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 v 
ABSTRACT 

Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the 

atmosphere can undergo extensive photooxidation to form species with lower volatility. By 

equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol 

particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). 

SOA and other atmospheric particulate matter have measurable effects on global climate and 

public health, making understanding SOA formation a needed field of scientific inquiry. SOA 

formation can be done in a laboratory setting, using an environmental chamber; under these 

controlled conditions it is possible to generate SOA from a single parent compound and study 

the chemical composition of the gas and particle phases. By studying the SOA composition, it 

is possible to gain understanding of the chemical reactions that occur in the gas phase and 

particle phase, and identify potential heterogeneous processes that occur at the surface of SOA 

particles. In this thesis, mass spectrometric methods are used to identify qualitatively and 

qualitatively the chemical components of SOA derived from the photooxidation of important 

anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels 

and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under 

which SOA was generated in each system were varied to explore the effect of NOx and 

inorganic seed composition on SOA chemical composition. The structure of the parent alkane 

was varied to investigate the effect on the functionalization and fragmentation of the resulting 

oxidation products. Relative humidity was varied in the alkane system as well to measure the 

effect of increased particle-phase water on condensed-phase reactions. In all systems, 

oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were 

identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds 

were identified in all systems. Multigenerational photochemistry producing low- and extremely 

low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-

phase composition as well. 
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