57

Chapter 5

A novel class of matching
algorithms

We have answered the first two fundamental questions posed in Chapter 1. Namely, we found that
there is an optimal distribution from which data should be drawn to train the learning algorithm, we
called it the dual distribution and described how to find it. We then established an algorithm that
can determine if a weighting scheme used to change the distribution of the training data will yield
out-of-sample improvement. The remaining question is: how to find such weighting scheme? This
question has received great attention in the covariate shift literature, in which various algorithms
have been proposed to match the training distribution to a test distribution. The idea behind these
methods is to estimate the weights w(x) = ps(x)/pr(z), in order to correct for the covariate shift
bias. In the following section, we review some of the most popular methods. We then propose a new
class of algorithms that allow finding the weights efficiently and show their performance on real data

sets.

5.1 Previous algorithms

The problem that instance weighting algorithms for covariate shift correction solve consists of esti-

mating w(x) = ps(z)/pr(x). The following methods find this ratio in different ways.

5.1.1 Indirect ratio estimation via KDE

The first approach used to find the importance weight was Kernel Density Estimation (KDE). The

method finds the training and test densities by modeling each distribution as a linear combination of

58

kernel functions around the existing samples. That is

N
1
(1) = —————~ Ky(x,x;). 5.1
p() N(27T0'2)d/2 ; (l) ()
The method is very simple to implement, only requiring a choice for the size o of the kernels. However,
the method suffers in the case of noisy data sets as the errors in estimation get amplified when the
ratio is taken between two estimated quantities.
Hence, the following methods propose estimating the ratio directly, rather than trying to first solve

the hard problem of estimating full densities in order to find the ratio.

5.1.2 Logistic regression methods

The next group of methods propose to build a classifier that would discriminate data coming from
the training and test distributions. The model assumes that all data is drawn from a probability
distribution p(z), and that there is a variable n that determines if a point comes from one or the other
distribution. With this assumption and using Bayes’ theorem, it is possible to estimate the ratio.
Specifically, let

pr(z) =p(zln=—-1) and pg(z) =p(zn=1). (5:2)

Then, by Bayes’ theorem

w(z) = ps(x) _ p(n=1]z)p(n = 1)

= = (5.3)
pr(x) pn=—1z)p(n=1)
To find the quantities in the right hand side, the method assumes further that
p(n=—1)/p(n=1) = Nr/Ns (5.4)
and finds the remaining ratio via logistic regression. The optimization problem is given by
1
0" = arg m@in Ny NS Z log(1 + exp(—n6'x)) (5.5)
r€eRUS
and the final estimate for the weights is therefore
N
W(z) = =2 exp(2T6*). (5.6)
Ns

Variations of this idea are described in [13], [14], and [71]. The problem with this approach is that

the assumptions made by the model are quite strong.

59
5.1.3 Kernel mean matching (KMM)

One of the methods that has been used in practical applications most often is Kernel Mean Matching
[38]. The success of this algorithm is based on a theorem that states that two distributions are the
same, if and only if the mean in all dimensions of a Reproducing Kernel Hilbert Space (RKHS) are
equal. Formally, let ® : X — F be a map into a feature space and let p : P — F denote the

expectation operator,

W(P) = By [0(a)] (5.7)

where P is a probability space. Then the theorem proved in [38] states that the operator y is bijective
if 7 is an RKHS with a universal kernel k(z, z’) = (®(z), ®(2’)). In other words, for two distributions
P and P', P =P’ iff u(P) = p(P").

Hence, the authors propose to solve the following optimization problem to match the means of the

samples in a RKHS:

minimizey ||(Ps) = Bz pp [w(z)d(2)]]] (5-8)

st. w(x) >0, Epupya)[w(z)] =1

In practice, the objective function of the above problem is approximated with empirical estimates:

1 & 1 1 2
N Z wid(x;) — Na Z o) = WwTKw - W/@Tw + const (5.9)
R4 S 5= R R
The optimization problem becomes:
inimize L WK 2 T (5.10)
minimize,, —w' Kw— —5 k" w, .
N Ni
Nr
st. we[0,B], Zwi—NR < Nge.

i=1

Hence, the problem reduces to solving a quadratic program with inequality constraints. However, the
main drawback of the method is that it is very sensitive to both the choice of the size of the kernel and
the constants B and e. Before Targeted Weighting was introduced, there was no method available to

cross-validate different weighting schemes, and hence the choice of these parameters was problematic.

5.1.4 Parametric models for the ratio: KLIEP, LSIF, RuLSIF, etc.

Although KMM proved successful in some applications, as discussed in Chapter 4, weighting may

worsen performance, and hence it was sometimes not a useful method as cross-validation was not

60

available (See Section 4.2). A few more methods were proposed based on the idea of estimating the
ratio of the importance weight directly, by using a parametric model for the ratio. The first of these
methods was Kullback-Liebler Importance Estimation Procedure (KLIEP) [67]. In this method, the

ratio is modeled by the equation

T
. ps(z)
w(x) = =Y wd(x). (5.11)
e) " 2
With this model, the idea is to minimize the KL-divergence between the training and test distributions,
given by
ps(x) ps(z) A
KL(a) =Ep, |log————| =Ep, |1 —Ep.|l . 5.12
(a) Pg |:Og ﬁ;(m)pR(x)] Pg [ngR(x) PS[OgU}(J?)] ()

Since the first term is constant with respect to the weights, the method maximizes the second term,
adding the constraint that E,.p,[w(z)] = [ps(z)dz = 1. Using empirical estimates for the above

quantities, the problem becomes:
Ns
maximize, Zlog (Z atqﬁt(x;-)) (5.13)
j=1 t

1 Nr
b —— J=1, a>0

This optimization problem is convex and the authors propose to solve it using gradient descent with
constraint satisfaction at each step. The authors suggest using Gaussian kernels centered at the test
points for the functions, that is w(z) = > ;g @t Ko (2, ;). The authors also claim that KLIEP has a
model selection procedure, by cross validating the choice of kernel width, T, etc., with respect to the
value of the objective function. Nevertheless, this cross-validation procedure is a measure of how good
the match is between the two distributions, but is not a measure of the bottom line out-of-sample
performance. As argued in Chapter 4, matching distributions using weights may actually worsen
performance in some cases, depending on the tradeoff between the MatchBenefit and WeightLoss.
Targeted Weighting, on the other hand, could be used exactly for this cross-validation purpose in
conjunction with KLIEP, or any of the matching methods proposed so far.

A variant of this method was proposed, in which the KL divergence was replaced by a least squares

error approach. This led to least squares importance fitting (LSIF) [42]. In this method, the following

61

objective function is minimized:

Epy, [W(z)?] + Epg [1(x)] + const. (5.14)

Once again, expectations are approximated using empirical averages, so that the optimization problem

becomes:

1 N o
minimize, iaTHoz — ha (5.15)
st. a>0
with Hjj, = NLR Z]\;Rl (i) on(xi), and h; = Nis Z;V:SI ¢i(x}). Nevertheless, the authors point out
that the method is numerically unstable, so they use L2-regularization with an unconstrained problem
(uLSIF). Once again, they use the objective function value in order to cross-validate the choice of kernel
size

Finally, RuLSIF was proposed in which the weights are regularized, by using

w(z) = ps(X)
Bpr(z) + (1 = B)ps(z)

(5.16)

The need for this regularization is precisely the tradeoff pointed out in Chapter 4. Nevertheless,
the authors propose finding S using importance weighted cross-validation (IWCV) [65]. However,
IWCV requires knowledge of the ratio pg(z)/pr(z). Since this ratio is unknown, cross-validation is
done assuming that the estimate of the weights, found through one of the above methods, is actually

accurate.

5.1.5 Discrepancy minimization

The matching algorithms discussed so far make no assumption about the learning algorithm to be used.
That is, they make no assumption of what loss function is to be minimized or what the hypothesis set
is. One of the most recent algorithms, introduced in [26], uses the notion of discrepancy [47], which
leads to a tractable algorithm when we use a squared loss function, a linear model, and Y = R.

The intuition behind this approach is to find weights such that the training distribution is matched
to a distribution in which the hypothesis learned will yield the same out-of-sample error as if the

hypothesis had been learned with training points sampled from the test distribution. Notice that this

62

notion does not imply that the weights found will exactly match the training and test distributions.
It will only match the out-of-sample error, which in fact is what matters to a practitioner. The hope
is that by doing this, the negative effect of weighting will be minimized, as the perturbation of the
weights from unity should be smaller than when we try to match exactly the two distributions.
Formally, the discrepancy is defined as follows. Let H be a set of functions with A : X — Y for
every h € H, and let £: Y x Y — RT define a loss function over . The discrepancy distance discy,

between two distributions P and @ over X is given by
: _ / o /
discr,(P, Q) = hax, |Lp(h',h) — Lo(h', h)| (5.17)

where Lp(h,h') = E,wp[l(h(z), ' (x))]. That is, the discrepancy finds the maximum out-of-sample
error difference that could result if we trained with points distributed as P instead of Q). It is not hard
to see that this notion can give a bound for the error made by training with a different distribution. In
fact, in [26], assuming that kernel ridge regression is used (model that uses a squared loss function, a
linear model with a kernel for the non-linear transformation, 5 norm regularization for the parameters,

and Y = R), the authors prove the following bound:

[0(R (),) — £(h(z),y)| < 2r\/MXdisc(P’, P)/\, (5.18)

where K (z,7) < r?, L(h(z),y) < M, and X is the regularization parameter. Hence, the authors pro-
pose minimizing the discrepancy between the training and test sets. It turns out that the optimization

problem is equivalent to the following semi-definite program:

minimize, y A (5.19)
st A —M(w) =0
A+ M(w) = 0

1Tw=1,w>0

where M(w) = 3 Pg(z)zaT — EZJ\LRI wir;zl, and A = 0 denotes matrix A is positive semi-definite.
Solving this problem requires, therefore, using convex optimization packages. Since the notion of
discrepancy allows regularizing the weights, the algorithm is effective. Nevertheless, its main drawback

is that it is only valid for regression problems with the learning model specified above.

63

5.2 A new class of algorithms

We propose a new class of algorithms for matching. These algorithms were conceived for very large
datasets, as it is the case with the Netflix dataset, where computational complexity is a key issue.
Furthermore, as the algorithms were conceived in the recommender system setting, we wanted to be
able to choose particular coordinates along which to match distributions. In recommender systems, the
data usually includes only an item ID, a user ID, and the rating which is the value that the system will
try to predict. The time of the rating may also be available. Under this scenario, matching training
and test sets is not meaningful as both user ID and movie ID are not relevant coordinates. Rather,
matching certain coordinates that can be derived from the data, such as the item popularity (known
as item support), or the amount of ratings by a particular user (user support), can be desired. We
begin by introducing the hard matching algorithm which is the basic building block of the algorithms
presented here. A “soft” version is also presented, and finally different variants of the initial algorithm

are discussed.

5.2.1 Hard matching

We recall that a sampled version of the loss function yields a variance with approximately Neg =
>, w;)? / >, w?. Hence, as there are many schemes that can match the training dataset to a desired
distribution, we pick the one that minimizes the fo-norm of w, since this will maximize Neg. The
reason for this is that the the numerator of the expression for Ngg is a constant. To see this, notice
we can scale all weights by a constant and this would not have any effect on the learning algorithm.
Hence we pick to normalize the sum of the weights to Ng. Here we use Ny to denote the number of
points in the training set, while we use Ng for the points in the test set. To illustrate the matching
condition, first consider a one-dimensional distribution. One way to match is to divide the input space
into bins and match the fraction of points appearing in each of the bins for the training set and for
data coming from the desired distribution.

To formalize this, let T denote the number of bins that we use to divide the input space. Let
b: X — {1,...,T} be a function that indicates the bin number into which each data point z; falls.
Let p, v € RT be vectors that hold the frequency of points in each bin for the training set and for the

distribution we desire to match to. That is
1 r
= — I[b(z;) = 5], 5.20
= R 2o) =) (5.20)

and similarly for v, except that the summation is over points in the test set if P’ = Pg. In case P’ is

a different distribution, such as the dual distribution, v can be obtained by integrating the density of

64

P’ for each of the bins. With this notation, the idea described above consists of solving the following

optimization problem:

Nr

R 1
minimizew, gl(wi —1)? (5.21)
t ! E (1), f 1 T
st. — w; =v(r), forT=1,...,
Nn T T
i:b(zy)=T7
W; > 03

where v(7) indicates the 7’th component of the vector v. This is a quadratic program with linear
constraints, and hence it is convex and has a unique solution. In fact we can solve for the weights
analytically by constructing the Lagrangian and setting its gradient to 0. We ignore for now the

positivity constraints. Notice further that since
Nr
ST DD SIRTERS SRS 622
i=1 T ib(xi)=T T

it is not necessary to include normalization constraints for the weights as this constraint is implicitly
satisfied.

The Lagrangian is given by

Npg T

1
_— o — 2 — Ppp—
L(w,\) = g (w; —1)* 4+ Ny E Ar | E w; — v(T), (5.23)
i=1 T=1 i:b(z;)=T
thus
OL(w,\) B Ar

Notice that this means that the weights of all points that fall in the same bin must be equal. Hence,

let w; = w, for all z; € R with b(x;) = 7. Then, substituting in the constraint,

NLR > wi= NLR > Nau(r)w, = p(r)w. = v(r). (5.25)

:b(x;)=T7 i:b(x;)=T7

Therefore, the solution for the weights is given by

(5.26)

Clearly, this approach gives an approximation for the importance weighs w(z) = p'(x)/p(x). Also

notice that having ignored the non-negativity constraints in the problem did not change the solution,

65

as clearly w, > 0.

Now that the intuition is clear, we move on to multiple coordinates. We want the distributions to
be matched along each of the desired coordinates, and we consider projections into these coordinate
independently. This allows the algorithm to grow linearly in complexity with the number of coordinates
chosen, rather than exponentially in d, the number of dimensions of the input space. Generalizing the
previous notation, let C' be the number of coordinates we want to match along, and let T3, ..., T be
the number of bins chosen along each of the coordinates. Let b.: X — {1,...,T.} forc=1,...,C be
functions that map each training point x; to the corresponding bin number along coordinate c. Also,
let pe,ve € RTe for ¢ = 1,...,C be the corresponding frequency vectors along coordinate c¢. The

optimization problem we want to solve is given by

IR
o 2
minimize,, 5 Zl(wz -1 (5.27)
1 T=1,....,T,
s.t. — Z w; = ve(r), for
N ibe(xi)=T c= aC
The Lagrangian in this case is given by
L | S X
L(w,\) = 3 Z(wl 1)% + N, ZZ)\CT | Z w; — ve(T). (5.28)
1=1 c=171=1 'L;b(zi):‘r
Setting the gradient of the Lagrangian with respect to w; to 0 yields
et (o)
w; =1— X_;TR (5.29)

We now solve for the Lagrange multipliers. We substitute in the constraint and obtain

C
% Z Z)\kbk(mi) = MC(T) - VC(T)- (530)

R itbe(z)=7 k=1

Notice further that for coordinate ¢, the above equation becomes

C
1 1
N2 D Ay =he(T) = ve(T) = 5 D D Mbute- (5.31)

R ibe(x;)=T7 R itbe(zi)=7]If:;:é}'

66

But for the left hand side, since the outer sum is over the z; that satisfy b.(x;) = 7, we are simply

adding p.(7)Ng times the value of A.,. Hence,

Aer 1 1 Akby (o
= pe(T) = ve(T) = ~— Z 7’“ e (5.32)
NR b= mh=

Rescaling the Lagrange multipliers to absorb the Nr constant, we have the following system of equa-

tions:
w; =1— Z Nbby (1) (5.33)
o1l 1 3 ZC:Akb N (5.34)
“ pe(T) Nppe(r) isbe(w) =7 k=1)

To solve for the Lagrange multipliers, we initialize them at 0, and use Equation 5.34 iteratively to
update their values. In our experiments, the values converge in a few iterations. With these values,
the weights can be readily found.

We applied this algorithm to the Netflix dataset, as this dataset suffers from the covariate shift
problem. The dataset consists of around 100 million points that included the user ID, movie number,
time of a rating and rating (the value to predict). That is, R = {(u;,m;,t;,r;)}. The dataset was
designed in such a way that the training set included ratings from historical data, but the test set
only included the most recent ratings available to Netflix. This inherently created a difference in
distributions along various coordinates of the data. The coordinates included: absolute time of rating
(t); time since first rating of movie (dt); number of ratings per user or ‘user support’ (us); number of
ratings for a movie or ‘movie support’ (ms); time since first rating of user (ut); and order of rating
among the user’s ratings (un).

We ran one of the most popular algorithms used in the Netflix competition, the SVD [44], and
noticed that performance actually worsened if we used hard matching. This occurred both if we
matched along single coordinates, or all coordinates at once. Table 5.1 summarizes these results. This
was actually not very surprising as we were aware that weights could have a negative effect on the
sample ‘size’, and in this particular dataset, some weights needed to become very large in order to
achieve the matching constraints, which worsens this effect. To alleviate this problem, we introduce
a regularized version of this method. We call this method “Soft Matching”, which we explain in the
next subsection.

A remaining question to be answered is how to choose the free parameters T, the number of bins in

each of the coordinates. Sometimes, the data will have a natural division for the different coordinates.

67

Coordinates | RMS error improvement
(basis points)
t -71
dt —14
us —121
ms —147
ut —41
un —40
all coords. —-93

Table 5.1: RMS error improvement in basis points when the given coordinates are matched between
training and test sets using the hard matching algorithm.

For example, in the Netflix dataset, movies were rated over a period of 2,243 days. Therefore, binning
by day seemed a natural thing to do. Nevertheless, it is not necessarily clear from the data how many
bins should be chosen. Yet, the higher the number of bins, the higher the chance that some bins
will have very few points, which could lead to inaccurate estimates of pg(z)/pr(x) for those bins. In
the other extreme, if very few bins are chosen, the estimated ratio will also be inaccurate because it
captures a large part of the input space. In the extreme case, the ratio will always be 1. Therefore,
as a rule of thumb, in the experiments ran on UCI classification datasets and LIACC Regression
datasets, we chose the number of bins to be such that on average, every bin had at least 10 points.
Hence, for datasets containing in the order of 102 points, 10 bins were used, while for datasets in the
order of 103, 100 bins were used. For the Netflix dataset, the bins were either: the number of days,
which meant about 50,000 points per bin for the ¢, dt, ut, and un coordinates; the number of unique
movies (17,771) for the movie support ms, which yields about 5,000 items per bin; and 3,000 bins for
the user support, each one corresponding to the number of movies rated by each user, with the last

bin grouping all users that rated more than 3,000 movies. This yields about 33,000 points per bin.

5.2.2 Soft Matching

In order to reduce the negative effect or WeightLoss that hard matching can lead to, we alleviate the
effect by softening the constraints. One way to do this is to pull the constraints into the objective
function. By using free parameters that allow trading off the amount of matching desired, we can get

control how close to unity we want the weights to be. We call this problem Soft Matching, which is

described as follows:

18 Tn, & w;
minimize, 5 ,Z(wi 124 3 > | > N; — ve(7) (5.35)
i=1 c=1 T7=1 \a:b(z;)=7
st. w>0.

Notice the similarity of the above objective function with the Lagrangian of Equation 5.28. In this
case, the parameters A, control the level of matching, rather than being Lagrange multipliers. If the
A are set to infinity, then the constraints must be matched exactly in order for the objective function
to be finite. If on the other hand the \. are set 0, all weights remain equal to 1. We solve again for
the weights analytically by finding the gradient with respect to the weights and setting it to 0. As it
was the case for the hard matching algorithm, we initially ignore the inequality constraints. Setting

the gradient of the objective function to 0 yields

c
1 wW;
wi=1——3 X| Y L-wn]. (5.36)
NR c=1 Jib(zj)=" NR
Define further the auxiliary variables
welbelw)) =~ Y % — ve(bo(z;)) fore=1,...,C. (5.37)
xj:be(xj)=be(xi) R
Thus,
c
wi =14 Aewe(be(z:)), (5.38)
c=1

where the Ni constant has been absorbed into the A.’s. Substituting this equation in the definition

for w,, we can solve for this auxiliary variables:

1

0 T

c
1
Ve(T) — () — o S0 Mw(be(s)) (5.39)
be(zi)=7k=1
k#c
Once again, notice the solution is parallel to the one obtained in the hard matching procedure,
except that the old Lagrange multipliers, A\.; are now —w.(7)\.. To verify that indeed in the case

that A, goes to infinity we recover the hard matching solution, we take Equation 5.39 and multiply it

69
by —A.. We have,

Y 1 <
)\CwC(T) = 76(7) VC(T) - /’I’C(T) - Ni Z Z)‘kwk(bk(xl))

T+ Acpte be(w;)=T k=1
T Be

C
-t uc(f)fuc(f)fNi S Y b)) |- (5.40)

/A + e be(wi)=7 k=1
e\l k;ﬁc

Now, taking the limit of the equation as A\, — co we obtain

Ve (T) 1 ©
Aer=1—) ST M (5.41)

te(T) Nppe(T be(or)=r k=1
k#c

where we have set

lm —Acwe(7) == Acr- (5.42)

Ae—r00

As it is clear, we have recovered the Hard Matching systems of equations (Eq. 5.33).

We now apply the Soft Matching algorithm to the Netflix dataset and obtain the results shown in
Table 5.2. As it is clear from the table, choosing certain coordinates, and for low values of A, there
is an improvement in the RMS error on the test data. This had not occurred when we applied the
hard matching algorithm. It is important to note that in this dataset, it is extremely hard to obtain
improvements over available solutions, as practitioners tried for two years to improve upon solutions
in order to win the Netflix Prize competition. An improvement of a few basis points, as the ones
shown in Table 5.2, could have meant being ahead of the pack by a significant amount.

Picking the value for the A. can be done through cross-validation, which can be achieved using
the Targeted Weighting algorithm introduced in Chapter 4. Once we observed which values of A\,
worked well for each of the coordinates, we matched simultaneously the subset of coordinates that
TW indicated were helpful. We then tried different values of A, and matched simultaneously the
favorable coordinates, namely the user support us, the movie support ms, and the absolute time .

Having successfully applied Soft Matching to a real dataset that suffered from covariate shift,
we explore alternative formulations of the hard matching problem, on the one hand with the idea
of reducing the number of free parameters to be adjusted via cross-validation, and on the other,
expressing the “softening” of the initial algorithm in a principled way. We discuss these variants in

the following subsection.

70

Table 5.2: Soft Matching applied to the Netflix dataset, with the SVD++ learning model using 50
factors. RMS improvement is given in basis points.

Coord. A RMS A RMS
improvement improvement
t -1 9
dt —14 0.1
us 1000 —121 100 5
ms —147 -5
ut —41 —20
un —40 —17
t 7 2
dt 0.1 0.1
us 50 9 10 3
ms —0.3 0.4
ut —14 -5
un —13 -5
t 1 0.3
dt 0.1 0.01
us 5 2 1 0.4
ms 0.2 0.01
ut -2 —0.01
un -2 —0.01
[t, us, ms [[100, 100, 10 | 10 | 100, 50, 10 15

5.2.3 Hard matching with slack variables

The second variation of hard matching we consider consists of using slack variables for the constraints,
rather than including a weighted version of the constraints in the objective function. This approach
accounts for the fact that even if two samples come from the same distribution, their realizations will
yield slightly different histograms along the desired coordinates. For this and the following problems
we state the optimization problem considering C' = 1. Natural extensions for C' > 1 only involve

summations over the number of coordinates. The optimization problem is:

Ng

1
minimize,, 5 ;(w —1)? (5.43)
W;
s.t Z —v(r)=¢& forr=1,...,T

zi:b(xs)="1

1 T
3 LG<K
=0

(5.44)

71

The Lagrangian of this problem is given by

Ngr T T
L(w, A\, a) = 3 E (w; — 1) + E Ar E Ng v(t) =&+« (2 E £ — K) (5.45)
1=1 =1 zi;b(zi):'r =0

The Karush-Kuhn-Tucker (KKT) conditions of this problem yield

Ar
i=1- 20 4
w Nn (5.46)
Ar = aNge; (5.47)
1 T
_ 2
0=« (2 TE:1 € — K) (5.48)
a>0. (5.49)

The KKT system also includes the constraints. Here, Equations 5.46 and 5.47 are the result of taking
the partial derivative with respect to the weights and to the Lagrange multipliers of the Lagrangian.
The remaining two are the complementary slackness conditions and the positivity constraint of La-
grange multipliers for inequality constraints. We eliminate A, by combining Equations 5.46 and 5.47,
and then, substituting in the constraint obtain

v(7)

Wt s
|

T

(5.50)

Q\»—lQ\»—l

where 7 = b(x;). Notice that we arrive at the same solution we had for the Soft Matching algorithm,
except that now the regularization parameters, A, are replaced by the Lagrange multiplier a. In
this problem however, « is found through a different method, by using the complementary slackness
condition given in Equation 5.48. Notice that if &« = 0, then the constraints are trivially satisfied.

Therefore, for complementary slackness to hold, it is necessary that

DN =

T
Y e =K. (5.51)
T=1
Expressing this equation in terms of «, we obtain

Z(Hw T)))z_K: . (5.52)

We can solve for « in the above equation numerically, for example, using the bisection method. Notice

that for large enough « the first term tends to 0, so that the left hand side is a negative number. On

72

the other hand, for @ = 0 the first term is larger than K, otherwise the constraints would already be
satisfied. Hence, the left hand side, as a function of «a, goes from negative to positive in the interval
[0,00). Thus, a solution can be found through numerical methods.

This formulation trades off setting the regularization parameter A, for the parameter K. Once
again K must be determined. Yet, perhaps more information is available to find this K. For example,
one can generate two samples from an estimate of the distribution Pg, and compute the expected value
of K through Monte Carlo simulations. Hence, this approach gives the advantage of determining the
free parameters through a method different than cross-validation.

The drawback, however, is that when multiple coordinates are considered, once again we require
solving iteratively an equation for the a.’s. However, this time each equation is solved through a
numerical method like the bisection method, rather than by simple substitution of values as in the
Soft Matching case. This slows down considerably the algorithm. Since the solutions given by this
algorithm and Soft Matching are practically the same, it is not surprising that the out-of-sample
improvement is the same as the one obtained when using Soft Matching. Hence, we prefer to use Soft

Matching due to the computational advantage.

5.2.4 Statistical approach

An alternative formulation similar to the slack variable approach, is to use the conditions from statis-
tics. The Kolmogorov-Smirnov test that determines if two samples come from the same distribution
can be used to specify the matching condition that two samples must satisfy. This procedure tests
the null hypothesis Hy, that states that two samples come from the same distribution. Let F,,(z) and
G () be the empirical cdf’s, of the two samples with m and n points, respectively. The test accepts

the null hypothesis Hy if
mn

- St;p(Fm(x) — Gn (7)) < D, (5.53)

where D,,, is a value that depends on the statistical significance of the test. Hence, we can set up
the following optimization problem:
o 1 2
minimize,, 5 Z(wl -1 (5.54)

%

3 ;’R —v(r)

T=1

SDNRNsv fOI"tZl,...,T, (555)

where Dy, N, is given by Kolmogorov-Smirnoff tables. Hence, in the limit where T is max(Ng, Ng),

this is equivalent to carrying out the Kolmogorov-Smirnoff test. We rewrite the problem to have twice

73

the constraints, eliminating the absolute value, and it becomes

L 1 2
minimize,, 5 Z(wl -1 (5.56)
w;
s.t. ZNR—V(T)SDNRNS, forr=t,...,T,
=1

¢
ZV(T)— el < DnpNng, forT=t,...,T,

T=1 NR
The Lagrangian of this problem is given by
1 a é w;
ﬁ(w,a,ﬂ):§Z(wi—l)2+Zat Z | Z N; —v(1) | = Dnpns | +
U t=1 7=1 \i:b(i)=T
T t T w
DB\ v = 3 Fo |~ Dwans |- (5.57)
t=1 =1 \7=1 ib()=r T
The KKT conditions yield
T o 3
=1 -7 .
wi =1+ ; N (5.58)
¢ ws
Ozatzzl Z ;—V(T) — Dnpns fort=1,...,T (5.59)
T= i:b(i)=T7
t ws
0=8> v - * | — Dy fort=1,...,T (5.60)
_“~ Ng
=1 i:b(i)=T7
ar >0 (5.61)
8, >0, (5.62)

where t = b(x;), and the system is completed by the constraints. We are now interested in finding o,
and (B, in order to determine the weights. We substitute the value of the weights given by Equation
5.58 into Equation 5.59. We obtain that either o = 0 or

k

k T
22 aT]\; P _ > () =v(r) = Dygng fork=1,...,T. (5.63)
R

t=1 1=t

T=1

Hence, for k=1

(5.64)

74

Similarly, using Equation 5.60, we obtain that either 8 = 0 or

k T . — ,8 k
ZZ¥:DNRNS_ZM(T)_V(T) fork=1,...,T. (5.65)
t=1 7=t NR T=1
Evaluating for ¢t = 1 yields
T
Z Qr — /BT _ DNRNS — (IU/(1> — V(1>)) (566)
T=1 NR M1

Since we obtain for each inequality a value for Zle % with different sign, we simply check which
constraint is being violated. Violation of one constraint will imply «; or 8y equal to 0, and one of the
above equations is not valid. Hence, we can decide what the correct value is for 23:1 % Once
this value is known, we can uniquely determine w;. Subsequently, wo can be obtained, and so on until
we have wr.

Hence, this is another method that can be used to carry out matching. The free parameter now,
rather than the regularization parameters A as in Soft Matching, or the value of K as in hard matching
with slack variables, is the value of Dy, N, which must be determined using Kolmogorov-Smirnoff
test values. The drawback of this method is once again the extension to multiple coordinates. In this
case, the system of equations given by the KKT conditions cannot be solved in such a straightforward

way. Finally, we present a different approach based on a probabilistic assumption.

5.2.5 Probabilistic approach

The final variation we present uses a similar idea as the previous methods, except that it uses a
probabilistic formulation. Letting v/ and v represent the frequency vectors of two samples, with each
component corresponding to the frequency count in each bin, we think of these as two realizations of
points sampled from a distribution P. Let N’ and N” be the number of points in each sample. We
ask the question, how different can these two vectors be, given that they were generated according to
the same distribution. This condition will become our new matching criterion.

Specifically, we are concerned with the quantity

Pr(p,v|p)
Ey o [Pr(psp")Ip

T
Zpi =1
i=1

maximize,,

(5.67)

where Pr(X) denotes the probability of event X occurring. In this case, we are concerned about

75

finding the probability that y and v were samples generated from p, a quantity that we normalize by

its expected value.

We first simplify this expression. Notice that

N v v
P/ = P, pT
(V ‘p) (N/p1)|(N/pT)'pl DPr
Further, recall Stirling’s approximation, namely
n\" 1
n! ~\V21mn (7) _ 6nlogn7n7§log(27rn)'
e

Substituting and canceling out terms, we obtain

V2N’

PV |p) % ————————
(¥'Ip) [T, Vo,

We now make the following simplifying assumption

E (ol 27N !
plol = | =
P Hthl 21 Np;

Rewriting Equation 5.67, the problem is:

’ ! 11
Nt Hi,Tzl pi\] v N HiTzl pi\, "
(N"v)l--(N"vL)! (N"7v) (N7

maximize,

27N’ v 2N’ v
ITi; 27N'p; ITi=, 27N

Grouping all constant terms into the constant K, the objective function is

T
. . /V/+N//V//+2'y
maximize, K H D; .

i=1

Writing the Lagrangian for this problem, setting its gradient to 0, and solving for p, we obtain

. N N 4 2)
e TN YN 2T

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

With this value of p*, we can now compute the maximum value of the objective function. This will

in turn be a criterion for determining if two samples came indeed from the same distribution. We

76

denote this value L.,qz, and it is given by

N/IN"1(2a N Y/(T=D (2 N) (T-1) L (N'u; + NV + 27) NN (5.75)

Lmax -
T, (N"U) (N i) S\ N+ N+ 29T

Now, this probabilistic approach to the problem reduces to finding weights such that the weighted
sample and the sample from the desired distribution have a normalized probability of coming from
the same distribution above certain threshold. This threshold can be set to a fraction of Ly,,x. That

is, the optimization problem becomes

1

min 5 Z(wl 1) (5.76)
NR!N/!(47T2NRNI)'~/(T—1) ﬁ <Zj:b(xj)=i w, 4 N/V(Z‘)/ + 27) Zj:b(lj):i wi+N"v(i) +2y -
s.t.
T . / " =
-, (Zj:b(:cj)zi wj) (Nw (i) i N+ N" 4+ 2~4T

(5.77)

We can take the logarithm of the constraint, and we realize that the constraint is neither convex nor
concave, as it involves sums of entropies and negative entropies. To see this, ignoring terms that do

not involve w, and setting v = 0.5, we obtain

T i Wi + N'v(r) +1 D isb(i)=r Wi
E E ; "wir) ab(i)=r _ . Zuisb(i)=r 7)
w; + N'v(1) +1 | log < No T Ne 1T g w; log Nn > lo.

7=1 \i:b(i)=7 ib(z;)=T

(5.78)
Hence, although we begin with a more principled criterion to determine the extent of matching, the
resulting optimization problem is harder to solve. Particularly, the extension to multiple coordinates
is not as straightforward as for the previous problems. Secondly, due to the non-convexity of the
problem, we cannot guarantee that once we find a minimum, it is the global one. Finally, we see that
once again the free parameter ¢y has to be chosen, although the order of it can be determined by
computing log(Lmax), if we use an estimate for p.

This concludes our exploration of matching methods, answering the third fundamental question
we posed in Chapter 1. In practice we use Soft Matching as it not only gives tangible improvements
in real datasets, but it is also the least demanding in terms of computation. Since we were precisely
interested in finding a suitable method for large datasets, this gives Soft Matching the edge over these

algorithms.

