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Appendix A

An analytic learning setup

In this appendix, we introduce an analytic setup for the learning problem that is both tractable

and versatile. The setup uses a squared loss function and a linear learning model with non-linear

transformations. Highly sophisticated target functions and learning models, as well as noise, can be

handled under this setup, and we are able to get analytic solutions for the out-of-sample error in this

framework. Various chapters of the thesis use the results of this section.

We begin by defining the notation. Let R = {xi, yi}Ni=1 be the training set, with xi ∈ X , and

yi ∈ Y. Assume xi are iid ∼ PR, where PR is the training distribution. Let the target function be

f : X → Y, and let ε be the stochastic noise process, where εi is the realization corresponding for

xi, so that yi = f(xi) + εi. Let H be the hypothesis set used by the learning algorithm, where each

h ∈ H is h : X → Y. Finally we assume the learning algorithm returns a final hypothesis g ∈ H that

minimizes the squared loss function `2 : Y × Y → R, `2(h(xi), yi) = (h(xi)− yi)2. That is,

g = arg min
h

N∑
i=1

(yi − h(xi))
2. (A.1)

We let H be the set of linear functions in some transformed space Zm of the input space X , so

that

h(x; θ) = θTφM (x). (A.2)

where θ, φM (x) ∈ ZM . For simplicity we let

zM = φM (x) (A.3)

In these terms, the goal of the learning algorithm is to find θ∗, where g(x,R, f, ε) = h(x, θ∗).

We further characterize the target functions by expressing them in terms of non-linear transfor-
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mations, so that f(x) = θ̃Tφ(x), where

φ(x) = [φM (x) φC(x)]T (A.4)

and φC(x) ∈ ZC represents the features of the target function that cannot be captured by the model.

By letting the dimension of ZC grow as desired, and allowing arbitrary non-linear transformation, f

can be as complex as we want. Following the same notation as before, we have z = [zTM zTC ]T , and

θ = [θTM θTC ]T . Figure 2.5 shows sample target functions that can be generated if we use Fourier

harmonics as the features of the non-linear transformation, with φ(x) ∈ R10, and X = [−1, 1]. As it

is clear from the figure, there is great variety that can be achieved with this model.

We are interested in finding an expression for the out-of-sample error Eout in this framework. We

begin by finding Eout at a point x ∈ X . This error is also a function of R, f , ε, and we denote it

by Eout(x,R, f, ε). Since both the stochastic noise ε and the complexity of the target function (also

known as the deterministic noise) vary from problem to problem, we take the expected value with

respect to these quantities. To do this, we make the usual assumption about ε, which is that it has zero

mean (E[ε] = 0), and diagonal covariance matrix, E[εεT ] = σ2
NI, where I is the identity matrix and

σN is the standard deviation of the stochastic noise. For the target functions, we make the simplifying

assumption that the coefficients of the features outside the model, namely θC ∈ ZC , have covariance

matrix E[θCθ
T
C ] = σ2

CI. Then, the expected out-of-sample error is given by

Ef,ε[Eout(x,R, f, ε)] = Ef,ε[(f(x)− g(x,R, f, ε))2]. (A.5)

The final hypothesis g(x,R, f, ε) is obtained by minimizing the squared loss function on the training

set, and the solution is given by the pseudo-inverse of the data matrix. To be more precise, let

Z =


−zT1 −

−z2T−
...

−zTN−

 y =


y1

y2

...

yN

 (A.6)

where Z is the data matrix. Now

Z = [ZM ZC ]. (A.7)

In matrix form, the learning problem reduces to the following quadratic program,

min
θ
||y − Zθ||2 (A.8)
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with analytic solution θ? found through basic calculus:

θ? = (ZTZ)−1ZT y = (ZTZ)−1ZT (Zθ + ε) = θ + Z†ε, (A.9)

where Z† = (ZTZ)−1ZT is the so-called pseudo-inverse of matrix Z. However, as stated before, we

assume the target function is more complex than the learning model. Hence, the matrix Z cannot be

constructed as φC is unknown. Instead, we use the matrix ZM . In this case the learning algorithm

will output the parameter vector θ̂ ∈ ZM given by

θ̂ = Z†My = Z†MZ
T θ = Z†M (ZMθM + ZCθC + ε) (A.10)

Hence,

g(x,R, f, ε) = zTZ†M (ZMθM + ZCθC + ε) (A.11)

Substituting, the expected out-of-sample error is given by

Ef,ε [Eout(x,R, fε)]

= Ef,ε
[
‖zT θ + ε0 − zTM (Z†M (ZMθM + ZCθC + ε)‖2

]
= Eε,f

[
‖zTCθC + ε0 − zTMZ

†
M (ZCθC + ε)‖2

]
= Ef

[
(zTC − zTMZ

†
MZC)θCθ

T
C(zTC − zTMZ

†
MZC)T

]
+ Eε

[
ε20 + zTMZ

†
M εε

T (Z†M )T zM

]
= Ef

[
Tr
(

(zTC − zTMZ
†
MZC)θCθ

T
C(zTC − zTMZ

†
MZC)T

)]
+ Eε

[
Tr
(
zTMZ

†
M εε

T (Z†M )T zM

)]
+ σ2

N

= Ef
[
Tr
(
θCθ

T
C(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC)

)]
+ Eε

[
Tr(εεT (Z†M )T zMz

T
MZ

†
M )
]

+ σ2
N

= Tr
(
Ef
[
θTCθC

]
(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC)

)
+ Tr

(
Eε
[
εεT
]

(Z†M )T zMz
T
MZ

†
M

)
] + σ2

N

= Tr
(
σ2
C(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC)

)
+ Tr

(
σTN (Z†M )T zMz

T
MZ

†
M

)
+ σ2

N

= σ2
C(zTC − zTMZ

†
MZC)T (zTC − zTMZ

†
MZC) + σ2

NTr
(
zTMZ

†
M (Z†M )T zM

)
= σ2

C‖zTC − zTMZ
†
MZC‖

2 + σ2
NTr

(
zTM (ZTMZM )−1ZTMZM (ZTMZM )−1zM

)
= σ2

C‖zTC − zTMZ
†
MZC‖

2 + σ2
Nz

T
M (ZTMZM )−1zM + σ2

N , (A.12)

where ε0 denotes the stochastic noise at the point x, and Tr(A) denotes the trace of matrix A. The

above derivation reorganizes the expression using the fact that the trace of a scalar is the scalar

itself, and the fact that Tr(AB) = Tr(BA). Finally, we use the assumptions on the stochastic and

deterministic noise to find the expected values.


