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Abstract

We will prove that, for a 2 or 3 component L-space link, HF L™ is completely determined by the
multi-variable Alexander polynomial of all the sub-links of L, as well as the pairwise linking numbers
of all the components of L. We will also give some restrictions on the multi-variable Alexander
polynomial of an L-space link. Finally, we use the methods in this paper to prove a conjecture of

Yajing Liu classifying all 2-bridge L-space links.
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Chapter 1

Introduction

In [18] and [23], knot and link Floer homology were defined as a part of Ozsvath and Szabd’s
Heegaard Floer theory (introduced in [20]). These give rise to graded homology groups which are
invariants of isotopy classes of knots and links embedded in S3. Carefully examining these groups
has yielded a wealth of topological insights (see [14], [15], [16], [25], [26] and [30]). The Euler char-

acteristic of link (knot) Floer homology is the multi-variate (single variable) Alexander polynomial®.

Throughout this paper, we will work over the field F = Z/2Z, and L = L; U Lo U ... U L; will
always be an [ component link inside S® unless otherwise specified. We will focus on links all of

whose large positive surgeries yield L-spaces.

L-spaces are rational homology spheres whose Heegaard Floer homology is the simplest possible.
More specifically, recall that for any rational homology 3-sphere Y we must have dim(ﬁ' (Y)) >

|H1(Y)|, and so we define an L-space as:
Definition 1.1 Y a QHS? is an L-space if dim(ﬁl\?(Y)) = |H,(Y)].

Lens spaces are the simplest examples of L-spaces. Further examples include any connected sums of
3-manifolds with elliptic geometry [21], as well as double branched covers of quasi-alternating links
[22]. It was shown in Theorem 1.4 of [20] that such manifolds do not admit co-orientable C2-taut
foliations.

We will define an L-space link as follows:

Definition 1.2 L C S% is an L-space link if the 3-manifolds S;; (L) obtained by surgery on L

are all L-spaces when all of the n; are sufficiently large.”.

L-space links were first studied in [6], where it was shown that any link arising as the embedded

link of a complex plane curve singularity (i.e. algebraic link) is an L-space link (note that this

2This is “almost true”, we will make it precise in Definition 1.4.
bNote that this definition does not depend on the orientation of the components of L.
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includes all torus links). The general study of properties and examples of L-space links was initiated
n [10] see also [5]. L-space knots were first examined in [21]. In that paper it was shown that for
an L-space knot, the knot Floer homology is completely determined by its Euler Characteristic (i.e.
the Alexander polynomial). In this paper, we give a generalization of this statement to 2 and 3

component L-space links inside S3. First, we recall some standard facts and notation.

Definition 1.3 Let H(L); denote the affine lattice over Z given by lk(L;, L\L;)/2 + Z. We define:

We can think of every element of H(L) as an element of the set of relative Spin® structures of L C S3
via the identification H(L) — Spin®(S3, L) given in section 8.1 of [23]. Note that H(L) is an affine
lattice over Hy(S® — L) = ZL.

Both HFL~ and HFL for a link L inside S3 split into direct summands indexed by pairs (d, s),
where d € Z (the homological grading) and s € H(L). We will write these summands as HF L} (L,s)
and ﬁF\Ld(L, S).

Now, if s = (s1,82,...,5;) € H(L), we denote by u® the monomial uf" ...u;".

Definition 1.4 In this paper, we define the symmetric multi-variable Alexander polynomial Ap, (u1,us, ..., u;)

for L so that the following equality® holds:

l
Z (HFL H( 12 _ _1/2> Ap(uy,ug, ... up).

s€H(L) i=1

Theorem 1.5 Let L C S? be a 2 or 3 component L-space link and let s € H(L). Then HFL™(L,s)
is completely determined by the symmetric multi-variable Alexander polynomials +Ap; for every

sub-link M C L, as well as the pairwise linking numbers of components of L.

In [21], it was shown that being an L-space knot forces strong restrictions on the Alexander
polynomial, and we will generalize this to links. Our restrictions will depend on the Alexander
polynomial of the link L, as well as the Alexander polynomial of all its sub-links after a shift

depending on various linking numbers.

Definition 1.6 Given a proper subset S = {i1,42,...,9x} C {1,...,1}, we let {j1,72,.. ., Ji—k} =
{1,...,1}\S where j, < jp» when a < b. Let Lg C L be the sub-link L;, U L;, U...UL; . The

¢In proposition 9.1 of [23], the above equality was only shown to hold up to sign. So our sign convention for Ar,
here may not be standard, but it will make the statement of some of our Theorems easier. For our main Theorem,
we only need to know A up to sign.



polynomial PLLS is defined as follows:

When S = 0 we have,

When [ — k& > 1 we have,

z B 1/2+41k(L;, ,Ls)/2 .
PLs(uj17uj2""7ujl—k) = ( Uy, i AL\Ls(ujm""uj(sz))’
p=1

And finally when [ — k& = 1 we have,

lk(L“,LS)

PLLS (ujl) = Uy, ? Zu]_ll AL\Ls (ujl)'

i>0

Now, fix some s = (s1, $2,...,8) € H(L) and r € {1,...,1} so that » ¢ S. Then, define

R s'>s (PII?S)

’
8, =8p

’
s
1 -k L satis [
L --eug,oof Proothat satisfy s, = s, and

’
S

to be the sum of all the coefficients of monomials u;

s, = s;, for jp # 1.
Example 1.7 Consider the 2-bridge link L = b(20, —3) (see Section 5 for definitions and notation).
Then;

1/2 3/2 | 3/2 1/2 | 1/2 —1/2 | —1/2 1/2  -3/2 —1/2 —1/2 —3/2  3/2 3/2

Ar(ug,ug) :U1/ u2/ —|—u1/ u2/ +u1/ U / + uy /u2/ + vy /u2 / + ug /u2 / —ul/ u2/
1/2 1/2  —1/2 —1/2  -3/2 —3/2
—uy uy T —uy Tuy T =y T g

1 1
L 2 2 2,2
Py (u1,u2) =uuz + ujug + uy +ug + — + — —ujuy — ugug — 1 — .
Uy U2 Upu2

L = L, ULy is a 2 component link with both components unknots. The linking number of the 2

components is 2 so;

Pl (us) = us Zu;i and Pf, (u1) = u Zufi

i>0 i>0
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Theorem 1.8 If L is an L-space link, then for any s € H(L) and r € {1,2,...,1}:

S ()R (PE) =00r L.
Sc{1,..,i} 8. =5r
réS

Remark 1.9 When [ = 1, this says that the coefficients of P@L are all 1 or 0, which follows from
the work in [21].

Given any 2 variable polynomial F'(u1,uz), we define F|; jy, where i = 1 or 2, to be the polynomial
obtained from F' by discarding all monomials where the exponent of w; is not equal to j. Then the

above Theorem, when restricted to the [ = 2 case, reads as follows:

Corollary 1.10 Suppose that L = Ly U Lo is an L-space link. Then the nonzero coefficients of P@L
are all £1. The nonzero coefficients of P(()L|(r,s;,) forr =1 or 2 and any s, € H(L),, alternate in
sign. The first nonzero coefficient of P@L|(m;‘) is —1 if the coefficient of ui; n PLLs_T is 0; and the

first monzero coefficient of P(DL|(T$S;) is 1 if the coefficient of u,™ in PLL%T is 1.

Proof: As in Theorem 1.8, fix s’ = (s, s5). Suppose without loss of generality that r = 1. We
denote by ay, s, the coefficient of ui'us? in P (u1,uz), and as, the coefficient of ui* in Pf (uy).

Then according to Theorem 1.8:

as, — Z agr s, =0or 1. (1.1)
s3>k
Similarly;

ag = > ag.e,=0or L (1.2)

sa>sh+1
Subtracting 1.1 from 1.2 gives a4 o = —1,0 or 1. We have thus shown that all the coefficients of
P@L or —1,0 or —1. We know that ay; must be either 1 or 0 (see Remark 1.9). Combining this with
equation 1.1 gives that 25225’2 g5, = 0 or 1if ay =1, and 25225/2 g5, = 0 or —=1if ay = 0.
The rest of the corollary now immediately follows. O
Part of the above corollary was already shown directly in Theorem 1.15 of [10]. Additionally in
[10], it was shown that when ¢ and k are odd positive integers b(gk — 1, —k) is an L-space link. This

was conjectured to be a complete list of 2-bridge L-space links, which is correct.

Theorem 1.11 If L is a 2-bridge L-space link, then, after possibly reversing the orientation of one

of the components, L is equivalent to b(qgk — 1, —k) for some positive odd integers q and k.

The organization of this paper is as follows. Section 2 consists of some homological algebra

needed to compute HFL™ (L) from its Euler characteristic when L is a 2 or 3 component L-space
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link. Section 3 generalizes the arguments in [23] to work on links. In Section 4 Theorem 1.5 is
proved, as well the the restrictions on the Alexander polynomials of L-spaces. In Section 5 we prove

the classification of 2 bridge L-space links.



Chapter 2

Homological Preliminaries

Definition 2.1 Let F,, = {0,1,2}" C R™ where n > 1. We will denote (0,0,...,0), (1,1,...1) and
(2,2,...,2) by 0,1 and 2 respectively. For any ¢ € E,,, we denote by ¢; the jth coordinate of ¢ and
by e; the jth elementary coordinate vector. We define an n-dimensional short exact cube of

chain complexes, C (or short exact cube for short), as follows:
1 For every € € E,, there is a chain complex C. over F.

2 Suppose that €', and €” are in E,, and only differ in the jth coordinate with 5;- =0,¢5=1and

6/,/ =

7 = 2. Then there is a short exact sequence

tele Jee!

C. C.» 0.

3 The diagram made by all of the complexes C. and maps i./., jeer is commutative.

We will denote C 55, 2y as C for short. We define the cube of inclusions, C!, to be the sub-
diagram counsisting of all the chain complexes C. with ¢ € {0,1}" and the corresponding inclusion

maps. We call a short exact cube basic if the following additional properties hold:

4 For ¢ € {0,1}", H,(C.) = F[U] where multiplication by U drops homological grading by 2. We
do not specify what the top grading for F[U] is, but we do require that it is even.

5 All of the maps (i./¢)«, induced by homology in the cube of inclusions are either isomorphisms in
all degrees, or (ic/c). is injective in all degrees and the top degree supported in H,(C.) is 2

higher than the top degree supported in H,(C./). In other words UH,.(C.) = H.(C./)

When the top grading for F[U] is d, we will write it as F(g)[U]. Similarly, 4 will be used to denote
F supported in degree d.
Given an n dimensional basic short exact cube C, if we restrict to the commutative diagram

coming from the subset of F,, with jth coordinate ¢ where ¢ = 0,1 or 2, this can be thought of as
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an n — 1 dimensional short exact cube of chain complexes which we will denote by Z C. For any

je{l,2,...,n}, %70 is the same as C; and gC and {C are basic.

Lemma 2.2 Suppose C is a basic short exact cube of chain complexes. Also let € € E,, have some

coordinate equal to 2. Then, H,(C.) is finite dimensional.

Proof: In the n =1 case, H,(C) is either F or 0 by property 5 of basic short exact cubes. Thus,
for any n-dimensional basic short exact cube C, the homologies of the complexes in élCl are only
either IF or 0 for any j;. From here we can conclude that the homologies of the complexes in %%1 c!

are finite and continuing with this argument proves the claim. O

Definition 2.3 If C is a basic short exact cube, then we define the hypercube graph of C,
HC(C), as a directed graph with labeled edges as follows:

e The vertices correspond to the elements of the set {0,1}".

e There is a directed edge from &’ to ¢ if the two agree in all coordinates except the jth for some

1<j<mnande;=0,e =1 We will denote the edge from &’ to ¢ by e.rc.

e An edge e is labeled with 0 if (ic/¢)s is an isomorphism in all degrees and 1 otherwise. We

will denote the label of an edge e by lc(e.c) or l(e.r.) when C is clear from context.

We will denote by HC (C) the subgraph of HC(C) induced by all the vertices except the origin and
we will refer to HC(C) as the hypercube subgraph of C.

Remark 2.4 Note that, since C! is a commutative diagram, for any two directed paths between
vertices the sum of the edge labels must be the same in HC(C). If we are given a directed hypercube
graph G (directed as in definition 2.3) with edge labels 0 and 1 that satisfies the property that the
sum of the edge labels along any two directed paths between vertices is the same, we can easily
construct a basic short exact cube with G as its hypercube graph. Also note that x(H.(C)) is
completely determined by HC(C).

Lemma 2.5 Suppose that C is a basic short exact cube. There are only two mutually exclusive

possibilities:
1 If C' is another basic short ezact cube then HC(C') = HC(C) = HC(C') = HC(C).

2 FEither all of the edges in HO(C)\}?&(C) (i.e. all the edges emerging from O )are labeled with 0
or they are all labeled with 1.
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Proof: Note first that, if possibility 1 is satisfied, possibility 2 cannot also be satisfied since if
all the edges emerging from 0 are labeled with ¢ (where 7 is 0 or 1) then we can get another valid

labeling by simply replacing all the i’s emerging from the origin with (1 — ¢)s (see Remark 2.4).

Suppose that C and C' satisfy HC(C') = }76’(0), but HC(C') # HC(C). Then there must
be some &’ connected to the origin such that the edge from 0 to ¢’ is labeled differently in HC(C")
and HC(C). Assume without loss of generality that ic(eger) = 1 and I (eger) = 0. Consider any
other vertex e connected to the origin and consider lc(eg.). We claim that I (ege) must be 1. To see
this, consider the square subgraph induced by the vertices 0,¢,&’ and § = e+¢’. If Ic(eoe) = 0 then
since lc(eger) = 1 this forces lo(ess) = 1 = ler(ees) and lo(eers) = 0 = lor(eers) (see the Remark
2.4). However this is impossible because we know I/ (egr) = 0 and if 0 = lo/(ewrs),1 = lor(ees)
there is no label that works for eg./. So we get that in C every edge emerging from the origin must
be labeled 1 if one of them is. By the same argument, we can show that every edge emerging from
the origin must be labeled 0 if one of them is. This proves that the two cases stated in the Lemma

are exhaustive and mutually exclusive.

O

Lemma 2.6 Suppose that A and B are two basic short exact cubes satisfying EE'(A) = I?E’(B),
every edge in HC’(A)\ﬁé’(A) is labeled with 0, and every edge in HC’(B)\I/{\E'(B) is labeled with
1. Then,

X(H.(A)) = x(H.(B)) + (-1)".
Proof: We will prove this inductively. For the n = 1 case using the fact that both H,(Ag) and

H.(By) have even top grading we directly compute that y(H.(A)) = 0 and x(H.(B)) = 1. Now

we can proceed with the induction. Note that we have:

X(A) = x(1A) — x(§A) and x(B) = x(1 B) — x(§B).

) since they are both completely determined by the hypercube subgraph HC and also
)+ (=1)"~! by induction. O

xX(1A)

x(5A)

==

x(
x(

1
1
s
0

Lemma 2.7 Suppose that C is a 1,2 or 3-dimensional basic cube of chain complexes. Then we can

compute H,(C) as a graded vector space if we know H.(C.) for any C. in the cube of inclusions

C’, as well as all the maps (icre)« tnduced by homology in the cube of inclusions cl.

Proof: When n = 1, we have a short exact sequence:

0 C, >, 22T 0.
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Thus if (ip1)« is an isomorphism, we get that H,(C) = 0; and if not, then H,(C) = F. For the

n = 2 case we show all possibilities for HC' in Figure 2.1.

(M @) 3) 4)

(6)

Figure 2.1: All possible hypercube graphs in the n = 2 case ((0,0) is on the bottom left). The dotted
lines denote edges labeled with 0 and the solid lines are edges labeled with 1

If we assume that H,(Co) = F(o)[U], then H, (C) is 0, 0,0,F 3y, F(2y, Fay © F3) for the 6 possi-
bilities shown in Figure 2.1, respectively.
In the n = 3 case we only need to consider those HC which do not have a facet equal to (1), (2) or

(3) in Figure 2.1 , as otherwise we would have for some j = 1,2 or 3, H, (%E) =0or H.(JC) = 0.

This would allow us to compute H, (C) from the long exact sequence for the short exact sequence:

We show all the possibilities for HC' when n = 3 and none of the facets are as (1), (2) or (3) of
Figure 2.1 in Figure 2.2.

(1 2) 3) 4 )

Figure 2.2: Some hypercube graphs in the n = 3 case. Once again the (0,0,0) is on the bottom left
and the dotted lines denote edges labeled with 0 and the solid lines are edges labeled with 1

If we assume that H,(Co) = F(o)[U], then H,(C) is F 3),IF(4) @IF(3), 0 Fs )@F(4),IF(6) @F%5) &)

F4) for the five cases shown, respectively. O

Remark 2.8 The above Lemma does not hold when n > 4. Consider the basic 4 dimensional
short exact cube C where every edge of HC(C) is labeled with 1 and H.(Co) = F(g)[U]. For
any ji1,Jj2 € {1,2,3,4} we have H, (”“COO) ~F,dFs, H (]”201 ) (J”?C'Ol) >~ Fg ® F5 and

(J ”20 11) =2 Fg ®F7. Tt follows that all maps on homology in the cube of inclusions for 7; g?c are
trivial. So for all j the map from H, (%E) = Fg) @IF%5) ©F 4 to H, ({70) = Fs) @]F?n @) may be
of rank 0 or 1 without violating commutativity. Thus H,(C) may be either Fs) ® F?ﬂ <) ]F?G) D F(s5

or Fgy & F( 7 @ F(G) @® F(5). See also Theorem 1.5.1.d in [7].




10

Chapter 3

The Chain Complex

For a complete overview of Heegaard Floer homology, admissible multi-pointed Heegaard diagrams
for knots and links, the definition of L-spaces and their relationship with the Heegaard Floer complex,
see [20],[19], [18], [23], [21], [24], [25] and [12]. Suppose that L C S® is an oriented ! component
link. In this paper, we define a multi-pointed Heegaard diagram H = (X4, a, B3,w,z) for L with the

following properties®:
e 3, is a closed oriented surface of genus g.

e o= (ai,...,a51m—1)is acollection of disjoint simple closed curves which span a g-dimensional
lattice of Hy(X,Z), and the same goes for § = (B1,...,Bg+m—-1). Thus, a and B specify
handlebodies U, and Ug. We require that U, Uy Ug = 3.

ez =(21,29,...,2;) and w = (wy,wa, ..., wy,) are both collections of basepoints in ¥ where

I <m. We will call w;11,wjyo,...w,, free basepoints.

o If {A;}, and {B;}™, are the connected components of 3\ (Uf:lmfl ai) and X\ (Uf:lmfl &-),
respectively then w; € A;NB; for any 1 < i < m; and there is some permutation o of {1,...,1}

such that z; € A; N By(;) when 1 <4 <.
e The diagram as defined so far specifies the link L C S3.

e We require that all of the o and S curves intersect transversely and that every non-trivial

periodic domain have both positive and negative local multiplicities (see section 3.4 of [23]).

Also recall that for every intersection point x€ T, N T3 there is a Maslov grading M (x) and an

Alexander multigrading A;(x) € H(L);.

Definition 3.1 Suppose we have a multi-pointed Heegaard diagram H = (3,4, a, 8,w,z) for the

pair L as above. We define the complex CF~(H) to be free over F with generators [x, i1, j1,- .-,

aThis is identical to the definition given in [23] except we want to allow “spare” basepoints that will arise in the
proof of the main theorem.
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2 Il 441, - - - i) Where i, € Z<g, and ji, € Q satisfying ji — iy = Ar(x). The differential is, as usual,

given by counting holomorphic disks:
a[xvila.jla R ilmjlail-i-l) B 77:771] =

Z Z [yyil_nwl (¢)7j1_n21 (¢)a o 7il_nwz (d’)vjl_nzl((b)ail—i—l_anl (¢)7 .. aim_nwm (¢)]
y€TaNTg pem2(x,y)
n(¢)=1
In the notation of [11], this differential and Heegaard diagram correspond to the maximally colored

case.

The complex CF~ is also an F[Uy, Us, . .., U, ]-module. The action of Uy for 1 < k <1 is given by:
UklX, 01, J1y o sl Jhs o - 8y 1y U1 « - o5 Bm) = [Xy 81,0155tk — L g — Lo o o0, Jis Uity -+ - 5 B
and for [ < k < m is given by;
Uk[X, 015 015« oo s 0y s Uty o s Bky e v 5 Bmm) = [Xy 81, J1y - o5 805 J15 8141 « -+, 0k — Ly o ey

We define the Maslov grading of [X, 41,71, .-, ik, Jky - - - 905 Ji5 441 - - - , ) DY setting it equal to M (x)
when all the i, are 0 and letting the action of each U; drop the Maslov grading by 2. Note that
both as a complex and F[Uy, Uy, ..., Upy]-module CF~ is isomorphic to CF~ as defined in [23] via

the isomorphism induced by
[X, 11, J1, - - - 77;la]'l7il+17 Ce ,im} — Ul_“ Ce Ul_“”x.

And so it follows that CF~ is a chain complex with homology HF~(S?).

Definition 3.2 Suppose that we have a Heegaard diagram 7 for L C S3 as above. Fix some s
= (s1,...,8) € H(L). Now suppose that we restrict CF~ (H) to only those generators [x, 1, j1, - - -, &
v 15 841y - - - U] Which satisfy Ag(x) = ji and force the differential to only count holomorphic disks
¢ with n,, (¢) = 0 when 1 < k <. Then this quotient complex of CF~(H) will be denoted by
CFL~(H,s). Note that CFL~ inherits an F[Uy,...Uy,] module action from CF~.

Theorem 3.3 If CFL™(H, s) is as above, then its homology is HFL™(S3, L, s)

Proof: If the diagram H has no free points, then CF L~ (H,s) is the same as the complex computing
HFL~ in [23]. so we only need to show what happens in the case when there are free basepoints

in H. Suppose that H’ is another Heegaard diagram that only has [-pairs of basepoints (one pair
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for each link component) and no others. Then we claim that H can be obtained from H’ via the

following moves:

1 a 3-manifold isotopy

2 « and (8 curve isotopy

3 « and $ handleslide

4 index one/two stabilization

We may also need the inverses of moves 1-4
5 free index zero/three stabilization,

but we do not need the inverse of 5.

We follow the argument from proposition 4.13 of [11] which relies on [12] Lemma 2.4 . Basically,
we can apply moves 1 — 4 to H’ to obtain a Heegaard diagram that differs from a diagram with
exactly [ pairs of basepoints (one pair for each component) by index zero/three stabilizations only.
Then we can apply moves 1 — 4 again to obtain the diagram H. Now we know that moves 1 —4 and
their inverses give chain homotopy equivalences for the complexes CF L™ by the arguments given
in [20] and proposition 3.9 of [23], so we will focus on move 5. Suppose that H; and Hs are two
Heegaard diagrams for L, and H is obtained from #H; by a free index zero/three stabilization. Then
Ho has an extra free basepoint w, that #; does not have. By the argument of Lemma 6.1 in [23],

we see that the complex CFL™ (Ha, s) is just the mapping cone

U.—U
CFL™ (M1, 8)[U,] —= CFL™(H1, s)[U,],
where k is an index corresponding to some w basepoint in H;. Now, k may correspond to a free
basepoint, or it may correspond to some link component (in which case the action of Uy is trivial);
but in either case, the homology of this mapping cone is the same as the homology of CF L~ (H1,
s). So we see that all of the above 5 Heegaard moves induce quasi-isomorphisms of chain complexes,

and this gives the desired result. (|

Definition 3.4 Fix a Heegaard diagram # for L. For a given s € H(L) and ¢ € E;, we define the
complex A _(H) to be the quotient complex of C'F'~(H) generated by those [x, 41, j1, - -, %1, Ji, li41,
..., im] that satisfy

e max{ir,jr — (sp — 1)} <0ifep =0
° max{ik,jk - Sk} <0 if &k = 1

e i <0 and j, = sy if e = 2.
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By Ag (M) we mean A_(H). We will write Ag. when the choice of diagram is clear from context.
The complex A, (H) inherits an F[Uy, ... Up,] action from C'F~(H). When H is clear from context

we will omit H from the notation.

Remark 3.5 If we complete A; (H) with respect to the maximal ideal (Uy,...,Uy,,), there is an
isomorphism between the completed version of Ag (H) and 2~ (#H,s) as defined in section 4.2 of [11],

given by:
.. L. . Ufmax{il,jlfsl}UfmaX{ig,jgfsQ} Ufmax{il,jlfsl}U_ilJrl U_im
[X7217]17‘"7zl7¢7la7'l+17~”72m]’_> 1 2 ..Uy X.

We can use the proofs in section 4.3 and 4.4 of [11] to show that the homology of the complex
A (M) does not depend on the choice of a Heegaard diagram. For this reason we will sometimes
write H,(A; (H)) as H.(A; (L)). In this paper we could have just used the complexes 27 to get
the same results about link Floer homology. The choice to use the notation here has been made to

make the analogy with the work in [18] and [21] more clear.

Theorem 3.6 Suppose that L C S® is an L-space link and s € H(L). Then, as F[Uy,Us, ..., U]-

modules,

where all of the U; have the same action as U on the right hand side.

Proof: We can use the proof of Theorem® 10.1 in [11] to see that for any s € H(L), H, (A7) is
isomorphic (as a module) to HF~ (Y, s), where Y is some L space obtained by large positive surgery

on L and s is a Spin® structure over Y. O
Remark 3.7 The above property characterizes L-space links. See also proposition 1.11 of [10].

Suppose that, for a fixed s € H(L), we have €', ¢ and €” in E) so that they only differ in the jth
coordinate with €} = 0,; = 1 and €] = 2. Then, for a given Heegaard diagram H of L, there is a

short exact sequence:

lele Jee

0——=A (H) ——=A;.(H) Agon

(H) — 0.

So, we can define a short exact cube of chain complexes A~ (H,s) by setting A~ (H,s). = Ag.(H).
Note also that A~ (H,s) is just CFL™(H,s).

Theorem 3.8 For any s € H(L), A™(H,s) is a basic short exact cube when L is an L-space link.

b As was mentioned in Remark 3.5, the only difference between the complex in that paper and this one is that it
is defined over F[[Uy,Us,...,Up]| as opposed to F[U1,Us,...,Un]. However the proof of Theorem 10.1 in [11] does
not rely on F[[U1, Us, . ..,Un]] in any way. See also the proof of Theorem 4.1 in [18].
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Proof: We want to show properties 4 and 5 in definition 2.1. Note that, by Theorem 3.6, we
already know that for all ¢ € {0,1}" we have H.(A;.) = F[U]. First, we will examine all maps
induced on homology in the cube of inclusions. Suppose that &’ and ¢ are in {0,1}' and differ only
in the jth coordinate with ¢’ = 0 and ¢; = 1. Also define ¢” to agree in all coordinates with ¢
except the jth and € = 2. Now, following the proof of Lemma 3.1 in [21], we define X to be the

set of generators [X, 41,51, ,01,Ji,li+1, - - - lm] of CF~ that satisfy:

1 max{ik.,jk. — (Sk — 1)} < 0 if 8% =0

2 max{ig,jr — sk} <0if e =1

3 i <0and jg = s if e} =2, i.e. when k = j.

We define a set Y similarly, except 3 is replaced with;

3 i =0and ji < s if e} =2, i.e. when k = j.

Note that X naturally generates a sub-complex of a quotient complex of CF~, which we will denote

by C{X} = A__,. Similarly, there are complexes C{U;X},C{Y}, C{X UY}, C{U;X UY} and

76” .
C{X UU;X UY}, all of which inherit differentials from CF~. Since C{X UY} = AZ_/U;(Ag.)
its homology is HF of some L-space obtained by some large surgery on L (see section 11.2 of [11]).

Therefore H,(C{X UY}) = F. Similarly H,(C{U;X UY}) = F. Now we have two short exact

sequences of complexes:

0——C{Y} > 0{X UY} 2> ofX) 0

and

00— C{U;X} —2> C{U;X UY} —2> C{y} — 0.

We will denote the connecting homomorphims for these two complexes by §; and ds, respectively.
First note that d2 0 93 = 0 (this follows from the fact the differential & on the quotient complex
C{X UU;X UY} satisfies 9* = 0). Now it follows from the exact same argument as in Lemma
3.1 in [21] that either H,(C{X}) = H.(4A; ) is 0 and H.(C{Y}) is F, or H.(C{X}) is F and
H,(C{Y})is 0. If H,(C{X}) = 0 then the map i.rc : A;_, — Ag . clearly induces an isomorphism
on homology. If H, (A;E,,) is IF supported in some degree k then it follows from the first short exact
sequence that H.(C{X UY}) = H.(A;./U;(A;5,.)) is also IF supported in degree k. Then, from the
second short exact sequence it follows that H,(C{U;X}) = H.(C{U; X UY'}) = H. (AL /U;(A; L))
is F supported in degree k — 2. So we now have that the top grading in H, (A;E,) is two less than
the top grading in H.(Ag.), and we have now completely verified property 5 in the definition of a

basic short exact cube.
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The only thing that is left to check in property 4 is that for any ¢ € {0,1}}, H,(A™ (H,s).) = F[U
has even top degree. For any sufficiently large (si,s2,...,8) = s € H(L) we have H,(A;) =
HF~(8%) = F(y[U]. For any s’ <'s, we can decrease the s; by one over finitely many steps to get
from s to s’. By property 5 we know that each of these steps will either preserve the top degree or

drop it by 2. The result now follows. |

Corollary 3.9 For an L-space link L C S® with Heegaard diagram H, HC(A™ (H, s)) depends only

on L and s.

Proof: The top gradings of all the H.(Ag ) are invariants of L C 53 and s. The maps induced
by homology in A~ (L, s)! are completely determined by these gradings since we have shown that
A~ (H, s) is a basic short exact cube. O

Here is another fact that we will use often:
Lemma 3.10 Fiz somes € H(L) where L in S® is an arbitrary link (i.e. not necessarily an L-space

link). Then, if HF L™ (L, s+€) is trivial for every e € {0,1}!, e # 0 we get HFL™(L,s) = ﬁﬁ(L, S).

Proof: First fix a Heegaard diagram H for L C S3. We define an [-dimensional short exact cube
C; as follows: for e € {0,1}! and s € H(L) we define Cs. to be a quotient complex of CF~(H)

generated by those [x,i1,J1,...,%, i, t+1,--.,%m) that satisfy the following:

o i, =0and jp < spifep =0
o i, =0and jy <spifep=1
o i =0 and jp = s if g, = 2.

Then the inclusion and quotient maps of Cs are defined naturally from CF~(H).
By definition, H,(Cs) = ﬁ(L,S) and for € € {0,1}! we have

H(Cs.) = U " U, ..U " HFL (L,s+1—¢).
And so H,(C.) is only nonzero when e = 1. So it follows by taking iterated quotients that,

HFL(L,s) = H,(C1) = H,(C) 2 HFL(L,s).
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Chapter 4

Proof of the Main Theorems

Remark 4.1 Suppose that M = L;, UL;, U...L;, is a sub-link of L = Ly U Ly...U L; with the
inherited orientation. Fix some Heegaard diagram # for L. Now choose any s = (s1,...s;) € H(L)
so that all s; for L; ¢ M are sufficiently large (for instance larger than max{A;(x)} for every
generator x in some fixed diagram H for L C S3). Then it is easy to see that for some re H(M)
and any € € E; the complex AJ () is the same as A, _,(H') where ¢’ € E;_y, is obtained from e by
deleting &;,,...,¢&;, and reordering and H’ is obtained by deleting z;,, ..., z;, and reordering. The
explicit value for r can be computed by the formula in section 4.5 of [11] (see also section 3.7 of [23]).
Sor = (r,...,m) € H(M) is given by r; = s;, —1k(L;;, L\M)/2. The next Lemma was observed
in [10] Lemma 1.10.

Lemma 4.2 FEvery sub-link of an L-space link is an L-space link.

Proof: Suppose that M C L is some sub-link. It suffices to show that, for any r € H(M), we
have H, (A, (M)) = F[U]. This is true because H,(A; (M)) = H,(A5 (L)) for some s € H as shown

above. O

Lemma 4.3

> X(HFL™(L,s))u® = Py (ua, ..., up)
scH

Proof: It was shown in [23] proposition 9.1 that when [ > 1
!
— POt
Zx(HFL(L,s))uS =4 (H u? —u, 2) Ap
selH i=1
and we have chosen sign conventions so that

!
Zx(FF\L(L,s))us = (H u? — uf"‘) Ap.

scH
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and so for [ > 1 it follows that

> X(HFL™(L,s))u®

scH

Il
N~
e
-2
<
~8
(]
=_
A
5!
=
=
=z
5
~_—

I
£
<
v}
E
>
h

When [ = 1, it was shown in [18] that:

STX(HFL(L,s))u® = AL (w);
scH

and so the result follows by the same argument as above. O

Definition 4.4 Suppose we are given a Heegaard diagram H for an L-space link L C S3. Define a
directed labeled graph T(H) as follows:

e The vertices correspond to the elements of H(L).

e There is a directed edge from s = (s1,...,5;) tos’ = (s),...,s]) if for some ¢ we have s, = s;+1

and s} = s; for every j # i. We will call this edge ess'.

e If s and s', are as above then define € € Ej so that €; = 1 if j # ¢ and &; = 0. Then the label
of edge egs is the same as the label of the edge between ¢ and 1 in HC(A™ (L, §')).

Just as in corollary 3.9, the graph T(H) is an invariant of L C S®. So we will simply say T(L). We
will denote by JT(L) the subgraph of T(L) that is obtained by restricting to the hyperplane with

jth coordinate equal to s.

Definition 4.5 Suppose that L C S% is an L-space link. Then we recursively define m(L) € H(L)

)

as follows. If L has only one component let m(L) be the degree of Ay,. In general;

k(L;, Lj)
2

Ik(L;, Lj)

m(L); = max <{degui(P@L)} U {m(L\LJ—)“ + J< Z} Y {m(L\LJ’)i Tt

where by deg,, . (P@L) we mean the maximal degree of u; in any monomial of PQL.
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Proposition 4.6 For an L-space link L C S* suppose that s > m(L);. Then IZ(L) is completely
determined by T(L\L;) and all the edges from IT(L) to S_HjT(L) must be labeled with 0.

Proof: First note that T(L\L,) only makes sense in light of Lemma 4.2 from which it follows that
L\L; is an L-space link. Pick m = (mq,...,m;) € H(L) so that for any 1 < i <1, m; > A;(x)
for every generator x. Then, we claim that whenever s; > m;, S"I(L) is completely determined
by T(L\L;) and all the edges from [“T(L) to , ,{T(L) must be labeled with 0. We prove this
claim when 7 = [. Since s; > my, the inclusion between A@l 7777 o) and A(Sl """" si1) induces an
isomorphism on homology. So the edge between (si,...,s;) and (s1,...,s + 1) is labeled with 0.
Following Remark 4.1 we get that the edge between (s1,...,8;,...,5) and (s1,...,8; +1,...,8)

_ k(Ly,Ly) _ k(L Ly) _ k(L L)
2 - 2 2

— e SI-1 and

has the same label as the edge between (51

(31 - w, Ce, 8 — M +1,...,8-1— M) in T(L\L;) and so this proves the claim.
Now we are ready to prove the proposition.

We will prove this by induction on I. If m; —1 > m(L);, for some fixed j, the edge between

(s1,...,mj—1,...,s;) and (s1,...,m;,...,s;) is labeled zero if s; > m, for every ¢ # j (by induction).

Notice that this determines I/{\E'(Af (L, (s1,...,mj,...,s1))). One valid (in the sense of Remark
2.4) labeling of the remaining edges in HC'(A™ (L, (s1,...,m;,...,5;))) is given by setting all the
edges between HC(A™ (L, (s1,...,mj,...,51))) N mj_jli(L) and HC(A™ (L, (s1,...,mj,...,81))) N
m,T(L) to be zero and letting an edge between s; and sy in HC(A™ (L, (s1,...,my,..., 1)) N
mjfl‘I(L) have the same labeling as the edge between s} and s5, in HC'(A™ (L, (s1,...,mj,...,5)))N

,,{j (L) where s} and s}, are the same as s; and s, after adding one to the jth coordinate.

Since m; —1 > deg,,, Py we must have x(H.(A™ (L, (s1,...,mj,...,51)))) = 0 and so the labeling
for HC(A™ (L, (s1,...,mj,...,s;))) described above is the correct one since it yields the correct
Euler characteristic (see Remark 2.6 and Lemma 2.5). We can similarly fill in all of m; g 1Z(L) and
all the edges between J,%(L) and ,,{J T(L) are labeled 0. Repeating this process by inductively

decreasing the jth coordinate proves the claim. |

Lemma 4.7 For a 2 or 3 component L-space link, (L) completely determines HF L™ (L, s) for
every s € H(L).

Proof: Note that T(L) determines all the hypercube graphs of A~ (L, s) for any s € H(L). Thus,
by Lemma 2.7 and Remark 2.4 we get that T(L) determines all the HF L™ (L, s) upto an even shift
in absolute grading. To fix the grading note that we can pick s € H(L) so that any edge emerging
from s’ > s is 0 since for s sufficiently large H,(A; (L)) = HF~(S®) = F(y[U]. This fixes the
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grading as required. (]

Lemma 4.8 For an L-space link L, the graph T(L) is determined by the polynomials +Ayr and the
linking numbers 1k(L;, M) where M is any sublink of L.

Proof: We will prove this by inducting on [. First suppose that [ = 1. Then +A completely
determines £P) =
this forces the edge between s — 1 and s to be labeled with 1. If a; = 0 then this forces the edge

scz @s(u1)®. The only possibilities for |as| are either 1 or 0. If |as| = 1 then
between s — 1 and s to be labeled with 0. This proves the case when [ = 1.

By proposition 4.6, we see that the subgraph of ¥(L) that is induced by all the vertices s = (s1,...,5s;)
satisfying s; > m(L); for some i, is completely determined by the relevant polynomials and linking
numbers.

For the rest of (L) note that every edge of [Zfé(A* (L, m(L))) is contained inside the part of the
graph whose labels we have already determined. By Lemma 2.5, this either completely determines
HC(A™(L,m(L))), or all the edges emerging from (m(L); —1,...,m(L);—1) are labeled with a 0 or
they are all labeled with 1. If HC(A™ (L, m(L))) is not completely determined by ﬁé(Af(L, m)),
then we can use Lemma 2.6 to see that the absolute values of the coefficients of Ay are enough to

determine if all the edges emerging from (m(L); —1,...,m(L); — 1) are labeled with a 0 or 1. Thus,

we now have computed I/{E'(Af(L, (my,...,m; —1,...,my)) for any ¢ and so we can proceed as
before to inductively fill out all of T(L). This proves the Lemma. O
Proof: [Proof of Theorem 1.5] This follows immediately from the previous two Lemmas O

Lemma 4.9 Let S = {i1,...,ix} € {1,...,1} and suppose that {j1,...,5i—x} = {1,...,1}\S where

Ja < jo when a < b. Pick s € H(L) so the s;, > m(L);,. Then if Qs 1m0 1s the coefficient

Sii—k

of u;il L = X(H.«(A5 (L)), where € € Ey satisfies e, = 2 if

. pL
coug, " an Pr, we have ag; s

g2 Sii_g

r = jp for some p and €, =1 otherwise.
Proof: This follows from Remark 4.1 and Lemma 4.3. O

Proof: [Proof of Theorem 1.8] We will assume WLOG that r = 1. Then let S = {i1,...,ix} C
{2,...,0} and {j1,...,Ji—k—1} = {2,...,1}\S with j, < jp if a < b. s = (s1,...,8) € H(L) is
arbitrary. Fix (mi,...,m;) € H(L) so that m; > m (L), + 1. Then we have the following:

Res (PE)= X (i (45,)).
s1=s1 s’:(s’l,‘.wsf)EH

[ 3 »/ — .
817=51,85, =iy,

’
mj, Zsjpz(egp
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where p € Ej is fixed and satisfies p, = 2 if k = j, for some p, and p, = 1 otherwise. This follows

by the previous Lemma. We get that the above quantity is equal to:

2 : 2 : (_1)number of 0’s insX <H (A— )) (4 1)
* s’ e . .
el ey

’__ ’r .
81=81,8;, =My,

L >sl >s;
M, 285, 285

Note that if e € B with e1 =2, ¢; =0 or 1 if i # 1 we get:

:A_

s7,(2,1,...,1)

where s” is given by s{ = s{ and s}/ =s}. + ¢, — 1. So all of the terms in (4.1) that correspond to s’

with s} # s; or m; will cancel out. This leaves,

Z (71)number of 0s in v (s') ¥ (H* (A;,u(s') (L))) , (4.2)

’ ’ /

s :(sl,..A,sl)EH
’
’ R

85, =Sjp OF Mj,

’
§1=81,8 :mip

where here v (s); =2,v(s'), =landv(s'); =1ifs; =m;, and v(s’); =0 otherwise.
Given S C {2,...,1}, we define s(S) by setting s(S); = s1, s(S), =m, if pe 5, and s(5), =5, — 1

otherwise. Then we can rewrite (4.2) as
I—1—|S|—|5'] _
o (=1) X (H* (AS(SUS/),(Q,l,...,l))> : (4.3)
5'C{2,...,l1\S
Thus, we finally get:

Z (_1)1—1—|S\ Rgsq (PLLS) = Z Z (_1)—|S/I Y (H* (As_(sus,)@’l,_“’l)))

sc{2,..,1} s1=s1 Sc{2,..,1} S'C{2,..,l}\S

> > T (H (Al )

Sc{2,...,l} ACS

= 5 (H* (A;(m1 _____ 1))) . (4.4)

Now (4.4) must be either 1 or 0 by Theorem 3.8. O
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Chapter 5

Application to 2-Bridge Links

We would like to use the recursive formula for the multivariate Alexander polynomial of a 2-bridge
link given in [8], so we will use the conventions from that paper. A circle labeled k or —k will

represent a braid with k crossings as in Figure 5.1 Suppose we are given a collection of nonzero

Figure 5.1:
integers aq, ..., a,. Then we can define o and [ via
1
a
—=a+— (5.1)
B 1
an +
) 1
o
an
where a > 0, g.c.d(a, 8) = 1, and a > |3] > 0. Now, if «v is even we can use (aq, ..., a,) to construct
an oriented link C(ay,...,a,) as shown in Figure 5.2.

Links of this form are called 2-bridge links, and we have the following classification from [3] and

page 144 of [28] (see also chapter 12 in [1]):

Theorem 5.1 If L = C(ay,...,a,) and L' = C(b1,...,by,) are two 2 bridge links where we define
a and B from ay,...,a,, as in equation 5.1, and similarly o’ and B’ from by,...,b,,. Then L and
L' are equivalent iff o = a and ' = F*' mod 2a. If f/ = S+« mod 2a or f/f =1+« mod 20,

then L and L' are equivalent after reversing the orientation of one of the components.

We will denote the 2-bridge link determined by « and 3 as above by b(«, 8). To use the formulas



0.’.’ Q. ”:Zk

Figure 5.2: Diagram for constructing 2-bridge link given a sequence of non-zero integers.

in [8], we need an expansion of § of the following form:

1

o
2 =2;m+
B 1
2q1 +

2py +

2q0 + ——
. 1
oy,
We will denote b(a, 8) = C(2p1,2q1,---,2Dn-1,2¢n-1,2Pn) by D(p1,4q1,D02,42,---,pn) for conve-

nience.

We define two variable polynomials F).(u1,us) for r € Z:

r—1
Z(U1U2)i ifr>0
1=0

Fr(up,ug) =4 0 ifr=0

—1
- Z(dez)i it r <0.
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Now let us define polynomials Ay, € Z[ui,ui] for 0 < k < n recursively as follows:

Ag=0
A, = F
F
A = (qk,l(ul — 1)(u2 — 1)F + 1)Ak 1+ (U1UQ)pk 1 jo (Ak 1— A 2) (52)

Prk—1

Also set I}, = Zle p; and [, = Zle |px|.- Then by Theorems 1,3 and corollary 1 of [8] we have;
Theorem 5.2 If L = D(p1,q1,p2,42,---,Pk), then:

1—1y

(u1u2)TAk(u1, UQ) = iAL(ul, u2).

The minimal degree of uy (or ug) in any monomial of Ay, is l"'j’”‘ and the maximal degree of uy (or

usg ) in any monomial of Ay is l’““’“ -1

Define g(k) = Hf;ll q; and F(k) = Hle F,, where, as usual, the empty product is 1. Also recall
that the linking number of D(p1, q1,p2,q2, .-, Dn) I8 —lp.

Given any P € Z[ui,uf] where P = 3 arsuiug, we define Pl to be the polynomial

r,SEZL

Yiez ajrijulTud. It PP £ 0 we say that P is supported on the diagonal i. Note that if Q €

Zuf,uF], then (P + Q)1 = Pl 4+ QU and (PQ)! = D b PllQl | Thus, it follows that if Pl
divides @, then (Q/PIN)F = Q¥ /Pl Using equation (5.2), we get the following identity:

P F
Al =37 (gnea (= D(uz = D)F,, + DAL + (<u1u2>pn1F = )(Anl—AM)“ﬂ. (5.3)
i+j=k Pn—1

This can then be expanded to:

Al = (g1 (~u2) Fp, YA+ (gam1 (—un) B )ATT 4 (gnr (s + 1D F,, + 1AL
F,
+ <(u1uz)pnl Fp) (A1 — An72)[k]~ (5.4)
Pn—1
Lemma 5.3 Ift >n — 1 then A, is not supported on the diagonal t. Also:

AR = g(n)(~ur)" " F(n).

Proof: First note that A[lo] = A; = F},,. Now the claim that Ag] = 0 when t > n—1 can be easily

seen by induction via equation (5.4). We will prove that Al = q(n)(—up)" " 1F(n) for n > 1 by
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induction on n using equation (5.4):

Al = (gua(~u)F,) (H ql‘) ()™ (.H & )

q(n)(—u1)" " F(n).

O
Lemma 5.4 Forn > 2:
A2l = P, + P, + P
where:
Py = (n —1)(uyug + 1)g(n) F(n)(—uy)" >
q(n) F(n) 2
P, = " d
? i—2 qi—1 F, i ( ) o
n—1
n) F(n
P = Z;(uluQ)p‘ 1) F(pi) (—up)" 2 (5.5)
Proof: When n = 2, we directly compute that:
Ag = qi(ur — 1)(uz — 1) Fp, Fp, + Fypy + (uaug)” Fy,.
For n > 2, we can recursively compute AL? -2,
Al = (g1 (ur = 1wz = 1) Fp, + DA 4 (gt (w1 = 1) (uz = D), + 1HATT
F, e
+ () S (AT
Fpn—l
n) F(n _ n—
— (guoalwuz + DF,, + DL T ey, Al
dn—1 F n
q(n) F(n) —2
+ (uqug )Pt —uy )" e,
(urus) i By (—u1)
The result now follows by induction. O

Lemma 5.5 Let A, = Z” aijuﬁué. Suppose that all the nonzero a;; are £1. Suppose also that
for fized i' (or j') the nonzero a;j (or aj;) alternate in sign. Then we must have |¢;| = 1 for every

1 <i<n—1. For the p;, one of the following two possibilities holds:
e Fori=#£1 all p; are equal. Fori# 1, p; =41 and p; = —q;_1

e Fori=#mn all p; are equal. Fori # n, p; = +1 and p; = —¢;.
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Proof: First note that when n = 1, the Lemma is vacuously true. So from now on we will assume
that n > 2. If A, has all coefficients £1 or 0, then so does Al"™ = q(n)F(n)(—u1)""!. For this to
happen |g(n)| must be 1 which implies that ¢; = £1 for every 1 <i <n — 1. F(n) has coefficients

41 if for all but possibly one i, we have p; = +1.

]

n—2
Now we focus on A[n . There are four cases:

Case 1 (There is some k € {1,2,...,n} such that pr > 1) Suppose that r of the p; are —1

(and so except for py, the rest are 1.) First, we get that:

pr—1

Fln) = (-1)" 3 (uua)i "

=0

Now, since all the nonzero coefficients of A, are by assumption +1, the same must be true for
Aln—2] N
g(n)(—uiuz) =" (—u1)" 2" q(n)(—uruz) =" (—u1)"”

that

We will compute the coefficient of ujus in —. Now recall

A=A —p 4+ P+ P

where Py, P, and Pj are as defined in equation (5.5). Set P/ :=
3. Then,

P; .
a(n)(—uruz) " (—uy)" 2 fori=1,2or

pr—1

Pl =(n-1)(wmuz+1) > (uus)’,
=0

and so the coefficient of (ujus) in Py is 2(n — 1). Similarly,

pr—1 Pk
Po=qra+ Y (g-1) Y (wue)' + D (=gj-1) Y (wiua)’.
pj=1 1=0 pj=—1 i=1
2<j<n 2<j<n

So the coefficient of (uqusz) in P is

E: Piqj—1,
2<j<n
7k

and similarly the coefficient of (ujug) in P§ is

> pig

1<j<n-—1
j#k

[n—2]
So finally, the coefficient of ujus in q(n)(iulﬁ;’),,‘(iul)nﬂ is

2(n—1)+ Z Pjqi—1 + Z Piqy, (5.6)
2<j<n 1<j<n—1
7k 7k
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which must be 1, —1 or 0. Notice first that, if 2 < k < n — 1 then the sum

Z Pjqi—1 + Z D;q;
2<j<n 1<j<n—1
7k 7k
is bounded above in absolute value by 2(n — 2), which makes it impossible for equation (5.6) to be
equal to 1, —1 or 0. So, we get that k must be 1 or n. If k is 1 then equation (5.6) becomes

n—1
200 — 1) + pudn—1+ »_ p;(aj + qj—1)-
j=2
Notice that the above quantity has smallest possible value 1 and this only occurs if all of the ¢; are
equal and have opposite sign as all the p;;1, which proves the claim in this case. When k = n the

argument is similar.

Case 2 (There is some k € {1,2,...,n} such that p < —1) The argument is the same as
in the previous case, except we divide Aln=2 by q(n)(—ujuz)~"(—u1)" 2 and examine the coefficient

of (uyug)~1t.

Case 3 (All of the p; are =1 and n > 3) We will start by showing that all the ¢; are equal.
Suppose as in the previous cases that the number of p; that are —1 is r. In this case ALT,L*” is the

monomial

(=1)" " Tg(n)ut T T uy " # 0.

This has the maximal possible degree for u; and minimal possible degree for us by Theorem 5.2.
This immediately forces AL? -2 to have at most 2 nonzero coefficients, and AL:L -3l to have at most

3 nonzero coefficients. So AZL =2 i5 of the form

U2y A Ao T Uy
Using the symmetry of the Alexander polynomial under the involution w; +— ui_l, as well as the
symmetry given by exchanging u; and us (there is an isotopy of S? exchanging the two components
of a 2 bridge link which is easy to see using the Schubert normal form [28]); we can conclude that
Qp—2—y,—y = Qp—1—r,1—r. Suppose that a,_2_r _ = an_1-r,1—r # 0. Then since we have required
the signs of a; ; to be alternating for fixed ¢ (and j), this forces one of the following possibilities for

-3
AEL 3] —:‘:(U’f 3 TUZT‘FU? 2 TU% 7’<|>’Z,L11FL 1 r’LL% T) or :I:(u? 2 TU% 1n) or 0.

We have ruled out +(u}* "uy " +uf "~ u3"") due to Theorem 3 (see also definition 2(iv)) in [8].
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In all the possibilities for AL? 73}, we have
AlP=8l(—1,1) = £1 or 0.
F,, (—1,1) is always 1 since we have assumed p,, = £1. From this we conclude
AlP1(-1,1) = ¢(n) and Al"72(—1,1) = 0.
Using this in the recursive formula for Alr=3] given in equation (5.4), we get
Al ==1,1) = —q(n) +aln —2) + g1 A (-1, 1).

We manually compute Ago] =1 — 2¢1g2. So this gives the formula

Alr=31( 11:2 —(n—1)q(n).

Q1+1

If the above sum is to equal £1 (note that it cannot be 0), we must have

n—2

Y =2

o 4idi+1

and this can only happen if all the ¢; are equal.

Aln=21 .
Now suppose that a,—2_r _r = a@p_1—p1—r = 0. The constant term of O [ETT e e TR

=1+ > a1+ Y, (5.7)

2<i<n 1<i<n-—1
pi=1 pi=—1

which by our assumption must be 0. We can rewrite (5.7) as

(n—1)+ Gn—1Pn + qn—1 i Qapr —q1 i Z qi—1Pi + @ipi + qi—1 — qi’ (5.8)

2 2 4 2
2<i<n—1

which simplifies to

Qn—1Pn + q1P1 Gi—1Pi + Qipi
-1 _ _. 5.9
(n—1)+ 5 + E 5 (5.9)
2<i<n—1
Note that
Qn—1Pn + q1P1 Qi—1Pi + QiPi
E oo v 5.10
2 + 2 2 ( )
2<i<n—1

has a maximum absolute value of n — 1 which can only happen if all the ¢; are equal (and have

opposite sign as all the p;).
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So we have shown in all cases that all the ¢; are equal. This allows us to rewrite equation 5.9 (which

s
q(n)(—uruz) =" (—u1)" 2

is the constant term of ) as;

(n*1)+n§q1pi+q1 <p1+p"). (5.11)

- 2
=2

We must have (5.11) equal to &1 or 0. First note that we cannot have q1&2pn = 1 since Z;:Ql q1p; is
bounded above in absolute value by n — 2. So we must have that qlpﬁ'Tp” =—1lor0. If qlpﬁ'Tp” =0

then E?:_Zl q1p; must be —n + 2 which implies that all the p; for 2 < i < n—1 have the opposite sign

as ¢ and since ¢ & 121”" = 0 we get that one of p; and p,, must also have the opposite sign as qg; which
proves the claim in this case. If we assume that ¢; pl‘gp" = —1 then we need Z;:Zl ap;i < 3—n.

However Z?;; q1p; = 3 — n is impossible since changing the p; always changes the sum Z?;Ql qQ1p;
by a multiple of 2. Thus we once again have that Z?:_Ql q1p; = 2 —n. This along with the fact that

ql% = —1 implies that all of the p; have the opposite sign as q;.

Case 4 (n = 2 and all the p; are £1) The only tuples (p1,¢1,p2) that do not satisfy the con-
dition given in the Lemma are (1,1,1) and (—1,—1,—1), and we can manually compute Ay in
both these cases to check that they do not satisfy that all of the nonzero coefficients are £1. In

particular for (1,1,1) we have Ay = 2 — uy — us + 2ujug and for (—1,—1,—1) we have Ay =

2 1 1 2
P2 T2 T unad T uwm

|

Now, if an oriented 2-bridge link L is an L-space link, it must satisfy the conditions of the Lemma
5.5 by corollary 1.10 and so if L = D(p1,¢1,- -+ ,Pn—1,qn—1,Pn), then we have narrowed things down
to the following 8 possibilities where w > 0 is an integer, ¢ := 2w+ 1,¢ := 2w — 1 and k := 2n — 1.

L=D(-1,1,...,-1,1,w) = b(gk — 1,q¢ — (¢k — 1)) or
=D(-1,1,....—-1,1,—w) =b(d'k+1,¢ — ({'k + 1)) or
=D(1,-1,...,1,-1L,w) =b(d'k+1,{k+1—-¢) or
=D(1,-1,...,1,-1,—w) = b(gk — 1,gk — 1 — q) or
=D(w,—1,1,...,—1,1) = b(¢'k + 1,k) or
=D(—w,—-1,1,...,-1,1) = b(¢gk — 1,—k) or
= D(w,1,-1,...,1,—1) = b(¢gk — 1, k) or
=D(—w,1,-1,...,1,-1) = b(d'k + 1, k).

We can further reduce these 8 possibilities down to 4 by noting b(gk—1, £k) = b(gk—1, £(¢—(gk—1)))

which can be seen by rotating the diagram given by 5.2 by 180°, and similarly b(¢'k + 1,+k) =
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b(d'k+1,£(¢'k+1—¢')). Now we compute the signatures of these four possibilities.

Lemma 5.6 When q,q' and k are odd positive integers and q # 1 if k = 1;

o(b(gk —1,£k)) = £(¢ — 2) (5.12)
o(b(qd'k +1,+k)) = £¢'. (5.13)

1

Proof: First we compute the signature of b(¢'k + 1, k). Since q/i—ﬂ =q + 1,

we can use Figure
5.2 to give a diagram D for b(¢gk — 1, k). Now we will use the Gordon-Litherland formula for knot
signature(see [4]) on D. Since the surface given by a checkerboard coloring of D is orientable, the
signature of the link is simply the signature of the Goeritz matrix for D (see the end of the first
page in [4]). We denote by A, (p) the n x n matrix with A;; =p, A; =2when2<i<n, 4;; =—1

when |j —i| = 1 and 0 everywhere else. A Goeritz matrix for D is given by A4(1 + k). We claim

0
that if p > 1, A, (p) has signature n. This is easy to see inductively; let B(p) = ) , I, denote
5 1
o . B(p) O
the n x n identity matrix and B, (p) = . Then
0 In72
p 0
Bn(p)An(p)Bn(p)T =

0 An71(2 - 1/p)

s0 0(An(p)) = 14 0(A,(2—1/p)) and the claim follows. So the signature of b(¢'k + 1, k) is ¢’. Since
b(¢'k + 1, —k) is the mirror image of b(¢'k + 1, k), the signature of b(¢'k + 1, —k) is —¢'.

qk—1

Now we consider b(qk — 1, k) where k > 1 (k = 1 has already been covered above). 9= = ¢ — ;.

In this case a Goeritz matrix is A4(1 — k) and

1-% 0
0 Aga(2-1/(1—k))

Nowl—-k<Oand2—-1/(1—Fk)>1,s00(A,(1—k))=—-1+0(44-1(2—1/(1—k))) = g—2. Since

b(gk — 1, —k) is the mirror image of b(qgk — 1,k), o(b(gk — 1,—k)) = —q + 2 as desired. O
Proposition 5.7 If L is an L-space link of the form b(gk — 1,k) = D(-1,1,...,—=1,1,w) then
L=10b(2,1)

Proof: Let us assume that L = b(gk — 1, k) is an L-space link. Now if s < m, it is easy to see by

s—1

i, s—1—1%
E U Uy .
i=0

induction that

As(ulau2) - -

1
S S
Ujts
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So by equation (5.2) we get

w—1 n—2
An(ur, uz) = ((Ul —1(uz — 1) (Z(Uﬂu)i) + 1) <—Un_11n_1 (Z uiu§2i>> +
1 U i=0

=0

(urug) ™" (wzl(u w )z) (( 1 (Suiun—2—1>> _ < 1 (nzguiun—3—¢>>>
—(uqug)~t \ & %2 wp Tun T\ & 12 Wi Zun 2\ & 1U2 :
=0 =0 =0

This simplifies to

_ itjHl-n, i—j i+j+l-n, i—j—1

Ay (ug,uz) = g uy ug 7 — uy s .
0<i<w-—1 0<i<w
0<j<n—1 0<j<n—2

Now note that L = Lq U Lo, where both Ly and Ly are unknots and 1k(Lq, Lo) = =1, = —w+n—1,

so we get:
new—1 e . new—1 e i
Pf (ug) = (u2)" 2 > (ug) ™" and Pf(ur) = (ua)™ 2 » (wr) ™"
=0 1=0

Finally, by Theorem 5.2 we also get

n—w+1

P@L::t(uluQ) 2 Ay (ur, uz).

Expanding this then gives

L _ now+l _ i P it gt i i ey
Py = (wuz) 2 Ap(ui,uz) = E Uy U — E Uy U .
0<i<w—1 0<i<w
0<j<n—1 0<j<n—2

If n=1, we get:

L _ it il
Py = E Uy Uy .
0<i<w-—1

We can then fix the sign for P@L using corollary 1.10 to get

Ri—— Y PTG

0<i<w—1
Then, using the method given in the proof of Theorem 1.5, we can compute T(L). In this case
m(L) = (w/2,w/2). The edge between (s1,w/2 — 1) and (s1,w/2) is labeled with 0 whenever
$1 > w/2. Similarly, the edge between (w/2 — 1,s2) and (w/2, s3) is labeled 0 whenever sy > w/2.
The coefficient of uqiv/2u12“/2 in Pf is —1, which forces both edges from (w/2 — 1,w/2 — 1) to be

labeled with 1. This along with Lemma 3.10 allows us to compute

HFL (L, (% %)) > ). (5.14)
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Now, recall that when L is alternating, ﬁF\L(L, s) is completely determined by its Euler character-
istic and o (L), using Theorem 1.3 in [23]. Specifically, if s = (s1,s2) and as is the coefficient of u®
in (1—uyh)(1- u;l)P@L then

HFL(L,s) = F|

—_1-
s1+s2+75

Therefore

HFIL (L, (% %)) 2 F (1) (5.15)

by Lemma 5.6. Combining equations (5.14) and (5.15) gives w = 1, which along with n = 1, gives
that L = b(2,1).

w—n-+1

If n # 1, the leading coefficient of PQ)L|(1J) and Paf\(uﬂ) have opposite sign iff j = “=+=,

or
in other words there is a sign change in the leading coefficients of P@L l(1,5) at j = “”T"H Also note
that in sz la,;) =0if j > "_Tw_l and u]1 otherwise. Combining these facts using corollary 1.10, we

must have w =n — 1. When w = n — 1 we fix the sign of PQ)L using corollary 1.10 to get

I i+j+377.“w i_j+n—w+1 i+j+37n7w i_j+7L7w71
Py = u 2w 20— u 2w 2
0 § 1 2 E 1 2
0<i<n—2 0<i<n—1
0<j<n—1 0<j<n—2

We now know enough to compute T(L). We will compute the part of T(L) inside the region bounded
by s1 +s3 >n— 2,81 > 0 and so > 0. This is shown in Figure 5.3. Using this and Lemma 3.10 we
compute

HFL(L, (1,n — 1)) 2 F). (5.16)

Once again, using Theorem 1.3 in [23]: if s = (s1, 52) and as is the coefficient of u® in (1 —u')(1 —
uy ") PF then,
HFL(L,s) = Fl|

.
s1+s2+75

and therefore

HFL(L, (1,n — 1)) = Fg_). (5.17)
Combining this with equation (5.16) gives a contradiction, since n is an integer. O

Proposition 5.8 Suppose L = b(¢'k+1,k) = D(1,—1,...,1,—1,w) is an L-space link, then ¢’ = 1.

Proof: We follow the same proof as the previous proposition. First note that, in this case

Ik(Ly, Ly) = =1, = —w —n+1; and so

—w—n+1

PE (us) = (u2) ™7 Y (uz) " and PE(w) = (un) =2 Y ()"
=0 i=0
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Figure 5.3: Part of T(L), for b(k* — 1,k) assuming it is an L-space link. Edges labeled with 1 are
drawn in black and edges labeled with 0 are not shown.

We can compute

_ it+j, i—j+n—1 i+j, 1—j+n—2
Ap(ur,ug) = E Uy " Uy - E Uy " Uy )

0<i<w—1 1<i<w—1
0<j<n—1 0<j<n—2
which gives
L itj+ 7w72n+3 i_j+—w~;n,+1 i+j+—w—2n+3 i—jt 7'11!«271—1
Py =— E Uy Uy + E Uy Ug ,
0<i<w—1 1<i<w—1
0<j<n—1 0<j<n—2

where the signs are fixed by corollary 1.10. Using this, we compute (L) inside the region bounded

by 514 82 > w — 2,51 > 2=+ and s, > “=2+L and it is shown in Figure 5.4.

S —n1 1
HFL(L(w ;”r ,w+g ))%]F(l) (5.18)
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(w—n+1 , w+n—])
2 2
(@]

(w+n-] , w-n+1)
| o 2 2

S+ 8 =w-2
Figure 5.4: Part of T(L) for b(¢'k + 1, k), assuming it is an L-space link.

We can do this computation again using the fact that L is alternating and to get

— w—m+1 w+n-—1
HFL (L = Ry 1) 5.19
( ) ( 2 ) 2 )) (2 1) ( )
combining equation 5.18 and equation 5.19 then gives w = 1 which implies ¢’ = 1 as desired O
Proposition 5.9 If L=0(¢'k+1,—k) = D(—1,1,...,—1,1,—w) is an L-space link, then k = 1.

Proof: Here Ik(Ly,Ly) = —1,, =w +n — 1, and so

oo oo
L wtn—1 i L wtn—1 i
Pf(ug) = (ug)™ 2 Y (up) ™" and Pf,(ur) = (w)” 2 Y (ua)
i=0 i=0
and
L i+j+m i_j_‘_w itj+ w—n+3 ,L-_j+1u+n+1
Py =— E (1 7 Uy o+ E Uy 7 U :
1-w<i<—1 —w<i<—1
0<j<n-2 0<j<n-—1

where we have fixed signs for PF, as in the previous two propositions using corollary 1.10. Note that

w4+n—1 w+n—1)
2 2

both edges going to ( must be labeled with 1 because they are determined by PLLi

since m(L) = (%’H, %’H) Also notice that when n > 1, the point (%’H, %’H) is outside

of the Newton polytope for Pf. Thus both edges from (“+2=3, “+2=3) are also labeled with 1. So
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we get

— w+n—1 w+n-—1
HFL <L,< 5 , 5 )> E=Fo & Fy,

which is a contradiction because for an alternating link L we know EF\L(L7 s) is only supported in

one degree. Thus, we must have n = 1, which forces k£ = 1 as well. O

Proof: [proof of Theorem 1.11] Combining the previous three propositions (also Lemma 5.5) shows
that, if b(c, 8) is an L-space link, then it is either b(gk — 1, —k) for ¢ and k odd positive integers, or
of the form b(k + 1, k) where k is odd. Note that reversing the orientation of one of the components

of b(k + 1,k) gives b(k + 1, —1), which proves the Theorem. O
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