a& € Dy41(Q). Note that (af)(b) = a(&(b)) € Di(Q). It remains
to check that a¢ satisfies the Leibniz’s rule. For k = 0, i.e. £ € D1(Q), the statement
follows from the fact that Dy(Q) = Q = Pd(Q), so D1(Q) = D(Q). For k > 1, we

have

(a)(be) = a- (§(b0)) =a- (MEDD r (€0) + ME+5,Der (€)).  (232)

In the last expression, - is the multiplication in Dy (Q), and -g is the multiplication in
PHQ). As follows from their definitions, these operations commute with each other
up to the standard sign. That is, for any V € Hom¢(P, @) and any homogeneous

a,b € A, one has

a-(b-rgV)=X\a,b)b-g(a-V). (2.33)
Applying this to (2.32)), we get

(a€)(be) = M€ +@,0)b g (a- (&) + AE+ b+, E)c - (a- (b)) =
ME+a,0)b-g ((a8)c) + ME+b+7,8)c -k ((ad)b) (2.34)

as desired. ]

We can iterate the construction above and give the following definition.
Definition 2.3.4. Define, inductively in k, functors Dy(D; C P}) and P (D; C P)")
with

DO(Dl C ipf) = Dl, T(T(Dl C :PZJF) = :PZJF,

Dy1(Dy C Pf) =D (Dp(D, C PF) C PEH(D, C P)),
:]32_+1(Dl - j)?_) = DIH‘T (Dk(Dl C iP?_) C sz_(Dl - (P?_)) .

Module structures and functors Py(D; C P;) are, then, defined in the same way, as

above.
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This definition doesn’t add anything new, as noted in the following lemma.

Lemma 2.3.5.

Dk(Dl - ?ZJF) ~ DkJrl, ?Z(Dl C iPlJr) ~ iPZ—i—l’

ka(Dl C ZPZJF) ~ iPkJrl.

Proof. The statement of the lemma follows from the definitions above by induction

in k. O

Corollary 2.3.5.1. There are natural inclusions

ot Die1(Q) = Di(Difff(Q)), g1t Di(Q) = Di(Di(@Q)),

where oy, s a differential operator of order <1 and oy, is a homomorphism. Grading

degrees of both inclusions are equal to 0.

Proof. For [ = 0, the second inclusion is trivial, so we assume that [ > 1. Due to

Lemma [2.3.5] it is enough to find the inclusions

dr: Du(D(Q) C Diff{ (Q)) = Dp(Diff{ (Q)), &kt De(Di(Q) € PH(Q)) = Di(Di(Q))-

For k = 0, we take ag = i1_+|D(Q) (see Lemma [2.2.6)), and ag; = idp,(g). Then, define

inductively oy, and ay,; by
1§ = g 0§, Q11,6 = Qg 0§, (2.35)
Note that a4, is a differential operator of order < 1, because

((0a0ca11)€)(b) = (dadea)(§(D)) = 0. (2.36)

where the last equality follows from induction hypothesis. It remains to check that
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maps ay1, are well defined; i.e., agi1,€ € Diy1(Di(Q)). We have

(@r+106)(ab))(€) = (@ra(E(ab))) () = (@ra(€(ab))) ()= A(E+atd,e)e (dni(é(ab))) (1) =
(@ri(6(a) 0 b+ M@ D)ED) 0 )) ()~ ME+a+D, E)c (Gra(€(a) o b+ M@ BEWD) 0 @) (1) =
ara(€(@))(be) + A(@, b)ara (E(b))(ac) = ME +a +b,)cd(€(a)) (b)—
ME+7a+ b, N, b)cdir(£(b))(a). (2.37)

Here, oa is the composition with a multiplication operator by a. Note that these
multiplications are defined differently for £k = 0, [ > 1 and k£ > 1. However, the
computation (2.37) works in both cases. By induction hypothesis, ax;({(a)) and
a1 (€(D)) satisty the Leibniz’s rule, so the above equality simplifies to

(k- 12€)(@b))(e) = A + @, )bak(£(a)) () + A& Dadri(§(b))(c) =
(ME -+ D)bl@s11) (@) + ME Da(@ri1:) (1) ) (€)

as desired.
An alternative approach to prove this corollary can be found in |26, page 251,

Corollary 1]. O

Definition 2.3.6. By definition, let (dy, A¥(A)) = (dy, A*) be the representing object
of the functor Dj. Let d: A*¥ — AF*! denote the image of the universal operator

dp+1 € Dy AF*! under

dii1 € Dy AP0 ES D (Dt AMY) ~ Hom 4 (AP, Difff A*1) ~ Diff} (AF, AFH1).
(2.38)

The wedge product is the image of dy; under

dk—i—l € Dk_H(Ak—H) O‘ﬁ; Dk(Dl(Ak+l)) ~ HomA(Ak,HomA(Al, Ak+l)) ~
Hom 4(A* @ A') AR, (2.39)

We introduce A = @;°, A’ with A as the multiplication and I' ® Z as the grading
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group. An element a € A of grading degree ¢ € I' is now assigned a new degree

(9,1) €T ®Z. Let d: A — A be the operator, constructed out of operators d: A¥ —

Ak—i—l

Later, in Theorem we will prove that d? = 0.

In the following lemma, for any A-module () and any nonnegative integer k, let
1 be the natural isomorphism Dy(Q) — Hom (A, Q). For example, for Q = A* we
have 9 (dy) = idpx.

Lemma 2.3.7. For any module R, we have the following commutative diagram:

(75

D1 R Dy (Diff R) (2.40)

| I
Arrp(A)

Hom 4(AM1, R) —I27°0  Difff (A*, R) Hom 4(AF, Difff R).

D1 og<—g

Proof. We first notice that it is enough to show the commutativity of for
R = A*! on element dy,, € Dy A*L. Indeed, if € € Dy R, then (§) €
Hom (A1 R). Since 9, oy, and other arrows on the diagram are natural trans-
formations of functors, we can obtain (using ¥ (§)) join each node of the diagram
to the corresponding node the same diagram, but with R replaced with A+,
thus obtaining a “cube” diagram. For example, for the vertical arrow ¢ on the left of

(2.40), we get a commutative diagram

| |

Hom o (AT AFFL) o Hom A(A*1 R).

From the commutativity of this diagram (and bijectivity of ), we get that & =
Di1(¥(€))(dgs1). In this way, the commutativity of the diagram ([2.40]) on &, indeed,
follows from the commutativity on dj; of the same diagram with R = D;;A**1.
That commutativity on dy, 1 € Dy A¥is the equality ¢ (ag(dry1)) = ©(¥(dpy1)o
d), and it follows from the definition of d and the equality 1 (dy41) = idpr+1. O
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2.3.2 Explicit description of D

Take £ € Di(Q) and ay,...,a; € A. Define

5(&1,...,a1) = 5(@1)(&2)...((11) € Q (242)

Then, the following lemma holds ([14, page 28|).

Lemma 2.3.8. Let & be a homogeneous map A" — Q, C-linear in each argument.

Then, £ € Di(Q) (in the sense of (2.42)) if and only if it satisfies the following

properties.

1. [skew-symmetry| For each m = 1,... 1—1 and homogeneous a,,, a1, we have
E(ar, .y my Qmaty -y a1) = =Ny Gna1)E(A1, ooy Qg1s Gy - - -5 Q).
2. |multiderivation]| For each m =1,...,1 and fized homogeneous a; (j =1,...,1;

J#Fm) map am = N>, @5y am)é(ar, ..., a) € Q is a derivation of grading
degree deg(&) + >, deg(ay).

The A-module structure on D(Q) is given by (a)(aq,...,a;) = a(§(ay,...,a)).

Proof. For £ € Di(Q) with ! > 2, we get 0 = £(ab)(1) = £(a)(b)+A(a, b)£(b)(a). Thus,
€ is “skew-symmetric” in the first 2 arguments. Applying this fact to £(ay) ... (am-1) €
Di_ni1(Q), we get the (graded) skew-symmetry.

The multi-derivation property for m = 1 follows from the definition of oy ;—1: D)(Q) —
D(D;-1(Q)). For m > 1, it follows from the skew-symmetry.

The description of the module structure follows by induction from the definition

of the module structure of D;(Q):

(a)(ar) ... (@) = (a€(ar))(a2) .. (@) = a(€(ar)(az) . .. (@)).

Finally, assume that £ satisfies Properties 1 and 2. Using induction in [, we will

prove that £ € D;(Q). Cases [ = 0 and | = 1 are trivial, so assume [ > 2, and let’s
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show that f c Dl(Q) = D(Dl_l(Q) C CP?—_1<Q)) If a; € A, then é(CLl) S Dl—l(@) by
induction hypothesis. It remains to show that £: A — P (Q) is a derivation, i.e.

that
£(ab) = (€, @)a g E(b) + M€ +a,0)b g £(a).

This equality is similar to the Leibniz’s rule that we have from the multi-derivation
property, but has the usual multiplication replaced with -gz. To show that this modi-

fied Leibniz’s rule is also satisfied, we apply both sides to a general ¢ € A:

&(ab)(c) = A(a, b)€(b)(ac) + &(a)(be).

This equality can be checked by expanding both sides using the multi-derivation

property, and, then, cancelling terms using (graded) skew-symmetry. O]

2.3.3 Properties
Theorem 2.3.9. A and d satisfy the following properties:

1. d*> =0;

2. Nis a (T + Z)-graded algebra, A = A° is its subalgebra;

3. d € Dy(A) with deg(d) = (0,1).
Proof. Fix aninteger & > 0 and consider operators d): A*¥ — AF*1and d(k41): AR
A*2. Here, we temporarily introduced a lower index (k) to distinguish operators d
from one another, and put the index in brackets to distinguish d(x) from dj, € Dy, (AF).

We need to prove that d11) o dky = 0 or, equivalently, ¢(dx11) © d)) = 0. As in
(2.26)), this can be rewritten as

€1,1 0 @(@(d(kﬂ)) oDy)o Sp(d(k)) =0. (2-43)
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We have

diss € DyroA¥*2 58 D (DiffF AM2) &5 Dy (Dift)2AR2) "% D (D AF+2).

Let 9% be the image of dj o in Dy (Diffy A**2). We observe that ¢(9?) = ¢;; o
(ag(agr1(dir2))). Using Lemma and definition of d, we rewrite this to

(%) = c11 0 (Y (ks1(diy2)) 0 diry) = 11 © P(@(diryn))) © diy).

To check that this coincides with the lhs of (2.43), we notice that left composition

with Dy is the inverse of ¢ and, thus, invertible. We compute
Dy op(e(dkin)) 0 dry) = p(dwin)) © dawys

Dy op(p(dky1y) 0 D1) o p(dry) = ¢(dky1y) © Diow(dmy) = ¢(dks1y) © dy-

Therefore, it is enough to prove that 9% = 0. Notice that the composition
D(Difff AF*2) &% (Difff)2AF2 2L Difff (AF?)

is 0. Thus, (from definition of ¢; ;) we get ¢; 100 = 0. Then, from recursive definition
of ay, we get Dy(c11) o ax = 0 and, hence, 9> = 0. Therefore, d* = 0.

Since Dy is the identity functor, it is represented by A; thus, A = A. Next, we
need to prove that wedge product in AY coincides with the original multiplication.
This follows from the more general fact that the wedge product A° @ A' — Al coin-
cides with the standard A-module structure of A'. This fact, in turn, follows from

“triviality” of most maps in (2.39) for k& = 0:

idy, € Homa(Ay, A)) =~ Dy(AY) = Do(Dy(AY)) =~ Hom 4(A, Hom 4(AL, A)) ~
Homs(A® AL AY). (2.44)

The associativity of the wedge product in A follows from the definition and corre-
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sponding property of oy, i.€.,
Qg1 © Wt = Di(Qm) © Qe tpm,

which follows from the explicit description of Dy, (Lemma [2.3.8)). O

2.4 Noncommutative torus

2.4.1 Introduction

In this section, we apply the above constructions to the polynomial subalgebra of
n-dimensional noncommutative torus, Aén)’pdy. For such algebra, the grading group
is Z". Given an antisymmetric n X n matrix 6 with entries in R, the sign function is
given by

NI, J) = e hifil;, (2.45)

Note that the only additional restriction on A, imposed by (2.45), is A(I,I) = 1
for all I € Z™: in general antisymmetry and bilinearity conditions on A allow for
A(I,I) € {—1,1}. The algebra A{VP?Y is then a free graded-commutative algebra,
generated by invertible elements U, ... U™ with degU' = ¢; = (0,...,0,1,0,...,0)
with 1 on the [-th place. We don’t use any other structures on this algebra. This
definition makes each component (Aén)’pdy) 1 be a one dimensional C-vector space
CU!, where, by definition, U = []",(U")". Note that we use the upper indices
for U' to conform with the standard notation, used in the approach to differential
geometry we use.

In order to reduce the clutter, we use the following Einstein notation: indices
denoted by 7, k,l,m go from 1 to n, indices I, J, K, L go over Z". If in a product one
of the letters above appears twice as an index, as in a;U’, then the summation over
this index is understood. However, appearances of indices inside the arguments of
A(e, @) do not count toward the “appears twice” threshold. When this rule doesn’t

work well, we will write the summation sign explicitly. All summations are assumed
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to have only a finite number of non-zero terms; e.g., when we write a;U’, only a finite
number of values a; are allowed to be nonzero. We write [+ 1, —(+ 1, I+, and [ —1
to mean that 1 is added or subtracted from the [-th component of .

We write - in the argument of A\ to indicate the sign, needed in
U’ = NI - ) U™, (2.46)

We allow ourselves to use multiple --s in the argument of A, and mix small and big

indices, with the obvious meaning, as illustrated by the following formula:

UUl(UMTUY = A1 - T (=k) - J)UTI R (2.47)

2.4.2 Derivations

Using Leibniz’s rule, we note that to describe derivation £ € D(A), it is enough to
give a list of its values on generators U, ..., U™ of algebra A. It’s easy to check that

derivations returning 1 on U' and 0 on U7 when j # [, exist. Therefore, D(A) is

aUl ’

a free module, generated by W, so general £ can be written as

9

and its action on a generic element a € A is given by

fa = (gIUf 0?]1) (a,U7) =D AT - JVebay, U

1,I,J

If £ € D(Q), then coefficients £,UT are to be replaced with generic elements &' € Q,
and D(Q) is isomorphic to Q®" — direct sum of n copies of (). Note that & are to

be understood as operators “multiplication by &,” given in the homogeneous case by

€la = M€ a)ag'
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2.4.3 Differential operators

The basic building blocks for differential operators are compositions of derivations %.

In order to simplify the description of them, we enhance our multi-index notation in

the following way. By definition, we let

=L+ + L, N=n!--1,, (2.48)

[206>0& - & 1,20, [>]e1-J>0, (2.49)
o o \" o \"

Pl (8(]") 0---0 (W) . (2.50)

Note that I! in (2.48) and the operator in (2.50) are defined only for I > 0. Note

that we use the reverse order, when [ is in “lower” position. We have

”
%UJ Y i!J)!A((—U (T = DU (251)

Strictly speaking, this formula is valid when J > 0. To get the formula for J with
negative components, one should replace the coefficient J!/(J — I)! with its analytic

continuation to avoid the undefined expression of the form oco/oco.

Define &' to be &, 67 = (64)" o+ o (67)™.
Lemma 2.4.1. Let P and Q be graded Aén)’pdy—modules. The following descriptions
of Diffp(P, Q) are valid:

1. Diffy(P,Q) = {A € Home(P,Q): 8'A € Diffy,_1(P,Q) forl=1,...,n};

2. Diffy(P, Q) = {A € Home(P,Q): VI >0 |I| = k+ 1= §'A = 0}.

Proof. Using induction in k, we note that the second description follows from the
first, i.e., from the fact that A € Homc(P, Q) is a differential operator of order < k
if and only if

§'A € Diff,_(P,Q) for I =1,...,n. (2.52)
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From the definition of Diff (P, @), we know that A is a differential operator of order
< k if and only if
J.A € Diff_1(P,Q) for alla € A (2.53)

So, it is enough to prove that (2.52) implies (2.53). From definition of J,, we know
that
daatpp = g + POy, for a, f € C, a,b € A. (2.54)

Thus, it is enough to check (2.53) for a = U!. Tt follows from the Jacobi identity

that
S = a o (6,A) + (b, A)(8,A) o b. (2.55)

Substituting a = U!, b = U’ we see that conditions for a = U! and a = U
are equivalent. Since any multi-index I € Z" can be obtained from 0 by finite number
of additions and subtractions of 1 to/from its components, is indeed satisfied
for a = U'. O

The following lemma shows that Diffy(A, A) is a free A-module, Diffy (A, Q) ~
Q%N where N = (*17).

Lemma 2.4.2. Any differential operator A € Diffi(A, Q) can be uniquely written as

oMl

[|<k
For homogeneous A, coefficients q; € QQ are given by

_1)\II

QI:)‘(Avl)( 7!

(6" A)(1). (2.57)

Proof. We prove formula with coefficients for homogeneous A € Diff(A, Q)
by induction in k. If £ = —1, then both sides of the equation are equal to 0. So,
assume k > 0. Note that by applying both sides of to 1, we get A(1) = qo,
where qq is given by . Thus, it is enough to show that the difference of lhs and
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rhs of ([2.56)) is a homomorphism. To do this, according to Lemma [2.4.] it is enough
to apply &' to both sides and prove the resulting equality

(-

SA =Y MA DAL A+T) 7 (6TA)(1) & (%) .

[<k

Introducing J = I — [, we compute

—_1\MI 11|
%A(A,J)A(Z,AH)( ;!) (61A)(1) 6 (%) _

I —2ml0(1-1) o=
(6 A)(I)Ile (_1)81—]171 =

_1)|1\
I!

S OMA DML A+T) (

1<k

Z AMA, T+ DAL A + J—i—l)(_mm (67 A) (1)e2m00(+D) 9l _
’ ’ 71 S

|J|<k—1

]

_ gl

> S a0

J!
|J|<k—1

Here, the last equality follows from the induction hypothesis applied to d'A.

Thus, existence of coefficients in (2.56)) is shown for homogeneous A. For non-
homogeneous A, it follows from C-linearity of .

To show uniqueness, assume to the contrary that is satisfied with A =0
and some ¢y being different from 0. Fix J with minimal |J| s.t. ¢; # 0 and apply
both sides of to U”7. Then, the left-hand side will be 0, but the right-hand side

will be nonzero. Contradiction. OJ

2.4.4 Jet bundle

It follows from Lemma that J*(A) is a free module, generated by vectors

(675x)(1) for |I| < k. (2.58)
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For a € A, we can express jx(a) in terms of these basis elements using the formula

equation

1] —1)MI
i = 3 (gr0) S @) (259

<k

Alternatively, we could use basis j,(U?) for |I| < k.

2.4.5 Multi-derivations

To describe module Dy(Q), we first introduce multi-derivations (%)I € Di(A). They
are defined for multi-index I € {0,1}" with |I| = k by the following inductive proce-
dure: (%)0 =1¢€ A= Dy(A). For I with |I| =k > 0 if [ stays after all 1s in [, i.e.,

Vie{l,...,n} I; =1=1> j, then (% is given by

)H—I

(8) (ap,a a)
arr 0,d1,...,0k) =
U J 1y

k
0 0
Z)\(I,al)/\(ao tar+-Fa,a) (W@) <%)] (ag; a1, ... -1, Qs - - - ak).

=0

One can show by induction in k£ and the description of derivations, given in Sub-

section that the module Dy(Q) can be written as
n@={ Y d(a) d€Q
g ou ),
1e{0,1}ym: |1|=k
2.4.6 Differential forms

Differential forms are given by

> agdU’,

I

where I € {0,1}". If I has 1 in coordinates l; < ly < --- <, then
dUT =dU" A - A dU™.

Differential d is determined by d*> = 0 and the Leibniz’s rule in D(AA).
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2.4.7 De Rham cohomologies

Since d is a graded derivation of A(A) of degree (0,1), we have a chain complex for
each grading [ € I'. If I # 0, say [; # 0, then we can construct chain homotopy

between identity and zero maps with:

id(A(A))I =hod+doh

for h = %Ulii. Here, ©_o 1is the insertion of vector field %, i.e., a derivation of
! aul aul
A(A) of degree (—degU!, —1), generated by relations iiz(de) = 9.
ou
If I =0, then d acts as 0 on (AA);.
Therefore, cohomologies of AA coincide with H*(AA) = (AA) o). In other words,
cohomologies are generated by products of (U')~'dU', so dim(H*) = (}), as in the

case of the commutative torus.

2.5 Comparison with differential forms, coming from
the Dirac operator

In [6], Connes has introduced a flavor of differential calculus, built from an algebra A
together with a Fredholm module structure, and has shown that one can replace the
requirement for a Fredholm module structure with a representation p: A — B(H) of
algebra A on a Hilbert space H, together with a (potentially unbounded) operator
D, interpreted as a Dirac operator, and satisfying certain properties.

To make long story short, we describe only the ingredients, required to make
the comparison of differential forms. These ingredients are taken from [I6] and [TT].
Where possible, we use the notation from the previous section. Note that most
nontrivial objects of noncommutative tori require at least smooth algebra, and don’t
appear in the polynomial algebra we are considering. This leads to quite trivial results
of the comparison below. Also note that the constructions below should be applied

to the smooth subalgebra of the noncommutative tori algebra. We apply the same
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constructions to the polynomial subalgebra to be able to do a comparison with the

constructions above.

2.5.1 Trace, representation, and the Dirac operator

We use the multi-index notation from the previous section. Trace 7 is defined by
7(a;U") = ag. (2.60)
Involution is given by
(a;UNY =al(Up) ™ = XTI - DajU . (2.61)

Here, aj is the conjugate of the complex number a;. The Hilbert space H, is the

,poly

completion of Aén) with respect to the norm || e ||, defined with

lall? = 7(a"a) = ) llas]. (2.62)

Image of a;U! € Aén)’p()ly in H. is denoted with a;U’¢. In particular, € is the image
of 1 € AP Algebra AJ"PY acts on the Hilbert space H, with a(b¢) = (ab)C.
The Hilbert space H is defined to be H, ® Cl*/2) where Aén)’p(’ly acts only on the

first component. The second component is used to represent the Clifford algebra Cl,,

using 21"/2) x 217/2] matrices v; = 'y](»"). These matrices are defined as follows. For

n =1, let 79) = 1. For odd n > 3, let

(n—2) .
0 v 0 — 1 0
(n) _ J (n) _ (n) _
v = , Yoy = , = ) (2.63)
’ AP0 i 0 0 -1

For even n, let ’yj(»”) = ’yj(»nﬂ) (j =1,...,n). These matrices satisfy v,v; + 7,71 = 20,

and 77 = ;.

0

We define operators Ulm (no summation), [ = 1,...,n on Hilbert space H by
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closing
Uli(a§®v): Ulia ER®v (2.64)
ou! ou! ' '
We let the (unbounded) Dirac operator D, acting on H, to be defined by
D=2r)_ 02 (2.65)
; 'VJ aU] ’

2.5.2 Comparison of differential forms

From now on, we abandon the Einstein summation convention, since it’s no longer
convenient. Differential forms, using the Dirac operator, are defined as follows. Let

the bimodule Q! be the set of “universal differential operators,” i.e., formal sums

> adb, (where a;, b, € AJVPY) (2.66)
l

subject to relations

§(ab) = ad(b) + 8(a)b, d(aa+ Bb) = ada+ B6b (where a,b e AP o, 8 € C).

(2.67)
Then, the bimodule QF of k-forms is defined with
Ok =t ®Aén),poly s ®Aén),poly 0L, (2.68)
n tgms
Using the Leibniz’s rule (2.66)), we can write any element a € QF as
apday - - day = agda; @ day - -+ @ day. (2.69)

These can be “represented” as operators on H with

m(agday - - - dag) = ao[D, a1] - - [D, ay). (2.70)
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We let J§ be the kernel of this map, let Jo = @, J&, and let J = Jy + 6(Jy) =
@D, (JE +5(J51)). Then, the Connes bimodule of k-forms is defined with

Q= QF/(JF 4 6(JE1)). (2.71)

We follow the computation, done in [16, Section 6.2, to compute 4, for the

algebra A((,n)’pdy.

o (-forms.

JO = {0}, 00 ~ AMPOY o 7O (2.72)

e 1-forms.
Consider the universal 1-forms 1, and the corresponding Connes differential

I-forms v (I =1,...,n), given by
v = (UY LU, vP = 7(v)(UYHYdU" = 27y, (2.73)

Note that from the explicit expression 277;, we see that v’ commutes with all
0-forms, and v; satisfies

W(VZVJ' + I/le) = 25jl~ (274)

Using the Leibniz’s rule (2.66]), we can write any 1-form as >, | >0 | ag P by

Since v commutes with all 0-forms, and v° are linearly independent from each

other, we see that each one form can be uniquely written as

n

Zaﬂ/lD. (2.75)

=1

The corresponding component of the ideal Jy + §(Jp) is J3 = Jg + 6(J7). As

follows from the computation above, it is generated by av; — va, a € A(gn)’pdy.

e 2-forms and k-forms.

Let’s denote the ideal of €, generated by J& 4 6(J2), with J. It is generated by
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1-forms av; — yja (where a € Aén)’pdy) and 2-forms v,y + v, In particular,
vPuP = 0. Relations, imposed by J make €/.J isomorphic to A from Section
Thus, to show that Qp ~ A, it remains to show that J = J. It would
follow, if we show that for any fixed k € {0,1,...,n} the products H?zl Y, are
all linearly independent for 1 < [; < --- <, < n (because for every a € Ok,
operator m(r) can be written as a linear combination with coefficients in AJY P
of the above matrices up to 7(J*)). These products are indeed independent.
For even n, that follows from the fact that the representation of Cl,, is faithful.
For odd n, the kernel is of the form (1 + cw) Cl,,, where w is an odd element of

Cl,, and ¢ € C. Thus, for odd n, this kernel doesn’t contain any homogeneous

elements, and linear independence holds, too.

Thus, for the polynomial algebra, the Connes construction of differential forms
gives the same answer, as the one coming from graded-commutative differential ge-

ometry.
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Chapter 3

Fredholm modules and the
Beilinson—Bloch regulator

3.1 The general strategy for constructing the Beilinson—
Bloch regulator

Let X be a compact Riemann surface. The goal of the paper is to produce an alter-
native construction of the Beilinson-Bloch regulator r: Ky(X) — H'(X,C*) using
the framework of Fredholm modules (see [2] for the original definition). Using the
construction, explained in [12], this map can be reconstructed from the corresponding
map re on the field of fractions F'(X) = O, where £ is the generic point of X. Orig-
inally, this construction is due to Beilinson [2]. The field of fractions can be written
as a direct limit of rings of functions on X \ S, where S goes through (increasing)
finite subsets of X:

F(X) :@SO(X\S). (3.1)

Thus, r¢, in its turn, can be reconstructed from the maps rg:
rs: Ko(O(X \ S)) — HY(X\ S,C), re = @Srsz Ky(F (X)) — ling(X\S, Cr).
S
(3.2)

Thus, in the rest of this work, we will mostly concentrate on constructing the maps

rs. We will now recall the definition of K5(R) for a ring R, and some related facts
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and definitions, used in this work.

3.2 Central extensions and K-theory of rings

Here, we summarize necessary facts, related to the group K»(R) for a unitary ring
R. In this subsection, we omit most of the proofs, which can be found, e.g., in [22|

Chapters 2 and 4.

Definition 3.2.1. For R a unital (not necessarily commutative) ring, we make the

following definitions:

e Inv(R): the group of invertible elements of R;

M, (R): the ring of n x n matrices over R;

o GL,(R) = Inv(M,(R));

GL(R): the injective limit li&GLn(R), where n X n matrix a is identified with
(n+1) x (n+1) matrix (¢ 9);

e E(R) = [GL(R),GL(R)]; this group is called “the group of elementary matrices.”
There is an alternative definition of F(R):

Definition 3.2.2. Let e;; be the matrix with 1 in the cell (¢, ) and 0 in all other
cells; then, E(R) is defined to be the subgroup of GL(R), generated by matrices

€ (r)(jzefl + e;;1 for r € R.

Lemma 3.2.3. Two definitions of E(R) above define the same subgroup of GL(R).
Moreover, we have E(R) = [E(R), E(R)].

Proof. See |22, Prop. 2.1.4]. ]

Here, are the main definitions and facts about central extensions.
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Definition 3.2.4. Let G be a group, and A be an abelian group, both written

multiplicatively. The exact sequence
1 A-FE5G—1 (3.3)

is called a central extension of G' by A if the of A is in the center of E. We often refer
to a central extension of the form (3.3) as (E,m) or, simply, . Central extensions of
a group G form a category, in which morphisms are given as follows. Let (Eq, ),
(Es,m2) be two central extensions of G. A morphism from (Ey, ) to (Ea, ms) is a

map ¢: E; — FE5, making the right square on the following diagram commutative:

1 A, E, =G 1 (3.4)

Lk

1 Ay Ey, 2@ 1.

Here, the map i: A; — Ay is the unique map, making the left square commutative:
up to identifying ker m, with Aj, map ¢ is the restriction of ¢ to a map kerm; —
ker my. Universal central extension of G is the initial object of the category of central
extensions of G.

Central extensions of a group G by a fixed abelian group A also form a category.
In that category, morphisms are required to induce (as in (3.4))) the identity map on
A.

Note that the last category (with fixed A) is rather trivial, since all its morphisms

are isomorphisms.
Definition 3.2.5. Group G is called perfect, if [G,G] = G.
Note that according to(3.2.3] for any ring R, group F(R) is perfect.

Definition 3.2.6. Let 4 -5 E 5 G be a central extension of the group G. Let
ay,ay € G, then [r1ay, 7 ay] is defined as follows: take any e; € 7 !(a;) for j = 1,2;
then [7'a, 7 tag) = [e1,e2] € E. If [ar,a) = 1 in G, then i [ (ay), 77 (az)] is

the only preimage of [eq, es].
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These are well defined. To be more precise, the following lemma holds.

Lemma 3.2.7.

1.

2.

In the notation of the Deﬁnitz’on the value of [t~ tay, 7 'as] doesn’t depend

on the choice of e1, es; therefore, [ ay, 7 as] is well defined for all ay, as € G

(7 Yay, mag) € i(A) if and only if ai,as] = 1; therefore, i mtay, 7 tas] is

well defined for all ay,as € G, satisfying [a1,as] = 1.

We will use the properties of central extensions, summarized by the following

theorem.

Theorem 3.2.8.

~

A group G has a universal central extension if and only if G is perfect.
If (S, p) is the universal central extension of G, then S is perfect.

If (E,m) is a central extension of G, and E is perfect, then G is perfect, and E

is generated by the elements of the form [x=ra, 7 =1b] for some a,b € G.

. Let p: (Ey,m) — (Ea,m9) be a morphism of central extensions. If Es is perfect,

then o is surjective.

Homomorphic images of perfect groups are perfect. In particular, let p: (Ey,m) —
(B9, ma) be a morphism of central extensions. If Ey is perfect and ¢ is surjective,
then Ey is perfect. If Ey is perfect but ¢ is not necessarily surjective, we still

have ¢(Ey) = [E3, Es].

If (E1,m), (Eq,p2) are central extensions of G and E\ is perfect, then there is

at most one morphism ¢: (Ey,m) — (F2,p2). If it exists, it is given by
([ ta, m 1)) = [y ta, my ). (3.5)

If this formula gives a well-defined group homomorphism ¢: E1 — Es, it is the

morphism of central extensions.
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7. If A is an abelian group, the set of isomorphism classes of central extensions of G
by A can be naturally turned into an abelian group Ext(G,A). If Ay — S 5 G
is the universal central extension of G, then Ext(G, A) ~ Hom(Ag, A). This
isomorphism can be described as follows: take an extension A — E 5 G and
let @ be the unique morphism (S,p) — (E,w). Then, we have the corresponding

diagram

1 Ay st-q 1 (3.6)

The left vertical arrow f on this diagram gives the desired element of Hom( Ay, A).

Proof. These facts follow from definitions and theorems from [22, Chapter 4. Items
1 and 2 are stated in the [22) theorem 4.1.3]. To show Item 3, note that by the
definition of the perfect group, E = [E, E], so F is generated by elements of the form
e = [e1,es]. Such e can be written as e = [7 'me;, 7 'mey]. Therefore, in Item 4,
F, is generated by elements of the form e = [m; *ay, 7, 'as] for ai,as € G. Take any
preimages e; € m; '(a;). Then, e = [p(e1), p(e2)] = ©([e1, ea]). Similarly, in Item 5,
E; is generated by elements e = [eq, 5], so Es is generated by p(e) = [¢(e1), p(es)].
To prove the last sentence of 5, note that for e = [e1,e5] € E; we have p(e) =
[p(e1), ¢(e2)]. On the other hand, if e = [ey, e5] € Ey, then e = ([ 'maer, ) ' maes)).
In Item 6 for perfect F;, Formula determines (possibly ambiguously) the values
of ¢ on commutators, generating F1, and follows from commutativity of the diagram
(3.4) in the definition of morphism of central extension. If such ¢ is a well-defined
homomorphism, then for e = [y 'a, 7, 'b], we have 7,(e) = [a,b] = m2(p(e)). So, the
diagram ({3.4) is commutative.

The first sentence in Item 7 is stated in [22] Theorem 4.1.16]. By comparing the
proof of |22, Theorem 4.1.16] with the description of the map in Item 7, one can see
that the map Ext(G, A) — Hom(Ap, A) is a homomorphism of abelian groups. To
see that this map is an isomorphism, consider a map f: Ay — A. This gives the

diagram of the form (3.6) without £ and 3 arrows, connecting F with other groups
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on the diagram. Group E can be constructed by taking the abelian pushout of the
upper left triangle A L Ag — S: if we denote the map Ay — S with 4y, then
E = Ax S/{(f(ap),i0(ap)™): ap € Ao} with 7([(a,s)]) = p(s). Finally, pushout is
the only choice for E, since if we had some other E7, then by the universal property of

pushout we will have a map £ — F,, which would necessarily be an isomorphism. [J

Definition 3.2.9. Let R be a ring. Let
1 — K3(R) 5 St(R) 5 E(R) — 1 (3.7)

be a universal central extension of the group F(R). This exact sequence is well defined
up to an isomorphism of central extensions, and for our later purposes any (fixed)

representative of this isomorphism class will suffice.

Note, that there is an alternative but equivalent way to define St(R) in terms of
generators and relations, and K»(R) as a certain subgroup of St(R) (see [22]).

When a,b € E(R) commute, i '[7'a, 77'b] is a well-defined element of Ko(R)
(see Definition and Lemma above). This observation can be used to con-
struct some elements in K3 (R). Often, the following specialization of this construction

is used.

Definition 3.2.10. Let f, g € Inv(R) be invertible commuting elements of R. Then,
the Steinberg symbol {f, g} € K5(R) is defined by

{f,9} = [n~ " diag(f, f~', 1), 7~ diag(g, 1,g7")]- (3-8)

3.3 The universal 2-summable Fredholm module

This section, and the following one, are concerned with bounded operators on a
Hilbert space. In this context, we will use both additive and multiplicative commu-

tators of operators on B(#H) (the second one can applied to the invertible operators



72

only). To distinguish them, we let
[a, blo = ab — ba, [a,b]; = aba~'b~" (3.9)

Following the Eugene Ha manuscript [12], we give the following definitions, which

are originally due to Connes and Karoubi (see [7]).

Definition 3.3.1. Fix two separable Hilbert spaces H, and H_,let H=H, & H_,
and define operator F': H — H with F(z, +x_ )=z, —oz_forz, e Hy, x_ € H_.
The algebra

M ={a € B(H): [F,a]y € L*(H)}, (3.10)

is called the universal 2-summable Fredholm module. Here, £?(H) is the ideal of

Hilbert—Schmidt operators.

The purpose of this section is to give an explicit description of the ring E(M!) of
elementary matrices over M!. The first step is to describe the group Inv(M?') and
its connected component of the identity Inv’(M?!). In order to do this, we follow [I8,
Section 6.2|. First, note that if a € B(H) is a bounded operator on #, then in the

view of decomposition H = H, & H_, one can interpret it as a matrix

a= , (3.11)

where a;; is a bounded operator H; — H; for [,j € {+,—}. From the definition of
M, such a belongs to M! if and only if a,_ and a_, are Hilbert—-Schmidt.

Lemma 3.3.2. If a € M is invertible in B(H), then it is invertible in M?.
Proof. If a=! € B(H), then [F,a" ']y = —a™![F,alpa™" € L*(H), so a~' € M. O

The following lemma is analogous to [I8, p. 81].
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Lemma 3.3.3. Let x be a bounded operator on H... Then, there exists

ayy G4

a= € Inv(M?)

a_4 a__

with ayy = x if and only if © s Fredholm.

Proof. Suppose that z is a Fredholm operator. By definition of Fredholm operators,
that, in particular, means that ranx is closed. Let p be the (orthogonal) projector
on ker z and ¢ be the (orthogonal) projector on (ranz)* = ker z*. Let u: H, — H_

be an isomorphism of Hilbert spaces.

*

T qu

up ur*u*

By construction, a € M! and a is a bijection. Therefore, a is invertible by the
bounded inverse theorem. Its inverse lies in M* by [3.3.3]

On the other hand, let ab = ba = 1 for some a,b € M*. Then, operators a,b can
be written as

A4+ Gy byt by-
a = , b=

a4 aG—_— b__|_ b__

So, ay4byy =1—ay by, birar, =1—by_a_,. Thus, ayy is invertible up to

a compact, and, hence, Fredholm. O

Kuiper’s paper [15] proves that all homotopy groups of Inv(B(#)) vanish. We

will only need the following special case of that.
Lemma 3.3.4. If H is a Hilbert space, then Inv(B(H)) is connected.

Lemma 3.3.5. Let H = 12(Ny) be the Hilbert space of sequences Ny = NU {0} — C,
and let S be the standard shift operator on H. If a € B(H) is a Fredholm operator,

then a = b;.S"S*™by for some by, by € Inv(B(H)), n = dim(rana)*, m = dim ker a.
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Proof. Let ay: (kera)t — rana be the restriction of a. a, is invertible by the Bounded
inverse theorem. The intuitive idea of the proof is that a acts like aq, except that it
kills ker @ and maps nothing to (rana)*. So, by using b; and by, we can identify ker a
with I2({1,...,m}) and (rana)* with [>({1,...,m}) in such a way that a in this new
representation coincides with S™S*”. Below are technical details, describing how to
do this.

Let N, = {l € Z: 1 > k}. Using dim(kera)* = card(N) = dimrana, take any
isomorphisms ¢;: [?(N,,) — rana and ¢: (kera)t — I?(N,,). Let s: I*(N,,) — [*(N,)
be the restriction of S”S*™. Note that c;s¢, and a; are invertible operators (ker a)t —

ran a, and define ¢, = Cy(c15C2) Lay, so that ¢;scy = a;. Then, a = by S™S* by, where

bi: H=1030,....,n—-1}) @ *N,) = (rana)* @rana = H, (3.12)

by: H =kera® (kera)* — *({0,...,m —1}) © *(N,,) = H, (3.13)

and operators b; and by act as ¢; and ¢y on the second components of the decompo-

sitions above, and as any invertible operator on the first ones. O

Let Inv’(M!) be the connected component of the identity in Inv(M?!). The fol-

lowing lemma is a special case of [18, Prop. 6.2.4]

Lemma 3.3.6. Let a € Inv(M?). Then, a € Inv®(M?) if and only if Index(a, ) = 0.

Proof. Note that a — Index(a, ) is a continuous function from Inv(M?') to Z, and
that Index(1) = 0. Therefore, for any a € Inv’(M?'), we have Index(a,,) = 0. Tt
remains to show that the set I = {a € Inv(M!') | Index(a,; ) = 0} is connected.

To do this, we take any a € I and multiply it by elements of Inv’(M?) until we
get an element of Invo(/\/ll). This will ensure that ciaco = c3 for some cq,co,c3 €

Inv®(M?), and, thus, a = cj'csc;t € Inv?(M?). Consider the operator @, which is
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the same as a but with removed anti-diagonal components:

a= . (3.14)

Since a is invertible, and a — a is compact, we have Indexa = Indexa = 0. On the
other hand, Indexa = Index(a;+) + Index(a__), so, since Indexa,, = 0, we have
Indexa__ = 0. Without loss of generality, we can identify both H, and H_ with
I2(Ny). By applying we can find diagonal ¢y, ¢y s.t. a3 = cjacs is of the form
Snt S+ ay_
a; = (3.15)
a_ Sh- 5=

for some nonnegative integers n,,n_. Since the set of invertible operators is open,
there is a ball in M! with the center in a;, s.t. a;'ay € Inv®(M?) for all ay in that
ball. Take

0 — Sn+ S+ (1—-5"S")a,_(1—85"S*") ‘ (3.16)

(1—-5"S")a_,(1—8S"S*") Sn=5*n-

Since a_, and ay_ are compact, lim, (1 — S"S*")a,_(1 — S™S*") = a,_ (and
similarly for a_y), so for large enough integer n, operator a, will lie in the ball
described above. Fix any such n > max(n_,ny).

Note that as of the form acts nontrivially only on 2n-dimensional subspace
2({0,...,n —1}) ® I*({0,...,n — 1}) of H, and as identity operator on the orthog-
onal complement. Also note that all invertible operators, satisfying this property,
lie in M!: indeed, their anti-diagonal components are finite-dimensional and, hence,
Hilbert—Schmidt. The space of such operators is isomorphic to GLs,(C), which is

connected. So, ay € Inv’(M?). O

Before we start proving the main lemma of this subsection, we describe one class

of bounded operators, expressible as a multiplicative commutator [e, e]; in B(H).
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Lemma 3.3.7. Let H = Ho® H, be a Hilbert space with dim H; > max(dim Ho, Ng).
Then, for any invertible bounded operator a on Hy, there are bounded operators ¢ and
donH s.t. [c,d]; =cdc™'d™' =a® 1. Here, a® 1 is the operator, mapping Ty +

to axg + x1 for any x; € H;, j =0, 1.

Proof. It is enough to consider H = H' = 1*(Z, Ho) = B,,; H,,, where the decom-
position H = Ho & H, is given by Ho = Hy, Hi = D,,,o H,,- Indeed, for general H
by our construction Hj is isomorphic to Ho and €P,_, H;, can be embedded in H,
because dimH; > max(dim Ho, ®) = dimP,,, H,,- So, if we construct operators
¢ and d, acting on ‘H' and satisfying the conditions of the lemma, then under these
isomorphisms they correspond to operators, acting on some part of H. To get the
lemma for H, continue ¢ and d to the whole H by making them act as identity on the
orthogonal complement of this part.

Every element of H' can be written as a sequence © = {z;}jez = >

ez €%, where

e;j is the standard isomorphism Ho — H), and z; € Ho. We define ¢ and d with

e,a” b ifn > 0,
Cln = €ni1, de, = (3.17)

e otherwise.

Then, by direct computation we get

eqpa ifn =0,
[C, d]len - (318)

e otherwise.

as desired. O

Let GLY(M?) be the connected component of the identity in
GL(M") = lim GL,(M").

Note that GL,,(M!) can be interpreted as the group of invertible operators a on H" =
HTOH™, satistying [F®1,, aly € L2(H™). Thus, by choosing an isomorphism between
H" and Hi, we can identify GL,(M?') with Inv(M') = GL;(M?'). Therefore, we
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can apply to GL,(M1) all the lemmas above.

Lemma 3.3.8. E(M!) = GL°(M?) = {a € GL(M?): Index(a,) = 0}.

Proof. We start from the second equality. By continuity of the function a — Index(a, . ),
so GLY(MY) C {a € GL(M"): Index(a,,) = 0}. To prove the converse inclusion
note, take a € GL(M?) with Index(a, ) = 0. Note that a € GL,(M*) for some n.
By using the isomorphism, identifying GL,,(M!) with Inv(M!), and applying Lemma
[3.3.6] we see that a belongs to the connected component of the identity in GL,(M?)
and, thus, a € GL°(M?).

We know that E(M!) is generated by matrices e;;(a) for a € M'. e;;(ta) €
GL(M?) for t € [0, 1], and, thus, e;;(a) lie in the connected component of e;;(0) = 1
of GL(M%). Thus, E(M!) c GLY(M?).

To prove the converse inclusion, note that for any ¢ > 0 group GL°(M!) is
generated by operators a € GLY(M!) with [|a — 1|| < . So, we take ¢ = 1 and
a € GLY(M?') with ||a — 1|| < 1. By definition of GL(M?"), we have a € GL,_;(M")
for n large enough. We interpret a as 2 x 2 matrix acting on H" = H'} @ H" (and
acting trivially on the last copy of H), and note that a,, is an invertible operator

H' — H'}. Therefore, we apply the LDU decomposition to such a:

ayy GQp—

a= = LDU, where (3.19)
a4 QG
10 s 0 1y
L= , D= , U= , (3.20)
xz 1 0t 01
_ -1 _ _ -1 _ -1
rT=a a4, § = Qj4, t=a__ —a_ja a;_, y=al a; . (3.21)

Note that s and t act trivially (as identity operators) on the last H4 in H'., because

we took a € GL,_;(M?') and interpreted it as an element of GL, (M?'). This allows
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us to represent s and t as multiplicative commutators by applying Lemma [3.3.7] So,
D € [GL(M?!), GL(MY)]; = E(M?'). Noting that L* is the same as U up to replacing
y with z*, we see that it is enough to show U € E(M!). This is indeed true: one can
check by direct computation that
1 2y 1

U= ’ € [GL(M'),GL(MY)], = E(M?). (3.22)
0 1 0 2

1

]

Note that GL(M!) = limy GL, (M%), and GL, (M*) can be interpreted as a subset
of the algebra B(H") of bounded operators on H". Therefore, elements of GL(M?)
and, in particular, of E(M!) = GL°(M"), can be interpreted as bounded operators
on [*(Np,H). Using this interpretation, we write GL(M') = |J, GL,(M'). We
summarize the descriptions of GL(M?) and E(M?) from this point of view.

Lemma 3.3.9. Let a € B(I*(Nog,H)). Then,
1. a € GL(M?Y) if and only if all of the following conditions hold:

(a) a is invertible,

(b) [a,1zn) ® F] € L2(I*(No, H)) (or, equivalently, a,— and a_y are Hilbert—
Schmidt),

(c) there is n s.t. ax = a*x = x for any v € I*(Ng N [n,00), H);

2. if all these conditions hold, then ay and a__ are Fredholm with Index(a__) =

— Index(ay4);

3. if a € GLM'), n € N, and the condition (c) holds for this n, then a €
GL,(M*);

4. a € E(MY) = GLY (M) if and only if a € GL(M?') and Index(a, ) = 0.

Proof. This directly follows from definitions, other lemmas and discussions in this

subsection. O
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3.4 Connes—Karoubi character

CK

The general construction of the Connes-Karoubi characters 7, is written in [7].

Here, we give the explicit description of the map 75%. In this section, we define the
Connes-Karoubi character Ky(M') — C*. According to Part [7] of Theorem [3.2.8|

such a map can be defined by describing the corresponding central extension
1-C"—-T — EWM') — 1. (3.23)

In the rest of this subsection, we describe this extension and its properties.

For a Hilbert space #H, let LP(H) be the ideal of bounded operators a € B(H),
satisfying |a’ € L'(H), where £!'(H) is the ideal of trace-class operators. Thus,
LP(H) coincides with the set of compact operators, whose sequences of singular values
belong to [P(dim(H)); £2(H) is the ideal of Hilbert—Schmidt operators. Following the
Eugene Ha paper, we define £ to be the fibre product

£ GL(B(H4)) (3.24)
ls»—ﬂs}ﬁl
GLOMY) e Lo (B, ) /L ().

Note that bottom and right arrows on this diagram are surjective. In particular, sur-
jectivity of the bottom one is the statement of Lemma[3.3.3] Using the interpretation
of GL(H) as a subgroup in Inv(B(I>(Ny, #))), introduced in Lemma [3.3.9] we can
describe £ explicitly as

E={(a,s): a€ GL°(H), s € GL(H4), s=as; (mod L")}, (3.25)

For any Hilbert space H, let T(#) be the group of operators on H with (nonzero)
determinant (i.e., 7(H) = (1+L*(H))NInv(B(H))), let T = T (1*(No, H1))NGL(H,),
and let 7, = {s € T: dets = 1}. Note that (a,s1), (a,sy) € € (with the same a),
then sys;' € T. The Connes-Karoubi character 75K : Ky(M!) — C* is defined (in
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the sense of [3.2.8)) by the central extension

1—C"— &/T = GL (M) — 1. (3.26)

Here,

EJTi ={(a,[s]): (a,s) €E, [s1] =[s0] <= sos7' €Ti}, (3.27)

and the map C* — £7T; sends A € C* to (1,[s,]) with det(s)) = A. Note that the
equivalence class [s,] is determined by A. Indeed, if det(sy;) = A for j = 1,2, then
det(sy2sy1) = AA' =1, and [sx1] = [sx2]. We will later need the following fact.

Lemma 3.4.1. The group £/T; is perfect.

Proof. By definition, we have to show that £/7, C [£/T1,&/T1]. Since GLY(M!) =
E(M?) is perfect (see Lemma [3.2.3), we know that the group [£/T7,&/Ti] contains
preimage of every g € GL°(M"). It remains to prove that it contains the image of
C*. Let A € C* and (1,[s,]) be its image in £/7;. In order to apply Lemma [3.3.7]
choose s, to act as multiplication by A on one of the nonzero elements of H., and as
identity on its orthogonal complement. Then, by Lemma [3.3.7, s) = [¢,d]; for some
invertible ¢,d € Inv(H,). Thus, (1,[s\]) = [ [d]), (d, [d)]: € [/Ti,E/T], where
C=c®idy andd=d®idy . 0

3.5 Fredholm structure on loops

Let S be a finite subset of X, and v: ST — X'\ S be a parametrized smooth loop. In
this section, we give a definition of a map p,: O(X \ S) — M. This definition, and
the proof of its correctness, come from the original manuscript [12].

Let H be the Hilbert space of square-integrable functions on S': H = L?*(S', df).
Interpreting S* as R/(27Z), let 2 € H be the function 6 — ¢ H, and H_ be the
(closed) subspaces of H, generated by 2" for n > 0 and n < 0 respectively, so that
H =H, ®H_. From now on, we interpret M' to be defined using these H, H, and

H_. Here, variable 0 takes values in [0,27). For a continuous function h: S* — C,
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we have a multiplication operator M;: H — H, defined by (M,€) (0) = h(0)£(0). We
define
py: O(X\S) = M fs Myo,. (3.28)

Note that a priori, we only know that Mjy., is a bounded operator on H. For p to
be well defined, we need to know that M., € M'. This is, indeed, true, and was
shown in [I2] Lemma 1|, which is originally [I8, Prop. 6.3.1]. Letting g = f o~, we
see that this statement follows from the statement [F, M,] € £L2. Later, however, we
will need a stronger statement [F, M,] € L'. Therefore, we repeat and enhance the

proof of [I8, Prop. 6.3.1] to get that stronger statement.
Lemma 3.5.1. For any smooth function g: S* — C one has [F,M,] € L*. The
Hilbert-Schmidt norm ||[F, M,]||2 satisfies

ILF, Mylllz < esup 19" (0)] = cllglloo- (3.29)

for some universal constant ¢ > 0.

Proof. In the realization of the universal 2-summable Fredholm module above, oper-
ator

F-H—>H: x,+2x_—xy—1_ (3.30)

can be written as

(F¢)(0) = P.V. /027r K(6, — 9)5(01)65—?, (3.31)
where kernel K is given by
K(0) =1—icot(0/2). (3.32)
From (3.31)) we compute the kernel K; of [F, M,]:
K1(0,0:) = K(61 —0) (9(61) — 9(0)) - (3.33)

Note that this is smooth everywhere, except may be the diagonal #; = 6. For 6, in a
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neighborhood of 8, we have

9(61) — g(0)

K1(6,61) = (61 — 0) - K(6h — 0)) 0, — 0

(3.34)

with both terms being smooth, so K is smooth everywhere on S* x S1. In particular,
this allows to get rid of “P.V..” According to [24, Prop. IV.3.5|, every operator with
kernel in C?(S* x S') is in £'. By applying this statement to the kernel K, we get
[F, M) € L.

The second statement of the lemma follows from (3.34)) and the fact that the

Hilbert—Schmidt norm of the operator, given by the kernel K, is equal to

27Td0 27rd01 ) 1/2
— — | K1(604,0 < K1(04,0)]. 3.35
([ & [ Seimeor) < swimi.o) (3.35)

]

In what follows, we will be interested in the composition 75X o (p,).: Ko(O(X \

S)) — C~.

3.6 Reparameterization of loops

The goal of this section is to prove that the map 75'% o (p,). only depends on the
oriented path, and not on its parametrization.Let v be a smooth loop S* — X \ S,
and ¢: ST — S! be a smooth orientation-preserving map. We are going to prove that

Py = Proy- Following [12] and [I8, Section 6.8|, we introduce the unitary U, by

(U,€) (8) = € (7(9)) ((71)(0)) . (3.36)

Its adjoint Us = U_" is then given by

(Uz€) (0) = € (0(8)) () (6)) "> (3.37)
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For any invertible operator V', we let
Ady: B(H) = B(H): W — VWV L (3.38)
By a direct computation, one can check that
Ady, Mioyop = Myo. (3.39)

In order to be able to use this equality, we need to check that Ady, can be re-
interpreted as a map M! — M. The following lemma is, essentially, [I8 Prop.
6.8.2].

Lemma 3.6.1.
1. U, € M, moreover [F,U,| € L';
2. if a € M', then Ady,(a) € M'.

Proof. The second statement of the lemma follows from the first one. We will show
the first one, following a similar strategy to the one used in the proof of 3.5.1] By
Lemma , multiplication by a smooth function g satisfies [F, M,] € L. So, it
remains to prove that change of variable operation satisfies the same property. Let

us denote this operation with V', so that

(VE)(O) = &(e™(9)). (3.40)

Using the same notation, as in the proof of Lemma we compute the kernel K,
of [F,V]:

Ks(0,61) = K(p(61) — 0)¢'(61) — K (61 — ¢~ '(0)). (3.41)
This can only be non-smooth in the neighborhood of the “modified” diagonal ¢(6,) =

0. We will prove that it is smooth there, too. To do that, we choose a contractible

neighbourhood of a point on that modified diagonal, and study the behavior of Ky
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there. We let

K3(0,01) = Ka(p(01 + 02),01) = K(0(01) — (01 + 02))¢"(01) — K(—=02). (3.42)

Since the function (6s,61) — (p(01+02),61) is a smooth dif and only ifeomorphism in
the preimage of the chosen neighbourhood, it is enough to prove that K3 is smooth.

By Taylor expansion of ¢ with Peano reminder, for some smooth function ys, we have

(01 + 02) = p(01) + 020" (01) + 03 o (02, 01), (3.43)

Note that K (0)—(—2i/0) is smooth, and (3.42)) depends linearly on K, so it is enough
to prove the smoothness of the expression in the right-hand side of (3.42)) with K (e)
replaced with 1/(e). It is equal to

1 ¢'(61)

(00) = (01 +02) ' (00) — (00) = o (1 R 91))  (349)

Since the expression in the large brackets is smooth near 65 = 0, and equal to 0 for
0y = 0, expression (3.44)) is smooth. The statement of the lemma now follows from

[24, Prop. IV.3.5]. O

Note that the desired equality 755 o (p,). = 75X 0 (pop)« is equivalent to the

commutativity of the diagram

K> (O(X \ )2 Ky (M) (3.45)
l(ﬂ’y)* ngK
Ky(MY) —2 cr .

Equality (3.39) and lemma (3.6.1)) imply that the following diagram, representing the
upper left triangle of (3.45)), is well defined and commutative.

O(X\ 5) —2 = M! (3.46)
lpw AdU¢

Ml
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Thus, to prove the commutativity of (3.45]) it remains to show the commutativity of

the following diagram:

Ky(M?) (3.47)
Ky(MY) T

Lemma 3.6.2. Diagram (3.47) is commutative.

Proof. Using the definition of (3.26]), we see that it is enough to prove the existence
of a group isomorphism ¢: £/7; — £/7T1, making the diagram

1 —C*—>&/T; == GL'M!) —1 (3.48)

[k

1 —C" —=&/TI "= GL'(M!) —1

commutative. In fact, any homomorphism v will suffice, since by 5-lemma it will
automatically be bijective. In order to construct ¢, we will use Item [6] of Theorem
with m = Ady, om, m, = 7. The group &£/T; is perfect according to Lemma
Therefore, by Ttem [6] of it remains to check that the right-hand side of

@D([l’l,.ﬁQ]) = [71'_1 Ade 7T$1,7T_1 AdUw 71'1’2} (349)

depends only on [z, 23], and not on z1, x2, and that the map ¢ thus obtained is a
homomorphism. To prove that, take an arbitrary x = (a,[s]r;) € £/Ti, and, using
Lemma find z; = (a;, [si]7;) for I = 1,2 s.t. & = [x1, 25]. In components, that
means that a = [a;,as]; and s = [sy, s9]; (mod T7), i.e., s7'[s1,s2]; € Ti. Then, let
b € Ady, a;, choose any t; € (biyy + L") NGL(H), and let b = [by, bo]y, t = [t1, o).
Right-hand side of is, then, (b, [t]7;). We have b = Ady, a, and, thus, b is

determined by x. Since anti-diagonal components of U, are in £, we have

ct ct

Ll * * E_l : —
ti=biy =Up g U, S0,  siU = (Up(si@idy YU, . (3.50)
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We now want to use the fact that once by,by are fixed, t is determined uniquely
(Lemma [3.2.7). Therefore, we can use our freedom of choice of t; € (by + L) N
GL(H ) to simplify the computations. Unfortunately, we can’t take ¢; to be one of the
expressions in ([3.50]), since these are not necessarily invertible. As a workaround, we
will use the fact that anti-diagonal components of U, belong to L' (see Lemma .
Let U, be U, with anti-diagonal components replaced with 0. Then, U, = U,
(mod £'). Since we can continuously deform ¢ to the identity homeomorphism,
thus continuously deforming U, ; to the identity operator, the components U, 1
and U, __ have Fredholm index 0. Thus, we can make these components invertible
by adding finite-dimensional operators to them. Let U be the operator with these
modified (invertible) components. We have U, = U (mod £Y)and U_, =0, U,_ = 0.
Using this and (3.50)), we have

c ) N £ o[~ _ ~ L~ ~
by = (Up(s ®idy U, £ (U(sl @ idy )T 1>++ U507l (351)
Therefore, as discussed above, we can take
_T7 rr—1
tl++ = U++31U++. (352)

Then, t = [t144,tori]1 = (7++[31732}1(7;1r = (7++s(7;1r, so the class [t]7; is indeed
determined by z, and doesn’t depend on zy, xs.
Finally, note that v is a homomorphism, because, as we have shown above, it is
given by
b((a, [s]7)) = (Adw a, [AdﬁH s}ﬁ) . (3.53)
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3.7 Moving towards the definition of the Beilinson—

Bloch regulator

In this section, following [12], we will discuss the possibility to define the maps rg and
Te using 7K. We will denote our maps with 7g and ¢, and preserve r without tilde
for the maps in the original definition of the Beilinson-Bloch regulator. Since rg is a
map K(O(X\S)) = HY (X \S,C*) ~ Hom(m (X \ S),C*), in order to define it, it is
enough to define the pairing of rg(u) with [y] for u € Ko(O(X \ 9)), [7] € m (X \ S).
Following [12], we would like to let

(Fs(u), [1]) = (77 © (py)+) (w). (3.54)

In order to discuss the possibility of using this definition, we denote its right-hand
side with Rg(u,7):
Rs(u,7) = (15 0 (p,).) (w) € C". (3.59)

Note that, by definition, the map u — Es(u,v) is a homomorphism. We would like

to prove the following.

1. Rs(u,7) depends only on the class [y] € m (X \ S, xo) and not on the loop v
itself.

2. The map [y] — Rg(u,~) is a homomorphism 1 (X \ S, z9) — C*, i.c., whenever

(7] = [11][72] one has Rs(u,v) = Rs(u, 1) Rs(u, 7).

3. Maps Eg(u, ~1) are compatible with restrictions, i.e., if S1 C Sy C X, resqq: O(X\
S1) = O(X\Ss) is the corresponding restriction map, xo € X\S, u € Ko(O(X\
S1)), and y: (S1,1) = (X \ Sy, o), ome has Ry, (u,7) = Rs,((resz1).(u), ).

4. Rs(u,~) = (rg(u),[7]), where rg is the original Beilinson-Bloch regulator.

Properties 1,2 would then imply that (3.54) defines well-defined homomorphisms

Ts: Ko(O(X \ S)) — HY(X\ S,C*);
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Property 3 would imply that maps rs are compatible with restrictions, so we can
define 7¢ as in (3.2); Property 4 would imply that 7s = rg and 7 = re. These are
not independent: Property 4 would imply 1-3, since the original Beilinson—Bloch
generator satisfies 1-3.

In the original manuscript, Properties 1-3 are summarized as [12, Lemma 3.
Unfortunately, we were not able to fill-in all the technical details necessary to finish
its proof, so we will only be able to show Property 3 above (see Lemma . After
that, in the next section, we will show in Lemma that Property 4 holds on the

Steinberg symbols (see Definition [3.2.10)):

4’. Property 4 above holds for w in the subgroup of K>(O(X \ 5)), generated by
Steinberg symbols. In other words, for any f, g € Inv(O(X \ S)) we have

Rs({f,9}.7) = (rs({f,93), 1)) - (3.56)

Note that since both u — Rg(u,v) and u — (rg(u, [7]) are group homomorphisms, it
is equivalent to ask Property 4 to hold on Steinberg symbols, and on the subgroup,
generated by Steinberg symbols.

Lemma 3.7.1. Let Sy, Sy C X be finite subsets of X, s.t. Sy C Sa, let resg;: O(X \
S1) — O(X \'Sy) be the corresponding restriction map, and let v: S* — X \ Sy be a
smooth path. Then,

Py = Py OT€Sg 1 (3.57)

as maps O(X \ S1) — M. In particular, for any v € Ky(O(X \ S1)) one has

Rs, (u,7) = Egz((reszl)*u,'y), i.e., Property 8 holds.

Note that in (3.57) on the left-hand side p., is interpreted as a map O(X \ S;) —
M and on the right — as a map O(X \ Sy) — ML

Proof. In the equality (3.57), p, on the left maps a function f € O(X \ S1) to

an operator My.,. The restriction map on the right maps f to the same function,
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restricted to X \ Ss. This restricted function takes the same values on the loop 7, so
we get the same operator M., by applying p, to it. Thus, equality (3.57) holds.

The second statement then follows directly from the definition of Rg:

Rs, (u,7) = (155 0 (py)+) (w) = (75 0 (py 0 Tesyq).) (u) =

(73" © (py)+) ((resp).u) = Rs,((resa)cu, 7). (3.58)

m
Lemma 3.7.2. Properties /', 3 and 1 above imply Property 4.

Proof. Assume that maps Rg satisfy 4°, 3, 1, let u; € K»2(O(X \ S1)), and let’s try to
prove 4 for u = u; and S = S;. Let res;: O(X\ S;) = F(X) and res;;: O(X\ Si) —
O(X \ S;) be the restriction maps (the finite sets Sy, S3 will be chosen later). It
is well-known that K, of a field is generated by Steinberg symbols (see e.g. [22]
Theorem 4.3.3]). Therefore, (ves;).(ui) = [[;_,{f;,g;} for some rational functions
fi»9; € F(X)\{0}. Let Sy be the union of S; with the set of zeros and poles of all f;,
gj (3 =1,...,n). Then, iy = [[;_,{fj, g} is a well-defined element of K5(O(X\S)).
Let uy = (vesy1).(u1). Then, (res).(uz) = (ves1)s(u1) = [[[_,{f;, 95} = (vesz).(u2).
Thus, there exists a finite set S5 D Sy s.t. (resso).(u2) = (ressa).(u2). Now, choose
arbitrary v: ST — X \ S;, and let ¥ be its deformation, which avoids points of Ss.
We have

§S1 (ula 7) RS1 (uh ) RS3 <U3, 7)

ESs(H{f%gjL f&) = HESB, ({fjvgj} '7 f[ TSS {fjvg] [’Y]> =
<7“Ss (H{fjvgj}> , [’ﬂ> = (rsy(us), [7]) = (rs, (1), 7)) = (rs, (wa),Y]) - (3.59)

]

Since we didn’t prove Property 1, we will try to improve the statement above

to avoid using it. Note that the proof above shows that, given maps Rg satisfy 4/
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and 3, for any S; and u € Ky(O(X \ S1)), there is a finite set S3 D Sy s.t. 4 holds
for any loop v, which doesn’t intersect with S3. Since such Sj is finite, “almost all”
paths satisfy this condition. Thus, we may hope to replace Property 1 in the list of
requirements of the lemma with some continuity condition on the map v +— Rg(u, ).

We will do this in Section [3.9

3.8 Computation of the Beilinson—Bloch regulator

on Steinberg symbols

3.8.1 Notation and general observations

The goal of Section is to prove Property 4’ of Rg from Section From the
original definition of the Beilinson—Bloch regulator [2] we know that the right-hand

side of (3.56) can be written as

st b =esp (o ([ samg ~wgta) [amp)). oo

v v

Here, z( is a point on the path ~, chosen as the starting point of the integrations.
Branches of In f and In g are chosen at this starting point, and analitically continued
along the path. One can check that the right-hand side doesn’t depend on the choice
of 2o and branches of logarithms. For the definition of the left-hand side of (3.56)),
see (3.55)). Thus, both sides can be written in terms of restrictions of f and ¢ on the

circle. To be more precise, let
p: O°(SH = MY b My, A" O(X\S) = C®(SY): frs foy.  (3.61)

We let R be the map, analogous to Rs, but acting on K, (C*°(S')). More precisely,

we let

R(u) =155 0 p.: Ky (C®(S")) — C. (3.62)
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Then, Rs(u,7) = R((v*).(w)), and, in particular, Rs({f,g},7) = R({f o 7.g07}).
To deal similarly with (3.60)), for f,§ € Inv(C>(S")) we let

R(f,§) = exp (2% (/S In fdlng — Ing(1) /S dmf)) (3.63)

with integrals starting at 1 € S'. Using this notation, it remains to prove that for

any f,§ € C®(S') we have
R({/.3}) = R(f.3). (3.64)

In order to do this, we write ]7: 2"ef G = 2™e9, where z is the identity function on
the circle, n and m are winding numbers of fand g respectively, f and g are smooth
functions on the circle. We then express both sides of (3.64) in terms of Fourier

coefficients of f and ¢, and compare the results.

3.8.2 Algorithm

Let
1 — K,(C®(SY)) —— St(C=(S1)) —== E(C=(S1)) —=1 (3.65)

be the universal central extension of E(C°(S1)). Note that E(C*>(S')) = SL(C>(S!)) ~
U, C>=(S*,SL,(C)) (where SL,(C) is interpreted as a subset in SL,1(C) using the
embedding a — (&9)). Given two matrix-valued functions a,b € C*(S',SL,(C))
satisfying [a, b]; = 1, we have i~} 1a, 77'b] € Ky(C™(S')). We observe that we can
unroll the definitions, used to define é, into the following “algorithm,” which, given

a,b as above, allows us to “compute” R(i~'[rta, 7 b]):

0. take a,b € C*(S*,SL,(C));
1. compute corresponding Toeplitz operators T, Ty,: H} — H;

2. find invertible s, = T,, (mod L'), s, =T, (mod L');
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3. return R(i~![rLa, 71b]) = det([sq, 5b)1)-

The result doesn’t depend on the choice of s,, s,. Here, the Toeplitz operator T, of
a matrix-valued function a € C*(S', M,,(C)) is defined as follows. Let Py ,: H" —
H' be the standard projector. Then, T, = P, ,M,P7 . We recall that, as we agreed
above, H = L?(S') is the space of square-integrable functions, and H, is its closed
subspace, generated by z! for [ > 0. In order to use this algorithm to compute

E({f, g}) one has to apply this algorithm with

a = diag(f,f ', 1), b= diag(g,1,5 ). (3.66)

3.8.3 Plan

Here, we outline the plan of the computations. Given f = z"! and § = 2™e9, we

want to compute é({f, g}). Using the properties of Steinberg symbols, we have

ﬁ({fv g}) = E({Znef7 Zmeg}) = E ({Zv z}nm{efa Z}m{egv z}_n{€f7 eg}) =
R({z,2})"" R({e!,2))" R({e?,2}) " R ({e/,¢%}) . (3.67)

Since the second and the third term are of the same form, our computation splits
into 4 parts: Term 1, Terms 2 and 3, Term 4 and putting the terms together. Each
of these steps is done in the corresponding subsection. The last subsection is devoted
to writing R(f, g) in a similar form (i.e., expressing it using the winding numbers
n,m and Fourier coefficients of f, g, where f: 2"el | § = 2™e), and comparing the

results. We use the following Fourier transformation f of f:

F=Y fa" (3.68)

n=—0oo

Term 1, ie., R({z,2}), will be computed explicitly using the algorithm from
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Subsection We express Term 2 as

R ({e/,2}) = exp (%

R ({eV, z})) : (3.69)

t=0
so we will compute this derivative. Similarly, for Term 4, we use

2

- 9
R ({ef7€g}) = exp <m

R ({e", eth})> . (3.70)

t1=t2=0

3.8.4 Term 1

Here, we compute R ({\z, z}). We will only need it for A = p = 1, but allowing
arbitrary nonzero complex coefficients doesn’t make the computation more complex
and allows us to check it. We have a = diag(\z,\7'z, 1), b = diag(uz, 1, u~'z). Shift
operator notation: 7, =S, S*S =1, §§5*=1—- P, PS = 5*P =0. We get

T, = diag(AS, A1 5% 1), T, = diag(uS, 1, u~15*), (3.71)
AMS P 0 uwS 0 P
sa=10 X1S* 0], s=10 1 0 : (3.72)

0 0 1 0 0 p s
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[Sas sp]1 =
AS P 0\ [uS 0 ATLS 0 0\ [piSt 0 0
0 X1S* 0 0 AS 0 0 1 0 | =
0 0 1 0 0 ,u_ls* P 0 uS
AuS? P Ly=ts=2 00 0
0 XS 0 pwtPS* NS 0 | =
0 ptS* 0 uS

1 0|, (3.73)

S2S*2+m1PS*+>\SP 00
01

0
det([sq, 5)1) = det(S2S™ 4+ ' PS* + ASP) = det ( a ) =\t (3.74)
A0

Thus, R({\z, uz}) = —Au~'. In particular, R({z,2}) = —1, R({a, 2}) = o

3.8.5 Terms 2,3

In this subsection, we will compute %‘t:(} R({e!, z}) and, thus, R({e/,2}). To de-
scribe R({e/, z}), we apply the algorithm from Subsection to a = diag(e’, e 7, 1),
b = diag(z,1,z). We get

T, = diag(T,;, T.-+, 1), T, = diag(S,1,5%), (3.75)
T, 0 O S 0 P
Sa=To=10 T.; 0}, ss=10 1 0|, (3.76)

0 0 1 0 0 5
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T,/ 0 o\ (S 0 o0\ [T, O O\[S O P

s:hsy = o Tt ol]lo 10 0 T., of]lo 1 of=
0 o 1/ \P 0 S o o0 1/\o 0 s*
T.,7's* 0 0\ (TS 0 TP 1 0 T, 'S*T,P
0 T.-;7' 0 0 T..r 0 |= 0o 1 0
P 0o S 0 0o S PT.;S 0 PT;P+(1—P)
(3.77)
In the last equality, we used that S*7.;S = T.;. We compute
det([sq, s]1) = det([s, ', s, 1) = 1+ Te([s; ", 5,1 — 1) + O fIP), (3.78)

Te(lsy', s, = 1) = (LT, —1=(1Lel )y — 1= (1, N+ O(IfIP).  (3.79)

Therefore,
det([sa, sol1) = 1+ (1, f)a + O(IfI?), (3.80)
S0
ol - ~ )
5| BT ) =0 R 2} = en(1, flu) = exp(fo). - (3.81)
=0
3.8.6 Term 4
In this subsection, we will compute % . R({e"/, 29} and, thus, R({e/, e?}).
10t2 |y

Here, to describe ﬁ({ef, e9}), we apply the algorithm from Subsection m to a =
diag(e/,e=7,1), a = diag(e?, 1,e79).
We have

sq =T, = diag(T,r, T, 117, 1), sy = Ty, = diag(Toeae, 1, To—t20), (3.82)
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and

[s.t, s, 11 = diag(Too s ' Totos Ty Thtaa, 1,1). (3.83)

a
We compute
0? 0?

E tf Lt2g1) —
D003, _,. S T

2

det (Tetlf _lTetgg _lTetlfTetgg)

t1=t2=0

det (14 Toors ' Totoo ™ (Totrs Totos — Totsa Tt )

Ot10t,

t1=t2=0
1
Hm  —— Tr (Tots ™ Totos ™ (Tonrs Totss — TotaoTons)) = Tr (T4T, — T,Ty) . (3.84)
t1,t2—0 t1to
We will now use the Fourier transforms f ,g of f g, and their holomorphic and anti-

holomorphic parts f,,g, and f_,g_. For f, these are given by

00 e} 0
F=Y ' =r+1, fo=>_ =Y A (3.85)
=0

l=—00 l=—00

Using the identities Ty Ty, = Ty 4, T§T,, = Ty, , and the similar ones with f and g

interchanged, we get

82

R({e",e9}) = Tr (Ty Ty, — T, Ty.) = T (T, Ty, = T1,T,.).
Ot10ts

t1=t2=0

(3.86)
One can check that k,1 > 0, we have

Tr (T~ Tor — T T,—1) = Tr (S*S%F — S¥S*) = 6y Tr(1 — S'S™) = 160.  (3.87)

Therefore, we have

o . o .
R tlf tog — l 3 A Ai _ l - ~_
o] R =S - = 5
1 dz

57 | J(E)(=d(2)—. (3.88)
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3.8.7 Combining terms together

In this subsection we give the answer for values of R on the Steinberg symbols of
K»(C*(SY)). Let f,§ be functions from Inv(C>(S")), and let us compute R(f,g).
We write

f=2z"el, g=2z"e, (3.89)

where n, m are the winding numbers of f, g. From the above computations, we have

R{J,g}) = Q({z"e, z"e}) = (=1)"" exp (mfo —njo+ Y lfzéz) - (3.90)

l=—00
3.8.8 Comparison with the Beilinson—Bloch regulator

We recall that the goal of this section is to show R({f,3}) = R(f,§), where the
right-hand side is given by (3.63). Using equalities f=zrel and § = 2me9, we
rewrite R(f, g) in terms of winding numbers n, m and Fourier coefficients of f and g.

Assuming that integration in (3.63)) starts at z = 1 with Inz = 0, we get

R(f,3) = exp (L/Sl(f—i-nlnz) dg+mi/gl(f+nlnz) %—ng(l)). (3.91)

2 2

We compute these integrals:

1 d 1 [ 1
Y L R 2_/ 06 = i_(2m) /2 = i, (3.92)

— f—= an (3.93)
o [ medg=a) = [ 9% =91~ (3.94)

1 1 d )
— [ fdg= —/S f(zg’)?z - z;OZf_lgl. (3.95)
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Collecting the terms together, we get

R(fa 9) = €Xp ( Z lf—z@z — ngo +mf0 +nmm’> =

l=—o00

(—=1)"" exp <mfo —ngo+ Y u&m) = R({f.3})- (3.96)

l=—0c0
The computations of this section give us the following lemma.

Lemma 3.8.1. Property 4’ of the map Es from Section holds.

3.9 Continuity argument and correctness of the def-
inition of the Beilinson—Bloch regulator

We recall our main goals: the first one is to show that gives a well-defined map
Ts: Ko(O(X \ S)) = HY(X \ S,C*), allowing us to define 7¢; the second one is to
show rg = rg, i.e., the regulator we are defining coincides with the original Beilinson—
Bloch regulator. Both statements would follow if we show Properties 1-4 of the map
}N%S, introduced in Section . We observed that it is enough to show Property 4, as
1,2,3 would follow from it, because they are satisfied by the original Beilinson-Bloch
regulator. So far, we've shown Property 3 (Lemma and 4’ (Lemma . We
have also shown that combination of 1, 3, and 4" would imply Property 4 in Lemma
We can’t use that directly since we didn’t get Property 1. Our plan now is to
show a property weaker than Property 1, so that the proof of Lemma [3.7.2| would give
us the desired Property 4, and, thus, 1,2,3. As we’ve already alluded in the comment
following Lemma this property is some sort of continuity of }Nﬁs(u, v) in 7. To

prove this continuity, we will again look at the exact sequence

1 —C —~&/T; =~ GLO(M') —1. (3.97)
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Following [18, Section 6.6], we introduce the topology on £ given by
diste((a, sa), (b, 5))* = [la = Ol* + | [Fya—Bloll3 + (s — ass) — (55— by )[I7. (3.98)

Here, || o ||, is £P-norm:
0o 1/p
2
lall, = (Z Y/ ) , (3.99)
=0

where \; are eigenvalues of a*a. The group operations of £ (product and inversion)

are continuous: one can check that by a direct computation. The topology on £/T;

is then induced from €. One can check that the projection &€ — £/7; is open.
Topology in GL,,(M!) is given by

distpg1(a,b)? = |la — b||30 = lla = b])* + ||[[F, @ — blo|l3- (3.100)

Lemma 3.9.1. Map (GL2(MY))? = £/Ty: (a,b) — [rta, 77 1b] is continuous.

Proof. Since [r7ta, 771b] = [77b, 77 1a] !, it is enough to prove the continuity in the
first argument.

Take a,b € GL? (M), and ¢ > 0. Fix invertible s, and s, satisfying s, —a, s, —
bis € LY(H7). Tt is enough to prove that there exists § > 0, such that if [|[a—a|[p0 < &

there exists invertible 3,, satisfying 5, — a,, € £!, such that
diste((c, s¢), (¢, 8.)) < &, (3.101)

where ¢ = [a,b]1, ¢ = [a,bl1, Sc = [Sa, Sb]1, Se = [Sa, Sp|1. We will constrain our choices
of 6 by § < ||s;t]|71/2, and choose 5, = s,—a,4 +ay . Then, dist((a, s,), (@,5,)) < 4,
so, by continuity of inversion and multiplication in the group &, there indeed exists

0 > 0 satisfying (3.101)). O

Lemma 3.9.2. The standard topology on C* coincides with the one induced by the

inclusion i: C* — £/ 7.
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Proof. Take any A € C*. For s, € T with detsy = A and any r > 0 let

B\ ={pecC: |A\—ul<r} (3.102)

Bi(\,sy) ={pne€C*:3s, € T: dets, = p,||sx — sulli <r}. (3.103)

By taking sy = 14 (A — 1)P, where P is a one-dimensional projection, we see that
BE()\) C Bi(),sy). Therefore, the map i: C* — £/7; is continuous. On the other
hand, det is continuous with respect to the || o ||;. Therefore, for r > 0 (and fixed s))
there exists 6 > 0 s.t. ||sy — s,|[1 < 0 implies |det s, — det sy| < r. Thus, for such ¢
we have Bi(),sy) C BE (). O

By combining the discussion and two lemmas above, we get the following obser-

vation.

Lemma 3.9.3. Consider the map
N
{(aj, b))}y = w756 [l ay, 7 '0y)) € €, (3.104)
j=1
acting on collections of 2N operators a;,b; € GL2(MY), satisfying
N
[{la;. 0,0, = 1. (3.105)
j=1
This map is continuous with respect to the topology induced from (M, (M?'))*".

Theorem 3.9.4. Property 4 holds.

Proof. Fix the set S. Choose u € K»(O(X\Y95)), and, using the fact that the Steinberg
group is perfect, write it as u = i~* Hévzl[w_lfj,ﬁ‘lgj} for some f;,9; € E,(O(X \
S)) € GL,(O(X \ 9)) satisfying

15590 =1 (3.106)
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According to the observation, made after Lemma [3.7.2] Property 4 holds for paths
v which avoid a certain set S; D S (which depends on w). So, let v be a path
St — X \ S, which intersects with some points of S;. Because of Lemma m
Mo~ depends continuously on «y, where topology in the space of paths v is given by
dist(y1,72) = supeg dist(71 (), 2(t)) + sup,egr dist(y1(t),74(f)), where some finite
covering of X is used to define distances between points and tangent vectors. In this

metric, every ball near v contains paths which avoid the finite set S;. Thus, the

theorem follows from Lemma [3.9.3] O
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