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Chapter 4

To weight or not to weight

As shown in the previous chapter, it is desirable to use the dual distribution to sample the training
data for a learning problem. Nevertheless, since in the supervised learning scenario it is not possible
to sample from the dual distribution, or even from the test distribution in the covariate shift case,
then it becomes necessary to use weights to match the training distribution to the dual (so far in the
literature weighting has been used to match training to test distributions). However, when applied
in practice, weighting has a mixed record and sometimes worsens the out-of-sample performance, as

discussed in [25]. This raises three natural questions:

e What makes weighting work in some cases but not others?
e Is there a way to predict when it will work and when it won’t?

e How accurate is the prediction when applied to real data?

In this chapter, we answer these questions. We also introduce Targeted Weighting, a novel al-
gorithm that predicts when weighting will be beneficial. When applied to various real datasets, the

algorithm achieved near-unanimous success.

4.1 What makes weighting work sometimes only?

As stated in Chapter 1, assume we have two distributions P and P’ on the input space X, where P
is where training data is drawn from, and P’ could be the distribution where the test data is drawn
from, or some other desired distribution like the dual distribution. Let the target be f : X — Y which
is unknown. If we are interested in finding the expected value of a loss function ¢(g(z), f(x)), x € X

is the input variable, and g : X — ) the hypothesis output by the learning algorithm, a standard
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approach is to consider the empirical loss on a dataset R = {(x;,;)}Y;, so that we solve the problem

N
g = arg m}zn J(h,R) = arg mhin % ;E(h(:ﬂz), f(z:)) (4.1)

By minimizing the empirical loss, we are approximating E,~p[¢(h(z), f(x))] with the in-sample quan-
tity J(h, R). If weights are used to match P to P’, assuming that we knew both distributions and
that P(z) > 0, we can use w; = P'(x;)/P(z;) such that

P'(z;)

By plwil(h(x:), f(2:)] = Exinp (i), f(20)) | = Eximpr [((h(22), f(24))]- (4.2)

Therefore, the use of weights allows simulating the expected value with respect to the desired distri-
bution P’. When P’ = Pg, we solve the mismatch problem and obtain an unbiased estimate of the
loss [61]. When P = Pj,, we hope to obtain the benefits of training with the dual distribution, and
therefore improve the out-of-sample performance. However, there is a side effect of using weights.
From statistics, we know that the use of weights leads to an effective sample loss. We now develop an
approximate expression for this sample loss based on the change of variance in the sample estimate.

We also verify this expression empirically.

4.1.1 The effective sample size

In practice, the loss in Equation 4.2 is estimated empirically using a finite sample. There will be
a change in the variance between the unweighted and weighted estimates, and that change is tanta-

mount to an effective loss in sample size. Consider

N

N
© 3 nr), f(xm] = 7 Do Varlt(h(a), feo) = Varlthia), f@). (43)
i=1

v
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The variance of the estimate is reduced by N, the size of the sample. However, assume that the
weights were independent of x, that is, the set {w;}}¥ ;| is a set of constant weights assigned to each

of the training samples. Then, the variance becomes:

N N

i L(h(z;), i N w?

V(l’l’ Zz:lw ( (:Z? ) f(l‘)) _ Var[f(h(xl),f(xl)] szl wz (44)
ZN w N 2
=1 (Zi:l wz)
Hence, by introducing weights, the sample size has been effectively reduced to
2
W,

Neﬂ' — (Z'L ) (4.5)

Ziwig 7
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Table 4.1: RMS error using: Neg training examples (R;); using weights found with a matching
algorithm but assigned randomly (R2); and using the weights found with matching assigned correctly
(R3)

Neg Reduced training set | Random weights | Matched Weights | 100 x |R1 — R2|/R1
RMS error (R1) RMS error (R2) | RMS error (R3)
99,072,095 0.947405 0.947407 0.946639 0.0002%
99,070,481 0.947425 0.947322 0.946531 0.011%
98,959,437 0.947487 0.947218 0.946462 0.028%
98,138,979 0.947823 0.946958 0.946344 0.091%
97,416,899 0.947937 0.947159 0.946452 0.082%
88,128,713 0.952993 0.951354 0.947886 0.172%
35,484,865 0.999641 0.995888 0.986235 0.375%
25,925,094 1.002576 1.002970 0.989099 0.039%
6,632,779 1.054571 1.055235 1.034925 0.063%

which is maximized when all weights are equal, making N.g = N. This result is not exact, as in
practice, the weights are a function of z, for example, if w(z) = P'(x)/P(x).

Nevertheless, this measure of the effective sample size can be verified in a real dataset such as
the Netflix dataset. For this set, we computed weights with the Soft Matching algorithm that is
introduced in Chapter 5. To test the pure effect of weights on effective sample size reduction, without
the matching effect itself coming into play, we assigned the weights randomly to the training set
consisting of 9.91 x 107 training points. We then tested the error on an out-of-sample set consisting
of 2.82 x 10° points.

The out-of-sample error obtained when weights are assigned randomly on the full training set, was
compared to the out-of-sample error when weights are not used, but only Neg random training points
are used. Neg is computed with Equation 4.5 given the set of weights. To create different instances
of Neg, the maximum size of the random weights as well as the matching scheme were changed in
different trials. The results are summarized in Table 4.1, which shows averages over 30 runs. The
table shows that the RMS errors obtained by reducing the sample size (R;), or by using random
assignment of the weights (Rs), follow each other very closely as expected, with an average difference
of less than 0.1%.

If we repeat the same experiment, except that the weights computed are no longer assigned ran-
domly but instead assigned in the order given by the matching algorithm, we obtain the RMS errors
shown in the fourth column of the table (R3). This column captures both the sample loss and the
positive effect of matching. If no weights are used, the RMS error obtained is 0.94664 and it is clear
that matching leads sometimes to lower RMS errors with respect to this value (these cases are high-
lighted in the table). Yet, as expected, it always leads to lower RMS error compared to the random

assignment of the same weights, thus verifying the favorable matching effect. As N.g decreases, the
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benefit of matching is overwhelmed by the reduction in sample size and becomes a net loss.

This notion of sample size loss was first discussed in [61], where without proof, the effective sample
size was defined in entropy terms as N, = exp(— Zfil pilogp;), where p; = w(x;)/ >, w(z;), and
w(x) = ps(z)/pr(x). In [38], the authors introduce the same expression for Neg that we use, assuming
>, w; = N, as they provide a bound for learning using the Kernel Mean Matching (KMM) method,
in which N is replaced by the quantity Neg = N?2/||w||?, where the weights are found through their
method.

A closer look shows that the effective sample size does not explain fully the negative effect of
matching. There is a broader effect that is caused by the difference between sampling directly from
a distribution and weighting points to make them look as if they were sampled from a different
distribution. In the next subsection, we analyze the expected value and variance of all the moments

of a weighted sample, in order to establish the difference between weighting and sampling.

4.1.2 Weighting vs sampling

We can compare analytically the difference between a sample from P’ and a weighted sample from
P, by looking at the expected value and variance, with respect to the data set generation, of the
moments of the sample. Notice that a probability distribution is uniquely determined by the moment
generating function. Recall that the moment generating function of a random variable X is given by

E|X|t E[X?]t)?
X]e | (B

Mx(t) =E[eX] =1+ +oee (4.6)
Hence, if the moments are found, the moment generating function can be constructed and so the
distribution can also be uniquely determined. Since the moments of an underlying probability dis-
tribution can be estimated through the moments of the sample, we compare the expected value and
variance of the moments of the weighted sample coming from P and those of a an unweighted sample
coming from P’, with weights w(z) = p/(z)/p(x). The differences we find will indicate the difference
of the distribution that a weighted sample simulates and the actual distribution we match to.

Let R = {x;}}Y, be a set with points sampled from P’. The expected value of the k’th moment of

the sample is given by

. xk 1
Boovrr [ ] = 5 S B lot] = Eunr o) @)



45

and the variance is given by

Var szf 2k | k
@i P! | T N2 Eznp Za: Z;c —Epopr[x]]

i#£j
= e 4 T B Bl
= %(E%NP'[ M = Euypr [27]%)
= %Vamwp' [27] (4.8)

Now assume the points z; are sampled from P and we use importance weights. The expected

value of the k-th moment is given by

- W
El’i’\‘P |:2:Z:| N ZEmle 2 N ZELNP/ xi =Egpr [fo (49)

where we used the fact that

Eyoplw(@)f(x)) = / Z; ((j)) / F(@)p (2)de = By pr [ (2)] (4.10)

Hence, it is clear that the expected value of the moments is the same for a sample distributed as P’
as for a sample distributed as P’ if we use importance w(z) = p/(z)/p(z). However, the variance of

the moments does change:

Nk
Vary,~p {W} E;,~p Zw Z;) 2 2k+z w(z;)w %xik —Emwp/[xff
i#]
N2 ZEazle’ 2k +Z]EI ~P’ IJNP/[ k]) _EINP’[xi'CP
i#]
1
= 7 Eanprle 2] = Eanpr [0 + Bapr [w(2:)27] — Egnpr[037])
1 1
= NVGTLNP’ [xf] + N(Emwp/ [w(@)xf] —Epnpr[z %])
1 p'(z)
—Vary,~pr z2k d 4.11
— yVareplal]+ 5 [0 e (411)

where we use Equation 4.10 to obtain the final expression. Notice that we end up with an additional
term which resembles a distance between p’ and p. For the case k = 0, we denote the additional term
by D(p'||p), where

Dl = [ wle) - ate) 2 = Bu | 5] 1. (112
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We first notice that this quantity is indeed a divergence, as it is non-negative and is 0 if and only if

p = q. To show this, we first prove that

Epp {pg;] > 1. (4.13)

=)

Notice that

E,.p [;Em = / ;Z)E;:;p(x)dx 1. (4.14)

Using Jensen’s inequality, and the function f(z) = 1/x which is convex for > 0, we have

o] mf ()]s e

Notice also that Jensen’s inequality holds with equality only when the random variable is a constant.
In this case, this implies p(z)/q(z) is constant. Since both numerator and denominator integrate to

1, then they must be equal. Hence

~—

Do) = [0(o) - ale) 25 0 (4.16)

~

with equality if and only if p = q.

In fact, this divergence falls in the class of f-divergences [29]. Let RT be the set of non-negative
real numbers, that is RT™ = {z : x € R,z > 0}, and let R** be the set of positive real numbers,
that is R = {z : z € R,z > 0}. These divergences are defined as D : Gt+ x G*+ — R, where

Gtt ={g:RY - R**+} and

Dyl = [ 1 (58 ) ar = [ £ (45 ) piala, (1.17)

where f is a convex function f: R — RT that satisfies f(1) = 0. In our case,

flu)=1/u—-1.

Notice that f is only convex in the set RTT, which agrees with the domain of D, since D is defined
only when both p and ¢ are strictly positive. A more common f-Divergence is the KL-divergence
which uses f(u) = log1/u. Notice that this is again a convex function although undefined at u = 0
as in our case.

This notion of distance between the distributions P and P’ characterizes how the variance of the
moments of the samples changes. The “further” the two distributions are, the larger the difference in

this variance. An intuitive consequence of this effect, is that the support of the initial set must overlap
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significantly with the support of the distribution we want to match to. Take an extreme example;
assume in a matching scenario we want to match data sampled from a uniform distribution U[0, 1] to
a distribution given by the Gaussian distribution A (2,0.1?). The shift is so extreme that P(z) = 0
for z in the domain where the dual distribution is concentrated, so that the ratio w(z) = p/(z)/p(x)
is undefined. In practice, such scenario is uncommon as we expect that P’, which is either the test
distribution Ps or the dual P%, is close to the training distribution. In this case, we would like to
think of the sample as being “diverse” enough to be able to match it to the desired distribution.

Now, the term we found that changes the variance of the moments of our weighed sample is only
non-negative when we think of the 0-th moment. However, for the first moment, it is very easy
to see that this term can be negative. For example, it is negative if p is a very narrow Gaussian
distribution, while ¢ is a much wider Gaussian distribution, both having the same mean. This makes
the negative terms dominate, as can easily be verified numerically. Hence, the variance of the moments
can actually be reduced. Such reduction would lead to lower out-of-sample error, when we consider
that our random variables x; represent the loss evaluated at the different points in the dataset. This
coincides with the examples of dual distributions shown in Figure 3.2, where the dual is a slightly
wider distribution than the test distribution.

We run a simple simulation to illustrate the difference between learning from a sample distributed
as P, and learning from a sample distributed as P but using importance weighting w(z) = p'(z)/p(z).
The problem consists of a polynomial regression problem, with a model including second-order Leg-
endre polynomials, while the target includes third-order Legendre polynomials. The constant § cor-
responds to the coefficient of the deterministic noise term. Figure 4.1 summarizes the results, and we
plot the out-of-sample error obtained both weighting and sampling directly, as the sample size grows.
The different plots in the grid vary the KL-divergence between P’ and P, with the KL-divergence
growing vertically down. Horizontally, the plots change the value of o, the amount of deterministic
noise.

As it can be seen, as the KL-divergence grows, training with weighted samples always leads to a
larger out-of-sample error. If however, the KL-divergence is small, the difference in errors is almost
zero. For a medium KL-divergence, having a large number of samples diminishes the difference
between both scenarios. This scenario is the most likely in practice. Notice that this effect is persistent
regardless of how complex the target function is, as it is clear that the same behavior can be observed

for the different values of deterministic noise.
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Figure 4.1: Simulations illustrating the out-of-sample error difference vs the number of training sam-
ples, when sampling data form a distribution P’ and matching a sample distributed as P using
importance weights w(z) = p'(z)/p(x). The figure illustrates the effect as P is further from P’ in
KL-divergence sense (vertical), as well as the how the effect changes as deterministic noise changes
(horizontal)
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4.1.3 Decomposition of the weighting effect

As discussed above, using weights for matching can both help and hurt learning. We can decompose
the effect of weighting into two terms. There is an ideal gain that can be achieved by training with
the desired distribution (either the test or the dual distribution). Yet, since we are not able to sample
directly from the desired distribution, but instead weight the points to try and achieve this, there is
a difference in the moments of the distribution of a weighted versus a directly sampled dataset.

Let us introduce some notation in order to quantify these terms. Fix the training set size to N
points. Let g be the hypothesis output by the learning algorithm when training with points from
the original training distribution P. Now, we introduce variations of g according to the training
conditions. Let gps be the hypothesis obtained if we had training data distributed according to P’.
Let g, be the hypothesis obtained if the set of weights w has been used during training on points
from the original distribution P. As usual, let f be the target function we are trying to learn.

The bottom line in quantifying the value of using weights is the difference in out-of-sample error

with weights and without weights:

NetGain = B ps[0((9(2), f(2))] = Exnps [((gw (2), f(2))] (4.18)

Notice that the expected value of the out-of-sample error is taken with respect to the test distribution
Pg, and that P’ is not necessarily Pg, for example, we may choose P’ = Pf,.

The positive effect of training with the desired distribution can be quantified as

MatchGain = Eunps[€(g(2), f(2))] — Exnps [€(gp (2), f(2))] (4.19)

This term corresponds to the out-of-sample gain if we had trained with points coming from P’ rather
than from P. As shown in Chapter 3, this quantity is maximized if P’ is the dual distribution. The
quantities in the right hand side cannot be directly evaluated in practice, as the setup assumes the
training set is distributed according to P. Furthermore, gp: is unavailable, if it were, there would be
no need to perform matching to the desired distribution.
Now, we have to quantify the effect of using weights rather than sampling directly. This term is
given by
WeightLoss = Eumpy [{(gu(), £(2))] = Eap [€(gp (2), f(2))). (4.20)

Again, none of the two quantities in the right hand side can be evaluated in a practical setting as

x~ P.
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Figure 4.2: NetGain = ag + a1Ezpr[(g(z) — guw())?]
Using the terms defined, it is clear that:
NetGain = MatchGain — WeightLoss. (4.21)

Therefore, the balance between the MatchGain and WeightLoss must be found in order to determine
if there is a gain in matching P to P’. For example, it may be the case that even if P is different
from P’, the MatchGain is so negligible that the WeightLoss dominates, and matching is therefore

not useful.

4.2 The algorithm: Targeted matching

The NetGain is defined in terms of g, g, and f. It cannot be computed using the available data.
Not only is the target f unknown, which is normally circumvented by validating using the labeled
points available, but also the labeled points are distributed according to P, not Ps. Only unlabeled
points may be distributed according to Pg, so if we validate using the labeled points, all the expected
values would be computed with respect to the wrong distribution.

One way around that is to use IWCV [65], in which the labeled points are scaled by pgs/p using
the same solution as the one shown in Equation 4.2. However, this assumes that P and Pg are known.
Since they are not known, they need to be estimated from the samples. If we use validation to get
estimates of P and Pg, this will compromise the ability of the same data to provide an unbiased
estimate of the quantity we are after that depends on P and Pg. If we do not use validation, however,
and the weights we get deviate from w(z;) = P’(z;)/P(x;), as they do in methods like KMM or
KLIEP, the weighted expected value will not be a good estimate for the expected value with respect
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to Pg. Indeed, as pointed out in [67], the use of validation for KMM and other weighting methods is
an open research question.

An alternative approach, instead of estimating P and Pg, is to directly estimate NetGain by
calculating the actual weights for subsets of the data using the method at hand, be it KMM or
some other method. We can then use these subsets as validation sets that capture the behavior of
the weighting method. The problem with this approach is that these methods estimate the weights
collectively. The algorithms return a weight for each point in the training set, but the weights returned
depend on all the remaining points. Arbitrarily dividing the dataset into validation and training will
change the actual weight that the algorithm intends to give to each point. Added to these issues,
using a weighted estimate will also suffer an increase in the variance, by the same argument followed
in Section 4.1.1, reducing the effective size of the validation set.

Hence, there is no straightforward way of validating the effect of a particular set of weights. Our
contribution in this section is to provide an alternative to validation that enables us to estimate
NetGain in order to decide whether weighting would be beneficial or not. Our method is based on
the following observation. The quantity E,~ps[¢(g(z), gw(z))] can always be estimated since we have
unlabeled points & ~ Pg. Notice that if the loss £ is an appropriate metric, such as the squared loss,

then it follows the triangle inequality. In its reverse form, it implies

[Exnps[€(g(2), f(2))] = Banps [6(gu (@), f(2))]] < Eanps[€(9(2), 9w (2))]- (4.22)

Hence,

|NetGain| < Eqnps [€(9(2), gu(2))] (4.23)

Therefore, we propose using the following regression model to estimate the MatchGain:

NetGain = o + 1By pr [€(g(2), guw(2))] (4.24)

In fact, we can simply set oy = 1, so that ag € [-2Ezp/[(g9(x), guw(x)],0].

We first verify the validity of this model in an example with synthetic data. We generate random
target functions by picking random coefficients for two dimensional Legendre polynomials, and we
carry out learning by using a squared loss function and polynomial features for a non-linear trans-
formation. We use P’ = Ps for simplicity, and plot the quantity E,.p,[l(g(2), gw(x)] versus the
MatchGain. Figure 4.2 shows typical regressions for the above model. We observe that «; ~ 1, and
that ag varies according to P, and P’, but does not change much for f’s that are somewhat similar,
as the model of Equation 4.24 explains well the data points. Notice that it is precisely the quantity

o that can make NetGain negative, as the second term is always positive for a; = 1. The key
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Algorithm 3 Targeted Weighting algorithm,

Input: R={z;,y:}Y,, S= {xi}iv:sl,, weRVY R~PS~P
Learn ¢ and g, using R and w
Compute e = 5= 3, o(£(g(2:), gu (i) ~ Eapr [€(g(2), g(w))]
Set Count =0
for k+ 1:K do

Generate surrogate target fi

R®) = {ay, fir(z:) 1,

Learn g, and gkw using R® and w

Compute e1 = x= > c 5 (Ugn(i), fu(2i)) = Eonps [U(gn (), fr(@))]
Compute ez = 5= 3 ,c s (U(grw (@), fi(@:)) = Eonps[£(grw (@), fr(z))]
Compute €3 = 3= > c5(0(gk (), ghw (1)) = Eun s [U(gr(2), ghw ()]

Qaro = €1 *62*63
if app + e > 0 then
Count + +
end if
end for
if Count > K/2 then
Use weights
else
Do not use weights
end if

observation is that the problem reduces to estimating ayg.

We propose the following procedure to estimate the sign of NetGain. Since the simulations on
synthetic data show ag changes with every P and P’, but is fairly constant for f’s that have comparable
complexity and numerical range, we can try to estimate o using surrogate target functions that are
similar to the actual target in these two aspects. To match the complexity, we generate the surrogate
functions using a parametric model and adjust the number of parameters and level of added noise to
make the error when learning surrogates about the same as the error when learning the actual target.
To match the numerical range, we normalize the outputs of the surrogates according to the range of
values of the target.

The algorithm, which we call Targeted Weighting (TW), is described in Algorithm 3. The idea
is to find g for K surrogate functions. Let fi, k = 1,..., K, be surrogate target functions. Let g
be the hypotheses learned when training the algorithm with points sampled from P. Let gg, be the
resulting hypotheses when training with the set of weights w. The idea is to find the values «qy for

each of these surrogates. According to the model of Equation 4.24, this value is given by

aor = MatchGaing — Epopg [€(gk s Giaw) (4.25)

= Eonpg [0(gk(2), f1(2)] = Exnps [0(grw (), fu(2))] — Exnps [€(ks Gw)]- (4.26)
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We then compute a proxy for the NetGain for each of the surrogate functions:
NetGain =~ agr + Epps [0(9(2), g (2))]- (4.27)

With the K proxies for NetGain, we decide if weighting is beneficial or not by taking a majority vote

on the sign of the proxies obtained. We test our procedure on real datasets to verify its validity.

4.3 Experimental results

We applied this algorithm on various real datasets. One of these datasets is the Netflix Prize dataset.
The distribution of the training points in this set is quite different from that of the test points used
for evaluating the performance of the solutions. After the competition was over, the labels of the
test points were made available, which makes it possible to verify if indeed our algorithm improves
the ultimate out-of-sample performance. We also applied TW on 17 benchmark datasets that were
used in [38] to evaluate the matching effect. The original datasets have Pr = Pg, but we artificially
introduced a mismatch between P and Pg as was done in that paper. We report the results in the

next two subsections.

4.3.1 Results on the Netflix dataset

We ran an elaborate experiment with TW on the Netflix data. In each run, we used K = 100 surrogate

functions. We generated the surrogate targets using a factorization model similar to SVD, so that
(k)

the surrogate function is r;;" = round (o (p.q;r + p + €)) for user i and movie j, where pix, gjx € R®
are generated randomly, € is added noise, and p and o adjust the mean and standard deviation of the
labels to those in the Netflix training set. The distributions that generate p;, and g;, were chosen
to make the resulting ratings lie with high probability in the normal range [1,5] of movie ratings.
If a particular rating was outside this range, its value was truncated to 1/5. The dimension of the
movie and user features, x, was varied between 10 and 50 for the different surrogate functions, a range
compatible with the complexity of the original set.

We chose the training algorithm known as SVD++ [44], implemented with the speedup proposed
in [24]. This learning algorithm provided the best solutions during the Netflix competition. We
trained on the raw training set whose distribution is different from that of the validation and test sets
(known as ‘Probe’ and ‘Qual’). We only used the inputs in ‘Probe’ without their labels, as well as the
provided inputs in ‘Qual’ which are similarly distributed, in order to perform matching.

Since the training set has about 100 million points, and we matched along 6 coordinates, we

needed an efficient matching algorithm for our experiments, which we describe in Chapter 5 and call
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Table 4.2: TW with K = 100 in the Netflix dataset. NetGain is computed with the labels of the
original Netflix competition test set.

Coord. A % fr. with NetGain A % fr. with NetGain
NetGain > 0 | improvement NetGain > 0 | improvement
(basis points) (basis points)
t 0% —-71 37% 9
dt 0% —14 58% 0.1
us 1000 0% —121 100 60% 5
ms 0% —147 28% -5
ut 0% —41 0% —20
un 0% —40 0% -17
t 55% 7 60% 2
dt 64% 0.1 7% 0.1
us 50 51% 9 10 69% 3
ms 5% -0.3 54% 0.4
ut 0% —14 0% -5
un 0% —13 0% -5
t 65% 1 76% 0.3
dt 84% 0.1 83% 0.01
us 5 71% 2 1 87% 0.4
ms 61% 0.2 76% 0.01
ut 0% -2 0% —0.01
un 0% -2 0% —0.01
[ t, us, ms [[ 100, 100, 10 | 60% [ 10 | 100, 50, 10 | 60% [ 15 |

Soft Matching. Each point in the dataset consists only of a user id, a movie id and the time of the
rating, R = {u;,m;,t;}2¥,. We represented each point by 6 characteristic coordinates that represent
the mismatch between the training and test points of this dataset. The coordinates are the absolute
time of rating (¢); time since first rating of movie (dt); number of ratings per user or ‘user support’
(us); number of ratings for a movie or ‘movie support’ (ms); time since first rating of user (ut); and
order of rating among the user’s ratings (un). The distribution along these coordinates was distinctly
different between the training and test sets. Soft Matching matches the distributions along these
coordinates by binning the values along each coordinates and minimizing the discrepancy between
corresponding bins while maximizing Neg. A parameter A controls the extent of matching, where
A = 0 implies all weights are 1, and A = co yields importance weighting. The details of this algorithm
will be explained further in Chapter 5.

Table 4.2 shows different choices for A and the coordinate to be matched. It also shows what
percentage of surrogate functions had axo + E[¢(g9(z), gw(z))] > 0 (the ‘%fr with NetGain > 0’
column), and then the actual improvement or worsening of out-of-sample error in the test set. Notice
that in the results shown, if the weighting mechanism worsens results, it is always the case that less
than 50% of the surrogate functions yield improvement. On the other hand, only for one case of the

weighting mechanism parameters, there is a positive NetGain while less than 50% of the surrogate
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Table 4.3: Out-of-sample performance when not using weights, always using weights, and using TW
to decide if weights should be used. The number of points in the training set (Ng) and the test set
(Ng) are shown for reference. After sampling, only Nsubr points were used for training

Dataset Ngr Avg. Ng Test error

(Classif.) Nsubgr No weights With weights With TW

Br. Cancer(1) 546 173 137 | 0.055 4 0.0006 0.055 £ 0.0006 0.053 £+ 0.0006
Br. Cancer(2) 546 109 137 | 0.317 £ 0.003 0.313 £ 0.003 0.300 £+ 0.004
Br. Cancer(3) 546 208 137 | 0.0681 £ 0.0007  0.0651 % 0.0007 0.0650 + 0.0007
Br. Cancer 546 228 137 | 0.045 4 0.0005 0.046 £ 0.0005 0.044 £+ 0.0005
German cred. 614 216 154 | 0.298 £ 0.0009 0.298 £ 0.0009 0.296 + 0.0009
Haberman 245 97 61 0.257 £ 0.0016 0.259 £ 0.0016 0.248 +0.0016
India diabetes 614 217 154 | 0.269 4+ 0.0011 0.271 £0.0011 0.262 + 0.0011
Tonosphere 281 153 70 0.066 £ 0.0009 0.067 £ 0.0009 0.061 £+ 0.0009
USPS 3vs9 1042 443 260 | 0.5031 £0.0009 0.4896 + 0.0008 0.4883 + 0.0008
(Regression) NMSE error

Abalone 3342 2319 835 | 0.4850 +0.0010 0.4840 £ 0.0010 0.4828 + 0.0010
Ailerons 11000 3637 2750 | 0.1847 £0.0002 0.1850 +£ 0.0002 0.1846 + 0.0002
Bank8FM 6554 3393 1638 | 0.0657 +0.0001 0.0653 =0.0001 0.0653 £ 0.0001
Bank32nh 6554 3353 1638 | 0.4733 +0.0006 0.4740 £ 0.0006 0.4731 + 0.0006
Bos. Housing 405 160 101 | 0.3197 £0.0028 0.3164 £+ 0.0029 0.3061 + 0.0026
CA Housing 16512 5250 4128 | 0.3688 +0.0004  0.3686 £ 0.0004 0.3679 + 0.0004
Cpu-act 6554 6325 1638 | 0.2767 & 0.0007  0.2778 £ 0.0010 0.2719 + 0.0008
Cpu-small 6554 6331 1638 | 0.2891 £ 0.0007  0.2881 £ 0.0009 0.2846 + 0.0007
Delta Ailerons | 5703 5691 1426 | 0.4585 +0.0004 0.4603 £ 0.0004 0.4580 + 0.0004
Kin8nm 6554 4109 1638 | 0.5881 +0.0005 0.5881 £ 0.0005 0.5877 + 0.0005
Puma8nh 6554 3993 1638 | 0.632 £ 0.0006 0.632 £ 0.0006 0.631 + 0.0006

functions yielded improvement. The table highlights the runs where the majority of the surrogates

agreed with the ultimate out-of-sample performance.

4.3.2 Results on further benchmark datasets

We also tested our TW algorithm on UCI classification dataset [7], as well as on LIACC Regression
datasets [68]. Since these datasets have Pr = Pg, a sampling bias is further introduced as described in
the experiments in [38]. We began with detailed experiments in the Breast Cancer dataset where three
types of sampling biases are introduced to the training set: bias using a single input feature (1), bias
using all features (2), and label-dependent bias (3). We then ran experiments in both classification
and regression datasets where sampling bias is introduced along the first PCA component, and we
matched along all original coordinates. All biased sampling parameters are set as in [38].
Experiments were run 1,000 times for each type of sampling bias scheme. We used a Gaussian
kernel SVM as the learning algorithm for the classification datasets. The SVM package 1ibsvm [23]
with weights was used to carry out the experiments, and the size of the kernel for each dataset was

taken from [38]. For the regression datasets, we used regularized least squares (LS). For each run, a
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different split between training and test sets was done, where 20% of the data was saved for testing.
The remaining 80% was sub-sampled for each of the sampling bias schemes. TW was run using
K = 100 surrogate functions. For the classification tasks, the surrogate functions were generated
by randomly choosing support vectors and coefficients. The only constraint in this random selection
was to use a similar number of support vectors to the ones obtained when training with the original
data, in order to have comparable complexity. Specifically, surrogate target k had svi € [0.9sv, 1.1sv],
where sv is the number of support vectors obtained with the original data. For the regression tasks,
a random parameter vector 0 ~ N (6, (0.10)?) was generated, where 6 were the parameters of the LS
output on the unweighted training data. The labels for the artificial target were then computed as
yik = o1 0) + €, and ¢ ~ N(0,0.12).

Table 4.3 summarizes the expected out-of-sample error obtained when no weights are used, when
weights are always used, and when TW is used to decide if weights should be used. For classification
tasks, the test classification error is shown, while for regression the normalized mean-squared error
(NMSE = m >, (yi — g(;))?) is shown. As it can be seen in the table, for every dataset and
every sampling scheme used, the use of TW improves performance.

Hence, the unanimous success of Targeted Weighting in these datasets shows that it is a reliable
method that can be used to determine if a particular weighting scheme will yield out-of-sample im-
provements or not. With this algorithm it is possible to answer the second fundamental question we
had pose in Chapter 1. Now we move on to answer the final question: how to match a sample coming

from distribution P, to a desired distribution P’?



