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ABSTRACT

Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the
atmosphere can undergo extensive photooxidation to form species with lower volatility. By
equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol
particles or deposit onto already-existing particles to form secondary organic aerosol (SOA).
SOA and other atmospheric particulate matter have measurable effects on global climate and
public health, making understanding SOA formation a needed field of scientific inquiry. SOA
formation can be done in a laboratory setting, using an environmental chamber; under these
controlled conditions it is possible to generate SOA from a single parent compound and study
the chemical composition of the gas and particle phases. By studying the SOA composition, it
is possible to gain understanding of the chemical reactions that occur in the gas phase and
particle phase, and identify potential heterogeneous processes that occur at the surface of SOA
particles. In this thesis, mass spectrometric methods are used to identify qualitatively and
qualitatively the chemical components of SOA derived from the photooxidation of important
anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels
and industrial activity (C,, alkanes, toluene, and o-, -, and p-cresols). The conditions under
which SOA was generated in each system were varied to explore the effect of NO, and
inorganic seed composition on SOA chemical composition. The structure of the parent alkane
was varied to investigate the effect on the functionalization and fragmentation of the resulting
oxidation products. Relative humidity was varied in the alkane system as well to measure the
effect of increased particle-phase water on condensed-phase reactions. In all systems,
oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were
identified. Imines produced by reactions between (NH,),SO, seed and carbonyl compounds
were identified in all systems. Multigenerational photochemistry producing low- and extremely
low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-

phase composition as well.
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