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Appendix A

An analytic learning setup

In this appendix, we introduce an analytic setup for the learning problem that is both tractable
and versatile. The setup uses a squared loss function and a linear learning model with non-linear
transformations. Highly sophisticated target functions and learning models, as well as noise, can be
handled under this setup, and we are able to get analytic solutions for the out-of-sample error in this
framework. Various chapters of the thesis use the results of this section.

We begin by defining the notation. Let R = {x;,y;}; be the training set, with z; € X, and
y; € Y. Assume z; are iid ~ Pg, where Pg is the training distribution. Let the target function be
f: X = ), and let € be the stochastic noise process, where ¢; is the realization corresponding for
x4, so that y; = f(x;) + ¢;. Let H be the hypothesis set used by the learning algorithm, where each
he€His h: X — ). Finally we assume the learning algorithm returns a final hypothesis g € H that
minimizes the squared loss function £y : Y x Y — R, lo(h(x;),y;) = (h(x;) — y;)?. That is,

g = argmin Z(yi — h(z:))*. (A1)

We let H be the set of linear functions in some transformed space Z,, of the input space X, so
that
h(z;0) = 67 ¢pps (). (A.2)

where 6, ¢pr(x) € Zp. For simplicity we let

v = om () (A.3)

In these terms, the goal of the learning algorithm is to find 6*, where g(z, R, f, €) = h(x, ).

We further characterize the target functions by expressing them in terms of non-linear transfor-
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mations, so that f(z) = 67 ¢(x), where

$(@) = [pu(@) pc(@)]” (A.4)

and ¢¢(z) € Z¢ represents the features of the target function that cannot be captured by the model.
By letting the dimension of Z¢ grow as desired, and allowing arbitrary non-linear transformation, f
T LIT

can be as complex as we want. Following the same notation as before, we have z = [z;, 245]", and

0 = [0, 0L]T. Figure 2.5 shows sample target functions that can be generated if we use Fourier
harmonics as the features of the non-linear transformation, with ¢(z) € R, and X = [-1,1]. As it
is clear from the figure, there is great variety that can be achieved with this model.

We are interested in finding an expression for the out-of-sample error Fgy,¢ in this framework. We
begin by finding FE,y at a point « € X. This error is also a function of R, f, €, and we denote it
by Eout(x, R, f,€). Since both the stochastic noise € and the complexity of the target function (also
known as the deterministic noise) vary from problem to problem, we take the expected value with
respect to these quantities. To do this, we make the usual assumption about €, which is that it has zero
mean (E[e] = 0), and diagonal covariance matrix, E[ee’] = 031, where I is the identity matrix and
o is the standard deviation of the stochastic noise. For the target functions, we make the simplifying
assumption that the coefficients of the features outside the model, namely 6o € Z4, have covariance

matrix E[GCQE] = 0Z1. Then, the expected out-of-sample error is given by

Ef7€[EOUt(I7 R’ f’ 6)] = Ef,€[(f(x) - g(ﬂj, R’ f’ 6))2]' (AS)

The final hypothesis g(z, R, f, €) is obtained by minimizing the squared loss function on the training

set, and the solution is given by the pseudo-inverse of the data matrix. To be more precise, let

T

—& Y1
5 I P (A6)
) YN
where Z is the data matrix. Now
Z=Zn Zc) (A7)

In matrix form, the learning problem reduces to the following quadratic program,

min |ly — 26 (A8)
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with analytic solution #* found through basic calculus:
0 = (zT2)7' 2Ty = (ZT2)7 ' ZT(Z0+€) = 0+ ZTe, (A.9)

where ZT = (ZTZ)71Z7 is the so-called pseudo-inverse of matrix Z. However, as stated before, we
assume the target function is more complex than the learning model. Hence, the matrix Z cannot be
constructed as ¢¢ is unknown. Instead, we use the matrix Zj;. In this case the learning algorithm

will output the parameter vector 0 Zy given by

0 = Zl,y = 21,270 = Z1,(Zabnr + Zcbo + €) (A.10)

Hence,

g(x, R, f,€) = 2T Z} (ZniOni + Zcbe + €) (A.11)

Substituting, the expected out-of-sample error is given by

Ef.c [Bous(w, R, fo)

= Epc 1270+ co — 24 (2}, (Zasbs + Zcbo + )|

= Eo s |10 + 0 — 25,2}, (Zote + ) |?]

— By [+ - 2512}, 20)0cOE(E — #4124, 20)7) + B [ + 24 ZLec” (2]) 2]

=y [P (e = a2y 2oL - 12}y 2"+ Be [T (R Zhed” (24 o)) + o

Es {Tr (Gcﬁg(zg - ZAT4Z1TV[ZC)T(2€ - zﬁZJT\/[ZC)ﬂ +E. [Tr(eeT(Z]TM)TzMz]:\ZZJ&)} + 0%
Ey [0860c] (28 — AW zJEZJbZC)) +Tr (E€ [ee”] (ZJT\/I)TzMzﬁZ}LVI>] + 0%
08 (26 — 2 Z) Zo) " (26 — ZEZX/IZCD +Tr (Ug(ZX/I)TZMZJEZJJ(J) +ox

= 0% (& — 8y 24, 20) (= 4, 21y 20) + AT (4, 24, (2) )

= 08|28 — 21 2 20| + oX Tr (251( 281 20) ™ 231 Z0a (231 Z00) ™ 201

= 02|28 — 25 728, Ze|)? + 0% 2L (21 Zar) e + 0%, (A.12)

where ¢ denotes the stochastic noise at the point z, and Tr(A) denotes the trace of matrix A. The
above derivation reorganizes the expression using the fact that the trace of a scalar is the scalar
itself, and the fact that Tr(AB) = Tr(BA). Finally, we use the assumptions on the stochastic and

deterministic noise to find the expected values.



