
41

Chapter 4

To weight or not to weight

As shown in the previous chapter, it is desirable to use the dual distribution to sample the training

data for a learning problem. Nevertheless, since in the supervised learning scenario it is not possible

to sample from the dual distribution, or even from the test distribution in the covariate shift case,

then it becomes necessary to use weights to match the training distribution to the dual (so far in the

literature weighting has been used to match training to test distributions). However, when applied

in practice, weighting has a mixed record and sometimes worsens the out-of-sample performance, as

discussed in [25]. This raises three natural questions:

• What makes weighting work in some cases but not others?

• Is there a way to predict when it will work and when it won’t?

• How accurate is the prediction when applied to real data?

In this chapter, we answer these questions. We also introduce Targeted Weighting, a novel al-

gorithm that predicts when weighting will be beneficial. When applied to various real datasets, the

algorithm achieved near-unanimous success.

4.1 What makes weighting work sometimes only?

As stated in Chapter 1, assume we have two distributions P and P ′ on the input space X , where P

is where training data is drawn from, and P ′ could be the distribution where the test data is drawn

from, or some other desired distribution like the dual distribution. Let the target be f : X → Y which

is unknown. If we are interested in finding the expected value of a loss function `(g(x), f(x)), x ∈ X

is the input variable, and g : X → Y the hypothesis output by the learning algorithm, a standard

42

approach is to consider the empirical loss on a dataset R = {(xi, yi)}Ni=1, so that we solve the problem

g = arg min
h
J(h,R) = arg min

h

1

N

N∑
i=1

`(h(xi), f(xi)) (4.1)

By minimizing the empirical loss, we are approximating Ex∼P [`(h(x), f(x))] with the in-sample quan-

tity J(h,R). If weights are used to match P to P ′, assuming that we knew both distributions and

that P (x) > 0, we can use wi = P ′(xi)/P (xi) such that

Exi∼P [wi`(h(xi), f(xi)] = Exi∼P

[
P ′(xi)

P (xi)
`(h(xi), f(xi))

]
= Exi∼P ′ [`(h(xi), f(xi))]. (4.2)

Therefore, the use of weights allows simulating the expected value with respect to the desired distri-

bution P ′. When P ′ = PS , we solve the mismatch problem and obtain an unbiased estimate of the

loss [61]. When P = P ?R, we hope to obtain the benefits of training with the dual distribution, and

therefore improve the out-of-sample performance. However, there is a side effect of using weights.

From statistics, we know that the use of weights leads to an effective sample loss. We now develop an

approximate expression for this sample loss based on the change of variance in the sample estimate.

We also verify this expression empirically.

4.1.1 The effective sample size

In practice, the loss in Equation 4.2 is estimated empirically using a finite sample. There will be

a change in the variance between the unweighted and weighted estimates, and that change is tanta-

mount to an effective loss in sample size. Consider

V ar

[
1

N

N∑
i=1

`(h(xi), f(xi))

]
=

1

N2

N∑
i=1

V ar[`(h(xi), f(xi))] =
1

N
V ar[`(h(xi), f(xi))]. (4.3)

The variance of the estimate is reduced by N , the size of the sample. However, assume that the

weights were independent of x, that is, the set {wi}Ni=1 is a set of constant weights assigned to each

of the training samples. Then, the variance becomes:

V ar

[∑N
i=1 wi`(h(xi), f(xi))∑N

i=1 wi

]
= V ar[`(h(xi), f(xi)]

∑N
i=1 w

2
i(∑N

i=1 wi

)2 (4.4)

Hence, by introducing weights, the sample size has been effectively reduced to

Neff =
(
∑
i wi)

2∑
i w

2
i

, (4.5)

43

Table 4.1: RMS error using: Neff training examples (R1); using weights found with a matching
algorithm but assigned randomly (R2); and using the weights found with matching assigned correctly
(R3)

Neff Reduced training set Random weights Matched Weights 100× |R1 −R2|/R1

RMS error (R1) RMS error (R2) RMS error (R3)

99,072,095 0.947405 0.947407 0.946639 0.0002%

99,070,481 0.947425 0.947322 0.946531 0.011%

98,959,437 0.947487 0.947218 0.946462 0.028%

98,138,979 0.947823 0.946958 0.946344 0.091%

97,416,899 0.947937 0.947159 0.946452 0.082%

88,128,713 0.952993 0.951354 0.947886 0.172%

35,484,865 0.999641 0.995888 0.986235 0.375%

25,925,094 1.002576 1.002970 0.989099 0.039%

6,632,779 1.054571 1.055235 1.034925 0.063%

which is maximized when all weights are equal, making Neff = N . This result is not exact, as in

practice, the weights are a function of x, for example, if w(x) = P ′(x)/P (x).

Nevertheless, this measure of the effective sample size can be verified in a real dataset such as

the Netflix dataset. For this set, we computed weights with the Soft Matching algorithm that is

introduced in Chapter 5. To test the pure effect of weights on effective sample size reduction, without

the matching effect itself coming into play, we assigned the weights randomly to the training set

consisting of 9.91 × 107 training points. We then tested the error on an out-of-sample set consisting

of 2.82× 106 points.

The out-of-sample error obtained when weights are assigned randomly on the full training set, was

compared to the out-of-sample error when weights are not used, but only Neff random training points

are used. Neff is computed with Equation 4.5 given the set of weights. To create different instances

of Neff , the maximum size of the random weights as well as the matching scheme were changed in

different trials. The results are summarized in Table 4.1, which shows averages over 30 runs. The

table shows that the RMS errors obtained by reducing the sample size (R1), or by using random

assignment of the weights (R2), follow each other very closely as expected, with an average difference

of less than 0.1%.

If we repeat the same experiment, except that the weights computed are no longer assigned ran-

domly but instead assigned in the order given by the matching algorithm, we obtain the RMS errors

shown in the fourth column of the table (R3). This column captures both the sample loss and the

positive effect of matching. If no weights are used, the RMS error obtained is 0.94664 and it is clear

that matching leads sometimes to lower RMS errors with respect to this value (these cases are high-

lighted in the table). Yet, as expected, it always leads to lower RMS error compared to the random

assignment of the same weights, thus verifying the favorable matching effect. As Neff decreases, the

44

benefit of matching is overwhelmed by the reduction in sample size and becomes a net loss.

This notion of sample size loss was first discussed in [61], where without proof, the effective sample

size was defined in entropy terms as Ne = exp(−
∑N
i=1 pi log pi), where pi = w(xi)/

∑
i w(xi), and

w(x) = pS(x)/pR(x). In [38], the authors introduce the same expression for Neff that we use, assuming∑
i wi = N , as they provide a bound for learning using the Kernel Mean Matching (KMM) method,

in which N is replaced by the quantity Neff = N2/‖w‖2, where the weights are found through their

method.

A closer look shows that the effective sample size does not explain fully the negative effect of

matching. There is a broader effect that is caused by the difference between sampling directly from

a distribution and weighting points to make them look as if they were sampled from a different

distribution. In the next subsection, we analyze the expected value and variance of all the moments

of a weighted sample, in order to establish the difference between weighting and sampling.

4.1.2 Weighting vs sampling

We can compare analytically the difference between a sample from P ′ and a weighted sample from

P , by looking at the expected value and variance, with respect to the data set generation, of the

moments of the sample. Notice that a probability distribution is uniquely determined by the moment

generating function. Recall that the moment generating function of a random variable X is given by

MX(t) = E[eXt] = 1 +
E[X]t

1!
+

(E[X2]t)2

2!
+ · · · . (4.6)

Hence, if the moments are found, the moment generating function can be constructed and so the

distribution can also be uniquely determined. Since the moments of an underlying probability dis-

tribution can be estimated through the moments of the sample, we compare the expected value and

variance of the moments of the weighted sample coming from P and those of a an unweighted sample

coming from P ′, with weights w(x) = p′(x)/p(x). The differences we find will indicate the difference

of the distribution that a weighted sample simulates and the actual distribution we match to.

Let R = {xi}Ni=1 be a set with points sampled from P ′. The expected value of the k’th moment of

the sample is given by

Exi∼P ′

[∑
i x

k
i

N

]
=

1

N

∑
Ex∼P ′ [xki] = Ex∼P ′ [xki], (4.7)

45

and the variance is given by

Varxi∼P ′

[∑
i x

k
i

N

]
=

1

N2
Ex∼P ′

∑
i

x2k
i +

∑
i 6=j

xki x
k
j

− Ex∼P ′ [xki]

=
1

N
Exi∼P ′ [x2k

i] +
N(N − 1)

N2
Exi∼P ′ [xki]2 − Exi∼P ′ [xki]2

=
1

N
(Exi∼P ′ [x2k

i]− Exi∼P ′ [xki]2)

=
1

N
Varxi∼P ′ [xki] (4.8)

Now assume the points xi are sampled from P and we use importance weights. The expected

value of the k-th moment is given by

Exi∼P
[∑

i w(xi)x
k
i

N

]
=

1

N

∑
i

Exi∼P
[
w(xi)x

k
i

]
=

1

N

∑
i

Exi∼P ′
[
xki
]

= Ex∼P ′ [xki], (4.9)

where we used the fact that

Ex∼P [w(x)f(x)] =

∫
p′(x)

p(x)
f(x)p(x)dx =

∫
f(x)p′(x)dx = Ex∼P ′ [f(x)] (4.10)

Hence, it is clear that the expected value of the moments is the same for a sample distributed as P ′

as for a sample distributed as P ′ if we use importance w(x) = p′(x)/p(x). However, the variance of

the moments does change:

Varxi∼P
[∑

i w(xi)x
k
i

N

]
=

1

N2
Exi∼P

∑
i

w(xi)
2x2k
i +

∑
i6=j

w(xi)w(xj)x
2k
i x

2k
j

− Ex∼P ′ [xki]2

=
1

N2
(
∑
i

Exi∼P ′ [w(xi)x
2k
i] +

∑
i 6=j

Exi∼P ′ [xki]Exj∼P ′ [xkj])− Ex∼P ′ [xki]2

=
1

N
(Ex∼P ′ [x2k

i]− Ex∼P ′ [xki]2 + Ex∼P ′ [w(xi)x
2
i]− Ex∼P ′ [x2k

i])

=
1

N
Varxi∼P ′ [xki] +

1

N
(Ex∼P ′ [w(xi)x

2
i]− Ex∼P ′ [x2k

i])

=
1

N
Varxi∼P ′ [xki] +

1

N

∫
(p′(x)− p(x))x2k p

′(x)

p(x)
dx, (4.11)

where we use Equation 4.10 to obtain the final expression. Notice that we end up with an additional

term which resembles a distance between p′ and p. For the case k = 0, we denote the additional term

by D(p′||p), where

D(p||q) =

∫
(p(x)− q(x))

p(x)

q(x)
= Ex∼P

[
p(x)

q(x)

]
− 1. (4.12)

46

We first notice that this quantity is indeed a divergence, as it is non-negative and is 0 if and only if

p = q. To show this, we first prove that

Ex∼P
[
p(x)

q(x)

]
≥ 1. (4.13)

Notice that

Ex∼P
[
q(x)

p(x)

]
=

∫
q(x)

p(x)
p(x)dx = 1. (4.14)

Using Jensen’s inequality, and the function f(x) = 1/x which is convex for x > 0, we have

Ex∼P
[
p(x)

q(x)

]
= Ex∼Q

[
f

(
q(x)

p(x)

)]
≥ f

(
Ex∼Q

[
q(x)

p(x)

])
= 1. (4.15)

Notice also that Jensen’s inequality holds with equality only when the random variable is a constant.

In this case, this implies p(x)/q(x) is constant. Since both numerator and denominator integrate to

1, then they must be equal. Hence

D(p||q) =

∫
(p(x)− q(x))

p(x)

q(x)
≥ 0 (4.16)

with equality if and only if p = q.

In fact, this divergence falls in the class of f -divergences [29]. Let R+ be the set of non-negative

real numbers, that is R+ = {x : x ∈ R, x ≥ 0}, and let R++ be the set of positive real numbers,

that is R++ = {x : x ∈ R, x > 0}. These divergences are defined as D : G++ × G++ → R, where

G++ = {g : Rd → R++} and

Df (p||q) =

∫
f

(
dQ

dP

)
dP =

∫
f

(
q(x)

p(x)

)
p(x)dx, (4.17)

where f is a convex function f : R→ R+ that satisfies f(1) = 0. In our case,

f(u) = 1/u− 1.

Notice that f is only convex in the set R++, which agrees with the domain of D, since D is defined

only when both p and q are strictly positive. A more common f -Divergence is the KL-divergence

which uses f(u) = log 1/u. Notice that this is again a convex function although undefined at u = 0

as in our case.

This notion of distance between the distributions P and P ′ characterizes how the variance of the

moments of the samples changes. The “further” the two distributions are, the larger the difference in

this variance. An intuitive consequence of this effect, is that the support of the initial set must overlap

47

significantly with the support of the distribution we want to match to. Take an extreme example;

assume in a matching scenario we want to match data sampled from a uniform distribution U [0, 1] to

a distribution given by the Gaussian distribution N (2, 0.12). The shift is so extreme that P (x) = 0

for x in the domain where the dual distribution is concentrated, so that the ratio w(x) = p′(x)/p(x)

is undefined. In practice, such scenario is uncommon as we expect that P ′, which is either the test

distribution PS or the dual P ?R, is close to the training distribution. In this case, we would like to

think of the sample as being “diverse” enough to be able to match it to the desired distribution.

Now, the term we found that changes the variance of the moments of our weighed sample is only

non-negative when we think of the 0-th moment. However, for the first moment, it is very easy

to see that this term can be negative. For example, it is negative if p is a very narrow Gaussian

distribution, while q is a much wider Gaussian distribution, both having the same mean. This makes

the negative terms dominate, as can easily be verified numerically. Hence, the variance of the moments

can actually be reduced. Such reduction would lead to lower out-of-sample error, when we consider

that our random variables xi represent the loss evaluated at the different points in the dataset. This

coincides with the examples of dual distributions shown in Figure 3.2, where the dual is a slightly

wider distribution than the test distribution.

We run a simple simulation to illustrate the difference between learning from a sample distributed

as P ′, and learning from a sample distributed as P but using importance weighting w(x) = p′(x)/p(x).

The problem consists of a polynomial regression problem, with a model including second-order Leg-

endre polynomials, while the target includes third-order Legendre polynomials. The constant δ cor-

responds to the coefficient of the deterministic noise term. Figure 4.1 summarizes the results, and we

plot the out-of-sample error obtained both weighting and sampling directly, as the sample size grows.

The different plots in the grid vary the KL-divergence between P ′ and P , with the KL-divergence

growing vertically down. Horizontally, the plots change the value of σC , the amount of deterministic

noise.

As it can be seen, as the KL-divergence grows, training with weighted samples always leads to a

larger out-of-sample error. If however, the KL-divergence is small, the difference in errors is almost

zero. For a medium KL-divergence, having a large number of samples diminishes the difference

between both scenarios. This scenario is the most likely in practice. Notice that this effect is persistent

regardless of how complex the target function is, as it is clear that the same behavior can be observed

for the different values of deterministic noise.

48

10
0

10
2

10
4

10
−5

10
0

δ = 0

K
L

=
 0

.0
16

23
6

σ R
 =

 0
.9

10
0

10
2

10
4

10
−5

10
0

δ = 0.005

10
0

10
2

10
4

10
−4

10
−2

10
0

Log(Eout) vs Log(Num. samples), Tgt: Order 3−Lg poly
δ = 0.05

10
0

10
2

10
4

10
−2

10
−1

10
0

δ = 0.5

10
0

10
2

10
4

10
−0.8

10
−0.3

δ = 1

Sampling
Weighting

10
0

10
2

10
4

10
−5

10
0

K
L

=
 0

.0
43

04
7

σ R
 =

 0
.7

10
0

10
2

10
4

10
−5

10
0

10
0

10
2

10
4

10
−4

10
−2

10
0

10
0

10
2

10
4

10
−2

10
−1

10
0

10
0

10
2

10
4

10
−0.8

10
−0.3

10
0

10
2

10
4

10
−5

10
0

K
L

=
 0

.1
52

74
σ R

 =
 0

.5

10
0

10
2

10
4

10
−5

10
0

10
0

10
2

10
4

10
−4

10
−2

10
0

10
0

10
2

10
4

10
−2

10
−1

10
0

10
0

10
2

10
4

10
−0.8

10
−0.2

10
0

10
2

10
4

10
−5

10
0

K
L

=
 0

.8
72

81
σ R

 =
 0

.3

10
0

10
2

10
4

10
−5

10
0

10
5

10
0

10
2

10
4

10
−4

10
−2

10
0

10
0

10
2

10
4

10
−2

10
0

10
2

10
0

10
2

10
4

10
0

10
0

10
2

10
4

10
−5

10
0

10
5

K
L

=
 1

4.
58

99
σ R

 =
 0

.1

10
0

10
2

10
4

10
−5

10
0

10
5

10
0

10
2

10
4

10
−5

10
0

10
5

Log(N training samples)
10

0
10

2
10

4
10

−2

10
0

10
2

10
0

10
2

10
4

10
−2

10
0

10
2

Figure 4.1: Simulations illustrating the out-of-sample error difference vs the number of training sam-
ples, when sampling data form a distribution P ′ and matching a sample distributed as P using
importance weights w(x) = p′(x)/p(x). The figure illustrates the effect as P is further from P ′ in
KL-divergence sense (vertical), as well as the how the effect changes as deterministic noise changes
(horizontal)

49

4.1.3 Decomposition of the weighting effect

As discussed above, using weights for matching can both help and hurt learning. We can decompose

the effect of weighting into two terms. There is an ideal gain that can be achieved by training with

the desired distribution (either the test or the dual distribution). Yet, since we are not able to sample

directly from the desired distribution, but instead weight the points to try and achieve this, there is

a difference in the moments of the distribution of a weighted versus a directly sampled dataset.

Let us introduce some notation in order to quantify these terms. Fix the training set size to N

points. Let g be the hypothesis output by the learning algorithm when training with points from

the original training distribution P . Now, we introduce variations of g according to the training

conditions. Let gP ′ be the hypothesis obtained if we had training data distributed according to P ′.

Let gw be the hypothesis obtained if the set of weights w has been used during training on points

from the original distribution P . As usual, let f be the target function we are trying to learn.

The bottom line in quantifying the value of using weights is the difference in out-of-sample error

with weights and without weights:

NetGain = Ex∼PS [`((g(x), f(x))]− Ex∼PS [`(gw(x), f(x))] (4.18)

Notice that the expected value of the out-of-sample error is taken with respect to the test distribution

PS , and that P ′ is not necessarily PS , for example, we may choose P ′ = P ?R.

The positive effect of training with the desired distribution can be quantified as

MatchGain = Ex∼PS [`(g(x), f(x))]− Ex∼PS [`(gP ′(x), f(x))] (4.19)

This term corresponds to the out-of-sample gain if we had trained with points coming from P ′ rather

than from P . As shown in Chapter 3, this quantity is maximized if P ′ is the dual distribution. The

quantities in the right hand side cannot be directly evaluated in practice, as the setup assumes the

training set is distributed according to P . Furthermore, gP ′ is unavailable, if it were, there would be

no need to perform matching to the desired distribution.

Now, we have to quantify the effect of using weights rather than sampling directly. This term is

given by

WeightLoss = Ex∼PS [`(gw(x), f(x))]− Ex∼PS [`(gP ′(x), f(x))]. (4.20)

Again, none of the two quantities in the right hand side can be evaluated in a practical setting as

x ∼ P .

50

−0.01 0 0.01 0.02 0.03 0.04 0.05
−0.01

0

0.01

0.02

0.03

0.04

0.05

E[(g−g
w

)2]

N
et

G
ai

n

α
1
 = 1.0615

α
0
 = −0.004

(a) P (x1) = N (0, 1), f(x1, x2) : 2-D Legendre poly-
nomials

−0.01 0 0.01 0.02 0.03 0.04 0.05
−0.01

0

0.01

0.02

0.03

0.04

0.05

E[(g−g
w

)2]

N
et

G
ai

n

α
1
 = 1.0139

α
0
 = −0.006

(b) P (x1) = N (0, 1) f(x1, x2) : 2-D Sinusoidals

Figure 4.2: NetGain = α0 + α1Ex∼P ′ [(g(x)− gw(x))2]

Using the terms defined, it is clear that:

NetGain = MatchGain−WeightLoss. (4.21)

Therefore, the balance between the MatchGain and WeightLoss must be found in order to determine

if there is a gain in matching P to P ′. For example, it may be the case that even if P is different

from P ′, the MatchGain is so negligible that the WeightLoss dominates, and matching is therefore

not useful.

4.2 The algorithm: Targeted matching

The NetGain is defined in terms of g, gw, and f . It cannot be computed using the available data.

Not only is the target f unknown, which is normally circumvented by validating using the labeled

points available, but also the labeled points are distributed according to P , not PS . Only unlabeled

points may be distributed according to PS , so if we validate using the labeled points, all the expected

values would be computed with respect to the wrong distribution.

One way around that is to use IWCV [65], in which the labeled points are scaled by pS/p using

the same solution as the one shown in Equation 4.2. However, this assumes that P and PS are known.

Since they are not known, they need to be estimated from the samples. If we use validation to get

estimates of P and PS , this will compromise the ability of the same data to provide an unbiased

estimate of the quantity we are after that depends on P and PS . If we do not use validation, however,

and the weights we get deviate from w(xi) = P ′(xi)/P (xi), as they do in methods like KMM or

KLIEP, the weighted expected value will not be a good estimate for the expected value with respect

51

to PS . Indeed, as pointed out in [67], the use of validation for KMM and other weighting methods is

an open research question.

An alternative approach, instead of estimating P and PS , is to directly estimate NetGain by

calculating the actual weights for subsets of the data using the method at hand, be it KMM or

some other method. We can then use these subsets as validation sets that capture the behavior of

the weighting method. The problem with this approach is that these methods estimate the weights

collectively. The algorithms return a weight for each point in the training set, but the weights returned

depend on all the remaining points. Arbitrarily dividing the dataset into validation and training will

change the actual weight that the algorithm intends to give to each point. Added to these issues,

using a weighted estimate will also suffer an increase in the variance, by the same argument followed

in Section 4.1.1, reducing the effective size of the validation set.

Hence, there is no straightforward way of validating the effect of a particular set of weights. Our

contribution in this section is to provide an alternative to validation that enables us to estimate

NetGain in order to decide whether weighting would be beneficial or not. Our method is based on

the following observation. The quantity Ex∼PS [`(g(x), gw(x))] can always be estimated since we have

unlabeled points x ∼ PS . Notice that if the loss ` is an appropriate metric, such as the squared loss,

then it follows the triangle inequality. In its reverse form, it implies

|Ex∼PS [`(g(x), f(x))]− Ex∼PS [`(gw(x), f(x))]| ≤ Ex∼PS [`(g(x), gw(x))]. (4.22)

Hence,

|NetGain| ≤ Ex∼PS [`(g(x), gw(x))] (4.23)

Therefore, we propose using the following regression model to estimate the MatchGain:

NetGain = α0 + α1Ex∼P ′ [`(g(x), gw(x))] (4.24)

In fact, we can simply set α1 = 1, so that α0 ∈ [−2Ex∼P ′ [`(g(x), gw(x)], 0].

We first verify the validity of this model in an example with synthetic data. We generate random

target functions by picking random coefficients for two dimensional Legendre polynomials, and we

carry out learning by using a squared loss function and polynomial features for a non-linear trans-

formation. We use P ′ = PS for simplicity, and plot the quantity Ex∼PS [`(g(x), gw(x)] versus the

MatchGain. Figure 4.2 shows typical regressions for the above model. We observe that α1 ≈ 1, and

that α0 varies according to P , and P ′, but does not change much for f ’s that are somewhat similar,

as the model of Equation 4.24 explains well the data points. Notice that it is precisely the quantity

α0 that can make NetGain negative, as the second term is always positive for α1 = 1. The key

52

Algorithm 3 Targeted Weighting algorithm,

Input: R = {xi, yi}Ni=1, S = {xi}NSi=1, , w ∈ RN , R ∼ P, S ∼ P ′
Learn g and gw using R and w
Compute e = 1

NS

∑
i∈S(`(g(xi), gw(xi)) ≈ Ex∼P ′ [`(g(x), g(w))]

Set Count = 0
for k ← 1 : K do

Generate surrogate target fk
R(k) = {xi, fk(xi)}Ni=1

Learn gk and gkw using R(k) and w
Compute e1 = 1

NS

∑
i∈S(`(gk(xi), fk(xi)) ≈ Ex∼PS [`(gk(x), fk(x))]

Compute e2 = 1
NS

∑
i∈S(`(gkw(xi), fk(xi)) ≈ Ex∼PS [`(gkw(x), fk(x))]

Compute e3 = 1
NS

∑
i∈S(`(gk(xi), gkw(xi)) ≈ Ex∼PS [`(gk(x), gkw(x))]

αk0 = e1 − e2 − e3

if αk0 + e > 0 then
Count+ +

end if
end for
if Count > K/2 then

Use weights
else

Do not use weights
end if

observation is that the problem reduces to estimating α0.

We propose the following procedure to estimate the sign of NetGain. Since the simulations on

synthetic data show α0 changes with every P and P ′, but is fairly constant for f ’s that have comparable

complexity and numerical range, we can try to estimate α0 using surrogate target functions that are

similar to the actual target in these two aspects. To match the complexity, we generate the surrogate

functions using a parametric model and adjust the number of parameters and level of added noise to

make the error when learning surrogates about the same as the error when learning the actual target.

To match the numerical range, we normalize the outputs of the surrogates according to the range of

values of the target.

The algorithm, which we call Targeted Weighting (TW), is described in Algorithm 3. The idea

is to find α0 for K surrogate functions. Let fk, k = 1, . . . ,K, be surrogate target functions. Let gk

be the hypotheses learned when training the algorithm with points sampled from P . Let gkw be the

resulting hypotheses when training with the set of weights w. The idea is to find the values α0k for

each of these surrogates. According to the model of Equation 4.24, this value is given by

α0k = MatchGaink − Ex∼PS [`(gk, gkw] (4.25)

= Ex∼PS [`(gk(x), fk(x)]− Ex∼PS [`(gkw(x), fk(x))]− Ex∼PS [`(gk, gkw)]. (4.26)

53

We then compute a proxy for the NetGain for each of the surrogate functions:

NetGain ≈ α0k + Ex∼PS [`(g(x), gw(x))]. (4.27)

With the K proxies for NetGain, we decide if weighting is beneficial or not by taking a majority vote

on the sign of the proxies obtained. We test our procedure on real datasets to verify its validity.

4.3 Experimental results

We applied this algorithm on various real datasets. One of these datasets is the Netflix Prize dataset.

The distribution of the training points in this set is quite different from that of the test points used

for evaluating the performance of the solutions. After the competition was over, the labels of the

test points were made available, which makes it possible to verify if indeed our algorithm improves

the ultimate out-of-sample performance. We also applied TW on 17 benchmark datasets that were

used in [38] to evaluate the matching effect. The original datasets have PR = PS , but we artificially

introduced a mismatch between P and PS as was done in that paper. We report the results in the

next two subsections.

4.3.1 Results on the Netflix dataset

We ran an elaborate experiment with TW on the Netflix data. In each run, we used K = 100 surrogate

functions. We generated the surrogate targets using a factorization model similar to SVD, so that

the surrogate function is r
(k)
ij = round(σ(pTikqjk + µ + ε)) for user i and movie j, where pik, qjk ∈ Rκ

are generated randomly, ε is added noise, and µ and σ adjust the mean and standard deviation of the

labels to those in the Netflix training set. The distributions that generate pik and qjk were chosen

to make the resulting ratings lie with high probability in the normal range [1, 5] of movie ratings.

If a particular rating was outside this range, its value was truncated to 1/5. The dimension of the

movie and user features, κ, was varied between 10 and 50 for the different surrogate functions, a range

compatible with the complexity of the original set.

We chose the training algorithm known as SVD++ [44], implemented with the speedup proposed

in [24]. This learning algorithm provided the best solutions during the Netflix competition. We

trained on the raw training set whose distribution is different from that of the validation and test sets

(known as ‘Probe’ and ‘Qual’). We only used the inputs in ‘Probe’ without their labels, as well as the

provided inputs in ‘Qual’ which are similarly distributed, in order to perform matching.

Since the training set has about 100 million points, and we matched along 6 coordinates, we

needed an efficient matching algorithm for our experiments, which we describe in Chapter 5 and call

54

Table 4.2: TW with K = 100 in the Netflix dataset. NetGain is computed with the labels of the
original Netflix competition test set.

Coord. λ %fk with NetGain λ %fk with NetGain
NetGain > 0 improvement NetGain > 0 improvement

(basis points) (basis points)

t 0% −71 37% 9
dt 0% −14 58% 0.1
us 1000 0% −121 100 60% 5
ms 0% −147 28% −5
ut 0% −41 0% −20
un 0% −40 0% −17

t 55% 7 60% 2
dt 64% 0.1 77% 0.1
us 50 51% 9 10 69% 3
ms 5% −0.3 54% 0.4
ut 0% −14 0% −5
un 0% −13 0% −5

t 65% 1 76% 0.3
dt 84% 0.1 83% 0.01
us 5 71% 2 1 87% 0.4
ms 61% 0.2 76% 0.01
ut 0% −2 0% −0.01
un 0% −2 0% −0.01

t, us, ms 100, 100, 10 60% 10 100, 50, 10 60% 15

Soft Matching. Each point in the dataset consists only of a user id, a movie id and the time of the

rating, R = {ui,mi, ti}Ni=1. We represented each point by 6 characteristic coordinates that represent

the mismatch between the training and test points of this dataset. The coordinates are the absolute

time of rating (t); time since first rating of movie (dt); number of ratings per user or ‘user support’

(us); number of ratings for a movie or ‘movie support’ (ms); time since first rating of user (ut); and

order of rating among the user’s ratings (un). The distribution along these coordinates was distinctly

different between the training and test sets. Soft Matching matches the distributions along these

coordinates by binning the values along each coordinates and minimizing the discrepancy between

corresponding bins while maximizing Neff . A parameter λ controls the extent of matching, where

λ = 0 implies all weights are 1, and λ =∞ yields importance weighting. The details of this algorithm

will be explained further in Chapter 5.

Table 4.2 shows different choices for λ and the coordinate to be matched. It also shows what

percentage of surrogate functions had αk0 + E[`(g(x), gw(x))] > 0 (the ‘%fk with NetGain > 0’

column), and then the actual improvement or worsening of out-of-sample error in the test set. Notice

that in the results shown, if the weighting mechanism worsens results, it is always the case that less

than 50% of the surrogate functions yield improvement. On the other hand, only for one case of the

weighting mechanism parameters, there is a positive NetGain while less than 50% of the surrogate

55

Table 4.3: Out-of-sample performance when not using weights, always using weights, and using TW
to decide if weights should be used. The number of points in the training set (NR) and the test set
(NS) are shown for reference. After sampling, only NsubR points were used for training

Dataset NR Avg. NS Test error
(Classif.) NsubR No weights With weights With TW

Br. Cancer(1) 546 173 137 0.055± 0.0006 0.055± 0.0006 0.053± 0.0006

Br. Cancer(2) 546 109 137 0.317± 0.003 0.313± 0.003 0.300± 0.004

Br. Cancer(3) 546 208 137 0.0681± 0.0007 0.0651± 0.0007 0.0650± 0.0007

Br. Cancer 546 228 137 0.045± 0.0005 0.046± 0.0005 0.044± 0.0005

German cred. 614 216 154 0.298± 0.0009 0.298± 0.0009 0.296± 0.0009

Haberman 245 97 61 0.257± 0.0016 0.259± 0.0016 0.248± 0.0016

India diabetes 614 217 154 0.269± 0.0011 0.271± 0.0011 0.262± 0.0011

Ionosphere 281 153 70 0.066± 0.0009 0.067± 0.0009 0.061± 0.0009

USPS 3vs9 1042 443 260 0.5031± 0.0009 0.4896± 0.0008 0.4883± 0.0008

(Regression) NMSE error

Abalone 3342 2319 835 0.4850± 0.0010 0.4840± 0.0010 0.4828± 0.0010

Ailerons 11000 3637 2750 0.1847± 0.0002 0.1850± 0.0002 0.1846± 0.0002

Bank8FM 6554 3393 1638 0.0657± 0.0001 0.0653± 0.0001 0.0653± 0.0001

Bank32nh 6554 3353 1638 0.4733± 0.0006 0.4740± 0.0006 0.4731± 0.0006

Bos. Housing 405 160 101 0.3197± 0.0028 0.3164± 0.0029 0.3061± 0.0026

CA Housing 16512 5250 4128 0.3688± 0.0004 0.3686± 0.0004 0.3679± 0.0004

Cpu-act 6554 6325 1638 0.2767± 0.0007 0.2778± 0.0010 0.2719± 0.0008

Cpu-small 6554 6331 1638 0.2891± 0.0007 0.2881± 0.0009 0.2846± 0.0007

Delta Ailerons 5703 5691 1426 0.4585± 0.0004 0.4603± 0.0004 0.4580± 0.0004

Kin8nm 6554 4109 1638 0.5881± 0.0005 0.5881± 0.0005 0.5877± 0.0005

Puma8nh 6554 3993 1638 0.632± 0.0006 0.632± 0.0006 0.631± 0.0006

functions yielded improvement. The table highlights the runs where the majority of the surrogates

agreed with the ultimate out-of-sample performance.

4.3.2 Results on further benchmark datasets

We also tested our TW algorithm on UCI classification dataset [7], as well as on LIACC Regression

datasets [68]. Since these datasets have PR = PS , a sampling bias is further introduced as described in

the experiments in [38]. We began with detailed experiments in the Breast Cancer dataset where three

types of sampling biases are introduced to the training set: bias using a single input feature (1), bias

using all features (2), and label-dependent bias (3). We then ran experiments in both classification

and regression datasets where sampling bias is introduced along the first PCA component, and we

matched along all original coordinates. All biased sampling parameters are set as in [38].

Experiments were run 1,000 times for each type of sampling bias scheme. We used a Gaussian

kernel SVM as the learning algorithm for the classification datasets. The SVM package libsvm [23]

with weights was used to carry out the experiments, and the size of the kernel for each dataset was

taken from [38]. For the regression datasets, we used regularized least squares (LS). For each run, a

56

different split between training and test sets was done, where 20% of the data was saved for testing.

The remaining 80% was sub-sampled for each of the sampling bias schemes. TW was run using

K = 100 surrogate functions. For the classification tasks, the surrogate functions were generated

by randomly choosing support vectors and coefficients. The only constraint in this random selection

was to use a similar number of support vectors to the ones obtained when training with the original

data, in order to have comparable complexity. Specifically, surrogate target k had svk ∈ [0.9sv, 1.1sv],

where sv is the number of support vectors obtained with the original data. For the regression tasks,

a random parameter vector θk ∼ N (θ, (0.1θ)2) was generated, where θ were the parameters of the LS

output on the unweighted training data. The labels for the artificial target were then computed as

yik = xTi θk + εi, and εi ∼ N (0, 0.12).

Table 4.3 summarizes the expected out-of-sample error obtained when no weights are used, when

weights are always used, and when TW is used to decide if weights should be used. For classification

tasks, the test classification error is shown, while for regression the normalized mean-squared error

(NMSE = 1
NV ar[y]

∑
i(yi − g(xi))

2) is shown. As it can be seen in the table, for every dataset and

every sampling scheme used, the use of TW improves performance.

Hence, the unanimous success of Targeted Weighting in these datasets shows that it is a reliable

method that can be used to determine if a particular weighting scheme will yield out-of-sample im-

provements or not. With this algorithm it is possible to answer the second fundamental question we

had pose in Chapter 1. Now we move on to answer the final question: how to match a sample coming

from distribution P , to a desired distribution P ′?

